

City, University of London Institutional Repository

Citation: MacFarlane, A. (2000). Distributed Inverted Files and Performance: A Study of

Parallelism and Data Distribution Methods in IR. (Unpublished Doctoral thesis, City,
University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30804/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

DISTRIBUTED INVERTED FILES AND
PERFORMANCE: A STUDY OF

PARALLELISM AND DATA DISTRIBUTION
METHODS IN IR

ANDREW MACFARLANE

A thesis submitted in fulfilment of the requirements for the degree of
Doctor of Philosophy

City University, London

Department of Information Science

August 2000

TABLE OF CONTENTS

LIST OF TABLES... 7
LIST OF ILLUSTRATIONS.. 9
ACKNOWLEDGEMENTS.. 17
DECLARATION.. 18
ABSTRACT.. 19

Chapter 1 Introduction... 20
1.1 Thesis background..20
1.2 Aim and intentions of the thesis..21
1.3 Definition of distribution methods... 21

1.3.1 On-the-fly distribution... 23
1.3.2 Inverted file replication.. 23
1.3.3 Inverted file partitioning.. 24

1.4 Information Retrieval tasks studied..26
1.4.1 The indexing task...26
1.4.2 The probabilistic search task... 27
1.4.3 The index update task.. 27
1.4.4 The passage retrieval task.. 27
1.4.5 The routing/filtering task.. 28

1.5 Main findings of the thesis... 29
1.6 Outline of the thesis... 29

Chapter 2 Review of Parallel Computing in Information Retrieval............... 31
2.1 Introduction...31
2.2 Parallel Architectures used in IR systems.. 31

2.2.1 Parallel architecture classification...31
2.2.2 Parallel architectures used in IR..33
2.2.3 I/O implications of different architectures.. 35

2.3 Motivation for parallel IR systems...36
2.3.1 Response times... 37
2.3.2 Very large databases... 37
2.3.3 Superior algorithms.. 38
2.3.4 Search cosl..38

2.4 Approaches to parallel IR.. 39
2.4.1 Pattern matching...40
2.4.2 Signature/surrogate coding...42
2.4.3 Two-phase search... 46
2.4.4 Inverted file.. 47
2.4.5 Clustering..49
2.4.6 Connectionist approaches... 52
2.4.7 Other approaches...52
2.4.8 Summary of parallel IR approaches..55

2

2.5 Retrieval models used in parallel IR systems... 55
2.5.1 Boolean model.. 55
2.5.2 Proximity models.. 56
2.5.3 Term weighting models.. 56
2.5.4 Regular expressions.. 57

2.6 Case Studies - "State of the Art"..57
2.6.1 DAPText...58
2.6.2 DowQuest... 58
2.6.3 PADRE...60
2.6.4 Cluster Computing... 62

2.7 Summary and Conclusion.. 63

Chapter 3 Methods, Data and Metrics Used...64
3.1 Introduction... 64
3.2 Methods...64

3.2.1 The Robcrtson/Sparck Probabilistic model..64
3.2.2 The Shared Nothing Architecture...64
3.2.3 Other Architectures used..66
3.2.4 Index model.. 66

3.3 Data... 67
3.3.1 Web Data.. 67
3.3.2 Routing/Filtering Data.. 67
3.3.3 TREC-8 AD-HOC Data..69

3.4 Metrics used.. 69
3.4.1 Retrieval efficiency metrics.. 69
3.4.2 Retrieval effectiveness metrics... 73

Chapter 4 PLIERS: A Parallel Information Retrieval System....................... 75
4.1 Introduction..75
4.2 Topologies... 75
4.3 Implementation issues... 76

4.3.1 Programming with MPI.. 76
4.3.2 Ease of Portability...76

4.4 Indexing...77
4.4.1 Indexing topologies..77
4.4.2 Distributed Build topology components.. 78
4.4.3 Local Build topology components.. 81
4.4.4 Indexing methodology..82

4.5 Probabilistic search.. 82
4.5.1 Search topologies.. 82
4.5.2 Probabilistic search on partitioned inverted files.. 84

4.6 Update and index maintenance.. 85
4.6.1 Transaction topologies.. 85

4.7 Passage retrieval.. 86
4.7.1 The sequential algorithm.. 86
4.7.2 The parallel algorithm and partitioning methods..88

4.8 Term selection for Routing/Filtering..91
4.8.1 Approaches taken by Okapi at TREC... 91
4.8.2 Description of the sequential algorithms.. 92
4.8.3 Description of the parallel algorithms... 94

4.9 Summary..98

3

Chapter 5 Synthetic Models of Performance on Distributed Inverted
Files... 99

5.1 Introduction..99
5.2 Models for indexing... 101

5.2.1 Description of models for indexing.. 101
5.2.2 Comparative results using indexing models... 101

3 Models for probabilistic search... 103
5.3.1 Description of search models... 104
5.3.2 Comparative results using search models... 105

5.4 Models for passage retrieval... 107
5.4.1 Description of passage retrieval models..107
5.4.2 Comparative results using passage retrieval models... 107

5.5 Term selection models for routing/filtering...109
5.5.1 Description of term selection models...110
5.5.2 Comparative results using term selection models..I l l

5.6 Models for index update.. 114
5.6.1 Description of index update models..114
5.6.2 Comparative results using index update models: transaction processing............. 115
5.6.3 Comparative results using index update models: index reorganisation................117

5.7 Discussion of synthetic model results...119

Chapter 6 Indexing Results... 121
6.1 Introduction..121
6.2 Data description and experiment details...121
6.3 Index generation time costs and partitioning comparison...122

6.3.1 Indexing elapsed time... 122
6.3.2 Throughput..124
6.3.3 Scalability..126
6.3.4 Scaleup..127
6.3.5 Speedup and efficiency... 128
6.3.6 Load imbalance...129
6.3.7 Merging costs..130
6.3.8 Summary of time costs for indexing..132

6.4 Index file space costs and partitioning comparison...132
6.4.1 Inverted file space costs.. 133
6.4.2 Keywords file space costs..133
6.4.3 File space imbalance... 134
6.4.4 Summary of space costs for indexing..136

6.5 TREC-8 experiments... 136
6.5.1 Ad-Hoc Track..136
6.5.2 Web track experiments... 137

6.6 Conclusion...138

Chapter 7 Probabilistic Search Results... 139
7.1 Introduction..139
7.2 Experimental aims and objectives..139
7.3 Data and settings used... 140
7.4 Search results from Dodd partitioning...142
7.5 Search results from Termld partitioning...144
7.6 Comparison of partitioning methods.. 146

4

7.7 TREC-8 large web track experiments...148
7.7.1 Retrieval effectiveness..149
7.7.2 Retrieval efficiency...150

7.8 Summary and conclusion... 153

Chapter 8 Update Theory and Results..154
8.1 Introduction..154
8.2 Assumptions...154
8.3 Scope of operations.. 155
8.4 Statement of the problem... 155
8.5 Operations and their effects..156

8.5.1 ® = AND... 156
8.5.2® = OR.. 156
8.5.3 ® = AND NOT..156
8.5.4 ® = PLUS, ® = DOT...157
8.5.5 ® = ADJ.. 157
8.5.6 ® = SAMES..158
8.5.7 ® = LIMIT..158
8.5.8 Mixed operations...158
8.5.9 Comparison of operator effects..159

8.6 Concurrency control mechanisms..159
8.6.1 Locking...160
8.6.2 Optimistic CC..161
8.6.3 Timestamp ordering...162
8.6.4 Comparison of CC methods.. 163

8.7 Delays and availability... 163
8.8 Methodology for practical experiments...164
8.9 Data and settings used..165
8.10 Experimental results on transaction processing..167

8.10.1 Performance of update transactions...168
8.10.2 Performance of transactions as a whole... 171
8.10.3 Performance of index reorganisation...177
8.10.4 Summary of experimental results..181

8.11 Summary and conclusion... 181

Chapter 9 Passage Retrieval Results... 183
9.1 Introduction..183
9.2 Data and settings used... 183
9.3 Experimental results...184

9.3.1 Type A experimental results: Local top 1000 documents......................................185
9.3.2 Type B experimental results: Distributed top 1000 documents...............................189
9.3.3 Type C experimental results: Local top (1000/leaves) documents......................... 191
9.3.4 Type D experimental results: reduced document set..193

9.4 TREC-8 Ad-Hoc track experiments...195
9.4.1 Retrieval efficiency...196
9.4.2 Retrieval effectiveness...197

9.5 Summary and Conclusion.. 198

5

C h ap te r 10 R outing /F iltering R esu lts .. 200
10.1 Introduction... 200
10.2 Data and settings used... 200
10.3 Ziff-Davis experiments.. 201

10.3.1 Retrieval efficiency results: replication...202
10.3.2 Retrieval efficiency results: on-the-fly distribution...211
10.3.3 Retrieval effectiveness results: on-the-fly distribution...214
10.3.4 Ziff-Davis experiments summary..218

10.4 TREC-8 experiments... 219
10.4.1 Retrieval efficiency results..220
10.4.2 Retrieval effectiveness results.. 222

10.5 Conclusion... 223

C h ap te r 11 S um m ary A nd Conclusion... 225
11.1 Overview of data distribution methods..225
11.2 Discussion of individual tasks..226
11.3 Reflections on the synthetic model.. 228
11.4 Choosing an approach..228
11.5 Further research... 230

11.5.1 Concurrent transaction service..230
11.5.2 Extended Boolean models...231
11.5.3 Connectionist models of IR...231
11.5.4 Load balancing for term selection algorithms... 231
11.5.5 Other methods for combinatorial optimisation..232
11.5.6 Further work on the synthetic model...233

11.6 Implications for the field..233

REFERENCES.. 235

GLOSSARY... 257

APPENDICES..261
A1. Examples of build methods for distributed inverted files..261
A2. Extra Probabilistic Search Results.. 262
A3. Extra Routing/Filtering task results... 264
A4. Further details of update and index maintenance experiments....................................266
A5. Synthetic models chapter appendix...269

A5.1 Sequential model for indexing... 269
A5.2 Parallel models for indexing.. 270
A5.3 Sequential model for probabilistic search... 271
A5.4 Parallel models for probabilistic search..271
A5.5 Sequential model for passage retrieval...273
A5.6 Parallel models for passage retrieval..273
A5.7 Sequential models for term selection..275
A5.8 Parallel models for term selection..276
A5.9 Sequential models for index update... 279
A5.10 Parallel models for index update..280

6

LIST OF TABLES

Table 3-1 Web data collection details.. 67
Table 3-2 Filtering track data collection details...68
Table 5-1 General variables for the synthetic models.. 100
Table 5-2 Variables and constants for indexing models..101
Table 5-3 Values used for indexing models... 102
Table 5-4 Variables and constants for probabilistic search models................................ 103
Table 5-5 Values for search models..105
Table 5-6 Variables and constants for passage retrieval models.....................................107
Table 5-7 Variables and constants for term selection models...110
Table 5-8 Values used for term selection models...111
Table 5-9 Variables and constants for index update... 114
Table 5-10 Variables and constants values used for update models................................. 115
Table 6-1 BASE1: local build [D odd]: indexing Speedup and efficiency.................... 128
Table 6-2 BASE1-10 local build [Dodd]: % of average elapsed indexing time

spent merging... 131
Table 6-3 BASE1 distributed build [Docld]: % of average elapsed indexing time

spent merging... 131
Table 6-4 BASE1 distributed build [Termld]: % of average elapsed indexing time

spent merging... 131
Table 6-5 TREC8 Ad-Hoc indexing experiment details..137
Table 6-6 Web track indexing experiment details..137
Table 7-1 Retrieval effectiveness results for main search experiments...........................140
Table 7.2 BASE1: uniprocessor average elapsed times in seconds.................................141
Table 7-3 BASE1 [Docld]: search overheads in %.. 143
Table 7-4 BASE1-BASE10 [Docld]: search scalability...143
Table 7-5 BASE1 [Termld]: search overheads in %

(sequential sort: WC distribution).. 145
Table 7-6 BASE1 [Termld]: search overheads in % (parallel sort)................................146
Table 7-7 Details of web track search runs...149
Table 7-8 Precision at 20 for VLC2 experiments.. 149
Table 7-9 Large web track retrieval effectiveness results..150
Table 7-10 Average query processing times for VLC2 experiments (ratios to

baselines).. 150
Table 7-11 Scalability results for VLC2 search experiments..150
Table 7-12 Query processing results for large web track search experiments..................152
Table 8-1 Comparison of operator effects.. 159
Table 8-2 Details of transaction sets used in experiments...165
Table 8-3 BASE1-BASE10 [Dodd]: index update results for update

transactions...170
Table 8-4 BASE1-BASE10 [Docld]: index update results for all transactions..............176
Table 8-5 BASE1-BASE10 [Dodd]: index update scalability on index

reorganisation...180
Table 9-1 Examples of documents processed per node/total..184
Table 9-2 BASE1 [title only]: type A retrieval effectiveness results...............................188
Table 9-3 BASE1 [whole topic]: type A retrieval effectiveness results.......................... 188
Table 9-4 BASE1/BASE10: type A retrieval effectiveness and efficiency.....................188
Table 9-5 BASE1/BASE10: type D retrieval effectiveness results.................................194
Table 9-6 BASE1/BASE10 [title only]: Type D retrieval efficiency results..................194
Table 9-7 BASE1/BASE10 [whole topic]: Type D retrieval efficiency results...............195
Table 9-8 Details of TREC8 Ad-Hoc track runs...195

7

Table 9-9 TREC8 Ad-Hoc retrieval efficiency results (passage retrieval)..................... 196
Table 9-10 TREC8 Ad-Hoc retrieval efficiency results (term weighting)........................ 196
Table 9-11 Average precision results for TREC8 Ad-Hoc runs..197
Table 10-1 ZIFF-DAVIS [on-the-jly]: Load data overheads in seconds

(Network)... 213
Table 10-2. ZIFF-DAVIS [on-the-Jly]: Load data overheads in seconds for Find

Best (API 000).. 213
Table 10-3 ZIFF-DAVIS: Find Best routing and filtering results.....................................214
Table 10-4 ZIFF-DAVIS: Routing/filtering effectiveness results for CFP add

only operation.. 215
Table 10-5 ZIFF-DAVIS: Routing/filtering effectiveness results for CFP

add/remove operation... 215
Table 10-6 ZIFF-DAVIS: Routing/filtering effectiveness results for CFP add

reweight operation...215
Table 10-7 ZIFF-DAVIS: Routing/filtering effectiveness results for CSP add

only operation... 216
Table 10-8 ZIFF-DAVIS: Routing/filtering effectiveness results for CSP

add/remove operation... 217
Table 10-9 ZIFF-DAVIS: Routing/filtering effectiveness results for CSP

add reweight operation... 217
Table 10-10 Details of TREC8 filtering track runs..219
Table 10-11 Details of TREC8 batch filtering efficiency results.. 222
Table 10-12 Details of TREC8 routing efficiency results... 223
Table A2-1 BASE1 [Termld]: search overheads in % of total time

(sequential sort: CF distribution)...262
Table A2-2 BASE1 [Termld]: search overheads in % of total time

(sequential sort: TF distribution)...263
Table A4-1 BASE 1 /BASE\0[DocId]: scalability on index reorganisation....................... 268
Table A5-1 Load imbalance estimates for LI[P] variable.. 269

8

LIST OF ILLUSTRATIONS

Fig 1-1 Example matrix..22
Fig 1-2 Example of abstract task on On-the-fly distribution.. 23
Fig 1-3 Example of abstract task on inverted file replication.. 24
Fig 1-4 Example of abstract task on inverted file partitioning......................................24
Fig 1-5 Example Dodd, matrix partitioning..25
Fig 1-6 Example Termld matrix partitioning..26
Fig 2-1 Types of memory organisation examples..32
Fig 2-2 Forms of parallelism in signature files..44
Fig 2-3 Cluster parallelism...49
Fig 2-4 Assignment of postings to processors..59
Fig 3-1 The BM25 term weighting function used in the experiments.......................... 64
Fig 3-2 Extra Cost ratio in time for keeping position data in inverted list................... 70
Fig 3-3 Speedup calculation: speed advantage of parallelism....................................... 70
Fig 3-4 Efficiency calculation: effectiveness of parallel machine use........................... 71
Fig 3-5 Scalability measurement... 71
Fig 3-6 Scaleup metric..72
Fig 3-7 Load imbalance (LI) metric..72
Fig 3-8 Indexing merge costs metric...73
Fig 3-9 Filtering utility functions for TREC-4 and TREC-5.. 74
Fig 3-10 Filtering utility functions for TREC-8...74
Fig 3-11 TREC 7 utility Scaling Function..74
Fig 4-1 Build examples using the Docld partitioning method....................................... 77
Fig 4-2 Distributed build example using the Termld partitioning method.....................78
Fig 4-3 Farmer algorithm for parallel indexing... 79
Fig 4-4 Worker algorithm for parallel indexing...80
Fig 4-5 Global merge algorithm for parallel indexing (Termld only)............................81
Fig 4-6 Example search topology configuration..82
Fig 4-7 Example transaction topology configuration.. 85
Fig 4-8 Algorithm for sequential passage retrieval..87
Fig 4-9 Parallel passage retrieval algorithm - version 1: distributed............................ 88
Fig 4-10 Termld atom distribution for words...89
Fig 4-11 Parallel passage retrieval algorithm - version 2: local......................................90
Fig 4-12 Sequential FB/CFP algorithm.. 93
Fig 4-13 Sequential CAP algorithm.. 93
Fig 4-14 Master!Slave router topology... 95
Fig 4-15 Parallel FB/CFP algorithm... 96
Fig 4-16 Parallel CSP algorithm..96
Fig 4-17 Data placement strategies for inverted files: routing/filtering..........................97
Fig 5-1 Synthetic indexing performance on 1 to 9 worker nodes............................... 102
Fig 5-2 Comparison between indexing models on larger databases (scaling)............ 103
Fig 5-3 Comparative results for search models on 1-9 leaf nodes...............................105
Fig 5-4a Comparative results for search models: scaling on query terms......................106
Fig 5-4b Comparative results for search models: scaling on query terms

(smaller scale which shows difference between D odd and
Termld theoretical models)...106

Fig 5-5 Synthetic passage retrieval model on 1 to 9 leaf nodes...................................108
Fig 5-6 Synthetic passage retrieval models - D odd only..108
Fig 5-7 Synthetic passage retrieval models - Query Scaling 1 to 25 terms................. 109
Fig 5-8 Term selection model results using large slave node set and iteration

sizes... 112

9

Fig 5-9 Comparison between all models by varying number of query terms.............112
Fig 5-10 Comparison between parallel models by varying number of query

terms...113
Fig 5-11 Comparison between parallel models by varying number of query

terms (weight variation)..113
Fig 5-12 Comparison between partitioning methods in presence and absence

of index update.. 116
Fig 5-13 Comparison between models: variation of ro factor and its effect

on transaction processing..116
Fig 5-14 Comparison between models: variation of update rate and its effect

on transaction processing... 117
Fig 5-15 Comparison between partitioning methods: varying parallel

machine size...118
Fig 5-16 Effect of contention for resources on theoretical models.................................118
Fig 5-17 Effect of buffer size on theoretical models...119
Fig 6-1 BASE1-10 local build [Docld]: indexing elapsed time in hours....................122
Fig 6-2 BASE1 distributed build: indexing elapsed times in hours

(position data)..123
Fig 6-3 BASE1 distributed build: indexing elapsed times in hours

(postings only)... 123
Fig 6-4 BASE1 distributed build: indexing extra costs for storage of position

data.. 124
Fig 6-5 BASE1-BASE10 local build [Docld]: indexing Gb/Hour throughput.......... 125
Fig 6-6 BASE1 distributed build [Docld]: indexing Gb/FIour throughput.................125
Fig 6-7 BASE1 distributed build [Termld]: indexing Gb/Hour throughput

(WC only)... 126
Fig 6-8 BASE2-BASE10 local build [Docld]: indexing scalability from BASE1126
Fig 6-9 BASE1-BASE10 local build [Docld]: indexing scaleup................................ 127
Fig 6-10 BASE1 distributed build [Docld]: indexing speedup......................................128
Fig 6-11 BASE1 distributed build [Docld]: indexing efficiency.................................. 128
Fig 6-12 BASE1 distributed build [Termld]: indexing speedup (WC only)...............129
Fig 6-13 BASE1 distributed build [Termld]: indexing efficiency (WC only)..............129
Fig 6-14 BASE1-BASE10 local build [Docld]: indexing load imbalance....................129
Fig 6-15 BASE1 distributed build [Docld]: indexing load imbalance.........................129
Fig 6-16 BASE1 distributed build [Termld]: indexing load imbalance........................130
Fig 6-17a BASE1-BASE10 local build [Docld]: index space costs in Gigabytes..........132
Fig 6-17b BASE1-BASE10 local build [Docld]: index space costs in % of text...........132
Fig 6-18a BASE1 distributed build: index space costs in Gigabytes............................. 133
Fig 6-18b BASE1 distributed build: index space costs in % of text............................... 133
Fig 6-19a BASE1-BASE10 local build [Docld]: index space costs in megabytes

for keyword file...134
Fig 6-19b BASE1-BASE10 local build [Docld]: index space costs in % of index

for keyword file.. 134
Fig 6-20a BASE1 Distributed Build: index space costs in megabytes for keyword

file...134
Fig 6-20b BASE1 Distributed Build: index space costs in % of index for keyword

file...134
Fig 6-21 BASE 1-BASE 10 local build [Docld]: index space imbalance on files......... 135
Fig 6-22 BASE1 distributed build [Docld]: index space imbalance on files............... 135
Fig 6-23 BASE1 distributed build [Termld]: index space imbalance on files..............135
Fig 7-1 BASE1 [Docld]: search average elapsed time in seconds..............................142
Fig 7-2 BASE1 [Docld]: search load imbalance...143

10

Fig 7-3 BASE1 [DocId\: search speedup..142
Fig 7-4 BASE1 [Dodd]: search parallel efficiency... 142
Fig 7-5 BASE1 [Termld]: search average elapsed time (sequential sort: WC

distribution)...144
Fig 7-6 BASE1 [Termld]: search load imbalance (sequential sort: WC

distribution)..144
Fig 7-7. BASE1 [Termld]: search speedup (sequential sort: WC

distribution)...144
Fig 7-8 BASE1 [Termld]: search parallel efficiency (sequential sort:

WC distribution)...144
Fig 7-9 BASE1 [Termld]: search average elapsed time (parallel sort).......................145
Fig 7-10 BASE1 [Termld]: search speedup (parallel sort).. 146
Fig 7-11 BASE1 [Termld]: search parallel efficiency (parallel sort)........................... 146
Fig 7-12 BASE1 [Termld]: search load imbalance (parallel sort)................................ 146
Fig 7-13 BASE1 : throughput for title only query set..147
Fig 7-14 BASE1 : throughput for whole topic query set... 147
Fig 8-1 Example concurrency control scenario.. 155
Fig 8-2 Example interleaving with AND NOT.. 157
Fig 8-3 Example interleaving with AND NOT; order reversed.................................. 157
Fig 8-4 Example interleaving with MIXED operations...158
Fig 8-5 Example deadlock..161
Fig 8-6 BASE1 [Docld]: average elapsed time in ms for update transactions

(postings on ly)...167
Fig 8-7 BASE1 [Termld]: average elapsed time in ms for update transactions

(postings only)..167
Fig 8-8 BASE1 [Docld]: average elapsed time in ms for update transactions

(position data)...167
Fig 8-9 BASE1 [Termld]: average elapsed time in ms for update transactions

(position data)...167
Fig 8-10 BASE1 [Docld]: speedup for update transactions (postings only)................ 167
Fig 8-11 BASE1 [Termld]: speedup for update transactions (postings only)...............167
Fig 8-12 BASE1 [Docld]: speedup for update transactions (position data)................. 168
Fig 8-13 BASE1 [Termld]: speedup for update transactions (position data)............... 168
Fig 8-14 BASE1 [Dodd]: average elapsed time in ms for update transactions

during index reorganisation (postings only).. 169
Fig 8-15 BASE1 [Termld]: average elapsed time in ms for update transactions

during index reorganisation (postings only)... 169
Fig 8-16 BASE1 [DocId\: average elapsed time in ms for update transactions

during index reorganisation (position data).. 169
Fig 8-17 BASE1 [Termld]: average elapsed time in ms for update transactions

during index reorganisation (position data).. 169
Fig 8-18 BASE1 [Dodd]: % increase in average elapsed time for update

transactions during index reorganisation (postings only).............................. 170
Fig 8-19 BASE1 [Termld]: % increase in average elapsed time for update

transactions during index reorganisation (postings only).............................. 170
Fig 8-20 BASE1 [Dodd]: % increase in average elapsed time for update

transactions during index reorganisation (position data)...............................170
Fig 8-21 BASE1 [Termld]: % increase in average elapsed time for update

transactions during index reorganisation (position data)............................... 170
Fig 8-22 BASE1 [Dodd]: transaction average elapsed times in ms (postings only)...171
Fig 8-23 BASE1 [Termld]: transaction average elapsed times in ms (postings only)..171
Fig 8-24 BASE1 [Dodd]: transaction average elapsed times in ms (position data)....171

11

Fig 8-25 BASE1 [Termld]: transaction average elapsed times in ms (position data)..171
Fig 8-26 BASE1 [Dodd]: speedup for all transactions (postings only)......................172
Fig 8-27 BASE1 [Termld]: speedup for all transactions (postings only).....................172
Fig 8-28 BASE1 [Dodd]: speedup for all transactions (position data).......................172
Fig 8-29 BASE1 [Termld]: speedup for all transactions (position data).....................172
Fig 8-30 BASE1 [Dodd]: average elapsed time in ms for all transactions during

index reorganisation (postings only)... 173
Fig 8-31 BASE1 [Termld]: average elapsed time in ms for all transactions during

index reorganisation (postings only)... 173
Fig 8-32 BASE1 [Dodd]: average elapsed time in ms for all transactions during

index reorganisation (position data)..173
Fig 8-33 BASE1 [Termld]: average elapsed time in ms for all transactions during

index reorganisation (position data)...173
Fig 8-34 BASE 1 : combined transactions throughput for UPDATE 1

transaction set..174
Fig 8-35 B ASE1 : combined transactions throughput for UPDATE2

transaction set..174
Fig 8-36 BASE1 : combined transactions throughput for UPDATE3

transaction set..174
Fig 8-37 BASE1 : combined transactions throughput for UPDATE4

transaction set..174
Fig 8-38 BASE1 : combined transactions throughput for UPDATE

transaction set.. 174
Fig 8-39 BASE1 [Dodd]: load imbalance for all transactions (postings

only)... 175
Fig 8-40 BASE1 [Dodd]: load imbalance for all transactions (position

data)..175
Fig 8-41 BASE1 [Termld]: load imbalance for all transactions (postings

on ly).. 175
Fig 8-42 BASE1 [Termld]: load imbalance for all transactions (position

data)...175
Fig 8-43 BASE1 [Dodd]: index reorganisation elapsed time in seconds

(postings on ly).. 177
Fig 8-44 BASE1 [Dodd]: index reorganisation elapsed time in seconds

(position data)...177
Fig 8-45 BASE1 [Termld]: index reorganisation elapsed time in seconds

(postings on ly).. 177
Fig 8-46 BASE1 [Termld]: index reorganisation elapsed time in seconds

(position data)...177
Fig 8-47 BASE1 [Dodd]: index reorganisation speedup (postings only)................... 178
Fig 8-48 BASE1 [Dodd]: index reorganisation speedup (position data).....................178
Fig 8-49 BASE1 [Termld]: index reorganisation speedup (postings only)................. 178
Fig 8-50 BASE1 [Termld]: index reorganisation speedup (position data).................. 178
Fig 8-51 BASE1 [Dodd]: millions of postings handled during index

reorganisation...179
Fig 8-52 BASE1 [Termld]: millions of postings handled during index

reorganisation...179
Fig 8-53 BASE! [Dodd]: index reorganisation load imbalance (postings

only).. 179
Fig 8-54 BASE1 [Termld]: index reorganisation load imbalance (postings

only)...179
Fig 8-55 BASE1 [Dodd]: index reorganisation load imbalance (pos data)................ 180

12

180

.185

185

186

.186

.186

.186

187

.187

.187

.189

.189

189

.189

190
.190

.190

.191

.191

.191

.191

192

.192

192

.192

192

BASE1 [Termld]: index reorganisation load imbalance (postings
on ly)...
BASE1 [title only]: Type A retrieval efficiency, average elapsed time in
seconds for passage retrieval...
BASE1 [title only]: Type A retrieval efficiency, throughput
(queries/Hour) for passage retrieval...
BASE1 [title only]: Type A retrieval efficiency, passages processed
for passage retrieval..
BASE1: Type A retrieval efficiency, documents processed for
passage retrieval...
BASE1: Type A retrieval efficiency, load imbalance for passage
retrieval...
BASE1: Type A retrieval efficiency, scaleup for passage retrieval........
BASE1 [whole topic]: Type A retrieval efficiency, average elapsed
time in seconds for passage retrieval...
BASE1 [whole topic]: Type A retrieval efficiency, throughput for
passage retrieval.. .
BASE1 [whole topic]: Type A retrieval efficiency, passages
processed for passage retrieval..
BASE1 [title only]: Type B retrieval efficiency, average elapsed time in
seconds for passage retrieval..
BASE1 [title only]: Type B retrieval efficiency, throughput
(queries/hour) for passage retrieval..
BASE1: Type B retrieval efficiency, load imbalance on
passages processed for passage retrieval...
BASE1: Type B retrieval efficiency, imbalance on
documents processed for passage retrieval..
BASE1: Type B retrieval efficiency, computational load imbalance
for passage retrieval..
BASE1: Type B retrieval efficiency, speedup for passage retrieval........
BASE1: Type B retrieval efficiency, parallel efficiency for passage
retrieval...
BASE1 [whole topic]: Type B retrieval efficiency, average
elapsed time in seconds for passage retrieval..
BASE1 [whole topic]: Type B retrieval efficiency, throughput
(queries/hour) for passage retrieval..
BASE1 [title only]: Type C retrieval efficiency, average elapsed time in
seconds for passage retrieval..
BASE1 [title only]: Type C retrieval efficiency, throughput
(queries/hour) for passage retrieval..
BASE1 [title only]: Type C retrieval efficiency, passages processed
for passage retrieval..
BASE1 [title only]: Type C retrieval efficiency, documents
processed for passage retrieval..
BASE1 [title only]: Type C retrieval efficiency, load imbalance
for passage retrieval..
BASE1 [title only]: Type C retrieval efficiency, speedup for passage
retrieval...
BASE1 [title only]: Type C retrieval efficiency, parallel efficiency
for passage retrieval...

13

Fig 9-26 BASE1 [whole topic]: Type C retrieval efficiency, average elapsed
time in seconds for passage retrieval..192

Fig 9-27 BASE1 [whole topic]: Type C retrieval efficiency, throughput
(queries/hour) for passage retrieval...193

Fig 9-28 BASE1 [whole topic]: Type C retrieval efficiency, passages
processed for passage retrieval... 193

Fig 10-1 ZIFF-DAVIS [Replication]: add only average term selection
elapsed time in seconds (AP3000).. 202

Fig 10-2 ZIFF-DAVIS [Replication]: add remove average term selection
elapsed time in seconds (AP3000).. 202

Fig 10-3 ZIFF-DAVIS [Replication]: add reweight average term selection
elapsed time in seconds (AP3000)...202

Fig 10-4 ZIFF-DAVIS [Replication]: add only throughput in evaluations
per second (AP3000)...203

Fig 10-5 ZIFF-DAVIS [Replication]: add remove throughput in evaluations
per second (AP3000).. 203

Fig 10-6 ZIFF-DAVIS [Replication]: add reweight throughput in
evaluations per second (AP3000)..203

Fig 10-7 ZIFF-DAVIS [Replication]: add only load imbalance for term
selection (AP3000)... 204

Fig 10-8 ZIFF-DAVIS [Replication]: add remove load imbalance for term
selection (AP3000)... 204

Fig 10-9 ZIFF-DAVIS [Replication]: add reweight load imbalance for term
selection (AP3000)... 204

Fig 10-10 ZIFF-DAVIS [Replication]: Choose First Positive average outer
iterations for term selection (AP3000)..205

Fig 10-11 ZIFF-DAVIS [Replication]: Choose Some Positive average outer
iterations for term selection (AP3000)..205

Fig 10-12 ZIFF-DAVIS [Replication]: Find Best average outer iterations
for term selection (AP3000)... 205

Fig 10-13 ZIFF-DAVIS [Replication]: Find Best average overheads in
seconds for term selection (AP3000)...206

Fig 10-14 ZIFF-DAVIS [Replication]: Choose First Positive average
overheads in seconds for term selection (AP3000).......................................206

Fig 10-15 ZIFF-DAVIS [Replication]: Choose Some Positive average
overheads in seconds for term selection (AP3000)..206

Fig 10-16 ZIFF-DAVIS [Replication]: add only operation speedup for term
selection (AP3000).. 207

Fig 10-17 ZIFF-DAVIS [Replication]: add only parallel efficiency for term
selection (AP3000).. 207

Fig 10-18 ZIFF-DAVIS [Replication]: add remove operation speedup for
term selection (AP3000).. 207

Fig 10-19 ZIFF-DAVIS [Replication]: add remove operation parallel
efficiency for term selection (AP3000).. 207

Fig 10-20 ZIFF-DAVIS [Replication]: add reweight operation speedup for
term selection (AP3000).. 207

Fig 10-21 ZIFF-DAVIS [Replication]: add reweight operation parallel
efficiency for term selection (AP3000).. 207

Fig 10-22 ZIFF-DAVIS [Replication]: restricted iterations on CSP
algorithm, average elapsed time in seconds (AP3000).................................. 208

Fig 10-23 ZIFF-DAVIS [Replication]: restricted iterations on CSP
algorithm, throughput in evals per second (AP3000)....................................208

14

Fig 10-24 ZIFF-DAVIS [Replication]: restricted iterations on CSP
algorithm, average outer iterations (AP3000)... 209

Fig 10-25 ZIFF-DAVIS [Replication]: restricted iterations on CSP
algorithm, overheads in seconds (AP3000)... 209

Fig 10-26 ZIFF-DAVIS [Replicationj: restricted iterations on CSP
algorithm, speedup (AP3000)... 209

Fig 10-27 ZIFF-DAVIS [Replication]: restricted iterations on CSP
algorithm, parallel efficiency (AP3000).. 209

Fig 10-28 ZIFF-DAVIS [Replication]: restricted iterations on CSP
algorithm, load imbalance (AP3000).. 209

Fig 10-29 ZIFF-DAVIS [On-the-fly]: add only average term selection
elapsed time in seconds (Network)..211

Fig 10-30 ZIFF-DAVIS [On-the-fly]: add remove average term selection
elapsed time in seconds (Network)..211

Fig 10-31 ZIFF-DAVIS [On-the-fly]: add reweight average term selection
elapsed time in seconds (Network).. 211

Fig 10-32 ZIFF-DAVIS [On-the-fly]: add only average term selection
elapsed time in seconds (APIOOO).. 211

Fig 10-33 ZIFF-DAVIS [On-the-fly]: add only average overheads per outer
iteration for term selection (Network).. 212

Fig 10-34 ZIFF-DAVIS [On-the-fly]: add remove average overheads per
outer iteration for term selection (Network)... 212

Fig 10-35 ZIFF-DAVIS [On-the-fly]: add reweight average overheads per
outer iteration for term selection (Network).. 212

Fig 10-36 ZIFF-DAVIS [On-the-fly]: add only average overheads per
outer iteration for term selection (APIOOO)... 212

Fig 10-37 TREC8 Find Best experiments: average elapsed time in seconds for
term selection.. 220

Fig 10-38 TREC8 Find Best experiments: evals per second throughput for
term selection.. 220

Fig 10-39 TREC8 Find Best experiments: speedup for term selection...........................221
Fig 10-40 TREC8 Find Best experiments: parallel efficiency for term selection.......... 221
Fig 10-41 TREC8 Find Best experiments: load imbalance for term selection................221
Fig 10-42 TREC8 Find Best experiments: iteration overheads for term selection......... 221
Fig 11-1 Imbalance in evaluations for TREC8 routing experiments............................231
Fig 11-2 Imbalance in skipped words for TREC8 routing experiments..................... 231
Fig Al-1 Examples of build methods for distributed inverted files............................... 261
Fig A2-1 BASE1 [TermldJ: search elapsed time in seconds (sequential sort:

CF distribution)..262
Fig A2-2 BASE1 [TermldJ: search speedup (sequential sort: CF

distribution)...262
Fig A2-3 BASE1 [Termld]: search parallel efficiency (sequential sort: CF

distribution)... 262
Fig A2-4 BASE1 [Termld]: search load imbalance (sequential sort: CF

distribution)...262
Fig A2-5 BASE1 [Termld]: search elapsed time in seconds (sequential

sort: TF distribution)... 262
Fig A2-6 BASE1 [Termld]: search speedup (sequential sort: TF

distribution)...263
Fig A2-7 BASE1 [Termld]: search parallel efficiency (sequential sort: TF

distribution)...263

15

Fig A2-8 BASE1 [Termld]: search load imbalance (sequential sort: TF
distribution)...263

Fig A2-9. BASE1 [Termld]'. search throughput in queries/hour (CF and
TF distributions)... 263

Fig A3-1 ZIFF-DAVIS [On-the-fly]: speedup for term selection algorithms
(Network).. 264

Fig A3-2 ZIFF-DAVIS [On-the-fly]: parallel efficiency for tenu selection
algorithms (Network)..264

Fig A3-3 ZIFF-DAVIS [On-the-fly]: outer iterations to service tenu
selection (Network)..265

Fig A3-4 ZIFF-DAVIS [On-the-fly]: outer iterations to service tenu
selection (AP1000)... 265

Fig A4-1 BASE1 [Dodd]: parallel efficiency for update transactions
(postings only)... 266

Fig A4-2 BASE1 [Termld]: parallel efficiency for update transactions
(postings only)... 266

Fig A4-3 BASE1 [Dodd]: parallel efficiency for update transactions
(position data)... 266

Fig A4-4 BASE1 [Termld]: parallel efficiency for update transactions
(position data)... 266

Fig A4-5 BASE1 [Dodd]: parallel efficiency for all transactions (postings
only)... 266

Fig A4-6 BASE1 [Termld]: parallel efficiency for all transactions (postings
only)... 266

Fig A4-7 BASE1 [Dodd]: parallel efficiency for all transactions (position
data)... 266

Fig A4-8 BASE1 [Termld]: parallel efficiency for all transactions (position
data)... 266

Fig A4-9. BASE1 [Docld]: % increase from normal average transaction
elapsed time during index update (postings only).. 267

Fig A4-10 BASE1 [Dodd]: % increase from normal average transaction
elapsed time during index update (position data).. 267

Fig A4-11 BASE1 [Termld]: % increase from normal average transaction
elapsed time during index update (postings only).. 267

Fig A4-12 BASE1 [Termld]: % increase from normal average transaction
elapsed time during index update (position data).. 267

Fig A4-13 BASE1 [Docld]: Parallel efficiency for index reorganisation
(postings on ly)..267

Fig A4-14 BASE1 [Dodd]: Parallel efficiency for index reorganisation
(position data).. 267

Fig A4-15 BASE1 [Termld]: Parallel efficiency for index reorganisation
(postings only).. 267

Fig A4-16 BASE1 [Termld]: Parallel efficiency for index reorganisation
(position data).. 267

Fig A4-17 BASE1 [Dodd]: Accumulated total time for index reorganisation
(postings only).. 268

Fig A4-18 BASE1 [Dodd]: Accumulated total time for index reorganisation
(position da ta).. 268

Fig A4-19 BASE1 [Termld]: Accumulated total time for index reorganisation
(postings only).. 268

Fig A4-20 BASE1 [Termld]: Accumulated total time for index reorganisation
(position data).. 268

16

ACKNOWLEDGEMENTS

To both Prof. S.E. Robertson and Dr J.A. McCann for their excellent supervision and advice

over the course of this PhD. I am particularly grateful for Prof. Robertson's vast knowledge of

the Information Retrieval arena and Dr McCann's deep knowledge of performance and

parallelism.

To Dr David Hawking for many discussions and pointers in the area of parallelism for

Information Retrieval and for both suggesting and making the arrangements for a visiting

research studentship at the Australian National University in Canberra.

Thanks goes to Steve Walker who helped me understand much of the concepts behind the

Okapi system, particularly methods used for passage retrieval and routing/filtering.

To my parents W.W. MacFarlane and B. MacFarlane and the rest of my family for their

enthusiastic support during my studies.

To all the friends I made during my three month visit to the ANU and to all the staff in the

Computer Science Department for making my stay in Canberra a memorable one.

To AcSys, CAP at the ANU and Imperial College, London for the use of their Alpha Farm,

AP3000 and API 000 parallel machines. I would also like to thank the staff of these

institutions, in particular David Sitsky for his patient help and advice when it was needed.

To Microsoft Research, Cambridge for the use of their Pentium PII cluster "The Cambridge

Cluster" and to all the staff at MSR for six wonderful months in the Cambridge Lab.

To both the British Academy and the DFEE for providing me with a grant that enabled me to

complete my research.

To all my colleagues in room A420B at City University for their friendship.

17

I grant powers of discretion to the University Librarian to allow this thesis

to be copied in whole or in part without further reference to me. This

permission covers only single copies make for study purposes, subject to

normal conditions of acknowledgement

18

ABSTRACT

The study investigates the performance of parallel information retrieval (IR) algorithms
on different data distribution methods for Inverted files to identify which is the best for the
requirements of specific IR tasks. We define a data distribution method as a way of
distributing Inverted file data to local disks on a parallel machine. A data distribution method
may be on-the-fly (with one copy of the index held), replication (all nodes have all of the index)
or partitioning (data for index is split amongst nodes). Partitioning of inverted file data can be
done in many ways but we consider only two: by term (Termld) and by document {Dodd).
Termld partitioning is a type of partitioning which distributes unique word data to a single
partition, while D odd partitioning distributes unique document data to a single partition. We
consider the issue of improving the performance of standard IR algorithms on these data
distribution methods by looking at sequential job service not concurrent job service, e.g. we
consider the issue of sequential query service not concurrent query service. This methodology
rules out some distribution methods for some tasks studied. We consider the following main
tasks of IR: indexing, search, passage retrieval, inverted file update and query optimisation for
routing /filtering. We produce a synthetic performance model for each of these tasks for the
purposes of comparison. We have two subsidiary aims; one was to demonstrate portability of
our implemented data structures and algorithms on different parallel machines. Secondly, we
also study the possibility of increased retrieval effectiveness by examining a larger section of
the search space for both passage retrieval and routing/filtering. We consider the implications
of concurrency in updates on Inverted files. Our theoretical and empirical results show that in
most cases the D odd partitioning method is the best data distribution method apart from
routing/filtering where replication was found to be superior.

19

Chapter 1

Introduction

1.1 THESIS BACKGROUND

The growth of the Internet and the web has increased the interest in information

retrieval (IR) particularly on searching the web. While doubts have been cast on the availability

of search over the whole web (Lawrence and Giles, 1999), many web search engines still index

around 1.25 billion pages. There is a need to service queries over these very large collections

providing fast access for individual users as well as fast processing for large volumes of users.

Many information providers such as Dialog, Reuters or FT profile allow web access to their

collections and can expect an increasing interest in their services as the web grows.

Our motivation for the research to be presented in this thesis is to tackle some of the

problems of handling large data sets over a number of different 1R tasks. We define a task as

being a specific aspect of an IR system that has its own functionality. Some tasks may use

others (a super-set), but may also be discrete. The tasks to be studied are;

• Indexing.

• Probabilistic search.

• Passage retrieval.

• Routing/filtering.

• Index update.

Each of these tasks is defined individually below (see section 1.4). The effects of large data sets

on these tasks differ as some are more computationally intensive than others, e.g. indexing 500

million documents will take longer than serving a query over it. Some tasks are poorly

understood such as index update, particularly within the context of concurrent update and

query transaction processing.

Much of the previous work on large data sets uses parallel computing, an approach

that we advocate strongly (see chapter 2). Some of the most successful research in this area

concentrates on searching the data using inverted files with some interest in indexing. There

has been very little discussion on using parallel computing for the other tasks under

consideration, particularly within the context of data distribution methods. We define data

distribution as the allocation of inverted file data to nodes in a parallel computer. A survey of

data distribution methods for the IR tasks is needed within a holistic framework: a basic

question to ask is which is the best data distribution as a whole. We do this by examining data

20

distribution on each task in turn and stating which is the best method demonstrated by theory

and experience, building up the whole picture bit by bit.

1.2 AIM AND INTENTIONS OF THE THESIS

Our intentions in the thesis are as follows. We focus on textual IR and do not study

any other type of media such as speech, images or multimedia. We look at data distribution

methods as the impact of distribution methods on performance in parallel IR systems is a

significant factor. Our primary aim is to examine the issue of data distribution and performance

as a whole on more than one IR task (introduced above) by examining theoretical and empirical

results on inverted files using parallel computers. We consider the issue of speeding or scaling

up an algorithm in a batch job mode, such that only one discrete body of work is completed

within a given time period. The primary questions to be addressed in this thesis are as follows.

How can we apply parallel methods to IR systems in order to improve the performance and

efficiency of such systems? How does a given data distribution method affect the performance

of different IR tasks? What is the best data distribution method for a given task and for all

tasks?

We also have some secondary aims. One is to demonstrate portability in our

algorithms: much of the previous work done in parallel computing for IR was machine specific.

We investigate the possibility of enhanced retrieval effectiveness in passage retrieval and

routing/filtering by examining more of the search space in those tasks. The effect of query size

on probabilistic search is investigated. With respect to index update we examine the

practicalities of using partitioned inverted files and discuss the viability of such.

Because of time and resources we do not address some very important issues. We do

not examine the issue of concurrent query or transaction service in the probabilistic search or

passage retrieval tasks, and only address the issue theoretically in the index update tasks

(concurrent service does not apply to the routing/filtering or indexing tasks). We do not

examine the use of query processing optimisation techniques for speeding up query service

(Hawking, 1998), which has the side effect of reducing retrieval effectiveness depending on the

level of optimisation used. We do not directly address these issues empirically in the thesis but

we recognise their importance and discuss them where necessary.

1.3 DEFINITION OF DISTRIBUTION METHODS

We look at four distribution methods; on-the-fly distribution, replication and two types

of partitioning. Because of the criteria used some data distribution methods are invalid for some

21

tasks (this issue is tackled when the tasks are defined below). In order to explain the differences

between these distributions we use an abstract task, which is defined as follows. We have some

inverted file data D, together with some work W to be done on D (W can be any information

retrieval task e.g. index a document or do a search). When W is applied to D, we get a result R.

Any or all of the three variables D, W and R may be subdivided or paritioned in some way;

W \ D’ and R’ will denote some such partition or subset, which may nevertheless be the whole

of the orginal variable in some cases. We define some algorithmic steps on these variables

which are common to all distribution methods;

• A central node sends W’ plus any data needed to a number of i identical processor

nodes.

• The processor nodes apply W’ to D’ to produce results R’.

• The results R’ are sent back to the central node which prepares the final result R using

all R’ results.

It may help the reader to think of an inverted file (or more formally D) as a matrix with the

rows made up of term references and the columns made up of references to documents, see fig

1-1.

1

Terms

m

1
4-

Documents

n
♦

x x

X X X

X X X

X X X X

X X

X X XXX xxxxxx

X X

X X X

X X

XX X X X XX X X

Fig 1-1: Example matrix

In the example we have m tenus in the collection which invert n documents from the indexed

text. Relations between terms and documents are signified by an x. The matrix will be very

sparse, and some relations between documents and tenus or vice versa will be richer than

22

others. We will use this matrix representation to show how data is distributed in the methods to

be examined in this thesis.

1.3.1 On-the-fly distribution

We define on-the-fly distribution as the distribution of part of the data as it is required

by a given task. It is a dynamic data distribution method, all the others are static ones. The

method is very flexible in that we can distribute the whole matrix D or any D’ which could be

the whole or part of cither a row or column. The inverted file data is held in one location.

Consider the following example;

Fig 1-2: Example of abstract task on On-the-fly distribution

Note that the ellipse is a node, a box is a disk, and the dashed line box is the universe of our

processor nodes. The arrows signifies the direction of data exchange between nodes and or

disks. Our abstract task uses the following algorithmic steps. The work W is input and the data

associated with W (D’) is lifted from the inverted file and is packed up with a subset of W

(W’). Each of the i processor nodes each gets its own W’ and D’, and processes the data

producing R’. All results from i processor nodes (R’) are sent back to the central node which

prepares the final result R. The significant disadvantage with this method is that a large amount

of data must be distributed before computation can be done. The communication may swamp

any useful work, and this makes the distribution method impractical for many information

retrieval tasks.

1.3.2 Inverted file replication

Replication is the duplication of inverted file data on local disks of a parallel computer.

Each node in the system has access to all the data locally, therefore the need to transmit large

23

amounts of data is greatly reduced. The advantage of replication as against On-the-fly

distribution is that the high communication cost is much reduced without loss of flexibility. The

disadvantage is that space costs are considerably higher than any of the other distribution

methods discussed in this thesis. Consider the following example;

Fig 1-3: Example of abstract task on inverted file replication.

The key issue here is that all nodes have access to matrix D locally. In our abstract task we

send each processor node W’ together with some scheme for partitioning the matrix as required

by the given computation or task. We then produce R’ for each processor node and return the

result back to the central node to compute the final R as would be done with on-the-fly

distribution. A further advantage in having the whole matrix D available to the node is that load

can be re-balanced by exchanging subsets of W’ between the processor nodes, without having

to communicate any aspect of D.

1.3.3 Inverted file partitioning

Fig 1-4: Example of abstract task on inverted file partitioning.

24

Partitioning is the fragmentation of inverted file data over local disks in a parallel

computer (see fig 1-4). In the example given in figure 1-4 each node has access to its own

subset of D, D’ and which can only be accessed by that node. In terms of the abstract task,

each node manipulates a subset of D’, D” in order to service work W o rW ’. The node services

W or W’ depending on the task and partitioning type. The advantage of partitioning is that the

space costs are lower than replication, but it is a static distribution method and is therefore not

as flexible as either replication or On-the-fly distribution of inverted files. The process of

distribution is also much more complex than inverted file replication.

There are two main inverted file partitioning methods (Jeong and Omiecinski, 1995):

by term identifier (Permid) and by document identifier (Dodd). These partitioning methods are

orthogonal to each other. With Docld partitioning the terms for a single document are placed

on one disk, therefore postings for the same term may be held on multiple disks (see fig 1-5).

1

Terms

m

Documents

x x

X X

X X

X X X

X

X X XXX

X

X

X

xxxxxx

J
-* : «-

XX X X X

X

X

X

X

XX X X

n
>

Fig 1-5: Example D odd matrix partitioning

We assume for arguments sake that we have three partitions in our example. In the example

documents 1 to i-1 are given to node 1, documents i to j-1 are given to node 2 and documents j

to n are given to node 3. The demarcation of the partitions is signified by the dotted line. With

respect to our abstract task, we need to distribute W (if W is a query) to all partitions as all

may have data for any or all of the terms in W. With Termld partitioning however, all postings

for a given term are on one disk, therefore postings for the same document may be on multiple

disks (see fig 1-6). In the example terms 1 to i-1 are given to node 1, terms i to j-1 are given to

node 2 and terms j to n are given to node three. With respect to our abstract task and our

25

specific example given above on Dodd, nodes get there own unique subset of work W’ as each

nodes has its set of unique tenus.

Documents

n
->

Terms

X X X X

X X X

X X X X X X

X X X X X X

X X

X X XXX xxxxxx XX X X X XX X X

m

Fig 1-6: Example Termld matrix partitioning

1.4 INFORMATION RETRIEVAL TASKS STUDIED

We have defined a task as being a specific aspect of an IR system. We do not attempt

to examine every task in IR as the field is large. Thesaurus construction, clustering and

hypertext creation tasks are among the notable exceptions which we do not investigate. We

largely concentrate on what we regard as the main tasks in IR such as indexing and search: we

define a main task as one with which an IR system using inverted files would be unable to

function if such did not exist. The other (non-main) tasks studied can be built using the core

tasks and extended as required. For example index update can be built from search and index

functionality, while routing/filtering and passage retrieval can be built from search

functionality. We chose the non-main tasks based on the amount of research done on them in

the past using parallel techniques (see chapter 2). Time restrictions prevented us from

investigating many other tasks of IR. Each of the tasks to be studied in this thesis is defined

below.

1.4.1 The indexing task

The indexing task is the process of taking raw text and building an index over that text

using some criteria such as removal of stop words and stemming, etc. The index we built is the

inverted file method (described in chapter 3). The process of indexing is one of the most

computationally intensive aspects of IR requiring vast CPU, memory and disk resources (but is

26

done only once and incremented thereafter). It is therefore a prime candidate for the application

of parallelism. We consider partitioning only for this task. On-thc-fly distribution is irrelevant

(our consideration of distribution is on inverted file data not raw text). Replicated indexes can

be produced by indexing on one processor and copying the data to the nodes.

1.4.2 The probabilistic search task

The probabilistic search task is the process of servicing queries on inverted files to

produce a ranked list of documents using a term weighting scheme such as that derived by

Robertson/ Sparck Jones (1976). Query processing in this context is very fast, which is why

inverted files in some form have become the dominant storage technique in IR. We will show

that it is still possible to increase the speed of query processing further using parallelism, and

by doing so increase the system throughput. With respect to distribution methods, replication is

not a suitable method for probabilistic search (with the possible exception of concurrent query

service) while on-the-fly would restrict efficiency due to the extra communication overhead. It

is likely that this extra overhead would outweigh any gain made by parallelism. Our discussion

on the probabilistic search task is restricted to partitioning methods only.

1.4.3 The index update task

The index update task consists of a number of different aspects. We consider the issue

of transaction processing where a transaction is either a document to be inserted or a

probabilistic search request. We define index update as data to be periodically added to the

index when a buffer with document insertions has exceeded some memory limit. This requires

some form of index reorganisation which must be done concurrently with transaction

processing to prevent delays: we assume that transaction processing cannot be suspended and

specify a requirement that queries should be serviced as soon as possible. It should be noted

that we consider insertions only, not deletions or modifications. To do otherwise would

complicate the process further and in any case most text collections are archival in nature (the

web being a notable exception). Index maintenance is a computationally intensive activity and

we study the use of parallelism to speed the process up and to make it viable in a transaction

processing context. We study partitioning methods only for the same reasons as given for the

probabilistic search task.

1.4.4 The passage retrieval task

The passage retrieval task as applied in this thesis is from Okapi experiments

conducted within the TREC conference framework, in particular Okapi at TREC-3 (Robertson

27

et al, 1995). We classify passage retrieval as being the retrieval of part of a document that is

most likely to be of interest to a user. It should be noted that this includes the whole document

itself. Retrieval is done on the basis of text atoms, which can be paragraphs (Robertson et al,

1995), blocks, sentences, words (Kaszkiel and Zobel, 1997) or even characters. A passage is

usually defined as a contiguous sequence of atoms, and new passages may be generated

iteratively from old ones by adding or removing blocks of atoms in increments. Once the text

atom and its incremental level are defined we can either define static or arbitrary lengths for

passages based on the atom and the increment size. A fixed length passage starts from a given

atom position, and computes the passage weight using n atoms (Callan, 1994). An arbitrary

length passage mechanism relaxes this constraint and allows computation of passage weight for

a passage of arbitrary length. This is rather expensive computationally (Robertson et al, 1995;

Kaszkiel and Zobcl, 1997) requiring 0(n3) steps. We can compromise between the two methods

and have maximum length passages, reducing the time complexity to 0(n2): this is the method

we use. A further refinement is the choice of increment. We may disallow overlapping passages

to reduce the computation even further, but we do compute on overlapping passages. We

determine both passages and atoms at indexing time. Passage processing is very

computationally intensive. For example it is reported by Kaszkiel and Zobel (1997) that a run

on 2 GBs of text with 50 queries using their passage retrieval techniques may take about one

week on a SPARC 20. There is obviously much room for improvement, and parallel computing

has the potential to reduce this time cost. We study partitioning methods only for the same

reasons as given for the probabilistic search task.

1.4.5 The routing/filtering task

The idea behind information filtering is to disseminate incoming documents to users

who require them. Users have long term information needs which may be satisfied by newly

published documents. A method for information filtering is to take the documents that have

been marked relevant by the user in the past and apply a relevance feedback mechanism to

obtain a set of terms that can be applied to the new documents. We use TREC definitions of

routing and filtering (Harman, 1996). In routing we provide the user with the top n documents,

while in filtering we make a binary decision on n documents as to which will be presented to the

user. There are a number of filtering techniques: batch filtering that takes n documents as a

batch and adaptive filtering where documents are considered one at a time, with the possibility

of feedback after each one. We consider batch filtering only. In Robertson et al (1995) it was

stated that an alternative to some term ranking methods described would be to "evaluate every

possible combination of terms on a training set and use some performance evaluation measure

28

to determine which combination is best". Such a method is very computationally intensive, and

certainly not practicable even with parallel machinery. For example, it was reported in Okapi at

TREC-4 (Robertson et al, 1996), that term selection on 50 terms for 25 topics took between 4

and 15 hours on a Sun SS10 (for 50 topics with 200 terms the elapsed time can be up to a

week) depending on the scoring/selection method used. Given this computational complexity,

there is plenty of scope for further improvement. A further incentive was the success Okapi has

had at TREC using these query optimisation techniques. Is it possible to examine more of the

search space using parallelism and thereby increase retrieval effectiveness? We examine all the

data distribution techniques theoretically, but have implemented only on-the-fly and replication

methods for reasons that will become apparent.

1.5 MAIN FINDINGS OF THE THESIS

We outline the main findings of this thesis based on the aims and objectives declared

above and the information retrieval tasks we consider;

• For most tasks, D odd partitioning is the best data distribution method for improving

retrieval efficiency performance using parallelism. In particular, parallel computing

using this partitioning method can make the use of inverted files for the index update

task viable, depending on insertion rate.

• The only exception to the core finding was that replication was a better data distribution

method for routing/filtering task.

• There is no evidence that searching more of a given space yields better retrieval

effectiveness in the passage retrieval and routing/filtering tasks.

1.6 OUTLINE OF THE THESIS

The thesis is divided into eleven chapters and includes appendices and a glossary for

reference. In the next chapter we give some background in the use of parallel computing for IR,

identifying various areas of concern that have not yet been addressed. The methods, data and

performance metrics used throughout the thesis are described in chapter 3. We describe various

design and implementation details in chapter 4 by giving an extended description of the parallel

IR system written for this thesis, namely PLIERS. In chapter 5 we use a synthetic model of

performance in order to compare the performance of the various tasks theoretically and discuss

the practicality of data distribution methods for those tasks. Relevant data distribution methods

are identified for particular tasks that are then used for the purposes of the thesis. The rest of

the thesis discusses empirical results for the most part. The general format is to discuss a data

29

distribution method using some initial data set, and then to describe our TREC-8 experiments

using the best data distribution method found either empirically or by theory. Index update is

the exception to this as there is no relevant TREC track or task for that aspect of our thesis.

Chapter 6 describes the performance of indexing on the partitioning methods in detail, while

chapter 7 describes probabilistic search on those same methods. This is followed by a

discussion on index update in chapter 8 that not only describes results on the two partitioning

methods under consideration, but also gives a discussion on the problems of concurrency

control mechanisms in a transaction service on inverted files. Chapter 9 and 10 discusses

passage retrieval and rouling/filtering results with more of an emphasis on retrieval

effectiveness, particularly within the context of examining more of the search space. We give a

summary and conclusion at the end of the thesis that tackles the issues of choosing an approach

for a task and further research. A bibliography of referenced text is also provided.

Footnote: Some of the material presented in this thesis has been published earlier. This includes the review of

parallel computing in IR (MacFarlane et al, 1997), PLIERS system description chapter (MacFarlane et al,

1999a), the probabilistic search chapter (MacFarlane et al, 2000b), and the theoretical part of the index update

chapter (MacFarlane et al, 1996). All these publications were refereed. We also have had material published in

unrefereed TREC publications (MacFarlane et al, 1999b; MacFarlane et al, 2000a) which makes up part of the

index, probabilistic search, passage retrieval and routing/filtering chapters. All these papers were written by the

author, with advice from his supervisors Prof. S.E. Robertson and Dr. J.A. McCann.

30

Chapter 2

Review Of Parallel Computing in Information Retrieval

2.1 INTRODUCTION

In this chapter we chart the progress of the use of parallel computing in information

retrieval published in MacFarlane et al (1997) and updated here, following on from a review of

the subject by Rasmussen (1992). We review important work in the past. We describe parallel

architectures used for parallel IR systems. We analyse the different approaches to parallel IR

using a classification due to Rasmussen (1992). Examples of parallel IR systems or methods

are given in a case studies section. The motivation for the use of parallel computing in IR is an

important strand in this chapter, in particular when and when not to use parallel systems. The

retrieval models used in parallel IR systems are described. We give a summary at the end, and

conclude by identifying areas not tackled in previous research to be addressed in the main body

of this thesis.

2.2. PARALLEL ARCHITECTURES USED IN IR SYSTEMS

2.2.1 Parallel architecture classification

Flynn (Flynn, 1972) describes a taxonomy for classifying parallel architectures. A

number of criticisms have been levelled at the taxonomy, e.g. there is no treatment of

input/output and the instruction set used is ignored. In the context of IR, ignoring input/outpul

is a particular problem (see section 2.2.3). In spite of these limitations the taxonomy has

become the most popular method for describing parallel architectures and continues to be

widely used in the field of parallel computing research including parallel IR. An alternative

taxonomy is given by (Hockney and Jesshop, 1988). The Flynn taxonomy uses the concept of

streams (Flynn, 1972) which are a sequence of items operated on by a CPU. These streams can

either be instructions to the CPU or data to be manipulated by the instructions. We therefore

have four broad classes of architecture:

(a) SISD - Single Instruction Single Data Stream;

(b) MISD - Multiple Instruction Single Data Stream;

(c) SIMD - Single Instruction Multiple Data Stream;

(d) MIMD - Multiple Instruction Multiple Data Stream.

31

The first of these, SISD is the normal sequential von Neumann architecture machine

which has dominated computing since its inception. The MISD class is controversial: some

argue that it is a null class and does not usefully describe any architecture (Deitel, 1990;

Tanenbaum, 1990) while others assert that systolic arrays can be placed in this class (Hwang,

1993). We address the MISD class in our discussion on special parallel hardware below. We

will ignore the SISD class for the rest of the chapter.

