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Abstract

The thesis explores long-span collocation and its application in information retrieval. 
The basic research question of the thesis is whether the use of long-span collocates 
can improve performance of a probabilistic model of IR. The model used in the 
project is the Robertson & Sparck Jones probabilistic model.

The basic research question was explored by investigating three different ways of 
integrating collocation information with the probabilistic model:

1. Global collocation analysis. The method consists in expanding the original query 
with long-span global collocates of query terms. Global collocates of a query term 
are selected from large fixed-size windows around all occurrences of a term in the 
corpus and ranked by statistical measures of Mutual Information (MI) and Z 
score. A fixed number of top-ranked collocates is used in query expansion.

Query expansion with global collocates did not show to be superior to the original 
queries, the possible reason being the fact that query terms often have a fairly 
broad meaning and, hence, a rather semantically heterogeneous pattern of 
occurrence.

2. Local collocation analysis. This method is a form of iterative query expansion 
following relevance or pseudo-relevance (blind) feedback. The original query is 
expanded with the query terms’ collocates which are extracted from the long-span 
windows around all occurrences of query terms in the known relevant documents, 
and selected using statistical measures of MI and Z. Some parameters whose 
effect was systematically studied in this experiment set are: window size, measure 
of collocation significance for collocate ranking, number of query expansion 
collocates and categories of terms in the expanded queries.

Some results showed a tendency towards performance gain over relevance 
feedback in the probabilistic model, however it was not significant enough to 
conclude that this method is superior to the existing relevance feedback used in 
the model.

3. Lexical cohesion analysis using local collocations. This experiment set aimed to 
explore whether the level of lexical cohesion between query terms in a document 
can be linked to the document’s relevance property, and if so, whether it can be 
used to predict documents’ relevance to the query. Lexical cohesion between 
different query terms is estimated from the number of collocates they have in 
common.

The experiments proved that there exists a statistically significant association 
between the level of lexical cohesion of the query terms in documents and 
relevance. Another set of experiments, aimed at using lexical cohesion to improve 
probabilistic document ranking, showed that sets re-ranked by their lexical 
cohesion scores have similar performance as the original ranking.
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1 Introduction

The project presented in this thesis explores the phenomenon of word collocation and 
its application in information retrieval. Specifically the project was aimed at studying 
long-span collocations and their use in a probabilistic model of IR.

Long-span topic-level collocations are motivated by lexical-semantic relations, as 
opposed to short-span collocates -  motivated by lexical-grammatic or habitual factors 
Long-span collocates have certain lexical-semantic relatedness, causing their more 
than random co-occurrence in the same thematic environments -  topics -  in text. The 
motivation for studying this group of collocations in their application to IR is to 
explore ways of obtaining more relevance-discriminating evidence from the 
contextual environments of query terms in texts.

In IR long-span collocations received relatively little attention, in contrast to short- 
span collocation, used in phrase identification, or document-wide co-occurrence, used 
for a wide range of tasks like term weight calculation or relevance feedback. Much of 
the research on document-wide co-occurrence dates back to the time before the wide 
use of full-text. However, it is still very widely used, for example in the relevance 
feedback process of the Robertson & Sparck Jones probabilistic model -  the testbed 
for this project. Accounting for document-wide co-occurrence is reasonable with the 
abstracts collections, where the contents of an abstract is rather semantically 
homogeneous. However, it no longer seems adequate for full-text collections, 
containing multi-topic documents. It was hoped that accounting for term 
dependencies within smaller and more semantically homogeneous text constructs 
would lead to improved retrieval performance.

The basic research question of the project is whether the use of long-span collocates 
of query terms can improve performance of the probabilistic model. The research 
question was explored by studying three different ways of integrating collocation 
information into the probabilistic model: global collocation analysis, local collocation 
analysis and lexical cohesion analysis using local collocations. Four hypotheses, 
examined over the course of the project, as well as an overview of the above three sets 
of studies forming the project are given in Chapter 5.

Some of the information presented in sections 5.4 Choice of statistical measures of 
collocation significance and 6.3 Lexical-semantic analysis of global collocates was 
originally presented in a paper by Vechtomova and Robertson -  [Vechtomova2000].

The structure of the thesis is described below.

Chapters 2, 3 and 4 are largely theoretical and contain literature review and 
discussions.

Chapter 2. Linguistic perspective on text and lexis gives a theoretical background of 
the linguistic aspects of the objects of study. The first section contains a discussion on 
the organisation of text, what defines a text and what properties differentiate a text 
from unconnected sequences of sentences. Following [Halliday76] it is argued that a
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text is a semantic unit of a non-structural nature, held together by a property of 
cohesion. A brief description of the hierarchies of linguistic elements forming the 
plane of expression and the plane of contents of a text is also given. The first section 
also contains a discussion of the text-forming property of cohesion.

The second section is devoted to lexis as a stratum of the language-system. 
Specifically, it discusses the notions of a lexical unit, lexical meaning, 
lexical/semantic relations and syntagmatic/paradigmatic relations between lexical 
units.

The third section centres around the notion of lexical cohesion and the mechanisms of 
its realisation in text: lexical links, lexical chains and bonds. A review of the most 
influential research projects on lexical cohesion in linguistics is also given

The fourth section focuses on linguistic perspectives on collocation. Two different 
views of collocation are described: collocation as a topic-forming relationship 
[Halliday76, Hoey91] and collocation due to lexical-grammatical or habitual relations 
[e.g., Manning99, Palmer81, Robins89]. This section also briefly introduces the 
branch of linguistics -  corpus linguistics -  where the methodology for statistical 
identification of collocation in text was formed. Subsection 2.4.2 Patterns of 
collocation in text discusses such aspects of collocation as the distance and 
consistency of a word’s influence on its environment in text.

Chapter 3. Natural language text in IR context contains literature reviews and 
discussions on a number of project-related topics. The chapter starts with a brief 
discussion of two major approaches to document and query representation in IR: 
controlled language and natural language indexing.

The second section contains a discussion of two approaches to IR -  statistical and 
natural language processing (NLP). The first half of this discussion is of a more 
philosophical nature -  talking about compatibility of IR with NLP, on the one hand, 
and with statistical approaches, on the other. The second half compares statistical and 
NLP approaches to defining complex indexing units (phrases) in IR.

The third section contains literature review of approaches to word collocation in IR, 
which are divided into three groups: short-span collocations, document-wide co-
occurrences and long-span collocations. The later group, being the focus of this thesis, 
is given the maximum coverage.

The chapter also contains discussions and reviews of IR research on lexical cohesion 
and document passages.

Chapter 4. Probabilistic information retrieval presents the IR model used in this 
project -  the Robertson & Sparck Jones model of probabilistic IR. The chapter 
focuses on the two major aspects of the model: term relevance weighting and 
relevance feedback. A separate section talks about term independence assumptions, 
the model is based on, and a relevance-based dependence, implied by these 
assumptions.

2



Chapter 5. Collocation analysis in this project starts with the section 5.1 Research 
question, containing the formulations of the basic research question and the 
hypotheses examined in the project. Section 5.2 Overview of the experiments contains 
a brief overview of the three stages of experiments, constituting this project: global 
collocation analysis, local collocation analysis and lexical cohesion analysis using 
local collocations. These sections were included into chapter 5 instead of the 
beginning of the thesis, because it was considered important to present the theoretical 
background first before introducing the experimental part.

This chapter also contains detailed descriptions of the methodologies used in all or 
most of the experiments in the project, as well as the material used in the experiments: 
document collection and topics.

Chapters 6, 7 and 8 describe three stages of experiments carried out over the course of 
the project. A brief overview of these experimental stages is given in chapter 5, 
section 5.2 Overview of the experiments.

Chapter 9 Conclusions and Recommendations sums up the main findings of the 
project and presents suggestions for further research.

3



2. Linguistic perspective on text and lexis

2.1 Natural language text

2.1.1 Text organisation

The definition of text and the nature of its organisation has been a matter of 
considerable debates in linguistics. Linguists disagree not only about the factors that 
determine internal organisation of text, but also what kind of language activity should 
be considered text and which - non-text. Text analysis has become a focus of some 
areas of linguistic study in the recent decades. As a linguistic discipline it is still at a 
stage of active research where controversies about key objects of research are not 
uncommon. It is not the aim of this chapter to give a complete coverage of all 
research activities in the area of text linguistics; instead the most influential 
approaches to the nature of text and its organisation will be introduced, some of which 
determined the view of the notion of text adopted in this work.

Lyons gave examples of two polar approaches to the nature of text [Lyons77], The 
first is the view of the text as a "product of more or less conscious and controlled 
literary composition" [Lyons77, vol.2, p.631 ]. The second approach is shared by 
linguists who adopted a broader understanding that the text can be the product of 
everyday language-behaviour including phonologically transcribed conversations 
[Lyons77, vol.2]. However neither of these approaches to defining the notion of text 
clearly indicate the criteria for distinguishing text from non-text. As Halliday and 
Hasan pointed out, native speakers intuitively know whether any product of language 
activity is a text or not. This means there should be some objective characteristics of 
text that determine our perception of it as a text and not as a sequence of unrelated 
sentences.

One possible way of defining a text is to attribute to it the idea of a whole. The view 
of a text as a whole gained substantial recognition among linguists working within 
different frameworks of linguistic study: text grammars, discourse analysis, 
semantics. Halliday and Hasan emphasised this idea, defining the text as "any passage 
spoken or written, of whatever length, that does form a unified whole" [Halliday76], 
They recognise however that distinction between a text as a whole and a sequence of 
disconnected sentences is a matter of degree, which depends on the stylistic factors 
such as literary genre and the author’s language ability and competence. Nevertheless 
they point out that if a piece of written or spoken language activity is to be considered 
a text, it must have some internal features that differentiate it from a collection of 
unrelated sentences.

Although many linguists agree that the pivotal characteristic of text is its being a 
whole unity, their opinions diverge considerably as to what exactly holds a text 
together. The differences are rooted in the overall approach to text: it is viewed either 
as a grammatical entity, or as a semantic unit.

Linguists who look at a text as a grammatical entity come from the structuralist 
background and study text within the framework of the so-called “text grammar”.
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Most text grammarians use some aspects of the sentence grammar in the analysis of 
the text. They claim that text has a rigid structure comparable to that of the sentence. 
Influential work in this area of text study belongs to Van Dijk [Dijk77], He claims 
that the sentences are interrelated structurally in text just as clauses are interrelated 
within the sentence, and that both sentences and texts can be similarly described at 
some level using the same methods. However the global structure of a text, according 
to Van Dijk, also requires another level of description, which must be formulated as a 
systematic set of rules to derive the semantic structure of a text from the semantic 
structures of sentences. He introduces the notion of macro-structures to describe the 
semantic representation of a text or its part. Macro-structures are a formal equivalent 
to the intuitive notion of a topic of discourse. Van Dijk assumes that a topic of 
discourse, which denotes what a text or a part of it is about, can be described as a 
complex logical proposition which is derived from a set of propositions contained in 
the sequences of sentences. The semantic structure of a text can be described using 
several levels of macro-structures, starting from the simple macro-structure of a single 
sentence to the macro-structures of paragraphs and the entire text. [Dijk77]

Such a formalist approach to a text has been criticised by some linguists [Halliday76, 
Brown83]. Brown and Yule argue that an attempt to formulate general rules for 
deriving the semantic structure of a text objectively is an illusion. What Van Dijk 
attempts is to produce a sentence representing the underlying topic of the text and 
transform it into a set of logical propositions which would have a relation of 
entailment with the set of propositions derived from the sentences in the text. Brown 
and Yule argue that this approach is a way of determining just one of the possible 
topics in the text and cannot claim objectivity [Brown83].

Some linguists do not recognise a text as an object of grammatical study, claiming 
that the sentence is the highest grammatical unit [Halliday76, Lyons77]. Halliday and 
Hasan argue that a text is not a structural unit. It cannot be said that it is similar in 
kind to a sentence, and it does not consist of sentences in the same way as sentences 
consist of clauses. While it is possible to specify a limited number of structural 
relations within a sentence, it is not possible to draw up a list of structural relations 
within a text, or to categorise sentences into classes which perform certain roles in 
text. They doubt that sentences can enter into generalised structural relationships to 
realise some function in the text as a unity [Halliday76].

