IT City Research Online
UNIVEREIST;]OggLfNDON

City, University of London Institutional Repository

Citation: Hadjiprocopis, A. (2000). Feed Forward Neural Network Entities. (Unpublished
Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30791/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral Rights
remain with the author(s) and/or copyright holders. URLs from City Research
Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or charge.
Provided that the authors, title and full bibliographic details are credited, a
hyperlink and/or URL is given for the original metadata page and the content is
not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Feed Forward Neural Network

Entities

Andreas Hadjiprocopis

Ph.D. Thesis

Department of Computer Science

City University

JUNE 21, 2000

This thesis is submitted as part of the requirements for a Ph.D. in Computer

Science, in the Department of Computer Science of City University, London.

Contents

List of Figures

List of Tahles

Acknowledgements . . .o oL o o L o e e e

PDeclaration . & . & ¢ 0 o 0 v s v o v v m e

I ENTRODUCTION

1.1
1.2

1.3

Blolivations . - e e e e e e e e e .
ContribytIon - . . - 0 o e e e e e e e e e e e e e

1.2.1 Entities of teed forward neural netwarks: the modal

1.2.2 The utility of the moded - . . . 0 00 00000
1.2.3 Published work
Srruckhiere of the thesis . . . - oL ...

IT CONNECTIONISM

21

2.2
2.3

2.4

Connectiomson: ralsom d8tre .0 . 0 0 0 e e e - e -
211 Symbolic AT, 0 . 00 L e e e
2.1,2 What iz wrong with symbols? . 00 C 000 0L

2.1.3 HRaductionism versus Emergence - . . 0 0 0 0 0 0 L

Historical
Conoectioniat learning |

231 Imeroduction

212 A pew computationmal architectuse . . . 0 0 . .

Connertionizm: what iz 1t really worth?

III FEED FORWARD NEURAL METWORKS

i1
3.2

3.3
3.4

Introdoction

FFENI Formalism . - . . - . o e e e e e e e e e e e

321 Operation of the neuron |

322 Operatiomof the FT'NI . 0 0 0 o 0000000
FENHN as Universal Function Approsomators . . 0 . 0 . 0 .
The back-propagation of érror traleng methad . 0 . .

341 Imtroduckion

34.2 QGradieoo descent . - . - . - . .. L. oo o

3.4.3 Back-propagatiem L Lo oL oL

. xiid

xvi

. Mwii

. Xix

IV CRITIQUE OF FFNN 29

41 INtrodUCtioN . .cooiiiiiiiiiiciiiec e 29
4.2 The power of linear clasSiflers......ccovvviiiieeiiiiiiiiee e 32
4.2.1 Order of a predicate and the perceptron.......cccceccuveeiieeeeiiinereeeeeennnn, 32
4.2.2 Linear separability.....ccoccieciiiiiiiiiieiiiiie e 33
4.3 FFNN: Issues of Computational CompleXity.....cocoveiiiveiiiivneeeeeeeiiineeeeeeeenn. 35
4.3.1 INtroduction ...oocccocoiiiiiiic e 35
4.3.2 Some complexity ClaSSeS..ciiiiiiiiiiiiiiieiiiiiieieee et 35
4.3.3 KNnown TesUltS .coccoociriiiiiiiiiiiieecrcrtereeeeeeeee e 36
4.3.4 COonClUSION oottt 37
4.4 Learning as OPtImMISAtION...ccceiieieieeeiiieiieitrtinrieerrrreerrerereerreererereerreerereeeseaeseens 37
4.4.1 IntroducCtionccoccieiiiiiiiiiiie e 37
4.4.2 BacKk-propagation.....cccccceeeeieeiiiiieiieeeeeeeeeeeeeeeeeeeeeee e 38
4.4.3 Local MINIMa..cccoooiiiiiiiiiiiiiiiniieieeeiec et 41
4.4.4 Premature Neuron Saturation........ccccccceeevierreeniiieniiienneeenieeenieenenes 42
4.5 Issues of parallelism and hardware implementation...........cccceeeevieeennnennn. 43
4.5.1 ParallelisSm ... 43
4.5.2 Hardware implementation constraints......cccccvvveciviieeeeeineciineeennn. 45
4.6 The non-explicit nature of 1€arning......ccccceeeieiiiiiieeieeiieiiieeeee e, 45
A7 SUIMII AT Y eeiiiiiiiiiiiiie e ettt e e e ettt e e e e eeeetaaeeeeeeeettatreeeeeeeeenareaeaeeeenesrrreeaeeeas 46
V FFNN ENTITIES 49
5.1 INtroducCtion...coocciiiiiiiiiiiiiiiiiicee e s 49
5.2 MoOtIVALION ooiiiiiiiiiiic e e 51
5.3 Modular neural architectures: state of theart.....c.cccoooiiviiiiiiniiiinnieinenns 52
5.3.1 Committees of NetWOrKks.....ccocirviiiiiiiiiiiiiiiiiccee, 52
5.3.2 Other ensemble methods: bagging andboosting.......c...cccccevennneen.. 52
5.3.3 Mixtures of E X Perts .o 53
5.3.4 Summary and margins for improvement........ccccccooevivvveereeeeeecnnnen... 54
5.4 FENN @NEIEIES cuiiitiiiiiiiiie ettt sttt st 55
541 INtroductiOn ...ccccociiiiiiiiiiiiiciecerc e 55
5.4.2 Class 1 FFNN entities: formalisSmccccoccevviieriieeininiieenie e 57
5.4.3 Class 1 FFNN entities: construction.....ccccoeveeriuieriereneeesiiernieenne. 59
5.4.4 Class i FFNN entities: training.......cccccovvveeeeeeiiiineeeeeeeeiiirreeeeeeeeeennns 60
5.4.5 Class i FFNN entities with adjustableconnections....................... 60
5.4.6 The derivative of the FFNN transfer function.......cccccccevviveeennnnnn. 62
5.4.7 Class 2 FFNN entities: formalismcccccevviiviieniiienienee e 65

5.4.8 Class 3 FFNN eNtitiesS...ccciiiiiiiiiiieeiiiiiieieeeeeeeciieeeeeeeeeeiineeeeeeeeeenneens 66

5.5 The np language and INterPreter...ccooiiieiciiiiiiiiieereeer e 67
551 INtroduCtion ...c.cccociiiiiiiiiiiniiiie s 67
B.5.2 SEIUCTUTE ciiiiiiiiiiiieeeeeeeeeere ettt ettt et e nee e 68
5.6 FFNNentities and the Universal Function Approximation property . . . 70
5.7 Single FFNN and C1 entity: comparison of training tim es.........cccceeeunes 72
5.8 Benefits from using the entities....coovciiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee e 76
5.9 SUIN I AT Y oottt ettt eee e e e e e e ettt eeaeeeeeeetrreeeeeeeesarareeaeeean 77
VI EMPIRICAL RESULTS 79
6.1 INtrOdUCEION . coiiiiiiriiiiiiiieiiceec ettt et 79
6.1.1 LimItAtlomS.cccciiiiiiiiieiiiiiiieeieiere et e 80
6.1.2 Statistical analySiS......ccccociiiiiiiiiiiiiiiiieee e 80
6.2 Proposed methodology..oooeieiiiiiiiiiiiiieeeeeeee e 81
6.2.1 Generalisation ADILIEY ..ooooiiiiiiiiiiiii e 81
6.2.2 Parallelisation of the entities’ training procedure..........cccouun...... 83
6.3 Generalisation A DILITY ..o 83
6.3.1 INtrodUCtiON ..icciiiiiiiiiiiiiieie ettt 83
B.3.2 O D JECTIVES . coiiiieiiieiiee ettt e e e e e e et a e e eeaans 84
6.3.3 Statistical significance te St S .cooiiiiiiiiiiiiiiieeieeeeieee e 85
6.3.4 Presentation of the results....c.ccocviiiniiniiiiiiiiiniinccee, 86
6.3.5 The Levy data-generating procedure......ooccceeeeeeevivneeeeeeeeeiinreeeeeenn. 87
6.3.6 Generalisation Ability: the VariDimte stcccoovviiiiiiiiiiininieeieennnn, 88
6.3.7 Generalisation Ability: the ConsDimtest...cccccconiiiviiieiiiiiiiiiieeeeeenn, 122
6.4 Parallelisation of the tralning ProOCESS...ccoiviiiieeeeiiiirreeeeeeeeeerreeeeeeeeeereeeeeeeeeeanns 150
6.4.1 INtroduCtiOn ...cccoooiiiiiiiiiiiciiienc e e 150
6.4.2 Results and diSCUSSION ..cccciiriiiiniiiiiiiiiiceeerrteeee e 151
6.5 Summary and CONCIUSIONSccoovvvreiieeeeiicireeeeeeeeeie e e e eeeeraeeeeeeeeeeaareeeeeeeenanns 154
6.5.1 Generalisation ADILITY ..coooivviiiiiiiiii e 154
6.5.2 Parallelisation of trainin@...cccoceeiiiiiiiiiiieieeeeeeeiieeeeeeeeereee e 158
VII CONCLUSION 159
7.1 RecapitulatlOn ...cccccciiiiiiiiiiiiiiiiieeeeeee ee e e eannnens 159
T 1.1 MOBIVATIONIS ceiiiiiieiieieeteeteetc ettt ettt et 159
7.1.2 FFNN entities: the model.....cccccoiiiiiiiiiiiiiicce, 160
7.1.3 Utility of the entitieS..iiiiiiiiiiiiieiieieeeeieeeee e ee e 161
7.1.4 Theoretical T@SUIES .cccoociiiiiiiiiii e 162

iii

7.1.5 Experimental reSUltS....cccvvieverciiiiieiieieeeeeeeeee et 162

7.2 FULUTE WOTK eiiiiiiiiieeceeeeeeeee ettt sttt st 164
APPENDICES 165
A DERIVATION OF THE BACK-PROPAGATION ALGORITHM 167

AL INITOAUCHION cceiiiieieeteeeceeeeeee ettt ettt e s e e e s sae s sessaesnessnansnens 167

A.2 Derivatives with respect to the output layer weights......ccccoveveniniincncnncnns 167

A.3 Derivatives with respect to the hidden layer weights.....ccccceeirviinvenvennnenne 168

A4 Final back-propagation equationscccceeverrierenenenniereenenenenteneenenenne 169

THE XOR PROBLEM AND THE PERCEPTRON 171

THEORETICAL FRAMEWORKS FOR LEARNING 173

Cl INtrOAUCTION ettt ettt et e s e s sbe st e sanansnens 173

C.2 Formulation of the learning problem........ccccocivviiriiniiniiniiiereeeeeeeeee 173

C.3 Probably Approximately Correct Learning.....cccceceeeceeversierneeseerseerneensnennes 174

C.4 The Vapnik-Chervonenkis dimension.......cc.cecceveeveerueererrereeenenenseeneenressenennnens 175

C.5 Some generalisation DOUNAS......ccceeeireeirieriiieierierteeteee e 176

C. 6 Support Vector M acChines.....coccveevrirrerrieiieeieetesteeteee st eseeeeesseesees e e e 177

C.6.1 INtrodUCHON . cociecieeieeeeieeteet ettt e esae s 177
C.6.2 SVM DASICS cerveirierieriieientesteetese e et siesseesseste st e sseesaes s essaesseennas 178

FFNN, THE STONE-WEIERSTRASS THEOREM AND THE UNIVERSAL FUNC-

TION APPROXIMATION PROPERTY 179
D.] INtrodUCtioN . oottt ettt ettt et re e s e s b sbasaees 179
D2 MELTIC SPACES cecutercereriieriieerietesiteesttessttessstessseessseessseesseessseesseessseessssessssessseesnes 179
D.3 The Stone-Weierstrass theoTem.......ccecceecvercieriieriiencienieeteetesteeeeeeeseeeseeesaeens 180
D. 1 FFNN are Universal Function Approximators.....c..ccceceeveeeeerererreenveneennennn. 181
TESTING FOR STATISTICAL SIGNIFICANCE 183
E. T INtroduUCtioN.ciiieiciieeieeieeteeteetee sttt ie st st et st e st et e s e e saeese e sessaesnneas 183

E.2 Testing the difference between two populations’ means: the t-test . .. 184

E. 3 Testing the ratio of two populations’ variances: the F-test 185

F THE mp SCRIPT LANGUAGE AND INTERPRETER 189
F. 1 Overview of the np interpreter..... et 189
F11l INtroduction ettt ee sttt et 189

F.12 Parallel eXeCution . .ccoccoviieeviieiiirieiieeeeeeiee ettt et et 191

iv

F.13 RUNNING NP oo 191

F.2 np instructions: general object interaction.......ccccooovvviiiiiiiinniciiieeeeeeniieeen. 192
F.21 ExtractColumnsFromODbject.....ccooovviiiiiiiiiiiieiiiieeiireeee e 192
F22 MergeO b eCtS e 193
F23 ColumnsArithmetiC...couiiiiiiiiiiiiiiiiiiiieeieceee et 193
F.24 Deletion 0f 0DJECES .ciuiiiiiiiiiiiieeiiiieeee e 195
F.3 np instructions: produce and/or formatdata s et sccccoceiirviiieincieeeeccieeennns 195
F.31 Vectored data sets....ccoiiiiiiiiiiiiiiiiiiiiiccccccc e 196
F.32 Data sets based on time SEriesS...ccccccovvmiieriiiiiiieniieniiennee e 198
F.3.3 Data sets for image classification........ccccccceeeeviiveeeeiiieiiiiineeeeeeeeinenen. 200
F.4 np instructions: single FFENN s 202
Fidl Creatiomn ettt s 203
F42 Tralning...... e ereeereeeee e 203
L s T Ao T=E v <O PP PP PPPPPPPPPP 206
F.5 np instructions: Entities ..t 206
F.B1 Creation ittt sttt s e 207
FB.2 T ralning ...t re e reeaee e 209
F.5.3 Entities with connections of adjustable strength.......ccccccceoeevennnn... 210
FB.i4 T estIn@ it eens 212
F.6 Various other np INStrUCtIONS......cccciiiiiiiiieiiiiee e 212
F6.1 Unlink @ file oottt 212
F.6.2 Include an np script fileoooooviiiiiiiiiieee e 212
F.6.3 Execute a system commandccccccveiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee, 213
F.6.4 Debugging np SCriptS .. 213
F6.5 Sendlnformation......coiiiiiiiiiiiiiieie ettt 213
F.6.6 SetPath...oiiiiii e 214
F.7 Files and Channels ...ttt 214
F.8 The Lists specifiCation........ccccovvveereiieieiiiieeeeeeeeeeirreeeeeeeeenns 215
F.9 The Configuration Script fOTM Qt....ccooeeieiiiiiieiiieeeieeeieeeee e 216
F. 10 Alphabetical listing of all np INStructionS.....cccccceeieciiiieeciiieeeeeee e, 218
G EXAMPLE mp SCRIPTS 221

G. 150mMe MOTE 7P SCIIP TS . uviiiiiiiiiiieeieee et ee e eeeeire e eeeereeee e e eeeeerrrreeeeeeeeanneees 224
BIBLIOGRAPHY 229
INDEX OF NAMES 237

INDEX OF KEYWORDS 239

List of Figures

2.1
3.1
3.2
4.1
4.2
5.1
5.2
5.3
5.4
6.1
6.2
6.3

6.4

6.5

6.6

6.7

6.8

6.9

Two basic three-layer neural networks to learn the xor truth table ...

A generic ffnn tOPOLOZY .couviiririirieeieteeteeeetee et 21
An FFNN with a single hidden layer.....cccocceevvvcieeveicvennenneerereeeenen. 23
Plot of the number of linearly separable dichotomies of N patterns ...
FFNN training time is proportional to the number of weights........... 39
A simple Ci entity implementation.......ccocceeceevcieeieecennenninnenneneeenen. 58
A Ci entity with adjustable connections......cccceceeeceeeceeneeciensceeneennnnns 61
A C2 and C3 entity implementationcccocceeveveereienenseeneereeseeeseee e
Comparison of training times of a single FFNN and an entity........... 74
VARIDIM (configuration): number of weights as a function of the num-

ber of inputs, Ci entity (Ci) .ecceeeieeeiieeeeecee et s
VARIDIM (configuration): number of weights as a function of the num-
ber of inputs, Ci entity (Ci*ig) with 66% more weights.....c.ccecvrernnee
VARIDIM (configuration): number of weights as a function of the num-
ber of inputs, C2 entity (C2) ..ccocoeecrieecieeeeecee ettt
VARIDIM (configuration): number of weights as a function of the num-
ber of inputs, C3 entity (C3) .cceeververrieererereeere st cteeee st st seeeaeene
VARIDIM (configuration): number of weights as a function of the num-
ber of inputs, single FFNN (A/i) with 35% less weights....ccccocevverevennnne.
VARIDIM (configuration): number of weights as a function of the num-
ber of inputs, single FENN (A/2)...ccccccteeirrerrernerneeenieesieeneesseesseesssesssesseensees
VARIDIM (configuration): number of weights as a function of the num-
ber of inputs, single FENN (A/3) with 55% more weights.....cccceeveeeennnenee
VARIDIM (configuration): number of weights as a function of the num-
ber of inputs, single FFNN (A/4) with 135% more weightscccceeueene.
VARIDIM (time statistics): training time as a function of the number
of weights, Ci entity (C 1) .ccevirreriiieierirerereeere sttt

6.10 VARIDIM (time statistics): training time as a function of the number

of weights, Ci entity (Cp”) with 66% more weights.....ccceoveecreeereenen.

6.11 VARIDIM (time statistics): training time as a function of the number

of weights, C2 entity (02) cceevieevierieeieeeeeeceeeeeet ettt

6.12 VARIDIM (time statistics): training time as a function of the number

of weights, C3 entity (C3) ccceveererreirieererrerrerieeteste et e eeeeee e seeeseeesseeseens

11

34

65

95

95

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

VARIDIM (time statistics): training time as a function of the number
of weights, single FFNN (Afi) with 35% less weights.....ccevvevvevenercnennee. 97
VARIDIM (time statistics): training time as a function of the number
of weights, single FFNN (A/2) ..coccevviiiierieriertetee ettt e s 97
VARIDIM (time statistics): training time as a function of the number
of weights, single FFNN (A/3) with 55% more weights....cccccceeveeeveivennene 98
VARIDIM (time statistics): training time as a function of the number
of weights, single FFNN (A/4) with 135% more weights.....ccceeveeveeeneenen. 98
VARIDIM (sample error statistics): sample error as a function of the
number of inputs, C| entity (C\) ..occceveeierernirrierteereerteeeeeeeeeeeeee e 102
VARIDIM (sample error statistics): sample error as a function of the
number of inputs, C\| entity (Ci*ig) with 66% more weights.................. 103
VARIDIM (sample error statistics): sample error as a function of the
number of inputs, C2 entity (C2).ccucvereiiecieeiieeceeecte e creeeae e 103
VariDim (sample error statistics): sample error as a function of the
number of inputs, C3 entity (C3).ecvrverrrriiirieriereerreerteereeereeereeeeeeeeaees 104
VariDim (sample error statistics): sample error as a function of the
number of inputs, single FFNN (A/1) with 35% less weights 104
VariDim (sample error statistics): sample error as a function of the
number of inputs, single FFNN (A/2).cccccevirrierrienieniereere e seseesie s 105
VariDim (sample error statistics): sample error as a function of the
number of inputs, single FFNN (A/3) with 55% more weights.................. 105
VariDim (sample error statistics): sample error as a function of the
number of inputs, single FFNN (A/4) with 135% more weights............... 106
VariDim (sample error statistics): least mean squares fit of sample
error as a function of the number of inputs, C1 entity (Ci)...cccceeenuene 106
VARIDIM (sample error statistics): least mean squares fit of sample
error as a function of the number of inputs, C1 entity (Ci*ig) with 66%
MOTE W EIZ NS ceeiiiiiiiieeieeeetetr ettt s e s ae s e s nes 107
VariDim (sample error statistics): least mean squares fit of sample
error as a function of the number of inputs, C2 entity (C2).................. 107
VariDim (sample error statistics): least mean squares fit of sample
error as a function of the number of inputs, C3 entity (C3)...cccceeeruuene 108
VariDim (sample error statistics): least mean squares fit of sample
error as a function of the number of inputs, single FFENN (A/]) with 35%
eSS WEIZRTS ettt e 108

viii

6.30

6.31

6.32

6.33

6.34

6.35

6.36

6.37

6.38

6.39

6.40

6.41

6.42

VARIDIM (sample error statistics): least mean squares fit of sample

error as a function of the number of inputs, single FENN (M2) 109

VariDim (sample error statistics): least mean squares fit of sample
error as a function of the number of inputs, single FFNN (M3) with 55%

MOTE W TG TS ittt sttt ettt seesane s 109

VariDim (sample error statistics): least mean squares fit of sample
error as a function of the number of inputs, single FFNN (Mg) with

A.35% MOTE WEIZNTS ittt ettt et 110

VariDim (approximation error statistics): approximation error as a

function of the number of weights, C\| entity (C|) ...cccccoevvrvrrveeccernennnen. 114

VariDim (approximation error statistics): approximation error as a
function of the number of weights, C| entity (C|\“ig) with 66% more
WEIZNES ettt s et ea e et e st e e e et st e e e esbe e besnesnaann 114

VARIDIM (approximation error statistics): approximation error as a
function of the number of weights, C2 entity (C2) ...cccovvevveveernerciirenne 115

VARIDIM (approximation error statistics): approximation error as a

function of the number of weights, C3 entity (C3) 115

VARIDIM (approximation error statistics): approximation error as a
function of the number of weights, single FFNN (Mi) with 35% less
WEIBNES 1ottt ettt e sa et s e e s st s e aesneeas 116

VariDim (approximation error statistics): approximation error as a

function of thenumberof weights, single FENN (M 2)......ccccoceveerneeneeneernnenne 116

VARIDIM (approximation error statistics): approximation error as a
function of the number of weights, single FFNN (M3) with 55% more
WEIBNES 1ottt sttt ettt sae et et s e s ne s ae s e e s e e aesnneens 117

VariDim (approximation error statistics): approximation error as a
function of the number of weights, single FENN (A/4) with 135% more
WEIZHTS ettt 117

VariDim (approximation error statistics): least mean squares fit of ap-
proximation error as a function of the number of inputs, C| entity
(C1) ettt ettt bt se b sae s 118

VariDim (approximation error statistics): least mean squares fit of ap-
proximation error as a function of the number of inputs, C| entity
(Ci,big) with66% MOTEWEIZNES ...cceeveieiieeiieiericeteeeet ettt 118

ix

6.43

6.44

6.45

6.46

6.47

6.48

6.49

6.50

6.51

6.52

6.53

6.54

6.55

6.56

6.57

VariDim (approximation error statistics): least mean squares fit of ap-
proximation error as a function of the number of inputs, C2 entity
(€2) ettt ee e e et e et e e tba e e e ba e e e esaae e e tbreeeerraaeeenraeenas 119
VariDim (approximation error statistics): least mean squares fit of ap-
proximation error as a function of the number of inputs, C3 entity
(€3) ettt ettt et ee et eeeraa e e et b e e e e aa e e e e st ae e e abaeeeestaeeeessaeeerareennnes 119
VariDim (approximation error statistics): least mean squares fit of ap-
proximation error as a function of the number of inputs, single FFNN
(-Vi) with 35% less WEIGhS .oocveieiiiiieieeieeteetce ettt 120
VariDim (approximation error statistics): least mean squares fit of ap-
proximation error as a function of the number of inputs, single FFNN
(ai2) 120

VariDim (approximation error statistics): least mean squares fit of ap-

proximation error as a function of the number of inputs, single FFNN
(A3) with 55% MOTE WEIZNES .eiiiiieeieecieeceeeee ettt 121
VariDim (approximation error statistics): least mean squares fit of ap-
proximation error as a function of the number of inputs, single FFNN
(A4) with 135% more WeightS..ociicviieciirieieeeeeeeecee et 121
ConsDim (time statistics): training time as a function of the number
of training vectors, C1 entity (C|) with 12,625 weights......cccceevveeeunnneee. 124
ConsDim (time statistics): training time as a function of the number
of training vectors, C| entity {C\thig) with 20,010 weights.........cccc.c...... 125
ConsDim (time statistics): training time as a function of the number
of training vectors, C2 entity (C2) with 12,330 weights....ccceevveeevennnnns 125
ConsDim (time statistics): training time as a function of the number
of training vectors, C3 entity ((3) with 12,340 weights.....ccccevvvvrunenneee. 126
ConsDim (time statistics): training time as a function of the number
of training vectors, single FFNN (%) with 12,525 weights.....ccccceucnnnee. 126
ConsDim (time statistics): training time as a function of the number
of training vectors, single FFNN (A2) with 20,040 weights..................... 127
ConsDim (time statistics): training time as a function of the number
of training vectors, single FFNN (A3) with 25,050 weights......cccceeuue.... 127
ConsDim (time statistics): training time as a function of the number
of training vectors, single FFNN (A4) with 30,060 weights.......c............ 128
ConsDim (sample error statistics): sample error as a function of the

number of training vectors, C| entity (C|) with 12,625 weights............ 131

6.58

6.59

6.60

6.61

6.62

6.63

6.64

6.65

6.66

6.67

6.68

6.69

6.70

6.71

ConsDim (sample error statistics): sample error as a function of the

number of training vectors, C| entity with 20,010 weights

ConsDim (sample error statistics): sample error as a function of the
number of training vectors, C2 entity (C2) with 12,340 weights............
CONSDIM (sample error statistics): sample error as a function of the
number of training vectors, C3 entity (C3) with 12,340 weights............
ConsDim (sample error statistics): sample error as a function of the

number of training vectors, single FFNN (A/)) with 12,525 weights

ConsDim (sample error statistics): sample error as a function of the

number of training vectors, single FFNN (A/2) with 20,040 weights

ConsDim (sample error statistics): sample error as a function of the

number of training vectors, single FFNN (A/3) with 25,050 weights

ConsDim (sample error statistics): sample error as a function of the

number of training vectors, single FFNN (A/4) with 30,060 weights

ConsDim (sample error statistics): least means squares fit of sample
error as a function of the number of training vectors, C| entity (Ci)
With 12,625 WeIZhTS.cciiiiiiieiiiieeee e
ConsDim (sample error statistics): least means squares fit of sample
error as a function of the number of training vectors, C| entity

With 20,010 WEIZRTS.c.eiiiiieiiiieeieteetcee et s
ConsDim (sample error statistics): least means squares fit of sample

error as a function of the number of training vectors, C2 entity (C2)

With 12,340 WeIGRES ittt

ConsDim (sample error statistics): least means squares fit of sample

error as a function of the number of training vectors, C3 entity (C3)

With 12,340 WeIGRES ittt

ConsDim (sample error statistics): least means squares fit of sample

error as a function of the number of training vectors, single FFNN (A/i)

With 12,525 WeIZRTS . ciiiiiieecieceeeceecteee et e eree e

ConsDim (sample error statistics): least means squares fit of sample

error as a function of the number of training vectors, single FFNN (A/2)

With 20,040 WEIZhTS.cuiiiiiiiiiieere e

ConsDim (sample error statistics): least means squares fit of sample

error as a function of the number of training vectors, single FFNN (A/3)

With 25,050 WeIZRES.cuiiiiieiieieeeetere et

xi

131

133

133

134

134

6.72

6.73

6.74

6.75

6.76

6.77

6.78

6.79

6.80

6.81

6.82

6.83

ConsDim (sample error statistics): least means squares fit of sample
error as a function of the number of training vectors, single FFENN (A/4)
With 30,000 WEIgRES....iicuiiiiiiiiiieiecetee et 138
ConsDim (approximation error statistics): approximation error as a
function of the number of training vectors, C\ entity (Ci) with 12,625
WEIGNTS oottt ettt e et sae e b et e e s s ae s e e s rnennes 142
ConsDim (approximation error statistics): approximation error as a

function of the number of training vectors, C\ entity (Cgfczg) with 20,010

WEIBNES ettt et e 142
ConsDim (approximation error statistics): approximation error as a
function of the number of training vectors, C2 entity ((2) with 12,340
WEIZNTS ettt ettt ettt st e et s e st et e st e ae e e s ae s sae s besbeens 143
ConsDim (approximation error statistics): approximation error as a
function of the number of training vectors, C3 entity (C3) with 12,340
WEIZNTS ettt sttt s ettt et st st s bt s e saeenaes 143
ConsDim (approximation error statistics): approximation error as a
function of the number of training vectors, single FFENN (A/i) with 12,525
WEIBNES ettt st s 144
ConsDim (approximation error statistics): approximation error as a
function of the number of training vectors, single FENN (A/2) with 20,040
WEIZNTS ettt ettt te st e st s e st st e e e e ae e be e aeesae e basnbanns 144
CONSDIM (approximation error statistics): approximation error as a
function of the number of training vectors, single FENN (A/3) with 25,050
WEIZNTS ettt ettt st te st e st e st e et e s e e se e se e sae e seesaessne e nasnsanns 145
ConsDim (approximation error statistics): approximation error as a

function of the number of training vectors, single FENN (A/4) with 30,060
WEIZNTS oottt ettt s e et ettt e ae et st e st s b et e s e e sanenaes 145
ConsDim (approximation error statistics): least means squares fit of

approximation error as a function of the number of training vectors,

Ci entity (Ci) with 12,625 WeightS ..cccocireivciieieeeeteeteee e 146
ConsDim (approximation error statistics): least means squares fit of
approximation error as a function of the number of training vectors,
Ci entity (Cp&g) with 20,010 Weights....ccceoeeuevieiiiieiinireeececeeee 146
ConsDim (approximation error statistics): least means squares fit of

approximation error as a function of the number of training vectors,

C2 entity (C2) with 12,340 WeIghts ..ccoeevciiieieeeeeeeeeceeee e 147

xii

6.84 ConsDim (approximation error statistics): least means squares fit of
approximation error as a function of the number of training vectors,
C3 entity (C3) with 12,390 WeightS ..ccceeeiieiiieieeeeereceee e 147
6.85 ConsDim (approximation error statistics): least means squares fit of
approximation error as a function of the number of training vectors,
single FFNN (A/i) with 12,525 WeightS.....cccocteeviiriiiriecieceeeeeeereeeeee e 148
6.86 ConsDim (approximation error statistics): least means squares fit of
approximation error as a function of the number of training vectors,
single FFNN (A/2) with 20,040 WeightS.....ccccocivvieriieriiieiieeeteeeeeeee e, 148
6.87 ConsDim (approximation error statistics): least means squares fit of
approximation error as a function of the number of training vectors,
single FFNN (A/3) with 25,050 Weights.....cccoceeiiiriiiniiriiiiteerereeeeeee e 149
6.88 ConsDim (approximation error statistics): least means squares fit of
approximation error as a function of the number of training vectors,
single FFNN (A/4) with 30,000Weights......ccccccvrviiriinirnerrerieecieeceestenteee e 149
6.89 Comparison of training times for sequential and parallelised training
SCRBIM @S ittt ettt st sttt st et e e ae s aeeaee 152
6.90 The ratio of sequential and parallelised training times against the total
NUMDET Of W eI N TS cuiiiiiiiiieeeeeeee e 153
B.i A geometric representation of a two-variable and two-variable-plus-dummy
KOR UL taD 1€ uuiieieiiiieieeieeeeteeee ettt st sae s se e s e aesne e 171

List of Tables

5.1
5.2
5.3
6.1
6.2

6.3
6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

Training procedure for the C3 entitiesccccceceeveevieevierseeereeereereeceeeeee, 66
Approximation error results when training time benefits maximise ... 75
Maximum training time benefits......cccovvvriiniiiiniieinereeeeeeeeeeee 75
VariDiM description of the evaluated networksccccecceeveevcervernennee. 88
VARIDiM: sample error statistics for the entities.....ccccceeevverveevenervennennee 99
VARIDiM: sample error statistics for single FFNN......cccccocevverirvenenenenne 99

VARIDIM: statistical significance (t-test) of the sample error results for
100 t0 500 INPUt diMENSIONS.cccueieieiriiriieiercierteeteete et e ae e eaneees 100
VARIDIM: statistical significance (t-test) of the sample error results for
more than 500 input diMenSIoNS.......ccccevuevvererierierenirentetere et 100
VARIDIM: statistical significance (F-test) of the sample error results for
100 t0 500 INPUt diMENSIONS.cccutiriercieriieierieeteeeert et e e aeeeeeaeenes 101

VARIDIM: statistical significance (F-test) of the sample error results for

more than 500 input diMeNnSIONS........ccecevererirrieriereeireerere e 101
VARIDiM: approximation error statistics for the entitiescccceecuenneenee. 110
VARIDiM: approximation error statistics for singleFFNN.......c.ccccoevveeuennen. I

VARIDIiM: statistical significance (t-test) of the approximation error
results for 100 to 500 input diMeNSIONS....ccecererierierererireieeeereeee e I11
VARIDiM: statistical significance (t-test) of the approximation error
results for more than 500 input dimensions........cccceecerverversercenveenseennenne I
VARIDIM: statistical significance (F-test) of the approximation error
results for 100 to 500 input diMenSIONS....cccecererteriereeerirrereneeeere e 112

VARIDIiM: statistical significance (F-test) of the approximation error

results for more than 500 input dimensions........ccecveeeeeerreeneeserneeneeennen. 112
ConsDim: description of the evaluated networks.......ccceeveveereencennennen. 122
ConsDim:sample error statistics for the entities.......ccceceveveviesercrecnenncnne. 129
CONSDIM: sample error statistics for single FFNN......ccccocevveninnnnencnennen. 129

ConsDim: statistical significance (t-test) of the sample error results for
10 t0 120 traiNing VECIOTS ..ccccceeeviieriienietenitenieeeetere e et e et es e e eseeseeesaneens 130
ConsDim: statistical significance (t-test) of the sample error results for
more than 120 1raining VECTOTS ccccevcevviercieriienierienteseeseeeseeeseeeseeeseeenens 130
ConsDim: statistical significance (F-test) of the sample error results

for 10 to 120 1raining VECIOTS ..cccceecverieeierieeeeeteee et 130

XV

6.20
6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28
B.i

ConsDim: statistical significance (F-test) of the sample error results

for more than 120 training VECtOrS ccceeceevervierieniienierieeeeeee e 130
CONSDIM: approximation errorstatistics for the entities.......ccecereueeeenneen. 139
CONSDIM: approximation errorstatistics for single FFNN.......c.ccceceevennee. 139

CONSDIM: statistical significance (t-test) of the approximation error
results for 10 to 120 1raining VECtOrSccceeceveerverrernierieeerieeeeeeeeee e 140
CONSDIM: statistical significance (t-test) of the approximation error
results for more than 120 training vectors...c.ccoceveriereriecenenninrececenene 140
CONSDIM: statistical significance (F-test) of the approximation error
results for 10 to 120 training vectorsc.ccceeeeverrernienieensenreeeeeeeeeeeees 141

CONSDIM: statistical significance (F-test) of the approximation error

results for more than 120 training Ve CtO TS .ccoivvereerceerieeieeeeeeeeeeeeeeens 141
Parallelised training: descriptionof the evaluated networksccccoeeeee 150
Parallelised and sequential training time resultS......ccccoceveveninneenencnnennne 151
Two-variable and two-variable-plus-dummy XOR truth tables 171

xXVi

Acknowledgements

This thesis has been a labour of love and at times a tour de force. Now that my task
is at an end, I feel I must say a warm thank-you to all those kind people who have
helped and encouraged me during the past several years. In particular I would like
to pay tribute to the dedicated assistance I received from my parents Prokopis and
Eleni, my two supervisors Peter Smith and David Gilbert, my Friends Mimmo Mancio
and Diana Deacon, Dionysius Glycopantis, Alan Muir, C.M., Salim Omarouayache,
Socrates Mylonas, Chidi Iweha, Herbert Wiklicky, Nicos Angelopoulos, Alessandra Di
Pierro, Akmal Chaundri and Linda Coughlan.

I am also greatly indebted to Donald Knuth who created T*X, the program on which
IAT*X is based and with which this thesis was so easily and beautifully typeset.

Finally, I wish to express my gratitude and admiration to all those who have contributed

to the greatness of UNIX - perhaps the only real and useful operating system.
A.H.P.

London
November 1999

Xxvn

Declaration

I hereby grant powers of discretion to the University Librarian to allow this thesis
to be copied in whole or in part without further reference to me. This permission
covers only single copies made for study purposes, subject to normal conditions of

acknowledgement.

xix

I remember perfectly well how it was that I stopped painting. One evening, after I had
been for eight hours on end in my studio, painting for five or ten minutes at a time
and then throwing myself down on the divan and lying there fiat, staring up at the
ceiling, for an hour or two - all of a sudden, as though at last, after so many feeble
attempts, I had had a genuine inspiration, I stubbed out my last cigarette in an ashtray
already full of dead cigarette-ends, leapt cat-like from the armchair into which I had
sunk, seized hold of a small palette-knife which I sometimes use for scraping off colours
and slashed repeatedly at the canvas on which I had been painting, not content until
I had reduced it to ribbons. Then from a corner of the room I took a blank canvas
of the same size, threw away the torn canvas and placed the new one on the easel.
Immediately afterwards, however, I realised that the whole of my - shall I say creative?
- energy had been vented completely in my furious, and fundamentally rational, gesture
of destruction. I had been working on that canvas for the last two months, doggedly
and without pause; slashing it to ribbons with a knife was equivalent, fundamentally,
to finishing it - in a negative manner, perhaps, as regards external results, which in
any case had little interest for me, but positively, in relation to my own inspiration. In
point of fact, my destruction of the canvas meant that I had reached the conclusion of
a long discourse which I had been holding with myself for goodness knows how long.
It meant that I had at last planted my foot on solid ground. And so the empty canvas
that now stood on the easel was not just an ordinary canvas which had not yet been
used; it was a particular canvas that I had placed on the easel at the termination of
a long job of work. In effect, I thought, seeking to console myself against the sense of
catastrophe that was throttling me, this canvas, similar in appearance to so many other
canvases but for me fraught with meaning and consequence, could be the starting-point
from which I could now begin all over again, in complete freedom; just as if those ten
years of painting had not gone by and I myself were still twenty-six, as I was when
I had left my mother’s house and had gone to live in the studio in Via Margutta, in
order to devote myself, in complete leisure, to painting. However, on the other hand, it
might well be - in fact, it was highly probable - that the empty canvas now flaunting
itself on the easel was the outward sign of a development no less intimate and no less
necessary but entirely negative, a development which might lead me, by imperceptible
stages, to complete impotence. And that this second hypothesis might well be the true
one appeared to be borne out by the fact that slowly but surely boredom had come to
be the companion of my work during the last six months, until finally it had brought

it to a full stop on that afternoon when I slashed my canvas to tatters ...

Alberto Moravia, The Empty Canvas, 1961

xxi

ABSTRACT

THE APPLICATION of feed forward neural networks (ffnn) to tasks involving high-
dimensional data has always presented problems which emanate from the simple fact
that these networks can not be scaled up unreservedly without serious side effects.

Gradient descent optimisation methods, independently of how well they perform
in lower dimensions, will reach their limitations as soon as the search space reaches a
critical dimension. For certain kernels and training data, this should be expected to
happen sooner rather than later because the volume of this space grows exponentially
with the number of input variables - something also known as curse of dimensionality.
For complex problems, the optimisation process may be hindered further by the appear-
ance of numerous local minima due to the increased complexity and multi-modality of
the error surface. In addition, neurons saturate and lose sensitivity when an excessively
high input signal is received. This results in information being blocked and training
impeded.

Parallelisation of ffnn proves extremely difficult in practice due to the exuberant
communication overheads. This problem, which relates to the fine rather than coarse-
grain parallelism inherent in the FFNN topology, removes virtually any possibility for
efficient parallel distributed processing. The prospect of winning over the curse of
dimensionality remains, largely, utopian.

In this thesis, a methodology for replacing the monolithic ffnn with an entity of sim-
pler and smaller FFNN units is proposed. Our motivation stems from the inability of
the single FFNN to deal effectively with all the problems mentioned above. Further-
more, although existing neural network models, be they modular or monolithic, are
relatively successful in addressing issues of generalisation, specialisation and confidence
of prediction, the problems associated with high-dimensional data and scaling remain
basically unanswered. The thesis that the brain is not only characterised by a massively
connected network of neurons but also by the existence of different computational sys-
tems operating at different levels of abstraction and specialising at different functions
is by itself a right justification to replace the single FFNN with the entities. The claim
here is that the use of the entities not only eliminates the aforementioned scaling prob-
lems, hence, allowing for network implementations with, virtually, no size restrictions,
but also improves generalisation ability and training consistency, favours a coarse-grain
parallelisation of the training process and promotes a computational model which can
be studied with an arbitrary level of abstraction.

The concept of neural network decomposition is materialised with the construction of
three different FFNN entity models, namely, classes 1, 2 and 3. A mathematical proof
that these models are universal function approximators is accomplished with the aid
of the Stone- Weierstrass theorem.

Finally, the generalisation ability and training consistency of the entities as well as
time benefits obtained by parallelising their training procedure, are assessed in practice.
These empirical results support the claims about the benefits obtained from the use of
the entities and the thesis that they can safely replace single FFNN in applications of
prohibitevely high dimensionality.

xxiii

CHAPTER I

INTRODUCTION

1.1 Motivations

Feed forward neural networks (f f nn) are mathematical techniques based on connection-
ist principles and used in the approximation of general mappings from one finite dimen-
sional space to another. They also present a practical application of the theoretical res-
olution of Hilbert’s 13th problem by Kolmogorov, [Kolmogorov, 1957], and Lorenz, and
have been used with success in a variety of applications ranging from pattern recogni-
tion, [Bishop, 1995], to earthquake prediction, [Hadjiprocopis et ah, 1994], from med-
ical prognosis and survival prediction, [Ohno-Machado and Musen, 1996], to financial

forecasting, [Gately, 1996].

The successful utilisation of feed forward neural networks in problems of extremely
high dimensionality naturally calls for larger implementations. However, traditional
neural networks can not be expanded indefinitely because scaling problems arise as a
direct result of the curse of dimensionality - the exponential growth of the volume of

Euclidean space as its dimensions increase.

The existing training algorithms for multi-layer perceptrons - all, one way or another,
descendants of hill climbing and gradient descent - are unable to handle the size of the
vast weight search space. They are hindered further by the appearance of innumerable

local minima due to the multi-modality and complexity of the error surface.

In addition, premature neuron saturation, [Burrows and Niranjan, 1993], occurring at
the output of the hidden layer nodes due to the presence of an excessively high in-
put signal, causes neurons to lose their sensitivity - the propagation of information is

severely blocked.

The focus of this work was on establishing a methodology for creating large neural

networks which are immune to the curse of dimensionality and the other problems which

CHAPTER I

plague traditional architectures. Our efforts were constrained by the requirements

outlined below. The new architecture must:

11

il

v.

possess the universal function approximation property. This will ensure that,
at least theoretically, such a network can approximate arbitrarily well any real,

continuous function,
be able to scale up unreservedly and without any side effects on performance,

have a structure which favours efficient parallelisation of the training process and

feasible hardware implementation,

derive from connectionist principles.

The motivation behind substituting a monolithic architecture (and, specifically, the

traditional FFNN model) with an equivalent modular neural network and, in particular,

the proposed entities methodology, emanates from the following facts and observations:

L

1i.

il

Partitioning a task into smaller sub-tasks is a very good way to reduce complexity
without compromising the fitness of the solution. Similarly, breaking a huge and
complicated structure (such as a solid neural network) into an entity of smaller
structures (the modular network) will most definitely reduce the complexity of

the whole system.

A taxonomy of the components of neural network architectures may be defined in
which the neuron is the finest level of classification, a layer is a coarser level and
a network is a still coarser level. Solid neural networks (e.g. FFNN) are typically

designed to be modular only at the neuronal level.

The brain is not only characterised by a massively connected network of neurons
but also by the existence of different computational systems operating at different

levels of abstraction and specialising in different functions:

“ ... the brain is composed of many different parallel, distributed sys-
tems, performing well defined functions [...] To address the issue of scal-
ing, we may need to learn how to combine small networks and to place

them under the control of other networks.” [Freeman, 1991, pp.29-30]

Although the above statement does not deny the main connectionist princi-
ple of the simplicity of the basic building element (the neuron in our case), it
does recognise the need for somehow organising these elements into various enti-
ties/modules/blocks which should exist and operate at different levels of abstrac-

tions and specialising in different functions.

12. CONTRIBUTION 3

So, with Connectionism as our point of departure, we set about to develop a framework
for constructing a system which is characterised by diversity in representation, level of
abstraction and functionality of its constituent elements. These elements are all based

on the neuron and taking into consideration the taxonomy described in (ii), above.

The end result was reached by applying the same fundamental principles of distributed
processing and knowledge representation used in the development of a FFNN, on building
blocks of a much more composite character than that of the neuron. Thus, arriving
to the concept of feed forward neural network entities-, a system of processing units of
arbitrary complexity, linked via connections of adjustable strength and optimised using

common gradient descent methods.

1.2 Contribution

Two questions must be answered by the author of a thesis:

o what is novel in this work ?

« what is useful about this work ?

These questions are briefly answered here and, at greater length, in the body of this

thesis.

1.2.1 Entities of feed forward neural networks: the model

Connectionism promotes a model of computation based on emergence; a principle
which claims that complex organisational structures can arise from the agglomeration
of simple units which do not individually exhibit any of the properties of the system as

a whole.

The behaviour of a connectionist system is determined by independent, local processes
in the hope that they will produce the higher level tasks required. Thus, just like an
ant colony or a society of bees, the potential of a connectionist system is expected to

exceed the mere sum of the potential of its parts.

Feed forward neural networks utilise in full these principles and, indeed, have a long
record of successful applications to problems where statistical methods or traditional

Al techniques have not been doing so welll.

Entities of feed forward neural networks arise from the direct extension of these con-

nectionist principles. However, the building block of the system is not the neuron but

1 For example, in pattern recognition and optical character recognition.

4 CHAPTER I

the single FFNN instead. By analogy, more complex entities may be constructed by

connecting other, less complex, entities together.

1.2.2 The utility of the model

An entity of FFNN can be scaled up, to deal with data of extremely high dimensions,
with, virtually, no restrictions; new FFNN units can be added to the entity to absorb the
new inputs without encountering the scaling problems, which haunt the single FFNN,
at least not to the same extent. Thus, problems which involve high-dimensional data,
such as those in the fields of finance and meteorology, may now be tackled without

resorting to dimensionality reduction techniques.

Secondly, the concept of the entities may be used not only to connect single FFNN
together but also other entities. What is more, the connectivity and training method-
ology of the entities remains largely independent of the type of their elements. The
significance of this last point is that the same basic connectivity schemes and training
methods may be used with any entity and independently of the nature and type of its
building blocks.

Thirdly, the entities’ structure promotes coarse-grain parallelism. This is a feature
which favours efficient parallelisation since the main problem which plagued many par-
allel implementations of single FFNN was the excessive communication overheads arising
from the fine-grain model of parallelism they featured. More importantly, the com-
munication needs of a neural network determine its successful and efficient hardware
implementation. In this respect, the engineering problems associated with transferring

an entity to silicon are much reduced compared to those of the single FFNN.
Fourthly, the idea of constructing an entity with blocks of arbitrary type and size
promotes a model of computation which can be studied with an arbitrary level of
abstraction.
1.2.3 Published work
This research work has yielded four publications:

1. [Hadjiprocopis and Smith, 1998]

2. [Hadjiprocopis and Smith, 1997b]

3. [Hadjiprocopis and Smith, 1997a]

4. [Hadjiprocopis et ah, 1994]

1.3. STRUCTURE OF THE THESIS 5

1.3 Structure of the thesis

The next chapter outlines the main weaknesses of the symbolic approach to Artifi-
cial Intelligence and examines how this approach is complemented by the diametrically
opposite connectionist principles and philosophy. A brief historical note on Connec-

tionism, Hebbian learning and neural networks, in general, is also included.

Chapter 3 serves as a guide to feed forward neural networks. It includes a formal mathe-
matical description of these networks, their operation and a reference to their universal
function approximation capabilities. A proof that FFNN can approximate arbitrarily
well any real continuous function is included in appendix D on page 179. Finally, a
brief introduction to gradient-descent optimisation techniques and, in particular to
the back-propagation method is given. More details on back-propagation, including

derivation and formalism, appendix A on page 167.

Chapter 4 contains a critique of feed forward neural networks as far as issues of compu-
tational complexity, optimisation and scaling problems, parallelism and hardware
implementation are concerned. Appendix C on page 173 contains a theoretical frame-
work of learning including references to Probably Approximately Correct learning and
the Vapnik-Chervonenkis dimension which, we feel, will be useful for any future work

dealing with the derivation of worst-case generalisation bounds for the entities.

Chapter 5 deals with the concept of FFNN entities. After a statement of motivation and
a review of the current state of the art in modular neural network architectures and
ensemble methods, a formal description of constructing and training the entity classes
i, 2 and 3 entities is given. This is followed by a proof that FFNN entities are universal
function approximators along the lines of the Stone- Weierstrass theorem (part of ap-
pendix D on page 179 contains a description of this important theorem). Section 5.4.6
on page 62 contains a derivation of the expressions for the partial derivatives of a FFNN
with respect to its input vector. These derivatives are used to generalise the back-
propagation algorithm in order to optimise not only the connections between neurons
(i.e. within a single FFNN) but also connections between any feed forward computing

element, be it a single FENN, an entity, an entity of entities and so on.

Finally, as proof of concept, chapter 6 contains the results of experiments carried out in
order to assess the generalisation ability and training times of the three entity classes
and compare them to those of the single FFNN. Also, this chapter contains a demon-
stration of the ease with which an entity’s training process can be parallelised and dis-

tributed among different processors in a very efficient fashion. Appendix F on page 189

6 CHAPTER I

contains a reference to the mp script language2 in which all simulations and test pro-
grams were written. Appendix G on page 221 contains all the scripts written for the

purposes of obtaining these empirical results.