The SIMD class describes an architecture in which the same instructions operate on

different data in parallel. It is therefore widely known as data parallel computing. Instructions

are broadcast to n processors in the architecture which operate on the data held in that

processor. Examples of this type of architecture are the ICL/CPP DAP (Bale et al, 1990) and

Thinking Machines CM-2 (Hwang, 1993): the DAP is described in more detail below. The

architecture had been dominant in the use of parallel computing in information retrieval until

recently.

a) Shared Memory

b) Distributed Memory

Fig 2-1. Types of memory organisation examples

The M1MD class describes an architecture in which processors independently execute

different instructions on different data. The programs which run on this class of machine are

therefore a great deal more complex than one could envisage on any of the other architectures.

32

There is a wide variety of this class of architecture including those where processors share the

same memory and others in which processors have their own memory. These are known are

shared memory and distributed memory architectures (see examples in fig 2-1). Each has its

own subdivision which we will not attempt to describe here.

With the former, interprocessor communication is done through concurrency control

mechanisms such as semaphores, while the latter uses message passing. There is also a hybrid

architecture known as distributed shared memory (DSM) where programs see a single memory,

but access is serviced by message passing. An example of a machine with the M1MD class

architecture is the Fujitsu API000 which is described in section 2.2.2 below.

It should be noted that a further class of architecture exists which does not fit well into

Flynn's classification. Special-Purpose Hardware has been built to accommodate IR systems

(Hollaar, 1991) including associative memories, finite state machines and cellular arrays

(Hollaar, 1992). Some of this work has been in building special purpose parallel architectures

(Hurson et al, 1990) for text retrieval and we include it in the review for completeness

2.2.2 Parallel architectures used in IR

We now turn to specific machine architectures which have been used for parallel IR

systems. We give an example of each type of architecture from section 2.2.1; the DAP, Fujitsu

API000, and special parallel hardware. We also discuss the growing impact of networked

workstation technology. More information on various architectures can be found in Rasmussen

(Rasmussen, 1992).

I). DAP (Distributed Array o f Processors). The CPP (formally ICL) DAP is a SIMD

class architecture. The DAP organisation (Bale et al, 1990) is an array of 1-bit processing

elements (PEs) arranged in a 32 by 32 matrix for the 500 series and 64 by 64 for the 600

series; 1024 and 4096 PE's in total respectively. The 600 series has four times the memory and

processing power of the 500 series. Each processor is connected to its north, south, east and

west neighbour processors (known as a NEWS grid) and to the row and column of the matrix

by a bus system. Each processor has at least 32 Kbits of its own local memory. The ICL DAP

needed a mainframe as a front end, but workstations can be used for current varieties. The

architecture has a master control unit (MCU) which broadcasts instructions and data to the

array to work on and also obtains the results from the array. The DAP has very fast I/O

capabilities of up to 50 Mbytes per second to overcome the I/O bottleneck (the I/O problem in

parallel computing for IR is discussed in section 2.2.3 below). The DAP is successfully used

by the DapText system described by (Rcddaway, 1991) and is included in the case studies

section (2.6.1) below. Reuters use this system to provide Text Retrieval services to their

33

customers. DapText has been implemented on both the 500 and 600 series of the DAP. Other

work includes a British Library project for using the DAP in IR, described in (Pogue and

Willett, 1987a and 1987b; Carroll et al, 1988; Pogue et al, 1988)

II) . Fujitsu AP1000. The Fujitsu AP1000 is a MIMD distributed memory architecture

with up to 1,024 SPARC processors or cells which are interconnected using a two dimensional

torus network (this network looks rather like a flattened donut). Each cell can support from 16

Mbytes to 64 Mbytes per cell. Data can be moved in and out very quickly using a 50Mbyte per

second broadcast network. To overcome the I/O bottleneck, the HiDIOS file system is useful

with a load rate in excess of 50 Mbytes per second. The API000 has global reduction facilities

which are useful for term weighting calculations. Work on IR using the API 000 was pursued

at the Australian National University through the PADRE system (Hawking, 1994 and 1995:

Hawking and Thistlewaite, 1994 and 1996; Bailey and Hawking, 1996; Hawking et al, 1995),

which has evolved through the PADDY (Hawking, 1990 and 1991) and FTR (Hawking and

Bailey 1993) systems. These systems are discussed in more detail in the case studies section

(2.6) below.

III) . Special parallel hardware. A number of different special purpose parallel

hardware architectures have been built for pattern matching in 1R. The reader is referred to

(Hollaar, 1992) and (Hurson et al, 1990) for more detailed information. One of the

architectures, systolic arrays, can be classed under MISD. Systolic arrays (an example of

cellular arrays) work by pattern matching characters every clock cycle in a pipeline where the

target text and query travel in opposite directions. The associate memory architecture uses

memory chips as the comparison devices, therefore patterns can be matched in parallel in

actual memory. Finite State Automata (FSA) use transition tables over single cell comparator

chips. The argument made for the use of these systems is that normal computing components

are not very efficient at character comparison and therefore are not particularly good for

pattern matching in text retrieval. Hence special purpose components are preferable to

conventional computers since they offer a faster throughput for queries. This author does not

agree with this argument. Inverted files have been shown to provide very efficient query service

(at the cost of extra storage) for reasons which will become clear below. It is also very doubtful

that these specially made chips could ever compete in price with general purpose chips: the cost

of production and manufacturing CPUs is very expensive. We therefore do not see a future for

these special purpose systems in IR. This is consistent with DeWitt & Gray's opinion that the

future development of parallel systems will depend on standard components (DeWitt and Gray,

1992).

34

IV). Networked Workstation Technology. The current trend in parallel computing is to

use a group of networked workstations or PCs, rather than special purpose machines. A great

deal of interest has been generated in programming environments such as PVM (Sunderam,

1990) and standards such as MPI (Dongarra et al, 1996). One particular system discussed in

this review (MARS) uses networked workstation technology for its hardware platform (Yount

et al, 1991).The growth of distributed parallel processing has dealt a severe blow to many

specialist parallel computer manufacturers such as Kendall Square Research, MassPar,

Thinking Machines and AMT. Most have gone bankrupt apart from AMT which has

metamorphosed CPP. DeWitt and Gray's opinion quoted above, on the development of parallel

systems using standard components, is reinforced by the networked workstation technology

factor. The trend towards workstation networks in parallelism has had significant impact on

parallel IR systems (see section 2.6.4 below).

2.2.3 I/O implications o f different architectures

One of the main qualities of IR is that in the main it is I/O bound rather than compute

bound. This means that more time can be spent on reading in data from disk than actually

doing computation. Thus a problem occurs where efficiency of the system is reduced because

the data cannot be read in fast enough to service the computation. This problem is known as the

I/O bottleneck and it is one that is shared with the area of Parallel database systems (DeWitt

and Gray, 1992). In consequence, many of the systems mentioned above have very impressive

I/O rates to overcome this I/O bottleneck. One architecture that addresses the issue is the

shared nothing architecture described by DeWitt and Gray (1992). This architecture is classed

under MIMD, and has a structure where CPUs have their own local disks to read data from.

This reduces network traffic and disk contention considerably because data sharing is reduced

to sub-sets of the whole data (which can be very large in database systems). Index maintenance

costs can also be reduced. Tomasic and Garica-Molina (1992;1993a) make a very strong case

for the use of shared nothing. We use the shared nothing architecture for experiments to be

described in this thesis.

However such is not the whole picture. There are some IR computations which are

compute bound and require considerable CPU resources. Examples are very large search

spaces for passage retrieval and for query modification after relevance feedback, as used in

Okapi at TREC experiments (Robertson et al, 1995). In such cases fast I/O cannot make much

difference to the overall efficiency.

35

2.3 MOTIVATION FOR PARALLEL IR SYSTEMS

On the assumption that we want to do more and/or do it faster, there are two main

reasons for using parallel computing in general. The first is that the speed of a processor is

ultimately limited by the speed of light (Bell, 1992), when the maximum possible

miniaturisation for components on a silicon chip has been achieved. The second is that the cost

of placing silicon in smaller and smaller areas is very high in both the design and

manufacturing of processors. The second limitation occurs long before the first and is therefore

the major consideration.

The performance of IR systems is measured by the retrieval effectiveness and retrieval

efficiency they provide (Frakes, 1992). Retrieval efficiency is the measure of the time taken by

an IR system to do a computation on the database, although this usually means search it. The

relative merits of the gain in retrieval efficiency by using parallel IR systems against their

sequential counterparts can be measured by the speedup/efficiency and throughput measures

defined in chapter 3. Users not only want fast and interactive access to documents, they also

want to be presented with documents which are relevant to their needs; this is measured by the

retrieval effectiveness of the IR system. The most commonly used measures for retrieval

effectiveness are recall and precision (see chapter 3). Parallel IR systems have a place in

providing retrieval efficiency for users and may well help in providing extra retrieval

effectiveness.

The use of parallel computing specifically for IR has been quite controversial. Both

Stone (1987) and Salton and Buckley (1988) have argued that an inverted file algorithm

running on a sequential machine can outperform a signature file algorithm running on a parallel

machine. The discussion in both papers originate from the work done by Stanfill and Kahlc on

the Seed system (Stanfill and Kahle, 1986). Since the Seed system uses surrogate coding (a

response time of 2 minutes is stated for an example query), a sequential system using inverted

files would in theory be able to offer a much faster response time to queries. This is because

fewer comparisons and much less I/O is needed. Stone (1987) compares the performance of an

inverted file on a single CM-2 node, while Salton and Buckley (1988) use the example of a Sun

3 to produce their theoretical results. Of the two studies Stone's goes much further. Stone put

forward an alternative parallel algorithm to be used on inverted files in order to run the

sequential inverted file system in a more efficient manner. Salton and Buckley (1988) are rather

more negative and suggest that "the global vector matching systems developed over the past 25

years for serial computing devices appear more attractive in most existing text processing

situations". It is hard to accept or reject this statement without knowing what they mean by

36

most existing text processing situations, and without any analysis as to whether the global

vector matching systems could also gain from parallelism. In response Stanfill, Thau and Waltz

(1989) report an 80 fold performance advantage for a newer CM-2 against a Sun 4, which

rather lessens the impact of the Sal ton and Buckley (1988) paper. Ultimately Stone has been

proved to be correct, since most parallel IR systems use inverted files. The set merge on

inverted lists can be computationally very intensive.

Four main reasons for applying parallel computers to IR have been suggested

(Rasmussen, 1991): these are to improve response times, search larger databases, use superior

algorithms and reduce search cost. We discuss each reason in turn below.

2.3.1 Response times

In situations where a large number of users need access to the system, a sequential IR

system may not be able to offer the required performance of the application. In general when

large numbers of users are logged on, the response time to the user is likely to be greatly

increased. A related point is that of throughput: throughput is the number of queries or

insertions which can pass through the system in a given time period. We may consider the use

of query processing acceleration techniques with a resultant loss in retrieval effectiveness

(Hawking, 1998) or parallel computing to improve response times. Parallel computation has

the potential to offer faster response times for individual queries without loss in retrieval

effectiveness and offers a greater throughput for queries and insertions as more memory

resources are available. In extreme circumstances we may consider using both techniques to

speed up processing. Response time is also dependant on database size in conjunction with

multiple query service.

2.3.2 Very large databases

The response to user queries in very large databases (e.g. multiple Gigabyte) are likely

to degrade particularly for those which have a reasonable rate of growth. In principle parallel

systems tend to offer much better scaleup than sequential systems. Scaleup is defined in

chapter 3. A query response time on a small IR system using a small database should be the

same for a large IR system using a large database. It is important to introduce a note of caution

as this point. This author does not believe that parallel computing can be usefully applied at

this juncture to small databases with few or single user base (Stone, 1987). The emphasis in

this review is very much on large scale text databases.

37

2.3.3 Superior algorithms

We stated in section 2.3.2 that we do not believe that parallel computing can be

usefully applied to small text databases at this point. It may be the case at some time in the

future that a given algorithm which requires more computation to complete its task will be able

to offer a superior retrieval effectiveness performance in terms of precision and recall than

previously implemented algorithms. For example there are a number of extended boolean

models (Fox et al, 1992) which offer very good precision/recall at the cost of extra computation

(which is high in the case of the P-NORM model because of the exponentiation operations

required). Some in fact argue that extra computation will deliver much better results. Skillicom

(1995b) argues that regular expressions offer more powerful query capabilities than other

searches. MacLeod and Robertson (1991) suggest that generally speaking the "most effective

algorithms are among the least efficient".

There has been some debate on the merits of extra effort to achieve a better level of

retrieval effectiveness. Blair and Maron (1985) evaluated a large operational full-text IR

system over a six month period, and proposed a hypothesis in which deterioration of recall is a

function of increasing database size. They argue that extra human effort at the indexing stage

is needed to overcome this recall deterioration. Salton (1986) takes issue with their arguments,

and they reply (1990). Although recall deterioration with file size must be regarded as

unproven (and is particularly hard to prove empirically), the possibility both that it occurs and

that it may be alleviated by more complex and more effective search algorithms is worth

investigation.

A further issue arises from the very large search spaces which have been investigated

in the Okapi at TREC research (Robertson et al, 1995). Because such a search space is so

large it is unlikely that even parallel machinery will be able to explore all of it. A time

complexity of 0(n3) is reported for unoptimized passage retrieval (Robertson et al, 1995),

where n is the number of text atoms. The search space for term selection on routing or filtering

queries is so large no order value can be stated. Chapters 9 and 10 give results of our

experiments on these search spaces using parallel computing methods by searching part of the

overall space.

2.3.4 Search cost

Stanfill et al (1989) assert the cost effectiveness of an IR system is the ratio of

database size to search cost, i.e. the resources used to search the database. Using the

assumptions that database search is linear with the size of the database, speedup is linear for

those algorithms which keep processors busy and resource costs (such as communication

38

overheads) are static, Stanfill et al (1989) show that cost effectiveness asymptotically

approaches a level of optimal cost effectiveness. By increasing the size of the database we can

move the level of optimal cost effectiveness to a more favourable figure. It is stated that for a

database of 1 Gigabyte the improvement in cost effectiveness is 100 fold, but for a 100

Gigabyte database the improvement is 10,000. However as Hawking (1991) points out a higher

figure needs to be treated with caution because hardware (the CM-2) can only use a limited

number of Data Vaults (the CM-2 storage system), which restricts the amount of text, let alone

index information that can be stored. Hardware factors therefore limit the relevance of this cost

effectiveness metric.

2.4. APPROACHES TO PARALLEL IR

In this section we describe approaches to parallel information retrieval using a

classification due to Rasmussen (1992), influenced by Faloutsos's classification of access

methods for text (Faloutsos, 1985). The classification does not differentiate between a

particular algorithm and storage method. It is found that they tend to be bound together quite

tightly in parallel IR systems. By algorithm we mean method of searching on the storage

method and by storage method we mean organisation of the data on disk. The interaction

between machine type and the classification is discussed in each of the sections below. The

methods discussed are pattern matching, signatures/surrogate coding, two-phase search,

inverted files, clustering, connectionist approaches and other miscellaneous approaches.

Some issues need to be addressed with respect to each of the algorithms in the

classification. Firstly the assignment of tasks to processors will determine the level of

performance gain over sequential systems: it cannot be taken for granted that using parallelism

will automatically provide enhanced performance. The placement of tasks will also determine

the level of interprocessor communication: an unavoidable overhead and one which may greatly

degrade algorithm performance if data or task placement is mis-handled. Data distribution

methods have a significant effect on task assignment and the subsequent level of interprocessor

communication for a particular algorithm. Secondly there is the granularity of parallelism for

an algorithm. Granularity can either be fine, coarse or mixed grain, meaning small, large or

variable computation sizes: a computational unit being a single 'atom' of work which can be

done by a processor. The type of query parallelism available in an algorithm is also very

important: that is, the method of parallelism used to service user queries. Intra-query

parallelism is parallelism within queries, that is a single query is distributed amongst

processors. Inter-query parallelism is parallelism among queries, that is a number of queries

39

are serviced concurrently. The concepts of data partitioning, granularity and query parallelism

will be discussed with respect to each of the classes.

2.4.1 Pattern matching

Pattern matching is the method of searching the raw text in a given text corpus with a

string query. There are a number of methods for matching patterns efficiently including the

Knuth-Morris-Pratt and Boyer-Moore string searches (Wirth, 1986) and variations of these. In

a system without parallelism, pattern matching normally involves the sequential scanning of

every document in the system: no index is used. Methods include left hand truncation, variable

length don't care (VLDC), a proposed implementation of the "computing as compression

theory" SP algorithm (Wolff, 1994a), proximity searches and prc-computed patterns

(Skillicom, 1995 a and 1995b). We describe below parallel methods which have been

implemented or are proposed for pattern matching algorithms.

Using an example we can describe the operation of pattern match in parallel

computing. Firstly we partition the target text among our processors. We then broadcast the

whole pattern to all processors and the pattern is applied in parallel to each partition of the text.

Results from the processors are sent back to the user for inspection. This scenario is rather

simplistic, but it does give a flavour of the operation. A number of issues are thrown up by this

example, in particular the operation of the algorithm on SIMD and MIMD architectures. The

issue of how load balancing is affected by the implementation of the algorithm is important.

With MIMD systems we can allow pattern matching on different processors to proceed

independently of each other. The implementation on SIMD systems is slightly more

problematic. Each pattern match needs to work in lock step on every processor: patterns may

need to advance a computed distance. Unless we keep this computed distance in a local

variable, a set of processors have to wait until others have 'caught up' in the computed distance

and our load balance is reduced together with further loss in the efficiency within the chosen

pattern matching algorithm. However with the computed distance we are likely to finish pattern

matching on some processors, leading to a gradual reduction in processor efficiency as

processors complete their tasks: this is a problem shared with MIMD systems. An alternative

method for SIMD systems described by Pogue and Willett (1987a) is to broadcast individual

characters to processors one by one which match them in that order. As each match is a made

the presence of a hit is recorded, if and only if the previous character in the sequence was

matched.

More complex patterns can be applied to text corpus in the same manner as the MIMD

and Pogue & Willett algorithms. With MIMD we simply apply a utility such as grep or fgrep

40

to each text partition on every processor in parallel. An example is the PADDY system

(Hawking, 1992) which provides tools for the use of a regular expression library on each cell

(processor) of a Fujitsu AP1000. An example of an algorithm implemented on SIMD systems

which support complex patterns is variable length don't care (VLDC). For VLDC, prefix and

suffix patterns are recorded: the presence of a word delimiter between the result set of prefixes

and suffixes is then identified.

The SP pattern match (Wolff, 1994a) would use a completely different method. The

SP algorithm works by broadcasting each character in the query, from left to right, to each

character in the text corpus to make a true or false match. Given that it is impossible to have a

processor for every character in the database, we can assume that each processor is given a set

of characters. A tree structure is built up which records the probabilities of matches being

useful, in decreasing order (matches nearer the root will have a higher probability of

usefulness). The parallelism in the SP algorithm lies in the broadcast of characters and the

ability to create and manipulate the tree structure for each text partition. A time complexity of

O(Q) is claimed where Q is the size of the query pattern. It should be noted that the SP theory

is controversial, and there has been heated argument as to the usefulness of it in practice

(Wolff, 1994b; Stephen and Mather, 1994; Stephen, 1994). We are unable to comment on its

usability in practical situations until an empirical study has been done using a parallel

implementation of the SP search algorithm.

Hawking et al (1995) describes a method of parallel proximity searches on the PADRE

system. A match set for each string in a query is created: this match set contains pointers to the

first character of each instance of the pattern. Using some proximity value we merge these

match sets by comparing the pointers and recording those pointers which meet the proximity

value criteria. The set creation and merges can be done in parallel for each portion of text being

searched in their respective cells. If documents are too large to fit in a single cell's memory, the

cells need to communicate in order to complete the matching process: this inter-processor

communication would reduce efficiency.

Skillicom (1995a; 1995b) describes a method of search which he asserts can be defined

in terms of language recognition. The proposed algorithm uses a set of pre-computed patterns.

Membership of textual data to these patterns is pre-computed in order to identify search

patterns that have some common attributes. If membership of text to a pre-computcd pattern is

found it is placed in segments. The text would be partitioned across a given set of processors,

the pre-computed pattern applied to the text and the search would access only those segments

which are capable of matching a query. It is stated that where text is indexed as trees, regular

expressions can be executed in logarithmic time complexity on a parallel computer.

41

An important theme in the algorithms described above is the distribution of text in one

of two ways: either by text boundary (say documents) or by character (documents may reside

over several processors). If text boundaries are crossed, more inter-processor communication is

needed as processors need to exchange information. We can remove this problem by keeping

documents as a whole in the processors. But this strategy itself has two main problems: the

document may be too big to fit in a processor's main memory, and given that documents are

likely to be of widely varying sizes a problem called data skew is observed. Data skew is

caused when some processors complete their computations faster than others, which remain

idle until the whole computation has finished. This can cause a loss of efficiency, in the worse

case degrading the computation to that of sequential time complexity. Hawking (1994) has

defined a measure of load imbalance LI in order to understand the effects of data skew on the

pattern matching computation (this metric is defined formally in chapter 3). A method to

overcome the problem is to try to arrange the documents in such a way as to reduce this LI

value. A simple example of this is to place as many small documents on the same processor as

possible. Where practical, large documents are placed in neighbouring processors to reduce

inter-processor costs while smaller documents are used to fill up any extra memory. Breaking

up the document into pages or paragraphs could also be useful.

The interaction between machine type and the classification tends to be based on the

granularity of the computation. In the case of SIMD systems the granularity is that of a

character, which is the finest grain that can possibly be used. With MIMD systems the

granularity tends to be much coarser, but in fact is mixed granularity since documents are of

varying sizes. The method supports intra-query parallelism and may be able to support inter-

query parallelism with suitable processing, for example merging user queries and submitting

them as a batch: we do not know of any systems which have implemented this.

The pattern matching algorithms are very search intensive, but they have a low storage

cost and allow different types of searches such as left hand truncation which are difficult to

implement in the algorithms classified below as the original text is needed.

2.4.2 Signature /surrogate coding

Text signatures are document surrogates which are generated by hashing terms on one

or more bits of a fixed sized bit pattern (Faloutsos, 1985). Once these signatures have been

generated they can be distributed to processors and searched in parallel. The search is done by

applying the same hashing function to the query, as was applied to the documents. The search

is therefore a fast bit comparison between the query and document surrogates. Pogue and

Willett (1987a) describe an alternative method where integer values of the bit positions are

42

broadcast one by one to the processors. The pioneering work described by Stanfill and Kahle

on the Connection Machine has already been briefly mentioned in section 2.3 (Stanfill and

Kahle,1986; Waltz, 1987). Other work includes a parallel Bit-Sliced Signature File (BSSF)

method described by Panagopoulos and Faloutsos (1994) and Frame-Sliced Partitioned Parallel

Signature Files described by Grandi et al (1992). Detailed descriptions of these different

methods are given below.

Before we describe systems which use signatures it would be useful to review signature

files (see fig 2-2). Signature file can be viewed as matrices where the rows represent document

signatures and the columns represent individual bit positions of the signature across documents.

We therefore have a number of partitioning methods for parallel computing on this matrix. The

first, horizontal partitioning, represents row parallelism where signatures are compared in

parallel (fig 2-2a). The second, vertical partitioning, represents column parallelism where

sections of the signatures are compared rather than the whole (fig 2-2b). Vertical partitioning

can be done across the collection or by a frame: a subset of the collection (fig 2-2c). A hybrid

policy of vertical and horizontal partitioning can also be used. How these partitioning methods

work in practice will become clearer in the discussion below.

The Seed system described by Stanfill and Kahle (1986) uses the horizontal method

(fig 2-2a) for partitioning the signatures. Seed uses a S1MD architecture, in this case the

Connection Machine CM-2. The program works by loading signatures into memory,

broadcasting the query signature to the processors to compare in parallel and retrieving the

results. In theory it is possible to load a document signature in every processor, but Stanfill and

Kahle assert that for a 512 bit signature "a limit of 15 to 30 words is reasonable". Therefore

the system creates a number of signatures and spreads them across a number of processors if

this upper limit on term to signature size is exceeded. Thus document sizes in the corpus have a

direct effect on how many signature comparisons can be executed in a given search. The

system allows the use of relevance feedback to reformulate a query. Reported results include a

running time of 50ms for a 200 term query on a 112 Megabyte database. Estimates for a 15

Gigablye database are also given with a running time of 2 minutes for a 25 term query and 3

minutes for a 20,000 term query. The latter estimates cast doubt on the usefulness of the

system in interactive environments when very large databases are searched (compare these

results with ours in chapter 7). This method of search has also been used in Transputer

machines (Walden and Sere, 1989).

Panagopoulos and Faloutsos (1994) point out that the signature file for a very large

database using horizontal partitioning may not fit in main memory, which has implications for

their use in interactive applications: the Seed estimates given above bear out this argument.

43

They therefore propose a Bit-Sliced Signature File (BSSF) which is based on vertical

partitioning (fig 2-2b) on the bit level. The method would work by storing the signature file

matrix by columns rather than rows. Each term in a query is hashed to a signature. The hashed

positions of the query are identified and only those relevant column slices (or bit-slices) are

fetched in to main memory and compared.

document 1

document 2

document 3

document x

Signature bit size <-----------------------------»

+ 1 1 0 0 1 0 1 1 0

2-2a - Horizontal partitioning

docum ent 1 ------ * 1 0 0 1 0 1 1 0

docum ent 2 ------ *1 1 1 1 0 1 1 0

docum ent 3 — ------ ► 1 0 1 1 0 1 1 1

docum ent x ------ * 1 1 0 1 1 1 1 0

2-2b - Vertical partitioning

document 1 1 0 0 1 0 1 1

document 2 l 1 1 0 J_ 1 _0

document 3 T 0 1 1 0 T 1 ~T

document x 1 0 1 1 1 1 0

2-2c - Frame partitioning

Fig 2-2. Forms of parallelism in signature files

A processor has a given number of bits with which to store a subset of the bit-slice. The

algorithm would loop through these bits and compare subsets of the bit-slice in parallel. Where

the bit-slices fit in main memory a total fetch policy can be used: where they do not, a partial

fetch policy would be used, i.e. a subset of the bit-sliced identified from the query hashing. The

proposed method would work on a SIMD architecture such as the Connection Machine CM-2.

44

Estimates for performance of the method include a response time of 2 seconds or less for

databases up to the size of 128 Gigabytes using a CM-2 with 64K processors.

The work described by Grandi et al (1992) describes a hybrid method that combines

both horizontal and vertical partitioning methods which they assert are suitable for

implementation on parallel machines. The use of the shared nothing architecture described by

DeWitt and Gray (1992) is recommended. The architecture of the system described is divided

by three dimensions: frames (which are subsets of a signature), partitions (a horizontal

fragment of frames) and blocks (a horizontal fragment of partitions). The signature file is

stored in terms of the frames, each disk containing a subset of the frames (fig 2-2c). Thus

frames are stored and can be searched in parallel while other frames are being serviced. Hence

the classification of the method as being Frame-Sliced Partitioned parallel signature files. Since

all frames would not be needed by a search, the method can allow inter-query parallelism as

well as intra-query parallelism. While the method does overcome some of the limitations of

those described above, this is at the cost of a great deal of extra complexity. This complexity in

parallel systems should not be underestimated. Comparative results with the systems in this

class are not available.

From the above discussion we can assert that the signature partitioning method

interacts with the query parallelism directly allowable. Horizontal partitioning allows only intra

query parallelism directly, while vertical partitioning and the hybrid method allow inter and

intra query parallelism directly. Inter query parallelism could be supported indirectly if batch

queries were used; although such would be problematic (see the discussion on false drops

below). The granularity of signature files can be either signature, bit-slice or frame-slice and bit

level granularity can also be used if the special hardware to work at that level is available.

The advantage of the method is that it is rather amenable to implementation on parallel

computers. Since the signature matrix defined above has a regular shape we can reduce data

skew quite considerably, although we may not be able to eliminate it completely given that

signatures files may not fit into main memory. There is also a much lower storage overhead of

about 10% compared with 50% to 300% found in inverted files (Faloutsos, 1985). However a

serious drawback is associated with the method, the problem of false drops. Since different

terms may hash to the same signature bits, collisions will often occur between query and

document terms. A number of criticisms of the method have been made therefore in using the

signature file method in an operational environment (Salton and Buckley, 1988), in particular

that signatures cannot support sophisticated term weighting schemes. The subsequent effect of

false drops on precision and recall can be profound. A further serious problem is that position

information is lost, therefore proximity operations are unavailable in the class.

45

2.4.3 Two-phase search

This method has been proposed to overcome the high search cost of pattern matching

and the low retrieval effectiveness of the signature method. The first phase of the search

compares a signature version of the query with document signatures to create a hit list. The text

arising from this hit list is then searched with the required patterns to eliminate the false drops

and produce the final document result set. Since the number of documents pattern matched is

greatly reduced, the increase in speed and effectiveness makes the method valuable. Parallelism

can be used in both phases of the search. Two-phase searches have been implemented on SIMD

machines at Sheffield University (Pogue and Willett, 1987a and 1987b; Carroll et al, 1988)

and on a MIMD transputer network by Cringean et al (1988; 1989; 1990; 1991 a; 199lb).

Panagopoulos and Faloutsos (1994) also recommend the method's use when using signature

files. Any of the signature and pattern matching methods described above could be used.

An example of the two-phase search can best be illustrated by looking at one particular

system, the transputer network program described by Cringean et al (1988; 1989; 1990; 199la;

1991b). This system uses the process farm approach to parallelism to increase efficiency on the

more computationally intensive second phase. The horizontal partitioning method is used for

the first phase signature comparison. In this approach a single fanner distributes work to a

number of worker processes who do the search. In the first phase the query signature is

compared with document signatures (pre-loaded into memory) on a number of Transputers

attached to the root transputer and a hit list of documents are recorded. In the second phase the

fanner distributes the documents in the hit list to the workers, receiving the final document

result set from them. A triple chain of Transputers was found to be the most effective topology.

Data skew in the second phase is reduced since a worker is given more work on completion of a

search: waiting for all workers to search a given set of documents would reduce the system's

efficiency drastically. However it should be noted that documents may need to pass through

several processors before reaching the target worker, because of the grid layout of transputer

networks. The cost in extra communication and lost computation in routing processors affects

the overall efficiency of the system. In the event this was found to be a significant problem:

Cringean et al (1991b) state that a substantial increase in communication speeds would be

needed for the method to achieve its full potential. A further interesting result was that a more

efficient signature search on the first phase increased the amount of pattern matching needed in

the second phase.

The granularity of two phase search is rather mixed depending on signatures’

granularity in the first phase and documents in the second phase. Given that documents are

irregular structures and signatures are regular, data skew is more prominent in the second

46

phase of the search. The method supports intra-query parallelism for both phases. Inter-query

parallelism however, could be used in the first phase if Frame-Sliced Partitioned Parallel

Signature Files were used and for both phases if queries were submitted as batches. The

interaction between machine type and the classification relates to the signature partitioning

method for the first phase and computation granularity for the second phase.

2.4.4 Inverted file

Most commercial and academic IR systems use inverted files. The reason for this is

that until recently query processing has been given priority over insertions, and inverted files

provide much faster searches than other methods such as pattern matching and signatures. This

is because the indexing eliminates the need for searches on many irrelevant terms. However the

generation and maintenance of inverted files is very expensive and this makes its use

problematic in applications where insertions are frequent. As stated in section 2.4.2 the storage

requirements for inverted files are far costlier than any of the other methods reviewed in this

chapter. In our description of the method below, we pay particular attention to the data

partitioning schemes introduced in chapter 1.

The most prominent of parallel IR systems have used inversion as their storage

technique (Reddaway, 1991; Stanfill et al, 1989; Aalsbersberg and Sijstermans, 1990; Stanfill

and Thau, 1991; Stanfill, 1992; Linoff and Stanfill, 1993; Massand and Stanfill, 1994;

Hawking, 1994). We briefly review the structure of an inverted file (Faloutsos, 1985): an index

or dictionary file contains a list of keywords in the collection, number of documents in which

that keyword occurs and a pointer to a document list: a postings file or inverted list contains the

document list for all the keywords and may in some cases contain position information for each

keyword in each document.

Jeong and Omiecinski (1995) discuss the effect partitioning in inverted files has on the

performance of multiple disk systems. They advocate a shared everything approach as opposed

to a shared nothing described in section 2.2.3. Multiple disks are used to exploit I/O

parallelism. The use of a multiprocessor with shared memory is assumed. The two partitioning

methods described in chapter 1 above are considered. The results produced by simulations are

that Termld partitioning is best when the term distribution in the query is less skewed (or more

uniform) and D odd partitioning is best when term distribution is more skewed (or less

uniform). D odd partitioning sacrifices more I/O and space in order to ensure better load

balancing in a more skewed query environment. When query term distribution is a little less

skewed the postings for a term can be retrieved faster since disk access times for terms are

more evenly distributed. When more skewed the load balancing of the machine will be affected

47

by large disk access times for some terms. Docld partitioning avoids the latter problem by

providing constant disk access times so that large access times for terms with very large

postings are masked. This advantage is lost in a less skewed environment and the cost is

greater because multiple disks have to be consulted in Docld partitioning (and the term

accesses can be done in parallel). Inter-query parallelism is more difficult to service with Dodd

partitioning: each query term must take its turn on the disk queue. Term collection information

is often needed for weighting calculations: this has an implication for the efficiency of term

weighting using D odd partitioning (see section 2.5.3). Based on their simulations, Jeong and

Omiecinski recommend that the Shared Everything architecture be used in medium sized Text

Retrieval systems or as components in a larger shared nothing machine.

Tomasic and Garcia-Molina (1992;1993a) describe hybrid methods of partitioning

inverted files on distributed shared nothing systems. They assume the existence of multiple

disks per single CPU. They classify distribution methods as: Disk, I/O Bus, Host and System

organisations. The Disk and System organisations are equivalent to Docld and Termld

partitioning methods respectively. In the I/O bus organisation documents are distributed across

I/O buses and inverted: this creates one inverted file per I/O bus. In the Host organisation

documents are distributed to CPUs as per Docld partitioning, but the inversion is spread across

the disks connected to the CPU. Where one I/O bus exists per CPU the I/O bus organisation is

equivalent to the Host organisation. Simulations of full-text system and an abstract service

were done using all the organisations described: in their results the Host organisation appeared

to performance well for full-text systems, while the System organisation (or Termld

partitioning) performed better on abstracts.

We can divide parallel systems which have implemented inverted files into two main

camps, those which use Termld partitioning (Reddaway, 1991; Stanfill et al 1989; Ribeiro-

Neto et al, 1999) and those which use D odd partitioning (Hawking, 1996; Aalbersberg &

Sijstermans, 1990; Stanfill & Thau 1991; Hollaar, 1991). None of these groups have done

comparative studies to ascertain which of the partitioning methods is best. Most of the research

done on parallelism for inverted files has been done on the search task. Some work in the area

of selective dissemination of information (SDI) has been done by Kapaleaswaran and

Rajaraman (1990) using a subject division rather than data partitioning method.

The granularity of inverted files is based on the postings of the inverted list. Therefore

granularity is much finer than the approaches described above (if we discount the possible use

of special hardware to match at the bit level). One of the main reasons for the success of SIMD

machines in parallel IR, is that they are very good at computing with this level of granularity.

SIMD machines cannot normally handle inter query parallelism with inverted files, but a

48

method of using several DAPs connected together has been put forward (Reddaway, 1991)

which would overcome this limitation. Three systems which use inverted files are described in

the case studies section (2.6) in more detail. More recent work at TREC can also be found in

the case studies section.

2.4.5 Clustering

levels of vertical

Fig 2-3. Cluster parallelism

Clustering is a method of identifying similar documents, based on a given similarity

method, e.g. distance in vector space using the cosine function. The documents are organised

into groups or clusters, which in turn can consist of a single centroid and document vectors

belonging to that cluster (Salton and Bergmark, 1981). There is parallelism in the clusters as

well as between them: we term this horizontal and within-horizontal partitioning. Very fine

grain parallelism (e.g. at the posting level) is also available within document vectors. A further

issue is the type of cluster: they can be either hierarchic or non-hierarchic. Hierarchic methods

introduce a further level of parallelism: we term this vertical partitioning. Fig 2-3 shows the

forms of parallelism available in clustering. It should be noted that clusters can be overlapping

and non-overlapping. We describe below parallel methods for generating and searching in the

clustering method.

The generation of clusters are computationally very intensive: orders of 0(n2) to 0(n5)

are not unknown. This makes their implementation on sequential machines problematic.

49

MacLeod and Robertson (1991) describe a neural network algorithm for document clustering

using non-hierarchic methods. Neural networks are inherently parallel: Networks can be

divided in layers and nodes within layers which allow parallelism in two directions. Parallelism

is used in the MacLeod algorithm when each document vector is compared with the current set

of clusters, iterating until a suitable cluster has been found or learned.

Rasmussen and Willett (1989) describe parallel computing for various hierarchic

agglomerative clustering methods. Agglomerative clustering consists of building the tree

bottom up. Hierarchical clustering can be represented by binary trees where nodes are clusters

and the position in the binary tree represents the similarity measure between objects. Three

algorithms are used for clustering; SLINK, Prim-Dijkstra and Ward. The SLINK algorithm

only has parallelism in the calculation of the current row of the distance matrix. The Prim-

Dijkstra algorithm is almost entirely parallel except for storage of link information. The Ward

algorithm uses parallelism the on nearest neighbour method, i.e. identify a chain of related

objects concurrently. The parallel SLINK algorithm performed less efficiently than its

sequential counterpart, considerable slowdown figures being recorded. The parallel Prim-

Dijkstra performed much better in relation to its sequential counterpart with speedups of 3.6 to

6.0 recorded on 4096 1-bit processing elements. The Ward speedups ranged from 2.9 to 4.0.

They compared the results from an IBM 3083/BX3 mainframe against the ICL DAP and

conclude that parallelism can provide significant speedups over serial systems in this type of

clustering for large datasets.

While there are clearly defined partitioning methods for clustering, the arbitrary shapes

of each of the levels will effect the search efficiency of the algorithm, e.g. clusters do not have

the same number of document vectors or a hierarchy may not have regular binary tree like

structure. Organising the clusters (and hierarchies where necessary) is therefore essential for

the efficient search in this method. Frieder and Siegelmann (1993) formally argue that an

optimal algorithm for assigning clusters to processors is NP complete and is therefore

unusable. They propose a heuristic using genetic algorithms to address the problem. The

algorithm terminates when either all document allocations are equal or after 1000 generations.

Ollier researchers propose more conventional techniques.

Ozkarahan (1991) discusses search on non-hierarchic document clusters on the RAP.3

system. The clusters of document vectors and a centroid representing the vectors are distributed

to a number of processors. A query vector is applied to the centroids, which if successful

applies a second search to the document vectors in that cluster. While some regard this as

useful, it is unlikely that the method would be able to compete in speed with inverted files. In

any case the insertion of documents is likely to be prohibitively expensive. The RAP.3 system

50

deviates from other systems in this review as the integrated multimedia application area is

addressed.

Sharma (1989) describes a generic model for parallel IR using clustering techniques

for both non-hierarchical and hierarchical methods. The hypercube topology is used together

with dedicated disks for each node in the hypercube (i.e. shared nothing). The key is to

distribute a subset of document clusters, to get the best load balance on search. Two schemes

for partitioning clusters on a hypercube are described: one said to be for increasing retrieval

efficiency and one of increasing retrieval effectiveness. In the efficiency algorithm closely

related clusters are assigned to different sub-cubes such that the number of documents is equal

in all sub-cubes. Within a sub-cube a cluster is spread across nodes, with the centroid assigned

to one node. In the effectiveness algorithm clusters are recursively distributed across sub-cubes,

each sub-cube has a smaller dimension than its parent. A hierarchical clustering algorithm is

used, mapping the hierarchy to the hypercube. All levels of parallelism for clustering are used

in these proposed schemes. The search consists of the broadcast of a query and the application

of the query to the document database. In the efficiency algorithm the query is received at each

node and comparisons are done concurrently. Similarity values for clusters (centroids) are

collected and sorted and sent to a designated node which chooses the highest ranked clusters;

these are requested from the relevant locations. In the effectiveness algorithm the query is

received at each node and comparisons are done concurrently, similarity values at all levels of

the hierarchy being calculated. The results are transmitted up the hierarchy and on this basis

the highest ranked documents are chosen. The simulation shows that as cluster levels increase,

response times in the efficiency scheme remain static, while in the effectiveness scheme time

increases dramatically. In this case Amdahl's law (the asymptotic limit for the computation)

hits the efficiency scheme at 128 processors and the effectiveness scheme at 1024 processors.

The granularity of the clustering approach can vary; either the cluster or the vector or

even elements of a vector if an array processor such as the DAP is available. Both inter and

intra query parallelism for search are available in the method. It is difficult to comment on the

interaction between the machine type and the method, because of the multiplicity of clustering

algorithms available. The arbitrary shape of the clustering algorithm determines the level of

data skew and hence the search efficiency. Because of the expense of generating clusters, it is

unlikely to be able to compete with inverted files: unless some benefit in retrieval efficiency can

be demonstrated.

51

2.4.6 Connectionist approaches

These approaches use a network model to represent information in an IR system

(Rasmussen, 1992). Many are related to the 'neural network’ and 'spreading activation' areas of

computation. They are inherently parallel, but extremely complex and poorly understood.

Because of this their implementation on parallel computers is difficult and little work has been

done in the area: research has concentrated on sequential implementations as a consequence

(Kwok, 1989; Kwok and Grunfield, 1994). The MacLeod and Robertson algorithm (1991)

described in section 2.4.5 which uses neural networks can also be placed concurrently in this

class. It should be noted that these researchers take a very different approach to others

described in this review. Because of the complexity of these methods we do not attempt to

describe data partitioning, granularity or query parallelism for connectionist approaches.

One particular connectionist system is the PTHOMAS system described by Oddy and

Balakrishnan (1991) and has been implemented on the Connection Machine. The theoretical

idea behind PTHOMAS is to represent a holistic view of the documents and their relationships.

The method uses a network structure of nodes (documents, authors, terms) where the arcs

(edges) between these entities represent a relationship in the index and thesaurus. The network

is a global graph representing the universe of the database. The user sees a context graph which

is a subset of the global graph and is created by user action. Various component graphs may be

discarded in the user interaction with the system. The algorithm used is computationally very

intensive: a database with 10,000 document abstracts would create a network with 1 million

nodes/edges. Oddy and Balakrishnan have not addressed the issue of how to implement these

ideas/methods realistically for large collections and therefore we do not see the PTHOMAS as

being a practical proposition for the foreseeable future.

2.4.7 Other approaches

There are a number of different approaches to parallel information retrieval which do

not fit easily into the classes described above. We therefore describe below some other work,

both practical and theoretical. These include vector processing, hybrid inversion, functional

programming and relational database. Given the variety of approaches in this section we will

not attempt to describe the interaction between architecture, the algorithms and the types of

query parallelism used.

I). Vector Processing. Stewart and Willett (1987) describe an algorithm for nearest

neighbour search using a multi-dimensional binary search tree, using networked

microprocessors. Documents are represented by vectors, as is the query: the vector contains

identifiers of terms in that document. Document collection is represented as a binary tree with

52

the nodes associated with document term vectors (all nodes at the same level of the tree having

the same vector) and the leaves having buckets with documents sets. Similar vectors are

inserted in the left tree and dissimilar are inserted in the right tree. Query search is done in the

same manner. An uppcrbound value is set and the algorithm backtracks using the value to find

relevant buckets. The search is bounded by 0((logN)k) where k is a collection dependant

constant. The level of k determines the amount of backtracking and hence the efficiency of the

search. A special simulation language for the simulation of queuing systems was used to

produce the results. Search is done by broadcasting a query down the tree, the answer being

broadcast back up in the opposite direction: backtracking to nodes in the tree is done where

necessary. The "Overlap co-efficient" is used as the similarity measure. The level of speedup

deterioration was found to vary widely and was collection dependant.

Efraimidis et al (1995) describe a system called FIRE which uses a transputer based

supercomputer to implement a parallel IR system based on the vector space model. They use an

automatically constructed thesaurus based on a connected components evaluation algorithm.

Their basic approach is either to keep the vectors in main memory or to load vectors in chunks,

and then to compare them with a query using the cosine similarity function. There is no

discussion of vector storage and insertion costs with respect static or dynamic text databases.

An argument for their method could be that the insertion of a document vector to the end of a

vector file is much less expensive than that of posting information to an inverted file and would

therefore be good for dynamic text environments. They refer to Stone (1987) who discusses the

offset of computation against storage and maintenance costs in detail, but without justifying the

method of storing vectors separately, it is hard to see how the FIRE system avoids falling foul

of his arguments. A sequential inverted file system may outperform their parallel vector

processing system.

Some vector processing models use reduced dimensionality methods which focus on

semantic structure of documents in order to increase retrieval effectiveness. In such cases a

single document vector is used to represent documents as the methods do not keep keywords in

their representation (hence inverted files cannot be used). These methods are highly parallel as

processing of the query vector over document vectors is completely independent. Such a

method is Latent Semantic Indexing (LSI) first proposed by Deerwester et al (1990). Letsche

and Berry (1997) describe a system called LSI++ which uses a back end processor method to

hide parallelism from the programmer. The backend system uses a master/slave process

topology broadcasting the query vector to the processors and collecting results using a global

sort. A collection of 24 SPARC5 machines were used, connected by fast Ethernet. Good

speedup was demonstrated on a 100k record USENET collection reducing times from serial

53

processing by nearly 180 times. A variation of LSI is DSIR (Rungsawang et al, 1999) which

uses word co-occurrence to find document vectors which are close to queries vectors in a

'semantic space'. They use the same master/slave topology as Letsche and Berry (1997) using a

network of Pentium processors implemented on the PVM system. Their results show problems

with NFS bottlenecks when distributing document vectors and load imbalance from poorly

distributed computations.

II) . Hybrid Inversion. Yount et al (1991) describe the MARS system which they have

implemented to store medical records. The system contains 850,000 medical records, 2.5

million medical references and 500 million indexed words. The system runs in a standard

UNIX distributed environment, with the machines linked together by Ethernet. The system uses

the shared nothing architecture. The MARS system uses many of the concepts and mechanisms

of distributed systems such as threads, remote procedure calls (RPC), external data

representation (XDR) and the client/server model, etc. Each text word is classed as an instance,

and is stored in one of the archives which are distributed amongst servers residing on different

machines. The instance (or posting) is a fundamental unit for locating and manipulating

records. The instances have a segment id number (SID) to identify a host, a record id (RID) for

a given record and word count (WC) to locate individual elements of a word in a record. The

system uses a hybrid inversion method utilising a dynamically changing hash function to

identify word to word id and inverse mappings.

III) . Functional Programming. Deerwester et al (1990) describe an architecture which

uses a server as an interpreter for a functional programming language that uses lazy evaluation.

Clients can make requests to multiple servers, therefore the language can be evaluated in

parallel. In particular the processing of inverted lists, which can in some cases be very large, is

addressed. It is stated that without lazy evaluation of lists much extra computation is needed

where examination of intermediate results suggests that processing of the lists is unnecessary.

The implications for space complexity are also significant, where the intermediate results need

to be stored. They state that functional programming is a useful way to implement the lazy

evaluation of lists to prevent the extra time and space complexity which may occur with certain

queries.

IV) . Relational Databases. A great deal of research has been done on using parallel

computing for relational databases (DeWitt and Gray, 1992). Experiments using parallel

relational databases for have been reported at TREC-3 (Grossman et al, 1995) and TREC-4

(Grossman et al, 1996). The guiding principle of this work is that while parallel relational

databases are common, parallel IR systems are rare. An inverted file structure is modelled

using relations and keyword searches are done using SQL. The parallel database machine used

54

is the AT&T DBC-1012 Model 4 (formerly Teradata). The I/O penalty of using relational

databases in 1R is addressed by using a query reduction technique based on term selectivity,

which according to the results given do not affect precision and recall adversely. Clustered

primary keys are used to reduce I/O even further, by placing inversion data on contiguous data

pages. However, it is unlikely that parallel relational databases would be able to compete in

speed with parallel IR systems because of the superior I/O performance of the latter. The I/O

performance reduction occurs because the amount of space needed to store the index is

dramatically increased. The increase is due to the way data has to be normalised in order to be

placed in relations. Whereas inverted files may need only 1 disk access to read data for a term,

relational databases will need to read in more data and also require more disk accesses.

2.4.8 Summary o f parallel IR approaches

We have examined a wide variety of approaches which have had a varying degree of

success in speeding up search using parallelism. For search it is difficult to see how, of all the

techniques studied, the inverted file method can be surpassed with respect to response time for

users. We therefore intend to use that technique in research described in this thesis. Much of

the research concentrates on the search task with some discussion on the indexing and

routing/filtering tasks. We believe it would be productive to look at a wider range of tasks and

examine the issue of data distribution methods and performance. It is particularly useful to look

at the index update task to see if parallelism can provide improvement in an area where

inverted file technology has been weak.

2.5 RETRIEVAL MODELS USED IN PARALLEL IR SYSTEMS

Information retrieval systems use models in order to extract relevant information from

text databases. The application of these different models can have an effect on both the

retrieval effectiveness and efficiency of parallel IR systems, it is therefore important to consider

them. We divide the models up into boolean, proximity, term weighting and regular

expressions. They are discussed in turn below.

2.5.1 Boolean model

The boolean model is dominant in commercial IR systems, and most of the mainstream

systems described in this review offer facilities for users to submit boolean queries. They have

been implemented on systems such as the CM-2 (Stanfill and Kahle, 1986) using the signature

method, the DAP (Reddaway, 1991) and POOMA (Aalbersberg and Sijstermans, 1990)

55

machines using the inverted file method and PADRE (Hawking and Bailey, 1995) using the

pattern matching method. PADRE allows union, intersection and difference operations on

match sets, but these are equivalent to OR, AND and AND NOT boolean operations. The

MARS (Yount et al, 1991) system also uses the boolean model as the basis for its query

language. Parallel systems cannot improve the effectiveness of queries using this model, and

depend on the user to generate effective queries. Naive users can find generating effective

queries using the boolean model very difficult. Retrieval efficiency could be increased by

parallelism, whether it be increase in speed on pattern match or fast set manipulation on

inverted lists.

2.5.2 Proximity models

A very useful extension to the boolean model is proximity operations. They are used to

find text atoms which are within a specified distance of each other, e.g. next to each other

(adjacent), in the same sentence or within a given character distance. Among the systems which

use proximity models are the DAP (Reddaway, 1991), pattern matching in PADRE (Hawking

and Bailey, 1995) and MARS (Yount et al, 1991). The PADRE system provides the most

detailed information on the proximity operations it allows. These include followed by (fby), not

followed by (not fby) and a combined proximity/weight scheme called Z-mode (znear)

(Hawking and Thistlewaite, 1996). The fby operation finds matches on terms which are within

a given number of characters of each other. The not fby operation finds text in which terms are

not within a given distance. The znear operation uses proximity spans to calculate relevance

scores (we can therefore place this operation concurrently in term weighting models). As with

boolean models, improvements in retrieval effectiveness using parallel computing are not

found: but retrieval efficiency could be improved if overall efficiency is not reduced by extra

interprocessor communication or load imbalance.

2.5.3 Term weighting models

One of the main methods used to improve retrieval effectiveness is to utilise one of the

myriad term weighting schemes that are available. The dominant scheme had been the vector

processing model with systems such as RAP.3 (Ozkarahan, 1991), DowQuest (Stanfill and

Thau, 1991), Transputer Networks (Cringean et al, 1988; Efraimidis et al, 1995) and POOMA

(Aalbersberg and Sijstermans, 1990), all using it in various forms. More recently variations of

BM25 term weighting model have been used (Hawking et al, 1999), the technique we use

throughout this thesis. PADRE (Hawking and Thistlewaite, 1996) offers a number of weighting

schemes based on the inverse document frequency (IDF) measure. These models may use

56

unnormalised term weighting (Hawking and Thistlewaite, 1996) or normalised (Hawking,

1992; Stanfill and Thau, 1991; Aalbersberg and Sijslermans, 1990; Efraimidis et al, 1995).

Cringean et al (1988) do not specify the normalisation method. Others such as Reddaway

(1991) and Jeong and Omiecinski (1995) do not specify a weighting scheme in their discussion

of term scoring in their papers. A very important issue has a critical effect on the efficiency of

a term weighting scheme on a parallel architecture: some schemes require collection

information to calculate the weights. If this information does not reside in one place, i.e. a

processor and its resident disk, the parallel machine needs to use interprocessor communication

to merge the data held separately into a single figure. This bottleneck could affect the efficiency

of the term weighting calculation. Many parallel machines provide facilities to do just this, e.g.

the DAP (Bale et al, 1990) and Fujitsu AP1000 (Hawking, 1995) in the form of global network

operations. Where this special hardware does not exist, the intcrprocessor communication may

reduce efficiency. Unlike the two models discussed above, parallel implementation of term

weighting may allow an improved level of retrieval effectiveness if the improvement in

efficiency allows weighting methods to be used which are computationally more complex.

2.5.4 Regular expressions

Regular expressions give a user the ability to search for complex patterns in a single

statement. They can be very computationally intensive and are best implemented on raw text.

Examples of work using or proposing regular expression in pattern matching can be found in

Pogue and Willett (1987), Hawking et al (1995) and Skillicom (1995b). They can be

undoubtedly very powerful in the hands of a very experienced user, but naive users may find

them difficult to use effectively. Parallel computing could improve retrieval efficiency quite

considerably, but we do not see how it could improve retrieval effectiveness.

2.6 CASE STUDIES - "STATE OF THE ART"

We present four case studies which are regarded as the most prominent of those

discussed: two of them because they have been commercially successful and two because they

are the most up to date systems or methods being used in research laboratories. Inverted file

technology is used by all of the systems discussed in the case studies. Detailed information on

the commercial systems is however limited. In our discussion in the case studies we describe

the suitability of each system for the task, storage methods and granularity.

57

2.6.1 DAPText

DAPText (Reddaway, 1991) is a commercially used parallel text retrieval systems

used by Reuters for their text retrieval purposes. The system uses a range of compression

techniques on the posting lists for terms of varying hit rates. Those terms with the highest

collection frequencies have postings represented in 8 bits and 16 bits, whilst 24 bits are used to

represent rare terms. The higher the collection frequency for a term the more compact the

compression method. Boolean operations on bit maps are reported to be very fast on the DAP.

The main aim of the system is to provide very fast query processing on common terms, since

merges on them are more computationally intensive than rarer terms. Position data is also held

(in 12 bits), but is kept separately from the inverted list. The reasons for holding position data

separately are for efficiency on queries which do not require position data and the variety of

compression techniques used. Updates on the indexes are not done immediately: documents are

added to a separate area of the DAP memory and merged with the main index data in a given

timeframe. Processing of documents takes half a second for those of an unspecified average

size. The DAP 610 can handle 35 boolean queries a second. Each query is handled one at a

time, since SIMD machines do not allow separate threads of execution. Therefore no inter-

query parallelism is possible, unless several DAPs are connected together.

Information about the system is limited. There is very little information on how

keyword and inverted lists are manipulated. The system appears to offer a very fast search on

the back of the compression techniques described. The granularity of the computation is

determined therefore by the required compression method for a given term. There is no

discussion on those terms whose distributions may hover between different compression

methods, and the subsequent effect this may have on performance. More recent work on using

hypertext and the DapText system is reported by Wilson (1996a;1996b).

2.6.2 DowQuest

The DowQuest system is also a commercially successful system. The Dow Jones News

Retrieval Service uses the system for its Text Retrieval needs (Yount et al, 1991). The

algorithms and data structures for the system are described by Stanfill & Thau (1991) and

Stanfill (1990; 1992). We outline some related work done by Thinking Machines which is

described in Stanfill et al (1989) and Stanfill (1992): the contrast between the two algorithms

is instructive. We also describe some further work done on an IR testbed for a more recent

version of the Connection Machine.

58

Processor 1 Processor z Processor 3 processor iJ

Row 1 0(0.1) * 1 (0.2) * 2 (0.3) * 3 (0.4)

Row 2 4 (0.9) 5 (0.2) 6 (0.6) 7 (0.6)

Row 3 8 (0.7) 9 (0.5) 10 (0.8) 11 (0.4)

Row n 12 (0.6) 13 (0.9) 14(0.1) * 15 (0.7) *

Relevant postings for a term are 3 to 13: * signifies irrelevant postings
(weights for postings are in brackets)

Fig 2-4. Assignment of postings to processors

The algorithm described in Stanfill et al (1989) works by multiplying a query weight

with stored postings weights in parallel and sending the result to a mailbox somewhere on the

machine. The Termld partitioning method is used. Using a data map (the keyword index), rows

of postings are identified and placed in memory ready for computation. Processors are given an

equal number of postings (n). The algorithm then iterates through each posting row of the

processor, i.e. from row 1 to n, calculating weights for terms if and only if the posting in that

row is identified as being relevant: otherwise the processor is deactivated (see Fig 2-4). The

weights are then routed to the relevant mailbox in the machine after an iteration using a send

and add command. When weights have been computed, the top documents are identified by

sorting the weights in the mailboxes. This mailbox algorithm has been criticised by Reddaway

(1991) who points out that term distribution will have an impact on its efficiency. If the

postings lists are too large to be fitted in the machine at one go, the remaining postings can be

loaded in from disk and processing can start again from row 0. SIMD machines are very good

at this kind of fine-grain computing. However the algorithm suffers from a data skew problem

when a row of postings only has a small number of active processors, e.g. one or two in a 64k

processor machine. The effect on efficiency can be drastic, reducing the complexity to that of

sequential machines in the worst case. To address this problem, partitioned posting file methods

are discussed (Stanfill and Thau, 1991).

The partitioned posting file method described in Stanfill & Thau (1991), does not

eliminate data skew but does reduce it considerably. Essentially postings are partitioned such

that all term postings for a document are handled by a single machine node: thus the D odd

partitioning method is used. This eliminates the need for the routing process for the mailbox

59

algorithm. Postings are placed into blocks of a partition. The data map is used to identify the

required partitions. The partitions are then loaded into memory and computed in parallel. The

algorithm iterates through the partitions until a weight for every hit document has been

calculated. The granularity of the computation is still the posting. Extra space is added to the

postings file in order to retain alignment as far as possible. As with the DAP the system would

appear to offer very fast search facilities. DowQuest was written for the CM-2 version of the

Connection Machine. A prototype (Massand and Stanfill, 1994; Linoff and Stanfill, 1993) was

written for the Connection Machine CM-5: a more powerful machine with a hybrid

SIMD/MIMD architecture.

Massand and Stanfill (1994) and Linoff and Stanfill (1993) describe methods and data

structures implemented on an IR testbed for the CM-5. They take the standard boolean model

and extended it with proximity operators. Techniques for distributed databases are considered

in particular the problem of term weighting across distributed collections. Compression

methods are used to reduce the size of the inverted file: compression is applied to position data,

but not to weighting data. They claim the decreased time in I/O can fully compensate for tire

decompress computation (based on a study of two corpora; the King James bible which is 4.5

Mbytes and a sample of Wall St journal articles which is 12.3 Mbytes). The issue of updates is

considered as well as deletes: they use an in-core technique for the text database using the

D odd partitioning method for inversion. Fixed sized blocks are used to distribute documents

and re-adjust to text boundary accordingly (each processor looks after its own document set). A

two pass index algorithm is used: the first pass calculates the space needed for each inverted

list and the second pass indexes the text and puts inverted data into pre-allocated blocks. This

algorithm took 20 minutes in comparison with the 90 or so seconds on the Fujitsu AP1000

reported by Hawking running the PADRE system (Hawking, 1995). Part of the differential

could be the cost of compression, and part in having to do the indexing twice. In the event the

prototype or test-bed did not become a product.

2.6.3 PADRE

More information is available on PADRE and its precursors than any other system

covered in this chapter, and the system continues to be used for research purposes. We have

already imparted much information on the system ranging from the hardware it uses (section

2.2.2), methods of operation (section 2.4.1 and 2.4.4) and query models available for the

system (section 2.5). We therefore restrict our discussion to the history and philosophy of

PADRE.

60

The system started life as PADDY (Hawking, 1991 and 1992) and concentrated on

linguistic and lexicographic research on the Concise Oxford English Dictionary structured in

SGML. Searches are based on the PAT indexing method (Gonnet et al, 1992), to implement

pattern match, proximity and regular expression operations. Results from searches on the

indexes show speedups ranging from 30 to 1000, where the speed of indexed matching depends

largely on hit matches (Hawking, 1991). There is much discussion on the time to load data, a

problem overcome by the introduction of the HiDlOS file system. A vision of the libraries of

the future is given by Hawking (1992) who argues that a number of advantages lie with using

parallel supercomputers including: libraries would be open for much longer, a number of

people could read the same book, books are never lost or mis-shelved, catalogues are never out

of data etc. He does however point out that there may be many practical reasons, such as legal

and financial, which may prevent the complete replacement of libraries by parallel

supercomputers.

The fir system (Hawking, 1993) builds on work done in PADDY and while retaining

its capabilities is oriented towards more conventional IR problems such as retrieving text. A

user interface called retrieve is introduced in order to provide a more user friendly access to the

applications services, rather than a command line interpreter (although this is still available in

fir). A significant decrease in load times is recorded for ftr over PADDY. The system also has

the ability to load more than one text database.

The PADRE system retains many of the features of both f tr and PADDY, while

introducing others such as inversion of text (Hawking, 1995), term weighting (Hawking, 1994),

natural language processing techniques (Hawking and Thistlewaite, 1995), multiple user

facilities (Hawking et al, 1995) and proximity spans (z-mode) (Hawking and Thistlewaite,

1996). The D odd partitioning method is used with partitioned indexes and postings. The

reasoning behind the partitioning method is to provide fast update on inverted files while

providing fast responses to user queries. Near linear specdups for indexing are reported. The

searches on indexes are reported as being constant, whereas the search time for pattern matches

decreases with increase in the number of API000 cells. Responsiveness to additions and

deletions to a text corpus are recorded. Using 509 Mbytes from the Wall Street journal and 10

Mbytes of Associated Press reports a merge time of 18.7 seconds, of which hall' was the

approximate load time from the host. A time of 9.2 seconds is reported for the deletion of all

documents with the word 'computer' in them: this reduced the Wall Street journal collection by

57 Mbytes. The implementation of time-outs on searches (Hawking et al, 1995) is

recommended to ensure reasonable responses times for users and to avoid 'killer queries' which

61

can greatly reduce system throughput. More recently PADRE has moved to the cluster

computing model (see below).