Many opponents of the structural approach to text suggest that a text, rather than 
having a structure, has some organisation [Halliday76, Hoey91]. Instead of 
considering text as a grammatical unit that permits structural description, they view it 
as a semantic unit that has some patterns of organisation. An interesting distinction 
between a structural and organisational approaches to text was drawn by Hoey. He 
states that a structural description is "one that permits one to make predictive 
statements about the data under examination" [Hoey91, p. 13]. Structural descriptions 
predict what is possible or impossible to occur, whereas patterns of organisation 
depict what has occurred. Therefore if a structural stance is adopted, the description 
must account for which combinations are possible and under what circumstances. 
Description as patterns of organisation, on the other hand, does not suggest the 
impossibility, but the probability of certain combinations. Hoey emphasises that" text 
analysts can describe what is common, the culturally popular patterns of organisation,
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Halliday and Hasan describe text as a unity brought together not by a structure but by 
the organisation they term texture [Halliday76]. They introduce the notion of 
“texture” to emphasise the fact that a text is a whole unit, but the factors that 
contribute to its unity are not of structural nature. The property of the text that gives it 
texture is cohesion. Texture is formed by the relationships that bind together items in 
text, which they call cohesive ties. The concept of cohesion will be described in 
greater detail in section 2.1.3 Cohesion in text.

The following section will give an overview of the elements of text as seen from two 
different areas of linguistic study: grammar and semantics.

but they are not convincing when they seek to make predictive statements about what
can and cannot occur" [Hoey91, p.204].

2.1.2 Text elements

Like any unit of language in use, text exists in two indivisible planes: the plane of 
contents and the plane of expression. The linguistic disciplines that study means of 
language expression are phonology and grammar, while the discipline which concerns 
itself with the study of meanings is semantics.

Linguistic elements can be described as organised hierarchically: the smaller units are 
combined to form larger units of language, which are different in kind (figure 2.1).

' text ; , - .. .. „ . - unit of meaning
M m £ > .

t
sentence

.A . ■
■ T .

clause

t units of form and
syntactic category

i

meaning
(grammatical elements)

. . . . . . -, - . .

word

t
morpheme

t
phoneme unit of form

Figure 2.1. Stratal organisation of language elements
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The smallest unit of the spoken language is the allophone, which is a sound variant of 
a structural element of phoneme. The linguistic discipline which studies the sound 
system of language is phonology. The phoneme, however, does not carry any 
meaning in itself, but serves only as a building block for higher ranked elements.

The next element in the hierarchy is a morpheme, which is a component of a word 
structure. The essential feature of a morpheme as contrasted to a phoneme is that the 
morpheme is a unit of meaning. It is defined as "the smallest unit of language that 
carries information about meaning or function" [0 ’Grady97, p. 133], Morpheme is the 
smallest grammatical element and is an object of the branch of grammatical study - 
morphology. Morphology is commonly defined as "the system of categories and rules 
involved in word formation and interpretation" [0 ’Grady97, p.132]. A word - the next 
element in the hierarchy of linguistic elements - can consist of one or more 
morphemes. Complex words normally comprise a root - a morpheme that carries the 
major part of the word's meaning and one or more affixes - morphemes carrying 
grammatical meaning. For example word ’walked’ consists of a root morpheme ’walk’ 
and of an affix ’ed’ which conveys the grammatical meaning of past. The word as a 
primary object of lexical study will be covered in a greater detail in the subsequent 
part 2.2 Lexis.

The highest grammatical element in a text is a sentence. The branch of grammar that 
studies the sentence structure is syntax. Syntax can be formally defined as "the system 
of categories and rules that underlies sentence formation" [0 ’Grady97, p.181]. A 
sentence, however, does not simply consist of sequences of words. There are several 
levels of structural components that are combined together to form sentences. The 
smallest syntactic unit is called a syntactic category, which is defined as "a group of 
words or sequences of words in a given language that can replace one another in any 
sentence of the language whatsoever without affecting grammaticality" [Culicover76, 
p. 13]. A syntactic category can either contain single words, in which case it is known 
as a lexical category, or it can contain sequences of words: a phrase category 
[Culicover76], The most studied lexical categories are noun, verb, adjective and 
preposition. Phrase categories are based on lexical categories, and are structured as 
head + specifiers, where the head is the lexical category which the phrase is built on 
[0 ’Grady97]. Thus, if the head of a particular phrase is represented by a lexical 
category of noun, the category the phrase belongs to is a noun phrase.

Syntactic categories are combined into clauses. A clause is centred around a predicate 
- a verb or a verb phrase, and can also have other syntactic categories functionally 
related to the predicate, such as subject and complement. A sentence can consist 
either of only one clause - a simple sentence, or of more than one clause -  coordinate 
and complex sentences. In coordinate sentences the clauses have a coordinate 
relationship, whereas in complex sentences one clause is grammatically subordinate 
to another.

The linguistic elements presented above function each at their own level to build the 
plane of expression of text, which serves in its entirety to realise the underlying 
contents of text. The discipline devoted to the study of meaning is semantics. 
Semantics as a study of meaning expressed by any sign system is not confined to 
linguistics, however language, being a major sign system is a dominant object of 
semantic study. Language semantics concerns itself with the meanings expressed by
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Textual content is not a direct combination of the meanings conveyed by individual 
sentences. As described in the previous section, text is a more complex semantic unit 
than a simple combination of sentences. Therefore the meaning on the sentential level 
will only be touched upon briefly in this section, with the main focus on the larger 
semantic units existing in text.

Most discussions about the textual content centre around the intuitive notion of topic 
or ‘aboutness’ of a text or its parts. The notion of topic has proved difficult to define 
in linguistic study. Primarily, it is important to differentiate sentence topic and 
discourse topic. The topic, as it is understood in sentence grammar, is “its centre of 
attention” [Finegan94, p.200], in contrast to the notion of “comment”, which is new 
information introduced in the sentence about the topic. The definition of the notion of 
discourse topic is a more difficult task than the definition of a sentential topic. Some 
linguists suggest that a topic is a proposition. Among such approaches is the rather 
formalist definition of a topic as a complex logical proposition suggested by Van Dijk 
[Dijk77], which was discussed in the previous section of this work. The proposition- 
based approach implies the idea that there exists a phrase or a sentence that is a single 
correct representation of the topic of the whole text or its part. Brown and Yule 
criticize this approach, arguing that for any text there can be several ways to represent 
the topic, each of which will reflect a particular judgement about the text contents 
[Brown83]. To determine the set of correct judgements about the discourse topic 
Brown and Yule suggest that extra-textual factors need to be taken into account. They 
describe the factors that are external to the text but necessary for the correct 
interpretation of its contents as the “activated topic framework” [Brown83].

The linguists whose approaches to topic have been discussed above try to define this 
notion from the point of view of its contents. Others, in contrast, try to derive its 
definition by formulating methods of locating boundaries between topics in text. Such 
approaches are based on the assumption that a shift from one topic to another is 
marked in some way in the text. The most straightforward way is to look for the 
boundary between topics in the orthographic boundaries between paragraphs. 
However, as some linguists point out, orthographic paragraphs often have stylistic 
rather than semantic functions [Longacre, Hinds cited in Brown83, p.95]. Therefore it 
is possible that the beginning of a new paragraph coincides with the start of a new 
topic, but this is not necessarily so [Brown83]. Another approach is to try to derive 
the information about topic boundaries from some other information which can be 
elicited from text. The information in question is various means of expression of 
cohesion in text, in particular its type - lexical cohesion, discussed in detail in section
2.3 Lexical cohesion. Some implications of the analysis of lexical chains and bonds 
for the discovery of topic structure in text will be touched upon in sections 2.3.2 and 
2.3.3.

language elements on different levels, such as word meanings and sentential
meanings. Word meaning will be an object of a separate discussion in the later section
of this work devoted to lexis (2.2.7 Lexical unit and lexical meaning).

8



2.1.3 Cohesion in text

Following linguists who adopted an organisational approach to text [Halliday76, 
Hoey91], it is assumed in this thesis that text is a non-structural unity, whose entirety 
is dependent not on grammatical rules, but on non-structural relations existing 
between its elements. Halliday and Hasan introduced the concept of ’textual’ or ’text-
forming’ component of the linguistic system, which they define as a "set of resources 
in a language whose semantic function is that of expressing relationship to the 
environment" [Halliday76, p.299]. They claim that it is the meaning realised through 
text-forming component of the language that creates text, and distinguishes it from the 
unconnected sequences of sentences. Cohesion constitutes the major unit of text-
forming resources of the language, and its role is to express continuity throughout the 
parts of text. As Halliday and Hasan point out that the continuity created by cohesion 
consists in "expressing at each stage in the discourse the points of contact with what 
has gone before." [Halliday76, p.299]

It is important to emphasise that cohesion is a semantic concept which exists in a set 
of semantic relations between elements in text called cohesive relations or ’ties’ in 
Halliday and Hasan’s terms. These cohesive relations are realised through a set of 
devices, which will be covered later in this section, but the means of realisation of the 
cohesive relations are only of secondary importance. The meaning of the cohesive 
relation does not depend on the means of its realisation [Halliday76].

A cohesive relation occurs between two items in text when for the complete 
interpretation of one item the presence of the other is required. These two cohesively 
related items can occur, either within a sentence, or in different sentences throughout 
the text. In the former case, cohesion is realised in the syntactical structure of the 
sentence; in the latter it is realised through non-structural text-forming devices. A 
sentence, being subject to strict syntactic rules of structuring, imposes restrictions on 
how a cohesive relation can be expressed. For example there are rules of 
pronominalisation which require the use of a pronoun to name the entity mentioned 
for the second time in the same sentence [Halliday76]. Cohesion, however, is not 
divided into two distinct types: sentential and textual; it is first of all a semantic and 
not purely formal relation between two items, whose position in text is not governed 
by grammatical structure. "Cohesion is a general text-forming relation or a set of such 
relations, certain of which when incorporated within a sentence are subjected to 
certain restrictions." [Halliday76, p.9]

Cohesive relations are realised in the plane of expression of text through grammatical 
and lexical devices. Halliday and Hasan distinguished five categories of cohesive 
relations according to the means of their realisation in text [Halliday76]:

Reference 
Substitution 
Ellipsis 
Conjunction 
Lexical cohesion

The first four categories are realised through grammatical structures, whereas the fifth 
category is realised through lexis.
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Reference occurs when certain items do not refer to a concept directly, but refer to 
another item in text which in turn refers to that concept. In English such reference 
items are pronouns and determiners. Reference is a semantic relation, i.e. a relation 
between the meanings of the two items in the context and not between the linguistic 
units.

Substitution is a grammatical relation whereby certain words stand for other lexical 
units which took place earlier in text. The examples of such words are ’one’ standing 
for a noun and ’do’ standing for a verb which occurred earlier in text. The cohesive 
relation which takes place in substitution is the relation between two lexical items, as 
distinct from reference - relation between meanings.

Ellipsis can be defined as "substitution by zero" [Halliday76, p. 143]. Substitution and 
ellipsis are the same process, only in case of ellipsis what stands for the item 
mentioned earlier in text is nothing.

Conjunction consists in using adjunct-like elements like ’although’, however’, 
’nevertheless’. Conjunction is different from the above three types of cohesive 
relations, as conjunctive elements are not cohesive themselves in the sense that they 
are not directly related to any preceding item or its meaning. The role of conjunctive 
elements is to express certain meanings which presuppose other semantic components 
in text before them [Halliday76].

Lexical cohesion is achieved through semantic connectedness between lexical items 
in text. It is principally different from the above four types in the fact that cohesive 
relations falling into this category are in the first instance lexical relations and only 
secondarily textual. But as Hoey points the relation between lexical and textual is bi-
directional, i.e. "the text provides the context for the creation and interpretation of 
lexical relations, just as the lexical relations help create the texture of the text" 
[Hoey91, p.8].

Lexical cohesion will be the subject of a more detailed discussion in section 2.3. Since 
lexical cohesion is a relationship between words as lexical units and not as 
grammatical items in their functional roles in text, it is first necessary to illuminate 
another stratum of language organisation -  lexis, which will be the focus of the 
discussion in the next section.

2.2 Lexis

2.2.1 Lexical unit and lexical meaning.

The question of what object in language should be defined as a lexical unit is 
controversial in linguistics. It is outside the scope of this thesis to give a 
comprehensive overview of all approaches to this problem. Therefore, first, the 
factors contributing to the complexity of the task of defining a lexical unit will be 
outlined and, secondly, the perception adopted in this thesis will be described.

