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Abstract

The seminal papers of Black-Scholes and Merton stimulated growth not only of equity
commodity derivatives but also of term structure interest rate models and the valuation
ofbonds and contingent claims based on these term structure interest rate models.
Today research into term structure models is important both to academics and
practitioners alike. Unfortunately bond prices and interest rate contingent claim prices
based on these term structure models, with few exceptions cannot be valued
analytically. To date a number of numerical methods have been developed to solve
this problem. The objective of this thesis is to test the existing numerical methods as
well as introducing a new method within the context of the single factor interest CKLS
model - the CKLS model encloses the earlier single factor term structure of interest
rate models.



CHAPTER 1.

LITERATURE REVIEW, OBJECTIVES AND OUTLINE OF THE THESIS

1.1. Introduction

The seminal paper of Black and Scholes (1973) and Merton (1973) resulted in a rapid
growth of the financial derivatives market such that today it has become an important
and dynamic component of the world financial markets, and an area of active research
in academia. Since the publication of the seminal papers academic researchers have
focused on the theoretical valuation of both equity and interest rate contingent claims
with more emphasis on equity contingent claims. However, recently more attention
has been focused the valuation of claims whose values depend on the term structure of
interest rates and its evolution over time. This change in research orientation in
academia is due to the expansion in recent years of fixed income derivatives as interest

rate risk management tools.

Interest rate risk comprises of market risk and yield curve risk. The market risk is due
to the changes in the level of interest rate. Yield curve risk arises due to shape risk and
volatility risk. The shape risk is due to the changes in the shape of the yield curve,
which in turn is, due to changes in the interest. The volatility risk is due to changes in
interest rate volatility. In the financial markets many fixed income products are
specifically designed to hedge against the above types of risks. For example, interest
rate futures, forwards, floating rate notes are used for hedging against market risk.
Swaps are used to hedge against shape risk as their returns depend on changes in the

shape of the yield curve. Options are used to hedge against volatility risk.



There are two aspects to the modeling of interest rate term structure models and
interest rate contingent claims. The first is the specification of alternative interest rate
processes leading to arbitrage-free pricing models for bonds and contingent claims.
The second is the numerical implementation of these models, where an analytical
solution is often not available. Numerical implementation allows incorporation of
characteristics not possible with analytical implementation, such as the early exercise

feature associated with American contingent claims.

In this Chapter we discuss the different term structure models which have been
proposed, as well as the numerical methods used for both stock and interest rate
contingent claims. In Section 2 we discuss the interest rate models. Section 3
discusses the numerical methods. In Section 4, we state the objectives of the thesis.

Section 5 contains an outline of the thesis.

1.2. Interest Rate Models

The valuation of fixed income instruments is more challenging than the valuation of
equity instruments as those two categories of assets exhibit different set of
characteristics. For example, one of the main differences between equity and a coupon-
paying bond is the certainty at some valuation date of the amounts and corresponding
dates of the different coupons and face value. This has the implication that near the
final maturity date of the bond; the probability of an increase in value of a par bond is
much small than it is at some other valuation date. This is not so for equity. Yet,

another result of this price effect is that the corresponding volatility of possible price



movements decreases as the maturity date of the bond decreases. This leads to a

decrease in the range of possible bond price as the maturity date increases.

One of the basic assumptions in the classical equity option valuation problem is that the
interest rate remains constant. Clearly such as an assumption for fixed income
instruments is theoretically inconsistent. Another feature distinguishing interest rate
models from equity models is the need for interest rate models to exhibit mean
reversion and for the volatility to be dependent on the interest rate. Thus the
relationship between bond values and the term structure of interest rates implied by

future payments leads to stochastic formulation of the yield curve over time.

To date two separate approaches that take the above-mentioned characteristics of
fixed income instruments have been proposed. The first approach has been to propose
a plausible model for the short-term interest rate, which depends on the market price of
risk explicitly. Over the years a number of such short term interest rate models have
been proposed including the most general Chan, Karolyi, Longstaff and Sanders
(CKLS, 1992). The CKLS model encloses earlier interest rate models proposed by
Vasicek (1977), Brennan and Schwartz (1979), and Cox-Ingersloll-Ross (CIR, 1985).
The second approach pioneered by Ho-Lee (1986) and HIM (1992) does not take into
account the market price of risk explicitly. This approach involves taking the current
market term structure of interest rates to develop a no-arbitrage yield curve, which
depends on the initial forward rate curve. For subsequent discussions we shall refer to
the models based on the first approach as, Equilibrium approach and models based on

the second approach as, “Arbitrage Free Models”.



1.2.1. Equilibrium Models

In this section, we derive the mathematical structure of single-factor term structure
models based on Vasicek (1977). Further, we discuss the major two factor interest

rate models that have also been proposed.

We make the following assumptions with regard to single-factor term structure

models:

1. The bond market is frictionless: no (distorting) taxes, no transaction costs, no short
sale, and all bonds are infinitely divisible.

2. Investors always prefer more wealth to less.

3. All bond prices P(t,T) for all P>t depend only on a single state factor: the short
rate r (in addition to t and T). The changes in the yield curve, therefore, at different

maturities are perfectly correlated.

Let P(t, s) denote the price at time t of a discount bond maturing at time s, s <t with

unit maturity value.

P(s,s) =1

The yield to maturity R(t, T) on a bond with maturity date s=t+ T is:

R(t,T)=-LnP (t,t +T)

The instantaneous spot rate at time t is given by:



r(t) = R(t,0) = limR(t,T)

Assume that the spot rate r(t) follows a continuous Markov process and is defined by

the following stochastic differential equation

dr(t) = f(r, t)dt + p(r, t)dz (1.1)

where z(t) is a Wiener process. f(r,t), p2(r, t) are the instantaneous drift and variance

respectively of the process r(t).

Application of Ito’s differentia] rule, leads to the following stochastic differential

equation for bond price.

dP(t,s,r) = P(t, s, r)jn(t, s, r)dt - P(t, s, r)cr(t, s, r)dz (1.2)
where:

. d 1 2/ nd2

i(t,s,r) = ’ P(t,s, r 1.3
li(t,s,1) P(tsn) (t,s, 1) (1.3)

p(t,s,r) dP(r,s,r)
a(t’s'n) = _Pesoy— 3 ~

(1.4)

Suppose we have an investor who at time t issues an amount W, of a bond with
maturity date s,, and simultaneously buys an amount W2 ofbond maturity at time s,.
The total value of this portfolio is W = W2- W . The value of this portfolio changes

according to Merton’s accumulation equation

dW = [W2iut,s2,1)- W !|i(t, s,, r)]dt - [W2a(t,s2,r)- W,a(t,s,, r)]dz (1.5)



We now choose W, and W, so as to make the evolution of the portfolio riskless.

We find that the necessary expressions for W, , W2 and dW are:

c(t,s2,r)W
(1.6)
o(t,Sj,r)-a(t,s2,r)
a(t,s,,r
W2= ( ) (1.7)
c(t,s,,r)-a(t,s2,r)
W[li(t,s2r)a(t,s,,r) - |i(t,s,,r)a(t,s2,1)]
W = (1.8

a(t,sl,r)-a(t,s2,r)

Further, we let a riskless loan W accumulate at spot rate r(t) such that:

dW = Wr(t)dt (1.9)

Equating the above two equations after algebraic manipulation gives:

p(t,s,,r)-r(t) _ p.(t,s2,1) (
a(t,s,,r) a(t,s2,r)

The above expression holds for arbitrary maturity dates s, and s2. Thus the following

ratio is independent of's.

»8,T) -1 (1)
a(t, s, 1)

(1.11)

We let X(r)denote the common value of such a ratio for a bond of any maturity date.
/V(r)may be interpreted as the market price of risk, as it specifies the increase in

expected instantaneous rate of return on a bond per an additional unit of risk.



Thus for an arbitrary maturity date s
A,(r)a(t,s,r) = |i(t,s,r)-1 (1.12)

Substitution into our original stochastic partial differential equation yields.

P4 {f+px)2P +i—p2a2°- P =0 (1.13)

at ar 2 ar2

The short-term interest rate, which is the variable driving the above partial differential
equation is one of the most fundamental and important prices determined in the
financial markets. Different researchers have used alternative specifications of the
short-term interest rate process. Chan, Karolyi, Longstaff and Sanders (CKLS) (1992)
suggested a general formulation, which encloses the common single-factor term

structure models. Expressing their general model using our notation:

drt = k(0 - r)dt+ orYdzt (1-14)
(1) Merton drt= k0dt + cdzt

2) Vasicek drt= k(0 - r)dt + cdzt

3) CIR SR drt=k(0 - r)dt+ aVrd:

4) Dothan drt= ordzt

35 GBM drt= -krdt + adzt

6) Brennan-Schwartz drt= k(0 - r)dt + ardz

3

7 CIR VR drt= Gr2dzt



®) CEV drt= -krclt + arYdzt

Merton (Model 1) (1973) used the simple Brownian motion with drift to model the
short-term interest rate process. He derived analytical option prices based on this
model. Vasicek (Model 2)(1977) used the Ornstein-Uhlenbeck process to derive an
equilibrium model of bond prices. Jamshidian (1989) and Gibson and Schwartz (1990)
have further applied this Gaussian model for the interest rate. The square root (SR)
(Model 3) process by Cox-Ingersoll-Ross (CIR)(1985) has been extensively applied to
value interest-rate contingent claims. For, example Dunn and McConnell (1981) used
the SR to value mortgage-backed securities, CIR (1985) to value discount bond and
contingent claims, futures and futures option pricing models by Ramaswamy and
Sundaresan (1986), the swap pricing model by Sundaresan (1989), and the yield option
valuation model by Longstaff (1990). Model 4 is used by Dothan (1978) to value
discount bonds and has been further used by Brennan and Schwartz (1977) in
developing numerical models of saving retractable, and callable bonds. Model 5 is the
Geometric Brownian Motion applied to interest rates. Model 6 is the log-normal
interest rate process used by Brennan and Schwartz (1980) in deriving convertible
bond prices, and further used by Courtadon (1982) to develop the finite difference
numerical method to value bonds and interest rate contingent claims. Model 7 is used
by CIR (1980) in the study of variable-rate (VR) securities. Constantinides and
Ingersoll (1984) also use a similar model to value bonds in the presence of taxations.

Model 8 is used by Marsh and Rosenfeld (1983) to value equilibrium bond prices.



The resulting partial differential equation for the bond and contingent claims subject to

the appropriate boundary conditions based on the CKLS model is:

0 [k(O-r1)-X(@®a(@®]E+1~-rP=0 (115)

Researchers have given different functional relationships to A,(r)c(r). For example

Vasicek (1977) uses AG, CIR (1985) uses. CKLS take A= 0, thus equation (1.15)

becomes:

(1.16)

The main advantage of one-factor models is their simplicity as the entire yield curve is
a function of single state variable. The single state variable is not directly observable in
the market. Proxies are therefore used for this unobservable variable, Chapman, Long
and Pearson (1999), hereafter, (CLP). Different researchers have used different
proxies, for example Anderson and Stanton (1997) uses the yield on a three-month
Treasury bill, CKLS (1992) use one-month Treasury bill yield. A more comprehensive
survey of alternative proxies for the short rate are to be found in (CLP, 1999). There
are, however, several problems associated with single-factor models. First, single-
factor models assume that changes in the yield curve, and hence bond returns, are
perfectly correlated across maturities. This assumption is contradicted by the empirical
evidence available. Furthermore, the assumption of perfect correlation is highly

problematic for several practical purposes, for example, Value-at-Risk calculations,



and pricing derivatives on interest rate spreads as discussed by Canbarro (1995).
Second, the shape of the yield curve is severely restricted. Specifically, the Vasicek
and CIR models can only accommodate yield curve that is monotonic increasing or
decreasing and humped. An inversely humped yield curve cannot be generated with
these models. Finally, with time-invariant parameters one-factor models tend to
provide a very poor fit to the actual yield curves observed in the market. To overcome
the limitations of single-factor term structure models researchers have put forward a

number of two-factor term structure models.

Brennan and Schwartz (1979) proposed a two factor model based on a mean reverting
short-term interest rate and a long term interest rate. The long-term interest rate is
taken to be the yield on a consol bond. However, this specification of the two-factor
model does not lead to analytic bond or contingent claims prices. Schaefer and
Schwartz (1984) developed an analytical bond price based on two-factor term
structure model. Their two-factor model is very similar to the two-factor model
proposed by Brennan and Schwartz, except with one crucial difference. Where as
Brennan and Schwartz used a short-term rate and a long-term interest rate, Schaefer
and Schwartz used the long term interest rate and the spread, i.e., the difference
between the short term interest rate and the long term interest rate. Schaefer and
Schwartz (1987) further proposed a two-factor term structure model based on the

short-term interest rate and the duration of the bond.

Cox-Ingersoll-Ross (1985) also proposed a two-factor term structure model based on
the short-term interest rate and the inflation rate. They develop an analytical solution

for the real value of a nominal bond. Longstaff and Schwartz (1992) propose a two

10



factor general equilibrium model using the CIR (1985) framework. The two factors in
the Longstaff and Schwartz model are the short-term interest rate and the
instantaneous variance of changes in the short-term interest rate. Thus contingent
claims based on the Longstaff and Schwartz model will be dependent on both the
current level of interest rate and the current level of interest rate volatility. They derive
both analytical bond prices and analytical European call option prices based on their

model.

Das and Foresi (1997) have put forward a two-factor term structure model that allows
for interest rate jumps. They propose that the short-term interest rate follows the
process put forward by Vasicek (1977) superimposed with jumps. They proceed to
consider two types of jump models. In the first model, the jumps are infrequent
events, which change interest rates by discrete amounts but do not change what they
call the central tendency. In the second jump model, the jumps change the central
tendency. Further they derive analytical solution for bonds and derive numerical

scheme for contingent claims.

1.2.2. Arbitrage Free Models

The wide spread popularity of one-factor equilibrium models, such as the Vasicek
model, stems from their simplicity. At each date, today and in the future, the entire
yield curve is a function of a single state variable, the short rate. Flowever, equilibrium
models do not fit the current yield curve exactly, and this tends to limit then-
effectiveness for pricing fixed income derivatives. By taking the current market term

structure of interest rate as the starting point we can overcome this weakness of the

11



equilibrium approach. Below we discuss the major Arbitrage Free Models, which have

been proposed over the years.

In its basic form the Ho-Lee model can be stated as a specific case of the Vasicek

model.

drt = 0(t)dt+ a(t)dzt (1.17)

The Ho-Lee method involves fitting a binomial lattice for discount bond prices, with
the restriction that the bond price is pulled to par at maturity. The Ilattice is
constructed such that there is no arbitrage allowed between the pricing along the
lattice and current market interest rates. This means that the lattice is constructed such
that the market price of risk does not have to be specified. The lattice is analogous to
the one suggested by Cox-Ross-Rubinstein (1979) except with three differences. First
the lattice is in terms of forward prices rather than spot prices. Second, the up- and
down- movements are time dependent. Third the whole term structure is shifted up or
down, rather than a single asset price. Other researchers, including Black-Derman-Toy
(1990) have extended the Ho-Lee approach, Hull and White (1990a) and Heath-

Jarrow-Morton.

The Black-Derman-Toy (BDT) model is based on the assumption that the short-term
interest rate is a lognormal process. It is a single factor model in which negative
interest rates are prevented because of the log-normality of the short-term interest rate
process. The BDT mode is usually constructed using a binomial tree to price exactly

any set of bonds and hence contingent claims without requiring any investor risk

12



preference. As such it is an arbitrage free model. The continuous-time equivalent of

the BDT interest rate process is:

r(t) = u(t)explo(t)zt] (1.18)

With u(t) as the median of the short-term interest rate distribution at time t, a(t) is the
volatility of the short-term interest rate process. By making c(t) time dependent,

BDT can be used to recover the prices of a wide range instrument.

Hull and White (1990a) generalize the CKLS model by allowing for time dependent

mean reversion 0'(t) and for time dependence in the mean reversion speed k(t) and

volatility c(t)

drt = k(t)(0'(t) - r)dt + o(t)r\Ydz, (1.19)

The model corresponds to y =0 be referred to as the Extended Vasicek (EXV).
Further at y = 0, the Hull and White model can be interpreted as the Ho-Lee model if

we express the Hull and White as:

dr, = 0//(t)dt + a(t)dz, (1.20)

with 0"(t) = k(£)(0'(t)-r)

13



Finally y = leads to the Extended CIR (EXCIR) and y =1 yields the Black-

Derman-Toy model. Hull and White (1994b) have extended their approach to two
factors. They have achieved this, by incorporating a new stochastic function in the

drift of the interest rate for the Extended Vasicek model.

The Heath-Jarrow-Morton (HJM) is based on the martingale approach introduced by
Harison and Kreps (1979) and Harison and Pliska (1981). The HJM model is a
complete model of the term structure specified in an arbitrage free framework
According to Subrahmanyam (1996), the basic set up of the HIM model is similar in
spirit to the Vasicek model with one crucial difference. In the case of the HIM model
the forward rate is used rather the short rate . The stochastic differential equation for

the forward rate is:

df(t,T) = a(t,T)dt + b(t,T)dz, (1.21)

Where a(t,T) and b(t,T) are the drift and diffusion terms of the forward rate process, t

is the current date, T is the maturity date, and zt is a Brownian motion. Further

f(t,T) is the instantaneous forward interest rate at time t for delivery at date T. The
above stochastic differential in its general form is non-Markovian which leads to non-
combining lattices when bond prices or contingent claim prices are evaluated.
Ritchken and Sankarasubramanian (1995) have proposed a specific classes of volatility

structures such that the diffusion process for the forward rate is Markovian.

14



Below we summarise the main differences between the equilibrium and the arbitrage

free approach to bond pricing.

Equilibrium Models

Main building blocks: stochastic process
for the short rate, and assumptions about
investor preferences - market price of
risk

The  yield is  determined
endogenously in the model - it is not
constrained to match the actual market
yield curve.

curve

Model parameters are constant over time
(internal consistency), and typically there
are at least two factors.

Models include Vasicek, CIR, BS etc.

Used mainly for trading bonds (yield
curve strategies), less useful for fixed-
income derivatives.

Used for risk management purposes.

Implementation issues: statistical
estimation using historical data on the
term structure.

15

Arbitrage Free Models
The prices of these securities are often
independent of investor preferences,

Per construction, arbitrage free term
structure models fit the initial yield curve
(i.e. today’s curve) exactly

The models are not stable - the time
dependent parameters be
calibrated over time (inconsistency).

must re-

Models include HIM, Ho-Lee, as well as
equilibrium style models with time
dependent parameters such as the BDT
and HW extended Vasicek model.

In most cases, a single-factor model is
used.

Used for pricing fixed-income derivatives
(not bonds).

Implementation issue: calibration to initial
yield curve, and assumptions about the
volatility parameter.



1.3. Numerical Methods

Black and Scholes using no arbitrage argument developed an analytical expression for
European type contingent claim. However, within the Black-Scholes framework an
equivalent analytical expression for an American type contingent claim is not possible.
American type contingent claims are distinguished from the European type on the basis
that American contingent claims can be exercised anytime prior to the expiry of the
option. It is this feature of possible early exercise of the American contingent claim

prior to expiry that results in no analytical expression being available.

The key to the valuation of American contingent claims is the location of the early
exercise boundary or the free boundary in the terminology of partial differential
equations. The early exercise boundary is determined by comparing the intrinsic value
with the actual contingent claims price itself. The methods developed for the
evaluation of American contingent claims are the Lattice approaches, Analytic
approaches, Finite Difference Method, Method of Lines and Monte Carlo Simulation.
Below we discuss each of the above mentioned approaches first with respect to equity
or commodity contingent claims and then secondly where applicable with respect to

interest rate contingent claims.

1.3.1. Lattice Approaches

Based on the earlier work of Sharpe (1978), Cox-Ross-Rubinstein (CRR) (1979)
developed the binomial lattice approach for the valuation of contingent claims. Their
key assumptions include:

» The expected return from all traded securities is the risk-free interest rate.

16



* Future cash flows can be valued by discounting their expected values at the risk-free
interest rate.

* The probabilities sum to one.

* The mean of the discrete distribution is equal to the mean of the continuous
distribution.

* The variance of the discrete distribution is equal to the variance of the continuous
distribution.

Based on the above assumptions CRR proved that European option’s value in the

binomial model converges to the value give by Black-Scholes formula. CRR (1985)

further developed their binomial model to value American options on dividend paying

stocks. Further they demonstrated the use of the Binomial model, when some of the

Black-Scholes assumptions are relaxed. Boyle (1986) further developed the CRR

binomial lattice to trinomial lattices. In this case the stock price can jump up to a

higher value, jump down to a lower value or stay the same value after a time step. We

can generalize the lattice of CRR and Boyle, if we consider a derivative security whose

price depends on lunderlying variables. The life of the security T is divided into n

subintervals of length At. At time iAt, there exists m( possible states which we
denote by S-,(l <j <m;). Transition probabilities pik are defined as follows:
Pijk ' probability of moving from stateS* to stateSiHjat time (i + 1)At.

Further pjk’s must sum to one and be between zero and one, i.e.:

XPijk =1 for i’s ancU’s-
k

0 <pik<l for all i,j, and k.
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Once the lattice has been set up, the dynamic programming method can be used. The

value of the contingent claim at time T is known for all mn states at that time. The
value of all mistates at time iAt can be calculated using risk neutral valuation if the
value is know for all miH states at time (i + [)At. By moving backwards through the

tree, the value at time 0 can be obtained.

The lattice approach has been extended to value path dependent options such as Asian
options by Hull and White (1993), Lookback options by Cheuk and Vorst (1993).
Further schemes to improve the efficiency of lattices have also been developed. These
schemes include the control variate method by Hull and White (1988), Richardson

extrapolation by Breen (1991).

One of the most important applications of the lattice approach has been for the
valuation of bonds and interest rate contingent claims. Rendleman and Barter (RB)
(1980) were the first to apply the binomial lattice to value interest rate contingent
claims. They assumed that the short term interest rate followed geometric Brownian
motion. RB valued interest rate contingent claims as a three-step process. The first
step involves generating a lattice of interest rates. The second step involves deriving a
lattice of bond prices. The final step involves developing a lattice of interest rate
contingent claims based on the lattice of bond prices. The main weakness of the RB
lattice is that it is based on the assumption that the short-term interest rate follows a
process similar to that of stock prices. Thus the RB lattice cannot be used if the short
term interest rate models incorporate both mean reversion and interest rate dependent

volatility - a feature of widely used interest rate models. Nelson and Ramaswamy
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(NR) (1990) developed a lattice approach that could incorporate both these features.
The NR lattice is different from the RB lattice in two aspects. Whereas with the RB
lattice, the probability value is fixed throughout the lattice, with the NR lattice,
probability value varies from node to node. Further to ensure that the probability
values lie between zero and one, multiple jumps are allowed within the NR lattice. The
inclusion of multiple jumps in the NR lattice results in it being considerably slower than
the RB lattice. Hull and White (HW) (1990) developed a trinomial lattice that
incorporated both mean reversion and interest rate dependent volatility. HW lattice
ensured that probabilities lied between zero and one by incorporating alternative jump
processes. The HW lattice is therefore considerably faster than the NR lattice. Tian
(1992) further simplified HW trinomial lattice to a binomial lattice (SB). Tian (1994)
tested the NR lattice, HW lattice and SB lattice for bonds and interest rate contingent
claims based on the CIR model. He found that for certain combination of parameters
both the HW and the SB lattice did not converge to the corresponding analytical bond
price and hence interest rate contingent claims. The NR, lattice however, did yield
bond and interest rate contingent claim prices which converged for all combination of

parameters - albeit at greater computational cost.

