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Abstract

Using a modern Bayesian implementation technique, this thesis
shows two applications of individual modelling in real data sets. The
simulation approach is adopted, with a Markov chain Monte Carlo
(MCMC) method - Reversible Jump MCMC - as the core of the thesis.
This technique allows the definition of a model with few underlying
assumptions and based on a changing-dimension parameter set.

Its first application is in automobile insurance, where the model
estimates at the same time the number of groups and their respective
risk parameters in order to have a better description of the analysed
data. Since all this process is based on a continuous piecewise
distribution, no obvious analytical solution for this type of problem is
available. RIMCMC is the only stochastic simulation that allows this
change of dimensionality.

The flexibility of this model is explored in the second application
presented in this thesis. In this new case, the aim is not to define the
number of groups, but to use a limited number assumptions to model
the claim reserves in a dental insurance coverage.

Both applications model frequency and severity separately and

apply the grouping technique to both discrete and continuous variables.
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Chapter 1

Introduction

There are many models in actuarial science for estimating reserves,
premium rating and many other risk assessment problems. In general
insurance most of these models are based on data aggregated in some way, as
is also the case in reinsurance, life assurance and pensions. Beside
aggregating, most of these models also use quite limiting assumptions. There
are few models that use a process based approach, looking at individual
information underlying behaviour.

As statistical techniques develop, they facilitate the application of
refined models and this thesis explores these new possibilities. In the area of
Bayesian statistics, a new stochastic simulation technique has been recently
developed - Reversible jump Markov chain Monte Carlo (RIMCMC). This
technique has the ability of implementing models where the length of the
parameter vector is not fixed and it will be fully defined in section 2.2.3.

This implementation technique does not have yet any published
application in general insurance that the author is aware of. Thus, the core of
this thesis is the application of Bayesian statistics modelling and RIMCMC to
two risk assessment problems, where the data are not aggregated, but kept at
an individual level. Also, besides the individual data structure, the models do
not have a fixed number of parameters.

The first application on this thesis, in Chapter 5, is on age grouping,
when age is measured in days and considered continuous. The data are on
automobile insurance and were also analysed in Verrall and Yakoubov (1999),
where the continuity assumption was dropped and only full years were

considered. The second application is to dental claims data, in Chapter 6,
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where the main objective is the definition of IBNR (Incurred But Not Reported)
and RBNS (Reported But Not Settled) reserves. The data are on dental
insurance and were also analysed in Arjas and Haastrup (1996), but

implemented via Arjas and Gasbarra (1994) instead of ROMCMC.

1.1 Bibliographical review

Bayes theorem was first introduced in 1763, but it was in the last 20
years that a wider range of its applications has occurred. The growth in
applications in this area is due to the development of stochastic simulation
techniques of the Markov chain Monte Carlo (MCMC) class, which allow the
applications of most of the Bayesian statistical models.

Metropolis-Hastings (Metropolis et all (1953); Hastings (1970)) were the
pioneers on MCMC, and the methodology was further developed to Gibbs
sampling (Geman and Geman (1984); Gelfand and Smith (1990)), which is now
the widely used technique of this class of simulation. A good textbook on these
implementation techniques is Gamerman (1997). Reversible jump Markov
chain Monte Carlo (RIMCMC) (Green (1995)) is a newly developed technique
and it is applied to some real data in Green and Richardson (1997),
Dellaportas, Karlis and Xekalaki(1997) and Denison, Mallick and Smith
(1998).

Actuaries were among the first prs.ctitioners to use the Bayesian
philosophy, which is the basis of credibility theory published by Mowbray
(1914). Although this theory is fully based on Bayes theorem, it was not until
1950 that a more theoretical approach exploring its origin was used (Bailey
(1950)). Credibility theory is the main actuarial technique based on Bayesian
statistics and many papers were published throughout the years (Buhlmann
(1967), Buhlmann and Straub (1970), Buhimann and Jewell (1987), Jewell
(1974, 1975, 1976), Kremer(1982), Sundt (1982, 1983, 1987), Pereira(1998)
are some examples).

Including not only credibility theory but also some other applications,
Klugman (1992) and Liu, Makov and Smith (1996) give a review of Bayesian
models in actuarial science. With the development of Bayesian statistics some
new applications have appeared in actuarial science in claims reserving
(Verrall (1990), Charissi (1997), Dellaportas and Ntzoufras (1997)) and
graduation (Carlin (1992), Kouyoumoutzis (1998)). These models included

more information about the value and structure of the parameters via the
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prior distribution, and many of them use stochastic simulation methods.
Boskov and Verrall (1994) use a two dimensional smoothing model to estimate
a premium by postcode area, bringing a more elaborate model to the
ratemaking process.

In parallel to these cited applications, some new ideas about the
processes involved in claim development have appeared. The works of Jewell
(1989, 1990) review the claim process, with the earlier paper considering
continuous time, but not including the values of payment. This idea is
reformulated in Norberg (1992, 1993, 1999), where the full process of
occurrence, delay of reporting and partial payment of a claim are considered in
the model. The process proposed is these papers is applied in Arjas and

Haastrup (1996).

1.2 Thesis outline

The first chapter is the introduction. Chapter 2 includes a brief review
of Bayesian statistics and the implementation techniques used in this work.
Also in Chapter 2, Markov chain Monte Carlo (MCMC) simulation techniques
are explained, including Metropolis-Hastings, Gibbs Sampling and ROIMCMC.

In the third chapter a review of Bayesian modelling in actuarial science
is presented. This chapter is a revised version of Pereira (1999) which was
awarded the Highly Commended award on the Brian Hey Prize competition
1999, held by the English Institute of Actuaries. Sections on credibility, claims
reserving and graduation are presented, showing the development of models in
this area with the advent of stochastic simulation (mainly applications using
Gibbs sampling). Finally in Chapter 3 a section about modem Bayesian theory
is given.

Chapter 4 contains the theoretical framework for the thesis, with the
models used in this work. This chapter also includes the explanation of the
basic model, which is the basis of the applications presented in this thesis.
This model is built straight from the Bayesian philosophy. Since the model
looks at the development of the claim it can be used to monitor different
aspects in this process. In this work the same model will be applied in two
different types of risk assessment and its applications will be seen in Chapters
Sand 6.

The implementation technique presented in Chapter 2 and the basic

model considered in Chapter 4 are put together and applied to two real data
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sets in different types of risk assessment. The first application is in
aggregation (or transformation into factors) of a continuous variable and is
fully explained in Chapter 5. Chapter 6 is the application to claims reserving,
an extension of the work from Arjas and Haastrup (1996) (also explored in
Haastrup (1997)), where the claims reserves are obtained via data using
individual information. Chapter 7 is the thesis conclusion, presenting some

ideas of future research as well.
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Chapter 2

Bayesian framework

Bayesian theory has been one of the most discussed and developed
branches of statistics over recent years. There have been an enormous
number of papers published by a large number of statistical researchers and
practitioners (see Gilks et al (1996) for some references and applications of
Metropolis-Hastings and Gibbs sampling). These recent developments are
mainly due to, firstly, the failure of classical statistical methods to give
solutions to many problems and, secondly, to the computer developments that
have made it easier to perform calculations by simulation.

The models used in this thesis are fully based on Bayesian theory, and
for this reason this second chapter presents an overview from basic concepts
to new techniques. Most of the following sections can be found in
DeGroot(1986) and Gamerman(1997). In this chapter no application to
actuarial science is presented, but only the theoretical statistical background.

The first section of this chapter reviews some of the foundations and
basic results of Bayesian statistics. Section 2.2 explain the Markov chain
Monte Carlo class of simulation, including more specific sections for
Metropolis-Hastings (2.2.1), Gibbs Sampling (2.2.2) and Reversible jump
MCMC (2.2.3). In each of these sections an algorithm is presented and in the
section referred to ROMCMC a bibliographical review is also included. In the

last section a chapter conclusion is presented.
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2.1 Basic concepts in Bayesian theory

As is well known, probability theory is the foundation for statistics, with
the differences in the interpretation of the term probability also defining the
respective differences in statistical theories. The subjective interpretation of
probability, the basis of Bayesian theory, states that the probability that an
analyst assigns to a possible outcome of a certain experiment represents his
own judgement of the likelihood that a specific outcome will be obtained. This
judgement is based on the analyst’s beliefs and information about the
experiment. As a contrast, frequency statistics, for example, do not include
formally this judgement but only the information received from the
observation set itself.

Bringing these interpretations to the inference problem of estimating a
specific parameter, Bayesian statistics differs clearly from the others. In
classical and frequency statistics the analyst is searching for a best estimator
of a parameter that has a true fixed value, which is unknown at the moment
of modelling. In Bayesian statistics the analyst does not believe in this true
fixed value, but in a range represented by the previous information that he
has and includes via the prior distribution.

The recognition of the subjective interpretation of probability has the
effect of emphasising some of the subjective aspects of science. It also defines
a formal way of including judgement in the model. This subjective information
is included in the model by defining a prior distribution for the unknown
parameters.

Bayes theorem is the formal mechanism of incorporating prior
information into the modelling. The theorem mixes the prior subjective
information with that observed in the experiment, producing a posterior
distribution. This last distribution is considered as an update of the previous
judgement (prior) through the data observed (likelihood).

More formally, Bayes theorem is defined as follows. Consider a process
in which observations (7 is the vector of observations) are to be taken from a
distribution for which the probability density function is p(Y |G, where O is a
set of unknown parameters. Before any observation is made, the analyst
would include all his previous information and judgements of o in a prior
distribution p(o), that would be combined with the observations to give a

posterior distribution p (o [Y) in the following way:

p©[Y)  p(Ylo)p(o) (2.1)

16



The complete definition of Bayes theorem is given by the normalisation
constant, which is equal to the predictive distribution defined by the following

formula (integrals are of the Riemann type throughout the thesis):
p(Yt)=jp(Yp)p(&)cB 2.2)

This distribution is used to perform predictions (explaining its
nomenclature) about future samples of Y (denoted by Fj, while the posterior
distribution is used to make inference about the parameter 9.

It can be difficult to define a prior distribution and even harder to
justify the choice. In fact, it is one of the most controversial elements in
Bayesian statistics. Many ways of defining this distribution have been
proposed, but ideally the prior distribution and the values of its hyper-
parameters should be chosen independently of the data and, together with the
observational distribution, complete the model. Then, in a perfect world the
posterior and predictive distributions are fully defined as well. This would be a
Pure Bayes approach, and any estimation of 0 is defined only after having all
information to hand. If a point estimate is the analyst’s objective, for instance,
then a loss function is chosen and the respective value (mode, mean, as
examples) is calculated from the posterior distribution. A fully defined
posterior distribution contains all the information about the parameter, and
given this completeness of information, it is argued that Bayesian theory gives
a better description of the parameter.

Unfortunately it is usual that in Bayesian statistics much more
calculation is needed to achieve an estimator of o, and in many cases it is not
even possible to derive the analytical form of the posterior distribution. In
order to avoid such difficulties many analysts would use the concept of the
conjugate prior distribution. This type of prior distribution relates to the
structure of the observational distribution and reapplies this to the prior
distribution. In this way it facilitates the calculations.

If the analyst does not want to include prior information, but does want
to use a Bayesian approach, it is possible to use a non-informative prior.
There are many ways of defining a non-informative prior where the main
objective is to give as little prior information about the parameters as possible
(Gamerman and Migon (1993), DeGroot (1986)). Some ways to use non-
informative prior are the following:

» Jeffrey’s information technique;

* auniform prior distribution;

* a prior distribution with a large value for the coefficient of variation,;
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* parameters of the prior distribution based on a set of data.

The use of observed data in the prior is called empirical Bayes
estimation. This gives greater weight to the data than the pure Bayesian
approach, and the prior distribution has a frequency interpretation instead.
The term empirical Bayes is sometimes also used for some of the non-
informative prior procedures, a term defined by Klugman (1992) as “any
method that attempts to shortcut one of the Bayesian steps.”

Theoretically, a prior distribution could be included for all the
parameters that are unknown in a model, so that any model could be
represented in a Bayesian way. However, this often leads to intractable
problems (mainly integrals without solutions). So the main limitation of
Bayesian theory is the difficulty, and in many cases the impossibility, of
analytically solving the required equations.

In such cases an approximation for the posterior of 9 is necessary. To
overcome those problems many approximations techniques can be used, such
as Gauss Hermite, or Gaussian quadrature. But of greater importance and
application are Markov chain Monte Carlo (MCMC) methods. In the last few
decades this stochastic simulation technique has been developed in order to
solve this problem and to obtain estimates of the posterior distribution. These
techniques were turning points for Bayesian theory, making it possible to
apply many models that otherwise could not have been applied. The essence of
MCMC methods is that by sampling from specific simple distributions (derived
from the combination of the likelihood and prior distributions), a sample from
the posterior distribution is obtained in an asymptotic way. The next section

explains MCMC methods in more details.

2.2 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) is a class of stochastic simulation
techniques for the derivation of the posterior distribution of a specific vector of
parameters 0. Stochastic simulation means that instead of deriving the
posterior distribution analytically a large sample of the set of parameters is
obtained, where the sample is random and based on the characteristics of the
model. With this large sample of 0 many summary statistics can be calculated
in order to draw conclusions about the posterior distribution, which it may not

be possible to obtain in analytical form. The MCMC technique is particularly
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useful when the parameter vector has a high dimension or when the analytical
solution for the posterior distribution is not available.

The essence of this method is that, in an asymptotic way, it is possible
to sample from the posterior distribution, and if a large sample is taken, a
good approximation to the required posterior distribution is achieved. Thus,
the analytical form is replaced by a large sample from the posterior
distribution. Many summarising values can be calculated from this sampled
posterior distribution. For instance, the mean could be approximated by the
arithmetic average of the sample, and variance by the square of the sample

standard deviation. Credibility intervals, the mode or a histogram are also
easily evaluated.

This class of simulation has been used in a large number and wide
range of applications, and has been found to be very powerful. In order to

understand the method, suppose it is desired to know the posterior
distribution p(Q (| Y) related to the set of parameters 9 w=(0 0 with a fixed
dimension rk dependent on a constant k In order to simplify notation, the
superscript is dropped (0=o 4 and the posterior distributions, which are
conditional on Y, are indicated by n. So nBJ= p(9 (\Y) from now on.

MCMC is a recursive method, and in this case an initial point has to be

defined; say that Oo=(Q°...,6°%). It is possible to define a recursive

simulation for the set of parameters, where the new value o Ionly depends on
the previous value O ° The next value O Iis obtained randomly from the
conditional distribution n*d 110 9. Given O \ once more the same distribution
is used and o2is sampled from n*¥Q210 ).

The distribution 7*0'|lo'J is the same for all i=[2,...,N, which
guarantees a homogeneous chain in the procedure. The maintained structure
of this transition distribution is the characteristic that guarantees that the
distribution of 0 Ngiven O Oconverges as TV-> @ to a limiting distribution n*%Q),
independent of 00 and only dependent on the transition density n* In
addition, the Markovian property is observed because whenever it is necessary
to define the distribution of o Ngiven all the previous values o °,0 it is
dependent only on O N+ and defined as t*(on \(Qh i). Hence, this sequence forms

a homogeneous Markov chain.
This is a powerful result and there are many rules in order to define a

suitable transition density jt*. Independently of the chosen format, this
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distribution should be easy to sample from. In this work, such a distribution
is defined by generating each component of the set of parameters ow
separately. This means that an updating of single components is used, which
facilitates calculation since only one-dimensional sampling distributions are
used.

When performing the MCMC simulation, there are some points that
should be carefully taken into consideration, because despite the theoretical
results ensuring the convergence, there is no absolute rule that assures when
convergence is achieved. Usually it is easier to state that a convergence has
not been achieved than the opposite. For instance, it must be checked
whether the simulation is mixing well or, in other words, if the simulation
procedure is visiting points over the whole range of possible values for 9. It
should also be considered how large the sample should be, and whether the
initial point, from which the simulation starts has a large influence. Among
many other issues, the moment when convergence to the true distribution of o
is achieved should also be monitored. These rules are given in practice when
analysing the results of the applications in Chapters 5 and 6.

All these features can make the technique difficult to apply, and, even
worse, perhaps dangerous to use. This happens because once all the
necessary procedures to start the simulation are ready, a sample of o can
always be obtained. This, however, does not mean that it is representative of
the posterior distribution. In order to be sure that the sample does not have
any deviation from the posterior distribution, the tests listed above have to be
performed.

Meanwhile the analyst has to define two quantities. The first one is the
starting value O ° This value should not influence the results, but could
influence the number of samples taken before achieving convergence. In each
chain the updating order of the parameters ow=(0j,...,0 ) should also be
defined.

The next quantity to determine is the value M, called the number of
burn-in steps, such that subsequent samples can be assumed to be taken
from the limiting distribution n(Q). There is no exact answer for this question,
and the solution adopted here was to observe the trace of the sample (the plot
of the sample value over time) until stability was observed. It was also chosen
to use only one large sample starting from a specific value, similar to the one
proposed by Geyer (1992), and to get as many samples as desired from the

results omfor m>M.
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Simulation deals with missing values in a very straightforward way.
These values are treated as variables, in the same way as the parameters. So,
in each iteration, a value for the missing value is also calculated and inference

is carried out as usual. This is data augmentation, originally proposed by

Tanner and Wong (1987). Suppose the data is Y =(YmY°), where m stands for
missing data and o for the observed part. The method is simply to notice that
it may be possible to sample by MCMC methods much more simply and
efficiently from a distribution p(Qfg Ym\Y°) than from p(Qk\Y°). Data
augmentation is further explored later in the Gibbs sampling subsection 2.2.1.

When rkis fixed there are many types of MCMC techniques but the
main ones are Metropolis-Hastings (subsection 2.2.2) and its special case,
Gibbs sampling (subsection 2.2.1). They differ in the way the transition
density n*is defined, with Metropolis-Hastings being the more general one. In
this thesis the applications generate each component of the set of parameters
9w separately. In this way all the definitions are based on a single component.

When rkis not fixed another technique called Reversible Jump Markov
chain Monte Carlo (RIMCMC) is used. This is an extension of Metropolis-
Hastings, defining a general framework for the change of parameter
dimensionality problems, also interpreted as moving among models with
different numbers of parameters.

Reversible jump is one among a few algorithms using MCMC that allow
such changes. Two other works in the same direction could be cited. The first
one is the work by Arjas and Gasbarra (1994) where an algorithm was built for
the problem of specifying the hazard rate in a survival data problem. Their
work is the basis for a part of the algorithm in this thesis, explained later in
Chapter 5. The second work is the one developed by Grenander and Miller
(1991, 1994), using jump-diffusions. Such a technique is not used in this
thesis but further details can be found in Phillips and Smith (1995) which
contains some examples, including image restoration.

Gibbs sampling, Metropolis-Hastings and RJMCMC will be fully
explained in the following subsections. The simple scheme on figure 2.1 shows

their connection.

21



2.2.1 Gibbs Sampling

Gibbs sampling is a MCMC method for when t* is defined based on any
combination of the components of ow=(0 orf), using their complete

conditional distribution (when the parameters that are not being sampled are
held fixed). The Markov chain has a dependency on the previous state
governed by the complete conditional distribution. As an extreme case, if all
the components of ow are updated at once, it means that no complete
conditional distribution is used (there is no parameter left to be fixed) and in
this case the whole posterior can be calculated, with no need for the
approximation. The approach used here is to consider a single component,
which means that each component o, for i=l,...,rik is updated separately.

This method of stochastic simulation is one of the most powerful among
MCMC methods. This is because the definition of 7* is governed only by the
model, which is in contrast to the techniques reviewed next where an external
distribution has to be defined to perform the implementation. It means that a
sample from the exact distribution is taken with no need of performing any
acceptance test, keeping all samples.

WinEUGS (Best, Spiegelhalter and Thomas (1998)) is a software
package that implements Gibbs sampling. It is the newest version of BUGS
(Bayesian inference Using Gibbs Sampling) which was first made available in
1992. This software works under Microsoft Windows®, which makes it easier
to manipulate. Many useful tools for analysis are already included, and this
helps to check if the simulation follows the rules cited here in section 2 .2.
There is also a set of software called CODA that produces some tests to check
whether the simulation can be regarded as representative of the posterior
distribution.

Directed acyclic graph (DAG) models are the basis of WinBUGS. Such
schemes are often used in Bayesian analysis to give a better understanding of
the models, particularly when the dependencies between the data and the
parameters are complex. In order to illustrate this technique, figure 2.2 shows

as example of a DAG.
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Figure 2.2 - Example of a DAG

Circles stand for random variables (xy,8,,a2,p,t9, rectangles for

constants (w,j) and the big rectangles for the indexes (i and j). This graphical

model shows that once the parameters o,are given, the data Xijdo not depend
on g or x2any more. It also shows that once 0, are given, they contain all the
model information needed to update p for instance. Graphical models are
widely used in the following chapters, together with WinBUGS that appears in
many examples in Chapter 3. In the applications of Chapters 5 and 6 specific

programs had to be written instead.

Now, the algorithm of Gibbs sampling is as follows. Define:
710110 <) = 71/8, |0 1,02,...,0 i-1,01H,...,0 n*), for r=L,...,Mfc.
Dropping superscript, so that O =8 w and defining the starting point by

o° =(Q° ), it is possible to define a recursive simulation for the set of
parameters, where the /hsample vector oj = b/,...,0" j is sampled as follows:
0/ ~7/0i | Ofl...,&%)
od~7i /& |
(2.3)

K ~*Qnk |

00=>0]->02 .. ->0] = o.. D> n(Q)

%

converging in distribution
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Data augmentation comes naturally into this algorithm. So again the
data are split into Y=(YmY°) and with Ymfixed n{d, |0-)is easy to sample from,
for all i=1,...,ne. Then p(Ym|Q Y°) is the sampling distribution for the missing
data and it is also typically very easy to sample from. At each iteration the
sample for the parameters is taken with the missing data fixed as a pre-
sampled value. Then, with all parameters updated, each missing component is
sampled.

Returning to the complete data case, the complete algorithm is given by

the following scheme. With 0T1=/'0i,...,0,i1,0/41,...,0N1), a number, N¥ of
updates are described in figure 2.3.

Figure 2.3 - Gibbs sampling algorithm

2.2.2 Metropolis-Hastings algorithm

Unfortunately it is not always true that all conditional distributions
t/o,|0-y, i=1,..., nk, are known or easy to sample from. In this case, Gibbs
sampling has to be dropped and Metropolis-Hastings should be used instead.
Metropolis-Hastings is not used in the applications in this thesis, but since it
is the basis to ROIMCMC it is explained in this subsection.

Metropolis-Hastings is more general than Gibbs sampling, and so it is
applicable to a wider number of problems. However, it is more dependent on
the choices of the analyst, which interferes with the model by choosing the
distribution to sample from. Suppose that no complete posterior conditional
distribution nf, |0 g, is known for all i=l,...,m, and that Metropolis-Hastings is
used to perform inference. In this case, a sampling distribution q/0,|0 i) is

defined for all z=l,...,m, and since the sample does not come from the real
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complete conditional posterior distributions 7i(0,|0-j for i=l,...,n.jt an

acceptance test has to be used.

The new distributions q(Q, 0., (i=l,...,rik) have to be chosen and there

are many ways of deciding which distributions to wuse. Chib and

Greenberg(1994) gives a good discussion on this topic. After defining ,0.)
for i=l...,rLk each sample from this approximation distribution has to be

submitted to an acceptance test.

Now, suppose that samples of O,, i=l,...,nk are needed. To start the 7th
sample, define Q~1=/0/,..,0/1,0/#,...,0N“]) . The new value 0, (i=l...,rik) is
sampled from gq(Qi\Q”]) to substitute the old value. For each component the

new value is accepted with the following probability:
min{l, a(0' ,0/a A= (2.4

min{l, (posterior ratio) x (proposal ratio) }
where:

e
CKP/TIK'jqR'TW-#?)

If g(Qi\6-i) = 7101 D i), then a(0' ,0/ 1)=1 and Metropolis Hastings turns

ale; ,0/-]) (2.95)

out to be Gibbs sampling. The algorithm for N*updates is as shown in figure

2.4:

Figure 2.4 - Metropolis-Hastings algorithm

Initialise the vector set 0o = (Q°,...,0" ),
forj=1 to N*
for i=1 to nk
Sample O- from g(0. 10NJj
Sample u from uniform(0,l)
Ifu <min{l, a(0,” ,0/ ’)} then 0/ =0'
else o/ =o0f 1

Next i
Next7

2.2.3 Reversible jump MCMC

As will be seen in the next chapter, most MCMC methods have already

been implemented in actuarial science, in contrast to reversible jump MCMC
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that has no published application up to now. ROIMCMC was first proposed by
Green(19995) in order to implement MCMC in cases where it is necessary to
choose a model from a finite and countable set of models, when each model
has a parameter set with different dimensionality. This method is particularly
suitable for problems where "the number of things that you don't know is one
of the things that you don't know" (Green (1995)).

Ordinary MCMC techniques, such as Gibbs sampling and Metropolis-
Hastings, are not suitable for this problem because they do not make sense
when the dimensionality of the parameter vector is not fixed. The reversible
jump technique is a generalisation of the Metropolis-Hastings algorithm, and
the name "reversible jump" comes from the fact that there is a bijection
between the parameters values, whenever there is ajump between the spaces.

Suppose there is a set of models k k=0,l,...,knag and that for each
model there is a vector 9 of unknown parameters. If the data Yare observed,
there is a natural structure to the joint distribution of model k the parameters

and the data given by:

p(k,Q,K),Y) - p(k)p (e |k)p(Y |fc,0,k)) (2.6)
The posterior distribution is given by the relation:
T 7cewj= p(k,Qlk>\Y) = p(k\Y)p(Q,K \k,Y) (2.7)

In addition, one measure to help in the choice of the model to be used is

the Bayes factor of one model related to the other:

BF(k k) PENY) p(K) 2.8
©7 Pk |Y) p(k) '

The Bayes factor is used in Chapters 5 and 6 to help analyse the
results. Since RJMCMC is a generalisation of the Metropolis-Hastings
technique, an acceptance test has to be performed. This test has a similar
form to the one defined in the simpler case, but since now there is a
dimensionality change, a Jacobian part is also included.

Suppose that a move of type mis proposed, that changes the parameter
set from O~ to 9thlin a higher dimensional space. The new value is derived
from 97 (o fsw), where set uis defined as a random variable independent of gw
and with dimensionality dependent on the difference in dimension between K
and k The reverse of the move (from O” to 0”) can be accomplished by using
the inverse transformation, so that the proposal is deterministic as required by

RJIJMCMC (see Green(1995)). Now, this move has to be tested for acceptance.

26



Define gntO ") as the probability of choosing move type mwhen in 9 and p(u)
as the density function of u. Then the acceptance rate is given by:

min{l, a(0"v,0")} = (2.9

min{l, (posterior ratio) x (proposal ratio) x (Jacobian) }

where:

P(e(kK'>,k'\Y)gm(e lkK>) m (K} 2,10
p(Q<k>,k\Y)gm(Q(k))p (w)  d(Qfl>u)

The other way round, moving from 0/ (0Ow,u) to Q*] has an acceptance

a(oR\o K

rate given by the inverse of formula 2.10. Observe that this acceptance test is
almost the same as the one in the Metropolis-Hastings algorithm, only
including an extra component related to the Jacobian.

The algorithm for applying RIMCMC has varied in each application,
given the numerous ways in which the move m can be defined. In the original
work from Green (1995) an application is proposed in a one-dimensional
multiple change point example. There k stood for the number of change
points, or jumps, in [0, L), QM= (fo, h, h,..., h,si, ,..., X where his the
intensity in the interval [si, Si+i for i=l,....,k+] and So = 0, Skt = L (a full
definition of this model will be given in Chapter 4).

The algorithm in Green (1995) is written for N* steps in figure 2.5:

Figure 2.5 - Green (1995) ROMCMC algorithm

Choose ko

Initialise the vector set O/

for /4 to N*
Choose one type of move m (defining kjand O
Sample «'from uniform(O0,l)
If u' <min{l,a(0 9NJ)} then k= K7, 0f,= 0O
else kj = K-uQly =Q(H-i)

Next j

Green (1995) m defined four types of move, with their probabilities
defined via a function dependent on the prior distribution and actual value of
k. These moves are defined as:

(@ Update one of the intensity components;

*
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(b) Update one of the interval position;

(o) Birth of one jump;

(d Death of one jump.

Choices (a) and (b) sample a random value for k and s, respectively for
the sampled order ¢'and i [i-O,...,kj-i and The use of the acceptance
test in these moves indicates that a Metropolis-Hastings algorithm has been
used.

Choices (¢) and (d) change the dimensionality of the parameter set,
where the parameter related to the position of the jump is sampled randomly
(either the new one in move (¢, or the removed one in move (d)). The
parameter related to the intensity is defined by a relationship to the values
previous to the move, which is random in (c), but deterministic in (d). The use
of a deterministic function in the move related to decreasing the number of
jumps is given by the “dimension-matching requirement” described in
Green(1995), which is observed, as expected, in all applications published so
far.

The algorithm just presented has only one component of 9~ updated in
each move. Differently, Green and Richardson (1997) update the full set of
parameters in each move for a mixture of normal distributions problem. The
means and variances of the normal distributions are all considered unknown
and allocation parameters are also included in the model. The k ordered
groups (order defined by the means) are predefined and each observation is
then allocated to a group. By this definition some groups could have no
observations, the so called empty components.

The algorithm used in Green and Richardson (1997) is as follows.
Firstly the set of parameters Ow is fully updated using Gibbs sampling.
Secondly, moves mare carried out separately to the empty or not components,
but only to change dimensionality since they had already been updated before.
The move m has only two movements: creating, (c), or deleting, (d), a group.
Their probabilities are fixed at 0.50, except when k=0 or k=knuc when the
probabilities are (respectively) equal to 1.

The final algorithm for N*updates is given by:
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Figure 2.6 - Final ROMCMC algorithm

Denison, Mallick and Smith(1998) also present an application using
RJMCMC. This is a curve fitting problem and the model uses the methodology
of piecewise polynomials. For each step, the choice of move mis defined as:

(@) Update ajump position;

(b) Birth of one jump;

(¢ Death of one jump.

Choice (a) requires a sample of a new value for the jump position, (b)
and (¢) change the dimensionality of the parameter set, where the parameter
related to the position of the jump is again sampled randomly (either the new
one or the choice of the one to be removed). The parameter related to the
intensity was not sampled in any of the moves, but calculated as the
minimum square estimator in that specific interval. This was used instead of
the usual sampling procedure because “A complete Bayesian approach (...)
leads to a serious computational burden, especially when many knots are
required to fit the curve adequately, and comparative studies have shown that
the least square estimation approach leads to no significant deterioration in

performance for overall curve estimation.” (Denison, Mallick and Smith(1998)).

2.3 Chapter conclusion

The basic Bayesian statistics results and the MCMC class of simulation
have been explained in this chapter. Further, an algorithm has been presented
for each of the revised methodologies in the MCMC class. With all these
procedures at hand, the choice of the algorithm to be used in Chapter 4 can

be justified.
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In the next chapter an explanation of how Bayesian theory has
developed in actuarial science will be given. Most of the stochastic simulation

applications use Gibbs sampling.
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Chapter 3

Bayesian models in actuarial science

In this chapter the development of Bayesian modelling in actuarial
science is given. It is shown how Bayesian statistics was first introduced in
actuarial science via credibility theory, and how it has developed into highly
elaborate models in recent years. The main objective of this chapter is to build
the basis for the basic model, which is the core of this thesis and which is
fully explained in the following chapter.

This review is even more necessary in the actuarial application of
Bayesian theory since there is no broad bibliographical review in any book or
paper. Among some of the works that present partial reviews, Klugman (1992)
and Smith et al. (1996) could be cited.

This chapter is constructed in the following way. In the first section
some considerations are given about the practical side of Bayesian
applications. In section 3.2 some traditional areas are reviewed, showing their
development in the Bayesian approach. In section 3.3 some more elaborate
models are reviewed, which are part of the basis of the model in this thesis. In

the last section a conclusion for this chapter is presented.

3.1 Practical conside rations on Bayesian models

Although many developments have occurred in Bayesian statistics, very
few practitioner actuaries are aware of them and even fewer make use of them.
In fact, since the advent of credibility theory, which has at its core Bayesian
statistics, this statistical philosophy has not been broadly used in practice. It

was in 1914 that the first paper on credibility theory was published, with
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actuaries being one of the first practitioners to use the Bayesian philosophy.
Since then many developments in credibility theory have occurred, but it is
probably the only tool based on Bayesian theory used in an office
environment, and even this is rare. However, judgement is used on an
everyday basis and it is often argued that in this way an informal Bayesian
approach is used.

Three main reasons could be listed to justify why actuaries do not use
Bayesian theory more often: model comprehension, implementation and
portability. In the first reason the application of this theory needs a full
understanding of the model, including, among many other features, the choice
of prior distributions and the interpretation of parameters. In this way an
actuary has to become a skilled statistician, which can be off-putting for many
practitioners.

After understanding the model, it is not guaranteed that its
implementation is easy: most of the time, the calculations are complicated and
extensive. And in many cases an analytical solution can not even be found,
but must be substituted by a simulation based implementation. It is well
known that practical actuaries prefer not to rely on an approximation when
performing calculations.

Unfortunately, even after applying the model to a specific problem the
implementation of the same structure to a different data set could also be
highly complicated. Such lack of portability happens mostly with models that
do not use much aggregation (called individual models), which are the models
with innovative approaches such as the ones used in Boskov and Verrall
(1994), Haastrup (1997) and in the present work. Again, a practical actuary
relies on portability in order not to spend too much time applying the model to
new problems or to new data.

Although the practical side of actuarial science has not been influenced
by Bayesian science, the academic side has developed many models. The most
interesting applications are the models based on individual policies rather
than aggregated data and this thesis focuses on these. A new stochastic
simulation technique is used in order to create more applications of models
that focus on the raw data of individual policies. These models could be
difficult to apply to a different problem, but it is hoped that their ideas and
results are attractive enough to stimulate some future investigation.

Now some examples are explored. In the next section traditional models

in credibility, reserving and graduation are reviewed, showing the development
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of ideas from purely analytical solutions to the use of simulation. This is the
basis for the complete departure from traditional models presented in section

3.3.

3.2 Traditional models

This section looks at some traditional models of actuarial theory in
some traditional areas: credibility theory, claims reserving and graduation
(subsections 3.2.1, 3.2.2 and 3.2.3 respectively). These areas have been
chosen mostly by the amount of papers published in each of them, but
credibility theory is also chosen given its historical importance. In each of
these risk assessment procedures the original and usual model is transformed
in order to explore the Bayesian structure. Usually it happens via a prior

distribution, by including structure and values.

3.2.1 Credibility theory

Credibility theory was first introduced by Mowbray (1914), almost at the
same time as the Casualty Actuarial Society was created. At that time the
actuaries had to define a premium for a new insurance product - “workmen’s”
compensation - so they based the tariff on a previous kind of insurance which
was replaced by this new one.

As new experience arrived, a way of including this information was
formalised, mixing the new and the old experiences. This mixture is the basis
of credibility theory, which searches for a credibility estimator that balances
the new but volatile data, and the old data that have historical support. Most
of the research until the mid XX century went in this direction, creating the
branch of credibility theory called limited fluctuation.