Attributing the role of a lexical unit to a pre-theoretical notion of a 'word' as a 
sequence of letters delimited by spaces in text, will leave many questions unanswered.
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Language in use is characterised by a complex interplay between grammatical and 
lexical factors. A word in text can incorporate both grammatical and lexical 
properties. Each word functioning as a grammatical element in a sentence has certain 
grammatical meaning or a set of meanings, but not every word has lexical meaning,
i.e. referring to a concept. It is widely accepted to classify words into content words 
and function words. Function words like prepositions and articles have only 
grammatical meaning, which can be explained only in relation to other elements in the 
sentence. Content words, on the other hand, also have a lexical meaning, which is 
based on the reference to a concept. Function words are, therefore, the object of 
grammatical study, whereas content words are the object of both grammatical and 
lexical study. Each occurrence of a content word has a combination of a lexical and 
grammatical meaning, for example word travelled has a lexical meaning referring to 
the concept of ’travelling’ and a grammatical meaning of past. Travelled, travels, 
travelling are not considered as different words, but different word forms of the same 
lexeme to travel. The lexeme of a word is a unit of lexis devoid of grammatical 
characteristics, representing all grammatical forms of this word in use. And it is a 
lexeme as a unit of a language structure of lexis that will be considered as a lexical 
unit in this thesis.

Another controversial question is whether to consider multiword entities like 
compound words or compound terms as lexical units. So far there is no reliable 
method for isolating such entities in text and distinguishing them from combinations 
of two or more lexical units. Compounding is recognised as a word forming 
mechanism in a language, whereby two or more lexemes are put together to form a 
new lexeme. While there is little doubt that words like highranking constitute a single 
lexical unit, items such as search engine, composed by the same word forming 
mechanism could be viewed as two lexical units or one. The essential characteristic of 
a compound word is that as a whole it denotes a new concept, different from the 
concepts denoted by any of its compounds. In contrast, a noun phrase like powerful 
engine does not refer to a new concept. Therefore, a compound word which as a 
whole denotes a new concept can be considered as a lexical unit, i.e. part of the 
lexical structure of language.

The definition of a lexical meaning is no less controversial than that of a lexical unit. 
The point of view that the lexical meaning of a word is a concept referred to by it is 
common in linguistics. Saussure’s idea [Saussurel6] that a word as a linguistic sign is 
a two-sided entity consisting of a sound-form and a concept referred to by it has 
received a wide acclaim in structural linguistics. In this work a related but somewhat 
different approach to defining a concept and a lexical meaning is adopted. A concept 
representing our knowledge about a real-world object is viewed as having an almost 
infinitely large number of attributes characterising this object from all facets: its 
characteristics, relations with other objects, etc. Lexical meaning is a subset of these 
attributes, including only the most characteristic attributes of the concept, necessary 
for differentiating it from other concepts [Apresjan74, Levkovskaja62, Novikov83]. 
This is evident in the existence of synonyms particularly in terminologies, whereby 
although all members of the synonym group are related to the same concept, they 
have different lexical meanings, because each of them highlights a particular aspect of 
this concept.
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Another important point about the nature of lexical meaning, postulated in structural 
linguistics [Saussurel6], is that lexical units do not exist in isolation in language. 
They are part of the systems of lexical units existing in two dimensions - paradigmatic 
and syntagmatic (see the next section). Therefore the complete meaning of the lexical 
unit can be derived only by considering the relationships it has with other lexical units 
in these two spheres of the language.

To summarise, the lexical meaning is established, on the one hand through its 
relatedness to extra-linguistic entities - concepts, and on the other hand through its 
relations with other lexical meanings in both the lexical structure of the language (the 
paradigmatic sphere) and in the language in use (the syntagmatic sphere).

Before moving on to the discussion of syntagmatic and paradigmatic relations it is 
necessary to clarify two concepts: semantic relations and lexical relations, which will 
be used further in this work. Semantic relations are relations between concepts and are 
extra-linguistic in their nature. Lexical relations exist between lexical meanings of the 
lexical units. [Evens88] They are however more complex than relations between 
concepts due to the fact that on the one hand they reflect the relations between the 
concepts underlying lexical meanings (e.g. hyponymy), and on the other hand, being 
part of the language, they include purely linguistic relations between lexical meanings 
(e.g. synonymy). Because lexical relations between words encompass not only the 
linguistic but also the conceptual sphere it is not uncommon to refer to them as 
lexical-semantic relations or even semantic relations to emphasise the relations 
between underlying concepts. In this work all three terms will be used to refer to 
relations between lexical meanings of words, the choice of the term depending on the 
desired emphasis: either on the purely linguistic relations or on the underlying 
conceptual relations. Where the distinction is unimportant the term lexical-semantic 
relations will be used.

2.2.2 Syntagmatic and paradigmatic relations

Saussure, the founder of modem structural linguistics, formulated the idea that any 
linguistic element exists and derives its value through relationships with other 
linguistic elements [Saussure 16], This became the central thesis of Saussurean 
structuralism. Linguistic elements at any level of analysis are interrelated in two 
dimensions - in the language as a system and the language in use {’langue’and ’parole’ 
in Saussurean terms or ’language-system’ and ’language-behaviour’ in Lyon’s terms 
[Lyons77]). Relationships in the language-system are known as paradigmatic and in 
the language-behaviour as syntagmatic. Robins summarised the differences between 
the two types of relations as follows:

"Syntagmatic relations are those holding between elements forming serial 
structures, or ’strings’(...) at a given level..." [Robins89, p.47]

"Paradigmatic relations are those holding between comparable elements at 
particular places in structures ..." [Robins89, p.47]

Syntagmatic relations between words as lexical units are relations between the lexical 
meanings of words co-occurring in the linearity of text. Saussure stressed that
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syntagmatic relations exist between words consecutively occurring in text: "words 
acquire relations based on the linear nature of language because they are chained 
together” [Saussurel6, p. 123]. From this it follows that those relationships between 
words that realize lexical cohesion in text - repetition and collocation (see section 2.3) 
- are of syntagmatic type.

Paradigmatic relations exist between lexical units as part of the lexical structure of the 
language-system. The lexical structure of the language can be viewed as an 
abstraction: the mental organisation of the lexicon, on the one hand mirroring the 
mental organisation of concepts, and on the other hand holding relations specific to 
the language itself.

Relations commonly recognised as holding within the lexical structure of the 
language are:

- Antony my;
Synonymy;
Hyponymy;

- Meronymy (part-whole relationship).

Antonymy is a name for a wide range of relations, all of which are broadly 
characterised by the idea of ’oppositeness’ of meaning between two lexical units.

Synonymy is a relationship between two or more lexical units which can be 
characterised as having ’sameness of meaning’. It is doubtful, however, that language 
keeps true synonyms, i.e. words with exactly the same lexical meanings. Usually 
synonymy in language is not absolute but relative, i.e. words have certain degree of 
similarity in meaning, but they have some differences - stylistic, emotive, 
collocational or dialectal [Palmer81],

Hyponymy is a hierarchical relation between more specific lexical units - hyponyms 
and more general units - hypemyms. There is a widely though not universally 
accepted point of view that lexicon of the language is organised hierarchically and can 
be represented as tree-diagrams [Lyons77]. The lexical meaning of a word in many 
cases can be specified by relating this word to its hypemym and contrasting it to its 
co-hyponyms.

Meronymy or part-whole relation is the second type of hierarchical relation. Though 
the part-whole relation does not organise the lexical structure like the hyponymy 
relation, it is important in the sense that lexical meanings of some words are specified 
through their relation to other words by the part-whole relation.

2.3 Lexical cohesion

Each lexical item used in a text acquires its own textual history, i.e. the lexical 
environment or context in which it is interpreted. By the time a word is encountered in 
text, the context for its instantial interpretation has already been built up. At the same 
time the fact that the previous lexical items which constitute the context of this word 
are necessary for the realisation of its ’instantial meaning’ shows that it forms 
relationship of lexical cohesion with them [Halliday76], It can be said that there is a
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bi-directional relationship between the word in question and preceding lexical items 
which constitute its context: on the one hand the preceding lexical items provide a 
background for the correct interpretation of this word in the current stretch of text, 
and on the other hand the word itself through its cohesion with the earlier items 
functions as an element which contributes to the continuity of text.

The main feature distinguishing lexical cohesion from grammatical types of cohesion 
is the fact that lexical items that cohere in text are independent of each other in the 
realisation of their lexical meaning, though they rely on their common environment 
for the realisation of their ‘meaning potential’ [Hoey91, p.71], or ‘instantial meaning’ 
[Halliday76, p.289]. Grammatical items in grammatical cohesion, in contrast, not 
having a lexical meaning of their own, rely entirely on their lexical counterparts for 
the realisation of their contextual meaning.

It is notable that, in Halliday and Hasan’s analysis of various types of cohesion in texts 
of various genres, lexical cohesion accounts for more than 40% of all cohesive 
relations [Halliday76].

The third stage of our experiments (chapter 8) explores the concept of lexical 
cohesion between query terms, realised through the similarity of their collocates. In 
particular, it studies the relation between documents’ lexical cohesion and their 
property of relevance. It was, therefore, considered important to give in the following 
subsections a more detailed discussion of lexical cohesion and linguistic mechanisms 
for its realisation in text.

2.3.1 Types of lexical cohesion

Halliday and Hasan in their earlier work [Halliday76] distinguished two broad 
categories of lexical cohesion: reiteration and collocation.

Reiteration, as Halliday and Hasan understand it, refers to a broad range of relations 
between a lexical item and another word occurring before it in text, where the second 
lexical item can be an exact repetition of the first, a general word, its synonym or 
near-synonym or its superordinate. Lexical reiteration is different from the 
grammatical cohesion type - reference by several major factors. First of all the second 
word in this relation is a member of an open set, i.e. it is a lexical and not a 
grammatical unit. Secondly, it can not only refer to the previous item, but be related to 
it through a lexical-semantic relation, for example synonymy. And thirdly, it does not 
need to refer to the same referent as the first word. As Halliday and Hasan point out 
the idea of reference is irrelevant to lexical cohesion, since it is not a referential 
relation. The second word can be identical, inclusive, exclusive or unrelated to the 
referent expressed by the first word [Halliday76, p.283].

Another broad category that Halliday and Hasan distinguish in lexical cohesion - 
collocation - is defined rather vaguely in their earlier work [Halliday76]. Collocation 
will be discussed in section 2.4 of this thesis, however at this point it is necessary to 
introduce the notion by giving the earliest established understanding of collocation in 
linguistics formulated by Firth [Firth58]: collocation is a relationship between items 
which co-occur in text with more than random probability. Although Halliday and
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Hasan admit that collocation is a relationship between lexical items that occur in the 
same environment, they, nevertheless, define this category rather generally, namely as 
lexical cohesion which is not reiteration [Halliday76, p.287].

Thus, the suggested categorisation of lexical cohesion in Halliday and Hasan’s earlier 
work is as follows (taken from [Halliday76, p.288]):

Type of lexical cohesion:

1. Reiteration
(a) same word
(b) synonym (or near synonym)
(c) superordinate
(d) general word

2. Collocation

In her later work Hasan [Hasan84] admitted the intuitive character of their earlier 
category of collocation and left it out from her later categorisation of lexical cohesion 
altogether, introducing in its place a set of narrowly-defined lexical relations. The 
following categorisation is taken from [Hasan84, p.202]:

A General i. repetition
ii. synonymy

iii. antonymy
iv. hyponymy
v. meronymy

leave, leaving, left 
leave, depart 
leave arrive
travel, leave (including co-hyponyms, leave, arrive) 
hand, finger (including co-meronyms, finger, thumb)

B Instantial i. equivalence the sailor was their daddy; you be the patient, HI be
the doctor

ii. naming the dog was called Toto; they named the dog Fluffy
iii. semblance the deck was like a pool, all my pleasures are like

yesterdays

Hoey [Hoey91] in his categorisation of lexical cohesion omitted the category of 
collocation. Instead he categorised a rather broad range of relationships under the 
heading of repetition. He distinguished the following sub-categories:

1. Simple lexical repetition
2. Complex lexical repetition
3. Simple partial paraphrase
4. Simple mutual paraphrase
5. Complex paraphrase
6. Superordinate, hyponymic and co-reference repetition

By simple lexical repetition Hoey understands a relationship between two words in 
text which are the same lexical units, belonging to the same lexical category, but 
possibly having different grammatical characteristics, such as tense or number. Hoey 
points out that the seemingly uncomplicated nature of this relationship is deceptive. 
The major problem in identifying this relation lies in the possible polysemy of a word.
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If only form is taken into account, then any two words with identical forms will be 
treated as an instance of repetition relationship. First of all Hoey points out that 
repetition does not presuppose identical meaning of its components. Their meanings 
can be related to different degrees. The major requirement, however, is that two words 
must have a similar collocational environment. If two occurrences of a word in a text 
have similar meanings, their collocational environment will be similar as well 
[Hoey91]. For more detailed discussion of collocation see section 2.4.