In conclusion, chapter 7 recapitulates on the requirements for this work and assesses the

degree to which they were met. It also suggests possible directions for future research.

mp is a scripting language which was specifically designed for the purposes of integrating ff nn
code. This consists of constructing, training and testing single ff nn and entities.

CHAPTER II

CONNECTIONISM

JVIartyrs of the dark ages, partisans of a neural ideology, prophets of a
neural religion: they preach neural knowledge, baptise and admit mor-
tals into the depth of neural apocrypha ...

2.1 Connectionism: raison d’etre

2.1.1 Symbolic AI

Artificial intelligence (AI) is concerned with how to make machines behave in an
intelligent manner. The most popular approach to Al for most of its (early) history has
been the thesis that a machine which produces an evolving collection of unambiguous
symbol tokens and manipulates them according to precise rules. What Simon and
Newell, [Newell, 1980], call the Physical Symbol System is the necessary and sufficient

means for general intelligence of the kind exhibited by humans.

Soon it became clear in the minds of the people pursuing this kind of intelligence that
machines based on the Physical Symbol System hypothesis were too rigid and inflexible
to function well outside the domains for which they were built. Paradoxically, today
there are so many systems and machines that can compete with experts (e.g. expert
systems applied to medicine) or highly trained workers (e.g. robots manufacturing
automobiles or electronic boards) but none are capable of functioning as a shop assistant

or solving puzzles that even a child can.

2.1.2 What is wrong with symbols?

O n the one hand, knowledge representation and encoding based on unambiguous sym-
bols and structures such as frames [Minsky, 1975], schemata [Rumelhart, 1975] and
scripts [Schank, 1976], provide successful means for storing information but fail to al-

low for interaction between the fragments of knowledge they represent:

8 CHAPTER I

“ ... any theory that tries to account for human knowledge using script-like
knowledge structures will have to allow them to interact with each other to
capture the generative capacity of human understanding in novel situations.
Achieving such interactions has been one of the greatest difficulties associ-
ated with implementing models that really think generatively using script-

or frame-like representations.” [McClelland et ah, 1986, p.9]

On the other hand, machines operating on the symbol-oriented principle require the
knowledge of the rules that apply precisely in the world where they are trying to
operate inl. This is fairly straight-forward within small and isolated domains, but
when we move to the real world and deal with problems without formally bounded
domains, we find that not only it is difficult and even impossible to encode the many
exceptions to our rules, but also that the number of these rules grows so large that the
method soon proves to be computationally intractable causing processing bottlenecks

and finally failure.

Rule-based systems, no matter how good they are in their restricted domains, simply
can not deal with tasks which are not specified in precise, mathematically tractable ways
and, generally, require the simultaneous consideration of many pieces of information

which may be ambiguous, inconsistent and incomplete:

“ These models have rules which reliably work - so long as we stay in that
special domain ... Inside such simple ‘toy’ domains, a rule may seem to
be quite ‘general’ but whenever we broaden those domains, we find more
and more exceptions - and the early advantage of context-free rules then

mutates into strong limitations.” [Minsky, 1990]

2.1.3 Reductionism versus Emergence

Premised on the principle that understanding a complex object requires to break it
into component parts which are examined individually and then the results of these

examinations are added together, Reductionism is a keystone of the Scientific Method:

“ ... to divide each problem I examined into as many parts as was feasible,
and as was requisite for its better solution ... to direct my thoughts in
an orderly way; beginning with the simplest objects, those most apt to be
known, and ascending little by little, in steps as it were, to the knowledge

1 The marriage of fuzzy logic with the symbol-oriented principle was a first step towards dealing

with the weaknesses of rule-based systems.

2.2. HISTORICAL 9

of the most complex; and establishing an order in thought even when the

objects had no natural priority one to another.” [Descartes, 1637]

The symbolic approach to Al is fundamentally based on reductionist principles. It
looks at things top-down and develops its strategies within this analytical2 framework:
at the beginning, it assumes an outline of the tasks to be accomplished and, later,
detail and function are added. Finally, problems encountered during the execution of
these tasks are dealt with by breaking down the original tasks. In effect, “intelligence”
is centralised not only because everything has to operate according to a “master plan”
but, more importantly, because the responsibility for devising and implementing such
a plan is solely assumed by a supreme authority, a final arbiter, a homunculus who

puts all the inputs together: the central processor.

Emergence, on the other hand, claims that interesting and complex organisational
models can arise from the agglomeration of simple units which do not individually
exhibit any of the properties of the model as a whole. This may be achieved by imple-
menting low level functions in the hope that, by some kind of alchemical magic, they

will produce the higher level tasks required.

Emergence not only constitutes a political statement, a kind of nihilist doctrine which
explicitly rejects authoritarian power structures (e.g. reductionism’s central control)
for the sake of distributed control, but also demolishes fundamental assumptions which

have bolstered scientific thought for hundreds of years:

“ If the properties of matter and energy at any given level of organisation
can not be explained by the properties of the underlying levels, it follows
that biology can not be reduced to physics or anthropology to biology.”
[Landa, 1992]

This emergent, bottom-up or synthesis3 methodology was given the name of Con-
nectionism and, since its genesis, has been challenging the hegemony of “good old-

fashioned” Al

2.2 Historical

Nowadays, as the limitations of single processor, von Neumann architectures are be-

coming obvious, it is a widespread belief that further development of science and

2 From the Greek word ai/aXveiw, to break, to untie, to undo.

3 From the Greek word avud'ertur, to put together.

10 CHAPTER 1II

technology will depend on establishing alternative computational models which will
overcome these difficulties. Several attempts are being made, for example: molecular

computing, quantum computing, DNA computing and neural computing.

In the 1940’s, in a similar quest for alternative computational methods, a joint ef-
fort of biology, cognitive studies and engineering had laid down the foundations of
connectionism.

In 1943, McCulloch and Pitts [McCulloch and Pitts, 1943] proposed a model for a
nerve cell using a threshold device4. They showed that such a collection of artificial
neurons5 was capable of calculating certain logical functions.

In 1949, Donald Hebb [Hebb, 1949] pointed the significance of the connections be-
tween synapses in the process of learning and developed a very basic learning rule:
the synaptic strength between two neurons is increased if both cells are activated at
the same time. His findings were directly related to the behaviorist and association-
ist points of view, both of which had formed prominent traditions in the history of
psychology. Associationism in particular is at least as old as Aristotle who proposed a
linkage mechanism between memories effected by temporal succession or by “something
similar, or opposite or neighbouring”, [Anderson and Rosenfeld, 1988].

Hebb was probably inspired by an experiment conducted by Ivan Pavlov. Following
the observation that dogs naturally salivate when they see food, Pavlov was ringing a
bell whenever he was feeding his dogs. After some time, he observed that the sound of
the bell alone was enough to make the dogs salivate. A possible explanation is that a
part of the dog’s brain, F, becomes active when food is seen and, in turn, stimulates S,
the part responsible for producing saliva. At the same time, another part of the brain,
B, is activated by the sounds of a bell. Because S and B are active at the same time,
the synaptic strength between them is reinforced and, hence, the influence of B on S’s
activity increases. If this practice continues for some time, B’s activity alone will be
enough to activate S: the dog salivates with a stimulus other than food, e.g. the sounds
of a bell!

Of course, this theory does not exclude the possibility that the synaptic strength
between F and S is increased too and, as a result, the dog, will experience hallucinations

of food images induced by the sounds of the bell!

4 A device with a binary output whose state depends on whether the sum of its inputs is above or
below a predefined threshold level.

5 McCulloch and Pitts have also introduced this neuro-euphemistic nomenclature which has, ever
since, never ceased to create controversy and passion within the circles of academia due to its certain
rhetorical appeal.

2.2. HISTORICAL il

In 1958, F. Rosenblatt [Rosenblatt, 1962], putting together the ideas of Hebb, McCul-
loch and Pitts, described the first operational neural network model, the Perceptron.
He further demonstrated the ability of perceptrons to calculate logical functions by
arranging the neurons in a particular topology and modifying the synaptic connections
appropriately. Following this initial success, many wild claims were made by Rosenblatt

and others about the potential of perceptrons as all-powerful learning devices.

Figure 2.1: These are two basic three-layer neural network configurations which can

memorise the XOR truth table

The massive enthusiasm driven by delirious journalists and ambitious scientists did not
last long. In 1969, Marvin Minsky and Seymour Papert brought to light the limita-
tions of the perceptron6. Their book, entitled Perceptrons [Minsky and Papert, 1969],
was a neat hatchet job by the leaders of the symbolic-oriented community of Al on
the connectionist school, and an excessively pessimistic one too. Further research in

6 By perceptron (also two-layer perceptron as opposed to multi-layer perceptron) we shall mean a

neural network consisting of a single threshold output unit connected to the input layer via a single
layer of modifiable connections.

12 CHAPTER II

connectionist systems and neural networks was then characterised as sterile and as a
result almost every activity in the field paused for fifteen years and scientists found it

almost impossible to receive funding.

Their critique was unjustifiably cruel because it was mainly based on the inadequacy of
the two-layer perceptron to solve the XOR problem?7, a classical problem of linear insep-
arability. It was known, even then, that this problem could be solved by incorporating
another layer of computational units to the two-layer model and adding non-linearities
at the output of the neurons. Although a learning rule for the multi-layer perceptron
had not yet been discovered, Minsky and Papert conjectured that such a rule would
be impractical, in principle, due to the combinatorial complexity of the calculations
involved. Today, we know, that combinatorial complexity becomes an obstacle when
the number of adjustable network parameters becomes very large; in fact four or five
orders of magnitude larger than the mere six weights8 required by a basic three-layer
neural network (see for example figures 2.1(a) and 2.1(b)) which successfully solves the

XOR problem.

Despite the fact that Minsky and Papert made some points which were impartial and,
later, proved to be true, e.g. scaling problems9, years later, Seymour Papert had
admitted that their reasons for writing Perceptrons had not been entirely scientific -

there was some other secret agenda:

“ Once upon a time two daughter sciences were born to the new science of
cybernetics. One sister was natural, with features inherited from the study
of the brain, from the way nature does things. The other was artificial,
related from the beginning to the use of computers. Each of the sister sci-
ences tried to build models of intelligence, but from very different materials.
The natural sister built models (called neural networks) out of mathemati-
cally purified neurons. The artificial sister built her models out of computer

programs.

In their first bloom of youth the two were equally successful and equally

pursued by suitors from other fields of knowledge. They got on very well to-

7 The XOR problem involves learning a propositional logic relation like A or B but not both.

s E.g. a fully connected network of two inputs, two hidden units and one output. Alternatively, if
direct connections from the input layer to the output layer units Hre permitted, the XOR truth table
can be learned by a three layer network with four units and five weights (two units in the input layer
and one unit in the hidden and output layers. The units of the input layer are connected to the hidden
unit as well as to the output unit).

9 A problem which their symbolic models were experiencing too.

2.2. HISTORICAL 1=

gether. Their relationship changed in the early sixties when a new monarch
appeared, one with the largest coffers ever seen in the kingdom of the sci-
ences: Lord DARPA, the Defence Department’s Advanced Research Projects
Agency. The artificial sister grew jealous and was determined to keep for
herself the access to Lord DARPA’s research funds. The natural sister would

have to be slain.

The bloody work was attempted by two staunch followers of the artificial
sister, Marvin Minsky and Seymour Papert, cast in the role of the huntsman
sent to slay Snow White and bring back her heart as proof of the dead. Their
weapon was not the dagger but the mightier pen, from which came a book
- Perceptrons - purporting to prove that neural nets could never fill their
promise of building models of mind: only computer programs could do this.
Victory seemed assured for the artificial sister. And indeed, for the next
decade all the rewards of the kingdom came to her progeny, of which the

family of expert systems did best in fame and fortune.

But Snow White was not dead. What Minsky and Papert had shown the
world as proof was not the heart of the princess; it was the heart of a pig.”

[Papert, 1988, p.3]

Fortunately, the rediscovery10 of the back propagation learning rule for multi-layer Per-
ceptrons by Rumelhart and the Parallel Distributed Processing group has initiated new
activity in the area of neural networks, [Rumelhart et al., 1986].

As researchers began to realise that there is a significant difference between the
capabilities of two-layer and multi-layer perceptrons (with non-linear activations), es-
pecially after the establishment of the latter as a universal function approximatorll,
neural networks were applied to a variety of problems as diverse as pattern recognition
[Bishop, 1995], optimisation and control [McKelvey, 1992], medical prognosis and sur-
vival prediction [Ohno-Machado and Musen, 1996], financial forecasting [Gately, 1996],

earthquake prediction [Hadjiprocopis et al., 1994] with success.

The hype starts again! This time as a neural “gold-rush” which severely alters the
scientific demography. Suddenly victims of Minsky’s and Papert’s diatribe appear
everywhere; martyrs of the dark ages, partisans of a neural ideology, prophets of a
neural religion: they preach neural knowledge, baptise and admit mortals into the

depth of neural apocrypha. The golden age of neural empiricism is about to start.

10 The actual discovery of back propagation is attributed to P. Werbos, [Werbos, 1974].

11 See section 3.3 on page 24 for more details.

14 CHAPTER 1I

2.3 Connectionist learning

2.3.1 Introduction

Symbolic or rule-based systems use explicit sets of rules and symbol tokens in compu-
tations which are, basically, of a high enough level to allow them to be concerned more
with algorithms and programs and less with hardware. Connectionism, on the other

hand, concerns itself primarily with issues of topology and architecture:

“ ... one answer, perhaps the classic one we might expect from artificial
intelligence, is ‘software’. If we only had the right computer program, the
argument goes, we might be able to capture the fluidity and adaptability of

human information processing.

Certainly this answer is partially correct. They have been great break-
throughs in our understanding of cognition as the result of the development
of expressive high-level computer languages and powerful algorithms ...

However, we do not think that software is the whole story.

In our view, people are smarter than today’s computers because the brain
employs a basic computational architecture that is more suited to deal with
a central aspect of the natural information processing tasks that people are

so good at.” [McClelland et ah, 1986, p.3]

The connectionist approach to Al is based on the idea that intelligence emerges through
local interactions of a large number of simple processing units that produce significant
global properties - a notion epitomised by the organisation of the brain. Unlike a rule-
based system, a connectionist network requires no final arbiter, no central control,
no homunculus to put all the inputs together and produce the output. Rather, the
output is an emergent property of the system as a whole, produced by independent,
local decisions/computations and, indeed like an ant colony or a society of bees, the

potential of a connectionist system exceeds the mere sum of the potential of its parts1Z.

12 Some people would argue that the same apply to other, non-connectionist systems. Let us see
if this is true by way of an example. Consider the case of an integrated circuit made up of simple
transistors. It is true that the potential of the circuit is greater than the sum of the potential of its
parts. However, when one of the billion transistors making up the circuit breaks down, the whole
integrated circuit can not operate any more. The potential of the system is now zero! On the other
hand, the death of a bee or even the death the queen bee has minimal effect on the society of bees as a
whole. Thanks to decentralisation the potential potential of the connectionist system still exceeds the
potential of its parts.

2.3. CONNECTIONIST LEARNING 1=

2.3.2 A new computational architecture

A connectionist, or neural, network consists of a large number of simple and intercon-
nected processing units, the neurons, which send and receive signals amongst themselves
as well as with the outside world. The inputs to a neuron are mapped to a single output,
usually via a non-linear function and are propagated to other neurons via connections

of variable strength, the weights.

They come in many different varieties and flavours, each of which has its own merits and,
also, demerits. Sometimes, as in the case of feed-forward neural networks13, learning is
supervised in the sense that the network expects a “correct” answer from a “teacher”
so as to direct its own responses towards it while no feedback is allowed and, therefore,
the propagation of signals between the neurons has always one and the same direction.
Some other times, as in the case of the Hopfield net for example, feedback plays an
essential role in its operation, while self-organised maps do not require any external

supervision during the learning process.

Despite its implementation details, every connectionist system has some interesting
properties arising from the distributive nature of its architecture, its massively parallel

processing capabilities and its (superficial) resemblance to the human brain:

» Distributivity: Knowledge is represented and manipulated not by symbols con-
tained in predetermined structures (frames, schemata, scripts, etc.) but by dis-
tributing it to the various units of the system following an internal representation
determined by the learning process itself - thus, this process has an implicit char-
acter as opposed to the explicit nature of the symbolic approach. “Learning” is
not centrally controlledi4 but, instead, is accomplished synergetically by all the

units of the network.

« Robustness: Damage to a part of a connection machine is, generally, not critical
to its entire performance. This quality of plasticity resembles the human brain’s
ability to recover from damage. In contrast, even a slight damage to the list of
instructions of a computer program or excision of an entry from a database tends

to be disastrous.

» Graceful degradation: Another facet of robustness. It refers to the ability of
neural networks to perform even when either the input (e.g. partial information)
13 This thesis is only concerned with feed-forward neural networks - we will examine them in more

detail in chapter 3 on page 19.

14 Apart from setting some basic interaction protocol, known as the training algorithm.

i6 CHAPTER II

or the system are degraded in some manner.

* General-purpose modelling: As general-purpose parametrisable devices, neural
networks are widely used to express analytically the behaviour of a system (spec-
ified by a finite number of observations) and, hence, build a theoretical model

which describes this system.

+ Adaptive interpolation, Generalisation, Abstraction: With reference to the
modelling property mentioned above, a neural network is good at abstracting
patterns from data. When presented with an unknown input it will perform
some kind of interpolation based on the learned abstractions and produce a likely

output.

+ Constructivist and Nativist at the same time: Connectionism generally as-
sumes and operates within a Piagietian/constructivist framework of learning
where knowledge is built by the learner, not transmitted by the teacher. For
example, before learning begins, the weights are initialised to random values.
However, many implementations of connectionist systems do not assume an en-
tirely tabula rasa, but instead, they incorporate prior knowledge (nativism) to it,
be it in the form of biases to neurons or just by arranging the neurons into a cer-
tain topology. The contribution of this innate knowledge to the overall learning

process can be controlled and, therefore, its effects can be evaluated in practice.

2.4 Connectionism: what is it really worth?

Karl Marx in his seminal work Das Capital argues that commodities are “something
twofold, both, objects of utility, and, at the same time, depositories of value” , [Marx, 1887,
Chapter 1, Section 3]. Perhaps it is not only our personal belief but is shared by many
others that Connectionism and neural networks are such “commodities” holding the

two-fold property:

* Objects of utility, on the one hand, worth no more and no less than what their
existence theorems state in a mathematical language which most of the time can

be irreversibly precise.

* Depositories of value, on the other hand, are worth anything their advocates

state.

Minsky and Papert in 1969, claimed that connectionism was an unfortunate dead end,

a romantic attempt to mimic the infinitely more complex human brain and, hence,

2.4. CONNECTIONISM: WHAT IS IT REALLY WORTH? e

bound to fail. They wished connectionism’s death and so it happened. Minsky and
Papert were aware, we claim, of the exact value of connectionism as far as utility was
concerned, but it was in their interest, or, perhaps in the wider scientific community’s
interest that connectionism was slain, buried and forgotten. Obviously, they wanted
Lord DARPA’s research funds all for themselves (the symbolic-oriented Al community).
And so they had to show us, people who - unfortunately - are usually concerned with
“commodities” as depositories of value, that the value of this particular commodity
was nil, despite its wtility value. In Seymour Papert’s own words, “What Minsky and
Papert had shown the world as proof was not the heart of the princess; it was the heart

of a pig”.

The excitement in the field of AI, which peaked in the eighties with the advent of
expert systems as hundreds of millions of venture capital invested into companies with
such emblematic names as Symbolics and LISP machines or Japan’s infamous Fifth
Generation project, had soon run out of fuel. By 1990 came a shake-out, as even the
most ardent proponents of symbolic Al had to admit that their models, for all their
Turing equivalence, could not lead us to the holy grail of computer science, the humanly

thinking computer, HAL15.

It was then remembered - ex machina deo - that some time in the past there has
been an alternative model for intelligence: Connectionism. Although as an object of
utility, connectionism is not worth much more than it was back in 1969 or 1974, from a
depository of value point of view, its virtues and potentials are now highly stressed and
even exaggerated. Again, there is a lot of vacuous prattle going on, in a motif borrowed
from the fifties. This time, however, the Minskys and Paperts of our story are much
more and so are the research funds, as Lord DARPA’s cousins in every corner of the
world are willing to engage in ambitious projects in order not to be left behind in the

strategic quest for silicon intelligence.

With one of the sister sciences on early retirement, the second sister will get a chance,

for the next five, ten years or, eventually, until its deposited value deflates.

15 In S. Kubrick’s 2001, HAL was activated on January 12, 1992.

i8

CHAPTER II

CHAPTER I1II

FEED FORWARD NEURAL NETWORKS

W here an important category of connectionist systems called feed for-
ward neural networks —the main concern of this thesis —is examined.

3.1 Introduction

An important category of connectionist architectures goes under the name of feed
forward neural networks (f f nn). These are systems where training is exercised through
a supervised process by which the network is presented with a sequence of input vectors
and the respective desired output responses. “Learning” occurs by adjusting the free
parameters of the network in a way that the total discrepancy between the desired and

obtained outputs is minimised for all the training vectors.

ffnn are made of neurons - simple, linear or non-linearl computing elements whose
basic function is to sum up all their inputs and pass the result to other neurons. They
are arranged in layers, one next to the other, and the layers are arranged one after
the other. Neurons belonging to the same layer receive inputs from neurons of the
previous layer(s) and send their output to neurons of the next layer(s). The strength
of the connection between two neurons is called a weight. The state of the set of all the
weights determines completely the behaviour of the network. A formal description of

ffnn and the neuron can be found in section 3.2.

A lot has been said about the brain-like properties of FFNN, for example learning and
generalisation. However, the true value of FFNN arises from its universal function ap-

proximation property: affnn with a single hidden layer and employing as many hidden

1 On deciding between a linear or a non-linear activation function, one must take account of the fact
that any superposition and/or composition of linear functions is itself linear and can, therefore, express
only linear functions. Thus, a rfnn may not consist entirely of linear activations if it is necessary to
approximate non-linear functions.

b=} CHAPTER III

units (with non-linear activations) as required can approximate any real, continuous
function arbitrarily well. Unfortunately, the practical importance of this statement is
limited as the requirements for realising this structure, e.g. number of hidden units and
methods for selecting optimum values for the set of weights, are not fully quantified.
In section 3.3 we describe Hilbert’s 1311 problem, its resolution by Kolmogorov
and the subsequent improvements by Lorenz and Sprecher leading to a theorem which
guarantees (but does not define) the existence of a neural network which can represent
exactly any real, continuous function in the n-dimensional unit hypercube (e.g. [o, i]n).
Finally, we look at approximate representations of functions using neural networks

since the utilitarian value of Kolmogorov’s theorem is minimal.

The process of adjusting the weights, e.g. training, so that the discrepancy between ex-
pected and obtained output values is minimised can be very complex, not only because
the number of weights can get very large but also because there are several training ex-
amples, which in many instances can be contradicting. The most widely used training
method, the back-propagation or generalised delta rule, is based on the original delta or
least-mean-squares rule introduced by Widrow and Hoff, [Widrow and Hoff, 1960], and

applied to the adaptive linear element (Adaline) perceptron model.

We will have a brief look at back-propagation in section 3.4. Also, appendix A on

page 167 contains a derivation of the back-propagation equations.

3.2 FFNN Formalism

Figure 3.1 on the facing page shows an example of a generic FFNN2 with L layers
(including the input and output layers), n inputs and m outputs. This topology is
associated with the general mapping $: R n H R m. The notation we will be using in

this and subsequent sections follows:

+ the input vector to a FFNN is denoted as X, the output vector as Y and the

target output vector as T,

* the input to the ith unit of the Ith layer is a vector, denoted by x(while the output

of that unit as y\ (a scalar),

* the set of the output values of all the units of the Ith layer is denoted by the

2 According to the following definitions, Radial Basis Functions (rbf) classifiers could belong to
the family of FFNN too if it were not for definition 3.1 which requires that the kernel functions be
monotonic - something that rbf’s gaussian kernels obviously lack. However, if the requirement of
monotonicity is relaxed then rbf neural networks are covered by these definitions too.

1.2, FFINIM FOTMALLSM 21

WVECLOT EI..
» The set of all the weight values of a PPNN is denoted by the matriz W,

* Lho voctor Ef?' liolds the weights of the connecticns between the % wnit of the [
laver and all the unita of the previous layer, { — 1,

. wf,,- denotes the weight {a scalar) of the connection betwean the §* unit of the /"
layer and che % unit of the previons layer, [— 1,

» the poumber of wuils of the ™ layer is given by w(l).

Laipee 3 Loper -1

Figure 4.1 A generic FFNX topology writh L layers mapping R™ — B™

3.2.1 Operation of the neuron
Firstly, let us deflne the operasion of a sirgle neuron associated with:
= o row vector of adjustalle parameters, the weights, wo= [w, ny ... wp) € BE
& column vectur of Incuming signals, x = {z, =, ... xg) € A,
2 hiag value, b IR,
» an activation function, o[-).

The operation of a neuron consists of:

= CHAPTER III

* the weighted sum of the incoming signals is calculated as w °x = wWiXi,
+ the bias value, b, is added to the above sum,

* the output is calculated as y = cr(w mx + b), 0 € S (see definition 3.1, below).

The above procedure applies to all the neurons of a ffnn with the notable exception
of the first layer units whose role is limited to distributing the input vector, X, to the
next layer. The activation function, a(-), is usually chosen to belong to the family
of sigmoids S (see definition 3.1) with, again, the possible exception of the output
layer units which might employ any activation function which is compatible with the
statistical properties of the output vectors. For the sake of generality we will not assume
that the activation for each neuron is the same. Instead, the ith neuron of the Ith layer

employs the activation function al.

DEFINITION 3.1 Let S be the family of all functions which are monotonic, increasing,
differentiable and bounded (e.g. R [0,i] in R.

Definition 3.2 Let Ap be the family of all affine transforms in R p:

Ap={A :Rp” Rli4dx) = w-x +6
p
— ~ WiXi+b bGR and x,w& IRP}

2— 1

Definition 3.3 Let Mp be the family of functions implemented by a hidden layer neu-
ron:

Hp={N :Rp~ R|iV(® - a(A(x)), x € Rp, A GAp and a G5}

Using the above definition, the output of the j th unit of the Ith layer (1 </ < L) as a
function of the outputs of all the neurons of the previous layer, yi_1, and the weights

of all the connections with the units of the previous layer, w* is:
y'i: g]<r|(4(yv")) = al(w6 .yc_ +

where, Aj(-) and crj-(-) are the affine transform and activation function associated with

the j th unit of the Ith layer.

3.2.2 Operation of the FFNN

The output of the FFNN corresponding to a given input X is the vector:

X = dPihy1”» mm <4(4i(y1-))} =yi (3-0

3.2. FFNN FORMALISM >3

However, for simplification purposes, we can assume a FFNN with a single, linear output
unit and a single hidden layer with non-linear units, as depicted in figure 3.2. As we
shall see later, such a single hidden layer FFNN with an arbitrary number of hidden

layer units is sufficiently complex for universal function approximation.

Layer 2

Figure 3.2: An FFNN with a single hidden layer, mapping R 2i>R

Definition 3.4 Let Qn be the family of all the functions that a ffnn with n inputs, a

single hidden layer of q non-linear units and a single, linear output can implement:

Qn= {dn sRn R|ffix) AfCN2(x))

bl+ J2wl af(f2 whXj + bf), (3.2
2=1 J—1
where, x 6 Rn, A? e Aq, Nf GAfn and N2(x) - (AVE(x) iV2(x) e Ng (X))}

24 CHAPTER III

3.3 FFNN as Universal Function Approximators

In 1900, David Hilbert as a new Eurystheus had set a number of “labours” to the many
young Hercules, the mathematicians of the twentieth century. At a lecture delivered
before the International Congress of Mathematicians in Paris he challenged the present
and future scientific community with twenty three mathematical problems in the hope

to cast a glance at the next advances of our science and at the secrets of its

development during future centuries”, [Hilbert, 1902].

The 13th problem, namely the Impossibility of the solution of the general equations
of the Tth degree by means of functions of only two arguments, can be generalised to
the problem of trying to represent any real, continuous function of n arguments by

superposition of compositions of as many as required functions of arguments.

In the mid to late 1950's A. Kolmogorov and V.I. Arnold in a succession of papers
“fought” a battle of who was going to be first to settle Hilbert’s 13th challenge. Even-
tually, Kolmogorov won. In 1957, he published an important theorem concerning the
approximation of arbitrary continuous functions, / : [0,i]n h+ R, in terms of functions

of a single variable, [Kolmogorov, 1957]:

THEOREM 3.1 Any continuous function, f, of n variables, (xj_x2wmmcn) £ [o,1]"; can

be characterised completely by finite superposition of compositions of functions of one

variable as:
2n+L n
f(xLx2...,xn)= & 9jC£M xi)) (3-3)
Jj=1 2—1

where the gj’s and ipij's are continuous functions (of one variable). Furthermore, the

ipij's are fixed, monotonic and increasing functions which are not dependent on /.

In 1965, D.A. Sprecher obtained an improvement over Kolmogorov’s original theorem
in the sense that the gj’s are replaced by a single g which is real, continuous and
does depend on / and the Vij’s are replaced by a single which is real, continuous,

monotonic, increasing and independent of /:

2n + i n

f(xLx2...,xn) = 9(Y XIN(Xi + er +2-1) (34)
j=1 24

where e is a positive, rational number and A is a constant independent of /. Observe

the presence of the “bias” terms e(j —1) for the hidden layer units (e.g. the inner sum)

and j —1 for the output unit (e.g. the outer sum).

3.4. THE BACK-PROPAGATION OF ERROR TRAINING METHOD =

Despite the fact that Sprecher’s exact representation leads to a three-layer neural
network, mapping3, / : [0,1]" t> R, the important issue of how to construct such a
network is not dealt with. In general, Kolmogorov’s original theorem, as well as all
the improvements followed that, are concerned with the existence of representations of
a function by different univariate functions but are not addressing at all the practical
issues of the construction of such a composition. For example, the functions g and
ip are highly non-smooth and virtually unknown. Furthermore, according to Poggio
and Girosi, yg is at least as complex, in terms of bits needed to represent it, as /”,

[Poggio and Girosi, 1989, p. 7].

In view of all the practical difficulties associated with an exact decomposition of /,
research had been directed towards approximate representations which seemed, and in-
deed were, more promising from a practical point of view. In recent years, several sci-
entists, [Cybenko, 1989], [Funahashi, 1989], [Hornik et al., 1992], [Kurkova, 1991] and
others, attempted, successfully, to approximate, with arbitrary precision, the general
real, continuous n-dimensional function, f(xx, x2,..., xn), by finite linear combinations

of non-linearities4:

2
Y Xia&i -x + bi) (3-5)
=1

where A* and b are constants 6 R, w; e R", x = (an x2 ... xn) € R", a € S (see

definition 3.1 on page 22) and is fixed, in contrast to Kolmogorov’s exact representation

formula which uses different functions (the gj’s and #pij’s).

3.4 The back-propagation of error training method

3.4.1 Introduction

The training of the two-layer perceptron as well as that of its multi-layer successor, the
FFNN, is said to be supervised in the sense that a “teacher” defines what the network
response to a given input stimulus should be. The modification of the adjustable
parameters of the network aims at making the actual and desired network response
coincide and is guided by the training algorithm, which in turn, makes its decisions

based on the discrepancy between the obtained and expected responses.

3 Usef :[o,iln R m when dealing with more than one output. In this case,
f=(/1(x1,x2,...,x,),...,/ m(xl,Xa,---,Xn)) S JR™

4 Observe that this is the equation describing a three-layer FFNN with n inputs, ¢ hidden layer
units employing sigmoidal activation functions and a single output as in figure 3.2 on page 23 and
definition 3.4 on page 23.

= CHAPTER III

The training algorithms employed by supervised learning neural networks are, largely,
implementations of the gradient descent optimisation method which searches for the
best combination of weight values by minimising the mean squared errors associated

with the given network and a set of inputs and expected outputs.

We shall describe what gradient descent is in the next section, but firstly, let us define
a measure of the discrepancy between the obtained and expected network responses by

using the notion of mean squared error:

Definition 3.5 Given an ffnn, the set of its adjustable parameters, W, a set of
v training pairs consisting of an input vector, X ¢ 1R”, and a target output vector,
T G JRm and the obtained output response, Y G R m, a measure of the error associated

with that FFNN is given by:

E{w) = |IT —Y |2

mov
= — EE<Ti-V (3-6)

i—1j=l
The function E (W) defines a multi-dimensional error surface§, for a given set of input,
output and target vectors. For each combination of weight values, W, there is an error
value proportional to the discrepancy between the obtained and expected (target) FFNN
outputs. Training consists of finding the optimum set of weights7, W @, which gives an

acceptably low error.

3.4.2 Gradient descent

Being on the top of a hill, the shortest route to a valley below, is by descending
the steepest slope. Similarly, being anywhere on the error surface, E{W), the shortest
route to a minimum, being either local or global, is in the direction of the steepest slope
(gradient). Thus, FFNN learning rules based on the gradient descent method require
that the weight vector changes in the direction pointed by the negative gradient of the

mean squared error function. In this way, the error will decrease at the fastest possible

5 “One problem is that there can not be any standard, universal way to measure errors, because
each type of error has different costs in different situations. But let us set this issue aside and do
what scientists often do when they can’t think of anything better: sum the squares of the differences”
[Minsky and Papert, 1988, Epilogue]

6 This error surface has a dimensionality equal to the number of elements in W plus one, the bias
value. The dimensionality is, thus, equal to the number of adjustable network parameters.

7 The set of adjustable network parameters includes the weights as well as the biases to each
neuron’s activation. For the sake of clarity we will not refer to the biases separately.

3.4. THE BACK-PROPAGATION OF ERROR TRAINING METHOD =

rate. Therefore, the weight update or learning rule is given by the following expression:
WGE+1)=W(k) - PVWE (3.7)

where, W (1) is the set of weights at time ¢, (3£ R 1is a constant controlling the weight
change8 and V\yE is the gradient (also known as curl) of the error function, E(W)
with respect to the weights.

3.4.3 Back-propagation

Back-propagation is a training algorithm inspired by the gradient descent optimisation
method and adapted to the case of the many layers of weights and computational nodes
of an FFNN. In fact, back-propagation is nothing more than just a particularly efficient
method (thanks to chain rule) to compute V\yE.

We have already talked about back-propagation’s colourful history in section 2.2 on
page 9. It is a method which is constantly modified and enhanced with little embel-
lishments here and there. It is also a highly criticised algorithm because of its many
inefficiencies and uncertainty of convergence, or actually, its convergence to minima
of uncertain nature (e.g. local or global?). For a more detailed description of these

criticisms, refer to sections 4.4.2 on page 38 and 4.4.3 on page 41.

None-the-less, it constitutes a very important discovery in the field of neural networks
as it has opened up the avenues for the use of multi-layer networks, in the late 8o’s,
and the revival of neuro-computing. Why it had to be re-invented and popularised by
Rumelhart in 1986, when it was once proposed by Werbos, [Werbos, 1974], ten years

earlier is another story ...

The main problem with equation 3.7 when applied to multi-layer perceptrons, lies in
calculating the gradient of the error with regards to all the weights of the network,
V\yE. Consider equation 3.2 of definition 3.4 on page 23. The output of a FFNN,
Mm(X), depends directly on the weights of the output layer, w3, but indirectly on the
weights of the hidden layer, w2. “Indirectly” in the sense that the effect of w2 upon
gn is through the activation function, a. As a result, the calculation of V\yE becomes

complicated.

Back-propagation works in three phases. The first phase consists of propagating the

8 The role of this constant is crucial in reaching a solution: if it is large, it speeds up the convergence
but the weights are changed in big steps and therefore a potential solution might be overlooked. In the
scenario of descending the hill, is equivalent to the size of our footstep. If too small, it will take us a
long time to reach the valley, if too big, we might end up ascending the next hill, missing entirely the
valley below us!

b= =3 CHAPTER III

input vector through all the computational units until the output and, subsequently,
the error values are obtained. In the second phase, the errors from the output layer are
propagated (e.g. back-propagated) to the previous layers and the contribution of each
weight to the error is calculated. There the effect of the current layer’s weight values
in the error is calculated. Finally, during the third phase, the weights are modified

according to the findings of the second phase.

For a derivation of the back-propagation equations refer to Appendix A on page 167.
Also, section 4.4 on page 37 explains in more depth the problems associated with the

use of this training algorithm.

CHAPTER IV

CRITIQUE OF FFNN

That neural networks are a panacea, is a myth. In this chapter we
describe the main points of the critique associated with the use of feed
forward neural networks and give examples of where and how they are
bound to fail.

4.1 Introduction

Ever since their appearance, neural networks have been in the center of heated argu-
ments and controversy essentially because Connectionists had “audaciously” attempted
to extend their networks from “processing waveforms or evaluating credit histories”,
[Anderson and Rosenfeld, 1988, p. 599], to trying to understand how the human mind

works.

Following are some of the main criticisms expressed which are directly or indirectly

relevant to scope of this work:

1. Linear classifiers (the perceptron for example) can implement discriminant func-
tions (decision planes or hyper-planes in higher dimensions) which are only linear.
Because this class of functions is very restricted and forms only a very small sub-
set of the total number of all possible decision boundaries, linear classifiers are
simply not powerful enough to be used in applications where it is important that
an exact decision boundary is found. A classical demonstration of this is when

the perceptron attempts to learn the XOR function (see appendix B on page 171).

In section 4.2.2 we explain the facts mentioned above in detail and quantify the
limitations of the perceptron. Note that these problems are associated only with
the task of finding an exact representation for a given training set. In applications
where we are primarily interested in good generalisation these concerns are largely

irrelevant and the perceptron with its simple architecture and training process,

30 CHAPTER IV

proved to be a useful and practical tool.

2. The addition of an intermediate layer of processing units (hidden layer) and the
use of non-linear activation functions in the original perceptron design led to the
non-linear, multi-layer perceptron (or FFNN in our terminology). The capabilities
of such a multi-layer construction can be appreciated from the implication of a
mathematical result, due to Kolmogorov, on the existence of exact representations
of continuous functions by superpositions of one variable functions. See section 3.3

on page 24 for more details.

Even so, the utilitarian value of Kolmogorov’s theorem is weakened by some yet
un-answered questions regarding the construction of the neural network1 as well
as by problems of extreme sensitivity to the input variables. For these reasons,
researchers in the field of neural networks are no longer seeking exact representa-
tions but rather an approximation to the training data, with arbitrary accuracy.
The latter is guaranteed by the Stone- Weierstrass theorem on universal function
approximation. However, one must note that universal function approximation is

one thing and universal computation (Turing) is another!

A discussion about using neural networks for exact representation of functions as
well as the universal function approximation property can be found in section 3.3

on page 24.

3. For the simpler case of linearly separable data, the perceptron training algorithm
could find an optimal set of weights relatively fast. With the addition of another
layer of processing units, however, many more weights have to be optimised.
Consequently, training these networks becomes more difficult, especially as the
number of input dimensions increases. Thus, one may ask whether, given a neural
network and a set of training examples, there exists a set of weights for which the
network produces the correct output for all the examples. This is usually referred
to as the loading problem and it has been shown that it is NP-hard or NP-complete

depending on the network topology and activation functions employed.

This result is mainly of theoretical importance to the problem of efficient training
of neural networks. In practice, the implications of the loading problem are not
as dramatic since we are not as much interested in memorisation as we are in

generalisation of the training set. This issue is discussed in section 4.3.

1 For example, answering questions such as how many hidden units or what activation functions

without resorting to rules of thumb.

4.1. INTRODUCTION =1

4. The nature of the error surface and, in particular, the existence of local minima

presents one of the biggest problems in training a neural network.

On the one hand, the error surface depends not only on the network topology but
also on the particular training set, cost function used and kernel type. On the
other hand, back-propagation and, generally, gradient descent-based optimisation

methods lack simple and effective mechanisms to avoid local minima23

As the number of weights in a neural network increases (e.g. in order to deal
with high-dimensional training data associated with “real world” problems - as
opposed to “toy” problems) the error-weight space explodes exponentially in the
number of dimensions due to the “curse of dimensionality”3. Thus, the search
in this space for optimal weight values, with or without back-propagation, is
seriously hindered. It has to be mentioned here that in some occasions the di-
mensionality of a problem can be reduced without serious loss of information by
application of various dimensionality reduction techniques. For example, Princi-
pal Components Analysis, [Bishop, 1995, p. 180], is such a technique which has
been widely used in reducing the dimensionality of the problem so that it is solved

by a smaller neural network.

In addition, the error surface becomes very nasty, in terms of multi-modality,
complexity, dimensionality and number of stationary points, when networks are

scaled up to tackle with problems of the “real world”.

Certainly, there are instances of error surfaces with no local minima. Those, how-
ever, require linear separability of the training patterns (which may be achieved
by increasing the number of input variables, see section 4.2.2) or a huge number
of hidden layer units which will reduce the generalisation ability of the network

and hinder the training process even more.

These problems are examined in sections 4.4.2 and 4.4.3.

5. A problem which is related to the neuron fan-in is that of premature neuron
saturation. This refers to situations where the input signals to the hidden layer
nodes are so high that the neurons are forced to produce an output response
very close to the upper bound of their sigmoid activation. Saturation causes the

neurons to lose their sensitivity to input signals, the propagation of information

2 It is not accidental that most AI courses introduce the technique of hill climbing by the example
of a blind person ascending a hill. Blind, indeed, is gradient descent!

3 The exponential growth of the volume (of Euclidean space) as its dimensions increase is known
as curse of dimensionality.

32 CHAPTER IV

is blocked and, thus, sub-optimal solutions arise. This problem is discussed in

section 4.4.4.

6. Although a FFNN is an inherently parallel computational system, it is quite diffi-
cult to obtain any practical benefits from this feature. The fine-grain parallelism
involved and the nature of the back-propagation algorithm require intense com-
munication between the processing elements (neurons). Thus, any advantage
gained from parallelised operation will be lost in the face of vast communication

overhead.

The feasibility of parallel implementation as well as the main constraints on hard-

ware execution of FFNN are discussed in section 4.5.

7. The current neural network architectures are criticised for their non-explicit na-
ture of learning. The most common and convenient description of a neural net-
work is that of a black box where intermediate learning steps are either unavailable

or difficult to visualise. Section 4.6 refers to these criticisms.

The above criticisms will be discussed extensively in subsequent sections. The chapter

ends with section 4.7 which contains a summary of the main points.

4.2 The power of linear classifiers

4.2.1 Order of a predicate and the perceptron

Among the first “neuro-sceptics” to doubt the universal applicability of neural net-
works were Minsky and Papert. In 1969 (see section 2.2 on page 9) they drew the line
between what can and can not be learned by the neural network models of their time

(e.g. the perceptron).

Their main contribution, [Minsky and Papert, 1969], is the concept of order associated
with a given perceptron configuration. Order limits the predicates that are computable
by a perceptron in the sense that a perceptron with a given order 0 can not be trained
to compute any predicate whose order is greater than O. So, whenever a given problem
is of low order, the perceptron performs well. However, for tasks with unbounded order,
problems of size and scaling are encountered: in order to increase the likelihood for a
perceptron to learn to compute high-order functions, the number of connections must

be high.

The basic idea behind Minsky’s and Papert’s concept of order was not new. Essentially,

it is a re-formulation of the problem where a classifier lacks the expressive power to im-

42. THE POWER OF LINEAR CLASSIFIERS 33

plement all decision boundaries a problem might require. A more thorough study of the
power of linear classifiers (not only of the perceptron) was done by Cover, [Cover, 1965],
in 1965. Later, Vapnik and Chervonenkis introduced the notion of the growth function
associated with a classifier, while studying the relationship between relative frequencies
of events and their probabilities, [Vapnik and Chervonenkis, 1971] (see appendix C on
page 173 for more details). Finally, Valiant, [Valiant, 1994], formalised the learning
problem, thus, allowing all these ideas to be combined in a unified framework, the

Probably Approximately Correct (pac) learning.

The essential difference, however, between Minsky’s and Papert’s order of a perceptron
and the various other measures of the power of linear classifiers as described in the
previous paragraph as well as in the next section, is that the former is described in
a framework which ignores the fact that a perceptron is more a linear classifier than
anything else. Had Minsky and Papert made their critique starting from the fact that
a perceptron can only implement linear decision surfaces, they would have been far
more constructive and, probably, have arrived to the solution of the problem with less

controversy and friction.

4.2.2 Linear separability

Another limiting factor of a perceptron’s classification ability is the requirement that
its input patterns be linearly separable. A set of M-dimensional points belonging to
two classes, A and B, is said to be linearly separable if there exists a hyper-plane (in
M dimensions) which can form a decision boundary between points of class A and
points of class B. Since a perceptron is basically a linear threshold device, e.g. it
can implement only linear decision surfaces, linear separability of the input patterns is

strictly necessary for successful (e.g. by 100 %) classification.

It is interesting to consider the fraction of the dichotomiesg5of N points in general
positionss in M dimensions which are linearly separable. This is given by the following

expression, [Cover, 1965]:

4 The term dichotomy refers to each possible binary (e.g. only two classes, A and B) classification
(labelling) of points in continuous M-dimensional space. For N such points, the total number of
dichotomies is 2N.

5 N points are in general positions when there is no subset of M or fewer points which are linearly
dependent. An equivalent definition of the term general positions is the following: when N > M, N
points are in general positions in an M-dimensional space if and only if no M + 1 points lie on and
(M — i)-dimensional hyperplane. When N < M, N points are in general positions if no (M — 2)-
dimensional hyperplane contains all the points. See for example appendix B on page 171.

34 CHAPTER 1V

. ferES. () fordV>M+1 (40
e for N <M + i B

We can see from the above equation that when N < M + 1 all N patterns are linearly
separable and, hence, the perceptron will be able to classify them correctly (it is just
a question of finding the correct weight values). On the other hand, if the number of
patterns is greater than M +i then the number of linearly separable patterns diminishes
as the ratio A" 1 increases. Consequently, the probability that a perceptron will be
successful in a classification task becomes minimal when N is 3 or 4 times greater than

the number of input dimensions, M.

Figure 4.1: Plot of the quantity Pn,m for various values of M, the number of input

dimensions.

Figure 4.1 shows various plots of equation 4.1 for different M values (M = 1 is indicated
by a continuous line whereas M = 100 lies on the opposite side of the envelope). We
can see that as long as the ratio is kept below the critical value of 2 and for any
N, the linearly separable patterns are dominant. However, as soon as jV'_i becomes

greater than 2 (by increasing N and/or decreasing M), the number of linearly separable

4.3. FFNN: ISSUES OF COMPUTATIONAL COMPLEXITY ==

patterns falls rapidly. In this case, the perceptron is obviously inadequate6.

Today, however, the perceptron and, in general, most neural network classifiers are
used in tasks which do not involve memorising the complete set of all input patterns.

Today, people7 place more emphasis in generalisation than in memorisation as they
are primarily interested in designing systems which are accurate when presented with

previously unseen data even though they may fail to separate the training data exactly.

4.3 FFNN: Issues of Computational Complexity

4.3.1 Introduction

One direction to approach theoretical questions regarding learning by neural networks
originates with the work of Judd, [Judd, 1988] and [Judd, 1990]: “Given a network
architecture (interconnection graph as well as choice of activation function) and a set
of training examples, does there exist a set of weights so that the network produces the
correct output for all examples?”. This question is known as the loading problem and

is of fundamental theoretical importance to artificial neural networks.

We say theoretical importance because the scepticisms regarding neural network con-
vergence to an optimum solution are mainly coming from mathematicians or theoretical
computer scientists not working in the area of AI. On the other hand, users have re-
ported no serious troubles and have developed a practical feeling on the design and

training of neural networks in a somewhat “magic” environment.

4.3.2 Some complexity classes

A n informal discussion of some well known structural complexity classes is given be-
low8. Basically, this classification is based on the subtle distinction between solving
a problem using a deterministic algorithm and checking a solution reached by a non-

deterministic algorithm.

* Class P: a problem is in the class P when there is a polynomial time9, deterministic

algorithm which solves the problem.

6 In order to remedy this situation one has to keep the value of ;J* (well) below 2. This can be
achieved by either increasing the number of input dimensions or by decreasing the number of input
patterns. The xor problem (or the parity problem in higher dimensions) can be learned by a perceptron
if more inputs are added. See appendix B on page 171 for a reference to the XOR problem.

7 In pattern recognition and signal processing for example.
8 A standard text on structural complexity classes is [Gaxey and Johnson, 1979].

9 In the length of any reasonable encoding of the inputs.

36 CHAPTER IV

+ Class NP: a problem is in NP when a “guessed” solution for the problem can
be verified in polynomial time. This allows for non-deterministic algorithms to
be used in guessing solutions and then verify them in polynomial time. Thus,
the class NP contains those problem for which10 a deterministic algorithm would
yield a solution in exponential time whereas a non-deterministic algorithm finds

a solution in polynomial time. Problems in NP are further categorised into:

A problem X is NP-hard if and only if any problem Y in NP can be trans-
formed in polynomial time by / to X, such that given an instance I of Y,

I has a solution if and only if /(/) has a solution.

— A problem is NP-complete if and only if it is both NP and NP-hard. The
travelling salesman and general satisfiabilityll problems both belong to the

NP-complete class.

It is known that P ¢ NP, however, whether P ¢ NP (i.e. a strict inclusion) is still an
open question because no problem has been found, yet, for which one can prove that

it is NP but not P.

4.3.3 Known results

The loading problem, as formulated by Judd, seems to be a relevant model (some
reservations are expressed in the conclusions, see section 4.3.4) for supervised learning
using ffnn. It is known that this problem is generally NP-complete and that many
strong restrictions on design parameters do not help to avoid the intractability of load-
ing, [Sima, 1994]. Wiklicky has extended these results and proved that the loading
problem for higher order networks is even undecidable, [Wiklicky, 1993].