The turning point in this theory, and the reason why it is used
nowadays, happened when actuaries realised that they could bring this
mixture idea inside a portfolio. This new branch of credibility theory is called
greatest accuracy, and it searches for an individual estimator (or a class
estimator), but still using the experience for the whole portfolio. Such an
estimator would consider the “own” experience on one side, but giving more
confidence to it by also including a more “general” one on the other side. In a
way, it formalises the mutuality behind insurance, without the loss of the

individual experience.
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There are many papers discussing this theory, but the one by
Buhlmann (1967) is generally seen as a landmark. In this paper credibility
theory was completely formalised, giving its basic formula and philosophy.
Since then, many models have been developed and a review can be found in
Venter (1986). Now, as an example of how credibility works, the Buhlmann
and Straub (1970) model will be written and applied.

The data set is taken from Klugman (1992). The observations are the
number of claims (/) for 133 occupations (=1 , 133) in workers’
compensation insurance with 7 years experience (j=1,...,7). The respective
amount of the payroll (wt] is also known and is used as a weight for each
occupational class.

Modelling the frequency ratio Xy(ylJwj) via the Buhlmann and Straub
model gives the following distributions:

Xj |o,~ normal (9,, a2 wij)

0, ~ normal (p,x9 (3.2)

for all iand j, and a 2 p and x2 known. The appropriate graphical model
is shown in figure 2.2 of Chapter 2. In this model p(xy 10) stands for each class
experience, p(o, for the overall portfolio information, implying that each class
mean comes from the same distribution. Now, with x, as the observed mean
and z,as the credibility factor for class i, the credibility estimator for the class
ratio o,is:

XXz, tYy.x(l-zj (3.3

The solution proposed by Buhlmann and Straub (1970) is to estimate

the values of a 2, p and x2 from the observations, substituting these values

and coming out with the solution for the formula above. With z, as the

estimated value of z,, after including the values for the variances and x as the
overall observed mean, formula (3.3) changes to:

X, Xz, + Xx(1- z,) (3.4

It may not be clear where the prior information has been inserted into
this model. The reason for this is that the formula (3.4) was developed in order

to balance the information of the class’s own observed experience, x,, with the

observed overall one, x . In this model the distribution p(0) does not play a role
of a real Bayesian prior, but its parameters are substituted by the values
calculated from the data set.

As seen in Chapter 2 this is one form of empirical Bayes estimation. In

order to have a fully subjective Bayesian solution another level of distribution
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would have to be included. This would contain information about the
parameters a 2, p and x2, which are considered unknown, with the third level
on formula (3.2) expressed as p(a,p,X). This new distribution is the prior
distribution for the unknown parameters in the previous distributions.
Unfortunately, unless very strong assumptions for p(cr,p,x) are included, it is
not possible to derive the posterior distribution for 9.

In order to get closer to a pure Bayesian approach, Klugman (1992)
included priors for a 2 p and x2, but in a “non-informative” way. No analytical
solution is available and an approximation technique (Gaussian quadrature)
was used. In this solution a program had to be specifically written in order to
carry out the model implementation and, depending on the approximation
technique chosen, the calculations could take 2 hours. Both solutionsi are
shown for some classes in the following table:

Table 3. 1- Results for analytical solutions of credibility theory

Solution Forecasting
Btihlmann Buthlmann
Class X, and klugman W ir y i7 and Klugman
>1 Straub Straub
4 0.037 0.0 0.03949 0.04045 - 0 - -
11 1,053.126  0.04446 0.04345 0.04422 229.83 8 9.99 10.16
112 93,383.54 0.00188 0.00201 0.00193 18,809.7 45 37.81 36.30
70 287911 0.0 0.02059 0.01142 54.81 0 1.13 0.63
20 11,075.31 0.03142 0.03164 0.03151 1,315.37 22 41.62 41.45
89 620.968  0.42997 0.29896 0.36969 79.63 40 23.81 29.44
Forecast error2 15.55 13.20

When including information in p(a,p,x), the solution is more difficult to
calculate. In order to do so, stochastic simulation is applied via BUGS by
Pereira (1998). Scollnik (1996) and Smith (1996) also used similar procedures.
The Buhlmann and Straub model is written in a WinBUGS (or BUGS) program
in figure 3.1 with the following set of prior distributions, which had a non-
informative objective:

P ~normal (0, 103

1/x2 ~gamma (0.001, 0.001) (3.5)

1/a2 ~gamma (0.001,0.001)

The implementation of this model took 5 minutes on a fairly old
computer, with a total of 2500 simulations, where the first 500 were discarded

to eliminate the effects of the initial values.

1 Although data were observed for 7 years the two solutions only use 6 years to do the calculations.
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Figure 3.1 - WinBUGS program

model BuhlmannStraub; 3
const
N = 130, # number of classes
U =6; # number of observed years
var
mu,
theta[N],Y[N,U],tau, sigma,w[N,U],sigc[N,U];
data in "datafile";
inits in "initialfile";
{ mu ~ dnorm (0, 1.0E-5);
tau ~ dgamma (3.0E-3,1.0E-3);
sigma ~ dgamma (3.0E-3,1.0E-3);
for (iin 1:N) {
theta[i] ~ dnorm (mu,tau);
for (j in 1:U) {
sigcli,j] <-sigma*wl[i,j];
Y[i,j] ~ dnorm (thetali],sigc[i,j]);

Now an extension is proposed. Since the observations are numbers of
claims it is more suitable to model the data using a Poisson distribution rather
than normal distributions. This is a direct generalisation of the previous
model, where the new model uses non-informative prior distributions and is
written as (also represented as graphical model in figure 3.2):

Yy | 0.~ Poisson (Oix w

0, a, p~gamma (a, P (3.6)

a ~uniform (0.01, 50) and p ~ uniform (0.01, 50)

Figure 3.2 - DAG Poisson distribution model

133
Forecast error =& (Forecast- Yi7f/ w i7

=1
3In WinBUGS instead of the variance, the precision (1/variance) is used for the normal distribution
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In this way the Biihlmann and Straub model has been dropped and a
more suitable model has been constructed. The new model did not take much
longer than the previous one to be implemented with the same amount of
data. Since one of the main quantities of interest is the forecast of the number
of claims for the 7thyear, this is done in WinBUGS by sampling directly the

values of y1i7, for i=1,..., 133, which are included in the model as missing data.

The table below gives the results, where the value of the deviance is related

directly to the forecast value of y

Table 3. 2 - Results for Normal and Poisson models

Observed data Normal Poisson
Class uw 17 y.7 Forecast Deviance Forecast Deviance
4 - 0] - - - -
11 229.83 8 10.15 7.28 10.21 3.57
112 18,809.67 45 38.24 66.06 35.64 6.63
70 54.81 0] 0.60 3.47 0.254 0.57
20 1,315.37 22 41.24 16.84 41.48 6.55
89 79.63 40 29.56 4.11 32.82 6.17
Forecast error 13.22 12.44

Comparing these values with the ones found without stochastic
simulation, it is observed that the Normal solution (Buhlmann and Straub
model with non-informative prior) is almost the same as the previous ones and
very close to the Klugman(1992) solution as expected. The benefit of using the
Poisson distribution can be seen in the smaller forecast error found in this
case. And it is also observed that in many classes the deviance was smaller
when the Poisson distribution was assumed.

It was seen that an improvement can be obtained by using stochastic
simulation. Not only was the forecast error smaller, but also it was possible to
define a more realistic model than the previous one. Prior information was also
used without much complication. Continuing the proposed chapter structure,
in the next subsection the development of the claims reserving problem will be

presented.

3.2.2 Claims reserving

Claims reserving is one of the most important branches in the general

insurance area of actuarial science. Usually a macro model, where data are

37



accumulated by underwriting and development year, is used, and the data are
given in a triangular format. One of the features of those models is the small
amount of data available for the later development years, which gives a large
degree of instability to any estimate. Actuaries overcome this problem through
professional judgement when they chose factors or consider benchmarks.

In this subsection another way of including this subjective information
is given, which is more formal, statistically speaking, since it uses a prior
distribution. The approach used here is the chain ladder technique, which is
one of the most popular macro methods to predict claims reserves. But in the
following examples no inclusion of the tail factor is considered.

The data come from Taylor and Ashe (1983), and the exposure factor for
each underwriting years and the claims data are given below, where the
influence of the exposure has to be taken out from the claim amount before
any analysis.

Table 3. 3 - Claims reserving data

Development year
357848 766940 610542 482940 527326 574398 146342 139950 227229 67948

352118 884021 933894 1183289 445745 320996 527804 266172 425046
290507 1001799 926219 1016654 750816 146923 495992 280405

310608 1108250 776189 1562400 272482 322053 206286

443160 693190 991983 769488 504851 470639

396132 937085 847498 805037 705960

440832 847651 1131398 1063269

359480 1061648 1443370

376686 986608

344014

Underwriting year

Exposure: 610 721 697 621 600 552 543 503 525 420

In Kremer (1982), which i:5 a paper on credibility theory, the chain
Icxlder is proved to be similar to the two way analysis of variance linear model
expressed by:

(37)
with a:Aindependent normal”, a2,

where o .=u+a .+ R

v n

and y is the incremental value of the claims for row (underwriting year)

iand column (development year) j.

The solution of Kremer (1982) is to calculate the MLE of the unknown

parameters together with the estimate of a 2. In Verrall (1990), which is the

paper reviewed here, the same model is used but in a claims reserving context
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and with a Bayesian solution being applied. In fact three Bayesian solutions
are presented: “pure Bayes without prior information”, “pure Bayes with prior
information” and “empirical Bayes”. In order to have an analytical solution,
none of these models includes a prior distribution for the variance parameters.

A prior distribution is attached to the model in (3.7) and this is
rewritten here in matrix notation:

X |0 ~normal (KB a2)

9 |9; ~normal (QpI) (3.8)
where
Q =
A W Iil>--->X1In’X21°" © © (19 ® n p2 PrJ’
2 2 2n

I = diag (a2, a 2 ,., a>ap .>G(5.i,97=(g*,a*,...,a*,p,‘
K is the design matrix to produce the model in (3.7),

Iis the identity matrix, a3 o 2, a 2, ap are known variances,

a = P;=0 for uniqueness (see Verrall (1990) for details).
The “pure Bayes without prior information” uses a non-informative
prior approach. In ihis way, a“2, a~= and Opz go to zero and the model

solution gives exactly the same results as the classical and usual MLE used in

Kremer (1982).

But more information could be inserted straight into this second level
distribution, instead of using the non-informative one for all parameters. This
is the “pure Bayes with prior information” approach and it is applied by
changing 9; and E in order to keep the non-informative approach for
parameters (p,P9 ..., py, but not for the row parameters. Proper prior
distributions for (a2,...,an are defined, but they are hard to choose, since there
is no intuitive explanation related to them. In this example the following set of
prior distributions (based on the result obtained at the MLE model) was

chosen4:
oc ~normal (0.3, 0.05); (3.9

for all i= 2,...,n

The third approach, “empirical Bayes” is based on the credibility theoryy
assumption, that there is some dependency among the parameters related to
the row and they are not really independent as before. So, in formula (3.6) the

non-informative approach is kept for (p,P2 ..., pn, (cr~2=ap2 = 0), but a

4which is the same as a, = 0.3 for i=2,..,n and ca2=0.05.
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different one is imposed for the row parameters. Now, instead of defining a
distribution like (3.7), the general distribution (3.6) is kept and another level of
prior distribution is added to (a3,...,a*), with a non-informative approach. In
this way no prior value is given, but only a dependency among the row

parameters is imposed.
All three models were applied to this data set. “Pure Bayes without prior

information”, which is the equivalent to the MLE solution by Kremer (1982),
had the worst performance when compared to the other two in all analyses
done by Verrall (1990). “Pure Bayes with prior information” and “empirical
Bayes” also had a better smoothness to the row parameters as can be seen in
figure 3.3:

Figure 3.3 - Graph of claims reserving results

08 - — e e e

3ayes prior <>. _Empirical Bayes

Not much research has been done in order to implement chain ladder
based models using WinBUGS. This is mainly due to the amount of missing
values presented in the triangular format (in the usual format the outstanding
claims are treated as missing values in WinBUGS). So in order to use
triangular data, the model was implemented either using specifically written
programs, or by imposing very strong assumptions. Other researchers have
used new models, which would not use the data in the triangular format, but
the individual claim experience. An overview of what has already been done in
this direction will be given in section 3.3.

Two works using triangular data and stochastic simulation are cited
now. The first one is Charissi (1997) where the “pure Bayes without prior
information” model in Verrall (1990) is reanalysed using BUGS, with a proper
prior distribution for each of the parameters. These are included in the second
level, and independently of the chosen distribution, each one had to be
centred on the values observed in the data, with quite a low variance.

The DAG model would be as in figure 3.4:
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The data from Taylor and Ashe (1983) were reanalysed and the results
for the posterior mean for the row parameter are plotted in the figure 3.5
together with the values found before in Verrall (1990). On one hand, it is easy
to see that the set of chosen prior was not able to influence greatly the mean
of the row parameters (or even the other ones), keeping the same result as the
one found in “pure Bayes with no prior”. But, on the other hand, in this new
analysis the influence of the prior was enough to decrease the standard error

of the parameters by an average of 30% compared to the previous approach.

Fi%.lre 3.5 - Graph of claims reserving results using simulation
o.
0.6
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The second paper is Ntzoufras and Dellaportas (1997). Gibbs sampling
is again used as the simulation technique, but although this paper was

prepared after the development of BUGS, a specific implementation program
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was used instead. Five models were presented in the paper and all of them
were applied to the same data set. This set includes the inflation rate for the
observed calendar years and two incremental development triangles: amount
and number of claims. With all of this information to hand they proposed new
models that would take into consideration the number of claims in order to
predict the claim amounts, which would be deflated before any analysis. Only
one model among all five is fully explained here.

“Log-normal & Poisson model” is a direct generalisation of Kremer
(1982). Now, instead of using only the information from the amount of claims,

the history of the number of claims (n) reported in row i and column j is also

taken into consideration. The model in (3.7) is changed to:

My,)

X 19702 - normal(o® a2

Oy =M+ a,+ Pj+ In(n,) (3-10)

m 1 ~ Poisson(AM)

In(aif P*+a*+ [3/

with constraints and prior distributions for p, a., [3, p", a*, p*azfully
described in the origins! paper.

An analysis was performed with all models, and it was shown that for
the specific data used the models that included also the number of claims, like
the one explained above, had a better prediction than the ones that did not
use such information. This was mainly due to the long tail characteristic of
the data set, where claims were still being reported after 7 years of occurrence.

This subsection has shown that the flexibility of the simulation
approach was able to allow also the inclusion of the development of number of
claims in the chain ladder model. Now the last subsection on the development
of traditional models via Bayesian theory will discuss graduation. Although it
is a pension and life insurance area and this thesis is on general insurance, it

is important to include it to show the smoothing models that have appeared.

3.2.3 Graduation

Graduation is an important part of the job of a life actuary and many
methods have been developed in order to carry it out. Using the definition
from Haberman (1996) “graduation may be regarded as the principles and

methods by which a set of observed probabilities are adjusted in order to
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provide a suitable basis for inference to be drawn and further practical
computations to be made”.

The usual data set to which graduation is applied includes an estimate
of the number of policyholders exposed to risk in the observation period
(usually one year) and the number of deaths which occurred. In order to

illustrate this, the following sample was taken from London (1985):

Table 3.4 - Graduation data

Age Frequency Number of:

(i) rate (x) Policyholders (wi) Deaths (yi)
63 0.00928 9,487 88

64 0.01226 10,770 132

65 0.01100 24,267 267

66 0.01120 26,791 300

67 0.01481 29,174 432

The mortality rate, x,, is defined as x,=y,/w, .

Whittaker graduation, Whittaker (1923), is one of the most well known
methods among actuaries. This can be considered as the first Bayesian
approach to graduation, since it can be derived using Bayes theorem. But no
real prior subjective information was formally used in the first development of
this model.

A model that could be seen as a step before Whittaker graduation is the
Kimeldorf and Jones (1967) model explained in London (1985). This model is
not fully written here, but states that the observed frequency of death is
modelled as:

XjO ~normal (0,B)

o ~ normal (g,A) (3.11)

where

x = (Xj,..., xrj, o = (Qp..., od, g = (g,,..., g1,

nis the number of ages and A and B are known covariance matrices.

g is taken from another life table and B is fixed. The covariance matrix

A is defined by the analyst and it controls the amount of smoothness. Some
other possible formats are discussed in London (1985). The graduated values

are obtained as the posterior mean of o and the graph of the estimates in the

example analysed in London (1985) is shown on a log scale in figure 3.6.
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Figure 3.6 - Graduation example comparison graph

The two Bayes results show how to control the model, with higher and
lower level of smoothness, depending on the chosen value of A. Bayes-low is so
close to the observed data that it is even hard to distinguish them.

Klugman (1992) brings a different approach to the Whittaker model.
Instead of using prior information from another table, as in London (1985), a
relationship is imposed among the parameters in O. In order to do this, a
design matrix is included transforming the model into:

X |o ~ normal (0,5)

KB ~normal (0,A) (3.12)

Where K is the matrix that produces the zth differences of a sequence of
numbers. Choosing properly the values for A and B and letting z = 3 gives the
posterior mean as the same solution as the one proposed by the Whittaker
model. But in the new Whittaker approach not only the estimator of O was
found, but also its covariance matrix. In this way a confidence region could be
easily found.

In fact, one of the first applications of the model expressed in formula
(3.9) was the calculation of a reserve, where a confidence interval was also
presented. The case when a prior distribution is given for A and B is also
analysed in Klugman (1992).

The paper by Carlin (1992) uses Gibbs sampling technique to graduate
not only mortality table but also the ageing factor cost related to health
insurance. In both of these applications some restrictions were imposed on the
model structure, such as the growth on mortality expected in adulthood. Here

only the mortality example is explained.
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The paper was developed before BUGS was implemented, so a specially
written program carried out all the calculations. In the graduation problem the
data set has ages from 35 to 64, so 30 ages were observed. The model states
that the number of deaths y in age ¢+34 for i=l,...,30 has a Poisson
distribution with intensity given by 9xta, where W is the number of
policyholder in i The model is written as:

i/lJG ~ Poisson (9 xwj

of P ~gamma (a, P (3.13)

Where 9i >0, d0< B, 0 <92~ 9;< ... <930- 92¢ B and a fixed, using a
suitable prior distribution for p. A graphical model for this model is shown in
figure 3.7, where the imposed order among the parameters 9 is also

represented.
Some constraints were also imposed on the model and the more

interested reader should refer to the original paper in order to see these in full.
The results are also compared with the ones obtained by the Whittaker model
and the author comments that “Whittaker results are fairly similar to the
Bayes results, though the Whittaker rates tend to be influenced more by the
unusually low rate at age 63”. The model was able to keep the parameters 9
increasing with age, although this was not observed for all ages in the crude

rates.

An application of BUGS to graduation can be found in Kouyoumoutzis
(1998). In this work a number of models were investigated and the one
explained here is based on a third degree polynomial regression analysis

expressed by:

y{|9 ~ PoissonimxG;) (3.14)
with In(9Y expressed as:

PO+pli+p23i2-1) / 2+ p 3(5i33i) / 2+p435i4-30i2+3) / 8+pY315253 5013+7519) /40,
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and p.~ normal (0,1000) forj=0,...,5.
The time needed to run the simulation was again very small and the
smoothed values fitted the data well. The graphical model is show below in

figure 3.8.

In this section 3.2 a review of traditional models revised to use a Gibbs
sampling approach has been given. Different, new models were incorporated
by the inclusion of simulation into the modelling process. It is expected that
the more actuaries are able to use WinBUGS, and more generally Gibbs
sampling, the more revisions of traditional models will emerge.

In the next section completely new ideas are presented. The
assumptions used in macro models are completely dropped and models with

approaches closer to the process itselfis used.

3.3 Modern Bayesian models

In the previous section well known models were discussed and
rewritten in order to give a Bayesian approach. But one of most appealing
features of a Bayesian analysis is the broader set of models that can be built,
models which do not have a classical equivalent approach. This is the basis of
this thesis and also of a few other theses and papers (Norberg (1993), Boskov
and Verrall (1994), Arjas and Haastrup (1996), Haastrup (1997) for instance).

It may turn out (and this is something that remains to be seen) that the
most important of these new ideas is the ability to model at the individual
policy level. This approach, an “engineering approach”, when assumptions are
made directly in the process itself rather than on the aggregated data, fits

fairly easily within a Bayesian model.
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In this section two examples are presented. The first one is the use of
spatial models in the rating by area problem, not using individual data but
only the loss ratio and exposure by area. The individual data are considered in
the second model, which is an application to claims reserving, but now
considering the individual data, instead of the usual triangular format. Both
models use the simulation approach, but neither could use WinBUGS and a

specific implementation program had to be written.

3.3.1 Rating by postcode area

There are many factors that could influence the frequency or cost of a
claim and that should be taken into consideration when defining the value of
the premium. One of these is the area where, for example, a car is used or
parked most often and this characteristic is usually taken into account
through the neighbourhood where the policyholder lives.

Neighbourhood could have many interpretations, but here postcode is
used. In an office environment it is common to aggregate postcodes with
similar experiences in the same class. At the end of this procedure a small
number of classes is derived, but the vicinity information is not formally taken
into account by the model.

Taylor (1989) published the first paper with some statistical basis,
which addressed how to carry out this aggregation using the vicinity
information. He adapted a two-dimension splines model to the postcode
problem, with a totally non-Bayesian approach.

In this chapter a review of Boskov and Verrall (1994) is presented. That
paper used a Bayesian approach, applying spatial models which are mainly
used in epidemiology and satellite image restoration, among other fields. The
basis for such models is that areas that are close together are more likely to be

similar in risk than areas that are far apart.

The aim of the model is to find a value for risk parameter (9), that is
smoothed oven the whole area (that contains n postcodes) but considering
only information from its neighbours. The data contain the observed loss ratio
(x) for each postcode area i and they are assumed to have a normal

distribution as follows:
X. lo.~ normal (0., a/wx i=1,..,0n (3.195)

Where uh is the exposure for postcode area i Instead of using the

variance as a variable as in some models seen before in this chapter, a is a
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constant chosen by the analyst fixing the required level of smoothness. The

bigger a, the smoother the result for the posterior mean of Qr
The most important idea of the model comes in the definition of the

second level of distributions, when a relationship among the risk parameters o.
is defined. For each postcode risk 0. an adjacency set is defined as in figure
3.9, where the darker areas are included in the neighbourhood of the risk.

Figure 3.9 - Adjacency set to postcode risk 9.

So the risk parameter of each postcode is defined to be normally
distributed, centred on the average of all risk parameters in the adjacency set.
All risk parameters are defined at the same time, influencing their neighbours
as well.

This model does not have a possible analytical solution, and a

simulation approach was used in order to find the posterior of 0. A MCMC

method was used and the full model explanation can be found in the original
paper. It is really interesting to observe that the risk parameters really took
some information from the neighbours, and a smoothed map of the London
postcode area was obtained.

In the following subsection, models considering individual data are
presented. The solution found in Arjas and Haastrup (1996), which is the only
applications reviewed here, is derived through simulation. It took a long time
to perform the implementation, what is considered a barrier to future practical

use.

3.3.2 Claims reserving

The majority of methods for estimating claims reserves are based on
macro models, where the data are aggregated in a discrete time and triangular
format like the chain ladder model. Micro models, where the continuous time
and individual policyholder characteristics are statistically taken into
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consideration are not usual. The only office-based procedure that takes into
consideration some individual information is the case reserve definition, when
the claim characteristic is used by an expert to predict its final value without
any statistical modelling.

Individual models and continuous time are highly connected since the
aggregation of data usually requires a more concise information on time as
well. One of reasons why this individual characteristic is not used in statistical
models could be the difficulties that surround any calculation on an individual
claim basis. The fluctuation related to any individual estimate, could also be a
good justification for the lack of use of such models. The key question would
be to use such information, but in a more robust way.

Before analysing the example in Arjas and Haastrup (1996), it would be
helpful to think of the claim process. Jewell (1989) analyses the occurrence of
claims together with the delay of reporting. In this way the number of claims
which have a reporting delay - IBNR - is estimated via a Bayesian model. Time
is considered as continuous.

Norberg (1993) proposes a more comprehensive model, further
developed in a later paper Norberg (1999). In his model not only the
occurrence of a claim is modelled, but also its development. The occurrences
are modelled as a non-homogeneous Poisson process with the corresponding
development as position-dependent marks. Formally, a claim is a pair (T, Z] in
(0,00 x Q, where Tis the time of occurrence of the claim and Z is the mark
describing its development and defined as:

Z=(U, VX {Xu), 0<V'<W (3.16)

where:

Uis the waiting time from occurrence until notification;

Vis the waiting time from notification until final settlement;

X is the final claim amount (X=X(V));

X(vj, the indemnity paid in respect of the claim at time v' after its
notification.

Fixing the time of reserve evaluation at x (called the present time in
many of these papers), suppose that there are N claims that have occurred in
(0, x]. If Wis defined as the total exposure related to the business written in
that period of time (expressed by the area in figure 3.10), the distribution of
the total number of claims is given by:

N ~ Poisson(W); (3.17)
where W =
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and w(t)is the exposure function.

Figure 3.10 - Weight function scheme

"<tyt

So 0 < Tj < T2< ...< Tnare the moments of occurrence of the claims that
will follow a non-homogeneous Poisson process given by:

(Tith<i<N~ Poisson(mfi); i > O)

Where the total claim process has the following structure:

{T, , Z,}j<s<jv~ Poisson(m(i), PZ[t; t> o)

The dependence of the frequency of claims only on w(t) can be
generalised by including a random fluctuation, which is chosen to be of the
multiplicative form in the application on Chapter 6 and in Arjas and
Haastrup(1996). In these models the intensity changes to wt)<pft) and Wis
rewritten as:

W= £w(t)q(t)dt. (3.18)

In order to define Pz|t Norberg (1993) decomposes Z categorising the
claim at a specific time x into disjoint sets: settled, reported-not-settled,
incurred-not-reported or covered-not-incurred. The first one does not need any
reserve, but the following ones give rise to the RBNS (reported but not settled),
IBNR (incurred but not reported) and UPR (unearned premium reserve). Those
four components can be viewed as arising from independent marked Poisson
processes (which facilitates the calculation) whose intensities and mark

distributions are expressed as (from theorem 2 in Norberg (1993)):

{T'i, zjiji<isn -~ Poisson(uy(i), P'zit; i > 0) (3.19)
u/(i) = wit) PZKQj
PZlt(dz)
P 1(dz)= - —,zeP
zfé v nf
with Ydpz¥(QJ) = I> andp|QJd=o0

jni j>i j>i
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Decomposition is the focus of Norberg (1999), where this idea is
extended to “quite general countable decompositions”. As an example this last
paper includes the decomposition by year of notification and occurrence is
proposed in order to find a connection with discrete models. Such work also
highlights a hierarchy in the mark Z Its first three components (U, V, X ) are
primary to the claim. By knowing its full development the partial payment
process could be viewed as a secondary interest. In this way the probability
distribution of Z will, usually, be constructed in two steps. The first related to
U V, X and the second to X(v).

Now a claim scheme is represented in figure 3.11, showing how each
claim could be different from another and also highlights the partial payment
process, which for most types of insurance is more usual than a single
payment.

Figure 3.11 - Claim process scheme

The mark Z could also include more information and Arjas and
Haastrup(1996) proposed an application of this model, where the marks Z also
include some covariates and were given by:

Z=,A U VX X{v);0<v'<V) (3.20)

where:

U V, Xand X(v) are as in (3.16);

S is the sex of the policyholder;

A is the age of the policyholder.

Claim frequency and severity are modelled separately. For claim
frequency, age, sex, report delay and calendar time of occurrence are included,
and for claim severity the analysis uses partial payments, which are only
dependent on the number of partial payments and the time since latest partial
payment if any, or else the time since notification. MCMC simulation is used
in order to obtain the estimated posterior distributions. By some conditional
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independency results, IBNR and RBNS claims reserves are calculated
separately.

The way of handling missing values in a Bayesian framework is also
explored and the IBNR claims are considered as missing. Since simulation is
used, it is possible to sample at each step the number of claims that have
already occurred and that are missing (IBNR) and their corresponding
amounts. At the end of the simulation a sample of IBNR numbers and values
is available and its posterior distribution can be approximated. The amount of
RBNS claims is calculated in the same way.

The results of this model will be further explored in Chapter 6. This
model suggests many ideas for further development. If individual information
could be taken into account in a statistical model, it means that

characteristics of the claim itself could also be formally considered.

3.4 Chapter conclusion

As was shown throughout this chapter, many models have been
developed in a Bayesian framework. Some of them were only an extension of
well known models, but others included new ideas to the actuarial analysis.
More than 20 papers were reviewed, being only a sample of a large variety of
works, but which illustrate the range of applications

In the following chapter a basic model is built, using the ideas
expressed in section 3.3 and the simulation technique RIMCMC. In chapter 5
the first application is presented, but it is in chapter 6 that the papers by
Norberg (1993, 1999) will be used to build the model for that specific

application.
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Chapter 4

Theoretical framework

In the previous chapter a review of some Bayesian models in actuarial
science was given. Now a model based on individual data is built, continuing
the idea described in section 3.3. In this fourth chapter, a full explanation of
the ideas and theory behind the basic model used in the applications in
Chapters 5 and 6 is presented, including the implementation techniques and
algorithm.

It is noted that the structure of the model is quite simple, based on a
piecewise constant parameter. However, the fact that the dimensionality of the
parameter set is not fixed in advance makes its implementation quite
complicated. The way chosen to implement this model is via reversible jump
Markov chain Monte Carlo (RIMCMC), a generalisation of the Metropolis-
Hastings stochastic simulation technique explained previously in section
2.2.3.

As a brief idea of the application of this model, suppose that it is
desired to transform a continuous variable limited to the interval [0,L) into a
few groups. The basic model defines, at the same time, how many jumps there
should be, where they should be located and the risk parameter related to
each group. This is a change to the usual approach of fixing first the number
of jumps and then defining their locations and risk parameters. In this usual
approach the parameters (number of jumps, their location and risk
parameters) are defined separately, which causes interpretation problems
depending on the dependency among the parameters.

The outline of the chapter is the following. Section 4.1 explains the

basic model. In section 4.2 the basic model is presented in two special cases: a
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change-point and a mixture of normal distributions models. After
understanding the model and having the implementation techniques, the
algorithm is presented in section 4.3. Section 4.4 presents the chapter

conclusion.

4.1 Basic model

Since the applications in Chapters 5 and 6 are based on models that
use a common idea, in this section the basic idea is explained. The model
presented in this section will be called from now on as the “basic model”. In
each one of the applications in the following chapters some changes are made,
but the ideas are kept as in this basic one.

The basic model considers that a piecewise constant distribution is
applied to a parameter, say gt which depends on the covariate tlocated in a
bounded set Q derived from real numbers set 92, in the continuous case, or
integer numbers set Z, in the discrete case. The parameter @ft), generally called
the level, takes a piecewise constant value over a set of intervals, defined by
the number of jumps in Q. This is a simple model, but its structure is
complicated because it is not known in advance how many intervals (k+1), or
jumps (k), there should be in Q. In addition, it is not known where the
intervals, or jumps, should be located, or the level qit) related to them.

Generally speaking, the model can be written in the following way:

Waqt) ~ distribution((p(fj), te Q 4.1)

where:

Yis the data set (Y=(yLy2...,yn))-,

o) = Zif te (sj, §+) forj=0,...,k with q¥inf(Q)) = fo, <p(sup(C)) = %

(with fixed so = inf(Q), Sk+i=sup(Q))

In order to help with the comprehension of the model, its DAG is
displayed in figure 4.1.

Once kis fixed the parameters of the model are given by qqt), t e Q, and
defined by a piecewise function, which is constant and not stochastic. In this
way the unknown parameters of the model could be expressed by the following
set:

kis the unknown number ofjumps (k+1 groups);

lo I\ h,..., Ikare the levels related to each group;

Si, S,..., Skare the times of change of level.
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Since kis not a constant, the dimensionality of the set of parameter is
not fixed. Given k there is a set of unknown parameters 9W= (lo, I\ h,——, lksi,

S2,..., X with dimensionality nk= 2k + L

Figure 4.1 - Basic model DAG

Among many applications, two main ones could be noted in such a
model. The first one is the already cited search of the number of groups, their
locations and levels. Use of the model above can provide the analyst with these
three answers at once. Such an application is the basis for the definition of
age groups in the automobile insurance premium in Chapter 5.

In the second application the analyst is more interested in the
smoothing property of the model. In a structure like the one above, the change
in the number ofjumps influences the location of the group intervals, allowing
the level of one specific group to be influenced by the level of the other group.
This smoothing is the main characteristic for the applications in Chapter 6.

Supposing t to be continuous and Q =[0,L), the figure 4.2 shows how

the model works for kjumps.

Figure 4.2 - Model scheme

b T — >

SO0 N 2 N Setl=L

In all applications, frequency and severity of claims are considered.
They are considered independent and the above model is applied to each one
of them separately. The model is adapted to the case of analysing severity and

frequency of claims for the case where tis either continuous or discrete. For
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the frequency case the assumption of claims arriving from a Poisson process is
used, and in the severity case a normal distribution is assumed. The
specification of the full application is in the following chapters, but in the next
subsections their basis is built. In order to guide the reader through the work,
the application, together with its location and type of covariate tis specified in
the table below:

Figure 4.3 - Distribution of models over the thesis
Problem t
Chapter 5  Grouping ages Age as continuous
Chapter 6  Claims reserving  Age, sex as discrete
Reporting delay and calendar

time as continuous

Now the full formulae are derived for frequency and severity separately.
The covariate tis considered continuous throughout the whole explanation,
and at the end of the chapter the changes are shown for the discrete case. For
simplification on the calculations, in the continuous case the moments of
jumps §, j=I,...,k, are not allowed to occur at the same moment as the
observations.

The type of data also changes depending on the application, but in all
cases a structure like figure 4.4 is observed. For each policyholder
(represented by an arrow) the exposure is given, and in the case of claims their

value and the time of occurrence in [0,L) are also included (represented as a

star).

Figure 4.4 - Claim structure

4.1.1 The model for the claim frequency

The occurrence of a claim is presumed to follow an inhomogeneous
Poisson process with intensities (p(f), ¢ e/O0,L). Supposing there are n claims

observed in this interval the essential part of the likelihood is given by:
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f1 *pli/) exp{- "Mty?(t)dt} (4.2)
=3

where

ifiis the time of observation of each claim i, i=1,2,3,...,n;
zi e [o0,L, and

w(t) is the exposure function.

The formula presented in (4.2) can be rewritten in order to explore some

of the characteristics of the model. Since qqt) = \if t e [sd Sj+) for j=0,...,k, the

likelihood can be rewritten as:

Yl exP{~ljwj+l (4-3)
iy [ wy

7=0

where

wijHl is the total exposure in [sj, Sj+) (mj'1 = w(t)dt), and

is the total number of claims in [sj, sJ).