2.6.4 Cluster Computing

It is clear from recent research that standard components as part of networks of

workstations is now dominant in the field of parallelism in IR. Cluster computing has revived

the field of parallelism for IR after a three or four year moratorium. Cluster computing has

been used within the framework of NIST's Text Retrieval Conference (TREC) series to

examine performance over very large databases: initially over a 20 Gigabytes collection

(Hawking and Thistlewaite, 1998) and then a very large 100 Gigabyte web collection

(Hawking et al, 1999; Hawking et al, 2000). Participants have used a variety of architectures

such as DEC Alpha, SGI, Intel and Sun, while using processor sets ranging from just 2 up to

20. Most of these systems split Lhe collection and place the index on local disk using the D odd

partitioning method. The granularity of parallelism used in cluster computing is very coarse

grain. One group (ANU) tried using a RAID disk with subsequent performance degradation

(Hawking et al, 1998). Some use the shared nothing architecture while others used a shared

memory machine configuration. It is difficult to make any comment on which of these

architectures are best as participants in these TREC experiments use very different methods

from each other. We give our results in the Web Track experiments throughout the thesis

(MacFarlane et al, 2000a).

We also contacted various web search engines to find out what type of parallelism they

use. Understandably they were very reticent about giving out information on the methods and

architectures they use and few responded to my enquires. The most helpful was Dixon (2000)

who informed us that Google uses 4,000 Intel Pentium Pill boxes in three server farms which

in their words are used to "index, categorise and prioritise the Web and return results to

searchers". These Linux servers are stripped down and customised for Google's requirements.

Altavista used to use 16 nodes each with 10 TurboLazer Alpha processors together with 200

Gigabytes of disk space and 8 Gigabytes of in-core memory. They have recently moved to

using Compaq equipment, but were not willing to describe either the configuration or the

architecture they now use (Shisslcr, 2000). Northern Light (Kim, 2000) were only able to give

brief details on the ranking, NLP and clustering methods they use, which in itself was

interesting but not very useful for our purposes.

62

2.7 SUMMARY AND CONCLUSION

This chapter gives an overview of ihe application of parallel computing to IR systems.

We describe a classification much used in parallelism and describe some of the architectures

which have been used to implement parallel IR systems. Issues such as the implication of I/O

on different architectures are discussed. We describe a classification of approaches to IR due to

Rasmussen (Rasmussen, 1992) which includes pattern matching, signature/surrogate coding,

two phase search, inverted file, clustering and connectionist approaches. The importance of

such issues as data partitioning and data skew are stressed in the discussion of each class.

Other approaches such as parallel relational databases are also described. We describe the

motivation for using parallel computing in IR as being good response times for users providing

added retrieval efficiency, scaleup and machine efficiency on very large databases, allow for

the use of superior algorithms (which provide a higher level of retrieval effectiveness) and

lower search cost. In contrast we do not believe that parallel computing can be usefully applied

at present to small databases with a small user base. The retrieval models used in parallel IR

systems such as boolean, proximity, term weighting and regular expressions are described as is

the impact of parallel computing on the retrieval effectiveness and efficiency of the models. The

case study section gives detailed information on the DAPText, DowQuest, PADRE and parallel

IR systems plus recent work in Cluster computing for IR. For further information on many of

the systems described in this chapter, the reader is referred to Rasmussen (1991) a special issue

on parallel processing in IR as well as Willett and Rasmussen (1990) for a large body of work

done on the DAP.

Much of the work described above focuses on searching of text using various parallel

methods, but there has been little focus on indexing text, using passage retrieval techniques,

index maintenance or routing/filtering. In particular there is no overall survey of data

distribution techniques for inverted files for all of the tasks being considered. The purpose of

this thesis is provide this overall survey and to find out which data distribution method is best

overall and for a particular task. Many of the algorithms described above are specifically

written for one particular parallel machine and would be difficult to port. We aim to provide a

system which is portable across machines.

63

Chapter 3

Methods, Data and Metrics Used

3.1 INTRODUCTION

In this chapter we declare various methods, data and metrics used throughout the

thesis. Section 3.2 describes methods such as the retrieval model, index model, architecture and

parallel machines used. The data used in our experiments is described in section 3.3 while

section 3.4 outlines metrics used to measure both retrieval effectiveness and retrieval efficiency

in the thesis. The software developed for the project is discussed in chapter 4.

3.2 METHODS

CW (ij) = CFW(i) * TF(ij) * Kl+1

K1 * ((l-B)+(B*(NDL(j)))) + TF(ij)

Variables

CFW(i,j) : Collection frequency weight log(N) - log(n).
n(i) : The number of documents term t(i) occurs in.
N : The number of documents in the collection.
TF(ij) : The number of occurrences of term t(i) in document d(j).

(term frequency)
DL(j) : The total number of terms in document d(j)
NDL(j) : Normalised document length

(DL(j) / average DL for all documents.)

Constants

K1 : Constant that modifies influence of term frequency.
B : Constant that modifies effect of document length.

Fig 3-1. The BM25 term weighting function used in the experiments

3.2.1 The Robertson/Sparck Jones Probabilistic M odel

In chapter 2 we described the temi weighting schemes that have been used in parallel

IR systems. A notable exception until recently has been the use of the Robertson/Spark Jones

probabilistic model (Robertson and Sparck Jones, 1976; 1994), which has become increasingly

64

influential in recent years particularly within the TREC conference framework. The model

provides a theoretical framework for weighting terms based on the probability of relevance. In

all our experiments we use the BM25 term weighting function (see figure 3-1), which uses

statistics from the collection to rank documents in order of probability of their relevance to the

user: term weights are not normalised. Two constants arc used to modify the influence of

various aspects of the weighting function, allowing BM25 to be optimised to a given collection.

Much of our effort in improving the retrieval effectiveness has concentrated on tuning

constant variation, particularly in our TREC-8 experiments (MacFarlane et al, 2000a) which

we summarize here. Varying tuning constants is an easy way of improving effectiveness and

very little effort is needed in order to conduct experiments. There are two constants defined for

BM25 (see Fig 3-1): K1 that affects the influence of term frequency while the constant B is

used to modify the effect of document length. Given that Lhere has been no systematic work

done with Okapi we also decided to examine the relationship between the two constants as well

as the relationship between those constants and other variables such as recall and precision (see

below for the definition of these). We hypothesized that optimum constant values for one data

set would give good effectiveness in another data set (where a data set is defined as a document

collection and query set pair). We found the hypothesis was validated only if the collection was

the same in both data sets.

3.2.2 The Shared N othing Architecture

We referred to the shared nothing architecture in our review of parallel computing in

IR. For most of our experiments this is the architectural method we use for running jobs. We

have used three sets of machines or clusters in this class to do our experiments: an eight

processor Alpha Farm, a 12 processor Fujitsu AP3000 and a 16 node Pentium cluster named

"The Cambridge Cluster". For the Alpha farm, each node is a series 600 266Mhz Digital Alpha

workstation with 128 Mbytes of memory running the Digital UNIX 4.0b operating system. One

of the nodes has a RAID disk array attached to it and other nodes can access the RAID using

NFS. Two types of network interconnects were used: a 155 Mbytes/s ATM LAN with a

Digital GIGASwitch and a 10 Mb/s Ethernet LAN: most of the indexing was done on ATM.

The AP3000 consists of 12 Ultral nodes, each with 125Mb of memory, with a top rate of

200Mb per second network interconnect. Only 8 of these nodes were available to us in a single

partition. Each AP3000 node has its own local disk with a processor speed of 167 Mhz. The

"Cambridge Cluster" consists of 16 Duel processor Pentium PII nodes each with 384 Mb of

memory and 9 Gb of disk space. The nodes are connected with by a fast Ethernet switch and a

65

Myrinet Gigabit class switch and have a speed of 300 Mhz per processor. The Alpha farm and

AP3000 machines are located at the Australian National University in Canberra while the

"Cambridge Cluster" is located in Microsoft Research in Cambridge.

3.2.3 Other Architectures used

We also used another architecture for our routing/filtering experiments. This model is

made up of a master with a single disk that broadcasts the data required to each slave node.

Each node has its own memory (the distributed memory MIMD architecture described in

chapter 2). This included the Fujitsu APlOOO's at Imperial College, London and the Australian

National University, Canberra, and a network of heterogeneous Sun workstations at City

University The AP1000 is a distributed memory MIMD (Multiple Instruction, Multiple Data)

with a 2-D torus topology (Fujitsu, 1994). Both the ANU and Imperial machines have 128

SPARC 1+ processors referred to as cells each with 16 Mb of memory (with a total memory of

2 Gigabytes), but variations of the AP1000 can have as many as 1024 cells each with sixty-

four Mbytes of memory. The SPARC 1+ processor speed is 25 Mhz. Data can be moved via a

2 Mbyte per second link, but a FDDI interface is capable of nearly 10 Mbytes per second for

data movement. The network of Suns includes Ultra's, SSlO's, SS20's and Sparc5 machines

operating over a congested Ethernet cable, with a maximum possible bandwidth of 10 Mbits

per second.

3.2.4 Index m odel

We used a variation of the traditional inverted file (Harman et al, 1992) in order to

index documents for the various tasks in our thesis. We used a clear keyword and postings file

split, often referred to as the dictionary file and inverted list respectively. The dictionary file

consists of records with the following structure: keyword, collection frequency and pointer to

the inverted list. Each element of the inverted list stores the PLIERS document identifier

together with the term frequency. We are able to include positional data as part of our posting

lists that has the following structure: field, paragraph within field, sentence within paragraph,

word position within sentence and number of preceding stop words. This data was needed for

the passage retrieval task and could be used for adjacency operations. We store the position

information contiguously with each posting in the inverted list. Also included in the index was a

document map file that was used to store the PLIERS and TREC document identifiers, the

address of the document on disk, the document length and a list of passages with their lengths if

position data is stored in the inverted list. The map is needed to provide a cross reference

66

between PLIERS and TREC document identifiers, and to provide data for the BM25 term

weighting function both in normal term weighting search and passage retrieval.

3.3 DATA

3.3.1 W eb Data

For our indexing, search, passage retrieval and update task experiments we used the

VLC2 (Hawking et al, 1999) or WTlOOg (Hawking et al, 2000) data collection as it has more

recently become known. Table 3-1 gives the details of the collections used.

COLLECTION WTlOOg
or VLC2

BASE10 BASE1

No Documents 18,500k 1,870k 187k
Text Size in GB 100 10 1
Collection Word
Length (Million)

8,600 865 87

Description Full Db 10% of
WT100g/VLC2

l% of
WT100g/VLC2

Table 3-1. Web data collection details

The WT100g/VLC2 collection consists of 100 GB spidered web data. The BASE1

and BASE10 are baseline collections of the WTlOOg. We used various query sets over these

collections for the search, passage retrieval and update tasks that are declared in the relevant

chapters below. We were only able to use the full 100GB collection when doing our TREC-8

experiments. We also use subsets of the BASE10 collection in our indexing experiments that

we name BASE2, BASE4, BASE6 and BASES. The subsets were created by varying the

number of BASE10 compressed text files put through the indexing mechanism (130 files per

node for BASE2, 260 for BASE4, 390 for BASE6, 520 for BASE8). Each of the BASE x

collections is approximately x Gigabytes in size e.g. BASE6 is approximately 6 Gigabytes in

size.

3.3.2 Routing/F iltering Data

The databases used for the Routing/Filtering experiments was the Ziff-Davis collection

and the TREC8 routing collection (routing/filtering concepts are defined in section 1.4.5). We

describe each of these databases used and how they were handled below.

The Ziff-Davis collection is from the TREC-4 disk 3 and is 349mb in size with a total

number of 161,021 records (Hannan, 1996). Of all the accumulated (and somewhat complex)

67

TREC material sets of documents and topics, we felt that a collection of this size was the best

for our needs given the restrictions on resources available at the time. Three databases were

created for the Ziff-Davis collection: an extraction database, a selection database and a

comparison database and used as per the Okapi methodology (Robertson et al, 1995). The

databases were created by assigning documents to the three databases using a round robin

method, i.e. document 1 to the extraction database, document 2 to the selection database, etc.

Note that the extraction and selection databases form the training set, while the compare

database is the test set. The training set is split into two in order to reduce overfitting when

optimising queries using term selection. The total inverted file size for all three databases was

83mb (24% of the text file size). Each database was about 25mb in size. No position

information was saved in the posting files (such data is not used in term selection). A stop word

list compiled by Fox (Fox, 1990) of 451 words was not indexed. Words were conflated using a

Porter stemming algorithm. There were 19 TREC-4 topics used for routing on the Ziff-Davis

database, they are; 54, 57, 63, 65, 66, 75, 94, 95, 96, 97, 98, 100, 109, 113, 117, 128, 136,

223, 248. These were chosen on the basis of the number of relevance judgements available for

rouling/filtering: it was felt that topics with too few relevance judgements (i.c. one or two)

would not be much use in the second level selection process due to excessive overfitting. The

distribution of relevance judgements for the database was as follows; 1868 (39%) for extract,

1469 (30%) for select and 1483 (31%) for compare.

DATABASE Batch
Filtering

Routing Training
1: EXTRACT

Routing Training
2: SELECT

Test Collection

No Documents 64,139 251,396 256,761 140,651
Text Size in MB 167 979 1,013 382
index Size in MB 37.72 158 162 85

(% of Text) (22.3%) (16%) (16%) (22%)
Relevance 548 1836 1797 1276
Judgements (Avg) (10.96) (36) (35) (25.52)
Collection Word
Length (Million)

27 138 142 60

Description FT 1992:
Disk 4

1/2 of Disk4/5
Minus FT 1993/4

1/2 of Disk4/5
Minus FT1993/4

FT 1993/4:
Disk 4

Table 3-2. Filtering track data collection details

We were able to gain access to much larger resources for a brief period and

participated in the TREC8 routing track (MacFarlane et al, 2000a). Details of databases used

for batch filtering and routing sub-tasks are give in table 3-2. The TREC8 database is much

larger than Ziff-Davis and it was handled differently according to the TREC8 routing and

batch filtering sub-track needs. That is, two separate databases were defined by the sub-track,

68

one training set and one test set, both derived from disk 4 and 5 of the Tipster collection. The

training set for the routing sub-task consisted of 500K documents which was split as equally

as possible to create the extract and select databases. We did all the training for the batch

filtering sub-track on the 64k record training set because of the limited number of relevance

judgements for that data. The training set consisted all of tipster disk 4/5 minus the FT 1993/94

data. The TREC8 data was treated the same as Ziff-Davis, apart from the stemming in which

the Lovins method was used. The topics used were 351-400.

3.3.3 TREC 8 A D -H O C DATA

We also used the TREC8 AD-HOC collection for the passage retrieval task. This text

collection consists of Tipster Disk4 and Disk5 minus the Congressional record on disk4. It

consists of 528,155 documents and the text size is 1,904 MB: the total word length detected

was just under 270 million words. The topics used were 401-450.

3.4 METRICS USED

There are a number of different performance measurements or metrics for both

retrieval effectiveness and efficiency experiments. We declare the ones we have used for the

purposes of this thesis here.

3.4.1 R etrieval E fficiency M etrics

3.4.1.1 Elapsed Time

Elapsed time is the most important metric to be used in this thesis. Many of the other

parallel metrics described below are in some way reliant on this one. By elapsed time we mean

the time it takes a job from initiation to completion: this requires access to some time library

functions such as gettimeofday. This metric is considered to be a 'black box' performance

measure. For elapsed time on those tasks that would be used in interactive environments, we try

and meet the 10 second criterion for searches suggested by Frakes (1992). This criterion would

obviously not be applied to batch processing tasks such as indexing and term selection for

routing/filtering which may take many hours to completed. Time may be recorded in

milliseconds, seconds or hours as seems appropriate to the task being examined. As well as

elapsed times we record the overheads in a parallel system which would not be a part of any

sequential program’s run time. We may when necessary state the percentage for total time for

69

some aspect of a task where it is deemed significant element of overall time. Note that these

measures were taken when the machine was dedicated to servicing the relevant IR task.

3.4,1.2 Extra Cost Ratio for Position Data

We stated in section 3.2.3 above that we are able to store position data in our inverted

lists. Clearly this is an extra cost not only in space, but in extra time as well (particularly I/O

time). In order to examine this extra cost we use a ratio on the elapsed time defined in fig 3-2.

This metric only applies to runs where indexes of both types have been generated for the same

text collection. The ratio allows us to quantify the extra cost in time for storing position data,

for situations where different types of queries are submitted to a system (some of which may

not need position data for processing). Ideally we would want the ratio to be as close to 1.0 as

possible: this is dependant on the size and storage method of position data.

Ratio = Elapsed Time for a given task on an index with position data
Elapsed Time for the same task on an index with postings only

Fig 3-2. Extra Cost ratio in time for keeping position data in inverted list

3.4.1.3 Throughput

Throughput is a measure of how much work can be done in a given time period, and

can be used for comparison purposes. It may refer to a single job (such as indexing) or several

(processing of multiple transactions). Throughput measurement varies with the task, e.g.

transactions and queries per hour, Mbytes of text processed per hour and evaluations per

second.

3.4.1.4 Speedup

Speedup = Time for task on sequential machine
Time for the same task on a parallel machine with n nodes

Fig 3-3. Speedup calculation: speed advantage of parallelism

70

Speedup is a measure of the gain in speed over sequential machines and is calculated

by dividing the time spent on computation using the sequential machine by the time using the

parallel machine (see fig 3-3). A speedup which equals the number of nodes is said to be linear,

greater than the number of nodes is said to be super-linear. A figure that is below one is said to

be a slowdown (using parallelism brings a disadvantage to the chosen task). Whilst speedup is

the accepted way of examining the performance of parallel systems, it should be noted that its

usefulness has been brought into question (Hockney, 1993). For example you cannot use

speedup to compare two algorithms as speedup for algorithm A say can be better than for

algorithm B, but algorithm B may record a faster elapsed time. We therefore only ever use this

measure within the context of one algorithm on one machine type.

3.4.1.5 Efficiency

Efficiency = Speedup on N nodes
N

Fig 3-4. Efficiency calculation: effectiveness of parallel machine use

Efficiency gives a measure of how well a particular algorithm scales when nodes are

added (see fig 3-4). The metric also measures how well nodes are utilised in a parallel system

of a given size. It is found by dividing the speedup found by the number of nodes used. An

efficiency of 1.0 is desirable, but rarely if ever achieved. The aim is to achieve a near 1.0

efficiency result. The caveat expressed on speedup above also applies to this metric.

3.4,1,6 Scalability

Scalabilitv = Average Task ElaDsed Time (Smaller Collection) *
Average Task Elapsed_Time (Larger Collection)

Data Size (Larger Collection)
Data Size (Smaller Collection)

Fig 3-5. Scalability measurement

We define a metric of scalablity that is a measure of how well the algorithm scales on

the same equipment (see fig 3-5). By the same equipment we mean the same parallel machine.

The measure is the proportion of time as measured against the database or collection size. This

71

metric has the advantage over simple ratios in that its result actually relates task processing

times to the size of data in question. A figure of 1.0 gives linear Scalability, less than 1.0

means there is a loss while greater than 1.0 means the gain is super-linear.

3.4,1,7 Scaleup

Scaleup is defined by DeWitt and Gray (1992) as "the ability of an N-times larger

system to perform an N-timcs larger job in the same elapsed time as the original system" (see

fig 3-6 for a more formal definition). A scaleup of 1.0 is said to be linear, less than 1.0 means

there is a reduction is scaleup while greater than 1.0 means the gain is super-linear.

scaleup = Elapsed time on P nodes indexing DB
Elapsed time on P' nodes indexing DB1

[where P' > P and DB' > DB |

Fig 3-6. Scaleup metric

3.4,1.8 Load Imbalance (LD

LI = Maximum processing time on node
Average processing time on node

Fig 3-7. Load imbalance (LI) metric

Hawking has defined a useful measure of Load Imbalance LI (Hawking, 1994) which

we use in order to examine the load balance on our computations (see figure 3-7). An LI value

of 2.0 is said to halve the effective speed of the parallel machine. The measure is a pessimistic

one that starts from a figure of 1.0 and grows with the level of imbalance: the ideal load

balance is near to 1.0. We may use this metric either on individual jobs in a task or several

jobs: we have used it in both ways.

3.4.1.9 Space Costs

We record the size of the inverted file index in bytes (Mbytes or Gbytes). We also

record the percentage of text for the index size. Any increase in certain aspects of an index is

recorded such as increase in dictionary file size for the Dodd, partitioning method for

72

increasing numbers of nodes (see chapter 6 on indexing). We also use the LI metric defined in

figure 3-8 and apply it to file sizes instead of processing time.

3.4.1,10 Merge Costs

When creating the inverted file using an indexer it is not always possible to save the

index directly to disk because of memory constraints. We use the metric defined in fig 3-8 to

quantify the costs in relation to the whole indexing computation, averaging the time and taking

the percentage. The ideal result for the metric is the lowest merge costs in percentage terms: the

inference is that run time for the indexing computation will be lower.

Merge Costs (%) = Average time spent merging on P nodes * 100
Average processing time for indexing on P nodes

Fig 3-8. Indexing merge costs metric

3.4.2 R etrieval E ffectiveness M etrics

We use the standard measures of retrieval effectiveness, precision and recall, plus

some filtering utility functions that were defined for TREC filtering experiments.

3.4.2.1 Precision

Precision is the quality of the documents presented to the user, i.e. how many are of the

documents retrieved are relevant. It is calculated by taking the ratio of the number of relevant

document retrieved over the total number of documents retrieved (Frakes, 1992). We use

several extensions of this precision definition. One is average precision, that is precision

averaged over each point in a rank where a relevant document is recorded: the more relevant

documents higher up the rank the better the average precision. We also record precision at

points 5, 10,15 and 20 documents retrieved.

3.4.2.2 Recall

Recall is the measure of how many relevant documents are retrieved from the database.

It is calculated by taking the ratio for the number of relevant document retrieved over a query

over the total number of relevant documents for that query in the database (Frakes, 1992). We

use this measure with routing and ad-hoc data but do not have enough relevance data to use the

metric on the Web collections.

73

3.4.23 Filtering utility functions

The utility functions used are those applied in the TREC-4 (Lewis, 1996) and TREC-5

(Lewis, 1997a) conferences. The concept of utility is based on assigning a numeric value on

each retrieved document, where relevant documents arc given a positive value and non-rclevant

documents are given a negative value. The value of the utility can be adjusted according to the

value users place on reading relevant or non-relevant documents. The basic method was to use

three utility functions on each retrieved document, one requiring the filtering system to act in a

high recall fashion (U3), one in a high precision fashion (Ul) and one between these two (U2).

The R variable in lig 3-9 is the number of relevant documents while N is the number of non-

relevant documents. The goal is to achieve the highest utility possible for any utility function.

The TREC-8 utility functions (Hull and Robertson, 2000) arc defined in fig 3-10. We also use

the utility scaling function defined in Fig 3-11 from Hull (1999).

U1=R-3*N
U2=R-N

U3=3*R-N

Fig 3-9. Filtering utility functions for TREC-4 and TREC-5

LF1=3*R-2*N
LF2=3*R-N

NF1=6*RA.5-N
NF2=6*RA.8-N

Fig 3-10. Filtering utility functions for TREC-8

u„(S,T) = max (u (S,T) , U(s)) - U(S)
MaxU(T) - U (s)

Where :

us(S,T)= Scaled utitlity for systems S
for topic T

u(S,T)= Original utitlity for systems S
for topic T

U(s) = Utility of retrieving s non-
relevant documents

MaxU(T) = Maximum possible utility
score for topic T

Fig 3-11. TREC 7 utility Scaling Function

74

Chapter 4

PLIERS: A Parallel Information Retrieval System

4.1 INTRODUCTION

In this chapter we describe in detail the system we have built in order investigate the

issues to be examined in this thesis. The system is called PLIERS (ParaLLeL Information

rEtrieval Research System). The material for this chapter was originally published in

MacFarlane et al (1999a), but is greatly expanded here. We give some background information

on process topologies that is needed for understanding of the material in this chapter. We

discuss important implementation issues for PLIERS such as the method of inter-processor

communication and portability of the system. We then describe the algorithms used in each of

the tasks under investigation in this thesis, namely indexing, search, passage retrieval, index

maintenance and routing/filtering. We outline design decisions made in each of these tasks.

4.2 TOPOLOGIES

An important issue for any parallel program is the issue of process topologies, their

configuration and how these topologies are physically mapped to processors in a parallel

machine. The paradigm we use in all our programs is the distributed memory message passing

one (Hwang, 1993: 551-4). We therefore split work amongst processes and communicate data

between them where necessary. The topologies for each of the tasks we examine are explained

in more detail in the discussion below, but we state here that our choice of process topologies

are based on the belief that simple is beautiful. Parallel programs are complex entities that

should not have any more complexity than is absolutely required. We generally use some form

of a top or master process that communicates with the outside world, using leaf or slave

processes to parallelize the task computations. This method of topology management is

frequently used, both in and outside of IR: for example see chapter 2, particularly section 2.4.7

on the discussion of vector processing. We map leaf/slave processes to separate physical

processors while placing master/top processes either on a separate physical node or on one

where a leaf/slave resides if we have no more nodes to allocate.

75

4.3 IMPLEMENTATION ISSUES

4.3.1 Program m ing with M P I - the M essage Passing Interface

The MPI standard (Dongarra et al, 1996) is the method we use for inter-processor

communication in our programs. Various implementations of MPI have been used by PLIERS

including CHIMP (Alasdair et al, 1994), MPICH (Gropp and Lusk, 1998) and ANU/Fujistu

MPI (ANU, 1994). Semantics on some message passing commands can vary between

implementations and this caused some slight problems. Various bugs in some of the

implementations also caused some problems. Our experience with using different MPI

implementations has generally been positive. We have found that the rank system is a useful

abstraction particularly when used with collective operations (each processes is assigned a rank

and messages are sent to or receive using this assigned rank): maintaining code is made easier

than other methods such as Occam-2 (Bowler et al, 1989). Any topology change would require

the re-write of hard wired collective operations. MPI is much more flexible. However this

flexibility has its price. The requirement that implementation can vary part of the message

passing semantics to cope with lack of buffering space led directly to a termination problem in

the farming method for indexing described below. There is a fairly large set of routines and

ideas to leant in order to use MPI to the full, much more so than Occani-2. We have not used

PVM (Sunderam, 1990) so cannot compare it with MPI, but we would use MPI rather than

Occam-2. PVM is an environment for connecting clusters of workstations together, and which

provides services for message passing in much the same way as an implementation of MPI.

4.3.2 Ease o f Portability

One of our secondary aims was to demonstrate the portability of our system. Using

MPI (with GNU C) has allowed us to port our software to the different types of architectures

described in chapter 3. We have demonstrated that our programs can run on two or more

architectures which includes Sun SPARC, DEC Alpha and Intel Pentium based parallel

computers. This process has not always been as simple and straightforward as we would have

liked it to have been, and there have been some problems. Some of these problems relate not

only to the architecture themselves, but also to issues on operating systems and MPI

implementations (see section 4.3.1 above). An example of an operating system problem was

that there is no virtual memory for the AP1000 and stack space is statically allocated. This

restricts the use of techniques such as recursion which place extra demand on memory

76

management: we had to move to iterative list processing in any case in MacFarlane et al

(1999b).

4.4 INDEXING

Two types of index build methods arc used: Local and Distributed. With local build,

documents are kept on a Local disk and analysis is done on that Local disk only: this method is

applicable to D odd partitioning only. The distributed build method works by distributing the

documents to nodes from a single disk. It should be noted that replicated inverted files for

routing/filtering were indexed on one node and distributed manually to local disks in the

parallel machine.

4.4.1. Indexing Topologies

Our requirement for indexing topologies is to be able to support both partitioning

methods under consideration as well as the two build strategies. The components of the

topology must be reconfigurable in order to create different build types and numbers of inverted

file partitions using different process combinations. Fig 4-1 shows examples of both types of

builds using the Docld partitioning method, together with process to node mapping examples.

The local build method lor parallel indexing is a very simple topology requiring little

communication (see fig 4-la). Each indexer node runs independently with no need for

communication between them (the function of the indexer is described below). This form of

77

build is applicable to Docld. only. The distributed build method uses the process farm

paradigm (Bowler et al, 1989) and an example of the one proposed for indexing is shown in fig

4-lb. The structure in the example consists of a fanner and n worker processes whose function

is described below. Fig 4-1 shows the contrast in the build methods particularly with regard to

the distribution of text to be indexed. The difference between the two methods is that text is

kept locally when the local build method is used, and kept centrally on a single disk when

distributed build is used (see appendix Al for an example of how this works). We use local

build where a given collection could not be placed on a single disk (e.g. VLC2/WT100g).

Each method has its own advantages and disadvantages, and we leave the detailed

discussion of such until later. The issue of communication is important here. It can be seen

from both the diagrams and the descriptions above that some topologies will require a great

deal more network resource than others. For example distributed build methods will require

more communication than local build indexing in order to distribute text. Fig 4-2 shows an

index topology example for Termld partitioning.

4.4.2. Distributed Build Topology Components

In this section we describe the functions of the farm er, worker and global merge

parallel processes. Note that there is only one farm er node, and a number of worker processes

(which become global merge processes in Termld). Our reason for using this method is that it

allows us to automatically distribute text to nodes: it has the disadvantage in that the method is

more communication intensive than the local build method (see section 4.4.3).

78

4.4.2.1 Farmer Process

The fanner's job is to distribute documents to the workers (see Fig 4-3). Essentially it

distributes work as equally as possible to create the least amount of load imbalance possible.

Single documents or files containing multiple documents can be distributed: the latter saves

communication time. There is an initialisation stage where each worker is given its first initial

document/lile; after that workers are only given documents/files when they request them, i.e.

send a message to the fanner asking for more work. When no more documents/files are left, a

termination notice is sent to every worker process. Document identifiers arc allocated

individually if the granularity of parallelism is documents and in blocks if it is files. The

document length cannot be recorded until the document has been analysed, and this data is sent

to the fanner when a worker requests further work: this data is saved to disk when received. In

an attempt to keep workers load balanced a request for work is serviced as soon as possible

after it has been received so that workers who index small documents or files are not kept

waiting for too long.

Distributed Initial set of documents/files to all workers

Loop no of files/documents
get a request from worker i
Case(request type)

work request: send document/file to worker i
id request : send block of document id's to worker i

EndCase
EndLoop
Loop until all workers have been terminated

get a request from any worker i
Casc(request type)

work request: send termination notice to worker i
id request : send block of document id's to worker i

EndCase
EndLoop

_________ Fig 4-3. Farmer algorithm for parallel indexing

4.4.2.2 Worker Process

The worker's function is to break down the document into its constituent parts, i.e.

terms, and perform some analysis on these terms, e.g. stemming using the methodology

described below (see fig 4-4). If required, the position record is stored for each term using

current values of accumulated data for field number, paragraph number, sentence number,

word number and preceding stop words. After each word is found these values are updated.

The worker creates and inserts this word/position data in a bucket: the method of storage for

79

bucket elements is an AVL tree. In the case of D odd partitioning one bucket is used while 100

are currently used for Termld: words are hashed to a given bucket based on a dictionary

(Cowie, 1989). The posting list is either created using the document identifier and the position

record or updated by incrementing the number of positions and adding the position record to the

position list. When any of the memory limits is reached, the results are saved on a temporary

file on disk for each bucket. A worker then requests work from the farm er and waits for a new

document/file to analyse. A termination notice is received when there are no more

documents/file to be processed and the worker either saves the inverted file directly from

memory if the inversion has fitted into memory, or merges the intermediate results to create the

inverted file. Where D odd partitioning is required the process can stop here, if Termld is

required then a global merge is invoked.

Loop until termination notice received
Receive a document/file from the farmer
Analyse document/file -> index
If memory limits exceeded at any point during analysis

then save index on disk
Send request for work to farmer

EndLoop
If memory limits have not been exceeded

Save index directly to create inverted file
Else

Save current index to disk.
Merge data saved on disk to create inverted file

Endlf

Fig 4-4. Worker algorithm for parallel indexing

4.4.2.3 Global Merge Process

This further process is only used for Termld partitioning (see fig 4-5). The global

merge process has three phases; a heuristic is applied to choose the distribution of the files, the

files are then transferred across the network to the required node and a second Local merge is

initiated to create the final inverted file. The heuristic in the first phase works by calculating the

average value for each of the 100 partitions and attempts to derive a distribution of buckets

amongst nodes that is within a given criterion, currently with 10% of the average value: up to

five iterations are used. The average chosen for distribution is to prevent a node being

overloaded with data, while iterations were restricted to ensure the process of allocating terms

to nodes was fast. The average value can be one of three variables on a bucket; word count

(WC), collection distribution (CF) and term distribution (TF): we refer to these as term

allocation strategies. When the distribution is generated it is used to transfer the files for that

80

bucket to the node that has been allocated that bucket: this is done by gathering from all

processes to the target process. The merge is then initiated on those transferred files.

Worker i

(Phase 1)
Exchange word frequency data with all other workers
Partition words amongst workers using required word distribution

criteria (WC,TF,CF)

(Phase 2)
Loop no of partitions -> j

If partition j belongs to worker i
gather partition j data from all other workers

Else
Send partition j data to required worker

Endlf
EndLoop

(Phase 3)
Merge data for Workers partition to create inverted file.

Fig 4-5. Global merge algorithm for parallel indexing (Termld only)

4.4.3. Local Build Topology Components

4.4.3.1 Timing Process

The only central process for local build is the timing process: it waits until all indexer

processes are finished and saves the total elapsed time for the build. Our reasoning for using

this method is to examine the scalability of our parallel data structures and algorithms: however

because of its minimal communication it is the one most would choose in many circumstances.

4.4.3.2 Indexer Process

Each indexer process is a sequential index process that takes the function of the farmer

and worker processes i.e. it reads in documents, breaks them down, adds them to the index

creating intermediate indexes when a given set of criteria is met. The intermediate results are

then merged to form one index for each node. The indexer process only communicates with the

timing process when it has finished building the index: apart from that, its work is completely

independent of any other process.

81

4.4.4. Indexing Methodology

For each index build we used a stop word list of 450 words supplied by (Fox, 1990) to

filter out unwanted terms. All HTML/SGML tags are stripped from the text and ignored if not

used for specific reasons such as identifying paragraphs <p> and the end of document

</DOC>. Each identified word was put through a Lovins stemmer (Lovins, 1968), supplied by

the University of Melbourne, and indexed in stem form. An exception to this was the use of a

Porter stemmer on the Ziff-Davis collection. Numbers were not indexed. A large amount of in-

core memory is pre-allocated in blocks by each indexing process, and documents are analysed

until one of several criteria is reached: exhaustion of keyword block, posting block or position

block space. When one of the criteria is satisfied, the current analysis is saved on disk as an

intermediate index, so that the in-core memory can be used for the next set of documents. When

all documents have been analysed, the intermediate indexes arc merged together to create the

final index and deleted.

4.5 PROBABILISTIC SEARCH

4.5.1. Search Topologies

In order to facilitate parallel searches on inverted files with differing data partitioning

methods, we have implemented a generic search system that may be configured to use either

82

partitioning method, consisting of a top node and one or more leaf nodes. The client process

should be unaware of the distribution of data and retrieval responses with respect to

effectiveness measures are identical on the different data partitioning methods. We also have a

requirement that the mapping of logical to physical topologies should be as flexible as possible,

but respect the distribution of data as generated by the indexer to ensure good performance.

The topologies are designed to make efficient use of the shared nothing architecture. These

components are described below, followed by a discussion on search topologies. An example of

how the components are combined can be found in fig 4-6.

4.5.1.1 Top Node

The main task of the top node in a search topology is to act as the interface for a client

to the topology. It accepts a query from the client, distributes it to all of its child nodes and

awaits the results. Depending on the type of operation, it may sort the results ready for

presentation to the client or merge partially ordered results from its child nodes.

4.5.1.2 Leaf Node

The leaf node looks after one partition of the inverted file. It keeps an in-core record of

keywords that is searched when a query is received. The inverted lists are then built for each

element of the query and merged together to form a final result set for this node. This result set

(or sets) is sent to the top node. The number of leaf nodes is defined by the number of required

inverted file partitions.

4.5.1.3 Discussion on search topologies

The example in fig 4-6 is a master/slave topology with a top node and n leaf nodes

(each with its own disk). The query referred to in fig 4-6 is a set of keywords, while the sets are

retrieved inverted lists. The service of a query is done as follows: the top node receives a query

from a client and distributes it to leaf nodes 1 to n. The result set for that query is sent back to

the top node, merging as necessary. In the example the top node is mapped to a separate node

from the leaf nodes and the client is on another processor. We can map the top and client nodes

to any of the available processors as we wish. For performance reasons we only allow one leaf

node per processor. Mapping either the top node or client node either separately or together or

with a leaf node also has performance implications. We describe the algorithm used and its

impact on a parallel program with a given partitioning method in the next section.

83

4.5.2 Probabilistic Search on Partitioned Inverted Files

The term weighting model supported in PLIERS is the Robertson/Sparck Jones

probabilistie model (Robertson and Sparck Jones, 1976) and the term weighting model used

(BM25) is declared in chapter 3. There are four main tasks to search when using the

probabilistic model for search. Firstly we retrieve the document sets from disk and place them

in core. Once we have the document sets we can then assign a weight to each word/document

pair. The sets can then be merged to create a single result set for the required keywords. This

set is then sorted in descending order ready for presentation to the user. We describe both the

implementation and implication of parallelism on each of these phases below.

The retrieval of document sets from disk is a straightforward process and the operation

is identical irrespective of partitioning method used. The effect however can be very different:

retrievals for Termld partitioning require only one I/O request per term, while D odd requires p

requests (where p is the number of partitions), but the set transfer time per term will be shorter

with Docld because of parallelism and short postings lists. It has been pointed out by Jeong and

Omeicinski (1995) that there are performance trade-offs between I/O requests and data transfer

time when retrieving sets from disk.

A very important aspect of term weighting is the issue of collection statistics with

respect to partitioning methods. If we treat partitions of the inverted file as being part of a

global database we need to exchange data between the partitions in order to ensure that the

collection statistics are consistent for every weighting. For example in order to calculate a

collection frequency weight we need to add all occurrences of a term from all partitions when

using D odd partitioning: such addition is not necessary when using Termld partitioning since

the term frequency is available in one partition. We therefore need to adjust our term weighting

operations to suit the partitioning method being used: in the case of D odd partitioning an extra

request to the nodes is needed in order to collate statistics for the search. It is possible to keep a

global dictionary at the cost of extra space. Other statistics such as average document length

and total number of documents in the collection are also affected. It should be noted that term

weighting is possible on independent collections (Singhal, 1998; Cormack et al, 1998), but the

discussion of this subject is outside the scope of our research: our aim is to address the issue of

term statistics across partitioned inverted files and not the results merging problem.

Once weights for each clement of the set have been generated we can then use a PLUS

set weight operation that is a special case of union: if two document identifiers are in both sets

we add their weights otherwise we insert the unchanged posting record in the result set. Again

different types of operations are required in differing partitioned methods. Using Docld

partitioning we can merge local results, do a sort and send only the top n documents from that

84

leaf to the parent node. With Termld partitioning we cannot merge the sets for the result until

the top node has received data from all leaf nodes. This would appear to give D odd

partitioning methods an advantage over Termld in that less communication is needed.

The final phase is simple in D odd : a simple multiway merge will produce the top n

documents required by the client. For Termld however we need to apply a sort to produce the

top n documents. We can apply the sort either directly using a sequential sort or distribute the

set elements amongst the leaf nodes and apply parallelism to it: we have implemented both

methods. Given that D odd can apply a sort in parallel in the third phase without any

communication requirement, the method accrues a further advantage over Termld. Only the top

n documents identified by the weighting operation are presented to the user.

4.6 UPDATE AND INDEX MAINTENANCE

4.6.1. Transaction Topologies

Given that we want to service search and updates simultaneously, the transaction

topology cannot differ too much from the search topology above in section 4.5. We therefore

define top and leaf nodes that can handle both search operations and the update operations

implemented. We describe the additional functionality needed by the nodes to support update

operations above. Fig 4-7 shows an example transaction topology with the service of updates.

85

4.6.1.1 Top Node

The top node being the interface to the topology, accepts new documents, breaks them

down into their constituent words, and sends the index information to the relevant Inverted file

fragment. An alternative would be to devolve analysis to the leaf node, at the cost of extra

coding for little material benefit. The main issue here is that the top node must know what type

of partitioning method is being used in order to send data to fragments accordingly. For

example in Termld partitioning a bucket of words will be formed for each fragment of the

Inverted file. These can be sent direedy to the fragments. However with D odd partitioning, a

decision must be made as to how new documents are allocated to the fragments. We assume

that over a given period of time incoming documents that are distributed in a round robin

fashion will give each fragment roughly the same amount of data, although it is unlikely to be

evenly distributed. We therefore assign new documents to fragments using a round robin

distribution method when D odd partitioning is used. For both types of partitioning method a

confirmation of update completion must be received before a commit notice is sent to the client.

4.6.1.2 Leaf Node

The leaf node receives index data, and merges it with the fragment index data handled

by that particular leaf node. This sequential process is identical to that described in the

indexing section 4.4 above. Some collection statistics and document data must be shared

amongst leaf nodes, e.g. collection size and document length. Each leaf has a document map

structure described in chapter 3 which records such information. When a search transaction is

received by the leaf, both the index and the in-core buffer are searched. If a reorganisation of

the index is initiated new updates are added to a separate temporary buffer: this is searched as

well if new queries are received by the leaf. Transactions are serviced while an index update is

done, strictly interleaving reorganisation of terms and servicing queries/updates (see chapter 8

for more details). When the reorganisation is complete this temporary buffer becomes the main

buffer.

4.7 PASSAGE RETRIEVAL

4.7.1 The Sequentia l A lgorithm

The basic idea behind the implemented passage retrieval method is to iterate through

contiguous sequences of text atoms (say a paragraph) and find the combination that yields the

best weight for that document. This procedure is done on inverted files. The algorithm is shown

in Fig 4-8.

86

Function do_passage(IN: document data) RETURN OUT: weight

For(start=0; start < no_of_atoms; start-M-)
For(fini sh=start+INCREMENT_VALUE;

finish < no_of_atoms && finish-start < MAX_PASSAGE_LEN;
finish=finish+ INCREMENTS ALUE)

If(at least one query term is in start and finish atoms)
calculate weight for current passage

Endlf
if(current passage weight > largest passage weight)
record details of current passage as best passage

Endlf
EndFor

EndFor

return best passage weight

END do_passage

(1st Phase)

Obtain the top 1000 ranked documents for query terms

(2nd Phase)

Get position lists for the terms in the query,
loop 1000 documents

call do_passage function to obtain best
passage for that document

EndLoop
Re-rank the top 1000 documents.
Send top x documents to the client.

Fig 4-8. Algorithm for sequential passage retrieval

There are two stages to the sequential algorithm: retrieve the top ranked (say 1000

documents) and then apply the passage retrieval algorithm to all the elements of the top ranked

set. Restricting processing to 1000 documents is a time saving process: in principle we could

consider all documents. The first phase is a simple search as described in section 4.5 above. In

the second phase a list of positions is obtained for each document and word pair in the query.

We do not need to analyse full text since position data can be saved in our inverted file during

the indexing process (see section 4.4). The passage retrieval algorithm is then applied,

recording the best passage weight for each document. The processing requires the weighting of

a document for terms in the query sets given the relevant position data, and iterating through

the defined passage, recording the highest weighted passage. In the case of best match functions

such as BM25 the requirements may also include the calculation of the passage length. This

passage length is available from storage having being recorded at indexing time (see chapter 3).

Once all documents have been processed the top set is re-ranked and can be presented to the

user. We can reduce the time complexity for this method by setting a maximum passage length

(the term MAX_PASSAGE_LEN in Fig 4-8). A figure of twenty atoms has been used

87

(Robertson et al, 1995) - see section 1.4.4 for the definition of atoms. The minimum number of

atoms could be sensibly set to one (Robertson et al, 1995). A further refinement is to specify

the number of increment steps for examined atoms: this can be altered by changing the

1NCREMENTAL_VALUE constant. It should be noted that if either the start atom or the

finish atom contains no query term, we do not calculate the weight for that passage. In general

there must be a shorter passage that would be better, given that the BM25 scoring function

increases with reducing document length (see chapter 3, section 3.2.1).

4.7.2 The Parallel A lgorithm and Partitioning Methods

In this section we describe the parallel implementation of the passage retrieval

algorithm described above. There are a number of issues when considering the application of

parallelism to the Okapi passage retrieval algorithm. In particular the issue of how (he

algorithm is applied to the inverted file with a chosen data partitioning method must be

addressed. We define two methods of parallel passage processing to be considered: one that

calculates passages on the basis of the database as a whole (distributed) and one where

passages are processed locally (local). These methods are described below. We use a process

topology described in more detail in section 4.5 above.

(1st phase)

Obtain 1000 top ranked documents from the database.
Broadcast top 1000 document id's to all nodes.

(2nd Phase)

InParallel for P leaf nodes
Retrieve position data for top ranked documents

for fragments query terms.
Loop 1000 documents

If(document data is in the fragment)
call do_passage function to obtain best passage

for that document.
Endlf

EndLoop
EndParaUel
Retrieve and merge the document id weights from P leaf nodes
re-rank the top 1000 documents
Get the top x documents and send them to the client.

_____ Fig 4-9. Parallel passage retrieval algorithm - version 1 : distributed

4.7.2.1 Distributed Passage Processing

This method is a two-phase search which could be used for both types of inverted file

partitioning (sec fig 4-9). In the first phase we do a parallel search for the top 1000 documents

88

as described in section 4.5. The identifiers of the top 1000 documents that are to be processed

in the second phase are broadcast to all nodes. Passage retrieval is then applied to documents

managed by a fragment and the result from the nodes is merged into one set. Note that the

sequential algorithm for passage retrieval is reused in the parallel version. The partitioning

method has a direct effect on the processing of passages. Passage retrieval works with D odd

partitioning by letting each processor compute passage weights on each of their document sets

independently. Our processing yields inter-passage parallelism and may be affected by load

balance in different ways. For example documents may not be evenly distributed across nodes

(some documents in the TREC collection (Robertson et al, 1995) can be large). Therefore

processors with more documents or large documents may require much more processing than

other less heavily loaded processors.

The way the method could work with Termld partitioning is to produce a set weight for

each hit document, and accumulate the weights produced on different processors. We can

consider this type of parallelism as intra-passage as the weights for any given passage is

calculated across processors. A criticism of this method is that query size could cause poor

load balance since some processors are likely to have more terms to process than others (see

chapter 7 on probabilistic search results). The large computation needed for processing

passages may well magnify the effect of the distribution. A further and more serious problem is

the constraint on generating scores if and only if the start and finish atoms contain query words.

Consider the scenario in Fig 4-10.

Atoms: A,B,C,D,E,F

Node 1: word: x is in A and D
Node 2: word: y is in C

Fig 4-10. Termld atom distribution for words

To generate the score for atoms A through F we need node 1 to generate component

scores for weights for word x in atoms A and D, while node 2 does y in C. Unfortunately Node

2 does not have data for atoms A and D and will therefore not calculate its component of the

overall score. We can consider two options to rectify this situation: 1) reach distributed

agreement as whether to generate a weight for every passage: 2) relax the constraint and

generate the whole search space. Both of these options have considerable problems. The

distributed agreement method would require a considerable level of communication for every

passage inspected, whether a score is generated or not. Much of this communication would be a

89

waste of resources and puts an extra cost on the parallel algorithm over and above the

requirements of the sequential version. Option 2 is hardly any better. Relaxing the constraint

imposes an unacceptable increase in computation on the parallel algorithm. The storage space

needed to keep the generated score for every passage inspected is high. The extra load at the

top process to complete the passage processing is excessive. We do not therefore consider the

passage processing method described in this chapter as being viable for use on indexes using

the Terrnld partitioning method (we examine this more in chapter 5, section 5.4).

4.7.2.2 Local Passage Processing.

To overcome the potential problem with load balancing described above we can use an

alternative method for passage processing (see fig 4-11). Each node does passage retrieval on a

given number of documents say N: we can vary N according to our requirements. All passage

processing is done locally on the node. As with the previous method, the D odd partitioning

method only is used (and for the same reason). Once a node has received the query, no further

communication is needed until the results have been produced. The effect is to reduce

communication time at the expense of CPU time depending on documents processed (or how

big or small N is). Given that the passage retrieval can be applied to more documents, the

method also gives us the potential to examine more of the search space. With each additional

processor we can examine more or less of the search space as required. In this method a total of

N*P documents is examined for possible good passages (where P is the number of leaf nodes),

although they are not in general the top ranked N*P documents in the collection.

InParallel for 1' leaf nodes
(1st Phase)
Obtain N top ranked documents for the fragments

query terms.

(2nd Phase)
Get position lists for the terms in the query.
Loop N documents

call do_passage function to obtain best
passage for that document

EndLoop
Re-rank the top N documents.

EndParallel
Retrieve top x documents from P leaf nodes.
Send top x documents to the client process.

Fig 4-11. Parallel passage retrieval algorithm - version 2 local

90

4.8 TERM SELECTION FOR ROUTING/FILTERING

4.8.1 Approaches Taken by O K API at TREC

Previous research has been done through Okapi within the framework of the TREC

conference. The approach taken in these experiments is to apply hillclimbing techniques

(Tuson, 1998) of various kinds in order to optimise queries for routing/fdtering. We describe

the approaches taken so far below in TRECs 3,4,5 and 6 (Robertson et al, 1995; Robertson et

al, 1996; Beaulieu et al, 1997; Walker et al, 1998) in order to give some background on the

research.

Okapi at TREC-3 (Robertson et al, 1995) used a single-pass algorithm for term

selection. The algorithm started with the top three terms when building the term set. The terms

were considered one at a time, in sequence given by an ordering criterion for these terms. The

algorithm did not use backtracking: that is that once a term has been accepted/rejected it was

not considered again. Each subsequent term in the top x terms was added to the query and

evaluated against the training set; the term was retained in the term set if and only if a given

acceptance criterion was reached. The acceptance criteria used were increases in average

precision, r-precision, or recall or a combination of these.

Okapi at TREC-4 (Robertson et al, 1996) introduced the concept of adding only,

removing only and add/remove terms iteratively from the query when selecting terms on three

new algorithms. The add only method is similar to that used in TREC-3 described above. In

the remove only method the initial query contains all terms and reformulation is done by taking

terms off one by one and evaluating them against the database. The add/remove method is a

combination of the latter, allowing backtracking. These strategies were applied to three

algorithms; Find Best (FB), Choose First Positive (CFP) and Choose All Positive (CAP). With

the FB algorithm each term was examined in one iteration and the term yielding the best score

either added/removed from the query. CFP works by adding/removing the term if it is the first

term that increases the score by an amount greater than a predetermined threshold. CAP is an

extension of FB/CFP and works by including/excluding all terms that increase the score beyond

a given threshold. The Find Best and Choose All Positive algorithms are Steepest-ascent

hillclimbers while Choose Some Positive is a First-ascent hillclimbcr (Tuson, 1998). It was

found that the best acceptance criterion was TREC average precision, but a number of other

criteria have been tried.

Okapi at TREC-5 (Beaulieu et al, 1997) introduced the notion of varying document

weights during the selection process. The CAP algorithm from TREC-4 was used and

91

extended. Weights were reduced by a factor of 0.67 or increased by a factor of 1.5. A number

of different strategies were applied for term weight variation, e.g. apply weight variation on a

single non-included term at the original weight, lower weight then the higher weight, choosing

the weight that gave the best score increase. More recently the technique of simulated

annealing has been applied to re-weighting at OKAPI at TREC-6 (Walker et al, 1998) with

disappointing results.

Three databases may be used for the Okapi routing/filtering method: an extraction

database, a selection database and a comparison database. However extraction and selection

functions can be done on one database. The extraction database was used to extract terms in

the first level selection process (i.e. to create an initial set of terms); the selection database

being used for the term optimisation process; the comparison database was used mainly for

evaluating the various algorithms. This represents the first phase of Okapi at TREC

experimentation: a further phase was used with Okapi splitting the database into extract and

select for the final submissions to TREC (we did not do this phase of term selection).

4.8.2 Description o f the Sequential Algorithms

It is useful to think of the term selection algorithms described above on two different

levels: a concrete level and an abstract level. The concrete level describes what decision is made

to select a given term by applying an evaluation procedure and getting a score (see sub-section

4.8.2.1). We can then use these scores to choose a best term at the abstract level (see sub-

section 4.8.2.2).

4.8.2.1 Evaluations

In order to facilitate the discussion of the sequential algorithms in the next section we

describe in detail what term evaluations are and the data they process. We define a term set as

a set of keywords that has been chosen from a set of relevant documents during relevance

feedback. We define a document identifier set as a set of documents in which a given keyword

in the term set occurs. Each term in the term set has its own document identifier set and each

element of the document identifier set has a pre-computed weight. A pairwise set operation can

either be a merge or subtraction. For term addition we use a merge operation on the document

identifier set while for term deletion we use a subtract operation. The merge operation

accumulates weights for a given document, while the subtract operation reduces the total for a

document.

In order to do evaluations we need a list of relevant documents. This list takes the form

of a document identifier set. The first phase of an evaluation is to apply a set operation to the

92

document identifier set of the current term and an accumulated set, forming an intermediate

set. The accumulated set is the merge of all document identifier sets related to terms chosen so

far in the process. Using the relevance judgements we mark each document identifier in the

intermediate as being relevant or non-relevant. This intermediate set is sorted in decreasing

order of document weight and the required evaluation criterion is used to produce a score. This

score is compared with the score for the accumulated set and the current term is either put in or

removed from the query if and only if the score is increased by a required amount or other

criteria. If the term is retained/removed the intermediate set becomes the accumulated set.

4.8.2.2 Algorithms

The first part of the sequential algorithm extracts a set of terms from a set of relevant

documents and chooses a top set of terms using the Term Selection Value (Robertson, 1990):

this is referred to as the term pool. The term pool generation is done before the optimisation

process. An initial base set of terms is formed using the top three terms in the term pool: a set

merge creates an accumulated document identifier set from the data of base set terms. One of

the algorithms described above is applied iteratively to an evaluation set of terms using one of

the different operations also described above in section 4.8.1 (e.g. FB with add/remove and re-

weighting) to select terms for the query. The evaluation set is the term pool minus the base set.

We apply the algorithm until some stopping criteria is reached (see Figs 4-12 and 4-13).

L o ad te rm po o l L o ad te rm p o o l
G e n e ra te b a se an d e v a lu a tio n te r m s e ts G en era te b a se a n d e v a lu a tio n te rm s e ts
O bta in re le v a n ce in fo rm a tio n fo r a to p ic O b ta in re le v a n ce in fo rm a tio n fo r a to p ic
F o rm a cc u m u la ted set fro m b a se se t F o rm acc u m u la te d set fro m b a se set
L o o p w h ile n o s to p p in g c rite ria is reach ed L o o p w h ile n o s to p p in g c rite ria is re a ch e d

L o o p lis t o f te rm s in e v a lu a tio n set L o o p lis t o f te rm s in e v a lu a tio n set
E v a lu a te an o p e ra tio n on th e c u rre n t te rm E v a lu a te a n o p e ra tio n o n th e c u rre n t te rm
I f op e ra tio n is su ccess fu l I f o p e ra tio n is su ccess fu l

R ec o rd c u rre n t te rm a s b e s t te rm . A d d c u rre n t te rm to query
I f a lg o rith m is C F P E n d lf

L e a v e in n e r loop E n d L o o p
E n d l f C h ec k th e s to p p in g c rite ria

E n d lf E n d lo o p
E n d L o o p
U p d a te q u e ry w ith b e s t te rm
C h ec k th e s to p p in g c rite ria

E n d lo o p

Fig 4-12. Sequential FB/CFP algorithm Fig 4-13. Sequential CAP algorithm

Thus there are two iterations involved in term selection: an outer iteration after which a

term or term set is selected and an inner iteration in which the evaluations are done. A further

evaluation can be done on a different set of documents, to check the validity of the term

selection.

93

4.8.3 D escription o f the Parallel A lgorithm s

4.8.3.1 Set Parallelism

An approach to applying parallel computation to term selection is to think in terms of

term sets and what needs to be done to the Okapi algorithms to reduce their run time. Since the

evaluation of operations on terms can be done independently we can distribute the evaluation

set to a number of processes. These processes can then apply the required Okapi like algorithm

in each inner iteration to each sub-set of the evaluation set. Thus by applying inter-set

parallelism to the evaluation of terms in the evaluation set, we aim to speed up each inner

iteration. We use a method of parallelism known as the domain decomposition strategy

(Glover and Laguna, 1997: 260): the search space is divided amongst available processors.

One of the advantages of this method is that communication costs are kept to a minimum as

processes involved in evaluating terms do not need to communicate to complete their task:

however there is an overhead associated with checking the stopping criteria in every outer

iteration. This overhead involves both the retrieval of the best yielding term from all slaves and

broadcast of the best term data included back to the slaves. We could consider the use of intra-

set parallelism, that is applying parallelism to an individual evaluation. This method however

would increase communication costs dramatically and it is not clear that the benefit gained by

parallelism would offset this extra cost (this issue is addressed in chapter 5, section 5.5). We

therefore concentrate on inter-set parallelism methods.

4,8.3.2 Parallelization of the algorithms

The combinations of algorithms and operations currently implemented are: Find Best,

Choose First Positive and Choose All Positive algorithms with add only, remove only,

add/remove operations and re-weighting (12 combinations in all). See section 4.8.1 (third

paragraph) for a description of these algorithms and operations. It should be noted that the

CAP algorithm is a purely sequential algorithm to which inter-set parallelism cannot be directly

applied as the results are the cumulative effect of evaluations in one iteration. However the

CAP algorithm can be applied to each sub-set of the evaluation set and we refer to the revised

version as the Choose Some Positive (CSP) algorithm: we can regard CSP as a compromise

between the FB/CFP algorithms and CAP algorithm. In the CSP algorithm the best yielding

sub-set of the evaluation set from one process only is chosen. CSP is implemented in terms of

CAP. Choose First Positive differs slightly in that it is possible that a better term could be

chosen in one inner iteration for each smaller sub-set of the evaluation set. It is possible the

terms selected by the Find Best algorithm may differ slightly over runs with varying numbers of

94

processes, possibly affecting the evaluation score. This is because two or more terms may have

the same effect when applied to the query and the term that is chosen first amongst these equal

terms will be the term used: the term returned by the fastest process will therefore be chosen.

When the number of processors equals the number of evaluation terms, all term selection

algorithms are identical; i.e. they all reduce to Find Best.

Fig 4-14. M aster!Slave router topology

4.8.3.3 Types of Processes

There are two types of processes involved in parallel term selection: the master router

and a number of slave routers. This topology was chosen for its simplicity. The master router

creates the base and evaluation sets and handles the results from slaves after each inner

iteration, checking the stopping criteria. The slave router applies the chosen selection algorithm

(with the required operation) to its sub-set of the evaluation set, and communicates this

information to the master router (see fig 4-14 together with figs 4-15 and 4-16).

4.8.3.4 The Parallel Algorithms

The parallel algorithms are shown in figs 4-15 and 4-16. The symbol -» signifies the

direction of a communication between process(s). Synchronisation between all processes is

done in the stopping criterion at the end of each inner iteration. At this synchronisation point

data is exchanged between the master and slave router processes in order to select the best

term(s) from one of the processes. All slave processes then have the same term set data on

which to select terms in the next inner iteration. This synchronisation point is a potential

95

performance bottleneck both in the communication needed to transfer data and having a

sequential section that cannot be parallelized.

L o ad te rm po o l fo r to p ic L oad te rm p o o l fo r to p ic
G e n e ra te b a se a n d e v a lu a tio n te rm s e ts G e n era te b a se an d e v a lu a tio n te rm se ts
O bta in re le v a n ce in fo rm a tio n fo r a to p ic O b ta in re le v a n ce in fo rm a tio n fo r a to p ic
F o rm a ccu m u la ted set fro m b a se set F o rm acc u m u la te d set fro m b a se set
B ro a d ca s t a cc u m u la te d set, ev a lu a tio n se t and B ro a d ca s t a c c u m u la te d set, e v a lu a tio n s e t and

re le v a n ce d a ta to N s lav es [m a s te r—^slaves] re le v a n ce d a ta to N s lav es [m a s te r -* s la v e s]
L o o p w h ile n o s topp ing c rite rio n is reached L o o p w h ile n o s topp ing c rite rio n is reach ed

InParallel F'orAll j =1 to N Slaves InParallel ForAll j =1 to N Slaves
L o o p lis t o f te rm s in j th ev a lu a tio n su b -se t L o o p lis t o f te rm s in jth e v a lu a tio n su b -se t

E v a lu a te an o p e ra tio n on the c u rre n t te rm E v a lu a te a n o p e ra tio n o n th e c u rre n t te rm
I f o p e ra tio n is su ccess fu l If o p e ra tio n is su ccess fu l

R ec o rd c u rre n t te rm as b e s t te rm U p d a te q u e ry w ith c u rre n t te rm .
I f a lg o rith m is C F P E n d lf

L e a v e in n e r loop E n d L o o p
E n d l f EndParallel

E n d l f G e t b e s t b e s t te rm fro m N s lav es [s la v e s—^m aster]
E n d L o o p C h eck s to p p in g c rite rio n

EndParallel I f s to p p in g c rite rio n is n o t re a ch e d
G e t b e s t te rm fro m N s lav es [s la ves—^m aster] B ro a d c a s t n e w b e s t te rm d a ta to N slaves
C h ec k th e s to p p in g crite rion [m a s t e r s s la ves]
I f s to p p in g c rite rio n is n o t reach ed InParallel ForAll N Slaves

U p d a te query w ith b e s t te rm U p d a te acc u m u la te d se t w ith b e s t te rm da ta
B ro a d ca s t n ew b e s t te rm d a ta to N s laves EndParallel

[m a s te r - ^ s la v e s] E n d lf
InParallel ForAU N Slaves

U p d a te acc u m u la te d se t w ith b e s t te rm d a ta
EndParaik'l
E n d lf

E nd lo o p

E ndloop

Fig 4-15. Parallel FB/CFP algorithm Fig 4-16, Parallel CSP algorithm

4.8.3.5 Data Placement Strategies

Two strategies for the distribution of inverted files have been implemented. In strategy

1 the master only has access to inversion (on-the-fly distribution) while in strategy 2 inverted

files are replicated across all processes, master and slave (fig 4-17). The parallel architecture

used for the strategy 1 distribution method was the distributed memory architecture used in

many applications for parallelism. Strategy 2 used a shared nothing architecture that is

described in chapter 3. We used two different distribution methods for the evaluation set. For

strategy 1 we distributed evaluation set terms on a round robin basis using the Term Selection

Value criterion. For strategy 2 we sorted the query in increasing collection frequency per term,

and then used a round robin distribution method for the evaluation set. It should be noted that

once terms in the evaluation set were given to a node, the term stayed on that node: we did not

use any dynamic re-distribution of terms.