Blum and Rivest, [Blum and Rivest, 1988], have shown that the loading problem is NP-
complete if the neural network (ffnn) contains only three units using the threshold
activation function. This result has been generalised for neural networks using semi-
linear activation functions, [DasGupta et al., 1995]. Still, the activation function is
non-differentiable and, thus, it can not be used with any gradient descent training

methods.

Finally, in [Sima, 1996] it was shown that the loading problem for a 3-node neural

network with sigmoidal activations and zero bias value for the output node (a condition

10 Here lies one of the most fundamental and famous problems of Computer Science: is P = NP or
not?

1 3-SAT and up

4.4. LEARNING AS OPTIMISATION 37

Sima calls output separation) is NP-hard. This implies that training FFNN with a single

hidden layer which satisfy the output separation condition is intractable.

4.3.4 Conclusion

The results mentioned in this section are undoubtedly pessimistic because they are
derived by imposing several and strict conditions on the architecture and nature of the
neural network. Choices, which in practice are - at least - rarel2, are here necessary
in order to simplify the loading problem. In addition, the way the problem has been
formulated does not exactly coincide with the aims of usual practices of training and
testing a neural network. In reality, the purpose of training a neural network is not
memorisation of the training patterns (that is what the loading problem assumes) but,
instead, a good generalisation behaviour when the network is presented with unknown
patterns (extracted from the same source as the training patterns). This, of course,
means that the final set of weights is not, necessarily, required to be selected on the
assumption of zero training error. These results are - none-the-less - significant in
the sense that they give us an indication of the upper bounds of the computational
complexity of training a neural network. Whether these results are to be expected in

practice or not is a totally different issue.

4.4 Learning as optimisation

4.4.1 Introduction

Supervised learning with neural networks has always been studied and dealt with as
a problem of optimisation. The various perceptron’s training algorithms are more or
less straight-forward implementations of the gradient descent method. More complex
neural network architectures require more complex learning algorithms; all of which

are invariably based on gradient descent.

The difference, however, between the training algorithms for the perceptron and Ada-
linel3 and the more complex algorithms for multi-layer neural networks is that the
former’s error function in the weight space has a unique valley - a unique global min-
imum, [Baldi and Hornik, 1989]. Therefore, reaching this point with gradient descent

is just a matter of choosing the correct step size (learning rate). This is no longer true

12 For example [Hoffgen, 1993] announces NP-completeness results for the loading problem on the
assumption that the weights be restricted to binary values of —i and i!

13 ADAptive LINear Element is, basically, a single layer network with a linear activation function
at its output. See [Widrow and Hoff, 1960] for more details.

3« CHAPTER IV

for the case of gradient descent applied in multi-layer, non-linear architectures. In this
case the error function has a much more complicated topography with numerous local

minima.

4.4.2 Back-propagation

Firstly, a clarification of what is meant by back-propagation. Back-propagation is an al-
gorithm which implements the gradient descent optimisation technique on differentiable
error functions which do not depend directly on their inputs but rather on functions of
the inputs14. In effect, back-propagation is a way to calculate the derivatives of the cost
function with respect to each of the free parameters of the network without explicitly
working out the analytic expressions for the derivatives. Where these expressions are
available, the algorithm is not necessary. Although this is rarely the case because the
introduction of non-linear activation functions and hidden layers in the neural network

architecture renders the analytic methods fractious.

As Minsky and Papert pointed out:

“ We have the impression that many people in the connectionist community
do not understand that this [the back-propagation algorithm] is merely a
particular way to compute a gradient and have assumed instead that back-
propagation is a new learning scheme that somehow gets around the basic

limitation of hill climbing.” [Minsky and Papert, 1988, p.286]

In addition, issues of computational complexity of the back-propagation algorithm be-
come important as the number of free parameters of the network (the weights and
biases) as well as the number of inputs and the number of training examples increase.
If any forward and backward step costs O(| W|) (W] being the number of weights and
biases) and is performed for all 7' patterns, P times (e.g. the number of training itera-
tions), an estimation of the learning time on sequential machines is then proportional

to

Tx P x |W| 4.2

Example 4.1 The fact that the training time of atfnn for afixed number of epochsis
is proportional to the number of weights has been confirmed with the following experi-
mental setup. A training data set consisted of 10 vectors each of 50 input variables and

14 The level of indirection depends on the number of hidden layers of the neural network; each hidden
layer adds one more level.

15 The cycle of presenting all the training examples to the network once and doing all the necessary
weight updates is called an epoch.

4.4. LEARNING AS OPTIMISATION 39

1 output and was produced by the procedure Levy6 (for more details on this procedure
refer to section 6.3.5 on page 87). A FFNN of variable number of weights was trained
with this data set for 1;000 epochs. The average training time (over 10 repeats for each
different size) was recorded for different number of weights. The results depicted in
figure 4.2 show that the mean training time of a fully connected FFNN is proportional

to the total number of weights, for fixed number of epochs and training size.

Single FFNN, 50 inputs, 1000 training iterations

Figure 4.2: FFNN training time is proportional to the number of weights

The number of adjustable parameters in a fully connected, FFNN of [layers16 with
respect to the number of units per layer (L = {Li}l=1) and the number of input
dimensions (V) is given by:
|L|1 B
[(W|= £ LiXLI+1+ Y"Li (4-3)

2—1 2=1
Thus, the convergence time expression with respect to the number of input dimensions
and hidden layer units is proportional to:
ILI- I

+ (4-4)
x1 2=1

16 The [layers include the input layer, all the hidden layers and the output layer.

40 CHAPTER IV

The above polynomial primarily depends on the number of input dimensions N, N =
L 1. The number of units of the hidden layers must also, somehow, reflect the size of
the input layer. Even with moderate settings and conservative rules of thumb, the
number of free parameters that have to be adjusted by back-propagation may reach
very high levels causing extremely long training times and a high probability of falling
in one of the numerous local minima. The fact that many “real world” problems require
networks of several thousands of weights (e.g. in hand-written character recognition or
speech recognition tasks) implies that successful training algorithms effectively have to
face the curse of dimensionality. Section 5.7 on page 72 compares the training times

for a single FFNN and an FFNN entity.

One of the advantages of back-propagation is its local nature. Without the need for
information on more than the previous and next layer units, the algorithm can be
parallelised - though not very efficiently due to communication overheads, as we will
see in section 4.5.1 - with all the benefits this implies. Locality, however, is not always
an advantageous feature of an algorithm. Gradient descent is a local optimisation
method and this is the main reason why it is so susceptible to local minima (see also

the next section).

A possible remedy to the shortcomings of local training algorithms is to employ global
optimisation techniques in conjunction with probabilistic methods. Unfortunately,
these algorithms (see for example [Torn and Zilinkas, 1987], [Zhigljavsky, 1991] and
the magic hair-brushing algorithm in [Chao et ah, 1991]) require extremely long time
to converge to a solution due to their probabilistic nature. Some alternative attempts
to use global optimisation in a deterministic framework (e.g. the Terminal Attractor
Back-Propagation algorithm proposed in a paper by [Wang and Hsu, 1991]) generally
failed in discovering the global minimum. As pointed out in [Bianchini et al., 1997]:
“there is no theoretical assurance that the global solution will be reached, unless the
starting point lies in the domain of attraction of the global minimum” - this means
that the only guarantee for reaching the global minimum is to be already in the global
minimum valley! In addition, because of instability behaviour in the neighbourhood
of a singularity, due to limited numerical precision, random jumps in the weight space
- equivalent to injecting noise to the weights in conventional back-propagation - may
divert the learning trajectory away from the global minimum (as well as towards the
global minimum when trapped in a local one. Hence, the term paradox of global con-

vergence).

A novel approach to the optimisation of learning machines such as the FFNN has recently

4.4. LEARNING AS OPTIMISATION 41

appeared under the name of Support Vector Machines(svM) [Vapnik and Chervonenkis, 1974],
[Vapnik, 1979], [Vapnik, 1995]. SVM are based on the previous work by Vapnik and
Chervonenkis on statistical learning theory and the VC dimension, [Vapnik and Lerner, 1963]
and [Vapnik and Chervonenkis, 1964]. SVM work by minimising the upper bound of the
generalisation error of the learning machine, instead of the sample error. In this way,

SVM do not have to face bias-variance trade-off, [Geman and Bienenstock, 1992], like

conventional optimisation methods.

Appendix C contains a useful introduction to the concepts of VC dimension. Section
C.6 in Appendix C describes SVM at a greater length. A very informative tutorial on
SVM is given by [Burges, 1998].

4.4.3 Local Minima

A s we have seen in the previous section, one of the problems haunting back-propagation
is the existence of minima, maxima and saddle points on the error surface defined by
the error function, E(W), in the weight space, W. This complicated topology of the
error terrain makes it difficult to find the one (global) minimum corresponding to the

lowest or, even, zero error.

For networks17 having a single layer of computational units, linear activation func-
tions at their outputs and employing a sum-of-squares error function, £(W) will be a
quadratic polynomial on the weights and, therefore, the error surface will have a general
multi-dimensional parabolic form with a single minimum which can be easily reached.

However, for the general FFNN architecture the error function will be a highly non-

linear function of the weights suffering all the pathologies mentioned earlier.

Essentially, the presence of local minima derives from two different reasons, as discussed

in [Bianchini et al., 1998]:

+ spurious local minima may arise because of unsuitable choice of activation and

error functions,
« structural local minima may arise because of the nature of the particular problem.

This means that some of these local minima may be eliminated with the right choice
of neural network topology and activation and error functions. However, those minima
inherent in the problem at hand can not be rid of unless an appropriate reconstruction

of the training set or, even, a reformulation of the learning problem is adopted.

17 For example, the perceptron.

42 CHAPTER IV

4.4.4 Premature Neuron Saturation

It has been shown that optimal solutions to the problem of training a FFNN for a
particular data set are obtained when the majority of the hidden layer units operates
predominantly in the linear region of their sigmoid activation, with small excursions

into the nonlinear region, [Burrows and Niranjan, 1993].

Premature neuron saturation refers to situations where the input signals to the hidden
layer nodes are so high that the neurons are forced to produce an output response very
close to the upper bound of their sigmoid activation. Saturation causes the neurons to
lose their sensitivity to input signals, the propagation of information is blocked and,

thus, sub-optimal solutions arise.

Saturation has been mainly attributed to learning with high initial weight values. How-
ever, the input signal to a hidden layer neuron is a summation of the product of a weight
value and previous layer outputs over all the previous layer units. Therefore, saturation
may also arise when the number of units in each layer is large, for example in networks

with a lot of inputs (input dimensions).

A possible solution to the problem of premature neuron saturation would be to initialise
the weights to some very small values and restrict them - during training - within some
ranges which will ensure that saturation will not occur. This solution is based on the
assumption that if there is a solution to the problem at hand, then this will, most likely,
be found there where saturation does not occur; e.g. in the region of small weights.
This is partly true because some weights might have large values without necessarily
causing the majority of neurons in a network to saturate. Therefore, the solution may

also be found in regions where some weights are small and some are large.

Questions such as how many weights should be restricted, which weights and in what
ranges should then be answered in order to ensure that optimal solutions are not ex-
cluded a priori. The answer to these questions, however, is specific to the neural
network architecture chosen and the training data available. Some people might be
tempted to introduce a random element in determining these answers with a distri-
bution depending on network architecture and training data. Although such methods
may be effective at times, they should be used with skepticism because they introduce
more uncertainty, in addition to that of gradient descent, and leave open questions.
Moreover, restricting the learning process in such a way, would constitute a serious

deviation from the doctrines and meaning of connectionism.

Regularisation, [Bishop, 1995, p. 15, 338], is a technique for controlling the smoothness

4.5. ISSUES OF PARALLELISM AND HARDWARE IMPLEMENTATION 43

of a mapping function (the output of a neural network, for example). One way to achieve
this is by controlling the change of the weights in a neural network. Thus, instead of
updating weight values uniformly by using a universal weight update rule depending
only on the error value, régularisation theory suggests the use of a functional which
depends on the weight value as well so that smaller weights are updated differently
than larger ones.

Weight decay, a subset of régularisation methods, penalises large weights. Other
regularization methods may involve not only the weights but various derivatives of the

output function.

4.5 Issues of parallelism and hardware implementation

4.5.1 Parallelism

A n efficient parallel implementation of any computational task will have to take into
account not only how well the task can be partitioned and assigned to the different
processors (load balancing) but also the communication requirements between the var-
ious processes and processors. The latter is important from a practical point of view
because, on the one hand, the bandwidth of the communication channels is limited and,
on the other hand, the communication process itself consumes computing power (e.g.
routing, error detection and correction, etc.), thus slowing down the overall effort. As a
result, the number of parallel processes is limited by the communication overhead they

will introduce and, therefore, can not be increased unconditionally.

The basic processing element of a FFNN is the neuron which, for a fully connected
network, communicates with all the neurons of the previous and next layers. Its task

is simple and basic but requires a lot of information passing:

* In forward propagation mode, it is required to compute a sum of products using
the outputs of all the neurons from the previous layer, pass it through a non-
linearity (activation function) and fan-out the end result to all the neurons of the

next layer.

* In back-propagation mode, it is required to compute a sum of products using the
derivatives of the output of the activation function from all the neurons of the

next layer and distribute the end result to all the neurons of the previous layer.

The most natural partitioning of the problem of training a FFNN for parallelised im-

plementation is at the level of the neuron: each neuron belonging to the same layer

44 CHAPTER IV

be assigned to a separate processor. Considering the simplicity of the neuron’s task
and the fact that the number of neurons in a given layer can be large, this scheme is,
definitely, not practical as it would require a large number of processors doing trivial

computations.

An alternative scheme which takes advantage of the fact that modern processors are
quite powerful, is to group several neurons together and assign each group to one pro-
cessor, [Kontoravdis et ah, 1992]. In this way a reduction in the number of processors
as well as a reduction in processor-to-processor communication is achieved. The cost is
that each processor being an essentially von-Neumann machine operates sequentially;

therefore, the amount of parallelism is reduced too.

Undoubtedly, the fine-grain parallelism which is inherent in the nature of a FFNN does
not map very well onto current (parallel) computer architectures and may be inefficient
in practice due to excessive communication overhead, [Misra, 1992]. This is especially
true if the classical approach of parallelism at the neuronal level is taken.

As an alternative, FFNN are engineered as a mixture of parallel and sequential
computational schemes. On the same token, some people are expressing the view that
as the computing power of modern processors increases, sequential implementations

may be the most viable and optimal choice after all.

We believe that parallelism is a valuable feature of neural network models and should be
retained in practical implementations, with any modifications and adjustments deemed
necessary. INot only because the immense explosion in the development of conventional
hardware of the last ten to twenty yearsi8 will soon subside in the face of the limit of
atomic size, but also because without parallelism at the hardware level, significant ad-
vantages gained by adopting a connectionist approach such as fault tolerance, scalability

and hardware extendibility are lost.

As it has already been mentioned in section 4.4, artificial neural networks have been
used successfully on small pattern recognition problems but, in larger applications,
scalability problems will occur, [Zell et al., 1993]. In biology (e.g. brain physiology),
these same problems seem to be solved by the development of modular structures (see

chapter 5) of which parallelism is a key element.

Parallelism and modularisation at the hardware level are also crucial for building ex-

tendible systems where new modules can be added without fundamental changes to

18 The statement that circuit density - the capacity of semiconductors - doubles every 18 months
is known as Moore’s Law.

4.6. THE NON-EXPLICIT NATURE OF LEARNING ==

the behaviour of the other modules - something that is very difficult with the current,

non-expandable architectures, [Murre, 1993].

This last point leads us to the next section where practical problems of hardware

implementation of neural networks are discussed.

4.5.2 Hardware implementation constraints

A's neural network models are growing more complex and their applications are be-
coming more sophisticated, the plausibility and ease of hardware implementation are
crucial in their successful utilisation in non-trivial tasks and in environments outside
the computer laboratory. In addition, neural network hardware offers the high-speed

circuits necessary for real-time applications.

The main factor restricting the successful and large scale implementation of neural
networks in silicon is, perhaps, the large number of fan-in and fan-out connections
per neuronal unit which results in increased complexity of the circuit design, excessive
current supply and the prohibitively large chip area required for the calculation of the

huge sums of products involved.

In addition, analogue neural network hardware designs suffer from low precision compu-
tations, dependent on external factors such as temperature and power supply stability,

[Hecht-Nielsen, 1990, p.273].

For a review of hardware neural networks see [Lindsey and Lindblad, 1994]. Chap-
ter 8 of [Hecht-Nielsen, 1990] offers an extensive analysis of hardware neural network

implementation.

4.6 The non-explicit nature of learning

Current neural network architectures, and in particular the feed-forward neural net-
works, are conveniently described in terms of a black box model. The large number of
weights, the non-linearities applied to the output of each neuron and the presence of
one or more hidden layers make it very difficult to observe the intermediate steps of

the learning process in the level of weights and neurons.

Firstly, the advantages derived from the simplicity and convenience offered by the
black box approach are nullified when greater interference with the learning process is

desirable.

Secondly, without some form of explanation capability, the full potential of trained

46 CHAPTER IV

neural networks may not be realised. The problem is an inherent inability to explain
in a comprehensible form, the process by which a given decision or output generated by
a FFNN has been reached.

Thirdly, the hopes of many biologists that neural networks will constitute a promising
method which would help them understand the biological neural system itself are now

very remote possibilities.

Finally, it is important to note that if the learning process was more explicit and
better understood we could have been more efficient and effective in reaching a good
solution. The discrepancy between expected and desired neural network outputs -
an utterly simplistic indicator of performance - is, currently, the main guide of the
optimisation process. Therefore, although some results are obtained when the error
surface is relatively simple, in general, total success can not be guaranteed (as it was

discussed in section 4.4).

For neural networks to enhance their overall utility as learning and generalisation tools,
it is highly desirable if not essential that an “explanation” capability becomes an inte-
gral part of their functionality. Such a capability may be realised with rule-extraction:
“Given a trained neural network and the examples used to train it, produce a concise

and accurate symbolic description of the network”, [Craven and Shavlik, 1994].

4.7 Summary

In this chapter some of the most important problems associated with feed forward

neural networks have been examined. A summary of this critique follows:

1. Linear classifiers such as the perceptron, the predecessor of the multi-layer FFNN,
are able to implement discriminant functions which are only linear. Classifiers
employing the small class of linear functions (decision planes) are not powerful
enough to be used in a wide variety of applications. In fact, Minsky and Papert
managed to pause research in the field of neural networks by demonstrating the
inability of the perceptron to learn the XOR function. More powerful classifiers
may be build, at the cost of increased complexity, by either increasing the order
of the perceptron or using a non-linear neural network architecture such as the

multi-layer FFNN.

2. The utilitarian value of Kolmogorov’s theorem of representing functions in terms
of a finite superposition of compositions of functions of one variable is minimal.

On the one hand, these one variable functions are highly non-smooth and virtually

4.7. SUMMARY 47

unknown, [Poggio and Girosi, 1989]. On the other hand, this theorem does not
offer any suggestions as to how such a decomposition may be implemented in
practice. Consequently, further research in the field has been directed towards
approximate rather than exact representations with all the disadvantages that

this implies. Feed forward neural networks were the fruit of this research.

3. Studies of the computational complexity of training FFNN suggest that the prob-
lem of finding the set of weights for which the network produces the correct output
for all training examples - e.g. the loading problem - is NP-hard or NP-complete
depending on the network topology and activation functions. In theory, this
means that it is computationally expensive, if not impossible, to find the set of
weights corresponding to correct network behaviour. In practice, however, the
implications of these results are not as dramatic because more often than not

users are satisfied more with approximate rather than exact solutions19.

4. Learning as optimisation has greatly simplified the problem of training artificial
neural networks by transforming it into purely mathematical terms. However,
it has also revealed many problems such as local minima, the multi-modality,
complexity and dimensionality of the error surface, the exponential growth of the
search space, premature neuron saturation, etc. These problems become worse
as the number of adjustable network parameters and the complexity of training

data increase.

5. The parallel and hardware implementation of a monolithic FFNN is very difficult
in practice because of excessive communication requirements and the fine-grain
parallelism inherent in its nature. A parallel or hardware implementation of a
connectionist system may only be feasible after extensive modularisation and

adoption of a more coarse-grain architecture.

6. The non-explicit nature of learning which currently characterises neural net-
work modelled on the black-box approach removes virtually any possibility for an
explanation capability in trained neural networks. Additionally, if the learning
process was more explicit and better understood, reaching a good solution could
have been more efficient and effective. Modularisation is one way to effect the

extraction of high-level information from neural networks.

19 Keep in mind that exact learning (see memorisation) of the training set does not imply correct
behaviour when the entire problem distribution is presented.

48

CHAPTER IV

CHAPTER V

FFNN ENTITIES

A methodology for the decomposition of a single FFNN which allows for
dealing fast and effectively with high-dimensional data without degra-
dation of its approximation and generalisation abilities — is herein dis-
cussed.

5.1 Introduction

A's it has been discussed in chapter 4, multi-layer feed forward neural networks in-
variably suffer a number of problems when applied to tasks involving high-dimensional
data:

e premature neuron saturation,
+ the intractability of the loading problem,

* the exponential growth of the search space as its dimensions increase,

local minima, complex error surfaces and the inability of the back-propagation

algorithm to deal with them effectively.

In addition, current neural network models do not favour practical and efficient paral-
lelisation due to their fine-grain structure. Hardware implementation of neural networks
is also difficult and expensive, especially when the number of weights is large. Finally,
the larger the number of weights is, the more difficult it is to observe the intermediate
steps in the learning process or to explain in a comprehensible form, the process by

which a given decision or output has been reached.

In the past, several training algorithms and procedures as well as network architectures,
neuronal models, error and activation functions, etc. have been proposed as solutions

to some or all of these problems. Naturally, they have their advantages as well as

49

5° CHAPTER V

their side effects and disadvantages but they do not pose as generalised solutionsl;
their efficacy is specific to the application domain and the nature of the problem at
hand. Simply put, most of these solutions are designed to fine-tune neural networks to
work optimally within a limited domain rather than develop techniques for both better

performance as well as wider applicability using simpler procedures.

In our opinion, and in line to the underlying concepts of connectionism, the learning
process should remain simple and without a lot of interference. Thus, in order to
address the issue of scaling, one has to rely on the existing basic building blocks; we
need to learn how to combine small networks and place them under the control of other

networks.

The modular neural network architectures developed over the last years are based on
the philosophy that the computational benefits gained from the vast connectivity of
neuronal elements can be improved, when the current, traditionally solid architecture
is extended to a kind of meta neural network where connectivity exists at higher levels,

e.g. between networks, networks of networks and so on.

In this chapter, a novel modular neural network architecture, called an entity of FFNN,
is introduced. Its design has been motivated by the fact that although existing mod-
ular networks are successful in addressing issues of generalisation, specialisation and
confidence of prediction, all the problems associated with high-dimensional data and

scaling of networks, basically, remain unanswered.

In section 5.2, the main reasons for adopting modular connectionist models are identi-
fied. Section 5.3 reviews previous work in the field of modular neural networks. The
family of FFNN entities is formally described in section 5.4. An account of how to create
and train the entities is also given therein.

In section 5.6, it is proved that FFNN entities are universal function approximators.
Section 5.7 investigates the time benefits obtained by replacement of a single FFNN

with an entity of FFNN.

Finally, section 5.8 outlines all the benefits gained by adopting the proposed architec-

ture of the entities.

1 The last 50 years, technology and software development have delivered plenty of such solutions
with Jocalised scope. Ephemeral computer languages, user interfaces, enhanced hardware with added
features: a Sisyphean effort to patch up the notoriously flawed von Neumann computer architecture.
Intelligent gear-boxes, put the engine left, right and center: a Sisyphean effort to patch up the notori-
ously inefficient internal combustion engine.

5.2. MOTIVATION 51

5.2 Motivation

The motivation behind substituting the monolithic neural architectures (and, specifi-
cally, the FFNN model) with equivalent modular constructions emanates from the fol-

lowing facts and observations:

« Partitioning a task into smaller sub-tasks is a very good way to reduce complexity
without compromising the fitness of the solution. The study of human information
processing systems reveals that task decomposition is the way which humans deal
with NP-completeness. It is, probably, the most natural and common problem

solving technique known to man.

On the same token, breaking a huge and complicated structure (such as a solid
neural network) into an entity of smaller structures (the modular network) will
most definitely reduce the complexity of the whole system. Network decomposi-

tion also promotes coarse-grain parallelism, and makes the learning process more

explicit.

* A taxonomy of the components of neural network architectures may be defined
by saying that the neuron is the finest level of classification, a layer is a coarser
level and a network is a still coarser level. Solid neural networks are typically
designed to be modular at the neuronal level whereas entities of neural networks
are designed to be modular at the level of networks. Thus, this design philosophy

is just a natural extension of already existing connectionist models.

+ It seems plausible to neural network researchers, for example [Freeman, 1991],

and neurophysiologists, for example [Lavine, 1983] and [MacGregor, 1987], that:

[13

. the brain is composed of many different parallel, distributed sys-
tem, performing well defined functions [...] To address the issue of scal-
ing, we may need to learn how to combine small networks and to place

them under the control of other networks.” [Freeman, 1991, pp.29-30]

Thus, the brain is not only characterised by a massively connected network of
neurons but also by the existence of different computational systems operating

at different levels of abstraction and specialising at different functions.

= CHAPTER V

5.3 Modular neural architectures: state of the art

5.3.1 Committees of networks

The method of combining several neural networks together in something called a
committee of networks, and obtaining the overall response as the average of the out-
put of the individual networks has been suggested in [Perrone and Cooper, 1993] and

[Perrone, 1994],

Mainly, this method aims at overcoming the problems associated with the usual practice
of training a network several times (or, alternatively, training a large number of different
networks) with the same data but with different initial conditions (initial weight values)
and/or different network topology and then selecting the network with the lowest sample

error.

On the one hand, following these practices is not only inefficient because the compu-
tational effort spent in the training of the rejected networks is wasted - do not forget
that only one network will be selected. On the other hand, selecting a network using
the criterion of the lowest sample error can not really guarantee a good network per-
formance with unknown data (see appendix C on page 173 for more details on issues

regarding sample error and the confidence of prediction).

Theoretically, the mean squared error of a committee of N networks can be reduced by
a factor of N compared to the average error of the networks if acting independently.
This result is based on the assumption that the errors of the individual networks are
uncorrelated [Bishop, 1995]. In practice, however and for obvious reasons, this assump-
tion rarely holds and, thus, error reduction is not as dramatic. None-the-less, the error
of the committee is guaranteed (see for example [Bishop, 1995, p.366]) to be lower than

the average error of the individual networks acting independently.

It is obvious that, although, the idea behind the committee of networks is successful in
producing a modular connectionist network with enhanced generalisation and approxi-
mation capabilities, fails to address the problems of scaling and curse of dimensionality.
In fact, the effect of these problems is more evident when the number of trained neural

networks increases.

5.3.2 Other ensemble methods: bagging and boosting

In this section we will describe some more attempts to implement modular connec-

tionist models based on the idea of using the combined output of a system of neural

5.3. MODULAR NEURAL ARCHITECTURES: STATE OF THE ART =

networks rather than the output of the best neural network acting individually.

This class of methods for combining neural networks proceeds a step further than the
committee of networks by training each of the classifiers with a different version of the
training data. These different versions are produced by uniformly resampling with re-

placement the original training set - a procedure known as bootstrapping, [Efron, 1982].

Bagging (i.e. boostrap aggregating) is structurally equivalent to the comunittees of
networks. Their difference is that instead of each network being trained with the same
data set (the case of the committees of networks), it is trained with one of the different

versions of the training set.

Boosting is a more sophisticated version of bagging. In general, for each network in
the ensemble, a weight value is assigned to each training vector. The purpose of this
weighting scheme is to focus attention to the training vectors associated with high error

by decreasing their weight value.

5.3.3 Mixtures of Experts

A mixture of experts is a modular connectionist architecture which learns to partition
a task into two or more functionally independent tasks and allocates distinct networks
to learn each task, [Jacobs et ah, 1991]. The assumption here is that, after training,
the experts will compute different functions which are useful in different regions of the

input space.

The architecture consists of two types of networks: the experts and the gating networks.
Basically, the gating network is trained to select the most appropriate neural network -
according to previous performance - from a pool of previously trained candidates (the

experts).

A typical example of a simplified application of the mixture of experts model is the

absolute value function:

if x <o

if x >o0

This function can be decomposed in two sub-functions, as it is obvious from the equation
above, each relevant to a different region of the input space (e.g. less or greater than
zero). After training the two experts to compute their assigned tasks (using standard
neural network training practices), we need another network (the gate) to choose the

output of only one of the two experts for any given input. This gating network operates

51 CHAPTER V

on a winner-takes-all principle because there exists only one expert for a given region

of the input space.

The above problem is quite simple in the sense that the decomposition of the main
function is obvious and that the domain of each sub-function is clear and can be revealed
by inspection. However, it is not often the case that one is allowed the “convenience”
of domain knowledge: when dealing with high-dimensional data a priori decomposition
of a task might be difficult as well as the boundaries between the different sub-tasks

are, rarely, explicitly marked in the training data.

The main benefit obtained from a mixture of experts model is that it performs a kind
of task decomposition, induced by the competition at the level of the gating network.
Moreover, the process of allocating the experts to subtasks is made part of the learning

problem.

However, although networks based on the mixture of experts philosophy implement and
utilise some kind of task decomposition, promote a framework for better generalisation
and incorporate, successfully, properties unknown to the supervised neural networks
paradigm such as specialisation and competitive learning, they are still vulnerable to

problems induced by scaling and the curse of dimensionality.

Finally, another model of modular neural networks, the recursively-defined mixture of
experts in [Jordan and Jacobs, 1992] constitutes just a variation on the theme of the
mixture of experts. Its main novelty is that each of the experts can now be a mixture

of experts network itself.

5.3.4 Summary and margins for improvement

In the previous section, a review of the current state-of-the-art in the area of modular
neural networks was presented. The simplest approach to designing such systems is the
committee of networks, where several networks are trained on the same data but with
different initial conditions and configuration. The output of the committee is then the
average of all the networks which is guaranteed to be at least lower than the average
error of the individual networks acting independently.

The objective behind the idea of combining several networks in a committee is to
improve the generalisation ability of the system, make it more stable and less susceptible
to the disposition of single networks.

Other examples in this direction are boosting and bagging which use constructions
which are structurally equivalent to the committees of networks. Each network is

trained with a different version of the data set produced using the method of uniform

5.4. FFNN ENTITIES 55

resampling with replacement - e.g. bootstrapping.

Mixtures of experts, on the other hand, implement a more complex modularisation ar-
chitecture which utilises the ideas of competitive learning and specialisation in the hope
to achieve some kind of task decomposition. Again, mixtures of experts are concentrat-
ing on improving the generalisation ability of the resultant networks. The benefits from
such an architecture are, however, doubtful as the boundaries between the different sub-
tasks are rarely explicitly marked in the training data and become more obscure as the

number of data dimensions increases.

It is evident that research in the area of modular neural networks concentrates in
improving generalisation ability but neglects to address the scaling problems due
to the curse of dimensionality. In fact, the current modular architectures suffer more
from scaling problems than single neural networks. This is so because ensemble methods
such as the committees of networks require that not only one but many single FFNN
need to be trained with the same high-dimensional data. On the other hand, mixtures of
experts will find it increasingly difficult to perform task decomposition on the training

data, as its dimensions increase.

Thus, there is a need to consider not only issues of improving the generalisation ability
of our neural network models but also, at the same time, to make sure that scaling up
such networks when used with high-dimensional data will not render them unusable.
Scaling problems and the curse of dimensionality should be considered when designing
alternative neural network architectures. The research described in this thesis is fol-
lowing this direction and, therefore, attempting to fill a gap by considering a problem

which, we feel, has been somewhat neglected.

5.4 FFNN entities

5.4.1 Introduction

This section is concerned with presenting practical and theoretical design issues rel-
evant to the construction of FFNN entities. Questions regarding the nature, type and
complexity of the underlying components of the entities as well as interconnection and

training schemes, will be answered here.

FFNN entities are designed along the same principles as those of ordinary, monolithic
neural networks. After all they, too, belong to the family of connectionist systems;
their structure can be described using the same taxonomy where units belong to the

finest level, layers to a coarser level and networks to a still coarser level of classification.

56 CHAPTER V

Thus, an FFNN entity is composed of not only simple neurons, like the case of single
FENN, but also of units of a more complex character and behaviour. Small neural
networks, networks of neural networks (e.g. other FFNN entities) or their combinations
can be used in the construction of an entity. The type of underlying entity units needs
not be restricted to neuronal. After all what is a neural network (ffnn) other than a
function on its inputs which holds the universal function approximation property and
whose coefficients need to be finalised through training? In this respect, the family of
polynomials are known to be universal function approximator too and, hence, can be

used in the construction of an entity.

Obviously, the choice of an entity’s basic components is very wide. Whether this is a
good thing or just a feature which adds unnecessary complexity to the whole process
is an open question. It could be that the choice of components makes little difference
to the generalisation ability of the entity and that is only relevant to the nature of
the problem at hand. Something similar happens when selecting the type of activation
function in the case of neurons. It is known that it should be a non-linear function
but whether it should be a logistic, hyperbolic or something else, really depends on
the properties of the specific problem’s data. For the sake of clarity and simplicity
of notation and because of time constraints, this thesis is only concerned with single

output entities which are composed of single FFNNs.

The units of an entity may be layered and linked with connections of adjustable strength
just like ordinary neurons in the case of single FFNN. The connectivity of the elements
of an entity, however, is not as strict as that of single FENN. The restrictions imposed
to the connectivity of neurons by back-propagation, in the case of single FFNN, only
apply to entities whose underlying components are linked with connections of adjustable
strength and, thus, will require back-propagation. The existence, however, of adjustable
connections between entity units is optional. Thus, the only restriction that governs
the topology of these entities is to ensure the absence of any feedback connections. The
reason for this is that recurrent neural networks are more complex to train and, thus,

were avoided.

Optimising the weights of the neural networks composing the entity or the weights
connecting the various entity units is essentially based on gradient descent: back-
propagation is used for the former and a modified, generalised, version for the latter.
Training an entity is not complicated provided that the many networks existing at

different levels are dealt with following a certain sequence so as to avoid any deadlocks.

5.4. FFNN ENTITIES 57

A possible categorisation criterion for the entities is their topology2 and the training
targets of each entity component. These two criteria were used to identify three different
classes of entities, namely classes i, 2 and 3. The symbols C\, C2 and C3 shall denote
the three entity classes throughout this chapter. The symbols Ct, C> and (3 shall denote

the family of functions implemented by each of the entity classes.

Class 1 entities follow a partially connected configuration where the units of a given
layer (including the inputs) may send their output to any unit which belongs to a layer
closer to the output than themselves - e.g. feed-forward signal propagation. Any of
the inputs may be sent directly to any non-input layer units as well as it is possible to

have connections between units of non-adjacent layers

Class 2 entities are based on a cascaded architecture. Their structure is more regular -
a feature which allows the use of some form of feedback. A class 3 entity is a refinement
of class 2 with the main inter-connection theme, that of cascaded architecture, being

inherited but with training being slightly different.

In effect, the difference between classes 1 and 2 is one between unordered and ordered,
unstructured and structured topology. Whereas, the difference between classes 1 & 2
and 3 is one of different, more refined training targets. It is interesting to note that
the idea of refined training targets, which could have led to a fourth entity class, could
not have been applied to C| without imposing serious constraints on its architecture
and losing the generality offered by its unstructured topology. Thus, the design and
implementation of a fourth entity class was not attempted because it was considered
to be time consuming and would not add significantly to the novelty of this work. The

three entity classes will be described in more detail in the following sections.

5.4.2 Class 1 FFNN entities: formalism

DEFINITION 5.1 The family of all possible transfer functions implemented by a C\ en-

tity with n inputs, x = {x1,x2, mm, xn}, is:
Cl={ fi|®) = S, [+ v]@uv]
where, u, = {/jtj|+M|@u, U
Vic {0,xx,x2,...}, gie Qu and fl = 0}
(1 represents the family of functions implemented by a feed forward neural network
with i inputs according to definition 3.4 on page 23. uj is a set of s elements which

2 Another criterion is the type of their underlying components. Such taxonomy has not been
attempted though this possibility may be investigated in the future.

58 CHAPTER V

can themselves be either smaller entities (e.g. /|u H¥.|(uj UVj)) or just plain input

variables (e.g. xf). Each entity in the above definition is characterised by a unique

({3t

identification number - the “m” in f™ . and the number of its inputs - the “n” in

fm
in .

Figure 5.1: A simple Cf entity implementation

EXAMPLE 5.1 Below is the specification of a Cj1 implementation, f3(x1,x2,x3), which
consists of five FENN: Nx, N2, N3, N4 and Nb:

 Nx: inputsareX,= {xx,x2}, output is Ox = ff{x1,x2),
e N2 inputsareX 2= {iCa,”}, output is 02 = ff(x2,x3),
* N3: inputsareX 3= {x2,x3, Ox}, output is 03 = f3(x2,x3,/](0;1,x2)),
* N4: inputsareX 4= {x1,02}, output is 04 = /1 (xBf${x2 x3, f%(xi, x2))),
e Nb: inputs are X5—{x1,03,04}, output is 05, the final output.
The implemented neural network transfer function 05 = f3(x1,x2,x3) is:

o5 = fl(xi,x2,x3) = g3(x1,03,04)
- x3i Q), g2{xx, 0 2))
— 92 >93(x2x3i R2[xx)x2), g2[xX,g2(x2,£3)))

where, f3 £ C\ and gi 6 QL

5.4. FFNN ENTITIES 59

5.4.3 Class i FFNN entities: construction

Before training a C\ entity, its architecture, allocation of the set of the input variables

to the entity units and connectivity scheme have to be decided.

Class 1 entities conform to a not-necessarily fully connected configuration where a
given unit may send its output to any other unit which does not, directly or indirectly,
sends its output back to the first unit. This means that the signals must not flow
backwards - no feedback connections are allowed. The reasons for this are twofold:
firstly, the addition of feedback might seriously destabilise the overall process. Secondly,
the training of recurrent neural networks is complex and more difficult than that of

feed-forward models.

In order to make it easier to avoid feedback connections, it is preferable that in any
entity description or diagram, the units are grouped in layers - in the same way as
neurons are grouped within single FFNN. This convention will also make it easier to
determine the sequence in which entity units should be trained. For example, in the
entity implementation of figure 5.2, it is clear that training must take place in three

steps:
1. N1 and Na,
2. jV3 and N4,

3- Nb.

In a larger implementation, the benefits arising from the clarity provided by adopting
such convention would have been much more obvious. However, the convention of using
“layers” is not strictly necessary as the layers in an entity can be identified by a simple

partial sort algorithm.

Any of the data inputs can be sent directly to any non-input units as well as it is
possible to have connections between units of non-adjacent layers. Apart from the
requirements set above, there is no strict methodology to be followed in determining

the final architecture and connectivity scheme.

The allocation of the set of the input variables to the entity units is also not strict.
Unless there is prior knowledge about the problem domain favouring3 a particular
grouping and allocation to the various FFNN, each entity unit may be allocated as

many input variables as it is necessary. It is also possible that any given input variable

3 Remember the notion of task decomposition in section 5.3.3 on page 53.

60 CHAPTER V

may be allocated to many input and non-input units (as demonstrated in example 5.1

and shown in figure 5.1).

Another variation of the basic class 1 entity model is when the various entity units
are linked by connections of adjustable strength - something equivalent to the weights

between neurons of single FFNN. This possibility will be discussed in section 5.4.5.

5.4.4 Class 1 FFNN entities: training

Training a C\ entity is straightforward. Firstly, all the FFNN which do not receive any
input from other FFNN will be trained with all the vectors contained in the training
set, the exemplars. Of course, each FFNN will only consider those input variables which

have been allocated to it and not any others.

Secondly, we will train those FFNN receiving inputs from the training set directly and/or
from already trained FFNN. Notice that the target output to every FFNN in the entity

is identical to the target output defined in the training set.

5.4.5 Class 1 FFNN entities with adjustable connections

A n additional, though not necessary, step towards optimising a C\ entity is to introduce
adjustable strength connections between each individual FFNN. Figure 5.2 shows the

FFNN entity of example 5.1 with added adjustable connections.

As soon as the training of each individual FFNN, is completed in the usual manner,
the connections at the level of the entity will be adjusted using gradient descent and
back-propagation. This optimisation procedure is done in exactly the same way as it

would have been done if we were dealing with a single FFNN.

There are, however, two structural differences which call for minor modifications to the

back-propagation algorithm:

1. The architecture of the entity is not as regular as that of a fully connected FFNN.
For example, connections between units of non-adjacent layers are allowed as well

as full connectivity is not a requirement.

2. All the units (neurons) of a FFNN usually employ the same activation function
whereas each unit (ffnn) in an entity implements a different function. This
means that the derivatives of the transfer functions of each FFNN, with respect
to its inputs, must be calculated individually. The formula for the derivative of

the FFNN transfer function is given in section 5.4.6.

5.4. FFNN ENTITIES 61

In appendix A on page 167 the equations of the back-propagation algorithm for a single
FFNN are derived. Equation A-g describes how the update of the weight connecting
units ¢ and j is done. This weight update scheme also holds when training the entity.

The term /] was defined in equation A-8 as:

—Yj) ol (Aj(yi-1)) if [is the output layer, L,

1 '(Al {yl~1) wmJ2I=V'>%H1 1 18 hidden layer, 1 < [< L.

Figure 5.2: A C\ entity with adjustable connections between individual FFNN

The only modifications necessary to the above equation in order to adapt it to the

entities’ model are the following:

1. The term ol {Aj{yi_1)), e.g. the derivative of the neuronal activation function,
should now be replaced by the derivative of the jth FFNN unit in the Ith layer,
V F-(inpi). The vector inp; holds all the inputs to j th FFENN of the Ith layer.

2. Also, the index % in the sum M+1 wf f should now be instantiated over

all the items of inp*.

Summarising, when dealing with FFNN entities and entities of FFNN entities the indi-

vidual units are trained first using standard back-propagation. If there are connections

IS= CHAPTER V

of adjustable strength between the various units of the entity, then these may be op-
timised using back-propagation with the afore-mentioned modifications. The same

modifications apply when dealing with entities of FFENN entities with the proviso that
5.4.6 The derivative of the FFNN transfer function

W e will now proceed to calculate the general expression for the derivative of the
transfer function of a FFNN. The results in this section, although derived independently,
are related to the work of other researchers in the field of automatic and computational

differentiation such as [Lucas, 1997] and [Griewank, 1989].

Recall that the transfer function, F(-), of a single-output FFNN with L layers is given
by:

F(x) = af(Tf(yi- 1) (5-1)

where x is the input vector to the neural network (of L layers) and A\(-) and o”(-) are
the affine transform and activation function associated with the ith unit (neuron) of

the Ith layer.

In general, y! is a vector containing the outputs of each neuron of the Ith layer:

dMify'-)) \
" (4(y'-")

Note that the incoming signal to the input layer units is y° = x-

The afore-mentioned affine transform associated with the ith unit of the Ith layer, is

generally given by:

A\(yl) o +w'y' 1 (5-2)

bl + fw\h w2 w 1)).

yl 2)v

where, u(l) gives the number of units contained in the Ith layer, b\ is the bias value of

the ith neuron in the Ith layer, w- is the ith row of w* - e.g. the matrix holding the

5.4. FFNN ENTITIES s

weights of the Ith layer (of u{l) rows and w(l —1) columns). See section 3.2 on page 20

for more details on notation.

By application of the chain rule to equation 5.1 we get the derivative of the FFNN

transfer function with respect to the input vector, x, as:

V SF dAffgroy VYD (5-3)

The following shorthand notation shall be used throughout the rest of this section:

g 0 Om+ ON

(gl) 0, 0+« O
’ da\{A\{y'-l)) ’ 9k and. G' = 0 O ’ O
9" &'-) S , »

VW \° 0 Ol-gl,{i)]

The calculation of g\ is straight forward and specific to the choice of the activation
function 0j(-). The calculation of the derivative of the affine transform, 4*(-), with

respect to the input vector is given below.

By differentiation of equation 5.2 we get:

VxA|[(y'™1) (54)
dA\ ' ..
and, dvj w' maVXjyl_ 1 (5-5)
Vxy (is defined as follows:
(M dy[Wl \
(y[A dxx dxi dxu(x)
; d _d ol W o)
yi _a_ Xl 1
.(dxx dxz dx«(l') = (5-6)
dyr..
dyUr
W o/ Vndjii/nrcll G D) J

whereas the j th column of the above matrix is:

64 CHAPTER V

By differentiating y/ = of(A\(yl *)) with respect to the j th input using the chain rule
we have:

dy\ da[/(A\(y'-1)) 3A\{yl~")

_ .
dxj dA[fyi 1) dg g m\mVy vk (5-8)

Substituting equation 5.8 back into 5.6 we get:

fam WXy 1 5 ow VX 1 e 5 adevXly 1N

s, - gi sd vNy~1 g/ m2Vy'-1 m Rewi V(y'-1

\glu(i)-"u(i) -V y"'1 alifiy*ufi) w” Qyl7
0e¢e¢ 0 ' (W \
"0 sa.c 0 —2 I

«(VXlyi_1 VXayl-ll--- VXu(i)y‘{__lb

= glew Vg (5-9)

Substituting equations 5.4 and 5.9 back into equation 5.3 we get:

VXF

gf mwf *VxyL 1
g? mwf «G* 1mwli 1 Vxyl: 2

The final derivative expression can be calculated by iteration until the input layer is
reached. Thus,

VXF

5f wf -Gl_1 -wL 1 ‘Gl"2wL~2mG2 w2 G1mw1 G°w°Vxy°

Since y° X then Vxy® = 1 In addition, the input layer of ffnn will have unit
weights, e.g. w° = 1.

Thus, the derivative of the FFNN transfer function becomes:

VXF =g[wwf -G™1 -wL 1mGl-2-wlL"2++-G2 w2 +:G1 w1
(5-10)

54 FFNM EMTITIES G5

5.4.7T Class 2 FFINN entities: formalism

A Class 2 (] entity is 4 special case of the O entily, where interconnections between
FENM zre not arhitrary but fullow & patlern as shown balow,

Firstly, FENN (W,) is trained to ioplement gi{s,, ..., 2) (8.8, using only the firat &
inpnts to frain it to produce the expected output given). In mast cases this will not
be sufficient as the output may depend on some other inputs too. Therefore, & second
FENM (N, i trained to implement g_g{Teqs, ..., 7)) (R using the next { — & inpucs
eo train it, again, to produce the expected output given) amd 30 on, weki] ;i3 trained

to implement gy —g(Tyt,q .., Enl-

Xk+l

Xy

Ry

Xy

tp
Xp+l

X, q
Xq+1

Figure 5.5: A Cg and O3 entity implementation

The next FFNN [A;y, in) will be trained with inputa coming from FFNx N;_, and
N1, that means it will attemps to implement g, (G- plTatys oo Sgh Pn—glTqtra- - Fnl k-
Whoereas Nypo will be trained with the output of A, and Ny, and so on until the
final PPN, N; is reached.

The family of functions implemented by Co entitiea, Cf, i3 recursively defined in terms
of the family of FFre {7} and itself as following:

Derimepion 5.2

L’:’f = {fn K= R f:l.{fﬂu:fn;-- --1-1'7u:| = El'z[ﬁ'kfmu---.-Ii::':fre—k{rj:+u' " |I1l]]l
r; € B, € G°)

i CTAPTRR V

5.4.8 Class 3 FFNIN entitics

Class 3 [Ca} eotitivs bhave the same interconncction acheme as Ch'a. They dilfer,
hewever, in that the training sarget (oulpul) of every FENN is not the expected ontpt,
v, a5 defined in che training daca set. Inatead, it is a measure (|| - |]) of the discrepancy
Telween sedbos! and desired outputs of the previous FFNN.

Training commences with &, . It ia crained oo implement ge{z,,. .., =k} = y. In most
cascs. ik actual output, o,, after training, will oot he exactly . A measure of this
distrepancy, given by e, ~ 'y — @, ||, will be nsed aa the training target for the next
FFEMH, My and 50 oo wodil we cover all Lhe iopul varables, ;.

| FFMMN | Irepruct | Cucput | Dhisceapaniey
] ¥ -
RN NS N IEEN
Ny By I 2| Ra= e — el
My gy Im £a gy = [— oy
Mo In- ' Ip Si—y [] IIE’_,‘—,GI — 04 ,I-
Fio: | Tage o fi—z e Rl | L st |
My Tgla " "&n L B 'E'1=||=|.—|.—I:‘J|i
ILEF I TP Ema LTS ”El'.—: — 4 I
Mims B{—a. 0z &, nak reguired i
Ny 1 g ¥ nok required |

Table 3.1: Training procedurs for thie O3 entities

In effect, Lhe only dillerence between clags 2 and 3 entities is their output target doring
training. In class 2 entities, this targst is just the expecled output (y] as defined by the
truining set. In clazs 3, however, the target i A measure of how well the previeus FENN
managed to meet its own target, This feature may be used to estimate the acenracy of
the ayscem’s prediction for individual cases and, further wore, bo assess the confidence
of predictinn of the different FFINN in the entity. Based on these confidence intervals,
fine-tuning of the entity might be poasible by replacing those FFNN whose confidencs

of prediction 1s inedeguate, with ether units of different properties and re-training.

Talde 5.1 summarises the training procodure for Cs entities. Oy enticier implement the
rame transfer functions as those tmplemnented by Oy and belong to the CF family of

Tunetions.