This approach is in between parametric and non-parametric models,
since it allows the estimated q(t) to reflect the behaviour of the data in a way
that is not possible under strong parametric assumptions.

In the prior it is necessary to specify a distribution for k s}, fo, and [ for
j=l,...,k. The prior for kis defined to be a Poisson distribution with rate A

p(k) =— N — /o< /cmex 4.4)

The hyper-parameter knexis included in order to guarantee that only a
finite number of models are considered.

Given k it is possible to define a prior distribution for the values of fo J§
and § for j=l,..,/c. §j is distributed, for 7=1,...,k as the even-numbered order
statistics from 2fctl points uniformly distributed in (0,1). It was decided to
only pick the even ordered ones in order to avoid that two successive jumps
are very close together. [ follows a Gamma distribution with parameters (a,3)
and this distribution was chosen as the conjugate prior distribution for the
likelihood. This set of priors is the same as used in Green(1995).

Before explaining the procedure in the severity case, a discussion of the
time of occurrence of claims is necessary. One of the assumptions of a Poisson
process, widely use to model occurrence of claims, is the zero probability of
more than one claim occurring at the same instant in time. Although the

Poisson process has been shown to fit the claim occurrence very well, this
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assumption is not realistic for real data. It happens again here in the data sets

used in the following chapters.

4.1.2 The model for the claim severity

The second model for t continuous is defined for the case where the
value of the claim depends on the covariate t A Normal distribution is
assumed and the variance is assumed to be a known value. The level
parameter y(t), which stands for the distribution mean in the severity case,
follows the basic model. In this way, the model states that the data follow a
mixture of normal distributions, without fixing the number, k of distributions
involved in the mixture.

It is assumed that claim values follow a mnormal distribution
Normal((pffj, a9 with variance a2 fixed and equal in all groups. The reasons for
using a constant and equal variance are discussed later in this subsection,
and the problems of this limited approach are discussed throughout the
applications in Chapters 5 and 6.

The likelihood is written as:

(4.5)

with h(y,) as the claim value.
Again this expression could be simplified by using the structure of the

model. Since qqt) = [ if t e [sj, §H) for j=0,...,k, the likelihood could be written

as:

where

nj is the number of claims in [sj, Sj+), with n=n'o+...+n'k;

hA is the sum of all values of claims that occurred in [sj, Sj+), and

hsgHl is the sum of square of all claims that occurred in [sj, S+).

The prior distribution set is the same as defined in subsection 4.1.1 for
all the parameters except y(t). The relationship with S, j=1,...,k is the same as
described in the frequency problem and the prior distribution for f follows a
normal distribution, Normal”,x9, forj=0,...,k.

The value of a 2 was chosen to be fixed and equal in all groups to

simplify the calculations. Because of the structure of the model the algorithm
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is quite slow, as will be seen in the applications in Chapters S and 6. The use

of a stochastic a 2 would increase this calculation time, which caused

implementation problems.

4.2 Complete algorithm

In Chapter 2 all the implementation techniques were discussed, with an
algorithm following each stochastic simulation technique. Now, with the full
model described for the case where tis continuous, in the frequency and
severity case (subsections 4.1.1 and 4.1.2 respectively) a complete algorithm is
given for this specific model. This algorithm involves MCMC in all parameter
updates.

Recall that the aim is to simulate a sample from the posterior
distribution p(7c,0w|Yj. Hence, it is necessary to define a way of moving the
sampler between the different dimensionality spaces, and updating the values
of all parameters at the same time. At the end of a large number of
simulations, the posterior frequency distribution of the number of jumps kis
obtained and also a large sample from the posterior distribution for the other
parameters OW= (o, h, h,..., ks\, ,..., sk.

In order to achieve this, at each step the Gibbs sampling is used to
update all components of ow with the number of jumps, k fixed from the
previous step as in the approach of Green and Richardson (1997). Then a
move mfor kis chosen from:

(@) Keep the number ofjumps, k the same;

(b) Birth of a jump;

(¢ Death of ajump.

If the move changes the dimensionality of Ow ((b) and (c)) then the
acceptance test from RIMCMC technique is used, and if the move is accepted

the value of O fechanges. If the move m keeps the value of kthe same, then the
updated value via Gibbs sampling for Ow is kept and another step starts
again.

For N*updates, the algorithm is given as in figure 4.5.
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Figure 4.5 - Gibbs sampling algorithm

Initialise the vector O (f, with kojumps,
forj=1 to N*
Update O Iusing Gibbs sampling
Define k) (or choose the type of move m)
If k) = g-ithen K =k)
else do acceptance test

Next 7

This is a different procedure from Green (1995) and Denison, Mallick,
and Smith(1998), when the move mis chosen first and only the components of
0, directly involved on the update of k are sampled. It means that in each
step only part of ow is updated, and since an acceptance test is performed, an
update is not even guaranteed. The acceptation rate for ROIMCMC in the
applications seen so far (subsection 2.2.3) is around 8-17%. The benefit of
using the approach adopted in this thesis is that the whole parameter vector
ow is updated in every step.

The algorithm is divided into two sampling sets: the updating of
Qlg=(si,..., Sk, lo,.., Ik and then k When updating k a change in the
dimensionality rik could occur and in this case ROIMCMC is used. The case of
updating o feis done in two steps: the position of ajump (S, 7=1,..., k) and the
respective level ((,, 770,..., k). Gibbs sampling is used to update OWwhen k is
fixed.

4.2.1 Updating OW

In order to update O  kis supposed fixed. For the parameters related
to the position of jump (S, k) the use of a step function is needed,
which makes this update the most time demanding in ail applications. For the
level parameters ((/, j=0,..., k) the update is more straightforward. Both the
procedures in the position and level parameters are explained, differing in
formulae for the frequency and severity cases (subsections 4.2.1.1 and

4.2.1.2).
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All parameters are sampled via Gibbs sampling. So it is necessary to
define complete conditional distributions for S, lo | for y=l,...,/c. Starting with
the levels, consider updating 4 The complete conditional distribution is given
by:

n(\lo,...,lj-i, [j+i,...,lk,Si,..., Sk+i,k, hyper-parameters, constants) =

nh\ §, S+, k hyper-parameters related to lj) = n(lj\.)

This simplification is possible given the Markovian structure of the
process. Once the distribution n(lj |) is fully specified the value of Jrelated to
the interval [, sH) can be updated.

In the same way it is possible to show that the moment of a jump s, has
complete conditional distribution given by the following relationship:

n(sp\si, ..., S-i, §+, ..., Sk, lg ..., Ik k hyper-parameters, constants) =

k(S 1S.h Sk, [+, I, k)=n(sj\.)

Before splitting the calculations according to types of data, a general
procedure for this case is defined. Following Arjas and Gasbarra (1994) a
partition is defined on (sj-i, sj+i), where the new value for sj is located. Hence,
the position of § is determined by considering the partition of (sj-i, sk)
induced by the ordered observations y(t) in that interval. Suppose there are

nj** observations in (sj-i, sj+), split it into n”} +1 disjoint intervals and denote

the partition by Then in each interval Ii, i=1,...,n}_f11+1, the

i-i+1'
conditional probability density of § has a form proportional to exp[ai/(sj)]ci and

this can be normalised by dividing by the constant constj, where:

niE
constj= Y ¢, [exp[aj(t)/dt 4.7
=
where the function f{t) has the following format:
flt) =< tfor frequency data 4.8)
1 for severity data

In this way, constj has an analytical solution for any t e (sj-i, sH) and §
has its complete conditional posterior distribution for all j=i,..., k.

Now the approaches in this thesis and in Arjas and Gasbarra (1994) will
differ. For comparison the scheme proposed by Arjas and Gasbarra (1994) is

explained and shown in figure 4.6. Suppose an initial set of values
(2°,Sj0,20,S2,...,s°,Z°)is given and that a posterior sample is needed for oW.

Then in Arjas and Gasbarra (1994) the initial level b is updated, followed by
the next moment of a jump si, then h, then s2, ... until Zis updated. In this

way, it is possible to observe that the levels 7% j=0,..., Zc1, are not sampled
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based on the updated interval velue [s, 5.} but based on the cld position
values, In that paper it is not a8 problem to have this charactenatic, but it
would cause distortion to rhe type of analvsis that is performed in the
applications in this thess,

In order to aveid such problems, an adaptation of the sampler in that
paper is used. Thewr sampler 15 used to update only =, ~1... .k in the
tollowing way: la, S5, U, S0, Sk, W are updated as before. After defining this
sample new updates on the levels are performed. So, the final Gibbs sampler
for this set of parameters with N* updates is given by the scheme in figure 4.7,

where Lhe move that updates & is explained in subsection 4.2.2.

Figure 4. & - Becheme In Arfas and Gasbarra [15994)
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Figure 4.7 - Gibbs sampling algorithm for 9 jo

After defining the Gibbs sampler for both level and position parameters,

the specifications of n(S§j |.) and n(lj |) are given for the severity and frequency

cases.

4.2.1.1 Frequency

In the frequency case the complete conditional distribution for the level
parameter is given by:

nUNQ....lj-i, j+i,...,Iksi,..., Sk¥ikXa Pj =n(i\S, si+, k a fi)=n(l\.)

with:

2 ({|.)~ Gammala + xj+1, p+ iujt]] 4.9

where

xjHis the total number of claims observed in [Sj, skHi), and

mj+lis the total exposure in [, SH)

The complete conditional distribution for the moment of jumps is given

by:
71FSj |SJ, ..., Sj-If Sj+l, ..., Sk+Iflo, ==+, Ikj k, k, Clj PJ 71(Sjj.)
with:
) V41 . .
NS LY e x p - wik)p(S) (4.10)
where:

Xj_jis the total number of claims observed in [sj-i, §)
wjj is the total exposure in [sj-i, )
p(Sj) is the prior distribution for §, and

wygAl and xjH as defined above.
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4.2.1.2 Severity

In the severity case the complete conditional distributions for the level

parameter is given by:

n(\Q..., lj-i, [+imeelk, sSk+i,k, X, p, a, X) = nfi \sj, sk k, p, a, x)=n(lj\.)

with:
tc (j | .) ~ Normal( p*, i2¥ 4.11)
where
n 4
-+— and p* = mt+ XX
\ /
And the complete conditional distribution for the moment of jumps is
given by:
n(sy |Si, **%) S, skh...j Skt lo) k) X pto, x) nfS |J
with 7(gj |Joc
exp{- ¢ r [-2-thU +nU U - 2hhjH + 4-12)
where:

hg/ xis the total value of claims observed in [sj-i, )
hj+ is the total value of claims observed in [Sj, sJt), and

nj+ and nj_x are as defined above.

4.2.2 Updating k

After updating O  the number of jumps, k is sampled. Since this
affects the dimensionality of the parameter Ok, reversible jump MCMC is
used. So it is necessary to define which of the moves (a), (b) or (c) in section
4.2 should be chosen, together with the probabilities of each of these

possibilities. Following Green(1995) it is defined that:

(@) mtis the probability of keeping the same number ofjumps,

(b) bkis the probability of changing from kto k+Ijumps, and

(o dkis the probability of changing from kto k-Ijumps.

These probabilities must satisfy: bk + dk + p/t =1 for each k and moves
(b) and (c) are also called birth and death of ajump.

Define:

bk =c.min{l,p(fc +1)/p(fc)} (4.13)

and
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dk=c.min{l,p(/c-1)/p(/c)} (4.14)

for k= 1,2,...,Amx 1where r|"=1. bk- dk

When k=0, bO=c.min{l,} 1)0-\-b O, leaving the probability of death
equal to zero. When k = /Wx the opposite is done, leaving the probability of

birth equal to zero and dk =cmim ] -1 and ri, =1-d

1"mav Vmny

. Ccis

dependent on the values chosen for knaxand X In Green (1995) c¢c = 0.40 and
for simplicity this value is used in all the applications in this thesis.

Once these probabilities are defined the acceptance test has to be
constructed. In move (a) nothing is done, since 9 jhave already been updated
before. In the birth move (b), the position of a new jump is selected from a
uniform distribution on Q. Define this value as s*, and suppose that it is in
the interval (sj, sj+i). If it is accepted sj+i is set to s*, and sj+i,sj+2,...,sk are
relabelled as sj *2, s) +3,..., s'k+i, with corresponding changes to the labelling of
the levels. The new levels J, +i are defined on the intervals [sj, s*j and [s*,sj+i)
through a relation that is governed by a sample from an uniform distribution
and a weight depending on the new intervals. Different relations are used in

this thesis, but all of them follow a structure like the following:

gSi, s*f(Y) +g(s*Si+)f (I+1)= g(g, s+)f(l), (4.19)
and

*hi 1o

v ) (4.16)

where uis drawn from the uniform distribution (0,1).
The acceptance probability for this move is given by:
min{l, (likelihood ratio) x (prior ratio) x (proposal ratio) x (Jacobian)}
Where the Jacobian is defined by the change from ((, w) to (}), \+). The
likelihood ratio, which is given by dividing the likelihood for the new set of
parameters over the old one, is straightforward and not defined here. The prior
ratio becomes:
plk+ 1) 2(k+1)2k+3) (s*-5j)(sjH - s*) p(Vj )p(lj+1)
P(f9 L2 s ~sj Pilj)
where only the prior for (4, I/, |) +i) changes depending on whether the

model is working on severity or frequency. The proposal ratio becomes:

d-k+.
4-1
bk(k + 1)’ (4-18)

65



In order to define the Jacobian, formula (4.15) has to be fully specified.
The function f{l) is given by:

f(h) in the severity case (4.19)

In(Zj) in the frequency case (4.20)

And since the definition of this formula influences the acceptance
probability of the new level @ythe function g{.) has two formats, both used on
the frequency case.

asi, ) ={ g+I-Sj (4.21)

wit (4.22)

In all cases the Jacobian is given by:

v+l f (4.23)
L

In the death move (c), the jump to be deleted is sampled with equal
probability from the existing jumps. The acceptance probability for the
corresponding death move has the same form with the appropriate change of
labelling of the parameters, and the ratio terms inverted.

The final algorithm for updating the set of parameters in the claim

frequency problem is given by figure 4.8:

Figure 4.8 - Complete RUMCMC algorithm

Initialise the vector set {k°, 1 ° ,s°,...,s°0,i°0)¢
for j=1to N*
Update Ig si, U SJ,..., S¢ kin this order
Update IQ h, ..., Ikin this order
Choose move type m
If move type is (b) or (c) sample values for the components
of Ow affected by this change:
If the move is accepted, change the dimensionality of O »
Else keep old values of O (&
Else do nothing
Save values for all parameters

Next j
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4.3 Model for the discrete case

The model for the discrete case does not change considerably from the
continuous case. In the birth move (b), the value of jump is selected from a
uniform distribution on Q, which is equal to (0,1,2,...,1) in the discrete case.
The same adaptation occurs for the priors of sj, for j=l...,k, which is
distributed as the even-numbered order statistics from 2k+! points uniformly
distributed in (0,1,...,1).

Besides these changes, most of the calculations are easier to perform.
As an example, to update the positions sj, for j=l,...,k, the split into disjoint

ordered groups is done automatically by using a discrete variable instead.

4.4 Chapter conclusion

In this chapter the whole basis for the applications in Chapters 5 and 5
was built. The model, implementation and algorithm were presented and their
theory explained.

It is important to highlight the use, in the algorithm proposed here, of
the combination of ROMCMC and Gibbs sampling. In this way it is more likely
that a good sample is taken than when only the acceptance test proposed in

RJIJMCMC is used.
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Chapter 5

Investigation of the grouping of ages

It is sometimes the case in actuarial work that a large quantity of data
arises relating to a specific problem. The transformation of such data into
information for rating or reserving, as some examples, is one of the main
issues in actuarial science.

In order to summarise and investigate this information the actuary, or
statistician, often has to decide on some kind of aggregation. Sometimes this
procedure only takes into account the rating structure used in the insurance
market. If a review of such a structure is needed, some well-known stochastic
techniques are used and the type of covariate analysed usually governs which
statistical technique is appropriate.

In the case of a discrete variable or factor, many techniques are
available. These include linear regression and cluster analysis among many
others, but they will not be revised here since they are not the subjects of this
thesis. However, in the case of a continuous variable the available techniques
are limited, and in many cases a transformation to discrete values has to be
carried out before performing the transformation into factors. For example,
Lemaire (1977) used stepwise linear regression for aggregation in actuarial
context.

Clustering analysis is also a technique applicable to this problem. In
most cases, this approach involves the use of a dummy variable applied
whenever it is necessary to group a continuous variable. The problem with
such an approach is that the analyst has to have a good a priori opinion of
how to define the groups that will be tested. Artificial intelligence has also

been applied to this subject in the research literature, where the discretization
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technique attempts to find the right places to set up interval borders in a
continuous variable.

In this chapter the model described in chapter 4 is used to group a
continuous variable that is limited to some interval [0, L], where the initial
point is defined to be zero without lost of generality. Now, it is considered how
many intervals there should be in [0, L/, and where these would be best
located. The level risk for each group is also evaluated at the same time. The
method uses a Bayesian approach, and hence the point estimate is replaced
by the posterior distribution for the relevant quantities. In other words, the
level risk is assumed to be a piecewise constant function over [0,L] and the
task is the complete specification of this function.

A continuous variable in insurance appears in many types of cover, but
age is the most common one and influences the occurrence and value of
claims in many type of insurance. This is the covariate, which is considered in
the application in this chapter, where the model described is applied to the
problem of how to group ages in motor insurance. These claims are split into
bodily injury (BI) and motor damage (MD) coverage, analysing the frequency
and severity of claims separately. They are all considered independent and for
each of them the algorithm set out in figure 4.8 is used.

After updating them all and deciding for each one the groups to be
used, the overall risk premium is calculated by:

Risk premium(f) = M D freq (f)x M D Sev(f)y + Blfreq(i)xBIsev(i) (5.1)

Where M D freq(i), M Dsev(i), Blfreq(i), BlIsev(ii) assume values depending on
the age i, or in other words, on the group in which the age tis located.

The results from this model are compared with the results from Verrall
and Yakoubov (1998) where fuzzy set theory was used for the same data set to
also perform the aggregation into groups. This other approach considered age
to be discrete instead of continuous, and the groups were defined only over
the frequency of claims, with severity playing no role.

The outline of the chapter is the following. In section 5.1, the data used
in the application is presented. Section 5.2 refers to chapters 2 and 4 in order
to explain the type of acceptance test that is used in the different cases
implemented in section 5.3. In section 5.4 the final premium and groups are
defined, with a comparison in section 5.5 with the results from Verrall and

Yakoubov (1998). In the last section a chapter conclusion is presented.
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5.1 Data

The data come from a portfolio of motor insurance business with 66596
policies classified by age as well as a number of other factors. For each policy
there is information related to the bodily injury frequency and severity of
claims, the motor damage frequency and severity of claims and also the
exposure. The effects of all the factors, except obviously age, should be
removed before any analysis, but they were not sufficiently significant to
justify any procedure. Hence, it is supposed that age is the only factor that
influences the claims occurrence and severity.

Each policy could have more then one claim. So in formulae 4.2 and
4.5, nis related to the number of claims. For bodily injury n=624 while for
motor damage n=9674.

Age is recorded to two decimal places, and exposure is measured as a
fraction of a year. The actual age of the policyholder when the claim occurred
(or the actual moment in time that the claim occurred) was not available, and
so it was necessary to use an approximation. It was supposed that claims
occurrences were uniformly distributed over the exposure of each particular
policy, with the respective value also equally split. The nature of the data is
illustrated in figure 5.1, where circles represent the moment of occurrence of
the claim and the lines the exposure, or duration, of each policy.

Figure 5.1 - Claim occurrence and exposure scheme

— exposure for policyholder

O age of occurrence of claim

<m >

4_ ________ a a—QQ Q —>

age

The maximum exposure was one year and the age was some number in
the interval [19.39, 92.98]. Before starting the analysis, ages were transposed
by subtracting 19.39 from all ages, changing the interval to [0, 73.59]. Three
data sets were available for the analysis. The first related to the exposure, and
for both bodily injury and motor damage a data set containing four pieces of
information was used. The information in each of these data sets was the age
of the policyholder at the moment of occurrence of a claim, the total number of
claims at this age, the sum of the total claim value and the sum of the

logarithm of the claim value.
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Figure 5.2 - Summary plots of automobile insurance data
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In order to illustrate the nature of the data, figure 5.2 shows the relative
frequency (number of claims divided by exposure) and the average claim value
(also in logarithm basis) in the case when age is considered as a discrete
variable.

Table 5.1 also shows some statistics from the database.

Table 5.1 - Statistics of the automobile insurance data

BI- MD- BI- BI- log MD- MD- log
frequency frequency severity severity severity severity
Mean - - 871,805 12.74 67,734 16.93
SD - - 1,080,408 1.53 82,474 10.16
Oceurrence ) 4194 0.1921 - - - -
Rate

Before applying the model the values of the claims were also
transformed, with bodily injury severity divided by 10,000 and the motor
damage severity by 1,000. In this way the order of magnitude of the values

were simply decreased.

5.2 Description of the models

Eight models were implemented to find a premium for motor insurance
depending on ages. They follow completely the model described in chapter 4.
Half were related to motor damage, with the same models also adapted to
bodily injury. For each type of coverage, frequency and severity of claims were
modelled separately, with two models for each of them.

Recalling from (4.15) in the previous chapter, the models change in the
way the following relationship is defined:

g(sj, s*)/(Zj) + g(s*,s™)/(Zj,1)= gls? g+)f(l) (5.2)

The models related to frequency differ in the way the function g(S,S+) is
defined. For claim severity, there are also two for each type of claim, differing
in the way j\Jj) is defined. Such a change is related to the values that could be
assumed by [ (j=0,...,k) that in the lognormal case can be negative,
invalidating the proposed function in (4.19).

In the end the following models were used, with the formulae and

abbreviation also indicated in table 5.2.
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Table 5.2 - Models covered in this chapter

Model Abbreviation M 9isj,Sj*i)
Bodily injury frequency BIf 4.20 4.21
Bodily injury frequency weight Blfw 4.20 4.22
Bodily injury severity Bis 4.19 4.21
Bodily injury severity log Blslog 4.20 4.21
Motor damage frequency MDf 4.20 4.21
Motor damage frequency weight MDfw 4.20 4.22
Motor damage severity MDs 4.19 4.21
Motor damage severity log MDslog 4.20 4.21

In each model the number (k), position (sy, j=1,..., k) and level (i, j=0,...,
k) of the jumps are updated via MCMC techniques, with a large sample as a
final result. Then an analysis is performed and the groups are chosen for each

parameter that is included in the risk premium.

5.3 Implementation of the models

After the eight models have been defined, their implementations can be
carried out. The constant parameters should be defined, giving values to L and
a and to the set of hyper-parameters: kg 7, u, x, a and 3 Given the range of
the data, L was defined as 73.59. The Poisson rate was chosen as 7=3, and,
controlling the number ofjumps, knaxwas chosen to be 30, a value which was
not reached during the simulations. The values for 7 and hkmx have been
shown not to highly influence the model, (see comments in Green (1995),
Green and Richardson (1997) and Denison, Mallick and Smith (1998)) but it is
also true that a large value for the number of groups would not summarise the
data enough.

For simplicity, the values for 7 and kmaxwere chosen to be the same for
all eight models in table 5.2. For the values of the prior distribution
parameters the values in table 5.3 were chosen in order to be as non-

informative as possible. The values for the standard deviation a were chosen

based on the data.
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Table 5.3 - Hyper-parameters and constants values

BIf BIfw MDf MDfw Bis Blslog MDs MDslog
a 12 12 10 10 - - - -
3 1,000 1,000 200 200 - - - -
H - - - - 50 50 50 50
T - - - - 100 100 100 100
c - - - - 150 20 150 20

It is necessary to define all the values before starting the simulation.
So, initial points must be defined, where the number of jumps were chosen to
be equal to S for all parameters. In the same way the position of jumps were
defined as 5 equally spaced jumps in (0,73.59), taking care not to have jumps
at the moment of occurrence of any claim. The values for the levels of jumps
were sampled at random from the prior distributions. The algorithm
summarised in figure 4.8 was applied to each of the 8 models.

The simulation was updated for 10,000 steps on a Sparc ultra 1
140MHz with 64Mb memory. For each model, one step j in the algorithm in
figure 4.8 took around one minute, which is rather large when compared to
usual MCMC calculations. The longer time can be justified by two main
reasons. Firstly, the size of the data set is quite large, since the nature of the
information is at an individual level. Secondly, at the moment of updating the
position ofjumps, the Gibbs sampler methods requires the subdivision of [O,L)
into intervals with fixed exposure and number of claims, which are quite
numerous.

The acceptance rate for the birth and death moves ((b) and (¢ in

subsection 4.2.2 respectively) are shown in table 5.4.

Table 5.4 - Type of moves and acceptance levels
Kept Birth Death

Model Move () move(b) Accepted Rate move(c) Accepted Rate
BIf 3,525 3,024 542 17.92% 3,451 542 15.71%
Blfw 3,426 3,066 447 14.58% 3,508 450 12.83%
Bis 4,689 3,851 679 17.63% 1,460 682 46.71%
Blslog 5,027 3,976 685 17.23% 997 687 68.91%
MDf 3,349 2,848 107 3.76% 3,803 109 2.87%
MDfw 3,319 2,919 137 4.69% 3,762 139 3.69%
MDs 4,210 3,880 328 8.45% 1,910 333 17.43%

MDslog 3,806 3,537 270 7.63% 2,657 274 10.31%
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The rate of acceptance is around the level observed in some other
papers using ROIMCMC (see references in subsection 4.2 and 2.2.3) for all
models, except MDf and MDfw. This poor level influenced the application of
these two models as seen in their analysis in the following sections.

After obtaining the sample, we may perform the analysis. The first
characteristic to consider is if and when convergence has been achieved. From
the 10,000 samples, the initial 1,000 were considered as burn-in iterations
(M=1,000) and discarded. The analysis of the trace for each parameter of each
model for the initial 1,000 and the remaining of the sample has shown that
convergence was achieved by this point. This can been seen from the visual
evidence in the trace plots.

If the MCMC tests of convergence are used straightforwardly in the
reversible jump case, it can result in distortions since the meaning of each
parameter, apart from k changes at each iteration. As an example, the
interpretation of the position of a jump depends on the existing number of
jumps. Since there is no specific test of convergence that has been especially
developed to RIMCMC, it was chosen to perform the analysis by following
some of the rules for the analysis of a MCMC simulation, bearing in mind that
in the reversible jump case the parameters change meaning at each iteration.
Generally speaking, it is expected that the whole model converges to a specific
number of jumps and that through the analysis of the total sample a
convergence of all remaining parameters should also be observed.

After ensuring that convergence had been achieved, the analysis of the
empirical posterior distribution for each parameter was carried out. In order to
minimise the errors of interpretation, an analysis of the parameter values
conditional and unconditional on the number ofjumps was also performed. To
summarise, the procedure for this analysis is as follows:

To check convergence:

m Plot a trace of the values and see if there is a good mixing and no
undesirable trend;

m Compare the two models applied to the same data set and the results given
by table 5.2. Then observe the posterior distributions proposed for the
same problem with these two different ways of updating.

To decide the shape and parameters values of the posterior:

m Examine the histogram and Bayes factor of the number ofjumps;
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m For the chosen number of jumps, analyse the behaviour of the parameters
(whether they are individually consistent with the graph for the whole
analysis);

m Compare the plot for each single component unconditional and conditional
on the chosen number ofjumps. Then compare with the two overall plots,
which are given by the empirical posterior distributions of all samples for
the position and level parameters.

The analyses of the results for each type of model described on table 5.1
are given in the following sections. The results are divided according to each
type of coverage, bodily injury (section 5.3.1) and motor damage (section
5.3.2). After performing the analysis of the results, the pure risk premium is
calculated, where the choices of Blfreqi), Blsaft), MDfie (i) and MDseft) for ¢t e
[0,73.59] are given in section 5.3.3.

An individual analysis is done for each model. Estimators for the
number of jumps, together with the level and moment of occurrence of each
jump have to be decided. Natural estimators of the positions and levels of
jumps are the mode(s) and mean of the posterior distribution for each
individual component.

In the case of the number of jumps a different approach was used. In
theory, the best estimator should be the one with the highest Bayes factor.
However, an analysis of the moment of occurrence of each jump and the level
parameters also influence the decision. The number of jumps, k should be
chosen first, since it influences the analysis of the position and level
parameters. For each Ilg h, h,..., Ik Si, S,..., Sk both the conditional and non-
conditional empirical posterior distribution with the chosen kis plotted. It is
noted that in most cases, these two distributions are not significantly
different. This shows a convergence to the posterior distribution without

depending on the value of k, which is a reassuring result.

5.3.1 Analysis of bodily injury claims

The analysis for all four models for bodily injury are performed
separately in the following subsections, but their summaries and parameter
estimates are given in advance in table 5.5. This table includes the chosen
number of jumps, together with the number of jumps with the highest Bayes

factor (BF). Means and modes are shown for the level and position of each
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jump, with the values calculated over the total sample for each parameter (or
without conditioning on the chosen number ofjumps).

It can be observed that for Blfw and Bis the chosen values for the
number of jumps were different from the ones with the highest Bayes factor.
This choice was based on the facts that the analyses of the level and position
ofjumps were pointing to the chosen values, and that their Bayes factors were
not significantly smaller than the highest one. (Blfw: BF\3,2)=1.15,
BF[2,3)=0.87 and Bis: BF(0,1)=1.66, BF{1,0)=0.60).

Table 5.5 - Estimated values of the parameters in bodily injury

BIf Blfw Bis Blslog
¢ g Chosen 2 2 1 0
3 Value
g a
BF
12.467, 11.618, 25 080
l}g Mean 33.283 27.856 '
‘?% 12.585, 12.585, .
< 38.25
Mode 32.721 32.721
o 0.01871868, 0.01964847,
9 80.57695,
i Mean 0.01239891, 0.01343926, 21.50548
g 127.6362
5 0.01028067 0.0114657
& 0.01855026, 0.01994755,
80.18249,
Q Mode 0.01198616, 0.01279561, 13.63785
5 140.8127
0.009062508 0.009650974

The result in table 5.5 is further used to define the risk premium in
section 5.4. Now, the analysis of the results for bodily injury is presented for

the frequency and severity models.

5.3.1.1 Bodily injury frequency models

There are two procedures that analyse the bodily injury frequency data:
BIf and Blfw. Both point to a result with 2 or 3 jumps when observing the
number of jumps directly, but to 2 jumps when analysing the position and
level parameters. In this way 2 jumps is the one chosen.

BIf

Convergence (traces in figure 5.3):

Convergence was quite fast. All traces are satisfactory, with good
convergence and good mixing.

Number of jumps (plot (r)) - There is no obvious convergence, but a

tendency of staying around the values 2-3. The degree of mixing is good.
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Figure 5.3 - BIf trace plots
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Position of jumps (plots (j) to (g) - From S to Ss there is no clear
convergence, since these parameters do not occur that often, but no problem
was observed either. A tendency could be observed for ss, s+, ss and S to be
bigger than 30, 40, 45 and 50 respectively. s: is in [30, 40] and sj is in [10,15],

Level parameters (plots (@) to (ij) - From U to bk there is no clear
convergence, since these parameters do not occur that often, but no problem
was observed either. § has values around 0.010, % around 0.010, h around
0.012 and e around 0.020. All / (i=O0,...,3) achieved convergence and ;s and /2
assume roughly the same values, confirming that there is no need for the third
jump.

Figure 5.4 - BIf empirical posterior distributions
(@) Number of jumps

(h) Position of jumps

sj, sz conditional jump=2; e s, sz individually, — overall for all s, i=l,...,8.
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(c) Level parameters

Analysis of empirical posterior distributions (Figure 5.4):

Number of jumps - 2 is definitely the highest mode and the chosen
value, although the value 3 is also highly probable.

Position of jumps - The empirical a posteriori distributions for all
observed positions of jumps has two modes, with the first one (sj) very well
defined, differently from the not so clear second one (s2. When plotting the
individual plot for each position parameter, the a posteriori distribution for s2
has a more highly concentrated mode around 32. s; has the same posterior for
all graphs with mode around 12.

Level parameters - The total sample has three modes, where the second
one (h) is the most highly concentrated with values around 0.013. The first
one (lo has a more defined mode (0.02) when plotting the individual graph.
The last one (f is highly influenced by the values of U assuming values
around 0.008.

BIfw

Convergence (traces in figure 5.5):

Convergence was quite fast. All traces are satisfactory, but sometimes
there is no really good mixing. The convergence and mixing seems poorer than
BIf.

Number of jumps (plot (1)) - Some convergence to values 2 and 3.

Position of jumps (plots (j) to (g) - From S to Ss there is no clear
convergence, since these parameters do not occur that often, but no problem
was observed either. S3 tends to be larger than 30, s2in [15, 40] and sj in
[10,15],

Level parameters (plots (@) to (i) - From U to I8 there is no clear

convergence, since these parameters do not occur that often, but no problem
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was observed. k has values around [0.010,0.015], but not with very obvious
convergence. t has a similar behaviour, showing that the third jump is not
really necessary. U converges to 0125, but also with a high probability on
values around 0.020. .. achieves convergence to values around 0.020.

Analysis of empirical posterior distributions (Figure 5.6):

Number of jumps - The value 3 has the highest probability, but the
value 2 is also high. 2 is the number ofjumps chosen, based on the values for
the position and level ofjump that pointed to the existence of only 3 groups (or
2 jumps).

Position of jumps - The overall graph shows two modes. S is located at
values around 32 and it is much more concentrated when in the conditional
distribution to .- 2. sj has a very high probability of being around 13 in all
graphs.

Level parameters - The overall graph points to three modes. f is related
to the first one, around 0.009, that is clearer when plotting the conditional
distribution. Uis even higher concentrated around 0.012 when the conditional
distribution is plotted, compared to the overall one. .. has also a clearer mode

(0.02) in the conditional distribution.

Figure 5.6 - BIfw empirical posterior distributions
(a) Number of jumps

0 2 4 6 8

(b) Position ofjumps

age

-- §j, s2 conditionaljump=2; s szindividually, — overall for all s,i=1....8.
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(c) Level parameters

00 001 0.02 0.03 0.04

lo, h, h conditional jump=2; = 1, 1, » individually, — overall for all ri=o,..., 8.

5.3.1.2 Bodily injury severity models

There are two procedures for analysing the bodily injury severity data:
Bis and Blslog. In the results for Bis a jump was chosen, but in Blslog no
jump is indicated. The results had mostly a good mixing and reasonable
convergence.

Bis

Convergence (traces in figure 5.7):

Convergence was quite fast. All traces are satisfactory, with good
convergence and good mixing.

Number of jumps (plot (1)) - The values are very spread without any
obvious convergence. The number of jumps has a high concentration on the
values o0, 1 and 2.

Position of jumps (plots (g to (k) - S, S and Ssare not frequent enough
to draw any conclusion. S has a clearly tends to be larger than 30, without
any clear convergence, sj is definitely in [30,40], with good mixing.

Level parameters (plots (a) to (f)) - [3 Uand Isare not frequent enough to
draw any conclusion, h has a good mixing, but without any clear convergence.
h has values in [100,200], with convergence to this interval, lo converges to
[60,100],

Analysis of empirical posterior distributions (Figure 5.8):

Number of jumps - The number of jumps with highest probability is 1,
followed by o.