We give a brief discussion of why partitioning methods under consideration in this

thesis are unsuitable for use in applying parallelism to the term selection algorithms discussed

(we give a formal treatment in the synthetic models chapter). The D odd method for inter-set

96

parallelism would not be feasible due to the amount of communication needed: we would need

(N-1)*T messages in order to exchange data for all the terms in the query in order to optimise it

(N is the number of nodes, T is the number of terms in the query). This problem occurs

because unique term information is spread across all fragments. Such a problem is not one that

Termld suffers from: evaluations on a given term can be done without the need for any

communication on its related data. However the problem with Termld is that it has reduced

flexibility in distributing terms in the evaluation set compared with the strategies described

above. As term data is fixed on one node, there is no guarantee that we would get good load

balance as evaluation set terms may not be distributed equally amongst nodes. We discuss the

suitability of these data placement schemes in chapter 5, section 5.5.

97

4.9 SUMMARY

In this chapter we have described the implementation of our parallel IR programs and

have outlined important design decisions for each of the tasks being examined in this thesis. We

stress the importance of simplicity in process topologies to reduce complexity and we have

applied this principle in all of the implemented tasks. We have built three parallel programs in

order to complete the research for this thesis: one for indexing, one for search/update/passage

retrieval and one for routing. We have also built sequential versions for indexing and search

programs for comparison. Client/Server programs for update and routing experiments are

easily configured from parallel programs.

98

Chapter 5

Synthetic Models For Performance on Distributed Inverted Files

5.1 INTRODUCTION

Many previous performance models for IR only cover some aspects of the ideas and

concepts discussed in this thesis. Those models which provide a general performance overview

of IR do not deal with the problem of distribution (Cardenas, 1975; Fedorowicz, 1987;

Wolfram, 1992a and 1992b). Much of the work described in the literature on the subject which

does look at distribution either tackles one task (Jeong and Omiecinski, 1995; Tomasic and

Garcia-Molina, 1993a and 1993b) or one aspect of a task such as the consideration of only one

distribution method (Ribeirio-Ncto cl al, 1999; Hawking, 1996). In this chapter we provide

synthetic models of performance in order to compare distribution methods for all tasks under

consideration in the thesis. We also wish to 1111 some of the gaps in the literature. However, due

to practicalities we do not study absolute performance of the tasks, and our emphasis is

restricted to the derivation of synthetic models that can only be used for comparative purposes.

Not having to address the issue of absolute performance simplifies the process of modelling

greatly. While our primary aim in this chapter is to produce models which are strong enough to

compare distribution methods and make choices between them, we also try to look beyond this

simple requirement in the thesis. We would like models which are good enough to predict the

relative difference between data distribution schemes. We would also like to be able to make

generic statements about parallel IR performance beyond the algorithms and architectures

which we examine in this thesis; this may be difficult to do given the range of systems

described in the literature (see chapter 2). These issues will be addressed throughout the rest of

the thesis by exaining the empirical results gathered. In chapter 4 we asserted that some

distribution methods for the passage retrieval and routing/filiering tasks were not viable: we

address the issues formally in this chapter.

The format of the models is functional. This allows us to specify equations and reuse

them in other defined equations. This makes it easier to replace various aspects of a given

model in order to study different type of methods not under consideration in this thesis such as

query processing optimisation and compression. We attempt to make our models as generic as

possible. All functions return a single figure in abstract time. The functions only take variables

as arguments: we do not specify higher order functions. We have a number of general variables

for the models which are declared in table 5-1.

99

Tcpu : CPU time (for some operation).
Ti/0[x] : I/O time [Components: lTseek + x Tn-aris;

Tseek : Time to seek for I/O
T,..ans : Time to transfer data for I/O]

Tx comm Communication time
T, : Abstract Time
P : No of nodes in a parallel machine
LI[P] : Load imbalance estimate at P processors

Table 5-1. General variables for the synthetic models

We make a number of assumptions in the general variables which impact (with varying

degrees) on the synthetic models. We assume a low latency network in order to simplify the

modelling of communication (otherwise we would have to break down Tcomn, using a Tcoram[x]

format). For I/O we do allow two forms as blocks of data can be either static or dynamic. The

Ti/o form of the variable can be used if fixed size blocks are transferred, and it is safe to

assume that the balance between transfer and seek time is constant. We use the Ti/o[x] where

variable sized blocks are transferred and the balance between seek and transfer time must be an

integral part of the modelling process. For seek time we assume that an I/O request entails a

single disk head movement. We assume an accumulated increase in load imbalance (variable

LI[P]), at a rate of 0.015 for all synthetic models (values used are listed in appendix A5: table

A5-1). It is difficult to know what the load balance will be for the parallel version of a

particular task, without running a program and measuring the imbalance. We take this

approach to provide a reasonable level of load imbalance for a given parallel machine size. For

a given model we assume that the same parallel machine is used, that is the communication,

CPU and I/O costs are identical across nodes in the machine: we do not address the issue of

heterogeneous parallelism in the models.

The algorithms and methods modelled in this chapter are those described in chapter 4.

Lookup values declared in the form x[y] (e.g. LI[P]) are not recorded as parameters but global

variables. The scope rules for any declared variable are the normal ones found in most

programming languages: variables declared locally take precedence over global ones.

Sequential and parallel models are declared for all tasks. Simplifying assumptions for each of

the models is declared in the relevant sections. The format for discussing models in each task is

as follows; variables and constants for the model are declared, a brief description of the model

is given, and the results using that model are examined. Details of how the models were

constructed and derived can be found in appendix A5.

100

5.2. MODELS FOR INDEXING

Table 5-2 declares variables and constants for indexing models. We assume in this

model that there is a strong link between word data and the underlying data structures (for

postings and/or positions), such that we are able to abstract these data structures away and

define models just using document and word information. This allows us to simplify the

modelling considerably.

d : N um ber o f docum ents in collection,
n : Average num ber o f words in a docum ent.
BSIZE : B locking Size (num ber of words which can be stored

in-core during indexing).
f : filesize in text words (no o f docum ents in a file times

average
size n words)

_______Table 5-2. Variables and constants for indexing models

5.2.1 Description o f models for indexing

We identify three distinct parts of time for indexing (see chapter 4, section 4.4): a)

analyse the documents, b) save intermediate results to disk and c) merge intermediate results to

create Inverted file. The sequential cost model INDEXseq for this process is declared and

constructed in appendix A5-1. For local build the construction of the model (INDEXLocai.Dodd)

is done by dividing INDEXseq by the number of processors in the theoretical parallel system,

multiplied by load imbalance (LI[P]). We ignore any communication in this model as it is not

significant. For the distributed build models of parallel indexing (INDEXo^ Dodd and

INDEXDistrjrermid) there are two extra costs associated with the methods (see chapter 4, section

4.4.2). With both partitioning methods there is the cost of distributing text data to the worker

processes. With Terrnld partitioning there is also a further global merge phase which entails the

transmission of data together with a further merge of this data. The parallel models are

declared and constructed in appendix A5-2.

5.2.2 Comparative results using indexing models

The values of instantiated variables are declared in table 5-3. These variables are

derived from the BASE1 collection, while the time variables are chosen to reflect the

approximate balance between those variables in time Tt. Communication time assumes a fast

network. We lake these values and produce two sets of results: one with the collection kept

static in order to compare the parallel versions of indexing (see fig 5-1) and one with the

101

number of processors held constant in order to compare scaling between sequential and parallel

versions (see fig 5-2).

d 187,000
n 460
BSIZE 716,000
f 171,697
TCpu 0.01
Ti/o 0.015 (block sizes are constant, ignore x)
Tx comm 1

Table 5-3. Values used for indexing models

From fig 5-1 it can be seen that there is an advantage in theory in using D odd

partitioning over the Termld method for indexing in that the models for the former predict

better performance over the latter on all machine sizes. It should be noted that the model

predicts a narrowing of the gap between partitioning methods with increasing machine size (we

will examine this further in the conclusion). There is little difference between local and

distributed builds in Dodd, but we have assumed a high bandwidth network in the instantiated

models (the graph for local build D odd is obstructed by distributed build D odd as there is

virtually no different in theoretical time between them). If we assumed a much lower bandwidth

network, there would be a clear difference between the builds and Termld would not compare

well with either of the D odd methods.

Synthetic Indexing Performance - Static DB

3.00E+07

2.50E+07

w 2.00E+07
■N
'c
3 1.50E+070)
E
F 1.00E+07

5.00E+06

0.00E+00
1 2 3 4 5 6 7 8 9

W o rker n odes

Fig 5-1. Synthetic indexing performance on 1 to 9 worker nodes

102

Fig 5-2 shows results for scaling on the synthetic indexing models. The number of

worker nodes used in parallel models is 10. The comparison predicts that in theory, parallel

runs would outperform sequential runs and that the gap would increase as the number of

documents in the collection is increased. The comparison between the two partitioning methods

also predicts that D odd using any build has a clear theoretical advantage over the Termld on

large collections. Note that the assumption on high bandwidth predicts that there would be little

difference between local and distributed builds when D odd partitioning was used.

Synthetic Indexing Performance - Scaling on large
collections

o
Docs (m illions)

— INDEXseq

— %&■■■■ INDEXLocal_Docid

—± — INDEXDistr_Docld

INDEX Distr_Termld

Fig 5-2. Comparison between indexing models on larger databases (scaling)

5.3 MODELS FOR PROBABILISTIC SEARCH

s : A verage set size
q : N um ber o f terms in a query
R[q,s] : Final result set size lookup table determ ined by

set Increase
SSIZE : Size o f set transferable in one com m s invocation
P[q] : U sable processors on query size for Termld: (P[q] <= P)

T ab le 5 -4 . V a riab le s an d co n stan ts fo r p ro b ab ilis tic sea rch m o d e ls

Table 5-4 declares the variables and constants for the synthetic perfonnance models of

probabilistic search (we model the search methods discussed in chapter 4, section 4.5). It

should be noted that unlike the indexing models, data transferred from disk can be of varying

size and we must therefore must break down Ti/0 into its components parts. In the lookup table

R[q,s], we assume that the result set size will asymptotically approach the maximum set size

for a collection with increasing the number of terms in a given query. When a given number of

103

terms in a query is reached, we assume that the result set cannot be increased beyond this

maximum set size. We introduce another form of counting processors in a system for Termld

search, in the form of P[q], This is because the number of terms in the query may be less than

the node count of the parallel machine (e.g. the user may enter a single term query on an 8

processor system). The inequality P[q] <= P shows this aspect of Termld search formally. It is

possible that all the terms in a query could be distributed to a single node: we therefore assume

that terms are equally distributed to processors, i.e. the term allocation mechanism is ideal (see

chapter 4, sub section 4.4.2.3). Similarly we assume that the distribution of documents when

using D odd search is ideal.

5.3.1 Description o f search models

In section 4.5.2 (chapter 4) we identified four discrete computations for probabilistic

search, namely a) loading the keyword sets, b) weighting these sets, c) merging the sets into a

single set and d) sorting this set to obtain the final result for presentation to the user. A function

is declared for each these computations and the whole forms the model SEARCHseq which is

constructed and declared in appendix A5.3. The form of the parallel models is the same as the

sequential model, allowing us to re-use and substitute functions in those models as required (see

appendix A5.4). There is however a further communication cost for the parallel models. We

assume in the D odd partitioning model (SEARCHdocid) that latency is main communication

problem since little data is transferred: under these conditions, we can take the expected

communication time, Tcomm, to be the same for every message. We define two models for

Termld, one which models a sequential sort (SEARCHtermidi) and one which models a parallel

sort (SEARCHtermid2). The SEARCHErmidl model requires more communication than

SEARCHdocid and we assume here that data transfer is more of a problem. The SEARCHterraid2

model must model the scatter/gather of the data for the parallel sort. In both Termld models we

substitute the alternative counting method for processors P[q] for P in the function invocations.

The I/O is modelled differently in Termld models due to the effect of the seek/transfer balance

(see chapter 4, section 4.5.2).

104

5 .3.2 C om parative results using search m odels

SSIZE 4000
q 2.5
s 7791
Tx epu 0.003
Tx trans 0.015
Tseek 0.1
Tx comm 1

Table 5-5. Values for search models

Table 5-5 shows values used for the synthetic search models. The value for the s

variable is an estimate based on data from the BASE1 collection. The time values are estimates

which reflect the approximate balance between the different aspects. The value for q is used

because users tend to submit just over two terms per query (from our experiments using real

web data to be described in chapter 7, section 7.7.2). The SSIZE variable is chosen to represent

the approximate costs during communication of one communications invocation. The results of

applying these values shown in fig 5-3 demonstrate that in theory the D odd partitioning

method would perform better than the Termld method using either a parallel sort

(SEARCHtennid2) or sequential sort (SEARCH^.,7rndi). The comparative results also predict that

the Termld method with parallel sort will outperform the algorithm with a sequential sort by a

substantial amount: the synthetic model predicts that a sequential sort will be a bottleneck.

Synthetic Search Model

—«— SEARCHdocid

" ■ S EA RCHter mid 1

—* — SEARCHtermid2

Fig 5-3. Comparative results for search models on 1-9 leaf nodes

105

Fig 5-4a. Comparative results for search models: increasing query size.

Synthetic Search Model - Scaling Query Terms

Q uery T erm s

—* - - SEARCHseq

— SEARCHdocid

— - SEARCHtermidl

■ SEARCHtermid2

Fig 5-4b. Comparative results for search models: increasing query size
(smaller scale which shows difference between D odd and Termld theoretical models).

Fig 5-4a shows that in theory, all parallel methods would outperform the sequential

method for larger query sizes or larger data sets: the number of leaf nodes (the variable P) is set

at 10 for this model. The comparison confirms that Termld with a sequential sort would not

perform as well as the other two algorithms studied. It is difficult to see any difference between

Docld and Termld with parallel sort because of the scale in fig 5-4a, but looking at a smaller

scale version of the data in fig 5-4b we can see a clear difference between both theoretical

models.

106

5.4 MODELS FOR PASSAGE RETRIEVAL

a : Average number of text atoms inspected per document
PR : Documents to do passage retrieval on

Table 5-6. Variables and constants for passage retrieval models

Table 5-6 declares the variables and constants used in the passage retrieval models.

The search models declared in section 5.3 above are reused here: a normal probabilistic search

precedes the application of the passage retrieval algorithm. The algorithms modelled are

described in detail in chapter 4, section 4.7. We assume that a number of optimisations are

used to reduce the n2 inspected passages to (a(a-l))/2.

5.4.1 Description o f passage retrieval models

The total cost of passage retrieval search will include the sequential probabilistic

search. The PASSAGEseq model is constructed by defining a compute passages model and re-

using the sequential probabilistic search cost model (see appendix A5.5). The parallel models

are constructed in the same way for a given partitioning method, using the relevant parallel

probabilistic search cost model (see appendix A5.6). The local passage processing method (see

chapter 4, sub-section 4.7.2.2) does not need the addition of communication cost models, unlike

distributed passage processing (see chapter 4, sub-section 4.7.2.1). Distributed passage

processing requires that the top PR documents be identified using probabilistic search. This top

set of documents is communicated to processors in the parallel machine and collected up again

when the passage computation is complete: both partitioning methods use this communication

cost model. The Termld partitioning method has a further and considerable communication cost

in order to exchange passage data: one communication invocation per passage.

5.4.2 Comparative results using passage retrieval models

Fig 5-5 shows results on 1 to 9 processors with the values set at a= ll and PR=1000.

As with previous models these values were gathered from the BASE1 collection. There is

clearly a significant problem with using Termld partitioning with the passage retrieval

algorithm we study in this thesis. The predicted comparative performance is so poor that the

D odd models appear to be near zero. The argument used in chapter 4, section 4.7.2 against

using Termld partitioning for passage retrieval is considerably strengthened by these theoretical

107

results. It is clear from the model that predicted communication costs would increase the run

time of any parallel program using such a partitioning method.

Synthetic Passage Retrieval Model

Leaf n odes

—«— PASSAGEdocidJocal

—^ — PASSAGEdocid_distr

—* — PA SSA G Eter mid 1

....PASSA G Eter mid2

Fig 5-5. Synthetic passage retrieval model on 1 to 9 leaf nodes

-♦— PASSAGEdocidJocal —^ — PASSAGEdocid_distr

Fig 5-6. Synthetic passage retrieval models - D odd only

Fig 5-6 shows synthetic model results for D odd partitioning only. With both types of

passage retrieval using D odd the prediction is time reduction with increasing numbers of

processors, but the local method (marked PASSAGEdoci(Uocai) shows slightly better theoretical

results than the distributed method (marked PASSAGEdocid distr).

108

Synthetic Passage Retrieval Models - Query Scaling

20000 -r

Q uery Size

Fig 5-7. Synthetic passage retrieval models - Query Scaling 1 to 25 terms

Fig 5-7 shows the comparison between the type of build on D odd partitioning and

sequential models only, varying the number of terms in the query. The number of leaf nodes

(the variable P is set at 10). The synthetic models predict a considerably better perfonnance for

the parallel algorithms over the sequential algorithm. Due to the scaling it is difficult to

perceive any difference between the two parallel methods.

5.5 TERM SELECTION MODELS FOR ROUTING/FILTERING

In this section we only deal with one algorithm using one term operation, otherwise we

have to define 90 synthetic models (3 algorithms * 3 operations * 5 data distribution methods

and sequential method * 2 reweighting schemes). We restrict the number of models to derive

and inspect, reasoning that a distribution method which does not work in one model will not

work in another. We say this because all algorithms use the same iterative technique (see

chapter 4, section 4.8). We define models for find best with add only or add reweight

operation: this requires the definition of ten models. Table 5-7 shows the variables and

constants used for term selection models. We reuse many of the variables declared for search in

table 5.4. We limit the maximum number of iterations to 100 (we used this limit in our

experiments to be described in chapter 10). A further optimisation is used in our experiments is

not to examine a term for ten iterations if that term has failed to improve the score in four

iterations (see chapter 10, section 10.2). We simplify the modelling of this by using the u

variable which is a percentage of the total examined in the term selection process.

109

r: N um ber of docum ents judged relevant,
q: N um ber o f term s in term selection process: e.g. no of

query term s (declared in table 5-4).
i: N um ber o f iterations in term selection,
u: Estim ate of total terms skipped during term selection

(percentage o f total terms exam ined),
w: M axim um num ber o f times a term is reweighted,
s: Average set size (declared in table 5-4).
R[q,s]: Final result set size lookup (declared in table 5-4).

Table 5-7. Variables and constants for tenu selection models

5.5.1 Description o f term selection models

The modelling of term selection starts with the examination of evaluation costs. An

evaluation of a term consists of applying the term to a training set and producing a score which

is used to examine its fitness (see sub-section 4.8.2.1, chapter 4). A function for the cost of

evaluation is constructed and declared in appendix A5.7.1. The number of terms selected for

evaluation will depend on the type of term selection algorithm used, together with the term

operation utilised (see section 4.8.2.2, chapter 4). We restrict our study to the find best

algorithm together with add only and add reweight operations. We define a cost function for

terms inspected (see appendix A5.7.2). Data for the query to be optimised must be loaded into

memory either at the start of the optimisation process or when data is needed for a given term.

We take the former approach assuming that the machine has enough in-core or virtual memory

to be able to store the data (see appendix A5.7.3). The sequential models for routing

(ROUTINGseq and ROUTING^) are formed by multiplying the evaluations by the inspected

terms and adding the load cost function (see appendix A5.7.4). The add reweight routing cost

function (ROUTINGseqw) is further refined by multiplying the evaluation/inspected terms cost

with the reweighting variable 'w': this is applicable to all models, sequential and parallel.

The basic parallel term selection models (ROUTINGpar and ROUTINGpanv) with no

synchronisation or communication costs can be constructed by taking the sequential models,

dividing them by the number of processors P, and then multiplying the result by the estimate of

load imbalance LI|P] (see appendix A5.8). These basic models can be used to form cost models

for Termld partitioning (ROUTING^d), and replication (ROUTINGrep) and their reweighing

counterparts. Models for the other two data distribution methods under consideration, On-the-

fly distribution (ROUTINGparfiy and ROUTINGparfiyw) and D odd partitioning (ROUTINGdodd

and ROUTINGdocidw) must be defined without using those basic models. In the model for 0 ti-

the-jly distribution, data must be loaded cenLrally and is a sequential bottleneck. Inter-set

parallelism cannot be sensibly used in Docld partitioning (see chapter 4, sub-section 4.8.3.5).

We can have a distributed accumulated set and parallelism on merges and sorts so there is

110

potential benefit: but only one evaluation is done at a time (parallel evaluations are done - intra-

set parallelism). All models need to take account of synchronisation costs at the end of each

outer iteration, which includes the merge of chosen term data into the accumulated document

identifier set (see chapter 4, sub-section 4.8.2.1).

The communications overheads are modelled differently for each parallel routing

scheme. Costs for D odd partitioning will be higher as communication is needed for inner

iterations as well as outer ones. The merge at the synchronisation point is much cheaper as it

could be done in parallel: all other models require a sequential merge at the same point. The

interaction for Termld partitioning would require the retrieval of a terms document identifier

set from one node in order to be broadcast to other processors. Communication costs at the

synchronisation point for On-the-fly distribution would be much less as the master process has

direct access to all data, but would be more expensive for the initial load as all term data must

be broadcast to the processors. In replication, we assume that the main problem would be

latency when exchanging set identifier data at the synchronisation point.

r: 50
n: 300
u: 0.4
w: 3

Table 5-8. Values used for term selection models

5.5.2 Comparative results using term selection models

Table 5-8 shows the values used for the theoretical results produced in this section.

The values for resource cost variables (T ^ , T ^ , Tseek, Tcom) are taken from table 5-5. The

values chosen for variables declared in table 5-8 are taken in the main from Ziff-Davis

experiments described in chapter 10, apart from the variable r. Fig 5-8 shows the comparison

between models with the number of processors P set at 100 and the number of iterations i set at

100.

The models predict that the best performing distribution scheme overall would be the

replication method. On smaller processor sets, the Docld partitioning method shows better

theoretical results, but predicts that the performance would deteriorate substantially due the

restriction on the level of parallelism in that distribution method: the communication/

computation balance would be skewed. The prediction with respect to Termld partitioning and

111

on-the-fly distribution is that there is little difference between them particularly with large

processor sets. Fig 5-9 shows theoretical results varying the number of query terms in the

selection process (the variable n). The number of slave nodes (P) for parallel models is set at

10. The models predict that all parallel methods would outperform the sequential or

uniprocessor method and that the difference would increase proportionally with the number of

terms in the query. Fig 5-10 shows theoretical results for parallel models only on the same data.

PARALLEL MODELS AT 100 ITERATIONS

4500000

4000000

3500000

Q) 3000000
E
F 2500000

5 2000000

1500000

1000000

500000
o o o o o o o o o o
T - O J C O r f i n C O r ^ C O C D O

Slave nodes

Fig 5-8. Term selection model results using large slave node set and iteration sizes

Fig 5-9. Comparison between all models by varying number of query terms

112

Synthetic Routing Models - Term Variation (PAR only)

Q uery T erm s

—&— ROUTINGdocidw

ROUTINGtermidw

—A— ROUTINGrepw

■ ROUTINGparflyw

Fig 5-11. Comparison between parallel models by varying number of query terms
(weight variation)

The number of iterations (i) is set at 20. The theoretical results given in fig 5-10 are

consistent with those in fig 5-8, namely that D odd partitioning may perform better on smaller

numbers of processors and that there is little difference between Termld partitioning and on-

the-fly distribution (although Termld may perform slightly better). However if we use a weight

variation model the prediction is that on-the-fly distribution may perform slightly better (see fig

5-11). The number of iterations (i) for these models is set at 30 to reflect the extra workload

113

weight variation places on the term selection process (found in experiments to be described in

chapter 10).

5.6 MODELS FOR INDEX UPDATE

Table 5-9 shows variables and constants for synthetic index update models. Wc use a

contention factor (c) to simplify the modelling as it is difficult to establish a relationship

between concurrent index update and transaction service (even with the strict interleaving

method used for the purposes of this thesis). We assume an increase in contention with more

processors. We examine several different aspects of index update in this section. The

comparative performance of transactions on partitioning methods is studied when transactions

only are serviced and when transactions contend with index reorganisation for resources. We

also look at the comparative performance on the index reorganisation with and without the

contention factor. We vary the contention factor in order to study the effect on transactions and

index reorganisation. The algorithms and methods discussed are those described in chapter 4,

section 4.6.

diet: Size o f the dictionary.
ur : U pdate rate (num ber o f updates in time period),
sr : Search rate (num ber o f search requests in tim e period),
ro : Percentage o f total transaction tim e spent re-organising

database.
b: Blocking factor for dictionary file.
c[P]: Contention for resources factor at P processors
m: N um ber of keywords in the buffer on index update,
t: N um ber o f keywords transferred during index update

(total words handled = m+t).
i[Pj: Increase in num ber o f terms for index for P processors

[Dodd, only],
p[P]: Percentage decrease in average set size at P processors

[D o d d only].

Table 5-9. Variables and constants for index update

5.6.1 Description o f index update models

In our sequential models we assume a Client/Server model is used to service

transactions on a single unpartitioned inverted file (see appendix A5.9). We construct cost

models for updates (see appendix A5.9.1) and use these and the search models defined to create

models with contention using the c[P] variable (see appendix A5.9.2). These functions allow us

to define a transaction cost function in which we can vary the update to search ratio and the

contention rate (see appendix A5.9.3). We take the same strategy with the parallel transaction

114

models (see appendices A5.10.1 and A5.10.2). In the Termld transaction model we specify the

parallel sort search cost model.

When a buffer has reached a given size, an index update or reorganisation is done

which makes changes to the index persistent (see chapter 4, sub-section 4.6.1.2). The algorithm

consists of examing the in-core data, identifying keywords and merging data, together with

reading in and writing data to disk. The sequential cost model for this is defined in appendix

A5.9.4. The contention model for reorganising the index is constructed simply by adding the

estimated cost on one node. The models for Termld partitioning can be formed by applying

parallel variables to the models defined in appendix A5.9.4 (see appendix A5.10.4). We cannot

directly use the sequential functions defined in appendix A5.9.4 for D odd partitioning (see

appendix A5.10.3). This is for three main reasons. Firstly the I/O activity is different (more

seek cost, reduced transfer times). The other two related to the way the partitioning method

interacts with the available processors in the system. The dictionary will be larger as terms are

replicated across partitions, but the average set size to be reorganised decreases as hit terms

will be dispersed in blocks with less frequent terms.

5.6.2 Comparative results using index update model: Transaction Processing

Table 5-10 shows the variables and constants used for our transaction processing

comparisons. The values for resource cost variables (Tcpu, 'ru-alLS, Tseek, Tcora) are taken from

table 5-5. The diet and s variables are an estimate taken from the BASE1 collection. We

assume that documents to be inserted are small (we use short document for insertions in

chapter 8).

diet 1,355,140
ur 10
sr 100
ro 0 to 100%
b 10
c[P] 0.05 at with an accumulated increase of 0.25

per processor.
s 7791
n 50

Table 5-10. Variables and constants values used for update models

Fig 5-12 shows the prediction using these values and compares the theoretical

performance between both types of partitioning methods where transactions are affected by

index update (models are labelled with the suffix RO) and normal transaction processing

without contention for resources. The models predict that Docld partitioning will outperform

115

Termld whether or not there is contention for resources due to index update. As you would

expect, where there is contention for resources the predicted performance is worse than non-

contention models. The model on Termld partitioning in the presence of an index update

predicts a deterioration in performance with increasing numbers of processors: with D odd the

prediction is that performance will remain constant after a certain number of processors is

reached.

Index Update Synthetic Model

—«— TRANSdocid

—^ — TRA NSter mid2

—* — TRA NSdocid-ro

""X ""' TRA NSter mid2-ro

Fig 5-12. Comparison between partitioning methods in presence and absence of index update

Synthetic Index Update Model

o o o o o o o o o o■*- OJ CO LO CO 00 O) o
Ò Ò Ò d Ö d d d d 1 ■

RO Rate

—«— TRA NSdoc id

—is— TRA NSter mid2

—A— TRANSseq

Fig 5-13. Comparison between models: variation of ro factor
and its effect on transaction processing.

116

Figs 5-13 shows the effect in theory of varying the time spent reorganising the index on

both partitioning methods and a theoretical uniprocessor run. The number of processors (P) for

parallel models is fixed at 10. The balance between transactions is set at 100 queries or

searches per 10 update transactions. Again the comparison predicts that D odd would

outperform Termld partitioning and that they both would both outperform a uniprocessor.

There is an increase in unit time for all models but the increase is only very slight.

Synthetic Index Update Model

—• — TRA NSdoc id

— TRA NStermid2

—A— TRA NSseq

Update Rate

Fig 5-14. Comparison between models: variation of update rate
and its effect on transaction processing.

Fig 5-14 shows the effect of varying the update rate and keeping the ro rate constant

(the rate is set at 0.1 in the graph, but changing the variable to another value does not affect the

relative position of the models on the graph). The number of processors (P) is set at 10 and the

search/query rate is set at 100. The prediction is that both parallel methods would outperform

the uniprocessor method and that Termld would be the better performing parallel method

overall: the parallelism available in some aspects of updating Termld indexes is beneficial in

theory. However the models also predict that Docld would converge towards the uniprocessor

model with an increasing update rate: the reason for this is that updates would dominate the

overall transaction time to the detriment of D odd performance.

5.6.3 Comparative results using index update model: index reorganisation

Fig 5-15 shows the effect of varying the number of processors on the theoretical

models. The key prediction here is that the extra seek time which D odd partitioning will place

117

on reorganisation of the index will not adversely affect the theoretical improvement in

performance by deploying parallelism with that method. This is because the amount of data

actually moved per term block will reduce with increasing the number of partitions with D odd :

the prediction is that Docld partitioning will outperform Termld in this aspect of index

reorganisation.

Synthetic Model for Index Reorganisation

1600000
1400000
1200000

1 1000000
P 800000
'E 600000

400000
200000

0
o o o o o o o o o o T - o j c o ^ f - L n t o r ^ - o o c n o

Leaf nodes

Fig 5-15. Comparison between partitioning methods: varying parallel machine size

Synthetic Model for Index Reorganisation

25000000

200000000)
p 15000000

^ 10000000

5000000

0
q r - c N j c o T f i f i c o K c q o ^ q o d d o o d o o d o i - *

C ontention fo r R esources Rate

Fig 5-16. Effect of contention for resources on theoretical models

Fig 5-16 show the effect of resource contention on the models. The number of

processors (P) set for the parallel machine is 10. In theory the parallel models are much better

able to cope with resource contention, and of the two parallel models D odd partitioning is

predicted to be the best. The theoretical run time for both parallel models does increase but

only slightly compared to the uniprocessor model (labelled REORGseq in the diagram). This

118

prediction is due in most part to the amount of data moved for D odd index reorganisations.

The same settings used in contention predictions are used in fig 5-17 which shows the effect of

buffer size on the models. The theoretical prediction is the same here as it was with contention

in the models and for the same reasons: namely D odd partitioning is predicted to be the best

and both parallel models predict that performance with large buffers would be better than

uniprocessor operation.

Synthetic Model for Index Reorganisation

—* — REORGdocid

—^ — REORGtermid

—A— REORGseq

Buffer Keyw ords

Fig 5-17. Effect of buffer size on theoretical models

5.7 DISCUSSION OF SYNTHETIC MODEL RESULTS

The synthetic models produced in this chapter predict that for most tasks the Dodd

partitioning method would be the better performing data distribution scheme of those studied.

For the index, probabilistic search, passage retrieval and index update tasks the prediction is

unambiguous. For the passage retrieval task in particular it is very clear that the Termld

partitioning method is simply not viable: we therefore intend to study the use of D odd

partitioning only for this task using both types of passage processing, local and distributed. For

the other tasks apart from routing/filtcring we do experiments on the partitioning methods to

compare and contrast them.

The theoretical evidence on the routing/filtering task is more complicated and therefore

needs more discussion. On small numbers of processors the prediction is that D odd

partitioning would be the best data distribution scheme, but on larger parallel machines the

performance would deteriorate due to excessive communication. Due to the restrictions on

inter-set parallelism, the proposed method for D odd partitioning does not show the same

promise as intra-set parallelism usable on the other distribution methods. Of the other three, the

119

prediction is that replication would be the best performing method and that performance with

on-the-fly distribution would be about the same with Termld partitioning. We therefore

concentrate our efforts on replication and on-the-fly distribution schemes, partly because of

the theoretical comparison and partly because such methods are easier to manage (we only need

to initiate one indexing run to be able to do experiments, whereas with Ternild partitioning we

must initiate an indexing for every node set used).

In our empirical examination of the information retrieval tasks under discussion we

examine how good these theoretical predictions are; for comparison purposes (are the best

performing data distribution schemes in theory best in practice), relative difference between the

data distribution methods and to see if any generic statements about parallelism in these tasks

can be made.

120

Chapter 6

Indexing Results

6.1 INTRODUCTION

The generation of inverted indexes for text databases is a computationally intensive

process that requires the exclusive use of processing resources for long periods. This chapter

describes results using the indexing techniques described in chapter 4, section 4.4. We give

results for both Termld and D odd partitioning methods. The hardware used for these

experiments is AP3000, Alpha Farm and Pentium Cluster described in chapter 3, section 3.2.

The main bulk of the chapter describes our results on the AP3000 and Alpha farm as applied to

the BASE1, BASE10 and BASE10 subsets (BASE2, BASE4, BASE6 and BASE8) both in

terms of time (section 6.3) and space costs (section 6.4). Details of the collections can be found

in chapter 3, section 3.3.1. We describe experimental details for both of these sections in

section 6.2. We then describe the experiments done at TREC8 (MacFarlane et al, 2000a) in

section 6.5 using the best performing method found in the main experiments. The TREC8

experiments were done on Ad-Hoc data as well as full web data used in the web track: the

Pentium cluster was utilised. We conclude in section 6.6 by comparing and contrasting the

results.

6.2 DATA DISTRIBUTION AND EXPERIMENT DETAILS

We used both types of build described in chapter 4, section 4.4 namely local and

distributed builds. The strategy used to distribute the BASE1 and BASE10 collections for

local build was to evenly spread the directories (which contain the files for these collections)

among the nodes as far as possible. The requirement of a distribution strategy is to get the best

possible load balance for indexing as well as probabilistic and passage retrieval search. The

distribution process was done before the indexing program was started, and is not included in

the timings. The local build experiments were run on eight nodes of both the Alpha Farm and

the AP3000. For distributed builds we record runs on one to seven leaves for both types of

partitioning method. We record runs on inverted files both with and without position data. The

document map described in chapter 3, section 3.2.4, was fragmented with local build and

replicated with distributed build. Map data on distributed build with Docld could be

fragmented, but we chose to replicate rather than maintain extra source code in order to save

time.

1 2 1

6.3 INDEX GENERATION TIME COSTS AND PARTITIONING COMPARISON

In this section we declare the timing results on indexing using the configurations

described above. The results are compared and contrasted where necessary as well as

comparing them with available results for other systems on the BASE1 and BASE 10

collections described in chapter 3, section 3.3.1. The measures discussed are: indexing elapsed

time in hours, throughput, scalability, scaleup, speedup and efficiency, load imbalance (LI) and

merging costs. Metrics used are defined in chapter 3, section 3.4.1.

6.3.1 Indexing Elapsed Time

-A lp h as NPOS
— g§— Alphas POS

“ i t - - AP30000 NPOS

.... -X -- • AP30000 POS

Fig 6-1. BASE1-10 local build [Docld]: indexing elapsed lime in hours

In general, the Alpha farm was much faster than the AP3000 for indexing elapsed time

as its processors arc faster. For example on BASE10 local build indexing with postings only

data took 0.82 hours on the Alphas and 1.08 hours on the AP3000 (see fig 6.1). The Alpha

elapsed times recorded on local build also compare well with the results given at VLC2

(Hawking et al, 1999). That is, on BASE1 only two groups report slightly faster times than our

posting only elapsed time of 0.065 hours (0.043 and 0.052 hours). Our sequential elapsed time

on BASE1 at 0.56 (postings only) also compares well with those groups utilising a single

processor: two other groups using uniprocessors recorded 0.42 and 1 hour respectively (refer to

figs 6-2 and 6-3). On BASE10 on the Alphas the comparison is even more encouraging: only

one group records a faster time of 0.504 hours. It should be noted that while the group with the

fastest BASE10 indexing time uses a much smaller machine configuration (4 Intel PII

processors) they use a very different method of inversion in which the collection is treated as

one document (Clarke et al, 1998).

1 2 2

AP3000 Alpha Farm

—̂ “-TERMDWC
TERM DCF

— & — TERMD TF
—X—docid

TERMD WC

—^ — TERM D CF

— & — TERMDTF

— X — DOQD

Worker nodes

Fig 6-2. BASE1 distributed build', indexing elapsed times in hours (position data)*
(*Note: refer back to section 4.4.2 re: WC/CF/TF)

The results for distributed build indexing are presented in figs 6.2 and 6.3. The

elapsed times for D odd are much better than those for the Termld method. This trend can be

seen in all of the diagrams irrespective of machine or inverted file type used. The smallest

difference is found on indexes with postings only using the AP3000. In general Termld elapsed

times were longer than D odd because of the amount of data that has to be exchanged between

nodes for the method, particularly for indexes with position data. Very little difference in time

was found in any of the term allocation strategies (see section 4.4.2) studied for Termld.

AP3000 Alpha Farm

TERMD WC

— §§§— TERMD CF

— — TERMD TF
— X — d o q d

Worker Nodes

Fig 6-3. BASE1 distributed build : indexing elapsed times in hours (postings only)

One interesting factor found in the Termld results was that the AP3000 outperformed

the Alpha farm at 7 worker nodes largely due to the extra network bandwidth available. It is

that this point where the compute/communication balance favours the AP3000. A further run

using distributed build with D odd partitioning on the Alpha farm revealed how much faster it

is to use the ATM network than the Ethernet network: the time with ATM on 2 worker nodes

building an index for BASE1 with no position data was 0.27 hours, while the figure for

123

Ethernet was nearly double at 0.47 hours. This comparison further illustrates the importance of

network bandwidth to the distributed build method and which can cause problems in many IR

tasks (Rungsawang et al, 1999). We did not conduct any further experiments on this type of

build for indexing using the Ethernet network as a consequence.

The extra time costs engendered by generating inversion with position data varied (this

ratio is declared in chapter 3, sub-section 3.4.1.2 - our aim is to record a ratio as close to 1.0 as

possible). For example, in local build D odd the difference between posting only generation

and position data generation ranged between 1.09 - 1.37 times on the Alphas (where merging

was required). The extra costs on BASE1 are the highest (1.25 for the AP3000 and 1.37 for the

Alphas) because the index with postings only is saved directly to disk without the need for

merging: merging is required only when memory limits have been exceeded. Fig 6.4 shows the

ratios for distributed build experiments. How much these extra costs are justified depends on

the query processing requirement: such as a user need for passage retrieval or proximity

operators.

Alpha Docld
" Alpha Termld WC

— & — Alpha Termld CF

" " 5 4 — Alpha Termld TF

Worker Nodes Worker Nodes

Fig 6-4. BASE1 distributed build: indexing extra costs for storage of position data

6.3.2 Throughput

The metric we use for throughput is Gigabytes of text processed per hour (G/Hour) to

compare performance between database builds. Fig 6.5 shows the throughput for 8 processor

configurations. The throughput for the Alphas is much faster than for the AP3000, e.g. on

BASE1 local build indexing with postings only the rate is 15.4 G/Hour compared with 9.5

G/Hour on the AP3000. These are by far the best throughput results because no merging was

needed: the configuration had enough memory to store the whole index and save it directly. The

rate for other collections for local build indexing was 12-14 G/Hour on the Alphas for postings

only. Only one VFC2 participant recorded faster throughput for BASE1 and BASE10

collections (just over 19 G/Hour). The throughput on BASE1 using distributed build Docld

with is not as good the local build but is still encouraging (see fig 6.6).

124

16

..... -A lphas NPOS

Alphas POS
— 4 —-A P3000 NPOS

..... ' AP3000 POS

0 ------------- 1------------- 1------------- 1------------- 1------------- 1

BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

Collection

Fig 6-5. BASE1-BASE10 local build [Dodd]: indexing Gb/Hour throughput

10

9

8

7

6

5

4

3

2

1
0

1 2 3 4 5 6 7

W orker Nodes

Fig 6-6. BASE1 distributed build [Docld]: indexing Gb/Hour throughput

It was found that increasing the number of worker nodes increased the throughput for

both distributed build methods. For example, the D odd results for 7 worker nodes yielded a

throughput of 9.7 G/Hour on the Alphas for postings only data indexes, compared with 1.8 for

the uniprocessor experiment. The throughput for Termld builds was not as impressive but still

acceptable with postings only: for example 5.8 G/Hour was recorded on the AP3000. The

throughput for builds with position data was not as good, with 4.5 G/Hour on the AP3000 (see

fig 6-7). Note that we only declare results for Termld with the word count (WC) method as

there is very little difference in measurement between any of the term allocation strategies

studied. Note also the superior performance in throughput on the AP3000 at 7 worker nodes

due to the extra bandwidth available with that machine.

125

Fig 6-7. BASE1 distributed build [Termld]: indexing Gb/Hour throughput (WC only)

6.3.3 Scalability

Fig 6-8. BASE2-BASE10 local build [Docld]: indexing scalability from BASE1

The data measure used in the equation is the size of indexed text. The scalability metric

is defined in chapter 3, sub-section 3.4.1.6. We measure the effect of increasing collection size

on the same sized parallel machine using the BASE2-10 collections over the BASE1 collection.

We look for a scalability of around 1.0, greater than 1.0 being the aim. The results are

presented in fig 6-8. With postings only data the scalability ranges between 0.80 and 0.93 on

the Alphas and 0.92 and 0.99 on the AP3000. These figures are rather distorted because of the

direct save on BASE1, that is no merging was needed as memory limits were not exceeded. The

results are on the pessimistic side (if more memory was available we might be able to save

indexes directly on all the collections studied). In builds with position data the scalability is

126

excellent with the Alphas registering super-linear scalability on most BASEx (BASE10 was the

exception) and the AP3000 delivering super-linear scalability on BASE6,8 and 10. The

scalability results for indexes with position data demonstrate that the algorithms and data

structures implemented are well able to cope with the extra computational load and data size

that such builds both require and process.

6.3.4 Scaleup

1

0.7 ------------------- 1-------------------1-------------------1-------------------1-------------------1
BASE1 BASE2 BASE4 BASE6 BASE8 BASE10

Collection

Alphas NPOS

m Alphas POS

A AP3000 NPOS

X AP3000 POS

Fig 6-9. BASE1-BASE10 local build [D odd): indexing scaleup

The scaleup metric is declared in chapter 3, sub-section 3.4.1.7. We measure within

BASEx scaleup for local build only in this section. We take the times on each individual

processor and compare the smallest elapsed time with the largest elapsed time on all 8 nodes.

We are comparing the smallest sub-collection of BASEx (l/8th of BASEx) with the full sized

BASEx collection. We use the least favourable figure in our measurement to obtain the lowest

scaleup from any of the chosen sub-collections: our measurements are therefore pessimistic.

We look for a scaleup of around 1.0, greater than 1.0 being the aim. The results are given in fig

6-9. In general the scaleups recorded are very good with most above the 0.8 mark. The worst

scaleup was measured over the BASE10 collection on builds with no position data with a

figure of 0.77. This figure was found on the Alpha farm where the processors are much faster.

A combination of data size and processor speed can have an impact on scaleup: the scaleup

figures for indexes with position data on the Alpha farm are generally superior to indexes

without such data. The situation is reversed for AP3000 where the processors are slower.

These scaleup figures show that there is little deterioration in performance of our implemented

data structures and algorithms when moving from a smaller collection indexing on a small

127

configuration parallel machine, compared with a larger collection on a larger configuration

machine.

6.3.5 Speedup and Efficiency

All figures relate to the BASE1 collection. Definitions of these metrics can be found in

chapter 3, sub-sections 3.4.1.4 and 3.4.1.5. Recall that our ideal speedup is equal to the

number of nodes, whereas for efficiency we look for a figure of 1.0. A surprising feature was

the superlinear speedup and efficiency figures found with some of the indexing experiments

particularly for the local build D odd 8 processor runs (see table 6-1). For example with the

direct save on postings only data local build on the Alphas yielded a speedup of 8.5 and

efficiency of 1.07. This effect was also found on some of the runs using Distributed D odd

indexing (see figs 6-10 and 6-11).

— — Alphas NPOS

—-gg— Alphas POS
— & — AP3000 NPOS
— AP3000 POS

Worker Nodes

Fig 6-10. BASE1 distributed build [Dodd]:
indexing speedup

Fig 6-11. BASE1 distributed build [Docld]:
indexing efficiency

Machine File Type Speedup Efficiency
Alpha NPOS 8.5 1.07

POS 8.4 1.04
AP3000 NPOS 7.96 0.99

POS 7.2 0.90

Table 6-1. BASE1 local build [Docid]: indexing speedup and efficiency

The reason this effect can occur is the extra memory multiple nodes have compared

with a sequential processor, i.e. on local build with 8 nodes the index fits into main memory

and it can be saved directly without the need for merging. More memory reduces the number of

intermediate results saved to disk and therefore saves I/O time when data is merged to create

the index. On distributed build a two worker configuration has twice the memory of the

sequential program. The super-linear effect tails off at various stages on the Distributed

version as communication time becomes more important (see fig 6.10).

128

Worker Nodes Worker Nodes

Fig 6-12. BASE1 distributed build [Termldj:
indexing speedup (WC only)

Fig 6-13. BASE1 distributed build [Termld]:
indexing efficiency (WC only)

With Termld communication is very important: the global merge reduces most

speedup/efficiency measures to less than linear (see figs 6.12 and 6.13). With position data and

Termld there is little speedup on the Alpha Farm and efficiency ranges from the average to

poor. Interestingly super-linear speedup/efficiency does occur on two worker nodes with builds

on posting only data: further evidence of the significance of the memory effect.

6.3.6 Load Imbalance

Collection Worker Nodes

Fig 6-14. BASE1-BASE10 local build
[Dodd]: indexing load imbalance

Fig 6-15. BASE1 distributed build [Docld]:
indexing load imbalance

The load imbalance metric we use is declared in chapter 3, sub-section 3.4.1.8 - the

ideal load balance is close to 1.0. In general it was found that the distributed build imbalance

was lower than those of local build (see figs 6-14 and 6-15). In fact distributed build using

any partitioning method is excellent on all nodes with both methods, e.g. on 2-7 Alpha and

AP3000 workers the LI was in the range 1.002 to 1.03 on average for Dodd. The LI figures

demonstrate that the implemented process farm method provides good load balance for

indexing jobs when whole files are distributed to workers.

129

— — Alpha NPOS WC
— §8— Alpha NPOS CF

•— A ~ —Alpha NPOS TF
— X — Alpha POS WC
— 3$$— Alpha POS CF
— & — Alpha POS TF

Worker Nodes Worker Nodes

Fig 6-16. BASE1 distributed build [Termld]: indexing load imbalance

The results for Termld were generally not as good as Dodd, but good in the average

case (see fig 6-16). The exception was for builds with position data on 6 nodes: Li's of 1.2 for

the AP3000 and 1.15 for the Alphas were recorded with word count (WC) distribution. The

farm method described in chapter 4, section 4.4.2 is a very good way of ensuring load balance

in the majority of cases. The local build LI is still very good: the worst LI recorded was 1.17

for BASE10 for the Alpha postings only run. We conclude by stating that both Distributed and

local build methods achieve good load balance, but local build LI could be improved by

paying more attention to text distribution.

6.3.7 Merging Costs

We consider here the percentage of time spent merging the temporary results to create

the final inverted file: see chapter 3, section 3.4.1.10 for a formal definition - we look for the

lowest possible cost in % terms. We examine the Docld method first. The merging for local

build was in the main consistent within a 1% range, e.g. on the Alphas with posting data only,

the average merge cost was 14 to 15% (see table 6-2). Merging costs for builds with position

data were higher, e.g. on ihe Alphas the merge cost was 19 to 20%. Merge costs on the

AP3000 were lower on local build, e.g. with posting data the average merge cost was around

13 to 14%. This difference is because the Alpha Farm processors are much faster and therefore

the I/O time (which remains constant) is more significant.

With distributed build D odd build the merging costs were much the same as local

build apart from Alpha builds with position data: the range found was 17 to 20%: these costs

did not vary much from the local build (see table 6-3). The uniprocessor builds with position

data registered the highest merge costs, whereas parallel D odd builds without position data

saved indexes directly without the need for merging on 8 processors. The merge costs were

more prominent on the Alpha as the faster processor speed reduces the computational costs and

130

increases the importance of I/O (merge is an I/O intensive process). Merge costs are also more

prominent on indexes which contain position data.

Collection Alphas
NPOS POS

AP3000
NPOS POS

BASE1 - 20% - 14%
BASE2 14% 19% 10% 14%
BASE4 14% 19% 9% 13%
BASE6 15% 19% 9% 13%
BASE8 14% 19% 9% 13%
BASE10 14% 19% 9% 14%

Table 6-2. BASE1-10 local build [Dodd]: %
of average elapsed indexing time spent

merging

Work
-ers

Alpha
NPOS POS

AP3000
NPOS POS

i 15% 24% 9% 16%
2 15% 20% 9% 14%
3 15% 19% 10% 14%
4 15% 20% 10% 14%
5 15% 19% 10% 13%
6 14% 18% 9% 13%
7 13% 17% 9% 14%

Table 6-3. BASE1 distributed build [Docld]:
% of average elapsed indexing time spent

merging

W ork-
ers

Alphas
NPOS

Alphas
POS

AP3000
NPOS

AP3000
POS

Value WC CF TF WC CF TF WC CF TF WC CF TF
2 38% 37% 38% 44% 43% 44% 26% 26% 26% 35% 36% 37%
3 36% 35% 36% 42% 42% 42% 26% 26% 26% 34% 34% 34%
4 35% 34% 35% 41% 40% 40% 26% 26% 26% 34% 34% 41%
5 32% 31% 31% 36% 37% 36% 24% 25% 25% 31% 32% 38%
6 28% 29% 27% 33% 34% 33% 24% 24% 24% 29% 30% 30%
7 26% 26% 25% 30% 31% 31% 23% 23% 23% 28% 30% 29%

Table 6-4. BASE1 distributed build [Termld]-. % of average elapsed indexing time spent
merging: distributed build

Merge costs for Termld are very much higher as one would expect given the extra

work required for merge with that method to exchange data between nodes (see table 6-4).

These higher merge costs are a contributory factor in the overall loss of performance for

Termld partitioning index builds. However there is a distinct decrease in all cases of the

significance of merging on the Alphas, e.g. merging on indexes with position data and word

count (WC) word distribution decreased from 44% at 2 workers to 30% on 7 workers. This is

largely because the costs in transferring index data before the second merge can proceed

increases with the numbers of worker nodes deployed, e.g. on the Alpha indexes with position

data the increase is from 2 minutes at two workers to 4 minutes at seven workers. On the

AP3000 a slight decrease in merging costs is recorded in most cases, and the decrease is not as

pronounced as the Alphas. The Alpha's extra processor speed brings benefit to extra merging

found when building Termld indexes. The corresponding figure for transferring indexes with

position data on the AP3000 ranges from 2.4 minutes with two workers to 2.9 with seven

131

workers. The AP3000 is better able to cope with this extra cost in transferring data for the

second merge as it has extra bandwidth available in its network.

6.3.8 Summary o f Time Costs fo r Indexing

With respect to comparable metrics such as elapsed time and throughput, we have

demonstrated that for a least one partitioning method, namely D odd , our results are state of the

art compared with other VLC2 participants (Hawking et al, 1999). We have found that in most

cases the Alpha farm outperforms the AP3000 except for some Termld runs: the AP3000 has a

much higher bandwidth network available to it that is an advantage in such builds. Comparing

the partitioning methods we have found that builds using the D odd method outperform index

builds using Termld in all experiments. Our speedup and efficiency figures show that the

methods of parallelism do bring time reduction benefits, particularly for the D odd partitioning

method. The scalability and scaleup figures show that our implemented data structures and

algorithms are well able to cope with increasingly larger databases on a same sized or larger

parallel machine. The load imbalance is generally quite small for all runs. The extra costs for

generating indexes with position data vary, but are not an insubstantial part of the overall costs.

Merge costs are also an important element of total time, depending on the build and partitioning

method used.

6.4 INDEX FILE SPACE COSTS AND PARTITIONING COMPARISON

In this section we declare the space overheads using the configurations described

above. The results are compared and contrasted where necessary as well as comparing them

with overheads on the BASE1 and BASE10 collections used in the VLC2 sub-track at TREC-7

(Hawking et al, 1999). The space overheads discussed are: overall inverted file space costs,

keyword file space costs and file space imbalance.

Fig 6-17a. BASE1-BASE10 local build
[Docld]: index space costs in Gigabytes

Fig 6-17b. BASE1-BASE10 local build
[Dodd]: index space costs in % of text

132

6.4.1 Inverted File Space Costs

The metrics we used here are the file sizes in Gigabytes and percentage of original text

size. The space costs for local build indexes are fairly constant in percentage terms across all

collections (see fig 6-17b), although a slight reduction in index size compared with the size of

the text can be see in fig 6-17a. This reduction occurs irrespective of the type of data stored in

the inverted file. From fig 6-18 we can observe that there is a slight increase in index size for

increasing the processor set when using distributed build methods. The reason for this is

because of the replicated map requirements of distributed builds. The increase is more marked

for D odd partitioning. If the map file size is taken away from the total size then the Docld

indexes increase is much smaller (the reason any increase at all is explained in section 6.4.2).

0.05

0 -------------1----------- 1----------- 1 i i------------ 1

1 2 3 4 5 6 7

— $ ----Docld NPOS
5 25 '

----$ ---- Docld NPOS
— 88— Docld POS

z 20 ■ — 8$— Docld POS
— & — Termld NPOS 0

5« 15 ■
— à — Termld NPOS

Termld POS
10 .

Termld POS

5

0
1 2 3 4 5 6 7

Worker Nodes Worker Nodes

Fig 6-18a. BASE1 distributed build: index
space costs in Gigabytes

Fig 6-18b. BASE1 distributed build: index
space costs in % of text

The comparison with space costs of the VLC2 participants [9J is favourable with

postings only data: our smallest figure of 0.11 Gigabytes on BASE1 was smaller than all

submitted results and on BASE10 only one VLC2 participant at 0.902 Gigabytes was smaller

than our figure of 1.1 Gigabytes. The comparison with files that contain position data is not so

good and our smallest figure of 0.31 Gigabytes for BASE1 is bested by two groups, while on

BASE10 three groups record a smaller figure than our 3.0 Gigabytes.

6.4.2 Keyword File Space Costs

The metric for keyword file space costs is the size in megabytes and the keyword file

percentage of the total inversion. With local build on both postings only and position data we

found that the trend in keyword space costs was a decreasing one, e.g. 32% on BASE1 to 22%

on BASE10 with postings only data (see fig 6-19b). This is because the increase in lexicon is

not linear with the increase in collection (fig 6-19a). With distributed D odd indexes the

keyword costs remain constant, e.g. 24-26% (see fig 6-20b). The size of the keyword file

actually increases with more inverted file partitions (see fig 6-20a), but this increase is not

significant and is absorbed by the increase in size of the replaced document map. We state that

133

there is little extra cost in having words replicated across different fragments for D odd

partitioning on this type of collection (Web data). For Termld indexes the size of the keyword

file was constant irrespective of term allocation method, and if the map data is included in costs

the significance of the keyword file with respect to the total index size gradually decreases (see

figs 6-20a and 6-20b).

¡75
® to
LL Z
•ao5

25

20
15

10

5

0

— - Dodd NPOS

— gg— Docld POS
— & — Termld NPOS
— — Termld POS

1 2 3 4 5 6 7

Worker Nodes

Fig 6-19a. BASE1-BASE10 local build
[Docld]: index space costs in megabytes for

keyword file

Collection

Fig 6-19b. BASE1-BASE10 local build
[Docld]: index space costs in % of index for

keyword file

Fig 6-20a. BASE1 Distributed Build: space
costs in megabytes for keyword file

Worker Nodes

— Docld NPOS
— Docld POS
—Termld NPOS
— Termld POS

Fig 6-20b. BASE1 Distributed Build: index
space costs in % of index for keyword file

6.4.3 File Space Imbalance

We use the concept of load imbalance (LI) but apply it to file sizes instead, i.e.

maximum file size / average file size. We wish to ensure that index data is fairly distributed

amongst nodes, e.g. it would not be desirable for one index partition to exceed the space

available on a physical disk. The index time LI results are included in the figs 6-21 to 6-23 for

comparative purposes. The space imbalance for text space costs was in general fairly stable

being in the range 1.04 to 1.02 for all local build indexing runs (see fig 6-21). In comparison

the inverted file imbalance was much higher, particularly for the smaller collections. Clearly

the imbalance stems not from the size of the text, but from aspects of the text such as the

number of documents and total word length of the text. In contrast the space imbalance for

distributed build on Docld partitioning was small for any type of inverted file data storage

(see fig 6-22). There is no significant difference between the space imbalance of inverted files

134

and LI for indexing times with D odd partitioning. The file space imbalance figures further

proof of the validity of the farming method for balancing load for Docld partitioning.

Position Data (POS) Indexes Postings Only (NPOS) Indexes

Fig 6-21. BASE1-BASE10 local build [D odd}: index space imbalance on files

Position Data (POS) Indexes Postings Only (NPOS) Indexes

Worker Nodes

Fig 6-22. BASE1 distributed build [Dodd]: index space imbalance on index files

Position Data (POS) Indexes Postings Only (NPOS) Indexes

— ^ — Index U WC
— gg— AP3000 U WC

— & — ALPHA Ü WC
— ^ - " In d e x U CF
— — AP3000 LI CF

— & » — ALPHA U CF
. Index U TF

AP3000 U TF
— — — ALPHA U TF

Worker Nodes

Worker Nodes

— $ — Index U WC
— AP3000 U WC

— & — ALPHA U WC

— K " " In d e x U CF
— % £— AP3000 U CF

— *§---- ALPHA U CF
|ndex u T F

- — v— AP3000 LI T F

— — ... ALPHA U T F

Fig 6-23. BASE1 distributed build [Termld]: index space imbalance on index files

The situation for Termld varies depending on the type of word distribution method

used (see fig 6.23). For the word count (WC) distribution space imbalance was generally very

poor, with the worst being indexes with position data on 6 worker nodes: an imbalance of 1.52

was recorded (interestingly the worst imbalance for indexing times, see fig 6.23). The figures

for the collection frequency distribution method (CF) are much better with an imbalance range

of 1.02 to 1.07 for all builds. In the term frequency (TF) method the imbalance was erratic

being very poor at 5 and 6 worker nodes for any index builds, but good on all other runs. Any

imbalance in space does not affect computational imbalance adversely. None of the Termld

135

space imbalance results are as good as the D odd for space costs on distributed builds, as it is

much harder to derive a good data distribution method for Termld indexes (the allocation of

terms to nodes is a more difficult problem than allocating documents to nodes). None of the

methods implemented affect space imbalance such that an index partition exceeds the physical

disk of any node.

6.4.4 Summary o f Space Costs for Indexing

Overall space overhead for the indexing is state of the art and comparable with the

results give by VLC2 participants: at least for indexes with postings only. The Distributed

Build Docld results show that the cost of storing keywords does grow with increasing the

fragmentation, but given that local build results show that space costs decrease with database

size we do not see this a serious overhead for the D odd partitioning method. The space costs

imbalance for local build is generally quite stable, but the generated inverted files vary more.

Clearly the consideration of the number of files on its own is not sufficient to ensure very good

balance. For distributed builds space imbalance was much smaller, except for some Termld

indexes where distribution methods are more difficult to derive: no index partition exceeds die

size of a node's local disk.

6.5 TREC-8 EXPERIMENTS

Given that experiments on the D odd method proved to be superior than Termld in the

experiments above, we decided to use the partitioning method in conjunction with local builds

in our TREC8 experiments (MacFarlane et al, 2000a). A total of 17 processors was used in the

"Cambridge Cluster" to map 16 Indexer processes and 1 timer process. We indexed the TREC8

Ad-Hoc collection together with the full 100 Gb VLC2/WT100g collection and its baselines

(BASE1 and BASE10). We also completed an indexing job on the Ad-Hoc data using a single

Pentium processor for comparison purposes. All the collections under investigation were

distributed as evenly as possible across the 16 nodes of the Cluster by linear assignment i.e. 1st

x files are placed on the 1st node, 2nd x files are placed on the 2nd node etc: x is approximately

total collection files divided by the number of nodes.

6.5.1 A d-H oc Track Experim ents

Table 6-5 show details of Ad-Hoc Indexing experiments. Indexes with and without

position data were produced. The cluster yielded good results particularly on Indexes with

position data where the extra memory on the "Cambridge Cluster" paid dividends: super-linear

136

speedup and efficiency were recorded. There is a slight increase in index size on the

"Cambridge Cluster" due to repetition of keyword records found in the type of Index used. The

increases are only minor however: 0.05% for postings only files and 0.02% for files with

position data.

Inverted
File Type

Machine Time
(Hours)

Speedup Efficiency LI Index Size
(% of Text)

NPOS Pentium
Cluster

0.81
0.059 13.68 0.85 1.06

324 M b (17%)
342 M b (18%)

POS Pentium
Cluster

1.04
0.064 16.17 1.01 1.06

832 M b (43%)
851 M b (47%)

Table 6-5. TREC8 Ad-Hoc indexing experiment details

6.5.2 Web Track Experim ents

COLLECTION WTlOOg BASE10 BASE1
Index Time (hrs) 3.04 0.29 0.025
L I 1.10 1.06 1.10
Scalability BS10:0.91

BS1: 0.8
B A SEE0.87 -

Index Size in GB 10.64 1.21 147MB
(% o f Text) (11%) (12%) (14%)

Collection W ord
Length (M illion)

8,600 865 87

Table 6-6. Web track Indexing experiment details

Details of our Web Track indexing experiments are given in table 6-6. The indexing

times for the Web Track collections compare favourably with the results given the 1999 VLC2

track: the times stated above are faster than all VLC2 indexing times and meet the standard

sought at VLC2 (an indexing time of 10 hours or less). They are also the best figures for the

Web Track (Hawking et al, 2000). The load balancing for all Indexing experiments on the Web

Track is good with only slight levels of imbalance recorded: this confirms that the strategy used

for distributing the collection to nodes was a good one. The index time scalability from the

baselines to WTlOOg and from BASE1 to BASE10 are good, with very little deterioration in

time per index unit. The index sizes also compare very well with other VLC2 or Web Track

participants: only two groups yielded smaller indexes than the figures we quote in table 6-6.

The indexes produced on all collections contained postings only data.