1.3.2. Analytic Methods

To avoid the use of numerical schemes for the valuation of American options a number
of analytical schemes have been suggested. Johnson (1983) suggested an
approximation for an American put option. Blomeyer (1986) further developed
Johnson's approximation to value put options that have a dividend date occurring on

the underlying asset prior to expiration. The schemes suggested by Johnson and
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Blomeyer do not necessarily satisfy the hedging partial differential equation. To avoid
this difficulty MacMillan (1986) suggested a numerical scheme based on the
decomposition of the American put option as a sum of the value of a European put
option plus the early exercise premium. The early exercise premium is assumed to be a
function of time and asset price. Barone-Adesi and Whaley (1987) extended
MacMillans put approximation to value both American call and put options based on
dividend paying stocks and American commodity and futures options with a constant
rate of dividend. Their solution is based on the similarity transformation with the
solution satisfying the fundamental partial differential equation. The resulting partial
differential equation based on the similarity transformation is then converted to an
ordinary differential equation by a suitable approximation. This ordinary differential
equation is then solved iteratively to determine the critical asset prices and the options

prices.

The integral equation method suggested by Kim (1990) again separates the American
option into two components. Kim assumes that the American option with time to
maturity X can be expressed as the sum of the value of a European option at time t and
the early exercise premium. It is possible to exercise the option at any point in time v
where t <v <x. The early exercise premium is then valued by integrating over the
relevant time interval. At each intermediate point of time v, the critical asset price is
determined and thus the decision whether it is optimal to exercise or not is taken. The
early exercise premium comprises of two integrals. The first for the probabilistic
weighting of not exercising and the second for exercising. The resulting integral
equation for the American option is solved using numerical integration. However, this

integral equation requires the computation of many early exercise points, Huang,
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Subrahmanyam and Yu (1996) implement a four-point Richardson extrapolation
scheme. As the integral representation method involves only the univariate cumulative
normal method, their method is fast, but not very accurate, especially for long expiry
options. Ju (1998) proposes an approximation which overcomes this difficulty by

approximating the early exercise boundary as a multi-piece exponential function.

The compound option approach for the valuation of American put options is based on
the papers of Geske (1977,1979). Since at every instant there is a positive probability
of premature exercise, the American option can be interpreted as being equivalent to
an infinite sequence of options on options or compound options. Geske and Johnson
(1984) develop a solution for the American put. They use four point Richardson
extrapolation on a sequence of hypothetical puts, where each put has a finite number of
exercise points located at equally spaced time intervals. Evaluating the puts requires
calculation of quadrivariate normal integrals. Bunch and Johnson (1992) improve the
above scheme. They demonstrate that it is possible to obtain accurate American put
prices using two point Richardson extrapolation that involves the valuation of bivrate
normal integrals. Ho, Stapleton and Subrahamanyam (1994) suggest a further
improvement on Bunch and Johnson's two point Richardson extrapolation procedures.
Their improvement is based on an observed approximately exponentially relationship
between the value of an American option and the number of exercise points allowed up
to the expiry date.

1.3.3. Finite Difference Method

With the finite difference approach, we transform the partial differential equation into a

set of finite difference equations. This set is then solved numerically to obtain the
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value of the contingent claims. Their exists basically two different finite difference
schemes. The explicit and the implicit finite difference schemes. Although there are
other finite difference schemes, they are essentially a combination of the two. With the
explicit finite difference scheme, we can solve the finite difference equations
individually. With the implicit finite difference scheme, we need to solve the whole set

of finite difference equations simultaneously.

Brennan and Schwartz (1977) used the finite difference approach to solve the free
boundary problem. They calculated the value of an American put option for a dividend
paying stock and derived the critical asset prices using the implicit finite difference with
coefficients depending on the increments of the stock. Schwartz (1977) further
expanded this approach to value warrants. Later Brennan and Schwartz (1978) gave
intuitive interpretation to the explicit finite difference scheme as a three-jump process.
That is, the explicit finite difference scheme can be interpreted as a trinomial lattice.
Finally, they interpreted the implicit finite difference scheme as a generalized jump

process with infinitely many asset prices.

Courtadon (1982b) further improved the finite difference schemes put forward by
Brennan and Schwartz. He used and average of the explicit and the implicit finite

difference-schemes - known as the Crank-Nicholson method.

Geske and Shastri (1985) compared the explicit, implicit, and log-transformed explicit
and implicit finite difference schemes. They also considered several binomial methods.
Their main conclusion was that the explicit finite difference scheme was overall the

fastest.
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Courtadon (1982a) applied the finite difference method for the valuation, of default-
free bonds and interest rate contingent claims. He stated the boundary conditions
necessary for valuing default free bonds, European call and put options as well as
American call and put option. Using the single factor term structure model proposed
by Brennan and Schwartz (1979), he set up the partial differential equation for both
default free bonds and contingent claims. Using the implicit finite difference scheme
similar to that of Brennan and Schwartz (1977), he set up a system of finite difference
equations. By solving this system of equations he obtained the bond prices and

contingent claims prices.

Hull and White (1990b) further developed the explicit finite difference scheme to value
default free bonds and contingent claims. They noted the conclusion of earlier
researchers including Brennan and Schwartz (1978), Geske and Shastri (1985) and
others that a suitable transformation of the underlying asset increases the efficiency of
the finite difference scheme. Generalizing from this, they introduced a new state
variable that had constant instantaneous standard deviation to their finite difference
scheme. They modeled their new variable in the same way as the underlying asset.
They set up an explicit finite difference scheme in terms of the new state variable and
interpreted the coefficients as probabilities of a trinomial lattice introduced by Boyle
(1986). Hull and White discussed the conditions under which their proposed explicit
finite difference scheme would converge to yield true bond prices and contingent
claims prices. To ensure convergence they recommended that the probabilities, i.e. the
coefficients should remain positive. This is achieved by using different branching

procedures, rather than the usual, up, down and constant branch. Hull and White
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applied their explicit finite different branching scheme to value bonds and contingent
claims based on the short-term interest rate model proposed by Cox-Ingersol-Ross

(1985).

1.3.4. Method of Lines

The Method of Line involves converting the second order partial differential equation
into a system of first order equations. These first order equations are then discretized
and solved iteratively to obtain the value of the contingent claims. To date the Method
of Lines has only been used to value put options based on equity by Meyer and Van

der Hoek (1994).

1.3.5. Monte Carlo Simulation

The Monte Carlo simulation method for contingent claims valuation was first

introduced by Boyle (1977). Until, recently, its main use has been to value path-

dependent European type contingent claims. However, in recent years a number of

researchers have put forward different Monte Carlo schemes for the valuation of

American type contingent claims. The basis of Monte Carlo simulation lies in the

insight of Cox and Ross (1976); that if a riskless hedge can be formed the option value

can be expressed as the discounted expectation of the payoff it would produce in a risk

neutral world. Monte Carlo simulation consists of the following three steps.

* Simulating sample paths of the underlying state variable such as the underlying asset
prices over the time increment.

* Evaluating the discounted cash flows of a security on each sample.

* Average the discounted cash flows over sample path.
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Boyle (1977) used Monte Carlo simulation to value European call options on discrete
dividend paying stocks. Hull and White (1987) used the approach to value options on
assets with stochastic volatilities. They found that the Black-Scholes frequently
overprices options and that the degree of overpricing increases with the time to
maturity. Kemna and Vorst (1990) used Monte Carlo simulation as a valuation
method for arithmetic Asian options, Clelow and Caverhill (1994) valued call and
look-back call options using Monte Carlo simulation. Caverhill and Pang (1995)
evaluated bond prices and call option within Heath-Jarrow-Morton (HJM) framework

using Monte Carlo simulation.

One of the main disadvantages of Monte Carlo simulation is that a large number of
simulation runs may be required to obtain precise results. Thus variance reduction
techniques is required.  Boyle (1977) discussed two such variance reduction
techniques; the control variate approach and the antithetic variate approach. Kemna
and Vorst (1990) used the control variate method in their valuation of Asian options.
As a control variate they used the analytical formula for the geometric average option.
Recently other variance reduction methods have been introduced. These include
moment's matching by Barraquand and Martineau (1995); martingale variance
reduction method by Clelow and Caverhill (1994); low discrepancy deterministic
sequences by Joy, Boyle and Tan (1996). Low discrepancy sequences have the
property that the sequence of points remain evenly dispersed. Deterministic series thus

far used include Faure and Sobol.
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Tilley (1993) expanded the use of Monte Carlo simulation to value American type
options. Till that date, widespread belief existed that Monte Carlo simulation could
not be used to value American type options. The basic problem in using Monte Carlo
simulation to price American type options is how to incorporate the early exercise
feature associated with American options. Tilley dealt with this problem by storing the
paths followed by the asset prices, ranking them and further re-ranking them at each
possible early exercise date. Tilley uses the valuation of an equity American put option
as an example. By grouping the ranked asset prices at each date, he is able to estimate
for that group at that date. Barraquand and Martineau (1995) proposed an alternative
Monte Carlo scheme for the valuation of American options. Their proposal involved
an approach that tracks the conditional probabilities of path specific outcomes in a
Monte Carlo simulation. They use their scheme to value put options based on multiple
assets. Raymer and Zwecher (1997) extend the Barranquand and Martineau approach
to two factor representation of stock prices. Broadie and Glasserman (1997) propose
a scheme based on generating two estimates of the asset prices taken from random
samples of future state trajectories. One estimate is biased high and one is biased low;
both estimates are asymptotically unbiased and converge to the security price. The
two estimates are then combined to determine a confidence interval for the security
price. Recently Grant, Voran and Weeks (1998) have proposed another Monte Carlo
scheme for the valuation of American options. They incorporate the early exercise
feature in the Monte Carlo method by linking forward moving simulation and the

backward moving recursion through an iterative search process.
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1.4. Objectives of the thesis

In the previous sections, we have discussed alternative specifications of possible
interest rate models. Further we discussed that there was the Equilibrium approach and
the Arbitrage-Free approach to interest rate modeling. For the remainder of the thesis

we concentrate on the Equilibrium approach.

Ideally for risk management purposes, analytical prices both for bond and interest rate

contingent claim prices is highly desirable. However, except for specific models such

. P . . .
as the Vasicek (y=0), CIR fY:? analytical solutions are not available. Further

CKLS (1990) state that y is the most important feature differentiating different interest

rate models. CKLS, also show that interest rate models, which allow for y > Icapture
the dynamics of the short-term better than those do, which require y <1. Finally

CKLS show that these interest rate models differ significantly in their implication for

valuing default-free bonds and interest rate contingent claims.

Rebanato (1995) states that 85%+ of variance across rates of different maturity could
be satisfactorily explained by using a single factor model. More, specifically he finds in
the case of the UK that 92.170% of the variance is explained by a single factor model
and 6.93% ofthe variance (or 99.1% of the total variance) is explained by a two factor
model. Thus clearly, a two-factor model is desirable for risk management purposes.
However, a two-factor model requires considerably more effort to implement. In
addition, with multi-factor models the CPU memory required increases by the power

of the factor. As an example, if we declare an array of size N with a single factor
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model we need to declare an array of size N, x N2 with a two-factor model, or an
array of size Nj x N2x ...... x Nmwith an m-factor model. Further modeling interest rate

derivatives is more demanding than the modeling of equity derivatives. As a result
both practitioners and academics have focused their research activities on single-factor
term structure models. By focusing on single-factor models researchers are able to
gain insights which can be applied in a multi-factor setting.

Our examination of the numerical approaches literature indicates that not all the
numerical approaches suggested so far are suitable for general interest rate contingent
claim valuation. As discussed in the previous section, different Monte Carlo simulation
schemes have been put forward. However, no single approach has been accepted as
the standard, unlike the lattice approach as an example. The analytic approaches are
not suitable because their starting point is an expression for the European option - an
expression generally not available for interest rate contingent claims. This leaves us

with the Lattice approach, Finite Difference Method, and the Method of Lines.

The objectives of this thesis is as follows:

1. To test the convergence properties of the simplified binomial lattice of Tian (1994)
by varying the y parameter.

2. To introduce a new numerical scheme in finance from engineering for the
evaluation of default-free bonds and interest rate contingent claims based on the
CKLS model.

3. To test the convergence and stability of the new method with existing numerical

methods.
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4. To test the stability of the new numerical scheme by tracking its free boundary for
American interest rate put options.
5. To value default-free bonds and interest rate contingent claims for different

markets using the new numerical method.

1.5. Outline of the thesis

In Chapter 2 we apply the Simplified Binomial (SB) lattice of Tian to value both
default-free bonds and interest rate contingent claims, based on the CKLS model. We
test the SB lattice both for stability and convergence.

In Chapter 3 we use the partial differential equation approach to value default-free
bonds and interest rate contingent claims. We consider the Finite Difference Method.
We develop the Method of Lines approach which has thus far been only used to value
equity options to value default-free bonds and interest rate contingent claims. Finally
we introduce a new numerical scheme - the Box Method in finance from engineering.
As in Chapter 2, we test all three numerical schemes with one another with respect to
convergence and stability.

In Chapter 4 we use the Box Method as the starting point to develop a new method to
track the free boundary of American interest rate put options. We attempt to track the
free boundary of both short dated and long dated options based on widely used interest
rate models.

In Chapter 5 we use the Box Method to value default-free bonds and interest rate
contingent claims for different markets. In particular we consider Australia, Canada,
Japan, Hong Kong, U.K., and U.S.A. We calculate values of default-free bonds across

a range of maturity dates and short-term interest rates. We compare the numerical
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default-free bond values and interest rate contingent claim values with analytical values

where available.

Chapter 6 summarizes the results of our research and suggests directions for future

research.
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CHAPTER 2.
BINOMIAL LATTICE APPROXIMATION TO DIFFUSION PROCESSES

2.1. Introduction

The lattice approach to value contingent claims was first developed by Cox, Ross, and
Rubenstein (CRR; 1979). They used a recombining binomial lattice to value equity
contingent claims and proved that in the limit At -4 0 contingent claim prices
calculated using the binomial lattice approached the contingent claim prices calculated
using the Black-Scholes formula. Boyle (1986) further extended the CRR binomial
lattice to a trinomial lattice and showed that the trinomial lattice was faster than the
binomial lattice. Neither the binomial lattice of CRR or the trinomial lattice of Boyle

are directly applicable to widely used interest rate models.

Interest rate stochastic processes are more complex than similar stochastic processes
for equities. For example, interest rate processes need to take mean reversion and
interest rate dependent volatility into account. This means that when we try to value
interest rate dependent contingent claims using the above mentioned lattice approaches
recombining of the nodes is no longer guaranteed. Further it may not be possible in
some instances to achieve convergence from the discrete to the continuous in the limit

At—>»0.

Over the years researchers including Nelson and Ramaswamy (NR; 1990), Hull and
White (1990b) and Tian (1992) have attempted to use the lattice approach to value the

underlying instruments, i.e. the discounted bond and the contingent claims based on
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such bonds. The NR binomial lattice method produced both accurate discount bond
prices and the contingent claim price based on such bonds. However, this was
achieved at the expense of computational speed. HW trinomial lattice method
although faster than the NR method suffers from convergence difficulties for certain
combination of parameters. HW trinomial lattice was further simplified by Tian (1992)
to a simplified binomial lattice (SB). Although the SB lattice is considerably faster and
easier to implement than the HW lattice, it nonetheless suffers from the same
convergence difficulties as the HW lattice.

Both HW and Tian applied their respective lattices to the Cox, Ingersoll, and Ross
(CIR; 1985b) interest rate model and found convergence and stability difficulties with
certain combination of parameters. The purpose of this chapter is to further explore
the convergence and stability issues that arise when the SB lattice is used to value

discount bonds for interest rte processes, that enclosed the CIR as a special case.

The main contribution of this Chapter is to generalise the work of Tian (1994) to the
CKLS (1992) model. In Section 2 we discuss the construction of the SB lattice as in
Tian for a general one factor stochastic process. In Section 3 we show how the work
of Tian (1994) is expanded to the CKLS (1992) model). In Section 4 we discuss

results obtained for the CKLS interest rate model. Section 5 concludes this chapter.

2.2.  Simplified Binomial Interest Rate Lattice

Consider a general one state variable short term interest rate process:

dr = p(r,t)dt + a(r,t)dzt (2.2.1)
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where:

li(r, t): instantaneous drift of the interest rate process.
a(r,t): volatility of the interest rate process.
dzt: Standard Wiener process.

In a risk-neutral world, drift rate is adjusted by the market price of risk X(r,t) so that

the short term interest rate process becomes:

(h = [i[)(l’,t) - A,(l',t)]dt + C(I‘,t)dZ, (2'2'2)

Taking the discrete time version of the Wiener process as Az = ekVAt the discretized

verison of the above equation is:

It = mH{MI'n5tn)-* (m>t,,) VA t+ 2 (metn)ek(tn) VAt (2.2.3)

£k has two and three possible outcomes for a binomial and trinomial lattice

respectively and a mean of zero and variance of one.

The major problems with the above discretization is that the resulting lattices are non-
combining because the volatility is interest rate dependent. This means that the number
of nodes increase exponentially as we move forward through the lattice. Such a lattice

is said to be path dependent. An alternative lattice where the nodes combine is known
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as path independent or a simple lattice in the terminology of Nelson-Ramaswamy
(1990). The major strength of simple lattices over path dependent lattices is that with
simple lattices the number of nodes increase quadratically as we move forward through

the lattice. Clearly from the computational viewpoint simple lattices are desirable.

With above researchers in all cases the starting point is to transform equation (2.2.2) to

a form that has constant volatility i..e. where the volatility is not dependent on the
short term interest rate. This is achieved by letting ()= g(r,t) such that r= g 1(c(),)

be the relevant transformation such that process described by equation (2.2.2)

becomes.
dj) = q(r,t)dt + vdzt (2.2.4)

where:

24)

¥ a
.y, T (nH-Mr.H)*+%o(r.0)2

— = v - positive constant.
3r

Thus it is possible to construct lattice either in (r,t) or in ((fyt) space. The former

approach is pursued by Nelson and Ramaswamy and the latter approach is pursued by

Hull and White and Tian.
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The Simplified Binomial model (SB) is the binomial equivalent of the trinomial Hull

and White model. To derive the SB lattice we partition the interval [t0,T] (where t0

is the current date and T is the maturity date of the bond or the exercise date of the

option) into N subintervals of length At such that:

Af = T-t0
N
t, =t0+nAt
for n=0,1,2,........ ,N

Further we assume for the period (tn,tntl] r behaves in the following way. Initially its

value at time tn is rn. For the period (tn,tntl] its value still remains at rn. However,
at time tntl, its value either jumps up to rn+ u with a probability p or jumps down to
m- d with a probability (1- p). In order to derive expressions for u, d and p, we

equate the mean and variance in discrete and continuous time as follows:

pu- (I- p)d = gAt (2.2.5)

pu2+(1- p)d2= v2At (2.2.6)

prob(4>iH =t +tA<(>) = p

preb@®it = ¢t —AP)= 1-—p
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Thus based on the above two equations, we derive the following expressions for u, d

and p.

u=d= Ag)= vVAt

The above expression for p can either be less than zero or greater than one. This leads

to the following expression for p.

In order to value the discounted bond prices, the first step is to generate the interest
rate lattice by moving forward through time. The second step involves moving
backwards through the lattice by calculating the discounted bond price at each node on
the lattice. At maturity we take the value of the discounted as 1. Prior to maturity we

use the following recursive formula to value the discounted bond price By at node j,

time n.

+(1-P,,j)Bnij
1 + rojAt

(2.2.7)
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Once we have calculated the lattice of bond prices, we proceed to calculate the
contingent claims based on the bonds. As with bonds we move backwards through the
lattice but in this case by calculating the discounted options prices at each node

through the lattice prior to the expiry of the option. At maturity we take the value of

the call option max|BN-E,ojand put option as maxjE- BN,oj. E is the exercise

price in both cases. At each intermediate step for European type call or put options,

value at each node is given by:

PnjPn+1J+1+O-PnjjPnUj

. (2.2.8)
1 + mjAt

where Py may be call or a put option, However, if the options are American, then

value at each node is max|Pn,Bgy-E j for call option and max|Pnj,E - Byjfor put

options.

2.3. CKLS Model

We consider the following CKLS model in a risk neutral world where the short term
interest rate is pulled toward a long term value 0 at a speed of adjustment k. In an
equilibrium model, the market price of risk is incorporated explicitly depending on the
model used. For example in the Vasicek model market price ofrisk is ac: . The CKLS
model is used for the short-term riskless rate and as such the market price of risk is

taken to be zero.
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drt = [kO - rk]dt+arYdzt (2.3.1)

y: unrestricted parameter

We note that substituting specific values of y into the above equation leads to specific

interest rate models. For example:

y=0 — Vasicek model

1

y= 5 — Cox-Ingersoll-Ross (CIR) model

y= 1 Brennan-Schwartz model

In order to transform equation (2.3.1) so that the volatility is independent of the

interest rate,we use the general transformation 4> for the CKLS interest rate process:

()= — fr~Tdr (2.3.2)

where v can be chosen equal to a with no loss of generality. Taking the market price

of risk as zero, for simplicity, the drift of the process <3 q is given by Ito’s lemma as:

q=k(0-1)— +—a2r2y " (2.3.3)
\'% d r2

Jodr 2

From equation (2.3.2), we note that there is a singularity at y =1. We therefore

integrate equation (2.3.2) for y = 1 and 0 <y < lseparately.
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Thus for y = 1, we have:

Ifwelet v=a

0= Inr (2.3.4)

Differentiating the above expression for <) with respect to r, once and twice, we have

dr2 ~ r2

Substituting the above expressions for q into equation (2.3.3) and simplifying gives:

ko (2.3.5
a 3.5)
q= (2.3.6)
where:
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a, = kO

“m(2k + 02)

For 0 <y < 1, use the following transformation.

= — ~ Y
a_Jr T 0(717-y)r

Let v=a(l-vy)

J=rlyY (2.3.7)

Differentiating the above expression for 0 with respect to r, once and twice, we have

329 ‘
dr2' _y(l_y)r Y_l

Substituting the above expressions for q into equation (2.3.5) and simplifying gives:
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where:

r=@®Ly
a, = (- y)kO
a2=-0 - Yk

a3=-"y(i-y)°2

A necessary condition for convergence of the .. process to the r process is that q
should be bounded. From equations (2.3.8) we see that q is always bounded if ¢) > 0.
However, from equation (2.3.8) we see that q becomes unbounded if @&=0. By
careful choice of parameters we can ensure that ()= 0 is inaccessible and convergence

is always ensured.

The general transformation of r to ¥ ensures that the variance of () is constant and

further r = 0 is inaccessible for kO > Oin equation (2.3.8). kO > 0 ensures q > 0. The

positive values of the long-term centrality parameter and the speed of mean reversion



of the CKLS interest rate process ensures that these conditions are always met. Hence

the interest rate process always converges for y = 1.

From equation (2.3.8) we see that for y ~ 1, the leading term when () approaches zero

is a, for y> and a3 for y <—. For Y>*“ bond prices converge because the term

al dominates. Similarly there is no convergence of bond prices for y <. because the

term a3 dominates.

2.4. Numerical Experimentation

In this section we perform numerical experiments to determine zero coupon bond
prices when the underlying short term interest rate process follows the CKLS process.
In particular we examine the rate of convergence and stability of the bond prices in

depth.

Tables 2.1 to 2.16 all have the same format. The first two columns give the term to

maturity of the bond and the instantaneous short-term interest rate. The third column

contains analytical prices calculated using the Cox-Ingersoll-Ross model i.e. fory =

The remaining columns contain zero coupon bond prices for different number of
annual time steps calculated using Tian’s simplified binomial price. These prices will
be referred to as SB henceforth. As in Tian (1994) we attempt to value bond prices in
two distinctly different circumstances. In the first case we value bonds when the mean

reversion rate is high and the volatility of the interest rate is low and in the second case
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when the mean reversion rate is low and the interest rate volatility is high. We farther

distinguish these two situations by introducing a variable a, where :

otf >0 corresponds to low volatility and high mean reversion rate. For a, <0 the

converse conditions hold.

Tables 2.17 and 2.18 both have the same format, the first column contains the exercise

prices. The second column indicates whether the prices are calculated analytically

(only occurs when y =— i.e. CIR) or using the Simplified Binomial Method. The

third, fourth and fifth columns contain the values ofa,, y, and the bond prices at

maturity respectively. The remaining columns contain call or put prices for different

terms to expiry.