Position of jumps - The overall graph has two clear modes (37 and 39),
with very heavy tails. The individual plots seem more concentrated that the

overall plot.
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Figure 5.7 - Bis trace plots
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Level parameters - There are two modes in the overall plot, with the
second mode more “spread” than the first. The individual graphs for lohave a
nice shape, being highly concentrated around 70. In the case of Uthe shape of

the distribution is not so concentrated, with values around 140.

Figure 5.8 - Bis empirical posterior distributions
(a) Number ofjumps

(b) Position of jumps

s; conditional jump=1; s; individually, — overall for all s, i=l,...,5.

(c) Level parameters

1o, 1i conditional jump= 1; mm ., 1 individually, —eoverall for all i i= 0,...,5.

Blslog
Convergence (traces in figure 5.9):

All the traces show a reasonable mixing, but convergence was not

achieved for the position ofjumps.
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Number of jumps (plot (1) - The number of jumps goes from values O to
5, with a higher concentration around 0O-1.

Position of jumps (plots (g to (k)) - No clear convergence was observed,
where jumps from S onwards were not that frequent. Sj seems to have two
areas of higher sampling: close to o and then to 60.

Level parameters (plots (a) to (f)) —All the ranges are very spread for all
level parameters. It seems that convergence is achieved around O for all the
levels.

Analysis of empirical posterior distributions (Figure 5.10):

Number of jumps - The value for the number of jumps with highest
posterior probability is o.

Position of jumps - The posterior distribution for the position of jumps
has a strange shape, here the modes for the position ofjumps are close to the
borders.

Level parameters - The posterior distribution for the level parameters is

similar to a normal distribution with mean (mode) around 18

Figure 5.10 - Blslog empirical posterior distributions
(a) Number of jumps

(b) Position of jumps

— overall for all s,i= 1,...,5.
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5.3.2 Analysis of motor damage claims

(c) Level parameters

— overall for all : i= 0,...,5.

Again, the analysis for all four models for motor damage are performed

separately in the following subsections, but their summaries and parameter

estimates are given in advance in table 5.6. This table is similar to the one in

section 5.3.1 for bodily injury. In contrast to the previous analysis, here all the

chosen values for k are the ones with the highest Bayes factors.

Table 5.6 - Estimated values of the parameters in motor damage

%]
S o, Chosen
S Value
£ 3
QQ Highest
)
BF
I Mean
.O Q
=k
0w 3
I ™~
N
Mode
(%]
~
9 Mean
Q
g
S
~
S
Q
©
)
Q
3 Mode

MDf

3

3

12.899,
33.945,
56.36827
13.592,
40.272,
62.422
0.2666808,
0.19588,
0.1369522,
0.06396099
0.2656115,
0.1917391,
0.1292134,
0.04307191

MDfw

3

3

14.76384,
39.49449,
61.62486
12.58503,
35.7415,
62.42177
0.260086,
0.1876084,
0.119178,
0.0468519
0.2662027,
0.1921859,
0.12857909,
0.03958556
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MDs

1

13.20706

13.59184

28.2927,
60.66479

23.94861,
66.32374

MDslog

1

12.71871

13.59184

5.022029,
15.64755

5.492665,
18.80877



These statistics are further used to define the risk premium in section
5.4. Before that, the analysis of the empirical posterior distributions for all
four models using motor damage data is presented in the following

subsections 5.3.2.1 and 5.3.2.2, for frequency and severity data respectively.

5.3.2.1 Motor damage frequency models

There are two procedures for analysing the motor damage frequency
data: MDf and MDfw. Both point toward the same result: 3 jumps, but their
mixing is really poor.

MDf

Convergence (traces in figure 5.11):

All the traces really have a bad mixing, and they are composed of big
blocks of values. One of the blocks is more frequent than the others, and it
could be argued that in this case a local convergence is observed.

Number of jumps (plot (n)) - The mixing was not as good as seen in the
other models. The number ofjumps seems fixed on the value 3.

Position of jumps (plots (h) to (m)) - s4, Ss and S6 are not frequent
enough to draw any conclusion. S3 has two groups around 62 and around 40.
S has blocks around 20, 35 and 40. S; seems to converge to values smaller
than 15.

Level parameters (plots (a) to (g) - U Isand bare not frequent enough
to draw any conclusion. § has two main blocks; 0.12 when S3is close to 40
and 0.04 when S3is around 60. h has two blocks depending on S:when S is
around 20, [ is close to 0.18, when S2is around 35/40, his close to 0.13. his
around 0.20 when sj is closer to 12, and then a bit bigger when sj is smaller.
lois the one that achieves the best convergence, around 0.27.

Analysis of empirical posterior distributions (Figure 5.12):

Number of jumps - The value 3 has the highest probability, as expected
from the trace plot.

Position of jumps - The overall graph points to five modes well defined
(approximate values 12, 20, 37, 40, 62). S3 has 2 modes (40 and 62) when
plotting the individual plot without conditioning on the number ofjumps being
equal 3. When conditioning on the number of jumps, there is an absolute
maximum at 62. S2 always has two strong modes 37 and 40, with some high
probability on 20 as well, s; has 2 modes (12.75 and 13.7), while the
conditional distribution has one stronger mode at 12.75. S brings the greatest

problem for recognition.
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Figure 5.11 - MDf trace plots
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Level parameters - The overall graph points to four main areas of higher
probability. The first one, related to 15, has two modes in the individual graph,
around 0.045 and 0.120, with the conditional density pointing only to the first
one. I has three modes when individually plotted (0.11, 0.13 and 0.18),
differently from the conditional graph where the two first are stronger, h has
two modes (0.195 and 0.210) and lo has mode 0.27, both with the same

behaviour in any graph.

Figure 5.12 - MDf empirical posterior distributions

(b) Position of jumps

age

- si, 2, sj conditional jump=3; si, S, S3individually, — overall for all s,i=I,..., 6.

(c) Level parameters

lo, h, b, b conditional jump=2; lo, li, b, bindividually, — overall for all i i= O,..., 6.
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Figure 5.13 - MDfw trace plots
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MDfw

Convergence (traces in figure 5.13):

Again all the traces have a really bad mixing, being a collection of long
blocks of values. The overall result is quite similar to the previous one,
confirming the conclusions.

Number of jumps (plot (n)) - As before, the mixing is poor, and the
values are closer to 3.

Position of jumps (plots (h) to (m)) - S, S and & are not frequent
enough to draw any conclusion. S3 seems the one with the best mixture, being
definitely around 62. S has three clear blocks: an initial one around 60, then
varying in between 37 and 40. Sj has blocks starting in 37 and then moving to
values around 13.

Level parameters (plots (a) to (g) - U Isand bk are not frequent enough
to draw any conclusion. § has quite good mixing around 0.04. h starts on
values around 0.05 and then goes to 0.12 and stays there, h again starts at
values around 0.12, but goes to 0.19 with Io starting around 0.21 and then
moving to 0.27.

Analysis of empirical posterior distributions (Figure 5.14):

Number of jumps - As in the previous model, 3 is the number of jumps
with highest probability.

Position of jumps - Now there are four modes in the overall graph, and
the previous mode with value around 20 disappears. The conditional
distributions are highly concentrated, showing modes around the following
values for the respective positions ofjump: S3(62), S2 (37 and 40) and sj (13).

Level parameters - The overall and conditional distributions have five
modes. The first (around 0.045) has the lowest probability, being related to ss.
hhas two (0.12 and 0.13), hhas one (0.19) and Iohas one mode (0.27).

Figure 5.14 - MDfw empirical posterior distributions
(a) Number of jumps

a6
04
02
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(b) Position of jumps

si, S, 3 conditional jump=3; es;, S2, S3individually, — overall for all s,i=1.... 6.

(c) Level parameters

- - lo, h, h, b conditional jump=2; lo, h, h, hindividually, — overall for all 1i= O..... 6.

5.3.2.2 Motor damage severity models

There are two procedures analysing the motor damage severity data:
MDs and MDslog. They both indicate only one jump.

MDs

Convergence (traces in figure 5.15):

Number of jumps (plot (1)) - The degree of mixing is good, with values
being concentrated around 1-2.

Position of jumps (plots (g) to (k) - S, S and S5are not frequent enough
to draw any conclusion. S has a clear tendency of being in [20,40] and s;
around 18.

Level parameters (plots (a) to (f)) - 5, Uand § are not frequent enough to
draw any conclusion. £ has a convergence to values around 100, h to values

around 60 and Iloto values around 25.
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Figure 5.16 - MDs empirical posterior distributions

(a) Number of jumps
0.6

(b) Position of jumps

sj conditional jump=1; *msj individually, — overall for all s,i=1....5

(c) Level parameters

0 20 4 60 8 100
-- ig 11 conditional jump=1; s i, « individually, — overall for all i i= 0,...,5.
Analysis of empirical posterior distributions (Figure 5.16):
Number of jumps - The number ofjumps with the highest probability is
the value 1.
Position of jumps - In all graphs it is possible to observe one absolute
mode, with value around 13. The conditional distribution is highly

concentrated around the mode.
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Figure 5.17 - MDslog trace plots
(b)
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Level parameters - The overall graph shows two modes, with the
conditional distributions highly concentrated on them, Il is highly
concentrated on values around 25 and Uis highly concentrated around 80.

MDslog

It is difficult to make a decision since the number ofjumps indicated is
1 or 2, but there are three modes in the overall graph for the position of
jumps. In the end one jump was chosen, by analysing the overall graph for the
level parameters.

Convergence (traces in figure 5.17):

Number of jumps (plot (n)) - The degree of mixing is good, with values
around 1 and 2.

Position of iumps(plots (h) to (m)) - s3 S, Ss and s6 are not frequent
enough to draw any conclusion, but these parameters do have some groups
pointing to a bad mixing. S has a clear tendency of having values 15, 20 and
50, but without any clear convergence. For sj, the clear tendency is of being
15 or smaller.

Level parameters (plots (@) to (g) - B U h and [6 are not frequent
enough to draw any conclusion. All graphs have a large range, making it
difficult to reaffirm convergence, h would tend to values around 20, h around
20 and o, and Ig o.

Analysis of empirical posterior distributions (Figure 5.18):

Number of jumps - 1 and 2 are the most probable number of jumps.
The chosen is 1, given the observed values of position and level parameters.

Position of lumps - The overall graph indicates 3 modes with sj around
the value 15, S around the value 20 and S3 around the value 47.

Level parameters - The overall graph shows two modes very close
together. When plotting the conditional values, their existence is clearer, lois
highly concentrated on values around 5 and Uis highly concentrated around

19.

Figure 5.18 - MDslog empirical posterior distributions

050 (a) Number of jumps

0.25
0.20

0.15

0.05

0.0
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(b) Position of jumps

0 20 40 60
age

- si conditional jum p=1; e si individually, — overall for all s, i= 1....,6.

(c) Level parameters

lo, h conditional jump=1; e lo, hindividually, — overall for all ti= O..... 6.

5.4 Risk premium

After performing the analysis for all eight models, and summarising
their empirical posterior distributions (tables 5.5 and 5.6) the risk premium is
calculated. By the analysis, considering the mixing and convergence
properties, the models BIf, Bis, MDf and MDs were chosen. In this way all the
values were calculated using these models, with the other four only serving to
help confirm the results.

The first step is to define the groups for the risk premiums. The way
chosen to perform this calculation is by ordering the modes of the position of
the jumps for the chosen four models. In this way the following groups (table

5.7) are defined, with the groups also shown in the original scale:

Table 5.7 - Age groups for the risk premium
groups 1 2 3 4 ) 6 7

Transf. (0, 12.59) (12.59,13.59) (13.59,32.72) (32.72,38.26) (38.26,40.27) (40.27,62.42) (62.42,73.59)
Real  (19.39,31.98) (31.98,32.98) (32.98,52.11) (52.11,57.65) (57.65,59.66) (59.66,81.81) (81.81,92.98)
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Thus, 7 groups were defined for the risk premium. Only one of the
groups is fully dependent on a group derived from severity, while all the others
are derived from frequency. These groups ¢ (f=1,...,7) define the risk premium
following the formula 5.1 that is rewritten as:

Risk premium(f) = MDfreq(i')xM D sev(f') + BIfreq(i')xBlsev(i") (5.3)

So, the risk premium is calculated by the formula 5.3 observing the
change in values in each component depending on the group. The final risk
premium is given in table 5.8 (observe that BlIsev had to be multiplied by 10 in

order to be in 1,000's):

Table 5.8 - Risk premium per group in the automobile insurance problem

Premium Bodily injury Motor damage
Group

in 1,000s Frequency Severity Frequency Severity
1 22.6281 0.01872 80.577 0.26668 28.293
2 17.5358 0.01240 80.577 0.26668 28.293
3 21.8737 0.01240 80.577 0.19588 60.665
4 20.1669 0.01028 80.577 0.19588 60.665
5 25.0049 0.01028 127.636 0.19588 60.665
6 21.4300 0.01028 127.636 0.13695 60.665
7 17.0020 0.01028 127.636 0.06396 60.665

In order to compare the chosen risk premium with the data a graph is
plotted, with the observed risk premium versus the observed one when
considering ages in full years as a discrete variable. The graph is in figure
5.19.

Figure 5.19 - Risk premium and observed experience per age

After deciding the risk premium values, the next question is the
variability related to such an estimator. In this case it is difficult to define

such a value, since again there is no obvious choice or defined rule. So in
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order to perform this calculation the approach is to explore the risk premium

formula and independence, calculating Var(Risk premium(i')) as:

Var(MDfreqi'))xVar(MD Sv(i')) +Var(Blfreq(i'))xVar(BIsev(i')) (5.4)

For t=1,...,7. Var(MDfre(f)), Var”~D ")), Var(Blfreqf)) and Var~"I*O)
are calculated by the square of the sample standard deviation of each level [
y=0,..., k for each one of the following models: BIf, Bis, MDf and MDs. The

results are shown in table 5.9 (where Blssvhad again to be multiplied by 10).

Table 5.9 - Standard deviation for the risk premium

Risk Bodily injury Motor camage
Group . . .
premium Frequency Severity Frequency Severity
1 0.6042 0.00257 21.528 0.01284 18.777
2 0.4772 0.00191 21.528 0.01284 18.777
3 0.4431 0.00191 21.528 0.01228 13.309
4 0.4731 0.00206 21.528 0.01228 13.309
5 0.8181 0.00206 38.870 0.01228 13.309
6 0.8690 0.00206 38.870 0.02521 13.309
7 0.9107 0.00206 38.870 0.03248 13.309

With all these values to hand, the result for the risk premium is
complete. It is important to observe that in the calculation of the standard
deviation only the variability related to the level parameters has been taken
into consideration. In this way it could be argued that this value is
underestimated.

But, for comparison, a second approach for calculating the risk
premium is used. Now, instead of calculating m b freq(f), MDsev(z), Blfreqi) and
Blsev(t) Separately, the same sample is used to calculate the risk premium
directly. So, in each simulation step the value of the risk premium is
calculated directly from the sampled values for each type of data separately. At
the end the risk premium has a chain of 10,000 values, that is used as the
basis for the analysis.

In such an approach the choice of group positions and numbers of
jumps is more difficult to decide since frequency and severity data have
different trends over age (the first decreases, while the second increases with
age). So, the choice of groups is dropped and the calculation of the premium is

different. Now, some ages are chosen and the risk premium, together with the
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standard deviations, are calculated for each of these ages. The results are
given in table 5.10:

Table 5.10 - Risk premium based directly on the sample

Age Mean SD Age Mean SD Age Mean SD Age Mean SD

0 22.63 6.62 19.62 22.32 1.81 39.25 23.55 4.41 58.87 20.63 4.50
245 2249 5.18 22.08 22.15 1.70 41.70 20.54 3.83 61.33 19.98 524
491 22.56 4.58 24.53 22.22 1.69 44.15 20.17 3.71 63.78 16.51 5.59
7.36 2230 3.66 26.98 2224 174 46.61 20.12 3.69 66.23 16.01 5.80
9.81 22.16 3.39 2944 2236 181 49.06 19.98 3.69 68.68 15.83 6.25
12.27 20.62 3.83 31.89 22.66 221 51.51 19.99 3.78 71.14 1574 6.65
1472 2220 191 34.34 23.55 3.15 53.97 20.08 3.93 73.59 15.61 7.04
17.17 2220 1.86 36.80 22.07 3.87 56.42 20.40 4.24

These results do not differ significantly from the previous ones in the
mean values, but the standard deviation do differ. Such a difference is
justified by the lack of use of groups, which leaves the values related to the
levels more spread than when a group is defined. It is also true that the
second approach takes into consideration also the deviation included in the
position and number ofjumps.

In order to compare the results a graph with a 90% confidence interval
from the normal distribution is plotted in the figure 5.20 for both approaches,
where the thicker line is the risk premium based on directly on the sample

and the thinner one is the one supposing independence.

Figure 5.20 - Comparison of both risk premiums

5.5 Comparison with Verrall and Yakoubov(1998)

In the paper by Verrall and Yakoubov(1998), a fuzzy set approach was
used to calculate the risk premium for the same data set used in this chapter.
In their approach the data were discretized, and age was considered in years.

Then the clusters were chosen based only on the frequency data for both
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motor damage and bodily injury at the same time, where the severity
parameters were derived from the sample mean on each specific cluster.

In order to use fuzzy set methodology, the number of clusters must be
decided in advance and afterwards the probability of each age being in each
group is derived. With this information available, it is then decided in which
cluster the age should be included.

The results from Verrall and Yakoubov(1998) are given below in table
S5.11. To help the comparison, in figure 5.21 the plot of the observed and
estimated frequency is also shown. (Observe that the plots were truncated on

younger ages to help presentation).

Table 5.11 - Risk premium for Verrall and Yakoubov(1998)

Group Age Cluster frquincy freql\:ll]:ncy Pr(l::ilsil:m
1 (<25,25) 1 0.051603 0.292859  406.55
2 (26,27) 2 0.013503 0.189539  139.18
3 (28,31) 3 0.009412  0.134440  116.77
4 (32,47) 4 0.007597  0.114335 91.97
5 (48,51) 3 0.009412  0.134440  116.77
6 (52,68) 5 0.005616  0.079628 66.65
7 (69,>69) 6 0.002293  0.045360 26.41

Figure 5.21 - Comparison of frequency results with data
(a) Bodily injury claims

0.06

A Observed —*— V&Y[1998] —i— Calculated
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(b) Motor damage claims

0.4
0.35

19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 92

4 Observed —*—V&Y[1998] —1— Calculated

Comparing their results with those obtained in the previous section, it
is possible to observe some differences. In table 5.11, for instance, there is a
lower risk class (32,47), which is not a feasible result in the frequency analysis
of motor insurance. It is also observed that the number of groups is higher
than in the analysis in section 5.4, with only a few ages in one of them.

Apart from this, the range of frequency rate in motor damage is much
higher than in bodily injury, but both have the same number of groups in
table 5.11. The smoothness of the estimated parameters is also better in the
model adopted in this thesis, where the high decrease from groups 1 to 2 in
Verrall and Yakoubov(1998) in both motor damage and bodily injury data is
not observed. By predefining a group for ages smaller than 26 to apply the
model, they had created a higher risk group.

5.6 Chapter conclusion

In this chapter we have shown a Bayesian approach for deciding the
number of groups, their positions and rates in each interval, as a unified
model. The procedure was applied to severity and frequency of claims
separately.

This kind of approach helps the decision making process, since it gives
the posterior distribution, instead of a point estimate, and does not define the
number of jumps in advance. The same ideas are the basis for the following

chapter.
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Chapter 6

Investigation of claims reserving

With the model in chapter 5 it was possible to use data at an individual
level in order to define groups and summarise information. One of the features
in that model was the ability to smooth the parameters over their whole range
of values. Utilising both the smoothing property and the data structure, this
model is now used in a different type of problem in this chapter: the prediction
of claim reserves at an individual policy level.

A micro approach, using individual policy/claim information and
continuous time, is used here to model the claim development. The idea is
derived from Norberg (1993,1999), the model is similar to Aijas and Haastrup
(1996) and the implementation is based on Green(1995). In some ways, the
model applied in the following sections is an adaptation of the model of Arjas
and Haastrup (1996) using the reversible jump Markov chain Monte Carlo
technique.

Besides the change in the implementation technique, the model itself is
modified. As before, severity and frequency of claims are modelled separately.
The process related to the claims occurrence is assumed to be the same as in
Aijas and Haastrup (1996): a Poisson process. But in the severity case the
model changed, with the value of claims now being modelled parametrically.

The chapter is divided up in the following way. Section 6.1 gives the
theoretical basis of the model. The next section explains the data structure,
which is used further in section 6.3 where the distributional assumptions of
the model are explained, based on chapters 3 and 4. The description of the full
model is given in section 6.4, where the implementation technique is also

reviewed. Section 6.5 gives the analysis of the results obtained after running
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the implementation. Section 6.6 compares the results proposed in this chapter
with those in Arjas and Haastrup(1996) and also to reserve techniques widely
used by practical general insurance actuaries. Section 6.7 is the chapter

conclusion.

6.1 Claim process description

Reviewing the results from chapter 3, the model is defined as a marked
Poisson process. The occurrence of a claim is modelled as a non-homogeneous
Poisson process with the corresponding development as position-dependent
marks. A claim is a pair (T, Z] where Tis the time of occurrence of the claim
and Z is the mark describing its development. The model implemented in this
chapter has a mark definition based on Arjas and Haastrup (1996) which was
expressed in formula 3.20 and is rewritten here:

Z=(S A U VX {X(v); 0<v<V)) (6.1)
where:

Sis the sex of the policyholder;

A is the age of the policyholder;

Uis the waiting time from occurrence until notification;

Vis the waiting time from notification until final settlement;

X is the final claim amount (X=X(V));

X(v) is the indemnity paid in respect of the claim up to v’ after its
notification.

The target of the model is to predict the amount and number of claims
which are due to be paid or reported after the present time x In the method
used to model these quantities, not all the information in (6.1) is used. For
instance, only the total of payments for each claim, settled or not, is used. In
the same way, the waiting time from notification until settlement Vis not used
directly in the model, but it is utilised as an indicator of whether the claim was
fully paid.

At a specific time t, the mark Z could be classified into settled, reported-
not-settled, incurred-not-reported or covered-not-incurred. In Norberg (1993) the
intensity of occurrence in each these classes is dependent on the exposure for
each class. Since the analysis is done at the present time, x it is assumed that
no information is available for t > X, meaning that at any time after x the
exposure is equal to zero. In this way the covered-not-incurred possibility does

not generate any payments or claims occurrence, and only the first three
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classifications are used. Each class of claim has the following type of
observation (superscript m stands for missing and o for observed):

Settled - (7°, S°, A°, If, V°, X9

RBNS - (I° S°, A°, U°, M X") (6.2)

IBNR - (7™ S", Am If]1\T, X7

Data augmentation is used in the model. The model is constructed as if
all covariates and occurrence times had been observed for IBNR claims as
well. In other words, as T, S and A have been observed for the IBNR claims.
Then, when implementing the model using stochastic simulation, the missing
data are sampled and used to update the parameters at each iteration.

In order to complete the description of the model, it is necessary to
define some quantities. The total number of claims is a random variable that
has a Poisson distribution with intensity as given in formula 3.18. This total
number of claims n can be split into the three categories as expressed in the
following formula:

n = pocttled 4 rbns 4 pibnr o 6.3)

n=n"+n"

Where n° = neflad + n bisand nm= nbr. In the same way the total value of

the claim reserve is an important quantity and can be expressed as follows:

R =Rmrs +=z inr
with R'br , and (6.4)
i=1
n rbns
R rons = £, m- X)'ml =X T Xiv'"r V<V

i=1
X"qT,X(v')NqTare related only to the RBNS claims, where the first is the
sum of the total value of the RBNS claims and the second is the sum of the
observed part of these claims. The way chosen to calculate the X bsis by
calculating X ~ Tand then subtracting the observed part.
In the end, these are three main quantities that are predicted by the

model: nlby, Xbr and X bns Since we will also obtain a large sample, the
predictive empirical distribution for each one of these can be found. The
graphs and analysis are presented in subsection 6.5.1.

Again, claim frequency and severity are modelled separately. As in Aijas
and Haastrup (1996) the model for the occurrence of claims takes into account

the age, sex, reporting delay and calendar time of occurrence. However, the
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part of the model related to severity changes completely. Here it is not
considered the partial payments are not considered, but rather the total value.
As an improvement from the previous approach, sex and age are now included
in the model and a parametric distribution is used.

Before describing the full model, with the distributional assumptions

and implementation technique, the data is described in the next section.

6.2 Data

The data are for dental insurance, covering only the leisure accident
claims. Claims which occurred between 1s January 1982 and 31« December
1990 and which were reported before 3rd March 1992 are in the data set. For
comparison, the analysis in Arjas and Haastrup (1996) was followed and the
present time is considered to be 31¢ of December 1987. So, only information
reported in years 1982 to 1987, inclusive, was considered, with the rest used
to check the model results.

The data set has two covariates: sex and age of the policyholder. In
contrast to the application in chapter 5, age now is a discrete variable, since it
is only recorded in full years. Ages were transposed by subtracting 16, and the
final age range is (0,1,...,66). For simplicity, ages bigger than 66 were not
considered since there was no information on exposure in these ages for some
years. A factor is defined, taking the value one for females and zero for males.

The original data set has three basic files. The first file contains the
exposure of the portfolio, which is given by the total number of policies in force
at the end of the year split by sex and age. In order to use the continuous
approach an interpolation for the years 1983 to 1987 is used, as is further
explained in section 6.3.

The second file contains all the observed partial payments, including
the date of payment and the original claim code. The way chosen to model the
severity in this chapter (see subsection 5.8) does not require the partial
payments, and they are aggregated for each claim. By checking with the third
file, each claim is categorised as settled or not settled. The settled claims with
total payment less than or equal to zero are discarded from the file.

The third file is related to the individual claim occurrence information,
and shows the dates of occurrence, reporting and settlement (if settled),
together with the covariates sex and age. In some cases the day of the

occurrence of a claim is not know and in these cases a value was sampled
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from a uniform distribution on the number of the days of the month, bounded
above by the minimum of the final of the month and the reporting date. Again,
the settled claims with no payment or negative total payment are not
considered (there were 9 claims with this characteristic).

These three files were transformed into six files to be used by the
program that implements the model. One gives the information on exposure by
sex and age for the years 1982 to 1987. Two files give the extra information
required by the severity model: the number of RBNS claims and the logarithm
of the total payment for the settled claims, both by sex and age. The rest of the
files are related to the frequency model and give the total number of claims by
sex and age, by day of occurrence and observed delay.

Time was also rewritten as explained in table 6.1, where in the calendar

time intensity the upper bound is given by L =x =2,190.

Table 6.1 - Calendar time conversion
Calendar ot
l¢January 1982 o]
31t December 1982 364
31t December 1983 729
31st December 1984 1095
31t December 1985 1460
31¢ December 1986 1825
31s December 1987 2,190
In order to illustrate the nature of the data, the summary plots are
shown in figure 6.1. Some summaries are also given in table 6.2, where the
total value of claims is 10,042,628, from 2,797 claims. In this amount there
are 617 unsettled claims with partial payments amounting to 824,146 and 9
claims that were settled without any payment were not included at all. The
average value of the logarithm of a settled claim is 7.98 and its standard
deviation is 1.02.

Table 6.2 - Statistics of the dental insurance data

Calendar Female Male Reporting

. . . . Female Male
f—eCdaUClllylw / rs(::::):lcy fre:?::icy d‘;l:;'sm severity severity
Mean 1.78E-05 1.19E-05 1.53E-05 31.45 4,186 4,243
St deviation 1.42E-06 8.170E-06 9.76E-06 62.05 1,226 1,544

These statistics, calculated over the data set used but over the settled
claims in the severity case, help the choice of the hyper-parameters for the

prior distributions. In the next section the full model is explained.
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Figure 6.1 - Summary plots of dental insurance accident data
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6.1 Distributional assumptions

In this section the distributions involved in the model are fully
explained and defined. The basis of the model is explained in Norberg (1993),
with the implementation following chapter 4 of this thesis. The construction of
the likelihood is as in Arjas and Haastrup (1996), where a piecewise function
is applied to all parameters in the model. Differently from their work,
RJIJMCMC is used to find the estimates of the parameters.

The occurrence of a claim is a function of the calendar time (i), sex (s)
and age (a) of the policyholder, and it follows a Poisson process with intensity
given by cp(i,s,a). By considering the calendar time to be independent of the
covariates sex and age, the intensity is rewritten as follows:

cp(t,s,a) = (pi(t) = (s,a); (6.5)

telo,l],se (0,1)and a e (0,1,...,66)

The weight is given by wi(t,s,a), which is defined as the number of
policies in force in each combination of t s, a Since the database only
supplies the total policyholders at the end of the year for each combination of
s, a an approximation had to be used. For tin the first year, 1982, the weight
w(t,s,a) is considered fixed for each combination of s, a In the following years
the number of policies is force was exponential interpolation over the year
before and the actual year. In summary, the total number of claims from the
portfolio is governed by the following intensity:

w(t,s,a) <pj(i) q=2(s,a). (6.6)

Males and females are considered independent and the intensities cpj(t),
92(0,a) and 92(1,0) are considered piecewise constant random variables. Now,
it is necessary to define the model for the marks Z The delay (u) is modelled
via a piecewise intensity y(u), with the accumulated probability density given
by:

(6.7)

Finally the severity model uses a parametric approach, depending only
on the sex and age of the policyholder. The logarithm of the total payment of a
claim follows a normal distribution expressed by:

Normal(p (s, a), a 9 (6.8)
where, again, the sexes are considered independent. Following the approach in
chapter 4, the variance is considered known and equal for all combinations of

sex and age. To sum up there are six unknown parameters expressed by:



(Pi(i), 92(0,a), 92(1,a), y (u), p (0, @ and p (1, a). (6.9)

All these parameters are modelled as explained in chapter 4, where
92(0,a), 92(1,0), (i (0, @ and p (1, a) are dependent on the covariate age which is
considered discrete in this case. With values for these parameters, the missing
data in the IBNR and RBNS claims can be simulated.

Using (3.19) the missing number of claims is distributed as a Poisson

distribution expressed by:

nbr ~Poisson(Why (6.10)

where Whr=& w(t, s, alcp, (tijcp2 (s, a)(l - Pu(\ -t))dt .

The times of occurrence of these claims T", together with the covariates
S7and Amare iid with density

w(t,s,atolftto2(s,a)(l-Pu(T-t)) /| Whr (6.11)

Now the results from Arjas and Haastrup (1996) are rewritten in order
to show the likelihood. Apart from the severity, all the components are similar.
The observed data are the reported claims, that can either be settled or RBNS.

So the class of mark Z that is observed are those with reporting date earlier

than the present time x In this way the process in (3.19) is fully defined by the
following formulae for the reported claims case:
wit,s,a) <ytly°2(s,a) = w(ts,a)9;(i) 92(s,a)Pulx

PufTo+U° <x)
Pu(t-t)

P u(i+U<T) = 6.12)

In the same way the missing part, which are the IBNR claims, will have
an occurrence intensity expressed by ty’t,s,a/9J"92(s,a)(l - P*x-i)). Gathering
together the missing and observed information, the total likelihood expression
(following formula (4.15) page 153 in Arjas and Haastrup (1996)) is given as:

Y\yi(Tifo2(Si,Ai)exp{-'YJELw(t,s,a)<pl(t)y 2(s,a)dt}x

i=1 s,a

ti n o nw

Ay (U°)exP{~z t 'y(u)du- u Jy(u)dujx
11 11 -1

(X°-y(S°A°)):

6.13
2c 2 ( )

exp{-

The full definition of the model is completed by the prior distributions,
and then the calculations of the complete conditional distributions can be

performed. Each of the six parameters is modelled as piecewise constant
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intensities. In this way, for each of them there is a set (.10, ». »n. - k.60, 52,
9 defining the position, level and number ofjumps.

In order to use the approach of chapter 4, the ranges t aand u have to
be restricted. Naturally t e [0, 2,190) and a e (0,1,...,66). In the delay case
there is no obvious choice and since the highest observed delay was 1,175, an
upper bound of 2,190 was chosen. From the results this limit appeared to be
reasonable.

The piecewise intensities related to 97(f), 92(0, a), 92(1,«) and 7 (w) have as
prior the Gamma distribution, with hyper-parameter values fully defined in
the next section. The prior distribution of p (0, a) and p (I, a are normally
distributed. All jump positions have as prior distributions the same
distribution as in chapter 4, which is the even ordered uniform statistics on
[0,1), where Lis 2,190 for (pj(t) and y (0 and 67 for 92(0,a), 92(1,0), p (0, a) and
p (L a.

Again, the prior distribution for « is defined to be a Poisson distribution
with rate Xexpressed by the following formula:

R/OQ=£2LA1 kskmx (6.14)
where the hyper-parameter farax is included in order to guarantee that only a
finite numbers of models are considered. Having fully defined the model, its
implementation can be explained and the description of the complete
conditional distributions and implementation technique is given in the next

section.

6.4 Description of the model

Since all parameters 97 (f), 92(0,a), 92(1,a), y (0), p (O, a) and p (1, a) are
modelled as piecewise constant functions, the implementation is similar to
that used in chapter 4. It is necessary to define the complete conditional

distributions for each set { kK, Ow /o, h, h,..., [KS\ S2,..., SK} related to each
one of the six parameters o , 0™ Or?&af and Qffs,3)

with the usual notation for k In order to simplify notation, the subscript is not
included when writing the distributions. All distributions are based in
subsection 4.2.

The number of jumps, k follows exactly the same approach as in

subsection 4.2.2. The function f (fj) is as described in (4.19) for p (0,a) and
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\x(L,a), and as in (4.20) for the other parameters and the function g(.) always
assumes the format in (4.21), which is g(sj, S+i)= Sj+i- Sj.

Subsection 4.2.1 explains the distributions related to the level and
position of jumps. The parameters related to the severity problem, p (0,a) and
p (La), follow exactly the procedures described in section 4.2.1 for the severity
case, with the necessary adaptations for the discrete case (since age is discrete
here). Lis equal to 67.