Complex repetition occurs when two words have the same root morpheme, but their 
other word-forming morphemes are different (e.g., write, writing; visible, invisible), 
or when they are identical formally, but belong to different lexical categories, e.g., 
animal (noun), animal (adjective).

Both simple and complex repetitions cover the cases when two words have identical 
root morphemes. Words which enter paraphrase relations are different lexical units. 
The main criteria for defining a relation as a paraphrase is that one word could be 
used as a substitute for another word and its meaning must have the same level of 
generality. It could be compared to Hasan’s category of synonymy, but, as Hoey 
points out, he relies on the context in identifying the relation as a simple paraphrase, 
whereas Hasan’s synonymy is a lexical relation, i.e. that of the lexical structure of the 
language, rather than a textual relation which is interpreted in the context [Hoey91], 
Hoey also includes into this category antonyms which have different morphological 
form (e.g., wet, dry), again stressing the point that this is primarily a textual relation, 
realised in context, and not lexical in the first place.

Hoey further distinguishes the cases of simple paraphrase as partial and mutual. A 
paraphrase is partial if only one of the participants of the relation can be substituted 
by the other, it is mutual when either of them can be used in place of each other 
[Hoey91],

Complex paraphrase is a relationship requiring three lexical items. It occurs when one 
item is a simple paraphrase of another item and a complex repetition of the third. 
According to Hoey the relationship between the second and the third items is a 
complex paraphrase [Hoey91, p.64]. For example, publication and article are in a 
relation of simple paraphrase and publication and publish are in a relation of complex 
repetition, hence there is a relation of complex paraphrase between publish and 
article.

Recognising superordinate, hyponymic and co-reference relationships as types of 
repetition, Hoey narrowed down their definition to only those cases where the identity 
of reference is retained. This is obvious in the case of co-reference, where any two 
words which point to the same referent are considered to be co-referential. In the 
cases of superordinate and hyponymical relation, Hoey argued that if identity of 
reference is not taken into account then, any words denoting a physical inanimate 
object, for example, must be considered repetition cases of an earlier occurrence of 
such general word as thing [Hoey91, p.69].
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2.3.2 Lexical links and lexical chains

A single instance of a cohesive relation between two items was termed a ’tie’ by 
Halliday and Hasan. Since Halliday and Hasan were studying all types of cohesion, 
the term ’tie’ refers to both grammatical and lexical cohesive relations. Hoey used the 
term ’link’ to denote an instance of repetition in the broad sense he defined in 
[Hoey91]. The difference between Hoey’s definition of a link’ and Halliday and 
Hasan’s definition of a ’tie’ is twofold: first, ’tie’ is a more general notion than link’, 
but more importantly, ’tie’ implies directionality in a relation. The term link’ has been 
used more extensively than ’tie’ in other research to denote a lexical cohesive relation 
[Morris91, Hirst97, Ellman2000]. Since the study of grammatical types of relations is 
beyond the scope of this project, the term link’ will be used throughout this work to 
refer to instances of lexical cohesion.

Lexical cohesion in text is normally realised through sequences of linked words - 
lexical chains. The term ’chain’ was first introduced by Halliday and Hasan to denote 
a relation where an element refers to an earlier element, which in turn refers to an 
even earlier element and so on. The notion of ’chain’ in Halliday and Hasan’s sense, 
again like ’tie’, includes all types of cohesive relations. To distinguish the notion of a 
chain composed from lexical cohesive relations the term ’lexical chain’ will be used in 
this thesis.

Morris and Hirst [Morris91] define lexical chains as sequences of related words, 
which have distance relations between them. One of the prerequisites for the linked 
words to be considered units of a chain is that they should co-occur within a certain 
span.

While Hoey suggested using only information derivable from text to locate links in 
text, Morris and Hirst used Roget’s thesaurus in identifying lexical chains. According 
to their algorithm two words are connected in a lexical chain if they have one of the 
following [Morris91]:

1. Their index entries point to the same thesaurus category or to adjacent categories;
2. The index entry of one points to a thesaurus category that contains the other;
3. The index entry of one contains the other;
4. The index entry of one points to a thesaurus category that in turn contains a 

pointer to a category pointed to by the index entry of the other;
5. The index entries of each point to thesaurus categories that in turn contain a 

pointer to the same category.

Morris and Hirst discovered that the first two are the most common types of 
relationships found in lexical chains, accounting for 90 percent of all relationships 
between elements of lexical chains built in their experiments.

The use of the above criteria for the inclusion of a lexical item into a lexical chain 
results in the chain elements being connected with a diverse range of semantic 
relations. This prompted a question whether transitive connections can be considered 
as chain-forming relations. Morris and Hirst’s analysis of sample texts showed that 
more than one transitive link weakens the relationship between words sharply. 
Therefore they considered only transitivity of one link for building lexical chains

17



[Morris'? 1]. Two types of one-level transitive relations were counted when building 
lexical chains:

1. If word a is related to word b, and word b is related to word c, then word a is 
related to c.

---------- 1 T =4----------
a b c

2. If word a is related to word b, and word a is related to word c, then word b is 
related to c.

a b c

However, if two words are transitively linked through the third word which occurs 
later in the text, their relationship is not included into the chain as at the time of 
interpretation they were not related [Morris91].

a b c

In contrast Hoey, identifying only the cases of repetition where the range of semantic 
relations between words in a chain is less diverse, assumed that if a lexical item is 
related to one of the preceding elements in the chain, it is treated as being related to 
all other elements as well [Hoey91].

An important parameter characterising lexical chains, pointed out by Morris and 
Hirst, is the distance between chain elements. A text segment focusing on a particular 
subtopic is expected to have high density of related words. Morris and Hirst 
[Morris91] experimentally discovered that there can be up to two or three sentences 
between the chain elements. Subtopic development in the text reflects the flow of 
author’s reasoning or the description of a certain pragmatic situation, therefore it is 
reasonable to expect that the author returns to the discussion of the same thing after 
digressing from it. Morris and Hirst called the resumption of the previous lexical 
chain after certain gap as chain return. Chain returns are indicators that the author 
resumes the subtopic entity he/she unfolded before. If the distance between chain 
elements is four or more sentences (no more than 19), than it is a signal of a chain 
return [Morris91].

Other parameters that characterise lexical chains and contribute to their strength are:

Reiteration - the more words are repeated throughout the lexical chain, the
stronger it is;
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Density - the more elements the lexical chain links within a certain text 
unit, the stronger is the chain;
Length - the larger is the expanse of text that the lexical chain stretches 
through, the stronger it is [Morris91].

The motivation of Morris and Hirst’s [Morris91] research of lexical chains was to see 
if lexical chains correspond to the intentional structure of discourse (proposed by 
Grosz and Sidner) and if they can be used to detect it. Experimentally they determined 
separately lexical chains and the intentional discourse structure. The comparison 
suggested strong correspondence between the two.

Morris and Hirst however did not automate their algorithm due to the unavailability of 
the electronic version of Roget’s thesaurus. Therefore no large-scale testing of the 
algorithm was performed.

Later Hirst and St-Onge [Hirst97] attempted to adapt Morris and Hirst’s algorithm for 
determining lexical chains, using WordNet relationships instead of Roget’s thesaurus 
relationships.

Their method consists in attempting to link all the synsets associated with the two 
words being compared and ruling out those synsets which remain unconnected. They 
define three kinds of relations between words in the chain which are weighted 
according to their strength [Hirst97]:

Extra-strong relation - between a word and its literal repetition;
Strong relations

(a) both words occur in the same synset;
(b) there is a horizontal link between the two synsets 

associated with two different words;
(c) there is any kind of link between a synset associated with 

each word if one word is a compound term that includes 
the other.

Medium-strong relation occurs when there is an allowable path between 
two synsets associated with each word. The path must contain 2-5 links 
between synsets. The weight of such relation depends on the length of the 
path and the number of path direction changes.

The number of allowable paths between two words in Wordnet is restricted not only 
by the number of links that connect them, but also by the type of each lexical relation 
in the path. Since the semantics of the multilinked relationship is composed from the 
semantics of each of the links, their type and order is important. Hirst and St-Onge 
specified three rules according to which the multilink paths between words in 
Wordnet are acceptable for lexical chaining:

No other relation may precede an upward link;
No more than one change of direction is allowed;
There can be a horizontal link between an upward and a downward 
relationships.
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Hirst and St-Onge recognise the limitations of Wordnet, which caused problems such 
as including the wrong word into the chains or failing to include the word into the 
chain where it belongs. The major problem is that of a limited set of relations in 
Wordnet, which links words only by means of the most generic conceptual relations 
and does not provide for nonsystematic associative relations. Another problem is 
inconsistency in the semantic distance between words in Wordnet. This is evident 
when some words are semantically close but are separated by a large number of links 
in Wordnet and vice versa [Hirst97].

Hearst [Hearst94] in her research of the role lexical chains can play in text 
segmentation, discovered that locating individual chains in text does not give enough 
evidence of the topic boundaries. This is true especially for long texts with dense 
discussions, where it is not uncommon for multiple chains to overlap in the same 
stretch of text. Therefore it is important to analyse bunches of chains, eliciting 
information about topic boundaries from the points in text where one bunch of chain 
ends and another begins.

Interesting evidence about the distribution of link types in different types of texts was 
gathered by Ellman and Tait [Ellman2000]. Their algorithm for computing lexical 
chains is based on the algorithms by Morris and Hirst [Morris91] and Hirst and St- 
Onge [Hirst97]. The link types they compared were the following [Ellman2000]:

1. Two identical words;
2. Two words are members of the same Roget’s thesaurus category;
3. Two words are members of the same group of categories in Roget’s thesaurus;
4. Two words are linked through one level of thesaurus pointers.

The analysis of the link distribution showed that the most common is the link between 
two identical words, followed closely by the link between words belonging to the 
same category. The fourth type of link proved to be rather rare [Ellman2000]. This 
finding provides support for the methods which rely only on word repetition in the 
detection of lexical cohesion (cf. [Hoey91]). However the fact that the distribution of 
the link type 2 follows closely the distribution of the link type 1 means that similarity 
comparison between words belonging to the same thesaurus category can improve 
lexical chaining.

In our experimental study of lexical cohesion between query terms (chapter 8) we 
identify lexical links by detecting only the cases of simple lexical repetition, i.e. the 
identical stems (see section 8.2.1). Ellman’s findings suggest that our method 
identifies a large share of all lexical links.

2.3.3 Bonds between sentences and nets of bonds

Hoey pointed out that text cohesion is built not only of links between words, but also 
of semantic relationships between sentences. If sentences are not related as whole 
units, even though there are some lexically linked words found in them, they are no 
more than a disintegrated sequence of sentences sharing lexical context [Hoey91]. 
Following Winter [in Hoey91], he emphasised that it is important to interpret 
cohesion by taking into account the sentences where it is realised. For example, two
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A cohesive relation between sentences is termed as bond [Hoey91]. Hoey defines 
bond between sentences as a sufficient number of lexical links between them. The 
number of lexical links the sentences must have to be bonded is a relative parameter, 
depending indirectly on the relative length and the lexical density of the sentences 
[Hoey91, p.92]. An empirical method for estimating a minimum number of links the 
sentences must have to form a bond is to rely on the proportion of sentence pairs that 
form bonds in text. If the proportion of sentences linked by any given number of links 
is too high, then it is important to increase the cut-off point, until the degree of 
connection is not above average [Hoey91].

It is notable that in Hoey’s experiments, only 20% of bonded sentences were adjacent 
pairs. Analysing non-adjacent sentences, Hoey made and proved two claims about the 
meaning of bonds. The first claim is that the significance of bonds is greater than 
simply statistical evidence of the connection by repetition. Bonds between sentences 
are indicators of semantic relatedness, which is more than a sum of relations between 
linked words. The second claim is that a large number of bonded sentences are 
intelligible without recourse to the rest of the text. It is true that being semantically 
related, some bonded sentences are also coherent and can be interpreted on their own 
[Hoey91],

Our method of estimating the level of lexical cohesion between query terms was 
inspired by Hoey’s method of detecting bonds between sentences. However, the two 
approaches have a number of fundamental differences in their aims and 
methodologies (for more detail see section 8.2.1).