We calculate prices of zero coupon bonds for different values of y. Further we
examine the rate of convergence and stability by considering prices for different
number of annual time steps n. The maturities of the bonds range from 1-25 years.
The face value of the zero coupon bond is $100. Short-term interest rates of 5% and
11% are considered. A difference of 6% between the interest rate scenarios ensures

that the approach will remain stable under realistic interest rates. Further, for:

0.01875>0,k=05,a=0.1, 0=10.08

[
Il

-0.02725<0,k=0.1, a=05,0=0.08
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a,,a2 represent the extreme bounds for the parameters 0 and .. In reality, the
parameters will not be as extreme. If a numerical approach yields correct prices under
these two extreme conditions, then it will yield correct prices under regular market

conditions.

Tables 2.1 and 2.2 show the prices of discount bonds for y = 1- Brennan-Schwartz
(1980) model for a, >0 and <0 respectively. Both Tables show that the zero
coupon bond prices are extremely stable with respect to the annual number of time
steps. For example from Table 2.1 consider a 10-year bond, at short-term initial
interest rate of 11%. The price of zero coupon bond at n =50 is 42.3708 and the
corresponding price at n = 250 is 42.3781. Thus an increase in the annual number of
time steps by a factor of five has lead to less than one percent change in the zero
coupon bond price. Tables 2.1 and 2.2 show that for y = 1 zero coupon bond prices
are always lower than the correspond analytical CIR price. This difference in bond
prices can be explained by noting that bond prices are dependent on the average
volatility of the interest rate; which in turn is dependent on the value of y. A higher
value of'y leads to a higher average volatility which in turn leads to a lower bond price.
Further this feature between the Brennan and Schwartz model and the CIR model is

more pronounced for a, <0 and for long maturity bonds.

Tables 2.3 and 2.4 repeat the same calculations but only for y = — Note in this case

the analytical CIR prices are directly comparable with the SB prices. Table 2.3 shows
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that for a, >0 the SB prices are firstly very stable with respect to the annual number

of time steps n and secondly are in excellent agreement with the analytical CIR prices.

However for otj <0 the situation is totally different as can be seen from Table 2.4.

Examination of Table 2.4 shows that SB prices are always lower than the
corresponding analytical CIR prices and the difference between the two sets of prices
increases with an increase in the term to maturity. Further the zero coupon bond
prices are unstable and the level of instability i.e. the range over which the prices

fluctuate, increases with an increase of term to maturity of the zero coupon bond.

The sharp difference in the behaviour of bond prices in Tables 2.3 and 2.4 has been

explained by Tian (1994). According to Tian for the CIR model i.e. when y =. | the

sign of a, will determine convergence of bond prices. In particular if a,<0 bond

prices will not converge and if > 0 the bond prices will converge.

For y <— bond prices do not converge regardless of whether a! is positive or

negative. Tables 2.5 and 2.6 demonstrate this feature for y = 0.25 . Again we see that

the fluctuations are greater when otj <0. Indeed the fluctuations are even more

erratic than when y =. and further this instability increases as before with y =~ with

term to maturity of the bond. One final feature which will be noticed by examining

Table 2.6 is that for a, <0 and long maturities the bond prices although unstable are

extremely low compared with the corresponding CIR price and that the prices actually

seem to be approaching zero as the term to maturity of the bond becomes longer. For
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example for a 25 year bond at initial interest rate of 11% has bond prices varying
between 10.7133 and 0.1759. Contrast this with a 5 year bond at the same short term

interest rate where the bond price fluctuates between 59.1822 and 39.9553.

Tables 2.7 and 2.8 indicate that bond prices converge at y = 0.75 . For all combination

of parameters bond prices are stable and close to analytical CIR prices. However, as
before the discrepancy between the two sets of prices sensibly increases with an

increase of term to maturity. This discrepancy is more stark when a, <0.

In tables 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16 we explore the behaviour of bond

prices for different values of y ranging from 0.45 to 0.70 when a, <0. In theory,

convergence appears at y >. if the annual number of time steps n is increased to

infinity i.e. with y < we would expect the bond prices to be unstable. This feature

is demonstrated in table 2.9 where y = 0.45, we see that the bond prices are erratic,

with large fluctuations for 15 maturity bonds and apparent stability at very long
maturities. This feature of stability at long maturity is deceptive. It can be best

appreciated by observing the very high 5 year forward rates implied by the prices of

the longer maturity bonds. As we have argued earlier, y > s theoretically sufficient

to ensure convergence for the range of'y values, maturities and annual number of time
steps selected in our tables convergence is immediately achieved at short maturities,

but only for y = 0.70 at 25 year maturity.
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From Table 2.17, we see that for a, >0,y =-* SB call prices are in excellent

agreement with analytical call prices. However, for a, <0,y = — SB call prices are

significantly lower than the analytical call prices. This difference is explained by
examining the bond price. For G <0,y =0.25, we find that all the call prices are

zero indicating that for the exercise prices chosen, the call options are deep out of the

money. The main reason for these values is the collapsed bond price of 12.7424

Table 2.18 contains put prices. As there are no analytical put prices available, direct

comparison is not possible. For a, >0, we find that the put prices are reasonable

given the exercise prices. However, for a, <0, we find that the put prices are too

expensive due to the low bond prices.

2.5. Conclusion

The development in Section 3 and the results of numerical experimentation in Section

4 indicate that the value of y is critical for the stability of the lattice. Y>“ ensures

that the constant variance binomial tree converges to the underlying interest rate

process. Theoretically we could achieve convergence when y > , however, in such

an instance we need a ridiculously large number of time steps. From a practical

viewpoint convergence is achieved around y = 0.7 .
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In this chapter, we have applied the lattice approach and have discovered that it has
severe limitations. In the next chapter we use the partial differential equation approach

to value discounted bonds and contingent claim prices based on the CKLS model.
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Table 2.1 : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.
«! =(4k0-G2)/8>0
k=0.5,0=0.08, o =0.1, Ar=0.5% .,y = 10

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 94.5228 94.5612 94.5258 94.5215 94.5200 94.5193 94.5189
1 11 90.1690 90.1167 90.1508 90.1544 90.1563 90.1570 90.1574
5 5 71.0379 71.9618 70.8604 70.8509 70.8477 70.8462 70.8452
5 11 63.7161 63.3543 63.4452 63.4561 63.4597 63.4615 63.4626
10 5 48.1647 49.1540 47.8332 47.7264 47.7270 47.7271 47.7272
10 11 42.8455 16.5766 42.3708 42.3753 42.3768 42.3776 42.3781
15 5 32.5442 33.9295 32.2294 32.0422 32.0224 32.0229 32.0233
15 11 28.9322 4.7666 28.4065 28.4125 28.4137 28.4143 28.4146
20 5 21.9840 22.2968 21.7123 21.5257 21.4846 21.4792 21.4796
20 11 19.5432 1.1013 17.8643 19.0560 19.0572 19.0577 19.0581
25 5 14.8502 10.3306 14.6238 14.4680 14.4226 14.4088 14.4070
25 11 13.2014 0.2034 12.7746 12.7803 12.7818 12.7824 12.7823

Table 2.2: Bond Prices calculated analytically (CIR) and the Sim plified Binomial Tree for different

value of gamma.

§ =(4k0-G2)/8<0
k=0.1, 0=0.08, <= 0.5,Ar= 0.5% .,y = 0.1

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632 95.0666 94.9973 94.9962 94.9958 94.9956 94.9955
1 11 90.0672 89.7402 89.7537 89.7554 89.7560 89.7563 89.7564
5 5 83.4832 76.4138 76.3574 76.3511 76.3491 76.3480 76.6474
5 11 72.5572 61.8080 62.0374 62.1065 62.1176 62.1231 62.1264
10 5 75.3333 58.2066 58.2132 58.2172 58.2187 58.2195 58.2200
10 11 65.0224 43.9308 44.3897 44.4505 44.4708 44,4810 44.4872
15 5 68.2741 44.6144 44.6760 44.7017 44.7106 44,7151 44.7178
15 11 58.9177 33.0517 33.5045 33.5824 33.6086 33.6218 33.6297
20 5 61.8442 34.3531 34.3486 34.3977 34.4155 34.4245 34.4299
20 11 53.4022 25.0213 25.6357 25.7297 25.7613 25.7774 25.7870
25 5 56.0925 26.7268 26.3981 26.4750 26.5014 26.5146 26.5225
25 11 48.4052 19.3547 19.6675 19.7748 19.8118 19.8303 19.8415
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Table 2.3 : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.

a, =(4k0-a2)/8>0

k=0.50=0.08, cr=0.1, Ar= 0.5%,y =05
Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 94.5228  94.5662 94.5313  94.5270 94.5256 94.5249  94.5245
1 11 90.1690 90.1256 90.1605 90.1648 90.1662 90.1699 90.1673
5 5 71.0379  71.1473  71.0549  71.0464 71.0436 71.0422 71.0413
5 11 63.7161  63.5822  63.6897 63.7029  63.7073  63.7095  63.7108
10 5 48.1647  48.0527 48.1503  48.1575 48.1599 48.1611  48.1619
10 11 42.8455  42.3731  42.8170 42.8311  42.8359 42.8383  42.8397
15 5 32.5442 30.9070 32.5122 32.5263  32.5323  32.5352  32.5370
15 11 28.9322  20.9780 28.8929 28.9114 28.9184 28.9218  28.9239
20 5 21.9840 9.2427  21.9113  21.9597 21.9677 21.9718  21.9742
20 11 19.5432  15.5713  19.4927  19.5174  19.5260  19.5303  19.5328
25 5 14.8502 6.8207 14.8025  14.8236 14.8319  14.8364  14.8392
25 1 13.2014  11.7957  13.1460  13.1745  13.1828  13.1874  13.1902

Table 2.4: Bond Prices calculated analytically (CIR) and the Sim plified Binomial Tree for different

value of gamma.

dj =(4k0-22)/8<0
k=0.1, 0=0.08, <= 0.5, Ar= 0.5% ,y = 0.5

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632  95.0224 94.8532 95.0089 95.0153  95.1216  94.9830
1 11 90.0672  89.8954  89.9402 89.9766 89.9877 90.0419  90.0203
5 5 83.4832  66.0205 78.0677 76.4452 78.0432 81.5666 74.8002
5 11 72.5572  65.7017 64.5628 67.9157 65.7878  65.4420  65.8205
10 5 75.3333  51.0533  54.3538  62.3036 83.4698 58.9077 82.6129
10 11 65.0224  27.8252 48.7119  45.7342  48.2313  53.0214  61.7257
15 5 68.2741  44.3687  59.7569  31.2846 49.7941  36.4932  60.6625
15 11 58.9177 19.3936 20.6762  25.2328 32.5130 43.5086  30.4504
20 5 61.8442 41.3507 11.9593  29.1225  82.3489  39.7977  28.2039
20 11 53.4022 14.4455 18.7966 26.7914 45.8062  23.1155  42.4286
25 5 56.0925 40.3146 8.5513 30.9268 16.2125 60.8095  31.8081
25 11 48.4052 11.3360 19.4318  36.5701 13.0887 31.0861 16.4342
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Table 2.5 : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.

a, =(4k0-cr)/8 >0
k=0.5,0=0.08, a =0.1, Ar=0.5% ,y =0.25

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 94.5228  94.5827 94.5409 94.5355 94.5442  94.5348  94.5414
1 11 90.1690 90.1455 90.1824 90.1871  90.1888  90.1892  90.1899
5 5 71.0379 71.6040 71.6306 71.7011  71.3977 71.3204  71.3013
5 11 63.7161 64.1310 64.1316 64.2805 64.1651  65.3028 64.1602
10 5 48.1647 47.7803  50.8847 49.3457  49.2719  49.5016  48.7296
10 11 42.8455 41.7615 43.8430 43.5653 43.6672 43.9519  43.7139
15 5 32.5442 24.6014  34.0075 33.7530 33.9134  35.7332  33.4930
15 1 28.9322 19.2185 30.1608 30.1282 29.7007 30.4036 30.2003
20 5 21.9840 18.9993  24.2652 25.0777  22.8881  23.3038  22.7247
20 11 19.5432 11.6217  20.3518  20.6131  20.3271  20.2524  20.2861
25 5 14.8502 15.3918 15.7323 15.7820 16.1144  15.5258 16.0132
25 11 13.2014 8.1477 14.2327 18.5408  14.7660  14.9029 13.8099

Table 2.6. Bond Prices calculated analytically (CIR) and the Sim plified Binomial Tree for different

value of gamma.

cij =(4k0-02)/8<0
k=01, 0=0.08,. =05.4r=0.5%,y =025

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632  89.8455  89.3463  89.8419  90.9203  89.4957 90.7504
1 11 90.0672  87.7584 87.3943  86.4093  88.8362  89.3431 86.5593
5 5 83.4832 57.3250 37.8758  60.7451  44.4512  39.8413  37.3211
5 11 72.5572  39.9553 41.5183  53.9920 37.6150 59.1822  40.0932
10 5 75.3333  45.0088 16.7096  11.6988 9.7896 34.2173  20.9337
10 11 65.0224  21.5378 7.6741 15.4979  10.4151  29.0210  15.8628
15 5 68.2741  41.9875 9.0337 4.9070 3.6089 2.9686 2.5709
15 11 58.9177 14.0994 2.8563 15.9817 5.7811 3.6501 2.7072
20 5 61.8442  42.4194 5.6083 2.3347 1.4857 1.1133 0.9067
20 11 53.4022 10.2821 1.2002 0.4831 5.1569 2.1565 1.3105
25 5 56.0925  44.5442 3.8530 1.2263 0.6701 0.4538 0.3434
25 11 48.4052 8.0393 0.5587 0.1759 10.7133 1.8111 0.8044
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Table 2.7 : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.

=(4k6-22)/8>0

k=0.5,6=0.08,a =0.1, ar - 0.5%,y =0.75
Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 94.5228 94.5620 94.5268 94.5225 94.5211 94.5204 94.5199
1 11 90.1690 90.1189 90.1532 90.1573 90.1587 90.1594 90.1598
5 5 71.0379 70.9829 70.9004 70.8913 70.8883 70.8868 70.8859
5 11 63.7161 63.4054 63.5040 63.5154 63.5192 63.5210 63.5222
10 5 48.1647 47.9732 47.8177 47.8202 47.8210 47.8214 47.8216
10 11 42.8455 39.5618 42.4755 42.4822 42.4845 42.4856 42.4863
15 5 32.5442  31.8280 32.1254 32.1324  32.1347 32.1359 32.1366
15 11 28.9322 14.4298  28.5207  28.5279  28.5304  28.5317  28.5324
20 5 21.9840 15.1024 21.5670 21.5840 21.5869 21.5884 21.5893
20 11 19.5432 0.1490 19.1496 19.1618 19.1647 19.1661 19.1670
25 5 14.8502 12.4947 14.4907 14.4976 14.5004 14.5020 14.5030
25 11 13.2014 0.0103 12.8473 12.8702 12.8732 12.8748 12.8757

Table 2.8: Bond Prices calculated analytically (CIR) and the Sim plified Binomial Tree for different

value of gamma.

a, =(4k0-a2)/8 <0
k=0.1,0=0.08,. =05,4r=0.5%,y=0.75

Annual number of time steps (n)

Maturity r(% ) CIR 10 50 100 150 200 250

(years)
1 5 95.1632 95.0404 95.0324 95.0314 95.0311 95.0309 95.0308
1 11 90.0672 89.8184 89.8391 89.8417 89.8425 89.8430 89.8432
5 5 83.4832 78.8420 78.8091 78.8130 78.8141 78.8149 78.8152
5 11 72.5572 65.5755 65.9817 66.0355 66.0512 66.0602 66.0656
10 5 75.3333 65.7624 65.5869 65.5154 65.5274 65.5333 65.5379
10 11 65.0224 52.4328 53.3328 53.4099 53.4320 53.4490 53.4582
15 5 68.2741 56.6282 55.3500 55.2521 55.1837 55.2235 55.2216
15 11 58.9177 45.0746 44.7639 44.8633 44.8743 44.8863 44.8862
20 5 61.8442 50.1408 46.9773 46.6991 46.5821 46.5519 46.5757
20 11 53.4032 35.9286 37.4520 37.8161 37.7887 37.8606 37.8371
25 5 56.0925 43.3192 39.5991 39.4030 39.2116 39.2704 39.2767
25 11 48.4052 31.8192 32.2106 32.0108 31.8287 31.9528 31.9573
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Table 2.9 : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.

=(4k0-22)/8<0
k=0.1,0=0.08 a =0.5,Ar= 0.5% ,y = 0.45

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632  94.2032  94.6292  94.6325 94.9888  94.7274  94.6481
1 11 90.0672 90.0984 90.0093 89.9506 89.8414  89.8438  89.8945
5 5 83.4832  64.9493 64.8480 67.8887 72.8856 85.0486 71.6882
5 11 72.5572  69.6823  74.7523  64.7510 63.9928  65.2313  68.1789
10 5 75.3333  50.6511  63.6275 38.9979 55.8186 43.6784  69.5384
10 11 65.0224  27.3929  69.3814  69.7575  37.3005 45.9197  72.3476
15 5 68.2741  45.1193 16.2982  35.1366  23.4260 53.0360  35.3029
15 11 58.9177 18.7694 23.0070 32.0187 65.6749 28.3763  67.3119
20 5 61.8442 15.1024 21.5670 21.5840 21.5869 21.5884  21.5893
20 11 53.4032 0.1490 19.1496  19.1618  19.1647  19.1661 19.1670
25 5 56.0925 12.4947  14.4907 14.4976  14.5004  14.5020 14.5030
25 1 48.4052 0.0103 12.8473 12.8702  12.8732  12.8748 12.8757

Table 2.10 :Bond Prices calculated analytically (CIR) and the Sim plified Binom ial Tree for different

value of gamma.

i ="4k0-02)/8 <0
k=0.1, 0=0.08, <<=0.5,Ar= 0.5%,y = 0.58

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632  95.0821  95.1216  95.1189  95.1157  95.1033  95.1151
1 11 90.0672  89.9368 89.9763  89.9759  89.9757 89.9788  89.9784
5 5 83.4832  81.0251  79.8113  81.3975  84.2648  83.3692  83.2332
5 11 72.5572  70.6560 70.0046 71.9769 72.2217  70.4286  71.8480
10 5 75.3333  51.2450 69.1049 66.6272 68.1837 70.9188  74.4992
10 11 65.0224 57.3810 55.9126 60.6087 57.6310 67.7080 67.3645
15 5 68.2741  43.1700 82.7782  79.0011  55.8353  63.7153  74.8207
15 11 58.9177 19.2516  38.7958 54.8187 53.3486 55.1422  58.8431
20 5 61.8442  38.4504 42.8720 51.0803 64.4076 46.7985  61.1943
20 11 53.4032 14.4091 42.2462  38.2465 41.3580 46.9917  55.4109
25 5 56.0925 35.6886 44.9245 59.6391  35.0906 53.4783  39.2244
25 11 48.4052 11.3542 52.4821  46.9518 54.8370 31.2805  41.3935
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Table 2.11: Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.

a] = (4k0-22)/8 <0
k=0.1, 0=0.08, cr= 0.5,Ar= 0.5%,y = 0.6

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632  95.1075  95.0999  95.0943  95.0944 95.0920 95.0942
1 11 90.0672  89.9209  89.9518  89.9553  89.9555  89.9571
5 5 83.4832  79.9592 82.4179  82.3216  81.9253  82.2970  82.1428
5 11 72.5572  69.1971  70.6865 70.1965 70.2367 69.8697  70.2125
10 5 75.3333  51.1666  80.5591  74.4498  73.5735 74.1379  74.8970
10 11 65.0224  66.3192  64.3793  64.3383 60.8978 62.1600 62.7312
15 5 68.2741  42.7809 69.1879  65.6838 67.9129  71.1071 62.3920
15 11 58.9177 58.1810 57.3468 63.9424 60.1880 59.2244 59,2381
20 5 61.8442  37.8085 39.8357 76.4532 57.0481  61.9830 67.5776
20 11 53.4032 14.2278 37.1297 56.5233 54.6404 56.2418 56.2984
25 5 56.0925  34.6973 39.6600 47.9778 60.0109 67.9750 56.5725
25 1 48.4052 11.1764 41.4310 54.6560 40.2539  45.8681 56.6289

Table 2.12. Bond Prices calculated analytically (CIR) and the Sim plified Binomial Tree for different

value of gamma.

oq = (4k0-cr)/8 <0

k =0.1, 0 =0.08, tr = 05,Ar = 0.5% ,y = 0.62

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632  95.0907 95.0845  95.0825 95.0813  95.0813  95.0812
1 11 90.0672  89.9028  89.9321 89.9355  89.9367 89.9374  89.9377
5 5 83.4832  83.0287  81.2949  81.4915 81.2571 81.3433 81.3597
5 11 72.5572  69.1851 69.1929  69.3288  69.2732  69.2627  69.3822
10 5 75.3333 76.8822  74.0661 71.3649  72.4741  72.0064  70.9809
10 11 65.0224  53.0647 59.8233  59.6606 60.9370 59.9992  59.4970
15 5 68.2741 42.3474  62.7260 65.7622  63.2071  63.2079  64.8810
15 11 58.9177 53.3729 51.3007 55.1865 52.5794 52.0288  52.3890
20 5 61.8442 37.1130 66.0067 61.7501 61.7892 56.0105 57.9742
20 11 53.4032 58.7963 55.8751  46.8756 45.5179  46.3959  47.9464
25 5 56.0925 33.7299  69.2213  59.5894  48.9912  54.9683  49.6347
25 11 48.4052 10.9529 47.9763  50.6301  48.2974 45.6670  40.9423
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Table 2.13: Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.

O =(4k0-G2)/8<0
k=0.1, 0 =0.08, 7= 0.5, Ar = 0.5%,y = 0.625

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632  95.0893 95.0810 95.0797 95.0792 95.0788  95.0787
1 11 90.0672  89.8987  89.9274  89.9310  89.9322  89.9327  89.9331
5 5 83.4832 82.6775 81.4818 81.4145 81.0173 81.2496 81.1598
5 11 72.5572  69.1790 69.0692 69.0528 69.2647 69.2184  69.1407
10 5 75.3333  75.8871  73.0745  72.1282  72.2245  71.8849  71.4673
10 11 65.0224  64.6356 59.0138 59.4726 60.2016 59.2187  59.9499
15 5 68.2741  42.2356 61.5582 61.1200 64.5019 61.9363  63.6556
15 11 58.9177 52.3878 52.5953  53.8121 52,3797 53.4889  53.0590
20 5 61.8442  36.9324 63.6161 59.7124  60.0518 57.7183  56.2875
20 11 53.4032  56.7941  53.5859  45.3150 47.5881 46.1934  46.3374
25 5 56.0925  36.9259  65.5933  58.2714  47.2381  52.7861  48.4052
25 11 48.4052  56.7941  53.5859  45.3150 47.5881 46.1934  46.3374

Table 2.14 :Bond Prices calculated analytically (CIR) and the Sim plified Binom ial Tree for different

value of gamma.

I = (4k0-02)/8 <0
k=0.1, 0=0.08, cr= 0.5,Ar= 0.5%,y = 0.63

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632  95.0868 95.0774  95.0765 95.0762  95.0761 95.0760
1 11 90.0672  89.8948  89.9231  89.9265 89.9277  89.9283  89.9286
5 5 83.4832  82.3482  81.4263  81.2418 81.0972 81.0664  80.9329
5 11 72.5572  69.0433  69.1201  69.0911  69.1059 69.0889  69.0547
10 5 75.3333  74.9883  72.2028 72.0862 71.7256  71.4393  71.2799
10 11 65.0224  63.6289 59.2278  59.9959 59.4862 59.6592 59.7580
15 5 68.2741  78.7284 60.5024 65.6778 64.5029  62.6350 62.5240
15 11 58.9177 51.4696  54.3961 52.5946  53.3915 53.5515  53.2485
20 5 61.8442  36.7489 61.5757 57.9624 58.4656 57.7570  54.8019
20 11 53.4032 54.9879 51.6430 46.0033  48.4824 47.5884  45.5517
25 5 56.0925 49.2998 62.5993 56.6698 48.7730 50.8983  51.7188
25 11 48.4052 10.8299  49.7247 46.1582  44.5299  44.2157  42.4201
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Table 2.15 : Bond Prices calculated analytically (CIR) and the Simplified Binomial Tree for different
value of gamma.