The calendar occurrence time aqi(t) has the following complete

conditional distributions for o

f\-)=ljJ expt-1" jj" tu(t,s,a)q2(s,a)dt!p(l)

s,a J
n(Sj\.)=ljlij J x (6.15)
exP{~lj-i¥Ys } ™(t,s,ato2(s,a)dt-[jY fJ w(t,s,a)y2(s,a)dt}p(s )
s,a Sj~° s,a S
where xj+4is the total number of observed or sampled claims in [s},Sj%).
As explained in subsection 6.2, the weight w(t,s,a) was assumed to be
constant for tin the year 1982, but had to be exponentially interpolated for ¢

in years 1983 to 1987. Since weight is an exponential function of t the

expression n(sj\) did not have an analytical solution in the calendar time
intensity case. So, an approximation was used, based on the idea in Arjas and
Gasbarra (1994) which was explained in subsection 4.2.1. The approach is
that of dividing the interval (S, s,;-: into intervals with the same weight:

w(t',s,a) = constant for t' e [integer(t'), integer(t')+l)

Because of this split, the update for the position of a jump in calendar
occurrence time, ¢ (f), is the most time demanding among all parameters. Now

the (sex, age) intensity of occurrence of claims qz(0,a) and (=(1l, @) have similar

complete conditional distributions (expressed here for male o/o >but being of

the same form for female op dJ):

ni\)=00 expi-li Yi X wrtrtfrojftidt} p(L)

SfiSCSj+,
xp(Sj) (6.16)

exp{~lj-i Y D wt>s>0)<?jit)dt-1 Y b wlt.sfltojftidt}

§_,<S<S8J Sj<S<SJt,
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Finally, the delay intensity y(u) has the following complete conditional

distributions for oj*;:
nfj 1=l exP{-liWu(Sj, sj+} p (1 (6.17)

nfa|-Mj-i’lj"  exp{-li jWu(Sj.jyS]) - GWu(Sj, sj+1)}p(S))

Yj(d(u') -sj-i) >/
B

S..l,, u.< s.,

d(LLY S., u1>s

J
wi’  Sp1< UI<S)

With all complete conditional distributions, the final algorithm is given

by the scheme in figure 6.2. The prior parameter values and model constants

necessary to implement the model are given in the next section.

Figure 6.2 - Algorithm for the dental insurance data

Initialise the vector of parameters for all six cases,
forj=1to N*

Sample Wibr

Sample nbr

Sample Ttm Sm, AMfor i=1,..., nhr

Calculate # brand Rrrs

Update O and kff using the scheme in figure 4.2

Update Ojola) and k{0 using the scheme in figure 4.2
Update©;jjaJ and k{l using the scheme in figure 4.2
Update Of* and kff using the scheme in figure 4.2
Update Qfio.qj and K/Og) usn§ the scheme in figure 4.2

Update Ofilaj and k {] ¢ using the scheme in figure 4.2

Next j

6.5 Implementation of the model

In this section, the full definition of the prior distributions is given. The

prior Poisson rate for the number of jumps k was chosen as X=3, and,
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controlling the number ofjumps, kmaxwas chosen to be 30. This upper bound
was not reached during the simulations of any of the parameters. The prior
distribution for the position and level parameters for each of the parameters

was chosen as expressed in the table 6.3:

Table 6.3 - Values of the hyper-parameters on the prior distributions

Position Level
12(t) U20,2,190) Gamma (2,0.2527)
2(0,a) U2{0,1,...,606} Gamma (2,126600)
v2(l,a) U2{0,1,...,66} Gamma (2,126600)
y (W) U20,2,190) Gamma (2,421)
F (0, a) U2{0,1,...,66} Normal (8,1.02)
£ U, « U2{0,1,...,66) Normal (8,1.02)

Where again U2 is the even ordered uniform distribution over the
respective interval. For the severity case, the standard deviation was fixed as
a=1.25 for both cases. This value was fixed after examining the data. The
initial points were also defined, following the same approach as in chapter 5.

When implementing the model it was observed that the multiplicative
structure of the intensity of occurrence cpgj(f) qz(s,a) was a problem when using
a piecewise constant structure without the number of groups being pre-
defined. Allowing the groups to change created a problem of convergence,
since the product converges, but not each intensity separately.

In order to solve this problem the following option was proposed. First
the intensity cpj(i) would be updated, with (=(s,a) fixed. Then, after 5,000
updates cpj() would be fixed at its posterior mean and qz(s,a) updated. After
5,000 updates the same procedure would be used and cpj{) would be updated
while 92(5,0) was kept fixed. The choice for the number of updates as 5,000
was completely arbitrary, but aimed to be large enough to achieve
convergence, but not that large given the time constraint.

It was a quite demanding process since each run j in figure 6.2 would
take 3 minutes to be completed. After some replication of this procedure it was
observed that cpjf) was not indicating any group, meaning that this intensity
was constant over the calendar time. The histogram of the sample of number

ofjumps is shown in figure 6.3:
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Figure 6.3 - cp’t) histogram for the number ofjumps

Reaffirming the result obtained, the analysis in Arjas and Haastrup
(1996) did not shown any clear influence of the calendar time intensity. So it
was chosen to keep this intensity fixed at the value one and perform the model
with the intensity of occurrence dependent only on sex and age. Thus:

(i)=1, t e [0,L), zero otherwise.

The final values for 92(0,a), qz(l,a), y (W, p (O, @ and p (I, a) in the
update with calendar time intensity varying were used as initial values for the
new modelling with cpjf) constant. The simulation was updated for 15,000
steps on a Sparc ultra 1 140MHz wdth 64Mb memory. For each model, one
step, j. in the algorithm in figure 4.8 took around three minutes, which is
somewhat larger when compared to the previous application in chapter 5.

The acceptance rate for the birth and death moves ((b) and (¢ in

subsection 4.2.2) are shown in table 6.4.

Table 6.4 - Type of moves and acceptance levels

Kept Birth Death

Move(a) Move(b) Accepted  Rate move(c) Accepted  Rate
02(0,a) 3,855 6,633 53 0.80% 4,512 53 1.17%
V2il,a) 3,538 5,896 196 3.32% 5,566 195 3.50%
Y (W) 6,220 2,084 355 17.03% 6,696 354 5.29%
p (0, a) 10,779 5,930 253 4.27% 1,709 256 14.98%
10,538 5,974 312 5.22% 1,512 317 20.97%

M1. «)

The rate of acceptance was not as high as would be expected and, in
fact, it was very low in some cases. This is not a good result, but can be
explained by one interesting feature in this sample. In most cases, including
the ones with worst acceptance performance, the absolute number of accepted
runs for both (b) and (c) moves are very close together. This could signify that

convergence had already been achieved in the initial values derived from the
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previous model with cpj(i) varying, and in this way that no change in the
number ofjumps in each parameter was actually necessary.

After obtaining the sample, we may perform the analysis. From the
15,000 samples, the initial 5,000 were considered as burn-in iterations
(M=5,000) and discarded. Convergence was assessed by the visual evidence in
the trace plots.

In the next section, the analysis of the sample is performed. It should
be remembered that the main interest is the smoothness property of the model
rather than the definition of the groups for each parameter. This is the reason
why the analysis performed in the next subsections is different from that in

chapter 5.

6.5.1 IBNR and RBNS analysis

As stated previously before, the main interest of this analysis is the

outstanding quantities for claims which occurred in f e (0,2,190). They are

denoted by nbvy, Rbrand R'bns which are, respectively, the number of IBNR
claims, the reserve for IBNR claims and reserve for RBNS claims. Their
empirical predictive distributions are in figure 6.4 and they are estimated from
the obtained sample, excluding the burn-in runs. For comparison the
observed values derived from the complete data base are also included in each

graph as a line.
Figure 6.4 - Outstanding quantities empirical predictive distributions

(a) Number of IBNR (b) IBNR reserve

0.00 J

1000 o 2000 3000
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(c) RBNS reserve

From this sample, some summaries are also presented in table 6.5,
together with the observed values. All the currency values are shown in

thousand.

Table 6.5 - Summaries of the sample for IBNR and RBNS claims

nibnr Ribmr Rrbns
Mean 68.83 499.09 1,066.78
St. deviation 9.42 180.62 1,099.22
90% confidence interval (54,84) (284.95,816.11) (-247.83,3,064.40)
Actual observed values
68 246.40 1,910.64

in ¢ e (2,190,3,714)

These values are the amounts at the present time, defining the total
liability with reference to the period t e (0,2,190). The comparison with the
values in the data set is only an indicator of the development, since all the
claims that were not notified or fully paid before 3/3/ 1992, or i=3,714, are not
considered. nyu > 3,714 - 2,190) is very low and there should be very few
IBNR claims in i > 3,714 related to the analysed period. In this way it is
supposed that by i=3,714 all IBNR claims for the period analysed would have
been reported.

The empirical posterior distribution seems to model particularly well the
number of IBNR claims, seeming a Poisson shaped distribution. This result is
based on the frequency part of the model. The posterior results for the reserve
amounts of IBNR and RBNS do not seem to predict the data so well. The
observed amount of IBNR is a low quantile of the posterior distribution and
the RBNS are in a high quantile.

This behaviour for the predicted reserve amount can be explained by
the unusual claim value average observed for IBNR and RBNS: 3,623 and
7,519, compared to the 4,229 observed for settled claims in t <2,190. The
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longest settlement delay observed in the data set is 3,494 days. In this way,
while there are still some payments expected to occur for IBNR claims, that
will increase the average (10 claims have not been settled by i=3,714), the
RBNS value is quite high (with still 182 claims to be settled by i=3,714). The
fact that the delay of payment is not taken into consideration on our analysis
did not improve our model, since the data shows a positive correlation
between total value and settlement delay.

Our model also proved to be quite sensitive to the choice of the variance
a 2 The chosen value was a =1.25 and to show its sensitivity some scenarios
were run for lower (1.02) and higher (2) values. The results are as follow in

table 6.6:

Table 6.6 - Different scenarios for IBNR and RBNS claims

a Ribr JYbrs
Mean 1.02 384 149
2 1,720 10,729
St. deviation 1.02 104 601
2 1,974 15,626
90% confidence interval 1.02 (246, 570) (-634, 1,236)
2 (544, 4,135) (2,364, 27,422)

These results show that not much improvement can be obtained by
changing the value of o, but that the posterior distribution is quite sensitive to
its choice.

In the next three subsections the simulation output for each of the

parameters is analysed. Traces and empirical posterior plots are shown.

6.5.2 Age, sex intensity of occurrence

The age effect is analysed for both the male and female cases. Good
convergence is observed for both parameters, apart from the low acceptance
level for the birth and death moves.

Female intensity;

Convergence (traces in figure 6.5):

Number of jumps (plot (1)) - Not a good mixing, varying between 2 and 3
jumps.

Position of jumps (plots (g to (k) - s4and Ss are not frequent enough to
draw any conclusion. S3, S, and Sj converge to values around 40, 30 and 14.
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Figure 6.5 - Female occurrence trace plots
(a) (b)
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Level parameters (plots (a) to (f)) - Uand 5 are not frequent enough to
draw any conclusion. 3, », » and .. converge to values around 1*10'4, 1.510"5
2.4*10"5and 1.5*10'S.

Analysis of empirical posterior distributions (Figure 6.6):

Number of jumps - The values 2 and 3 have the highest probability,
with a very small difference between them.

Position of jumps - The graph indicates three well-defined modes (with
approximate values 14, 30, 45). The highest value of 45 has the lowest
probability.

Level parameters - The overall graph indicates three main areas of
higher density. The first one, related to ;3. has a value smaller than 0.00001,
then band .. are in the same region around 0.000015. . is around 0.000025.

Figure 6.6 - Female intensity empirical posterior distributions

(a) Number ofjumps

Junp

(b) Position of jumps (c) level parameters
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Male intensity:

Convergence (traces in figure 6.7):

Number of jumps (plot (h)) - Not a good mixing, varying in between 2
and 3 jumps.

Position of jumps (plots (e) to (g) - S3 > 35 and 40 > S > 35. sj only
assumes values 6 and 7 with the first as the most frequent one.

Level parameters (plots (a) to (d)) - 5, h, h and lo converges to values

around 1.0*10 5 1.0*10 5 2.2* 10’5 and 3.5*10 5 Both & and L go to the same

region.



Analysis of empirical posterior distributions (Figure 6.8):

Number of jumps - The value 2 has the highest probability.

Position of jumps - The graph indicates two well-defined modes
(approximated values of 6, 38).

Level parameters - The overall graph indicates three main areas of
higher density. The first one, related to h, has a range around 0.00001, then h
is around 0.00002 and his around 0.000035.

Figure 6.8 - Male intensity empirical posterior distributions

(a) Number of jumps

Jup

(b) Position of jumps (c) level parameters

6.5.3 Intensity of delay

The updates of the intensity of delay had the best acceptance level
among the parameters in this model, although the structure of its observed
distribution (see figure 6.1) is closer to a polynomial than a piecewise constant

function. This result is reaffirmed by the results for the number, position and
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level parameters. The number of jumps k has mode around 7, while in the
position and level parameters there is only one very high posterior mode.

The number of jumps goes up to a value of 16, but only the traces of
the first to the eighth jump is plotted. The ones which are not included in here
are either without an obvious convergence, either with very few observations.

Convergence (traces in figure 6.9):

Number of jumps (plot (1)) - A good mixing, but no obvious convergence.
This is the highest range of values, which is from 6 to 16.

Position of jumps (plots () to (q) - ss and Sy do not have any
convergence. The position ofjumps S6, ss, S4and S3 have some blocks, with the
region with highest probability localised in (200,300), (70,80), (35,40) and 17
respectively. S and sj have the highest convergence (values (7,8) and (4,5)
respectively).

Level parameters (plots (@) to (i)) - Is I and Udo no have an obvious
convergence. Besides o that converges to values in (0.01, 0.02) all other
intensities Is U h, F and Upresent some blocks. The most probable values for
these intensities are respectively (<0.01), 0.01, 0.03, 0.05 and 0.1 showing a
tendency of decreasing the value with the order of the level. In a way it proves
that the level parameters decreases with w

Analysis of empirical posterior distributions (Figure 6.10):

Number of jumps - The values around 9 are the most probable, but
there is no obvious choice for the posterior number ofjumps.

Position of jumps - The graph only shows two obvious choices for the
position ofjumps: values around 7 and then around 300.

Level parameters - The empirical posterior density shows a decreasing

behaviour over u with only one clear mode in values smaller than o.1.
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Figure 6.10 - Delay intensity empirical posterior distributions

(a) Number of jumps

Jup

(b) Position of jumps (c) level parameters

time

6.5.4 Age, sex parameter of severity

The severity of claim in the model presented here only depends on the
sex and age of the policyholder and those are the parameters analysed in this
subsection. The convergence is fairly good for both male and female mean
parameters, showing for each two modes very close together. In contrast, the
position parameter does not converge to any obvious value and some reasons
for this behaviour will be discussed later in chapter 7. Generally speaking, the
age effect does not seem to vary by sex covariate, as is observed from the
similar results for both sets of parameter.

More specifically, male and female mean parameters show a very
similar behaviour. Their posterior distribution is shown in figure 6.11 over the
interval (6, 9). It is observed that female (dotted line) has a higher density on

the higher mode around 8, while male (full line) has a more obvious second
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peak. These results justify the higher density observed for one jump in the

male case than in the female case.

Figure 6.11 - Female and male mean empirical posterior distributions

Female mean:

Convergence (traces in figure 6.12):

Number of jumps (plot (j)) - Good mixing, with higher probability values
atoand 1.

Position of jumps (plots (f) to (i)) - s*and S3 are not frequent enough to
draw any conclusion. S does not show any obvious convergence, except the
fact of being bigger than 16. sj has no convergence either, mixing over the
whole range of the jump position. There is a higher concentration on values
below 16.

Level parameters (plots (a) to (¢)) - U k and b are not frequent enough
to draw any conclusion, h converges to values around 8 and lois more sparse
but still with some convergence to values 8 and below.

Analysis of empirical posterior distributions (Figure 6.13):

Number of jumps - Values 0 and 1 have the highest probability.

Position of jumps - The graph points to two regions of higher density.
The first one is around 15 and the second one bigger than 60.

Level parameters - There is only one region with higher density (values

around 8), where two very close modes are observed.
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Figure 6.12 - Female severity trace plots
(a) (b)
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Figure 6.13 - Female mean empirical posterior distributions

(a) Number of jumps

(b) Position of jumps (c) level parameters

Male mean:

Convergence (tracer, in figure 6.14):

Number of jumps (plot (j)) - Good mixing, with higher probability values
atoand 1.

Position of jumps (plots (f) to (i) - and S3 are not frequent enough to
draw any conclusion. S does not show any obvious convergence, except the
fact of being bigger than 16. sj seems to converge to values below 16, but still
has a high density over the whole range of the jump position.

Level parameters (plots (a) to (e)) - Uand ;3 are not frequent enough to
draw any conclusion. ¢ has few values converging to values around 10 and h

to values around 8. lois highly concentrated on values between 7 and 8.
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Figure 6.15 - Male mean empirical posterior distributions

(a) Number of jumps

(b) Position of jumps (c) level parameters

Analysis of empirical posterior distributions (Figure 6.15):

Number of jumps - Value 1has the highest probability.

Position of jumps - The graph points to two regions of higher density.

The first one is around 15 and the second one bigger than 40.

Level parameters - There are two modes very close together: one around

7.5 and the other one around 8.

6.6 Results comparison

Here the results presented in the previous section are compared to two

methodologies of claims reserving. Firstly the results from Arjas and Haastrup

(1996) are presented, which have a similar approach to the previous sections.

Secondly some more commonly used techniques are shown.

Generally speaking the results are more similar on the number of IBNR

claims analysis than on the amount of the reserve. This behaviour can be
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explained by the inherent higher uncertainty involved in the projection of
claim amounts than on their reporting. After reporting a claim its settlement

process is just starting.

6.6.1 Comparison with Arjas and Haastrup (1996)

The frequency of claims component of the model used in this thesis is
very similar to the one in Arjas and Haastrup (1996), and so are the results.
The observed value of IBNS claims is in the 39% quantile of the posterior
distribution for Arjas and Haastrup (1996), and in 47% on the model
presented here.

Returning to the individual parameter analysis it is possible to observe
that again the intensity of reporting delay has the same behaviour: a high
concentration of small values, being skewed to the left. In the age, sex
occurrence parameters it is observed that by calculating the intensity level
parameter for each age the posterior average per age is very similar for both
models. Now, the model adopted here has the advantage of defining groups of

ages. The posterior average is shown in table 16 below.

Figure 6.16 - Posterior mean of intensity of claim occurrence by sex and age
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In the severity part of the model, the approach in here is completely
different from the one in Arjas and Haastrup (1996). Here, age, sex and
parametrical approach are used, while in Arjas and Haastrup (1996) a non-
parametrical approach used the information about whther the payment was
zero or not and if it was related to a settlement or not. The choice of modelling
the payment based on age and sex does not seem to have enhanced the

analysis, which could be improved by using both the settlement delay and the
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claim type information. A further discussion on this point is presented in the
conclusion of this chapter.

The projection from Arjas and Haastrup (1996) is shown in table 6.7 for
both the reserves and number of IBNR claims. Values are in thousands and
the main comparison factor is the quantile of the predictive distribution from

Arjas and Haastrup (1996) and the model in this thesis.

Table 6.7 - Summaries of the projection in Arjas and Haastrup (1996)

Mean - 337 2090
90% confidence interval - (229,468) (1780,2410)
Observed quantile by Arjas
39% 9% 18%
and Haastrup (1996)
Observed quantile by
47% 2% 83%

proposed model

Also, the model in this thesis had the observations in a higher quantile
than in Arjas and Haastrup (1996). It also has a wider confidence interval,
showing a greater variability of the posterior distribution.

The benefit of using the approach proposed in this thesis is the
clarification of the level of mixture in the parameter level. Now it is possible to
analyse for each parameter separately how many piecewise constant values
are necessary for each of them, which seems an important feature on the age,
sex intensity of occurrence. Again, the use of a higher number of samples
(15000 compared with 1500 in Arjas and Haastrup (1996)) is also more
reassuring, since it is known how important it is to have a large sample in

order to analyse the results in a MCMC implementation.

6.6.2 Comparison with traditional methods

In order to have a wider idea of how the model presented in this work
enhances the usual prediction of claims reserve, a comparison to two
traditional reserving methods is shown in this section. The chain ladder and
the Bomhuetter-Ferguson (Bomhuetter and Ferguson (1972)) methods are
used to predict the total claim reserve and also the unreported number of
claims (both methods can be found in Hart, Buchanan and Howe (1996)). The
chosen method of performing the methods was to calculate the factors based

on the theory and then apply these to calculate the reserves. In this process a
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practical actuary usually selects the factor values instead of using the
theoretical value, but here judgement is only used for the tail factor, if
necessary.

The Bornhuetter-Ferguson method needs an exposure per accident year
and in this example the measure available is the number of policies in force at
the end of the year. These values are shown in figure 6.17, together with the

development of the number of reported claims.

Figure 6.17 - Triangle of number of claims

Accident year 1982 1983 1984 1985 1986 1987
Exposure 15,511 17,906 22,006 28,586 34,866 39,596
Acc. Year 1 2 3 4 5 6

1982 254 277 278 279 279 279

1983 264 288 289 290 290

1984 413 449 451 451

1985 447 498 502

1986 542 600

1987 675

Factors 1.100 1.005 1.002 1.000 1.000

Factors are calculated as in the chain ladder model, which does not
allow for the tail factor. In the frequency data no tail factor is needed, since
the historical development shows that all claims had been reported by the
third year. This is not true for the development of the claims payment which is

shown below in figure 6.18. Values are in thousands.

Figure 6.18 - Triangle of paid claims

Acc. Year 1 2 3 4 ) 6
1982 555 828 857 888 912 917
1983 722 1,117 1,140 1,139 1,139
1984 1,199 1,701 1,767 1,802
1985 1,253 1,869 1,947
1986 1,561 2,191
1987 2,047

Tail
Factors 1.456 1.036 1.017 1.012 1.005 ?

It is possible to observe that the history of claims points to a longer

development than only five years, but since no data is available for older years
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neither the claim ladder nor the Bornhuetter-Ferguson methods give us a way
to calculate its value via the data. So the choice will be fully based on the
judgement of the analyst. In order to show how the result changes with the

tail selected, the table 6.8 below shows the Claims reserve for various choices.

Table 6.8 - Summaries of the projection in traditional methods

n’ IBNR Value of Total Reserve (IBNR + RBNS)
claims (a) 1.020 (b) 1.014 (c) 1.216 (d) 1.089 (e) 1.122
Chain ladder 78 1,637 1,565 3,880 2,430 2,800
Bornhuetter-
71 1,160 1,105 2,591 1,725 1,964
Ferguson

The number of IBNR claims seems to be projected correctly, but the
chain ladder method seems to slightly overestimate its value. In the reserve
part the tail in (a) was chosen by exponentially smoothing the historical
factors and applying some rounding, (b) and (¢) are based on calculating back
the tail that gives us the mean and 95% quantile as estimated by the model
presented in this work, (d and (e) are the respective for the Arjas and
Haastrup (1996) analysis.

Recall that the observed payments for this reserve in the database is
2,157, and since this amount is still expected to increase, the choice in (a),
which is the one that is the considered as the most probable analyst’s choice,
underestimates the final value. This also happens for (b) and for (d) and (e) on
the Bornhuetter-Ferguson method, (c¢) is the only one that does not
underestimate the value of the reserve, but its tail factor seems quite high and
probably would not be selected by an analyst who only has the historical data
from which to make a decision.

Apart from the probable low value of the reserve in this example, when
using a traditional method there is no split into IBNR and RBNS reserves,

which is a disadvantage for the analysis.

6.7 Chapter conclusion

In this chapter the smoothing property of the model presented in
chapter 4 was explored. The micro approach uses individual information and
continuous time, modelling the claim development. It is shown how the idea

from Norberg (1993,1999) and used in Arjas and Haastrup (1996) can be

136



applied using RIMCMC. This technique gave a better understanding of the
mixing process in the parameter level.

In the severity part of the model a modification from Arjas and
Haastrup (1996) was also proposed, using a parametrical distribution
dependent on age and sex. This is a nice modification since it imposes a
structure that facilitates the prediction and a likely distributional behaviour.
In order to predict the reserves better it would be interesting to use not only
the parametrical approach, but also the dependency on the size of payment,
which was shown to be quite influential in this data set, and also the
settlement delay. The analysis for the settlement delay is shown is shown in

figure 6.19 below.
Figure 6.19 - Claim average by settlement delay

8000

Figure 6.20 - Value of settled claim per sex

On the total value of settled claim the graph above in figure 6.20 shows
the data histogram by sex. It is observed that no differentiation is observed by

sex, confirming what has already been observed on the age, sex factor.
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It is expected that the observed difference in settlement value is due to
the type of claim: low values (for consultations) and high values (accidents).
The problem with an approach bringing any of those characteristics into the
model is the big computational burden that would be required.

The next chapter is the conclusion of the thesis. A summary of the work

together with some proposals for new research is presented.
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Chapter 7

Conclusion

In this final chapter an overview of the work in this thesis is presented.
Some comments on the model limitations and future research issues are

included in the following section.

7.1 Final remarks

In this thesis, two new applications of micro models were presented. In
both risk assessment problems a process based approach, looking at
individual information underlying behaviour, is used. It was observed that one
of the nicest features of this type of model is that now there is no need to look
for a model that simplifies the data before any analysis, as is the usual
approach.

The implementation of such a model was possible by using the
Bayesian philosophy and a MCMC class of simulation technique. RIMCMC
methodology was the core of the applications in this work. To allow changes of
the dimensionality of the parameter set is not a simple issue and RIMCMC
extends the MCMC in a very straightforward way. MCMC simulation class has
been proven to be quite powerful and via the results presented in here, so has
RJMCMC.

Most of the ROIMCMC problems observed in the applications presented
here are related to practical issues. The fact that ROMCMC is a new technique
means that there have not been enough studies of the convergence, which is a
big concern for simulation techniques. Future research in this area is even

more necessary since the usual MCMC convergence tests are not directly
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applicable given that the interpretation of the parameter can change in every
simulation. It is expected that the analysis of the level and position of jump
parameters conditional on the number ofjumps is the reasonable one.

As far as the results are concerned, most of the severity analysis had a
worse result if compared to the frequency cases. It is understood that this is
due to the fixing of the variance of the data distribution. This is a very limiting
assumption, chosen due to the large extra computational burden when
attaching a distribution to this parameter. In order to enhance the severity
model, it is really desirable to use a stochastic variance instead of a fixed
amount. It is not an easy question since on one hand it would probably bring
some more uncertainty to the mean parameter if only one stochastic variance
was defined. On another hand, choosing a stochastic variance that would also
vary per group would increase enormously the computational burden.

It would also be interesting to check how much extra computational
time is needed by including the Gibbs Sampling chain in the implementation.
It is understood that this extra step is more reassuring for the results, than an
ordinary ROIMCMC chain, and was used, for instance, in Green (1995). But
from another point of view it may considerably increase the computational
burden.

An area where further research is necessary is how to choose more
formally the groups. The definition of the best number of groups, together with
the respective premium and variability is still an open question. How to decide
on the optimal grouping for the premium, which is a function of separate
analyses for the frequency and severity is not clear.

In chapter 6, the application of claims reserving could be enhanced for
the severity analysis by using a bimodal distribution (or a mixture over claim
values). It was also observed that the claim size is dependent on the
settlement delay.

Also in the claims reserving model, it was observed that the
multiplicative structure for the frequency of claim (calendar versus age, sex
effect) could cause convergence problems. The choice of fixing one set of
parameters and updating the other drastically increased the computational
burden involved.

Although the models proposed in this work have been shown to be more
adequate than some traditional analyses (the aggregation using age as discrete
in chapter 5 and traditional reserving methods in chapter 6) it is not expected

that the models presented here will be widely used on an everyday basis.
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Among the limitations of applying Bayesian theory in practice already cited in
chapter 3, the implementation time and the lack of portability are most likely
to affect this model.

After applying these models based on individual data, when
assumptions are made directly in the process itself rather than on the
aggregated data, it is obvious that a great amount of time is needed for their
implementation. But it was also clear that this approach does enhance the
risk assessment process. It is expected that as the implementation time

decreases, thesis class of models may became more widely used.

141



References and Bibliography

(1986) Special issue on credibility theory; Insurance Abstract and
Reviews vol. 2, Feb. 1986, n° 3.
(1998) WinBUGS Examples; MRC Biostatistcs Unit Cambridge.
(1998) WinBUGS Manual; MRC Biostatistcs Unit Cambridge.

Albrecht (1985) An evolutionary credibility model for claim numbers; Astin
Bulletin, vol. 15, n°l.

Arjas, E. and Gasbarra, D. (1994) Nonparametric Bayesian inference from
right censored survival data, using the Gibbs sampler. Statistica Sinica
4, pp 505-524.

Arjas, E. and Haastrup, S. (1996) Claims reserving in continuous time; a
nonparametric Bayesian Approach. ASTIN Bull. Vol 26, no.2, pp 139-
164.

Bailey, A (1950) Credibility procedures, Laplace’s generalisation of Bayes’ rule
and the combination of collateral knowledge with observed data;
Proceedings of the Casualty Actuarial Society, vol 37.

Best, N.G., Gilks, W.R. and Tan, K.K.C. (1994) Adaptive Rejection Metropolis
Sampling within Gibbs Sampling, Internal report.

Best,N., Spiegelhalter,D. and Thomas,A. (1998) WinBUGS User Manual
version 1.1.1

Bomhuetter, R. and Ferguson, R. (1972), The actuary and IBNR, Proceedings
of the Casualty Actuarial Society, Vol. LIX, Chicago.

Boskov, M. and Verrall, RJ. (1994) Premium rating by geographic area using
spatial models. ASTIN Bull. Vol 24, no. 1, pp 134-143.

Buhlmann, H. (1967) Experience rating and credibility; Astin Bulletin, vol 4.

Buhlmann, H. and Straub (1970) Credibility for loss ratios; Bulletin of the
Association of Swiss Actuaries, vol. 70.

Buhlmann, H. and Jewell (1987) Hierarchical credibility revisited; Bulletin of
the Association of Swiss Actuaries.

Carlin, B.P. (1992) A simple Monte Carlo approach to Bayesian graduation;
Transactions of Society of Actuaries, vol XLIV, pp 55-76.

142



Chib, S. and Greenberg, E. (1994) Understanding the Metropolis-Hastings
Algorithm. University Report.

Chrissi, D. (1997) Claims reserving under a Bayesian approach using BUGS;
Master dissertation; City University: London.

Dannenburg, D. (1993) Some results on the estimation of the credibility factor
in the classical Bihlmann model; XXIV Astin Colloquium.

DeGroot, M.H. (1986) Probability and statistics: second edition; Addison-
Wesley publishing company: USA.

Dellaportas, P. and Ntzoufras, I (1997) Bayesian Prediction of Outstanding
Claims. Athens University of Economics and Business. University
Report.

Dellaportas, P., Karlis, D. and Xekalaki, E. (1997) Bayesian Prediction of
Outstanding Claims. Athens University of Economics and Business.
Working paper.

Denison, D. G. T., Mallick, B. K and Smith, A. F. M. (1998) Automatic
Bayesian curve fitting. J.R.Statistic Society B, 60, Part 2, 333-350
Gamerman, D and Migon, H. (1993) Inferencia estatistica: uma abordagem
integrada; Mathematics Institute, Federal University of Rio de Janeiro -

UFRJ.

Gamerman, D. (1997) Markov chain Monte Carlo: stochastic simulation for
Bayesian inference. London: Chapman & Hall.

Gelfand, A.E. and Smith, A.F.M. (1990) Sampling-based approaches to
calculating marginal densities. Journal American Statistical Society B,
55, 72-3.

Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images. L.LE.E.E. Transactions on
Pattern Analysis and Machine Intelligence, 6, 721-41.

Gilks, W.R., Richardson, S. and Spiegelhalter,D. J. (1996) Practical Markov
Chain Monte Carlo. London: Chapman & Hall.

Goovaerts, M.J and Hoogstad, W.J. (1987) Credibility theory; Survej-'s of
Actuarial Studies, n°® 4, Nationale-Nederlanden N.V.

Goovaerts, M.J, Kaas, R, Van Heerwaarden, A.E. and Bauwelinckx, T. (1990)
Effective actuarial methods; Elsevier Science Publishing Company,
Holland.

Green, P. J. (1995) Reversible jump MCMC computation and Bayesian model
determination. Biometrika, 82, 711-732.

143



Green, P. J. and Richardson, S. (1997) On Bayesian analysis of mixtures with
an unknown number of components. J.R.Statistic Society B, 59, no.4,
pp 000-000.

Haastrup, S. (1997) Some fully Bayesian micro models for claims reserving,
PhD thesis, University of Copenhagen.

Haastrup, S. (1999) Maximum likelihood estimation in a marked point process
with applications to non-life insurance. Internal Report.

Haberman, S. (1996) Landmarks in the history of actuarial science (up to
1919) ; Research report, City University: London /UK.

Hachemeister (1975) Credibility for regression models with application to
trend; Credibility: theory and applications, Proceedings of the Berkeley
Actuarial Research Conference on credibility, Academic Press.

Hart, Buchanan and Howe (1996), Actuarial Practice of General Insurance.
Institute of Actuaries of Australia, Sydney/Australia.

Hastings, W. K. (1970) Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, vol 57, pp 97-109.

Jewell, W. S. (1974) Credible means are exact Bayesian for exponential
families; Astin Bulletin,vol.8, n°1.

Jewell, W. S. (1975) The use of collateral data in credibility theory: a
hierarchical model; Giornale delllstituto Italiano degli Atuari, vol 38.

Jewell, W. S. (1976) A survey of credibility theory; Operations Research
Center, Research Report n° 76 - 3, Berkeley.

Jewell, W. S. (1989) Predicting IBNYR events and delays: I, Continuous time.
Astin Bulletin, vol 19, 25-56.

Jewell, W. S. (1990) Predicting IBNYR events and delays: II, Discrete time.
Astin Bulletin, vol 20, 93-111.

Jong and Zehnwirth (1983) Credibility theory and the Kalman filter;
Insurance: Mathematics and Economics, vol 2.

Kimeldorf, G.S. and Jones, D.A. (1967) Bayesian graduation; Transactions of
Society of Actuaries, vol XIX, pp 66.

Kling, B (1993) A note on iterative non-linear regression in credibility; XXIV
Astin Colloquium.

Klugman, S. A. (1992) Bayesian statistics in actuarial science with emphasis
on credibility theory; Boston: Kluwer.

Kouyoumoutzis, K (1998) Monitoring mortality over time; Master dissertation;

City University: London.

144



Kremer (1982) Exponential smoothing and credibility theory; Insurance:
Mathematics and Economics, vol 1, n°® 3.

Ledolter, J. , Klugman, S. and Lee, C.S. (1990) Credibility models with time-
varing trend components, Astin Bulletin, vol 21, n° 1

Lemaire, J. (1977) Selection procedures of regression analysis applied to
automobile insurance. Bullein of the Association of Swiss Actuaries, vol
77, no. 2, pp 143-160.

Liu,Y.-H, Makov, U.E. and Smith, A.F.M. (1996) Bayesian methods in actuarial
science. The Statistician, 45, no.4, pp 503-515.

London, D. (1985) Graduation: the revision of estimates; ACTEX Publications:
USA.

Longley-Cook (1962) An introduction to credibility theory; Proceedings of the
Casualty Actuarial Society, vol 49.

Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H. and Teller, E.
(1953) Equations of state calculations by fast computing machines.
J.Chem.Phys., vol 21, 1087-1091.

Mowbray, A. (1914) How extensive a payroll exposure is necessary to give a
dependable pure premium?; Proceedings of the Casualty Actuarial
Society, 1, pp 24-30.

Norberg, R (1992) Linear estimation and credibility in continuous time. Astin
Bulletin, vol 22, 149-165.

Norberg, R (1993) Prediction of outstanding liabilities in non-life insurance.
Astin Bulletin, vol 23, n° 1, 95-115.

Norberg, R (1999) Prediction of outstanding claims II: Model variations and
extensions. Astin Bulletin, vol 29, n° 1, 5-25.