137

6.6 CONCLUSION

The results produced in this chapter show that of the partitioning methods, D odd

partitioning using any build has by far the most promise (as predicted by theory in chapter 5,

section 5.2.2) and would in most circumstances be the method chosen for indexing. This would

be the case particularly if the collection under consideration needed frequent re-builds. We have

used the Docld method to good effect in the Web track for TREC-8 on the full 100 Gigabyte

VLC2 collection. Where disk space was limited, the local build method could be used to good

effect: we used this build method on the BASE 10 as we did not have sufficient space to do

distributed builds on that collection. We have demonstrated that indexing is state of the art in

both compute and space terms by comparing our space and time results with those given at

VLC2 (Hawking et al, 1999) and the TREC-8 Web Track (Hawking et al, 2000). Although we

did not produce the best results for all measures, no group at YLC2 did either. Our indexing

time for the full 100Gb collection was the best in the Web Track. When comparing the

performance of both partitioning methods, our empirical results show the synthetic model for

indexing is able to predict that D odd builds are faster than Termld builds. However, problems

in the modelling of communication in the model meant that a widening gap in performance

between the two partitioning methods for increasing parallel machine size was not anticipated

in the model.

A clear distinction must be made between D odd and Termld partitioning methods.

Distributed build D odd out-performs Termld in all areas of time cost metrics and would

therefore always be preferred if indexing was of primary concern. We state this irrespective of

the type of inversion or algorithms/methods used if cluster computing is utilised. This allows us

to make generic statements on performance of indexing and further strengthen our assertions

made in the synthetic model. We would recommend that Termld only be used if two main

criteria are met. One is that a high performance network is available to reduce time spent on

transferring data during the global merge process. The other is that some other benefit must

accrue from the use of Termld partitioning which in essence would be some advantage in

search performance or index maintenance criterion over the D odd method.

138

Chapter 7

Probabilistic Search Results

7.1 INTRODUCTION

In this chapter we describe experiments and results for the probabilistic search task

aspect of our thesis. Our main aim is to compare search on inverted files given two types of

partitioning methods under consideration. Most of the material in this chapter was published in

MacFarlane et al, (2000b). The experimental aims and objectives of our research arc given in

section 7.2. The data and settings used for the experiments described in 7.4 and 7.5 are

described in section 7.3. The results of searches on the two chosen partitioning methods are

reported in sections 7.4 and 7.5. Section 7.6 compares and contrasts these results with each

other and our stated aims/objectives. We then describe our TREC8 web track experiments

(MacFarlane et al, 2000a) in section 7.7 using the best performing partitioning method

discovered in previous experiments. A summary and conclusion is given in section 7.8.

7.2. EXPERIMENTAL AIMS AND OBJECTIVES

Earlier work on the subject of search performance on partitioned inverted files [2,4]

used simulations. We use real Web collections and apply TREC queries to examine

performance. The query model used in these simulations either assumes an equal probability of

words occurring in a query (Tomasic and Garcia-Molina, 1993a) or uses both term skew and

uniform term distribution models (Jeong and Omiecinski, 1995). We believe that what the user

does has a significant impact on the performance of a parallel system using the partitioning

methods discussed. We put forward a hypothesis that focuses on query size: since users tend to

submit smaller queries (Kirsch, 1998; Silverstein et al, 1999), only one or two of the nodes in

the system will be servicing a query using Termld. Therefore for a given query the load balance

will always be skewed as many nodes will be doing no work at all: this skew may accumulate

with increasing numbers of queries. We define load balance as the spread of a given

computation across a number of nodes in a parallel computer: ideally all nodes should have the

same computational load. In the D odd method however, each node is involved in the

processing of all terms and therefore load balance for a single query is likely to be much

superior to Termld. Our hypothesis is therefore;

The Docld partitioning method will perform better on probabilistic search

because 1) users tend to submit short queries, which points to a load balancing

139

problem for the Terrnld method, and 2) if documents are evenly distributed,

D odd will produce good load balance as all nodes in the parallel machine

process the query.

Our aim is to test the claims in the hypothesis as they relate to sequential query service.

We do not address the issue of dynamically migrating indexes or concurrent query service. It

should be noted that we principally address the issue of retrieval efficiency in this study, but

mention retrieval effectiveness in order to verify that searching Termld and D odd partitioned

indexes yield the same effectiveness results.

7.3. DATA AND SETTINGS USED

The data used in the experiments comprised the BASE1 and BASE10 sub-sets of the

official 100 Gigabyte VLC2 collection (see chapter 3, section 3.3.1). We applied search to

indexes with and without position data. We use two types of builds for indexes: distributed

builds and local builds. For the distributed build method we use the BASE1 collection only,

creating indexes on 1 to 7 nodes using both types of partitioning method and initiating searches

on all of those indexes. The BASE1 and BASE10 collections were used for the local build

method, running queries on 8 nodes. We use different process to processor mapping strategies

for each type of build. In distributed build we map the client and top node to a single

processor, separate from each of the leaf nodes. For local build we have to map the client and

top node to one of the leaf nodes because of restrictions on the available nodes of the AP3000

partition set.

Collection Query
Type

prec.
@ 5

prec.
@10

prec.
@15

prec.
@20

K1 B

BASE1 title only 0.244 0.178 0.149 0.130 1.5 0.2
whole topic 0.188 0.172 0.145 0.128 1.5 0.4

BASE10 title only 0.324 0.282 0.273 0.264 1.5 0.2
whole topic 0.356 0.298 0.271 0.247 1.4 0.7

Table 7-1. Retrieval effectiveness results for main search experiments

The queries are based on topics 351 to 400 of Lhe TREC-7 ad-hoc track: 50 queries in

all (Hawking et al, 1999). The terms were extracted from TREC-7 topic descriptions using an

Okapi query generator utility to produce the final queries. We used two types of queries: one

based on title only (average number of terms per query is 2.46) and one based on the whole

topic (average number of terms per query is 19.58). The whole topic query set has 51 queries,

140

one extra being for VLC2 experiment initialisation (Hawking et al, 1999). Our experiments

concentrated on title only queries as users have a tendency to issue smaller queries. Table 7-1

shows retrieval effectiveness results on these queries together with the BM25 tuning constants

used. Retrieval effectiveness results for a given query type were identical on all runs

irrespective of inverted file type used, partitioning method applied or number of nodes used. It

should be noted that we were unable to get the same level of retrieval effectiveness on longer

queries as with shorter queries: this merits further investigation.

Q u ery T ype File
T ype

T im e
(Secs)

title only NPOS
POS

0.110
0.216

whole topic NPOS
POS

2.45
6.02

Table 7-2. BASE1: uniprocessor average elapsed times in seconds

Our timing methodology was as follows: we declare the average of 10 runs. We

declare results from the AP3000, but did runs on the Alpha farm to check portability of tire

code using evaluations to check that precision was identical. Sequential run times for

comparison with parallel runs are declared in Table 7-2: these times are well within the 10

second criteria for elapsed time suggested by Frakes (1992). Sequential runs were done on one

node with a single search process. Note that runs with postings only data is signified by NPOS

file type, while runs on indexes with position data are signified by the POS file type. Although

we do not use position data in our weighting functions, we need to examine the effect of

position data on probabilistic search performance as in a deployed system users may submit

queries with adjacency operations or may request passage retrieval. We assume that the

position information is stored contiguously with each posting.

For the Term Id method three strategies for term allocation to partitions are used. The

most basic of these is the WC method that allocates terms to partitions on the basis of word

count in 100 buckets. A heuristic is used to allocate terms as equally as possible on this basis.

The other two methods allocate on collection frequency (CF) and term frequency (TF) basis.

More details on these term allocation methods can be found in chapter 4, section 4.4.2.

We use a number of metrics to measure the performance of our program: average

query processing time in seconds, speedup, efficiency, load imbalance (LI), extra cost ratio in

time of inverted files containing position data, overheads such as compute and wait time in the

141

top node and scalability (these metrics and our requirements of them are declared in chapter 3,

section 3.4.1).

7.4 SEARCH RESULTS FROM DOCID PARTITIONING

— title o n ly
n p o s

—jj— title o n ly
pos

— A -- w h o le
to p ic npos

.... " W h o le
to p ic pos

Fig 7-1. BASE1 [D odd]: search average
elapsed time in seconds

le d nodes

~— —title only
npos

— 11— title only
pos

— à ~ — whole
topic
npos

— '"whole
topic pos

Fig 7-2. BASE1 [Dodd]: search load
imbalance

7
— ^ — title only

6
/ * rpos

5 — HI— title only

4
pcs

— & — whole
3 topic

23 rpcs

.... -)4— whole
topic pos

2 3 4 5 6 7

lecf noctes

Fig 7-3. BASE1 [Docld]: search speedup

le d nodes

— -title only
npos

— ^ — title only
pos

— à r ~ -whole
topic npos

....M'- ••whole
topic pos

Fig 7-4. BASE1 [Dodd]: search parallel
efficiency

The results for this type of partitioning are encouraging (see figs 7-1 to 7-4). For title

only queries the best elapsed times are very good indeed (see fig 7-1). Response times of 21

milliseconds are recorded for inversion with postings only data and 53 milliseconds for position

data indexes. The comparison with VLC2 average response time is favourable: our title only

time matches the best YLC2 results (Hawking et al, 1999) at 2 leaf nodes and betters it on 3 to

7 leaf nodes. For whole topic the best elapsed times are a third of a second for postings only

and 0.87 seconds for files with positions. All runs (including BASE10 runs) therefore meet the

10 second criterion for search times suggested by Frakes (1992). Our BASE10 results are only

142

bettered by one participant of VLC2 (Hawking et al, 1999). Time reduction relative to

uniprocessor runs is exhibited by all multiprocessor runs.

The result from these times is that good to reasonable speedup can be found on most

parallel runs, being very near linear for whole topic and title only with postings only (see fig 7-

3). Speedup on title only queries serviced on files with position data is disappointing however:

the extra I/O needed to retrieve sets from disks outweighs any gain through parallelism on the

sort for smaller queries. The efficiency results reflect the speedup figures (see fig 7-4) and are

particularly good for whole topic queries, results on all runs with this query type are very near

1. Load imbalance is not an issue as for any query the load imbalance (LI) was found to be just

over 1 in all cases (see fig 7-2). Imbalance was more noticeable on whole topic queries than

title only, however due to the difference in set sizes between nodes.

Leaf
nodes

title only Whole Topic

- NPOS POS NPOS POS
2 2.0% 1.1% 0.0% 0.0%
3 4.7% 1.3% 0.0% 15.5%
4 3.8% 2.8% 2.1% 0.07%
5 11% 4.3% 0.0% 0.0%
6 15% 4.8% 2.0% 1.1%
7 17% 8.2% 5.2% 1.2%

Table 7-3. BASE1 [Dodd]: search overheads in %

Data title only Whole Topic
- NPOS POS NPOS POS
BASE1 time
(secs)

0.027 0.057 0.32 0.77

BASE10
time (secs)

0.18 0.54 4.18 6.45

Scalability 1.48 1.06 0.826 1.19

Table 7-4. BASE1/BASE10 [DocId]: search scalability

Overheads on the top node were found to be very small for title only, however there is

a trend upwards which is particularly noticeable on runs using postings only indexes (see table

7-3). For whole topic they were insignificant with other aspects of the search dominating time:

in some runs overheads were too small to be recorded. The extra cost on search time for having

position data in inversion was found to be constant for whole topic: search was around 2.5

times longer than for postings only data. For title only the extra costs were worse on

multiprocessor runs than uniprocessor runs and varied a great deal more than whole topic. This

factor is further evidence of the extra burden I/O places on smaller queries with posting list

143

containing position data. The scalability of the parallel program on 8 leaf nodes is good with

very good figures for title only queries (scalability is over 1) and for whole topic (see table 7-

4).

7.5. SEARCH RESULTS FROM TERMID PARTITIONING

BBS SSft KSK SSfii

— ^ — title o n ly

npos

— $$— title o n ly

pos

— & — w h o le

to pic

npos

- - " A f - - - - - w h o le

to pic pos

1 2 3 4 5 6 7

loci nodes

Fig 7-5. BASE1 [Term ld]: search average
elapsed time (sequential sort: WC

distribution)

lecf noctes

Fig 7-7. BASE1 [Term ld]: search
speedup (sequential sort: WC

distribution)

---^r~- title cnly
npos

—H!" -title only
pos

- â - -whole
topic
npos

-- -whole
topic pos

title only
npos

— H — title only
pos

— A whole
topic
npos
whole
topic pos

led nodes

Fig 7-6. BASE1 [Ternildi: search load F,g 7‘8' BASE1 \TermU\-. search parallel
imbalance (sequential sort: WC efficiency (sequential sort: WC

distribution) distribution)

The results with this type of partitioning are discouraging (figs 7-5 to 7-8 show results

for using indexes with word count (WC) distribution: full details of other retrieval efficiency

results can be found in appendix A2). While all the runs on any type of query meet the 10

second criteria for search times, there is no advantage from parallelism with this type of

partitioning method (see fig 7-5). Times do not compare favourably with VLC2 participant

144

times (Hawking et al, 1999). The only example of an elapsed time decrease is whole topic

queries serviced on indexes with position data, therefore slowdown is recorded in most cases

(sec fig 7-7). The effect on efficiency is dramatic with figures ranging from poor to

unacceptable: a linear reduction in efficiency is recorded in all cases (see fig 7-8). The

implication of this is that scalability would be poor: we therefore did not do any experiments on

the BASE10 collection. Load imbalance is generally very small for title only queries, but is

perceptibly worse for whole topic queries: we cannot guarantee that terms will be fairly

distributed to nodes with larger queries. It should be noted that the load imbalance (LI) figures

on title only are averaged over 50 queries on 10 runs so the evidence available suggests that

computational skew does not accumulate with increasing numbers of queries (see fig 7-6). The

overheads at the top node are clearly a problem with this partitioning and topology scheme, and

are much higher than for D odd partitioning (see table 7-5): a big factor being the sort

component of probabilistic search. The overheads for both title only and whole topic queries

take up more than 50% of the total search time: the overheads are less pronounced on indexes

which contain position data, but are still significant. For costs of position data on probabilistic

search it was found that overheads tend to reduce with increasing number of leaf nodes, a

factor more marked in title only queries. The reason for this is that runs on indexes with

runs on indexes with postings only, asposition data gain more from I/O parallelism than

indexes with positions contain much more data.

Leaf
nodes

title only whole topic

- NPOS POS NPOS POS
2 63% 40% 53% 26%
3 68% 46% 62% 40%
4 72% 52% 69% 46%
5 75% 54% 75% 50%
6 78% 59% 76% 54%
7 79% 59% 75% 49%

Table 7-5. BASE1 [Termld]: search
overheads in % (sequential sort: WC

distribution)

leaf nodes

— title o n ly
n p o s

" " H lih " '* t it le o n ly
pos

— A - — w h o le
t o p ic
n p o s

'• w h o le
to p ic p os

Fig 7-9. BASE1 [Termld]'. search average
elapsed time (parallel sort)

Having identified a major bottleneck for the sort when using Termld search (initially

found in the synthetic model - see chapter 5, section 5.3.2), we thought it worth while having

an attempt at speeding up the sort by using a parallel method. This required the generation of

the final set as normal, but elements of the sort were scattered to leaf nodes that applied a sort

to their section of the final result set. The top ranked 20 documents were then gathered as per

145

D odd method. The results however did not improve the performance of the parallel program

much (see figs 7-9 to 7-12 and table 7-6). Average query processing times were reduced

slightly (see fig 7-9), but speedup/efficiency for title only queries were still poor, while whole

topic queries did show some slight speedup gains (efficiency was still poor) - see figs 7-10 and

7-11. Load imbalance (LI) remained small on all runs (see fig 7-12). The basic problem with

this revised method is that in applying the parallel sort, the amount of communication overhead

is increased such that most or all of the gain made in the parallel sort is lost.

. ..--■•A'2 ■ ^ ,-X A — $ — title only

1 5 . X ' npos
)
[,X . A A A

-—§§— title only
F pos

— ^ — whole
0.51 topic

.
npos

— — whole
2 3 4 5 6 7 topic pos

le d nodes

Fig 7-10. BASE1 [Term ld]: search
speedup (parallel sort)

•— # — - t i t l e o n ly
n p o s

- t i t l e o n ly
p o s

— - w h o l e
to p ic
n p o s

..... - X - ’ w h o le
to p ic p o s

leef nodes

Fig 7-11. BASE1 [Termici]: search
parallel efficiency (parallel sort)

1.5
— — title only

1.4 npos

1.3 pos
— & — whole

1.2 topic
npos

1.1 ...K ..- whole
topic pos

m
2 3 4 5 6 7

led nodes

Fig 7-12. BASE1 [Termld]: search load
imbalance (parallel sort)

Leaf
nodes

title only whole topic

- NPOS POS NPOS POS
2 3.0% 0.6% 0.2% 0.0%
3 5.1% 2.0% 1.5% 0.4%
4 5.6% 2.4% 2.3% 0.2%
5 5.5% 3.5% 3.1% 0.5%
6 6.1% 3.8% 4.5% 1.0%
7 5.6% 3.9% 3.5% 0.7%

Table 7-6. BASE1 [Termld]: search
overheads in % (parallel sort)

7.6 COMPARISON OF PARTITIONING METHODS

In the context of the experiments defined in this chapter, D odd partitioning is clearly

the preferable method for search (for a different perspective on the comparison between

methods see figs 7-13 and 7-14 which use the throughput metric). While both methods show

acceptable response times, only D odd shows any real benefit when multiprocessors are used.

The impact on throughput can be seen in figs 7-13 and 7-14 where D odd records linear

increase for both types of indexes, while Termld partitioning results arc disappointing. Termld

partitioning clearly fails on parallel measures such as speedup and efficiency. The problem

146

with Termld is that too much data has to be communicated from the leaf node to the top node

and the sort cannot be parallelized without further communication between leaf nodes and the

top node. The reason for the communication overhead with Termld is that a final result for

any given document cannot be guaranteed to be completed in a single leaf node. The overhead

at the top node is a serious bottleneck with Termld and cancels out any advantages in

parallelism applied to I/O, set weighting merging and sorting. Unless some other topology

could be found which would support the cluster of workstations model we use, we do not see

Termld partitioning as a viable technique for parallelizing probabilistic search. In order to

support Termld we could perhaps use a more complicated topology. We do not see the point in

attempting this when we have a partitioning method that works well on a simple topology. It

could be argued that another type of architecture may be well suited to the Termld method. It is

difficult to sustain such an argument given the dominance of the cluster of workstations model

in parallelism today. The results presented here confirm that Termld partitioning for distributed

inverted files is not viable in our parallel search context.

DOCID-NPOS
— — TERMID-SEQ-

NPOS

& — TERMID-PAR-
NPOS

— X — DOCID-POS
TERMID-SEQ-
POS

— & TERMID-PAR-
POS

— DOCID-NPOS

— X — TERMID-SEQ-
NPOS

— & — TERMID-PAR-
NPOS

“ “ X “ *- DOCID-POS

— X - - TERMID-SEQ-
POS

----- TERMID-PAR-
POS

Fig 7-13. BASE1: throughput for title only
query set

Fig 7-14. BASE1: throughput for whole topic
query set

How do the empirical results relate to the hypothesis stated in section 7.2; i.e. does the

evidence refute or confirm the hypothesis? The second part of the hypothesis that suggesting

good load balance searching on inverted files using the D odd partitioning method, is

confirmed. The first part on the Termld method needs to be revised however as it has been

demonstrated that good load balance can be achieved as computational skew does not

accumulate. The evidence applies to small queries only where the times arc averaged over 50

queries. The imbalance for larger queries is much worse, but since users tend to submit smaller

queries we cannot use that line of argument to defend the hypothesis as it stands. The good

average load imbalance (LI) on title only queries are found irrespective of the term allocation

to inverted file partition mechanism used. It is therefore possible that Termld may be able to

offer a better concurrent query service than D odd particularly with respect to throughput. It

should be stated however that although part of the hypothesis has been confirmed,

147

technological factors are more important than information theoretic ones in probabilistic

search. The sort needed for ranking is a considerable cost (0(nlog(n) for Quicksort), and

Termld cannot apply parallelism without increasing communication costs, a disadvantage the

D odd method does not suffer from.

A number of different assertions have been made with respect to partitioning search

and we examine them given the evidence provided above. Jeong and Omiecinski (1995)

concluded that if the terms are less skewed in distribution Termld would be the best method to

choose, while a skewed term distribution in queries would suggest that D odd would be a better

partitioning method. Given that users tend to submit smaller queries it seems axiomatic that the

D odd method would be preferable. However the evidence produced above suggests other

aspects of term weighting search are more important than the distribution of terms in the query,

in particular the sort to produce the final ranked set. Search time on D odd partitioning indexes

is superior in this aspect. It should be stated that our results validate the assertion that searches

on D odd partitioning indexes is better when term distribution is skewed. Tomasic and Garcia-

Molina's (1993a) results indicate that a hybrid of the partitioning methods discussed in this

chapter yields better response times (see chapter 2, section 2.4.4 for a discussion on these

methods). While their results arc not directly comparable with ours we can make assertions on

a higher abstract level. They use a slightly different architectural model in which each node has

two disks attached to a cluster node rather than one in our model (the architecture can still be

classed under shared nothing, however). Their simulation suggests that in the best performing

strategies the data for one document was kept on one node, and our results validate theirs.

Local sorts can be applied using their strategies and the same reduced communication load can

be obtained.

7.7 TREC-8 LARGE WEB TRACK EXPERIMENTS

The purpose of our Web Track experiments was to examine the scalability of the

implemented data structures and algorithms as well as contribute to the debate on centralized

versus distributed web search indexes. We submitted three runs, one for the full WTlOOg and

the other two for the baselines. We ran all 10,000 of the chosen web queries against each of the

databases, using the same query configuration for each run using 18 processors of the

Cambridge Cluster. We used local build indexes with postings only data in the inverted list.

We used term weighting search with the BM25 weighting function. Details of the Web Track

148

runs are given in table 7-7. We also report details of our preparatory VLC2 experiments. This

material was first published in MacFarlanc et al (2000a).

T R A C K RU N -ID O P T Y P E D A TA B A SE C O M M E N T S
plt8w tl Term W. WTlOOg 1 T im ing run
plt8wt2 Term W. BASE10 1 T im ing run
plt8wt3 Term W. BASE! 1 T im ing run

Table 7-7. Details of web track search runs

7.7.1 Retrieval Effectiveness

VLC2 Experiments

Q U E R Y G E N , BASE1 BA SE10 V L C 2/
W T 100G

Q U E R Y
S IZ E

Title 0.102 (0.130) 0.235 (0.264) 0.318 (0.377) 2.46
Title/Descr. 0.117 0.256 0.370 9.46
Title/D escr/N arr 0.103 0.228 0.392 26.54
Okapi VLC2 0.111 0.240 0.429 19.34

Table 7-8. Precision at 20 lor VLC2 experiments

We present the retrieval effectiveness results on the YLC2 data in table 7-8. The

figures in brackets are evaluations with tuning constants set as: K l= 1.5 and B = 0.2. These

were found to be the best combination on VLC2 data evaluations when doing our tuning

constant variation experiments. The other runs are with tuning constants set as Kl=2.0 and B

= 0.6: these settings were used in our original VLC2 experiments at TREC-7 (MacFarlane et

al, 1999b). We declare runs on generated queries based on the Title, Description and Narrative

as well as the Okapi generated VLC2 queries we used in TREC-7. Queries were generated

from topics 351 to 400.

We have managed to improve the retrieval effectiveness our system considerably over

our VLC2 entry (MacFarlane et al, 1999b). For example comparing the results for our original

VLC2 entry using Okapi VLC2 queries, we have a figure of 0.111 compared with 0.08 and

0.056: an improvement of 39% and 98% respectively. Examining the tuning constant data

allowed us to improve our title only queries quite considerably (we did not do experiments on

other query types because of time constraints). Our title only results compare favourably with

TREC-7 VLC2 runs where 0.377 is higher than 4 out of 18 submitted runs (which were based

149

on tile/description in the main). However our Okapi VLC2 query run results are only higher

than 5 out of the 18 submitted runs and we therefore need to examine the issue of effectiveness

on larger queries (including experiments with tuning constant variation). As with other

participants in the TREC-7 VLC2 track, we also recorded a significant rise in precision at 20

moving from the baselines to the full collection (Hawking et al, 1999).

Web Track Experiments

The results from the 50 evaluated Web Track queries are very good indeed on all

collections, particularly the full 100 Gbyte collection (see table 7-9). The most important

aspect of these experiments is that the tuning constants chosen in title only VLC2 runs were

good predictors for retrieval effectiveness for Precision at 20: the chosen K1 and B values were

best in the 50 evaluated Web Track runs. The trend in both tuning constant data sets is very

much the same. We can clearly state from the evidence provided with the data used in the Web

track experiments that the hypothesis stated in chapter 3, section 3.2.1, holds when the source

and target collection are the same. This demonstrates the possibility of examining statistics

from a given collection (and perhaps using some form of heuristic process) in order to choose a

given pair of tuning constants for incoming queries. Only one group participating in the 2000

web track registered a better retrieval effectiveness on the full collection than our runs.

DATABASE MODIFIED
AV PREC

PREC @ 10 PREC @ 20

BASE1 0.189 0.320 0.269
BASE10 0.323 0.476 0.436
WTlOOg 0.458 0.550 0.561

Table 7-9. Large web track retrieval effectiveness results

7.7.2 Retrieval Efficiency

VLC2 Experiments

QUERY GEN. BASE1 BASE10 WTlOOg
Title 0.052 0 .074 (1 .4) 0.87 (16.8, 11.78)
Title/Descr. 0.063 0.339 (5.4) 4.4 (69.8, 12.99)
T itle/D escr/N arr 0.11 1.06(10.05) 14.64 (138.2, 13.76)
Okapi VLC2 0.14 0.93 (6.83) 12.21 (89.9, 13.2)

Table 7-10. Average query processing Limes in seconds for VLC2 experiments
(ratios to baselines)

150

In table 7-10 we present the average query processing times in seconds together with

the ratios to the appropriate baseline measures. The ratio is defined as: Big Collection

Response time/Little Collection Response Time (Hawking et al, 1999). We give two figures

for scalability in our results for comparison purpose; one relating to the actual text size and one

to the Inverted file size. The processing speed for most runs is very good. We report the

average of the two runs submitted for each database. Only two of the VLC2 runs exceed the 10

second requirement for query response times, but these are the two largest queries applied to

the index (see table 7-8 for query sizes). One of the runs, namely title only meets the VLC2

requirement of a 2 second or less response time for queries over the full collection (Hawking et

al, 1999) and compares favorably to query response times for VLC2 participants. Query

processing times in proportion to the collection size showed sub-linear growth when comparing

BASE1 to the other collection runs: the exception was the larger Title/Description/Narrative

runs. The ratio from BASE10 to WTlOOg shows super-linear growth for elapsed times for all

runs.

The Scalability results are given in table 7-11. The best scalability results are found

with title only queries, some of which are very spectacular for both text and index Scalability.

It is clear from the data that there is a strong correlation between query size and scalability: as

we increase the size of the query, scalability declines. We have organised table 7-11 in

descending order of Scalability so this can be clearly seen. This effect is due to memory use:

more constituent query terms mean that larger numbers of sets have to be manipulated: this

effect would clearly be more of a problem on uni-processor experiments. Some level of query

processing optimisation may therefore be required for larger queries (Hawking, 1998).

QUERY GEN. BS1-BS10
INV T X T

BSl-100g
INV T X T

BS10-100g
INV T X T

Title 5.953 7.03 4.43 5.76 0.744 0.819
Title/Descr. 1.581 1.867 1.07 1.39 0.675 0.743
Okapi VLC2 1.239 1.464 0.826 1.07 0.670 0.733
Title/D escr/N arr 0.843 0.996 0.537 0.698 0.637 0.701

Table 7-11. Scalability results for VLC2 search experiments

Web Track Experiments

Retrieval efficiency results for the web track experiments arc presented in table 7-12.

The processing speed for all runs is also very good, but not as good as for title only VLC2

runs. However, all runs meet the 10 second requirement for query response times. Load

151

balance is good for all runs. The prepared average query length was found to be 2.49 terms:

many terms in the queries were non-content bearing words and some queries contained none at

all. A frequent query was the single term “a”. Why was the response time for Web Track

queries higher than title only on WTlOOg (nearly double) despite the fact that Web Track

queries are only slightly larger than title only queries? We compared the average set size of the

50 title only queries used in our VLC2 experiments to a sample of 50 Web Track queries. We

found that the average set size per term for title only queries was 28K, whereas for the sample

Web Track queries the average set size was 48K. The memory requirements for sets are very

much larger for Web Track queries than for the title only set. We experimented with differing

levels of in-core keyword on the sub-set of Web Track queries and found that we got best

results with only 9% of the keyword dictionary in main memory (a document map file is kept in

main memory that contains document lengths needed for BM_25). There is clearly a trade off

between the number of keywords and document lengths you keep in memory persistently

against sets being retrieved and manipulated for Query service. Having to do I/O for list

elements when weighting inverted lists could reduce the search performance dramatically. Four

other groups in the TREC-8 Web Track registered faster time than ours, but three of them did

not register the same level of retrieval effectiveness as us (one group retrieved no relevant

documents).

DATABASE QP TIM E SECS
(LI)

SCALE-INV
Bsl BslO

SCALE-TXT
Bsl BslO

RATIO
Bsl BslO

BASE1 0.027 (1.08) - - - - - -

BASE10 0.121 (1.03) 1.93 - 2.28 - 4.32 -

WTlOOg 1.616(1 .02) 1.27 0.655 1.65 0.721 57.9 13.4

Table 7-12. Query processing results for large web track search experiments

Measuring Scalability over both the text and Inverted file we found that the figures for

BASE1 to WTlOOg were very good, while the corresponding figures from BASE10 to

WTlOOg were acceptable (see table 7-12). The same pattern with respect to elapsed time ratios

found with VLC2 title only runs was found with Web Track runs: BASE1 to the other

collections yielded super -linear ratios, while BASE10 to WTlOOg yielded sub-linear ratios.

From table 7-12 it can be seen that title only VLC2 queries yield better scalability from

BASE1 to other collections than the Web Track queries: this is another effect of the memory

requirements for Web Track queries stated above.

It should be noted that the Scalability/Ratio measurements from BASE1 to the other

collections should be treated with some caution, since the memory requirements and

152

communication overheads for search times are vastly different. It is not clear that parallelism

brings much benefit on collections of BASEl's size. While these results arc good there is

clearly some scope for improvement, in particular the application of various query optimization

techniques available (Hawking, 1998) at the cost of retrieval effectiveness.

7.8 SUMMARY AND CONCLUSION

The D odd partitioning method shows advantages over Termld partitioning on all

measures and is clearly a good scheme for applying parallelism to information retrieval if such

is needed. The results in this chapter confirm that our synthetic model can successfully

determine which of the partitioning methods is better (see chapter 5, section 5.3.2). The

synthetic model can also predict the relative performance difference between the partitioning

methods to a great extent. However our empirical results show that Termld with parallel sort

performance is nearer to Termld with sequential sort, whereas our synthetic model predicted

that search on Termld with parallel sort would be nearer to Docld. The problem with

communication in search would appear to be more significant in real life than in our synthetic

model. Any generic conclusions we make with respect to theoretical or practical performance

results are applicable only to term weighting models.

We proposed a hypothesis on search performance on parallel IR systems that suggests

that query size is the main factor. The second part of our hypothesis is confirmed by the results

on D odd partitioning. However technological factors in parallel search, namely the importance

of sort in term weighting search, appear to be significant than information theoretic factors

such as query size. The prediction in the synthetic model that a sequential sort would be a

bottleneck is confirmed by empirical results.

The Termld scheme does not work in our framework and given the simplicity and

widespread use of the cluster model we use, we do not sec the scheme as being a viable one for

probabilistic search for sequential query service. However the load balancing evidence

discussed in section 7.6 supports any argument that concurrent query service using Termld

partitioning may be useful. While the first part of our hypothesis on search performance put

forward in section 7.2 may be correct for a single query, our evidence on load imbalance

suggests it could be false in concurrent query service. The direction for any further research in

this area is to examine how the inverted file partitioning methods affect the performance of

parallel IR systems that offer concurrent query service in order to examine our hypothesis

further.

153

Chapter 8

Index Update Theory And Results

8.1 INTRODUCTION

One of the most neglected areas in IR is the issue of servicing updates to inverted files.

In most applications this is understandable given that some databases are only updated very

infrequently: for example Dialog and DataStar have databases which are updated weekly,

monthly quarterly or even yearly (Knight-Ridder, 1997). Searching has taken priority over

update as a consequence. Insertions are usually done off-line and en-masse when no one is

using the system, e.g. overnight. Such methods may not be suitable for systems where

information is received at more frequent intervals and 24 hour access to this information is

required, e.g. a news service, and there is no time when the system could be taken down and the

updates serviced in a batch (Schiettecatte, 1996). Updating inverted files is very expensive and

periodically requires the re-indexing of the whole database. It is therefore becoming

increasingly important to examine the impact of update and query service on inverted files. To

date IR systems with inverted files have not had to deal with Concurrency Control (CC). To the

best of our knowledge the research presented here is the only published research on using CC

mechanisms on inverted files (MacFarlane et al, 1996). The chapter is split into two parts: one

discussing theoretical problems in the absence of CC and one describing practical experiments

examining partitioning methods in the update task. The first part defines some of the problems

by examining query processing in the presence of an incorrect or non-existent CC mechanism

while updating the inverted file. Issues such as delays and availability are also examined. We

attempt a paper solution to these problems by looking at popular CC mechanisms. We declare

assumptions made and the scope of operations. In the second part we describe the experimental

methodology for our practical experiments together with the data used in them. We then discuss

our results for update, transaction and index reorganisation. A conclusion is given at the end.

8.2 ASSUMPTIONS

Throughout this chapter it is assumed that no deletions or updates are done on inverted

files, only reads and insertions. This is because text databases tend to be archival in nature,

hence exhibit dynamic behaviour that is that of growth rather than slight fluctuation in size or

decrease in size. We also assume that an inverted file may be partitioned and stored on several

different disks. The inverted file structure assumed is described in chapter 3, section 3.2.4.

154

8.3 SCOPE OF OPERATIONS

An insertion of a term results in one of two things; i) a new term, its posting list and

position information is added to the inverted file; ii) for an existing term a posting is appended

to that term's postings list, the position information is stored and the dictionary file entry is

updated (the number of postings entry is incremented). A read done on a particular term results

in; i) a message to indicate that there are no occurrences; ii) a posting list (with position

information if that is required) is returned for n document id's in which that term occurs. The

operation WRITE_TERM takes on the semantics of an insertion and the operation

READ_TERM takes on the semantics of a read. The action on both READ_TERM and

WR1TE_TERM is to consult the dictionary file first, and then the postings file.

8.4 STATEMENT OF THE PROBLEM

The general problem of concurrency control arises because of possible conflicts

between transactions operating at the same time on a database. In the context of IR this can

best be illustrated by an example involving a more or less simultaneous query and addition of a

new document to the database. Consider the scenario in fig 8-1 where an insertion transaction

is interleaved with a query transaction that access the same data set. Our aim is to make these

transactions have the same effect as if they where executed sequentially, i.e. they are serially

equivalent (Coulouris et al, 1994). The insertion and query access the same terms.

TIME INSERTION QUERY
i WRITE_TERM(term 1, docid)
i+1 postingsi = READ_TERM(terml)
i+ 2 postingS2 = READ _TERM(term2)
i+ 3 WRITEJTERM(lerm2, docid)

answer = postingsi ® p o s t in g S 2

Fig 8-1. Example concurrency control scenario

The problem in this scenario is that the query has done a read before the insertion has

finished a write. In distributed systems this problem is known as a dirty read, which is caused

because the READ_TERM operation on term2 in the query conflicts with the WRITE_TERM

operation on term2 in the insertion. An easy answer would be to prevent the query from reading

until the insertion is complete. However different operations ® will produce different side

effects, therefore a simple block may delay a query unnecessarily. The following section

describes the effects of various operations.

155

8.5 OPERATIONS AND THEIR EFFECTS

Examples of an incorrect or non-existent CC mechanisms on the operations AND, OR,

AND NOT, PLUS/DOT, ADJ, SAMES, LIMIT and MIXED are discussed below.

Explanations of some of these operations are given in appropriate sections. It should be noted

that the operations XOR, NAND, NOR and unary NOT are left out since they are not used in

operational systems. These operations and their semantics are taken from Robertson and

Walker (1995). A comparison of the effects is given at the end of the section.

8.5.1 ® = A N D

The side effect found where ® = AND is that the query will fail to retrieve a relevant

document because the postings list for term2 does not contain the identifier for the inserted

document. To prevent this from happening the query must be excluded from reading

information for term2 until the insertion has completed its action. The side effect is that of a

false dismissal.

8.5.2 ® = OR

The side effect will depend on whether position data is used by later operations. If no

position data is involved, there is no apparent side effect where ® = OR since the document

identifier for the inserted term will be in the postings for terml. Therefore there is little point in

blocking the read from term2, since it has no effect on the retrieval using that operation. To do

so would delay the operation unnecessarily and result in a reduction in concurrency. We will

name the side effect where an unnecessary block is made a false delay. However position

information for term2 will not be included in any result set. Therefore any later operations on

the sets that involve proximity operations may cause false dismissals, e.g. given the query

{information ADJ {science OR retrieval}} where terml = science and term 2 = retrieval.

8.5.3 ® = A N D N O T

This operation is asymmetric, therefore the side effect is dependent on the order of the

reads. For example given the sets terml = {1,2,3,4} and term2 = {1,2} before insertion (see fig

8-2);

156

INSERTION QUERY RESULT
SET

READ_TERM(term 1) 11,2,3,4}
WRITE TERMfterml, 5) 11,2,3,4,5}
WRITE_TERM(term2, 5) 11,2,5}

READ TERM(term2) 11,2,5}
answer = (1,2,3,4) AND NOT (1,2,5} 13,4}

Fig 8-2. Example interleaving with AND NOT

A document with an id = 5 is inserted in the inverted file. The correct documents are retrieved.

The side effect could be a false delay since the read operations do not conflict with the writes,

because o f the order in which they were done. However if the order is changed (see fig 8-3);

INSERTION QUERY RESULT
SET

READ„TERM(term2) 11,2}
WRITE_TERM(terml, 5) 11,2,3,4,5}
WRITE _TERM(term2, 5) {1,2,5}

READ_TERM(term 1) 11,2,3,4,5}
answer = (1,2,3,4,5} AND NOT (1,2} {3,4,5}

Fig 8-3. Example interleaving with AND NOT; order reversed

the read and writes conflict because the id for document 5 is inserted in temi2's set and not

terml's set. The side effect is a false drop.

8.5.4 0 = PLUS, 0 = D O T

These operations arc generic functions for term weighting as per the probabilistic or

vector space models (if you include normalisation in the latter). The result of the PLUS

operator is a simple sum-of-weights. The result of the DOT operator is a dot-product, i.e. the

sum of products of posting and set weights. The side effect where ® = PLUS or DOT is that

the weight for tcrm2 will not be included in the postings set which could have the results; i) loss

of weight for term2 drops the total weight down to an incorrect ranking or ii) the total weight

for term2 drops below a stated threshold (as in the vector space model) and the document is

incorrectly rejected. Therefore there are two side effects for the PLUS or DOT operators; cither

a rank drop or a false dismissal.

8.5.5 0 = A D J

The ADJ operator is used to find two terms that are adjacent to each other. The

discussion of this operator is based on an ordered ADJ. We assume with the operator ADJ that

157

terml and term2 have matching position information on the insertion. Position information

must be in both sets for a given term for any meaningful comparison to take place. Therefore

since no match can be made where the position information for either terml or term2 is absent,

the resulting side effect is a false dismissal. It should be noted that while the operation is

asymmetric the side effect is symmetric, i.e. no matter what term set is read in first, the result is

still a false dismissal. Consider the queries {information ADJ retrieval} and {retrieval ADJ

information}.

8.5.6 ® = SA M E S

The SAMES operator is used to find terms that occur in the same sentence. The

assumption on ADJ position information applies to the SAMES operator. Unlike ADJ, the

operator SAMES is symmetric. As with ADJ no match can be made where the position

information for either terml or term2 is absent, therefore the resulting side effect is a false

dismissal. The same problems apply to operators which look for same paragraph or field.

8.5.7 ® = L IM IT

A LIMIT operator is used to restrict the size of the output set size: users are not

interested in viewing millions of documents. This operator is not explicitly used in search, but

is used automatically when an AND operation is applied to two sets. In Robertson and Walker

(1995) it is suggested that terml LIMIT term2 is restricted to a search on terml, limited to

items that satisfy term2. Therefore in strictly Boolean terms the LIMIT operator is identical to

AND; therefore the side effect is identical, i.e. a false dismissal. While the operator is not

symmetric, the side effect is.

8.5.8 M ixed operations

INSERTION QUERY RESULT
SET

READ TERM(retrieval) {1,2,3}
WRITE_TERM(retrieval,5) 11,2,3,5}
WRITE_TERM(science,5) 11,2,3,4,5}

READ_TERM(science) 11,2,3,4,5}
READ_TERM(information) 13,4}

WRITE_TERM(information,5) 13,4,5}
11,2,3,4,5} AND NOT (3,4) 11,2,5}
(1,2,3} AND 11,2,5} 11,2}

Fig 8-4. Example interleaving with MIXED operations

158

A query may contain more than two terms and may use any of the above operations,

where such is legal, e.g. terml ADJ (term2 OR tcmi3) is valid, but terml ADJ (term2 AND

term3) is not. What is being considered here is the interaction of binary operations or nesting of

binary operations. The complexity of the side effects for these nested binary operations could

be considerable. We give an example interleaving in fig 8-4 with a query; retrieval AND

{science AND NOT information). The sets for each of the terms before the interleaving are;

retrieval = {1,2,3}; science = {1,2,3,4}; information = {3,4}.

There are a number of observations to be made on this interleaving. The most

important is that the read on the query and write on the insertion conflict on the term

"information"; as a consequence, the next-to-last result is incorrect. However this does not

affect the final result since the error is masked by the AND operation. This is a by product of

this particular query; other more complicated examples may actually reintroduce the problem.

We can infer that the interaction between binary operations determines which side effects

occur, if any. The interleaving will also have an effect, but is not just a characteristic of mixed

operations. We cannot decide what the side effects will be by simply looking at the constituent

binary operations.

8.5.9 C om parison o f operator effects

Table 8-1 shows a comparison of the effects on the operators discussed above.

O P E R A T O R S Y M M E T R IC S ID E E F F E C T C O M M E N T S
A N D Y E S F a lse D ism issa l. -

O R Y E S F a lse D e lay .
F a lse D ism issa l.

F o r u n n e ce ssa ry b locks.
F o r po s itio n d a ta on ly .

A N D N O T N O F a lse D ro p , F a lse D elay . D e p en d s o n o rd e r o f te rm
in sertion .

P L U S , D O T Y E S R an k D ro p o r F a lse D ism issa l S ide e ffec t d e p en d s on
th re sh o ld lim it se t (i f any).

A D J N O F a lse D ism issa l. S ide E ffe c t is sy m m etrica l.
S A M E S Y E S F a lse D ism issa l. -

L IM IT N O F alse D ism issa l. S id e E ffe c t is sy m m etrica l.
M IX E D P O S S IB L Y A ny o r all. S id e e ffec ts co u ld b e very

com plex .

Table 8-1. Comparison of operator effects

8.6 CONCURRENCY CONTROL MECHANISMS

It should be noted that the above are only a small number of simple scenarios. But it

does give a flavour of some of the problems that may occur if an incorrect or non-existent CC

mechanism is used. From the above we can deduce two very important facts. The first is that

we need to vary the exclusiveness of blocks on term postings according to the operation. The

second leads on from the first and suggests that the query model used will have implications for

159

side effects. The concept of isolation levels much used in Database systems (Date, 1983) is

regarded as useful.

Isolation is defined as the degree of interference a transaction can tolerate (Date,

1983). We can define an isolation level for queries in which non-conflicting situations occur,

e.g. reads can be allowed on OR's thus stopping potential false delays. A further point is that

blocks on terms that are popular (i.e. there is a high rate of retrieval on them) are likely to

cause bottlenecks. Therefore the blocking granularity (the size of object being blocked) used for

the postings file will be crucial not only in determining the retrieval performance, query

throughput and system utilisation, but the CC mechanism performance as well. If the

granularity is too large then unnecessary blocks will be made causing delays. The following

discuss the three main CC techniques used in Distributed Systems (Colouris et al, 1994) in tire

light of the above. The mechanisms are: locking, optimistic CC and timestamp ordering.

8.6.1 Locking

The Lock method is the most common form of CC. The method works by setting a lock

on a data item that blocks out other conflicting operations. What we tend to find is that

concurrent reads are allowed but only one write is allowed at any given moment and a read may

not be allowed while a write is being serviced. This is known as the many readers, single writer

problem. Having reads which lock out each other is far too exclusive and reduces concurrency.

The main advantage of the lock method is that it is better in environments where operations are

predominately updates. The main disadvantage is deadlocks can occur (see below), a problem

made difficult if more than one fragment of an inverted file is accessed.

The operation of Locks is simple. In the case of the scenario in section 8.4, fig 8-1,

terml is blocked by the insertion preventing the read on tcrml in the query. The query is

blocked on terml until the insertion releases the lock on both the accessed terms in one go; the

query can then retrieve both terms as normal with no conflict. However for queries with OR

operations this could cause false delays. We remedy this problem by setting a level of isolation

that allows queries with the operation OR to proceed without attempting to set a lock. A lock is

released when the transaction has finished with that particular term. If a lock is set for a data

item that already has a lock held on it, it delays that request until the lock is released. How do

we resolve deadlocks in inverted files? Consider the following scenario in fig 8-5;

160

TIME INSERTION] INSERTION]
i WRITE_TERM(term 1, docidi)
i+1 WRITE TERM(tercn2, docid])
i+2 WRITE_TERM(term 1, docid2)
1+3 WRITE_TERM(term2, docidi)

Fig 8-5. Example deadlock

Insertion i requests a lock on tenni and Insertion requests a lock on term2. The

problem occurs when Insertion requests a lock on terml and Insertion! requests a lock on

tenn2. Both arc now deadlocked and the data items are inaccessible until one or the other of the

insertions is aborted (and re-started at a later time). There are a number of ways to decide

which insertion to abort; i) abort the younger insertion to allow the older one to commit straight

away; ii) choose an insertion that uses up the least machine cycles and abort that one. In the

case of distributed deadlock leaf nodes need to reach some form of distributed agreement on

which insertion should be aborted. Further consideration is needed for the Lock method

including the use of hierarchic Locks and Lock promotion, particularly for mixed query

operations.

8.6.2 O ptim istic CC

The optimistic CC method takes a different view of blocking; it avoids it all together.

Isolation levels are therefore not needed. An optimistic strategy is used which allows

transactions to proceed irrespective of the effect unless a conflict is found. It should be noted

that the other two methods, locks and timestamps use a pessimistic strategy. The method works

by keeping a tentative version of a data item, while the transaction is being processed. The use

of tentative versions allows the transaction to abort without the need to rollback the effect of a

given operation. There are three phases to optimistic CC; i) read phase; data items are read in

from disk and are put in tentative versions. This phase is never interrupted. The various

operations such as writing is done on the tentative versions, ii) validation phase; After the read

phase is complete the transaction is compared with other transactions and if any conflicts are

found, a transaction is aborted. Otherwise the transaction proceeds to the write phase, iii) write

phase; read only transactions can commit immediately while transactions with writes in them

make their tentative versions permanent. There are two types of validation; forward and

backward. Forward validation checks the current transaction with later transactions and works

by comparing the write set of that transaction with the read set of later overlapping

transactions. Backward validation checks the current transaction with earlier transactions and

161

works by comparing the read set of that transaction to the write set of earlier overlapping

transactions. The main advantage of the method is that it is fast in the presence of few

conflicts. The disadvantage is that a substantial body of work may need to be repeated if there

are many conflicts and starvation (non-service of a transaction) may occur with some

transactions. This could have an effect on system utilisation and throughput. No deadlocks

occur with the method.

Non conflicting operations (OR's) do not need to be validated against any other

transaction. With backward validation a query or insertion is checked against earlier insertions;

if any overlaps are found the query or insertion is aborted. With forward validation we compare

an insertion with later queries or insertions and either abort the transaction being validated or

any later transaction submitted to the system. We can see that in forward validation we have

the option to either abort the transaction or a later one. Using backward validation we only

have one choice, to abort the current transaction since earlier transactions have already

committed. However forward validation is more complex than backward since it has to account

for new transactions starting whilst still in the validation process. The practicality of using the

method on the inverted file CC mechanism will depend on the update rate, i.e. the higher the

update rate, the more chance of conflict and the less the method is useful. For situations where

insertions are rare, optimistic CC could be useful.

8.6.3 Tim estam p ordering

With this method a transaction is assigned a timestamp when it is initiated. The

timestamp can take on a physical or logical value. The method works by comparing timestamps

and if there are conflicts then a transaction is aborted. Each operation is validated as it is

executed. There are three simple rules for transaction conflicts; i) To be able to write, a

transaction must have the maximum read timestamp to prevent conllict on reads of other

transactions; ii) To be able to write, a transaction must have the maximum write timestamp to

prevent contlicts on writes of other transactions; iii) a transaction can only read a data item

where the timestamp has a later value than the committed version to prevent contlicts on reads.

We can allow for an isolation level in the event of a non-conflicting operation by ignoring

timestamp comparison. The main advantage of the method it is that is better for environments

where reads outnumber writes. The main disadvantage is that the timestamps determine the

order of serialisation sequentially, according to the value assigned.

In IR systems the method is simple and would work as follows. A timestamp is

compared only if the isolation level requires it. Operations where conflicts could occur have

162

their timestamps checked as per the rules above. A problem could occur if an insertion has an

older timestamp than a query. Because of rule i) we have a conflict and therefore have to abort

the insertion. As with optimistic CC this could be problematic in certain applications.

8.6.4 Com parison o f CC m ethods

From the above we have a number of choices for CC. The target application will

determine which of the three would be suitable. If there are more queries than insertions, then

we suggest that the Timestamp ordering method be used. If insertions are more frequent than

queries, then we suggest that the Locking method be used. If there are few insertions, then the

optimistic CC method could be useful. It is possible to use a more analytical approach to

estimate the actual delays and overheads of each mechanism that would provide a more

accurate comparison, but this is not attempted here. Such would include the cost of lock

overheads, transaction rollback, space costs etc.

8.7 DELAYS AND AVAILABILITY

The requirements for document availability will depend on the application, e.g. a News

Service or an On-Line Public Access (OPAC) system. The availability semantics would

determine what CC mechanism to use. We could perhaps limit availability of documents to the

log-on time, where any documents are unavailable if they are inserted during the session. In

such a case no CC mechanism would be needed, since documents could be inserted overnight.

This may not be suitable for a News Information Service application, where news from around

the world may be required when it is received. We term these semantics as Log-On availability

semantics. If we lake the semantics that do not make documents available until the last write in

the insertion is complete, then many of the mechanisms described above would not be needed

since a false dismissal would not be deemed to have occurred. We will call such semantics Late

Availability. However other side effects cannot be so easily ignored. To allow queries and

insertions to go ahead without blocking could lead to false drops or rank drops. Therefore some

blocking will be needed in Late Availability semantics. This has the unfortunate side effect of

delaying some queries for a period, when such blocks are needed. If we take semantics that

make documents available when the first write in the insertion is completed, a full set of the

mechanisms described above would be required. We will call such semantics Early

Availability. Any query which shares terms with insertions will need to be delayed, an

undesirable effect in some applications. By its nature the inverted file technology gives priority

to queries. This is because inverted file search is comparatively cheap while inverted file update

163

is very expensive. Searching speed is the reason that inverted files have become the dominant

technology in IR. Therefore the assumptions made in this chapter may not be sustainable for

many applications. However certain side effects such as rank drops or false drops would be

very undesirable in an IR system. To prevent these some delays may be needed. It is a question

of determining how far search is offset against insertion.

Another important factor that could have a dramatic impact on performance is

unnecessary processing. This could occur with Early Availability semantics because of the

possibility of starvation of queries. Transactions may be aborted and re-started a number of

times if one term or group of terms is being updated constantly for a time period (e.g. a spurt of

News on a particular subject).

From the above it can be seen that we have a number of conflicting requirements. We

want to make documents available as soon as possible, without delaying queries unduly. We do

not want the occurrence of multiple aborts. Such choices come about because of the "black and

white" nature of Late and Early Availability semantics, which take rather an extreme viewpoint

on document availability. We need to find another form of availability semantics that does not

introduce too many unnecessary delays and does not do too much unnecessary processing. It

should be noted that we are unlikely to be able to find a system of semantics in which no delays

occur and unnecessary processing is never done.

8.8 METHODOLOGY FOR PRACTICAL EXPERIMENTS

We have stated in the introduction to this thesis that we examine the issue of one job at

a time service, c.g. one transaction at a time. The main reason is the viability of designing and

building a complete transaction processing system within the time available. Another was the

practicality of examining retrieval effectiveness problems on concurrent transaction service as

examined theoretically above. The basic problem is that we do not have an evaluation method.

We could consider using such metrics as recall and precision, but these are unlikely to be

useful except in extreme situations. Servicing one transaction at a time allows us to ignore this

problem at the cost of restricting the level of parallelism on update transactions.

Much of the previous work in the area of inverted file maintenance (Reddaway, 1991;

Shoens et al, 1994; Clarke and Cormack, 1995) have advocated the use of buffering updates to

save on I/O. Some argue that to update the index for each individual arriving document is

inefficient (Shoens et al, 1994) but use a synthetic workload performance analysis to support

their arguments. We attempt to simulate a persistent service for updates without coding a

complete transaction service, accepting that it is better to wait a little before updating an index.

To do this we keep an in-core buffer to which updates are added when they are received. When

164

this buffer is full, we initiate an index reorganisation merging the in-core buffer index with the

index kept on disk. In order to do this we use the following strategy:

i) Read in inverted list from disk.

ii) Add new postings to inverted list.

iii) Save the new postings to disk to a temporary postings fde.

As we are unlikely to be able to keep the dictionary in-core, we keep a subset of the

keywords in memory, with each element of the subset a header of a keyword block held on disk.

All hit keyword blocks are saved to a temporary Keyword file for realism. The advantage of

this method is that we can do a realistic disk re-organisation simulation without the need for

expensive rollbacks in order to conduct repeated experiments on the same data set. We do not

attempt to reorganise the whole index as we assume that a large chunk of the database will

never be referenced by incoming updates. The transaction we refer to as updates are collection

updates or document insertions. Our priority is to try and keep the index in a state which will

allow the search process to service queries as fast as possible. We do however allow the service

of transactions while the reorganisation of the index is being done. There is a strict interleaving

between the reorganisation of a term and transaction service to prevent concurrency problems

examined above. There may therefore be some delays to transactions while a reorganisation of

the index is being done. The document availability semantics we use is Late Availability which

is defined in section 8.7 above.

8.9 DATA AND SETTINGS USED

Transaction No of No of No of
set Name Updates Queries Transactions

UPDATE 1 40 400 440
UPDATE2 80 400 480
UPDATE3 200 400 600
UPDATE4 400 400 800
UPDATE 500 400 900

Table 8-2. Details of transaction sets used in experiments

The data used in the experiments was the BASE1 and BASE 10 collections (see chapter

3, section 3.3.1). We use both types of builds for indexes: distributed builds and local builds.

For the distributed build method we use the BASE1 collection only, creating indexes on 1 to 7

165

nodes and servicing transactions on all of those indexes. Two types of index where built for

these experiments: one set using Termld partitioning and one using D odd partitioning. The

BASE1 and BASE 10 collections were used for the local build method, running queries on 8

nodes: the client and top node had to be placed on the same node as one leaf nodes. The D odd

partitioning method is used on these experiments. We built one set of indexes which contained

position data (POS) and one set without position data (NPOS) for both types of build methods

and both types of partitioning methods.

Table 8-2 shows the transaction sets used in our experiments and the balance between

query and update transactions. The queries are based on topics 1 to 450 of the TREC1 to

TREC8 ad-hoc tracks: 400 queries in all (the topics 201-250 in TREC4 did not have a title

field in the topics). The terms were extracted from TREC topic descriptions using an Okapi

query generator utility to produce the final query. The average number of terms per query is

3.46. The document updates were chosen from a Reuters-22178 collection (Lewis, 1997b) not

in the VLC2 set: we refer to this file as REUTERS. We chose this set because can guarantee

that the data is new to the VLC2 set. The REUTERS file is 1.2 Mb in size and has 1000

documents (or records). We took both these sets and created transaction sets with differing

numbers of updates and queries, varying the number of updates to queries, ranging from 10

queries per 1 update down to more than one update per query.

We apply these transactions to all the indexes built (described above) both in the

presence and absence of an index reorganisation. Where no index reorganisation is done during

transaction processing we initiate one at the end of transaction service and record the time. This

allows us to both examine the relationship between updates and queries in transactions as well

as finding a good point where buffer re-organisation is needed. In order to examine the effect of

index reorganisation we fill up buffers with 500 documents from the REUTERS document set

and initiate a re-organisation before starting transaction processing. All transaction processing

figures produced are averages of 5 runs per experiment. For the one leaf nodes experiments we

use a client/server process. We used the CF term allocation policy for nodes when using

Termld partitioning (see chapter 4, section 4.4.2 for details). We use a number of measures to

examine the results (these metrics and our requirements of them are declared in chapter 3,

section 3.4.1). These are elapsed time in seconds, load imbalance (LI), speedup/efficiency, and

scalability for transactions and index re-organisation and transaction throughput (transactions

per hour).

166

100

90
100

update
— §§§— updatel
— update2

update3

— — update4

tn
E
v
E
F

1 2 3 4 5 6 7

Leaf nodes

Fig 8-6. BASE1 [Dodd]: average elapsed
time in ms for update transactions

(postings only)

Fig 8-7. BASE1 [Termld]: average elapsed
time in ms for update transactions

(postings only)

Leaf nodes Leaf nodes

Fig 8-8. BASE1 |Docld]: average elapsed
time in ms for update transactions

(position data)

Fig 8-9. BASE1 [Termld]: average elapsed
time in ms for update transactions

(position data)

8.10 EXPERIMENTAL RESULTS ON TRANSACTION PROCESSING

We have a number of aspects which we wish to examine by looking at the empirical

results produced. The first of these is the issue of update performance (see section 8.10.1). Is

there a big performance penalty in only allowing one update at a time in the system thereby

restricting parallelism for that transaction type? We also need to examine the transactions as a

whole looking at aspects such as the interaction between queries and updates and its impact on

performance (see section 8.10.2). Both updates and transactions are examined in the presence

and absence of index reorganisation. The performance of index reorganisation is examined in

section 8.10.3, together with a discussion on a good buffer size for the collections being

examined. A summary of the experimental results is given in section 8.10.4.

Leaf nodes

3.5

3

§■ 2.5
■o
$m 2

1.5

1

2 3 4 5 6 7

Leaf nodes

^update

■ m - ■ updatel
-update2
~update3

— ■- update4

Fig 8-10. BASE1 [Dodd]: speedup for Fig 8-11. BASE1 [Termld]: speedup for
update transactions (postings only) update transactions (postings only)

167

— <§>— update
— ggx— updatel

A — update2
update3

— $$£— update4

Fig 8-12. BASE1 [Dodd]: speedup for Fig 8-13. BASE1 [Termici]: speedup l'or
update transactions (position data) update transactions (position data)

8.10.1 Performance o f Update Transactions

As there is no general criterion for response time for update transactions as there is for

query transactions (Frakes, 1992) we need to define one here. The criterion we use is that

updates should be done within l/10th of a second (or 100 milliseconds). This strict criterion is

chosen because we want to ensure that queries are not delayed much, although users who

submit documents for update would prefer a fast response. The elapsed time for update

transactions is quite small for most runs (see figs 8-6 to 8-9). All times are under 100

milliseconds and times do reduce with increasing numbers of leaf nodes. There are two main

observations from this. The first is that update transaction elapsed times meet our criterion and

are therefore acceptable in our ternis. Any delays by blocking other transaction while an update

is done are therefore small. The second is that speedup is found in systems using parallelism,

which is surprising given the restrictions on parallelism with the type of update transaction

processing implemented (see figs 8-10 to 8-13: efficiency figures are given in appendix A4).

The results show that D odd partitioning has a much more beneficial effect on elapsed times

than Termld partitioning and the advantage in elapsed time using multiple leaf nodes is

superior with Dodd. The reasons for these effects are twofold: memory and communication.

With D odd the increase in memory affects elapsed time positively, and communication is done

with one leaf node only. This memory advantage is offset with extra communication with

Termld as document data must be communicated to all leaf nodes. It should be noted that most

of the conclusions drawn here apply to updates which record position data. The exception is

that Termld partitioning in many cases docs not meet the 100 millisecond criterion together

with the single leaf nodes run (see fig 8-9).

168

Leaf nodes Leaf nodes

Fig 8-14. BASE1 [Docld]: average elapsed
time in ms for update transactions during

index reorganisation (postings only)

Fig 8-16. BASE1 [Docld|: average elapsed
time in ms for update transactions during

index reorganisation (position data)

Leaf nodes Leaf nodes

Fig 8-15. BASE1 [Termld]: average elapsed
time in ms for update transactions during

index reorganisation (postings only)

Fig 8-17. BASE1 [Termld]: average elapsed
time in ms for update transactions during

index reorganisation (position data)

Figs 8-14 to 8-17 shows the effect of initiating an index reorganisation while serving

update transactions. Elapsed times on both types of partitioning method are increased, but

Docld partitioning is much better able to handle the resource contention than Termld. In terms

of our 100 millisecond criterion, Docld meets our requirement while Termld partitioning does

not. While Docld runs show reduction in elapsed time over multiple leaf nodes, Termld runs

actually record a reduction in performance. The reason for this is simple: index reorganisation

on Docld partitioned inverted file is done on much shorter lists. Therefore a request for

transaction service on Termld partitioning is more likely to be delayed, hence the increase in

percentage terms for elapsed time over Docld as shown in figs 8-18 to 8-21. With respect to

indexes which contain position data, most runs apart from a few on Docld partitioning exceed

the 100 millisecond criterion. Termld partitioning runs are particularly badly affected with

some runs registering an increase of around 300% over elapsed times when index

reorganisation is done.