As already mentioned above, the relation between sentences can be multiple. All 
bonded sentences in a text or their subsets form what Hoey termed nets [Hoey91]. The 
analysis of nets of bonded sentences can throw light on the role each bonded sentence 
plays in text. Each sentence can be characterised by the number of preceding and 
following sentences in text it forms bonds with. Depending on these two sentence 
coordinates, Hoey distinguished four categories of sentences:

Marginal sentences;
Central sentences;

- Topic opening sentences;
- Topic closing sentences.

Sentences which form no bonds with other sentences are termed marginal, for their 
contents "neither builds lexically upon what has gone before nor provides the lexis for 
subsequent statements" [Hoey91, p. 105]. It is important, however, to note that 
although they do not directly contribute to the topic development, they can provide 
additional information, necessary for its understanding.

Central sentences are those that have exceptionally high number of bonds with other 
sentences. The minimum number of bonds required to define a sentence as central is 
relative, what is similar to the relative definition of the minimum number of links for 
bonding.

sentences in text can enter the relation, where the second one exemplifies the
statement expressed in the previous sentence. Sentences do not have to be adjacent to
be related, and relation can connect several sentences.
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Sentences which are related to more following than preceding sentences are topic-
opening, and those related to more preceding than following sentences are topic-
closing.

An interesting study of nets was made earlier by Skorochod’ko [Skorochod’ko72], 
who formed a classification of nets, or "semantic networks" in his terminology. 
Identifying semantic relatedness between sentences through occurrence of related or 
repeated words, he built the semantic network of the text by representing it as a graph, 
where the sentences and the relations between them are shown as nodes and arcs 
respectively. He distinguished four types of nets that represent semantic organisation 
of text (figure 2.2).

The relatedness between sentences in Skorochod’ko’s approach is relative. One of the 
factors determining strength of the relationship is the number of lexical links which 
sentences have between them.

Chained structure o-----------o-------------o----------- o

Figure 2.2. Semantic structure types by Skorochod’ko [Skorochod’ko72, p. 1180]

In texts with nets of chained and ring type predominantly adjacent sentences are 
bonded, distance relations being uncommon. In monolith type of nets, each sentence 
is connected to the majority of others. Piecewise nets consist of groups with densely 
interconnected sentences, all groups being connected in turn.

The types of semantic networks presented above determine the semantic organisation 
of the text, in other words provide some information on the topic development in text, 
whether it is presented through sequential narration like in chain or monolith type, or
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through dense discussion with frequent recourse to what was said before or what will 
follow, like in monolith or piecewise structures.

As can be seen from the research findings described in the above three subsections, 
cohesion is a text-organising component. By identifying cohesive relations it is 
possible to uncover (at least with some degree of accuracy) topic boundaries in text 
and ultimately the overall semantic organisation of text. However, lexical cohesion 
can also throw light on smaller scale relations existing between text elements. In our 
third group of study (chapter 8) we explored lexical cohesion between query terms 
and its association with relevance.

2.4 Collocation

2.4.1 Definitions of collocation

The earliest understanding of collocation, as mentioned in section 2.3.1, was formed 
by Firth [Firth58]. Collocation in the Firthian sense is a name given to lexical items 
which co-occur with more than random probability in text. This is a rather broad 
understanding of the phenomenon of co-occurring words. Later many linguists 
attempted to narrow down the meaning of the term collocation or build a completely 
new vision of what collocation is. Many proposed definitions often reflect the 
background the linguists come from and are formulated in the light of the subject of 
their research.

Both Halliday and Hasan [Halliday76] and Hoey [Hoey91] who focused on the study 
of cohesion emphasised that collocation is a realisation of lexical cohesion in text. As 
mentioned earlier (section 2.3.1) Halliday and Hasan gave a rather vague definition of 
collocation:

"Here we shall simply group together (...) all lexical cohesion that is
not covered by what we have called ’reiteration’ - and treat it under the
general heading of collocation, or collocational cohesion ..."
[Halliday76, p.287]

They emphasise that there must be a lexical-semantic relation between words to be 
considered collocates. Although they recognise that cohesion between two collocates 
in text is not so much due to the existence of a lexical-semantic relation, as to the fact 
that they have a tendency to occur in the same environment, they claim that words co-
occur because they are in some kind of lexical-semantic relation. Because they were 
unable to give a systematic classification of lexical relationships holding in 
collocations, Hasan later suggested to take out collocation from linguistic terminology 
until such classification is formed [Hasan84]. It would be more reasonable, perhaps, 
to admit the variety of lexical-semantic relationships existing between collocates, but 
to center the definition around the idea of typicality or regularity of their co-
occurrence.

Hoey also interpreted the notion of collocation in the light of cohesion studies. He 
asserts that "collocation is the direct result of bonding (and of similar relations
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between sentences in and across texts)." [Hoey91, p.219]. Unlike Halliday and Hasan 
he avoided including the undefined range of lexical-semantic relations into his 
understanding of collocation, focusing solely on the recurrence of words’ appearance 
together in text: "Words only have collocations because they appear in recurring 
combinations in text..." [Hoey91, p.219].

The recognition of collocation as the mechanism for creating text cohesion by 
[Hoey91] and [Halliday76] means that collocation in their sense is a topic-forming 
relationship, whose elements - collocates - can be separated by some stretches of text. 
Their co-occurrence is due not to grammatical patterns and restrictions, but to 
belonging to the same topic. They indeed exhibit certain semantic relations which are 
reflected in their usage in the same thematic environment, in the same topic. Below 
another widely accepted approach to collocation, based on a rather different stance, is 
given.

Some linguists understand by collocation a more than random use of words next to 
each other either due to referential association of their meanings, or due to habitual or 
customary patterns which evolved in the language in use [Robins89, Palmer81]. 
Robins distinguished collocations which are related to the situational and referential 
meaning of the collocates, e.g. bright day, from collocations less tightly connected 
with the reference, but whose use is more habitual, e.g. white coffee, where the word 
’white’ does not refer to the colour of the referent [Robins89, p.65]. Palmer drew a 
distinction between these types of collocates based on the idea of collocational 
restriction. Collocations can have different degrees of restriction. He distinguished 
three types of collocational restriction [Palmer81, p.79]:

1. Collocational restriction based entirely on the meanings of the words (e.g., 
bright day, deep sea)',

2. Collocational restriction based on a range of words. A word can collocate 
with a range of words that have some common semantic feature (e.g., pack 
of wolves, pack of hounds, pride of lions but not pack of lions or pride of 
wolves)',

3. Collocational restriction wholly due to habitual and customary use of the 
words (e.g., rancid butter, rancid bacon, sour milk but not rancid milk or 
sour butter).

It is possible to explain collocations of the first type entirely through the meaning of 
their elements. Collocations of the second and third types can or cannot be explained 
semantically through the meanings of their elements. For example, Palmer suggested 
that restricted collocations like ’white wine’ and ’white coffee’ could possibly be 
semantically explained by saying that ’white’ means "with the lightest of the normal 
colours associated with the entity" [Palmer81, p.77]. But he admitted that it is 
impossible to draw a clear line between those collocations which can be semantically 
explained and those which cannot.

Palmer [Palmer81] and Robins [Robins89] recognised idioms as a special kind of 
collocations, whose meaning is not deducible from the meanings of their components 
and often has nothing to do with them semantically (e.g., red herring). Palmer also 
argued that the third type of restricted collocations can be referred to as partial idioms, 
where one word is used in its usual meaning {’coffee’ in white coffee), but the other 
acquires a meaning specific to the collocation ( ’white) [Palmer81].
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Some scientists narrowed down the meaning of collocation to refer only to restricted 
type of collocations, whose meaning cannot be completely derived from the meaning 
of their elements. Manning and Schuetze [Manning99] defined collocation as 
grammatically bound elements occurring in a certain order which are characterised by 
limited compositionality, by which they mean the impossibility of deriving the 
meaning of the total from the meanings of its parts. They admit the existence of 
syntagmatic word associations across larger expanses of text, bound topically, not 
grammatically, but they suggest calling such associations ’co-occurrences’ and to 
reserve the term ’collocation’only for grammatically bound combinations.

Manning and Schuetze highlighted the following categories among the collocations in 
the narrow sense as grammatically bound constructions [Manning99, p. 174]:

1. Light verbs (e.g., make a decision, do a favour)-,
2. Phrasal verbs (e.g., to check in, to cut down)-,
3. Proper names;
4. Terminological expressions (e.g., fission reactor fuel)

Defining collocation through the notion of limited compositionality, they note that 
collocations can have different degrees of invariability. Some collocations allow 
certain substitutions of its elements (this co-relates with Palmer’s second and third 
type of collocational restriction), but some not - proper names, idioms, some 
terminological expressions.

In the light of the approaches described above in this thesis it is recognised that there 
are two major types of collocation:

1. Collocation due to lexical-grammatical or habitual restrictions. These 
restrictions limit the choice of words that can be used in the same 
grammatical structures with the word in question.

2. Collocation due to a typical occurrence of a word in a certain thematic 
environment. Two words hold a certain lexical-semantic relation, i.e. their 
meanings are close semantically, therefore they tend to occur in the same 
topics in texts.

Lexical-grammatical/habitual restrictions and lexical-semantic relations are the 
linguistic factors that cause the phenomenon of word collocation. The nature of these 
linguistic factors is quite complex and the development of a general method to 
identify collocations in text through the analysis of these factors is not an easy task, as 
evident from the failed attempt to impose strict classification on the phenomenon of 
collocation by [Halliday76] (see earlier section 2.3.1). Instead it is possible to isolate 
this phenomenon in text empirically, not by looking for what causes it, but by 
identifying what characterises it most typically - namely, more than random 
probability of its occurrence.

The empirical approaches to identification of collocates from text were developed 
within the branch of linguistics based entirely on the analysis of empirical data - 
corpus linguistics. Corpus linguistics which developed in the last 30 years, emerging 
from the work of such linguists as Kucera and Francis [Kucera67] and Sinclair 
[Sinclair74], concerns itself with extrapolating general conclusions about various 
linguistic phenomena through the empirical analysis of corpora. Corpora are large
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collections of texts, sampled to be maximally representative of a general/specific type 
of language in use [Wilson96]. Empirical identification of collocations is based on 
using various statistical parameters of lexical units elicited from the corpora. The 
statistical methods of finding collocations in text used in this project will be described 
in chapter 5.

Sinclair and Jones [Sinclair74] were the first to attempt corpus-based analysis of 
collocations. Although the size of the corpus they analysed was relatively small - 
135000 words in spoken corpus and 12000 words in written corpus - compared to 
modem corpora typically several million words long, their work is of significant value 
as it defined the framework for corpus-based collocation analysis and yielded some 
information about patterns of collocation behaviour in text.

The major notions of collocation analysis introduced in [Sinclair74] and systemised 
further in [Sinclair91] are those of ’node’, ’collocate’, ’significant collocate’and ’span’.
A ’node’ is defined as "an item whose total pattern of co-occurrence with other words 
is under examination" [Sinclair74, p. 22], While a ’collocate’ is "any item which 
appears with the node within a specified environment." [ibid.].

Sinclair and Jones use the term ’collocation’ to refer to any co-occurrence of two 
words within certain environment in text. To refer to those collocations which occur 
with more than random probability in text they use the term ’significant collocation’. 
"’Significant’ collocation is regular collocation between items, such that they co-occur 
more often than their respective frequencies and the length of text in which they 
appear would predict." [Sinclair74, p. 25].

The term ’span’ is used to refer to the stretch of text around the node within which 
words are considered to be its collocates [Sinclair74, p.27]

The above terms have been adopted in later corpus-based collocation research and 
will be also used in these senses throughout this thesis.

2.4.2 Patterns of collocation in text

This section will cover some patterns discovered by corpus linguists using statistical 
analysis of collocation and word distribution in text. The probability of occurrence of 
each word in text is affected by the presence of other words around it. More 
specifically, it is possible to say that due to the effect of collocation the appearance of 
each word in text influences to a varying degree the statistics of word occurrences 
around it [Beeferman97]. The major questions in this context are the following:

1. How far the influence of each word extends in text?
2. Is the influence of a word consistent throughout the word’s environment?