Pereira, F.C. (1998) Teoria da credibilidade: uma abordagem integrada.
Caderno tese. Funenseg: Rio de Janeiro/BR.

Pereira, F.C. and Verrall, R.J. (1998) A Markov chain Monte Carlo approach to
grouping premium rating factors, (to appear) .

Pereira, F.C. (1999) Practical “Modern” Bayesian Statistics in Actuarial
Science. Proceedings of 1999 GIRO Convention. Brighton /UK.

Philips, D.B. and Smith, A.F.M. (1996) Bayesian model comparison via jump
diffusions. In Practical MCMC (eds W.R. Gilks, S. Richardson and D.J.
Spiegelhalter) , ch 13, pp. 215-239. London: Chapman and Hall.

Scollnik, D.P.M. (1996) An introduction to Markov chain Monte Carlo methods
and their actuarial applications. Proceedings of the Casualty Actuarial

Society, vol LXXXIII, n°® 138.

145



Sundt (1982) Invariantly recursive credibility estimation; Insurance:
Mathematics and Economics, vol 1, n° 3.

Sundt (1983) Finite credibility formulae in evolutionary models; Scandinavian
Actuarial Journal, n°2

Sundt (1987) Credibility estimators with geometric weights; XX Astin
Colloquium Scheveningen.

Taylor, G.C. (1989) Use of spline functions for premium rating by geographic
area. Astin Bulletin, vol 19, n°® 1, pp 91-122.

Taylor, G.C. and Ashe, F.R. (1983) Second moments of estimates of
outstanding claims. Journal of Econometrics, vol 23, pp 37-61.

Tierne, L. (1994) Markov chain for exporing posterior distributions (with
discussions) Annals of Statistics, Vol 22, no. 4, 1701-1762.

Verrall, R.J. (1990) Bayes and empirical Bayes estimation for the chain ladder
model. Astin Bulletin, vol 20, n° 2, 217-243.

Verrall, RJ. and Yakoubov, Y. (1999) A fuzzy approach to grouping by
policyholder age in General insurance. Journal of Actuarial Practice, vol
7, pp 181-203.

Waters, H.R. (1987) Special note: an introduction to credibility theory;
Institute of Actuaries and Faculty of Actuaries.

Whitney, A. (1918) The theory of experience rating; Proceedings of the
Casualty Actuarial Society, vol 4.

Whittaker, E.T. (1923) On a new method of Graduation. Proceedings Edinburg
Mathematics Society, XLI, 63.

Wu, X. (1996) A Baj'esian Discretizer for Real-Value Attributes. The Computer
Journal, vol. 39, no. 8, pp 688-691.

146



Appendix A

A.l1 Main Program

// This program is to implement the calculation of the number of jumps
// and related hazard rate for the frequency and severity of claims
// using the reversible jump technique

//program beginning
(¢include "library/completo.h"

main () {
//name of files
char ‘Nome[] ={"/usr/home/fc/ages_new/results/completo/bif L",

"/usr/home/fc/ages_new/results/completo/bif_S",
"/usr/home/fc/ages_new/results/completo/bifpes_L",
"/usr/home/fc/ages_new/results/completo/bifpes_S",
"/usr/home/fc/ages_new/results/completo/bis_L",
"/usr/home/fc/ages_new/results/completo/bis_S",
"/usr/home/fc/ages_new/results/completo/bislog_L",
1/usr/home/fc/ages_new/results/completo/bislog_S"} ;

int i,j,z;

// defining parameter arrays

long double Lbiffkmax+1]; // history of levels
long double Sbiffkmax+2]; // history of jumps
Sbif[0]=0;

Lbif [0] =rgarr,ma (Abif ,Bbif,2) ;

int kbif=0;

long double Lbis [kmax+1] ; // history of levels
long double Sbis[kmax+2); // history of jumps
Sbis[0]=0;

Lbis[0O]=rnorm(Abis,Bbis,1);

int kbis=0;

long double Lbisloglkmax+1]; // history of levels

long double Sbisloglkmax+2]; // history of jumps
Sbislog [0]=0;

Lbislog[O]=rnorm(Abis,Bbis,1);

int kbislog--0;

long double Lbifpes[kmax+1]; // history of levels
long double Sbifpes(kmax+2]; // history of jumps

Sbifpes [0]=0;

Lbifpes[0O]=rgamma(Abif, Bbif,2);

int kbifpes=0;

//defining accumulation

int Tbif [3]={0,0,0};

int TbifA[2]={0,0};

int Tkbif [kmax+1] ;

for(i=0;i<=kmax;i++) Tkbif [i]=0;

int Tbifpes[3]={0,0,0};

int TbifpesA[2] ={0,0} ;

int Tkbifpes[kmax+1];
for(i=0;i<=kmax;i++) Tkbifpes[i]=0;

int Tbis [3]={0,0,0} ;

int TbisA[2]={0,0};

int Tkbis[kmax+1];
for(i=0;i<=kmax;i++) Tkbis [i]=0;

int Thislog[3]={0,0,0};

int TbislogA[2]={0,0};

int Tkbisloglkmax+1];
for(i=0;i<=kmax;i++) Tkbislog[i]=0;
/ /defining data arrays

double Xbi[sbipes]; // observation - age
double Whbi[sbipes] ; // observation - weight
double WTbi[sbipes]; // observation - accumulate weight
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double Xbivar[sbivar]; // observation - number of claims

double Hbi[sbivar]; // observation - number of claims
double HTbi[sbivar]; // observation - number of claims

double Hbilog[sbivar]; // observation - number of claims
double HTbilog[sbivar]; // observation - number of claims
int Nbi[sbivar]; // observation - number of claims
int NTbi[sbivar]; // observation - accumulate weight
Xbivar [0] =0

Hbi[0]=0;

HTbi[0]=0;

Hbilog [0] =0

HTbilog[0]=0;

Nbi[0]=0;

NTbi[0]=0;

/ / file data

ifstream fbivar("/usr/home/fc/ages_new/banco_de_dados/bivar.txt");
if(!fbivar) {cout << "Cannot open file for input\n"; exit(l);}
fbivar.seekg(0);

ifstream fbipes("/usr/home/fc/ages_new/banco_de_dados/pesobi.txt");
if(Ifbipes) {cout << "Cannot open file for input\n"; exit(l);}
fbipes.seekg(0);

for(i=1;i<sbivar;i++) {

fbivar >> Xbivar [i] >>Hbi [i] >>Hbilog [i] >>Nbi [i] ;
NTbi [i] =NTbi [i-1] +Nbi [i] ;

HTbi [i] =HTbi [i-1] +Hbi [i] ;
HTbilog[i]J=HTbilog[i-1]+Hbilog[i];

for(i=0;i<sbipes;i++) {
fbipes >> Xbi [i] >> WThi [i] ;
if (i==0) Wbi[0]=0;

else Whi [i] =WThi [i] -WThbi [i-1] ;

fbivar.close();

fbipes .close O

/ /initiating output files

ofstream sail("/usr/home/fc/ages_new/results/completo/bif_L");
ofstream sais("/usr/home/fc/ages_new/results/completo/bif_S");
sail.close () 5

sais.close();

for(i=2;i<6;i++){

ofstream sail (Nome [i] ) ;

ofstream sais(Nome[it+1]);

i++
sail.close ()
sais.close();

// calculating number of jumps
numero(kbif) ;

numero(kbis);

numero(kbifpes);

numero(kbislog);

// calculating the first set of jumps and hazards
if(kbis>0) {

long double uni[2*kbis+1];

for (i=0;i< (2*kbis+l) ;i++) uni [i] =un (4+15) ;
sort(uni,2*kbis+1);

for(i=l;i<=kbis;i++){

Lbis[i]J=rnorm (Abis,Bbis,2);

Sbis [i] =uni [2 *i-1] *Smax;}}

Sbis[kbis+1] = Smax;

if(kbislog>0) ¢{

long double uni[2*kbislcg+l];
for(i=0;i<(2*kbislog+1);i++) unili]=un(4+15);
sort(uni,2*kbislog+1);
for(i=1l;i<=kbislog;i++.) {

Lbislog[i]=rnorm (Abis,Bbis,2);

Sbislog [i] =uni [2*i-1] *Smax;}}
Sbislog[kbislog+1] = Smax;

if(kbis>0) {

long double uni[2+kbis+1] ;

for (i=0;i< (2*kbis+l) ;i++) uni [i] =un (4+15) ;
sort(uni,2*kbis+1);

for(i=1l;i<=kbis;i++){

Lbis [i] =rnorm(Abis,Bbis, 2) ;
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Sbis [i] =uni [2*i-1] *Smax;} }
Sbis[kbis+1] = Smax;

if(kbif>0) {

long double uni[2*kbif+l] m

for(i=0;i< (2*kbif+1) ;i++) uni [i] =un (4+19) ;
sort(uni,2*kbif+l);

for(i=1;i<=kbif;i++){

Lbif [i]= rgamma(Abif,Bbif,2);

Sbif [i] =uni [2*i-1] *Smax; }}

Sbif[kbif+1] = Smax;

if (kbifpes>0) {

long double uni[2*kbifpes+l1];

for (i=0;i< (2*kbifpes+l) ;i++) uni [i] =un (4+15) ;
sort(uni,2*kbifpes+I);

for(i=1;i<=kbifpes;i++){

Lbifpes[i]= rgamma(Abif,Bbif,2);
Sbifpes[i]=uni[2*i-1]*Smax;}}

Sbifpes[kbifpes+1] = Smax;

// calculating jumps and hazards for ini+ite times
for (z=1l;z<=ini+ite;z++){
frequencia(Sbif,kmax+2,Lbif, kmax+1,kbif,Xbi,Wbi, WTbi,sbipes,Xbivar,Nbi,NTbi,sbivar,Abif,
Bbif, TbifA,2,Tbif,3,4);
sail.open(Nome[O],ios::app)s
sais.open(Nome[l],ios::app);

for (i=0;i<=kbif;i++) {sail<<Lbif [i] <<" " sais«Sbif [i] « "
sais<<"\n";

sail<<"\n";

sais .close ()

sail.close () ;

frequencia(Sbifpes,kmax+2,Lbifpes,kmax+1,kbifpes,Xbi,Wbi,WTbi,sbipes,Xbivar,Nbi,NTbi, sbi
var,Abif,Bbif,TbifpesA,2,Tbifpes, 3,2) ;

sail.open(Nome[2],ios:;app);

sais.open(Nome[3],ios::app);

for(i=0;i<=kbifpes;it+t+) {sailccLbifpes[i]<<" ";sais<<Sbifpes [i]<<" ";}
sais<<"\n";

sail<<"\n";

sais.close ();

sail.close();

severiaade(Sbis,kmax+2,Lbis,kmax+1,kbis,Hbi,HTbi,Xbivar,Nbi,NTbi,sbivar,Abis,Bbis,sigbi,
TbisA,2,Tbis,3);

sail .open (Nome [4] ,ios ::app) 5

sais.open(Nome[5],ios::app);

"

for (i=0;,i<=kbis;i++) {sail<<Lbis [i] <<" " ,sais<<Sbis [i]<<" ";}
sais<<"\n" ;

sail<<"\n" f

sais.close();

sail.close ();

severidade(Sbislog,kmax+2,Lbislog,kmax+1,kbislog,Hbilog,HTbilog,Xbivar,Nbi,NTbi,sbivar,A
bis,Bbis,sigbilog,TbislogA,2,Tbislog,3) ;

sail.open(Nome[6],i0os::app);

sais.open(Nome[7],ios::app);

for (i=0 si<=kbislog; i++) {sail<<Lbislog [i] <<" " ,sais<<Sbislog [i] <<" ";}
sais<<"\n";

sail<<"\n";

sais.close () ;

sail.close () ;

Tkbif(kbif]++;
Tkbis[kbis]++;
Tkbislog[kbislog]++;
Tkbifpes Ikbifpes] ++,-
}//End for in z

cout<<"Sample for **bi frequency** had the following results:\n”;

for(j=0;j < 2;j++) cout<<"Tbif("<<j+l<<"]= "<<Tbif [j]<<" "<<"TbifA["<<j+ 1<<"] =
"<<TbifAl[j];

cout<<"Tbif[3]= "<<Tbif [2]<<"\n";

for(j=0;j <=kbif;j++) cout<<" Lbif["<<j<<"]= "<<Lbif[j]<<";Sbif["<<j<<"] =
Tesbif [j] <<

cout<<"\n";
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cout<<"Sample for **bipes frequency** had the following results:\n";

for(j=0;j < 2;j++) cout<<"Tbifpes['<<j+l<<"]= "<<Tbifpes [j|<<" "<<"TbifpesA["<<j+1<<"] =
7<<TbifpesAlj];

cout<<"Thifpes[3]= "<<Tbifpes[2]<<"\n";

for(j =0;j <=kbifpes;j++) cout<<" Lbifpes ["<<j<<"] = "<<Lbifpes [j]<<";Sbifpes|["<<j<<"] =
"<<Sbifpes [j] <<";";

cout<<"\n";

cout<<"Sample for **bi severity** had the following results:\n";

for(j=0;j] < 2;j++) cout<<"Tbis["<<j+1l<<"]= "<<Thbis[j]<<" "<<"ThisA["<<j+1<<"]=
"<<TbisAl[j];

cout<<"\n";

cout<<"Tbis[3J = "<<Tbis[2]<<"\n";

for(j=0;j <=kbis;j++) cout<<" Lbis ["<<j<<"]= "<<Lbis[j|<<" Sbis["<<j<<"]= "<<Sbis[j];
cout<<"\n";

cout<<"Sample for **bilog severity** had the following results:\n";

for(j=0;j < 2;j++) cout<<"Thislog("<<j+l<<"]= "<<Thislog[j]<<" "<<"ThbislogA["<<j+l<<"]=
"<<TbislogA tj] ;

cout<<"\n";

cout<<"Thbislog[3]= "<<Tbislog[2]<<"\n";

for(j=0;j <=kbislog;j++) cout«" Lbislog["<<j<<"]= "<<Lbislog[j|<<" Sbislog["<<j<<"] =
"<<Shbhisloglj];

cout<<"\n";

} //endmain

A.2 Library

#include <fstream.h>
#include <math.h>
#include <stdlib.h>
#include <iostream.h>
// general constants

const long double S = 73.59; //age upper value

const int ini = 0; / /Initial iterations

const int ite = 10000; //Total iterations

const int kmax = 30; //Maximum number of jumps

const float c = 0.4; //Acceptance constant

/ /size of arrays

const int sbivar = 566; / /bivar.txt

const int sbipes = 5257; //pesobi.txt

const int lambda = 3; //a priori Jparameter of k

const int Abif = 12; // a priori parameter of frequency
const int Bbif = 1000; // a priori parameter of frequency
const int Abis = 50; // a priori parameter of severity
const int Bbis = 100; // a priori parameter of severity
const int sigbi= 150; // a priori parameter of severity
const int sigbilog= 20; a priori parameter of severity

//****‘k******‘k******* CalCulatiO/n Of Uniform(o’l) EE R R R R EEEEEEEEEEEEREEEEESE]
long double un(const int loc){
long double a,e,x,m;
static long double
1[21]={1561,1448,9879,67961,791,989,989,34274,3568,4679,7869,57807,57901,589,22457,26783
7,37909,37679,37577,3757,3579};
switch (loc){
case 1: a=65539;

e=31;

break;
case 2: a=pow(13,3);

e=31;

break;
case 3: a=pow(5,13);

e=39;

break;
case 4: a=pow(5,17);

e=42;

break;
case 5: a=pow(11,13);

e=31;

break;
case 6: a=pow(ll,13);

e=417,

break;
case 7: a=pow(13,3);

150



e=31;
break;
case 8: a=pow(5,13);
e=39;
break;
case 9: a=pow(5,17);
e=42;
break;
case 10: a=pow(11,13) ;
e=59;
break;
case 11: a=S5539;
e=31;
break;
case 12: a=pow(13,3);
e=31;
break;
case 13: a=pow(5,13);
e=309;
break;
case 14: a=pow(5,17);
e=42;
break;
case 15: a=pow(11,13);
e=59;
break;
case 1G: a=65539;
e=31;
break;
case 17: a=pow(13,3);
e=31;
break;
case 18: a=pow(5,13);
e=39;
break;
case 19: a=pow(5,17);
e=42;
break;
case 20: a=65539;
e=31;
break;

in = pow (2, e);

x = fmod(a*I[loc],m);
I[loc]=X;

return x/m-

jl****************** **%*% calculation of exp E R R R

long double check_exp(const long double x){
double upper=700;

double lower=-740;

long double value,temp;

if (x>=lower &3$ x <=upper) value=exp (x) ;
else{

if(x>upper) {

temp=x;

value=1;

while(temp>upper){

temp=t emp-upper;
value=value*exp(upper);}
value=exp(temp)»value;

else if(xclower) {
temp=x;

value=1;
while(temp<lower){
temp=temp-lower;
value=value*exp(lower) ;}
value=exp(temp)»value;

return value;

//*********************** calculation of 10g e

long double check_log(const long double x){

double upper=700;

double lower=1e-300;

long double value, temp

if(x<0) {cout<<"\n ****** PROBLEMA ****** JTog (je valor negativo"<<x;value = log(l)
else if (x>=lower 8% x <=upper) value=log (x) ;
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else {

if(x>upper) {
temp=x;

value=0;
while(temp>upper){
temp=temp/upper;
value += log(upper);}
value += log(temp);

if(xclower) {
temp=x;

value=0;
while(tempclower) {
temp=temp/lower;
value+=log(lower);}
value+=log(temp);

return value;

//*********************** calculation of gamma khkkhkkhhkhhhhhhhhrhrhdkh®*

long double rgamma(const int alfa,const long double beta,const int tp){
long double g=0;

for(int i=0j;i<alfa;i++) g+=log(un(15+(tp-1)*5)) ;

return - (g/beta);

//***********.************ calculation of normal ********kkkkkkkh koo rrrrx%

long double rnormlconst double Al,const double A2,const int tp){
double N;

float PI = 3.14159265358979323846;

static long double ul =0.959678;

static long double u2 =0.87675545;

ul =un(l+(tp-1)*5);

u2 =un(2+(tp-1)*5/!;

N = pow((-2*log(ul)),0.5)*cos(2*PI*u2);

return N*A2+Al;

//*********************** calculation of factorial * %% %% ks dodododkdodkododokokok ok

int factorial(const int n){
int nl=n;

if(nl<0) return O;

int f=1;

while(nl>1)

*=nl--;

return f;

}

//*********************** Calculation Of numero de puios *kkkkk
void numero(ir,t& kl) {

kl=kmax+1;

while(kl>kmax){

long double u=un(5);

long double ul= exp(-1ambda);

for(int i=0;i<=kmax;i++){

if(u<ul) {kl=i;break;}

else ul+=pow(lambda,i+1)*exp(-lambda)/factorial(i+1);

%k ok ok ok ok ok % ok ok

//*********************** calculation do SOTt ***#FFkkkkkkkhkhx

void sort (long double a[) ,const int n) {
long double temp;

int j;

fortint i=1l;i<n;i++){

temp=a [i] ;

for(j=i;j>0 &8 a[j-1] >temp;j--) a[j]=a[j-1];
a[j ] =temp;

//*********************** CalCulatiOn do movimento kkkhkkkhkkhkk mE
int movimento(const int k2) {

double d,n,b;

long double ul;

static int j=1;

J++;

if(==5) j=1;
if(k2==0){
d=0;

if (lambda<=1) b=c*lambda;
else b=c;
n=1-b;}
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else {

if (k2==kmax} b=0;

else |

if (lambda<=k2+1) b=c*lambda/(k2+1);
else b=c;

}

if {(lambdac<k2) d=c;
else d=c*k2/lambda;
n=1-b-d;

}

ul=un({1l+{j-1}*5};

if (ul<b) return 1;
else(

if (ul<(d+b)) return 2;
else return 3;

}

}

J/EEEr v rkkrnkwhhhkkhe+* caloylation of sample LR R SR R R R R R R
int sample(int k1) {

long double u=un{(5);

for(int i=1;i<=kl;i++}{

if (u*kl<=i} {return i;break;}

}

;/****n-**ww***tiiiiiit* calculation of iniclo ***k* s etk drdrddhhhhhdhrdn

int iniciof{const double T[],const int n ,const long double valor)
int i,ini;

ini=n;

for(i=0;i<n;i++) {if(T[i] > valor) { ini=i;break;}}

return ini;

//l'll‘l‘iiii**iiiittt***** calculation of fim LE A R R AR RS SRR R R R R R LR RN

int fim{const double T[],const int n,const long double valor} {
int i,ini;

ini=n-1;

for(i=1;i<n;i++) {if(T[i] »>= valor) { ini=i-1;break;}}

return ini;

}

f/tttt*----ttttritttttwt calculation of peso mEw Ak ok kR E A h R K KKk ok ok Aok

long double peso(const double T[],const double T1([},const long double sl,const long
double s2,const int n,const int nl,const int n2){

long double walor;

if (nl<=n2) valor=(T[n2]-Tn1l]+(T[nl]-T[n1-1))*(T1[n1)-s1)/(T1[n1]-T1(n1-1])+ {(T[n2+1]-
T[n2])*(s2-Ti{n2])/(T1[n2+1]-T1[n2]});

else valor=0;

return valor;

}

f‘/tt*i*ii*l‘l’l’ttt‘i’!‘l‘l‘l‘** Calculation of increase LA AR A S A A A S S E s E R LR R ES]

void increase(long double T[),long double value,int w,int n}{

int i;
for(i=(n-1);isw;i--) T[il=T(i-1];
T[w] = wvalue;

//*i*ttttt**tttttttttiii calculation of decrease *** s wkdr ke ndddradnrdhnwn

void decrease(long double T[],int w,int n) {

int i;

if({n-1)>w) for(i=w;i<(n-1);i++) T[i] = T[i+1];

}/******tt---t**-rw-tttt* calculation of S (jumpsj kwE ko okkk ok ok ok ok ok ok ok koW w N

leng double gS(const long double sl,const long double 1l1,const long double 12,const long
double s2,const double X[],const double W([],const int n,const int beg,const int
fin,const double wei,const double X1[],const int N[],const int nl,const int begl,const
int finl,const int tp) {

int num=fin-beg+2;

int hp,i,3;

long double jump,u,sum,ul,x,13,14,wl,w2,wtot,cons,consl,wtemp;

double x1,cl;

long double* C = new long double [num] ;

13=12-11;

l4=check_log(l1l)-check_log(l2);

wl=W(beg] * (X [beg) -s1) / (X [beg] -X [beg-11) ;

w2=W[fin+1] * (s2-X[fin]) /(X [fin+1] -X(fin]);

wtot=wel+wl+w2;

if(s2<=X[fin] || sl>=X[beg]) {cout<<"problemal",num=num-1;}
if(s2<=X[fin] && sl>=X[beg]) {cout<<"precblema2",num=num-1;}
cons=0;

consl=-12*(wtot-wl);

cl=check_exp(-11*wl}-check_exp(-12*wl);

if (cl<0) cl=-cl;

if (wl>0 && 11!=12) C[0]=consl-check_log{wl/ (X [beg]-s1))+check log{cl);
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else {C|[0] =X|beg] -si;cout<<"blabla" }

if(fin > beg) for(i=beg;icfin;i++) {

if (finl>=begl) for (j=begl;j<=fini;j++) {if (X[i] ==X1[j]) cons+=N[j] *14 -}
if(i'l=beg) wtemp=WJi];

else wtemp=wl;

consl = consl+12*W[i+1] -ll*wtemp;

cl=check_exp(-11*WJ[i+1]) -check_exp(-12*W[i+1]);

if (cl<0) cl=-cl;

if(W[i+l]>0 &% 11!=12) C]Ji-beg+1] =cons+consl-check_log (W[i+1] /(X [i+1] -
X [i])) tcheck_log(cl) ;

else {c [i-beg+1] =X[i+1] -X[i] cout<<"blablabla" ;}

if(finl>=begl)for(j=begl;j<=fini;j++){if(X[fin]==X1[j]) cons+= N[j]*14;}
if(fin!=beg) wtemp=W|[fin];

else wtemp=wl;

consl = consl+12*w2 - Il*wtemp;

cl=check_exp (-11*w2) -check_exp (-12*w2) ;

if (c1<0) cl=-cl;

if(w2>0 &% 11!=12) C[num-1l]=cons+consl-check_log(w2/(s2-X|[fin]))+check_log(cl);
else {C[num-1]=s2-X[fin];cout<<"blablablabla";}

if(111=12)¢

sum=0;

for(i=0;icnum;i++) {sum+=CJi];}

sum=sum/nura;

cons=C[0]-sum;

for(i=0;i<num;i++){

CJ[i] =C[i] -sum;

if (cons<CJ[i] ) cons-CJi];

if(cons>700) {for(i=0;icnum;i++){C[i]=C[i]- (cons-700);}}
for(i=0;icnum;i++){C[i]=check_exp(C[i]);}

sum=0;
for(i=0;icnum;it+) sum+=CJi];
C[0] =C[0] /sumy;
for (i=1; icnum;i++) CJi] =C[i- 1] +C[i] /sum;
hp=50000;
while(hp==50000) {
u=un(l15+(tp-1)*5) ;
if (uc C[0] ) hp=0;
else {if (C[num-2]< u &% ucl) {hp=num-1;}
else {if(fin>beg) {for(i=1l;ic num-L;i++) if(C[i-l]J]cu &% ucC]Ji]) {hp=i;break;}}}}

if(111=12)¢
if(hp==0) {
wtemp=wl*(12-11);
x1=s1;

x=X [beg] -si;

else if(s2>X([fin] && hp==num-l) {
wtemp=w2*(12-11);

x1=X[fin];

x=s2-X|[fin];

else {
wtemp=W[beg+hp|*(12-11);
x1=X [beg+hp-1] ;

x=X [beg+hp] -X [beg+hp-1] ;

u=un(l4+(tp-1)*5);
jump=xl+x*check_log(u*check_exp(wtemp)-u+l)/wtemp;

else jump=xl+u*x;
delete [] C;
return jump;

//*********************** CalCulatiOn of SQ (jumps) para SeVeridade********************
long double gS2(const long double si,const long double 11,const long double 12,const
long double s2,const double X|[],const double H[],const int N[],const int size,const int
beg,const int fin,const int sig,const int tp){

int num=fin-beg+2;

int hp,i,j;

long double jump,u,sum,ul,x,13,14,wl,w2,wtot,cons,consl,wtemp;

double x1,cl;

long double* C = new long double[num];

13=2%(12-11);

14=pow(11,2)-pow(12,2);

C[0] =0;

cl=X|beg] -si;

if(fin > beg) for(i=beg;icfin;i++) {
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Tli-beg+l]l wT[i-begl +Losq X [141] -X (1] b -check_logicly- SK[Li]*141H |11 *123] 2 *powisag, 21 ;
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fieessssersssssensserrss guloulation of ACEipEED AfTeiAbd et d e
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long seqaboe Ll,const long douwnle L, const int kL, const long doubla B, conel long doubls
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Long double Cong., Leemsl:
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1EIhZ=0) Templ--hi;
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1floeTe =0 kb Lenpl |=R] jaos Z*check logitempl -check_logtenpl);
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Fifeaddrrvinerrvsnavsnnnd cpleoglnkion of fraquencls =etddsdiridddrrridrrranai
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void frequencia (long double S[],const int ns,long double L[],const int nl,int& k,const
double X[],const double W|[],const double WT[],const int size,const double XI|[] ,const int
N(],const int NT[],const int sizel,const int A,const int B,int TOTAJ[],const int na,int
TOT [], const int n,int tipo_freq) {

int i,j,begl,beg, fini,fin, num u2,pos,mov, numl;

long double u,ul,a,si,ac,cons,hi,h2,h3;

double wei,weil;

static int tipo=I;

tipo++;

if(tipo==3) tipo=1;

begl=inicio(XI,sizel,S[0]);

finl=fim (XI,sizel,S[1]);

if (finl>=begl) num=NT[fini]-NT(begl-1];

else nura=0;

beg=inicio(X,size,S [0]) ;

fin=fira(X,size,S[1]);

wei=peso (WT,X,S[0) ,S[1] ,size,beg, fin) ;

L[O]=rgamma(num+A,wei+B,tipo);

if(k>0) for(j=1;j <= ksj++){

fin=fim (X,size,S (j+1]);

finl=fim (XI,sizel,S[j+1]);

if (Lij-1) !=L[j] )¢

if(beg<=fin) {

S[j]1=eS(S[j-1],L[j-1],L[j],S[j*+1] ,X, W, size, beg, fin, (WT[fin] -WT [beg-
1]),X1,N,sizel,begl,finl,tipo);

else {

u=un(l5+(tipo-1)*5);

a= (L[j)-L[j-1])*W[fin+1] ;
S[j]=S[j-1]+check_log(u*check_exp(a)+l-u)* (S[j+1]-S[j-1])/a;}}
if (S[j] >S[j+1]) cout<<"errol"<<"S ["<<j<<"] ="<<S [j] <<" S["<<j+l<<"] ="<<S[j +1] <<”\n";
if (S[j] <S[j-1]) cout« "erro2";

begl=inicio(XI,sizel,S[j]);

beg=inicio (X,size,S [j]);

if (finl>=begl) num=NT [finl]-NT [begl-1] ;

else num=0;

weirpeso(WT,X,S [j],S][j+1] ,size,beg,fin) ;
L[j]=rgamma(num+A,wei+B,tipo);

mov=movimento (k) ;

u2=0;
if(mov==1){
si =un(l4+(tipo-1)*5)*Smax;
pos=0;
while(u2 < k) {
u2 = 0;
sl=un(14+(tipo-1)*5)*Smax;
pos = O;
for(i=1;i<=k;i++) {
if (S[i] != si) U2++;

if(S[i] < si) pos = 1i;

beg=inicio(X,size,S[pos]);

fin=fim (X, size,S[pos+1]);

wei=peso (WT, X, S[pos] ,S[pos+1] ,size,beg, fin) ;
fin=fim (X, size,si)
weil=peso(WT,X,S[pos],si,size,beg,fin);
begl=inicio(XI,sizel,S[pos]);

finl=fim (XI, sizel, S[pos+1] ) ;

if (finl>=begl) num=NT[finl]-NT[begl-1];
else num=0;

finl=fim (XI,sizel,si);

if (finl>=begl) numl=NT[finl]-NT[begl-1];
else numl=0;

if(weill=0 && weill=wei)

h2 = L(pos] ;
cons = (I/un(ll+(tipo-1)*5) - 1);

if(tipo_freq== |j tipo_freq==2) hi = h2 * pow(ccns, ((wei - weil)/wei));
else hi = h2 * pow(cons, ((sl-S [pos+1])/ (S[pos+1]-S [pos]))) ;

h3 = cons * hi;
if(tipo_freq==2 | |tipo_freq==4) ac=aceitacao(S [pos+1]-S[pos],sl-
S[pos] ,numl,num,weil,wei,k,hl,h2,h3,A,B) ;
else ac=aceipeso(S[pos+1]-S[pos],sl-S[pos],numl,num,weil,wei,k,hi,h2,h3,A,B);
if(ac>=0) ac=l;
else ac=check_exp (ac) 5
ul=un(14+(tipo-1)*5);
if(ul <= ac) {

156



incress= (3, sl poa + 1, koax 421 ;
Llpoel = hi;

incresass L, k3, pos + 1, kmaxdll;
E =k o+ 1

TOTH [mow-11%+

e o—————

Elmov=-=-2] |
woA = Aanple (k)
al =f[go=];
begeindciadi, sige, Slpos-1] 1,
Eimmiimid, eiza, 5 posa1] 0
welspeso WL K, 8 [pos-1] ,5(pasel]  size, bag, Iing ;
fip=timlX, sizo, S paa] |
well-pesoiWT, X, S(eca-1] .81, slza, beg, Dinl ;
Begl=inlcio (X1, aizel, Slpaa-110;
Flal=Fimi¥l Aixel  S[poe+1]] .
0 Cinl=-kbegl]l mum=HT {Einil]-HT [bezl-1];
Bles rumsl) )
finl=fimiXl, soz=1 511 ;
1f Ifinlawzeql] numi=KT|Finl!-HT [begl-2];
elas nenl-9;
1280l li-0d &% eeillzcwsi]

{

1 = Lijnea-1],

lhd = Llges],

iflzipe freqe=l || tipo_treg==3] h2 = check expiiy¥cll * check loaglhll o+ (wei -

weill * check_logihIblfwell;
gloe K2 = check_oxpfi(S|pos] -8 [p2a-1]11 * ﬂh#!“:k_'l:‘bglh]j =~ iElpoe+l] -5 lpos]1 &
check logminzil/{S(pas«1]-&lpas 1]11;
ificipge freo-- | I'_i_El:l_ [rag==4) atraceikacaes s [pos+l] -5poe-1]1 , Eipos] -5 [F“:‘5"
1, meml, e, Well, wed, kR B3 R &, B
flae ad=-acripaAn (S [poeas1] -5 [pop-11, S eos] -5 'pos-1] ,numd, mem, well, wel k.0l
hz b3 k& E);
iTlame=01 Aol
s A - |"|wq:k_|:-:-?[-.p,|_-] ]
ul e ur {15+ (bipo-13#5];
afful w= omrh
k =k - 1:
decrense (5, pos. kmax +2)
Llpog-1] = hZ;
decreass (L, pos + 1, kmax+l1];
TOTA Imowr-1] ok ;

. '

TOT [mezar- L] 44

H

flressaranapprgunhasddnt rmlopnlation of Erveridade dtéwvrshdbewrhbirvaadivad

wivitd peveridade{lsng dovble 3|),const int ns,long double LI, coralt ok o0, ints k, sonss

iesable HI],consk double ¥T[|, coost doukle X[ .consk inc Wi .comal ink BT 1. oon=s int
n:i.?e.l:v:-nst int A.oonEt int 3, const int alg.int TOTALL, conet ik na,int TOTL),const io:
nh

int 1.1, beqg, tin, man, UZ, Do, Mo, UKL ;

loog double v, vl . a,al,as. cone, hil, h3 hi;
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a=run, pow | ST, 2} 42 pow (B, 21 ;

cons=wel fpow(aig, T4 oo (R, 2 s
Li0)=rrotm | {oonafal  pow e, -0, 5], Eipel

Ef(k=01 Farii=1:4 <= Rij++l|

Fin=Cla(k, size, S03+10 0,

iF(LIG-1T eanli] 0 [

if':hEEl"-fi'l'l-:' A1) =g8218 13- 1k LIJ=1] Lid] S 13+25 X, 3, M. aize, beg, fin,oiq, tipod ;
elym

w=un 5+ (tlpo-11+5) ;

Elil=E({-Ll+u=1E[311] -2[5-1]1;

i

h

1E|E|]]>Etj+l]_l [T B 3 5 R R R L A R T Er"-:l:'lllq_g"L'-.qr_Eljpl]qq'l‘.]‘_"_;
1184 =814-1]11 cout=ctarvods;

Lag=iniciciX, alze. 8[1]1]1;
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if (fin>=beg) {num=NT [fin] -NT [beg-1] ;wei=HT [fin] -HT [beg-1] ;}
else {num=0;wei=0;}

a=num/pow(sig,2)+1/pow(B,2) ;

cons=wei/pow(sig,2)+A/pow (B,2) ;
L[j]=rnorm(cons/a,pow(a,-0.5),tipo) ;

mov=movimento(k) ;
u2=0;
if(mov==1){
si =un(4+(tipo-1)*5)*Smax;
pos=0;
while(u2 < k) {
u2 = 0;
sl=un(4+(tipo-1)*5)*Smax;
pos = O;
for(i=1;i<=k;i++) {
if (S[i] != si) u2++;
if (S[i] < si) pos =1i;

beg=inicio(X,size,S[pos]);
fin=fim (X,size,S[pos+1]);
if (fin>=beg) {num=NT[fin]-NT[beg-1] ;wei=HT[fin]-HT [beg-1] ;}
else {num=0;wei=0;}
fin=fim (X, size, si) ;
if (fin>=beg) {numl=NT [fin]-NT [beg-1] ,-weil=HT [fin]-HT [beg-1] ;}
else {numl=0,-weil=0; }
h2 = L[pos] ;
if(h2!=0){
cons = (I/un(l+(tipo-1)*5) - 1);
hi = (S [pos+1] -S [pos])*h2/((S[pos+1]-si)/cons+sl-S [pos]);
h3 = hl/cons,-
ac=aceitacao2 (S [pos+1] -S [pos] ,sl-S [pos] ,numl, num, v;eil,wei,k, hi,h2 ,h3,sig, A, B)
if(ac>=0) ac=l;
else ac=check_exp(ac);
ul=un(4+(tipo-1)*5);
if (ul <= ac) {
increase(S,si,pos + l,kraax +2);
L[pos] = hi;
increase(L,h3,pos + l,kmax+l);
k =k + 1;
TOTA[mov-1]++ ;

if(mov==2){
pos = sample(k);
si =S |[pos] ;
beg=inicio(X,size,S[pos]);
fin=fim (X, size,S[pos+1]) ;
if (fin>=beg) {num=NT [fin]-NT [beg-1] ;wei=HT [fin]-HT [beg-1] }
else {num=0;wei=0;}
fin=fim (X,size,si);
if (fin>=beg) {numl=NT[fin]|-NT[beg-1];weil=HT[fin]-HT[beg-1];}
else {numl=0;weil=0;}
hi = L[pos-1];

h3 = L [pos] ;
h2 = ((S[pos]-S [pos-1]) * hi + (S[pos+1]-S [pos]) * h3)/ (S [pos+1] -S[pos-1j) -
if(h2!=0){

ac=aceitacao?2 (S [pos+1] -S [pos-1] ,S[pos]| -S [pos-1] ,numl, num, weil, wei,k, hi,h2,
h3,sig,A,B);

if(ac<=0) ac=1;

else ac = check_exp(-ac);

ul = un(5+(tipo-1)*5);

if(ul <= ac) {
k =k - 1-
decrease (S,pos, kmax +2)
L [pos-1] = h2;
decrease(L,pos + l,kmax+l);
TOTA[mov-1] ++;

TOT[mov-1]++;
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Appendix B

B.l Main Program

// This program is to implement the calculation of the number of jumps

// and related hazard rate for the frequency and severity of claims

// using the reversible jump technique for 3 different set of intensity

// related to age&sex,calendar time and report delay. We are also

// calculating the IBNR claims,defining their moment of occurrence and all
// other information.