169

Leaf nodes Leaf nodes

Fig 8-18. BASE1 | Dodd]: % increase in
average elapsed time for update transactions
during index reorganisation (postings only)

Fig 8-20. BASE1 [Dodd]: % increase in
average elapsed time for update transactions
during index reorganisation (position data)

• ■ --8^— ' update

— 88&'-''~update1

— & — update2
" A ^ ' " U p d a t e 3

— ')&■— update4

Fig 8-19. BASE1 [Termld]: % increase in
average elapsed time for update transactions
during index reorganisation (postings only)

Fig 8-21. BASE1 [Termld]: % increase in
average elapsed time for update transactions
during index reorganisation (position data)

Metric Collection UP UP1 UP2 UP3 UP4
Postings O nly (N o Positions)
Elapsed Time (ms) BASE1 43 43 46 40 43

BASE10 109 124 124 121 123
Scalability BASE 10 3.97 3.46 3.72 3.33 3.51
Elapsed Time (ms) BASE1 55 64 62 60 57
during index update BASE10 268 380 359 310 299
Scalability during
index update

BASE 10 2.07 1.67 1.73 1.95 1.91

Position Data
Elapsed Time (ms) BASE1 52 48 51 48 51

BASE 10 202 265 261 243 246
Scalability BASE 10 2.55 1.83 1.97 1.98 2.06
Elapsed Time (ms) BASE1 103 130 131 125 115
during index update BASE10 621 971 975 892 817
Scalability during
index update

BASE10 1.66 1.34 1.34 1.40 1.40

Table 8-3. BASE1/BASE10 [Dodd]: index update results for update transactions

Table 8-3 shows the details of comparable BASE1 and BASE10 runs using the D odd

partitioning method. It should be noted that BASE10 runs are slightly higher than our criterion

for elapsed times for update. It may not therefore be possible to set such a strict criterion for

larger databases, and we may have to relax our requirements to say, a second. All BASE10

elapsed times are under a second, even updates done on indexes with position data while an

index reorganisation is being done. The scalability for update transactions on the BASE10

170

collection is very good indeed, particularly for indexes with postings only data. The scalability

reduces while index reorganisation is being done, but is still good.

8.10.2 Performance o f Transactions as a whole

The average elapsed time for transactions as a whole is very good with all times under

a second, including BASE10 experiments. Figs 8-22 to 8-25 shows average elapsed times for

transactions on the BASE1 collection using all types of indexes and partitioning methods.

Fig 8-22. BASE1 [Dodd]: transaction
average elapsed times in ms (postings only)

Cfl
E

— ^ — update

— §§§— updatel

-— *update2

w ,ÿHir*~v update3
— — update4

Leaf nodes

Fig 8-23. BASE1 [Termld]: transaction
average elapsed times in ms (postings only)

Fig 8-24. BASE1 [Dodd]: transaction
average elapsed times in ms (position data)

update
— §§§— updatel
—T ^ ~ -u p d a te 2

update 3
— — update4

Fig 8-25. BASE1 [TermldJ: transaction
average elapsed times in ms (position data)

From these elapsed times it can be seen that there is a reduction in average time when

the number of update transactions is increased and when D odd partitioning is used. The

reduction due to increased level of updates is because updates are smaller in average time and

will reduce the average transaction time. The D odd partitioning method outperforms Termld

quite considerably on any of the transaction sets used. The performance problem found with

runs on Termld partitioning in previous experiments (see chapter 7 on probabilistic search)

severely effect the overall performance of those runs. No real speed advantage by the use of

parallelism is demonstrated in any of the Termld partitioning experiments. In fact slowdown is

registered for all parallel runs on indexes with postings only data (see fig 8-27). Speed

advantage on indexes containing position data is recorded, but is very slight (see fig 8-29).

171

With D odd partitioning we do gain speed advantage using parallelism (see figs 8-26 and 8-

28), but the proportion of updates in the transaction set may actually increase the average

elapsed time when more leaf nodes are used (see figs 8-22 and 8-24). The level of parallelism

which can be successfully deployed depends on the balance in time between updates and

queries, at the point where gain in parallelism is outweighed by loss in servicing updates.

Parallel efficiency figures are given in appendix A4.

Fig 8-26. BASE1 [Dodd]: speedup for all
transactions (postings only)

Fig 8-28. BASE1 [Dodd]: speedup for all
transactions (position data)

UPDATE1 ;

"•'■888— UPDATE2
— & — UPDATE3
- - -^ - -U P D A T E 4

- - 3 £ -— UPDATE

Fig 8-27. BASE1 [TermId]: speedup for all
transactions (postings only)

Fig 8-29. BASE1 [Termld]: speedup for all
transactions (position data)

Figs 8-30 to 8-33 shows the effect of index reorganisation on transactions serviced

over BASE1 collection. Percentage increases in elapsed time for the same data can be found in

appendix A4. The results show that D odd partitioning outperforms Termld if an elapsed time

criterion is used. While runs on D odd partitioning using parallelism reduce run times over the

client/server runs, Termld runs actually increase in time. This evidence is consistent with the

update transaction results described above. However it is clear that D odd partitioning after a

certain parallel machine size holds the run times constant, and the ability to cope with resource

contention is far superior to that of Termld. There is some doubt as to the wisdom of deploying

parallelism after a given point, but other factors such as the total time for an index

reorganisation are important. Our choice of either parallelism or the actual level of parallelism

will depend on the balance between normal transaction processing and transaction processing

172

during an index update. A further interesting observation is that transaction sets with more

update transactions are less affected by resource contention than others with more query

transactions, which is particularly noticeable in Termld results (see fig 8-31 and 8-33). The

reason for this is that update transactions are faster than query transactions and are therefore

much less affected when the index is being updated.

Leaf nodes

update
— $$— updatel

— & — u pd ate2
...Update3

— $$•— update4

Leaf nodes

Fig 8-30. BASE1 [Dodd]: average elapsed
time in ms for all transactions during index

reorganisation (postings only)

Fig 8-32. BASE1 [Dodd]: average elapsed
time in ms for all transactions during index

reorganisation (position data)

Leaf nodes

Fig 8-31. BASE1 [Termld]: average elapsed
time in ms for all transactions during index

reorganisation (postings only)

Fig 8-33. BASE1 [Termld]: average elapsed
time in ms for all transactions during index

reorganisation (position data)

What effect do these results have on throughput? In figs 8-34 to 8-38 the throughput

figures arc declared, with the data separated into transaction sets. The suffix "ro" in the

diagrams signifies that the run was done in the presence of an index reorganisation. The

throughput measure is thousands of transactions per hour

173

•Docld- NPOS
— gg— Dodd- POS

— A—-Term ld- NPOS

—-X~••Termld- POS
Dodd-NPOS-ro

•'Dodd-POS-ro
Termld- NPOS-ro

— Termld- POS-ro

Leaf nodes Leaf nodes

Fig 8-34. BASE1 : combined transactions Fig 8-36. BASE1 : combined transactions
throughput for UPDATE1 transaction set throughput for UPDATE3 transaction set

Leaf nodes Leaf nodes

Fig 8-35. BASEE combined transactions Fig 8-37. BASEE combined transactions
throughput for UPDATE2 transaction set throughput for UPDATE4 transaction set

— Docld-NPOS
— 8$— Docld- POS
— A — Ter mid- NPOS

••••&•••• Termld- POS
Docld-NPOS-ro

— Docld- POS-ro

......Termld- NPOS-ro
......•'••••Termld- POS-ro

Fig 8-38. BASEE combined transactions throughput
for UPDATE transaction set

The main conclusion from these throughput results is that Docld partitioning

outperforms Termld using any type of index (as would be expected from the elapsed time

data). Using this measure demonstrates how disappointing the performance of Termld actually

is: throughput is not improved by the addition of extra leaf nodes. Many runs are limited to a

throughput of 20k transactions per hour. The best performing index type/partitioning pair is

Docld with postings only indexes on any of the transaction sets. It can be seen in the diagrams

through Docld with postings only data, that the transaction set has an impact on trends in

throughput. For example on the UPDATE1 set there is a clear increase in throughput for

increasing numbers of leaf nodes, while throughput on the UPDATE set shows a clear tailing

off effect with larger numbers of leaf nodes (sec figs 8-34 and 8-38). Throughput on the index

174

type/partitioning method relative to each other is consistent irrespective of the transaction set

under scrutiny.

Leaf nodes

Fig 8-39. BASE1 [DocId\: load imbalance
for all transactions (postings only)

Leaf nodes

-UPDATE1

— gg— UPDATE2

—A - -UPDATE3

--X - ' UPDATE4
-UPDATE

1.2

2 3 4 5 6 7

Leaf nodes

Fig 8-41. BASE1 [Termld]: load imbalance
for all transactions (postings only)

Leaf nodes

Fig 8-40. BASE1 [Docld]: load imbalance
for all transactions (position data)

Fig 8-42. BASE1 [TermldJ: load imbalance
for all transactions (position data)

How does load imbalance affect the results given above? Load imbalance does not

appear to be a significant problem: figs 8-39 to 8-42 show the overall level of load imbalance

for all transactions. It can be seen that imbalance is higher in D odd than it is in Termld, for

both types of indexes. The imbalance figures for all results arc relatively small, but clearly

there is an increase in imbalance with increasing parallel machine size on Dodd, while

imbalance on Termld remains fairly constant. The key result here is that document updates do

not harm overall load imbalance significantly. The round robin method of distributing

document updates to nodes when Docld partitioning is used is a reasonable method. The results

also show that it may be possible to offer better concurrent transaction service on Termld

partitioning than Docld partitioning (this is consistent with imbalance results found in

probabilistic search - see chapter 7).

Table 8-4 shows the scalability results for all transactions. Average elapsed times for

BASE10 runs during normal transaction processing arc all under half a second when postings

175

only indexes are used and under a second for position data indexes. The delays on BASE10

while indexes are updated are considerable and runs are over double, a factor particularly

significant for indexes with position data. It may not be viable to use the index update method

for this task, particularly if queries are delayed beyond the 10 second elapsed time

recommendation (Frakes, 1992) during an index reorganisation on much larger collections.

Scalability is very good and increases with the number of updates in a transaction: as would be

expected since updates provide much better scalability than queries (see table 8-3 above).

Elapsed times trends are inverse to that of scalability and for the same reason.

Metric Collection UP UP1 UP2 UP3 UP4
P ostings O nly (N o P ositions)
Elapsed Time (ms) BASE1 60 75 73 66 60

BASE10 257 479 440 363 280
Scalability BASE 10 2.35 1.56 1.66 1.83 2.14
Elapsed Time (ms) BASE1 80 118 112 98 82
during index update BASE 10 551 1021 949 776 604
Scalability during
index update

BASE10 1.46 1.15 1.18 1.26 1.36

P osition D ata
Elapsed Time (ms) BASE1 72 103 97 84 73

BASE10 448 891 818 660 505
Scalability BASE10 1.61 1.15 1.18 1.27 1.45
Elapsed Time (ms) BASE1 159 265 246 205 167
during index update BASE10 1368 2562 2364 1924 1517
Scalability during
index update

BASE10 1.17 1.04 1.04 1.07 1.10

Table 8-4. B ASE1/BASE10 [Docld]: index update results for all transactions

It is clear that within our experimental framework the best partitioning method for

transaction processing is Docld. Both the experiments discussed here and work discussed

throughout this thesis show that Docld partitioning provides better performance both in normal

transaction processing and when an index reorganisation is initiated for all types of

transactions. However the imbalance figures demonstrate that concurrent transaction

processing might work well on Ter mid partitioning, a conclusion which reinforces our previous

experience with search (see chapter 7). Scalability of transactions using Docld partitioning is

good, but results demonstrate that the index update task defined here may not be a viable

solution for much larger collections than ones considered here.

176

8.10.3 Performance o f Index Reorganisation

The results found in our index reorganisation performance confirm that it is better to

wait for a given period and do the reorganisation collectively than do it on a one document

basis (Shoens et al, 1994). Figs 8-43 to 8-46 shows the index reorganisation results using

elapsed time in seconds.

Fig 8-43. BASE1 [Dodd]: index
reorganisation elapsed time in seconds

(postings only)

Fig 8-45. BASE1 [Termld]: index
reorganisation elapsed time in seconds

(postings only)

Fig 8-44. BASE1 [Dodd]: index
reorganisation elapsed time in seconds

(position data)

Fig 8-46. BASE1 [Termld]: index
reorganisation elapsed time in seconds

(position data)

Above all these figures show how expensive index reorganisations are particularly for

indexes with position data. It should be noted that these figures are much reduced from a

method which would require a reorganisation of the whole index. The best buffer size for this

data is 500 documents: there is very little difference between reorganisations done on buffer

sizes of 500 document and 400 documents, particularly for indexes with position data. There

is an increase in the elapsed time for increasing buffer size on all runs, but the increase is not

linear with the number of documents in the buffer: the results on multiple leaf nodes are the

same. Comparing the partitioning methods, elapsed times on D odd are better than Termld

using all buffer sizes and on all multiple leaf nodes runs apart from 2 leaf nodes on a 500

177

document buffer. Speed advantage is shown in both partitioning methods by increasing the leaf

nodes set in a run. Figs 8-47 to 8-50 show the speedup for index reorganisation on both

partitioning methods.

-—^ — >40 docs

— 80 docs
— — 200 docs

' —X ' " ' 400 docs

— ■SC—• 500 docs

Leaf nodes

Fig 8-47. BASE1 [Dodd]: index
reorganisation speedup (postings only)

Fig 8-49. BASE1 [Termici}: index
reorganisation speedup (postings only)

4 5

Leaf nodes

— — 40 docs

'^ ■ ^ ^ '8 0 docs
— & — 200 docs

—*54“ ” 400 docs
•'■•^■■■ 500 docs

Fig 8-48. BASE1 [Docld]: index
reorganisation speedup (position data)

Fig 8-50. BASE1 [Termld]: index
reorganisation speedup (position data)

Good speed advantage is shown by any number of leaf nodes using any type of

partitioning method. Super-linear speedup is shown on both partitioning methods apart from

Termld on any run using 6 leaf nodes with any type of index. The run on 6 leaf nodes on a 80

document buffer is particularly disappointing considering the other results. We will return to

this factor when discussing load imbalance below. Efficiency figures are also very good and

can be found in appendix A4. Why does this super-linear speedup and efficiency occur? If we

examine the total time needed for an index reorganisation we find that all parallel runs reduce

the total time for an index reorganisation, but with Docld partitioning there is a noticeable

trend downwards with increasing numbers of leaf nodes (the data for this can be found in

appendix A4). Figs 8-51 to 8-52 show the underlying reason why the super-linear speedup

occurs.

The total number of posting records handled for D odd actually reduces with

increasing numbers of leaf nodes, but Termld runs move much the same amount of data. The

reason for this effect in D odd partitioning is that as the number of leaf nodes is increased, the

178

more frequent terms which both the buffer and index shared are spread over more blocks which

have fewer records associated with them. The more frequent occurring terms are interspersed

among less frequent terms as more blocks are handled. This effect does not happen on Termld

partitioning as much the same blocks will be handled by parallel runs of any leaf node size.

There is some variation in Termld but the effect is minimal. Note that the number of postings

moved for a 500 document buffer is always slightly more than those for a 400 document

buffer. The total number of postings in BASE1 collection is 22.6 million: just over half the

index is reorganised for just 500 documents reducing with increasing numbers of leaf nodes.

The evidence suggests that a good buffer size for this data is 500 documents.

Fig 8-51. BASE1 [Dodd]: millions of
postings handled during index reorganisation

Fig 8-52. BASE1 [Termld]: millions of
postings handled during index reorganisation

From the evidence given above there is clearly an offset between the advantage gained

in D odd partitioning by increasing the number of leaf nodes and improvements in performance

gained by waiting until the buffer has reached a given size. We can therefore make a case for

delaying the initiation of index reorganisation on more leaf nodes until their buffers contain

more documents. In this way we can take advantage of both effects discussed, i.e. less data

movement on more leaf nodes and less time when an index update is being done. Figs 8-53 to

8-56 provides more evidence of the increased buffer effect on load imbalance.

Leaf nodes Leaf nodes

Fig 8-53. BASE1 [Dodd]: index
reorganisation load imbalance

(postings only)

Fig 8-54. BASE1 [Termld]: index
reorganisation load imbalance

(postings only)

179

Leaf nodes

Fig 8-55. BASE1 [Docld]: index
reorganisation load imbalance

(position data)

Fig 8-56. BASE1 [Termld]: index
reorganisation load imbalance

(postings only)

The imbalance figures for D odd partitioning show that initiating index reorganisations

with a 40 document buffer does not yield good load balance. Increasing the leaf nodes set size

also has a tendency to increase imbalance. The Termld partitioning method is generally more

consistent, but imbalance on six leaf nodes for any buffer size is noticeably worse than for

other leaf nodes. This is a failure of the distribution process which relies on a heuristic to

distribute data to leaf nodes (see chapter 4, section 4.4.2). This has a direct and significant

impact on speedup for Termld partitioning runs for 6 leaf nodes (see figs 8-49 and 8-50).

Table 8-5 shows scalability results for index reorganisation.

Metric Collection 40 80 200 400 500
Docs Docs Docs Docs Docs

Postings dealt with BASE1 1.9 3.0 4.8 7.5 8.0
during index update BASE10 17.3 27.3 43.5 67.7 71.7
Postings O nly (N o Positions)
Elapsed Time (secs) BASE1 5.49 6.90 10.2 16.9 17.3

BASE10 43.8 56.0 80.8 121 106
Scalability on
Elapsed Time (secs)

BASE10 1.25 1.23 1.26 1.40 1.64

Load Imbalance BASE1 1.65 1.30 1.12 1.10 1.09
BASE10 1.49 1.20 1.10 1.07 1.06

P osition D ata
Elapsed Time (secs) BASE1 13.8 17.2 24.3 39.7 43.6

BASE10 135 170.7 231.0 336 351
Scalability on
Elapsed Time (secs)

BASE10 1.02 1.01 1.05 1.18 1.24

Load Imbalance BASE1 1.68 1.32 1.12 1.14 1.09
BASE10 1.60 1.30 1.11 1.09 1.03

Table 8-5. BASE1/BASE10 \Dodd\: index update scalability on index reorganisation

One clear aspect of these results is that scalability is improved by having a much larger

buffer size. The increase in scale occurs on both the elapsed time and on the total accumulated

180

lime for a reorganisation (see table A4-1 in appendix A4). The amount of data moved for the

BASE10 collection is correspondingly larger but the proportion moved compared with BASE1

is much smaller being under half the collection for all runs. The total number of posting records

for BASE10 is 223 million. Otherwise much the same trend is found in BASE10 as BASEL

8.10.4 Sum m ary o f Experim ental Results

In all aspects of transaction processing and index reorganisation, D odd partitioning is

shown to be superior to Termld partitioning. For update transactions both methods are quick

when data is added to the buffer, but D odd provides better transaction performance when an

index reorganisation is being executed. Many update transactions meet our 100 millisecond

requirement for elapsed times for document insertions. For transactions with both updates and

queries, D odd is superior largely because of the performance improvement which is obtained

with that method shown in chapter 7 on probabilistic search. The total number of records

moved during index reorganisation is reduced with increasing numbers of leaf nodes when

D odd partitioning is used. There is however an offset between the buffer size for incoming

updates and increasing the leaf nodes set in order to reduce the amount of data moved. Overall

our empirical results demonstrate that D odd partitioning is the preferred method for servicing

the inverted file index maintenance techniques outlined in this chapter. One might question the

viability of the method of index update, if queries are delayed beyond the 10 second response

time recommended by Frakes (1992) or updates are delayed more than the 100 millisecond or 1

second requirement recommended in this chapter. This issue will be examined further in the

next section.

8.11 SUMMARY AND CONCLUSION

Operators and the possible side effects found in the presence of an incorrect or non-

existent CC mechanism have been identified. The three main CC mechanisms (lock, optimistic

CC and Timestamp Ordering) are used to show how the side effects from these operations can

be avoided, in particular the effect on document availability. Three semantics for document

availability have been introduced, i.e. Log-On, iMte and Early. Late Availability or Log-On

semantics would be suitable for many IR systems, e.g. OP ACS. We do not see the Early

Availability semantics as being practicable at this point: Late Availability semantics is used in

our practical experiments. Further work is needed at some stage to identify the complexity of

the side effects found with mixed operations and how CC mechanisms are to be used in

conjunction with inverted files.

181

The empirical results from this research show that in all aspects of both transaction

processing and index reorganisation, the D odd partitioning method is far superior. Our

synthetic model for the index update task is strong enough to distinguish between the

partitioning methods (see chapter 5, section 5.6). Problems highlighted in our probabilistic

search experiments (see chapter 7) impose severe restrictions on transaction processing when

the Termld method is used, which are difficult to solve within our experimental context. These

problems (most notably the sort aspect of search) had an impact on the relative difference

between the two partitioning methods during transaction processing, a problem the synthetic

model was not able to deal with very well. The synthetic model correctly predicted that the

performance of transactions serviced on Termld indexes during an index reorganisation would

deteriorate (although the empirical results were relatively worse because of the list size problem

described in section 8.10.1, 2nd paragraph). The synthetic model also correctly predicted that

transaction performance on D odd partitioning indexes would be constant after a given number

of leaf nodes is reached in same situation. In index reorganisation when using D odd

partitioning, the amount of data which needs to be moved reduces with increasing leaf node set

size due to the qualities of the keyword set for each element of the leaf nodes set (the

assumption made in the synthetic model was correct). Providing the same term block strategy

was used, this effect will be a generic one. We have found evidence however, that Termld

might be useful in a concurrent transaction processing context, and this would have to be the

focus for any future research.

It may be the case that the methods outlined in this chapter for dealing with new

documents may not be viable in a realistic situation: we could consider a scenario where the

update rate was so high, buffer space would run out thereby crashing the system or cause a

denial of service. Such a problem would occur when there are more updates being submitted to

the system than it can handle, so that the time to re-organise a index with these new updates is

greater than the actual time available on the system. There are limits to a method of storage

such as inverted file which is designed for fast search and which is expensive to maintain:

therefore for these high update applications some other method of transaction processing and

storage method is required. Where our methods are not useable we would recommend the use

of a two phase signature search (Cringean et al, 1991a; 1991b) or any of the vector processing

methods (see chapter 2, section 2.4.7) which allow for cheap updates, but also allow for a high

degree of parallelism.

182

Chapter 9

Passage Retrieval Results

9.1 INTRODUCTION

This chapter addresses the issue oi applying parallel techniques to a large search space

for passage retrieval that has been used by Okapi at TREC (Robertson et al, 1995). As

explained in the introduction to this thesis, the algorithm is very computationally intensive: this

method would require vast CPU resources and we apply parallel techniques to speed up the

process. We describe the data and settings used in our main experiments in section 9.2. We

discuss our main experimental results together in section 9.3. Experiments done at TREC-8

(MacFarlane et al, 2000a) are described in section 9.4. A conclusion is given in section 9.5.

9.2 DATA AND SETTINGS USED

The collections used in the experiments are BASE1 and BASE10. We use both

distributed and local passage processing methods (see chapter 4, section 4.7.2): given the

theoretical results from chapter 5, section 5.4, we describe results given on the D odd

partitioning method only. For the distributed passage processing method we use the BASE1

collection only, creating indexes on 1 to 8 nodes, and initiate search experiments on all of those

indexes. The BASE1 and BASE10 collections were used for the local passage processing

method, running queries on 8 leaf nodes for BASE10 and 1 to 8 leaf nodes for BASE1. We use

timings only from the AP3000, but ran experiments on the Alpha farm and used TREC

evaluation techniques to confirm that the same document sets were retrieved for each topic.

The queries are based on topics 351 to 400 of the TREC-7 ad-hoc track: 50 queries in

all (Voorhees and Harman, 1999). The terms were extracted from TREC-7 topic descriptions

using an Okapi query generator. We used two types of queries: one based on title only (average

number of terms per query is 2.46) and one based on the whole topic (average number of terms

per query is 19.58). The whole topic query set has 51 queries, one extra being for VLC2

experiment initialisation (Hawking et al, 1999). Our timing methodology is as follows: for title

only queries we declare the average of 10 runs, while we declared the average for 5 runs on

whole topic.

The atom size used in our experiments is 5 sentences using an incremental step of one

for atoms. For distributed passage processing we do passage retrieval on the top 1000. With

local passage processing we vary the number of documents to which passage retrieval is

183

applied on each processor: the reasoning for this is described in section 9.3. We select the top

20 of all runs for evaluation (relevance judgements for this data are restricted to this figure).

The tuning constants used in the BM25 weighting function are as follows;

• 1.5 for K1 and 0.2 for B for all title only runs;

• Kl=1.5 and B=0.4 for whole topic on BASE1 runs;

• Kl=2.0 and B=0.6 for whole topic on BASE10 runs.

The settings for title only queries were found to be the best on the full 100GB VLC2/WT100g

collection during preparatory experimentation for the TREC8 Web Track (see chapter 7,

section 7.7). The constants for whole topic were found by further experimentation after our

TREC8 experiments were complete.

9.3 EXPERIMENTAL RESULTS

Leaf
nodes

1 2 3 4 5 6 7 8

Type A 1000
(1000)

1000
(2000)

1000
(3000)

1000
(4000)

1000
(5000)

w o o

(6000)
1000

(7000)
1000

(8000)
Type B var var var var var var var var

(1000)
Type C 1000

(1000)
500

(1000)
334

(1002)
250

(1000)
200

(1000)
167

(1002)
143

(1001)
125

(1000)
Type D

(504) - - - - - - - 63
(256) - - - - - - - 32
(128) - - - - - - - 16

Key

var : A variable number of documents are processed on a leaf nodes.
1 0 0 0 : The number of documents examined by a leaf nodes.
(1000) : A total of N documents is examined in that process configuration

(all leaf nodes)

Table 9-1. Examples of documents processed per leaf nodes/total

We divide our experiments into four types: defined as types A to D: table 9-1 shows

the number of documents processed per leaf nodes for each experiment type. Type A

experiments apply the passage retrieval algorithm to the local top 1000 documents, therefore

the maximum possible documents to be examined is 1000 times the number of leaf nodes; e.g.

with 8 leaf nodes we examine 8000 documents. Type B experiments use the distributed

passage processing method on the top 1000 documents for the whole database. In Type C

experiments we examine a total of 1000 documents on a local basis. The number of documents

examined by each leaf node in Type C experiments will vary according to the number of

184

processes, e.g., with 2 leaf nodes we examine 500 document each etc: where 1000 documents

exactly cannot be examined we inspect slightly more. For example using 3 leaf nodes we

examined 334 documents each, giving a total of 1002 documents inspected. Type D is an

extension of type C, but examining less than 1000 documents: we examined 504, 256 and 128

documents on 8 leaf nodes only.

To facilitate the discussion below (which is the examination of parallel runs) we

declare sequential passage retrieval results used for comparison on the BASE1 collection. The

average elapsed time in seconds is 1.33 for title only queries and 45.6 for whole topic queries.

The figure for title only is acceptable and is within the scope of 10 second response times

suggested by Frakes (1992). However whole topic response time is not acceptable within such

a criterion: it does however demonstrate how computationally costly passage retrieval can be.

Retrieval effectiveness is increased on all precision points when applying passage retrieval on

the BASE1 collection using title only queries: precision at 20 is increased from 0.130 to 0.148

(an increase in performance of 13.8%). For all other runs improvements were found only on

some of the precision points (see table 7-1 chapter 7, for effectiveness results on runs without

passage processing). We use a number of different metrics to examine the performance of

parallel passage retrieval methods: average elapsed time, system throughput (an estimate of

queries processed per hour), load imbalance or LI, scalability, scaleup, speedup and efficiency

(these metrics and our requirements of them are defined in chapter 3, section 3.4.1). We

compare the elapsed times for VLC2 participants with our results in type A experiments only

(these are the most expensive runs). We also examine other measures such as precision at 5 to

20 and passage retrieval statistics such as number of documents and passages processed during

a run.

9.3.1 Type A Experim ent Results: Local Top1000 D ocum ents

Leaf nodes Leaf nodes

Fig 9-1. BASE1 [title only]: Type A retrieval
efficiency, average elapsed time in seconds

for passage retrieval

Fig 9-2. BASE1 [title only]: Type A retrieval
efficiency, throughput (queries/Hour) for

passage retrieval

185

Fig 9-3. BASE1 [title only]: Type A retrieval
efficiency, passages processed for passage

retrieval
Fig 9-5. BASE1: Type A retrieval efficiency,

load imbalance for passage retrieval

Fig 9-4. BASE1 : Type A retrieval efficiency, Fig 9-6. BASE1 : Type A retrieval efficiency,
documents processed for passage retrieval scaleup for passage retrieval

The results on title only queries arc very good. The elapsed time for every parallel run

on BASE1 is under a second (see fig 9-1) and meets the 10 second requirement suggested by

Frakes (1992). The run using 8 leaf nodes is faster than 8 out of the 11 runs submitted by other

participants at YLC2 (Hawking et al, 1999). Overall the results show a time reduction for

BASE1 parallel runs over the sequential run, with a linear increase in throughput (see fig 9-2).

Scaleup is super linear and increases with more leaf nodes in the topology (see fig 9-6):

although the number of extra documents examined actually decreases with more leaf nodes (see

fig 9-4). This increase in performance with respect to scale can be explained in part by the

number of passages processed as the leaf node set is increased (see fig 9-3). Passages

processed from 2 to 7 leaf nodes grow at a very slow rate, from just over half a million

passages at 2 leaf nodes to 1.2 million inspected at 8. The Load imbalance figures demonstrate

that the workload is fairly distributed amongst leaf nodes (see fig 9-5). It should be noted that

the slight drop in relative performance on 8 leaf nodes for title only queries is because client

processes had to be mapped to one of the search leaf nodes and this affected the timings very

slightly (this is apparent in the load imbalance figures - see fig 9-5).

186

Fig 9-7. BASE1 [whole topic]: Type A
retrieval efficiency, average elapsed time in

seconds for passage retrieval

Fig 9-8. BASE1 [whole topic]: Type A
retrieval efficiency, throughput

for passage retrieval

Fig 9-9. BASE1 [whole topic]: Type A retrieval efficiency,
passages processed for passage retrieval

The elapsed time for whole topic queries on BASE1 (see fig 9-7) are not as good as

title only, and runs to 5 leaf nodes do not meet the 10 second requirement for elapsed time

suggest by Frakes (1992). Throughput is therefore much reduced compared to title only (see

fig 9-8). The comparison with other VLC2 participants is not so good: the run at 8 leaf nodes

only betters 2 out of the 11 submitted runs. While run times are much slower than title only,

the other evidence found in those experiments are confirmed in these. Scaleup is super linear

(see fig 9-6) which is surprising since the number of documents processed is very near the

maximum (see fig 9-4). As with title only the number of passages processed reduces with

increasing the number of leaf nodes, but whole topic queries shows slightly higher growth rate

(see fig 9-9). The actual number of passages inspected is more with whole topic than with title

only (see figs 9-3 and 9-9). Load imbalance is very small with whole topic queries (see fig 9-

5).

Concerning retrieval effectiveness on title only it is found that no increase accrued for

precision at 5,10 and 15 and it decreases on precision at 20 at various levels as number of leaf

nodes is increased (see table 9-2). There are also slight variations in whole topic results (see

table 9-3). However no decrease or increase found is statistically significant. We can state that

examining the extra passages does not bring any benefit to any of the retrieval effectiveness

187

measures used. It is also a clear indication that the ranking process is doing its job: the best

documents useful lor passage retrieval are contained in the top 1000 ranked documents.

Leaf
nodes

p@ 5 p@ 10 p@ 15 p@ 20

1 0.268 0.186 0.161 0.148
2 to 4 0.268 0.186 0.161 0.147
5 to 8 0.268 0.186 0.161 0.146

Table 9-2. BASE1 [title only]: type A retrieval effectiveness results

Leaf
nodes

p@ 5 p@ 10 p@ 15 p@ 20

1 0.196 0.160 0.140 0.126
2 to 8 0.200 0.162 0.141 0.127

Table 9-3. BASE1 [whole topic]: type A retrieval effectiveness results

Table 9-4 shows the comparison of BASE1 and BASE10 measures. Elapsed times in

general are good apart from whole topic queries on BASE10: a minute or more response time

for queries is not acceptable (Frakes, 1992). The average elapsed time for title only queries on

BASE 10 is better than half the runs of other VLC2 participants. The scalability derived from

BASE1 to BASE 10 is particularly good for whole topic queries which recorded 1.08 (a figure

of 1.0 is linear scalability). Throughput on BASE1 is much better than BASE10 one would

expect. All precision measures are better at BASE10 than BASE1: all record a reasonable

increase. As with BASE1, there is little variation in BASE10 precision results for both types

of queries.

MEASURE BASE1
title whole
only topic

BASE10
title whole
only topic

Tim e (secs) 0.207 7.09 2.27 65.7
Throughput
(Queries/Hr)

17,406 508 1,588 55

Scalability (1 to 10) - - 0.91 1.08
LI 1.052 1.005 1.015 1.003
p@ 5 0.268 0.200 0.320 0.348
p@ 10 0.186 0.162 0.304 0.310
p@ 15 0.161 0.141 0.275 0.275
p@ 20 0.146 0.127 0.251 0.249

Table 9-4. BASE1/BASE10: type A retrieval effectiveness and efficiency

188

In summary we state that while retrieval efficiency advantages are gained by using this

type of parallelism (in spite of the extra passage data inspected), there is no clear gain in

retrieval effectiveness. From the evidence given above the ranking process does its job well,

therefore processing extra documents using our passage retrieval method is unnecessary when

the BM25 weighting function is used.

9.3.2 Type B Experim ent Results: D istributed Top 1000 D ocum ents

Leaf nodes

Fig 9-10. BASE1 [title only]: Type B
retrieval efficiency, average elapsed time in

seconds for passage retrieval

Leaf nodes

Leaf nodes

Fig 9-12. BASE1: Type B retrieval
efficiency, load imbalance on passages

processed for passage retrieval
1.5

1.45
1.4

1.35

E 1.3
1 □ 1.253

2 3 4 5 6 7 8

Leaf nodes

---- iÿ — title only
— whole topic

Fig 9-11. BASE1 [title only]: Type B
retrieval efficiency, throughput (queries/hour)

for passage retrieval

Fig 9-13. BASEE Type B retrieval
efficiency, imbalance on documents processed

for passage retrieval

The results for the type B experiments on the BASE1 collection using title only queries

can only be described as unpredictable and erratic. The throughput and parallel measurements

show this effect (see figs 9-11 and 9-14 to 9-16). The results show that workload for small

queries on passage processing may not be evenly distributed among leaf nodes. The evidence

from imbalance on document and passages processed using title only queries, shows that

imbalance on documents has little effect (see fig 9-13) but that there is an imbalance in

processed passages which does have a negative effect (see fig 9-12). Communication overhead

will account for some of the differences, but not wholly since communication increases linearly

with leaf nodes. The rest of the imbalance must be because work on individual passages will

vary greatly: the a(a-l)/2 cost estimate of the passage processing method used (see chapter 5,

section 5.4) contributes significantly to imbalance. Some leaf nodes may get more expensive

189

passages to compute than others. The only positive result from title only runs is that all parallel

runs average under a second (see fig 9-10).

Leaf nodes Leaf nodes

Fig 9-14. BASE1: Type B retrieval
efficiency, computational load imbalance for

passage retrieval

Fig 9-15. BASE1: Type B retrieval
efficiency, speedup for passage retrieval

Fig 9-16. BASE1: Type B retrieval efficiency,
parallel efficiency for passage retrieval

The performance of whole topic queries on the BASE1 collection is more predictable

than title only. The parallel measures of speedup and efficiency show this with a near linear

speedup (see fig 9-15) together with efficiency figures of just under 1 (see fig 9-16). The load

imbalance in the whole topic experiments is also more predictable than title only with a linear

deterioration in load balance as more leaf nodes are deployed (see fig 9-14). There is no

correlation between the imbalance in processing costs and the imbalance of documents or

passages processed. Elapsed time is poor with runs on 5 to 8 leaf nodes only meeting the 10

second criterion (see fig 9-17). Throughput is not very good, but this is only to be expected

with a query set of the size of whole topic (see fig 9-18).

190

Leaf nodes Leaf nodes

Fig 9-17. BASE1 [whole topic]: Type B
retrieval efficiency, average elapsed time in

seconds for passage retrieval

Fig 9-18. BASE1 [whole topic]: Type B
retrieval efficiency, throughput (queries/

hour) for passage retrieval

The total numbers of documents and passages processed remain constant on all runs:

47,445 and 557,253 respectively for title only with whole topic values of 51,000 documents

and just over 5 and a half million passages. Retrieval effectiveness results for the parallel

algorithm are identical to the sequential algorithm for both types of query. It is hard to make a

case for deploying this type of parallelism due to load imbalance problems inherent with the

method.

9.3.3 Type C Experim ent Results: Local Top (1000 /L ea f nodes) D ocum ents

Leaf nodes Leaf nodes

Fig 9-19. BASE1 [title only]: Type C
retrieval efficiency, average elapsed time in

seconds for passage retrieval

Fig 9-20. BASE1 [title only]: Type C
retrieval efficiency, throughput (queries/

hour) for passage retrieval

The results gained in Type C experiments for title only queries can only be described

as remarkable. The parallel measurements demonstrate this clearly with a super linear speedup

recorded on all multiprocessor runs (see fig 9-24). As a result all efficiency results arc greater

than 1 with most figures greater than 1.5 (see fig 9-25). Load imbalance is very small with

most figures very near 1 (see fig 9-23). All elapsed times are very good and under half a second

(see fig 9-19). The scalability from BASE1 to BASE10 is very good, recording a figure of 1.32

191

(refer to table 9-6). The figures are all the more remarkable given that the numbers of

documents and passages are virtually the same as in type B experiments (see figs 9-21 and 9-

22). The method gains substantially from reducing communication overhead (no extra

communication is needed as in type B). Why does a substantial speed advantage over

sequential processing occur with this method of parallel passage retrieval? The passage

retrieval algorithm examines a slightly different set of documents, which is less

computationally intensive to examine than the set examined on the uniprocessor.

Fig 9-21. BASE1 [title only]: Type C
retrieval efficiency, passages processed for

passage retrieval

Fig 9-22. BASE1 [title only]: Type C
retrieval efficiency, documents processed for

passage retrieval

Leaf nodes

Fig 9-24. BASE1 [title only]: Type C
retrieval efficiency, speedup for

passage retrieval

Fig 9-25. BASE1 [title only]: Type C
retrieval efficiency, parallel efficiency for

passage retrieval

Fig 9-23. BASE1 [title only]: Type C
retrieval efficiency, load imbalance for

passage retrieval

Fig 9-26. BASE1 [whole topic]: Type C
retrieval efficiency, average elapsed time in

seconds for passage retrieval

192

The query processing results are even more remarkable using whole topic queries than

using the title only query set. A large part of the difference can be put down to the number of

passages processed in type C experiments as compared with type B on whole topic: just over

three million for the former compared with live and half million for the later (see fig 9-28). As

with title only queries the numbers do not vary much on runs with differing numbers of leaf

nodes. Response times for parallel runs are only unacceptable at 2 leaf nodes (see fig 9-26) and

throughput is much improved in type C experiments compared to type B (see fig 9-27).

Fig 9-27. BASE1 ¡whole topic]: Type C
retrieval efficiency, throughput (queries/

hour) for passage retrieval

Fig 9-28. BASE1 [whole topic]: Type C
retrieval efficiency, passages processed for

passage retrieval

The retrieval effectiveness found in type B experiments are also found in type C

experiments for both types of queries, e.g. 0.148 for precision at 20 for title only. Precision at

20 varies very slightly for whole topic queries, but the difference is not significant, e.g. values

of 0.126/0.127 were recorded. From this we deduce that examining the top 1000 documents

from the whole database is no different from examining 1000 documents by choosing locally on

each leaf node. The evidence from this leads directly on to experimentation of type D (see the

next section).

9.3.4 Type D E xperim ent Results: Reduced D ocum ent Set

As we have observed from the above, it does not seem to matter if we examine 1000

documents or more, retrieval effectiveness at lower precision points is not improved or harmed

much by any of the methods applied. We decided to experiment with a smaller set of

documents using the parallel passage retrieval algorithm on 8 leaf nodes with the BASE1 and

BASE10 collections. This is done to see how the reduction affected the performance of the

parallel algorithm. We chose 504, 256 and 128 being near a half, a quarter and eighth

respectively of type B and C runs (we include no passages results in table 9-5 for comparison

purposes).

193

Collection Docs
seen

Query Type p@ 5 p@ 10 p@ 15 p@ 20

BASE1 1000 t i t l e o n l y

w h o l e t o p i c

0.268
0.200

0.186
0.162

0.161
0.141

0.148
0.127

504 t i t l e o n l y

w h o l e t o p i c

0.268
0.200

0.186
0.162

0.161
0.141

0.147
0.127

256 t i t l e o n l y

w h o l e t o p i c

0.268
0.200

0.184
0.162

0.160
0.141

0.146
0.127

128 t i t l e o n l y

w h o l e t o p i c

0.268
0.196

0.184
0.160

0.159
0.140

0.149
0.126

0 t i t l e o n l y

w h o l e t o p i c

0.244
0.188

0.178
0.172

0.149
0.145

0.130
0.128

BASE10 1000 t i t l e o n l y

w h o l e t o p i c

0.324
0.352

0.302
0.310

0.275
0.275

0.254
0.251

504 t i t l e o n l y

w h o l e t o p i c

0.324
0.356

0.302
0.312

0.275
0.271

0.254
0.249

256 t i t l e o n l y

w h o l e t o p i c

0.324
0.356

0.304
0.304

0.276
0.272

0.252
0.246

128 t i t l e o n l y

w h o l e t o p i c

0.320
0.364

0.300
0.306

0.279
0.267

0.253
0.246

0 t i t l e o n l y

w h o l e t o p i c

0.324
0.356

0.282
0.298

0.273
0.271

0.264
0.247

Table 9-5. BASE1/BASE10: type D retrieval effectiveness results

Table 9-5 confirms that we do not need to examine the full 1000 documents to achieve

very nearly the same level of retrieval effectiveness at lower precision. There are some

differences but they are very minor for both types of query. We can reduce the level of

computation on the passage retrieval method and still obtain the extra retrieval effectiveness

found when using that method. The experiments reinforce the assertion that the BM25 ranking

function does its job well. This function in conjunction with passage retrieval applied to smaller

document sets can improve retrieval effectiveness.

Measure docs=1000
BS1 BS10

docs=504
BS1 BS10

docs=256
BS1 BS10

docs=128
BS1 BS10

Time (secs) 0.11 0.84 0.10 0.71 0.09 0.62 0.08 0.58
Throughput
(Queries/Hr)

32k 4.2k 38k 5.1k 42k 5.8k 46k 6.2k

Scalability - 1.32 - 1.35 - 1.37 - 1.34
LI 1.11 1.04 1.14 1.04 1.16 1.04 1.18 1.05

Table 9-6. BASE1/BASE10 [title only]: Type D retrieval efficiency results

From table 9-6 we can see that elapsed times for title only queries change only very

slightly as the number of documents examined by the passage retrieval decreases. The times in

194

seconds from term weighting searches (0.06 for BASE1, 0.54 for BASE10) show that while

BASE10 shows linear reduction from 1000 to 128, BASE1 does not. This indicates that the

size of collection combined with the term weighting scheme arc significant factors that affect

passage retrieval performance. BASE10 being a much larger database will pick documents that

are roughly the same in compute terms with respect to passages and they are ranked in the top

set by the term weighting scheme. BASE1 ranks more passage intensive documents higher up

the rank which require extra computation: further evidence that the ranking process is doing its

job. Other measures such as scalability and LI are good.

The figures for whole topic queries show more improvement than title only queries

with respect to average query processing time (see table 9-7). The timings from term weighting

searches (0.77 for BASE1, 6.45 for BASE10) show that the time reduction is very near linear.

Load balance for all runs is very good. The scalability is excellent for all BASE10 runs, and

confirms the effect of collection size and term weighting function on performance.

Measure docs=1000
BS1 BS10

docs=504
BS1 BS10

docs=256
BS1 BS10

docs=128
BS1 BS10

Time (secs) 2.29 16.3 1.64 10.4 1.28 8.47 1.09 7.50
Throughput
(Queries/Hr)

1.5k 221 2.2k 346 2.8k 425 3.3k 480

Scalability - 1.41 - 1.58 - 1.52 - 1.45
LI 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01

Table 9-7. BASE1/BASE10 [whole topic]: Type D retrieval efficiency results

9.4 TREC8 AD-HOC TRACK EXPERIMENTS

TRACK
RUN-ID

QP TYPE QUERY TYPE COMMENTS

plt8ahl PASSAGE Title Only 2 Timing runs
plt8ah2 PASSAGE Title/Dcscription 2 Timing runs
plt8ah3 PASSAGE Title/Descr./Narr. 2 Timing runs
plt8ah4 Term W. Title Only 4 Timing runs.
plt8ah5 Term W. Title/Descriplion 4 Timing runs.
plt8ah6 Term W. Title/Descr./Narr. 4 Timing runs.

Table 9-8. Details of TREC8 Ad-Hoc track runs

The purpose of the TREC8 Ad-Hoc experiments is twofold. Firstly we examine the

issue of probabilistic search with no passages (referred to simply as term weighting in the rest

of this chapter) versus passage retrieval search (see section 9.4.1). Secondly we wanted to

195

confirm our experience with type A experiments described in section 9.3.1, that examining

more of the search space in passage retrieval does not bring any benefit (see section 9.4.2). We

used the Ad-Hoc data for this as a fuller set of relevance judgments is available compared with

the full 100 Gbyte web collection or its baselines. We used the "Cambridge Cluster" for the

experiments described here plus a single Pentium machine for comparison purposes. We

submitted five runs and recorded times for the two types of search on queries derived from

topics 401-450. For passage retrieval we did one parallel run and one uniprocessor run. For

term weighting we did the same but applied them on indexes with postings only data (ordinary

term weighting using BM25 docs not use position information statistics). We prepared title

only, title/description and title/description/narrative queries for each topic from Okapi

generated queries. The run identifiers together with their query processing type and query type

are given in table 9-8.

The tuning constants for title only are: Kl=2.5 and B=0.9. For title/description we

used a K1 value of 2.5 and a B value of 0.6. A value of 4.0 for K1 and 0.7 for B is used for

title/description/narrative queries. The choice of this tuning constant data is based on

experiments described in MacFarlane et al (2000a). The average length of the queries is: 2.42

for title only, 9.88 for title/description and 24.74 for title/description/narrative.

9.4.1 R etrieval E fficiency

RUN-ID SEQ.
TIME

PAR.
TIME

SCALEUP LI EXTRA
COST (SEQ)

EXTRA
COST (PAR)

plt8ahl 0.826 0.357 2.31 1.06 2.06 4.19
pU8ah2 4.13 2.55 1.62 1.002 2.23 10.07
plt8ah3 11.6 8.21 1.41 1.003 2.34 18.52

Table 9-9. TREC8 Ad-Hoc retrieval efficiency results (passage retrieval)

RUN-ID SEQ.
TIME

PAR.
TIME

SPEEDUP EFFIC-
IENCY

LI

plt8ah4 0.401 0.085 4.71 0.295 1.41
plt8ah5 1.85 0.253 7.31 0.457 1.35
plt8ah6 4.95 0.444 11.1 0.697 1.05

Table 9-10. TREC8 Ad-Hoc retrieval efficiency results (term weighting search)

The retrieval efficiency results for our TREC-8 Ad-Hoc runs using passage retrieval

are declared in table 9-9 (we include term weighting results in table 9-10 for interest). The

196

response times for all 6 parallel runs were good with all average query processing times under

10 seconds: 4 of them were under a second. The single processor runs registered good times

with a maximum of 11.6 seconds for title/description/narralive, while 5 of the 6 runs had an

average query processing time of under 5 seconds. With passage retrieval the parallel version

examines 16 times more documents (16,000 as against 1,000) than the sequential version. All

the passage retrieval runs managed to reduce the average query processing time and still

examine the extra data: the best example is title only that took 0.83 seconds on average

(sequential run) as against 0.36 on average for the parallel run. We record better than linear

scalcups on all parallel runs which apply passage retrieval to query processing.

With respect to the extra costs of passage processing there is a marked change

comparing search times on the parallel processing runs with much larger times for passage

retrieval over ordinary term weighting search: the worst being a factor of 18.52 when using

title/description/narrative queries. There is a clear correlation between these extra costs and

query size (see table 9-9). It should be noted that the figures declared in this section and used

for comparison arc optimistic given that each leaf node in the "Cambridge Cluster" has three

times the memory of the uniprocessor Pentium used.

9.4.2 Retrieval Effectiveness

Table 9-11 shows our Ad-Hoc results for TREC8. We restrict our discussion to

average precision. We include in the table the results for submitted runs, and the best values

found by varying the tuning constants K1 and B.

TRACK
RUN-ID

AVEP BEST AVEP
(CONST VALS)

plt8ahl 0.212 0.238 (K1=1.0,B=0.3)
plt8ah2 0.190 0.189 (K1=1.5,B=0.6)
plt8ah3 0.165 0.161 (K1=1.5,B=0.8)
plt8ah4 0.181 0.234 (K1=1.0,B=0.3)
plt8ah5 0.180 0.190 (K1=1.5,B=0.6)
plt8ah6 0.150 0.157 (K1=1.5,B=0.8)

Table 9-11. Average precision results for TREC8 Ad-Hoc runs

The original results submitted were on the low side. Results on long queries are not

particularly good for any runs. The passage retrieval title only revised run (plt8ahl) produced

results in which 24 out of the 50 topics were better than the median. This figure is reduced to

22 out of 50 for the revised term weighting run (plt8ah4). In both of these runs we record an

197

average precision for topic 431 which is better than the best Ad-Hoc run: 0.558 compared to

0.526.

With respect to retrieval effectiveness gain of passage retrieval over term weighting we

found that there were slight improvements for submitted runs, but for the best term weighing

constant values there is little improvement and for title/description queries we actually

recorded a slight reduction in average precision. It seems likely from this that the best tuning

constants in term weighting search may not be the best pair when applied to query processing

using passage retrieval: all tuning constants applied to Ad-Hex: runs were gathered on term

weighting runs. The results here confirm the ones give in section 9.4.1 that examining extra

search space by processing more passages does not bring much benefit if any.

9.5 SUMMARY AND CONCLUSION

The retrieval efficiency results given in this chapter are in the main very good indeed

depending on the type of passage processing used or query set applied. With local passage

processing the performance improvement using parallelism is very good on both types of query,

particularly for type C experiments. For distributed passage processing whole topic shows

benefit by using parallelism, but the results for title only queries is disappointing on any type

of parallel measurement used. The elapsed time for any run on title only queries were well

under the 10 seconds recommended by Frakes (1992), while the use of parallelism on whole

topic queries does yield acceptable run times when using a larger processor set. Our synthetic

model correctly predicted that the local passage processing method would outperform the

distributed version, but is unable to predict the relative difference due to the erratic the nature

of the performance in the latter (see chapter 5, section 5.4.2) on short queries.

With respect to retrieval effectiveness, the passage retrieval algorithms do bring

benefits on web data over ordinary term weighting but such is not guaranteed. However it is

clear from the above that the algorithm only needs to be applied to a subset of the top ranked

documents to gain effectiveness. Clearly the ranking process using BM25 does its job very

well. However gains arc collection and query dependent. For example in our web data

experiments, title only queries on the BASE1 database yield an increase of 13.8% from 0.130

to 0.148 in precision at 20 when passage retrieval is applied. A reduction in effectiveness on

some precision points is recorded when the same queries are applied to the BASE10 collection:

any increase found is not significant. Whole topic queries do not do as well as title only, this is

a problem shared with probabilistic search (see chapter 7, section 7.3) and one which merits

further investigation.

198

While efficiency improvement is significant using parallelism on passage retrieval,

many of the experiments described above do not bring any benefits with respect to effectiveness

over the sequential passage retrieval algorithm. A hypothesis that asserts that examining more

of the search space in passage retrieval is effective is not supported by the results given in this

chapter - indeed, the evidence is against it. This is not to suggest that applying parallelism to

the passage retrieval does not work, but the choice will depend on whether to use parallelism

with term weighting or not. We can apply the passage retrieval algorithm to fewer documents,

at a computational cost slightly higher than that term weighting to obtain better retrieval

effectiveness. The implication is that parallelism is not worth applying to passage retrieval on a

reduced set of documents, if it is not worth applying the strategy to term weighting.

199

Chapter 10

Routing/Filtering Results

10.1 INTRODUCTION

This chapter describes results using parallel techniques that can be applied to the

routing/filtering query optimisation techniques used by Okapi at TREC. The routing task we

are considering is the situation where a number of relevance judgements have been

accumulated and we want to derive the best possible search formulation for future documents.

The filtering task is an extension of this, but a threshold for documents is applied, i.e. a binary

yes/no decision is made on one document at a time as to whether it will be presented to the

user. We describe the data and settings used for both the Ziff-Davis and TREC8 experiments.

We then describe results gained on the Ziff-Davis test set, and then results gained on the

TREC8 test set. The data collected for TREC8 was originally published in MacFarlane et al

(2000a) but is expanded here. A conclusion is given at the end.

10.2. DATA AND SETTINGS USED

The databases used for the experiments were the Ziff-Davis collection and the TREC8

filtering track collection. Given the theoretical results given in chapter 5, section 5.5, we report

results on two distribution strategies: on-the-fly and replication (for a description of these

methods refer to chapter 1, section 1.4). The following term selection strategy was used on

both data sets. Evaluations were done on the top 1000 ranked documents using the TREC

average precision scoring method. The optimisation process was done on 300 terms per query.

The document scores were varied by factors of 0.67 and 1.5 in the reweighting process: each

term was tried at the unaltered weight, lower weight then higher weight; the first successful

factor being chosen. The utility functions used are those described in chapter 3, section 3.4.2.

A number of different stopping criteria were used: reaching a maximum time for a routing

session on a topic, reaching a maximum number of iterations, discovering that no single term

increases the score and discovering that a score is within a given range of increase. In most

cases it was found that term selection stopped when no single term increased the score: this is

consistent with experience found in Okapi at TREC. The threshold for gain on evaluations was

0.001% increase in score: the range for the last stopping criterion being between 0.00001% and

0.001%. A binary decision on the acceptance of terms is used based on these thresholds. Terms

that did not increase the score were skipped after 4 evaluation failures and only re-examined

200

after more than ten inner iterations had passed. These rules were used to ensure consistency

with Okapi at TREC.

The timing metrics we use to measure retrieval efficiency are as follows (for formal

definitions and our requirements for most of them see chapter 3, section 3.4.1). For each run

we declare the average elapsed time for term selection in seconds for the topics. We define

selection efficiency as an improvement in average elapsed time on the term selection algorithms

by using parallelism. We use the standard parallel measures: speedup and parallel efficiency.

We record the average number of iterations needed to optimise queries and the average

overhead per iteration in seconds. The overheads at the synchronisation point are declared in

seconds, averaged over iterations. For on-the-Jly we declared the average load time for a topic.

We examine retrieval efficiency for replication in greater depth: we collected more detailed

information when doing these experiments. In order to measure the level of load imbalance in

replication, we use the LI metric. The number of evaluations per second (throughput) is also

declared for replication results. For the Sun Network version of the routing we present results

from 1,2,4,6,8 and 10 slave nodes. We present results for the AP1000 version from 10 slave

nodes up to 100 slave nodes at intervals of 10 as many more slave nodes were available. The

distribution method on these experiments was on-the-fly. On the AP3000 we present runs on 2

to 7 slave nodes, while for the "Cambridge Cluster" we declare results on 1-15 slave nodes.

The distribution method on these experiments was replication. The results for the uniprocessor

on the network experiments arc estimates based on a 1 master, 1 slave node configuration with

the distribution time removed.

We use the following evaluation techniques declared in chapter 3, section 3.4.2. For

the routing task we use recall and average precision metrics. For filtering on Ziff-Davis data

we use the utility functions defined for the TREC-4 and TREC-5 tasks (Lewis, 1996 and

1997a). For filtering on TREC8 data we use utility functions defined for that task by Hull and

Robertson (2000).

10.3. ZIFF-DAVIS EXPERIMENTS

We describe the experimental results both in terms of retrieval effectiveness and

efficiency. We describe the efficiency results for both strategies, but effectiveness results are

only discussed for on-the-fly. We discuss retrieval efficiency results for replication in detail,

but only give an outline for on-the-fly. the reason for this will become clear. Note that ADD in

the diagrams specifies the add only operation, A/R specifies add/remove, while RW refers to

add reweight operation

201

10.3.1 Retrieval E fficiency Results: Replication

10.3.1.1 Elapsed Time for Term Selection

Fig 10-1. ZIFF-DAVIS [Replication]: add
only average term selection elapsed time in

seconds (AP3000)

Fig 10-2. ZIFF-DAVIS [Replication]: add
remove average term selection elapsed time in

seconds (AP3000)

slave nodes

Fig 10-3. ZIFF-DAVIS [Replication]', add reweight average term selection
elapsed time in seconds (AP3000)

From figs 10-1 to 10-3 it can be seen how expensive the application of the term

selection algorithms can be, with average elapsed time running into hundreds of seconds in

some cases thousands of seconds. Parallelism has different effects on individual term selection

methods which can be either beneficial or detrimental: more details are given in the sections

below. The FB algorithm is the term selection method which benefits most from the application

of multiple slave nodes, showing a linear time reduction on all node set sizes. FB also

outperforms the other term selection algorithms using larger node sets (this can be seen from all

data presented in figs 10-1 to 10-3). Linear time reductions are also found with most parallel

runs on CFP using any operation (this is most noticeable with add only operation - see fig 10-

1). With regard to CSP using all studied operations, elapsed times do not follow any trend and

vary unpredictably with slave node set size (particularly using add only operation - see fig 10-

1). The most expensive operation in the majority of cases is add reweight: for example FB run

times arc roughly four times as slow on add reweight as the other operations. It is generally

more expensive to use the add/remove operation compared with add only particularly with the

Find Best algorithm.

202

10.3.1.2 Evaluation T hroughput and W orkload

Fig 10-4. ZIFF-DAVIS [ReplicationJ: add
only throughput in evaluations per second

(AP3000)

slave nodes

Fig 10-5. ZIFF-DAVIS [Replication]: add
remove throughput in evaluations per second

(AP3000)

slave nodes

Fig 10-6. ZIFF-DAVIS Replication]', add reweight throughput in
evaluations per second (AP3000)

The throughput in evaluations per second for experiments on replication is shown in

figs 10-4 to 10-6. The FB algorithm gets the most benefit with respect to throughput using

parallelism. In all operations with this term selection method, a linear increase in throughput is

recorded particularly for add only (see fig 10-4). The number of evaluations for any operation

on FB remain constant for any parallel machine size. From CFP results it clear that gains in

throughput are increasingly hard to come by: although the number of evaluations per topic does

increase with size of parallelism. For example CFP with add reweight increases the total

evaluations from 3787 on 1 slave node to 5434 on 7 slave nodes: the same trend is found with

other operations. The increase in workload is an important part of the overall loss of parallel

efficiency for the CFP algorithm (sec below). Throughput on the CSP algorithm increases

linearly with more parallelism, but does not match FB figures. With respect to CSP, a linear

increase in evaluations per topic was found with add only and add reweight operations: the

figure for add reweight was particularly significant with an increase of 2766 evaluations per

topic at 1 slave node to 8234 at 7 slave nodes. These figures demonstrate that we are able to

203

search more of the space, while still improving throughput and elapsed time performance. The

number of evaluations per topic on CSP add remove varies with the parallel machine size.

10.3.1.3 Load Imbalance

The load imbalance metric used here is defined in chapter 3, sub-section 3.4.1.8. The

imbalance for term selection is low and does not reach a point where load balance is a

significant problem for the algorithms: for example an LI of 2.0 would mean halving the

effective speed of the machine and the LI figures in figs 10-7 to 10-9 are nowhere near that

level. However, general trend for load imbalance for most experiments is upwards. The

exception is CSP with add remove operation which shows a reduced level of load balance over

all runs. There is a clear increase in load imbalance as the number of slave nodes is increased,

which demonstrates the need for some form of load balancing technique if many more slave

nodes were to be used in optimising on a test set of this size. This imbalance contributes in part

to the overall loss in term selection efficiency found with various measures.

2 3 4 5 6 7

slave nodes slave nodes

Fig 10-7. ZIFF-DAVIS [Replication]: add
only load imbalance for term selection

(AP3000)

Fig 10-8. ZIFF-DAVIS \Replication]: add
remove load imbalance for term selection

(AP3000)

slave nodes

Fig 10-9. ZIFF-DAVIS [Replication]: add reweight
load imbalance for term selection (AP3000)

204

10.3.1.4 Outer Iterations and Overheads

slave nodes slave nodes

Fig 10-10. ZIFF-DAVIS [Replication]:
Choose First Positive average outer iterations

for term selection (AP3000)

Fig 10-11. ZIFF-DAVIS [Replication]:
Choose Some Positive average outer iterations

for term selection (AP3000)

FIND BEST (FB)
A D D A /R R W
20.3 20.2 29.7

Fig 10-12. ZIFF-DAVIS [Replication]: Find Best average outer iterations for
term selection (AP3000)

The averages for outer iterations are shown in figs 10-10 to 10-12. The average

number of iterations need to optimise topics for FB was found to be constant for any given

operation, but variations did occur between them (see fig 10-12). The add remove operation

average iterations was slightly less than add only, therefore selection on add remove is more

expensive in time per iteration. The figure for add reweight is nearly 50% larger, which

explains in part why using this operation with the FB method is so costly.

The Choose First term policy in the CFP algorithm increases the number of iterations

needed to select terms for any operation dramatically compared with the others (see fig 10-10).

However the number of iterations reduces with an increasing number of slave nodes used in a

parallel machine. This factor accounts for some of the time reduction with the CFP algorithm.

The gain from the application of parallelism is restricted: however the effect parallelism has on

the term selection technique is significant. The operator applied also has an effect on the

progress of CFP: there is a transitive relation on the number of iterations needed, i.e. add only

iterations < add remove iterations, add only iterations < add reweight iterations and add

remove iterations < add reweight iterations. Therefore the term operator has a direct effect on

the number of terms chosen when CFP is used.

With CSP the number of iterations is much reduced compared with the other two

algorithms and individual iterations are much costlier with this method (see fig 10-15 below).