The first question, concerning the size of the environment throughout which a word 
exerts its influence, remains arguable. Most researchers so far have made empirical 
decisions about the span of a word’s environment, based mainly on the practical 
considerations of the particular research task. The span is measured either in syntactic 
units, such as phrases, sentences, paragraphs or even entire texts [Harper78], or by the 
number of words to the left and right of the node, for example, 4 words [Sinclair74], 5
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words [Church90], 400 words [Beeferman97], 4,10, 50 words [Edmonds97], Such 
lack of uniformity can be partly attributed to different interpretations of the concept 
the environment of a word. As already mentioned in the previous section of the thesis 
we distinguish two types of collocations: (1) those subject to lexical-grammatical 
restrictions and (2) collocations influenced by lexical-semantic or topical relations. 
The first type of collocations occur within a short-span environment, whereas the 
second type - within a long-span environment. Our experimental study of statistical 
parameters of the environment of a word indicated a marked difference between word 
distributions in the immediate span of the node (4-5 words either sides) and the bigger 
span, which correlates with the results of a similar experiment but on a smaller span 
of 10 words by [Sinclair74]. Our experiment consisted in counting the number of 
observed token types for each slot within 50 words both sides of the node. We 
analysed windows around all instances of 40 randomly selected indexing terms in the 
stemmed1 TREC AP collection. The results showed that the variability of collocates 
within the immediate span was much lower than further away from the node. 
Immediate collocates maintained stable joint co-occurrence with the node, indicative 
of lexical-grammatical factors (e.g. phrasal verbs, compound terms). Term variability 
further away from the node was distinctly higher2 (figure 2.3).
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span slots

Figure 2.3. Distance distribution of token types in the windows of 50 words either
sides of the nodes.

This experiment allowed us to identify only the boundary between the short-span and 
the long-span influences of the word. Beeferman et al. [Beeferman97] in their study 
of the effect distance has on triggering and prediction capabilities of collocates (or 
“trigger-words” in their terminology) obtained empirical evidence about the long-
distance influence patterns of words. They analysed distance distributions in two 
groups of collocates: self-collocates - repetition of the same lexeme, e.g. (gene, gene), 
and non-self collocates, where collocate 1 and collocate 2 are different lexemes, e.g. 
(gene, chromosome). The technique they used consisted in calculating for each

1 Okapi parsing algorithm was used to stem words and filter out stop words
2 The gradual fall of the curve is due to the fact that windows are frequently truncated by hitting the 
document boundary.
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The main objective of Beeferman’s research, however, was to prove the hypothesis 
that statistical parameters within a word’s environment are not static, but are directly 
dependent on the distance away from the node. This leads us to the second question 
raised earlier about the consistency of the word’s prediction capabilities. Beeferman’s 
major discovery was that the influence of the word decays exponentially. Another 
observation was characteristic of the group of self-collocates and demonstrated that 
the word-triggering effect increases from the distance of 1 word to 25 words, but then 
falls gradually. They termed this phenomenon the lexical exclusion principle, due to 
the fact that lexical-syntactic restrictions prevent self-collocates or repetitions to 
appear within short distances in text [Beeferman97],

Mason [Mason97] discovered interesting patterns of the word’s influence on its 
environment which he called lexical gravity. His corpus-based study of collocation 
proved among others the claims that (1) each word has an individual pattern of 
influence and (2) lexical and grammatical items have different patterns of influence 
on their environment. To test these claims he measured the variability of words in 
each slot for arbitrary distances using type-token ratio (TTR). Experiments showed 
that lexical gravity is not symmetrical, i.e. a word can have different degree of 
influence on its preceding and following neighbours and, most importantly, that each 
word has different patterns of influence on its immediate environment. These findings 
concern only short-span collocations, and can be theoretically explained by the fact 
that each word imposes different degrees of lexical-grammatical restrictions on its 
short-span environment, where, especially in restricted type of collocations, some 
words tend to occupy fixed slots relative to the node. Whereas, in the long-span 
environment of the node, words related to it semantically can occupy any slot.

While lexical units have a generally similar type of pattern, grammatical items have 
strikingly different patterns. Another feature characteristic of some grammatical items 
is negative gravity, i.e. higher than average variability. This is due to the fact that 
grammatical items form patterns with grammatical classes and not individual words. 
Articles, for example, are followed by any noun or noun phrase, i.e. they restrict the 
selection of the following word only grammatically, but not lexically or semantically.

Not all words in the environment of the node are influenced or predicted by its 
occurrence. The environment of a word consists of several types of units: high- 
frequency words (e.g. prepositions, articles, auxiliary verbs), which co-occur 
frequently with any word; one-off collocates, with low joint frequency and significant 
collocates with more than random probability of co-occurrence with the node. In the 
long-span environment, significant collocates are those that are related to the node 
semantically, their non-random co-occurrence being due to the fact that both belong 
to the same or related semantic fields and consequently tend to be used in the same 
topics. The number of such topic-discriminating words is relatively small in 
comparison to the total number of words in a stretch of text describing a topic 
[Renouf93]. Renouf argued that the majority of words in text are topic-independent or 
related to more than one topic. She distinguished eight types of such words: very 
common words, discourse organising words, homonyms, semi-technical words, words

distance k the probability that two trigger words are separated by exactly k ± 2  words.
The results showed that a word’s influence on statistical distribution of words around
it stretches as far as several hundred words, levelling off by about 400 words.
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with several technical senses, metaphors, typographically ambiguous words 
[Renouf93]. Genuine topically-dependent words, as opposed to high-frequency or 
context-independent words, are expected to have significant amount of association 
with the node. Significant collocates which can predict each other’s occurrence are 
distinguished from chance word pairs by using various statistical measures of 
association. The statistical methods used in this project will be detailed in chapter 5. 
Section 3.3 Approaches to collocation in IR will also cover other research of 
collocations in the IR context.
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3. Natural language text in IR context

3.1 Document and query representation

The aim of the traditional ad-hoc information retrieval task is to deliver documents 
relevant to users’ queries, representing their information needs. Both documents and 
queries are natural language texts, which, as demonstrated in the previous chapter, are 
complex entities, realised through several levels of syntagmatically combined 
linguistic elements and whose meaning as a whole is more than the direct 
combination of these elements’ meanings. Therefore the relationship between the 
underlying semantic meaning of the text and the linguistic elements at various levels 
explicating it cannot be easily specified. This is due to the inherent flexibility and 
richness of linguistic means of expression, making it possible to express the same idea 
in different ways by exploiting different levels of linguistic expression. The linguistic 
ambiguity is twofold: on the one hand the same idea or concept can be described 
through different means of expression, and on the other hand -  the same linguistic 
element or combination of elements can refer to different ideas or concepts.

The major operation in IR is matching the query with the document. Due to the 
linguistic ambiguity, and the complexity of the relationship between the plane of 
expression and the plane of contents of text, this task is not easy to perform. The 
characteristics of language are not the only factors to make the IR task non-trivial; 
others which involve extra-linguistic cognitive factors are: the accurateness with 
which the user’s information need is expressed linguistically, the vagueness of the 
information need itself and the amount of knowledge the user has about his 
information need. But these factors are subjects of a separate research field and are 
outside the scope of this thesis.

Because of the above characteristics of NL texts, direct comparison of the document 
and the query, and identification of the degree of their match on a fine scale, is 
impossible. This task requires a reduction of the text dimensionality, and a 
normalisation of the means of linguistic expression, in both the collection of 
documents and the incoming queries. Therefore in IR the matching is performed 
between document and query representations. The document and query 
representations consist of some attributes and possibly relations between these 
attributes which ideally should characterise texts unambiguously, so that uniform 
comparisons between them become possible. Document/query representations must 
accurately reflect the contents of the text, be sufficiently discriminating, but at the 
same time they must be normalising and summarising. The decisions of what 
attributes should constitute representations, what relationships they should hold, and 
where these attributes should be taken from are fundamental in IR. The following 
summary non-exhaustively illustrates the broad spectrum of approaches to building 
document/query representations:

1. What are the attributes characterising documents/queries?
-  Single words;
-  Phrases (linguistically or statistically motivated);
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-  Semantic concepts (assumptions about what a concept is are 
model-specific);

-  Artificial formalisms.
2. Where are the attributes taken from?

-  Derived from a document/query;
-  Assigned to it from a controlled language structure.

3. What assumption about the relationships between the attributes are made?
-  None (“bag of words” approaches);
-  Syntagmatic (elicited from the documents statistically or using 

natural language processing - NLP);
-  Paradigmatic (taken from knowledge bases, e.g. thesauri).

An additional factor which must be taken into account when building document 
representations -  indexing -  is whether the representation should be created as static 
at document file time, or tuned to a particular request at search time. The former 
belongs to a pre-coordinate approach to indexing, wherein, for example, phrases are 
entered into document representation at file time, and the query must contain exactly 
the same phrases as the document representation to match it. The latter is of post-
coordinate type, where the phrases are not anticipated at file time, but terms are 
coordinated into phrases at search time depending on the phrases used in the query. 
Document representations in pre-coordinate systems are characterised by high 
specificity, which can be detrimental to performance [Paijmans93]. In modem IR the 
emphasis has shifted from pre-coordinate to post-coordinate paradigm.

At the most general level there are two main approaches to creating document 
representations: to assign the indexing units -  single terms or phrases -  to the 
document representation from existing knowledge bases, such as thesauri or semantic 
nets, or to derive the indexing units from the text of the document itself. The former 
type of indexing is known as controlled-language or assigned indexing, the latter -  
natural-language, free-text or derived indexing. Two following sub-sections will give 
a brief overview of these two approaches and their implications.

3.1.1 Controlled language indexing

Controlled language indexing consists in analysing the contents of the document 
(manually or automatically) and assigning terms to the document representation from 
external knowledge bases such as thesauri or lexical nets. The knowledge bases 
contain “controlled vocabulary” -  a limited set of terms standardised lexically and 
syntactically and usually holding a set of relationships.

There are different kinds of knowledge bases, whose use in IR at present extends far 
beyond controlled language indexing. Traditional knowledge bases are thesauri, 
which were first used predominantly as a controlled language structure, but then were 
also applied to other IR tasks like query expansion. Thesauri were defined by 
Guinchat et al. as “tools consisting of a controlled set of terms linked by hierarchical 
or associative relations, which mark any needed equivalence relations (synonyms) 
with terms from the natural language and concentrate on a particular area of 
knowledge” [in Chowdhury99, p. 125]. Thus two major functions of a thesaurus are: 
first, to control equivalence relations, i.e. to suggest a single preferred term for a set of
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-  Equivalence relations;
-  Hierarchical relations;
-  Associative relations.

Most manually engineered thesauri like Inspec or MESH (Medical Subject Headings) 
contain equivalence and hierarchical relations, which in turn can be generic 
relationships (hyponymy) and/or whole-part relationships (meronymy). Association 
between terms can be specified either through a single associative relationship or 
broken down into a set of more specific conceptual relations.

All relationships holding between terms in manually engineered thesauri are 
paradigmatic (for definitions of paradigmatic and syntagmatic relations in linguistics 
see section 2.2.2). In contrast, automatically constructed thesauri feature syntagmatic 
relations between terms, since terms and their relations are derived from texts.

Other notable types of knowledge bases are lexical nets, the most famous of which is 
WordNet [Miller90]. WordNet is organised by paradigmatic lexical and semantic 
relations. Words are grouped by the synonymical relation into synsets. Each synset is 
claimed to represent a concept, by comprising all synonymical terms that express it. 
Polysemous words can belong to more than one synset depending on the concept each 
of their meanings represents. Synsets have unique identification codes and are linked 
by a set of relations such as hyponymy, meronymy and antonymy.

The main motivation behind using controlled vocabulary in indexing was to reduce 
the negative effect caused by language flexibility, exhaustivity and ambiguity. 
Controlled language indexing claims to bring synonyms and semantically related 
terms together, normalising or reducing the explication of a concept/idea to a single 
standard unit of expression - phrase or term [Foskett96, Lancaster79]. Foskett argues 
that controlled-language indexing is essentially a concept indexing opposed to non- 
normalised term indexing, which he claims is weakened by the fact that the same idea 
can be expressed differently across the collection, in the same document or in the 
user’s query [Foskett96j.

However the very aim the controlled-language is trying to achieve -  remove the 
negative effects of natural language -  arguably has many disadvantages in the IR task 
of matching document and query representations. The main problem with the 
controlled language approach is its inherent limitation of the indexing vocabulary. It 
is not specific enough to reflect many semantic aspects of the document contents and 
equally the user’s information need. Moreover it erases the fine distinctions between 
the natural language texts which is detrimental to precision and is not suitable for 
highly specific searches. Similarly a query formulated in very specific terms, if 
translated to controlled vocabulary, will lose its specificity.

The problem with insufficient specificity of controlled languages became even more 
serious with the arrival of large full-text collections, where the dimensionality of the 
document contents increased dramatically in comparison with abstracts or 
bibliographic databases. Moreover long multi-topic documents presented an even

synonymically related terms, and second, to link related terms together via a set of
relationships. Three major types of relations in manually engineered thesauri are:
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bigger challenge to the indexing task. These factors contributed to a shift of focus in 
IR from controlled vocabulary to natural-language or free-text indexing.