#include "library/den.h"
/ /************************»program beginning

main(){

long double gl,f1,11,a,b,u,tot;
double w,si,s2,Res_RBNS,Res_IBNR;
int 1i,j,z,z1,z2,temp,IBNR,tempi,temp2,temp3, temp4,contador,gl_index,gl_itemp,tarn;
int kf [6] ={0,0,0,0,0,0};
//declaracao dos dynamic arrays
int* NI;

double* ST;

long double* uniforme;

double *data_IBNR_time;

int* N;

long double *Prob[2*Amax];
//working arrays

int data_tot_number[2 |[Amaxl;
double data_tot_v[2][Amax];

long double acumu[2] [Amax] ;

int IND [2] [2*kmax+7] ;

double T_S[2*kmax+7];

for (j =0; j<Amax;j++) for (2z=0;2z<2;2z++) acumulz] [j]=0;

for (i =0;i< (2*kmax+7) ;i++) T_S [i] =0;

for (j =0;j <2;j++) for (i=0;i< (2*krnax+7) ;i++) IND[j][i]=0;

double W[6] [Amax] [2] ;

for (i=0 ;i<S ;i++) for (j =0; j<Amax; j++) for (z=0;2z72;2z++)-Vi [i] [j] [z]=0;

double data_t_time[tam_t];
int data_t_nuntber [tam_t]| ;
double data_u_time[tam_u];
int data_u_number[tam_u];
int data_a_number [2] [Amax] ;
double data_value[2 |[Amax];
int number_RBNS[2 ]| [Amax];

ifstream f_t(Musr/home/fc/den/severity/dados/rep_t");
if(!f_t) {cout << "Cannot open file for input\n"; exit(l);}
f_t.seekg(O) ;

ifstream f_u("/usr/home/fc/den/severity/dados/rep_u");
if(!1f_u) {cout << "Cannot open file for input\n"; exit(l);}
f_u.seekg(0);

ifstream f_a("/usr/home/fc/den/severity/dados/rep_a");
if(!f_a) {cout << "Cannot open file for input\n"; exit(l);}
f_a.seekg(0);

ifstream fexp("/usr/home/fc/den/severity/dados/exp.txt");
if(!fexp) {cout << "Cannot open file for input\n"; exit(l);}
fexp.seekg(0);

ifstream fvalue("/usr/home/fc/den/severity/dados/paid_log.txt");
//ifstream fvalue("/usr/home/fc/den/severity/dados/paid_nonlog.txt");
if(!fvalue) {cout << "Cannot open file for input\n"; exit(l);}
fvalue.seekg(0);
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ifstream frbns("/usr/home/fc/den/severity/dados/rbns_num.txt");
if(frbns) {cout << "Cannot open file for input\n"; exit(l);}

frbns.seekg(0);

ifstream frsev("/usr/home/fc/den/severity/dados/rep_a_sev.txt");

if(!frsev) {cout << "Cannot open file for
frsev.seekg(0);

ofstream sail;
ofstream fibnr;

for(i=0;i<tam t; i++){ f_t >> data t time [i]
for(i=0;i<tam u; i++) { f u > data u time [i]

for(i=0;i<(2*Amax); i++){
f_a >> tempi >>temp2>>temp3;
data_a_number[tempi][temp2]=temp3;

t}or(i=0; i<Exp/ i++) {
fexp >> tempi >>temp2>>temp3>> w;
W[templ-1] [temp3]| [temp2]=w/365;

for(i=0;i<(2*Amax); i++){
fvalue >> tempi >>temp2>>s2;
data_value[tempi][temp2]=dcuble(s2);

for(i=0;i<(2*Amax-2) ; i++) {
frbns >> tempi >>temp2>>temp3;
number_RBNS[tempi][temp2]=temp3;

for(i=0;i<(2*Amax-2); i++){
frsev >> tempi >>temp2>>temp3;
data_a_numberl[tempi][temn2]=temp3;

number_RBNS [0] [0]=0;
number_RBNS[1] [0]=0;

fexp.close () ;
f_t.close ();

f u.close();
f_a.close();
frbns.close();
fvalue.close () ;

//defining accumulation of acceptation rate

input\n"; exit(l);}

>>data_t_number]|i];}

>>data u number]|i];}

int T[G] [4]={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0);

//parameter arrays

long double L[4][kmax+1]; // history of levels
double S_t[kmax+2] // history' of jumps
double S_u[kmax+2] // history of jumps
int S a[2][kmax+2] // history of jumps
long double Mi [2] [kmax+1] ; // history of levels

int S_val[2] [kmax+2] ;

e

S_t [0] =0;
S_U [0] =0;

S_a [0] [0] =O;
S_a [1] [0]=0;

S_val [0] [0] =O;
S_val [1] [0] =0;

for(i=0;i<2;i++){
Mi [i] [O] =rnorm (A [i+4] ,B[i+4],i+3);

for(i=0;i<2;i++){
for(j=1lj<=Kkf[i+4] ;j++){

Mi [i] [j ]| =rnorm<A[i+4] ,B[i+4] ,i+3) ;
S_vall[i] [j]=j*72/(kf [i+4]+1);

kf [0] =0;

S _t[1]=Smax;
L[0] [0] =1;
kf[1]=2;

S_a [0] [0] = O;

// history of jumps
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L[2] [0] = 3.58985e-05;
S_a (0] [1] = 6;
L[2] [1] = 1.9966e-05;
S_a[0] [2] = 36;
L[2] [2] = 9.60227e-06;
S_a[0] [3] = 67;

kf [3] =2;

S_a[1] [0] = O;

L[3] [0] = 1.47824e-05;
S_a[l] [ID= 15;

L [3] [1] = 2.464e-0S;

S al[l] [2] = 32;
L[3] [2] = 1.3668e-05;
S_a[l] [3] = 67;

k f[1]=5;
S_U[0]= o;

L[1] [01 = 0.00131357;
S_u[l]= 4.95386;
L[1] [1] = 0.0148287;
S_u[2]= 7.99944;
L[1] [2] = 0.0745206;
S_u[3] = 18.5306;
L[1] [3] = 0.0489292;
S_u[4] = 36.2348;
L[1] [4] = 0.0242072;
S_u[5]= 78.7191;
L[1] [5] = 0.00745073;
S u[6]= 2190;

for (contador=0; contador<ini+ite; contador++){
T_S [0] =0; IND [0] [0] =O; IND [1] [O] =kf [1] ;
tam=1;i=0;j=0;z=kf[1];

for(zl=1;;Z1++){

tam=z1;

sl=S_t [j+1] ;

if (si > (Smax-S_u[z] )) si = Smax-S_u[z];

if (si > W1[i+1l) si = WI[i+1] ;

if(si == (Smax-S_u]lz])) if(z!=0) z--; else break;
if(si == W1[i+1]) if (i !=6) it++; else break;

if (si == S_t[j+1]) if (j !=kf[0]) j++; else break;
T_S|[zl]=s1;

IND [0] [21] =j ;
IND [1] [zl] =z;

_S[tam]|=Smax;
for(i=0;i<(2*Amax) ;i++){Prob[i]=new long double[tam] ;for (j=0;j<tam;j++){Probli] [j]=0;}}
tot=0;
a=0;
for (i=0;i<=kf [1] ;i++) {a-=L[1] [i] * (S_u[i+1] -S_u [i] );}
for(j=0;j<tam;j++){
temp = transf(T_S[j]);
ZI=IND [1] [j] ;
gl = L[1] [2z]] ;
if (j>0) {z2=IND [1] [j -1] ;if (zl!=2z2) a+=(L[1] [2z2] -L [1] [z]l] ) * (Smax-S_u [z2] ) ;}
21=IND [0] [j] ;
fl =L[0] [zl] ;
for(i=0;i<(Amax*2);i++){
z=0;
if (i>=Amax) z=1;
l1=qual_a(L[z+2],S_a[z],kf[z+2],i-z¥Amax);
if(temp>0 &% W[temp-1] [i-z*Amax] [z]!=W][temp] [i-z*Amax] [z] ) {
b=check_log (W[temp] [i-z*Amax]| [z]/W [temp-1] [i-z¥Amax] [z])/365;
Prob[i] [j]=f1*11*W [temp-1] [i-z*Amax] [z] *check_exp (a-
b*Wl[temp]+ (b+gl)*T_S[j])* (check_exp((b+gl)* (T_S[j+1]-T_S[j]))-1)/ (b+gl);

else{Prob[i] [j]=f1*11*W [temp]| [i-z*Amax] [z] *check_exp (a+gl*T_S [j+1])* (1-
check_exp(gl*(T_S[j]-T_S[j+11))) / gl;}

if(Prob[i] [j]<0) cout«"Probability smaller than zero!!!";

tot+=Probl[i] [j] ;

Prob [i] [j]=tot;

a=tot;

b=pow(tot,0.5) ;

if(tot>50) u=rnorm(a,b,1) ;
else u=dpoi(a);

IBNR = int(u);
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uniforme= n=w long double [I3ME] ;
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delete Un-

delete []NI1;

delete [|ST;

delete []data_IBNR_time;

Jj cincd ssjc

for(j=0;j<Amax;j++) for (z=0;2<2;z++) data_tot_v[z][j][=0;
for (i=0;i<=kf [0] ;i+ +) {
sl=S_t [i] ;
s2=S_t[i+1] ;
if(s2<=WI1[1]) {for(j=0;j<Amax;j++) {for(z=0;2z<2;Z++) {
data_tot_v [z] []=L10] [i] “WIO] (j] [2] * (s2-51) 533}
else

{if (s1<W1 [1] ) {sl=W1[1] ;temp=1;for (j =0;j <Amax;j ++) {for (z=0;z<2,-z++)
{data_tot_v [z] [j]=L[0] [i]*W[O] [j] [z] * (sl-S_t [i] )} }}
templ=int(s2/365);
if(templ=6) tempi--;
temp=int(sl/365);
for(zl=temp;zl<=templ;zl++) {
s2=S_t [i+1];
if (S2>W1 [z1+1] ) s2=WI [z1+1] ;
for (j =0 j <Amax;j++) for (z=0;2z<2;z++) {
b=check_log W([z1] [j] [z]/ W [z1-1] [j] [2])/365;
if (b!=0) data_tot_v [z] [j]+=L[0] [i]*W [z1-1] [j] [z]*check_exp(b*(sl-
W1(zl] ))* (check_exp(b*(s2-s1))-1)/b;
else data_tot_v[z] [j] +=L [O] [i] *W][zl] [j] [z] * (s2-sl) ;

S1=S2;

fr_sa (S_a[0] ,L[2] ,kf [2] ,data_tot_number [0] ,data_tot_v [0] ,A(2] ,B[2] ,T[2]);
fr_sa(S_a[l] ,L[3] ,kf[3] ,data_tot_number [1] ,data_tot_v [1] ,A[3] ,B[3] ,T[3] );
Res_IBNR=0;
for(j =0;j <Amax;j++) for(z=0;2z<2;z++)
{data_tot_v [z] [j ] =aata_value [z] [j] ,-Res_IBNR+=data_value [z] [j] ;}
Res_IBNR=0 ;
Res_RBNS=0;
templ=0;
temp2=0;
temp3=0;
for(j=0;jcAmax;j++){
for(z=0;z<2;z++){
l1=qual_a (Mi [z] ,S_val [z] ,kf [z+4] ,]j);
a=rnorm(l1l,val_sig,1);
temp=aata_tot_number [z] [j]-data_a_numberl [z] [j];
if (number_RBNS [z] [j] >0) {
data_tot_v|[z][j] +=a*number_RBNS|z][j];
Res_RBNS+=number_RBNS [z] [i] *exp(a) ;

if (temp>0) {
data_tot_v [z] [j ] +=a*temp
Res_IBNR+=temp*exp(a) ;

fibnr.open("/usr/home/fc/den/severity/results/new/high/IBNR_logl",ios::app);
fibnr<<tot<<" "<<IBNR<<” "<<Res_RBNS<<” "<<Res_IBNR<<"\n"

fibnr.close ()

severidade_sa (S_val [0] ,Mi [0] ,kf [4] ,data_tot_number [0] ,data_tot_v [0] ,A[4] ,B[4] ,val_sig, T[4

2
severidade_sa (S_val [1] ,Mi [1] ,kf [5] ,data_tot_number [1] ,data_tot_v [1] ,A[5] ,B[5] ,val_sig,T [5
1)
sail .open ("/us.r/home/fc/den/severity/results/new/high/male_logl" ,ios :;app) ;
sail<<"male"<<" 1 "<<kf[4]<<"
for (i=0;i<=kf[4];i++) sail<<S_val [0] [i]<<"
sail<<"\n"<<"male"<<" 2
for (i=0;i<=kf[4];i++) sail<<Mi[0] [i]<<" ";
sail«"\n" ;
sail<<"female"<<" 1 "<<kf[5]<<"
for (i=0 i<=kf [5] ;i++) sail<<S_val [1] [i] <<"
sail<<"\n"<<"female"<<" 2
for (i=0;i<=kf [5] ;i++) sail<<Mi [1] [i]<<" ";
sail<<"\n";
sail.close () ;

"o,
>

}//end for
sail.open("/usr/home/fc/den/severity/results/new/high/result_logl",ios::app);
sail<<"calendar mov 1 "<<T[0] [0]<<" "<<T[0] [2]<<"\n";

sail<<"calendar mov 2 ”<<T[0] [!]<<" "<<T[O] [3]<<"\n";
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sail<<"delay raov 1 "<<T[1] [0]<<" "<<T[1] [2]<<"\n";

sail<<"delay mov 2 7<<T[1] [I]<<" "<<T[1] [3]<<"\n";

sail<< "Age mas mov 1 "<<T[2] [0 ]«" "<<T[2] [2] <<"\n"
sail<< "Age mas mov 2 "<<T [2] [1] <<" "<<TJ[2] [3]<<"\n"
sail<< "Age fern mov 1 "<<T[3] [0] «" "<<T[3] [2] <<"\n"
sail<< "Age fern mov 2 "<<T [3] [1] <<" "<<T[3] [3] <<"\n"
sail<< "Val] mas mov 1 "<<T[4] [0 ]«" "<<T[4] [2] <<"\n"
sail<< "Val mas mov 2 ”«T [4] [1] «" "<<T[4] [3]« " \n"
sail<< 'Val] fern mov 1 "<<T[5] [0] <<" "«T [5] [2] <<"\n"
sail<< 'Val_ fern mov 2 "<<T[5] [1] « " "<<T[5] [3]<<"\n"

sail.close ();

}//end program

B.2 Library

#include <fstream.h>
#include <math.h>
#include <stdlib.h>
#include <iostream.h>
// general constants
const double Smax = 2190;
const int Amax = 67,
const int ini = 1;
const int ite =5000;
//size of arrays
const int tam_u = 197;
const int tam_t = 1488;
const int Exp = 804;
const int W1[7]={0,365,730,1095,1460,1825,2190};
int divisor_age=1000000;
int divisor_g=100;
const double val_sig=2;
const double Val_RENS = 824146;
//**‘k*****‘k***pj_(‘)'Qj_ Values**************************
const int lambda = 3;
const int A[6]={2,2,2,2,8,8};
const double 3[6]={0.2527,0.0421,0.1266,0.1266,1.02,1.02 };
const int kmax = 30;
const float c = 0.4;
//*********** * ok kkk ok ok k Calculation Of Uniform(o’l) EE R R R R EEEREEEEEREESEEERSESEEES]
long double un(const int loc) {
long double a,e,x,m;
static long double
1[21]={1561,1448,9879,67961,791,989,989,34274,3568,4679,7869,57807,57901,589,22457,267837
,37909,37679,37577,3757,3579};
switch(loc){
case 1: a=65539;
e=31;
break;
case 2: a=pow(13,3);
e=31;
break;
case 3: a=pow(5,13);
e=309;
break;
case 4: a=pow(5,17);
e=42;
break;
case 5: a=pow(11,13);
e=31;
break;
case 6: a=pow|(ll,13);
e=47;
break;
case 7: a=pow(13,3);
e=31;
break;
case 8: a=pow(5,13);
e=309;
break;
case 9: a=pow(5,17);
e=42;
break;
case 10; a=pow(ll,13);
e=59;
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temp=a [i] ;
for(j=1i;j>0 S al[j-1] >temp,-j --)
a[j] =temp;

//************ Kk kK kKK KKK

void sort_d (double a[],const int n) {
long double temp;
int j;
for(int i=1l;i<n;i++){
temp=a [i) ;
for(j=i;j>0 & a[j-1] >temp;j --)
a[j] =temp;

/j********* * ok ok ok ok ok ok ok ok ok ok ok ok % calculation do qual

calculation do sort p/ double

aljl=alj-1];

* ok ok ok k%

aljl=alj-1],-

khkkhkkkhkk kR kb hrk kK

long double qualdong double a|[], double al[] ,int size,double value) {

int i,temp;
temp=size;

for(i=1l;i<=size;i++)if(value<al[i] ) {temp=(i-1);break;}

return a[temp);

k/\*********************** calculation do qual Khkkk Kk kIR IR KA KKK KK

long double qualgdong double a[],double al[],int

int i,temp;

size,double value) {

for(i=(size+1);i>=0;i--)if(value>al[i]) {temp=i;break;}

return a [temp] ;

%/***********************

int qual_ig(long double a]|) ,double al]|],

int i,temp;

calculation do qual

%k ok %k %k ok Kk ok k% Xk %k

int size,double value) {

for(i=(size+1);i>=0;i--)if(value>al[i]) {temp=i;break;}

return temp;

}

//*********************** Calculation dO qual

o ok ok ok ok ok ok ok ok ok ok ok ok kb

int qual_index (long double al], double al|[] ,int size,double value) {

int i,temp;
temp=size;

for(i=l;i<=size;i+t+)if(value<all[i]) {temp=(i-1);break;}

return (temp+1);

//***********************

calculation do qual

int o ok ok ok ok ok ok ok ok ok ok ok ok ok b

long double qual_a(long double al] ,int al[] ,int size, int value) {

int i,temp;
temp=size;

for(i=l;i<=size;i+t+)if(value<al[i]) {temp=(i-1);break;}

return altemp];

}

//***********************

int movimento(const int k2){
double d,n,b;
long double ul;

static int j=1;
jtt;
if(j==5) j=1;
if(k2==0){
d=0;
if (lambda<=1) b=c*lambda;
else b=c;
n=1-b;
else {
if (k2==kmax) b=0;
else {

if(lambda<=k2+1)
else b=c;

b=c*lambda/(k2+1);

if (lambda<k2) d=c;
else d=c*k2/lambda;
n=1-b-d;

ul=un(1+(j-1)*5);
if(ul<b) return 1;
elsef
if(ul<(d+b)) return 2;
else return 3;

//********************** calculation of

int sample(int kl) {

calculation do movimento

PR R R R R R

sample khkkhkkhkhkrkhrhkhrhrhkdrhkx*
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consl=0;
temp=transf(si);
n_wei=0;
if(temp>0) {
for(u2=0;u2<Amax;u2++) for(z=0;z<2;z++) {
112=qual_a (L [z+2] ,S_a[z] ,k[z+2] ,u2) ;
b=check_log (W[temp] [u2l [z]/W [temp-1] [u2] [z])/365;
n_wei+=112*W[temp-1][u2][z] *check_exp(b*(int(si)-W1[temp]));

}

else {
for(u2=0;u2<Amax;u2++) for(z=0;z<2;z++) {
112=qual_a(L[z+2],S_a [z] ,k[z+2] ,u2);
n_wei+=112*W [0] [u2] [z] ;

}

cons2=13*(X[beg]-si)*n_wei;
if(cons2>700| | cons2<-740) {cl= cons2;}
else {

cl=check_exp(cons2)-1;

if (cl<0) cl=-cl;

cl=check_log(cl);

1f(111!=12) C[O]=cons + consl-check_log(n_wei)+cl;
else {C[O]=x1-sl;cout<<"blabla";}
if(fin>=beg) for(i=beg; i<=fin;i++) {
temp=transf(X[i]);
cons=cons+cons2;
if(temp!=0){
n_wei=0;
for(u2=0;u2<Amax;u2++) for(z=0;z<2;z++) {
112=qual_a(L [z+2],S_a [z] ,k [z+2] ,u2) ;
b=check_log (W[temp] [u2] [z] /W[temp-1] [u2] [z])/365;
n_wei+=112*W [temp-1] [u2] [z]‘check exp (b* (int (X[i] ) -W1 [temo] ))

}

if(i'=fin) =x1=X][i+1]; else xl=s2;
cons2=13*(x1-X[i]) *n_wei;
consl+=14*N [i] ;
if(cons2>700 || cons2<-740) cl= cons2;
elsef

cl=check_exp(cons2)-1;

if (cl<0) cl=-c1;

cl=check_log(cl);

if(11!'=12) CJ[i-beg+1l]=cons + consl-check_log(n_wei)+cl;
else Cli-beg+1]-x1-X [i] ;
i}f(Il 1=12) {
sum=0;
for(i=0;icnum;i++) sum+=CJ[i];
sum=sum/num;
cons=C [0] -sum;
for(i=0;i<num;i++) {
C[i] =C[i] -sum;
if (cons<C [i] ) cons=CJ[i];

if(cons>700) for(i=0;icnum;i++) C[i]=C[i]- (cons-700);
for(i=0;i<num;i++) Cli]=check_exp(CJ[i]);

sum=0;
for (i=0 ;i<num; i++) sum+=CJi];
C[0] =C[0] /sum;
for(i=1; i<num;i++) C[i] =C[i-1] +C[i] /sumy;
hp=0;
u=un(l5+(tp-1)*5);
if (num>l) for(i=1; i< num;i++) if(C[i-1]<u &% u<=C]Ji] ) {hp=ibreak;}
if(hp==0) {
xl=sl;
x=X [beg] -si;

else if(hp==num-1) {

x1=X[fin];
x=s2-X|[fin];
else {

x1=X[beg+hp-1] ;
x=X[beg+hp]-X[beg+hp-1];

U=un(14+(tp-1)*5);
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Cl1i] =C[4] - o
it |pona<C 1] ooma=C[L]

ifleong=7001 fouolicsl;iepumii+edC[E]20(1) - (eone- 2301
| e | L=l icrpmii+=1 C[i]=check _expiC|i];
BUIR=
Fesr (Sl pierm;i++! pum+=C[1i] ;
2T =20 Fsamg
forl—=li iwmmm;it++] C[i]=CLi-1]4C 1] S sum;
hg=0;
Wentrt |15+ [ER-11%5) ;
1 loen=ly Fordlcl; i< romji=+1 AF|El1-1"<a && ||..'-|:'[j_j]-|']'|,|;|-i_;hrq_-u_;]
1t (bp~-0} |

¥l=al;

Kol gl -g1

#lae if(az=X|fin] E& bp==num-1}
L= [Ein] |

| Empd =X [fin] ;

mlme |
xlal[b=g+hp-1] ;
=i [beg+bp] -X [begibp- 15 ;
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L}1=un(14+(tp—1)*5);

jump=double(xl+tu*x);

delete [|] C;

return jump;

]} calculation of S (jumps)

long double gS(const long double si,const long double 11,const long double 12,const long
double s2,const double X |[],const double W][],const int n,const int beg,const int fin,const
double wei,const double XI[],const int N[],const int nl,const int begl,const int
fini,const int tp) {

int num=fin-beg+2;

int hp,i,j;

long double jump,u,sum,ul,x,13,14,wl,w2,wtot,cons,consl,wtemp;

double x1,cl;

long double* C;

C = new long double[num];

13=12-11;

l4=check_log (11) -check_log (12) 7

wl=W [beg] * (X [beg] -si) /(X [beg] -X [beg-1]) ;

w2=W [fin+1] *(s2-X[fin] )/ (X [fin+1] -X[fin] ) ;

wtot=weitwl+w2;

if(s2<=X[fin] || sl>=X][beg]) {cout<<"problemal",num=num-I1;}
if(s2<=X [fin] && sl>=X][beg]) {cout<<"problema2",num=num-1;}
cons=0;

consl=-12*(wtot-wl);
cl=check_exp(-11*wl)-check_exp(-12*wl);
if (cl<0) cl=-cl;
if(wl>0 &% 11!=12) C[O]=consl-check_log(wl/(X[beg]-si))+check_log(cl);
else {C[0]=X[beg]-sijcout<<"blabla";}
if (fin > beg) for(i=beg; iefin,-i++) {
if(finl>=begl) for(j=begl;j<=fini;j++) if(X[i]==X1 [j]) cons+=N[j]*14;
if(i'l=beg) wtemp=W]Ji];
else wtemp=wl;
consl = consl+12*W[i+1] -ll*wtemp;
cl=check_exp(-11*W [i+1]) -check_exp(-12*W[i+]));
if(cl<0) cl=-cl;
if(W[i+1]>0 && 11!=12) CJli-beg+1] =cons+consl-check_log (W[i+1] / (X[i+1] -
X [i])) +check_log(cl);
else Cli-beg+1] =X[i+1]-X [i] ;

if (finl>=begl) for (j=begl;j<=fini;j++) if X[fin] ==X1][j]) cons+= NJ[j]*14;
if(fin!=beg) wtemp=W[fin |;
else wtemp=wl;
consl = consl+12*w2 - Il*wtemp;
cl=check_exp(-11*w2) -check_exp(-12*w2);
if(cl<0) cl=-cl;
if(w2>0 8% 11!=12) C[num-1] =conn+consl-check_log (w2/(s2-X [fin] ))+check_log (cl) ;
else C[num-1]=s2-X[fin];
if<111=12)¢{
sum=0;
for (i=0 ;i<num; i++) sum+=C[i],-
sum=sum/num;
cons=C[0]-sum;
for(i=0;i<num;i++){
Cli] =C[i] -sum;
if (cons<C[i] ) cons=C]i];

if(cons>700) for(i=0;ienum;i+t+) C[i]=C [i]- (cons-700);
for(i=0;ienum;i++) C[i]=check_exp(C]Ji]);

éum=0;

for(i=0;ienum;it+) sum+=C[i];

C[0] =C [0] /sum;

for(i=1; ienum,-i++) CJ[i] =C[i- 1]+C[i]/sum;

hp=0;

u=un(l5+(tp-1)*5) ;

if (num>l) for(i=1; ie num;i+t+) if(C[i-1]Jeu &% ue=C [i] ) {hp=i break;}

if(111=12) {

if(hp==0) {
wtemp=wl*(12-11);
x1=s1;

x=X [beg] -si ;

else if(s2>X|[fin] &% hp==num-l) {
wtemp=w2*(12-11);

x1=X[fin];
x=s2-X|[fin];
else {
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whkumpal [keag+ks:] ¢ [12-111,;
wlz¥ [heg+ip-11] ;
\ wakX [Beg+hpl -8 [hegehp-11 )
e T4+ [Ep-1] =8l
Jumpsxl+x*check_loglu*check_sxp Iwt=mal -url] Swtems;
|
=ige Jumpexlin i
deleka]] CO;
ERTEA g
1
Frrrrdavsanddanrdasnshtdde calonlation of 82 (jumps] para severidadoderwssesdddwadddaads
lorg doubles =2 {const long double 51, const lomg dowble L3, conat loeng daehle 12, conat leng
doczkbls £I,const double X|].consc double HIL, conat ink M1, conar inl @miswe, coedl Dol
beg.censt int tin, comAn inn aly, cenan iat onp) |
ik nun=fin-begel;
ink np, i,
Lang doella gumgaz, pum, gl ow, 23, 14, Wi w2, wook, cans, consl, weemp
Ao le g1, 01y
ITong dAmpbles T - pew Lomy dowbls [(ouml
Lamz=ila-121;
limpowill, Z1-2au i1, 21
cLal-c;
LL=¥ [beg] -=1;
Aifirie = beyg) Cfordisbeg; ictin:is-1 |
Cli-kbeg-1l=Cli-beql +loqi|i11l) -X 1)) -check Zogdall - (W[4l *la+H[11=1%) F{2vpnwiaig, 20| ¢
cl=®li+Z]1-%T121;
|
1Eis2=X [fin) ) Cnum-L1]=CLlFin.Bagl +olack leag (a2 -K0an] ) -vheck_loglcld-
(W Ein) * d4H[TLR] =131 f (2 pow (adg, 230 ;
clae NUE=mUN-1;
Aun=0;
Fordi=d;Lenam; Lesrmme=is[1]
Auno g e
canrs [0] -sun;
Foz{iaf;iaoum;i4+1 |
TlilwiC[i] =sumt ;
iEfcons«<C|i]) econs-C|Li];

1tcansa700] Zovll=0; Lamggng i=w 1 [i] <0 fa] - boma =700
o (i=Clanm;i4=) 000 cobwele mun (0 [i]0
SUm—=90; B
Tk [L=0; ieimwm; i+=]1 #un+=01]
CLal =00 faum;
Ieve licly Sepumpis+) ClileT[i-174C[1] /5un;
har=id;
w5+ (Ep-1h#5]
iElnum=ll forlo=1; i« mam:Li+e) LE|001-1]=u &S u-:-l:".'[i.]][I'.E:--'i_jhrl_-.ﬂ:-rl-l-
L1EIhp==al |
M_=51;

weX | nagl -81;

alak IiT |hp==higm-1 && p2=X[fia] | [
wl=¥[fin] ;
sami-KIEin] |

mleg= |

#l=X [beqibhp-1) ;

=X |begsnp] -H[bca+hp-1] ;
L-umfd+ Rp-2)#57 ;
Jurp=xl+urs;
delata [1C;
raturn Juap;

t

_I'llll'll'l"li'rll‘lﬁi'l'lliil'i-'lii Eﬂlml:t'_nn g: 1miii FEAMTFrTIE R RS AR RAAA R

long double acez iZlconst iokb intl, conAt int Lofd,<onst ink M1, const int Hi,corst doucle
Ll,oonst douple Lo, const ioc k1, conat lamg double X1, const long double h2, const lang
double %3, conat doable Aig,eonal Lol slpba,gonst double beta) |

lopg dounle 1r, pr.jac:

long dcuble tamp, taspl;

Eloab PT = 3.141%926535097532304E ;

lr = |:J'!'IJ-"L“-":'l-"E"'"-I‘I'hl.-?l*-E":I"J-"'II'..:I-I..'I.I-l::ll'“j-WI:I.I"|:-t:|'.l'||:l3,2;l-
2rh2*Li-Ajrpou ik, 211/ (2*sigqtuig] ;

Jac=2=BI;

JadEapau [jas, 051

pr = 2 ¢ (2 « Kl + 3) + inkd *+ {intl-fnE2} )/ |Smax - Incirnigijas)

przthack log lprl - ipowlakpha, 2 -2*alpha* (hl+h2 -hispaw (hl, 2} +pow(h3, 2% -

P (2 310 F [2epoer Ibeka, 21 )

iF{iR1-hA)+d] bagp=-(hl+h3);
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else temp=hl+h3;

if(h2<0) templ=-h2;

else templ=h2;

jac=-100;

if(temp!=0 &% tempi!=0) jac= 2*check_log(temp)-check_log(tempi);
return Ir+pr+jac;

;/********************** Calculation of acei fot Severidade *kkkhkkkkkkok

long double acei2(const double inti,const double int2,const int Nl,const int Nj,const
long double LI,const long double Lj,const int kl,const long double hi,const long double
h2,const long double h3,const int sig,const int alpha,const double beta){

long double Ir,pr,jac;

long double temp,tempi;

float PI = 3.14159265358979323846;

Ir = (2*hl1*L1-N1*pow(hl,2)+2*h3*(Lj-L1)- (Nj-NI)*pow (h3,2)-
2*h2*Lj+Nj *pow(h2,2))/ (2*sig*sig) ;
jac=2*PI;

jac=pow(jac,0.5);

pr =2 * (2 * kI + 3) * int2 * (inti-int2)/(Smax * intl*sig*jac);
pr = check log(pr) - (pow(alpha,2)-2*alpha*(hl+h2-h3)+pow(hi,2)+pow(h3,2)-
pow(h2,2))/(2*pow(beta, 2)) ;

if((hl+h3)<0) temp=-(hl+h3);

else temp=hl+h3;

if(h2<0) templ=-h2;

else templ=h2;

jac=-100;

if(temp!=0 &% templ!=0) jac= 2*check_log(temp)-check_log(tempi) ;
return Ir+pr+jacs