205

There is an increase in the number of iterations for CSP add only and add reweight which has

a direct causal effect on the total increase in the number of evaluations and explains any loss in

term selection efficiency (see fig 10-11). Unlike the other two operations, in CSP with add

remove the number of iterations per topic varies erratically as do the number of evaluations per

topic on differing numbers of slave nodes (see sub-section 10.3.1.2).

slave nodes slave nodes

Fig 10-13. ZIFF-DAVIS [Replication]: Find
Best average overheads in seconds for term

selection (AP3000)

Fig 10-14. ZIFF-DAVIS [Replication]:
Choose First Positive average overheads in

seconds for term selection (AP3000)

slave nodes

Fig 10-15. ZIFF-DAVIS [Replication]: Choose Some Positive
average overheads in seconds for term selection (AP3000)

The overheads at the synchronisation point are shown in figs 10.13 to 10.15. Recall

that the synchronisation point is where the stopping criterion is checked, the best temt(s) is

found and results communicated to all slave nodes (see chapter 4, sub-section 4.8.3.4). FB add

only and add remove overheads while remaining fairly constant become increasingly important

as processing time is reduced (see fig 10-13). FB add reweight overheads are much higher than

the other two operations: this is generally true of the other operations as well. With CFP there

is an increase in overheads when using more slave nodes, but this increase gradually tails off

for any operation (sec fig 10-14). However, given the level of iteration needed for that

algorithm the overheads are very significant. With CSP overheads are less important for any

operation, and some reduction in overheads is recorded for larger slave node sets on add

remove and add reweight operations (see fig 10-15). Because of the amount of data needed to

be exchanged at the synchronisation point for CSP, costs are much heavier in real terms per

206

iteration than the other two algorithms. Overall this data shows that the synchronisation point

for the algorithms studied is expensive and should be kept to a minimum.

10.3.1.5 Speedup and Parallel Efficiency

Fig 10-16. ZIFF-DAVIS [Replication]', add
only operation speedup lor term selection

(AP3000)

slaves nodes

Fig 10-17. ZIFF-DAVIS [ReplicationJ: add
only parallel efficiency for term selection

(AP3000)

slaves nodes

Fig 10-18. ZIFF-DAVIS [Replication]: add
remove operation speedup for term selection

(AP3000)

Fig 10-19. ZIFF-DAVIS [Replication]', add
remove operation parallel efficiency for term

selection (AP3000)

slaves nodes

Fig 10-20. ZIFF-DAVIS [Replication]', add
reweight operation speedup for term selection

(AP3000)

-FB

-CFP

Fig 10-21. ZIFF-DAVIS [Replication]', add
reweight operation parallel efficiency for term

selection (AP3000)

The speedup and efficiency figures are shown in figs 10-16 to 10-21: these metrics are

declared in chapter 3, sub-sections 3.4.1.4 and 3.4.1.5. In terms of speedup and parallel

efficiency, the FB method shows improvement on all levels of parallelism investigated.

Speedup is near linear at 7 slave nodes with parallel efficiency above the 70% mark for any

207

operation. However the speedup and parallel efficiency for CFP is very poor for all three term

operations. In most cases a speedup of less than two is registered and a number of factors are

responsible for poor parallel performance. The increase in evaluations with more slave nodes is

a significant factor as well as the overhead at the synchronisation point together with load

imbalance (see above). Much the same can be said for CSP, apart from add remove operation

which does actually show some level of speedup. However, overheads are a much less

significant factor for CSP while the increase in evaluations play a more important part.

Slowdown for CSP on add only and add reweight is recorded for 2 slave nodes. It could be

argued that using speedup and parallel efficiency to measure the parallel performance of the

CSP algorithm is unfair as the parallelism itself imposes an extra workload for the method.

However demonstrating that some parallel performance improvement is available while still

being able to examine some of the search space is, we believe, worthwhile.

10.3.1.6 Restriction of Outer iterations on CAP/CSP

In order to discover the effect of restricting the number of outer iterations on CSP to

the level of CAP we ran further experiments on that term selection algorithm. We measure the

performance of the CSP on the same iterative level as CAP: this is done by stopping CSP temi

selection early when it has reached the same number of iterations as CAP for a given topic. We

do this in order to investigate the question of absolute performance on the CSP algorithm.

slaves nodes

Fig 10-22. ZIFF-DAVIS [Replication]:
restricted iterations on CSP algorithm,

average elapsed time in seconds (AP3000)

Fig 10-23. ZIFF-DAVIS [Replication]-.
restricted iterations on CSP algorithm,

throughput in evals per second (AP3000)

Restricting the iterations on the CSP algorithm has a dramatic effect on time (see fig

10-22): run times on parallel runs are much reduced from those declared in fig 10-1 to 10-3.

Unlike the unrestricted runs, there is a clear linear reduction in run times, resulting in a linear

increase in throughput for all operations. Throughput on restricted runs is generally better than

for unrestricted runs, particularly on more slave nodes (see fig 10-23). The number of

208

evaluations for the add remove operation varies, but the other two term operations show linear

increase in the number of evaluations with more slave nodes: for example the workload

increases from 971 evaluations on 1 slave node to 1141 evaluations on 7 slave nodes on the

add only operation.

Fig 10-24. ZIFF-DAVIS [Replication]:
restricted iterations on CSP algorithm,

average outer iterations (AP3000)

Fig 10-25. ZIFF-DAVIS [Replication):
restricted iterations on CSP algorithm,

overheads in seconds (AP3000)

slave nodes slave nodes

Fig 10-26. ZIFF-DAVIS [Replication]:
restricted iterations on CSP algorithm,

speedup (AP3000)

Fig 10-27. ZIFF-DAVIS [Replication]:
restricted iterations on CSP algorithm,

parallel efficiency (AP3000)

— ADD

Fig 10-28. ZIFF-DAVIS [Replication]: restricted iterations on
CSP algorithm, load imbalance (AP3000)

Restricting the number of iterations on CSP does not necessarily mean that the number

of iterations taken will the identical to that of CAP (see fig 10-24). This is because iterations

on an individual topic may take fewer outer iterations to complete term selection on CSP. hi

practice this effect does not make much difference to runs on add only and add reweight

209

operations, but runs on add remove are affected and the number of iterations vary erratically.

As with unrestricted iteration runs overheads per iteration are high, but are more significant in

restricted iteration runs (see fig 10-25).

Fig 10-26 demonstrates that relative speedup is available on CSP with any operation,

but there is still a restriction on gains in using parallelism. This is because the extra workload

which CSP with restricted iterations imposes on CAP is an important factor in the loss in

parallel performance: particularly for add only and add reweight operations. Parallel efficiency

levels are much higher in restricted iterations than in unrestricted runs (see fig 10-27): all runs

record efficiency above 0.6, while efficiency in unrestricted runs can be well below this figure.

Load imbalance has the same effect on restricted iteration runs as it has on the unrestricted

runs (see fig 10-28): that is imbalance is a minor problem but could become a significant one

using a parallel machine with more slave nodes.

10.3.1.7 Summary of Replication Retrieval Efficiency Results

There are three factors which can affect the performance of the term selection

algorithms using parallelism. The first of these is extra workload: more evaluations arc

performed in most cases for both CFP and CSP which imposes a computational load over and

above that of the sequential (1 slave node) runs. The overhead at the synchronisation point

required to resolve the difference between data on slave nodes is a significant bottleneck,

particularly for the CFP algorithm. An increase in load imbalance is recorded for all runs with

larger parallel machine sizes: less important than the other two but a potential source for

improvement. These three factors affect the different algorithm in different ways.

Using parallelism with the Find Best algorithm works well with any of the studied term

operation techniques. Linear time reduction and a near linear level of speedup and efficiency

are recorded with Find Best, as well as an increased level of evaluation throughput with

increasing numbers of slave nodes. Overheads are constant, but significant with increasing

numbers of slave nodes.

Given the evidence above it is hard to justify the form of parallelism specified in

replication as applied to the CFP algorithm. While there is time reduction with any of the

chosen operations, much of the selection efficiency advantage gained can be explained by the

reduction in average iterations per topic. However some of the selection efficiency loss can be

explained by an increase in the workload for increasing numbers of slave nodes: there is clearly

an offset between number of iterations and evaluations required per topic. While load

imbalance appears to be a problem, the overheads on the CFP algorithm are a significant

bottleneck due to the number of iterations needed to optimise a query. Comparing the results on

210

an operation by operation basis, CFP does not match the selection efficiency gained either in

terms of time or evaluation throughput with the other term selection methods.

The results for Replication using CSP with add only and add reweight demonstrate

that more of the search space is examined than CAP with those same operations, while

add/remove is more non-deterministic and hence average elapsed times are erratic. Restricting

the iterations in order to examine the relative level of selection efficiency demonstrates that

some speed improvement is found with CSP: despite examining a little more of the search

space. It also possible to obtain slight selection efficiency improvements even when examining

far more of the search space. Overheads tend to decline in importance with CSP, but are larger

in real terms with this method because of the amount of data which needs to be exchanged

between the master and slave nodes at the synchronisation point.

10.3.2 Retrieval Efficiency Results: On-the-fly Distribution

We consider the results for on-the-fly distribution. Recall that in on-the-fly the master

node distributes data from a centrally held inverted file to slave nodes (see chapter 4, sub-

section 4.8.3.5 and fig 4-17).

~FB
■ CFP

“ — '

Fig 10-29. ZIFF-DAVIS [On-the-fly): add
only average term selection elapsed time in

seconds (Network)

slave nodes

Fig 10-30. ZIFF-DAVIS [On-the-fly]: add
remove average term selection elapsed time in

seconds (Network)

Fig 10-31. ZIFF-DAVIS [On-the-fly]: add
reweight average term selection elapsed time

in seconds (Network)

Fig 10-32. ZIFF-DAVIS [On-the-fly]: add
only average term selection elapsed time in

seconds (API000)

211

slave
nodes

FIND BEST (FB) CHOOSE FIRST
POSITIVE (CFP)

CHOOSE SOME
POSITIVE (CSP)

ADD A/R RW ADD A/R RW ADD A/R RW
1 21.7 32.2 29.8 27.0 31.5 20.84 23.0 35.3 19.9
2 19.3 35.7 30.0 25.6 31.8 19.47 19.5 41.6 22.3
4 20.0 36.2 31.0 31.2 31.4 19.81 19.2 31.9 20.4
6 21.5 37.7 23.6 34.6 30.3 19.47 25.0 39.4 23.8
8 19.4 37.5 19.6 34.7 39.6 21.63 21.5 30.1 24.1
10 20.5 32.5 18.5 37.8 44.6 27.42 28.7 32.4 21.4

Table 10-1. ZIFF-DAVIS [on-the-fly]: Load data overheads in seconds (Network)

Slave
nodes

FB CFP CSP

10 23.2 22.6 28.1
20 21.7 22.4 23.7
30 23.7 23.1 22.0
40 28.7 24.4 29.4
50 21.4 23.0 23.5
60 22.6 24.9 22.6
70 29.6 22.2 25.3
80 25.9 24.2 22.7
90 23.4 24.8 28.4
100 33.4 29.8 22.0

Table 10-2. ZIFF-DAVIS |on-the-fly]: Load data overheads in seconds for
add only (API000)

When using a strategy which holds one copy of the inverted file, the posting lists for all

the terms in the term pool must be built in the master node for distribution to the slave nodes.

The data shown in tables 10-1 and 10-2 is a sequential part of the algorithm to which

parallelism cannot be applied. While the load times are not particularly heavy, being around 20

to 30 seconds for most runs, they are significant for runs which utilise many tens of slave

nodes. Distributing this work in replication holds advantages for parallelising data loads.

Given the increase in processor speeds in the recent past, it is difficult to justify using

parallelism on a distribution scheme such as on-the-fly which requires large data transfers at

the synchronisation point. The replication strategy discussed above which keeps data local is

able to reduce the amount of data transferred considerably and is able to parallelize posting list

builds for terms being processed.

213

10.3.3 R etrieval E ffectiveness Results: O n-the-fly D istribution

In this section we examine the retrieval effectiveness result for routing using the

metrics declared in chapter 3, sub-sections 3.4.2.1 and 3.4.2.2, using the evaluation functions

for filtering described in sub-section 3.4.2.3. Note that the best results given in the tables are

highlighted in bold.

10.3.3.1 Find Best

The routing results given in table 10-3 are very good: selection precision/recall are

very high indeed and the test set results are on or around the maximum you would expect with

TREC data. The extra iterations in the parallel versions produced precision oriented selection

results, but the sequential versions yield better results on the test set. However the difference is

not significant. On a term operation basis add only and add/remove both produce better test set

results than add reweight: there is a slight overfit problem with the latter. With respect to the

filtering results it was found that add/remove provided the highest utility for all the functions.

There was slight variation in both average precision and utility function results when applying

the add reweight operation: all variations are significantly less than 1%.

MEASURES ADD ONLY
SEQ PAR

ADD/REMOVE
SEQ PAR

ADD REWEIGHT*
SEQ PAR

Select Recall
Prec.

0.924
0.723

0.922
0.727

0.923
0.723

0.920
0.727

0.929
0.772

0.929
0,772-0.778

Test set Recall
Prec.

0.837
0.462

0.834
0.454

0.836
0.462

0.833
0.454

0.830
0.433

0.830
0.425-0.427

U1 11.95 11.74 12.11 11.89 11.26 11.05 -
11.11

U2 18.95 18.74 19.16 19.0 17.37 17.16-
17.21

U3 311.6 311.6 314.9 314.9 276.1 276.2 -
276.3

Table 10-3. ZIFF-DAVIS: Find Best routing and filtering results
(* results gathered on network version only)

10.3.3.2 Choose First Positive

With add only operation on routing, no pattern in either increase or decrease was

found and recall/precision did not vary much: either on the selection or test set database (see

table 10-4). Evaluation on the Selection databases showed better average rccall/precision over

multiple slave nodes than one slave node, but the difference is not significant. The best figures

for precision on the selection database were 0.741 for 6 slave nodes, while for the test set

214

database it was 0.483 on 2 slave nodes. The filtering results do not show any pattern of

increase or decrease, the best utility results being recorded on multiple slave node runs.

slave
nodes

Select
recall Prec.

Test set
recall Prec.

U1 U2 U3

1 0.906 0.714 0.859 0.461 12.79 18.63 275.0
2 0.912 0.732 0.860 0.483 13.11 19.42 267.6
4 0.916 0.738 0.855 0.459 12.21 18.37 294.8
6 0.917 0.741 0.836 0.447 12.21 18.21 313.7
8 0.917 0.735 0.877 0.472 11.0 17.89 303.7
10 0.915 0.733 0.862 0.480 13.05 19.84 303.7
20 0.916 0.740 0.871 0.474 12.16 18.89 310.1
30 0.915 0.731 0.809 0.447 11.37 17.58 299.4
40 0.925 0.732 0.843 0.475 12.21 19.21 301.3
50 0.917 0.730 0.831 0.460 12.11 18.89 230.3
60 0.922 0.734 0.807 0.439 11.47 18.32 259.5
70 0.923 0.723 0.831 0.458 12.53 19.53 313.0
80 0.924 0.732 0.832 0.471 12.47 19.74 302.9
90 0.923 0.726 0.831 0.462 12.42 18.79 312.7
too 0.922 0.728 0.834 0.452 12.11 18.58 308.4

Table 10-4. ZIFF-DAVIS: Routing/filtering effectiveness results for
CFP add only operation

slave
nodes

Select
recall Prec.

Test set
recall Prec.

U1 U2 U3

1 0.923 0.754 0.872 0.487 13.11 20.32 293.2
2 0.914 0.746 0.864 0.465 12.58 19.42 292.9
4 0.919 0.753 0.884 0.486 13.11 21.37 302.2
6 0.920 0.752 0.833 0.455 12.47 18.47 314.2
8 0.916 0.744 0.874 0.482 11.89 19.37 253.4
10 0.911 0.739 0.858 0.480 13.16 19.74 317.5

Table 10-5. ZIFF-DAVIS: Routing/filtering effectiveness results for
CFP add/rernove operation

slave
nodes

Selection
Recall Prec.

Test set
Recall Prec.

U1 U2 U3

1 0.913 0.717 0.843 0.422 8.58 14.42 208.3
2 0.912 0.745 0.858 0.444 10.79 17.11 255.2
4 0.922 0.754 0.859 0.451 10.26 16.63 238.2
6 0.915 0.762 0.871 0.458 11.11 17.11 258.1
8 0.919 0.767 0.847 0.440 10.47 17.00 248.3
10 0.934 0.777 0.858 0.451 12.42 18.53 298.4

Table 10-6. ZIFF-DAVIS: Routing/filtering effectiveness results for
CFP add reweight operation

215

Using parallelism with add/remove operation appears to be detrimental to the CFP

algorithm with respect to routing (see table 10-5): only test set recall yields a better result using

multiprocessors than the uniprocessor run. The variations between runs are very small and not

statistically significant. The filtering results by contrast do show that better results can be

obtained using multiprocessors: the highest utilities for U1 and U3 where found on the 10 slave

node run.

Unlike the other two term operations CFP with add reweight does show a slight linear

increase in selection precision with increasing numbers of slave nodes (see table 10-6): this

improvement is not wholly reflected in test set results. The best selection results for both recall

and precision are found using 10 slave nodes, which also yield the highest figures for all utility

functions. All routing and filtering results on the parallel runs yield better figures than the

uniprocessor run. From the figures above we can state that finding better terms earlier with the

parallel CFP method using any operation does not yield a significant improvement or drop in

retrieval effectiveness for any evaluation method studied.

10.3.3.3 Choose Some Positive

slave
nodes

Selection
Recall Prec.

Test set
Recall Prec.

U1 U2 U3

1 0.913 0.742 0.863 0.473 12.37 17.63 262.1
2 0.913 0.743 0.857 0.455 12.47 17.11 268.6
4 0.916 0.749 0.856 0.450 11.68 18.11 290.6
6 0.916 0.736 0.849 0.478 14.0 21.16 305.4
8 0.921 0.750 0.862 0.450 12.0 17.68 287.0
10 0.923 0.756 0.852 0.481 12.74 18.79 294.3
20 0.916 0.754 0.858 0.465 11.95 18.84 114.1
30 0.919 0.760 0.828 0.439 12.58 17.84 262.6
40 0.918 0.747 0.837 0.458 12.58 18.95 279.1
50 0.905 0.747 0.829 0.445 11.95 17.74 289.0
60 0.913 0.746 0.829 0.447 12.95 18.53 293.4
70 0.907 0.744 0.856 0.445 11.74 18.47 288.5
80 0.905 0.737 0.873 0.455 12.68 18.53 312.5
90 0.915 0.752 0.852 0.448 13.79 18.05 284.1
too 0.918 0.754 0.843 0.459 12.37 18.42 280.3

Table 10-7. ZIFF-DAVIS: Routing/filtering effectiveness results for
CSP add only operation

It was found that differing the number of slave nodes in CSP from CAP (i.e. 1 slave

CSP = CAP) using add only operation had an effect on both the recall and precision averages

on selection terms over all topics: at least one parallel run beat the sequential run on all

evaluation measures. No pattern was found in either average recall or precision (see table 10-

216

7) for either selection or on the test set. There is no correlation between selection and test set

with overall recall and precision. Two large slave node set runs produced the highest utility for

U1 and U3 filtering functions. It should be noted that any improvement found was not

significant.

slave
nodes

Selection
Recall Prec.

Test set
Recall Prec.

U1 U2 U3

1 0.920 0.782 0.866 0.479 12.79 18.37 295.5
2 0.919 0.774 0.864 0.452 10.95 18.05 263.2
4 0.918 0.778 0.849 0.459 14.0 18.84 305.2
6 0.925 0.760 0.825 0.452 12.32 19.26 302.0
8 0.925 0.770 0.860 0.452 10.84 17.95 296.2
10 0.922 0.772 0.866 0.487 12.42 19.37 277.8

Table 10-8. ZIFF-DAVIS: Routing/filtering effectiveness results for
CSP add/remove operation

Table 10-8 shows that no pattern of improvement or degradation of retrieval

effectiveness was found in add/remove CSP runs compared with the CAP run. The best

selection precision was found in the CAP run, but the parallel run with 10 slave nodes did yield

slightly better average precision than any other run. At least one parallel run produced higher

average filtering utility results than the uniprocessor run.

slave
nodes

Select
recall Prec.

Test set
recall Prec.

U1 U2 U3

1 0.906 0.735 0.839 0.432 8.84 15.58 217.7
2 0.912 0.757 0.841 0.431 11.32 16.42 224.1
4 0.905 0.760 0.841 0.411 9.16 14.63 207.1
6 0.913 0.755 0.825 0.425 9.47 15.53 222.2
8 0.914 0.766 0.831 0.408 10.0 14.89 229.2
10 0.917 0.769 0.829 0.409 9.84 15.37 232.0

Table 10-9. ZIFF-DAVIS: Routing/filtering effectiveness results for
CSP add reweight operation

Table 10-9 shows the add reweight operation results yield results which are opposite

to add remove', the best selection precision is at 10 slave nodes, while the best test set precision

is on 1 slave node. All selection precision results are better on the parallel runs than the

uniprocessor run. There does appear to be an overfitting problem with this method. Filtering

results show that higher utility values are gained on parallel runs, but U 1 and U2 only yield the

best on two slave nodes. To sum up the CSP results, one might expect the increase in the

number of iterations to give improved effectiveness. These results suggest parallelism can

217

cause a small improvement but the slave node set size to use for any parallel run is difficult to

determine: any retrieval effectiveness difference found by using parallelism is minimal.

10.3.4 Ziff-D avis E xperim ent Sum m ary

With respect to time and studied performance improvement figures for parallelism

clearly replication is by far a better method for improving term selection times for the query

optimisation methods studied in this research. There are two main reasons for the advantage

found in replication: overheads per iteration and load times. The most important of these is

overheads per iteration, that is the sequential bottleneck for the term selection algorithm under

discussion. While replication does not completely eliminate the overheads, it does substantially

reduce them because the amount of data that needs to be transferred between the master and

slave nodes is much reduced. With replication only the query is broadcast and any the data for

subsequent terms chosen by a term selection algorithm exchanged by master!slave nodes is

restricted to the identifier(s) of that term. Another minor advantage is that the load time is

parallelised in replication and is not a bottleneck. Given that the parallelism in on-the-fly yields

very little if any time advantage (and in fact may lead to slowdown) over uniprocessor we

assert that it is not a viable option. Replication however does show promise for two of the

algorithms, FB and CSP and our results show that this form of parallelism does lead to

selection efficiency improvement. The best performing algorithm in speed terms comparing on

an operation by operation basis was Find Best when using replication parallelism.

Examining the retrieval effectiveness results we conclude that although parallelism

may bring benefits to the term selection algorithms CFP and CSP, there is no pattern and no

guarantee that parallelism brings benefits with increasing numbers of slave nodes from the

evidence of our results. Results on all runs were on the high side. There are cases where

parallel runs yield results that are not as good as the corresponding sequential run (for a given

algorithm and operation pair). However any increase or decrease in retrieval effectiveness is

not significant, and these experiments do not demonstrate that examining a larger part of the

search space will bring benefits to in terms of retrieval effectiveness for any of the term

selection algorithms discussed in this chapter. The best performing algorithm tended to be CFP,

while add/remove operation seemed to produce the best results in conjunction with the CFP

algorithm. The best performing parallel slave node set size with respect to effectiveness tended

to be 4 and 10.

218

10.4 TREC-8 EXPERIMENTS

TRACK RUN-ID SUB-TRACK ALGORITHM OPERATION
pltSfl BATCH FILT. FIND BEST ADD/REMOVE
plt8f2 BATCH FILT. FIND BEST ADD/REWEIGHT
plt8rl ROUTING FIND BEST ADD/REMOVE
plt8r2 ROUTING FIND BEST ADD/REWEIGHT

Table 10-10. Details of TREC8 filtering track runs

Given that the main thrust of our research is to improve the elapsed times of the

algorithms for tasks we decided to try Find Best using add remove and add reweight

operations on our TREC8 experiments (MacFarlane et al, 2000a). Both operations are more

computationally intensive than add only and can yield better retrieval effectiveness. This

allowed us to demonstrate that the data distribution strategy found to be useful on Ziff-Davis

data, namely replication, could improve query optimisation times on a much larger training set

using a larger parallel machine. We entered four runs for TREC 8: details of these can be

found in table 10-10.

We treated the databases differently in the different sub-tracks. With batch filtering

runs we did extraction of terms and term selection on one database: this was because of the

small number of relevant documents available in the training set. However with Routing we

were able to do extraction of terms on one database and term selection on another as per Okapi

experiments (Beaulieu et al, 1997). The number of relevant documents in the routing training

set allowed us this flexibility (the main reason for splitting the training set when using the term

selection algorithms is to reduce the overall level of overfitting). Topics without relevant

documents were not treated differently from topics with relevant documents as we were testing

the parallelization of the query optimization algorithms.

All term selection runs were optimized using TREC average Precision: we tried using

the utility function LF1 but the results were poor. This confirms the Okapi experimental result

which suggest that average Precision is a good predictor for other measures, but the other

measures do not predict each other well. All Batch Filtering runs were optimized for the U1

utility function.

We did some initial experiments with TREC-7 AP Filtering track data as a "dry run":

the results are reported briefly in each section below. We split the discussion of TREC-8

experiments into two sections: one of effectiveness and one of efficiency. Each section has

discussion on the sub-tracks entered: batch filtering and routing.

219

10.4.1 R etrieval E fficiency Results

10.4.1.1 Batch Filtering

The average query selection time for the AP data set was 115 seconds, taking on

average 26.56 iterations to select an average of 28.2 terms. The results submitted on the FT

data set for TREC-8 are in stark contrast. For run plt8fl the average term selection time per

topic was 6.7 seconds with an average of 8 iterations choosing an average of 9.3 terms. Run

plt8f2 was slightly more costly computationally taking 19 seconds per topic on 8.5 iterations

with an average of 10 terms chosen per topic. The LI was very poor for FT data: a LI of 1.65

was recorded for plt8fl while for plt812 the figure was 2.15. The LI for AP data was 1.46, an

improvement on the FT data figures but still not particularly good. The reason for the reduced

load balance in these experiments is that some nodes had terms which were far more costly to

evaluate than others: even though the slave nodes were given virtually the same number of

terms to inspect. In the context of time it would not therefore seem to be any use in applying

parallelism to the Okapi term selection algorithms for smaller databases where there are only a

limited set of relevance judgments. It is important to try and find the accumulation level for

relevant documents on topics where term selection could be applied and parallelism could be

considered. We did not do any runs on lesser numbers of slave nodes as a consequence.

10.4.1.2 Routing

Fig 10-37. TREC8 Find Best experiments:
average elapsed time in seconds for term

selection

Fig 10-38. TREC8 Find Best experiments:
evals per second throughput for term selection

220

Fig 10-39. TREC8 Find Best experiments:
speedup for term selection Fig 10-40. TREC8 Find Best experiments:

parallel efficiency for term selection

Fig 10-41. TREC8 Find Best experiments:
load imbalance for term selection Fig 10-42. TREC8 Find Best experiments:

iteration overheads for term selection

On 15 slave nodes the average term selection time for AP data was 23 minutes with an

average of 49.5 iterations choosing 51.5 terms on average. The average term selection times for

FT data were much smaller: taking 1.75 minutes for run plt8rl and 6 minutes for plt8r2. The

number of terms chosen was an average of 21 for plt8rl and 27 for plt8r2. The number of

iterations on FT data was also much reduced being on average 20 for plt8rl and 25 for plt8r2.

The LI for add with re-weight operation was much better than for the add remove operation:

term selection on AP data yielded a LI on 1.25 while for plt8r2 the figure was 1.28. Run plt8rl

yielded a LI of 1.33 by contrast. The results with respect to efficiency are far superior in

routing than batch filtering: this is largely due to the size of the data set used and the number of

relevance judgements available in the routing task compared with filtering. The size of the data

set used has a considerable impact on load imbalance. The size of the collection would be

therefore a factor when examining the viability of deploying term selection algorithms. Results

from runs which use lesser numbers are shown in figs 10-37 to 10-42.

The selection efficiency using Find Best with add/remove operation is very

encouraging. Not only do we obtain linear time reduction with the method, we also get a good

level of speedup and efficiency. The throughput is impressive and demonstrates a linear

increase with more nodes. Overheads are constant and increase in significance with more slave

221

nodes, and load imbalance is clearly a problem with increased levels of parallelism. The

average number of iterations per topic is 20.3.

Find Best with add reweight is far more costly than add only: the total time to optimise

queries on all 50 topics using 1 slave node was 56.1 hours, just over three times the time

needed for add only operation. However there is clearly a selection efficiency improvement

with increasing numbers of slave nodes, although evaluation throughput is not as good as add

only and overheads are higher (if constant). Load imbalance is also a problem, although not so

pronounced.

The results show that the method of parallelism found useful in Ziff-Davis experiments

was also good at speeding up optimisation times for queries on the much larger TREC8

training set. There is clearly a need to tackle the problem with load imbalance found in the

results given in this section (see the thesis conclusion on a discussion of this subject).

10.4.2 Retrieval E ffectiveness Results

10.4,2.1 Batch Filtering

TRACK
RUN-ID

SELECTION
(Recall/Prec)

TEST I)B
(Recall/Prec)

AVERAGE
EVALUATIONS

PER TOPIC

AVG
SCALED

LF1
plt8fl 0.856/0.843 0.142/0.280 907 0.354
plt8f2 0.855/0.849 0.149/0.287 2022 0.376

AP Run 0.852/0.816 0.250/0.118 5764 -

Table 10-11. Details of TREC8 batch filtering efficiency results

Both submitted filtering runs were optimised for the LF1 utility function. We present

the results in table 10-11: the average scaled utility function used is from Hull (1999) and

declared in chapter 3, sub-section 3.4.2.3. The Rccall/Precision for the selection runs are all

very good indeed: the number of relevant documents per topic is 51 compared with just under

11 per topic for the FT data therefore our runs for TREC-8 have done better with less data.

This is also true of Precision on the FT test database but not true of Recall. Our filtering runs

for TREC-8 sacrifice recall for precision. The precision for filtering is comparable with routing

results (see table 10-12 below) and much higher than was expected given the type of method

used for filtering and the number of relevant documents available. Comparing add/remove

operation to add reweight we found an increase of 2.5% for the former over the latter: this

222

increase is not particularly significant given that add reweight need 2.2 times the average

evaluations per topic than add/remove. The increase in scaled average utility was more

significant: using add reweight operation yielded a 6% advantage over Add/Remove.

10.4.2,2 Routing

TRACK
RUN-ID

SELECTION
(Recall/Prec)

TEST DB
(Recall/Prec)

AVG EVALS
PER TOPIC

p lt8 rl 0.873/0.696 0.858/0.286 1932
plt8r2 0.887/0.734 0.845/0.288 5364

AP Run 0.824/0.608 0.543/0.286 5481

Table 10-12. Details of TREC8 routing efficiency results

As with Batch Filtering we did one test run on AP data with Find Best using the Add

reweight operation. The precision/recall for term selection was high with values of 0.824 and

0.608 respectively. The results on the test collection compared favourably with participants of

the TREC-7 routing sub-track: our average precision of 0.286 was better than 5 of the 10 runs

submitted by participants of that track. Recall/precision for the TREC8 runs on selection data

was very good indeed with recall just under 0.9 and precision around 0.7. Results on the test

database are very good on recall which is about 0.85, while precision was adequate at around

0.28 (see table 10-12). Comparing add reweight operation as against add remove we found

that add reweight did bring benefits over add remove but the gain was only 0.7%. This figure

is not much of an increase for the extra work needed in add reweight where a factor of 2.78

more evaluations where needed over add remove. With respect to precision on run plt8rl,

20/50 topics were better than median while two equalled the best: topics 355 and 380. For run

plt8r2 15/50 were better than median and the same two topics as in plt8rl equalled the best. It

should be noted however that these two best yielding precision topics only contained one

relevant document each. In two of the topics 387 and 394 run plt8r2 recorded the best average

precision. Overall the results were acceptable, if a little disappointing compared with other

participants in the TREC-8 routing sub-track.

10.5 CONCLUSION

We have found a method of parallelism together with a data distribution method

(.replication of inverted file data) which allows us to both speed up and examine more of the

search space for the heuristics examined. This was done by focusing on the main task, namely

223

the evaluation of terms during term selection. In conjunction with replication we have shown

with Ziff-Davis and TRJEC8 data that the speed advantage found with the Find Best selection

method is significant. We have demonstrated that we are able to examine more of the search

space with the CSP algorithm and still reduce the overall time for query optimisation. We

believe it is possible to improve the selection efficiency of both methods using some form of

dynamic re-distribution technique for terms in the query. Experiments with CFP are less

conclusive and show difficulties with load balance, overheads, time and evaluation throughput.

It may be possible to improve the load balance of CFP but only at a larger overhead cost. We

have demonstrated that keeping the inverted file at the master and broadcasting information as

and when it is needed is not a viable option for applying parallelism to the optimisation of

routing/filtering queries. The synthetic model was successfully able predict that replication is a

superior method to On-the-fly distribution, but not that the latter would perform so poorly. As

found in our probabilistic search experiments, modelling communication is hard to do. We can

make a further statement on the synthetic models, given the evidence found with On-the-fly

distribution. The Termld partitioning method requires more communication at the

synchronisation point than On-the-fly distribution and is therefore not a viable method.

Whilst we have shown using Ziff-Davis data that examining the search space can

improve effectiveness, it is also clear that doing so can actually harm effectiveness as well.

However any gain or losses are statistically insignificant and we have only demonstrated that

examining more of the search space can find different maxima in that space. It may be possible

to use more powerful machine learning or pattern recognition techniques to find the best

maxima out of the many that are available (see the conclusion for a discussion on this).

224

Chapter 11

Summary and Conclusions

11.1 OVERVIEW OF DATA DISTRIBUTION METHODS

Recall that the primary aim of this thesis is to examine the performance of various IR

tasks using various data distribution methods on parallel computers to determine which of the

distribution methods is best. Our criterion is that a given distribution method should

demonstrate either a decrease in elapsed time (speedup) or the ability to search a larger

database (scalability and scaleup). Overall the best performing data distribution method was

D odd partitioning, for all the tasks discussed in this thesis apart from routing/filtering: this is

the main contribution of this thesis. This conclusion was reached by a combination of

argument, theoretical modelling and empirical results. Some of the distribution methods such as

on-the-fly and replication were not relevant to many tasks for different reasons. For example

on-ihe-fly distribution is irrelevant method for the indexing task (our consideration of

distribution is on inverted file data not raw text). We chose not to implement partitioning

methods for the routing/filtering task as we believe that load balancing would be a serious

problem in Termld, while D odd would only be able to speed up a single evaluation. The

synthetic model we have derived showed that in theory, D odd partitioning was better for most

tasks, and this was confirmed by empirical results.

What are the reasons for the success of D odd partitioning for most tasks and

replication for routing/filtering? It would help if we considered what each task does, i.e. what is

the computation of the task. For most tasks the emphasis is on document computation, e.g.

index then search for a document. For routing/filtering the emphasis is on term computation,

e.g. how well does a given term do when we evaluate it against the training set? We wish to

keep data local to a node and reduce the amount of data which must be moved: the concept of

locality of reference is important here. For most tasks keeping document data in one location is

important, while for routing/ filtering we need access to term data on one node. Any attempt to

use an inappropriate data distribution method for a given task will increase the level of

communication for that task to such an extent that there is little or no advantage to be gained

from using parallelism.

225

11.2 DISCUSSION OF INDIVIDUAL TASKS

As well as the overall contribution to the field of parallelism and IR discussed above

we have also made some individual contributions to tasks studied in this thesis. Some of these

relate to the secondary aims of our thesis These are as follows:

• A high bandwidth network is essential if Termld partitioning indexing is to be

efficient. To the best of our knowledge we are the first to make a direct comparison

between partitioning methods in the indexing task.

• We have found in the search task that query size does have an effect on performance

using the partitioning methods studied, but technological factors such as sorting the

data to generate the final ranked result are more important.

• We have been unable to demonstrate that examining more of the search space in the

passage retrieval task brings any benefits, but we have shown that the BM25 weighting

function does its job well and in conjunction with passage retrieval on a limited set of

documents, can increase retrieval effectiveness. To the best of our knowledge we are

the first to make a direct comparison between partitioning methods in this task or make

a practical attempt at using parallelism to improve retrieval efficiency of the task.

• To the best of our knowledge we are the first to make a direct comparison between

partitioning methods in the index update task. The D odd partitioning method reduces

the amount of index data per node with increasing parallel machine size: this is due to

the qualities of keyword blocks where hit terms will be interspersed amongst less

frequent terms. We have identified a number of potential logical errors during

transaction processing on inverted files in the presence of an incorrect or non-existent

concurrency control mechanism which may affect retrieval effectiveness.

• In the routing/filtering task we have demonstrated that more of the search space can

be examined, but have found this does not always increase retrieval effectiveness. We

have found that using parallelism in the way we describe, finds different maxima which

yield approximately the same level of retrieval effectiveness. To the best of our

knowledge we are the first to make a direct comparison between data distribution

methods in this task or make an attempt at using parallelism to improve efficiency of

term selection for the task. We have proposed a method of term selection, namely

Choose Some Positive (CSP), which has not been used in previous Okapi experiments.

226

• We have derived a synthetic model for performance for more than one task which is

able to distinguish between the distribution methods discussed in this thesis (see section

11.3 for a fuller discussion on the models).

How generic are these conclusions? What would happen to the comparative

performance on the data distribution methods if we used compression techniques for inverted

lists or query processing optimisation techniques for example? In some cases it may be difficult

to make any sensible statement without forming some theoretical model for comparison and

testing such with empirical results. We can however state the following:

• With the indexing and index update tasks our conclusions are very generic. No matter

what type of index used, indexing Termld would always need to communicate more

than D odd indexing and apply more computational effort to produce the final index.

Using D odd in index update we would expect better performance than Termld as

much less data needs to be moved, providing our keyword block mechanism is utilised.

• Our conclusions with probabilistic search apply only to term weighting models of any

type (such as the vector space model). They do not apply to Boolean or proximity

models which do not require sorts to organise the final results (though one would still

need to pass up large sets for central merging in Termld partitioning with those

models).

• With the passage retrieval task our conclusions are restricted to the BM25 weighting

function with respect to retrieval effectiveness. However our conclusions with regard to

retrieval efficiency are generic: we do not see Termld as being a viable partitioning

method for any computationally intensive passage retrieval method because of

communication requirements.

• Our conclusions with respect to the routing/filtering task are restricted to hillclimbers

for term selection in retrieval efficiency, but generic with respect to retrieval

effectiveness. Examining more of the search space only appears to yield a different

maximim.

The generic statements we made here with respect to retrieval efficiency also apply the

synthetic models we have derived for the tasks, thereby strengthening the models.

227

11.3 REFLECTIONS ON THE SYNTHETIC MODELS

How successful were our synthetic models in being able to distinguish between the

distribution methods, the relative performance difference between them and form generic

statements about the performance of parallel IR systems? Our main stated aim, that of

producing models which could differentiate between the partitioning methods was successful on

all tasks under discussion in this thesis. In particular, the prediction that a sequential sort

would be a bottleneck for probabilistic search on Termld partitioning was validated.

Furthermore, many of the assumptions made in the models such as those for load imbalance

were reasonable approximations.

However, all models are simplifications in some sense and are therefore likely to be

weak in some areas. It is clear from the examination of all tasks that our modelling of

communication lead to problems in being able to distinguish the relative performance on

distribution methods. An example of the problems encountered was that the synthetic models

for indexing predicted that the gap between D odd and Termld builds would decrease, while

our experiments showed that difference actually increased. Similarly our synthetic probabilistic

model performance predicted that search Termld with a parallel sort would be nearer Dodd,

while our experiments show they were nearer Termld with sequential sort. These errors

occurred partly due the high bandwidth network assumption used and partly due to naive

communication modelling.

There was however, one positive result from this failure: as on-the-fly distribution was

poor for the routing/filtcring task it is clear that Termld partitioning, which would require more

communication, would not be a viable method. Another interesting failure was on the passage

retrieval task when trying to predict the performance of short queries on the distributed method:

it is hard to see how any model could deal with non-determinism of this type. With respect to

any generic statements we do not see how we can say any more beyond what we have stated in

the previous section: however, the models are functional and therefore adaptable to the

modelling of different techniques. We would hope that this work on performance modelling

could be taken further and turned into an analytical model which would then be able to predict

actual performance of many IR tasks using various distribution methods.

11.4 CHOOSING AN APPROACH

We have seen the motivations for using parallelism in IR and some of the methods

which have been used in chapter 2. Our work in this thesis has taken this information further

and we have demonstrated that the D odd partitioning method is the most effective distribution

228

method for inverted file data on most tasks. In the context of the information given we describe

a rationale for choosing a parallel IR approach. We assume that one or more of the reasons

described in chapter 2 exists for choosing parallel IR systems in the first instance.

The central issue behind choosing an approach is that of index maintenance, in

particular of the insertion rate compared with the query rate (Stone, 1987). A further issue is

that of index generation: Hawking (1991) pointed out that building indexes for inverted Hies

with the size of 8192 Gigabytes would take so long that the document retrieved would only

ever be of historic interest (however it should be noted that processor speeds improved and

memory sizes have grown a lot since 1991). We therefore suggest some criteria for choosing

either an approach described in chapter 2 or one described in this thesis whichever is

appropriate. We provide empirical evidence from this thesis to back these assertions up where

required.

If normal keyword searches are required with no update we would recommend the use

of inverted files partitioning using Dodd. We have demonstrated speed advantage using this

method for both probabilistic search and passage retrieval tasks. If search types such as regular

expressions are required, then the pattern match method would be the most suitable. Regular

expressions are difficult to implement on signature and inverted file methods and would be

restricted in the two-phase search.

It is possible that even with a high level of parallelism, there exists an update rate

which could not be handled by our index update technique due to restrictions on resources such

as buffer space. In such a case we would suggest that the two-phase search or vector

processing methods be used. Insertion of documents is much cheaper than inverted files in the

chosen methods and queries are therefore much less likely to be affected by delays engendered

by insertion. Where other types of document maintenance are required such as document

alteration or deletion, or all three maintenance operations, then the use of two-phase search or

vector methods would be preferred. Block deletions are not an issue since they are relatively

inexpensive.

However where the query rate exceeds the insertion rate the use of Docld inverted files

is recommended. We have demonstrated that reduction in the cost of maintaining indexes is

possible by using parallelism (see chapter 8) and our method may be able offer much faster

access to documents than would normally be possible with inverted file indexes. For very large

databases it is possible to reduce downtime by using parallelism to insert documents in batches

and increase system availability. Where the availability of documents is not such an important

issue, batch updates would be preferred.

229

What of the other methods described in chapter 2 such as clustering and connectionist

approaches? Because of the extra computation needed we would only recommend their use if

some gain in retrieval effectiveness was found, using empirical experiment based on users

relevance judgements. In some cases it is hard to justify the use of some methods, such as the

application of parallel relational databases to IR: the use of parallel relational databases does

not bring benefits in terms of retrieval effectiveness or efficiency.

11.5 FURTHER RESEARCH

A number of very important issues in Parallel IR have yet to be addressed. Some have

been identified in this thesis; others were described in MacFarlane et al (1997). These include

concurrent transaction service on inverted files, extended Boolean models, connectionist

approaches, load balancing methods for term selection, other combinatorial optimisation

methods and further work on synthetic modelling for parallel IR.

11.5.1 Concurrent transaction service

One of the most important areas to investigate is the issue of using parallelism to

improve the performance of concurrent transaction service on inverted files. We have found

some evidence in the examination of the probabilistic search and index update tasks that

Termld partitioning could be useful in this context. We found that the workload over a number

of queries was spread fairly evenly, with only a small level of imbalance recorded. This

evidence in itself is not enough however, since it is possible that transactions may conflict over

the same data residing on the same nodes creating hotspots. There have been some conflicting

opinions on what would be the best method for concurrent transaction service. Lu and

McKinley (1999) argue that partial collection replication improves both performance and

scalability for large scale distributed IR systems, while Ribeiro-Neto et al (1999) argue for the

use of a Termld partitioning method together with various compression techniques. It would be

useful to do a comparison using these techniques with the D odd method.

To be able to service updates and multiple-queries simultaneously, an effective

concurrency control mechanism may be required. In order to complete such research we need

an evaluation methodology, as the ones we have currently are not adequate for the task. Once

we have such a methodology we would be able to study the use of parallel computing for

efficient update on inverted files and concurrency control mechanisms on the inverted file to

prevent loss of retrieval efficiency and effectiveness (MacFarlane et al, 1996).

230

11.5.2 Extended Boolean models

To the best of our knowledge, no work has been done on applying parallel computing

to extended Boolean models such as MMM, P-NORM and Paice (Fox et al, 1992). The MMM

and Paice models use fuzzy set theory, while the P-NORM model uses a distance based theory.

The models have been shown to produce better results than ordinary Boolean systems at the

cost of extra computation. In the case of P-NORM this computational cost is very large. Work

in the area of applying parallel techniques to these models is merited. These extended Boolean

models provide the possibility of an increase in retrieval effectiveness: therefore evaluation of

these methods in terms of precision and recall is regarded as essential.

11.5.3 Connectionist models ofIR

Rasmussen (1992) identified the need for more work in the area of connectionist

approaches, pointing out that there had been very little work at that point in the intersection

between network models in 1R and parallel computing for network models outside of IR. To the

best of our knowledge there has been little further progress in the area, and Rasmussen's

statement still holds true.

11.5.4 Load balancing for term selection algorithms

It is clear from the evidence found in the examination of the replication parallelism

results that work on load balancing for the Find Best and CSP algorithms could be useful. Figs

11-1 and 11-2 show load imbalance figures both for the number of evaluations and number of

skipped words (that is words dropped from the evaluation process after 4 failures, see chapter

10, section 10.2) made on the TREC8 runs. We take the load imbalance (LI) metric defined in

chapter 3, sub-section 3.4.1.8 and apply it to evaluation and word skip data.

Fig 11-1. Imbalance in evaluations for Fig 11-2. Imbalance in skipped words for
TREC8 routing experiments TREC8 routing experiments

It can be seen from the diagrams that the trend of imbalance is upward which is

consistent with the trend found when examining imbalance in time on slaves nodes in chapter

231

10, section 10.4.1. There is clearly a correlation between increasing imbalance on time,

evaluations and word skips, but as LI is much higher on time than it is on evaluations and skip

data therefore the interaction between the imbalances is complicated. The clue to solving the

problem is establishing what this relationship is, and a method of using such data to balance

load. We do not believe that a simple exchange of words would necessarily work as evaluations

do not have a uniform cost: what is done on the evaluation is as important as the number of

evaluations done.

Some form of dynamic re-distribution of terms amongst nodes needs to be formulated.

A natural point for any re-distribution would be at the end of one iteration. Any method of load

balancing should not increase overheads such that any advantage gained by balancing load is

lost. Another important factor that needs to be taken into consideration is that any re-

distribution technique may well have an effect on the course of term selection itself for some

algorithms, e.g. CFP/CSP. This may affect the final choice of terms for the query to be applied

to the test set, and by implication the final result. There is no guarantee that one method of load

balancing for one algorithm/opcration pair would be useful for another, but it would be nice to

derive a generic term re-distribution method.

One of the algorithms, namely CFP will be problematic when the issue of term re-

distribution is considered. The very nature of the choose first policy is that is it possible for one

node to find a good term immediately where at least one other has to inspect all of its terms.

Therefore there is an inbuilt load balancing problem with the method. We could consider

stopping a given iteration each time a good term was found, but that would require a further

complicated and expensive communication interactions both to find a positive term and

communicate this information to all the nodes. Further research could be useful, however.

11.5.5 Other methods for combinatorial optimisation

We could consider the use of machine learning (Hutchinson, 1994) tabu search (Glover

and Laguna, 1997) and pattern recognition (Kitter, 1986) techniques in order to optimise

routing/filtering queries. A great deal of research into search space methods has been done in

machine learning using methods such as genetic algorithms and neural networks that are both

very computationally intensive processes. Tabu search is a meta-hcuristic which can be used to

manage other heuristics in order to examine parts of the search space which would not

normally be looked at with a single search strategy. Some of the selection algorithms used in

pattern recognition are similar to the hillclimbers used in this study (Kitter, 1986), particularly

Find Best with add only and remove only operations. We could therefore treat the query

optimisation discussed in this research as a pattern recognition problem, treating different

232

combinations of the query as a pattern. The problem would be to find the best yield pattern in

the query. Parallelism could be used to speed up these methods, providing they are able to show

a retrieval effectiveness benefit on the test set.

11.5.6 Further work on the synthetic model

Further work on the synthetic modelling technique used in this thesis is merited both in

terms of strengthening the actual model and extending it for use in other tasks not studied here.

The key aspect to concentrate on initially will be the modelling of communication, given that it

was such a significant problem in our models. The problems in being able to do this

successfully should not be underestimated. The model will not only have to cope with

interactions between two processors, it will also have to model the pattern of communication

throughout the whole system (one of the reasons for our simplified modelling of communication

was to avoid this complexity). An interesting and worthwhile piece of research would be to

extend the functional modelling and use formal techniques to prove various aspects of it: this

may well provide insights that would not be obtained otherwise. When many problems have

been solved by using synthetic modelling, and more of an understanding of the theory of

performance of parallelism in IR is obtained, it may well be possible to derive an analytical

model of performance. Hopefully, this analytical model would be able to predict the actual

performance in a given IR task, more accurately than we can at present.

11.6 IMPLICATIONS FOR THE FIELD

What are the implications for the field of parallelism in IR or IR general for the

findings of this thesis? The first is that Termld partitioning does not seem have much of a

future and in most cases any researcher looking to use parallelism to speed up their IR

algorithms need look no further than the D odd partitioning method. The second is that we have

demonstrated that it is possible to use a synthetic model to compare the performance of

different algorithms on a given task, without the need for an analytical model. This simplifies

the process of modelling considerably, giving a researcher the tools they need to choose a

distribution method avoiding the need for complex modelling. It may be possible to extend the

synthetic modelling technique to more analytical methods, but this will always be at the cost of

extra complexity.

A very important issue is how well the algorithms and data structures used in this

thesis will scale to hundreds or even thousands of processors in order to improve retrieval

efficiency. The author does not think that for most of the collections such parallel machine

233

sizes would be practical (except perhaps for the VLC2/WT100g collection - but there would be

restrictions on even that). It is important to remember that there are collections current being

used (notably by the web search engines) which are far bigger than the ones we have used, and

we believe using such levels of parallelism are in fact useful. Gustafson’s law predicts that as

you increase data size, you also gain from parallelism (Hwang, 1993): either with a fixed size

parallel machine (scalability) or varying machine size (scaleup), We believe that the algorithms

and structures used for this thesis will scale up to data of the size of web data, with a few

minor changes (for example it is highly likely that some form of query optimisation will be

need to handle such large data sets).

With respect to retrieval effectiveness we have shown that just throwing extra

computational resources at a problem will not lead to any gain in say precision/recall and a

researcher who wishes to do such a thing may well be wasting their time. A researcher would

be far better off deriving an algorithm, method or model which provides better retrieval

effectiveness than the ones we have at present and may be computationally intensive. The use

of parallelism can be then be considered. Parallelism is an enabling technology which allows us

to tackle difficult problems, and is not an end in itself.

234

References

AALBERSBERG, IJ , and SIJSTERMANS, F. (1990)

InfoGuide: A full-text document retrieval system.

In: TJOA. A.M.. and WAGNER. R.. eds. Proceedings of the international conference of

database and expert systems applications. DEXA'90. (Berlin: Springer-Verlag): 12-21.

ALASDAIR, R., BRUCE, A., MILLS, J.G., and SMITH, A.G. (1994)

CHIMP/MPI User Guide version 1.2, 22 June 1994.

EPCC-KTP-CHIMP-V2-USER1,2. Edinburgh Parallel Computing Centre.

ANU. (1994)

MPI user's guide.

ANU/Fuiitsu CAP Research Program. Department of Computer Science, Australian National

University.

BAILEY, P. and HAWKING, D. (1996).

A parallel architecture for query processing over a terabyte of text.

Technical Report TR-CS-96-04. Department of Computer Science, Canberra: Australian

National University.

BALE, A.G., LITT, J. and PAVELIN, J. (1990).

The AMT DAP 500 system.

In: FOUNTAIN. T.J. and SHUTE. M.J.. eds. Multiprocessor Computer Architectures.

(Amsterdam: Elsevier Science Publishers B.V. North-Holland):155-184.

BEAULIEU, M.M., GATFORD, M„ HUANG, X., ROBERTSON, S.E., WALKER, S and

WILLIAMS, P. (1997).

Okapi at TREC-5.

In: VOORHEES. E.M. and HARMAN. D.K. eds. Proceedings of the Fifth Text Retrieval

Conference (TREC-5). U.S.A. November 1996. SP 500-238 Gaithersburg.(Gaithersburg:

NIST): 143-166.

235

BELL, G. (1992).

Ultracomputers: a teraflop before its time,

Communications of the ACM 35 (8): 27-47.

BLAIR, B.C. and MARON, M.E. (1985).

An evaluation of retrieval effectiveness for a full-text document retrieval system.

Communications of the ACM, 28 (3): 289-299.

BLAIR, B.C. and MARON, M.E. (1990).

Full-text information retrieval: further analysis and clarification.

Information Processing & Management. 26 (3): 437-447.

BOWLER, K.C., KENWAY, R.D., PAWLEY, G.S. ROWETH, D. and WILSON,G.V.

(1989). An introduction to Occam-2 programming: 2nd Edition, (Lund: Chartwell-Bratt).

BROWN, E.W., CALLAN, J.P., CROFT, W.B., and MOSS, J.E.B. (1994).

Suporting full-text information retrieval with a persistent object store,

In: JARKE, M., BUBENKO, J. and JEFFERY. K. ed. Proceedings of EDBT'94, March 1994.

LNCS 779, (Berlin:Springer-Verlag): 365-377.

CALLAN, J.P. (1994).

Passage-level evidence in document retrieval.

In: CROFT, W.B., and VAN RIJSBERGEN. C.J.. eds. Proceedings of the 17th Annual

International ACM-SIGIR Conference on Research and Development in Information Retrieval.

Dublin. July 1994. SIGIR'94. (London: Springer Verlag): 303-310

CARDENAS, A.F. (1975).

Analysis and performance of inverted data base structures.

Communications of the ACM. 18 (5): 253-263.

CARROLL, D.M., POGUE, C.A., and WILLETT, P. (1988).

Bibliographic pattern matching using the ICL Distributed Array Processor.

Journal of the American Society for Information Science. 39 (6): 390-399.

236

CLARKE, C.L.A., and CORMACK, G.V. (1995).

Dynamic inverted indexes for a distributed full-text retrieval system.

MultiText Project Technical Report MT-95-01. Department of Computer Science, Ontario:

University of Waterloo.

CLARKE, C.L.A., CORMACK, G.V., and PALMER, C.R. (1998).

An overview of MultiText.

SIGIR Forum 32. (2): 14-15.

COLOURIS, G., DOLLIMORE, J. and KINDBERG, T. (1994). Distributed systems:

concepts and design, Second Edition, (Wokingham:Addison-Wesley).

CORMACK, G.V., CLARKE, C.L.A., PALMER, C.R., TO, S.S.L., (1998).

Passage-based refinement (MultiText experiments for TREC-6).

In: VOORHEES, E.M., and HARMAN. D.K. ed. Proceedings o f the Sixth Text Retrieval

Conference, Gaithersburg. U.S.A, November 1997. SP 500-240. (Gaithersburg: NIST): 303-

320.

COWIE, A.P., Ed. (1989). Oxford advanced learner's dictionary of current english, fourth

edition, (Oxford: Oxford University Press).

CRINGEAN, J.K, MANSON, G.A., WILLETT, P„ and WILSON, G.A. (1988).

Efficiency of text scanning in bibliographic databases using microprocessor-based

multiprocessor networks.

Journal oflnformation Science. 14(61: 335-345.

CRINGEAN, J.K, LYNCH, M.F., MANSON, G.A., WILLETT, P„ and WILSON, G.A.

(1989).

Parallel processing techniques for information retrieval. Searching of textual and chemical

databases using transputer networks.

Online Information 89. (Oxford: Learned Information): 447-452.

237

CRINGEAN, J.K, ENGLAND, R. MANSON, G.A. and WILLETT, P. (1990).

Parallel text searching in serial files uing a pocessor farm.

In: VIDICK. J.L. ed. Proceedings of the 13th International Conference on Research and

Development in Infonnation Retrieval. (New York: ACM Press): 429-453.

CRINGEAN, J.K, ENGLAND, R. MANSON, G.A. and WILLETT, P. (1991a).

Network design for the implementation of text searching using a multicomputer.

Infonnation Processing & Management. 27 (4): 265-283.

CRINGEAN, J.K, ENGLAND, R. MANSON, G.A. and WILLETT, P. (1991b).

Nearest-neighbour searching in files of text signatures using transputer networks.

Electronic Publishing. 4 (4): 185-203.

GROPP, W. and LUSK, E. (1998)

Users guide for MPICH, a portable Implementation of MPI.

Mathematics and Computer Science Division. Argonne National Laboratory. University of

Chicago.

DATE, C.J. (1983). An introduction to database systems, Volume II, (Massachusetts:

Addison-Wesley).

DEERWESTER, S.C., ZIFF, D.A., and WACLENA, K. (1990).

An architecture for full text retrieval systems.

In: TJOA. A.M.. and WAGNER. R„ eds. Proceedings of the international conference of

database and expert systems applications. DEXA'90. (Berlin: Springer-Verlag): 22-29.

DEERWESTER, S„ DUMAIS, S.T., FURNAS, G.W., LANDAUER,. T.K. and

HARSHMAN, R. (1990)

Indexing by latent semantic analysis.

JASIS41 (61:391-407.

DEITEL, H. M. (1990).Operating systems. 2nd edition, (Massachusetts: Addison-Wesley).

238

DEWITT, D., and GRAY. J. (1992).

Parallel database systems: the future of high performance database systems.

Communications of the ACM. 35 (6): 85-98.

DIXON, W. (2000). Personal communication.

DONGARRA, J.J., OTTO, S.W., SNIR, M„ and WALKER, D. (1996).

A message passing standard for MPP and workstations.

Communications of the ACM. 39 (7): 84-90.

EFRAIMIDIS, P. GLYMIDAK1S, C. MAMALIS, B. SPIRAK1S, P. and

TAMPAKAS, B. (1995).

Parallel text retrieval on a high performance supercomputer using the vector space

model.

In: FOX, E.A., INGWERSEN, P and FIDEL. R. eds. Proceedings of the 18th Annual

International ACM SIGIR Conference on Research and Development in Information Retrieval.

Special Issue of SIGIR forum. (New York: ACM Press): 58-66.

FALOUTSOS, C. (1985).

Access methods for text.

ACM Computing Surveys. 17 (1): 49-74.

FEDOROWICZ, J. (1987).

Database performance evaluation in an indexed fde enviroment.

ACM Transactions on Database Systems. 12 (1):85-110.

FLYNN, M. J. (1972).

Some computer organisations and their effectiveness.

IEEE Transactions on Computers. 21 (9): 948-960.

FOX, C. (1990)

A stop list for general text,

SIGIR FORUM. 24 (4): 19-35.

239

FOX, E., BETRABET, S„ KOUSHIK, M„ and LEE, W. (1992).

Extended boolean models.

In: FRAKES, W.B, and BAEZA-YATES. R.. eds. Information Retrieval-

Data Structures and Algorithms. (N.J.: Prcntice-Hall): 393-418.

FRAKES, W.B. (1992).

Introduction to information storage and retrieval systems.

In: FRAKES, W.B, and BAEZA-YATES. R.. eds. Information Retrieval. Data

Structures and Algorithms. (N.J.: Prentice-Hall): 1-12.

FRIEDER, O., and SEIGELMANN, H.T. (1993)

On the allocation of documents in multiprocessor information retrieval systems.

In: KORFHAGE, R, RASMUSSEN. E.M.. and WILLETT. P„ eds. Proceedings of Sixteenth

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval. (New York: ACM Press): 230-239.

FUJITSU. (1994).

API000 user guide.

Fujitsu Laboratories Ltd. Release 1.4 March 1994,

GLOVER, F. and LAGUNA, M. (1997). Tabu search. (Boston: Kluwer Academic Publishers).

GONNET, G.H., BAEZA-YATES, R.A., and SNIDER, T. (1992).

New indices for text: PAT trees and PAT arrays.

In: FRAKES, W.B, and BAEZA-YATES. R.. eds. Information Retrieval. Data Structures and

Algorithms. (N.J.: Prentice-Hall): 66-82.

GRANDI, F., TIBERIO, P. and ZEZULA, P. (1992).

Frame-sliced partitioned parallel signature files.

In: BELKIN, N.J., INGWERSEN, P.. and PEJTERSEN. A.M., eds. Proceedings of the 15th

annual conference on research and development in Information Retrieval. SIGIR'92. (New

York: ACM Press): 286- 297.

240

GROSSMAN, D.A., HOLMES, D.O., and FRIEDER, O. (1995).

A parallel DBMS approach to 1R in TREC-3.

In: HARMAN. D.K.. ed. Proceedings of Third Text Retrieval Conference. Gaithersburg. USA.

November 1994. SP 500-226. (Gaithersburg: NIST): 279-288.

GROSSMAN, D.A., HOLMES, D.O., FRIEDER, 0., NGUYEN, M.D. and

KINGSBURY, C.E. (1996).

Improving accuracy and run-time performance for TREC-4.

In: HARMAN. D.K.. ed. Proceedings of Fourth Text Retrieval Conference. Gaithersburg.

USA. November 1995. 500-236. (Gaithersburg: NIST): 433-442.

HARMAN, D.K.(1992).

Relevance feedback and other query modification techniques.

In: FRAKES, W.B. and BAEZA-YATES. R,. eds. Information Retrieval. Data Structures and

Algorithms. (N.J.: Prentice-Hall): 241-263.

HARMAN, D.K. (1996).

Overview of the fourth text retrieval conference (TREC-4),

In: HARMAN. D.K. ed. Proceedings of the Fourth Text Retrieval Conference (TREC-4).

Gaithersburg. U.S.A. November 1995. SP 500-236. (Gaithersburg: NIST): 1-24.

HARMAN, D„ FOX, E„ BAEZA-YATES, R„ and LEE, W. (1992).

Inverted files.

In: FRAKES. W.B. and BAEZA-YATES. R.. eds. Information Retrieval. Data Structures and

Algorithms. (N.J.: Prentice-Hall): 28-43.

HAWKING, D. (1991).

High speed search of large text base on the fujitsu cellular array processor.

In: GUPTA, G„ and PRITCHARD. P., eds. Proceedings of 4th Australian Supercomputer

Conference. Bond University. December 1991. (Gold Coast: Bond University): 83-90.

HAWKING, D. (1992).

PADDY'S progress (further experiments in free-text retrieval on the API 000).

In: ISHII, M„ ed. Proceedings of the 1st Parallel Computing Workshop. Kawasaki. Japan.

November 1992, (Kawasaki: Fujitsu Parallel Computing, Research Facility): ANU-8.

241

PADRE - A parallel document retrieval engine.

In; ISHII, M„ ed. Proceedings of the 3rd Parallel Computing Workshop. Kawasaki. Japan.