3.1.2 Natural-language indexing

Deriving indexing units from the natural language texts of the documents has several 
major advantages. The richness of the means of expression in the natural language 
suggests that representations can be very specific, reflecting the subtleties of the 
document contents. Similarly the user can formulate his/her information need at any 
level of specificity.

The effectiveness of controlled language indexing is only as good as the applied 
knowledge base, its coverage, accuracy of representation of the concept space and 
currency. One potential problem is that any document which contains a new 
concept/idea not recorded in the knowledge base, will be incorrectly represented in 
the IR system. Another hazard is that the assignment of controlled vocabulary terms 
to the document relies on the accurate interpretation of the document contents. 
Natural-language indexing overcomes the first problem by relying only on the 
contents of the document in its indexing, therefore it makes no difference in building 
document representations whether the document conveys new previously uncovered 
knowledge or deals with known concepts. The second problem is not unique to 
controlled vocabulary approaches. In natural-language approaches inaccurate 
interpretation of the text may bring into the document representation, for example, 
incorrectly coordinated complex indexing units and wrong associations between 
terms. This is less of a problem in post-coordinate type of systems where binding of 
terms into more complex units is under the control of the request formulation. This 
not only reduces the problem of false coordination, but also tunes representation to the 
user’s need. Such flexibility of matching built in post-coordinate natural-language 
indexing cannot be offered by controlled-language systems.

The obvious disadvantages of natural-language indexing are no or limited control of 
lexical and syntactical ambiguity. This however is partially compensated for by the 
redundancy of natural-language indexing. Natural language is inherently redundant, 
i.e. any topic in a text is expressed by a large number of linguistic units (words, 
phrases) many of which are taken from the same semantic domain, and thus 
potentially have the ability to disambiguate each other through their collocation in the 
same stretch of text. When a user’s query, also expressed in natural language, contains 
several query terms (or phrases) there is a chance for automatic disambiguation to 
take place in cases where documents match on two/more query terms, in particular if 
they have these words as collocates within a certain window.

Extensive research of various indexing approaches carried out in the last thirty years 
showed that indexing the documents by deriving single terms occurring in them yields 
results not worse than controlled-language indexing by terms or phrases [Lancaster79, 
Lewis96]. Currently there is a strong tendency to combine controlled-vocabulary with 
natural-language indexing. One way in which the two approaches can complement 
each other was pointed out by Lancaster: including controlled vocabulary units into 
document representation provides for generic search and sets the context for the
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interpretation of natural-language units, the inclusion of which, in turn, brings the 
desired specificity in representing the document contents [Lancaster79].

3.2 Statistical approach vs. natural language processing (NLP) 
approach to IR

3.2.1 Limitations and benefits of statistical methods and NLP in IR

Since the shift from assigned to derived indexing in IR, statistical word-based 
approaches to indexing and matching tasks have formed dominant IR models which 
remain consistently effective to the present day. Statistical models rank documents on 
the basis of the estimated probability of their relevance to the query (probabilistic 
models), or by their similarity to the query (vector-space models). The general 
characteristic of statistical approaches is that they represent both documents and 
queries as “bags of words” -  sets of single terms derived from documents/queries. 
The terms are assigned some statistical characteristics - weights, which characterise 
their ability to describe and distinguish the contents of the document. The greater the 
term’s content-discriminating ability, the higher will be its weight, hence the higher 
will be its influence on the document score. The document-query matching consists in 
counting the number of matching terms, combining their weights, and modulating 
them by other parameters, for example relevance feedback data. In probabilistic and 
vector-space approaches to IR the result of the document-query matching process is 
the assignment of scores to documents, which are used in their ranking. The retrieval 
principles of the probabilistic model used in this project will be covered in more detail 
in chapter 4.

Within the currently dominant post-coordinate paradigm in IR, the major principle of 
statistical models is that the representation of the document is tuned to the particular 
query at query time. Lewis and Sparck Jones stress three main benefits that statistical 
word-based approach brings to IR [Lewis96]:

-  Late binding. Complex concepts are not composed at indexing stage, 
but are controlled by the user during querying;

-  Redundancy. Indexing terms are taken from the text of the documents, 
reflecting the variability and abundance of the natural language 
lexicon;

-  Derived representations. Representations built entirely from the 
lexical means of the document are likely to preserve differences and 
similarities between texts.

Statistical models so far have demonstrated the most steadily effective performance, 
tested in a range of environments, under various system parameters and using 
different evaluation scenarios. However, the typical effectiveness achieved is still 
rather low (in the range of 30% to 60% recall or precision), therefore leaving much 
scope for improvement [Lewis96].

34



The main philosophical problem with statistical word-based IR is that it deals only 
with the surface plane of expression of language at a symbolic level. Smeaton pointed 
four assumptions implicit in statistical word-based IR [Smeaton97]:

-  Users can find precise explication for their information need;
-  Users’ information need is static throughout the search;
-  Authors of documents can express their concepts and ideas precisely 

and accurately;
-  Users know what terminology is used by authors to express concepts 

and ideas in the documents.

These assumptions are clearly not justified in reality, which prompts the conclusion 
that the representation of documents/queries as sets of independent terms by statistical 
IR models is not an entirely adequate solution for the primary IR task of satisfying 
users’ information needs [Smeaton97],

It is true that natural language text is more than a collection of words, as demonstrated 
in the previous chapter of the thesis. The complex nature of text and the fact that the 
major objective in IR is to compare two natural language texts -  document and query 
-  gave rise to the idea that what is needed is a deeper analysis of textual means of 
expression, which lead to the plane of contents. The need to investigate ways for 
deeper text analysis in IR became widely acknowledged. The discipline that has been 
developing methodologies for linguistically motivated text analysis for several 
decades is Natural Language Processing (NLP). NLP has emerged and grown into a 
separate discipline from such activities as Machine Translation (MT) and Natural 
Language (NL) interfaces. These applications require deep semantic interpretation of 
text and unambiguous, accurate and complete representation of its conceptual level. 
Therefore the ultimate goal of NLP research was the development of methods for 
achieving conceptual representation of text.

When NLP techniques as developed for tasks like MT were borrowed by IR, a very 
relevant philosophical question was asked by some IR researchers: is full conceptual 
text representation really needed for IR [Smeaton97, Sparck Jones99]. An interesting 
analysis of IR and NLP compatibility was given by Smeaton [Smeaton95, 
Smeaton97], He characterised IR and NLP as activities with rather different 
characteristics. IR has a high degree of imprecision and vagueness associated with it: 
the search is performed in the conditions of a limited knowledge about the users and 
their information needs: the type of the information need, its motivation and domain it 
belongs to, the users’ background knowledge, their knowledge of the collection, and 
changes in their information need throughout the search. IR has a high degree of noise 
tolerance in document indexing and matching processes, in the sense that with much 
less than 100% recall and precision operating IR systems will still satisfy users’ 
information needs. This is because the ultimate relevance judgement is always made 
by the user, who can tolerate the imprecision of the system.

On the contrary, the original tasks NLP was applied for have no tolerance of errors: in 
machine translation, for example, even one incorrectly interpreted word or syntactic 
construction can lead to an inaccurate perception of the output text by the reader.
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The problems NLP faces in its original spheres of application and in IR are quite 
different. What is a major challenge for NLP -  a complete unambiguous 
understanding of texts -  is simply irrelevant for IR [Smeaton97, Sparck Jones99]. 
Smeaton argues that IR need not concern itself with meaning of documents at all. The 
complexity of its task is quite limited: it only needs to distinguish one document from 
another in the context of a given query [Smeaton97]. This is obviously a much 
simpler task than general context-free interpretation of contents.

Smeaton argues that the fundamental difference between NLP and IR in handling 
imprecision will be a major obstacle in their successful integration. But another 
approach to processing natural language text, which, according to Smeaton, has more 
in common with IR -  corpus linguistics -  possibly holds a bigger potential for 
successful integration into IR. Indeed, corpus linguistics (overviewed in part 2.4.1 
Definitions of collocation) is based on statistical and probabilistic approaches to 
language processing, which suggests that there is some related methodological ground 
between corpus linguistics methods and statistical approaches to IR.

There is a growing interest in applying corpus linguistics methods to IR (see part 3.3 
Approaches to collocation in IR). However, the dominant trend in current linguistic 
approaches to IR is still NLP, borrowed from its traditional spheres of application - 
MT and NL interfaces [Smeaton95],

The specificity of environment that IR operates in imposes certain limitations on 
successful application of full-scale NLP analysis. Many NLP techniques, in particular 
those operating at the semantic level of text analysis, rely heavily on knowledge 
bases. Modem IR often deals with large-scale domain-independent collections and 
limited knowledge about the domain of the query. Either manual or automatic 
construction of domain-independent knowledge bases for complete semantic text 
analysis is not a realistic response to these problems at present.

The application of NLP techniques to domain-specific small-scale IR has 
demonstrated some high precision results. For example systems like SCISOR [Jacobs 
and Rau in Smeaton95] and FERRET [Mauldin in Smeaton95] perform domain- 
specific searches. Successful operation of NLP techniques in such systems requires 
large domain-specific knowledge bases.

In domain-independent systems such complex NLP knowledge-based approaches are 
not feasible. What works well in domain-independent large-scale IR are low-level 
NLP techniques, rather than full-scale NLP text analysis. Examples are the CLARIT 
system [Evans et al. in Smeaton95] and Phrasefinder, an extension to INQUERY 
[Jing94], both of which use low-level NLP techniques to pre-process the corpus or the 
sample of the corpus to identify phrases. After statistical normalisation these are 
recorded as a collection-specific vocabulary (CLARIT) or a term-term association 
thesaurus (Phrasefinder) and used for document/query representation.

Smeaton argued that all successful NLP methods in IR (like phrase extraction, part- 
of-speech tagging, proper noun recognisers, techniques based on machine readable 
dictionaries, domain-dependent or domain-independent thesauri) have in common the 
fact that they use NLP as a black box tool to produce more complex means of 
document/query representation than single terms. Such means of representation can
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be phrases, word senses and co-ordinated words. The only change NLP brought forth 
is that it has “replaced the bag of words/stems with a bag of word senses/phrases/co- 
ordinated terms as representation, albeit for an improvement in retrieval 
effectiveness.” [Smeaton95]

To summarise the main points made above, presently there are three broad avenues 
that have been or are being considered for exploring in linguistically motivated IR:

-  Full-scale NLP-based semantic-level analysis of texts', first, possibly not needed at 
all, and, secondly, at present prohibitively expensive and resource-demanding to 
implement, due to the requirement of large domain independent knowledge bases 
for successful operation.

-  Low-level NLP techniques', with a more modest aim, for example extraction of 
more complex units than single words, such as phrases, demonstrating some 
successful applications in IR.

-  Corpus linguistics methods', in principle having much in common with statistical 
IR. And as will be demonstrated later in section 3.3 there is some experimental 
evidence that they can be a viable alternative to knowledge-based NLP techniques 
and can be integrated successfully into statistical IR models.

Shallow language processing techniques are, therefore, more viable and suitable for 
combining with IR processes, than full-scale in-depth NLP. However doubts have 
been expressed as to whether low-level language techniques can offer significantly 
more than what is already offered by statistical IR methods. For instance, the word 
sense disambiguation that NLP can support is already implicitly present in the 
document/query matching in statistical IR (see section 3.1.2). Another example -  
query expansion with paradigmatically related words from knowledge bases -  is 
achieved to some extent in relevance feedback, where the terms taken from the 
document and added to the query can be in paradigmatic relations with the query 
terms, since many words in the same context tend to belong to the same domain 
[Lewis96]. Although in long multi-topic documents the chances for relevance 
feedback to return words paradigmatically related to the query term are much less 
than in abstracts or short documents.

The IR task which has received most attention from NLP is the process of building 
document/query representations. The application of NLP techniques to index term 
identification and representation formation is known as linguistically-motivated 
indexing (LMI). It is contrasted to non-linguistic indexing (NLI), based on statistical 
methods. The main thrust of LMI is to identify multi-word units and characterise their 
internal structure [Sparck Jones99]. The next section will discuss statistical and 
linguistically-motivated approaches to multi-word index terms (phrases) and also their 
value in document representation as compared to single terms.
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3.2.2 Phrases. Statistical and linguistically-motivated approaches.