T REEREEE A I AR KA K KA RAAL K calculation, Of aceitacao ***xxxkxxxkkkkkkhkhhrrhhhx

long double aceitacao_i(const int inti,const int int2,const int Nl,const int Nj,const
double LI,const double Lj,const int kl,const long double hi,const long double h2,const
long double h3,const int A,const double B) {

long double Ir,pr,jac;

Ir = NI * check_log(hi) + (Nj - NI) * check_log(h3) - Nj * check_lcg(h2) + h2 * Lj - hi
LI - h8 * (Lj - LI);

pr =2 * (2 * kIl + 3) * int2 * (inti-int2)/ (Smax * inti * factorial(A-1));

pr check_log(pr) + A*check_log(B)- B * (hi + h3 - h2) + (A-l)*check_log(hl*h3/h2);
jac = 2*check_log(hi + h3)-check_log(h2);

return Ir+pr+jac;

//‘k‘k*****»****‘k i-*******‘k CalCulatiOn Of aceitacao ERE R R R R R R R R R R R R
long double aceitacao_d (const double inti, const double irit2, const int NI, const int

Nj,const long double LI,const long double Lj,const int kl,const long double hi,const long

double h2,const long double h3,const int A,const double B) {

long double lr,pr,jac;

Ir = Nl * check_log(hi) + (Nj - N1l) * check_log(h3) - Nj * check_log(h2) + h2 * Lj - hi
LI - h3 * (Lj - LI);

pr 2 * (2 *kl + 3) * int2 * (intl-int2)/(Smax * inti * factorial(A-1));

pr check_log(pr) + A*check_log(B)- B * (hi + h3 - h2) + (A-l)*check_log(hl*h3/h2);
jac = 2*check_log(hi + h3)-check_log(h2);

return Ir+pr+jac;

}

//********************** updation of gu R R R R R R

void fr_gu (double S]] ,long double L[],int& k, const double X][], const int N[], const int
N1[] ,const int size, const int A, const double B,int TOT][]){
int i,j,begl,beg,fini,fin,num,u2,pos,mov,numl;
long double u,ul, a, si, ac, cons, hi, h2,h3 ;
double wei,weil;
static int tipo=I;
tipo++ f
if(tipo==3) tipo=1;
beg=inicio_d(X,size, S[0] ) ;
fin=fim_d(X,size,S (1]) ;
num-0;
wei=0;
if (fin>=beg) {
wei= (X [beg] -S [0] ) »double (N1 [beg-1] )+ (S [1] -X [fin] ) *double (N1 [fin] ) ;
num=N[beg-1] -N[finJ ;
for (i=beg; i<fin; i++) wei+= (X[i+1] -X [i] ) *N1 [i] ;

else wei=NI [beg-1] * (S[1] -S[0] ) ;
wei=wei/divisor_g;
L[O]=rgamma(num+A,wei+B,tipo);
L [0] =L [0] /divisor_g;
if(k>0) for(j=1; j <= k5 j++) {
fin=fim_d(X,size,S[j+1]);
if (L[j-1] !=L[j] && beg<=fin && NI [beg-1] !=0) S[j]=guS (S[j-1) ,L[j-
1 ,L[j] ,S[j+1] ,x,N,NI, size, beg, fin, tipo) ;
else {
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u=un(15+(tipo-1)*5);
S[HI=S[-1]+u* (S[j+1)-s [j-1]);

if(S [J]> S [_]+1]) cout<< "errol"<< "S ["<<j<<”] ="<<S [J] <<" S["<<j+1<<”] ="<<8S [j+1] <<
if (S[j] <S[j-1] ) coute<"erro2";
beg=inicio_d(X,size, S[j]) ;
num=0;
wei=0;
if (fin>=beg) {
wei= (X [beg] -S [j] ) »double (N[beg-1] )+ (S[j+1] -X [fin] ) »double (NI [fin] ) ;
num=N [beg-1]-N [fin] ;
for (i=beg; i<fin;i++) wei+=(X[i+]] -X[i] ) »double (N1 [i] ) ;

else wei= NI [beg-1] * (S[j+1]-S [j] );
wei=wei/divisor_g,-

L [j] =rgamma(num+A,wei+B,tipo) ;
L[j]=L[j] /divisor_g;

I:}Jeg=inicio_d(X,size,S [0]) ;

fin=fim_d (X,size,S|[1] );

num=0;

wei=0;

if (fin>=beg) {
wei= (X [beg] -S [0] ) »double (N1 [beg-1] )+ (S [1] -X [fin] ) »double (NI [fin] ) ;
num=N [beg-1] -N[fin] ;
for (i=beg,-i<fin; i++) weit+= (X[i+1] -X [i] ) *N1 [i] ;

else wei=NI1 [beg-1] * (S[1]-S[0] ) ;
wei=wei/divisor_g;
L [O]=rgamma(num+A,wei+B,tipo);
L[0] =L [0] /divisor_g;
if(k>0) for(j=1; j <= k; j++)
beg=inicio_d (X, size, S[j)) 5
fin=fim_d (X, size, S[j+1]);
num=0;
wei=0;
if (fin>=beg) {
wei= (X [beg] -S [j] ) »double (N [beg-1] )+ (S[j+1] -X [fin] ) »double (NI [fin] );
num=N [beg-1]-N [fin] ;
for (i=beg; icfin,-i++) weit+= (X[i+1] -X [i] )»double (N1 [i] ) ;

else wei= NI [beg-1] * (S[j+1] -S [j] );
wei=wei/divisor_g;

L[j] =rgamma(num+A,wei+B,tipo);
L[j]=L[j] /divisor__g;

mov=movimento(k);

u2=0;
num=0;
wei -0 ;
numl=0;
weil=0;
if(mov!=3) TOT[l+movV]++;
if(mov==1){
si =double(un(l14+(tipo-1)*5)*Smax);
pos=0;
while(u2 < k) {
w2 = 0;
si =double(un(l4+(tipo-1)*5)*Smax);
pos = 0O;
for(i=1l;i<=k;i+t+) {
if (s [i] != si) ul++;
if (s [i] < si) pos = i;

beg=inicio_d(X,size,S[pos]);

fin=fim_d(X,size,S[pos+1]);

if (fin>=beg){
num=N [beg-1] -N[fin] ;
wei=double (NI [beg-1] )* (X [beg] -S [pos] ) +double (NI [fin] ) * (S [pos+1] -X [fin] ) ;
for (i=beg;i<fin; i++) wei+=double (NI [i] )* (X [i+1] -X[i] );

else wei= Nl[beg-1]*(3[pos+1]-S[pos]);

fin=fim_d (X, size, si) ¢

if (fin>=beg){
numl=N[beg-1]-N[fin];
weil=double (NI [beg-1] )* (X [beg] -S [pos] ) +double (NI [fin] ) * (s1-X [fin] ) ;
for (i=beg; iefin,- i++) weil+=double (NI [i] )* (X [i+1] -X[i] );

else weil=N1 [beg-1] * (s1-S [pos] ) ;
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if(weill=0 &&% weill=wei){
h2 = L [pos] ;
cons = (l1/un(ll+(tipo-1)*5) - 1);
hi = h2 * pow(cons, ((sl-S [pos+1] )/ (S[pos+1]-S [pos])));
h3 = cons * hi;
ac=aceitacao_d(S[pos+1)-S[pos],si-S[pos],numl,num,weil,wei,k,hi,h2,h3,A,B*divisor_g)
if (ac>=0) ac=l;
else ac=check_exp(ac);
ul=un(14+(tipo-1)*5) ;
if(ul <= ac) {
increase_d(S,si,pos + l,kmax +2);
L [pos] = hi;
increase(L,h3,pos + l,kmax+l);
k =k + 1;
TOT [mov-1] ++;

}}

if(mov==2){
pos = sample(k);
si =S [pos] ;

beg=inicio (X, size, S[pos-1])

fin=fim (X,size,S[pos+1]);

if (fin>=beg) f
num=N [beg-1]-N[fin] ;
wei=NI [beg-1] * (X [beg]| -S [pos-1] ) +N1 [fin] * (S [pos+1] -X [fin] ) ;
for(i=beg;i<fin;i++) wei+=NI1[i]* (X[i+1]-X[i]);

else wei=NI [beg-1] * (S [pos+1] -S [pos-1]);

fin=fim (X,size,S[pos]);

if (fin>=beg){
numl=N [beg-1] -N[fin] ;
weil=N1 [beg-1] * (X [beg] -S [pos-1] ) +N1 [fin] * (S [pos] -X [fin] ) ;
for (i=beg; i<fin,- i++) weil+=NI1 [il * (X [i+1] -X[i] ) ;

else weil=NI [beg-1] * (S [pos] -S [pos-1] ) ;
if(weill=0 &% weill=wei){
hi = L [pos-1] ;
h3 = h|[pos] ;
h2 = check exp (( (S [pos]-S [pos-1] ) * check_log (hi) + (S[pos+1]-S [pos]) *
check_log (h3)) / (S [pcs+1] -S [pos-1]));
ac=aceitacao_d (S [pos+1] -S [pos-1] ,S[pos] -S [pos-
1],numl,num,weil,wei,k,hi,h2,h3,A,B*divisor_g);
if(ac<=0) ac=1;
else ac = check_exp(-ac);
ul = un(15r (tipo-1) *5) ;
if(ul <= ac) {
k =k - 1;
decrease_d(S,pos,kmax +2);
L[pos-1] = h2;
decrease(L,pos + l,kmax+l);
TOT[mov-1]++;

beg=inicio_d(X,size,S[0]);

fin=fim_d(X,size,S [1]) ;

p.um-0;

wei=0;

if (fin>=beg) {
wei= (X [beg] -S [0] ) *double (N1 [beg-1] )+ (S[1] -X [fin] )»double (N1 [fin] ) ;
num=N [beg-1] -N[fin] ;
for (i=beg; i<fin,-i+ +) wei+=(X[i+1]-X [i]) *N1 [i] ;

else wei=NI1 [beg-1] * (S[1] -S [0] ) ;
wei=wei/divisor_g;
L[O]=rgamma(num+A,wei+B,tipo);
L [0] =L [0] /divisor_g;
if(k>0) for(j=1; j <= k5 j++) {
fin=fim_d(X,size,S[j+1]);
beg=inicio_d(X,size,S[j]);
num=0;
wei=0
if(fin>=beg) {
wei= (X [beg] -S [j] ) »double (N[beg-1] )+ (S[j+1] -X [fin] ) »double (N1 [fin] ) ;
num=N [beg-1]-N [fin] ;
for(i=beg;i<fin;i++) wei+=(X[i+1]-X][i])»double(N1][i]);

else wei= N1 [beg-1] *(S[j+1] -S[j]);
wei=wei/divisor_g;
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LI =rTamnainumid, wal+B, Lipal ;
Liil=Liil fddwisor g;
'
'
JfATErTi eIk LA A a N up.-‘l..u--i.-_n nf FE dsvrddbninbddnahddbnahhdd
waddl e O Ddsuide 5[0, long double LI1031] it 5[] . dcuble X01,1int HI).i0T size,doubls
Wil Thaexl 21 .i0z 5_all [22] ik A, docble B,irkE TOT [} |
int z,3.beql. beq, fial, fia, ouom. uz, pos.mow, moml, tomp. Eonpl, x;
lamg dourcle w.ul, a3, as.cans. hl h2 ki 11, b;
gouble woi, wail;
skatic int cipgasi;
ECigie+;
PFTsipmaaa)) Lipo=l1;
bugsinicion 4iX, eize, 5001,
fin=fim_dix.size.3[1]):
WELel
Eznp~Eranst (3 [0] ) ;
tampl=tyanafI& 1§
Crw {4 = Lafijs; |-:'_I,r;lnp'_,i+-|-||'
iTiieatemp] wlaso] ) mlee alaWlli)
Lfli==btempl] w=5|1]1;: =lz= u= Wl(i1l];
foriuZal uZeimas ; m3 4] doriz=C;2a2;Tebl |
lLl=gual afLlz=2] .48 &2 JHlz+20 . ull;
iFlL=0 && WLIT [l [=]vam -1 [w2l Txl) |
Li=chack log iWiil [l [z]/wii-11 o] [5] 87365,
?:d[i-Z]fu?]Iz'*Ichetk_exvik*lu-ﬂl[ilII-:n:ch_explb*lul-Hl[ijIJ]fh;
m=lEr paM 1 (2] [z] = dw-ulil;
weltrell®h,;

t
um=0;
12 Ifinz=hag) fordi-bes;ic=Finji==] num+=H[i];
L] [&) =vryaaeia (nem+ i, wei+s, cipel
itk [03=20] forljs1lr j = %01y j==1 |
Fenz€im_dd0X, =ize, 53+ 1 ;
aF4nal [9-11 '=Lial [91%4
Jffiinhnbzﬂ!El'_:--:l:tBI:'i'i,Elj-ll COLIE) (-2 LEOT 3. 80+ 8 0 % A, bk, =ze, Ein,bag, Eipal ;
alns
u=uni15s jtdpa-1) #5);
E[1]=B11 -1 +u={8[]--1-8[j-2]1);

LTE[Jl =8 [1+1]) voplecteprol =S [ woje | @ wn 5 [jlaa™ B [Tarndalag!]| =B [{«L]zc? 0¥
L8] =8[j-1]1F vmikec"mpraz"|
bag=bimdsio A, =ize,&5[31);
ir=l;
WHimD
tapp=transt {5 (4] ) ;
tappl=transt (3 [{+1.};
faril=tanp; l-o=rcompl;iedld
“til-=tompl wl=5[j]; @lam vlaWi[il;
Lffdl--tampli =S [+11; mlee u= WLDi+1];
Tor (uZ2=0;uR<Anax ud++} forige=d;o=2;z+=1 |
Tiziual_alblz+2]1,.5 al=z] . klz+2] ,udt;
iCli= & WLAl Tu2] (2] 2eWii-21] [2) [=]) |
b-check_logiW(i] (uz] (z] /M [1-1] [0Z] (=]} F3E5;
bah[i-11 [u2] [z]* icheck _cxpib* lu-WLIL] ] «chack eepibe ful-W11i1h )1 /by

=loe beW [1] [UZ] 20 = lu=ull;
wWElerllEn.

b

)
11 (Einpzsbkag)l forlichegicstimii++d mom+s=H21;
) L.a] Ij] =rganha (pun+h, wei+B tipo) ;
¥
bag=inicic A€, size, 50011
Linafim_ (X, =mize.5[1]),
i adl
temEe=transtE 13 (0] };
cempl=transt{e(1] 1 ;
tor(i=cemgp,; lo-tanpl jiss) ]
1B li=mbenp] ul=210]; elas ul=wl[i];
1 1i-zbanpl] =% 11; elss o= W1[a-1];
Eorqul=0;u2shiiag;u2=+] forlz=0,3=<Z;2t+} -:
Lizgual alll#+2] .5 alz], klz+2] ,u12);
LIgi=0 &k WLL] [w2] [zi t=W|di-1] Tuzl lz|1 ¥
Beehack logiw[i] (w2l [=] /wii-21] jwa| [=]]/3E5;
BoW[i-1] [w2] [#] = icheck_swp b+ iu-W1[1] 1) -check axp{b= (uz-wW1[il11)/h;
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else b=WJi] [u2] [z] * (u-ul) ;
weit=11*b;

)

num=0;
if (fin>=beg) for(i=beg;i<=fin;i++) num+=NJi];
L [0] [0] =rgamraa(num+A,wei+B,tipo);
if(k[0]>0) for(j=1; j <= k[0]; j++) {
fin=fim_d (X,size,S[j+1] );
beg=inicio_d (X ,size,S[j]);
num=0;
wei=0;
temp=transf(S [j]);
templ=transf (S[j+1]);
for(i=temp; i<=templ;i++){
if(i==temp) ul=S[j!; else ul=Wl][i] ;
if (i==templ) u=S[j+1]; else u= WI[i+1];
for(u2=0;u2<Amax;u2++) for(z=0;z<2;z++) {
l1=qual_a(L [z+2] ,S_a [z] ,k[z+2] ,u2);
if (i>0 &% WI[i] [u2] [z] !=W(i- 1] [u2] [z] ) {
b=check_log (W[i] [u2] [z] /W[i-1] [u2] [z])/36S;
b=W[i -1] [u2] [z] * (check_exp(b*(u-WI[i]))-check_exp(b*(ul-WlJi]))) /b;

else b=WJi] [u2] [z] * (u-ul) ;
weit+t=11%*b;

}

if (fin>=beg) for(i=beg;i<=fin;i++) num+=NJ[i);
L [O] [j]=rgamma(num+A,weit+B, tipo) ;

mov=movimento(k [0]);
u2=0;
if(mov!=3) TOT[l+mov]++;
if(mov==1){
si =un(l4+(tipo-1)*5)*Smax;
pos=0;
if (k[0] >0) while (u2 < k[0]) ¢{
w2 = 0

sl=un(l4+(tipo-1)*5)*Smax;

pos = O;

for(i=1;i<=k(0);i++) {
if (S[i] := si) u2++;
if (S[i] < si) pos = i;

beg=inicio_d(X,size,S [pos]) ;
fin=fim_d(X,size,S [pos+l]) ;
num=0;
we i=0;
temp=transf(S[pos]);
templ=transf (S [pos+1] ) ;
for(i=temp; i<=templ;it++){
if(i ==temp) ul=S [pos]; else ul=Wl[i] ;
if (i==templ) u=S [pos+1l]; else u= WI[i+1];
for (u2=0,-u2<Amax;u2++) for (z=0;2z<2 ;z++) {
l1=qual_a(L[z+2],S_a[z] ,k[z+2],u2);
if(i>0 & WJi] [u2] [z] =W][i-1] [u2] [z] ) ¢
b=check_log (W[i] [u2] [z]/ W [i-1] [u2] [z])/365 ;
b=W|[i-1] [u2] [z] * (check_exp (b* (u-Wl [i] ) ) -check exp (b* (ul-W1 [i] ))) /b;

else b=WJ[i] [u2] [z]*(u-ul);
wei+=11%b;

}

if (fin>=beg) for(i=beg;i<=fin;i++) num+=NJ[i];
fin=fim_d(X,size,si);
numl=0;
weil=0;
temp=transf (S [pos] ) ;
templ=transf(si);
for(i=temp; i<=templ;i++){
if(i==temp) ul=S [pos] ; else ul=Wl [i] ;
if(i==templ) u=sl; else u= WI[i+1];
for(u2=0;u2<Amax;u2++) for(z=0;z<2;z++) {
l1=qual_a(L[z+2] ,S_a[z],k[z+2] ,u2) ;
if (i>0 && W[i] [u2] [z] !=W][i-1] [u2] [z] ) ¢
b=check_log (W[i] [u2] [z]/ W [i-1] [u2] [z]) /365;
b=W]J[i-1] [u2] [z] * (check_exp (b* (u-WI [i] ) ) -check exp (b* (ul-W1 [i] ))) /b;

else b=WJ[i] [u2] [z] * (u-ul) ;
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weil+=11*b;

if (fin>=beg) for(i=beg;i<=fin;i++) numl+=NJi);
if(weill=0 &% weill=wei){
h2 = L[0] [pos] ;
cons = (1/un(ll+(tipo-1)*5) - 1);
hi = h2 * pow (cons, ((sl-S [pos+1] )/ (S [pos+1]-S [pos]))) ;
h3 = cons * hi;
ac=aceitacao_d(S[pos+1]-S[pos],sl-S[pos],numl,num,weil,wei,k[0],hi,h2,h3,A,B)
if(ac>=0) ac=l;
else ac=check_exp(ac);
ul=un(14+(tipo-1)*5) ;
if (ul <= ac) {
increase_d(S,si,pos + lLkmax +2);
L[0] [pos] = hi;
increase(L[0],h3,pos + l,kmax+l);
k[0] = k[0] + 1;
TOT [mov-1] ++;

\ }

if(mov==2){
pos = sample(k [0]) ;
si =S [pos] ;

beg=inicio(X,size,S[pos-1]);
fin=fim (X,size,S[pos+1]);
num=0;
wei =0;
temp=transf (S [pos-1] ) ;
templ=transf (S [pos+1]);
for(i=temp; i<=templ;i++){
if(i==temp) ul=S [pos-1]; else ul=WI1[i];
if(i==t.empl) u=S [pos+l] ; else u= Wl[i+1] ;
for(u2=0;u2<Amax;u2++) for(z=0;z<2;z++) {
l1=qual_a (L [z+2] ,S_a [z] ,k[z+2] ,u2) ;
if(i>0 &% W[i] [u2] [z] !=W[i] [u2] [z] ) {
b=check_log (W[i] [u2] [z)/W[i-1] [u2] [z])/365;
b=W[i-1] [u2] [z] * (check_exp (b* (u-WIl [i] )) -check_exp (b* (ul-W1 [i] ))) /b;

else b=WJ[i] [u2] [z]*(u-ul);
weit+=11*b;

if (fin>=beg) for(i=beg;i<=fin;i++) num+=N]Ji];
fin=fim (X,size,S [pos] ) ;
numl=0;
weil=0;
temp=transf(S[pos]) ;
templ=transf(si) ;
for(i=temp; i<=templ;i++){
if(i==temp) ul=S [j]; else ul=WI1[i];
if(i==templ) u=sl; else u= WI[i+1];
for (u2=0;u2<Amax,-u2++) for (z=0;2z<2;z++) {
l1=qual_a(L [z+2] ,S_a[z] ,k[z+2] ,u2) ;
if (i>0 & W[i] [u2] [z] !=W][i-1] [u2] [z]) ¢
b=check_log (W[i] [u2] [z]/W[i-1] [u2] [z])/365;
b=W[i-1] [u2] [z] * (check_exp (b* (u-Wl [i] )) -check_exp (b* (ul-W1 [i] ))) /b;

else b=WJ[i] [u2] [z]*(u-ul);
weil+=11*b;

}

if (fin>=beg) for(i=beg;i<=fin;i++) numl+=N]Ji];
if(weill=0 & weill=wei){
hi = L[0] [pos-1] ;
h3 = L[0] [pos] ;
h2 = check_exp (( (S[pos]-S [pos-1] ) * check_log (hi) + (S[pos+1]-S [pos]) *
check_log(h3) )/ (S[pos+l] -S [pos-1]));
ac=aceitacac_d(S [pos+1] -S [pos-1] ,S [pos] -S [pos-
1] ,numl, num, weil, wei, k[0] ,hi,h2,h3,A, B) ;
if(ac<=0) ac=1;
else ac = check_exp(-ac);
ul = un(15+(tipo-1)*5);
if(ul <= ac) {
k[0] = k[0] - 1;
decrease_d(S,pos,kmax +2);
L [0] [pos-1] = h2;
decrease(L[0],pos + l,kmax+l);
TOT [mov-1] ++;
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) }

[};eg=inicio_d(X,size,S[O]);
fin=fim_d (X,size,S[1]>;
wei=0;
temp=transf(S [0]) ;
templ=transf(S[1]);
for(i=temp; i<=templ;i++){
if(i==temp) ul=S[0]; else ul=WI [i] ;
if(i==templ) u=S|[1]; else u= WI[i+1];
for(u2=0;u2<Amax;u2++) for(z=0;z<2;z++) {
l1=qual_a(L[z+2] ,S_a [z] ,k[z+2] ,u2);
if (i>0 & WJ[i] [u2] [z] !=W[i-1] [u2] [z]) {
b=check_log (W[i] [u2] [z]/W [i-1] [u2] [z])/365;
b=W|[i-1] [u2] [z] * (check_exp (b* (u-WI [i] ) ) -check_exp (b* (ul-W1 [i] ))) /b;

else b=WJi] [u2] [z] * (u-ul) ;
wei+=11%b;

}}

num=0;
if (fin>=beg) {for(i=beg;i<=fin;i++) num+=N]Ji];}
L [0] [0]=rgamma(num+A,wei+B,tipo) ;
if (k[0] >0) for(j=l; j <= k[O]; j*++) {
fin=fim d (X,size,S[j+1] );
beg=inicio_d(X,size,S[j]);
num=0;
wei=0;
temp=transf(S[j]);
terapl=transf (S [j+1] ) ;
for(i=temp; i<=templ;i++){
if(i==terap) ul=S [j]; else ul=WIJi] ;
if(i==templ) u=S|[j+1]; else u= WI[i+1];
for (U2=0;u2<A.max;u2++) for (z=0;2z<2;z++) {
l1=qual_a (L [z+2] ,S_a [z] ,k [z+2] ,u2) ;
if (i>0 &% W[i] [u2] [z] !=W[i-1) [u2] [z] ) {
b=check_log(W[i] [u2] [z]/W [i-1] [u2] [z])/365;
b=W[i-1] [u2] [z] * (check_exp (b* (u-WI [i] ) ) -check__exp (b* (ul-W1 [i] ))) /fa

else b=W][i] [u2] [z] * (u-ul) ;
wei+=11*b;

if (fin>=beg) for(i=beg;i<=fin;i++) num+=NJi];
L[O] [j] =rgamma(num+A,wei+B,tipo) ;

//***’****************»* updation Of fsa ***Fsskkkdkkrrhhhhhthp ok

void fr_sa(int S[],long double L[],int& k,int N[], double W[],i:it A, double B,int TOT][]){
int i,j,begl,beg,fini,fin,num,u2,pos,mov,numl, temp,tempi,si,z;
long double u,ul,a,ac,cons,hl,h2,h3,11,b;
double wei,weil;
static int tipo=I;
tipo++;
if(tipo==3) tipo=1;
nmum=0 ;
wei=0;
if (k==0) sl=Amax; else sl=S]J[1];
for(i=0; i<sl;i++){
num+=N [i] ;
wei+=W]Ji] ;

wei=wei/divisor_age;
L[O]=rgamma(num+A,wei+B,tipo);
L[0] =L[0] /divisor_age;
if(k>0) for(j=1; j <= k; j++)
if(j==k) sl=Amax; else sl=SJ[j+1];
num=sl-S [j -1] ;
if(num>2){
if (L[j-1] !=L[j]) S[j] =fsaS(S[j-1],L[j-1] ,L[j],si,N, W, tipo) ;
else S[j]= SJ[j-1] + sample (sI-S [j-1]-1) ;
if (S[j] >=sl) cout<<'errol'<<"S ["<<j<<"]="<<S[j]<<" S['<<j+l<<"]="<<S[j+1]<<"\n";
if (S[j] <=S[j-1]) cout<<"erro2";

num=0;

wei =0;

for(i=S[j]; i<sl;i++) {
num+=N [i] ;
wei+=W][i] ;
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wei=wei/divisor_age;
L[j ] =rgamma(num+A,wei+B, tipo)
L[j]=L[j]/divisor_age;

num=0;
wei=0;
if(k==0) sl=Amax; else sl=S][1];
for(i=0; i<sl;i++){
num+=N[i];
weit+t=W]Ji |;

wei=wei/divisor_age/
L[0]=rgamma(num+A,wei+B,tipo) ;
L[0]=L[0]/divisor_age;

if(k>0) for(j=1; j <= k; j++)f

>

if (j ==k) sl=Amax; else sl=S[j+1]/

num=0;

wei=0/

for(i=S[j]; i<slji++) {
num+=NJ[i]/
weit=W [i];

wei=wei/divisor_age;

L [j ] =rgamma(num+A,wei+B,tipo)/

L[j]=L[j]/divisor_age;

mov=movimento(k);

u2=0;
num=0;
wei=0;
numl=0;
weil=0;
if(mov!=3) TOT[l+movV]++;
if(mov==1){
si =sample( (Amax-1));
pos=0;
while(u2 < k) {
u2 = 0;
si =sample( (Amax-1));
pos = O;
for(i=1l;i<=k;i++) {
if(S [i] != si) u2++
if(S[i] < Si) pos = i;
for(i=S [pos] ; i<S [pos+1] ;i++) {num+=N [i] ;wei+=W [i] ;}

for(i=S[pos]; i<sl;i++){numl+=NJ[i];weil+=W [i];}

if(weill=0 S weill=wei){
h2 - Lipos] ;
cons = (l/un(l1l+(tipo-1)*5)

1);

hi = h2 * pow (cons, ((sl-S [pos+1] )/ (S[pos+1]-S [pos]))) ;

h3 = cons * hi;

ac=aceitacao_i(S[pos+1]-S[pos] ,sl-
S[pos],numl,num,weil,wei,k,hi,h2,h3,A,B*divisor_age);

if(ac>=0) ac=l;
else ac=check_exp (ac) ¢
ul=un(14+(tipo-1)*5);
if(ul <= ac) {

increase_i(S,si,pos + lLkmax +2);

L[pos] = hi;

increase(L,h3,pos + l,kmax+l);

k =k + 1;
TOT[mov-1]++;
}
}

if(raov==2){
pos = sample(k);

3}

si =S |[pos] ;
for (i=S [pos-1] ; i<S [pos+1] ;i++) {num+=N [i] ;wei+=W][i]
for (i=S [pos-1] ; i<S [pos] ;i++) {numl+=N [i] ;weil+=W [i] ;

if(weill=0 ss weill=wei){
hi = L[pos-1];
h3 = L [pos] ;
h2

check_exp (( (S [pos]-S [pos-1])

check_log (h3) ) / (S [pos+1] -S [pos-1]));
ac=aceitacao_i (S [pos+1] -S [pos-1] ,S[pos] -S [pos-
1],numl,num,weil,wei,k,hi,h2,h3,A,B*divisor_age);

if(ac<=0) ac=l;

* check_log (hi)
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else ac = check_exp(-ac);

ul = un(15+(tipo-1) *5) ;-

if (ul <= ac) {
k=k-1;
decrease_i(S,pos,kmax +2);
L{pos~1l] = h2;
decrease(L,pos + l,kmax+l);
TOT[raov-1]++;

}}

num=0;
wei=0;
if(k==0) sl=Amax; else sl=S]J[1];
for(i=0; i<sl;i++){
num+=N]Ji];
weit+t=W]Ji];

wei=wei/divisor_age;
L[O]=rgamma(num+A,wei+B,tipo) ;
L[O] =L[0]/divisor_age;
if(k>0) for(j=1; j <= k; j++)f
if (j ==k) sl=Amax; else sl=S][j+1];
num=0/
wei=0;
for(i=S|[j]; i<sl;i++){
num+=N [i] /
weit+t=W/Ji];

wei=wei/divisor_age;
L [j ] =rgamma(num+A,wei+B, tipo) ;
L[j]=L[j]/divisor_age;

|

//********************** updatlon of Severldade sa P S il
void severidade_sa (int S[],long double L[],int& k.int N[],double W][],int alpha,double
beta,double sig.int TOT[]){
int i,j,beg,fin,num,u2,pos,mov,numl, temp,tempi,si,z;
long double u,ul,a,ac,cons,hi,h2,h3,11, b;
double wei,weil;
static int tipo=1;
tipo++;
if(t.ipo==3) tipo=1;
for(j=0 j <= k; j++){
num=0
wei=0
for(i=S|[j); i<S [j+1) ;i++) {num+=N [i] ; wei+=W][i);}
a=num/pow(sig,2)+1/pow(beta,2);
cons=wei/pow(sig,2)+alpha/pow(beta,2);
L[j]=rnorm(cons/a,pow(a,-0.5),tipo);

if(k>0) for(j=1; j <= k- j++) {
num=S [j+1] -S [j -1] ;
if(num>2){
if (Lj-1]'=L[j]){S[j]=fsaS2(S[j-1] ,L[j-1] ,L[j],S[j+1] ,N,W, sig, tipo) 3
else S[j]= S[j-1] + sample (S[j+1]-S [j-1]-1) ;
if (S[j] >=S[j+1]) cout<<"errol"<<"S ["<<j<<"]="<<S [j] <<" S['<<j+l<<"] ="<<S [j+1] <<"\n"
if(S [j]<=S[j-1]) cout<<"erro2";

num=0;

wei=0;

for(i=S|[j]; i<S [j+1] ;i++) {num+=N [i] ; wei+=W [i];}
a=num/pow (sig, 2) +1/pow (beta, 2) ;
cons=wei/pow(sig,2)+alpha/pow(beta,2);

L [j] =rnorm (cons/a, pow (a, -0.5) ,tipo) ;

;‘oru=o; jo<= ks jHH) o
num=0;
wei =0;
for(i=S|[j]; i<S[j+1] ;i++) {num+=N[i] ; wei+=W [i];}
a=num/pow(sig,2)+1/pow(beta,2);
cons =wei/pow (sig, 2) +alpha/pow (beta, 2) ;
L[j]=rnorm(cons/a,pow(a,-0.5),tipo);

mov=movimento (k) ;

u2=0;

num=0;wei=0;

numl=0;wei 1=0;
if(mov!=3) TOT[l+movV]++;
if(mov==1){
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si =sample( (Amax-1));
pos=0;
while(u2
u2 = 0;
si =sample( (Amax-1));
pos = O;
for(i=1;i<=k;i++) {
if (S[i] !'= si) U2++
if(s[i] < si) pos =

<K

for(i=S[pos] ;
for(i=S[pos] ;
h2 = L([pos] ;
if(h2!1=0){
cons =
hi =

h3 = hl/cons;

i;

(I/un(l1+(tipo-1)*5) -
(S [pos+1] -S [pos] ) *h2/ ( (S [pos+1] -si) /cons+sl-S [pos] ) ;

1) ;

ac=acei2(double(S[pos+1]-S[pos]),double(sl-
S[pos]),numl,num,weil,wei,k,hi,h2,h3,int(sig),alpha, beta) ;

if (ac>=0) ac=l;
else (if(ac<-700)
u=un(l4+(tipo-1)*5) ;
if (u <= ac) {

ac=0;

else ac=exp(ac);}

increase_i(S,si,pos + l,kmax +2);

L[pos] = hi;

increase(L,h3,pos + lL,kmax+l);

k =k + 1;
TOT[mov-1]++;

if(mov==2){
pos = sample(k);
for (i=S [pos-1] ;
for (i=S [pos-1];

hi = L[pos-1];

h3 = L [pos] ;

h2 = ((S[pos] -S [pos-1])
if(h2!=0){

*

hi + (S[pos+1]-S [pos])

ac=acei_i2 (S [pos+1] -S [pos-1] ,S[pos] -S [pos-
1], numl,num,weil,wei,k,hi,h2,h3,sig,alpha,beta);

if(ac<=0) ac=l;
else {if(ac>700) ac=0;
u = un(l5+(tipo-1)*5);
if(u <= ac) {

k =k - 1

L [pos-1] = h2;

else ac =

exp(-ac);}

decrease_i(S,pos,kmax +2);

decrease(L,pos + lL,kmax+l);

TOT[mov-1]++;
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i<S [pos+1] ;i++) {num+=NJi] ;wei+=W][i] ;}
i<sl;i++) {fnuml+=N[i] ;weil +=W[i] ;}

i<S [pos+1] ;i++) (num+=N [i] ;wei+=W [i] ;}
i<S [pos] ;i ++) {numl+=N.[i] ;weil+=W]i] ;}

* h3) /(S [pos+1]-S [pos-1])