« =(4k6-22)/8<0
k=01, 0=0.08, cr = 0.5,Ar= 0.5%.y = 0.65

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632  95.0761 95.0679 95.0670 95.0666 95.0664 95.0663
1 1 90.0672 89.8795 89.9062  89.9095 89.9106 89.9112  89.9115
5 5 83.4832 81.3443  80.7477 80.6034 80.5476 80.6047  80.5525
5 11 72.5572  68.3094  68.4811 68.4212  68.5007 68.4915  68.4936
10 5 75.3333  72.0496 69.4732 70.2820 69.5347 69.7904  69.7406
10 11 65.0224 60.5684 59.1816 58.5803  58.5832  58.1211 58.3922
15 5 68.2741 71.5003  63.6979  62.5255 61.8201  61.7378  61.6035
15 11 58.9177  48.3205 53.2996 51.9185 51.4531  50.7654  50.5735
20 5 61.8442  70.2152 55.5803  52.7183  53.4240 54.4168  54.4395
20 11 53.4032 49.2143  45.9072 46.8541  45.7353  45.2751  45.2517
25 5 56.0925 57.8436  54.2841 50.7452 49.6647 46.6671  47.9024
25 11 48.4052 51.9728 44.9968  39.9222 38.7574  39.1568  39.8437

Table 2.16 :Bond Prices calculated analytically (CIR) and the Sim plified Binom ial Tree for different

value of gamma.

=(4k0-a22)/8<0
k=0.1,0=0.08, d = 0.5,ar =0.5% .,y = 0.7

Annual number of time steps (n)

Maturity r(%) CIR 10 50 100 150 200 250

(years)
1 5 95.1632  95.0555 95.0478  95.0468  95.0465 95.0463  94.0462
1 11 90.0672  89.8460 89.8694 89.8723  89.8733  89.8738  89.8741
5 5 83.4832  79.9265 79.6521  79.6343  79.6367 79.6356  79.6335
5 11 72.5572  66.6972 67.1223  67.1777 67.1974  67.2050  67.2115
10 5 75.3333 67.2904 67.8403 67.6072 67.6129 67.5418  67.5425
10 11 65.0224  55.7910 55.8168 55.7263 55.7823  55.7684  55.7886
15 5 68.2741 62.0019 58.5438  58.3626 58.0638 57.9160 57.9140
15 11 58.9177  48.0893 47.6136 47.9384 47.7342  47.8535  47.7471
20 5 61.8442 56.9407 50.7900 50.4015 49.9533  49.9203  49.9642
20 11 53.4032 40.2597 41.9755 41.3674 41.1191  41.0002 41.0875
25 5 56.0925  49.7495 43.4164 43.1277 43.0066 42.6791  42.9227
25 11 48.4052  38.9234 35,3059 35.9617 35.1032  35.2004  35.2243
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Table 2.17 ; Call Prices calculated analytically (CIR) or using the Simplified Binomial Method (SB)

Exercise
Price

35
40
45
50
55

35

40

45

50

55

35

40

45

50

55

60

65

70

75

80

60

65

70

75

80

60

65

70

75
80

Model

SB
SB
SB
SB
SB

SB
CIR
SB
CIR
SB
CIR
SB
CIR
SB
CIR

SB
SB
SB
SB
SB

SB
SB
SB
SB
SB

SB

SB

SB

SB

SB

SB

SB

SB

SB
SB

o o o o o

0

o

o o o o o

-0
-0
-0
-0

«1

.01875
.01875
.01875
.01875
.01875

.01875

.01875

.01875

.01875

.01875

.01875

.01875

.01875

.01875

.01875

.02725

.02725

.02725
.02725

-0.02725

-0.
-0.
-0.
-0.
-0.

.02725

.02725

.02725

.02725

.02725

02725
02725
02725
02725
02725

0.25

0.25

0
0
0

o o o o o

o o o o o

.25
.25
.25

.75
.75

75
75

.75

.25

25

.25

25

.25

0.5

0
0
0
0

0

.75
.75
.75
.75
.75

At :0.05,,ro = 8

Bond 5
Price
46.1479 22.4634
19.0799
15.6966
12.3161
8.9644
45.4228 21.8763
21.8802
18.5125

45.4273

18.5163
15.1487
15.1524
11.7850
11.7866
8.4221
8.4257
45.0746 21.5889
18.2338
14.8787
11.5236
8.1685

12.7424 0.0000
0.0000
0.0000
0.0000
0.0000

53.9393
69.9882

12.5149
23.9008
9.4324
20.1770
6.3705
16.4887
3.5799
12.8444
1.0166
9.2570
59.0654 16.7839
13.4974
10.3559
7.3550
4.5486

20.5693
16.9153
13.2635
9.6355
6.1383

19.9468
19.9509
16.3074
16.3114
12.6680
12.6719
9.0291
9.0330
5.4127
5.4156

19.6420
16.0087
12.3755
8.7423
5.1093

0.0000
0.0000
0.0000
0.0000
0.0000

10.4169
22.8564
7.1913
19.0843
4.1718
15.3565
1.3652
11.6829
0.0000
8.0789

14.9919
11.7328
8.5809
5.6459
3.0461

Expiry (years)
3

18.5139
14.5669
10.6320
6.7962
3.4020

17.8543
17.8585
13.9160
13.9201
9.9778
9.9819
6.0521
6.0560
2.3833
2.3804

17.5322
13.5976
9.6630
5.7284
1.8581

0.0000
0.0000
0.0000
0.0000
0.0000

8.1685
20.2596
4.8941
17.7967
1.9197
14.0532
0.0000
10.3819
0.0000
6.8019

12.9336
9.6556
6.6552
3.9382
1.6753

1) The call option is written on a 10 - year zero coupon bond with a face value of $100.
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16.2761
12.0130
7.8102
3.9743
1.2193

15.5820
15.5863
11.3191
11.3233
7.0597
7.0636
2.9514
2.9514
0.3213
0.3118

15.2451
10.9837
6.7224
2.4816
0.0234

0.0000
0.0000
0.0000
0.0000
0.0000

5.7130
19.8902
2.6339
16.0922
0.0362
12.3971
0.0000
8.8038
0.0000
5.3528

10.4183
7.2323
4.3879
2.1082
0.5415

13.8294
9.2211
4.7823
1.3899
0.0908

13.1108
13.1552
8.4949
8.4993
3.9087
3.9137
0.4631
0.4535
0.0000
0.0001

12.7647
8.1490
3.5339
0.0678
0.0000

0.0000
0.0000
0.0000
0.0000
0.0000

3.2314
16.9798
0.5631
13.2470
0.0000
9.7260
0.0000
6.4487
0.0000
3.4558

6.9780
4.1805

1.9818
0.5712
0.0193



Table 2.18 :Put Prices calculated analytically (CIR) or using the Simplified Binomial Method (SB)

~ =0.05,,.. =8%

Expiry (years)

Exercise Model «1 v Bond 5 4 3 2 1
Price Price
45 SB 0.01875 0.25 46.1479 0.5438 0.5433 0.5267 0.5267 0.4605
50 SB 0.01875 0.25 3.8522 3.8522 3.8522 3.8522 3.8522
55 SB 0.01875 0.25 8.8522 8.8522 8.8522 8.8522 8.8522
60 SB 0.01875 0.25 13.8521 13.8521 13.8521 13.8521 13.8521
65 SB 0.01875 0.25 18.8521 18.8521 18.8521 18.8521 18.8521
45 SB 0.01875 0.5 45.4228 0.1730 0.1730 0.1729 0.1725 0.1658
50 SB 0.01875 0.5 45.4273 4.5773 4.5773 4.5773 4.5773 4.5773
55 SB 0.01875 0.5 9.5773 9.5773 9.5773 9.5773 9.5773
60 SB 0.01875 0.5 14.5772 14.5772 14.5772 14.5772 14.5772
65 SB 0.01875 0.5 19.5772 19.5772 19.5772 19.5772 19.5772
45 SB 0.01875 0.75 45.0746 0.0472 0.0472 0.0472 0.0472 0.0471
50 SB 0.01875 0.75 4.9524 4.9524 4.9524 4.9524 4.9524
55 SB 0.01875 0.75 9.9254 9.9254 9.9254 9.9254 9.9254
60 SB 0.01875 0.75 14.9254 14.9254 14.9254 14.9254 14.9254
65 SB 0.01875 0.75 19.9254 19.9254 19.9254 19.9254 19.9254
60 SB -0.02725 0.25 12.7424  47.2576  47.2576  47.2576  47.2576  47.2576
65 SB -0.02725 0.25 52.2576  52.2576  52.2576 52.2576  52.2576
70 SB -0.02725 0.25 57.2576 57.2576  57.2576  57.2576  57.2576
75 SB -0.02725 0.25 62.2576 62.2576  62.2576 62.2576  62.2576
80 SB -0.02725 0.25 67.2576 67.2576  67.2576 67.2576  67.2576
60 SB -0.02725 0.5 53.9393 9.1824 8.7773 8.2470 7.6334 7.0000
65 SB -0.02725 0.5 69.9882 12.0956  11.6961 11.3650 11.0607 11.0607
70 SB -0.02725 0.5 16.0607 16.0607 16.0607 16.0607 16.0607
75 SB -0.02725 0.5 21.0607 21.0607 21.0607 21.0607 21.0607
80 SB -0.02725 0.5 26.0607 26.0607 26.0607 26.0607 26.0607
60 SB -0.02725 0.75 59.0654 6.0500 5.8748 5.6368 5.2374 4.4324
65 SB -0.02725 0.75 8.3108 8.1552 7.9227 7.5812 7.0509
70 SB -0.02725 0.75 11.4158 11.3300 11.2218 11.062 10.9346
75 SB -0.02725 0.75 15.9346 15.9346 15.9346 15.9346 15.9346
80 SB -0.02725 0.75 20.9346  20.9346  20.9346  20.9346  20.9346

1) The put option is written on a 10 - year zero coupon bond with a face value of $100.
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CHAPTER 3.
PARTIAL DIFFERENTIAL EQUATION APPROACH FOR THE
EVALUATION OF DEFAULT-FREE BONDS AND INTEREST RATE

CONTINGENT CLAIMS.

3.1. Introduction

The objective of this chapter is to value default-free bonds and interest rate

contingent claims based on the CKLS model using the following numerical

methods:
a) Crank-Nicholson finite difference approach.
b) Box Method. The Box-Method is wholly new in finance literature

c) Method of Lines. Thus far the Method of Lines approach has only been
applied to the valuation of contingent claims based on equity.

The contribution of this chapter is as follows:

a) Crank-Nicholson scheme is generalised to incorporate all possible values
ofy.

b) Box Method is applied to finance for the first time

c) Method of lines is extended to fixed income from equities.

We test each of the three numerical methods for their convergence
characteristics. In section 2 we derive the numerical schemes for each of the
above mentioned numerical methods. In section 3 we investigate each of the
numerical methods with each other or when analytical prices are available with

analytical prices. Section 4 concludes this chapter. However, before continuing
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to Section 2, we repeat the CKLS model for the instantaneous short term interest

rate.
drt = k(9-r)dt + arydzt (3.1.1)

The resulting partial differential equation based on the above stochastic equation

is:

Vri*'""+1t(9 ~d rut- o (3.1.2)
2 dr2 o7 di

a, 1, k, 9 represent the same variables as defined earlier. In equation (3.1.2)

1u(rt,t)may represent either B(r,,t,T*) or P(rt,t,T*,T).

B(r,t, T*): price of a discount bond at time t, which matures at time T* with

the generated spot rate 1t .

p(t, T*,T): price of a contingent claim at time t, which expires at time T

based on a discount bond which matures at time T*.

In equation (3.1.2) u(rt,t)may represent either B(rt,t,T*) or p(rt,t,T*,T).
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B(rt,t,T*) is subject to the following boundary conditions:

B(0,t,T*)=1 (B1)

B(00,t,T*) =0 (B2)

With P(rt,t,T*,T) representing an American call option it is subject to the

following boundary conditions:

P(rt, T, T\ T) = max[B(rt, T, T*)- E,0 (B3)

P(°0,t,T\T) =0 (B4)

P(rt,t,T*,T) = max[B(rt,t,T*)- E, P(rt,t, T*,T)] (BS)

Finally with P(rt,t,T*,T) representing American put options it is subject to the

following boundary conditions:

p(rt, T, T*,T)=max[E-B(rt,T,T*),0] (Bé6)

1 W ith the Crank-Nicolson finite difference approach we use the variable S: ———————————— . Same

boundary conditions as with rt apply except when stated otherwise.
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P(00,t,T\T) = E B7)

We now transform equation (3.1.2) such that either the bond or the contingent
claim evolves from the options expiration date or the bonds maturity

date to the present, i.e. we transform the time variable:

t =Tt (3.1.3)

Thus equation (3.1.2) now becomes:

(3.1.4)

3.2. Numerical Methods

In this section we develop in depth the three numerical methods stated in Section
1 of this chapter to solve the partial differential equation for default free bonds

and interest rate contingent claims. A uniform grid of size M x N is constructed
for values of u™ - the value of u at time increment tm and interest rate

increment rn, for each method, where:
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2u™ = y(nAr,mAt)
tm= to+ mAt m=

rm =ro + nAt n=0,1,....,N

The values of u™ are computed column by column from the left column to the

right column. And within each column, we solve from bottom to the top. To
truncate the grid, we discretize the boundary conditions (B2), (B4) and (B7)

respectively as:

B(Art,T*) =0 (B9)
PGArt,T*,t )=0 (BIO)
p(ArtT*T)=E (B1D)
for j > N +1

For all susbsequent numerical development we assume that we are at point

(nAr,mAt) or (n,m) for short on the grid. For the time derivative in equation

(3.1.4), we use the Euler backward difference approximation

du u" - ur' = u~uo (321)
X At At

2Same notation iS used for _]AS
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Thus equation (3.1.4) now becomes:

“axyY +k(o-r)— -ru  UYUO° (3.2.2)
2 A At

3.2.1. Crank-Nicholson Method

We start firstly by transforming the interest rate grid, using the following

transformations:
cr
S mmmmee (3.2.3)
1+cr

where ¢ is a constant

Secondly we transform the variables in equation (3.1.2) as follows:

W (s,t)= u(s,t) (3.2.4)

Based on the above transformations, the partial derivatives of equation (3.1.2)

becomes:
3u_ 3W ds
3r 3s dr
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a2u  AdaxsY aw"i+rdsY iaxw A

3r2 VdrzA 3s dr 3s2 /
3u _aw
3x 3t

_ . u 32u . .
Substituting the above three transformations for u, into equation (3.1.2)

3r ’3r2
gives:
d n
—aerY(dSYfaZN + " -aoaar > + k(o - r)ds raw
dr Vasz dr2 dr 3s ,
y
(3.2.5)
3IW
-tW =
3x
Furthermore:
r:
c(l-s)
ds ¢ =c(l-s)2
dr  (I+cr)
/\ds/\
Yi-s)
vdr /
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d>s
- l-s
drs ( )3

Substituting the above expressions into equation (3.2.5) gives:

c2(1-s)4
( ) 3s2

(1-s)3+ aw (3.2.6)
3s

c(l- s) 3t

We discretize the above equation using the following Crank-Nicholson and Euler

Backward difference approximations:

W ==W N =W |

ay - win- win | Wyt = Wiyt
3s 4As 4As

3V WiM- 2Wn W, W 2Wana + W,
3s2 P 2(As)2

aw _ w. - wm
3x At
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Substituting the above discretizations leads to the following discrete equation:

o 2At nAs Yc2(l-nAs)g

2 c(l-nAs)_ 2(As)
Xk - 2Wr+w L+ w,y - aw
nAs -2y
c2(l-nAs)3
c(lI-nAs)_
At
+
4As
+ ke -5 * k ;(I-nAs)
c(l-nAs)
X
n” SMt \Y m nAsAt Aym-1 _ yym yym-1
2¢(l-nAs) n  2c¢(l-nAs) B " (3.2.7)

We can further simplify the above equation as:

a,k:, -2w; +W", J+A  k«' - 2W™'
+b wk ”7- w ”7]+b wk :;" W,_r] (328)

+e,, W+ Cmwi-‘=w;-w. .,

where:
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¢ At nAs " !(1- nAs)y

c(l-nAs) DA s
At nAs nA:
B, = fr2 ; c2(1- nAsy1+ ke i (k+A,) ;(I-nAs)
4As c(1- nAs) (1 - nAs)
nAsAt
2¢c(l-nAs)

Further rearrangement leads to:

(3.2.9)

=XnWn"l+TInW "+ P nW 111+1

where:
a, =-Ank v -2w;-'+w";']-B,[wr -w,";,]-[itc,]w nf
Z/n:An -BH

1,=Cn-2A ,-1

P. =An+B,,

The matrix equation linking bond prices or contingent claim prices between

successive time steps m and m-1 is:
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' Al 0 0 0 0 Nrwm/

a,-X,w ; D,
oq %R p2 O 0 0w
0 X3 ¢3 p3 0 0
0 (3.2.10)
YW3 EV3 py-3 O
. o 0 xVv2 Alv2 Pv2
AN PNty 0 e e 0 0y T e

The above matrix equation applies for n =1 onwards. However to start the
above iteration process, we need the option prices at n = o i.e. at zero interest
rate for m >1. We start by approximating equation (3.2.5) as s —0. This

yields the following equation near and at s = o

Koot = SN (3.2.11)

Noting that as r —0,s —0 , the above equation simplifies to:

aw  aw

koc (3.2.12)

To approximate the above first order derivatives, we assume that we are at point

aw aw
(m-1,n) on the grid. Using the forward Euler difference for ----- , and ------
as at
gives.
AW _Wrui= Wt (3.2.13)
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aw  Ww; - w;-

(3.2.14)
3x At

Substitution of the above two approximations into equation (3.2.12) gives.

(3.2.15)

At n = 0 i.e. at zero interest rate, the above expression simplifies to.

(3.2.16)

Note that the above approximation applies to both bonds and contingent claims

subject to appropriate boundary conditions.

3.2.2. Box Method

The Box Method has been widely applied in engineering. However; to date this
method has not been applied in finance. Below we apply the Box Methods to

partial differential equation based on the CKLS model.

3An introduction to the Box Method can be found in Richard S. Varga’s book, Matrix Iterative

Analysis (1962).
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To derive the algorithm for the Box Method we start by dividing equation

2
(3.1.4) by © r2r and we further let:

2ko

Then the resulting equation is:

+ [ar“zy —br1-27]E-—cr1 Qu=dr 27 (3.2.17)
r

d x

We combine the first term and the second term on the left hand side of the above

equation by choosing a function ~(a.b”y) or 'F(r) abbreviated such that

1 C.
mi(r)
v(r) dr V

/\ <
du + [ar-27 1du (3.2.18)
dr

b

Expansion and simplification of the above formula leads to the following

expression.
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Fo d ar %% - br'? (3.2.19)
r r

Integrating the previous equation gives:

ar'-2Y hr2'z
'F(r) = exp / (3.2.20)

1- 2y 2-2y
Note that with the above expression for *F(r)there is singularity at y =" and
y = 1. Thus the above expression for T"r) is not valid at these two specific

points. Furtherify » lory but y is very close to y =1 or Y= >then the

value of 'F(r) may be excessively because of the nature of the denominators in

equation (3.2.20). In such cases we need to use a more complex approach or

simply switch to the expression for 'F(r) when y=1 or y="-. To derive

expression for 'F(r) when y =1 or y = we substitute, these two values of'y

directly into equation (3.2.19) and integrate to give

W(r) = exp(— " for y =1

'F(r) = exp(-br)ra for y = 5
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With this choice of WF(r), our original equation becomes

du Bu
B "M V (r)rl 2Tcu = dW/(r)r"2Y (3.2.21)
g dr d x
For — we use the backward Euler approximation as before, however, for

d x

convenience we let u=u” and uo = u™1. Thus equation (3.2.21) becomes:

B/ Bu*

- W (r)r1 2ycu = dT/(r)r 3.2.22
al . (r)r1 2y ()_2y1 At ( )

Further rearrangement leads to the expression:

dWF(r)i " dF(r)r ¥ Un
T'(r)Eu + X/(r)r, 2Ycu + @ ® (3.2.23)
Br Bry At At

We integrate the above equation over Cj

b

| E(ndr %3 E(r)dr'Y
~ H At

Approximating each of the integrals, we have for the first integral:

.mA -

nt+l

-mho Ar
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For the second integral:

o (1)t ’;%YJF «Ptridr-21 Yu
At
cr2-27 f f \l-2y \ . dr,l-zy ( /r \1-2YN
H - «T ify » ~°ry "1
2-2y Uy At(l-2y) vim
( |
?(m', Jc(rb-1,)+ -1n u"l  fory=—
n r 2
VIYy
GV oqarr oy
l—¢ln +— - u™Mfor y =1
L 1v A a ol

For the third integral:

F(r)dr %/
At
dr1-2y ( fo. V“ZY/\ .
= A rn ? 1 - Al:]- lf A—Ol‘ A 1
( At - 2y) U, y y

/v
u™! for y = —

Vb J 2
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| — for y =1

Substituting the above approximations into the original equation yields

«n = 3CnU*“-1 +TIlnU” + B n Untl (3224)

where taking ra=_ . , 1 and rb= lHM* r°

f 1-2y A
A fr} 1
a,, drh 2y L- K*® ify*-ory"l
At(1- 2y) .
v K /

R In ol for y = 1

u - for y =1

L y(r.)
Ar>P(rn)

Xn =

j_yh)
ArM>(r,,)
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2-2 ¢
cr, %/

2-2y

Vb

c(tb-ra)+—In
( ) Al

Vb

o d fl
=-cln +- =
Vrb) At =]

y-2Ty

+ X

f o V2O
+ 1-
At(l - 2y)

Vrbi

for y=—
Y 2
/
2 for y =1
*

providedy -

—ory”™H1

As with the Generalised Crank-Nicholson Method we find that the basic matrix
equation linking all bond prices or contingent claims prices between two

successive time steps m and m- 1 as:

f cLt - x 1k A Tll p, o 0 o 0 ui
a, X2 Tk P2 0 o 0 Un
° X3 M P3 0 0
0 (3.2.25)
Xn3 TIN3 PN3 O
0 Xn-2 Hn-2 Pn-2
VAN-l wPn-iu; 0 0 ° Xn-i  Tn-i vuwna
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As with the Crank-Nicholson method, the above matrix starts at n = 1. We,
however, need both the bond and option prices at n = 0. We approximate

equation (3.1.4) as r —0:

du

3.2.26
dr dx ( )

Again, we use the forward Euler differences to discretize the above derivatives

to yield at n = o:

“u (3.2.27)

3.2.3. Solution of Matrix Equation

Both equation (3.2.10) and equation (3.2.25) are general matrix equations both

of which, may be more conveniently written as:

Mx =y (3.2.28)

where M is the general matrix and both xand y are price vectors, which

assuming M is nonsingular leads to the direction solution x of prices where:

x = MHy (3.2.29)
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Given that the matrix M may comprise of hundreds or thousands of individual
elements the above approach from a practical viewpoint is going to be very slow.
We thus need to consider alternative approaches of calculating the prices. In fact
two separate category of approaches to solve the above equation more efficiently
is available. The elimination approach, and the iterative approach. An example
of the former is the Gaussian approach. An example of the latter is the
Successive Over Relaxation (SOR), approach. @ We discuss each of the
approaches in depth below. For illustrative purposes we concentrate on equation

(3.2.24), although the same analysis would hold for equation (3.2.9)

With the Gaussian elimination approach, we initially let:

Ro =1
Po=0
Xo =1
ao
ao= —
Ro
‘BO=£2.
Tlo

We now consider equation (3.2.24) at various points on the grid:

«, = XnU”-1 4+ rIlnU” +PnlO I

Atn=0:
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«0  Tlouo + PoUl (3.2.30)

Rearranging the above expression gives:

ur L p v = ar (3.2.31)
Thus generalising the above expression we have:
u™, +bn,u ol (3.2.32)

Substituting the above expression into discrete equation (3.2.22) and rearranging

gives:
tbo = (3.2.33)
b Pn
-b n,Xn
where:
_ «n ~Xnan-l
Tin-b n Xn

Thus once we have the value of u™from the boundary condition we can use

equation (3.2.31) to calculate u~and then u™etc until we reach N -1 .
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To solve equation (3.2.22) using SOR our starting point is the general matrix is:

u (3.2.34)

Further mn represents individual element of matrix M. Simplification of the
above equation leads to equation (3.2.36). Thus the first step of the SOR
process involves forming an intermediate quantity z™.  Based on this
intermediate quantity, a trial solution u™is formed. This trial solution is iterated

until, a certain accuracy is achieved between successive iterations. Having
achieved this accuracy we move onto n + 1 point on the grid at a particular time

step.