5.5. THE np LANGUAGE AND INTERPRETER 67

5.5 The np language and interpreter

5.5.1 Introduction

np is a simple language which may be used to create, train and test ffnn and entities
of ffnn. Its creation has been motivated by the need to have a simple but effective
interface to the tedious tasks associated with the preparation of the training and test
data as well as obtaining performance measures for the single FFNN and, in particular,

the entities.

If training and testing a single FFNN is a humdrum activity, then training and testing
an entity consisting of hundreds of FFNN interconnected in many and arbitrary ways
is a formidable and unruly undertaking. Just consider that for every FFNN, one has to
construct the training and data set by looking for all the outputs of previously trained
ffnn and merging them in the right order. Then the same process has to be repeated
for the testing stage. The whole thing might take hours in the end. Additionally, the
probability of making a mistake by forgetting or mixing the inputs to some FFNN is very
high and most likely will go undetected. Most importantly, this procedure has to be
repeated every time some change has to be made in the system, for example changing

the learning rate or the size of some ffnn.

The real challenge, however, to the enthusiast who chooses to train a neural system
manually is when dealing with entities of adjustable connections. As it has already
been mentioned in section 5.4.5, the training of entities with adjustable connections
is completed in two phases. Firstly, each FFNN unit of the entity has to be trained
individually. Secondly, the weights of the connections between these ffnn have to be
adjusted using gradient descent. In effect, it is like training a single FFNN with back-
propagation by hand but with the additional complication of having to calculate the

derivative function of each ffnn unit, which is no longer a simple sigmoid.

Thus, the value and utility of any system which abstracts the process of creating,
training and testing single ffnn and entities to a level of automation where a few
commands suffice to achieve what it might take hours manually, is self-evident. In this
respect, mp and other similar systems are necessary tools for doing any serious and
methodical experimentation with neural networks. The novelty of np lies in its ability

to deal not only with single FFNN but also with the entities.

The np system was invaluable to the completion of this work and especially in carrying
out a large number of experiments in order to obtain enough empirical results. Its high-

level nature made it possible to automate the process of training and testing the entities

68 CHAPTER V

as much as possible. It has also helped us to experiment with parallelisation and other
ideas. It does not, by all means, represents the best neural network script language
and interpreter but, at the time of its making, it was considered to provide an adequate

solution to the problem.

The interpreter of np and all its utilities are in the public domain and free for anybody
to copy, use and modify. They can be found at:

http:// www.soi.city.ac.uk/homes/livantes/Research.html.
A reference guide to the np language and interpreter can be found in appendix F on

page 189. A selection of np scripts can be found in appendix G on page 221.

5.5.2 Structure

The interpreter of np is written in the perl language. The system consists of some
twenty executables (written in the C language) which are spawned by the interpreter,

with appropriate parameters, on parsing the np program.

The structure of the np system is as follows:

+ At the top level is the np program which contains instructions and their param-

eters.

+ At the next level we find the np interpreter. It is entirely written in the perl lan-
guage. This language, unlike C, is ideal for string manipulation but considerably
slower than C. This is the reason why applications like training a FFNN, which
require a lot of processing power and must be efficient and fast, were written in
the C language and constitute the lowest level of the np system. The interpreter
parses the np program and checks that it is syntactically correct. Then, for each
instruction, a sequence of executables will be invoked with the supplied parame-

ters. For example a program to create an artificial data set is the following:

TRAINING_DATA = ProduceAndFormatVectoredDataSet {
Numlnputs = 5003
NumQutputs = 1;
NumlLines = 60;
Y = Levy6;
Seed = 1974;

The interpreter will issue the following simple command:

Unix'/, Levy6 -inputs 500 -lines 60 -seed 1974 -outputs 1

http://www.soi.city.ac.uk/homes/livantes/Research.html

5.5. THE np LANGUAGE AND INTERPRETER 69

Note that Levy@ is the executable of a C language program.

Following is a program to calculate the mean square discrepancy between actual
and expected output values contained in the two single column ascii files called

actual and expected,

ACTUAL.QUTPUT = OpenkFdeObject {

Filename = actual;

}

EXPECTED-OUTPUT = OpenFUeObject {

Filename = expected;

}

ERROR = ColumnsArithmetic {
mean square error estimate
RowExpr = 0.5 * ((ACTUAL-OUTPUT[I] - EXPECTED-OUTPUTI[I]) ** 2);
ColExpr = average;

OutFileName = error;

This program will be translated into:

unix'/, Merge expected actual | awk ’{print 0.5 * (($i-$2) ** 2)’
| awk >{ s += $1 } END { print s/NR }’ > error

+ The lowest level of the np system consists of the C language executables (e.g.
Levyé etc.) and various built-in Unix commands (e.g. awk). These applications
are small, simple and, more importantly, stand-alone. They are controlled from
the command line. In this way, changes can be made to one of these programs
without affecting the others. Adding features to the np system consists of just
writing one or two more of these programs. Had the np system consisted of a

single program, maintenance and expansion would have been extremely difficult4.

4 These are some of the advantages of systems built on the principles of emergence and connec-
tionism. These systems are not, of course, restricted only to the field of neural networks. The Unix

operating system is a good example.

70 CHAPTER V

5.6 FFNN entities and the Universal Function Approxi-

mation property

Theorem 5.1 Any ffnn entity implementing the C" family of functions, defined in
5.1 and whose inputs belong to a compact set K ; is uniformly dense on compacta in the

set of all continuous functions in K.

In order to prove the validity of the above theorem we will resort to the Stone-
Weierstrass theorem, [Rudin, 1964], and following a procedure similar to the one we
used to prove that the family of FFNN holds the universal function approximation prop-

erty (see appendix D on page 179 and theorem D.3 therein).

Proof
« C" is an algebra of functions because it satisfies the three conditions set in defi-

nition D.9, namely:

1 addition: The sum plxIx) + kA~ (x) for p\A, fixl £4™ X6 KcE ", ffi€?,

belongs to since:

P\ (x) + x| (x)

Slul+lyl (1ul (m) Uv) + 3[u|+IV [([u' (W) UX)

9 9
= A3iCrAiI(IM@) Uv)) + 223 crXj f\M]| (u') Uv'"))
=1 Jj=1
qtq

= 7A (ALY " (") U v")
k=1

Ixl
2. multiplication: The product P|x|(x) *fyx|(x) for p~,h "~ € Cp, belongs to

d~ since:
Plx|® -ilxl(x) = 5lul+lyl(lul@Uv) *5u'Hy'l(/ b'l(n,)Uv")

= feAAUIMMUv)yfr/3'a(Aj(/ Ml(u)Uv")
'=1 ro\r=1

= Y A73MAi(/lul(w) Uv)CTA' (/Ml(u') Uv'))
hj

Here, o is the “cosine squasher” as suggested by [Gallant and White, 1992],
See also the relevant sections in appendix D on page 179 and, in particular,

equation D-2.

5.6. FFNN ENTITIES AND THE UNIVERSAL FUNCTION APPROXIMATION PROPERTY 71

3. scalar multiplication: The product a -plx|(x)) for plx|€ C[, and a scalar,

belongs to C" since:

Q Q
aSlul+lvi(lulm Uv) =ar/3;a(A(/lul(u) Uv)) = ~ *fAff*u) Uv)

C" separates points on K:
Vx1,x2e K ;x * x23/ 6 O™ 71xi1ixi) # /| x,| x2)

Smce /|Xi| (xi) = g(uUv) (see definition 5.1 on page 57) then, the above statement
requires that there is afunction f in the C" family for which: 1~ (X1) A f Kal(x2).
This implies the following:

giulUv) A ju'Uv') =>e

~ti),a(A(uUv)) A 5>a(AL(u'Uv'))
i i
afA(ViUv)) A ffA(u'Uv')) =>

A(uUv) A4 AW'Uv)
In order to show that, choose A € An such that >1(u Uv) ~ ~(u' Uv'). Because
ulUv A u Uv' (eg. xxA x2, then A(u Uv) / 241 Uv') (remember that

A Uv) = (u Uv)w + b) if we choose either w or b to be non-zero. This means

that /jx71X1) A /|x2|& 2) and, therefore, C" separates points on K.
* C’ vanishes at no point o/K:
VxGK 3/ 6C" I/(Xx) =c,e GR,c/0

Since /1x|x) = p(uU v) (see definition 5.1 on page 57) then, the above statement
requires that there is afunction [in the Cf family for which /|x|x) = j(uUv) A0
This implies the following:

giulUv) A o0 =$»

AMj(7(A(uUv)) A 0 ==
i
ff(A(uUv)) A 0 =>

A(uUv) A O
In order to show that, choose A € An such that >l(u Uv) / 0 (remember that

A(uUv) = (uUv)w + b). This is easy because even if uUv is zero, b can always

be chosen to be non-zero, hence j4(-) is non-zerob.

5 This is one of the reasons why a bias term is needed at each neuron.

72 CHAPTER V

Classes 2 and 3 are subsets of the class 1, since the only differences between them are
their topology (network structure) and the target values that each FFNN is trained with.

Hence, they are, too, universal function approximators.

5.7 Single FFNN and C\ entity: comparison of training

times

In this section we will attempt to quantify the difference in training times between a
C\ entity and a single FFNN. It is the extension to section 4.4.2 on page 38. Here are

the main assumptions regarding the architecture of the two models:
i. each FFNN has only one hidden layer,

ii. the number of hidden layer units of a given FFNN is a percentage of the number

of its inputs. Call this percentage a,

iii. the number of inputs, «/np, of each of the FFNN units making up the entities is fixed
and may be expressed as a percentage of the total number of input dimensions,

N . Call this percentage ;3. Thus,
Tlinp = (3N (5.11)

iv. the total number of FFNN units making up the entity, n/, should be sufficient to
cover all inputs. For example, if there are 100 input dimensions and was decided
that each FFNN has a number of inputs which is 20% of the total number of input
dimensions (e.g. 100 x 20% = 20 inputs) then there must be at least 5 FFNN in
the entity. As a matter of fact, it is good practice to add a few extra ffnn in the
entity. Thus,

N _ Al _ 7

. (5-12)
riinp 7N [3 P

where, 7 is a percentage (greater than 100% so that no inputs are left out). Note

that the connections between the FFNN of the entity are not adjustable.

The time required by a FFNN to do a single training iteration (forward and backward
step) over a single input vector of N dimensions is proportional to the number of its

adjustable parameters6
Ts oc aN(N + 2) + 1 (5.13)

6 These are all the weights and biases. Refer to section 4.4.2 on page 38 and equation 4.3 therein
for details.

5.7. SINGLE FFNN AND Ci ENTITY: COMPARISON OF TRAINING TIMES -3

The time required by an entity to do the same is proportional to its total number of
adjustable parameters. This is the sum of the number of adjustable parameters of each
FFNN making up the entity. Recall that there are rif identical FFNN, each with riinp
inputs. Thus,

2

Qg
Te ocrif ma ninp(riinp + 2) + 1= -A};SN(/[)’N + 2)+ 1= a*N{3N + 2)+ 1
(5-14)
Now, let us compare the training times of the two models in terms of the ratio7 Ts /Te m

T /T = odVGV + 2)+ 1 s
S/ E a"N{pN +2) + 1 (5-15)

The above expression has a horizontal asymptote8 given by:

Ya = I{.LH;G)TS /Te = py (5-16)

Thus, provided that the same a is used, the training time of an entity will be shorter
than that of a single FFNN, by a factor which will approach (57 as the number of input

data dimensions (V) increases.
In conclusion,

* the ratio of the training times of the two models is independent of the number of
hidden layer units of single FFNN. Thus, these results apply for any size of single

ffnn as long as the same a is used for both models,

* the training time of the entities will be less than that of single ffnn as long as
/?7 < 1. This means that the training time of an entity will be the same even if
more ffnn are added to it (in order, perhaps, to improve generalisation) as long

as the number of inputs to these FFNN is kept sufficiently small.

EXAMPLE 5.2 An entity was constructed using 7 = 300% - e.g. the number of FFNN
in that entity is three times as much as the minimum number of FFNN required to cover
all the input dimensions. This means that if there were 500 input dimensions in the
training data and that each FFNN of the entity had 50 inputs, then the total number of
FFNN making up the entity was ~ x 300% = 30. Figure 5.4 shows plots of the quantity
Tst Ee x 100% as the number of input dimensions varies from 200 to 1,000 and for

different 7. The top plot corresponds to ;3 = 1% (e.g. each FFNN had a number of

7 The constant of proportionality in the expressions 7T's and Te is the same.

8 In practical situations N —oo0 may be interpreted as N >200 or N > 300 depending on f3 and 7.
This is shown in the plots of figure 5.4.

74 CHAPTER V

inputs corresponding to 1% of the total number of input dimensions) and the bottom
plot corresponds to (5 = 30%. Remember that the entities will be faster than a single
FFNN as long as (3 is less than 1/7, e.g. 1/3.

200 300 400 500 600 700 800 900 1000

Number of input dimensions

Figure 5.4: Comparison of training times of a single FFNN and an entity: 7¢7" Ex 100%

versus the number of data dimensions, for 1% < (3< 30%

The fastest entity training occurs when each constituent FFNN has number of inputs
which is 1% of the data dimensions. That means 2 inputs when the dimensions are 200
and 10 when the dimensions are 1,000. In this case the entity is faster than a single
FFNN by 25 to 30 times. On the other hand, the training times of the entity and the
single FFNN are the same when the number of inputs to each entity FFNN ranges from

60 to 300, e.g. 30% of the number of data dimensions.

For the sake of achieving a good generalisation, the number of inputs to each FFNN
making up the entity should neither be too low (e.g. x%) nor too high (e.g. 30%). A

more wise choice would be something like 10%.

In this end, an experiment has been conducted in order to verify these results in practice
and, also, to investigate the generalisation ability of the two models when the training
time benefits maximise. The experiment consisted of training and testing an entity and

a single FENN with data of 500 input dimensions. This data was obtained artificially

5.7. SINGLE FFNN AND Ci ENTITY: COMPARISON OF TRAINING TIMES - s

via the Levy6 function (see section 6.3.5 on page 87 for more details). The two models

were constructed with the following parameters:

*a = 10%: the number of hidden layer units of each FFNN isjust io% of the number
of its inputs9. Thus, the architecture of the main single FFNN was 500 x 50 x 1
and, therefore, contained 25,050 weights,

* (3= 10%: each single FFNN making up the entity had 50 inputs (e.g. 10% 0/500
input dimensions). Thus the architecture of each single FFNN in the entity was:

50 x 5 x 1 and, therefore, contained 255 weights,

« 7 = 300%: the total number of single FFNN in the entity must be three times as
much as the number required to cover all 500 inputs. This means that the entity
consisted of 500/50 x 300% = 30 single FFNN and contained a total of 7,650
weights.

With these construction parameters, the training time of the entity is predicted to be

/1?77 = 1/(10% x 300%) = 3 times shorter than that of the main single ffnn .

The training data consisted of 70 vectors while the test data consisted of 2, 000 vectors.
The training/test procedure was repeated for 50 times. Each network was trained for
1,000 iterations. Tables 5.2 and 5.3 show the minimum, maximum, mean and stan-
dard deviation of the training time and approximation error of the single FFNN and

the entity.

MINIMUM MAXIMUM MEAN STD. DEV.
Entity 0.0475 0.1067 0.0629 0.0109
single FFNN 0.0722 0.2138 0.1I109 0.0196

Table 5.2: Approximation error results

(seconds) MINIMUM MAXIMUM MEAN STD. DEV.

Entity 786 805 792-9 3-49
single FFNN 2,577 2,905 2,609.3 56.22

Table 5.3: Training time results
A comparison of mean training times shown in table 5.3 indicates that the single FFNN

takes more than three times longer to train than the entity: 2699.3/792.9 = 3.4. As far

as the approximation capability of the two models is concerned (table 5.2/, the entity

9 Note that all single FFNN consisted of a single hidden layer.

76 CHAPTER V

generalises much better than the single FFNN with a mean error of 0.0629 compared to
0.1109. Thus, not only the entity is trained significantly faster than the single FFNN
but also its generalisation ability is better. It is also comparable to the generalisation
ability of the entities in test VARIDIM of section 6.3.6.5 on page 110 which, according

to figure 6.1 on page 90 contained twice as many weights.

5.8 Benefits from using the entities

The adoption of the entities as an alternative to a single, solid FFNN solves the following

problems:

1. The coarse-grain parallelism which characterises the entities favours a more prac-
tical and efficient implementation. By increasing the complexity of the basic
computational element (e.g. this is now a FFNN rather than a neuron), a better
allocation of resources can be achieved; the mapping of processes to processors is
now more balanced. Furthermore, by reducing the number of basic computational

elements, the processor to processor communication needs are minimised.

2. The dimensionality of input data no longer governs the number of inputs and
size of each FFNN. The entities can deal with high-dimensional data by increas-
ing the number of basic elements (ffnn) and not the number of inputs to each
FFNN. Thus, FFNN can be created at any convenient size and added to the en-
tity, virtually, without any serious restrictions - given the coarse-grain parallelism

advantage.

3. The relatively small size of the basic processing element of the entity not only
allows for successfully dealing with high-dimensional data - which for the case of
a solid FFNN was extremely difficult due to the curse of dimensionality - but also
the training of each FFNN is more effective in the absence of pathologies such as

premature neuron saturation, complex error surfaces, local minima, etc.

4. The effects of the NP-completeness results for the loading problem are not as
dramatic for the case of the entities as they are for the case of solid neural net-
works. The difference is that instead of having a single neural network with a
large number of inputs, we have a large number of smaller FFNN with significantly

less number of inputs.

5. The study, visualisation and interpretation of the learning process are ameliorated

with the adoption of the FFNN as the basic building block of the entities - not

59. SUMMARY 77

too large and complex as in the case of a solid ffnn, not too small and simple
as in the case of a neuron - they are now effected within a framework which
approaches that of traditional Al, e.g. where information is manipulated at the

level of symbols.

Still, information is distributed and stored implicitly in the weights of each ffnn
and the weights of their connections with other ffnn. But it also exists on a
higher level, that of the numerous single f f nn, which can identify more readily,

meaningful information.

Thus, the entity learns and process information in a more explicit way - something
which brings us a little bit closer to symbolic systems and all the benefits that

implies without departing from connectionist principles.

Perhaps a system exhibiting a dual character featuring a connectionist and at the
same time symbolic self will be more successful than the unadulterated alterna-

tives of the past.

5.9 Summary

A review of past and present trends in the area of modular neural network architectures
has revealed that although there has been much effort in improving the generalisation
ability of these networks, the aspect of scaling up and the subsequent problems due to
the curse of dimensionality have received little or no attention. The main motivation
of this research was to investigate how the effects of the curse of dimensionality on

neural networks can be minimised while generalisation ability is not compromised.

This chapter was dedicated in describing the concept of feed forward neural network
entities, a methodology which uses the ideas of modularisation and function decom-
position in tackling problems associated with scaling up single neural networks. The
structure of the entities can be described using the same taxonomy as with ordinary
neural networks, where units belong to the finest level, layers to a coarser level and

networks to a still coarser level of classification, but not at the end of the scale!

An entity is composed of units which are themselves neural networks rather than simple
neurons. These units may be layered and linked with connections of adjustable strength
just like ordinary neurons in the case of single FFNN. The connectivity of the elements
of an entity as well as their training targets were two criteria we used to distinguish

between three different entity classes, namely class i, 2 and 3. The connectivity of

78 CHAPTER V

classes 2 and 3 is more ordered than that of class 1 whereas the training targets for
classes 1 and 2 are simpler than those of class 3.

Currently, all three entity classes may implement only single output functions. De-
signing entities implementing functions with higher output dimensions can be a direc-

tion for future work.

The universal function approximation capability of the entities was proved using the
Stone-Weierstrass theorem. Finally, a simple language, np, which may be used to

create, train and test FFNN and entities of FFNN has been introduced.

The main benefit from using the entities instead of single feed forward neural networks
is that they can cope well with problems of extremely high dimensions because of their
distributed nature. Also, parallel implementation of the entities is much more practical
than single FFNN because they favour a coarser grain parallelism. In this end, the
effects of the NP-completeness results for the loading problem can be reduced. Also, in
sequential mode, there are enormous benefits obtained by the reduced training times
required by the entities.

Additionally, the entity - because of the adoption of the FFNN as the basic building
block - learns and process information in a more explicit way while it promotes a

computational model which can be studied with an arbitrary level of abstraction.

The next chapter will investigate, at a practical level, the generalisation ability and

training time of the entities and how they compare to those of single FFNN.

CHAPTER VI

EMPIRICAL RESULTS

Various tests comparing the performance of a single FFNN and a FFNN
entity were carried out. The results are presented and discussed herein.

6.1 Introduction

In previous sections, it was shown that the families of functions represented by the FFNN
entity classes Ci, C2 and C3 are universal function approximators and, therefore, can
approximate arbitrarily well any real, continuous function. The theoretical importance
of this result is great because it supports the claim that the expressive power of the

entities neural network architecture is equivalent to that of a single FFNN1.

Moreover, it was argued that the application of FFNN entities in optimisation and clas-
sification tasks involving a large number of input parameters will alleviate a significant
number of practical problems which are currently hindering the learning process of
single FFNN when applied to the same tasks. In particular, it is claimed that the
entities are largely immune to problems relating to the curse of dimensionality such
as extremely complex error surfaces, large number of local minima, premature neuron
saturation etc. These problems are not only responsible for unstable and inconsistent

training2 but also for much longer training times and cumbersome architectures.

Finally, training times can be reduced even further when parallelised entity implemen-
tations are used. The efficiency of these implementations is a prominent feature of the

entities and emanates from the fact that their structure promotes a coarse-grain type

1 Recall that a similar result, regarding the universal function approximation property, holds for
single rfnn too - see section 3.3 on page 24 for details.

2 Instability because of premature neuron saturation, as it was pointed out in section 4.4.4 on
page 42, and inconsistency because of the large number of local minima, as it was explained in sec-
tions 4.4.2 on page 38 and 4.4.3 on page 41.

79

8o CHAPTER VI

of parallelism, as opposed to the fine-grain parallelism model of the single FFNN.

In this chapter we would like to present the empirical results of the various tests and
experiments we have conducted with the purpose of comparing some aspects of the

entities and single FFNN.

6.1.1 Limitations

W e would like to point out that the experimental procedure presented in this chapter
compares a single FFNN with the three entity models on the basis of only one problem
- the Levy6 function. Naturally, the results would have been more conclusive if the
comparison had been based on a wider choice of data and neural network models.

For example, it is very likely that entities will not perform well on the n-bit parity
problem because of the fact that each FFNN in an entity is trained with only a partial
set of the data inputs. On the other hand, a single neural network which deals with

the full set of the inputs will surely perform better.

Thus, we would like to stress the fact that although the entities do perform better
than single FFNN on the basis of the Levy6 data sets, more experiments, based on a
wider choice of problems and training data, must be carried out in order to obtain more

conclusive results.

6.1.2 Statistical analysis

So why is there a need for an experimental evaluation of neural networks and proper

statistical analysis of these results?

“ We do need experiments in neural network research because the methods
we employ and the data we want to analyse are too complex for a complete
formal treatment. ILe. for a given data analysis problem we do not have
the formal instruments to decide which of the methods is the optimal one

. the last word in the decision is always spoken by an empirical check, an
experiment, as in any other science that needs empirical evaluation of its

theories.” [Flexer, 1996]
The tests described in this chapter are divided in two main categories:
1. Generalisation Ability

2. Parallelisation

6.2. PROPOSED METHODOLOGY 81

The first category, Generalisation Ability, consists of two tests, VARIDIM and CONS-
DIM, whereas the Parallelisation category consists of only one test. Section 6.2 outlines

the methodology followed during the various experiments of each category.

Section 6.3 deals with the two tests under the Generalisation Ability category. Below
is the layout to be followed in explaining the procedures and presenting the results of

the two tests VariDim (@in section 6.3.6) and ConsDim (in section 6.3.7):

» Procedure/Methodology: contains a description of all the participating net-

works, data sets and the training and test procedures.

+ Network sizes (only for Var iDim): explains how the participating networks’ sizes

(in terms of their number of weights) relates to the number of input dimensions.

« Training time results: presents and analyses results regarding the training time

of the participating networks.

« Sample error results: presents and analyses results regarding the sample error

(e.g. error during training) of the various networks.

« Approximation error results: presents and analyses results regarding the ap-

proximation error (e.g. error during testing) of the various networks.

Section 6.4 deals with the one test under the Parallelisation category. It presents and
analyses the results regarding the time required by four class 1 FFNN entities trained

in sequential and parallelised modes.

Finally, section 6.5 concludes the chapter with a summary of all the experiments carried

out and an outline of the obtained results.

6.2 Proposed methodology

6.2.1 Generalisation Ability

Two tests will be carried out using a total of eight network configurations: four single

FFNN, two class 1 entities, one class 2 and one class 3 entity.

In VARIDIM, the number of training vectors will be kept constant as the number of
input dimensions of each network increases. This test aims at demonstrating how the
different networks cope with increasing data dimensionality. Ideally, the dimensional-
ity of the training data should have no effect on the generalisation ability of a neural

network. In practice, however, the generalisation ability of a single FFNN is usually

82 CHAPTER VI

reduced as the number of input dimensions increases. With this test we wish to inves-
tigate and compare the effect of increasing data dimensionality on the performance of

the participating networks.

For each different network and for each different number of input dimensions we will
repeat the training process with different initial conditions (e.g. starting with random
weights) for 50 times and measure, each time, the sample and approximation errors

and training time.

In Cons Dim, we will keep the number of input dimensions and size of each network
fixed while the number of training vectors varies. The aim of this test is to investigate
the effect of the increasing number of training vectors on the sample and approximation

error of the different networks.

For each different network and for each different number of training vectors we will
repeat the training process with different initial conditions (e.g. starting with random
weights) for 50 times and measure, each time, the sample and approximation errors

and training time.

The training data for the networks of both tests is obtained artificially using the Levy

data generating function. This procedure is described in section 6.3.5.

The means of the sample and approximation error results of both experiments will
be tested for statistical significance using the one-tailed t-test at a 5 % significance
level. Why is it necessary to test for statistical significance the obtained experimental
results? [Flexer, 1996] emphasises the fact that statistical evaluation is necessary for
neural network experiments and advises to use the ¢-test which “should be computed

to test the significance of the difference between means”.

The variances of the sample and approximation error results of the two experiments
will be tested for statistical significance using the one-tailed F-test at, again, a 5 %
significance level. More details about the statistical significance tests can be found in

section 6.3.3 and also in appendix E on page 183.

A more detailed description of the procedure followed for VARIDIM can be found in
section 6.3.6.1. Section 6.3.6.2 outlines the relationship between network size (in terms
of weights) and the dimensionality of the input data. Then, in sections 6.3.6.3, 6.3.6.4
and 6.3.6.5 the obtained results (training time, sample error and approximation error
respectively) are described and discussed.

3 Variance is the square of standard deviation. The two terms axe directly related and will be used
interchangeably throughout this section.

6.3. GENERALISATION ABILITY ==

Cons Dim’s procedure is described in section 6.3.7.1, in sections 6.3.7.2, 6.3.7.3 and
6.3.7.4 the obtained results (training time, sample error and approximation error

respectively) are described, analysed and discussed.

6.2.2 Parallelisation of the entities’ training procedure

In this test, the time benefits gained from parallelising the training procedure of a C1
entity - as opposed to the conventional, sequential training - will be assessed. The
parallelisation scheme used was a very simple one. At first, the network’s units are
grouped according to their respective layers. Secondly, the units of the first layer are
divided evenly among four networked workstations and their parallel processing starts.
When all first layer units are trained, the same procedure is repeated for the units
of the second layer and so on, until all the units of the entity are trained. When the
training of all units in a given layer is completed, the weights are transfered to a central

store where the test procedure will take place sequentially.

The evaluation consisted of training four different C| entity networks of various sizes,
first sequentially and then in parallel with the same data set and for the same number
of iterations (1,000). This procedure was repeated for 50 times. At the end of each
run, the training time was recorded. The minimum, maximum, mean and standard

deviation of the training time were then calculated over the 50 runs.

6.3 Generalisation Ability

6.3.1 Introduction

Two tests were carried out. The aim of the first test, VariDim, was to investigate
the performance of the entities and single FFNN when the number of input dimensions
varied from 100 to 1,000 while the number of training vectors was kept constant. The
aim of the second test, ConsDim, was to investigate the performance of the entities
and single FFNN when the number of training vectors varied from 20 to 220 while

the number of input dimensions was kept constant.

Performance is characterised by the triplet:
* the time required to complete a fix number of training iterations,
* the sample error, e.g. the error over the training set,

+ the approximation error, e.g. the error over the test set.

84 CHAPTER VI

A problem which has been encountered during this evaluation, is that there are struc-
tural differences not only between entities and single FFNN networks but also between
the different entity classes (e.g. C\ is structurally different to C2 and C3). Thus, it is
quite difficult to say whether two network configurations of different architectures are of
the same “capacity”. This translates to the following problem: “given a training data
set of so many dimensions, what should the structural parameters of each evaluated
network be in order not to favour a particular network just because it has a larger ca-
pacity than the others”4. The total number of weights was chosen as the categorisation
criterion. Essentially, the number of weights in a network, either being an entity or a
single FFNN, is proportional to the cost - e.g. time and computer resources - one has
to pay to train that network. Therefore, for a given test, the networks were created so

that they had approximatelys the same number of weights.

6.3.2 Objectives

In the two tests of the Generalisation category we are interested in comparing the per-
formance (training time, sample error and approximation error) of the participating

networks. In particular, we sought an answer to the following questions:
1. Do the networks consistently converge to a low enough sample error level?
2. Is the corresponding approximation error low enough?

3. Do the sample and approximation errors depend on the number of input di-

mensions (for Var iDim) or the number of training vectors (for ConsDim)?

The first question refers to the complexity of the error surface for the different networks,
in terms of the number of local minima it contains. In previous discussions (for example,
in Chapter 4 on page 29), we argued that if the complexity of the error surface is high,
the training procedure will not be consistent - sometimes it will converge to one local
minimum, sometimes to another - thus yielding very different sample errors. Therefore,

it is necessary to identify those network configurations which, for the same training

4 A similar problem is, perhaps, the categorisation of boxers; there are many parameters which
might be used to compare and categorise boxers (such as, perhaps, weight, height, arms’ length, or
1.Q.) but there is no absolute criterion.

5 Here, we use the adverb approximately because even the number of weights can not be controlled
exactly. For example, take the equation L, = Lw+ which governs the number of weights, W, of a
single FFNN of a single hidden layer of L, units, La inputs, one output. It does not have integer
solutions for all W and LO. This problem becomes more complicated when dealing with the entities
which are composed of a lot of single FFNN.

6.3. GENERALISATION ABILITY =

data, are systematically associated with complex error surfaces. These networks are

obviously inadequate.

The second question refers to the utility of the given network configuration since the
approximation error is a measure of how well the trained networks will perform on the
whole input data domain. Given that the test set represents accurately the input data
distribution, the most useful network will be the one with the lowest approximation

error.

With the third question, for VARIDIM, we are investigating the effect of two problems:
the curse of dimensionality and premature neuron saturation. These problems are
known to hinder neural networks when the dimensionality of the input data becomes
large. For Con sDim, we are interested to see how the number of training vectors affects

the overall performance of each of the participating networks.

6.3.3 Statistical significance tests

When using a statistical significance test to compare the mean or variance of the
sample and approximation errors of an entity and a single FFNN (in any of the two
tests VARIDIM and ConsDim), we start with three hypotheses:

1. The null hypothesis, HO, which says that the mean / variance of the sample /
approximation errors of an entity and a single FFNN do not differ significantly

at the 5 % significance level.

2. The Hx hypothesis which says that the mean / variance of the sample / ap-
proximation error of the entity is significantly higher than that of the single
FFNN.

3. The H2 hypothesis that the mean / variance of the sample / approximation
error of the entity is significantly lower than that of the single FFNN.

Eventually, one of the three hypotheses will be accepted and the other two rejected.
The t-test and the F-test will be performed for each entity / single FFNN pair and for
each number of input dimensions (if in Var iDim) or each number of training vectors (if
in ConsDim). Then, the percentage of acceptance of each hypothesis over some range
of input dimensions / number of training vectors will be calculated. In order to make
it easier to draw any conclusions associating performance with the number of input
dimensions / number of training vectors we have decided to perform the two statistical

tests over two ranges:

« the lower range: for 100 to 500 input dimensions or 10 to 120 training vectors,

86 CHAPTER VI

* the upper range: for 500 to 1,000 input dimensions or 120 to 200 training vectors.

Thus, for each test (VARIDIM or ConsDim) and for each sample / approximation er-
ror result, two tables, corresponding to the lower and upper range of input dimensions

/ number of training vectors will be constructed as follows:
* each row of the table corresponds to an entity network,
* each column of the table corresponds to a single ffnn,

« each entry of the table contains the triplet (a,/3,7), associated with the results
of performing the t-ftest or the F-fest on the entity network which corresponds to
the row of the entry and the single FFNN which corresponds to the column of this

entry,

* in the triplet (a,/3,7), a is the percentage of acceptance of the null hypothesis or
HO. /3 is the percentage of acceptance of the H I hypothesis. 7 is the percentage
of acceptance of the hypothesis H2.

For example, take table 6.4 on page 100. Its top, left-hand entry is (33, 5, 62) and
corresponds to the comparison of the means (that was a t-test) of the sample error of
the two networks C\ (row) and J\\ (column), over the lower range of input dimensions
(e.g. from 100 to 500). According to this entry, the null hypothesis was accepted 33 %
of the times, the H I hypothesis was accepted 5 % of the times and the H2 hypothesis

was accepted 62 % of the times.

6.3.4 Presentation of the results

The mean, standard deviation, minimum and maximum of the three quantities which
determined the performance of each network, e.g. training time, sample error and
approximation error, are calculated for a given number of input dimensions or training
vectors and over the 50 repeats of the training / test procedure. These data were then
plotted against the number of input dimensions (for VariDim) and the number of
training vectors (for ConsDim). Additionally, the sample and approximation error
were plotted as scattered points for each different number of input dimensions and

number of training vectors.

An absolute criterion for the comparison of the performance of the different networks
is the lowest, highest and average of the mean and standard deviation of the sample
and approximation errors calculated according to the procedure outlined in section

6.3.6.1. These data are presented in various tables throughout this chapter.

6.3. GENERALISATION ABILITY 87

6.3.5 The Levy data-generating procedure

In [Levy and Montalvo, 1985] a procedure for generating multi-modal continuous func-
tions with arbitrary number of inputs is outlined. This procedure was followed in order
to create datasets with a variable number of input dimensions to be used in the tests
following. Certainly there are other procedures which may be used in such tasks. The
choice of this particular function was based on the complexity of its surface and the
large number of its roots. Furthermore, this same function was used by Levy and

Montalvo to test their Tunnelling Algorithm, a global optimisation technique.

The original function with variable number of inputs is the following:

dre{x1, wm ,xr) =sin(37nr1)2+
r—1
+ - 1)2(1 + iosin(37ra:i+1)2) + (6.1)
1—

+ (xr —1)(1 + sin(27rxr)), for —1 < xl < 1

The following modifications were made in order to adjust the range and domain of the

original function to the requirements of our neural network models:

* normalisation coefficients were introduced in order to limit the output within the

range of, approximately, —1 and 1,

* the transformation xx—>2Xi —1 was applied to each of the input variables so that

the function is adjusted to the new domain: 0 < XY < 1.
The final form of the data-generating function is the following:

T?{xx,--- ,xr) sin(3r(2x1 - 1))2+

Ir—1

+ e =Y](2xi - 2)2(i + 10sin(37r(2aji+1 - 1))2) +
1.2Jr 1—

) 1=1 (6.2)
+ E(zxr—2)(i + sin@27r(2a:;r —1))), foro< X < 1

The inputs to the Levy function (and, thus, the inputs to the neural networks) are
generated by a pseudo-random number generator (C-language’s lrand48() function
which returns long integers uniformly distributed over the interval [0,231). Refer to
the Unix manual pages, section 3C, for more details) and normalised to the interval
(0.0, 1.0). Typically, a representative set of inputs, produced by this pseudo-random

number generator, will have a standard deviation of 0.28 and be centred around 0.5.

88 CHAPTER VI

6.3.6 Generalisation Ability: the Var iDim test
6.3.6.1 VariDim: Methodology
The methodology followed for VariDim is detailed below:

* The networks to be tested are described in the following table:

NAME DESCRIPTION

G a Ci entity model
Clbig a Ci entity with 66% more weights than Ci

Ce a C2 entity model with as many weights as C\

Cs a c3 entity model with as many weights as C\

Ai a single FFNN with 35% less weights than C\

A 2 a single FFNN with as many weights as Ci

A3 a single FFNN with 55% more weights than C\

Aa a single FFNN with 135% more weights than C\

Table 6.i: VariDim, description of the evaluated networks

The relationship between the total number of weights and the number of input
dimensions for each of the evaluated networks C\, C\thig, C2, C3, Ai, A2, A3 and
A 41is depicted in figures 6.1, 6.2, 6.3, 6.4, 6.5. 6.6, 6.7 and 6.8, respectively.

* each ffnn unit of the entity models had 12 to 35 inputs, one hidden layer of 10

to 20 units, and a single output,

+ the training data consisted of 70 vectors6 and was produced by the Levy function,

equation 6.2,
* the number of input parameters varied from 100 to 1,000 (step 20),

* the number of weights was increased as the number of input data dimensions
increased and according to the percentages of table 6.1. For the case of the single
FFNN, this meant increasing the units of the hidden layer. For the case of the
entities, it just meant increasing the number of FFNN while their size (e.g. number
of inputs as well as number of weights) was unchanged,f

6 This particular number of training data vectors was chosen after experimenting with 50, 70 and
100 vectors. The number of 50 vectors was too small for extracting reliably any conclusions regarding
the generalisation performance of the networks. Whereas, the number 100 was too large, not only
because of the danger of memorisation (as opposed to generalisation) but also because the training

times were going to be larger. Also, note that the results of these tests will be studied comparatively

rather than 1in absolute terms.

6.3. GENERALISATION ABILITY 89

 for each different training data set, both the entities and the single FFNN were

trained for 1,000 iterations?y,

+ the test data consisted of 2,000 vectors. None8 of these vectors was used for
training. The final approximation error was calculated using the mean squared

error measure (see equation 3.6 on page 26),

« for a given number of inputs, the training/test procedure was repeated for 50 times
with the same data and network architecture but with different starting weights.
The training time and sample and approximation errors were recorded for each
of these training attempts and then the maximum, minimum, mean and standard
deviation were calculated as follows:

procedure VARIDIM:
for number of input dimensions i := 100 to 1,000 step 20 do
produce training data set
produce test data set
produce neural network/entity
calculate total number of weights, numW
initialise sum and sumsum to zero
reset minimum errori and maximum errori
for training attempts j := 1 to 50 do
initialise weights to random
train neural network/entity for 1,000 iterations
test neural network/entity
calculate errorij using equation for mean squared error
store errorij
update minimum errori := minimum of (errorij and minimum errori)
update maximum errori := maximum of (errorij and maximum errori)

sum := sum + errorj
sumsum := sumsum + error
end

mean errori =
standard deviation of errori := y/(anfun _ (mean error?))
store minimum errori and maximum errori
store mean errori and standard deviation of errori
end
end VARIDIM.

7 This particular number of training iterations was considered after experimenting with smaller and
larger numbers. In these preliminary tests, the rate of change of the training error, for most of the
networks, was approaching zero after about 1, coo iterations. Using a larger number of iterations would
not only have resulted in longer training times but, also, would have risked over-fitting.

8 Remember that both training and test input vectors are generated randomly with different seed.

o0

CHAPTER VI

the quantities mindmom error, rRoTimure orror, meen ooy 2ud stondord de-
viaton of error; wore, then, plotted agaiost the Lolal puwmber of ioputs, 0 See,
for example, Geore G.157 which refers 10 the samnple error resulis of the O entity
network.

the values of error; wore plotted (as scattered poings) against the total number of
inputs, 1. See, for ecxample, figere 6,25 which refers to the sample error resulls of
the Oy network. On each of the scatter plota a line has heen fitted using the lsast
mean sguaves method. These lines indicete the general linear trend, arauming
there is one. followed by the sample and approximation error for each different
network - something which is difficult te see from the scattered points alone,

the average, fowest and highest values of mean ermn and standard desiation
af errary aver the whole range of jnput dimensions are shown in vacious tables
thronghout che next sectivos. See, lor exainpls, table G2 which reles o che

aample error results of the engities.

G.3.6.2 VamDin: network sizes

The

following fimure: depict the relationship between the mumber of weights and

number of inpute of each of the networka used in this evaluation (see also tahle 6.1].

Mumber of waighle

90000
85000
80000
75000
70000
65000
60000
55000
50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Pauminar of Inpuls
Fipure 6.1; €, number of weights againat oumber of bapuats

C.d.

Murmber of weights

Mhurmbar of waighis

GENERALISATION ADTLITY 91

90000 S ESH RS S R SRR SR (MRS Tk GInks R o GRS AR SR W
85000 : : : : : : : : : : : H : : : : :
80000
75000
70000
65000
60000
55000
50000
45000
40000
35000
30000
25000
20000
15000
10000
5000 |

R DU SO SN R {EUT; | RS PO, S/ O TN: (SRS N, USRS (NS

0
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Wumber af inpurs
Figure 6.2 O piq, number of weights against number af inputa

90000
85000
80000
75000
70000
65000
60000
55000
50000
45000
40000
35000
30000
25000
20000
15000
10000
5000

0 TS O A T ST L SO, (WSS N SN NP (PN (N U (L O
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Mumber of Inputs
Figure 6.3: Cp, number of weights against number of inputs

Mumbar af waights

Mumber af wright=s

CHATTEN ¥I

—— e

1] 1 i] i i i i i i i i] i i

150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Mumigr el inpuls
Figure G.4: I':H; number of weights ﬂgﬁ.i.ll.‘lt mumber of inputs

I] i i I I i] i] i 1 i L i 1

150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Kumbar of npLss
Figure 6.5 N, number of weights against namber of inputs

6.3

GENERALISATION ADBILITY na

Mumbar of waighis

rMurmbar od vwaighls

90000
85000
80000
75000
70000
65000
60000
55000
50000
45000
40000
35000
30000
25000
20000
15000
10000
5000

1 i I i 1 1 i 1 i 1 i i 1 i 1 1]

0
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Mumber af inputs
Figure 6.6: A%, number of weights against number of inputs

90000
85000
80000
75000
70000
65000
60000
55000
50000
45000
40000
35000
30000
25000
20000
15000
10000

5000

0
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Mumbear of nputs
Figure 6.7: N3, number of weights against number of inputs

94 CHAPTER VI

Number of inputs

Figure 6.8: A/4, number of weights against number of inputs

6.3.6.3 VARIDIM: training time results

The fact that the training time of a single FFNN (for a fixed number of training iter-
ations) is proportional to the total number of weights is, again, confirmed in practice
(see also section 4.4.2 on page 38 and figure 4.2 therein). Figures 6.13, 6.14, 6.15 and
6.16 show the linear relationship between training time and number of weights for
the single FFNN M\, A/2, A/3 and A/4, respectively. Moreover, the same relationship of
proportionality applies for the entities too. Figures 6.9, 6.10, 6.11 and 6.12 depict this
linear relationship for the four entity networks C\, Cijng, C? and C3, respectively.
However, the fact that the entities’ and single ffnn’s training times are directly

proportional to the number of their weights does not equate them as far as performance
is concerned, simply because performance consists of three quantities rather than just
one - time. Thus, one should not isolate training time but link it, at least, to ap-
proximation error. As we will see later, when the approximation error results will be
discussed (in section 6.3.6.4), an entity yields a much lower approximation error than
a single FFNN with the same number of weights (compare, for example, C\ to A/2, tables
6.8 and 6.9 on page 111) Although both require the same training time. In spite of
the fact that all experiments were carried out on computers of equal CPU power, some

occasional variations in training time occurred because, most likely, of network traffic.

6.3. GENERALISATION ABILITY 95

The following figures show the time taken for the networks to complete 1,000 training

iterations as a function of the total number of their weights.

12000
11000
10000
9000
8000
7000

6000

Time (secs)

5000
4000 !
3000
2000
1000

0
0 5000 10000 15000 20000 25000 30000 35000 40000

ENT.NumWeights
Figure 6.9: Ci, training time against number of weights

12000 — — — 1 1 1
St.Dev. Training time (secs
Mean Training time (secs
11000 MinT raining time (secs
Max Training time (secs

'

HE

0
x

10000
9000 -

8000

7000 ceeed]

6000 e JbiT

Time (secs)

5000
4000

3000 * %

2000

1000

10000 20000 30000 40000 50000 60000 70000 80000

ENT.NumWeights

Figure 6.10: Ci%ig, training time against number of weights

96

Time (secs)

Time (secs)

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

CHAPTER VI
! 1 1 _
St.Dev. Training time (secs) + 1
Mean Training time (secs) -——
Min Training time (secs) ---x-
Max Training time (secs) ...
X % s
.......................... Lo
1
5000 10000 15000 20000 25000 30000
ENT.NumWeights
Figure 6.11: (2, training time against number of weights
! 1 r
St.Dev. Training time (secs) + +1;
Mean Training time (secs) ---—----—- |
Min Training time (secs) ;
Max Training time (secs) ...n"...
j |
................................ r
i
.. I
................................ i
W RSl R . *
|
"""""""""" ° SOOI
L
5000 10000 15000 20000 25000

ENT.NumWeights

Figure 6.12: C3, training time against number of weights

6.3. GENERALISATION ABILITY

Time (secs)

Time (secs)

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

h"

1

St.Dev. Training time
Mean Training time
Min T raining time
Max T raining time

—~————

5000 10000 15000

SIN.NumWeights
Figure 6.13: A/i, training time against number of weights

Min Tra mng time

Mean Training time Esecs;
(secs)
(secs)

A x % ok % % gy

secs) + h—1
secs) —

secs) —*
secs) ...*

—f-!

20000

5000 10000 15000 20000

SIN.NumW eights

Figure 6.14: A2, training time against number of weights

25000

97

Gs

CHAPTER VI

Timi {sas|

Time [secs|

120100

11000

10000

LI

100

T

G000

Lok |

A0

20La

20z0

10E0

12000

11000

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

1 T -
: ‘ Et Dav. Training lima [seE5) ——
1 i lean Traming fimsa [sacs) —-----
s e i Training fime (eaa) %
' . Max Traning ma [sacs) ---=—

ey SO U -

SIM.Kum'Wpighes
Figure f.15; A3, training time against number of weights

I T T
St.Dev. Training time (secs) ——+—
Mean Training time (secs) -------
Min Training time (secs) ---%--- .7
Max Training time (secs) -;

10000 20000 30000 40000 50000 60000 70000 80000

SIN. HumYiaighta
Figura 6.16: Af, training time against oumber of weights

6.3. GENERALISATION ABILITY 99

6.3.6.4 VariDim: sample error results

Figures 6.17, 6.18, 6.19 and 6.20 show that all entity models reach a very low sample
error. In particular, C\ reaches the lowest error, followed by Clihig, (2 and c3. The
single FFNN also reach a low sample error which, most of the time, does not differ
significantly from that of the entities (see figures 6.21, 6.22, 6.23 and 6.24). For example,
the statistical significance tests comparing the mean sample error of C| and A"i (t-test9,
see tables 6.4 and 6.5) indicate that for both below and over 500 input dimensions, the
two errors either do not differ significantly or the sample error of C\ is lower than that
of M\. The cases where the M\ error is lower than Ci’s are marginal. Of all the entity
and single FFNN networks, (2 and (3 often10 exhibit higher sample errors than M\ and
M>=, but lower than M3 and M.

Cl Cl,6g C2 c3
Ci entity C\ "63%nure veghts) C2 entity C3 entity
X10-°3 MEAN SIDDEV MFAN SID.DEV MEAN STDDEV MEAN STD.DEV
lowest 0176 0-053 o.16l 0.028 0.298 0174 0.636 0052
average 0501 0.398 0-557 0-455 1-577 1.486 2.011 1.686
highest 2.202 2-035 3-035 2.710 4-791 6.764 10.747 9-554

Table 6.2: VariDim, sample error statistics for the entities

Mi M- Mz My
35% less weights standard 55% more weights 135% more weights
xi0-03 ~MEAN STD.DEV MEAN STD.DEV ~MEAN STD.DEV ~MEAN STD.DEV
lowest 0229 0.307 0.558 0760 1.817 I.171 1.849 =8
average 1488 3.067 1.677 2.502 8-539 11-517 22.086 28.893
highest 4503 8523 3508 904 94.157 121035 84.978 163.099

Table 6.3: VARIDIM, sample error statistics for single FFNN

The value of the sample error, however, is not necessarily associated with the gen-
eralisation ability of a learning machinell. What is of interest to us is whether the
training process is consistent. The term consistency refers to the variation of the ob-
served sample error when training a network for several times and for a given number

of inputs. A measure of this variation is the standard deviation of the sample error of

®For an explanation on how to read these tables please refer to section 6.3.
10 This becomes rarer as the number of input dimensions increases.

11 For example, a low sample error for a single rfnn might be an indication of over-fitting resulting
to very bad generalisation.

100 CHAPTER VI

the same network over a number of training attempts, for a given number of inputs.
A consistent training process is indicated by a relatively small standard deviation value
and is the result - among other factors - of a smooth error surface and a small number
of local minima. On the other hand, a large standard deviation could be the result of an
inconsistent training process which would - most likely - mean that the error surface
is so complex that the probability that two runs converge to the same local minimum

is small.