November 1994. (Kawasaki; Fujitsu Parallel Computing, Research Facility): P2-C.

HAWKING, D. (1995).

The design and implementation of a parallel document retrieval engine.

Technical Report TR-CS-95-08. Department of Computer Science. Canberra: Australian

National University.

HAWKING, D. (1996).

Document retrieval performance on parallel systems.

In: ARABNLAL, H.R., ed. Proceedings of the 1996 International Conference on Parallel and

Distributed Processing Techniques and Applications. Sunnyvale. California, August 1996.

(Athens: CSREA): 1354-1365.

HAWKING, D. (1998).

Efficiency/effectiveness trade-offs in query processing.

SIGIR Forum. 32 (21: 16-22.

HAWKING, D. and BAILEY, P. (1993).

Towards a practical information retrieval system for the fujitsu AP1000.

In: ISHII, M.. ed. Proceedings of the 2nd Parallel Computing Workshop. Kawasaki. Japan.

November 1993. (Kawasaki: Fujitsu Parallel Computing, Research Facility): Pl-S.

HAWKING, D. and BAILEY, P. (1995).

PADRE user manual.

Department of Computer Science. (Canberra: Australian National University).

HAWKING, D„ BAILEY, P„ CAMPBELL, D„ THISTLEWAITE, P. and

TRIDGELL, A. (1995).

A PADRE in MUFTI (a multi user free text retrieval intermediary).

In: DARLINGTON. J„ ed. Proceedings of the 4th Parallel Computing Workshop. Imperial

College, London. September 1995. (London: Imperial College / Fujitsu Parallel Computing

Research Facility): 75-84.

H A W K IN G , D . (1994).

242

HAWKING, D., CRASWELL, N. and THISTLEWAITE, P. (1999).

Overview of TREC-7 very large collection track.

In: VOORHEES. E.M. and HARMAN. D.K., eds. Proceedings of Seventh Text Retrieval

Conference (TREC-7). Gaithersburg. USA. November 1998. NIST SP 500-242,

(Gaithersburg: NIST): 257-268.

HAWKING, D. and THISTLEWAITE, P. (1995).

Searching for meaning with the help of a PADRE.

In: HARMAN, D.K., ed. Proceedings of Third Text Retrieval Conference. Gaithersburg. USA.

November 1994. SP 500-226. (Gaithersburg: NIST): 257-268

HAWKING, D. and THISTLEWAITE, P. (1996).

Proximity operators - so near and yet so far.

In: HARMAN. D.K.. ed. Proceedings of Fourth Text Retrieval Conference. Gaithersburg.

USA. November 1995. SP 500-236 (Gaithersburg: NIST): 131-144.

HAWKING, D. and THISTLEWAITE, P. (1998).

Overview of TREC-6 very large collection track.

In: VOORHEES. E.M. and HARMAN. D.K.. ed. Proceedings of Seventh Text Retrieval

Conference (TREC-7). Gaithersburg. USA. November 1997. SP 500-242. (Gaithersburg:

NIST): 93-106.

HAWKING, D„ THISTLEWAITE, P. and CRASWELL, N. (1998).

ANU/ACSys TREC-6 experiments.

In: VOORHEES. E.M. and HARMAN. D.K.. ed. Proceedings of Seventh Text Retrieval

Conference (TREC-7). Gaithersburg. USA. November 1997. SP 500-242 (Gaithersburg:

NIST): 275-290.

HAWKING, D., VOORHEES, E.M., CRASWELL, N. and BAILEY, P. (2000).

Overview of TREC-8 web track.

In: VOORHEES. E.M. ed. Proceedings of Eight Text Retrieval Conference (TREC-8).

Gaithersburg. USA. November 1999. (Gaithersburg: NIST): to appear

HOCKNEY, R. W. and JESSHOPE, C.R. (1988). Parallel computing 2. (Bristol: IOP

Publishing).

243

HOCKNEY, R.W. (1993).

Performance parameters and benchmarking of supercomputers.

In: DONGARRA, J.J., and GENTZSCH. W„ Computer Benchmarks: Advance in Parallel

Computers 8. (Amsterdam: North-Holland): 41-63.

HOLLAAR, L.A. (1991).

Special-purpose hardware for text searching: past experience, future potential. Information

Processing & Management. 27 (4): 371-378.

HOLLAAR, L.A. (1992).

Special-purpose hardware for information retrieval.

In: FRAKES, W.B, and BAEZA-YATES. R„ eds. Information Retrieval. Data Structures and

Algorithms. (N.J.: Prentice-Hall): 443-458.

HULL, D.A (1999).

The TREC-7 filtering track: description and analysis.

In: VOORHEES. E.M. and HARMAN. D.K.. eds. Proceedings of Seventh Text Retrieval

Conference (TREC-7). Gaithersburg. USA. November 1998. NIST SP 500-242,

(Gaithersburg: NIST): 33-56.

HULL, D.A. and ROBERTSON, S.E. (2000).

The TREC-8 filtering track final report.

In: VOORHEES, E.M. and HARMAN. D.K.. eds. Proceedings of Eighth Text Retrieval

Conference (TREC-8). Gaithersburg. USA. November 1999. NIST SP XXX-XXX,

(Gaithersburg: NIST): to appear.

HUTCHINSON, A. (1994). Algorithm learning. (Oxford: Clarendon Press).

HURSON, A.R., MILLER, L.L., PAKZAD, S.H. and CHENG, J.B. (1990).

Specialized parallel architectures for textual databases.

In: YOVITS. M„ ed. Advances In Computers. Vol. 30. Academic Press.: 1-37.

HWANG, K. (1993). Advanced Computer Architecture: Parallelism, Scalability,

Programmability. (Singapore: McGraw-Hill).

244

Inverted file partitioning schemes in multiple disk systems.

IEEE Transactions on Parallel and Distributed Systems. 6 (21: 142-153.

KAPALEASWARAN, T.N., and RAJARAMAN, V. (1990).

Parallel search methods of a document database in a distributed computer system: a case study.

Journal of Information Science. 16: 291-298.

KASZKIEL, M., and ZOBEL, J. (1997).

Passage retrieval revisited.

In: BELKIN. N.J.. NARASIMHALU. A.D. and WILLETT. P.. Proceedings of the 20th

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval. Philadelphia. SIGIR'97. (New York: ACM Press): 178-185.

KIRSCH, S. (1998).

The future of Internet search: Infoseek’s experiences searching the Internet.

SIGIR Forum. 32 (2): 3-7.

KIM, J.Y. (2000). Personal communication.

KITTER, J. (1986).

Feature selection and extraction.

In: YOUNG, T.Y. and FU. K.. eds. Handbook of Pattern Recognition and Image Processing.

New York:Academic Press): 59-83.

KNIGHT-RIDDER. (1997). 1997 Complete database catalogue, Knighl-Ridder Information,

Inc.

KWOK, K.L. (1989).

A neural network for probabilistic information retrieval.

In: BELKIN. N.J.. and VAN RIJSBERGEN. C.J.. eds. Proceedings of the 12th annual

conference on research and development in Information Retrieval. SIGIR'89. (New York:

ACM Press): 21-30.

JE O N G , B „ an d O M IE C IN S K I, E . (1995).

245

KWOK, K.L., and GRUNFELD, L. (1994).

TREC2 document retrieval experiments using PIRCS.

In: HARMAN, D.K., ed. Proceedings of the Second Text Retrieval Conference. Gaithersburg.

USA. November 1993. SP 500-215. (Gaithersburg: NIST): 233-242.

LAWRENCE, S. and GILES C.L. (1999)

Accessibility of information on the web.

Nature 400: 107-109.

LETSCHE, T.A. and BERRY, M.W. (1997)

Large-scale information retrieval with latent semantic indexing.

Information Sciences 100: 105-137.

LEWIS. D.D. (1996).

The TREC-4 filtering Track.

In: HARMAN. D.K., ed. Proceedings of the Fourth Text Retrieval Conference. Gaithersburg.

U.S.A. November 1995. SP 500-236. (Gaithersburg: NIST): 165-180.

LEWIS. D.D. (1997a).

The TREC-5 filtering Track.

In: VOORHEES, E.M, and HARMAN. D.K.. ed. Proceedings of the Fifth Text Retrieval

Conference, Gaithersburg. U.S.A. November 1996. SP 500-238. (Gaithersburg: NIST 1997):

75-96.

LEWIS. D.D. (1997b).

Reuters-22178 text categorization test collection.

http://www.research.att.com/~lewis/reuters21578/README.txt

LINOFF, G„ and STANFILL, C. (1993).

Compression of indexes with full positional information in very large text databases.

In: KORFFLAGE, R, RASMUSSEN. E.M., and WILLETT. P.. eds. Proceedings of Sixteenth

Annual International ACM SIGIR Conference on Research and Development in Information

Retrieval. (New York: ACM Press): 88-95.

246

http://www.research.att.com/~lewis/reuters21578/README.txt

Development of a stemming algorithm.

Mechanical Translation and Computational Liguistics, Voi. 11.

LU, Z. and MCKINLEY, K.S. (1999).

Partial replica selection based on relevance for information retrieval.

In: HEARST, M., GEY, F. and TONG. R.. Proceedings of the 22nd International Conference

on Research and Development in Information Retrieval. SIGIR'99. (New York: ACM Press):

97-104.

MACFARLANE, A„ ROBERTSON, S.E., and MCCANN, J.A. (1996).

On concurrency control for inverted files.

In: JOHNSON, F.C., ed. Proceedings of the 18th BCS IRSG Annual Colloquium on

Information Retrieval Research. March 26-27 1996, Manchester. (Manchester: BCS IRSG):

67-79.

L O V IN S , J .B . (1968)

MACFARLANE, A., ROBERTSON, S.E., and MCCANN, J.A. (1997).

Parallel computing in information retrieval - an updated review

Journal of Documentation. 53 (3): 274-315.

MACFARLANE, A., MCCANN, J.A. and ROBERTSON, S.E. (1999a).

PLIERS: a parallel information retrieval system using MPI.

In: DONGARRA, J,, LUOUE. E. and MARGALEF. T„ eds. Proceedings of 6th European

PVM/MPI Users' Group Meeting. Barcelona. Lecture Notes in Computer Science 1697.

(Berlin: Springer-Verlag): 317-324.

MACFARLANE, A., ROBERTSON, S.E., and MCCANN, J.A. (1999b).

PLIERS at VLC2.

In: VQORHEES, E.M. and HARMAN. D.K., eds. Proceedings of Seventh Text Retrieval

Conference (TREC-7), Gaithersburg. USA, November 1998. SP 500-242, (Gaithersburg:

NIST): 327-336

247

MACFARLANE, A., ROBERTSON, S.E., and MCCANN, J.A. (2000a).

PLIERS at TREC 8.

In: VOORHEES, E.M. and HARMAN. D.K.. eds. Proceedings of Eight Text Retrieval

Conference (TREC-8), Gaithersburg, USA, November 1999. SP 500-246, (Gaithersburg:

NIST): 241-252.

MACFARLANE, A., MCCANN, J.A. and ROBERTSON, S.E. (2000b).

Parallel search using partitioned inverted files.

In: DE LA FUENTE, P., ed. Proceedings of String Processing and Information Retrieval -

SPIRE 2000, September 2000, A Coruna. Spain. (Los Alami tos: IEEE Computer Society

Press), 209-220.

MACLEOD, K.J. and ROBERTSON W. (1991).

A neural algorithm for document clustering.

Information Processing & Management. 27 (4): 337-46.

MASSAND, B., and STANFILL, C. (1994).

An information retrieval test-bed on the CM-5.

In: HARMAN, D.K., ed. Proceedings of Second Text Retrieval Conference. Gaithersburg.

USA, November 1993. SP 500-215. (Gaithersburg: NIST): 117-122.

ODDY, R.N. and BALAKRISHNAN, B. (1991).

PTHOMAS: an adaptive information retrieval system on the connection machine.

Information Processing & Management. 27 64): 317-335.

OZKARAHAN, E. (1991).

System architectures for information processing.

Information Processing & Management. 27 (41: 347-369.

PANAGOPOULOS, G. and FALOUTSOS, C. (1994).

Bit-sliced signature files for very large text databases on a parallel machine architecture.

In: MATTHIAS. J.. BUBENKO. J„ and JEFFERY. K„ eds. Proceedings of EDBT'94.

(Heidelberg: Springer-Verlag): 379-392.

248

POGUE, C.A. and WILLETT, P. (1987a)

Text searching algorithms for parallel processors.

British Library Research Paper 11. (London: British Library).

POGUE, C.A., and WILLETT, P. (1987b).

Use of text signatures for document retrieval in a highly parallel environment.

Parallel Computing. 4: 259-268.

POGUE, C.A., RASMUSSEN, E.M., and WILLETT, P. (1988).

Searching and clustering of databases using the ICL Distributed Array Processor.

Parallel Computing. 8: 399-407.

RASMUSSEN, E.M., and WILLETT, P. (1989).

Efficiency of hierarchic agglomerative clustering using the ICL Distributed Array Processor.

Journal of Documentation. 45 (1): 1-24.

RASMUSSEN, E.M. (1991).

Introduction: parallel processing and information retrieval.

Information Processing & Management. 27 (4): 225-263.

RASMUSSEN, E. M. (1992).

Parallel information processing.

In: WILLIAMS. M.E.. Annual Review of Information Science and Technology (ARIST),

Volume 27. (N.J.: American Society for Information Science): 99-130.

REDDAWAY, S.F. (1991).

High speed text retrieval from large databases on a massively parallel processor.

Information Processing & Management. 27 (4): 311-316.

RIBEIRO-NETO, B„ MOURA, E.S., NEUBERT, M.S., and ZIVIANI, N. (1999).

Efficient distributed algorithms to build inverted files.

In: HEARST. M„ GEY. F. and TONG. R„ Proceedings for the 22nd International Conference

on the Research and Development in Information Retrieval. SIGIR'99. (New York: ACM

Press): 105-112.

249

On temi selection for query expansion, documentation note.

Journal of Documentation. 46. No 4: 359-364.

R O B E R T S O N , S .E . (1 9 9 0).

ROBERTSON, S.E., and SPARCK JONES, K. (1976)

Relevance weighting of search terms.

JASIS. Mav-June: 129-145.

ROBERTSON, S.E., and SPARCK JONES, K. (1994)

Simple, proven approaches to text retrieval.

Technical Report No. 356. University of Cambridge Computer Laboratory.

ROBERTSON, S.E. AND WALKER, S. (1995). On the logic of search sets and non-

boolean retrieval. Unpublished paper.

ROBERTSON, S.E., WALKER, S„ JONES, S„ HANCOCK-BEAULIEU, M.M. and

GATFORD, M. (1995).

Okapi at TREC-3.

In: HARMAN. D.K.. ed. Proceedings of Third Text Retrieval Conference. Gaithersburg. USA.

November 1994. NIST SP 500-226. (Gaithersburg: NIST): 109-126.

ROBERTSON, S.E., WALKER, S„ JONES, S„ HANCOCK-BEAULIEU, M.M.,

GATFORD, M. and PAYNE, A. (1996).

Okapi at TREC-4.

In: HARMAN. D.K.. ed. Proceedings of the Fourth Text Retrieval Conference. Gaithersburg.

U.S.A. November 1995. NIST SP 500-236. (Gaithersburg: NIST): 73-96.

RUNGSAWANG, A., TANGPONG, A., and LAOHAWEE, P. (1999).

Parallel DISR text retrieval system.

In: DONGARRA. J.. LUOUE. E. and MARGALEF. T„ eds. Proceedings of 6th European

PVM/MPI Users' Group Meeting. Barcelona. Lecture Notes in Computer Science 1697.

(Berlin: Springer-Verlag): 325-332.

250

Parallel computations in information retrieval.

In: HANDLER. W„ ed. Proceedings of CONPAR'81. (Berlin: Springer-Verlag): 328-342.

SALTON, G. (1986).

Another look at automatic text-retrieval systems.

Communications of the ACM. 29 (7): 648-656.

SALTON, G„ and BUCKLEY, C. (1988).

Parallel text search methods.

Communications of the ACM. 31 (2): 202-215.

SCHIETTECATTE, F. (1996). Personal communication.

SEIGELMANN, H.T., and FRIEDER, O. (1993).

Document allocation in multiprocessor information retrieval systems.

In: ADAM. N.R.. and BHARGAVA. B.K. eds. Advanced Database Systems. (Berlin:

Springer-Verlag): 289-310.

SHARMA, R. (1989).

A generic machine for parallel information retrieval.

Information Processing and Management. 25 (3): 223-235.

SHISSLER, J. (2000). Personal communication.

SHOENS, K., TOMASIC, A., and GARCIA-MOLINA H. (1994).

Synthetic workload performance analysis of incremental updates.

In: CROFT. W.B.. and VAN RIJSBERGEN. C.J.. eds. Proceedings of the 17th annual

international ACM-SIGIR conference on research and development in Information Retrieval.

SIGIR94. (London: Springer-Verlag): 329-338.

S A L T O N , G ., a n d B E R G M A R K , D . (1981).

251

AT&T at TRJEC-6.

In: VQQRHEES. E.M. and HARMAN. D.K„ ed. Proceedings o f the Sixth Text Retrieval

Conference. Gaithersbure. U.S.A. November 1997. SP 500-240. (Gaithersburg: NIST): 215-

226.

SILVERSTEIN, C„ HENZINGER, M„ MARAIS, H, and MORICZ, M. (1999).

Analysis of a very large web search engine log.

SIGIR Forum. 33 (1): 6-12.

SKILLICORN, D.B. (1995a).

Structured parallel computation in structured documents.

External Technical Report. Ontario: Queen's University, Canada..

SKILLICORN, D.B. (1995b)

A generalisation of indexing for parallel document search.

External Technical Report. Ontario: Queen's University, Canada.

STANFILL, C. and KAHLE, B. (1986).

Parallel free-text search on the connection machine system.

Communications of the ACM. 29 (12): 1229-1239.

STANFILL, C„ THAU, R„ and WALTZ, D. (1989).

A parallel Indexed algorithm for Information Retrieval.

In: BELKIN. N.J.. and VAN RIJSBERGEN. C.J.. eds. Proceedings of the 12th annual

conference on research and development in Information Retrieval. SIGIR'89. (New York:

ACM Press): 88-97.

STANFILL, C. (1990).

Partitioned posting fdes: a parallel inverted file structure for information retrieval.

In: VIDICK. J.L. ed. Proceedings of the 13th International Conference on Research and

Development in Information Retrieval. (New York: ACM Press): 413-428.

S IN G H A L , A . (1998).

252

STANFILL, C, and THAU, R. (1991).

Information retrieval on the connection machine: 1 to 8192 Gigabytes.

Information Processing & Management. 27 (4): 285-310.

STANFILL, C. (1992).

Parallel information retrieval algorithms.

In: FRAKES. W.B, and BAEZA-YATES. R„ eds. Information Retrieval. Data Structures and

Algorithms. (N.J.: Prentice-Hall): 413-428.

STEPHEN, G.A., and MATHER, P. (1994).

What is SP?

The Computer Journal. 37 (9): 745-752.

STEPHEN, G.A. (1994).

What is SP?: A Reply, Correspondence.

The Computer Journal. 38 (3): 255-256.

STEWART, M. and WILLETT, P. (1987).

Nearest neighbour searching in binary search trees: simulation of a multiprocessor

system.

Journal of Documentation. 43 (2): 93-111.

STONE, H.S. (1987).

Parallel querying of large database: a case study.

IEEE Computer. 20 (10): 11-21.

SUNDERAM, V.S. 1990

PVM: A framework for parallel distributed computing.

Concurrency: Practice and Experience. 2 (4): 315-339.

TANENBAUM, A.S. (1990). Structured computer organisation. 3rd edition, (N.J.: Prentice-

Hall).

253

Performance of inverted indices in shared-nothing distributed text document information

retrieval systems.

Technical Report STAN-CS-92-1434. Department of Computer Science, (C.A.: Stanford

University.

TOMASIC, A., and GARCIA-MOLINA, H. (1993a)

Performance of inverted indices in shared-nothing distributed text document information

retrieval systems.

Proceedings of the 2nd International Conference on Parallel and Distributed Information

Systems. (Los Alomitos: IEEE Computer society press): 8-17.

TOMASIC, A., and GARCIA-MOLINA, H. (1993b).

Caching and database scaling in distributed shared-nothing information retrieval systems.

In: BUNEMAN. P.. and JAJODLA. S.. eds. Proceedings of the 1993 ACM SIGMOD

International Conference on Management of Data. (N.Y.: ACM Press): 129-138.

TUSON, A. (1998).

Optimisation with hillclimbing on steriods: an overview of neightbourhood search techniques.

In: Proceedings of the 10th Young Operational Research Conference. Operational Research

Society, 1998:141-156.

YOORHEES, E.M. and HARMAN, D.K. (1999).

Overview of the seventh text retrieval conference (TREC-7).

In: YOORHEES. E.M. and HARMAN. D.K.. eds. Proceedings of Seventh Text Retrieval

Conference (TREC-7). Gaithersburg. USA. November 1998. SP 500-242. (Gaithersburg:

NIST): 1-23.

WALDEN, M„ and SERE, K. (1989).

Free text retrieval on transputer networks.

Microprocessors and Microsystems. 13 (3): 179-187.

T O M A S IC , A ., an d G A R C IA -M O L IN A , H . (1992).

254

OKAPI at TREC-6.

In: VOORHEES. E.M. and HARMAN. D.K.. ed. Proceedings of the Sixth Text Retrieval

Conference. Gaithersburg. U.S.A, November 1997. SP 400-240. (Gaithersburg: NIST): 125-

136.

WALTZ, D. (1987).

Applications of the connection machine.

IEEE Computer. 20 61): 85-97.

WILLETT, P., and RASMUSSEN, E.M. (1990). Parallel Database Processing. (London:

Pitman).

WILSON, E. (1996a).

Using hypertext and parallel processing to integrate multi-purpose, multi-structural

databases.

Hypertext paper. Kent: University of Kent at Canterbury.

WILSON, E. (1996b)

Hypertext and parallel processing: browsing and retrieval.

Hypertext paper. Kent: University of Kent at Canterbury.

WIRTH, N. (1986). Algorithms & data structures. (N.J.: Prentice-Hall).

WOLFF, J.G. (1994a).

A scaleable technique for best-match retrieval of sequential information using metrics-guided

search.

Journal of Information Science. 20 (11: 16-28.

WOLFF, J.G. (1994b).

What is SP?: A reply, correspondence.

The Computer Journal. 38 (3): 253-255.

W A L K E R , S „ R O B E R T S O N , S .E ., an d B O U G H A N E M , M . (1998).

255

WOLFRAM, D. (1992a).

Applying informetric characteristics of databases for ir system file design, part i:

infomietic models.

Information Processing and Management. 28 (1): 121-133.

WOLFRAM, D. (1992b).

Applying informetric characteristics of databases for ir system file design, part ii:

simululation comparisions.

Information Processing and Management. 28 O'): 135-151.

YOUNT, R.J., VRIES, J.K., and COUNCILL, C.D. (1991).

The medical archival system: an information retrieval system base on distributed parallel

processing.

Information Processing & Management. 27 (4): 379-389.

256

GLOSSARY

Add Only A term set operation in which good terms are added to a query.

Add/Remove A term set operation in which good terms are either added to a query

or negative terms are removed from the query.

Add/Reweight As add only, but set weights on the document identifier set of a term

are varied.

Accumulated set A document idenfifier set which is the result of all merges done in

term selection.

Base set Set of terms chosen from the top of the term pool: forms the initial

query.

BM25 Best Match function number 25 (see chapter 3).

BSSF Bit Sliced Signature File.

CAP Choose All Positive: A Steepest-ascent hillclimber which

accumulates the best terms using a given operation over all terms in

one iteration.

CF allocation Method of term allocation in Termld to partition using a collection

frequency criterion.

CFP Choose First Positive: A First-ascent hillclimber which selects the

first good term using a given operation in one iteration.

CM-2 Thinking Machines Connection Machine 2.

CPU Central Processing Unit.

CSP Choose Some Positive: Parallel version of CAP which makes a

selection on a subset of terms in one iteration.

DAP Distributed Array Processor.

Distributed Build Method of building indexes where text is distributed from a single

node.

Distributed memory Architecture in which memory is distributed amongst processors.

Distributed Passage Method of parallel passage retrieval which processes passages on a

Processing whole database level.

Document id set Set of documents in which a given term occurs.

D odd Parititioning method which assigns all document data for a given

document to one index partition

257

DSMDSM Architecture in which memory is physically distributed, but logically

Efficiency

shared amongst processors.

Measure of how well a parallel machine is used.

Elapsed time Time to complete a task from start to finish. Can be average elapsed

time.

Evaluation Operation applied during term selection to a term using a given

metric.

Evaluation set The term pool minus the base set: term selection is done on these

terms.

Farmer process Process in Distributed Build indexing which distributes text to

nodes.

FB Find Best: A Steepest-ascent hillclimber which selects the best term

using a given operation over all terms in one iteration.

FSA Finite State Automata.

Gigabytes 230 bytes.

Global Merge Process Process which exchanges data between nodes in order to create a

distributed Termld inverted file.

Granularity Measure or size of individual computation in parallel computing.

Indexer process Process in Local Build which analyses text and builds inverted fde to

the local disk.

IDF Inverse Document Frequency.

Intra-query Methods available within queries i.e. parallelism.

Inter-query Methods available between queries i.e. parallelism.

Intermediate set Result of a merge between a current terms document identifier set

and the accumulated set during term selection: evaluations are

applied to this set.

Inverted File Index organisation of keywords and the documents they occur in.

I/O Input / Output.

LI Load Imbalance.

Local Build Method of indexing where all processing is kept local to the node.

Local Passages Method of parallel passage retrieval which kepts passage processing

Processing local to a node.

Megabytes 220 bytes.

Merge Costs Percentage of time spent merging over all the processors.

MCU Master Control Unit.

258

Mhz Megahertz: processor clock speed.

MIMO Multiple Instruction Multiple Data machine architecture.

MISD Multiple Instruction Single Data machine architecture.

MMM Model Fuzzy set based extended boolean model.

NEWS grid North South East West interconnect for parallel architecture.

Paice Model Fuzzy set based extended boolean model.

Partition Fragment of Inverted file on a nodes disk.

PE Processing Element.

P-NORM Model Distance based extended boolean model.

Precision Measure of relevant documents retrieved.

Precision Points Number of relevant documents at 5,10,15 and 20 documents

retrieved.

Process farm A set of processes where a fanner process distributes work to worker

Recall

processes.

Measure of retrieved relevant documents.

Regular Expressions Used to search for a number of patterns rather than a single pattern.

Remove only A tenn set operation in which negative terms are removed from the

query.

Replication Duplication of the inverted file on all nodes of a shared nothing

parallel computer.

Scalability A measure of how well the algorithm scales on the same equipment.

Scaleup "The ability of an N-times larger system to perform an N-times larger

job in the same elapsed time as the original system"

signature Document surrogate of n bits, where tenns are hashed to m bits.

SIMD Single Instruction Multiple Data machine architecture.

SISD Single Instruction Single Data machine architecture.

Shared everything Architecture in which memory and disk are shared among

processors.

Shared memory Architecture in which memory is shared amongst processors.

Shared nothing Architecture in which a processor has its own memory and disk.

SP Theory of computing as compression, applied to pattern matching.

Speedup Measure of speed advantage of parallelism over uniprocessors.

Streams A sequence of instructions or data operated on by a CPU.

Surrogate coding see signature.

259

Tennld

Term Pool

Term Selection

TF allocation

Throughput

Timing Process

TREC

TSV

VLDC

WC allocation

Worker

Zipf distribution

Parititioning method which assigns all term data for a given term to

one partition.

A term set created by using relevance feedback on documents marked

relevant to the topic and applying a term selection value criterion to

chose the top N terms.

Process of selecting terms for a routing/filtering query using an

algorithm (i.e FB) together with a term operation (i.e. Add Only).

Method of term allocation in Tennld to partition using a term

frequency criterion.

Number of discrete jobs done in a given time period.

Process which times local build indexing elapsed time.

Annual Text Retrieval Conference run by the National Institute of

Standards and Technology in the United States.

Term Selection Value: Weight assigned to a term based on relevance

feedback data.

Variable Length Don't Care pattern match.

Method of term allocation in Tennld to partition using a word count

criterion.

Process which creates index data from raw text in Distributed Build

indexing.

Distribution which suggests that a few words will occur in many

documents, while many words will occur in few documents.

260

APPENDICES

261

Appendix A2: Extra Probabilistic Search Results

' t i t l e o n ly

n p o s

— title o n ly
p o s

— & — w h o le

to p ic

n p o s

— : > t — w h o le
to p ic p o s

1 2 3 4 5 6 7

lea f nodes

Fig A2-1. BASE1 [Termld]: search average
elapsed time in seconds (sequential sort: CF

distribution)

Leaf
nodes

Title Only WholeTopic

- NPOS POS NPOS POS
2 63% 40% 55% 34%
3 69% 48% 63% 44%
4 73% 53% 69% 54%
5 75% 55% 72% 57%
6 78% 58% 75% 60%
7 80% 61% 73% 62%

Table A2-1. BASE1 [Termldj: search
overheads in % of total time

(sequential sort: CF distribution)

Q_
Z3

" O
03
03
C Lcn

2

1.5 ■

1
Àp -m M SL ® ®

0.5Ì

0
2 3 4 5 6 7

- title only
npos

"title only
pos

— lk ~ -whole
topic
npos

-whole
topic pos

lecf nodes

Fig A2-2. BASE1 [Termld]: search speedup
(sequential sort: CF distribution)

t i t le o n ly

n p o s

t it le o n ly
p o s

— w h o le
to p ic

n p o s

— w h o le

to p ic p o s

Fig A2-3. BASE1 [Termld]: search parallel
efficiency (sequential sort: CF distribution)

1.5

1.4

1.3

2 3 4 5 6 7

leci nodes

Fig A2-4. BASE1 [Termld]: search load
imbalance (sequential sort: CF distribution)

---•<0- title only
npos

title only
pos

— & — whole
topic
npos

--- — whole
topic pos

-•title o n l y

n p o s

— title o n l y

p o s

— A - — w h o l e

t o p i c

n p o s

......Î N - " w h o l e

t o p i c p o s

Fig A2-5. BASE1 [Termld]: search average
elapsed time in seconds (sequential sort: TF

distribution)

2 6 2

— # — title only
npos

Fig A2-6. BASE1 [Termld]: search speedup
(sequential sort: TF distribution)

— # “ ■- t i t l e o n ly
n p o s

" " ' I l l ' ’'""' t i t le o n ly

p o s

— - w h o l e
to p ic
n p o s

......A - ■w h o le
to p ic p o s

Fig A2-7. BASE1 [Termld]: search parallel
efficiency (sequential sort: TF distribution)

- t i t le only
npos

— — title only
pos

— ^ —- whole
topic
npos

.....x - •whole
topic pos

Fig A2-8. BASE1 [TermldJ: search load
imbalance (sequential sort: TF distribution)

Leaf
nodes

Title Only WholeTopic

- NPOS POS NPOS POS
2 64% 41% 53% 34%
3 68% 47% 67% 44%
4 72% 52% 74% 55%
5 71% 56% 73% 54%
6 77% 57% 76% 58%
7 79% 59% 81% 64%

Table A2-2. BASE1 [Termld]: search
overheads in % of total time

(sequential sort: TF distribution)

-N O POS-cf-to

— 88— p o s -c f- to

-N O POS-tf-to

* ~ X - - POS-tf-to

-N O POS-cf-wt

POS-cf-wt

NO PO S-tf-w t

•P O S -tf-w t

Fig A2-9. BASE1 [Termld]: search
throughput in queries/hour (CF and TF

distributions)

263

E
ff

ic
ie

nc
y

1
S

pe
ed

up
Appendix A3. Further Retrieval Efficiency Results for on-the-fly distribution:

Routing/Filtering task

Fig A3-1. ZIFF-DAVIS [On-the-fly]: speedup for term selection algorithms (Network)

- FB ADD

- I I ' - -FB AR

- A - FB RW

CFP ADD

— S C - CFP AR
— m~~ CFP RW

CSP ADD

CSP A R

-CSP RW

Fig A3-2. ZIFF-DAVIS [On-the-fly]: parallel efficiency for
term selection algorithms (Network)

264

Ite
ra

tio
ns

80

-----F B ADD
— p — ~FB A/R

— A - -F B RW

— CFP ADD

CFP A/R

■CFP RW

CSP ADD

------------- CSP RW

Fig A3-3. ZIFF-DAVIS [On-the-fly]: outer iterations to service term selection (Network)

Fig A3-4. ZIFF-DAVIS [On-the-fly]: outer iterations to service term selection (API000)

265

Appendix A4. Further details of update and index maintenance experiments

Leaf nodes

Leaf nodes

Fig A4-1. BASE1 [Dodd |: parallel efficiency
for update transactions

(postings only)

Fig A4-3. BASE1 [Dodd]: parallel efficiency
for update transactions

(position data)

- UPDATE
— 8$— UPDATE1

-UPDATE2

— fcg— UPDATE3

— 5K— UPDATE4

UPDATE

— 8$— UP DATEI
— i t — UPDATE2

— ' X " " UPDATE3
•— -UPDATE4

Leaf nodes

Fig A4-2. BASE1 [Termld]: parallel
efficiency for update transactions

(postings only)

Fig A4-4. BASE1 [Termld]: parallel
efficiency for update transactions

(position data)

Leaf nodes Leaf nodes

Fig A4-5. BASE1 [Dodd]: parallel efficiency
for all transactions (postings only)

— ^ —-UPDATE

~ U P D A T E 1

— A - - UPDATE2
UPDATE3

-UPDATE4

Fig A4-7. BASE1 [Dodd]: parallel efficiency
for all transactions (position data)

Fig A4-6. BASE1 [Termld]: parallel
efficiency for all transactions (postings only)

Leaf nodes

Fig A4-8. BASE1 [Termld]: parallel
efficiency for all transactions (position data)

266

E
ffi

ci
en

cy

E
ffi

ci
en

cy

— UPDATE1

® — UPDATE2

A — UPDATE3
— X — UPDATE4
— — UPDATE

---- — UPDATE1

— g g — UPDATE2

— A — UPDATE3
— X — UPDATE4
— ££— UPDATE

Fig A4-9. BASE1 [Dodd]: % increase from
normal average transaction elapsed time

during index update (postings only)
Fig A4-11. BASE1 [Termld]: % increase

from normal average transaction elapsed time
during index update (postings only)

UPDATE1
— gg— UPDATE2

— UPDATE3

- K — UPDATE4
— — UPDATE

---- $ — UPDATE1

— gg— UPDATE2
— & — UPDATE3

UPDATE4
— — UPDATE

Fig A4-10. BASE1 [Dodd]: % increase from
normal average transaction elapsed time

during index update (position data)

Fig A4-12. BASE1 [Termld]: % increase
from normal average transaction elapsed time

during index update (position data)

-4 0 docs
■ 80 docs

— A - -200 docs
'-400 docs

X — 500 docs

Leaf nodes Leaf nodes

Fig A4-13. BASE1 [Docld]: Parallel
efficiency for index reorganisation

(postings only)

Fig A4-15. BASE1 [Termld]: Parallel
efficiency for index reorganisation

(postings only)

■— 40 docs
*— 80 docs
—&—200 docs

— 'X — 400 docs
-"$ { "* •5 0 0 docs

— ~40 docs
•—HSS— 80 docs

—A --200 docs

— S - • 400 docs

-500 docs

Fig A4-14. BASE1 [Dodd]: Parallel
efficiency for index reorganisation

(position data)

Fig A4-16. BASE1 [Termld]: Parallel
efficiency for index reorganisation

(position data)

267

Appendix A5 - Synthetic models chapter appendix.

p LirPi
2 1.02
3 1.03
4 1.05
5 1.06
6 1.08
7 1.09
8 1.11
9 1.13
10 1.14
20 1.16
30 1.18
40 1.20
50 1.21
60 1.23
70 1.25
80 1.27
90 1.29
100 1.31

Table A5-1. Load imbalance estimates for LI[P] variable

A5.1 SEQUENTIAL M ODEL FOR INDEXING

A5.1.1 Analyse Documents

Strip words from documents: d * n
Insert Word Into Block: log(n)

dntog(n) * Tcpu

A5.1.2 Save Intermediate Results

Number of intermediate saves: (dn/ BSIZE)
Cost per intermediate save (BSIZE * Ti/0)

(dn/ BSIZE) * (BSIZE *Tl/o)

A5.1.3 Merge Phase

Load Blocks: (dn/ BSIZE) * (BSIZE *Tl/0)
Write Blocks: (dn/ BSIZE) * (BSIZE *Ti/0)
Merge Blocks: (dn/ BSIZE) * (BSIZE * Tcpu)

2((dn/ BSIZE) * (BSIZE *Ti/o)) + (dn/ BSIZE) * (BSIZE * Tcpu)

269

A5.1.4 Sequential Indexing Model

Combing the equations declared in sections A5.1.1 to A5.1.3 gives us the following

sequential synthetic indexing model;

INDEXseq(d,n,BSIZE) =
dnlog(n) * Tcpu + 3((dn/BSIZE) * (BSIZE *Ti/o)) + (dn/ BSIZE) * (BSIZE * Tcpu)

A5.2 PARALLEL MODELS FOR INDEXING

A5.2.1 Distributing Documents to nodes

dn/f * TU i 1/1 i comm

A5.2.2 Global Merge Phase

(dn/ BSIZE) * (P *Tcomra)

A5.2.3 D odd Indexing Models

Using the function defined in section A5.1.4 and the equation defined in section

A5.2.1, we can define synthetic models for Docld indexing. With distributed build

(INDEXDistr Dodd) we also add the distribution component for text data (equation from section

A5.2.1)

INDEXLocajWdAP,BSIZE) = (INDEXseq(d,n,BSIZE)/P)* LI[P]

INDEXDistr_DocId(d,n,f,P,BSIZE) = ((INDEXseq(d,n,BSIZE)/P)* LI[P]) + (dn/f * T„)rnm)

A5.2.4 Termld Indexing Model

The distributed build Termld model (INDEXDistr_Tennid) must redefine one aspect of the

sequential indexing model defined in section A5.1.4. The merge component defined in section

A5.1.3 is doubled for the Termld model and the extra communication costs from section

A5.2.2 are added. The revised index computation component is divided by the number of

processors and multiplied by the load imbalance estimate.

270

INDEXDistr XennId(d,n,f,P,BSIZE) =
dn/f * Tcomni+ (dn/ BSIZE) * (P *Tcormtl)

+
(dnl.oe(n) * T.r„ + 6(Tdn/ BSIZE) * (BSIZE + 2(dn/ BSIZE) * (BSIZE * Tt „V) * LI[P]

P

A5.3 SEQUENTIAL M ODEL FOR PROBABILISTIC SEARCH

The sequential model for probabilistic search is made up the the following:

Load q Keyword sets:

Weight q Keyword sets:

Merge q-1 Keyword sets:

Sort final results set

Load_kwseq(q,s) = q * Ti/0[s]

Weight_kwseq(q,s) = s*q * Tcpu

Merge_kwseq(q,s) = (q-l)*(s+s) * Tcpu

Sort_setseq(q,s) = R[q,s]/o^(R[q,sp * Tcpu

Put together these functions make up the synthetic search model for sequential probabilistic

search;

SEARCHseq(s,q) = Load_kwseq(q,s) + Weight_kwseq(q,s) + Merge_kwseq(q,s) + Sort_setseq(q,s)

A5.4 PARALLEL MODELS FOR PROBABILISTIC SEARCH

A5.4.1 D odd Partitioning

The parallel model using Docld partitioning for probabilistic search is made up the the

following:

Communications Costs for D odd : Comms_Searchdocid(P) = 3(P* TC0Ilira)

Send P requests for terms frequency: P* Tco,mn

Send P Queries (with term frequency): P* Ta)inm

Gather results from P for set size s: P* Tcom,n

Load q Keyword sets:

Weight q Keyword sets:

Merge q-1 Keyword sets:

Sort final results set:

Load_kwdocid(q,s,P) = q * Ti/o(s/P]

Weight_kwpar(q,s,P) = (Weight_kwseq(q,s)/P) * LI[P]

Merge_kwpai(q,s,P) = (Merge_kwseq(q,s)/P) * LI[P]

Sort_sctpai(q,s,P) = ((R[q,s]/P)Zog(R[q,sJ/P) * Tcpu) * LI[P]

271

The Dodd, partitioning synthetic search model is therefore;

SEARCHdocId(s,q,P) =
Comms_Searchdocid(P) + Load_kwdocid(q,s,P) + Weight_kwpar(q,s,P) + Merge_kwpar(q,s,P) +

Sort_setpar(q,s,P)

A5.4.2 Termld Partitioning 1 - Sequential Sort

The parallel model using Termld partitioning for probabilistic search using a

sequential sort is made up the the following:

Communications Costs

for Termldl: Comms_Searchteraiidl(s,q,P,SSIZE) = (R[s,q]/SSIZE)* P* T—)+(P* Tcornni)

Send p Queries (with term frequency): P* T^m

Gather results from p for set size s: (R[s,q]/SSIZE)* P* Tcomni

Load q Keyword sets: Load_kwtem,id(q,s,P) = Tq/P l * Ti/0[s/P[q]]

Weight q Keyword sets: Weight_kwpar(q,s,P[q])

Merge q-1 Keyword sets: Merge_kwpar(q,s,P[q])

Sort final results set: Sort_setseq(q,s)

The Termld partitioning synthetic search model with sequential sort is therefore;

SEARCHtermidl(s,q,P,SSIZE) =
Comms_Searchtermidi(s,q,P,SSIZE) + Load_kwteilIlld(q,s,P) + Weight_kwpai-(q,s, P[q]) +

Merge_kwpai(q,s,P[q]) + Sort_setSeq(q,sj

A5.4.3 Termld Partitioning 2 - Parallel Sort

The parallel model using Termld partitioning for probabilistic search using a parallel

sort is made up the the following:

272

Communications Costs

for Termld2: Comins_Scarchtermid2(s,q,P,SSIZE) = 3(R[s,q]/SSIZE)* P* TTOITira)+(P* TcomiI1)

Send p Queries (with term frequency):

Gather results from p for set size s:

Load q Keyword sets:

Weight q Keyword sets:

Merge q-1 Keyword sets:

Sort final results set:

p* TL i comm

3(R[s,q]/SSIZE)* P* Tc<

Load_kwtermid(q,s,P)

Weight_kwpar(q,s,P[q])

Merge_kwpar(q,s,P[q])

Sort_setpar(q,s,P)

The Termld partitioning synthetic search model with parallel sort is therefore;

SEARCHtermid2(s,q,P,SSIZE) =
Cornms_Scarchtcnmd2 (s,q,P,SSIZE) + Load_kwteiT„id(q,s,P) + Weight_kwpar(q,s,PLqD +

Merge_kwpar(q,s,P[q]) + Sort_setpar(q,s,P)

A5.5 SEQUENTIAL MODEL PASSAGE RETRIEVAL

Service q terms on PR documents each with (a(a-l))/2 inspected passages:

Compute_Pass(PR,q,a) = Tcpu * PR * q*((a(a-l))/2)

A sort on the top PR documents is required to re-rank the final results set, cost is

TcpuPRfog(PR).

P A S S A G E 'S ,q ,a ,P R) = SEARCHseq(s,q) + Compute_Pass(PR,q,a) + TcpuPR/og(PR)

A5.6 PARALLEL MODELS FOR PASSAGE RETRIEVAL

A5.6.1 D odd Models

The Docld method simply applies P processors to the Compute_Pass computation

defined in section A5.5:

Compute_Passpar(PR,q,a,P) = (Compute_Pass(PR,q,a)/P) * LI[P]

The local passage processing cost model is constructed by simply adding the probabilistic

D odd cost model from section A5.4.1 to the Compute_Passpar model;

273

PASSAGEdocid_iocai(s,q,a,PR,P) = SEARCHdocid(s,q,P) + Com pute_Passpai-(PR,q,a,P)

The distributed passage retrieval method must also gather up data from nodes in order to

choose the best PR documents in the collection. This requires four stages;

i) Gather the data from an initial probabilistic search (the top PR documents)

ii) Scatter this full set to the processors

iii) Gather up the full set from all the processors

iv) Do a final rank on the top PR documents

The estimate for this overhead is therefore:

i) Gather data (PR/SSIZE)/P * P: PR/SSIZE (eliminated P)

ii) Scatter PR elements to P processors: Tcorara(PR/SSIZE)*P

iii) Gather PR elements from P processors: Tcoram(PR/SSIZE)*P

iv) Sort PR elements to obtain final rank: Tcpu P R log (PR)

The model for overheads on distributed passage processing is therefore;

OVERHEADpass(PR,P,SSIZE) = Tcornra((2(PR/SSIZE)*P)+ PR/SSIZE) + TcpJPR/og(PR)

The D odd distributed passage processing cost model is constructed by adding the probabilistic

D odd cost model from section A5.4.1 to the Compute _Passpar model together with the

OVERHEADpass cost model;

PASSAGEdocid_distr(s,q,a,PR,SSIZE,P) =
SEARCHdocid(s,q,P) + Compute_Passpai(PR,q,a,P) + OVERHEADpass(PR,P,SSIZE)

A5.6.2 Termld Models

In Termld we must communicate the data for (a(a-l))/2 passages for PR documents on

P processors:

OVERHEADpasstid(a,PR,P) = Tcoram(PR*P*((a(a-1))/2)

The Termld distributed passage processing cost models are constructed by adding the

probabilistic Termld cost model from sections A5.4.2 and A5.4.3 to the Compute_Passpar

model together with the OVERHEADpass and OVERHEADpasstid cost models;

PASSAGEtermidi(s,q,a,PR,SSIZE,P) =

274

S E A R C H termid i(s ,q ,P ,S S IZE) + Compute_Passpar(PR,q,a,P[q]) + O V E R H E A D pass(P R ,P ,S S IZ E) +
O V E R H E A D passtid(a ,P R ,P)

PASSAGEtermid2(s,q,a,PR,SSIZE,P) =
SEARCHtermid2(s,q,P,SSIZE) + Compute_Passpar(PR,q,a,P[q]) + OVERHEADpass(PR,P,SSIZE) +

OVERHEADpasstid(a,PR,P)

5.7 SEQUENTIAL MODELS FOR TERM SELECTION

A5.7.1 Evaluation

The cost of evaluation is broken down into the following;

Merge set for term with accumulated set: Tcpu*(s+s)

Merge relevance judgements with temporary set: Tcpu*(s+r)

Rank the temporary set using a sort: Tcpu*(R[q,s]/6>g(R[q,s]))

Put together these equations form the model for the cost of a single evaluation;

EVAL(q,s,r) = Tcpu*((s+s) + R[q,s]/o*(R[q,s]))+ (s+r))

A5.7.2 Total number o f evaluations

Maximum number of evaluations for the find best algorithm is:

q*i

Not all Keywords are inspected in i iterations:

i* (i+1) * 0.5

After each iteration one less term is inspected. This formula accumulates the total number of

keywords not inspected in i iterations, as one term is always chosen. Put together with an

estimate of the total number of terms skipped the function for inspected terms is:

INSPECTED(q,i) = (qi - (i(i+l)0.5) - u(qi -(i(i+l)0.5)))

A5.7.3 Load costs fo r keywords

The cost of loading term data is as follows;

Load q terms from disk each with set size s: q * Ti/0[s]

Weight q terms each with set size s: q * s * Tcpu

Putting these equations together yields the following load cost;

LOAD(q,s) = qOVTs] +s*Tcpu)

275

A5.7.4 Sequential Models for Term Selection

Using the models defined in sections A5.7.1 to A5.7.3 we can now define the

sequential cost models for term selection. For add only operation (ROUTINGseq) this is a

simple process of multiplying the evaluation cost (see section A5.7.1) with the number of terms

inspected (see section A5.7.2) and with an addition of load costs (see section A5.7.3). The

model for add reweight (ROUTINGseqw) is constructed by factoring the total evaluation cost by

the reweight variable w.

ROUTINGKq(s,r,i,q) =
(INSPECTED(q,i) * EVAL(q,s,r)) + LOAD(q,s)

ROUTINGseqw(s,r,i,q,w) =
(INSPECTED(q,i) * EVAL(q,s,r) * w) + LOAD(q,s)

A5.8 PARALLEL MODELS FOR TERM SELECTION

Basic term selection models with no synchronisation or communication costs is as follows;

ROUTINGpar(s,r,i,q,P) =
ROUTING.aq(s.r.i.a) * LI[P]

P

ROUTINGPanv(s,r,i,q,P,w) =
ROUTING..,,,,,(s.r.i.a.w) * LI[P]

P

5.8.1 Docld Models

The cost model for intra-set parallelism is;

Merge set costs: Merge_Routedodd(s,r,P) = (Tcpu(s+ r+s)/P) * LI[P]

Sort costs: Sort_Routedocid(s,P) = (Tcpii(s/P)/og(s/P)) * LI[P]

Communication costs: Comms_Routedodd(s,P,SSIZE) = (((s/SSIZE)/P)+2P)* Tcormil

Putting these functions together gives us the evaluation cost model for Docld term selection:

EVALd0cid(s,r,i,q,P,SSIZE) =
INSPECTED(q,i) *

(M erg e _R o u ted0cid(s,r,P) + S ort_R outedocid(s,P) + C om m s_R outed0d d(s ,P ,S S IZE))

We also measure overheads at the synchronisation point for merging the chosen term into the

accumulated set and communicating the best term identifier in one iteration;

Communication costs for best term: P*Tcomm

Merge best term set into accumulated set: ((s*Tcpu)/P * LI[P])

276

We assume latency is the dominant factor in communication costs. Putting these equations

together gives us the estimate of overheads for the D odd term selection cost model.

OVERHEADdocid(s,i,P) = i*(((s*Tcpo)/P) * LI[P]) + (P*Tcomm))

The models for term selection are constructed by taking the load cost model (defined in section

A5.7.3), and adding the evaluation and overhead cost models defined above in this section. The

load cost model is further refined by dividing by the number of processors and factoring the

result by the load imbalance estimate (LI[P)).

ROUTINGdocid(s,r,i,q,P,SSIZE) =
LOAD(q.s) * LI[P] + EVALdocid(s,r,i,q,P,SSIZE) + OVERHEADdocid(s,i,P)

P

ROUTINGdocidw(s,r,i,q,P,SSIZE,w) =
LOADfq.s) * LI[P] + (w*EVALdodd(s,r,i,q,P,SSIZE)) + OVERHEADdocid(s,i,P)

P

A5.8.2 Terrnld Models

The interaction at the synchronisation point is more complicated than for the D odd

models. This is because the data for the best term must be retrieved from the relevant node and

merged into the accumulated set, which is then broadcast to all nodes. Overheads for Termld

models are calculated as follows:

Get the identifier of best term in one iteration:

Request for best term set:

Retrieving best set from relevant node:

Broadcast best set to all other nodes:

Merge the best term data into the accumulated set:

Put together, these equations form the cost model for routing overheads on the Ternild

partitioning scheme;

p * T1 -*■ comm

1 * Tcomm

s/SSIZE * Tcomrn

(P-1 * s/SSIZE) * Tc,

sTcpu+Ti/o[s]

OVERHEADterraid(s,i,P,SSIZE) = i*((Tcomm*((P+l)*(P*s/SSIZE)))+ (sTcpu+Ti/o[s]))

Construction of the routing models can be done by re-using the basic term selection models and

adding the (OVERHEAD^.^Jcost;

ROUTINGteraud(s,r,i,q,P,SSIZE) =
(ROUTINGpar(s,r,i,q,P) * LI[P]) + OVERHEADtemiid(s,i,P,SSIZE)

277

R O U TIN G tennidw(s,r,i,q,P,SSIZE,w) =
(ROUTINGparw(s,r,i,q,P,w) * LI[P]) + OVERHEADtermid(s,i,P,SSIZE)

The extra LI[P] here assumes that ROUTINGtenilid imbalance will probably be worse than

ROUTING,cp in particular or other models in general. This is because terms are statically

allocated to a node (see chapter 4, sub-section 4.4.2.3 for a discussion on term allocation

schemes).

A5.8.3 Replication Models

Latency is presumed to be the main communication problem for the replication

distribution scheme. The overheads for replication cost models are calculated as follows:

Get the identifier of best term from P processors: P* Tcomm

Send the identifier of best term to P processors: P* Tcomm

Merge the best term data into the accumulated set: (s*Tcpu)+Ti/0[s]

Putting these equations together gives us the following cost model;

OVERHEADrep(s,i,P) = i*(sTcpu+Ti/0[s] + (2P*TOTmra))

The cost models for the replication distribution scheme can be constructed by simply

adding the overheads to the basic term selection cost models.

ROUTINGrep(s,r,i,q,P) =
ROUTINGpar(s,r,i,q,P) + OVERHEADrep(s,i,P)

ROUTINGrepw(s,r,i,q,P,w) =
ROUTINGparw(s,r,i,q,P,w) + OVERHEADrep(s,i,P)

A5.8.4 On-the-fly distribution Models

The overhead cost model for the On-the-fly distribution scheme is;

OVERHEADioad(q,s,SSIZE,P) = ((qs/SSIZE)+P) * T ^

There are also overhead costs at the synchronisation point for transferring set data,

which is formed as follows;

Get the identifier of best term in one iteration: P*Tcomra

Broadcast best set to all nodes: (P * s/SSIZE) * Tcomm

Merge the best term data into the accumulated set: (s*Tcpu)+Ti/0[s]

Putting these equations together, we have the overhead at the synchronisation point;

O V ERH EA D ^,i,SSIZE,P) = i*((((P*(s/SSIZE))+P) * Tcomm)+(sTcpu+Ti/o[s]))

We cannot use the basic parallel term selection costs models, as some aspects of them (such as

load) must be done sequentially. We apply a parallel cost model to the total evaluation cost,

278

together with the load cost model defined in section A5.7.3 and the overhead cost models

defined above in this section.

ROUTfNGparfiy(s,r,i,q,SSIZE,P) =
LOAD(q,s) + OVERHEAD load(q ,s, SSIZE,P) + OVERHEADlaige(s,i,SSIZE,P) +

fINSPECTEDfq.it * EVALfa.s.rt * LI[P])
P

ROUTINGparfiyw(s,r,i,q,SSIZE,P,w) =
LOAD(q,s) + OVERHEADload(q,s,SSIZE,P) + OVERHEADlarge(s,i,SSIZE,P) +

tINSPECTEDfa.il * EVAL(a.s.r) * w * LI[P])
P

A5.9 SEQUENTIAL MODELS FOR INDEX UPDATE

A5.9.1 Adding a Document to the Buffer: Update Transaction

The Client/Server Update model is formed by the following steps;

Scan Word and put in client Tree;

Marshalling/UnMarshalling term data:

Sending data:

Merge word data with server buffer:

nlog(n) * Tcpu

(n + n)* Tcpu

T(n/SSIZE)1 * T(

nfog(dict) * Tcpu

comm

Putting these equations together gives us a cost model for update on a single inverted file.

UPDATEseq(n,dict,SSIZE) = Tcpu(n/og(n) + 2n + n/og(dict)) + Tœmm* f(n/SSIZE)l

A5.9.2 Transaction while index is updated

The cost model for transaction is calculated by adding the contention factor c to the

particular function being examined. The search cost model is taken from section A5.3 and the

update cost model from the previous section.

U P D A T E seqc(n ,d ic t,S S IZ E) =
(UPDATEseq(n,dict,SSIZE) *c[l]) + UPDATEseq(n,dict,SSIZE)

SEARCHseqc(s,q) = (SEARCHseq(s,q) * c[l]) + SEARCHseq(s,q)

A5.9.3 Transaction estimate

Taking the cost models defined in sections A5.9.1 and A5.9.2 we can construct a cost

model for transactions where the percentage of total transaction time spent updating the index

can be used. This allows us the vary the effect on transactions and study the theoretical

performance penalty on transaction while doing a simultaneous index update. In the

TRANSACTION^ model we eliminate the contention by setting ro to zero, while ro set to 1

means that all transactions are affected by contention.

279

TRANSACTIONseq(ur,sr,ro,n,dict,s,q) =
ü-ro(ur*UPDATE,,.,1(ïi.dict.SSIZE')+ sr*SEARCH^('s.q~)')') + iro(ur*UPDATE<,.r l,n.dict.SSIZE')+

sr*SEARCH,,,r fs.q'm
ur + sr

A5.9.4 Reorganisation o f Inverted File

The reorganisation model is made up of the following synthetic cost functions;

Insert m buffer words in diet:

Read t+m keyword lists from disk:

Write t+m keyword lists to disk:

Merge m keyword lists:

Read in (dict/b) keyword blocks:

Insert_Words_buff(m,b,dict) =
Tcpu(m (log{ä\c t/b)+b))

List_Disk_Trans(t,m) = Ti/0[s] * (t+m)

List_Disk_Trans(t,m)

Merge_kw_lists(m,s) = Tcpo(m(s+s))

Read_kw_blocks(dict,b) = Ti/0 [b] * (dict/b)

The reorganisation or index update cost model is constructed by using the four cost models

defined above (List_Disk_Trans is used twice);

REORGseq(n,dict,b,m,t,s) =
Insert_Words_buff(m,b,dict) + 2List_Disk_Trans(t,m) + Merge_kw_lists(m,s) +

ReadJtw_blocks(dict,b)

The contention model for reorganising the index is;

R EO R G seqc(n,dict,b,m,t,s) =
(REORGseq(n,dict,b, m,t,s) * c[l]) + REORGseq(n,dict,b,m,t,s)

A5.10 PARALLEL MODELS LOR INDEX UPDATE

A5.10.1 D odd Transaction Model

In this data distribution method we simply re-use the sequential cost model defined in

section A5.9.1 above;

UPDATEd0Cid(n,dict,SSIZE) - UPDATEseq(n,dict,SSIZE)

The contention model also re-uses the sequential model;

UPDATEdocidc(n,dict,SSIZE,P) =
(UPDATEseq(n,dict,SSIZE) * c[P]) + UPDATEseq(n,dict,SSIZE)

In order to construct the contention model for D odd search we re-use the function defined in

section A5.4.1 above;

SEARCHdocidc(s,q,P) = (SLARCHdocid(s,q,P) * c[P]) + SEARCHdocid(s,q,P)

The transaction model for D odd partitioning is constructed in exactly the same way as the

sequential version described in section A5.9.3 above.

TRANSACTIONdoCid(ur,sr,ro,n,dict,s,q,P) =

280

n-ro (u r*U P D A T E H ^iH (n ,d ic t,P~)+ sr*SEARCH,wiH(s.q,P)~)) + (ro (u r* U P D A T E nf*-in r(n .d ic t,S S IZ E P ')+ sr*SEARCH ,w inr('s.q,P)')')
u r + s r

A5.10.2 Termld Transaction Model

With the Termld distribution method, a new cost model must be defined as merging the

data with the buffer is parallelised.

UPDATEtennid(n,dict,P,SSIZE) =
Tcpu(n/og(n) + (nfog(dict) *LI[P]) + 2n) + (n/SSIZE)l)

P
The contention model re-uses the model defined above;

UPDATE,enmdc(n,diet,P,SSIZE) =
(UPDATEtemud(n,dict,P,SSIZE) * c[P]) + UPDATEtenrud(n,dict,P,SSIZE)

In order to construct the contention model for Termld search we re-use the function defined in

section A5.4.3 above (we utilise the parallel sort cost model);

SEARCHtermidc(s,q,P,SSIZE) =
(SEARCHtermid2(s,q,P,SSIZE) * c[P]) + SEARCHtermid2(s,q,P,SSIZE)

The transaction model for D odd partitioning is constructed in exactly the same way as the

sequential version described in section A5.9.3 above.

TRANSACTIONtennid(ur,sr,ro,n,dict,s,q,P,SSIZE) =
n -ro fu r* U P D A T E ,,n .,^ fn .d ic t.P l+ s r* S E A R C H ,„mM 7fs.a.P.SSIZElT) + ('ro fu r* U P D A T E ,^ .i^ fn .d ic t.P .S S IZ E)+

sr* S E A R C H ,.n..i,t.is .a .P .S S IZ E in
u r + sr

A5.10.3 Docld Reorganisation Model

The D odd index update cost model is;

Insert m buffer words in diet: Insert_Words_buffdocid(m,b,dict,P) =
Tcpu(m*i[P]* (Zog(((dict/b)/P)*i[P])+b)) * LI[P]

Read t+m keyword lists from disk: List_Disk_Transdocid(t,m,s,P) =
T i/0[p[P]*(s/P)] * (t+m) *i[P] * LI[P]

Write t+m keyword lists to disk: List_Disk_Transd0Cid(t,m,s,P)

Merge m keyword lists: Merge_kw_listsdoCid(ni,s,P) =
Tcpu(m *i[P]*(s/P +s/P)) * LI[P]

Read in (dict/b) keyword blocks: Read_kw_blocksdocid(dict,b,P) =
Ti/o[b] * ((dict/b)/P) *i[P] * LI[P]

The index update model for D odd partitioning is constructed as follows;

REORGdocid(n,dict,b,m,t,s,P) =
Insert_Words_buffdocid(m,b>dict,P) + 2List_Disk_Transd0cid(t,m,s,P) + Merge_kw_listsd0cid(m,s,P) +

Read_kw_blocksd0cid(dict,b,P)

This function is re-used in the construction of the cost model with contention as follows;

REORGdocidc(n,diet,b,m,t,s,P) =
(REORGdocid(n,dict,b,m ,t,s,P) *c[P]) + R EO R G d0cid(n,dict,b,m,t,s,P)

281

A5.10.4 Fermid Reorganisation Model

The Termld index update cost model is;

Insert m buffer words in diet: Insert_Words_bufftennid(m,b,dict,P) =
(Tcpu(m(/og(dict/b)+b))/P) * LI[P]

Read t+m keyword lists from disk: List_Disk_Transtermid(t,m,s,P) =
((TitoW* (t+m))/P) * LI[P]

Write t+m keyword lists to disk:

Merge m keyword lists:

List_Disk_TranStenmd(t,m,s,P)

Merge_kw_listStennid(m,s,P) =
(Tcpu(m(s+s))/P) * LI[P]

Read in (dict/b) keyword blocks: Read_kw_blockstennui(dict,b,P) =
((Ti/olb] * (dict/b))/P) * LI[P]

The index update model for Termld partitioning is constructed as follows;

REORGtennid(n,dict,b,m,t,s,P) =
Insert_Words_bufftenmd(ni,b,dict,P) + 2List_Disk_Trans,ern,id(t,m,s,P) + Mcrgc„kw_Jiststeiimd(m,s,P) +

Rcad_kw_blockstem)id(dict,b,P)

This function is re-used in the construction of the cost model with contention as follows;

REORGterniidc(n,dict,b,m,t,s,P) =

282