(3.2.35)

UM =coz™+(l-co)B“-1 (3.2.36)

3.2.4. Method of Lines

We convert equation (3.2.2) into a system of two first order differential

equations.
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du

V(r,x) (3.2.37)
a7
dv
dr c(r,x)u(r,x) + d(r,x)V(r,x) + g(r,x) (3.2.38)

Substituting equation (3.2.37) and equation (3.2.38) into equation (3.2.2) and

comparing coefficients we have:

c(r,x)

aarly

d(r,T) = ---; Ar(%({G -tk)

g(r,x) u,
a

Equation (3.2.37) and equation (3.2.38) is related through the Riccati

transformation

u(r,t) = R(r,t)V(r,x) + w(r,x) (3.2.39)

where R(r,x) and w(r,x) are the solutions of the initial value problems

" =1-d(r,x)R(r,x)-c(r,x)R(r,x)2 (3.2.40)
r
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3.2.41
i ( )

The first step of the discretization process is to numerically integrate equation
(3.2.40) and equation (3.2.41) to obtain values for R(r,x) and w(r,t)at each

point on the grid. On the grid we let:

¢, = ¢(nAr,x)
dn= d(nAr,x)
gn= g(nAr,x)

R™ = R(nAr,mAt)

w” = w(nAr,mAt)

With equation (3.2.40), applying the implicit trapezoidal rule gives:

(3.2.42)

Rearrangement of the above equation gives the following quadratic equation.

¢ ™2=0 (3.2.43)
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Thus the analytical expression for R*“H is:

And+ ~>ntl-4 VArnR:+cn(R:)2-2

r ik = (3.2.44)
VACnH
where:
N 2
ntl _
Ar
On+1
VC[]+1

Similarly applying the trapezoidal rule to equation (3.2.41) gives:

Wnﬂ w,
(3.2.45)
Ar
2
Rearrangement of the above equation gives:
SAT+ 1>
W ) n (3.2.46)

n
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where:

QKI’I:— -C nRgl

&>

m
n+l

Equation (3.2.43) and equation (3.2.45) are subject to the boundary conditions

R™ =0 and w™= (0 respectively.

The next step is to determine the critical exercise price for the contingent claims
by iteratively calculating zero for the

following function.

6 =R —g— w"+E - Bm (3.2.47)

At the critical exercise price let:

dp (3.2.48)
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¢ = 1 for a call option and ¢ = -1 for a put option.

Our original partial differential equation is in terms of the derivatives of P and r
or B and r, not P and B. We therefore use the following expression to get round

this difficulty.

dP_dP dr _ dr
dB_dr dB_CdB

(3.2.49)
C
dB
dr
) dB . .
We approximate O using the forward central difference,
r
dB  B™1 - B'Mj
(3.2.50)
dr 2Ar
Thus the final form of equation (3.2.47) is:
2A
T W de b (3.2.51)
K = K s B m nm
n+l 6 n-1 )

The root of the above equation at this time level is found by using Newton-

Raphson iteration. Once the critical exercise price has been determined, u™ is
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calculated by numerically integrating equation (3.2.38) as below and then

substituting the result into equation (3.2.39) to obtain u™ at time level tn.

av; =cn[R:v;+w:]+dnv ; +g: (3.2.52)

dr

Again employing the trapezoidal rule we have:

Ar

y m rRm y m m 1 . y m m 1
v n+l vn 2 1 "+Il »+H ntl ' wn+lJT untl vorl T bn+1|
(3.2.53)
+f { CH[R“V” +W”]+d.V" +SH}
Rearrangement of the above equation yields:
n mV H"
ym DA (3.2.53)
Y"
where:
A*

n: =i-Y .[cn,,R",-i-dntl]

Hm AI'[\ m N ,Tm , m s ,,nij
n - [Cn+IWn+l + CnWn + §n+l + §n
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YNi+yM

With bond prices, the free boundary doesn’t exist, thus at each time level, we
start the numerical integration from the lowest point on the grid. At this point,

we approximate V as:

(3.2.54)

Substituting n as 0 and 1 in equation (3.2.18) gives us the following two

equations. Noting that we are interested in approximate bond prices only.

B” =B™' + kO"Bf"' B™' (3.2.55)

B™M=B " +k0 (Bef1-B r1) (3.2.56)
ke ' .

yo o odp g f2k0E pvp, ik &) ot (3.3.57)
Ar . Ar | 1 Ar

The remaining part of the process is the same as for contingent claims..
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3.3. Analysis of Results

In this section, we investigate each of the three numerical methods. Each
method is implemented to value bond prices. Due to convergence difficulties
with the Method of Lines only the Box method and Crank-Nicholson method
could be implemented to value interest contingent claims. Note that as the
underlying instrument is a zero coupon bond, the value of the American call
option is the same as European call option. We exploit this feature to check the

accuracy of our numerical CIR price4

As in Tian (1994), we define a quantity a, = (4k0- a 2)/8. a, >0 .corresponds
to low volatility and high mean reversion rate. For ofj <0 the converse
condition holds. We consider the CKLS model for y taking values of 0.25,
0.50, 0.75. The maturities of the bonds are 5 and 15 years. The face value of
the zero coupon bond is $100. Short -term interest rates of 5% and 11% are
considered. For >0,k =0.5,a=0.1,0=0.08, and for
al <0,k=0.1,a =0.5,0 =0.08 . Table 3.1 - Table 3.6 contain the bond prices

calculated wusing each of the suggested numerical methods for different

4 We attempted to use the Vasicek model fory = 0 zero as an extra check. However, we found
that the analytical formula was unstable and lead to bond prices which were not meaningful.
For example for oci < 0 we found that the bond price was considerably greater than its par value
- something not possible for zero coupon bonds. Table 3.13 contains a summary of bond

prices for a, < 0 valued using the numerical methods considered in this chapter.

88



combinations of a, and y. For the sake of brevity, following notation will be

used in all of the tables:

BMS: prices calculated using the Box method, which uses Successive-Over-
Relaxation.

BMG: prices calculated using the Box method, which uses Gaussian elimination.

CNS: prices calculated using the Crank Nicholson method, which uses
Successive-Over-Relaxation.

CNG: prices calculated using the Crank Nicholson method, which uses Gaussian
elimination.

ML: prices calculated using the Method of Lines

Table 3.1 - Table 3.12 contain the bond or call prices calculated using each of
the suggested numerical methods for different combinations of a, and y. Table

3.1 - Table 3.6 contains bond prices. Table 3.7 - Table 3.12 contains the call

option prices.

Tables 3.1 - Table 3.6 all have the same format and comprise of zero coupon
bond prices. In each of these tables, we alter the annual number of time steps
from 20 to 1000. This variation serves as a check as to the stability of each of
the numerical schemes. Examination of Tables 3.1 - Table 3.6 leads to the

following observations:

For y=0.25, gaussian elimination does not lead to sensible bond prices,

irrespective of whether a, <0 or a! > 0. Furthermore, for a, <0, gaussian
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elimination does not lead to sensible bond prices irrespective of the value of y.
Also for y=0.25, we find BMS prices are higher the ML prices but lower than
CNS prices irrespective of whethera, <0 or a, > 0. For example, from Table
3.3, we see that when the interest rate is 11%, maturity of the bond is 5 years
and the annual number of time steps is 1000, BMS price is 64.3104, CNS price is
64.8932 and ML price is 64.2355. Finally all five combinations (i.e. BMS, BMG,

CNS, CNG, ML) lead to sensible bond prices for y =0.75 .

When all four combinations lead to sensible prices, we find that SOR and
gaussian elimination yield almost identical prices with each of the two methods.
For example, from Table 3.1 consider, a 5 year bond at 5% interest rate and 50
annual time steps. We find that the Box prices using both SOR and gaussian
elimination is identical at $71.0754. Whilst the Crank Nicholson prices are

$71.6853 and $71.6958, using SOR and gaussian elimination respectively.

Box bond prices are always lower than Crank Nicholson bond prices. Further,
where analytical prices are available, the Box prices are closer to the analytical
prices than Crank Nicholson prices. For example, from Table 3.2, we see that a
5 year bond at 5% interest rate and 20 annual time steps is priced at $83.4832
analytically. Whereas, the same bond is price at $84.4832 using the Box method

and $84.3837 using the Crank Nicholson method.

Box bond prices are closer to the Method of Lines (ML) bond prices than Crank-

Nicholson prices, where the ML prices converge fast enough. We see an
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example of the former case from Table 3.2 in the case of a 15 year bond at 11%
interest rate with 1000 annual time steps, the BMS price is 58.9913, ML price is
58.4592 and CNS price is 59.6010. An example of the latter is found in Table
3.5; for the same maturity bond, at the same interest rate and annual number of
time steps, the BMS price is 68.1061, ML price is 66.0925 and CNS price is

69.0801

Tables 3.7 - Table 3.12 all have the same format and comprise of call options
based on zero coupon bond prices for various expiry dates and exercise prices.
In Tables 3.7 - Table 3.12 the first column indicates the range of exercise prices
and the first row indicates the different expiry dates of the option ranging from 1
year to 5 years. All the call options are based on a 10 year zero coupon bond,
the call options are during the last 5 years of the bond’s maturity date. Further
the third column entitled, “Bond Price”, indicates the price of a 10 year zero
coupon bond based on each of the possible combinations. For example, turning
to Table 3.7’s, third column, we find that the price of a 10 year zero coupon
bond calculated using the Box method is $46.5992, whereas the same bond is
priced at $47.0246 using the Crank Nicholson method. Examination of Tables

3.7 - Table 3.12 leads to the following observations:

Where analytical prices are available the Box prices are closer to the analytical
prices than Crank Nicholson call prices. For example, from Table 3.8, consider a
5 year call option, exercise at $35. The analytical call price is $21.8802; Box
pricing using SOR is $21.9445 and the Crank Nicholson price again using SOR
is $22.1132.
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As with bonds, Box prices are always lower than the corresponding call prices
calculated using Crank Nicholson. However, unlike bonds, the differences are
significant in certain cases. In fact these significant differences can be observed
in Tables 3.7, 3.10, 3.11, 3.12. To illustrate the differences in call prices
between the Box and the Crank Nicholson; consider an example from Table
3.11. In particular, consider a 5 year option, exercise at $60, the analytical call
price is $23.9008, the Box price is $23.9476, and the Crank Nicholson price is
$32.2997. In Table 3.8 and Table 3.9, where a, >0 and y > 0.5, both the Box
and the Crank Nicholson yield call prices which are close to each other, and

close to the analytical price where available (Table 3.8).

Again, as with bonds, when all four combinations yield sensible prices, we again
find that SOR and Gaussian elimination lead to almost identical call prices. For
example, from Table 3.8, consider a 4 year call option exercised at $35, we find
that the Box price using SOR or Gaussian elimination is identical at $20.0181.
Whilst the Crank Nicholson prices are $20.1846 using SOR and Gaussian

respectively.

3.4. Conclusion

Over the years a number of researchers including HW (1990b) and Tian (1994)

have noted convergence and stability difficulties with the evaluation of bond and
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contingent claims prices, based on the CKLS model for particular combination of

parameters.

The findings in this chapter suggests that the convergence difficulties are not
restricted to lattice methods alone. We find there are convergence problems
both with the Crank-Nicholson Method and the Method of Lines. With the
Method of Lines we need to increase the annual number of time steps to a

ridiculously high value when a] < 0 to obtain accurate bond prices. As the free

boundary of a call option does not exist, our attention was focused on the put
option. However, we were unable to locate the free boundary because the
Newton-Raphson iteration scheme diverged. So in summary we were unable to
locate the free boundary associated with the option and hence calculate any
option price using the Method of Lines. With the Crank-Nicholson Method the
bond prices show too much discrepancy with analytical prices, where available
when a, < 0. Of the three numerical methods studied in this chapter only the
Box Method converges to produce accurate bond and contingent claim prices for

all combination of parameters.

In the next chapter we use the Box Method as the basis to develop a checking

procedure to check the free boundary associated with American put options.
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Table 3.1: Bond Prices calculated analytically (CIR), using the Box and the Crank Nicholson

methods.

Maturity

(years)
5

15

15

Model

CIR
BMS
BMG
CNS
CNG

ML

CIR
BMS
BMG
CNS
CNG

ML

CIR
BMS
BMG

CNS
CNG

ML

CIR
BMS
BMG
CNS
CNG

ML

k.

o5,

r(%)

11

11

at=(4k0-G2)/8 >0

0=0.08, a =01, Ar=0.5% .,y =05

71
71
71
71
71
70

63
63
63
64
64
63

32
32
32
32
32
32

28
29
29
29
29
28

20

.0379
.1006
.1006
.6853
.6937
.8065

7161
.7850
.7850
3129
.3143
.5207

.5442
.6428
.6428
.8647
.8745
.4893

9322
.0135
.0135
2251
.2304
.8842

71
71.
71.
71
71
70

63
63.
63.
64
64
63

32.
32
32
32
32
32

28.
28
28
29
29
28

Annual number of time steps (n)
300

50

.0379

0754
0754

.6853
.6958
.9445

7161

7475
7475

.3130
3147
6379

5442

.5979
.5979
.8648
.8770
.52009

9322

9735
9735
2251
2317
9133

94

100

71.
71.
71.
71.
71.
70.

63
63
63
64
64
63

32
32
32
32
32
32

28
28
28
29
29
28

0379
0670
0670
6858
6966
9908

7161
.7349
.7349
3134
.3148
6772

.5442
.5829
.5289
.8648
8779
.5314

9322
9601
9601
2251
2322
9218

71
71
71.
71
71
71

63.
63
63
64
64
63

32.
32
32
32.
32
32

28.
28
28
29.
29.
28

.0379
.0614

0614

.6914
6971
.0218

7161

.7266
.7266
.3188
.3149
.7034

5442

5728
.5729

8648

.8785
.5385

9322

L9511
L9512

2251
2326

.9281

500

71
71
71
71
71
71

63
63
63.
64
64
63

32.
32
32
32
32
32

28
28
28
29
29
28

.0379
.0603
.0603
.6853
.6973
.0280

.7161
7249

7249

3130
.3150
.7086

5442

5711
.5709
.8646
.8786
.5399

9322
.9496
.9494
.2250
.2326
.9293

1

71.
71.
71.
71.
71.
71.

63
63
63
64
64
63.

32.
32
32
32
32.
32

28
28.
28.
29
29
28

000

0379
0595
0595
6854
6973
0327

7161
7237
7237
3131
.3150

7126

5442

.5689
.5694
.8657

8787

.5410

9322

9476
9481

.2259
2327
.9303



Table 3.2: Bond Prices calculated analytically (CIR), using the Box and the Crank Nicholson

methods.
M aturity Model
(years)
5 CIR
BMS
CNS
ML
5 CIR
BMS
CNS
M L
15 CIR
BMS
CNS
M L
15 CIR
BMS
CNS
M L

r(%)

QG = (4k0-G2)/8 <o
k=0.1,0=008, . - ., .

Annual number of time steps (n)

300

83

84
80

72
72
73
70

68.

68
69
63

58
59
59
55

20

4832
83.
.3837
7707

6040

.5572
.6956
.2609
4523

2741

4127
.0981
7759

9177
.0348
.6168
.1183

83.
83.
84
82

72
72.
73
72.

68
68
69
67

58
59
59
57

50

4832
5409

.3614
.9406

.5572

6166

.2389

1399

2741
.3836
.0851
.0278

9177
.0095
.6054
.8758

95

o 5 %

100

83.
83.
84.
83.

72
72
73
72

68
68.
69.
67

58
59
59
58

4832
5244
3554
2049

.5572
.5961
.2338
.3481

2741

3730
0807

.4300

9177
.0002
.6016
2157

sy =

83.
83.
84

83.

72
72
73
72

68
68
69
67.

58
58
59
58

0.5

4832
5145
3538
3294

.5572
.5836
2319
4454

2741
.3668
.0802

6422

9177
.9947
6011
.3944

500

83
83
84
83

72
72.
73
72

68
68
69
67.

58
58
59
58

4832
5115
.3516
.3509

.5572

5802

.2305
4620

2741
.3657
.0801

6846

9177
.9940
.6010
.4300

1000

83.
83
84
83.

72
72.
73.
72

68.
68
69
67

58
58
59.
58

4832

.5098
.3503

3668

.5572

5781
2293

4741

2741

3631
.0801
.7195

9177
9913

6010

4592



Table 3.3: Bond Prices calculated analytically (CIR), using the Box the Crank Nicholson

methods.

Maturity

(years)
5

15

15

Model

BMS
CNS
ML

BMS
CNS
ML

BMS
CNS
ML

BMS
CNS
ML

(%)

11

11

11

a, =(4k0-a2)/8 >0

71
72
70

64
64
63

34
34
33

30
30
29

o.1,0=0.08, .

6737
.2420
.9923

.3748
.8956
.8741

.0294
L4917
.5352

.3066
4917
.7040

= o5, A

71
72.
71

64
64
64

33.
34
33.

30
30
29

o 5 %

0.25

Annual number of time steps (n)

50

.6449

2396

2242

3354

.8941
0713

9717

.2163

5772

.2546
4914
.7466

96

71
72
71

64
64
64

33
34
33

30
30
29

100

.6352
.2388
.3480

3222
.8936
.1520

.9753
2163
.5923

.2416
4914
.7607

71
72
71

64
64
64

33
34
33

30
30
29

300

.6288
.2290
4258

3134
.8843
2126

9477
2163
.6028

.2330
4913
7702

500

71
72.
71

64.
64
64

33
34
33

30
30
29

6275

2382

4424

3116

.8932
.2255

.9461
2163
.6050

2314
4913
7721

1000

71
72.
71

64
64
64

33
34
33

30
30
29.

.6266

2382

.4551

.3104
.8932
.2355

.9446
2162
.6067

.2301
4912

7735



Table 3.4: Bond Prices calculated using the Box and the Crank Nicholson methods.
a, =(4k0-G2)/8>0

M aturity

(years)
5

15

15

Model

BMS
BMG
CNS
CNG
ML

BMS
BMG
CNS
CNG
ML

BMS
BMG
CNS
CNG
ML

BMS
BMG
CNS
CNG
ML

k=0.1, 0=0.08, a =0.5,4r = 0.5% ,y =0.75

(%)

11

11

70.
70.
.5332
.5246

71
71

70.

63

63.
64.
64

63.

32
32

32.
4545
.0883

32
32

28
28
28

28.
.4902

28

9160
9160

6525

.6009

6009
1256
1255
3308

.2248
.2248

4596

.6205
.6205
8271

8265

70.
70.
71.
71.
70

63
63
64

64.
63

32
32
32
32
32.

28
28
28
28
28

Annual number of time steps (n)

50

8907
8907
5332
5221

.7906

.5630
.5630

1257
1256

.4486

.1793
.1793
.4597
4532

1192

.5799
.5799
8272
.8264
5175

97

100

70
70
71
71
70.

63.
63.
64
64

63

32
32
32
32
32

28
28
28
28
28

.8823
.8823
.5332
5212

8367

5503
5503

1257

1256

.4879

.1641
.1641
.4597
.4526
.1295

.5664
.5664
8272
.8263
.5267

70
70
71
71
70

63
63
64

64.

63

32.

32
32
32

32.

28
28
28
28
28

300

.8764
.8766
.5327
.5205
.8675

.5416
.5419
.1252
1256
.5142

1552
.1539
.4597
4522
1364

.5585
.5573
8271
.8263
.5328

70
70
71
71
70

63
63
64

64.

63

32
32
32
32
32

28
28
28
28
28

500

.8756
.8755
.5332
.5204
8737

.5403
.5402
1257
1256
.5194

.1527
.1519
.4600
4521
.1378

.5562
.5555
.8275
.8262
.5340

1000

70
70
71
71
70

63
63

64
63

32

32
32
32

28
28
28
28
28

.8734
.8746
.5332
.5204
.8783

.5377
.5389
64

1257

.1256
.5234

.1540
32.

1504

.4603
4521
.1388

.5574
.5542
8277
.8262
.5349



Table 3.5: Bond Prices calculated using the Box and the Crank Nicholson methods

M aturity

(years)
5

15

15

Model

BMS
CNS
ML

BMS
CNS
ML

B M
CNS
ML

B M
CNS
ML

a, =(4k9-a2)/8<0
k=10.1, 0 =0.08, cr= 0.5, Ar= 0.5% ,y = 0.25
Annual number of time steps (n)
F(% ) 20 50 100 300 500

5 87.3004 87.2614 87.2484 87.2398 87.2380
87.8581 87.8399 87.8339 87.8297 87.8267
60.6888 67.9952 75.0482 82.6325 84.3927

11 78.2832 78.2392 78.2246 78.2151 78.2126
78.7147 78.6982 78.6927 78.6889 78.6807
38.7165 63.9147 66.4312 70.3983 71.0192

5 76.1355 76.1082 76.0991 76.0930 76.0920
76.5944 76.5807 76.5761 76.5731 76.5722
12.9002 59.0578 68.3499 72.5920 73.2919

11 68.1461 68.1216 68.1134 68.1073 68.1069
69.0981 69.0851 69.0807 69.0802 69.0801
11.6761 52.9119 61.2177 65.0108 65.6352

To ensure Method of Line converges AI': 001% is used.

98

1000

87
87

78
78
71

76
76
73

68.
.0801
.0925

69
66

.2367
.8284
85.

7177

2115
.6877
4567

.0909
5718
.8053

1061



Table 3.6: Bond Prices calculated using the Box and the Crank Nicholson methods.
off =(4k6-22)/8<0

Maturity Model
(years)

5 BMS

CNS

ML

5 BMS

CNS

ML

15 BMS

CNS

ML

15 BMS

CNS

M L

01,0=0.08, a =0.5, Ar=0.5% ,y=0.75

r(%) 20

5 79.0790
79.9763
78.7005

11 66.2976
66.9567
65.9998

5 56.2443
56.2805
55.1885

11 45.6853
45.7309
44.9083

Annual number of time steps (n)

50

79.
79.
78

66.
66.
66

56
56.
55

45,
45,
44,

0486
9793

.7006

2402
9551

.0521

.2246

2850

2279

6682
7345
9398

100

79.
79.
78.

66
66
66

56
56
55

45,
45,
44,

0383
4685
7938

.2209
.9510
.0694

2181
.2916
.2406

6626
7383
9499

To ensure Method ofLine converges AI': 001 % is used.

99

300

79.
79.
78.

66
66
66

56
56
55

45
45
44

0320
9734
8054

.2085
.6986
.0780

2138
2716
.2469

.6588
7239
.9549

79
79
78

66
66
66

56
56
55

45
45
44

500

.0306
.9693
.8124

.2059
.6960
.0831

2133
.2694
.2505

.6584
L7220
.9579

1

79
79
78.