%, %, % Mi M2 M3 Mi
Cl 33 ,5,62 14 0,8 14,0 ,8 14,0, 86
Clbig 43 .14 .43 14 ,10,76 10 ,0,90 10 ,4 , 86
C2 52 ,48 ,0 62,19 19 57.5,38 33,5,62
G 29 ,7i»0 76 19,5 71,100,199 g g 8

Table 6.4: VARIDIM, statistical significance (¢-test) of the sample error results for 100
to 500 input dimensions

%, %, % Mi M2 M3 Mi
Ci 56,4,40 52,0,48 4,0,9 0,0, 100
Qbig 56,4,40 48,0,52 4,0,9 0,0, 100
Q 72,12 ,16 91 >0,9 12,0,8 0,0, 100
C3 8 = 83,13,4 28,0,72 0,0, 100

Table 6.5: VariDim, statistical significance (¢-test) of the sample error results for more
than 500 input dimensions

The training process of the entities, for a given number of inputs, is fairly consistent
as there is not so much variation. In particular, the standard deviation of sample error
of the Ci network is around 0.4 x 10-03, on average, and not exceeding 2 x 10-03.
£1,fris’s error is around 0.5 x 10~°3, on average, and not exceeding 2.7 x i0~°3. For
the C2 network, it is around 1.5 x io_°3, on average, and not exceeding 7 x 10-03,
whereas for C3, the standard deviation is around 1.7 x i0~°3, on average, and not
exceeding 10 x 10 ~°3 (see table 6.2). On the other hand, the standard deviation of the
sample error for M2 is 2.5 x 10~°3 and not exceeding 9 x i0_°3 (see table 6.3). This is
approximately, five times higher than that of C\ and C\"ig- The larger single FFNN, M3
and A/4, are even more inconsistent. The smallest single FFNN, M\ is not as inconsistent

as M3 or A/4, but just a little bit more than Moa.

The above conclusions are also supported by the scatter plots of the sample error and

the least mean squares lines fitted on them, as shown in figures 6.25, 6.26, 6.27, 6.28

6.3. GENERALISATION ABILITY 101

corresponding to Ci, C\%g, C2, (3, respectively. In particular, it can be seen that the
sample error of C\ and C\”g deviates very little from the mean with only a few outliers
below 300 inputs; as the number of input dimensions increases, the outliers disappear.
C2 shows the same behaviour but with higher sample error levels. Its outliers are also
more. Of the entities, C3 has the widest error variation with a significant number of

outliers, especially when the number of input dimensions is less than 300.

%, %, % M A2 A3 A4
Cl 10, 4, 86 5, 0, 95 10, 0, 90 0, 0, 100
ci,hg 10,9,81 14,5 81 0,5 9% 5, 0, 95
c2 20, 33, 38 33, W, 48 14, 13,71 19,10, 71
c3 43, 52,5 43, 24,33 24,9, 67 24, 5, Ti

Table 6.6: Var iDim, statistical significance (F-test) of the sample error results for 100
to 500 input dimensions

% % % M A A/3 A4
Ci 0, 0,100 4,0,96 O, 0,100 O, 0, 100
Cl,big 4,0,96 0,0,100 0, 0,100 O, O, 100
c2 12,8,80 26,0, 74 4,0, 96 0,0, 100
c3 12, 8,80 30,9, 61 16,0,84 0,0, 100

Table 6.7: VariDim, statistical significance (F'-test) of the sample error results for
more than 500 input dimensions

For a small number of input dimensions, the single FFNN's, A/i and A/2, error variation
is approximately the same as, if not less than, that of (2 and C3 but much higher than
C\ and Cithig (see figures 6.29, 6.30, 6.31, 6.32 corresponding to A/i, U2, A/3 and A/4,
respectively). However, as the number of input dimensions increases, the outliers in
the scatter plots of the single f fnn become more, whereas the outliers in the entities’
plots either disappear (C| and Cp”) or are significantly reduced ((2 and C3). A/4 shows
the same behaviour as M| and A/2, with the difference that after 600 inputs, there is no
trend associated with the sample error but, instead, the points are scattered all over! As
far as the statistical significance test comparing the variances of the various networks
(F-test, see tables 6.6 and 6.7) is concerned, it is clear that the variance of the entities’
sample error is consistently lower than that of the single FFNN. In particular, for less
than 500 input dimensions, only (2 and C3’s variances do not differ significantly from
those of A"i and A/2. The rest of the entities have lower variances than any single FFNN.

When the number of input dimensions exceeds 500, the hypothesis that an entity’s

102 CHAPTER VI

variance is significantly lower than that of a single FFNN is true for all entity / single
FFNN pairs. The above observations support the view that the training processi2 of
the entities is more consistent than that of the single FFNN and that as the number of
input dimensions exceeds the critical value of 500, the training of single FFNN is very

inconsistent.

The following figures show the minimum, maximum, mean and standard deviation of
the sample error reached by each of the evaluated networks after a 1,000 iterations as

a function of the number of their inputs.

ENT.Numlnputs

Figure 6.17: Ci, sample error against number of inputs

2 At least for this particular benchmark.

4.3, GEMERALISATION ARILITY 103
0.03 v T [T T T T T 1 X S T R ST
: : : : : : : i St.Dev. Training Error ——
Mean Training Error -------
Min Training Error ---x---
Max Training Error -

0.025

knan sruare armr [EBaining)

ERT.HNumlnpuis
Figure G615 '[:'1.':'5.'2“ satnple crror against pomber of inputs

0.03

' ' l ‘ ! ISt.D'ev. Trlaining; Errolr iy
Mean Training Error -------
Min Training Error ---x---
0.025 -
E 0.02 |- SRR (0 R SN
E : :
a2
—
E 0.015 |
g
[
=
q
] H
E 0.01 ¥
1
0.005 frr e R |
kgl £ O] i P X ™,] : i |
4 i / % ¥ K2 ,x..\lé \\’ i e = i ad AN % i \ y ")k/~ =
0 £511 E-xgi : i i o iI , i%j ii I’}I‘JE .i‘i-ﬁii—gx‘.wnljci‘.itfil b

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

ENT Huminputs
Figu.l.‘ﬁ Ei-.1[|: '::"1’:- :amplr. orear a.gainst number of inpats

CHAFTER YT

104
0.03 T T T T T T T T T T T T TR T T
: : : St.Dev. Training Error —+—
Mean Training Error -------
Min Training Error ---x---
Max Tralnmg Error &
0.025 -~ : ; i
g 002
| =
3
=
E
L 0.015 f | idgebededdid b
g :
I H
2 !
a *
E 0.01 —:‘7;,
PIRT
£ . |
0.005 ..’: ! LR < o
t TR : : : ‘ 5 3
17 % % é'\5,,: \‘F]E i ‘I} JI' { } i %
£ % ¥ 5 TIT
0 % T s e XK { byl £ £%§L i i ££i£ i\l 43 15’
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
EMT.Mumlnpuns
Figure f.oo Oy, sample error Againgt number of inputs
0.03 T T T T T B T T T T g]
: . : : St:Dev.: Trainiryg Error '—’—1
: Mean:Training Errog -----:-
i Min! Tralnmg Errar ---%-+-
MaxiTraining Errgr -
0.025 Y
E 0.02
B
o
=
T 0.015
®
z
&
=
001
=
0.005 F--%. ool it »
st st A il

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

SIH.Numinputs
Figure §.21: A, sample crror 2gainst number of inputs

6.3. GENERALISATION ABILITY 105

Mean square error (training)

SIN.Numinputs
Figure 6.22: A/2, sample error against number of inputs

Mean square error (training)

SIN.NumInputs
Figure 6.23: 7V3, sample error against number of inputs

106

CHAPTER VT

Mean square error (training)

0.03

0.025

'0.02

0.015

o
o
o
o
T

N

ean Training Error
{ Min Training Error
iMax Training Error

|
S H H

N
7

S 3 3) :) 3 i 4 o
0 4 4 § 3 H i i ’

: (X, 5
: D S R
ke XXy XX

Xt

i Lx i 1< i

1 T T T T
St.Dev. Training Error +—+—

L X

100

150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

SIH. Ml puls
Firure G.24: N, sample error against number of inputa

The tollowing fgures contain scatter plots of the sample error, and least mean squares

Ines Atted on them, for all evalusted oebaocks,

Criisns,

Mean square error (lraining)

a5 the numhber of their inputs in-

22 . : — _. — —
E._ME - - - 2 -
o.o2 |- --.§. = S W, R B S S - - “"‘?' - — .: - LI
L.G15 |- 3 ..:.-. T T S ..;. : |
(171} [(A S . '. | .-.:- S SN S -1 - . S —

'
nogs -« " : [P S S

LR e : H
! Wy : _-I ia S T S i
M ERIEERSN RS RE S CNREIPEREL SRS ST BT -

0045 : R Y T N ; Y R, Y N D N i

Mumbar &f inpuls
Flpure G.25: O, sample error agains! number of inputa

00 1AD 23 2ED o0 350 acn 450 500 550 &0 650 YOO TR0 BOO HS] SO0 9531 KOCOD

6.3. GENERALISATION ABILITY 107

0.03 o - _ _ _ _
0025 ...
0.02 .
= ;
£
c
©
= 0015
5 o
£ J
(0]
o .
g N
o 001
O
c
(]
(V]
s
0.005 .r)) on
. t,
pitiiiiti rin IT itK i 11le>- Jitfmm vou Y
20005 — L i

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Number of inputs

Figure 6.26: Clthig sample error against number of inputs

Mean square error (training)

Number of inputs

Figure 6.27: C2, sample error against number of inputs

108 CHAPTER VI

0.03 | | I I I I T
0.025
002
S .
[
= .
< :
< 0015 o L .
e . I I
o i ;
9 . .
o 0.01 M * « : :
g s ; e)
© M | *
g P % . * I « '
0.005 Sy & < .) °
S*

[fliitliithiliiiili

T T S S S S SN S R S S S T S A
-0.005 N S S S S,
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Number of inputs

Figure 6.28: C3, sample error against number of inputs

003 — o, r _
0.025
0.02 .

) R 1

£ . :

c . :

£ .

= 0015 T

S \%

o

< : . . .

@ * QA P

2 o001 | € o)

@ . * . MY .

= . . . ot
0.005 — . .

.
. o e K

!

wpw ¢
» »

*
iiiiiHirihllllllll.millllllllmll

o

-0.005 L L
100 200 300 400 500 600 700 800 900 1000

Number of inputs

Figure 6.209: , sample error against number of inputs

MALISATION ABILITY

I-'

G.3. EMI

IUH_

0.03

0.025 |-

0.02 +

G J0wb GrBHDE L)

-0.005

ALK S0 B0 Ton 400 Lo 1400

b

100

Humbar of inpats

M, sample error ag

mpufts

pinst number of

Figure .30

0.03

{Burnen) ;oo ;embs ueapy

-0.005

10

400 A EOD o 810

200

o0

Mumbsar af Inpuis

Figure 6.31: Af, sample error

L

IR

t numbicr of

Hgains

no CHAPTER VI

100 200 300 400 500 600 700 800 900 1000

Number of inputs

Figure 6.32: A/4, sample error against number of inputs

6.3.6.5 VARIDIM: approximation error results

The entities invariably yield a lower approximation error than that of the single FFNN.
In particular, C\ yields - on average - an error of 60 x i0~°3, C\"g and C2 follow with
marginally higher errors of 62 x i0~°3 and 67 x 10-03. The highest error is due to C3,
with 104 x i0~°3.

Ccl ClLbig c2 C3
C\ entity C\ (66% mxe weights) Ci entity C3 entity
X10~°3 MEAN STD.DEV MEAN STD.DEV MEAN STD.DEV MEAN STD.DEV
lowest 46.803 NGB 49.427 5193 s55.735 4171 87216 3-10
average 60.036 6.780 61.410 ;509 66779 8831 10412 I1.49
highest 70-139 14757 74.769 14270 g3.54 16147 130.71 19.62

Table 6.8: VariDim, approximation error statistics for the entities

In contrast, the approximation error of the single FFNN is one and a half to two times
higher than that of the entities. In particular, M3 (note that this network has 55 %
more weights than C\) yields - on average - the lowest error among the single FFNN
with 96 x io_°3, M2, M3 and A/4 follow with errors of 121 x 10-03, 125 x io_°3 and

127 x 10_°3, respectively.

6.3. GENERALISATION ABILITY ill

A A2 A3 A4
35% less weights standard 55% more weights 135% more weights
X10~°3 MEAN STD.DEV MEAN STD.DEV MEAN STDDEV MEAN STD.DEV
lowest 89.147 8.972 87.986 9.066 39-704 19.487 90.219 8-99
average 126.58 21.929 120.82 17.185 95-932 37.118 124.52 35-54
highest 15749 43.722 144.23 35-327 209.83 117-39 169.87 161.16

Table 6.9: VariDim, approximation error statistics for single FFNN

The statistical significance tests comparing the mean approximation errors of the
participating networks (the ¢-test) show that below 500 input dimensions (see table
6.10) only A 3's approximation error is comparable to that of the entities: the null
hypothesis, HO, that the means of Ci’s, Cion’s and C2's approximation errors do not
differ significantly from that of A3, is true by 43 %, 57 % and 43 %, respectively (see
the A"3-column of table 6.10). fVs approximation error is comparable to that of Ai
and A2, higher than that of A 3 but, lower than AVs (see the C3-row of table 6.10).

%, %, % A A2 A3 A4
Ci 0,0,100 0,0, 100 43,19,38 0,0, 100
Cl,big 0,0,100 0,0,100 57,24,19 0,0, 100
c2 0,0,100 0, 0, 100 43) 24, 33 0, 0, 100
C3 33, 29, 38 33,24, 43 5,95, 0 19, 43, 38

Table 6.10: VariDim, statistical significance (¢-test) of the approximation error results
for 100 to 500 input dimensions

%, %, % A A2 A3 A4
Gi 0,0, 100 0, 0,100 0, 0,100 0, 0,100
Gibig 00,100 0,0,100 0,0, 100 0, 0,100
@ 0,0, 100 0,0,100 4, 0,96 0, 0,100
c3 40,9 4,096 48 12,40 8 0, %2

Table 6.11: VariDim, statistical significance (¢-test) of the approximation error results
for more than 500 input dimensions

When the number of input dimensions exceeds 500, the generalisation ability of the
entities is clearly superior. In particular, the hypothesis H2that the mean of an entity’s
approximation error is lower than that of a single FFNN is true by 100 % (see the top
3 rows of table 6.11). Even C3 is now doing much better than Ai, A2 and Ag4. Its

performance is comparable to that of A3, even if A3 has twice as many weights.

1= CHAPTER VI

The approximation error of all entity models is clearly independent of, if not decreasing
with, the number of input dimensions. This can be seen from the graphs of the mean
approximation error for C\, Cijig, C2 and C3 contained in figures 6.33, 6.34, 6.35 and
6.36, respectively. This conclusion is further supported by examination of the scatter
plots and the lines fitted on them, depicted in figures 6.41, 6.42, 6.43 and 6.44, for C\,
Cinig, C2 and C3 respectively.

%, %, % Al A2 A3 Als
Cl 190,81 33 0,67 0,0 100 O g
Cl,big 52, 0,48 57 0,43 0,0 100 29 0, 7i
c2 38,5)57 47 5,48 0,0, 100 38 5,57
C3 76, 10, 14 80, 10 10 5 0 95 52,5, 43

Table 6.12: VARIDIM, statistical significance (F-test) of the approximation error re-
sults for 100 to 500 input dimensions

%, %, % Al al2 A3 A4
Gi 0,0, 100 0,0, 100 0, 0, 100 0, 0, 100
cibig 0,0, 100 0,0, 100 0,0, 100 0, 0, 100
2 0,0, 100 o 0,100 0, 0, 100 0, 0, 100
3 0,0, 100 26,0, 74 0,0, 100 0, 0, 100

’

Table 6.13: VARIDIM, statistical significance (F-test) of the approximation error re-
sults for more than 500 input dimensions

In particular, the approximation error of C\ is almost constant. This is indicated by
the slope of the least mean squares line fitted on the scattered points; it is almost zero
(-3.2 x 10~°6). The same can be said for Ci*ig (the slope is —5.7 x 10-06) and C2 (the
slope is —b.6 x i0~°6). (3 follows a rather strange “wavy” pattern which contributes
to its large standard deviation value. Notice also that all slopes, no matter how small,

are negative, thus showing a descending trend.

The single FFNN’s generalisation ability consistently shows a strong dependence on the
number of input dimensions: it decreases (e.g. the approximation error increases)
as the number of input dimensions increases. This is evident from the scatter plots
of A/i, A/2, A/3 and A/4, in figures 6.45, 6.46, 6.47 and 6.48, respectively. The least
mean squares lines fitted on these scattered points have a large positive slope which
indicates an increasing trend. In particular, the standard FFNN, A/2, has the smallest
slope with 42 x 10-06, whereas A/3 has a slope of 165 x 10-06. The corresponding slope

values for A/1 and A/4 are somewhere in between these two extremes with 65 x 10~°6

6.3. GENERALISATION ABILITY 1=

and 71 x 10 06, respectively.

The statistical significance tests comparing the variance of approximation error of the
participating networks (the F-test) reveal that for a number of input dimensions higher
than 500, the variance of all the entity networks is significantly lower than that of any
single ffnn. For lower dimensions, only A/j’s and A/b’s variances are comparable to

that of the entities.

It is important to note that for the whole range of input dimensions, the variance of
A/3 is higher than that of any entity 100 % of the times (see the A/3-column of tables
6.12 and 6.13). Thus, the benefits gained by the low approximation error of Al3 are
nullified by its large inconsistency. This inconsistency gets larger as the number of

input dimensions increases.
Some more conclusions can be drawn by visual inspection of the scatter plots:

Firstly, there is a striking difference between the compactness of the plots for the entities
and the single ffnn. For example compare the scatter plots of C\ and Cijig (figures

6.41 and 6.42) to the plots of+ i and A/3 (figures 6.46 and 6.47).

Secondly, whereas the entities’ approximation error remains constant or, in some cases,
it even decreases with the increasing number of input dimensions, the single FFNN’s

approximation error increases.

Thirdly, the number of points which significantly deviate from the mean (outliers) for
the case of the majority of the entity models is insignificant (e.g. C\ and Ci"ig) or
just very small (C2+ Furthermore, these outliers are reduced as the number of input
dimensions increases. The opposite is observed for the single FFNN: when the number
of input dimensions is small, the outliers are not so many but they become more and
more as the number of inputs increases. Evidence of this can also be found in figures
6.33 to 6.40. In particular, the standard deviation plots for the entities (figures 6.33
to 6.36) are, in general, non-increasing whereas the corresponding curves for the single

ffnn (contained in the other four figures, 6.37 to 6.40) show a clearly increasing trend.

114

The lollowing fipures show the monimam, masimar, mean and stendard devistion of
Lhe approximation error of each of the evaluatsd petvorks alier a 1,000 Herations as

& Tupction of the number of their inputs.

[T T T T
S1.0e. BErme —+—
ki : : Maar Ericr
.45 : : B R ST S S e B Min Error ---3¢--- .
: etz Ericr

T P P . ; A "'.T""'"""";"'"

(.35

03

K]

0z

Mean square error (overall)

[]

(iR |

i} l_
100 {50 SO0 250 300 351 &G0 4GC BOO EEQ BOO G50 MK FEO BOD pEL 200 GRO 1000

ERT.Mumirfiss
Figure G.53: 1. approximation error againyt number of inputa

0.5 0 T T 0 T T T Y T T T T T
f.ch |- - S L e e e

04 -

~ 035} i s St S Lt SN S
& : :
] : i
3 03 e T e rt SO S
S i ! I I i ! ! 1 !
2 095 |- . : - .--..--....-...-..;,-..-..!.-....-...-...§_--.-... LRI
g : T T B P : :
3 3 H H H H . ! H H
g 0.7 - H . e e o e 1 o o5 e i PSR R R U S R .
c ! : | i 1
@ : : 4 '
g - | . Py i i

a45 |- | R —--fm—geeed . : - | -

0.1 | = : -
T B
-~

o LEEVEE zi ‘I“ﬂ iﬁﬁﬂg :ﬁaﬁ: S, L

X =
T

| i 1 1 ! 1 i i i | | | i i 1 1

0
100 150 200 250 0L S0 400 450 500 50 &0 GBS0 OO VAL BOO &B) BOO 850 1000

ENT Muminpuyls
Figure 8.34: € g4y, approximation error against oumber of inputs

6.3,

GENERALTSATTON ABILITY

11§

Mean aquane erar (Lwarah

hizan square aror (oeanak)

05 T T T T T T T T T T T T T T T T T
: : : ; : : : : ; ; ; : St.Dev. Error ———

Mean Error -------
Min Error --->---
Max Error -

0.4

PTECR L NN WOWE N S SO JPOW S S S S S s

0.3

0.25

e o e e e s o o e o
0.15

X'***'X**

‘ ii ii %iiﬁ Fiik

0.1 X%

0.05 1

1 I I i i I i I i i 'L '1 i] i i

0
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1

EMT Muminpiute
Figure G.35: Uz, approximation error a[;a'msl: number of inputa

000

0.5 T T T T T T T T T T T T T T
: : : - : d] ; : St.Dev. Error —+——
Mean Error -------

0.45 Min Error ---x---

0.35

~ Max Error -
0.4 ‘ - T e

0
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

EMT.Musminpuls
Figure &.gf: Ci, approximation error against number of inputs

116

3
5
T
g
3
4
=
I
=

Mean square amror {overall}

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1k

0.05

CHAT'TER VI

T T T T
St.Dev. Error —+—
Mean Error

Max Error -

Min Error ---%--- 4

| | I i | | i i i i i i i i 1 i i

0
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.05

Sird, Mymingds
Figure 6.57: A, approximation error against number of inputs

01 Eoe

T T T T
St.Dev. Error —+—
Mean Error
Min Error ---x---
Max Error -

R S (RO (DY I N (N, (W N Sy (SN [N NN PO, SN AN |

0
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

SN Muminpus
Figire 698 Ay, approximation error againgt number of inpute

GENERALTSATION ABILTTY

T T T T
Sl.0evw. Errar ———
Maan Errar ==—-—-—
Miri Errar --
Mawx Ervar -

- 7 N SRS SUNUN. SRS SRS NP SN U S-S SN S MUND. S | S U8 | 9

Maan squars aroe (eearall]

u_'lﬁ —A.....T........:..

1. %

01 —"'r--**T""- e o
T ‘l l -1 E 1 Sl : :ﬂ':-_-':

.05) ’;'..] ks S S .-” IR tab X _‘!':'IC:'M' -_d.-)'l_x,l: L4 I | da -
ﬂ'i-"_;.-;.:_.,_l'._ _|’|' = R 1 | j 1 1 L] i 1 i i !

wp gl 200 28k 300 351 200 450 SO0 BEQ GOL BSO TDO VA0 400 450 SO0 SAF 1000

SIp.Muminpuls
Figure G.50: Ny, approximation crror againgt nomber of inputs

Mean Erfor
i Min Ertor
fMax*Eri:o‘r

Mean square armr dovarali]

0
100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

Sim.Muminputs
Figure G.go: Ny, approximation error against number of inputs

r1H

CHAMTER VI

The following lgures contain scatter plota of the approcimotion error, and least mean

sepuares lines fitted on them, for all evalnated neraorks, as the number of their inpues

increasss,

Mean square error (overall)

Mean square error (overall)

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05
1001

N S i g s L5 .
i_!’ﬁxﬂitﬂ.ﬂslﬁ!”

e

hié'ri,i,-lfm—.!-.mfﬂ

H.r]f"tf"!_l

i i

i

i i

Blumber al inpuls

500 200 250 30 350 40O 450 S0 550 600 450 YO0 TS0 &S00 A50 BLG B0 1000

Figure G.41; £1, approximation error agaiusl oumber of inputs

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05 &

0

-0.05

..........................

i

1

i

W0 18] 2K 251 307 35k 400 450 500 550 600 650 A0 FRO &0 ASD BO0 BRO 1000

Mumberal lnguls

Figure 6.49: €] yi. approximation crror agaitnst number of inputs

6.3,

GENERALISATION ABILITY

114

Maan aouare armar [averad)

Mean squans smor [ovead)

0.5

0.45 |i

0.1

0.05

Eifti

i 1

THHAEE

1 i] i I i i I i 1 i] i i | i

-0.05

100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

0.5

Rumar of Inputs
Figure fi.43: Cs. approximation error against mamber of inputs

950 1000

045 |-

04 |-

035 |-

0.3 |-

Y1 SOTR U

0z |-

L 1 y i 1 \ ! i 1 1 I i | 1 1 1 i

100 150 200 250 A00 357 &40 450 5a0 550 BOD S0 TOD YRG 50 ESd 20 25D 100a

Mumber af inputs
Figure 0.44: a, approximation erfor against number of Inputs

CHAPTER VI

g

800 900 1000

700

i
|

H
i
L)

600

20

0.5

1
%)
<
o

0.4 |-

[isa) 1o aenis unopy

-0.05

®
i
SO0
humrher e Inputs

210 30 440

140

tion error against number of pols

/1, APPToXIMma

-

Figure G453 M

500

400

300

200

0.5

04

I
G2l
o

{Inann] Jowua arenhs RegE

100

-0.05

rumiar ¢ npJte

Figure 6.4%: AG, approximation error against number of inputs

6.3. GENERALISATION ABILITY =1

Mean square error (overall)

100 200 300 400 500 600 700 800 900 1000

Number of Inputs

Figure 6.47: A/3, approximation error against number of inputs

Mean square error (overall)

100 200 300 400 500 600 700 800 900 1000

Number of inputs

Figure 6.48: A/4, approximation error against number of inputs

. =4 CHAPTER VI

6.3.7 Generalisation Ability: the ConsDim test
6.3.7.1 ConsDim: Methodology

In this test we are interested in the performance (training time, sample error and
approximation error) of the networks when, for a given number of input dimensions,
the number of vectors in their training set increases. The networks’ configuration and

number of weights remains constant throughout this test.

The procedure for ConsDim is outlined below:

* The networks to be tested are described in the following table:

NAME DESCRIPTION

Cci a Ci entity model with 12, 625 weights
Clbig a Ci entity model with 20,010 weights

c2 a C2 entity model with 12, 340 weights

C3 a C3 entity model with 12,340 weights

M a single FFNN with 12,525 weights (arch: 500 x 25 x 1)
M2 a single FFNN with 20, 040 weights (arch: 500 x 40 x 1)
M3 a single FFNN with 25,050 weights (arch: 500 x 50 x 1)
My a single FFNN with 30, 060 weights (arch: 500 x 60 x 1)

Table 6.14: ConsDim: description of the evaluated networks

* each FFNN unit of the entity models had 12 to 35 inputs, one hidden layer of 10

to 20 units, and a single output,

* the number of training vectors was varied from 20 to 220 (step 10) and the input

dimensions were fixed at 500,

« for each different training data set the entities and the single ffnn were trained

for 1,000 iterations,

+ the test data consisted of 2,000 vectors. None of these vectors was used for
training. The final sample and approximation errors were calculated using the

mean squared error measure (see equation 3.6 on page 26),

+ for a given number of training vectors, the training / test procedure was repeated
for 50 times with the same data and network architecture but with different
starting weights. The training time and sample and approximation errors were
recorded for each of these training attempts and then the maximum, minimum,

mean and standard deviation were calculated as follows:

6.3. GENERALISATION ABILITY 123

procedure CONSDIM:
produce neural network/entity
calculate total number of weights, numW
for number of training vectors i := 20 to 220 step 10 do
produce training data set
produce test data set
initialise sum and sumsum to zero
reset minimum errori and maximum errori
for training attempts j := 1 to 50 do
initialise weights to random
train neural network/entity for 1,000 iterations
test neural network/entity
calculate errorij using equation for mean squared error

store errorij

update minimum errori := miniommn of (errorij and minimum errori)
update maximum errori := maxinmm of (errorij and maximum errori)
sum = sum + erroriy
sumsum = sumsum + errorf-

end

mean errori
standard deviation of errori = y/{ — (mean errori))
store minimum errori and maximum errori
store mean errori and standard deviation of errori
end
end CONSDIM.

* the quantities minimum errori>maximum errori, mean errori and standard devi-
ation of errori were plotted against the total number of training vectors, i. See,

for example, figure 6.57 which refers to the sample error of the C\| entity network.

* the values of errorij were plotted (as scattered points) against the number of

training vectors, i. See, for example, figure 6.65 which refers to the sample error

results of the C\ entity network.

* the mean, lowest and highest values of average errori and standard deviation
of errori over the whole range of training vectors are shown in various tables
throughout the rest of this chapter. See, for example, table 6.15 which refers to

the sample error results of all the entity networks.

124 CHAPTER VI

6.3.7.2 ConsDim: training time results

The training time of all networks, both entities and single FFNN, is directly propor-
tional to the number of training examples. This is confirmed by figures 6.49, 6.50, 6.51,
6.52, 6.53, 6.54, 6.55 and 6.56, which depict the relationship of training time of the
networks C1, Ci*g, C2 C3, Afi, A2, A/3 and N4 and the number of training vectors.

Again, although the experiments were performed on computers of equal CPU power,

the effects of network traffic are noticeable.

The following figures depict the relationship between training time and the number
of training vectors. In particular, four quantities are plotted: minimum, maximum,

mean and standard deviation of training time, for 1,000 iterations.

11000 1 1 -ttt
10500 St.Dev. Tra!n!ng t!me (secs) +1+1
Mean Training time (secs) --—-—
10000 Min Training time §secs)_
9500 May Traininn tima (serci
9000
8500
8000
7500
7000
» 6500
I 6000
? 5500
5000
4500
4000
3500 e a L.
3000 e
2500 —
2000 =
1500 e
1000 a —
500 p—*
0 i i | i ! | ! | | ! | | | | ! | | | L

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

TRAIN_DATA.NumLines

Figure 6.49: Ci, training time against number of training vectors

6.3. GENERALISATION ABILITY 125

Time (secs)

TRAIN_DATA.NumLines
Figure 6.50: C\thig, training time against number of training vectors

11000
10500
10000

9500

8500

7500
7000
6500

5500
5000
4500

Time (secs)

2000
1500
1000

500

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

TRAIN_DATA.NumLines
Figure 6.51: (0 training time against number of training vectors

126

CTHAFPTER VI

Time [Zacs|

Time [secs)

TG0

1 i i i]]]] i] i

T T T T T T T T [} T T L T T T T T T T

- SO - S SN (U | <Dy, Training Srne (geca) ——1 |
i P : Mean Trainng fme (geca) -------

- S doroed i i Ml Traning fne (geca) - - |

TRAIM_DATAS Numlines
Figure f.52: Oy, training time against number of training vectora

a0 T3 Ak 20 100 113 120 130 140 155 183 170 160 190 220 210 220

I T 1 i f T - 1 LI | T T T T
5 l i, i : I : : 51.0ew. Training tme (s —_—
- Mean Training e (gees] ---—--

i - I : M Training fme (secs] - 7
- et L Blax Training frne (A [.
L o ainad P .. b N W s

| ! : I . I o i

[} i 1] 1 ! 1 ! L] | | 1 [] 1 1 1 1 1]

203 40 50 BQ FDOED AD 100 110 120 130 140 180 180 170 180 190 200 214

THAIN_DAT A Muembines
Figure .53: A7, training time against oumber of training vectors

20

Ld GEWERALISATION ADILITY

127

Time {zana)

Tirne [2aos]

19000
10500
1000
Q500
=i
Bs00
800
Ta
T
G500
B
S50
AL
480
400
450
35
2508
LY
1504
1C0d

EIIIE i .

a
2] 30 43 50 g0 WO B0 90 140 110 120 130 140 180 140 190 180 193 200

1160
1050
sy

-

1 1 1 T T B 1 1
Sl.0ew. Training Lme (gecs] F—r—
Maan Training ime tgecs) - - -
Min Traming Ume (geca] = -
i Maw Trakinn ma (Rara] —w-

SRR S N S

e

i “ka_

1 1 i 1 1 1 1 i 1 1 i i i i 1

210 220

TR&IN_CATa Mamlines

Figure .54 A%, training time againsl number of training vectors

I St.IIDev. ’lI'raim!ng tir'ne (slecs)'i—+l—i
Mean Training time (secs)

Min Training time (secs) ---%---
Max Training time (secs) -]

! 1 | 1

i 1 i 1 I i i I I | 1 1 |

a
2] 30 40 50 &0 TOQ B7 9] D 1D 1E0 150 140 150 16D 170 D 193 200 210 230

TARAIN_DATA.Mumline=s

Figure 6.55 A%, training time sgainst number of training vectora

128 CHAPTER VI

11000 - — — \1 1 1 1 1 1 *
10500 St.Dev. Training time (secs) +A—1
Mean Training time (secs) T—
10000 Min Training time (sec,s)#--v*a--
0500 May Traininn timp (StercS wam

8500

7500 c
7000

. 6500 3" s

~ 5500
1 5000
xn 4500

3000
2500
2000
1500 = .
1000

500

o YL T T S TN AN SN NN SN SR SN N N SO M

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

TRAIN_DATA.NumLines
Figure 6.56: A/4, training time against number of training vectors

6.3.7.3 ConsDim: sample error results

Figures 6.57, 6.58, 6.59 and 6.60 indicate that all entity models reach a very low sample
error which, however, increases slightly with the increasing number of training vectors.
Cifrg achieves the lowest error among the entities (see table 6.15) with 0.8 x 10“ 03,
on average. Also, the slope of the least mean squares line fitted on the scatter points
representing its sample error values (see figure 6.66) is, again, the lowest with 7X 10-06.
Its training is consistent and there are very few outliers beyond the 5 x 10-03 error
level.

The same can be said for C\, although its sample error is, on average, slightly higher
with 1 x i0_°3. The corresponding least mean squares line has a slope of 11 x 10-06
(figure 6.65).

(C3’s sample error increases with the greatest rate among the entities, with a slope
of 21 x 10-06 (figure 6.68). Additionally, its sample error is, on average, 2.2 x 10~°3,
e.g. double than that of C\. Its variation is, also, twice as much.

The variation of sample error, among the entity networks, increases as the number
of training examples increases, but, even so, it is still very low compared to that of the

single FFNN.

6.3. GENERALISATION ABILITY 129

The single FFNN, on the other hand, yield a much higher sample error than that of
the entity networks. Al has the lowest sample error, among the single FFNN, with
2.9 x 10-03 (see table 6.16). A/2, A/3 and A/4 follow with 4.2 x i0~°3, 8.6 x i0~°3 and

15.6 x 10-03, respectively.

Cl QAbig c2 C3

C\ (12,625) C1 (20,010 weights) c 2 (12>34° weights) C3 (12»34° weights)
X10~°3 MEAN STD.DEV MEAN STD.DEV MEAN STD.DEV MEAN STD.DEV
lowest 0.144 0.124 0.04 0050 0.04 0.033 01071 0.033

average 0956 0.755 0784 0668 1593 1-317 2163 1.443
highest 3-0i8 2.728 I.722 2.016 3.693 3.615 4-837 3.267

Table 6.15: ConsDim, sample error statistics for the entities

A/"1, STANDARD X2 ass A4

(12,525 weights) (20,040 weights) (25,050 weights) (30,060 weights)
X10-03 MEAN STD.DEV MEAN STD.DEV MEAN STD.DEV MEAN STD.DEV
lowest 0.005 0.024 0.120 0.332 0.687 0.813 2.845 2.020
average 2.917 3.812 4.208 4-339 8.581 13.170 15.608 23.590
highest 6.134 8.609 7.902 8.403 24.806 74.533 25.888 44.783

Table 6.16: ConsDim, sample error statistics for single FFNN

Visual inspection of the scatter plots (figures 6.65, 6.66, 6.67, 6.68, 6.69, 6.70 and 6.71
for the networks Ci, Cibig, C2, Cg, Nl, A/2, A/3 and A/4, respectively) reveals that the
sample error of the single FFNN is too high after 100 training vectors, whereas the
sample error of the entities is much lower. Adding more weights to the network does
not remedy the situation - on the contrary, the outliers of A/3 and, in particular, of A/4
increase dramatically. Notice also how small is the difference between the mean and
standard deviation of the sample errors of C\ and C\%g ((Lbig having almost twice as

many weights as C1, and both networks belonging to the same entity class) networks.

The statistical significance tests comparing the means of the sample error of the entities
and the single FFNN (the t-test) indicate that for less than 120 training vectors, the H?2
hypothesis (e.g. that the mean of the entities’ error is significantly lower than that of
the single FFNN) is true by 70 % to 9o % (with the exception of C3 when compared to

A - their means do not seem to differ significantly, see table 6.17).

When the number of training vectors exceeds 120, the H2 hypothesis is true by almost
100 % (see table 6.18).

130

%, %, %
Cl
Cl,big
C2

Cc3

18, 18, 64
18,18,64
18, 27, 55

64, 9) 27

M2

18, 0, 82
18, 0, 82

9,0 91

36, 0, 64 27, 0, 73

18, 0, 82

Mz

9 0, 91
9,0 91

27,
27,
27,
27,

CHAPTER VI

Mi
0, 73
0, 73
0, 73
0, 73

Table 6.17: ConsDim, statistical significance (¢-test) of the sample error results for

10 to 120 training vectors

%, %, %
ci
c1,big
c2

C3

Mi
0, 0, 100
0, 0, 100
22 0, 78

44, 0, 56

Mo
0, 0, 100
0, 0, 100
0, 0, 100

11, 0, 89

XS
L

L
L

°o o

S

X00

100

o

100

100

ke

©o o o 9

Mi

100

RS)

100

o

100

o

100

o

Table 6.18: ConsDim, statistical significance (¢-test) of the sample error results for
more than 120 training vectors

%, %, %
Cl
Clbig
c2
Cz

Mi
9, 18 73
18, 9, 73
9,9, 82

M2
0, 0, 100

9,

Mz
0, 91

0, 0, 100 0O, 0, 100

9,0 91

0,

0, 100

36, 0,64 0,0 100 0,0, 100

0,
0,
0,
0,

i
100
100
100

, 100

=

=N el eN=]

Table 6.19: ConsDim, statistical significance (F-test) of the sample error results for

10 to 120 training vectors

%, %, %
Ci
ClLbig
c2

Cc3

M1
0, o, 100
0, o, 100
Q

11)0

0, o, 100

O

M2
0, o, 100
0, 0, 100
0, o, le0

0, o, 100

01

0)

o,

OJ

Mz

e, 100
o, 100
0, 100

0, 100

0, 100
0, 100
o, 100

o, 100

Table 6.20: ConsDim, statistical significance (F-test) of the sample error results for

more than 120 training vectors

As far as the variation of the sample error is concerned, the relevant statistical signifi-

cance tests (the F-test, see tables 6.19 and 6.20) indicate that for any number of training

vectors (both below and over 120) the H2 hypothesis is always true. It approaches 100

% for more than 120 training vectors.

This proves that the entities’ training is more

consistent than that of single FENN and that the consistency of the latter deteriorates

with the increasing number of training examples.

fat. GEMEHALISATION ABILITY 131

The follvwing fgures contain plots of the mindmum, mazimuem, mean and sfondard

devietion of sample error againat the number of tralnlng vectors.

o5 T T T T T
: : y T 4T SLDev. Training Error ——
[l P SO ERE P | JTRETH i i o TR T T IR ”E‘B_'IT"E.!"_"'IHEW}I' P
: i i i i Win Training Ermor ---#---
(1% P [FE L PSR TR (P DR SR [[PP MaxTraining Error - -

o2 - .~ ..-.--.-- .,.--.- SN W S

(RN

E [T [S et .1 : ey - ..é......i.....:_.....:.......?......;.. -
3 L i ' P :

E oo |- .-...-..;......é... |-i.---i---:..-\.- .5 - -
e : N H : . - . i

B o7 |- :]
= 1

) & E
=

=]

=

0o - oo
oo3 - '

g |
i 1
[0 [RS SRR RIS BN SR al-\. - [

Y T P T --:.--1 - ""i;_-_-_-_‘:r:___._ -_r}n".é.;"_:‘;‘;'_"::—;
o0 30 40 50 & R BD B0 100 110 130 13D 140 150 180 1FF 182 190 200 210 =20

TRAIN_DATA Mumlings
Figure 6.57: €|, sample error against number of training vectors

T T T T T T
St.Dev. Training Error +——
Mean Training Error ------- -
Min Training Error ---x---
Max Training Error -

e aguane er frainbag)

0.04

0.03 - A e -

0.02

: e : - e
i S A i § : ___:’___;___"_'-*-»_—;:"!S'_"_"‘_‘:%‘_"_":i__-@--- s
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

0.01

TRAIN_DATA Mumline
Figure f.58: C) aip, sample error against oumber of training vectors

142

CHAPTER VI

Mean squar et [rainirg

Mean square &fref (IrgEinirg)

1%
T4
Q.13
212
a.11
rh |
Q.09
.04
007
Q.03
.05
0.0
0.0
0.0z
0.0
0

i H
i . i
i i i
: i
i i
RS S -
i i
H i L B N
i i
: ;
. i
- R e
i i
vie - - .
e MU ——eet B
i
i :
i i

y i3

. - L.
Py [(. Ry ey

i i
I £
I R
1 i i
B
H i H
T
P P
e ER
i i
P P
J T S L
i i i
S
H H : .
8 SO S |
i i
i
i
i
P
e ray

i -i'
z - I:" =
i s H

.

St Dav. Trairirg Emos ——
Mean Trairing Eroe --——- _

M Trairing Emor - x-
_M.E:-; 'I'ra.i!ing Error - diee]
-a- i
- 'i‘“-i—--i‘.::.—_

..:---qa---—}---f__..:---%-

i

0.15
0.14
0.13
0.12
0.11

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

*
Aan
A 40 B0

TAAIN_DATA MumLInes

GO T BD BO 100 113 130 130 140 130 160 170 180 183 200 21I:I ".-.“EI:I

Fignre 6.50¢ Cp, sample error against number of training vectors

T T {] T T T
St.Dev. Training Error ——+—
Mean Training Error

Min Training Error ---x---

Max Training Error -

o T

%

30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

THAL_ DTS MumLines

Figure 6.60; Ca, sample error againat mumber of training vectors

£.3. GEMERALISATION ABILITY

Mean square arqar [raning)

WMaan sgiUare armor {reining)

0.15
0.14
0.13
0.12
0.1

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0.15
0.14
0.13
0.12
0.11

0.1
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0 ¥=

T T T T T T
St.Dev. Training Error —+—

Mean Training Error ------- ’
Min Training Error ---x---

Max Training Error - 5

}--—% """" |

: & % x—-—‘5'“‘L:;"“5‘“-1——"‘}""1"--

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

TRAIM_DATA MumLines
Figure fi.iz: A, eample error agaiost number of training vectors

T T T 1 1 T
St.Dev. Training Error ——+—
Mean Training Error ------- -
Min Training Error ---x---
Max Training Error -

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

TRAIR_DATA. Mumlines
Figure 6.6 A%, sample crror against number of training vectors

134

CHAPFTER VI

Mean square aror (raining)

Mean squara e (raining)

06 R T T T 1

i i St.Dev. Training Error H——

{ i Mean Training Error +
Min Training Error ¢
Max Training Error |

D13

013

012
011
1.1
o3
0as

bar

a8
e |

a4
o3

Bl B0 VO 31 B0 100 110 120 130 140 150 180 170 180 180 200 290 230

Laz

TRAIN_DATAMumLines
Figure f.63: _.|"l.|";'|:_ sarple error H.gﬂi'l:lst numhber of Lratming veclars

ERLN T T) R

; St.Dev. Training Errof-——

04 B Mean Training Error ------- -
; Min Training Error ------

Max Traiging Error -

SRR
o b
VRE

0.1
0%
0B

g0

0.06

.09

£.04
zo3
LIS

bRln |

THAIN_DAT A& MumLines
Figure 6.64: A, sample error against number of tratning vectars

E.3. GENERALISATION ABILITY 135

Thee falfowing figures contain acatter plota of the sample ercor for all evaluated networks

as the number of training vectors increasas,

0.145 - :
0.135 [t :
0:195 fewadissmiiesitdands

0.115
0.105 -
0.095 -
0.085 i

075 it
0.065 (- k:

0.055 |-
0.045 i »
0.035 F P R .1
Ry e S
e s i

0.005 |- W S S j:::i_‘::;:::p:i:

-0.005 1 1 1 1 P I I I 1 I 1 I 1 i 1 1
010 2 36 40 50 60 PI BR 0 100 110 120 130 143 130 160 176 180 150 200 210

Mean square error (training)

mum3aer i fAlning voclors
Figure 6.65: £, sample error against number of training vectors

0.135 SO e
0.125
0.115 [
0.105 -
DI085 fovboimbrmmebiseebiossianbinanig
el 1. Y
0.085 =t

0,085 P ibisssapisondorind
0045 |oimusiummbmandass
0.035 |- It
0.025 [

Mean square error (training)

0.015 fivmioneie
0.005 - [-
-0.005 1 f | i 1 1 1 1 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100 110120 130 140 150 160 170 180 190 200 210 220

Pambar ol 1raining weciore
Figure 6.66: Cy 359, sample error against number of tralning vectors

CIAFTER VI

Krmn squana eTar [iralning)

Mean square errar [irainirg)

-0.005 i 1 i I I I] L 1

0.105
0.095
0.085
0.075
0.065
0.055

0.045

0.015 |-

0.005 N g -—‘-‘*l-"§"“{“

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

kumber af rinng wachs
Figure .67 O3, sample error agamsl oumber of training vectors

0.145
0.135
0.125
0.115

0.105

0.095
0.085
0.075
0.065
0.055

0.045
0.035
0.025
0.015
0.005

-0.005 S L
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Murnber of fralalng vecsars
Figure 6.68: O, sample error sgainst number of tralning vectors

6.3, GENEWMALISATIN ABILITY

137

Maan squans emar (ralring)

fean squarne ermar (iaining)

0.145
0.135
0.125
0.115
0.105
0.095
0.085
0.075
0.065
0.055
0.045
0.035
0.025
0.015
0.005
-0.005

0.145
0.135
0.125
0.115
0.105
0.095
0.085
0.075
0.065
0.055
0.045
0.035
0.025
0.015
0.005
-0.005

1 | 1

1 1 I 1 1 | | 1 1 I I I

0 10 20 30

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Mumber of lraining wechrs

Figure G.0g A, sample error againac nomber of tralnlng vectors

0 10 20 30

FMigure Gogo:

40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Humber af iraining vwectans
Ng, sumple error against numhber of tralning vectora

CHAT'TER VI

bdean sguare eror {rainmg)

Mean square &rrow {irairireg)

0.105
0.095
0.085
0.075
0.065
0.055
0.045

0.025

0.015 f-onvi St . ,,,,, H

Figure fiqi: A, sample error against number of training vectors

Humber o Irainirg westars

BN SRR VY NS TR [R F-a— N
ki T O T . |
.0005 1 1 1 1 I 1 I 1 | i
D U0 21 30 40 52 B0 V1 OBO 93 100 117 120 130 142 150 1383 170 183 180 200 210

0.145
0.135
0.125
0.115
0.105
0.095
0.085
0.075
0.065
0.055
0.045
0.035
0.025
0.015 i
0.005

-0.005
0 19 F0 37 4Ap =0 &

fO8d 50 100 110 120 130 140 150 160 170 180 190 200 219

Murmbar af trning wachus

Figure 6wz .-'I.l"h sample error AgAinst number of training vectors

6.3. GENERALISATION ABILITY 1=

6.3.7.4 ConsDim: approximation error results

The approximation error results for the entity networks are all quite satisfactory with,
perhaps, the exception of C3 which yields a one and a half times higher error than that
of Ci and C\big- In particular, the best generalisation ability is exhibited by C\thig with
an approximation error of 64 x 10-03, on average (see table 6.21). Ci and (2 follow
with the slightly higher errors of 70 x 10-03 and 77 x io_°3, respectively. C3 gives
an error of 104 x 10-03 - a relatively high value compared to that of the other entity

networks but, still, lower than that of any of the single FFNN.

c1 ClLbig c2 c3
C\ entity C\ (66% more weights) C2 entity (3 entity
X10-03 MEAN STD.DEV MEAN STDDEV MEAN STD.DEV MEAN STD.DEV
lowest 57.635 3-503 54.579 5846 61900 5914 93.244 5.841
average 69.687 10.368 63.825 9-083 76-579 15-310 104.20 8.823
highest 106.18 27.649 79.008 15.257 91.036 26.143 134-54 18.34

Table 6.21: ConsDim, approximation error statistics for the entities

M 1 STANDARD M 2 M 3 A/4

(12,525 weights) (20,040 weights) (25,050 weights) (30,060 weights)

X10~°3 MEAN STDDEV MEAN STDDEV MEAN STD.DEV ~MEAN STD.DEV
lowest 116.14 14.027 110.87 2.882 I07.29 12.002 113-09 20.48
average 123.97 19.056 117.48 = 13.933 118.53 19-645 12928 33.35
highest 142.72 24310 12555 23.049 125-30 34.933 139.26 78.06

Table 6.22: CONSDIM, approximation error statistics for single FFNN

The approximation error plots of the entities (see, for example, the minimum, max-
imum, mean and standard deviation plots of error in figures 6.73, 6.74, 6.75 and 6.76
or the scatter plots in figures 6.81, 6.82, 6.83 and 6.84 for C\, C\big (2 and C3, re-
spectively) indicate that, as the number of training examples increases, the error value
follows a parabolic locus with its minimum (e.g. the number of training vectors required
for optimum training with 1,000 iterations) at about 100.

One may also observe that Ci, C\big and C3 networks have a much more consistent
generalisation behaviour than C2. This is indicated by the fact that these networks’
scatter plots show a significantly smaller number of outliers. Additionally, the standard
deviation of (2 is 15 x 10~°3 compared to the values of 10 x 10_°3, 9 x i0~°3 and
8.8 x 10_°3 for Ci, Cifitg and C3, respectively. The results of the statistical significance

F-test (see tables 6.25 and 6.26) also confirm this conclusion.