66
66
66

56
56.
55

45
45
44

000

.0292
9685

8147

.2037
.7001
.0849

2138

2805

2517

.6588
.7303
.9588



Table 3.7: Call Prices calculate using the Box Method.

Exercise

Price

35

40

45

50

55

Model

B M
CN
B M
CN
B M
CN
BM
CN
BM
CN

A

t

o =(4k0-02)/8 >0
.. 8%,y=025

. 0.05,A . .,

Bond 5

Price

46.5992  22.9185

47.0246  31.8368
19.5219
28.3083
16.1257
24.7800
12.7325
21.2544
9.3647
17.7504

21.0493
30.2920
17.3859
26.5429
13.7243
22.7953
10.0833
19.0634
6.5630
15.4169

100

3

19.0180
28.4940
15.0650
24.4885
11.1067
20.4900
7.2759
16.5458
3.8278
12.8214

16.8006
26.4229
12.5334
22.1223
8.3148
17.8410
4.4155
13.6856
1.5210
9.9468

14.3676
24.0841
9.7567
19.4490
5.2756
14.8360
1.7362
10.4105
0.1853
6.6336



Table 3.8: cCall Prices calculated analytically (CIR), using the Box and the Crank Nicholson

methods.
a, = (4k0-a2)/8 >0
«0 =005 Ar= Of%,.. =8%,y=0.5
M aturity (years)
Exercise Model Bond 5 4 3 2 1
Price Price
CIR 45.15612 21.8802 19.9509 17.8585 15.5863 13.1552
35 BMS 45.50001 21.9445 20.0181 17.9293 15.6615 13.1957
BMG 45.5140 21.9445 20.0181 17.9293 15.6615 13.1957
CNS 45.8809 22.1132 20.1790 18.0921 15.8450 13.4362
CNG 45.8866 22.1177 20.1846 18.0987 15.8524 13.4438
CIR 18.5163 16.3114 13.9201 11.3233 8.4993
40 BMS 18.5836 16.3605 13.9887 11.3968 8.5789
BMG 18.5774 16.3759 13.9887 11.3968 8.5789
CNS 18.7181 16.5076 14.0513 11.5545 8.8015
CNG 18.7226 16.5132 14.1291 11.5618 8.8092
CIR 15.1524 12.6719 9.9819 7.0636 3.9137
45 BMS 15.2104 12.7336 10.0482 7.1352 3.9896
BMG 15.2104 12.7336 10.0482 7.1351 3.9896
CNS 15.3230 12.8362 10.1531 7.2662 4.1834
CNG 15.3275 12.8418 10.1597 7.2735 4.1910
CIR 11.7886 9.0330 6.0560 2.9514 0.4535
50 BMS 11.8433 9.0919 6.1191 3.0126 0.4788
BMG 11.8433 9.0919 6.1191 3.0126 0.4788
CNS 11.9820 9.1653 6.1943 3.1020 0.5267
CNG 11.9324 9.1709 6.2008 3.1090 0.5317
CIR 8.4257 5.4156 2.3804 0.3118 0.0001
55 BMS 8.4772 5.4705 2.4305 0.3307 0.0001
BMG 8.4772 5.4705 2.4305 0.3308 0.0001
CNS 8.5338 5.5143 2.4679 0.3443 0.0000
CNG 8.5382 5.5200 2.4746 0.3486 0.0001
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Table 3.9:

Exercise
Price
35

40

45

50

55

Call Prices calculated using the Box and the Crank Nicholson methods.

Model

B M
B M
CN
CN
BM
B M
CN
CN
BM
B M
CN
CN
BM
B M
CN
CN
BM
B M

Vo O n O o0 n o noOunea on

CN
CNG

A

t

a, = (4k0-a2)/8 >0

- 0.05,A =05%..,

Bond
Price
45.2609
45.1662
45.5343
45.5299

21.6569
21.6569
21.8253
21.8248
18.2985
18.2985
18.4388
18.4382
14.9400
14.9400
15.0522
15.0517
11.5815
11.5815
11.6657
11.6652
8.2231
8.2231
8.2792
8.2787

. 8%,y=0.75

Maturity (years)

7132
7132
.8736
.8729
.0771

0771

.2083
.2076
4409
4409
.5430
.5423

.8048
.8048
8777
.8770
.1689

1689

2126
2119

102

17
17
17
17
13
13
13
13

v U1 L1 L1 VW VW WV O

R =

3

.6073
.6073
.7695
.7687
.6703
.6703
.8036
.8028

.7333
.7333
.8377
.8369
.7964
.7964
.8718
.8710
9171
9171
.9572
.9563

-
(5}

N
= = ot ou un

-
-

©O ©o o o N N NN O O o o &

-

.3248
.3248
.5079
.5670
.0617
0617
.2189
.2180

.7987
.7987

9299

.9290
.5526
.5526
.6515
.6506
.0258
.0252
.0265
.0262

12.8499
12.8499
13.0901
13.0891
8.2333
8.2333
8.4557
8.4548
3.6173
3.6173
3.8208
3.8119
0.0822
0.0822
0.0956
.0952
.0000

0

0
0.0000
0.0000
0

.0000



Table 3.10: Call Prices calculated using the Box and the Crank Nicholson methods.
oc, =(4k9-a22)/8<0
At =0.05,A . 0.5% ,r0=8%,y=0.25

Maturity (years)

Exercise Model Bond 5 4 3 2 1
Price Price
60 BMS 77.0820 27.9176  27.2150  26.4227  25.3939  23.5864
CNS 77.6467  34.7973  34.7470 34.6029 34.1796  32.7911
65 BMS 23.8804  23.1287  22.2966  21.2595 19.4973
CNS 30.4461 30.3994  30.2653  29.8699  28.5481
70 BMS 19.8563 19.0590 18.1907 17.1465 15.4766
CNS 26.0955 26.0533  25.9320 25.5731 24.3526
75 BMS 15.8493 15.0081 14.1069 13.0643 11.5241
CNS 21.7453  21.7085 21.6026 21.2886  20.2041
80 BMS 11.8619 10.9787 10.0480 9.0150 7.6385
CNS 17.3954 17.3649 17.2776 17.0164 16.0912
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Table 3.11: Call Prices calculated analytically (CIR), using the Box Method and the Crank
Nicholson methods.

a, =(4k9-a2)/8<0
At :OOS,A: = o s % ,ro = 8%,y:05

Maturity (years)
Exercise Model Bond 5 4 3 2 1
Price Price
CIR 63.4557  23.9008 22.8564  20.2596 19.8902 16.9798
60 BMS 69.9969  23.9476  22.9006 21.6375 19.9112 16.9769
CNS 70.8166  32.2997 32.0170 31.4356  30.1946  27.3805
CIR 20.1770 19.0843 17.7967 16.0922 13.2470
65 BM 20.2200 19.1255 17.8313 16.1109 13.2320
CNS 28.2373  27.9676  27.4063  26.1936  23.3519
CIR 16.4887 15.3565 14.0532 12.3971 9.7260
70 BMS 16.5281 15.3950 14.0865 12.4102 9.7061
CNS 24.1833  23.9313  23.4043  22.2519 19.4636
CIR 12.8444 11.6829 10.3819 8.8038 6.4487
75 BM 12.8803 11.7194 10.4151 8.8246 6.4317
CNS 20.1358 19.4299 19.4299 18.3732 15.7371
CIR 9.2570 8.0789 6.8019 5.3528 3.4558
80 BM 9.2895 8.1135 6.8352 5.3787 3.4527
CNS 16.0962 15.8990 15.4794 14.5314 12.0601
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Table 3.12; Call Prices calculated using the Box and the Crank Nicholson methods

Exercise

Price

60

65

70

75

80

Model

BMS
CNS
BMS
CNS
BMS
CNS
BMS
CNS
BMS
CNS

*!'=(4k0-c2)/8 <0

20 =0.05A=.,. ..=8%,y=0.75
Maturity (years)
Bond 5 4 3 2 1
Price
59.1193  17.1706  15.4195  13.3555  10.7989  7.3479
60.1029  21.5125  19.9334  17.9317  15.3181  11.6426

13.8877 12.1152 10.0705 7.6101 4.4391
18.1360 16.5416 14.5341 11.9361 8.3080
10.7096 8.9662 7.0142 4.7882 2.1955
14.8528 13.2855 11.3311 8.8436 5.4647
7.6751 6.0203 4.2662 2.4419 0.7181
11.6925 10.2053 8.3787 6.1095 3.2008
4.8453 3.3704 1.9456 0.7388 0.0655
8.6972 7.3556 5.7475 3.8193 1.5839
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Table 3.13: Bond Prices calculated using the Box and the Crank Nicholson methods.

Maturity

(years)
5

15

15

Model

BMS
CNS
ML

BMS
CNS
ML

BMS
CNS
ML

BMS
CNS
ML

r(%)

11

a, =(4k0-a22)/8<0
k=0.1, 0=0.08, cr=0.5, Ar= 0.5%.,y=0

Annual number of time steps (n)

100

20

89.4124
89.8061
19.0774

81.7602
82.0508
18.2252

80.1593
80.4337
8.7021

73.2510
73.4741
7.9481

50

89.3811
89.7897
23.4223

81.7277
82.0358
22.1063

80.1347
80.4205
14.5900

73.2293
73.4620
13.3216

89.
89.
29.

81
82
27

80
80
22.

73
73
20

3706
7806
6778

7161
.0276
.7056

.1265
4161

5353

2214
.4580
.5753

89
89
46

81
82
42

80.

80
41

73
73
37

300

.3639
.0273
.4546

.7095
.0273
7791

1216
4131
.3618

2172
.4552
7738

89
89
56

81
82
51

80
80
50

73
73
46

500

.3624
7798
.0525

.7080
.0266
4412

.1201
4124
.8450

2160
4546
4424

1

89.
89
68

81.
82.
62.

80
80.
61

73
73
56

000

3614

7792
.0901

7067
0261
3461

.1195

4119

.7635

2152
4541
4277

Gaussian elimination did not produce any meaningful prices both with the Box Method and the

Crank-Nicholson.

Analytical bond prices were unmeaningful.

interest is valued at $2873.86 when its value is restricted to be equal to or less than $100.
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CHAPTER 4.
A NEW APPROACH TO CHECK THE FREE BOUNDARY OF SINGLE

FACTOR INTEREST RATE PUT OPTION

4.1. Introduction

In options pricing literature the location of the free boundary is used to determine the
option price. The value of the free boundary at a particular time step before the expiry
of the option is the underlying asset value at which an American option ceases to exist.
The basis of the analytical option pricing methodology is the location of the free
boundary. Thus in traditional option pricing literature the free boundary is assumed to

have been correctly identified and the option price calculated.

An alternative scheme is to assume that the option price has been calculated, and use
this option price as the basis to locate the free boundary. This approach serves two
purposes. First it indicates whether the numerical scheme is stable; secondly it tells us
the nature and shape of the free boundary. To date only Courtadon (1982b) has used
option prices as the basis to locate the free boundary. Courtadon’s approach was,
however, very simple in that he used linear interpolation to track the free boundary. In
this Chapter we use Green’s theorem in conjunction with the Box Method to locate the
free boundary. This Chapter represents the first attempt in Finance to track the free

boundary in this manner. Section 2, 3 and 4 contain original work.

In Section 2 we set up the American pricing problem as an obstacle. In Section 3 we
derive the integral equation in terms of the free boundary at successive time steps. In

Section 4 we discretize the integral equation. Section 5 compares the free boundaries
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of American put options based on the Vasicek model (y = 0), CIR model (y =0.5)
and Brennan and Schwartz model (y =1). Section 6 contains a summary and

conclusion.

4.2. An American Put Option As An Obstacle Problem

The basic starting equation is:

de
izaVVdp +k(6 ’ﬁr lre=—dX (4.1.1)

where e = P(rt,t,T*,T) + B(rt,t,T*) = Put on bond + Bond Price .

Further at the free boundary the two following boundary conditions hold:

de(s(T),x) =
(B1)
dr
e(s(x),x) = E (Exercise Price) (B2)
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In the diagram above the curver = s(x)is the free boundary. We integrate equation
(4.1.1) in the region R bounded by the free boundary curve r = s(x). In particular
along the time axis we integrate from 0 —xm at time increment mAtand

o0 —>s(x) along the interest rate axis.

11~2"r2 drdx+ || k9-*drdx - || rk  drdx

r Sr r or

(4.1.2)

|| redrdx = || ~drdx
dr

We now integrate and simplify each component of the above equation, starting with

'2 _d2e
the first component [T— rzYE7—drdx. In particular with the first component, we
2 r

consider four distinct cases, first y = o, second y =* , third y = 1, and for y between

o and 1 excluding the previous values of'y.

First consider the case for y = 0

-ta2
a2 d2e st-}a d2edrdX

2 dr 2 dr2 0o 2 dr2

Now integrating by parts and incorporating boundary condition Bl gives:
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a2t 3C(O,X)
I dr
3r2 Or

0

Further integration of the above expression with respect to time gives:

TmS(0 2 ;\Ze 2 1 136 O, X
If?-r- ------ drdx = —— ( )dx
oo 2 3r2 2

Second consider the integral for y = —

azra.. 2r
drdx drdx S drdx
3r2 . 11 a
’ 0 0
s(t)
Integrating the integral | T dr by parts and inserting the second boundary
0 2 dr 2

condition (B2) gives:

o

Further integrating the above expression with respect to time gives us:

Tﬁg@igf? dx . - (; E(mAt) + Je(O,x)dX
00
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Thirdly consider the integral for y = 1

dZe T a2r2d2£
drdx jﬂf) , drzdrdx

Illvr 4,

U 2rd dde
2 drl

Integrating the component dr by parts and incorporating the boundary

condition B2 gives:

s(t) s(x)

s(t)
Q) aze dr -1l rEdrzazs(x)E-a 2 Je(r,x)dr
Ir

2 dr2

Once again further integrating the above expression with respect to time gives us:

Ths(D)
WXV rl dAzfdrdx =-g2B)s(x)dx +a 2] Je(r,x)drdx
00

00

Now for the general case of y between 0 and 1 and excluding the particular values
mentioned above, we have by integrating by parts and by incorporating the boundary

condition B 1:

tmeb) CI2r 2Y Tm(T)
¥ gy P =y Ty 1 drdy
dr2 00 dr 0o dr

111



We now further integrate the component e dr by parts and insert boundary
r

condition (B1) to give:

s(t)

T2y i/(\]f‘.’s_ Es(x)% 1-(2y ) J r2Y 2e(r,x)dr

Thus in the expanded form, the double integral for the general case is:

sb)
Jj  A=-"-drdx=02y(2y -1)j Jr2Y2e(r,x)drdx-a2yEjs(x)2Y 'dx
0o 2 dr 00

Note that the above expression also holds for y = 1. Thus summarizing all the

possible expressions:

a2Fde(0,x)dt
] dr

b

A Z vm 1

LHSo= IT— r2Y-"-"drdx - ] + =
0T 5 e y E(mAt) Je(0,x)dx,y

ay(2y-1)J Jr2Y2e(r,x)drdx-G2yEjs(x)2Y¥ dx,y * 0,y " -
00

Now integrating the second component of equation (4.1.2) and inserting boundary

condition B2 gives:
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s(x)
kodd -~drdr =ko 1 | AElrdr = koE(mA1t)- ko e(o0,x)dx
dr 0o dr

Finally integrating the third component of equation (4.1.2) by parts and inserting

boundary condition B2 gives us:

r—drdt =-Ek
dr

We now consider the term on the right hand side of the original equation. The figure

below indicates the path of integration followed.

Applying Green’s theorem gives us:

ffde(r.x) e(r.r)dr

! dr Cl+C2+C3+C4

We now evaluate each of the components of the above integral separately:
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| e(r,x)dr = o as we are moving along the time axis only where the interest rate is

C4

constant.

s(0)
Je(r,x)dr = j*£(r,0)dr
a o

We note that C2 is the free boundary ans such from boundary condition B2 along C2

e(r,x) = E. Hence:

le(r,x)dr = ] E~rdx =E[s(xJ-s(0)]

Cc2 x=0 ”

S(Tm)
Je(r,x)dr - J8(r>xm)dr

C3 (0]
Collecting all the terms on the right hand side gives us:

S“jﬂ) So)
8(r>xm)dr + E[s(0) —s(xm)]- J e(r,0)dr

Collecting and rearranging the terms both on the left-hand side and the right hand side

of equation (4.1.2) gives us:

LHSo+ LHS, + LHS, + LHS. + LHS. + LHSs+LHS6=RHSo+RHS, (4.1.3)
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where:

LHSj = kOE(mAt)

m

LHS2> -kole(o,x)di

LHS3 = %,(J?k-r>(r,T)drdT

oo

1 hs4

LHS5=-Es(0)

s(0)
LHS6 = | e(r,0)dr
0

s(Ty
RHSo Je(r,xm)dr
0

RHS, =-Es(t,,)
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Observing equation (4.1.3) we see that at any general time step Tm there is no
analytical solution for s(xra). In the next section we use numerical integration to solve

equation (4.1.3)
4.3. Discretization of the Integral Equation

Each of the single integral is discretized using the implicit trapezium rule. We start by

discretizing the simplest integrals first:

m
Je(o,t)dx = At ;—£(o,0) +e(0, At)+ £(0,2At)+ _ +870, (m - D)At) +*-e(0,mALt)

0

Js(x)dx = At —s(0) + s(At) + s(2At)+...+s((m- 1)At) + —s(mALt)
2 2

[s(x)'Y*dx = At —s(0)'T1+s(At)2y 1 +s(2A)Y 1+...+s((m-1)At)"Y' + —s(mAt)2Y"'
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S(0)

At time o, we separate the integral J e(r,0)dr into two components as follows with
0

n0Ar < s(0) < (no+ DAr

s(0) nOAr s(0)
| e(r,0)dr = Je(r,0)dr+ Je(r,0)dr
0 0 oy

We discretize each of the two integrals using the implicit trapezium rule as follows:

£(0,0) + e(Ar,0) + £(2 Ar,0)+___£4(no  1)Ar,0) +t-e(n,,Ar,0)

s(0) _
J oe(r,0)dr =Q 2n°Ar) [£(noAr,0) + E]

n,,Ar

Combining the above two discretizations gives us:

j£(r,0)dr = Ar —(0,0) + £(Ar,0) + £(2Ar,0)+...+£((no - 1)Ar,0) + —£(noAr,0)
0 L2 2

> fe % n,,Ar,0)+ E]

SO
Attime xm, as at time o, we separate the integral J*£(r,xm)dr into two components
(0]

as follows with nmAr < s(xm) < (nm+ 1)Ar
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SM " mAr s(xm)
Je(r,Tm)dr="Je(r,xm)dr+ Je(r,xm)dr

nmAr

We discretize each of the two integrals using the implicit trapezium rule as follows:

I e(r,xm)dr = Ar "e(0,Tm) + e(Ar,Tm) + e(2Ar,Tm)+....£((nm-1)A r,T m) + :J-e(nmAr,Tm)

SXI) (St'Tin)_ n mAr)
J e(r,0)dr « [e(n,,Ar.0) + E]

nmAr
Combining the above two discretizations gives us:

Amg) 1 I
Je(r> H)dr- Ar-e(0,xm)t e(Ar,im)+ e2Ar,xm)+...te((nm- DAr,Xm)+t - e(nmAr,Xm)

m) - n mA
(s(*m) -n mAs) [e(nmAr,0) + E]

ax2T"e(°’x ) . 3e(0,x
— —( )dx we first discretize —(“—)-
2 .D dr dr

For the integral using the forward

difference approximation such that:

3e(0,x) e(Ar,x)-e(0,x)
3r Ar

Substituting the above expression into the original integral gives us:
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T3gQDdt=" g2 Jo(Arx)dx +

m
Je(0,x)dx
2 | dx 2Ar 2Ar

Discretizing each of the components of the above equation gives gives us:

A Je(0,x)di -a 24t A-e(0,0) + (0, At) + e(0,2At)+....+e(0, (m - DAt) + (0, mAt)
2Ar 2Ar

2

At
Je(0,x)dx ~ @ ~ e(Ar,0) + (0, At) + e(Ar,2At)+... +e(Ar, (m - 1)At) + ~£(Ar, mAt)
2Ar 2Ar

Combining the above two discretizations gives us:

a2TF9e(0,x) _  02At 2(e(0,0) - e(Ar,0)) + (e(0,At) - e(Ar, At))+...

20 A= 2AT L 0.(m - DAD) - e(Ar, (m - DAD) +~ (e(0, mAD) - e(Ar, mAD)

To discretize the double integrals we first change the order of integration as follows:

Y M
|| (k+. - r)e(rx)drdx = | J(k+A-r)e(r,x)dx dr

0o

s(x)

| | el Qe(rx)drdx =17 JrdY e(r,x)dx dr
00
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We now discretize the above double integrals at successive time steps

First at time period A t:

W o At At
L | (k- De(r, x)dx dr = — J (k- 0)t(r,0)dr h—--J (k- r)e(r, At)dr
s(-c) mAt s(At)

s(0,
I r2y 2e(r,x)dT dr lzt Jf) 2Y-2£(r,0)dr + ) J[r2y 2s(r, At)dr

At time period 2At:

s(®) 2At s(0) s(At)
| (k- r)e(r,x)dT dr — J(k + -r)E(r,0)dr +At j*(k- r)e(r, At)dr
o 0
S(2A1)
H----| (k- 1)s(r,2At)dr
2 o
() 2At At s(°) s(At)
JoIrly 2e(rx)dT dr  — | r2y2e(r,0)dr + At J r2y-2£(r,At)dr
o 0
A gAt)
+— Jr2y2e(r,2At)dr
2 o

At time period mAt:
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s(®) mAt s(®) s(At)

J | (k- r)e(r,x)dx dr = — J (k- r)e(r,0)dr + At J (k - r)e(r, At)dr

S(2At) s((m-1)At) s(mAt)

+ At J(k-r)E(r,2At)dr+ ..+ At  J(k-r)&(r,(m- DAt)dr+”  J(k-r>(r,mAt)dr

s (T)["~mAt “ A s(0) s(At)
| J r2¥2e(r,x)dx dr = — | r2¥2e(r,0)dr + At | r2¥2e(r,At)dr
S(2At) s((m-1)At) s(mAt)

+At |t 2V 2£(r,2At)dr+.. At Iy 2e(r,(m-DAt)dr+— JrdY 2e(r,mAt)dr

sbrm)

We note that the above integrals are similar to j£(r,xm)dr and hence discretized as

follows:
| ke(0,xm)+ (k- Ar)e(Ar, xm)Ar
+ (k- 2Ar)s(2Ar, xm)Ar
S(mAD) +...+ (k- (am-1)Ar>((nm- 1)Ar,xm)Ar

Ym= J(k-r)E(r,mAt)dr: .
+(k-m Ar)e(nmAr,xni)Ar +

s(mAt)-mAT
2
((k - mAr)e(nmAr,Xm)+ (k- s(mAt))E)
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(Ar)2Y"2e(Ar,Tm)Ar + (2A1)2Y 28(2Ar,Tm)Ar

+-+((nm-1)Ar)2Y2e((nm-1) A r,x m)Ar

s(mAt)
Jr2Y¥2e(r,mAt)dr = +” (mAr)2Y2e(nmAr,xmAr +
(o)
2s(mAt) - mAr
1 2 |

((mAr)2Y"2e(nmAr,Tm) + (s(rnAt))2Y ' e )

Thus summarizing both the above double integrals,we have:

[}
J J(k +A-r)E(r,-c)drdx =" Y [+ AtY2+...+AtYm, + Y ,,

0 0 A A

XmS(T) At At
j It 2«e(r,t)drdt=T Z, + AtZ2+..+AtZ,,.]+— Zm

0 0 A A

4.4. Locating the Free Boundary

At the maturity date of the contingent claim we define the following function

discretized at interest rate point rk:

<K=E-B(ri)
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If we let rk 2, rk 1, rk and rkH be interest rate points and (k 2, Jk ,, Jk and (pkt+lbe

values of the above function at these interest rates. Then, we can derive the following

polynomial:

k+1

A(r)= 5>.L .(r)

where

r-r,
Li(r)= n

I=k-2,1*k rk h
with the following property:
= A(r,) I=k-2, k-1, k, k+1
We now use Newton-Raphson iteration, to derive the critical interest rate s(0)at expiry

date of the put option.

A(r)

NOJ

<0) r-

ds
At general time step mAt, the free boundary is located by solving for the zero of the
function:
$ — "LHS  "RHS
where:
()l = LHSO+ LHS, + LHS2+ LHS3+ LHS4+ LHS, + LHS6
"RHS = RHS0+ RHS!
Numerical experimentation indicates that Newton-Raphson is not suitable except at the

maturity date of the option. Thus at general time step mAt, we start with a value of

s(mAt) which by examination of the grid at this time step is known to be lower than
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the actual value of s(mAt). To estimate a more accurate s(mAt) we iterate upwards at

interest rate steps of Ar/20 until the following criterion is met:

ILHS ~ ARHsl = |
Once this criterion is met we move to the next time step to calculate s((m + 1)At) and

so on until we reach to end of the grid at time step MAt.

We now investigate the nature of the free boundary of American put options based on

widely used single factor term structure models. In particular we consider the Vasicek

model (y =0), CIR model (vy = 21 and Brennan-Schwartz model (y =1). Ail three
)

models are of course enclosed by the more general CKLS model. We investigate the
free boundary both for short expiry and long expiry put options. The short expiry
options are based on bonds with 5-year maturity bond and expiry of 1 year. The
longer expiry put options are based on 10-year bonds and expiry of 5 years. The
bonds are zero coupon and have a face value of 100.00. The parameters take the
following values: . = 0.5, k=0.1, 0=0.08. On the grid the interest rate spacing is

Ar = 0.05 and the time intervals of At = 0.002 .

4.5. Analysis

We plot the free boundaries for y = 0 (Vasicek), y = 0.5(CIR) and y =1 (Brennan-

Schwartz). For each y value two sets of free boundaries are plotted at different

exercise prices. The terms to expiry of the put options are either 1 year or 5 years.
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The 1 year put options are priced on a 5-year bond during the last year before it
matures. The 5 year put options are priced on a 10-year bond during the last 5-year
before it matures. All the free boundaries are plotted backwards in time that is, we
start plotting from the expiry date of the options to current date at which the put

option is written.

For y =0, 1 year put option (Figure 1) the critical interest rate increases rapidly.

However, as the current date of the option approaches, the critical interest rate
increases asymptotically; such that by the current date the free boundary is almost flat.
For 5 year options (Figure 2), the critical interest rate increases rapidly close to the
expiry date of the option as with y = 0. Although the free boundary is almost flat by
the current date careful examination of the graph indicates that critical interest rate
actually start to decrease as the current date of the put option approaches. This is in

contrast to the free boundary of the one-year option.

For y = 0.5, 1 year put option (Figure 3), the free boundary evolves in the same way
as for y = 0. For 5 year put option (Figure 4), the free boundary increases close to the

maturity date of the option. However as the current date of the option approaches, the
critical interests show a noticeable decline. The end result is that for a 5 year put

option, the free boundary initially increases and then declines asymptotically.

For y = 1, 1 year put option (Figure 5), the free boundary initially increases close to

the maturity date and the declines as the current date approaches. This is in contrast to

the behavior of free boundaries for y =0 and y = 0.5. For 5 year put option (Figure
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6), the critical interest initially increases, but then quickly declines. Although the free
boundary in this case shows the same overall behaviour as the free boundaries for
y =0 and y = 0.5, there is in this case two distinct observable differences. First the
critical interest rate starts to decline much closer to the maturity date than for y =0
and y =0.5. Secondly the rate of decline i.e. the downward steepness of the free

boundaries is greater than for y =0 and y = 0.5.

Figure 1 - Figure 6 all exhibit discontinuities at the expiry date and close to the expiry

date of the options. This is due to an inconsistency in our model at maturity because at

maturity we assume =0, when Further, although none

of the free boundaries show any discontinuities except at and near the expiry date, the
free boundaries nonetheless do exhibit small oscillations. This oscillation is due to the
approximations we have made in setting up the grid and secondly the small errors in
the critical interest rate from previous time periods feeding through to the critical

interest rate at the current time period.

4.6. Conclusion

Since Courtadon (1982) used a linear interpolation approach to track the free
boundary of interest rate contingent claims, no further research has been done to
extend this work. In this chapter we have provided a new method to check and track
the free boundary. We have applied this new approach to check the free boundary of
short dated and long dated American put options based on widely used one factor

interest rate models. Our finding suggests that the shape of the free boundary varies
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from model to model and with the term to expiry of the options. Generally, we
observe that the risk boundary increases asymptotically towards the current date, such

that by the current date the free boundary is almost flat or slightly declining.
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Figure 2: Vasicek model, 10 year bond, 5 year put option
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Interest Rate (%)

Figure 3: CIR model, 5 year bond, 1 year put option
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Interest Rate (%)

Figure 4: CIR model, 10 year bond, 5 year put option
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Interest Rate (%)

Figure 5: Brennan-Schwartz model, 5 year bond, 1year put option
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Interest Rate (%)

Figure 6: Brennan-Schwartz model, 10 year bond, 5 year put option
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CHAPTER 5.
AN EVALUATION OF CONTINGENT CLAIMS USING THE CKLS
INTEREST RATE MODEL: AN ANALYSIS OF AUSTRALIA, CANADA,

HONG KONG, JAPAN, U.K., AND U.S.A

5.1. Introduction

In Chapter 3, we compared three numerical methods using assumed parameter
values. Our main finding was that only the Box method converged to produce
accurate bond and contingent claim prices for all combination of parameters. In
this chapter using historical estimates of the CKLS model obtained for Australia,
Canada, Hong Kong, Japan, U.K. and U.S.A., we calculate implied bond and
contingent claim prices. The outline of this Chapter is as follows: Section 2
describes the data used in the study and Section 3 presents the implied bond and

contingent claim prices. Section 4 contains a summary and conclusion.

5.2. Data

Over the years interest rate researchers have used different estimation methods.
The most recent of these estimation methods is the non-parametric estimation
method introduced by Ait-Sahalia (1996). This method is used primarily to test
any non-linearity in the drift. As the CKLS (1992) model assumes that the drift
is linear non-parametric method is not considered. The most widely used
estimation method by researchers is GMM as used by CKLS (1992), Gibbons

and Ramaswamy (1986) amongst other researchers. CKLS (1992) used an
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approximation in their estimation which introduced a bias term. The Gaussian
method of Nowmna (1997a) reduces this effect of the bias term by using an
analytical expression. Thus to estimate the CKLS model historically we use the
approach of Nowman (1997a) who estimated the CKLS model on US and UK
data. The discrete model used for estimation by Nowman (1997a) was derived
by Bergstrom (1984, Theorem 2) and modified for heteroskedasticity in

Nowman (19997a) given by equation (5.2.1) below.

r(t)=epr(t-1)+|(ep-1)+iit (t=12,...T) (5.2.1)1

where r|t (t = 1,2,....,T) satisfies the conditions given Nowman (1997a).

Following Bergstrom (1983) we let L(0) be minus twice the logarithm of the
Gaussian likelihood function where the complete vector of parameters is

0=1Ta,(3,y,a2]. The Gaussian estimates are obtained from equation (5.2.2)

where m2 was given in Nowman (1997a).

L(e)=Z 2logmt + (5.2.2)

CKLS use the one-month Treasury bill yield as the proxy. However, Duffie
(1996) finds Eurodollar rates are more suitable. The short-term interest rates

used in this study are monthly one and three month Euro-currency rates for
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Australia, Canada, Hong Kong, Japan, UK and US currencies (middle rate)
obtained fromo . .s.r..n . Table 5.1 reports the summary statistics. The mean
and standard deviations of the different series are as follows: Australian one and
three month means are (0.09822) and (0.09881) respectively with standard
deviations of (0.04152) and (0.04191); Canadian one and three month means are
(0.08992) and (0.09108) respectively with standard deviation of (0.03924) and
(0.03859); Hong Kong one and three month means are (0.05928) and (0.06105)
respectively with standard deviations of (0.02123) and (0.02029); Japanese one
and three month means are (0.04693) and (0.04714) respectively with standard
deviations of (0.02421) and (0.02440); UK one and three month means are
(0.10009) and (0.10050) respectively with standard deviations of (0.03112) and
(0.03063) and finally US one and three month means are (0.07645) and
(0.07770) respectively with standard deviations of (0.03371) and (0.03419).
The highest mean is for the UK and the lowest for Japan. The standard

deviations of Hong Kong and Japan are the lowest.

5.3.  Analysis of Results

In this section we discuss the results. The tables are organised such that in the
first section of the table we analyse the bond prices. Bond prices are calculated
for maturities ranging from 5 to 15 years and across short-term interest rates
from 5% to 11%. Bond prices are calculated using the Box method for the

Vasicek model (y=0), Cox, Ingersoll and Ross (CIR) model (y=0.5), Brennanl

ICKLS (1992) take an approximation of this expression
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and Schwartz model (y= 1) and the actual market y. Further we also calculate

analytical bond prices for the CIR model using the formula in the original CIR
paper. In the second part of each table we calculate both American type call and
put options based on the zero coupon bonds. Note that as the underlying
instrument is a zero coupon bond the value of the American call option is the
same as European call option. We exploit this feature to check the accuracy of
our numerical CIR2 call price. We calculate analytical call prices using the
formula provided by CIR in their original paper. We calculate both short dated
and long dated call options. The short dated call options are based on a 5-year
bond with an expiry date of 1 year and is during the last year before the bond
matures. Similarly long dated options are based on 10-year bond with an expiry
date of 5 years during the last 5-year’s of the bond. Finally call and put option
prices are calculated across a wide range of exercise prices. The exercise prices
are chosen so as to highlight the variation of contingent claim prices across the
standard models. We take the market price of risk to be zero. The analysis is
based on annualised estimates in the tables to make it consistent with the grid.
Table 5.2 contains the estimates of the historical parameters of the different

countries considered.

5.3.1. Australia

The results for Australia dollar imply an unrestricted estimate of y= 1.4052 for

the one month and y = 1.0515 for the three months rate. These results compare

2 We also attempted to calculate the analytical prices for the Vasicek model. However, we

found that the analytical formula did not lead to meaningful prices except in the case of Hong
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to Tse’s (1995) estimate for three-month money market date of 0.6763 and
implies that the volatility of rates has become more dependent on the rate level in
recent years. The three-month rate is very close to the assumed value of the

Brennan and Schwartz model.

With regard to Table 5.3 the market y bond prices differ enormously when
compared with the standard models. The discrepancy increases as the term to
maturity of the bond increases. For example, if we consider a 15-year bond at
11% interest rate, we see that market y price is 33.1099, y=1 price is 61.2186,
y = 0.5 price is 81.4529 and y = 0 price is 85.0643. For y=10.5 and y = Obond
prices are very similar across both interest rate and maturity dates. Both call and
put option prices vary widely depending on which model is used. Market y call
prices are close to zero indicating that for the exercise prices chosen, the options
are out of the money. For y=0.5call prices vary widely indicating that the
exercise prices chosen ensure that the call options are both in the money and out
of the money. For market y put prices we find the exercise prices chosen lead to

the puts being deeply in the money and as a result the intrinsic value dominates.

Turning to Table 5.4, we find that market y and y = lbond prices are similar
irrespective of the term to maturity of the bonds. For y=10.5and y =0bond
prices are very similar whereas between y=land y= 0.5they are not. As a

result we find that market y and y = 1, puts and calls are similar.

Kong. For example for 1 month Australia, 5% interest rate, 5 year maturity, bond price using

the analytical formualis 9.8 x 1010.
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5.3.2. Canada

The results for the Canadian dollar imply an unrestricted estimate of y = 0.3912
for the one month rate and y = 0.3700 for the three-month rate. These results

compare to Tse’s (1995) estimate for three-month money market data of -

0.3600, which was not statistically different from zero.

Turning to Table 5.5 the market y bond prices are similar to y = 0.5 bond prices.
For y = 1bond prices collapse as the term to maturity increases. For example,
for y=1, a 15 year bond at 11% is only valued at 9.8069. As a result we find
that market y and y=0.5 option prices are very similar and y=land

y = 0 option prices are substantially different.

Turning to Table 5.6 market y bond prices are similar to y = 0.5 bond prices. As
before y = lbond prices collapse as the term to maturity increases, for example
for y=1, a 15-year bond at 11% is only valued at 10.2977. As a result we find
that the market y and y=0.5option prices are similar whilst y= land

y = 0 option prices differ substantially from market y prices.

5.3.3. Hong Kong

The results for the Hong Kong dollar imply an unrestricted estimate of

y =0.0076 for the one month and y = 0.3221 for the three months rate. These
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results compare to Tse’s (1995) estimate for three-month market date of 1.5997
and implies that the volatility of rates has become less dependent on the rate level

in recent years.

Turning to Table 5.7 as the term to maturity increases bond prices collapse for all
models. For example, for a 15-year bond at11%, the market y bond price is

29151, y = 0.5 bond price is 0.6895 and y = Obond price is 2.9967. There was
no convergence for y = 1, this is not surprising we take into that actual market
y =0.0076. Further this is the only model where the analytical formula for

default free bonds derived by Vasicek (1977) produces acceptable bond prices.

These are given below:

5% 8% 11%
5 51.4756 45.2315 39.7448
10 22.1594 17.7003 14.1385
15 13.3821 9.9633 7.4179

This indicates than only when market y is close to zero will numerical prices be
of the same order as analytical Vasicek prices. Market y bond prices are similar

to y=0bond prices. This results with y = 0option prices being similar to

market y prices. This is in sharp contrast to y = 0.5 option prices.

In Table 5.8 as the term to maturity increases bond prices collapse except for

y=0. For y=0.5bond prices are the closest to market y prices. For
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y = lbond prices are considerably lower than market y bond prices, whereas
y =0 bond prices are higher than market y bond prices. This results with the

y = 0 option prices being substantially different from the prices of other models.

5.3.4. Japan

The results for Japanese yen imply an unrestricted estimate of y = 0.3985 for the
one-month rate and y = 0.3870for the three-month rate. These results compare
to Tse’s (1995) estimate for three-month money market data of 0.6187, Shoji
and Ozaki’s (1996) estimate of 1.5443 for the one-month CD rate; Hiraki and
Takezawa’s (1996) estimates using offshore rates of 0.392 for the one-month
rate and 0.367 for the three-month rate. Nowman (1997b) reports using also the
Euro-currency one-month rate as used here an estimate of 0.9838 indicating the
volatility has fallen over the last two years. Finally Chan et al (1992b) using the

Gensaki rate reported y = 2.4353.

Turning to Table 5.9 there is wide difference in bond price amongst the models.

With y = lbond prices are always lower than the market y price and y = 0 bond

price always higher than market y bond prices. This difference leads to the y =0
option prices being higher than the option prices of other models. In Table 5.10

we have the same trends as for Table 5.9.

5.3.5. United Kingdom
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The results for British sterling pound imply an unrestricted estimate of

y = 1.0461 for the one-month rate and y = 1.3564 for the three-month rate.

These results compare to Tse’s (1995) estimate for three-month money market
data of 0.1132, Dahlquist’s (1996) estimate of 0.1562 using monthly one-month
Euro-currency rates, and Nowman’s (1997a) estimate using monthly one-month
interbank rates of 0.2898. This implies the volatility of rates has become more

dependent on the level of rates in recent years.

In Table 5.11 market y and y = 1 bond prices are very similar across all range of
maturities considered. For y=0.5and y = 0bond prices are higher than actual
market y prices across all maturity ranges. These differences translates onto
option prices, with market y and y = loption prices being substantially different

than y = 0.5 and y = 0 option prices.

Turning to Table 5.12 we see that all models yield bond prices, which are
substantially higher than market y bond prices. This leads to option prices for

market y which are substantially different.

5.3.6. United States

The results for U.S. dollar imply an unrestricted estimate of y = 1.122 for the
one-month rate and y = 1.2660 for the three months rate. These results compare

to Tse’s (1995) estimate for three month money market data of 1.7283, Shoji

and Ozaki’s (1996) estimate of 1.1473 for the one month US T. bill rate and
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CKLS’s estimate of 1.4999 using one US T. bill data. Nowman (1997b) who
also used the one-month Euro-currency rate used here reported an estimate of

1.0519 indicating only a marginal increase in volatility over the last two years.

In Table 5.13 all models yield bond prices which are higher than the market y

bond prices. However, y = lis reasonably close to market y bond prices. This
leads to market y and y = loption prices being different order from y = 0.5 and

y = 0 option prices.

In Table 5.14 all models yield bond prices which are higher than market y bond
prices. This leads to market y option prices, which are of different order from

the options of other models.

5.4. Conclusion

In this Chapter we have applied the Box method to value default free bonds and
contingent claims starting from the CKLS model. Using the Box method and
historical estimates of the CKLS model obtained for Australia, Canada, Hong
Kong, Japan, UK and US we calculated implied bond and contingent claims
prices for these currencies. Our results indicate that the Box method can be used
to value default free bonds and contingent claims in a wide range of economies.
Secondly that default free bond prices and contingent claim prices are sensitive

to the underlying interest rate model used.
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Table 5.1.

Summary Statistics

r(t) T Mean Standard Deviation
Australia May’86-Dec’97

1-Month 140 0.09822  0.04152
3-Month 140 0.09881  0.04191
Canada Feb’81-Dec’97

1-Month 203 0.08992  0.03924
3-Month 203 0.09108  0.03859
Hong Kong  Feb’86-Dec’97

1-Month 143 0.05928  0.02123
3-Month 143 0.06105  0.02029
Japan Feb’81-Dec’97

1-Month 203 0.04693  0.02421
3-Month 203 0.04714  0.02440
UK Feb’81-Dec’97

1-Month 203 0.10009 0.03112
3-Month 203 0.10050  0.03063
[SN Feb’81-Dec’97

1-Month 203 0.07645  0.03371
3-Month 203 0.07770  0.03419
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Gaussian Estimates of CKLS short-term Interest Rate Model

AUSTRALIA

1-Month

3-Month

CANADA

1-Month

3-Month

HONG KONG

1-Month

3-Month

JAPAN

1-Month

3-Month

UK

1-Month

3-Month

US

1-Month

3-Month

dr(t)= {a+ Br(t)]dt+or¥Z

0.0008
(0.0009)

0.0008
(0.0009)

0.0015
(0.0011)

0.0014
(0.0011)

0.0046
(0.0016)

0.0030
(0.0017)

-0.0001
(0.0003)

-0.0002
(0.0002)

0.0015
(0.0012)

0.0013
(0.0011)

0.0014
(0.0007)

0.0011
(0.0006)

Table 5.2.

-0.0164
(0.0132)

-0.0157
(0.0127)

-0.0240
(0.0129)

-0.0227
(0.0127)

-0.0755
(0.0295)

-0.0455
(0.0283)

-0.0061
(0.0078)

-0.0034
(0.0059)

-0.0183
(0.0138)

-0.0161
(0.0136)

-0.0258
(0.0124)

-0.0203
(0.0110)

0.1415
(0.0510)

0.0636
(0.0212)

0.0180
(0.0046)

0.0166
(0.0041)

0.0086
(0.0040)

0.0161
(0.0088)

0.0125
(0.0021)

0.0090
(0.0016)

0.0719
(0.0347)

0.1403
(0.0636)

0.0927
(0.0216)

0.1224
(0.0305)
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1.4052
(0.1477)

1.0515
(0.1367)

0.3912
(0.1001)

0.3700
(0.0962)

0.0076
(0.0020)

0.3221
(0.1891)

0.3985
(0.0489)

0.3870
(0.0519)

1.0461
(0.2046)

1.3564
(0.1925)

1.1122
(0.0858)

1.2660
(0.0927)



Table 5.3,

1 Month Australia, a =0.0096,3=-0.1968,a = 1.6980, Market y = 1.4052
At =0.05, Ar = 0.5% :

Maturity
of Bond

5

10

15

10

10

All options are written on zero coupon bonds with a face of $100.00

Expiry of
Option

1(%)

Exercise

Price

80
85
90
95

80
85
90
95

80
85
90
95

80
85
90
95

Asset/
O ption

Bond

Bond

Bond

Call

Call

146

=0

94.1696
92.3077
90.4503

91.3229
89.5173
87.7160

88.5622
86.8112
85.0643

16.7400
12.0468
7.3563
2.6684

3.0857
3.5472
4.0927
4.8022

15.8279
11.2369
6.6482
2.0617

4.4157
5.0738
5.8459
6.8889

Analytic
Y= 0.5
92.7282
90.4855
88.2970

89.1659
87.0093
84.9048

85.7404
83.6667
81.6431

15.8928
11.3012
6.7189
2.1460

14.8870

10.3977
5.9107
1.4260

=05

92.6344
90.3680
88.1467

89.0415
86.8546
84.7197

85.5797
83.4778
81.4529

15.7271
11.1458
6.5839
2.0516

3.0497
3.4680
4.4230
5.6209

14.7196

10.2418
5.7764
1.3357

4.4594
5.3348
6.4897
8.3942

y=1

83.9364
80.0498
76.6817

74.9913
71.4881
68.4581

67.0614
63.9284
61.2186

7.8492
4.1801
1.2390

0.0000

3.7514
5.8361
9.9502
14.9502

7.8593
4.1469
0.8707

0.0000

8.6752
13.5119
18.5119

23.5119

Market y

74.1262
67.8383
62.9405

54.2983
49.0954
45.2101

39.8596
35.9873
33.1099

0.3622
0.0079

0.0000
0.0000

12.1617
17.1617
22.1617
27.1617

0.1340
0.0001
0.0001
0.0001

30.9046
35.9046
40.9046
45.9046



Table 5.4

3 Month Australia, a = 0.0096, 3 =-0.1884,a =0.7632 , Market y= 1.0515
At = 0.05, Ar = 0.5% :

Maturity
of Bond

5

15

10

All options are written on zero coupon bonds with a face of $100.00

Expiry of
O ption

r(% )

11

Exercise

Price

70
75
80
85

70
75
80
85

65
70
75
80

65
70
75
80

Asset/
O ption

Bond

Bond

Bond

Call

Call

147

90.7201
87.6580
84.6165

86.1611
83.2495
80.3574

81.8357
79.0702
76.3233

23.7108
19.2642
14.8279
10.4018

3.8296
4.4566
5.1606
5.9674

26.5689
22.2407
17.9180
13.6010

4.7372
5.5304
6.4148
7.4116

Analytic
Y= 0.5
85.9614
81.5589
77.3818

78.9200
74.8442
70.9789

72.5001
68.7557
65.2047

19.4171
15.4070
11.4843
7.6545

22.6061
18.6597
14.7242
10.7997

86.0467
81.6436
77.4660

79.0170
74.9355
71.0649

72.6114
68.8606
65.3036

19.1793
15.1467
11.2158
7.4007

3.9824
4.9987
6.2253
7.7421

22.3030
18.3316
14.3840
10.4677

5.4942
5.5304
6.4148
7.4116

75.0143
68.1457
62.3195

56.8685
50.7740
45.7964

43.5093
38.7542
34.8906

6.2054
3.2831
1.2407
0.2205

3.9211
6.9928
11.8543
16.8543

8.0958
5.4035
3.0356
1.1890

14.2260
19.2260
24.2260
29.2260

Markety

74.2908
67.1817
61.1899

54.7985
48.5007
43.4342

40.6854
35.8845
32.0511

5.2449
2.5084
0.7711
0.0871

4.0445
7.8183
12.8183
17.8183

6.6762
4.1845
2.1054
0.6420

16.4993
21.4993
26.4993
31.4993



1 Month Canada, a =0.0180,(3 =-0.2880,a = 0.2160, Market y=

M aturity
of Bond

5

15

10

10

All options are written on zero coupon bonds with a face of $100.00

Expiry of
O ption

H(% )