140 CHAPTER VI

From a first glance, the approximation error of all single FFNN networks is, on average,
much higher than that of the entities. The standard single FFNN network Ai, which
has the same number of weights as C\, yields an approximation error of 124 x i0~°3

(see table 6.22) - this is twice as much as that of C\.

%, %, % M AFe2 A3 A4
Ql 950,91 0O, 0, 100 9, 0, 01 9 0, 91
Clabig 0,0, 100 0, 0, 100 O, 0, 100 0O, 0, 100
C2 0,0, 100 0, 0, 100 0, 0, 100 0O, 0, 100
C3 18, 0, 82 36, 9)55 27, 18,55 27, 0, 73

Table 6.23: ConsDim, statistical significance (¢-test) of the approximation error re-
sults for 10 to 120 training vectors

%, %, % Ai A2 a3 Agq
Ci 0, 0, 100 0, 0,100 0, g 100 0, 0, 100
Clwig 0, 0, 100 o0, 0,100 0, 0, 100 0, 0, 100
c2 0,0, 100 0,0 100 0, 0, 100 0, 0, 100
G3 0, 0, 100 0, 0, 100 0, 0, 100 0, 0, 100

Table 6.24: ConsDim, statistical significance (¢-test) of the approximation error re-
sults for more than 120 training vectors

The generalisation ability of the single FFNN remains largely the same as the number
of their weights increases: A2 and A3 have an error of 118 x i0~°3 and A4 has an
error of 129 x 10“°3. However, the variation of error - indicated by the presence of
a large number of outliers in the scatter plots in figures 6.69, 6.86, 6.87 and 6.88 (for
the single FFNN A 1, A2, A3 and A4, respectively), and by the high values of standard
deviation - is such that makes the single FFNN candidates, with the exception of A2,

very inconsistent.

Another indication of this huge variation in the approximation error of the single FFNN
is the large difference between the minimum and maximum error values corresponding
to the same number of training vectors. This can be seen in the plots of figures 6.77,
6.78, 6.79 and 6.80 for Ai, A/2, A3 and A/4, respectively.

The results of the statistical significance test comparing the differences between the
means of the approximation error of the entities and single FFNN (the ¢-test) indicate
that for a number of training vectors below 120 (see table 6.23), the HZ2 hypothesis is
clearly true (by 100 %) for the entity networks C\, Ci*g and (2. This percentage is

lower for C3.

6.3. GENERALISATION ABILITY 141

When the number of training vectors exceeds 120 (see table 6.24), the superiority of
the entities generalisation ability over that of single FFNN is absolute. The acceptance

of the H2 hypothesis is by 100 %.

The statistical significance tests comparing the variances of the different networks (the
F-test) shows that for less than 120 training vectors, the variation of the entities ap-
proximation error is lower than or, at most comparable to that of the single FFNN (see

table 6.25).

%, %, % M A2 A3 ma
Cl 27,0, 73 27, 18, 55 45)0, 55 9)0, 91
Clbig 0, 0,100 27, 9,64 27,0,73 0,0, 100
2 27,0, 73 64, 18 18 36, 0,64 9 0, 91
c3 18, 0,82 27, 9,64 180, 8 0, 0, 100

Table 6.25: ConsDim, statistical significance (F-test) of the approximation error
results for 10 to 120 training vectors

%, %, % M M M3 Mi
Ci 11, 0, 89 33, » 67 0, 0, 100 O, 0, 100
Clbig 0, 0, 100 33,0, 67 0,0 100 O, 0, 100
c2 44,11, 45 56, 33,11 44, 0, 56 44, 0, 56
cs 0,0, 100 22,0,78 0,0, 100 0, 0, 100

Table 6.26: ConsDim, statistical significance (F-test) of the approximation error
results for more than 120 training vectors

For a number of training vectors greater than 120, the acceptance of the H2 hypothesis
is overwhelming, at least when comparing Cl, Ci*ig and C3 with all the other single
FFNN (see table 6.26). For C2, this variation is either equal to that of the singe FFNN

or lower.

143 CHATTER VI

- - ————

—— e

The [llowing figures contain plota of the mindmum, maozimuem, mesen and stendend
desiation of approximalion error against the number of cralning vectors.

0.27 T T =0 1 T kT T — T T T
(o] DI RPTR: ST SR (AR P R S : : ; : St.Dev. Error ——
0.25 : s DA : Mean Error -------
0.24 } Min Error ------ :
088 fesd MaxSuor

0.22
0.21
0.2
0.19
0.18
017 |-
0.16 -
0.15
0.14
0.13 |
0.12
0.11 -
0.1
0.09
0.08 £
0.07 ¥
0.06
0.05
0.04
0.03
0.02
007 |esienstemsiis adbimsds WY Yorren [EPCI, R VRS (e i ; : ‘ : ;
0 L I 1 I 1 1 L 1 1 1 1 1 1 1 1 i i] I

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Miean souare eror jcveral)

TAAIN_DATA Numbines
Figure fi.;s:), approximation error against number of training vectors

T T 1 T T
St.Dev. Error —+— 4

Mean Error ------- .
Min Error ---x---

AAAN SNHArD BfTor favaerl)

0 1 1 1 1 i 1 1 i 1 1 1 i | L i i 1 1 1

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

TRAIM_DATA NUmLings
Figuee 6.74: O peq, npproximation error against number of training vectors

6.3. GENERALISATION ABILITY 1438

Mean square error (overall)

TRAIN_DATA.NumUnes
Figure 6.75: C2, approximation error against number of training vectors

Mean square error (overall)

TRAIN_DATA.NumUnes

Figure 6.76: C3, approximation error against number of training vectors

144

CHAPTER ¥I

Kagn snuane sTar (auersl)

Mean square ormar (oweral)

® T 1 T T
St.Dev. Error —+— .
Mean Error)
Min Error >?‘ i
Max Error -
~ St.Dev. Error -78-- °

0.01

‘ﬂ,_a___ﬂ__ i

i i 1 i Il i 1 I i i]] i i

0
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

TralM_ DATA,MumLngs

Figure f.77: A, approximation error agaiest number of training vectora

I St.lll)ev. IErrorI ;——+—-4' .

Mean Error ------- =l
Min Error ---x---
Max Error - |

St.Dev. Error --8:

0
20 30 40 50 60 70

80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

TAR&K_DAaTA HurmLines

Figure 6.78: A%, approximation error against number of training vectors

f.3. GENERALISATION ABILITY

145

Maan square armor {ovarally

M=an sguare ermar {overall}

RDET
DEG
DES
D24
DE3
b2z
o2

0.2
KR =)
BB

LUIT roeeerereeedee

26
L b
T4

R ER

ol b

o1 |-

0.1
e

08 |-
T

S E
%
gL
0%
a2
a1

1

i

i

T 1 1 T L
3t Dey, Error —H—1
Masn ETor ------
[L =i s R
Max Emyr -1
StQay, Srgr <

THRAIMN_DATA.Mumlines

o
S0 30 40 B0 B0 YO &3 80 7100 110 120 930 140 150 180 170 183 190 200 210 X2

Figure G.70: A%, approximation error against number of training vectors

0.01

S

T T 7 Ly 1 T

¥ St.Dey. Ertor —+—— .
i % Mean Error
%, Min Error ---
%, Max Errar -

| i

I

=

I

TRAIN_DATA. KumLinas

0
20 30 40 50 60 70 80 S0 100 110 120 130 140 150 160 170 180 190 200 210 220

Figure §.80: Ay, approximation ecror againat number of training vectors

146 COHAPTER VI

-

The following Sgnres contain scatter plots of the approzimation error of all evaluated

networks as the number of training vectors increases.

0.27
0.26
0.25
0.24

Mirmn saquare g [Daderall]

0 1 I [i 1 1 1 1 1 1 I i I 1 I I

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Murnoer al Irgining vecloes
Figure 6.81; O, approximation ercor against number of training vecbons

Mean square &rar ynuaral)

0 i i I 1 i i] I i i i I 1 i | I I 1

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Regmbar al rgning weclors
Figure 6.82: C) pig, approximation error against number of training vectors

6.3, GENERALISATION ABILITY 147
3
5
bt
3
E
4
2
&
2
i chul Y00 S D N N T U S o A o VT I
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220
Mumbar af training vechars
Figure 5.8y O, approximation error against number of training vectors
3
&
2
g
&
T
=
i
7
2

0 i]] I i I i | . § i I i i 1 i i
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Muminer of taining vactors
Fipure 6.84: Cs, approximation error against number of training vectors

CHAPTER V1

Mean squans emor (aucnl)

Mean square aar [raral])

3 N W AP A S M SO G TS S Y e e T S N A
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Murnbar af rainiyg vecsiars
Figure 6.85 A, approximation ercaor Againat number of training vectora

0 AN O S S S S D M S i T A N T
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Mumber of raining vectos
Figuee fi.&f: A7, appreximation error against number of training veetars

6.3, CENERATISATION ABLLITY 149

Meam square errar (oweral])

1 i]] i] i i i I i i i i [1 1

0
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Mumber of Iraining wasioms
Figure 6.87: A, approximation error against numbor of training vectors

Mran squara amar [auwarel)

o8 A S SN M 00 N A, M O N AN SN O SN S A N T N DO
0O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210

Mumbsar af beining vectors
Figure 6.88: A}, approximation error against number of training vectora

15° CHAPTER VI

6.4 Parallelisation of the training process

6.4.1 Introduction

In section 5.8 on page 76 it was argued that one of the advantages of the entities
over the single FFNN networks is that the structure of the former favours coarse-grain
parallelism as opposed to the fine-grain parallelism inherent in the architecture of the
latter. In this section we will present the results of tests carried out to compare the

training times of a C\ entity model in sequential and parallelised modes of operation.

The parallelisation scheme used was a very simple one. At first, the network’s units are
grouped according to their respective layers. Secondly, the units of the first layer are
divided evenly among the available processors and their training is done concurrently.
When all first layer units are trained, the procedure repeats with the units of the
second layer, until all the units of the entity are trained. After each layer is processed,
the weights are transfered to a central store where the test procedure will take place
sequentially. All the test scripts were written in the mp language and can be found in
appendix G on page 221. Note that parallelising the training procedure of the entities
does not require a specific parallel hardware platform. All is needed are some networked

workstations talking TCP/IP and running Unix.

There were four C\ entity networks of different sizes, participating in this test. Their

architecture is detailed the following table:

NAME DESCRIPTION

Vi 500 inputs, 32 units, 13,030 weights
Vo 1,000 inputs, 60 units, 26,035 weights
v 1,500 inputs, 91 units, 39,120 weights
Vi 2,000 inputs, 120 units, 52,490 weights

Table 6.27: Parallelised training, description of the evaluated networks

Each network was trained for 1,000 iterations on the same data set. In the first instance,
training was done sequentially, that is, in exactly the same way as with all the networks
of VariDim and ConsDim in section 6.3. In the second instance, the training process
was split evenly among four different workstations of equal CPU power. Each network’s
training procedure, either in parallel or sequential mode, was repeated for 50 times and
the training time was recorded each time. The minimum, maximum, mean and standard
deviation of the training time, calculated over the 50 repeats, are presented in table

6.28.

6.4. PARALLELISATION OF THE TRAINING PROCESS 151

It should be noted that the purpose of this test is not to measure exactly the differ-
ence in training time between sequential and parallelised training schemes but rather to

demonstrate the ability of the entities to be parallelised efficiently.

On the one hand, the parallelisation methodology and algorithms employed are not the
best or the most efficient. More experimentation and in-depth knowledge of computer
networking and the Unix programming environment would have probably yielded better
parallelisation schemes.

On the other hand, the computer resources at our disposal could not be used ex-
clusively for the purposes of these simulations. For example, a factor that determines
training time in such parallelised schemes is the traffic of the computer network and the
load in accessing the file system (our central store). These parameters are determined
by the number of users and what they are doing at a given instance - something which
was largely beyond our control.

Almost none of these restrictions exist when training is done sequentially and on a

single user machine.

6.4.2 Results and discussion

Vi v2 r3 VA

NETWORK inputs 50° 1,000 1,500 2,000
SIZES weights 13,030 26,035 39,120 52,490
FFNN units 39 60 91 120

SEQUENTIAL ~ minimum 992 Te77 2711 3539
TRAINING maximum 1,026 2,030 2,739 3,577
TIME stand, dev. 9.22 10.11 8.1 8.71
(seconds) mean 1,009 i,997 2,727 3,555
PARALLELISED minimum 577 859 987 1,273
TRAINING maximum 645 895 1,003 1,312
TIME std. dev. 14.88 8.25 9.33 8.78
(seconds) mean 595 879 993 1,296

Table 6.28: Parallelised and sequential training time results

The results of the Parallelisation test are presented in table 6.28. For each network,
its size (e.g. number of inputs, weights and ffn n units) and the minimum, maximum,
mean and standard deviation of the corresponding training time, calculated over the

50 repeats, are reported.

152 CHAPTER VI

These results indicate that there are significant benefits to be gained from parallelising

the training procedure of the entities.

In particular, the time required by V| networks trained sequentially is, on average, 1,009
seconds. This i1s 69.6%13 more than the 595 seconds required by the same networks

when trained in parallel.

Figure 6.89: Comparison of training times for sequential and parallelised training

schemes

When the number of weights is doubled (e.g. V2), the sequential training requires 1,997
seconds to complete, compared to 879 seconds for the parallelised training scheme of
the same network; this makes the sequential training process 127.2% slower than the
parallelised equivalent. Similar results hold for Vz and V| networks where the difference

between sequential and parallelised training times is 161.8% and 173.4%, respectively.

Figure 6.89 contains bar charts of the training time against the total number of
weights for sequential and parallelised training. Least mean squares lines have also
been fitted on each of the two charts with a very high correlation (99%). These lines

have slopes of 63.7 x i0~°3 and 17 x i0~°3 for the sequential and parallelised schemes,

13 The calculation is as follows: 1,00a~595 X 100% = 69.6%.

6.4. PARALLELISATION OF THE TRAINING PROCESS 153

respectively. The equations of the least mean squares lines (s for sequential and #p for
parallelised), as a function of the total number of weights (w) are given below:

ts = 0.064 w+ 242.6 (6.3

tp 0.018 w + 382.2 (6.4)

Number of weights

Figure 6.90: Plot of ¢ts/p(w) against the total number of weights, w
The above equations will be used in order to derive an expression for the training
time benefits obtained from using parallelised instead of sequential training, for a given
number of weights. For this purpose we may use the following percentage:

+ 242.6 —0.018 w —382.2
— — x 100% e o e e X 100%
tp 0.018 w + 382.2

1‘10.6

A plot of ts/p(w) against the number of weights, w is shown in figure 6.90. The hori-
zontal asymptote of ts/p(w), for positive w, is at:

In conclusion, it can be said that for large w, the time required for sequential training of
a C\ entity is longer by more than 250%, compared to the time taken by a parallelised

version of the same procedure distributed over four workstations.

154 CHAPTER VI

6.5 Summary and conclusions

6.5.1 Generalisation Ability

The first test (VariDim) under the Generalisation Ability category aimed at in-
vestigating the effects of increasing the number of input dimensions on the overall
performance of the participating networks. Below are the conclusions and supporting

evidence in terms of the sample and approximation error results.

VariDim, sample error: The conclusions drawn from the sample error (e.g. the error

on the training set) results of this test are the following:

1. For a small number of input dimensions (less than 500), the training of C\ and
Ci,big entity networks is much more consistent than that of single FFNN. The
training of C2 and G; is as consistent as that of single FFNN. When the number of
input dimensions exceeds 500, the training of all entities is more consistent than
that of single FFNN. This implies that the entities’ error surface is smoother and

the number of local minima fewer than those in the respective single FFNN.

2. As the number of input dimensions increases, the consistent training of the entity
networks improves, thus they appear to be virtually unaffected by the curse of
dimensionality and other problems which usually plague single FFNN with a lot

of inputs.
These conclusions are supported by the following evidence:

1. The statistical significance tests comparing the variances of the entity and single
FFNN networks (the F-test) indicate that for a number of input dimensions less
than 500, the hypothesis that the variance of the entities is lower than that of
single FFNN, e.g. HZ2is always true for C\ and C\ihig (the top two rows of table
6.6).

As far as training consistency is concerned, the superiority of the entities over the
single FFNN is obvious, especially when the number of input dimensions exceeds
500. In this case, the F-test results, outlined in table 6.7, show that the HZ2

hypothesis is always true and by as much as 100 %.

2. The best entity’s standard deviation (see table 6.2 on page 99, C\ entity) is, on
average, 0.4 x 10~°3. The best single ffnn’s standard deviation (see table 6.3 on
page 99, A/2 single ffnn) is, on average, 2.5 x 10“03 - a difference of more than

500%.

6.5. SUMMARY AND CONCLUSIONS =

3. The scatter plots in figures 6.25 on page 106 to 6.28 on page 108, associated with
the sample error of the entities, show that outliers do exist but their number

decreases as the number of input dimensions increases.

4. The scatter plots in figures 6.29 on page 108 to 6.32 on page 110, associated with
the sample error of the single ffnn, show that the number of outliers increases as
the number of input dimensions increases. Adding more weights to these networks

does not remedy the situation - on the contrary it makes it worse.

VariDim, approximation error: The conclusions that can be drawn after examination®

of the approximation error results of VARIDIM are the following:

1. The entities generalise better than single ffnn .

2. The entities’ generalisation ability is not reduced by the increasing number of

input dimensions - on the contrary, it increases.

3. The entities’ generalisation ability is more consistent than that of single FFNN.
These conclusions are supported by the following evidence:

1. The best entity’s approximation error (see table 6.8 on page 110, C\ entity) is, on
average, 60 x 10-03. The best single FFNN approximation error (see table 6.9 on
page 111, A/3) is, on average, 96 x 10-03 - a difference of 60%. Observe that the
single FFNN has 55% more weights than the entity and that its standard deviation
is 445% more than the entity’s (e.g. 37 x 10-03 compared to 6.78 x 10-03)!

2. The statistical significance tests comparing the means of the approximation error
of the entities and single FFNN (the ¢-test, see table 6.10) indicate that very rarely
the hypothesis that a single FFNN’s error is lower than that of any entity is
accepted. For example, this happens only below 500 input dimensions and when
comparing A/3 with all the entities (the A/3 column of table 6.10) or (3 with all
the single FFNN (the (3 row of table 6.10).

For a number of input dimensions larger than 500, the H2 hypothesis that the
mean of the approximation error is significantly lower than that of the single
FFNN is always accepted and often with a percentage of 100 % (except when
comparing (3 with A/3 - they are comparable, see table 6.11).

3. The best entity’s standard deviation is, on average, 6.78x10-03 (this is C\, the best
generaliser) whereas the best single FFNN average standard deviation is 17x 10-03
(this is A/2) - a difference of 150%. Observe that among the single FFNN, the best

generaliser (e.g. M3) is not the most consistent one (e.g. A/2/

156 CHAPTER VI

4. The statistical significance tests comparing the variances of the different networks
(the F-test) show that, when the number of input dimensions is below 500, the
variance of the approximation error of the entities is either comparable or lower
than that of the single FFNN (see table 6.12), but, for a larger number of input
dimensions (exceeding 500) the superiority of the entities, as far as training con-
sistency is concerned, is indisputable with acceptance of the H2 hypothesis by

100 % (see table 6.13).

5. All least mean squares lines fitted on the scatter plots of the entities (in fig-
ures 6.41 on page 118 to 6.44 on page 119) have negative slopes, indicating a
decreasing trend of the approximation error with the increasing number of input
dimensions. In contrast, the respective plots for the single FFNN (in figures 6.45

on page 120 to 6.48 on page 121) indicate a clearly increasing trend.

6. The outliers appearing in the entities’ scatter plots are very few and the plots
appear very compact. In contrast, the outliers in the single FFNN’s scatter plots

are much more and increase with the increasing number of dimensions.

The second test (ConsDim) under the generalisation Ability category aimed at investi-
gating the effects of increasing the number of training vectors on the overall performance
of the participating networks whose sizes were kept fixed. Below are the conclusions
and supporting evidence in terms of the sample and approximation error results.
ConsDim, sample error: The conclusions drawn from the sample error results of this®

test are the following:

1. The entities’ training is very consistent compared to that of single FFNN.

2. The entities’ training consistency decreases with the increasing number of training
vector but at a much slower pace than that of single FFNN. Therefore, it can be
said, that the entities are more flexible because they can be trained equally well
for a wide range of training vector numbers without any side effects. The single
FFNN, on the other hand, suffers serious side effects when the number of training

vectors 100.

These conclusions are supported by the following evidence:

1. The best entity’s standard deviation of the sample error is, on average, 0.668 x
io~°3. The best single FFNN average standard deviation is 3.8xio_°3- a difference

of more than 450%.

6.5. SUMMARY AND CONCLUSIONS 157

2.

The statistical significance tests comparing the variances of the different networks
(the F-test) show that for more than 120 training vectors, the H2 hypothesis is
accepted by 100 % (table 6.20).

For a number of training vectors less than 120, the acceptance of the H2hypothesis
is almost as absolute as above with, perhaps, the exception of Mi (see table 6.19,

the Mi column), where it is only by 70 %.

All least mean squares lines fitted on the entities’ scatter plots (in figures 6.65 on
page 135 to 6.68 on page 136) have positive slopes. This indicates an increasing
trend of the sample error with the increasing number of training vectors. The
same applies for the case of the scatter plots of single FFNN (in figures 6.69 on
page 137 to 6.72 on page 138). The difference between the entity networks and
single FFNN is quantitative: the slopes of the former range from 7 x 10-06 to
20 x 10-06, whereas the latter’s range from 33 x 10~°6 to 52 x 10~°6.

ConsDim, approximation error: The conclusions drawn from the approximation error

results of this test are the following:

1

The entities are better generalisers than single FFNN for the whole range of the

number of training vectors.
The entities are more consistent generalisers than the single FFNN.

The entities, particularly those of class 1 and 3, have their lowest approximation

error when the number of training vectors is about 100.

These conclusions are supported by the following evidence:

1.

The best entity’s approximation error is, on average, 63 x 10-03 (see table 6.21
on page 139, Cijng) and does not fall below (again Cithig) 54 x i0~°3. The best
single FFNN’s approximation error is, on average, 117 x 10~°3 (see table 6.22 on

page 139, M2) and does not fall below 107 x 10-03 (A/3).

The statistical significance tests comparing the means of the approximation error
(the t-test) of the various networks when the number of training vectors is less
than 120, show that the HZ2 hypothesis is true for all entities with as high a
percentage as 100 % (see table 6.23). (3 is an exception with lower confirmation

percentages ranging from 55 % to 82 % (see the C3 row table 6.23).

When the number of training vectors is more than 120, the hypothesis that the
mean approximation error of the entities is lower than that of any single FFNN

(e.g. the H 2 hypothesis) is accepted absolutely by 100 % (see table 6.24).

158

CHAPTER VI

3. The best entity’s standard deviation of the approximation error is 8.8 X i0~°3

6.5.2

(table 6.21 on page 139, C3) while the best single ffnn’s is 13.9x 10~°3 (table 6.22
on page 139, M2).

The statistical significance tests comparing the variances of the different networks
(the F-test) for a number of training vectors less than 120, show that in most
cases the H2 hypothesis is true. In a few other cases, however, the null hypothesis
- e.g. that the variances of the two tested networks do not differ significantly -

seems to be true (see table 6.25).

When the number of training vectors exceeds 120, the situation improves and
the confirmation of the H2 hypothesis is more substantial. The null hypothesis is
mainly true when comparing the (2 entity with all single FFNN (see table 6.26,
the C2 row).

Almost all single FFNN’s scatter plots show a large number of outliers compared

to those appearing tin the scatter plots of the entities.

Parallelisation of training

The test comparing the times required to train a class 1 entity in sequential and

parallelised modes has shown that, as expected, parallelised training requires much

shorter time than sequential training.

In particular, sequential training can take up to 250% more time than when training is

distributed among four networked workstations of the equal CPU power.

CHAPTER VII

CONCLUSION

This chapter concludes the thesis by recapitulating on the requirements
which motivated this work and how they were met.

This thesis has addressed one of the fundamental requirements of feed forward neural

networks: the ability to expand in size and deal efficiently with high-dimensional data.

The novelty of this work lies in its development of a set of modular neural network
architectures, the FFNN entities, which are based on emergence and the principles of
connectionism while, at the same time, are characterised by the diversity in complexity,

level of abstraction and functionality of its constituent elements.

This chapter concludes the thesis by recapitulating on the requirements which moti-
vated this work and how they were met. It presents areas of future work which are
either related to, but outside the direct scope of, this thesis or are possible directions

for extending this research further.

7.1 Recapitulation

t
Central in our research is the development of a framework for replacing the tradition-

ally monolithic FFNN with an entity of small and flexible units. Unlike other attempts
to modularise neural networks, our methodology is not based on connecting neural
networks together under the central control of a higher authority which selects the best
network, neither is our primary aim to achieve better generalisation by task decompo-

sition or bootstrapping (see for example section 5.3 on page 52).

7.1.1 Motivations

The motivation to design and implement the modular architecture of the entities stems

159

i6o CHAPTER VII

from the inability of single FFNN to scale up and, consequently, deal efficiently and
effectively with high-dimensional data without resorting to dimensionality reduction
techniques. Furthermore, although existing feed forward neural network models, be
they modular or monolithic, are relatively successful in addressing issues of generali-
sation, specialisation and confidence of prediction, the problems associated with high-
dimensional data and scaling remain basically unanswered. The thesis that the brain
is not only characterised by a massively connected network of neurons but also by the
existence of different computational systems operating at different levels of abstraction
and specialising at different functions, [Freeman, 1991], is by itself a right justification

to replace the single FFNN with the entities.

At a theoretical level, the approximation capabilities of the proposed entity classes
Ci, C2 and C3 are equivalent to those of single FFNN as they, too, can approximate
arbitrarily well any real, continuous function. At a practical level, a comparison of the
generalisation ability and training consistency of the two models favours the entities.

This becomes clearer as the dimensionality of the training data increases.

7.1.2 FFNN entities: the model

The entities are characterised by:

* vast but controlled connectivityl and at various levels, of relatively simple ele-

ments whose type is not restricted only to neurons,

+ a number of localised processes each assigned only a small part of the input data

parameters,

* training procedures which are local at the level of single FFNN and, at the same

time, global, at the level of the whole entity.

What is more, the entities promote a framework of constructing complex connectionist
structures by interconnection of computing elements which differ in complexity but are
similar as far as structure is concerned. For example, neurons —» single FFNN —>entities

of single FFNN —>+ « « -—>entities of entities of ...

A possible taxonomy of various entity designs based on two criteria: topology and

complexity of their training targets, has yielded the following three classes:

1 Vast connectivity characterises the neurons which make up the various single FFNN of the entity.
On the other hand, the connectivity between these single FFNN or other, less complex entities that
make up an entity can be controlled at the design stage.

7.1. RECAPITULATION 161

+ Ci entities are constructed based on partial connectivity of which the only re-
quirement is that of feed forward signal propagation. Weights of variable strength
can be incorporated along the connections of the different elements of the entity.
The adjustment of these weights is effected by the use of a generalised version
of back-propagation, when all the localised training procedures - which also use

back-propagation - are completed.

+ C2 entities are based on a cascaded architecture. This results in a more regular
structure which allows for better control as far as size and task allocation are

concerned.

+ The topology of C3 entities is the same as that of Cz The difference is that the
training target of the units composing C3 entities is a measure of the discrepancy

between actual and desired outputs of the previous unit.

In effect, the difference between classes C\ and (% is one between unordered and ordered,
unstructured and structured topology. Whereas, the difference between classes Cz &
Cz and C3 is one of more refined training targets. It is interesting to note that the idea
of refined training targets could not have been applied to C1 without imposing serious
constraints on its architecture. On the one hand, one risks losing the generality offered
by the Ci’s unstructured topology and, probably, ending up with the same cascaded
architecture of Cz and C3, anyway. On the other hand, each unit of the C\ class may
have more than two inputs. This calls for a multi-dimensional error metric with all
the complications this implies. Thus, the design and implementation of a fourth entity
class was not attempted because it was considered to be time consuming and would

not add significantly to the novelty of this work.

7.1.3 Utility of the entities

The adoption of the entities as a means for the analysis of high-dimensional data not
only solves the important problems of scaling and deals effectively with the curse of

dimensionality but also yields a number of significant advantages over single FFNN.

Firstly, a coarse-grain parallelisation model is promoted which allows for better resource
allocation, more balanced mapping of processes to processors and, more importantly,
a huge reduction in the communication needs between the various processes. This
feature is not only important for the efficient parallelisation of the training process
of the entities, but also it is decisive for a feasible hardware implementation. In this

respect, the engineering problems associated with transferring an entity to silicon are

162 CHAPTER VII

eased considerably compared to those of single FFNN2.

Secondly, the size of an entity is determined by two factors: the size of each FFNN
unit and the total number of these units. Thus, the construction of an entity is more
flexible than that of a single FFNN. Consequently, the size of each ffnn unit is no
longer governed by the dimensionality of the training data, ffnn can, therefore, be
kept conveniently small so as to avoid the usual pathologies associated with large f fnn,

namely premature neuron saturation, complex error surface and numerous local minima.

Thirdly, the entities are a connectionist system where information is not only dis-
tributed and stored implicitly in the weights of each ffnn unit and in the weights
between the ffnn units, but also exists on a higher level, that of the ffnn (and all
the other higher level units composing the entity) which can identify, more readily,
meaningful information. Thus, the entities may be studied with an arbitrary level of

abstraction.

7.1.4 Theoretical results

The approximation capabilities of the three proposed entity classes are, theoretically,
equivalent to those of single f fnn as it was proved that they are universal function ap-
proximators and thus, can approximate arbitrarily well any real, continuous function.
The proof is contained in section 5.6 on page 70, and is based on the Stone- Weierstrass
theorem. This same theorem was used by [Hornik, 1991] and others in order to prove
that the class of feed forward neural networks of a single hidden layer containing an
arbitrary number of hidden units holds the property of universal function approxima-

tion.

In addition to this theoretical guarantee of the capabilities of the entities, a further
investigation of their performance at a practical level and comparison with single FFENN

was deemed necessary. These empirical results are summarised in the following section.

7.1.5 Experimental results

Two sets of experiments were carried out in order to assess the performance of the

entities in practice. In particular, VariDim compared the fraining time, sample error

2 An analogy from the field of micro-electronics is the following: currently the number of transistors
that can be accommodated to a single silicon chip for the purposes of building CPU is restricted by
technology and the laws of physics. One way to overcome this limitation is parallel computing where a
large number of CPU of average power are connected together. The efficiency of this parallel computing

device is a trade-off between communication needs and power of the constituent CPU.

7.1. RECAPITULATION 163

and approximation error of a set of single f fnn and entities as the number of training
data dimensions increased while the number of training vectors was kept constant.
ConsDim, on the other hand, compared the same quantities but on a set of single
FFNN and entities whose input dimensions and number of weights were kept fixed while
the number of training data vectors varied.

The results of these experiments systematically favour the entities which not only
exhibit a very consistent training with very few deviations from the mean but also,
their generalisation ability is much better compared to that of equivalent single ffnn

- sometimes as much as two or three-fold.

Moreover, the generalisation ability and training consistency of the entities improves
or, at worst, remains unchanged when the number of dimensions of the input data
increased. By contrast, according to our experiments, the performance of single FFNN
clearly deteriorates when the number of input dimensions exceeds 400 or 500. A detailed

analysis of these empirical results is contained in section 6.5.1 on page 154.

Chapters 4 and 5 contain ample proof that the training time of both the entities and
single FFNN is directly proportional to the number of weights they contain3. Thus, an
entity and a single FFNN with the same number of weights will take the same time to
train. However, we can not overlook the fact that training time is polynomial to the
number of input dimensions. In this respect, the analysis given in section 5.7 on page 72
shows, that provided that all single FFNN are constructed using the same parameters
(e.g. the ratio of the single layer units to the number of inputs) an entity will be trained
faster than a single ffnn by a factor which approaches asymptotically the quantity *7
as the number of input data dimensions increases. ;3 is the ratio of the number of
inputs per single FFNN unit in the entity (assumed constant) to the number of data
dimensions and 7 is the ratio of the sum of the number of inputs of all available FFNN

units to the number of data dimensions.

In addition, there is a wide margin for improvement to the training time of the entities
due to the coarse-grain parallelism model they promote. In particular, a comparison of
training times between two identical C\ entities, one trained sequentially and the other
one distributed over three different processors, reveals that the sequential training time

is longer than the parallelised one by more than 250%.

3 For a fixed number of training iterations.

164 CHAPTER VII

7.2 Future work

Directions for future research include, but are not restricted to, the following:

1. Improvement of the parallelisation methodology in terms of load balancing and
communication overheads by investigating alternative ways of partitioning the
training task and distributing it to the available processors. Also, investigation of
the relationship of various entity architectural parameters4 such as the number,
size and number of inputs of the single FFNN composing the entities, to the

efficiency of the parallelisation scheme.

2. Investigate how the entities model might effect rule extraction. The entities may
be studied with an arbitrary level of abstraction because they consist of units of
arbitrary type and complexity. Moreover, they promote a model where informa-
tion may be identified not only among the weights of the various units but also,

more readily, among the entity units themselves.
3. Extend the entities to support multiple outputs.
4. Create new entity classes and experiment with them.

5. Assess, at a theoretical level, the generalisation bounds of the entities. A possible
direction would be to establish bounds of the Vapnik-Chervonenkis dimension

(see appendix C on page 173) for the entities.

6. Extend the benchmarks by including more data sets and comparing the perfor-
mance of the entities with more learning machines - for example Support Vector

Machines.

4 See also 5.7 on page 72 for a reference to some of these parameters.

Appendices

165

APPENDIX A

DERIVATION OF THE BACK-PROPAGATION
ALGORITHM

A.l Introduction

The derivation of the back-propagation and weight update formulae is quite standard

and included in many neural network textbooks. For example in [Freeman, 1991].

Recall the notation introduced in section 3.2 on page 20 and that according to definition
3.5 and equation 3.6 on page 26, for a given input vector X, the corresponding FFNN

output response Y, and a target output response T, the discrepancy at the output is:

ui{l)
E:12TII,A - YRY

Recall also that for a given FFNN, a weight modification rule based on gradient descent

is the following:

W(t+1) =WE —6 WE

where W (¢) denotes the set of its free parameters at time ¢ and /8 € R+.

In the next two sections we will calculate WE, g set of partial derivatives of E with
respect to each of the elements in W. A distinction will be made for derivatives with

respect to weights of the output layer and weights of the hidden layers.

A.2 Derivatives with respect to the output layer weights

W e begin with the calculation of the partial derivative of E with respect to wfcj, that
is the weight connecting the kth unit of the output layer, L, to the j th unit of the layer
L -1

dE dYk
. ~2(Tk- Yk)
dw kj 2 dwkj
dYk
- (Th- Yk)
dw kj

167

168 AFPPEMLIY A

Liccall that ¥, = yf = -:'.rél::‘lﬁ [EI'_l]',II where, H%{-:I sl -':.ré,_L are the affino transform and
activaticn fuoction associated wich the & unit of the I layer, Theo, by chain rule?,

Vi _ Gm iyt dApiyt)
ﬁ'u:j;“j EL‘.I{E‘[EL":I ﬂw;’;j
dAE (¥)
Ly gLy b1 kit
= m (A T - —
= B,
Liecall thet:
alL—1)
Ab= D whw = bp
=1
therefore®,
aaL a4l
— oLt and als E
auf, % v T
The required derivative is then:
a& LT T -
:d-_-‘z' = -l (AR - (T =1 - o) (A1)
w;

and the derivative with reapect to che bias term of the output unit is:

8E

GoE = ok AT - (M- (A-2)
k

A.3 Derivatives with respoct to the hidden layer weights

Lot us now see what applies to units of the hidden layara. We will procesd in the same
wiy a8 above excepl that we nead to find the partial derivativea of the mean squared
errar with respect to the weights of the last hidden layer (L = 1), that is o

n'.i"u.'_?i
ar uik) Iy,
—— == M- — {A-3)
ﬂ-h.-;;. E E'uljrt 1

Recall that ¥, = pf = of{4L{y"*)). Therefore, by chain rule,

. . do
! Maoze that with o we pean p
2T

= u.-lt- appears only onoe io the above swin and dbecalore Lhe partial decivatives of sl the sibes tecms
with Terspech bo :u.lfr are xecg aznd, thwes, the sum i eliminaced.

AL DERIVATION OF THE BACK-PROPAGATION ALGORITHR

ibg

-

oY _ Bmp(Aply"T) BALy)
Ei"w}-li'L T ALy B

¢ o B4y
op (AR T gt
Jw
Hecall that:
[L—1]

L roB=1s L L1 tL
AFy" =3 whurt e+ i
=1

then by chain rule,
BAp(y ™) _ daply') By
Bw_{r_';_‘ alJf_L ﬂwf'_ '
n

Simnifarly, recall that the output of the 7% unit of the I — 1 layer iz given by

1.'|:|'.—1::|
L—t _ L—1 L—1, L—z2 L =
LA DI e
=1

Lhen,
Byy :
? — b=, Ly Lz
W =a/ 7 T -
and the derivative of yj-"“ with respect to the biag term, -[n_,r ',
L=1
thy; '
J L— -
ARt i Sl
b

Substituting equations A-6 ioto A-5 and A-5 ioto A-4, we get

(4-1]

(A-5)

[A-6)

{A-7)

ﬁ]‘fk T= r, I'= d [_
s =) o - ol
it
Snbeticuting the above equation into A-3 yields the final expressions for the error deriva-
tives:
|§I-|II".;l f. L r I “':L] d
gt = o)) - o) - v
Ji ket
8E w

ab;_'.—l

= —af ™yt - Y -N) - ok i
k=1

170 APPENDIX A

A.4 Final back-propagation equations

Let us first introduce the term < associated with the j th unit of the Ith layer as follows:
(Tj - Yj) ~aj’'(Aj(yl D) if [is the output layer, L,
.aj (Aj(y'_1) ' 6kl wkT if 1is hidden layer, i < [< L. "A_gj

This simplifies the partial derivative expressions to:

dE il d -
Lo, d ar, — _Zé
daw vV s il

Finally, the update expression for the weight connecting the j th unit of the Ith layer

with the ith unit of the previous layer is given by:
wlitt + 1) = +0 Yl 1 (A-9)

the update expression for the bias term3 of the j th unit of the Ith layer is given by:

bli(t+ i) = bl(t) + 36§ (A-10)

and § is given by equation A-8.

3 In general, the bias term can be treated as a weight with a unit input. This is why the derivative
expressions with respect to the bias are the same as those with respect to the weights except for the
term j/{-1 which, in the case of the bias, is always i.

APPENDIX B

THE XOR PROBLEM AND THE PERCEPTRON

The exclusive-OR or XOR problem is one of the most classical cases indicating the

inability of the perceptron to classify linearly inseparable patterns.

The training patterns are taken from the truth table of the XOR boolean function shown
in table B.i(a). Figure B.i(a) indicates that it is impossible to separate the two classes

(0o and 1) by any surface or line. This implies that a perceptron will never be successful
in the XOR task.

H}—*OOD>
_ O R O W
O»—a»—ao@
- s O O P
- O = O W
_ O O O O
S = ~ o ®

(a))

Table B.i: Two-variable and two-variable-plus-dummy XOR truth tables

Figure B.i: A geometric representation of a two-variable and two-variable-plus-dummy

XOR truth table. The gray surface indicates one possible decision surface implemented

by a perceptron

However, if a dummy variable (C) is strategically added to the XOR truth table, as

171

172 APPENDIX B

shown in table B.i(b), the input patterns (A, B and C) become linearly separable and
there exists a surface to separate them into the two classes (the gray plane in figure
B.i(b)). This result is also predicted by equation 4.1 on page 34 which expresses the
number of linearly separable patterns in terms of the number of input dimensions and
number of training examples.

Table B.i(a) represents the case where there are 4, two-dimensional training exam-

ples. Thus, the number of linearly separable patternsIis:

(where () denotes the number of combinations of taking (¢ items from a pool containing

a total of a items and is equal to “rpprgj))

We can see that out of 8 possible dichotomies of 4, two-dimensional vectors only 7 of
them are linearly separable. There is a pair which is not linearly separable and this is
contained in the XOR truth table.

On the other hand, table B.i(b) represents the case where there are 4, three-
dimensional training examples (with the addition of the dummy variable, C). The

number of linearly separable patterns now becomes:

Therefore, in this case, all the possible dichotomies are linearly separable.

Note that the above formula requires that all points be in general positions. This
requires that there is no subset of 3 (the number of dimensions) or fewer points which
are linearly dependent. Thus, the results above will not be valid when the C column of
table B.i(b) is filled with only 1’s or only o’s (that would have made the points linearly
dependent).

Whether this trick will aid the perceptron to eventually overcome its linearity handicap

is beyond doubt, but one may justifiably ask how practical and systematic it is.

1 The total number of dichotomies, linearly separable or not, is 274 = 23 = 8. This should not
be confused with the total number of labellings which is 2N = 24 = 16.

APPENDIX C

THEORETICAL FRAMEWORKS FOR LEARNING

C.1 Introduction

The generalisation ability of learning machines is a concept which is very difficult
to be described and quantified in a theoretical framework. This section is devoted to
describing the idea of Probably Approximately Correct (pac) learning - a widely accept-
able theoretical model of learning due to Valiant, [Valiant, 1994] - and the attempt by

Vapnik and Chervonenkis to quantify the generalisation ability of (binary) classifiers.

C.2 Formulation of the learning problem

Let us now proceed in formally defining the setup for learning a sequence of labelled

examples and formulating the learning problem.

A learning machine, C, of which the family of neural networks with binary output
is just a small subset, is capable of implementing a family of functions, called its

hypothesis space:

gm={g :Rm~*{o,i}}

by changing the connectivity of its internal components and adjusting the value of its

adaptive parameters.

The information presented to £ during training consists only of a set of N labelled
examples in the form of (x,y) pairs. These N pairs for which the input vectors, x*,
have been generated by some unknown probability distribution P(x) on an example
space A, and the corresponding labels, m, are given by an, also unknown, function

/i(x), are called a training sample of length N:

T = ((x1,yi),(x2,y2),-..,(xAr,yA))

The set T is only a subset of the concept space T which consists of all possible input

vectors and their respective labels as assigned by h.

Learning is the process by which C selects a hypothesis, g, from its hypothesis space,
@m. It is hoped that the selected hypothesis, g, will assign each input vector, X;, to

173

174 APPENDIX C

its correct label, m (as determined by h(xj)). The selection of a particular g may be
done according to many different criteria but it only depends on the training sample T

(since nothing else is known).

Let us define the sample error of the selected hypothesis g on the training set, T, to be
the number of disagreements of the hypothesis with the true label of each input vector

in T normalised over the number of samples, IN:
Et (9) = sfe) + yi][Ij (C-1)

The sample error, however, is of limited importance as there are no guarantees that it
is related to the performance of C in classifying unknown input vectors generated with
the same probability, P(x), as the ones in the training sample. Persons with experience

in training neural networks can confirm this fact (over-fitting is a classical example).

The need for a more pragmatic measure of the performance of C leads to the definition

of another error measure defined over the whole concept space T as:

E(g) =P{(x,y) 6 T :g(x) / y}) (C-2)

Equations C-i and C-2 defined above are similar, in principle, to the classical split
in probability theory between the notions of observed frequency of occurrence of an
event and the probability of that event occurring. Like frequency and probability, the
observed and pragmatic error, above, will only be identical when the sample length,

N, becomes (impractically) large (according to the law of “large numbers”).

Finally, one more error function is introduced. This is termed as approximation error
and refers to the pragmatic error (as defined in equation C-2) of the best hypothesis

in the hypothesis space @Qm:

Eapr(@m) = min E(g) (C-3)
ge G

Ear(Gm) has - at least directly - nothing to do with the ability of the learning machine
to find a good hypothesis based on the training sample. Instead, it tells us about
whether C (and consequently @m) contains a potentially good hypothesis and how
good this is.

C.3 Probably Approximately Correct Learning

PAC learning talks about the probability that the discrepancy between the approxima-

C. THEORETICAL FRAMEWORKS FOR LEARNING 175

tion and pragmatic error indicators for a learning machine, £, is below a given accuracy

level.

Formally, the PAC framework is defined as following:

Definition C.i Given a learning machine £ associated with a hypothesis space, @m,
and a concept space T from which a training sample, T, of length N is selected, and for
arbitrary e,5 G (0,1), we say that @m is learnable and that N is a sufficient sample
size for (e—S)-learning if the probability that the discrepancy between the approximation

and pragmatic error indicators is less than e, is at most 6:

P(\Eapr(gm)-E (g)\ <e)<6 (C-4)

C.4 The Vapnik-Chervonenkis dimension

The VC dimension gives worst-case bounds on the generalisation ability of a learning
machine. Thus, the predicted results are extremely pessimistic and are rarely confirmed
in practice.

Never-the-less, the perspective of Vapnik and Chervonenkis gives a theoretical di-
rection to the study of learning and allows us an insight into the generalisation abilities
and limitations of neural networks. It also unifies previous efforts to quantify these
limitations, for example the ideas behind such notions as the order of a predicate,

[Minsky and Papert, 1969], and linear separability (see section 4.2.2 on page 33).

Firstly, we need a few definitions:

DEFINITION C.2 Let the number of possible (binary) classifications of N input vectors
(drawn from the example space X) X = xi>X2>...,xN) by a learning machine £
implementing the hypothesis space @m be indicated by llgm(X). For a binary classifier,
Ilgm(X) < 2N.

Definition C.3 We say that a sample X of length N is shattered by the hypothesis

space gm or that @m shatters X ;/II<;m(X) = 2iV.

Definition C.4 The growth function associated with a sample of length N and a
hypothesis space @Qm is the maximum possible number of classifications by Qm and is

defined as:

A(W)= max n(™(X) (C-5)

176 APPENDIX C

The growth function is a special property of a learning machine associated with a
hypothesis space @m defined on an example space X. However, it has been shown by
[Cover, 1965] and also by [Vapnik and Chervonenkis, 1971] that the general form of

this function either grows as 2N or is bounded above by the relation:
AdV) < Ndver +1 (C-6)

In particular, the growth function for small NV is equal to 2N. However, at a critical
sample length called the VC dimension, N — dvc{Gm), of the particular learning
machine, the growth function grows only polynomially and is bounded by equation C-6

above.

Formally the VC dimension is defined as following:

DEFINITION C.5 The VC dimension of a hypothesis space @m is the maximum length
of a sample, X shattered by @m and is given by:

dve{Gm) = max {N : AIV) = 2"} (C-7)

where we take the maximum to be infinite if the set is unbounded.

The main contribution of Vapnik and Chervonenkis to the study of learning is the

following theorem:

Theorem C.i For any hypothesis space @m, the condition that @m has finite VC di-
mension is both necessary and sufficient for potential learnability. Thus potentially

learnable hypothesis spaces are those of finite VC dimension.

C.5 Some generalisation bounds

A first result is a theorem from [Vapnik and Chervonenkis, 1971] which gives an upper
bound on the probability of the discrepancy between the sample and pragmatic error
indicators (see equations C-i and C-2). Given e € (0,1) and a sample T, the following

holds:

P(maé \Er{g) - E(@)\ > e < 4A(21V)e' (C-8)
e

m

The above equation gives an upper bound on the difference between our estimated
error (e.g. the sample error indicator, Ex{g)) and the true generalisation performance

indicated by E(g). In order to make this difference as small as possible, for a given

C. THEORETICAL FRAMEWORKS FOR LEARNING 177

accuracy e, we need to make the right hand side of the equation small by increasing
N if and only if we are sure that the growth function is in the polynomial growth
region (e.g. it grows at most as NdvC”* m) + 1 and not as 2N. If A (2N) grows as 2N,
increasing N will increase the right hand side of the expression (since the base of the

natural logarithms, e, is less than 2).

In [Baum and Haussler, 1989] multi-layer, feed-forward neural networks with threshold
activation functions are considered. An upper bound of the VC dimension of such a

network comprising of |W| weights and M neurons, is given by:
dve < 2|fV]log2(eM) (C-9)

where e is the base of natural logarithms.

Furthermore, they showed that if a sample size given by:
A IWL M. .
N < dog2(—) (C-10)

can be learned by the network with an accuracy of 1 —e/2 (where 0 < e < 1/8),
then there is a high probability that the network will classify unknown inputs with an

accuracy of at least 1 —e.

Finally, for a large two-layer network, they derived the approximate rule of thumb that
the minimum sample length to guarantee correct classification of 1—e unknown inputs
must be N ~ |VF|/e. For example, if an accuracy of 90% is required, then the number

of training examples must be approximately equal to ten times the number of weights!

C.6 Support Vector Machines

C.6.1 Introduction

The Support Vector (sv) algorithm is a non-linear generalisation of the Generalised
Portrait algorithm developed in the Soviet Union in the sixties, [Vapnik and Lerner, 1963]
and [Vapnik and Chervonenkis, 1964]. As expected, the SV algorithm is grounded
in the framework of statistical learning theory which has been developed by Vapnik,
Chervonenkis and others over the last thirty years, [Vapnik and Chervonenkis, 1974],

[Vapnik, 1979], [Vapnik, 1995], etc.

The present form of the SV algorithm was developed at AT&T Bell Labs by Vapnik and
colleagues, [V.N. Vapnik and Smola, 1997], and is commonly referred to by the term

Support Vector Machines (svm).

178 APPENDIX C

C.6.2 SVM basics

SVM is a new way of training polynomial, neural network and Radial Basis function
learning machines for either classification or regression tasksl. The novelty of SVM lies
in the fact that training is not based on minimising the sample or empirical error (see
equation C-1), like so many neural network training algorithms do and are usually faced
with one of the many guises of the same problem, namely the bias-variance trade-off or
over-fitting, [Geman and Bienenstock, 1992], Instead, SVM attempts to minimise the

upper bound of the generalisation error.