Table S.5,

At =0.05,Ar = 0.5% :

Exercise

Price

55
60
65
70

55
60
65
70

30
35
40
45

30
35
40
45

Asset/
O ption

Bond

Bond

Bond

Call

Call

148

77.4645
71.7250
66.1612

61.9798
57.0224
52.2247

49.7840
45.7877
41.9203

23.8433
20.1493
16.5821
13.1413

3.8737
5.1250
6.6569
8.2051

35.9476
32.5606
29.2155
25.9134

2.7330
3.8220
5.0956
6.5625

Analytic
Y= 0.5
68.8495
61.6145
55.1397

43.2411
37.2618
32.1094

26.8032
22.8898
19.5478

12.1899
8.5584
5.4748
3.0633

19.0532
16.2058
13.4767
10.8972

69.0133
61.7695
55.3021

43.5902
37.5371
32.3367

27.1909
23.1939
19.7924

12.3481
8.7027
5.6014
3.1730

1.5050
2.8802
5.1228
8.5185

19.4050
16.6030
13.9254
11.3868

2.2915
3.8464
6.0102
8.9170

0.3912

66.0166
58.3866
51.6178

34.2938
28.1646
23.1715

15.6126
12.3479
9.8069

.9888
.7660
.8500

o O w N

.0342

0.1345
.6134

-

6.6134
11.6134

10.7078
7.9148
5.3098
3.0653

1.9042
6.8354
11.8354
16.8354

Market y

70.6581
63.6266
57.2416

47.8235
41.8660
36.5803

32.3979
28.2204
24.5293

14.5963
11.0045
7.8398
5.1693

2.0154
3.4001
5.4014
8.1450

23.2370
20.3405
17.5416
14.8553

2.4904
3.9014
5.7270
8.0192



Table 5.6,

3 Month Canada, a =0.0168,(3 =-0.2724,a =0.1992, Market y = 0.3700
At =0.05,Ar =0.5% :

Maturity
of Bond

5

15

10

All options are written on zero coupon bonds with a face of $100.00

Expiry of
O ption

r(% )

Exercise

Price

55
60
65
70

55
60
65
70

30
35
40
45

30
35
40
45

Asset/
O ption

Bond

Bond

Bond

Call

Call

149

H o

77.5266
71.5406
65.7542

62.1990
56.9476
51.8819

50.1424
45.8877
41.7841

23.5800
19.9144
16.3891
13.0148

3.7454
5.0281
6.5149
8.2149

35.9930
32.5621
29.2347
25.9528

2.6941
3.7854
5.0684
6.5442

Analytic
Y= 0.5
69.2875
61.8539
55.2179

43.7179
37.3973
31.9965

27.1536
22.9614
19.4164

12.2405
8.5452
5.4146
2.9879

19.1415
16.2951
13.5702
10.9977

69.4359
61.9960
55.3704

44,0510
37.6562
32.2035

27.5319
23.2519
19.6464

12.3663
8.6473
5.4952
3.0484

1.2252
2.5621
4.7591
8.2057

19.4095
16.5813
13.8767
11.3234

2.0724
3.5777
5.7208
8.6497

66.7966
59.0473
52.1523

35.5976
29.1381
23.8665

16.6542
13.0768
10.2977

8.5947
4.2432

-

.0370

o

.0453

0.0774
1.12009
5.9527

10.9527

11.4567
8.5882
5.8685
3.4692

1.2275
5.8619
10.8619
15.8619

Market 7

71.2748
64.0704
57.5299

48.9440
42.6671
37.1065

33.6852
29.1930
25.2320

14.9027
11.2751
8.0771
5.3750

1.8705
3.2002
5.1585
7.8508

23.8893
20.9576
18.1343
15.4217

2.3599
3.3703
5.5026
7.7349



1 Month Hong Kong, « = 0.0552,3=-0.9060,a =0.1032, Market y =0.0076

Maturity
of Bond

5

10

15

10

10

All options are written on zero coupon bonds with a face of $100.00

Expiry of
O ption

r(% )

(5]

1

(5}

(5]

1

Table 5.7,

At =0.05,Ar = 0.5% :

Exercise

Price

35
40
45
50

35
40
45
50

10
15

20

10
15

20

Asset/
O ption

Bond

Bond

Bond

Call

Call

150

n=0

49.3405
44.0230
39.1195

15.5610
13.2429
11.1568

4.3126
3.6193
2.9967

13.4635
10.0609
7.2149
4.9226

1.4596
3.0037
5.2790
8.2663

11.0529
8.9893
7.1710
5.6240

0.2410

1.6606
4.2928
7.8396

Analytic
y-10.5
44.0102
38.8527
34.2995

@

.4583
.9280
.6746

u o

-

.0339
.8142

o o

6412

6.0934

-

.7358

o

.1845
.0047

o

4.5204

-

.3814
.2023
.0164

(=)

Il
p
/1

44.0411
39.0229
34.5347

8.6736
7.1481
5.8780

1.1000
0.8721
0.6895

7.6302
3.7029
1.0842
0.1287

0.2309
1.5966
5.9711

10.9771

5.1978
3.2971

-

.6942

o

.6634

0.0604
2.8517
7.8517
12.8517

2 2 2 =2
0O 0O 0o 0

2 2 =2 2 =z =2 =2 =2
0O o o o0

0O o0 o o0

2 2 2 =2
0O 0o o0 o0

@]

Market y

49.2033
43.8838
38.9862

15.3684
13.0627
10.9931

4.2131
3.5266
2.9151

13.3044
9.8959
7.0538
4.7776

.43009
9715
.2579

© U N A

2737

10.8739
.8215

N o

.0104
4738

(5}

0.3032
.6638
4.3238
L9133

-

~N



Table 5.8,

3 Month Hong Kong, a =0.0360, 3=-0.5460,a = 0.1932, Market y= 0.3221
At=0.05, Ar=0.5% :

Maturity
of Bond

5

10

15

10

10

All options are written on zero coupon bonds with a face of $100.00

Expiry of
Option

r(% )

(5]

11

(5]

11

(5}

1

Exercise

Price

45
50
55
60

45
50
55
60

15
20
25
30

15
20
25
30

Asset/
O ption

Bond

Bond

Bond

Call

Call

151

= O

66.0368
60.7445
55.6462

40.7025
37.0723
33.5850

25.0103
22.7633
20.6052

21.8209
18.2355
14.8568
11.6778

2.9890
4.3158
5.9212
7.8045

28.1466
25.3090
22.5543
19.8858

1.2475
2.3727
3.8505
5.6702

Analytic
Y= 0.5
56.6229
50.5590
45.1445

22.8525
19.5387
16.7055

8.3681
7.0683
5.9703

10.0866
6.3735
3.4336

1.4579

11.7942
9.2431
6.8774
4.8874

56.7703
50.7199
45.3261

23.1141
19.7607
16.9000

8.5367
7.2057
6.0847

10.4764
6.8299
3.8681
.7862

-

.0245
L4151
.0085

© N A

.2801

12.2602
9.9233
7.7563
5.8102

0.9354
2.5892
5.6047
10.2393

53.1297
47.8498
42.4730

16.8569

14.3074

11.8751

4.0908

w

3770
2.7182

.0021
.8566
.3794

o o N N

.0013

0.1218
2.1502
7.1502
12.1502

7.1439
4.8335
2.7561

1.1845

0.8160
5.6926
10.6926
15.6926

Market y

59.4860
53.5423
48.1267

28.5970
24.9714
21.7433

13.2388
11.4917
9.9431

13.7844
10.2257
7.1437
4.6044

1.6763
3.0647
5.1335

8.0001

17.0902
14.6294
12.3036
10.1350

1.0924
2.4534
4.4975
7.2716



M aturity
of Bond

5

10

15

10

10

Table 5.9,

1 Month Japan, a =0.0012,P=-0.0732,a =0.1500 , Market y = 0.3985
At =0.05,Ar =0.5% :

All options are written on zero coupon bonds with a face of $100.00

Expiry of
O ption

H(% )

(5]

11

(5]

11

(5}

11

Exercise

Price

60
65
70
75

60
65
70
75

50
55
50
65

50
55
60
65

Asset/
O ption

Bond

Bond

Bond

Call

Call

152

86.5602
78.1691
70.1713

86.2354
76.5730
67.4128

87.8041
77.8565
68.4305

25.7471
22.1565
18.7228
15.4340

4.0374
5.3729
6.9166
8.6601

38.3420
34.5845
30.8320
27.0830

5.2752
6.3225
7.4643
8.7095

Analytic
7=0.5
80.0104
69.3743
60.1521

71.1612
56.1848
44.3603

69.7597
52.7459
39.8817

14.5862
10.6595
7.2251
4.4330

22.6866
19.7091
16.8580
14.1485

80.0837
69.4783
60.2847

71.1976
56.2645
44.4623

69.9713
52.7237
39.8941

14.6609
10.7115
7.2504
4.4464

0.8353
1.8000
3.5237
6.3345

22.7716
19.8071
16.9711
14.2778

4.9353
6.8136
9.1267
11.9137

78.4301
67.2302
57.7059

62.7055
45.9946
34.0260

51.6878
32.6555
21.1593

11.8349
7.2535
3.0271
0.1530

.0054
.1402
.7700

N N O O

.7700

12.4916
9.3148
6.3699
3.8324

4.0050
9.0050
14.0050
19.0050

Markety

81.1516
70.7928
61.6848

75.0389
60.8920
49.2056

75.3962
59.7490
47.0821

16.3565
12.5458
9.1591
6.2842

1.3276
2.4274
4.1283
6.5779

26.9504
23.9027
20.9476
18.0880

5.4247
7.1204
9.1096
11.4086



Maturity
of Bond

5

10

15

10

10

Table 5.10

3 Month Japan, a = 0.0024,(3 =-0.0408,¢ - 0.1080, Market y = 0.3870
At = 0.05,Ar = 0.5%:

All options are written on zero coupon bonds with a face of $100.00

Expiry of
Option

r(% )

(5]

1

(5]

(5]

1

Exercise

Price

80
85
90
95

80
85
90
95

80
85
90
95

80
85
90
95

Asset/
Option

Bond

Bond

Bond

Call

Call

153

84.5601
74.3960
64.9313

84.5174
71.5535
59.6631

88.5659
74.5918
61.8033

22.1959
18.8417
15.7259
12.8401

4.0638
5.6427
7.5216
9.6915

43.0354
39.6159
36.2180
32.8387

4.8246
6.0024
7.2861
8.6748

Analytic
Y= 0.5
78.4267
66.4860
56.3633

66.2278
47.7951
34.4927

63.7351
40.9450
26.3042

11.6245
7.7638
4.5931
2.3100

21.8158
18.8823
16.0979
13.4872

= 90

78.4973
66.5787
56.4857

66.2307
47.8932
34.6251

63.2743
40.8290
26.3112

11.7131
7.8319
4.6405
2.3423

0.7165

-

.8781
4.2494

@

2414

21.9882
19.0906
16.3542
13.7714

3.1224
4.8174
7.0367
9.8347

77.4189
65.1272
54.8531

59.3104
39.9810
27.2007

45.4144
23.3814
12.4685

O

7972

(5}

.2307

-

.3488
0.0569

.0069
4063
.8729

o H» O O

.8729

13.9483
10.7476
7.6686
4.8705

1.0533
5.0189
10.0189
15.0189

Markety

79.3790
67.6277
57.5575

70.6543
52.7677
39.1409

71.7604
50.0626
34.4933

13.1574
9.4569
6.3256
3.8775

1.2271
2.5256
4.6835
7.9135

26.7320
23.8325
21.0591
18.4202

3.7789
5.3850
7.3461
9.6760



M aturity
of Bond

5

10

15

10

10

1 Month United Kingdom, a = 0.0180,P =-0.2196,a = 0.8628,

All options are written on zero coupon bonds with a face of $100.00

Expiry of
Option

M%)

w

11

(5}

1

(5}

11

Table 5.11

Market y = 1.0461
At=0.05,Ar=0.5% :

Exercise

Price

70
75
80
85

70
75
80
85

60
65
70
75

60
65
70
75

Asset/
O ption

Bond

Bond

Bond

Call

Call

154

g O

88.3718
85.6650
82.9737

80.9287
78.4483
75.9821

74.1143
71.8428
69.5842

21.6485
17.1993
12.7634

8.3404

3.8383
4.4839
5.2289
6.0924

27.4331
23.2282
19.0319
14.8445

4.9006
5.7938
6.7898
7.9089

Analytic
Y= 0.5
83.1961
79.4725
75.9154

72.4601
69.2038
66.0939

63.1236
60.2868
57.5776

17.3674
13.3294
9.3696
5.4924

22.4265
18.6232
14.8357
11.0641

= OS5

83.3082
79.5805
76.0196

72.5842
69.3213
66.2051

63.2563
60.4127
57.6970

17.0338
12.9697
9.0080
5.1745

4.0644
5.0644
6.3499
8.0166

22.0480
18.2035
14.3902
10.3174

5.3994
6.6727
8.2021

10.0722

71.1805
65.5213
60.6559

49.2257
44.9324
41.3137

34.0566
31.0681
28.5525

4.3360
1.8205
0.3768
0.0055

5.1649
9.4787
14.4787
19.4787

6.9716
4.3937
2.1953
0.6282

15.0676
20.0676
25.0676
30.0676

Market y

70.4013
64.5544
59.5615

47.3657
42.9781
39.3229

31.8186
28.8460
26.3746

3.5122
1.2585
0.1801

0.0000

5.3652
10.4456
15.4456

20.4456

5.7875
3.3994
1.4811
0.2932

17.0219
22.0219
27.0219
32.0219



Maturity
of Bond

5

10

15

10

10

3 Month United Kingdom, . . 0.0156,(3 =-0.1932,a = 1.6836,

All options are written on zero coupon bonds with a face of $100.00

Expiry of
O ption

M%)

(5]

11

(5]

11

(5}

11

Table 5.12

Markety = 1.3564
At =0.05,Ar = 0.5% :

Exercise

Price

80
85
90
95

80
85
90
95

75
80
85
90

75
80
85
90

Asset/
O ption

Bond

Bond

Bond

Call

Call

155

=0

92.5920
90.7693
88.9510

88.1049
86.3705
84.6403

83.8352
82.1849
80.5385

15.4304

10.7616
6.0970
1.4365

3.2926
3.8020
4.4141
5.2596

18.5126

14.0109
9.5127
5.0182

4.7439
5.4735
6.3115
7.3363

Analytic
Y= 0.5
90.7854
88.6007
86.4685

85.2138
83.1631
81.1617

79.9841
78.0592
76.1807

14.3181
9.7609
5.2152
0.6811

17.0879

12.7115
8.3388
3.9699

=Q,E

90.6874
88.4719
86.3089

85.0566
82.9786
80.9499

79.7754
77.8265
75.9237

14.0803
9.5379
5.0260
0.5722

3.2749
3.9547
4.8765
6.5945

16.8360

12.4677
8.1149
3.7870

4.7001
5.6375
6.8236
8.4858

81.1154
77.4573
74.2719

68.9817
65.8482
63.1239

58.6978
56.0314
53.7131

5.7209
2.3874
0.2302
0.0000

4.4959
7.5658
12.5427
17.5427

8.2122
4.6470
1.4632
0.0000

9.1680
14.1518
19.1518
24.1518

Market y

71.8653
66.5086
62.2237

50.1569
46.1385
42.9961

34.9876
32.1724
29.9738

0.1194
0.0000
0.0000
0.0000

13.4914
18.4914
23.4914
28.4914

0.2589

0.0002
0.0002
0.0002

28.8615
33.8615
38.8615
43.8615



Table 5.13

1 Month United States, a = 0.0168,(3 =-0.3096,a = 1.1124, Market y= 1.1122
At=0.05,Ar=0.5%:

Maturity
of Bond

5

10

15

10

10

All options are written on zero coupon bonds with a face of $100.00

Expiry of
O ption

r(% )

w

11

oo v

11

w

11

Exercise

Price

75
80
85
90

75
80
85
90

65
70
75
80

65
70
75
80

Asset/
O ption

Bond

Bond

Bond

Call

Call

156

o

90.1635
87.8043
85.4549

84.0257
81.8268
79.6371

78.3061
76.2569
74.2162

18.4560
13.9148
9.3818
4.8568

3.8303
4.4385
5.1428
6.0033

25.0704
20.7389
16.4134
12.0941

4.8400
5.6493
6.5542
7.5797

Analytic
7=0.5
86.3600
83.2381
80.2291

77.8916
75.0738
72.3579

70.2562
67.7146
65.2649

15.7300
11.4766
7.2629
3.0901

21.6319
17.5804
13.5738

9.5041

y=10.5

86.4224
83.2943
80.2792

77.9583
75.1344
72.4125

70.3260
67.7785
65.3231

15.4355
11.1844
7.0003
2.9095

4.0949
5.0214
6.1948
7.8773

21.3475
17.2774
13.2293

9.2108

5.1287
6.2302
7.5556
9.9186

73.6895
68.6494
64.3319

54.8833
50.9480
47.6111

40.9693
38.0266
35.5325

3.6074
1.2746
0.1276

0.0000

6.7019
11.3506
16.3506

21.3506

7.4253
4.5778
2.1096
0.3986

14.0520
19.0520
24.0520
29.0520

Markety

71.0441
65.4985
60.8538

49.1124
44.9661
41.5605

33.9649
31.0842
28.7208

1.6030
0.2698
0.0013

0.0000

9.5015
14.5015
19.5015

24.5015

4.1488
1.9505
0.4706
0.0052

20.0339
25.0339
30.0339
35.0339



Table 5.14

3 Month United States, a =0.0132,(3 =-0.2436,a = 1.4688, Market y = 1.2660
At =0.05,Ar=0.5% :

M aturity
of Bond

5

10

15

10

10

All options are written on zero coupon bonds with a face of $100.00

Expiry of
O ption

H(% )

(5]

1

(5}

11

(5}

1

Exercise

Price

80
85
90
95

80
85
90
95

75
80
85
90

75
80
85
90

Asset/
Option

Bond

Bond

Bond

Call

Put

Call

157

92.6265
90.6158
88.6110

88.4428
86.5230
84.6087

84.4481
82.6150
80.7871

15.6071

10.9657
6.3286
1.6958

3.5286
4.0702
4.7183
5.5982

18.7922
14.2993
9.8100
5.3243

4.8146
5.5514
6.3900
7.4208

Analytic
Y= 0.5
90.4255
87.9164
85.4770

84.9967
82.6382
80.3450

79.8941
77.6771
75.5216

14.2479
9.7628
5.2941
0.8421

17.1202
12.7838
8.4515
4.1232

= O35

90.3982
87.8714
85.4143

84.9470
82.5275
80.2634

79.8246
77.5933
75.4235

14.0360
9.5658
5.1324
0.7631

.6328
.3956
4151
.2349

N oA w

16.9107
12.5790
8.2641
3.9758

4.9415
5.9323
7.1798
8.9109

79.9692
75.6841
71.9969

67.4096
63.7304
60.5775

56.9219
53.8142
51.1512

4.8363
1.9100
0.1980

0.0000

5.5414
9.3159
14.3159
19.3159

7.6450
4.2811

1.3697
0.0004

11.2696
16.2696
21.2696
26.2696

Market y

72.9355
67.3088
62.7650

52.4752
48.0856
44.6253

37.8037
34.6238
32.1213

0.3809
0.0047

0.0000
0.0000

12.6912
17.6912
22.6912
27.6912

0.8868
0.0491

0.0001
0.0001

26.9144
31.9144
36.9144
41.9144



CHAPTER 6.

CONCLUSIONS AND FUTURE RESEARCH

6.1. Summary

In this research we have examined numerical issues in the valuation of default free bonds
and American interest rate contingent claims. The main focus has been on the problems
that arise in the pricing of default-free bonds and American interest rate contingent claims

based on the single factor CKLS short term interest rate model.

One of the major contributions of this work has been the introduction of a new numerical
method. By making suitable transformations, we were able to develop the Box Method.
This allowed us to value default-free bonds and American interest rate contingent claims

based on the single factor CKLS model.

This thesis by focusing on the CKLS short term interest rate model, makes the following
contributions to the numerical methods for the valuation of default-free bonds and

American interest rate contingent claims.

First, we found that the use of Tian’s Simplified Binomial lattice did not always lead to
meaningful values of default-free bonds and interest rate contingent claims. We found that

the value of y is critical for the stability of the lattice. Theoretically we could achieve
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convergence when y >—, however, in such circumstances we need a large number of

time steps. From a practical viewpoint, we found that for a certain combination of

parameters, convergence is achieved around y = 0.7 .

Second we introduced a new numerical method. We extended the Method of Lines to
value default free bonds. Further it was not possible to calculate any contingent claim
values using the Method of Lines, due to the difficulty of locating the free boundary. The
Crank-Nicholson bond prices and Box Method prices were close to each other. However,
we found that where analytical prices were available Box bond prices where closer to the
analytical bond prices than the Crank-Nicholson bond price. This lead to the Crank-
Nicholson bond price being radically different from analytical call option prices for certain
combination of parameters. As for general matrix valuation, we found that overall
Successive Over Relaxation (SOR) approach was superior to Gaussian elimination. The
SOR approach for all combination of parameters lead to sensible bond and hence

contingent claim prices.

Third using the Box Method as the basis, we developed a new procedure both to track
and check the free boundary associated with American interest rate put options. By
setting up the American pricing problem as an obstacle problem, we derived an integral
equation. We used this scheme to track the free boundaries of both short and long dated

put options based on commonly used single factor interest rate models. We found that the

159



nature of the free boundary is dictated by the term to expiry of the put option as well as

the underlying interest rate model used.

Fourth, this thesis explores prices of default-free bonds and interest rate contingent claims
based on the estimates of the CKLS model obtained for Australia, Canada, Hong Kong,
Japan, UK. and U.S.A. using the Box Method. We compare the default free bond prices
and contingent claim prices implied by the market y with those implied by the widely used
single factor models; namely Vasicek, CIR and Brannan and Schwartz. We also calculate
the analytical default-free bond prices and call prices for the CIR model. This allowed us
to check analytical default-free bond prices and calls with numerical default-free bond
prices and calls. Clearly any significant discrepancy between the two would indicate that
our numerical scheme has broken down. Our analysis firstly, suggests that both default-
free bond prices and interest rate contingent claim prices are sensitive to the underlying
short-term interest rate model used. We find for example, that the actual y prices vary
significantly from those of the standard models. Secondly we find that the Box Method is

robust enough to be applied to a wide range of'y values.

6.2. Issues for further research

In this study we have introduced a new numerical method for the valuation of default-free
bond prices and interest rate contingent claim prices. We have developed the algorithm
such that it can be applied to a wide range of single factor interest rate models. We have

further demonstrated that the Box Method outperforms all the existing numerical schemes.
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Thus a clear extension of our work would be to extend the Box Method to two factor
models. For example, we can use the Box Method to value default-free bonds and interest
rate contingent claims based on an extended form of the Brennan and Schwartz (1979)
model. In this instance term the CKLS process models interest rate and the long-term

interest rate is taken to be the yield on the consol bond.

The checking procedure of Chapter 4 can be further expanded to track the free boundary
surface associated with two factor American interest rate contingent claim. Indeed as
numerical schemes for two factors are more complicated than for single factors, a
checking procedure may be vital to ensure that the numerical scheme has not broken

down.

Recently a number of papers have been published which have attempted to expand the use
of Monte-Carlo simulation to value American contingent claims. However, none of these
papers have suggested a scheme on how to value American interest rate contingent claims.
Of all the Monte-Carlo schemes suggested for the valuation of American interest rate
contingent claims, perhaps the approach of Grant, Vora and Weeks holds the most
promise. Grant, Vora and Weeks value a single factor American Asian option by linking
forward moving simulation and backward moving recursion through an iterative search
process. An obvious extension to their scheme would be to use it value default free bond

prices and American interest rate contingent claims based on multi-factor models.
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