Another difference between SVM and more conventional optimisation methods is that
SVM choose the most suitable function space for the task out of a pool of function
spaces. Most optimisation methods attempt to minimise the sample error for some

fixed function space.

SVM use a different induction principle to minimise the upper bound of the generalisation
error with the aid of Structural Risk Minimisation (sr m). SRM’s goal is to choose among
various learning machines with different learning capacities the one which yields a good
trade-off between low empirical risk and small capacity. In order to achieve this, one sets
up a hierarchy of function spaces and chooses the space with the smallest complexity

that can attain the desired sample error.

SVM and SRM are based on the existence of the family of bounds governing the relation
between capacity of a learning machine and its performance - the result of Vapnik’s

previous work on statistical learning theory and the VC dimension, [Vapnik, 1979].

In practice, training the SVM consists of minimising a cost function with a number
of constraints. Problems such as training the SVM fall into the category of standard
constrained Quadratic Programming (qp) and appear to be simple and straightforward.
However, it is well known that finite numerical precision can cause QP solvers to give
non-optimum solutions, [Burges, 1998]. Also, the complexity of the QP solver is highly
dependent on the training data, its size and its dimensions. Unfortunately, there is no

known method to define the data complexity analytically.

1 E.g. with binary/discrete or continuous outputs.

APPENDIX D

FFNN, THE STONE-WEIERSTRASS
THEOREM AND THE UNIVERSAL FUNCTION
APPROXIMATION PROPERTY

D.l Introduction

The Stone- Weierstrass theorem has been used by many theoreticians in the field of
neural networks to prove that the family of FFNN can approximate arbitrarily well
any real continuous function over a compact set (see for example [Hornik, 1991] and

[Hornik et al., 1992]).

In this section, we present a proof along the same lines. The definitions of Chapter
3 regarding the family of sigmoids (definition 3.1 on page 22) and the family of affine
functions (definition 3.2 on page 22) will be used. For the sake of clarity, the definition
of the family of all FFNN functions (see definition 3.2 on page 23) will be re-written as
a single output, a single hidden layer of ¢ units, a single linear output with zero bias,

neural network:

Q
gn= {gn:Rn IRMx) = fteR ,xe RnHieAn,ae S}

(D-1)

D.2 Metric spaces

In the following definition the notions of a metric and a metric space are introduced

(see [Rudin, 1964] and [Hornik et al., 1992]):

Definition D.6 4 metric on a set X is afunction p : X x X o R which satisfies the

following three conditions:
1. Positivity; p(x,y) > 0 unless x = y in which case p(x,y) = o
2. Symmetry; p{x, y) = p{y, x)
3. Triangle inequality; p(x,y) < p(x,z) + p(z,y)

where x,y,z G X- A set X, equipped with a metric, p(-, ¥ is called a metric space,

denoted by (X, p)-

179

i APPENDIX D

Here, we are introducing the terms p-dense and uniform convergence

DEFINITION D.7 A subset M of a metric space (X, p) is p-dense in a subset T if for
every e > 0 and for everyr& T, there is ap GM such that p(p, r) < e.

Example D.i Let Tn be the set of bounded functions from Rn > R and f,g £ Tn.
Then,

p(f.g) = supx&Rn\f(x) - g{x)\

is a metric on T'71L

The closeness of a class or family of functions to another class is described by the

concept of denseness:

DEFINITION D.8 SC Tn is uniformly dense on compacta if for all compact sets K,
S is p k -dense in [Fh where PK(f,g) = supXtK\f{x) —g(x)\.

D.3 The Stone-Weierstrass theorem

Below are some definitions which will be used in the Stone-Weierstrass theorem fol-

lowing.

Definition D.g A family F of real functions defined on a set E is an algebra, if T is

closed under:
1. addition: x + y GJ~
2. multiplication: x my E T
3. scalar multiplication: a mx 6 T

for x,y G& and a scalar.

Definition D.io A family of functions T separates points on a set E if for every

x1,x2GE and xi ~ x2, there exists afunction f £ T such that f(x1) " f(x2).

The above statement implies that there is at least one function in 7" that “knows” the

difference between any two points of E and, thus, “treats” (maps) them differently.

DEFINITION D .n A family of functions T vanishes at no point o/E iffor each i£ E

there exists a function f £ T such that f(x) " o.

D. FFNN, THE STONE-WEIERSTRASS THEOREM AND THE UNIVERSAL
FUNCTION APPROXIMATION PROPERTY 181

The Stone- Weierstrass theorem may be used in determining whether a family of func-
tions over a (compact) set K can approximate arbitrarily well any continuous function.
It is, therefore, the key tool in proving that a certain neural network architecture (im-

plementing a certain family of transfer functions) is a universal function approximator.

THEOREM D.2 Let F be an algebra of real continuous functions on a compact set K. If
F separates points on K and if F' vanishes at no point on K, then the uniform closure
B of F' consists of all real continuous functions on K (i.e. IF is px-dense in the space

of real continuous functions on K).

D.4 FFNN are Universal Function Approximators

Theorem D.3 Any feed-forward neural network implementing the family of functions
Gn (see equation D-1) and whose inputs belong to a compact set K C R T, is uniformly

dense on compacta in the set of all continuous functions in R" (mapping Rn to R).

Proof
* @n is an algebra of functions because it satisfies the three conditions set in defi-

nition D.9, namely:

1. addition: The sum gn(x) + h,(x) for gn,hn E Gn, x € K and |Kl = n,
belongs to @n since-.

Q Q atq
YPMM*)) + A3'cx(A'.(x)) = J2 Pk°(K(x))
*=j j-1 k=i

Pk, 1< k<

where p}el = < for 4

Pg+q-k' forq<k<gq +gq

| Afe(x), 1<k <
and Ak(x) J Ale(x) for 4

1~ +9_fU)> forq<k <q +gq

2. multiplication: The product gn(x) mhn(x) for gn,hn E Gn, and x E K,
belongs to @n since:

q q Qxq'
~2 Pb (A,(x)) mY P'3 {A3{x)) = PiP'j™Ai{x))o{X] (x))

1=1 J=i i

182

APPENDIX D

The condition will be satisfied if the product of the two sigmoids is still the
same sigmoid. [Hornik et al., 1992] solve this problem by using the “cosine

squasher”, [Gallant and White, 1992]:

0 for — o0 < x < —¢
cos(i+")+i

D% o L < X< (D-2)
1 for \ < x< oo

. scalar multiplication: The product agn(x), for gn G @n, and a scalar, be-

longs to @n since-.

a~y) ="5280ALG)

2— 1

« @n separates points on K, eg. ifx1,x2G K andXj * X2 then there exists at least

one gn G Qn such that gn(7i) ;" sn(x2)- This is true when o” A ")) 7" cr(A(x2)
e.g. when Axd ™ A(x2) (due to monotonicity of a). To ensure A(x:) T™A(x2),
choose A 6 An so that for Ai, A2 G R, Ai » A2 we have A(xx) = Al and
A(x2) = A2. This will ensure that @n separates points on K.

@n vanishes at no point of K, e.g. for each x 6 K there exists at least one
gn £ @n such that gn(x) ™ o. To see this, choose A G R such that cr(A) 7 o.
Then construct A G An such that A(x) = A This is possible even if x = 0
because of the presence of the constant term b in the affine functions equation.

This ensures that @n vanishes at no point of K.

APPENDIX E

TESTING FOR STATISTICAL SIGNIFICANCE

E.l1 Introduction

In the comparison and interpretation of various experimental results, it must be re-
membered that these are mere samples drawn from a much bigger population, by the
experimental procedure. The degree in which the observations reflect the actual popu-
lation’s properties (e.g. mean and variance) have to be estimated and the conclusions
be corrected approximately. This procedure is particularly important when we have
only a small number of samples available - e.g. when the experiments were repeated

for 40, 50 or less times.

In such cases, a test for the statistical significance of the experimental results (the
samples) is required in order to see how safe it is to generalise upon the whole pop-
ulation. A framework for testing for statistical significance of experimental results is
provided by the Small Sampling Theory, [Spiegel, 1971] and [Brookes and Dick, 1963].

This framework is as follows:

1. Construct the null hypothesis related to the objectives of the experiments. For
example, one of the objectives of the experiments described in chapter 6 was to
compare the generalisation ability of entity networks and single FFNN. In this
case, the null hypothesis can be “/lor any number of inputs, the mean approxi-
mation error of the entity does not differ significantly from that of the equivalent
single ffnn”. Another objective of the experiments was to compare the training
inconsistency - e.g. the variation in the sample error - of the networks. An
appropriate null hypothesis can be “/or any number of inputs, the variance of
the approximation error of the entity does not differ significantly from that of the

equivalent single FFNN”.

2. Construct the alternative hypothesis which will be adopted in the case of the
null hypothesis being rejected. There are situations where it is enough to have
an alternative hypothesis which simply states that there are significant differences
between the means or variances of the two populations. For example, “/or amny

number of inputs, the mean approximation error of the entity differs significantly

183

184

E.2

APPENDIX E

from that of the equivalent single ffnn”. In this case we will use a two-tailed test.

On the other hand, if it is desirable to identify the direction of the difference in
the examined quantities, we will have to use a one-tailed test. In this case the
alternative hypothesis can be: “/or any number of inputs, the mean approximation

error of the entity is lower than that of the equivalent single FFNN” .

Choose the level of significance. The level of significance is defined as the prob-
ability of making a Type I error: that is, reject the null hypothesis when it should
have been accepted. It usually is safe to assume a significance level of 5 % or less,

[Brookes and Dick, 1963].

Choose a statistical significance test. There exist a large number of such tests
(for example the t-test, the F-test, the x2-iesf, etc.) each appropriate for a cer-
tain type of experimental results, number of samples, objectives and selected

hypotheses.

Estimate the statistic. This is calculated using the sample data’s mean, standard
deviation, number of samples and the appropriate formulae specific to the type

of each test.

Accept or reject the null hypothesis depending on whether the statistic calcu-
lated earlier is lower or higher than the respective entry (i.e. critical value) in
the statistical table containing the distribution associated with the chosen signif-
icance test and the degrees of freedom. The latter is a function of the number of

observations.

Testing the difference between two populations’ means: the i-iesi

Two samples of n1and n2 observations with means mx and m2 and standard deviations

and s2 are drawn independently from two populations with means and /r2 and

standard deviations al and a2. In general, the populations’ properties are unknown

while the samples’ properties are known.

In order to test the difference between the population means, proceed as follows:

1. Calculate the ¢-statistic which is the ratio of the difference of the samples’ means

over a normalised expression of their standard deviations. The exact formula is

given below:

t— (E-1)

E. TESTING FOR STATISTICAL SIGNIFICANCE 185

E.3

Calculate the degrees of freedom, u, of the observations using the following for-

mula:

(E-2)

Consult a t-distribution table (available in most statistics textbooks, see for ex-
ample [Spiegel, 1971, p.344]) and find the critical value, ta”, corresponding to the

observations’ degrees of freedom, v, and the chosen level of significance, a.

Depending whether a one-tailed or a two-tailed test is required, the null hypothesis
is rejected at the chosen significance level and, thus, the alternative hypothesis

is accepted, if:

* one-tailed test: t > iaj,

* two-tailed test: € > ta/2j,

Testing the ratio of two populations’ variances: the F-test

Two samples of n1 and n2 observations with means m I and m2 and standard devia-

tions s and s2 are drawn from two populations with means and /z2 and standard

deviations al and a2

In order to find out whether the difference between the variances of the two samples

is significant, proceed as follows:

1. Calculate the F-statistic which is the ratio of the variances of the two samples.

The exact formula is given below:

f = (E-3)

2. The degrees of freedom associated with the statistic mentioned above are calcu-

lated as follows:

for the numerator, wux = nl—1

for the denominator, i3 — n2—1

3. Consult a F-distribution table (available in most statistics textbooks, see for

example [Hinton, 1995, p.308]) and find the critical value, / al/li,,2, corresponding

to the degrees of freedom v1and v2and the chosen level of significance, a.

i86 APPENDIX E

4. Depending whether a one-tailed or a two-tailed test is required, the null hypothesis

is accepted with the chosen significance level, if:

* one-tailed test: f < fa,uxv2

* two-tailed test: f < [al2l/Li,2

Following is an example of using the ¢-test and F-test to assess the statistical significance

of the results obtained in chapter 6:

Example E.2 A single ffnn and a C1 entity with the same number of inputs (700)
were trained with the same data for 40 and 50 times respectively. The approximation
error of each network was recorded each time. In the end, the mean approximation error
(over the 40 training attempts) of the single FFNN was nix = 0.1185 and its standard
deviation sx = 0.042. For the entity, the mean was m2 = 0.0968 and the standard
deviation was s2 — 0.0115. In view of the fact that the sample means and standard
deviations differ does not necessarily imply that the population means and standard

deviations will differ significantly, establish the following:

1. Can we conclude that the single FFNN is a worst generaliser (e.g. higher

approximation error) than the entity at a 5 % significance level?

2. Can we conclude that the single FFNN's variation of the approximation error

is greater than that of the entity at a 5 % significance level?

Solution: Let plt p2 & and a2 denote population mean and standard deviation of the

approximation errors for the single FENN and the entity respectively.

1. We have to decide between the hypotheses:

* null hypothesis, HO : px — the means do not differ significantly - the two

networks have the same generalisation ability,

* alternatively, Hx : Px > p2, the single FFNN has a higher mean approxima-

tion error than the entity and, consequently, is a worse generaliser.

We will use the one-tailed t-test because our hypotheses are concerned with the
difference and the direction of the difference between the two populations’ means.

The t-statistic is calculated as:

0.1185 - 0.0968
- 317

E. TESTING FOR STATISTICAL SIGNIFICANCE 187

On the basis of a one-tailed test at a 5 % level of significance and with

_ (0-042740 + 0.0ii52/50)2 _
\%4 (0.422/ 40)i (o.ons”/s0)2 ~
39 r 49

degrees of freedom, the t-distribution table entry indicates a critical valuel of
t5%A0 = 1.684. Because t > t5%#0 (e.g. 3.17 > 2.684,), we have to reject the null
hypothesis and accept Hx - the entity is a better généraliser than the single FFNN.

2. We have to decide between the hypotheses:

* null hypothesis, HO : a\ = a\, the variances do not differ significantly,

* alternatively, H1 : ct2 > a2, the single FFNN's approximation error has a

higher variance than the entity’s.

Because we want to check hypotheses regarding the variances of the populations
we will use the F-test (again, the one-tailed variation because we are interested
in the direction of this difference). The F-statistic is calculated as:

0.0422

0.01152 1334

On the basis of a one-tailed test at a 5 % level of significance and with vx =
40 - 1= 39 and 72 = 50 —1 = 49 degrees of freedom for the single FFNN and
entity observations respectively, the F-distribution table entry indicates a critical
value of f5%)3949 -> [5%,3040 = i-174- Because [> [5%3|4o (e.g. 13-34 > 1-174"
we have to reject the null hypothesis and accept Hx - the entity’s approximation

error has a lower variance.

1 Note that common t-distribution tables might not contain the critical value for the calculated
degrees of freedom. For example, the table might contain entries for 40 and 50 degrees of freedom, but
not for the required 43. In this case we may use linear interpolation between the two available entries
in order to obtain the critical value for the 43 degrees of freedom. Alternatively, use the next lowest

value available (e.g. 40).

i88 APPENDIX E

APPENDIX F

THE mp SCRIPT LANGUAGE AND
INTERFPRETER

F.1 Owerview of the mp interpreter
F.1.1 Introduction

np i5 an interprecer of the op script lanpguage, a set of aimple commands which allow
a naer to create, train and test single feed-forward neural networks (FFNX), as well as

entities of PPN,

TRAIK_DATA == Prﬂducei-’e;-ture:!ﬂ.z!.:Sd{
Kumlnputs = L0k,
Kumfutputs = 1;

Wunlinsa = Eui

T = Lavyh;

}
RNTITY = C‘:—EEEEHMI.- i
npuks = 10k

EntityT FF'N'N
EntityClass = 1;
HioKunInpats = 1
KarfunInpats = 2,
CanfFila = EntityConlig,
feed = 1974;

] = ENTITY:
InpFilalt] = TRAIMN_TATA, |
Iters = 1 0H00;

%[b IGLE = -:'_‘.‘v-ant:e.‘j'mg!:s 4

Arch = 100 140 30 1;
SioglaType = FEFMNIM;
kaights = sitggle;

Trainsingle
[bj = SINGLE;

Iters = I000;
InpFilallkj = TH.A.!"-I_DAT-'L

A sarnple g geript uaed to traln a alopgle PEAA amd

an entity with 100 inputs and a single output.
np svripts are composed of $he following five alements:

1. Instruction Identifier: Uhis is simply the name of An instruction. An ineEtruction

(e.g CreafeSimgle) will:

189

iso APPENDIX F

(a) initiate an action according to the parameters specified (e.g. TrainEntity),

or,

(b) create an object which will hold some or all of the parameters specified (e.g

CreateSingle), or,

(¢) do both i(a) and i(b) (e.g. ProduceVectoredDataSet).

2. Object Identifier: When an instruction does either i(b) or i(c), an object is
created and referenced by an identifier (e.2 trainjaata). There are three classes

of objects:

(a) File Object: An object which has been created by an OpenFUeObject, or
equivalentl, command. A File object represents either a local file or data
which will be/has been received from the network. See appendix F.7 for

more details.

(b) Single Object: This object represents a single unit (be it a FFNN or an
ADALINE etc.) and holds data relevant to it. For example, it holds the

architecture of the network.

(c) Entity Object: This object represents an entity of single units (again FFNN

or ADALINE etc.).

3. Parameter Identifier: Certain instructions require certain parameters to be set.
The parameter identifiers refer to these. For example, the parameter Arch refers

to the architecture of the unit to be created with the CreateSingle instruction).

4. Parameter Values: The value that a parameter takes. It is the text between the

symbols - and For example 100 140 20 1 in the architecture parameter.

5. Separators (#{} =;$): These are symbols which separate different instructions,

objects, parameters and values.

$ is the program terminator symbol. Whatever there is after that symbol is
ignored.
is the comment symbol. Whatever there is between this and the end-of-line

symbols is ignored.

{} are the start and end-of-block symbols. A block always (even if empty)
follows an instruction and within it all the relevant parameters should be

specified.

1 For example the MergeObjects instruction returns a file object.

¥. TEE np SCRIPT LANCUAGCE AND INTERPRETER 191

= ig the asaiznment symbol.
i deootes the end of the parameter value.
. 1% used as a separator of & liat of objects.

. i® ured to indicate a range in a list. For example 1.3 is expanded to 1, 2, 3.

F.1.2 Parallel execution

A useful feature of mp is the paralle] execution of lenelhy braining processes, It is only
applicable to those 2RTrTY architectures for which decomposition of the Lraioing process
into independent sub-tasks ig possible. So far, auch a decompaosition has meaning ooly
with che first and second FFNHW entity classes.

mp will proceed to parallal training if the Hoate field of the Trainfntdy containg a
list of remnte machines for which unix's reh and rep (remote shell and remate copy)
are cnabled fur that particular user, The local host will divide the process of training
inte as many sub-Lasks as che number of bosts in the Hests ficld, distribute it to the
apecified remote hoste and auspend the inteepetation of the sczipt. When all hosts have
ecomnplated their taslks, the results are sent hack to the local host which resuimnes the

interpretation of the script.

F.1.3 Running mp

Ulsage:
ap [-log togfile] [-(no)bell] [-syntax] [-template] [-b] [-silent] [-instruction s file
Invaking wp ia very esfy. (iven an mp script file, let us call it myserpt np, do:
% mp myseripl.ap -
ap will first parse the [k and then process each instmction. Messages ahont the

curcenl mslruction Deing processed are seal Lo the stdout. You can send moat of them
to & log file by specifying the “-log mlegfile’ option before thy input seript name, ie.:

% np -log mylogfilc myseript.np -

By defanlt, a hell will sound whenever an error occura. You can avoid this by specilying
the “nobell’ oplion,

The command line aption ‘-syntax’, (always before the input fle), tells np that it
need not process the input file but rather to checle whether it is eyntactically correct.

192 APPENDIX F

Another option is ‘-template’. This option tells np to treat the input file as a template
file. A template file is an np file for which some of its parameters are set to the state-
ment ASK (question). For each of these statements and unless it has been encountered
before, np will ask you the question and will substitute the whole ASK statement with
your answer. The final np file with all the ASK statements substituted is printed on

the stdout.

Finally, the options ‘“-help’, “-h’ and ‘-usage will cause np (irrespective of any other
specified options) to print a short usage message and exit. The option ’-instruction’
followed by the name of an instruction will print a short description about it and all the
parameters which it requires. Use the keyword ‘all’ in order to print all the instructions

in the mp system.

F.2 vusp instructions: general object interaction

F.2.1 ExtractColumnsFromObject

A number of file objects, in which data is arranged in columns, can be used, in con-
junction with this command, in order to extract some of their columns and form a new

file object.

An example situation is the following: We have two training files composed of 5 columns
each (3 input columns and 2 output columns). We need to construct a third data
file which will train a network with 6 inputs and 2 outputs, say, Ali, X2, X3, W4, W5,
X& and W, W mThe instruction ExtractColumnsFromObject takes a sequence of:

FileObj ectName [Fisfs]

separated by colons and appends them side by side to the output file. For example, in

our situation, we will give the following Columns specification:

Columns = Objifi TO 3]:0bj2[i TO 3]:0Obji[4]:0bj2[5]

identirier = ExtractColumnsFromOQObjects {
DefaultFileObj {The file object from some or all of the Column items in the'
Optional Columns description may be omitted if this parameter is defined.
) The name of the local file or channel where the result should'
OutFileName { . .
be sent to. If omitted, the file name will be constructed as
Optional

tempdJdentifier. See appendix F.7 for channel categories.

F. THE np SCRIPT LANGUAGE AND INTERPRETER 193

Colum ns (

Required

F.2.2 MergeObjects

'A colon separated collection of Columns. A Column (see defini-'
tion below) consists of Lists (see definition below and in appendix
F.8) enclosed in square brackets and, optionally, preceded by
the identifier of an existing file object. If no file object is men-
tioned for a given Column then the DefaultFileObj (see below) .
will be used. A Column is formally defined as:

Column = [;sis] | FileObject[Tisis]

Columns = Column | Columns:Column

.See appendix F.8 for more information about Lists. ,

IVIerging can be done either as a simple concatenation (sequential) of the file objects

or in a side-by-side (parallel) fashion.

identifier = MergeObjects

InpFileObj

Required

MergeM ethod

Optional

OutFileName {

Optional

{

This must be a comma separated list of at least two file objects.
The order of merging is the same as the order of the file objects
in this field.

It could either be Parallel where the contents of the file objects'
are all put side-by-side, or Sequential where the operation is a >
simple concatenation of the specified file objects. ,

The name of the local file or channel where the result should’)
be sent to. If omitted, the file name will be constructed as >

tempddentifier. See appendix F.7 for channel categories. /

The following example merges 3 files in parallel and mails the result to the user:

TRAIN_DATA = MergeObjects {
InpFileObj = FILE.i, FILE-2, FILE-3;

MergeMethod = Parallel,

OutFileName = MAIL<someone@somewhere.ac.uk, The result of merging the 3 files>;

F.2.3 ColumnsArithmetic

This command performs row-wise and column-wise operations of the input file ob-

jects. For example, there are three file objects (A, B and C) associated with files whose

mailto:omeone@somewhere.ac.uk

194

APPENDIX F

data is formatted in columns. One would like to evaluate the following operation for

each row of the files:

sqrt{abs(Ai[3} - M (Bj[2]+Ci[5])/Ail[i])))

where Aj[j], Bj[j] and Cfjj] are the values of the ith row, j th column of the three files, i

runs from the first to the last row (or to the shortest row of the three) and j has the

value specified between square brackets.

Then, one might like to calculate the average value of the resultant column. All these

can be done with the ColumnsArithmetic instruction. Here is its syntax,

identifier = ColumnsArithmetic {

RowExpr

Required

DefaultFileObj

Optional

ColExpr

Optional

OutFileName

Optional

'"This is an arithmetic expression where the following symbols
can be used and have their usual meaning: +-/*(), as well
as some user-defined (look for the ADD HERE’ string in
NeuralLib.pl) functions like abs and all awk built-in math-
ematical functions (sqrt, log etc.). The operands are defined

formally as:

Column = [Lists] \FileObject[Zh'sfs]

It is the same as the Column description in the ExtractColumns5
FromObjects instruction with the exception that each of the

. Lists items must specify a SINGLE column.

'The file object from some or all of the Column items in the'
Expression description may be omitted if this parameter is

comma separated list of operations can be specified here soS
that they be applied to the resultant column. These operations >

Anclude user-defined functions such as average and sum.)

'The name of the local file or channel where the result should
be sent to. If omitted, the file name will be constructed as
L2tempddentifier. See appendix F.7 for channel categories.

The following will produce the desired results for the problem introduced at the begin-

ning of this section:

TRAIN_DATA = ColumnsArithmetic {
Row = sqri(abs(A[2] - % ((B[2]+C[5])/A[i])));

Col = average;

. THE mg SCRIPT LANGUAGE AND INTERFRETER 1095

—_

The Columnodrffhimefic instruction nses ewk. Howsver, functions ke abs or average
are not known to owk. ehe s defined as & function at the beginning of the ek program,
every tirne 1t s called, everege 15 o bit more complicated because it operates on all the
raw eloments, Ses the pard library NeuralLibopl &t the subroutione ColuwmnsAmthmefac.
I'hera iz a section where one can define functions and functions n awk are fairly simple,
Herwever, operationsa like everage arc a bit more difficelt®. Consalt yon local awk man

page for more informaticn and a list of the built-in functions.

Finally, note that gwk has a limitation of the iInput variahles it can use. The maximum
number of columns ews can baodle is set o compile time. In any case, if you hase
any problems it is better to get gowd® from GNLU's archives and compile It to suit your

neads.

F.2.4 Delction of objects

A object can be deleted ar two levels. The first level is the computer memory.
Deleting an object [rom Lhe memory &l leaves files in the hard-storape device of the
computer, Cnding refers exactly to this second level of deletion and will include all the
files amanciated with this object [apart from InpFileObjs).

DeleteOnects]
Obj - }I'A. comma separated list of objects [all three types of nbje:ta}
R dired - .Lm '-:'“':""Wd]
Unlink Tt can be Yes nr Mo, ™o is the default. Yes will delote all the
) = { files aszociated with all the abjects specifled. Mo InpFilelbjs
et will ba deleted bowewer,
'

F.%3 mp instructions: produce and/or format data sets

There are three commuands relevent to producing and/or formatting daca seta. One is
for vectored data of any sort, created by o [unction [artificial} or read from a file and
then formaticd to 3o many inputs and outpiets, The othor teo are for formatting time
series data read from & file and constructing e data set made of samples from variows

Lrrages,

* Aveeally the everape operation wes copied from tle ouan page.

¥ mp usos gowk acd nob awk

igb APPENDIX F

F.3.1 Vectored data sets

The command ProduceAndFormatVectoredDataSet will either read data from an ascii
file and then format it, given the length of the required input and output vectors, or

create data using a function.

identifier = ProduceAncLFormatVectoredDataSet {

Numlnputs

= {The number of inputs, the size of the input vector. }
Required
NumOutputs .
= {The number of outputs, the size of the output vector. }
Required
Num Lines (The number of input and output vector pairs. Usually every
Required {pair is on a single line, hence Numlines.
'In the case when the output should be discrete and restricted’
to take values from a finite set, the Num OutputClasses speci-
Num OutputClasses fies the size of this set. If discrete output is not required then
Optional either omit it or set it to O, which is the default. Use in con-

junction with the FirstClassAt and LastClassAt parameters

..(see below).

'When the output is expected to be discrete and the
FirstClassAt . .
NumOutputClasses parameters was set to a positive integer,

Optional, this parameter must be set to the real number indicating the

NrOutputClasses > o .value of the first class. See below for an example.

This is the value of the last class. An example follows: we need
LastClassAt to classify 5 images as follows: 0.0 maps to the first image, 0.5
optional, = maps to the second image, **°, 2.5 maps to the fifth image. To
achieve, this one should set the FirstClassAt to 0.0 and the
LastClassAt to 2.5, while the NumOutputClasses must be 5.

NurQutputClasses > o

OutFileName

The name of the local file or channel where the result should
{be sent to. If omitted, the file name will be constructed as
Optional tempJdentifier. See appendix F.7 for channel categories.

It specifies whether the inputs as well as the outputs should be'
(quantised (discrete). The default is No, which means that the

inputs should be represented as continuous variables. A Yes
NurOutputClasaea > o .will quantise both inputs and outputs.

Quantiselnputs

Optional,

F. THE mp SCRIPT LANGUAGE AND INTERPRETER 197

(The file object, created by an OpenFUeObject or equivalent'

InpFileObj command, associated with data the user wishes to read and
Required, = format it accordingly. If this parameter is specified, then the >
ifY is not present Y parameter, which declares a function to produce data artifi-

cially, should be omitted.

'

'This parameter must specify the name of the function which
will be used to produce data artificially. So far, there are only

two functions available: Levy6 and Random®6. Do not use the

Y InpFileObj parameter if this one is used as they are mutually
Required, exclusive. These functions are not built-in the np perl libraries.
if InpFilebj Instead, they have been created independently using C (any
is not present other language can be used). The only restriction is in the
format ofthe command-line param eters and the output.Inspect
the files Levy6.c and Random6.c ifyou want to develop more
'functions.
By setting this parameter to a positive integer (the seed to a’
random number generator), it is guaranteed that as long as you
use the same number for the seed and the same random number
generator, you will obtain the same set of data, given that the
rest of the specified parameters remain constant. This is useful
Seed
= in situations where you want to produce the same data set for
Optional

training different networks at different times or systems, where
storage or transfer is difficult or in the case when the original
data set was deleted. If on the other hand you want your data
set to be randomly chosen then either set this parameter to

Any or do not specify it at all.

ig8 APPENDIX F

F.3.2 Data sets based on time series

The command FormatTimeSeriesDaiaSet will read time series data from an ascii file
and format it by sampling at the given input and output time points. A time series
simply consists of a measurement of a time-varying quantity at fixed time intervals.
FFNN may be used in exploring the correlations between various past time points and
the future. A multi-dimensional representation of the time series must be created by
constructing input and output vectors with the time series values at these past time
points. For example, if one wishes to check whether the next time series point can be
predicted by using the past five time point values, then one constructs the following

training file:

Input Output
T-5 T4 T-3 T-2 T-i T

where T runs through all the time series points. This process is called state-space

reconstruction, [Weigend, 1993], and this is what this command is supposed to do.

It is also possible to use many different time series files. For example one might want
to use the variation in the prices of petrol, iron and wheat (in files petrol.txt, iron.txt,
wheat.txt) in the prediction of some stock-market index (in file dow_jones.txt). In this
case, declare all four file objects in the InpFileObj field with the object representing
the prediction data being last. If you want to include previous values of the Dow Jones

time series, include it twice. See the example at the end of this section for more details.

identifier = FormatTimeSeriesDataSet {

'It specifies the time points which will compose the input vec-'
tor. This is a Lists item and therefore one can use the short-
InpTim ePoints cuts provided. See appendix F.8 for the Lists specification and
Required the relevant format. However, one is supposed not to use the
FIRST, LAST and ALL keywords, as they make no sense in

,this context.

OutTim ePoints 'it specifies the time points which will compose the output vec-1

Required tor. Same as above. J

"The number of input and output vector pairs for each output‘
Num Lines

class. If you set this field to 20, say, and if you had 5 output
Required

Lelasses then the resultant file would have had 100 vectors.

F. THE mp SCRIPT LANGUAGE AND INTERPRETER]_%

{A list of comma separated file objects, created by an Open”
FileObject or equivalent command, associated with the time
series data file(s). The file(s) must be ASCIT and the values

(reals or integers) must be separated by white space.

'In the case when the output should be discrete and restricted’)
A to take values from a finite set, the NumOutputClasses specifies f
.the size of this set.

NumOutputClasses

Optional

When the output is expected to be discrete and the'
FirstClassAt]

um OutputClasses parameters was set to a positive integer,
Optional,
his parameter must be set to the real num ber indicating the

NumOutputClasses > o .
-value of the first class.

LastClassAt

Optional, {This is the value of the last class. }

NumOutputClasses > o

* 1t specifies whether the inputs as well as the outputs should'
Quantiselnputs

be quantised. The default is N o, which means that the in-

ional, . . .
Optiona puts should be represented as continuous variables. A ves will

NumOutputClasses > o

.quantise both inputs and outputs.

{The name of the local file or channel where the result should be'
sent to. If omitted, which usually this is the case, then the file

Optional name will be constructed as tem p ~1dentifier. See appendix

OutFileName

F.7 for channel categories.

'By setting this parameter to a positive integer (the seed to a'
random number generator), it is guaranteed that as long as
you use the same number for the seed, you will obtain the
same set of data, given that the rest of the specified parameters
Seed remain constant. This is useful in situations where you want
optional to produce the same data set for training different networks at
different times or systems, where storage or transfer is difficult
or in the case when the original data set was deleted. If on the
other hand you want your data set to be randomly chosen then
~either set this parameter to A ny or do not specify it at all.

}

In the following example we create the data set for training a neural network to predict
the value of the Dow Jones index using previous Dow Jones values (predict T+40 using

T to T+20 and T+30 to T+39):

200 APPENDIX F

Do W-Jo NES = OpenFileObject {

Filename = dow_jones.txt;

’E‘RA]N-DATA = FormatTimeSenesData {
InpTimePoints = 1..20, 30..39;
OutTimePoints = 40;

NumlLines = x00;
InpFileObj = DOW-JONES;

While the following example uses four additional time series in the input vector:

PETROL = OpenkFileObject {

Filename = petrol.txt;

IRON = OpenkFileObject {

Filename = iron.txt;

WHEAT = OpenkFileObject {

Filename = wheat.txt;

DOW.JONES = OpenFileObject {

Filename = dow_jones.txt;

TRAIN-DATA — FormatTimeSeriesData {
InpTimePoints = 1..20, 30..39;
OutTimePoints = 40;
NumlLines = 100;
InpFileObj = PETROL, IRON, WHEAT, DOW-JONES;

F.3.3 Data sets for image classification

The command FormatlimagesDataSet will read a binary (1 byte = 1 pixel value, no
header information) file which has been constructed by concatenation of all the images4
that the user needs to classify. For example, if one has some images that form 5
categories (classes). Suppose there are 5 directories called CLASS-i, CLASS-2,

CLASS-5, and each of the directories contains 3 images of the same class. Note that
each directory must have an equal number of images and all images must be of the
same dimensions,, say WxH. In order to construct the master data file, one can do

(assume csh or derivatives):

% foreach i (CLASS-*) -1
? cd $i
? foreachj (*) >

? echo ”Class: $i, Image: $j”

? cat $§ » .. /MASTER-IMAGES -
? end '

?2 cd

? end >

4 The individual images must be of the same dimensions.

F. THE mp SCRIPT LANGUAGE AND INTERPRETER 201

Remember that the MASTERJM AGES file contains 15 images of 5 classes and the

dimensions of each class are \Vx3xH.

identifier = FormatlmagesDataSet |
Width fThe width of each of the images (W in the above example) in)
Required 1 the input file. /
Height . . .
18 = {The height of each of the images (3XH) in the input file. }
Required
It is common in image classification to operate on subsets of'
the images rather than the whole. In this way, better generali-
WindowWidth . . .
= sation is achieved, while adequately small data sets have to be >
Resudred processed. This parameter refers to the width of the sampling
window which will provide the subsets.
The sampled data will, therefore, consist of:)
WindowHeight _ 1 WindowWidth x WindowHeight elements 1
Required i
[The height of the sampling window. J
NumLines fThe number of input and output vector pairs taken from each
Required [individual image.
FirstClassAt fThis parameter must be set to the real number indicating the
Required [value of the first class. See below for an example.
This is the value of the last class. For example, in order to'
classify the 5 images of our example as follows: 0.0 maps to
LastClassAt . . .
= the first image, 0.5 maps to the second image <+ and 2.5
Required maps to the fifth image, one may set the FirstClassAt to
0.0 and the LastClassAt to 2.5.
'"The file object, created by an OpenFdeObject or equivalent
InpFileObj command, associated with a binary file which holds all the im-
Required ages which will be used in the classification (this file is called
.MASTERJMAGES in our example).
pixel values are integers in the range o to 255. If you'
ScalingFactor .
t to transform them to some other range then specify a
Optional

number here which all the pixel values will be divided by.,

202

Padding

Optional

PaddingValue
Optional,

valid if Padding > o

OutFileName

Optional

Seed

Optional

APPENDIX F

If you want to create a data set which is partly composed of'
the contents of your images data set and the rest being set
to an arbitrary pixel value (see PaddingValue) then set this
parameter to a positive integer representing the width of the >
frame around the sampling window. It is useful if you want to
experiment with testing a network with data which has fewer
pixels than its inputs.

fThe pixel values composing the surrounding frame of the data
\set. See Padding.

'"The name of the local file or channel where the result should'
be sent to. If omitted, which usually this is the case, then the
file name will be constructed as tempJdentifier. This file is

,ascii. See appendix F.7 for channel categories.

By setting this parameter to a number you will know that every >
time you use the same number, you will obtain the same set of
data. If on the other hand you want something different every
time you run the command then do not specify this variable at
all. >

F.4 mp instructions: single FFNN

The process for training or testing a neural network starts with creating it first. The

creation process will associate an identifier With a FFNN or ADALINE of the specified

architecture and other properties. So, in effect, the identifier will carry all the static

properties of that FFNN / ADALINE.

Once the network has been created, training and testing can take place. Here too, one

has to supply some parameters. However, these parameters are not static, but, rather,

they are dynamic and are forgotten when the process is finished, while the network

remains to be used again. The results of training are saved to the weights file of the

network.

F. THE %@ SCRIPT LANCGUVAGE AND INTERPRETER 203

F.4.1 Creation

It will resurn an wENTITIER which will be assvciated with the parameters specifed.

Using this IDENTIFIER, the program will be able to retrieve all the user preferences for

the parlicular petwork. When this netwock ie no longer of any nae, destroy it naing che
DeleteObjects rommand.

IERTIFIER = OrexteSingle |

Arzh

Hrqulred

Sigmoid

Tptiznul

GingleType

FErajiifre]

Weighta

Dptiouul

HumJutputllasses

Ciprionil

Firstllaselt

cipclanel,

Fmlukpordlongds = o

LagtClazadt
Oipkionsl,

Balicpunllaidid = n

Derivatives

Splione

The acchitecture of the net represented o8 positive intopers sep-
arati] by spare, For ecample, 3 25 22 1 resolis oo network
af 5 inpues, 1 cucput, and 2 hidden layers with 13 and 12 units

cach,

~ [Should the output neurons of the network be sigmoided I,':i-e.}
- iR — [0, 1]]7 Yes or No, Mo is the defunlt.

JI'Speclf:.r the type of the single network. AL prescat, L]:is}
Lean be a FENN OF a1 ADALINE,

network, If this parameter is not specified a8 file name will be
constracted as weights_Tdentifier, where IDENTIFICR refers

This 38 che pame of the e holding the fnal weights for thi,sl
o the instruction’s identlfer. |

"In the case whea the ontput should be discrete and restricted)
= § Lo take values from a fenite gob, the HumDutpusClas ses spouifics i
. the gize of this set.)

Wheo e outpub 5 cxpocted to be discrete and the
HumDetputClasees pacAmeters was set to 4 positive integer,

— \

this parameter must be set to the real number indicating the

vatlue of the ficst chsss,

{This is the value of the last class, }

If tha d.EEi.".-'a.:.i.'-'-E of che oubput of this gelt weet. s input is'l

Il

requited, then speify she (base) file name to seve it, with this
parameter. I

204 APPENDIX F

F.4.2 Training

The TrainSingle command will train the single unit (ffnn oradaline) associated with
the value of the Obj parameter supplied. Training needs a data file (defined by a file
object) which must contain a number (NumLines) of input and output vectors, also
known as exemplars. This file object can be created by the produce and/or format

data sets mentioned in previous sections.

The process of training consists of feeding the input vector to the unit, obtain an out-
put vector, compare the obtained output with the expected output, as defined in the
training data file mentioned above, and calculate a discrepancy vector. The discrep-
ancy or error vector has to be minimised by re-adjusting the strengths of the internal
connections, known as the weights, of the network. This process is repeated several

times (Iters).

The C program NNengine will be used for the training process. It can be interrupted

at any point by a Ctrl-C or sending an SIGINT signal to the process (kill -INT).

The training process is often compared to the process of walking down a mountain to
a valley. Our aim is to get to a lower altitude as quickly as possible. Therefore at the
current position we sample the terrain around us for the steepest slope (gradient) and
we jump to a new position in its direction. The question is, how big our jump should be.
If we jump in small steps, then we can detect changes in the steepest descent direction
faster, but we will reach the valley much later due to the increased number of jumps.
On the other hand, we can do really big jumps and risk loosing our direction. We
also risk, when we are deep in the valley enough, to jump on the opposite bank... The
parameter that controls the magnitude of the change in the weight’s vector is called the
rate of learning, (3. Another factor that controls training is the momentum, A This
parameter indicates how much the new weight vector will be composed of the current
one. This parameter sometimes leads to unstable behaviour with the error oscillating.
Unless somebody is watching over the training process, set this parameter to zero or

to some very small (less than 0.05, say) number.

TrainSingle {

Obj JAn single unit object previously created by the CreateSingle\
Required (command. §)
Tters e .

= {The number of training iterations. }

Required

F T Emp SOHPT LA PCE A DO TINITTEEEREITIFR

WeightsUpdate

Optional

Lamda

Optional

Seed

Optional

Beta

Optional

TrainingType
Optional,
NumOutputClasses > o

(from Obj)

{This is the file object, created by OpenFileObjector equivalent,'
associated with the training data file. It is an ASCII file of
floats or integers and consists of lines of pairs of input and

output vectors.

'This parameter controls the way the weight vector is updated.'

There are two options: Exemplar which updates the weights

every time a new exemplar is presented to the network, or >

Epoch which updates the weights after all the exemplars have
kbeen presented to the network. The default value is Exemplar. >

{The momentum term. Another parameter which controls the'
training process. Use a very small number. If omitted, a default
value will be used.

{Speciﬁes an X-windows display name (e.g. air-'
gialla.sarc.city.ac.uk:0.0) where a real-time plot of the
training error and rate of training error should be sent for

monitoring.
{The seed to feed the random number generator. }

'"The rate of learning. Usually set it between 0.05 to 1.2. Better,'
still, set it to a high number at the beginning and then use the
kill -USR1 pid or kill -USR2 pid (pid is the NNengine

process id) to increase or decrease beta at run-time. There is >

a simple front end for this process called NNChange.tcl for
those who have the tcl/tk package, if this parameter is not
,given, the default value will be used.

'The output of the neural network is, by nature, continuous.'
If discrete output was specified (Obj parameters) then quanti-
sation takes place. In this case the error can be calculated ei-
ther as the discrepancy between expected output and actual
continuous output or expected output and actual dis-
crete output. The TrainingType parameter indicates which
of the two methods of error calculation should be followed:

'

'Continuous or Discrete. The default is Continuous.

205

206 APPENDIX F

F.4.3 Testing

Once the network has been created and trained, and the weight vector is saved in a
file, one may use the TestSingle command in order to feed some inputs in the network

and obtain an output.

TestSingle {
Obj J A single unit object previously created by a CreateSingle com-1

Required fmand J

This is the file object, created by OpenkFileObject or equivalent,

InpFileObj
HpEEERd associated with the testing data file. It is an ASCII file of floats

Required or integers and consists of lines of input vectors (only).

The output of this command may consist of either both the'j

Showl t { .
onHPHES input and obtained output vectors (Yes) or only the output >

Optional

vectors (No, the default).)
OutFileName {The name of the file or channel where the output of the network'

Optional should be sent to. If omitted a local file will be created with the
name final_output_Identifier. See appendix F.7 for channel

categories.

’

F.5 np instructions: Entities

Creating, training and testing the entities is similar to the case of the single units.
Given the required entity class, the program will create a file which will contain in-
structions to create, train and test the entity. Note that an entity can be composed of

not only FFNN but also of ADALINE or any other single unit might be implemented.

There is a quicker way to describe a FFNN or an entity of FFNN. This is called a con-
figuration script (see appendix F.9 for more details). The description of an entity of a
given specification is generated by some C language programs (ProduceClass?Script.c)
as a configuration script. However, unless the user needs to create some more entity
classes, or modify the existing ones, these files as well as the configuration script may

be completely ignored.

F. THE mp SCRIPT LANGUAGE AND INTERPRETER 207

F.5.1 Creation

The creation of an entity is more or less the same as the creation of a single unit. Some

of the parameters, however, differ.

identifier = CreateEntity {

{This is the number of elements that the input data vector con-'

Numlnputs . . o
tains. It must be greater than 10 because, otherwise, it is not
Required very practical to bother with an entity.
o » {Should the output neurons of the network be sigmoided (i.e.
1gmo1l . . .
R -> [0,1])? Yes or No. No is the default. This parameter is
ional
optiona relevant to the single units composing the entity.
EntityClass f Currently, there are three classes that one may chose from: 1
Required [2 and 3.
EntityType {Specify the type of single units that make up this entity.
Required Presently there are two choices FFNN or ADALINE.
MinNumlnputs {The number of inputs to every single unit composing the entity'
Required, is selected at random. However, the user may chose an upper
ifthe ConfFile and lower bound to the number of inputs. This is the lower
isto be created. bound.
MaxNumlnputs This specifies the upper bound to the number of inputs each
Required single unit should have. }
'If an entity with adjustable connections between its various']
BPWeights L . . .
units is required then specify the (base) file name to hold this >
Optional ,weights with this parameter.)
'If the derivatives of the output of each single unit w.r.t. its'
Derivatives . X .
input are required, then specify the (base) file name to hold
Optional .them, with this parameter.
ceod 'By setting this parameter to a number you will know that ev-'
ce
ery time you use the same number, you will obtain the same
Optional

.configuration for the entity. The same number of inputs, etc....

208

Weights

Optional

NumOutputClasses {

Optional

Cl, C2

Optional

ConfFile

Optional

FirstClassAt
Optional,

NumOutputClasses > O

LastClassAt
Optional,

NumOutputClasses > o

APPENDIX F

'"This is the base name for all the weights files that will be used'
in association with all the single units. The weight file for the
single unit whose IDENTIFIER is, say, SFI, is weights.SFI. If
this parameter is not specified then the default value given will

be tempJdentifier, where identifier refers to the Entity

,identifier.

’

In the case when the output should be discrete and restricted\
to take values from a finite set, the NumOutputClasses specifies 1

the size of this set. This parameter is relevant to the single units I

composing the entity.

'"These two parameters are relevant only to the Class 1 entity.

J

This class is a collection of randomly interconnected units (i.e.

there is no predefined structure). Cl specifies the number of

first layer units (i.e. those that accept inputs from the data

input vector and not from another unit). (2 specifies the to-

tal number of layers in the entity interconnection scheme. By

‘layers’ we mean those units (single units) which belong to the

.same probability group of input assignment.

'As mentioned above, some external executables will create a'

configuration script which will be the basis for constructing

the final np script for the entity. This parameter specifies the

name of this file. The configuration script will have the exten-

sion ‘.con’, the np script file will have the extension ‘.create’. If
omitted, the default base name tempJdentifier will be used.
If this parameter is defined but the Min/MaxNumlnputs are un-

defined, the program will understand that there is already an

existing configuration script which should be read, instead of

.creating a new one.

'When the output is expected to be discrete and the

NumOutputClasses parameter was set to a positive integer, this

parameter must be set to the real number indicating the value >

of the first class. This parameter is relevant to the single units

.composing the entity.

{This is the value of the last class.

F. THE wp SCRIPT LANGUACE AND INTEILPRETER

F.5.2 Training

This process is similar te that of training & single unit, At first, the configuration
seripd file is vread and the =@ script® to train the enticy is constyucted. Then it is called

and the trainins procedure commences,

TrainBntiy |
024

Haguired

InpFileldoj

Haguirad

Welightelpdate

Dpkipmal

¥iaplay

CrpLicoal

TrainingType
—— -

Crpkeznal

[An Entity object previeusly created by che Oreafefnddy :.u:lm-}

ot

¢ This i the file object, created by OpenPiaQbrect or cquivalent,
assoaiated with the tealnlng Jala e, This an asor file of floats
oI integers and consizts of lines of pairs of input and output
voctors. One input file is wsed for the entice entity, The user
weedd ool ke oworey aboot pactitioning ik, The program will
take care of thao S, IF pou are ceainbog & woco-iaput eatity

vour inpue file must contain 1000 columnos for the input vactor. .

‘"This parameter contrels the way the weight vector is updated.”
There are two oplicns: Exernplar whicle updates the weights

every time & pew exemplar is presented to the neowork, or

| Epoch which updates the weights after all the exemplars have

Been presenled 1o Lee nelwork, The default valae is BExemplar,

, Thiz parameter iz relevant to all the single wnits.

glallasarccitvacukoa) where a real-time plot of the
.

craining error and rate of trainiog ecror should be sent for

L IO,

The owtput of the neural network I8 wsually continwois, 10
discrete output is reguired then guantization must take place.
In this case the eoror can be calculated either as the discrap-
ancy between expected output and actual continuous out-
put or expected cutput and actual discrete output. The
TrainingTypae paraneter indicates which of the two methods
al erpor calenlzelon should be followed: Contimaous gr Dis-

crete, The defauls is Continuous. This parameter is celevanc

rEpecifies an Xewindows dusplay name {eg &ir-y

L

L Lo gl the abogle untts,

4 TLe CoofFilw of the creation proonss with the “train' extension,

210 APPENDIX F

'A comma separated list of hosts (internet address format, nu-'
merical or other). If this field is defined, the process of training
an entity is broken into sub-tasks which are sent to each speci-
fied host and , thus, parallelising the training process. The user
must have access to all of the hosts (using Unix's rsh and rep,
note that some systems have such features disabled for security

Hosts reasons) and each host must have a copy of all the necessary
Optional files to run np . The user needs not to be concerned with copy-
ing the data files to all hosts. Because of how rsh works, np
requires a list of paths for each host. See the SetPath instruc-
tion. An example script which parallelises the training process
can be found in EXAMPLES/Parallel.np. Parallelisation of
training is only possible with entity architectures which allow

for breaking the process into sub-tasks (Classes 1 and 2).
(The minimum number of training iterations for each single

Iters
/ unit. If omitted a default of 1000 iterations will be used. This
Optional (parameter is relevant to all the single units.
(The rate of learning. Everything mentioned for the single unit'
Beta
case applies here too. This parameter is relevant to all the
Optional . .
single units.
Lamda fThe momentum term. This parameter is relevant to all the
Optional (single units.

F.5.3 Entities with connections of adjustable strength

The connections between the various units composing an entity may be variable. In this
case, after each single unit is trained in the usual way (using the TrainEntity instruc-
tion), the weights of the entity connections can be optimised using gradient descent.
This instruction does exactly this. With or without adjustable strength connections,

the entities can be tested using the TestEntity instruction.

TrainEntity {

Obj fAn Entity object previously created by the CreateEntity com-"
Required (mand.
InpFileObj This is the file object, created by OpenkFileObject or equivalent

Required associated with the training data file.

F. THE np SCRIPT LANGUAGE AND INTERPRETER 211

'"This parameter controls the way the weight vector is updated.'

There are two options: Exemplar which updates the weights
WeightsUpdate every time a new exemplar is presented to the network, or
Optional Epoch which updates the weights after all the exemplars have

been presented to the network. The default value is Exemplar.

.This parameter is relevant to all the single units.

'Specifies an X-windows display name (e.g. air-
XDisplay gialla.sarc.city.ac.uk:0.0) where a real-time plot of the
optional training error and rate of training error should be sent for
.monitoring.

'The output of the neural network is usually continuous. If'
discrete output is required then quantisation must take place.
In this case the error can be calculated either as the discrep-
ancy between expected output and actual continuous out-

TrainingType .
put or expected output and actual discrete output. The >

Optional TrainingType parameter indicates which of the two methods
of error calculation should be followed: Continuous or Dis-
crete. The default is Continuous. This parameter is relevant

.to all the single units, o) '
{The minimum number of training iterations for each single'

Iters

unit. If omitted a default of 1000 iterations will be used. This
Optional parameter is relevant to all the single units.

The rate of learning. Everything mentioned for the single unit'
Beta

case applies here too. This parameter is relevant to all the
Optional . .

single units.
Lamda fThe momentum term. This parameter is relevant to all the
optional [single units.

{Four real numbers separated by space or comma to denote the'
WeightsRange ‘range (min,max) of the starting weights and biases. The ac-
Optional tual value of each weight and bias will be determined by the

random number generator and the specified seed. ,

Seed
= = {The seed to feed the random number generator. }

Optional

212 APPENDIX F

F.5.4 Testing

Again, this process is similar to that of training a single unit. At first, the configuration
script file is read and the np script for training (the ConfFile of the creation process
with the ‘.test’ extension) the entity is constructed. Then it is called and the forward

pass (testing) begins.

TestEntity {
{An Entity object previously created by the CreateEntity com-'

Qbj
) mand and trained with the TrainEntity and, optionally, the
Required BackpropagateEntity instructions.
'"This is the file object, created by OpenFiLeObjector equivalent,'
associated with the testing data file. It is an ASCII file of floats
InpFileOb]j
or integers and consists of lines of input vectors (only). Again, >
Required

this file will be used for the entire entity, no need to partition

vit for the needs of the single units.

(The name of the file or channel where the output of the network
OutFileName \should be sent to. If omitted a local file will be created with the
name final_output_Identifier. See appendix F.7 for channel

Optional
,categories.
(The output of this command may consist of either both the')
Showlnputs . .
Sinput and obtained output vectors (Yes) or only the output *
Optional Ivectors (No, the default). /
¥

F.6 Various other mp instructions

F.6.1 Unlink a file

It will unlink (delete) local files given their filename (plus path).

Unlink {

Filename . .
= {A comma separated list of file names (not file objects). }

Required

}

F. THE np SCRIPT LANGUAGE AND INTERPRETER 213

F.6.2 Include an mg script file

It will read the np script file specified and will execute all the commands found until

the end of file marker. It will then resume the execution of the initial file.

IncludeFiie {

Filename (The name of a local file or a channel whose contents are valid

Required \np script language instructions.

F.6.3 Execute a system command

The command System executes a perl system command:

System {
At least one command is required. More commands can be”
{deﬁned by using a parameter identifier starting with Com. I
Make sure that the command is valid and that can be found in [
the path. Use full path name if unsure. J
/

F.6.4 Debugging mgo scripts

The DumpCurrentObjects instruction will send a list of all the objects currently in
memory along with their respective parameters and their values to stderr or to the

named OutFileName.

DumpCurrentObjects {
OutFileName

= {A local file or channel that the information is to be sent to. }
Optional

F.6.5 Sendlnformation

The Sendlnformation instruction will write some information regarding the execution
of the current np script (like executable name, input script name, host, user name,
date and time started, current date and time) plus any message the user defines, to

stderr or to the named OutFileName (a channel).

214 APPENDIX F

SendlInformation {

OutFileName
= {A local file or channel that the information is to be sent to. }
Optional
Message
= {Some text to be added to the information sent. +
Optional
H

F.6.6 SetPath

The SetPath instruction will let mp know the path in which to search for executables
for a given host. When mp attempts to execute a command to a remote host using rsh
(for example when parallelising the training process of an entity, see the TrainEntity

instruction), it needs to know where to search for the required executables.

SetPath {
Address ,

= {Space separated paths. j
Optional

}
For example:

SetPath {

hostl.city.ac.uk = /usr/bin /vol/gnu/bin /homes/fred/bin-solaris;
host2.city.ac.uk = /usr/bin /vol/gnu/bin /homes/fred/binJinux;

F.7 Files and Channels

A Filename parameter can be either a local file name, obeying the unix system’s
path conventions, or a channel name referring to a remote destination accessible by

the network.

There are various categories and sub-categories for the channel. These are:
1. File handles:

+ STDIN: The standard input, use HANDLE<STDIN>,
+ STDOUT: The standard output, use HANDLE<STDOUT>,

+ STDERR: The standard error, use HANDLE<STDERR>,

E THFEmp SCOHPT LA PCE_ AADO TINITHIAEREITIFR 215

* User defined: A handle opened by the perl function open,
use HANDLE<A_HANDLE>

2. Host to host communication protocols:

* mail: Send data using sendmail, use M AIL<host@e-mail address, subject>,
* rep: Remote copy, use RCP</iosi, remote path/filename>,

+ ftp: File transfer protocol, use FTP<host, login, passwd, filename>.6.
3. Interprocess communication:

+ sockets: Unix sockets, use SOCKET<host, port number>7.

F.8 The Lisis specification

A Lists item is defined as:

Integer = [0-9]+ |FIRST |LAST

Expansion = Integer..Integer |ALL

Integers = Integer |Integer Integers |Integers Expansion
List = Integers |Integers EXCEPT Integers

Lists = Last |List, Lists

Note that the keywords FIRST, LAST and ALL must be defined if you want to use
them. For example it is allowed to use them in the ExtractColumnsFromOQObject com-
mand because there is a way to find out the total number of columns in the file objects.
However, it is not allowed to use them to define time points (e.g. InpTimePoints).
Special concession is made for FIRST where we assumed that if not defined then it

takes the value of 1.

Here are some examples:

1.5 12345
1-5 10 1234510
FIRST..5 LAST 1234525 (only when FIRST and LAST are defined)

ALL EXCEPT 5..LAST, 10 12 34 10 (only when ALL is defined)

® Not yet implemented.

7 Not yet implemented. There are enough protocols already.

216

F.9

APPENDIX F

The Configuration Script format

Some definitions:

Oi denotes the actual output obtained by a single f fnn. This is a matrix as it
covers all the outputs of the FFNN in width and all the exemplars (NumLines) in
height,

X is the identifier of the file object associated with the input matrix. X/Lists/

denotes a matrix composed of vectors from X as specified by Lists,
Y and Y/Lists], as above,

Ei denotes the result of vector arithmetic,

ID denotes the identifier of a single FFNN,

IV is one of X, Oi and Ex. An empty IV defaults to X,

ov is one of Y and Eji,

V is one of IV and OV,

D is one of Oi or Ei,

a denotes the number of input and 3 the number of output vectors to the par-
ticular FFNN.

7 denotes the layer number and 6 the total number of units in this layer.

There are three kind of statements that are allowed to exist in a configuration script:

L.

Oi = (IV\[Lists] : IV2[Lists] : mmm), (OV\[Lists] : OV2[Lists] : mam), 1D, (a, 3), (7,

This is a declaration of a neural network identified by ‘ID’, its output is ‘Oj’. It has
a inputs given by all the IVfiLists] and has /5 outputs given by all the OVfiLists]. 7
and Sare used in the case when decomposition of the training process for parallel
execution is required. In this case, units that belong to the same layer (i.e. same
7) may be trained independently (which means that none of these units sends its
output to or receives its input from another unit of the same layer). S informs
np of the total number of units in this layer so that the task is divided evenly
among the remote hosts. Remember that the configuration script is created in
conjunction with the CreateEntity, TrainEntity and TestEntity. Therefore the
input and output vectors refer to the InpFileObj.

F. THE mp SCRIPT LANGUAGE AND INTERPRETER 217

2. B = Villnfeger] - Vi[integer];
This creates & vector F; as the result of the difference hetween two otiier vocooes
Vi|Integer, and Vj[Integer!. Note that this operation invalves vectors and not
meatrices, henee o single fileger,

3- I:'J-"'I-'[HI.:- }}21 T D‘l:l:
Will delete (unlink) all the ohjects identified by £y, e, - - I,

Conaider che following examqple configuration seript:

O =([v 23l YR (1)
B =0 1) ¥z

Og =(X[5, 80 [1]) LB [11) Mo 3.0,

Fy =0:01]-20 1]

DEL(CY, &y, Chlt

The 1* line calls for 2 neural netwark identified by &, which has 4 inputs and 1 outpt.
Ita input vector ia constrcted from the 19, 279 4™ and 4" cloment of the input vector
of the training file for the whole entity (InpFileObj). The oucput consists of a single
element, the first (and probably the only one] element of the output vector of tlhe
training file. The output goes to a file object identificd by .

‘I'he 2™ line will caleulate the discrepancy vector betwoen the first element of the ¢
fila ahject and the first element of Y, the expected oulpul.

The 3™ line calls, again, for a neural network identilied by M. It has 3 inputs and
1 output. Its inputa come from two aources, The fiest two inpots are the 5""’ and Kt
vuctors of the training fite {InpFileObj), input vectors part, The 57 input comes from
the 17 veclor of the Al identified by (3 (ie. the outpue of AY). Its oulput comes from
the discrepancy vector calculated in line 2 (E, the [1] index is romewhat redundant}.

The 4 line, again, calculates the discrepancy vector between what the oulput of Vo
should have been {£4[1]) and what actually is (Ga[1]).

Finally, the 3% line will delete afl the output files of the two networks (0 and Ok) as

well a5 the discrepancy vector {I4).

218

APFPENDIX F

F.10 Alphabetical listing of all mp instructions
ICENTIFIER = BockpropagoteBntity {

0o} = -« (Reqiired]
IopFiledbj = ---; { Regaired)
Tters = ---; { Oplunel
WeightsRangs = ---; [Oplivnal)
Zead = o [OpHanel]

Bela = - -5 | Reguared)

Lters = ---; { Required)

Larda = - -; {ﬂ,n:iqla.'l:trﬂl
TralpingTygs = - -3 [Cticnal)
¥hisplay = oo [Dpliopal)

} IDERTIFIER = OofumnsAnthmetic |
RowExpr = «« - [Heguinod)
DerfavltFilelb] = - - -; [Cptionad)
ColExpr = ---; [iptiohal)
OutFlle¥ene = --- @ { Onbonal
} inEKTIFIER = CreateBntity |
¥unTnputs = ---; [Rejuired]
EnticyClass = ---; { Reguired 1f the ContFile 42 fo be creaked.)
EntityType = ---; | Required)

MinWunTnputs = ---; [Reyuired if the ConfFile §s to be creoted.)
HaxWunInputs = ---; [Reguivad)

Zead = - -5 { Ophiorecl)

21, 02 = ny [Oplivnad)

ConfFile = «««; { Oplionad)

Sigmoid = ... [Cptional)

Welphta = -« [Opfional)

EPWeights =+« { Optiomnal)

Derivatives — - [Cpbienad)

HumatputClasses = -+ [Opkiviad)

Firstflasaht = «-; [Oplignal, NunlutpotClaages == o)
Lastllassht = - -; [Opkicmal, HBumbutputClaaass = a)

} IDEKTIFIER = (Crectefogle |
Arch = o5 | leguired)
SinglaTypa = -- -3 [Reapuired)

Sigmaid = - [(Qplionad)

Waighta = o [Cpléonad)

HumDutputClassss = -« -3 [Oplivnal)

FirstClasaht = «--; [Opfivaal, NunlutputClaaeea = o]

Leat(lagsht = - ; [Optivnal, HunOut pubClasees = o)
} Deletetibjects |

Obf = «- 5 (A% deast one &5 required, comma sepersted)

Unlink = ---; [Cptionall

1 DumpClurrentObjects | | IDENTIFIER = ErtractColutrruFromObjects |
Columne = : -} [Hequirad
DefenltFiledb) = « o5 [Optiona]
OutFilelams = -« [Opfivnal)

b IENTIFIER = FormatimegesDatalat |
Width = - --; [Hequired)]
Height = ---} [Regquired)
WindawWideh = -- -3 [Required)
WindowHeight = - - (Required)
HunLines = --- 3 [Regquired)
FlratClazedt = - -+ [Dplional]

F. THE ®p SCRIPT LANGUAGE AND INTERIPRETER

219

s o TRl

LastClagedt = -+« | [iptional)
Padding = ---; [Ciptional)
PaddingValue = - -; [{ptionci]
SralingFactor = ---; ((ptional)
TepFilebj = - --; { Haguired)
CutFileName = - - [ptiosel]
Zpad = - - [Optioned]

} IDENTIFIER = Fermet TaneSerieeDatales |
IopTimaPoints = -- - | Neyared]
TutTimePeints = -- - | Reguared)
¥unlipea = < [Mequired)

InpFileGb] = -« (AL loast one 45 roguired, comma scparaded)
Fuslutputllasses = -« [Dplionel)

FrirstClaseht = - [Dptianal]

LagtClassdt = - -+ [Ciptional]

Guantiselmpute = - { Cotonal)

CutFilelame = --«; [(iotional)

Zped = - - [(ptional)

|} TactudeFite {

Filenmne = - . -; [Required)

} merTIFIER = MergeOtjects {
InpFiledbj = ---; (At lenat ane {8 requirad, comma sefarmiad)

Mergatiathod = ---; { (hplinnal)
CuiFileName = ---; | Oplionad)
} IDENTIFIER = Producednd Faral VeatoredDatalet |

HumInputa = ---; [Required)
HumOatputs = «+; [fegured)
HumLines = -5 {Required)
HumDutputClasses = - { Oplinnad)
FirstCleasAt = ««; { Cofionad, FunlutputClasass = o)
LagtClesakt = - {Oodonal, Nunlutput{lasaas = a)
Quartiselnputs =« «; [OpHonel, HonlutputClassas = a)
InpFilelby =) (Heguired € ¥ i not present]
Y = - (Reguired if InpFileOb] is not present)
OutFilelame = ---; fﬂpﬂnﬂﬂf]
Saed = ---; [Dpkienal)

| Sendfrformation {
TutFilelame = ---; [fegiired]
Heesagze = « -« [Ophonal)

} &ctFPath {

Hostname = Path; (At fenst ene i regeieed, spaco separniod)
Hostneme = Path; (At least one £ reguired)

} Syxtem {
Cam.., = ---; [.-":.E Teask gnee 4 required)
} TestEntity |
O = «- 5 {Regrired)
InpFiledbj = -+ -3 [Required)
DutFileHang = -« [Opdionl

Shwl’nputs =---3 [I:,-.l'p.:llr:l?llhl‘]
b Tt Simale |

Obj = --; { Regmired)

InpFiladbj = ---; [Reguired)

DutFileX¥ane = -- -; [Cetional]

Shn:l';l'npnt:: = ---3 {I!]p.!:'r:lrl.-u':]
} TromEntity {

Obj = ---; [Reqiired)

InpFilagbj = ---; | Haywired)
Tters = -3 | Uptwwal)

220

Beta = ***; {Optional)

= e+« {Optional)
WeightsUpdate = ***; (Optional)
TrainingType = <**; (Optional)
Hosts = ***; (Optional)

XDisplay { Optional)
} TrainSingle {

Obj = +**; {Required)
Seed —mmm’, {Required)
Iters = *°*; {Required)
InpFileObj = °m*; (Required)
Beta = *°*; (Optional)

= e« {Optional)
WeightsUpdate = ***; {Optional)
TrainingType = m**; {Optional)

XDisplay = ***; {Optional)
+ Unlink {

Filename = °**; {At least one is required, comma separated)

APPENDIX F

APPENDIX G

EXAMPLE mp SCRIPTS

Below is an example of an mp program. It demonstrates how easy training and testing
an FFNN entity can be,

Create a training data set of 60 lines using the Levy function
with 500 input variables.
TRAINING-DATA = ProduceFormatVectoredDataSet {
Numlnputs = 500;
NumQutputs = 13
NumlLines = 60;
Y = Levy6;
Seed = 1974;
H
Create a Class 1 entity of FFNN with 500 inputs
ENTITY = CreateEntity {
SingleType = FFNN;
Numlnputs = 500;
EntityClass = 1;
MinNumlnputs = 12;
MaxNumlnputs = 35;
Seed = 1975;
}
Train the entity for 1000 iterations with specified rate of learning
Furthermore, parallelise the training process and distribute it among the four
remote hosts specified.
TrainEntity {
Obj = ENTITY;
InpFileObj = TRAINING-DATA;
Iters = 1000;
Beta = 0.095;
Lamda = o0.0;
Hosts = altair, zeta, spica, vega;
}
produce the test set again with the Levy function

but different seed and a lot more lines (2000)

221

222 APPENDIX G

TEST-DATA = ProduceAndFormatVectoredDataSet {
Y = Levy6;
Numlnputs = 5003
NumQOutputs = 1;
NumlLines = 2000;

Seed = 1971;
Y = Levy6;
¥
... and test the entity

the output is contained in a file called final
TestEntity {

Obj = ENTITY;

InpFileObj = TEST-DATA;

OutFileName = final;

}

The first instruction of the above program, ProduceFormatVectoredDataSet, will create
the training data file which is then referred to by the name of training data. The
number of input dimensions, the number of vectors as well as which data-generating
function should be used, are all specified by the parameters included in the body -
the text between the two curly brackets following the instruction. Each definition (e.g.

Numlnputs = 500;) in the body of the instruction must end in a semi-colon.

A lot of operations within the np system require a random number generator. For
example, the inputs to the Levy function are produced randomly (see also section 6.3.5
on page 87). However, we would also like to be able to reproduce exactly such initial
conditions because of issues of repeatability. In this respect, the deterministic nature
of the computer’s random number generator is an advantage because these “random”

decisions can be repeated by supplying the same seed, using the Seed keyword.

The instruction CreateEntity will create a FFNN entity (a C\| entity in this case, as speci-
fied by the keyword EntityType) with a total of 500 inputs (as specified by the keyword
Numlnputs). The np interpreter is instructed to construct each individual FFNN unit
in the entity with a number of inputs between 12 and 35 (the keywords MinNumlnputs
and MaxNumlnputs). The total number of FFNN as well as the interconnection map are
determined randomly. The Seed keyword may, again, be used to regenerate exactly a
previous configuration. If omitted, the random number generator will be seeded with

the current time - a usual tactic for creating unique random number sequences.

Following, is the instruction (TrainEntity) to train the created entity object, referred to

by the identifier entity, with the data set referred to by the identifier tr aining data.

G. EXAMPLE wp SCRIPTS 223

The Hosts keyword contains a list of domain names or IP addresses of computers in
the network to which the training procedure should be distributed (e.g. parallelised
training). Currently, these hosts must be running Unix. However, np can easily be
extended so that it runs on a wider range of operating systems by rewriting certain

parts of it in the Java language.

Once training is completed, the test data set will be created, using the instruction
ProduceFormatVectoredDataSet. The seed is different than before because we need the
test set to be different from the training set. Also, the number of vectors specified is

much larger than before.

Finally, the command to test the entity (TestEntity) is given by defining which entity
we require and what test data set it should be tested with. The output of the entity
goes to a file called final. Obtaining a performance measure can be done with the
following program. Note that this program has to be appended at the end of the

previous program.

Create a separate data object which holds just the expected output.
Remove the input vector columns
EXPECTED_OUTPUT = ExtractColumnsFromObject {
Columns = TEST-DATA [LAST];
H
Now, open the file called final which contains the
obtained entity output
ACTUAL-OUTPUT = OpenFUeObject
Filename = final;
}
... and calculate the error.
ERROR = ColumnsArithmetic {
mean square error estimate
RowExpr = 0.5 * ((ACTUAL-OUTPUT[1] - EXPECTED-OUTPUT[1]) ** 2);
ColExpr = average;

OutFileName = error;

The first instruction of the above program will extract the last column from the test
data set. This is done by specifying which column should be extracted. The expression

£ST data [LAST]” refers to the last column of the test data file - e.g. the expected
output. This column should then be compared to the actual output, contained in the

final file which is opened with the second instruction (OpenFdeObjed).

224 APPENDIX G

Finally, the ColumnsArithmetic instruction will perform the mathematical expression
defined by the keyword RowExpr for each row of the specified data objects. Do not
forget that, by now, the objects actual.output and expected output contain just a
single column which can be referred to by fixing the ‘[1] after the object name, e.g.
expected output[i]. The RowExpr is nothing else than one half of the square of the
discrepancy between expected and obtained outputs. Finally, the keyword ColExpr
specifies that all the elements of the resultant column should be summed up and the

average be taken and dumped to the output file, error.

G.l Some more tap scripts

This is an example np script which will train a C\ entity (referred as entity) with
training data (referred to as train _data) produced by the Levy function. Training

takes place in parallel over four different computers in the network.

Author: A.Hadjiprocopis

SetPath {
altair.soi.city.ac.uk = /usr/bin /vol/gnu/bin;
vega.soi.city.ac.uk = /usr/bin /vol/gnu/bin;
spica.soi.city.ac.uk = /usr/bin /vol/gnu/bin;

zeta.soi.city.ac.uk = /usr/bin /vol/gnu/bin;

'}IiRAIN-DATA = ProduceAndFormatVectoredDataSet {
Y = Levy6;
Numlnputs = 500;
NumOQOutputs = 1;
NumlLines = 70;
Seed = 1974;
i

ENTITY = CreateEntity {
EntityType = FFNN;
Numlnputs = 500;
EntityClass = 1;
MinNumlnputs = 12;
MaxNumlnputs = 35;
Sigmoid = No;
ConfFile = Conf_Cl;
Weights = W_C1;

Cl = 22;
C = 4
Seed = 1975;

G. EXAMPLE Myf) SCRIPTS 225

TrainEntity {
Obj = ENTITY;
InpFileObj = TRAIN-DATA;
Iters = 1000;
Beta = 0.095;
Lamda = o;
Hosts = altair, zeta, spica, vega;
¥
SendInformation {
OutFileName = Message;
Message = TITLE: the results of Cl entity testing
Obj = TRAIN-DATA .ENTITY;

}

$

This is an np script which may be used to test an entity trained with the previous

script.

Author: A.Hadjiprocopis

TEST-DATA = ProduceAndFormatVectoredDataSet {
Y = Levy6;

Numlnputs = 500;
NumOQOutputs = 1;
NumlLines = 5;
Seed = 1976;

}

ENTITY = CreateEntity {
EntityType = FFNN;
Numlnputs = 500;
EntityClass = 1;
MinNumlnputs = 12;
MaxNumlnputs = 35;
Sigmoid = No;

ConfFile = Conf-Cl;
Weights = W_C1;

Cl = 22

C2 = g4;

Seed = 1975;

}

TestEntity {

Obj = ENTITY;
InpFileObj = TEST-DATA;

226

OutFileName = final;
}
INPUT = ExtractColumnsFromObject {
Columns = TEST-DATA[1..LAST EXCEPT LAST];
¥
EXPECTED_OUTPUT = ExtractColumnsFromObject {
Columns = TEST-DATA [LAST];
¥
ACTUAL-OUTPUT = OpenkFileObject {
Filename = final;
¥
ERROR = ColumnsArithmetic {
mean square error estimate
ROWEXpI‘ = 0.5 ¥ ((actual output[i] - EXPECTED_OUTPUTIl]) ** 2);
ColExpr = average;
OutFileName = error;

}

$
The following script will train a single ffnn.

TRAIN_DATA = ProduceAndFormatVectoredDataSet {
Y = Levy6;

Numlnputs = 100;
NumOutputs = 1;
NumlLines = 70;
Seed = 1974;

}

SINGLE = CreateSingle {
SingleType = FFNN;
Arch = 100 49 1;
Weights = W-SINGLE;
Sigmoid = No;

}

TrainSingle {

Obj = SINGLE;

InpFileObj = TRAIN-DATA;
Iters = 1000;

Beta = 0.095;

Lamda = o;

H

SendInformation {
OutFileName = Message;

APPENDIX G

G. EXAMPLE mp SCRIPTS 227

Message = Results of testing a single FFNN;
Obj = TRAIN-DATA , SINGLE;

Finally, the following mp script may be used in testing a single f f nn which was trained

with the previous script.

TEST-DATA = ProduceAndFormatVectoredDataSet {
Y = Levy6;
Numlnputs = 100;
NumOutputs = 13
Numlines = 2000;
Seed = 1976;
H
SINGLE = CreateSingle {
SingleType = FFNN;
Arch = 100 49 1;
Weights W-SINGLE;
Sigmoid = No;
H
INPUT = ExtractColumnsFromObject
Columns = TEST-DATA[1..LAST EXCEPT LAST];
¥
TestSingle {
Obj = SINGLE;
InpFileObj = INPUT;
OutFileName = final;
¥
EXPECTED-OUTPUT = ExtractColumnsFromObject {
Columns = TEST-DATA[LAST];

¥
ACTUAL-OUTPUT = OpenFUeObject {

Filename = final;

}

ERROR = ColumnsArithmetic {
RowExpr = 0.5 * ((actual _output[i]- EXPECTED OUTPUT[i]) ** 2);
ColExpr = average;

OutFileName = error;

228 APPENDIX G

Bibliography

[Anderson and Rosenfeld, 1988] Anderson, J. A. and Rosenfeld, E., editors (1988).

Neurocomputing: Foundations of Research. MIT Press, Cambridge.

[Baldi and Hornik, 1989] Baldi, P. and Hornik, K. (1989). Neural networks and prin-
cipal component analysis: Learning from examples without local minima. Neural

Networks, 2:53-58.

[Baum and Haussler, 1989] Baum, E. and Haussler, D. (1989). What size net gives

valid generalization? Neural Computation, 1(1):151—160.

[Bianchini et al., 1997] Bianchini, M., Fanelli, S.,, Gori, M., and Maggini, M. (1997).

Terminal attractor algorithms: A critical analysis. Neurocomputing, pages 3- 13.

[Bianchini et al., 1998] Bianchini, M., Frasconi, S., Gori, M., and Maggini, M. (1998).
Optimal learning in artificial neural networks: A review of theoretical results. Neural

Network Systems Techniques and Applications (C. Leondes, ed.), pages 1-51.

[Bishop, 1995] Bishop, C. (1995). Neural Networks for Pattern Recognition. Clarendon
Press, Oxford.

[Blum and Rivest, 1988] Blum, A. and Rivest, R. (1988). Training a 3-node neural net-
work is np-complete. In Proceedings of the Ist Workshop on Computational Learning

Theory. Morgan-Kaufmann.

[Brookes and Dick, 1963] Brookes, B. and Dick, W. (1963). Introduction to Statistical
Method. Heinemann Educational Books Ltd, London.

[Burges, 1998] Burges, C. (1998). A tutorial on Support Vector Machines for Pattern

Recognition. Kluwer Academic Publishers, Boston.

[Burrows and Niranjan, 1993] Burrows, T. L. and Niranjan, M. (1993). The use of
feed-forward and recurrent neural networks for system identification. Technical re-

port, Cambridge University Engineering Department.

[Chao et al., 1991] Chao, J., Ratanasuwan, W., and Tsujii, S. (1991). How to find
global minima in finite times of search for multilayer perceptrons training. Interna-

tional Joint Conference on Neural Networks, pages 1079- 1083.

229

230

[Sana, 1994] 51ima, J. (1994). Loading deep networks is hard. Neural Computation,

6:842- 850.
[Sima, 1996] Sima, J. (1996). Back-propagation is not efficient. Neural Networks, 6.

[Cover, 1965] Cover, T. (1965). Geometrical and statistical properties of systems of
linear inequalities with applications in pattern recognition. IEEE Transactions on

Electronic Computers, 14:326- 334.

[Craven and Shavlik, 1994] Craven, M. and Shavlik, J. (1994). Using sampling and
queries to extract rules from trained neural networks. In Machine Learning: Pro-

ceedings of the Eleventh International Conference, San Francisco, CA.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal

function. Mathematics of Control, Signals, and Systems, 2(4):303- 314.

[DasGupta et al., 1995] DasGupta, B., Siegelmann, H., and Sontag, E. (1995). On the
complexity of training neural networks with continuous activation. IEEE Transac-

tions on Neural Networks, 6.
[Descartes, 1637] Descartes (1637). Discours de la Methode.

[Efron, 1982] Efron, B. (1982). The jacknife, the boostrap and other resampling plans.

Society for Industrial and Applied Mathematics.

[Flexer, 1996] Flexer, A. (1996). Statistical evaluation of neural network experiments:
Minimum requirements and current practice. In Trappl, R., editor, Cybernetics and
Systems 1996, Proceedings of the 13th European Meeting on Cybernetics and Systems

Research, pages 1005- 1008, Austrian Society for Cybernetic Studies.

[Freeman, 1991] Freeman, J. (1991). Neural Networks: Theory and Practice. Addison-

Wesley.

[Funahashi, 1989] Funahashi, K. (1989). On the approximate realization of continuous

mappings by neural networks. Neural Networks, 2:183-192.

[Gallant and White, 1992] Gallant, A. and White, H. (1992). There exists a neural
network that does not make avoidable mistakes. In White, H., editor, Artificial Neu-
ral Networks: Approximation and Learning Theory, pages 5- 11. Blackwell, Oxford,
UK.

[Garey and Johnson, 1979] Garey, M. and Johnson, D. (1979). Computers and In-
tractability: A Guide to the theory of NP-completeness. W.H. Freeman, San Fran-

s1sco.

BIBLIOGRAPHY 231

[Gately, 1996] Gately, E. (1996). Neural Networks for Financial Forecasting,. John
Wiley, New York.

[Geman and Bienenstock, 1992] Geman, S. and Bienenstock, E. (1992). Neural net-

works and the bias-variance dilemma. Neural Computation, 4:1-58.

[Griewank, 1989] Griewank, A. (1989). On automatic differentiation. In Iri, M. and
Tanabe, K., editors, Mathematical Programming: Recent Developments and Appli-

cations, pages 83-107. Kluwer Academic Publishers.

[Hadjiprocopis and Smith, 1997a] Hadjiprocopis, A. and Smith, P. (1997a). Feed for-
ward neural network entities. In J. Mira, R. M.-D. and Cabestany, J., editors,
Lecture Notes in Computer Science: Biological and Artificial Computation: From

Neuroscience to Technology, pages 349-359. Springer-Verlag.

[Hadjiprocopis and Smith, 1997b] Hadjiprocopis, A. and Smith, P. (1997b). Feed for-
ward neural network entities in the analysis of high-dimensional data. In Proceeding
of the srd International Conference on Neural Networks and their Applications, pages

147-154.

[Hadjiprocopis and Smith, 1998] Hadjiprocopis, A. and Smith, P. (1998). Feed forward
neural network entities in time series prediction and image classification. In Proceed-
ing of the International ICSC/IFAC Symposium on Neural Computation / NC98,

pages 1002- 1008, Technical University of Vienna.

[Hadjiprocopis et al., 1994] Hadjiprocopis, A., Smith, P., Comley, R., and Lakkos, S.
(1994). A neural network scheme for earthquake prediction based on the seismic

electric signals. IEEE Conference on Neural Networks and Signal Processing.

[Hoffgen, 1993] Hoffgen, K. (1993). Computational limitations on training sigmoidal

neural networks. Information Processing Letters, 46.
[Hebb, 1949] Hebb, D. O. (1949). The Organization of Behavior. Wiley, New York.

[Hecht-Nielsen, 1990] Hecht-Nielsen, R. (1990). Neurocomputing. Addison-Wesley,
Menlo Park, CA.

[Hilbert, 1902] Hilbert, D. (1902). Mathematical problems. Bulletin of the American

Mathematical Society, 8:437-4179.

[Hinton, 1995] Hinton, P. (1995). Statistics Explained. Routledge, New York, english

edition.

232

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedforward

networks. Neural Networks, 4:251—257.

[Hornik et al., 1992] Hornik, K., Stinchcombe, M., and White, H. (1992). Multilayer
feedforward networks are universal approximators. In White, H., editor, Artificial
Neural Networks: Approximation and Learning Theory, pages 12- 28. Blackwell, Ox-
ford, UK.

[Jacobs et al., 1991] Jacobs, R. A., Jordan, M. 1., Nowlan, S. J., and Hinton, G. (1991).

Adaptive mixture of local experts. Neural Computation, 3:79-87.

[Jordan and Jacobs, 1992] Jordan, M. I. and Jacobs, R. A. (1992). Hierarchies of adap-
tive experts. In R. P. Lippmann, J. M. and Touretzky, D. S., editors, NIPS, volume 4,

pages 985-992. Morgan Kaufmann.

[Judd, 1988] Judd, J. (1988). On the complexity of learning shallow neural networks.

Journal of Complexity, 4:177-192.

[Judd, 1990] Judd, J. (1990). Neural Network Design and the Complexity of Learning.
MIT Press, Cambridge, MA.

[Kurkova, 1991] Kurkova, V. (1991). Kolmogorov’s theorem is relevant. Neural Com-

putation, 3:617- 622.

[Kolmogorov, 1957] Kolmogorov, A. N. (1957). On the representation of continuous
functions of many variables by superposition of continuous functions of one variable

and addition. Doklady Akademii Nauk SSR, 114:953-956.

[Kontoravdis et al., 1992] Kontoravdis, D., Stafylopatis, A., and Kollias, S. (1992).
Parallel implementation of structured feedforward neural networks for image recog-

nition. International Journal of Neural Networks, 2:91-99.

[Landa, 1992] Landa, M. D. (1992). Virtual environments as intuition synthesisers.

Cultural diversity in the global village.

[Lavine, 1983] Lavine, R. A. (1983). Neurophysiology: The Fundamentals. The Col-

lamore Press, Lexington, MA.

[Levy and Montalvo, 1985] Levy, A. V. and Montalvo, A. (1985). The tunnelling algo-
rithm for the global minimization of functions. SIAM J. Sci. Stat. Comput., 6:15-29.

[Lindsey and Lindblad, 1994] Lindsey, C. and Lindblad, T. (1994). Review of hardware

neural networks: a user’s perspective. In Proceedings of ELBA94-

BIBLIOGRAPHY 233

[Lucas, 1997] Lucas, S. (1997). Forward-backward building blocks of evolving neural
networks with intrinsic learning behaviours. In J. Mira, R. M.-D. and Cabestany, J.,
editors, Lecture Notes in Computer Science: Biological and Artificial Computation.:

From Neuroscience to Technology, pages 723-732. Springer-Verlag.

[MacGregor, 1987] MacGregor, R. (1987). Neural and Brain Modeling. Academic
Press, San Diego, CA.

[Marx, 1887] Marx, K. (1887). Capital, www.marx.org, english edition.

[McClelland et ah, 1986] McClelland, J., Rumelhart, D., and Hinton, G. (1986). The
appeal of parallel distributed processing. In Rumelhart, D. and McClelland, J.,
editors, Parallel Distributed Processing: Explorations in the Microstructure of Cog-

nition, Vol. 1: Foundations, pages 3-44. MIT Press, Cambridge, MA.

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical calculus

of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5.

[McKelvey, 1992] McKelvey, T. (1992). Neural networks applied to optimal flight con-

trol. Technical report, Linkoping University, Sweeden.

[Minsky, 1975] Minsky, M. (1975). A framework for representing knowledge. In Win-
ston, P., editor, The psychology of computer vision, pages 211-277, New York.
McGraw-Hill.

[Minsky, 1990] Minsky, M. (1990). Logical vs. analogical or symbolic vs. connectionist

or neat vs. scruffy. Artificial Intelligence at MIT, Expanding Frontiers, 1.

[Minsky and Papert, 1969] Minsky, M. and Papert, S. (1969). Perceptrons. MIT Press,
Cambridge, MA.

[Minsky and Papert, 1988] Minsky, M. and Papert, S. (1988). Perceptrons: An Intro-
duction to Computational Geometry. MIT Press, Cambridge, MA, expanded edition.

[Misra, 1992] Misra, M. (1992). Implementation of Neural Networks on Parallel Ar-
chitectures. Doctoral Dissertation, Electrical Engineering, University of Southern

California.

[Murre, 1993] Murre, J. (1993). Transputers and neural networks: An analysis of im-
plementation constraints and performance. IEEE Transactions on Neural Networks,

4(2):284-292.

http://www.marx.org

234

[Newell, 1980] Newell, A. (1980). Physical symbol systems. Cognitive Science, 4:135-

183.

[Ohno-Machado and Musen, 1996] Ohno-Machado, L. and Musen, M. A. (1996). Mod-
ular neural networks for medical prognosis: Quantifying the benefits of combining
neural networks for survival prediction. Technical report, Knowledge Systems Lab-

oratory, Medical Computer Science, Stanford University.
[Papert, 1988] Papert, S. (1988). One AI or Many? Daedalus.

[Perrone, 1994] Perrone, M. P. (1994). General averaging results for convex optimiza-
tion. In Mozer, M. C., editor, Proceedings 19938 Connectionist Models Summer School,

pages 364- 371, Hillsdale, NJ. Lawrence Erlbaum.

[Perrone and Cooper, 1993] Perrone, M. P. and Cooper, L. N. (1993). When networks
disagree: ensemble methods for hybrid neural networks. Artificial Neural Networks

for Speech and Vision, pages 126- 142,

[Poggio and Girosi, 1989] Poggio, T. and Girosi, F. (1989). A theory of networks for
approximation and learning. MIT AI Memo No. 1140.

[Rosenblatt, 1962] Rosenblatt, F. (1962). Principles of Neurodynamics. Spartan, New
York.

[Rudin, 1964] Rudin, W. (1964). Principles of Mathematical Analysis. McGraw-Hill,
New York.

[Rumelhart, 1975] Rumelhart, D. (1975). Notes on a schema for stories. In Bobrow,
D. and Collins, A., editors, Representation and understanding, pages 211-236, New

York. Academic Press.

[Rumelhart et al., 1986] Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning
internal representations by back-propagating errors. In Rumelhart, D. and McClel-
land, J., editors, Parallel Distributed Processing: Explorations in the Microstructure

of Cognition. MIT Press, Cambridge, MA.

[Schank, 1976] Schank, R. (1976). The role of memory in language processing. In
Cofer, C., editor, The structure of human memory, pages 162- 189, San Fransisco.

Freeman.

[Spiegel, 1971] Spiegel, M. (1971). Theory and problems of Statistics. McGraw-Hill
Book Company (UK) Ltd, english edition.

BIBLIOGRAPHY 235

[Torn and Zilinkas, 1987] Torn and Zilinkas (1987). Global optimisation. Lecture Notes

in Computer Science.

[Valiant, 1994] Valiant, L. (1994). A theory of the learnable. Communications of the
- ACM, 27(11):1134-1142.

[Vapnik, 1979] Vapnik, V. (1979). Estimation of Dependences Based on Empirical Data
[in Russian]. Nauka, USSR.

[Vapnik, 1995] Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer,
New York.

[Vapnik and Chervonenkis, 1964] Vapnik, V. and Chervonenkis, A. (1964). A note on

one class of perceptrons. Automation and Remote Control, 25.

[Vapnik and Chervonenkis, 1971] Vapnik, V. and Chervonenkis, A. (1971). On the
uniform convergence of relative frequencies of events to their probabilities. Theory

of Probability and its Applications, 16(2):264-280.

[Vapnik and Chervonenkis, 1974] Vapnik, V. and Chervonenkis, A. (1974). Theory of
Pattern Recognition [in Russian]. Nauka, USSR.

[Vapnik and Lerner, 1963] Vapnik, V. and Lerner, A. (1963). Pattern recognition using

generalised portrait method. Automation and Remote Control, 24.

[V.N. Vapnik and Smola, 1997] V.N. Vapnik, S. G. and Smola, A. (1997). Support vec-
tor method for function approximation, regression, estimation and signal processing.

Advances in Neural Information Processing Systems, 9:281-287.

[Wang and Hsu, 1991] Wang, S. and Hsu, C. (1991). Terminal attractor learning al-
gorithms for backpropagation neural networks. International Joint Conference on

Neural Networks, pages 183- 189.

[Weigend, 1993] Weigend, A. S. (1993). Time Series Prediction : Forecasting the Future
and Understanding the Past. Addison-Wesley.

[Werbos, 1974] Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and
Analysis in the Behavioral Sciences. Doctoral Dissertation, Applied Mathematics,

Harvard University, Boston, MA.

[Widrow and Hoff, 1960] Widrow, B. and Hoff, M. (1960). Adaptive switching circuits.
IRE WESCON Convention Record, 4:96- 104.

236

[Wiklicky, 1993] Wiklicky, H. (1993). The neural network loading problem is undecid-
able. In Proceedings of Euro-COLT. Oxford University Press.

[Zell et al., 1993] Zell, A., Mache, N., Vogt, M., and Huettel, M. (1993). Problems of
massive parallelism in neural network simulation. In Proceedings of the IEEE Int.

Conf. on Neural Networks, volume 3, pages 1890- 1895, San Francisco, CA.

[Zhigljavsky, 1991] Zhigljavsky (1991). Theory of Global Random Search. Kluwer Aca-
demic Publishing.

INDEX OF NAMES

Arnold, V.I., 24 (3.3)

Chervonenkis, 173 (C)
Cover, T.M., 32 (4.2)

HAL, 17 (2.4)
Hebb, D., 10 (2.2)
Hilbert, D., 24 (3.3)

Kolmogorov, A., 24 (3.3), 30 (4.1)

Marx, Karl, 16 (2.4)
McCulloch & Pitts, 10 (2.2)
Minsky, M., 11 (2.2), 32 (4.2)
Minsky, M., 16 (2.4)

Newell, 7 (2.1)

Papert, S., 11 (2.2), 32 (4.2)

Papert, S., 16 (2.4)

Parallel Distributed Processing group (Rumel-
hart et al.), 13 (2.2)

Pavlov, L, 10 (2.2

Piagiet, 16 (2.3)

Rosenblatt, F., 10 (2.2)

Simon, 7 (2.1)
Sprecher D., 24 (3.3)

Valiant, 173 (C)
Vapnik, 173 (C)

von Neumann, J., 9 (2.2)

Werbos, P., 13 (2.2)

237

238

INDEX OF KEYWORDS

abstraction, see Connectionism

Adaline, see adaptive linear element

adaptive interpolation, see Connection-
ism

adaptive linear element, 20 (3.1)

affine functions, family of, 22 (3.2)

Al, see artificial intelligence

approximation error, 174 (C)

artificial data generation, 86 (6.3)

artificial intelligence, 7 (2.1)

associationism, 10 (2.2)

back-propagation of errors
critique, 38 (4.4)
description, 27 (3.4)
discovery, 13 (2.2)
phases, 27 (3.4)
behaviourism, 10 (2.2)
bias-variance trade-off, 177 (C)
bottom-up, 9 (2.1)

Complexity classes, 35 (4.3)
class NP, 35 (4.3)
class P, 35 (4.3)

Connectionism
a new approach to Al, 14 (2.3)
abstraction, 16 (2.3)
adaptive interpolation, 16 (2.3)
basic properties, 15 (2.3)
Constructivism, 16 (2.3)
distributivity, 15 (2.3)

general-purpose modelling, 16 (2.3)

239

generalisation, 16 (2.3)

graceful degradation, 15 (2.3)

history of, 9 (2.2)

Nativism, 16 (2.3)

robustness, 15 (2.3)
Constructivism, see Connectionism

curse of dimensionality, 31 (4.1)

distributivity, see Connectionism

emergence, 9 (2.1)

empirical results
generalisation Ability, 83 (6.3)
methodology, 81 (6.2)
parallelisation of the training pro-

cess, 150 (6.4)

recapitulation, 154 (6.5)

Entities, see Feed Forward Neural Net-

work Entities

Feed Forward Neural Network Entities
C\ construction, 59 (5.4)
C\ example, 58 (5.4)
C1 formalism, 57 (5.4)
C\ training, 60 (5.4)
C1 with adjustable connections, 60
(5.4)
C3 formalism, 66 (5.4)
C2 formalism, 65 (5.4)
benefits of, 76 (5.8)
framework, 1 (1.1)

introduction, 55 (5.4)

240

modified back-propagation, 61 (5.4)
motivation, 51 (5.2)
training time benefits: comparison
with single FFNN, 72 (5.7)
universal function approximation, 70
(5.6)
Feed Forward Neural Networks
critique, 29 (4.1)
derivative of transfer function, 62
(5.4)
hardware implementation, 45 (4.5)
introduction, 19 (3.1)
neuron’s notation, 21 (3.2)
neuronal operation, 21 (3.2)
neuronal transfer function, 22 (3.2)
notation, 20 (3.2)
NP-hard and NP-complete results,
30 (4.1), 36 (4.3)
number of adjustable parameters, 39
(4.4)
parallel implementation, 43 (4.5)
the non-explicit nature of learning,
45 (4-6)
transfer function, 23 (3.2)
FFNN, see Feed forward neural networks
fifth generation project, 17 (2.4)
frames, 7 (2.1)
fuzzy logic, 8 (2.1)

general positions, 33 (4.2), 172 (B)
generalisation, see Connectionism
global optimisation, 40 (4 .4)

good old-fashioned AI (GOFAI), 9 (2.1)
graceful degradation, see Connectionism
gradient descent, 26 (3.4)

growth function, 175 (C)

Hilbert’s 13t1 problem, 24 (3.3)

hill climbing, 30 (4.1)
homunculus, 9 (2.1)

hypothesis space, 173 (C)

linear (in)separability, 12 (2.2), 33 (4.2),
171 (B)

linear classifiers, 29 (4.1), 32 (4.2)

loading problem, 30 (4.1), 36 (4.3)

local minima, 41 (4.4)

mean squared error, 25 (3.4)

Modular Neural Networks
bagging, 53 (5.3)
boosting, 53 (5.3)
committees of networks, 52 (5.3)
mixtures of experts, 53 (5.3)
recursively defined mixture of ex-

perts, 54 (5.3)

Nativism, see Connectionism

mp
BackpropagateEntity, 210 (F)
ColumnsArithmetic, 193 (F)
CreateEntity, 207 (F)
CreateSingle, 203 (F)
DeleteObjects, 195 (F)
ExtractColumnsFromObject, 192 (F)
FormatimagesDataSet, 200 (F)
FormatTimeSeriesDataSet, 198 (F)
MergeObjects, 193 (F)
ProduceAndFormat VectorecLDataSet.

196 (F)

TestEntity, 212 (F)
TestSingle, 206 (F)
TrainEntity, 209 (F)
TrainSingle, 204 (F)
alphabetical listing of instructions,

218 (F)

INDEX OF KEYWORDS

introduction, 67 (5.5)
parallel execution, 191 (F)
reference guide, 189 (F)
running, 191 (F)

some examples, 221 (G)

structure, 68 (5.5)

order of a perceptron, 32 (4.2)

over-fitting, 177 (C)

PAC, see Probably Approximately Cor-
rect
Pavlov’s dogs, 10 (2.2)
Perceptron, 10 (2.2)
dichotomies, 34 (4.2)
generalisation vs memorisation, 35
(4.2)
limitations, 33 (4.2)
physical symbol system hypothesis, 7 (2.1)
pragmatic error, 174 (C)
premature neuron saturation, 31 (4.1),
41 (4.4)
Probably Approximately Correct, 175 (C)

reductionism, 8 (2.1)
representation of functions
approximate representation, 25 (3.3)
exact representation, 24 (3.3)
universal function approximator, 24
(3.3)
robustness, see Connectionism

rule-based systems, 8 (2.1)

sample error, 174 (C)
schemata, 7 (2.1)
Scientific Method, 8 (2.1)
scripts, 7 (2.1)
shattering, 175 (C)

sigmoids, family of, 22 (3.2)
Small sampling theory, 183 (E)
Statistical significance tests

F-test, 185 (E)

introduction, 183 (E)

t-test, 184 (E)
Stone-Weierstrass theorem, 179 (D)
Support Vector Machines, 177 (C)
synthesis, 9 (2.1)

this thesis
contribution, 3 (1.2)
motivation, 2 (1.1)
structure, 5 (1.3)

top-down, 9 (2.1)
VC dimension, 175 (C)

XOR problem, 12 (2.2)

241

242