Claims that automatically derived complex terms are better contents discriminators 
than simple terms have been made since the beginning of research on automated IR in 
the 60s. Simple statistical co-occurrence based techniques for identification of 
compound terms have always been rivalled by NLP-based techniques. The main 
considerations in favour of NLP were: (1) it may have better tools to uncover 
meaningful linguistic phrases and (2) it can capture the relationships between words.

To avoid terminological confusion, following Sparck Jones, complex terms will be 
used to denote compound terms defined by LMI and joined terms -  for statistically 
defined phrases using NLI [Sparck Jones99].

Joined terms are short-span collocations extracted from text using different 
modulations of their frequency parameters. Complex terms are identified using a 
variety of NLP methods ranging from low-level techniques such as part-of-speech 
tagging, aimed at identifying word-sequences of a certain syntactic pattern like 
adjective + noun, to more complex methods like extended N-grams and syntactic 
parsing, attempting to discover uniform semantic units underlying various forms of 
expression.

At the early stages the motivation for research on automatic phrase generation came 
from the determination to emulate human indexing. The belief was that complex 
normalising descriptions of the kind assigned to documents by human indexers are 
more useful than simple terms. One of the early experiments on phrase indexing was 
carried out by Bely [Bely et al. 1970 in Sparck Jones99], who used very elaborate 
NLP techniques to identify instantiations of thesaurus concepts and their semantic 
relationships in documents. Despite the fact that no retrieval evaluation was 
conducted, the research suggested that the relational structure of the descriptions was 
not flexible enough for sufficient matching. Another historically important piece of 
research was undertaken by Salton [Salton 1968 in Sparck Jones99], whose technique 
consisted in identification of thesaurus terms in text supported by syntactic analysis. 
The comparison of performance results for syntactic phrases and for statistical 
phrases, defined as within-sentence co-occurrences of thesaurus descriptor 
constituents, showed that there is no performance improvement in using syntactical 
phrases over simple statistical phrases.

One of the most comprehensive evaluations of phrases was undertaken by Fagan 
[Fagan 1987,1989 in Sparck Jones99]. He analysed the results of his own 
experiments, relating them to the previous works on phrases, thus drawing rather 
large-scale conclusions. The main focus of his experiments was systematic evaluation 
of joined terms under different parameter settings like distance between their 
constituents and their frequency values. The evaluation results showed that 
performance for joined terms was in general better than for simple terms. He then 
compared performance for joined terms with performance for complex terms, which 
he obtained using syntactic parsing, stemming and normalisation to head-modifier 
pairs. The evaluation showed that NLP-based complex terms gave results similar to or 
worse than statistically joined terms. When he analysed earlier work taking into 
account his findings, he concluded that the same pattern: joined terms > complex 
terms > simple terms, was evident in all the experiments.
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He concluded that complex terms gave poor performance because queries and 
documents did not share exactly the same phrases. For this reason complex terms 
simply did not contribute much to the matching scores. Among the reasons for the 
systems’ inability to match documents and queries by complex phrases Fagan pointed 
out the low collection frequency of the best compounds and the fact that the 
documents involved were of abstract length. However even in full-text setting the 
problem of insufficient matching by complex terms remained. Strzalkowski et al. 
pointed to another main reason for this, namely, the limited amount of information 
about the user’s information need conveyed by the queries [Strzalkowski99(a)].

Croft et al. [Croft et al. 1991 in Sparck Jones99] again experimentally confirmed that 
syntactic phrases perform no better than statistical co-occurrences, even with relaxed 
proximity constraints to document-size windows. They also pointed out the potential 
usefulness of smaller window sizes for long documents. It should be stressed at this 
point that large collocation windows capture topical relations between words, 
therefore in the strict sense collocates separated by a distance greater than their 
immediate lexical-syntactic environment cannot be referred to as phrases or joined 
terms. The relations that bind long-distance collocates are topic-motivated lexical- 
semantic relations which are different from lexical-syntactic relations that spread only 
within a short-span distance around the node and hold together various lexical- 
syntactic constructions, compound terms among them (see section 2.4.1).

The difficulty in analysing the efficiency of specific LMI or NLI methods for phrase- 
based indexing is attributed by many researchers [Sparck Jones84, Fagan89, Lewis91] 
to the fact that the range of environment variables is very large and each system 
combines a range of indexing and matching devices, making it difficult to evaluate the 
effect a specific LMI or NLI technique has on performance. It is also not yet entirely 
clear how different system devices interact and how phrase-based indexing can be 
better combined with other devices such as weighting, relevance feedback, query 
modification.

For instance the decision whether a document is indexed by phrases at file time or at 
search time has a direct impact on the relevance feedback process. If documents are 
indexed at file time by single terms with the final phrase-based document 
representation being built at search time with respect to a particular query, then 
relevance feedback will only be able to add single terms [Sparck Jones99].

Another rather complex issue of phrase-based techniques is related to weighting. 
Phrases like single terms vary in their contents-discriminating ability; however 
weighting formulas for single terms seem to be unsuitable for phrases 
[Strzalkowski99(a)]. It is true that a weighting model is one of the central devices of 
any IR system that uses weighting and therefore it is important that with the 
introduction of such new devices as phrase indexing the weighting model is still 
working correctly. At present there is no weighting method for compound terms that 
has proved consistently effective. Some common methods which calculate the phrase 
weight from the weights of its components did not demonstrate consistent results 
[Fagan 1987, Lewis and Croft 1990 cited in Strzalkowski99(a)]. Strzalkowski 
concludes with respect to LMI that the lack of an appropriate weighting model for
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complex terms can be one of the reasons why LMI did not yield any positive results 
[Strzalkowski99(a)].

Another aspect that proved to have an impact on the efficiency of LMI techniques was 
the type and length of the query. Strzalkowski et al. focused their NLP research on the 
analysis of the interrelationship between NLP methods and the type/length of the 
query. They moved their attention from the issues of document representation to 
query representation and proved that long and more descriptive queries worked better 
with NLP methods than short ones. They designed an expansion method whereby 
summaries of top ranked documents were manually or automatically selected for 
addition to the initial query. The expanded query takes the form of a meta-document, 
covering different aspects of the request, thereby increasing the chances for the match 
on linguistically-motivated phrases. In TREC-7 they used rather low-level linguistic 
tools for query expansion, which they tested on two systems: SMART and InQuery. 
The results were quite optimistic for interactive query expansion, which improved 
average precision by at least 40%; automatic query expansion did not yet show 
consistently better performance [Strzalkowski99(b)].

Analysing the research on phrases in IR to date, Sparck Jones made some general 
conclusions in respect to phrase indexing and NLP-based LMI in particular. She 
pointed that “statistical facts about term occurrences help as much to make joint terms 
linguistically legitimate as NLP can, (...) as well as helping to make them effective 
through weighting.” [Sparck Jones99, p. 20],

Another conclusion is that single term indexing is likely to stay even with the 
introduction of phrases into indexing. “Treating phrases, even normalised ones, as 
fixed and undecomposable units is an extremely stringent retrieval strategy, and the 
default strategy that automatically adds all the single terms into a description is much 
more flexible.” [Sparck Jones99, p.21] The advantage this strategy brings is multiple 
term matches due to single term redundancy.

LMI was not shown so far to be superior to NLI on its own [Sparck Jones99]. Given 
that the interrelationship of LMI with other system parameters is not clear yet, some 
researchers like [Strzalkowski99(b)] shifted their attention to the investigation of 
more specific conditions where LMI can be useful and how it can be better integrated 
with other IR devices.

3.3 Approaches to collocation in IR

There have been a wide range of approaches towards using word co-occurrence 
information in IR. They differ not only in the way co-occurrence information is used 
in retrieval and the motivation behind its usage, but also in the understanding of the 
phenomenon of collocation. As section 2.4.1 demonstrated, there is no uniform 
understanding of the notion of collocation. It was decided in the same section to 
distinguish short-span collocations, motivated by lexical-syntactic relations, and long- 
span topic-level collocations, motivated by lexical-semantic relations.

At the broadest level the work done in IR involving word co-occurrences can be 
divided into:
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1. Approaches that use short-span collocation information for phrase 
identification;

2. Approaches using document-wide co-occurrences of terms;
3. Approaches using long-span collocations to obtain some context 

information.

The first type of approaches were touched upon in the above section 3.2.2. 
Statistically defined short-span collocations are used by NLI approaches to generate 
composite indexing units -  joined terms or statistical phrases, which are statistical 
surrogates of the genuine linguistic phrases.

Short-span lexical-syntactic relations are not the focus of this thesis. The focus is on 
topic-level relations between words, relations which form the lexical cohesion of the 
text/part of text, and that can reveal some semantic characteristics of the context in 
which they occur. For this reason and because they were covered in the previous 
section, short-span collocation-based NLI methods will not be touched upon in this 
section.

The second research direction has been rather intensively explored, with much of the 
research undertaken before the wide use of full-text. The general motivation behind 
research on document-wide co-occurrence was to understand the effect that 
information about the presence of more than one term in a document can have on 
retrieval performance. Approaches to document-wide co-occurrence account only for 
the presence or absence of two/more terms in documents, and do not make use of 
contextual information about co-occurrence of terms within some limited stretches of 
text. This research area is only indirectly related to the thesis, therefore only a 
selective coverage of the previous work in this direction will be made here.

The third type of approaches deals with co-occurrences in large-scale subtextual 
constructs like windows. With the arrival of full-text collections containing long 
multi-topic documents, accounting for document-level term dependencies no longer 
seems adequate. Instead, exploitation of term dependencies within more 
homogeneous subdocument semantic units -  topics -  may lead to improvements in 
retrieval performance. Approaches of this type focus on studying term dependencies 
within limited spans of text, and attempt to capture statistical evidence of relations 
pertaining to a topic in a document. The thesis follows this research direction, 
therefore a maximum coverage of past approaches to long-span collocations will be 
given in this section.

Document-wide term dependencies will be referred to as co-occurrences, and only 
dependencies within limited spans of text will be referred to as collocations. Many 
authors also refer to window-delimited term dependencies as co-occurrences, 
therefore their original terminology will be retained when talking about their work.

The limited spans of text for identifying collocations will be called windows. As 
described in section 2.4.2 different researchers adopt various ways of measuring spans 
of text constituting a window. In this thesis a window is understood as a wordcount 
span to the left and right of the node (for definition of node see section 2.4.1
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Definitions of collocation). Other definitions adopted by authors of the reviewed 
works will be specified.

3.3.1 Document-wide co-occurrences

Attempts to incorporate document-wide co-occurrence data date back to the work by 
Spark Jones [Sparck Jones68, Sparck Jones70, Sparck Jones71(a), Sparck Jones73], 
Van Rijsbergen & Harper [Van Rijsbergen77, Harper78] and Smeaton & Van 
Rijsbergen [Smeaton83].

Sparck Jones used document-wide co-occurrence information in automatic index term 
classification. She experimented with different clustering techniques to group terms 
showing document-wide co-occurrence into clusters. The performance was not very 
different for various clustering techniques; it seemed more to be affected by other 
factors, such as frequency of the terms included in the clusters. Sparck Jones argued 
that inclusion of low-frequency strongly connected terms into clusters and exclusion 
of high-frequency terms were some of the major factors why the method worked well 
[Sparck Jones71(a)]. Later experiments however [Sparck Jones73] could not prove 
the robustness of co-occurrence term clustering, yielding significant improvements 
only on one collection.

The work done by Van Rijsbergen [Van Rijsbergen77] consisted in modifying a 
probabilistic term weighting scheme, which was originally built assuming term 
independence (see section 4.2) to account for term dependence. His model derives 
pairwise term dependencies from the distribution of co-occurrences in the whole 
collection or in the sets of relevant and nonrelevant documents. “Co-occurrence” he 
defined as the presence of both words in the same document. The strength of 
association between two co-occurring words was measured using expected mutual 
information measure (EMIM), on the basis of which the best dependence tree -  the 
maximum spanning tree (MST) was constructed, connecting the terms with the most 
significant dependencies.

Initially Van Rijsbergen derived a non-linear term weighting function, for which the 
dependency parameters were taken from the co-occurrence based MST [Van 
Rijsbergen77]. Later Harper and Van Rijsbergen [Harper78] carried out an extensive 
evaluation of the dependence model. In the first stage of testing they compared the 
independence model with the dependence model for both original and expanded 
queries. These experiments assumed that all relevance information is known (upper 
bound experiments). Expanded queries were constructed by adding closely-related 
terms from the MST to the original query. The results showed that the dependence 
model with expanded queries gave better performance than the independence model 
with expanded queries, which in turn was better than either models with the original 
queries. Thus, it was concluded that two factors in combination are necessary to 
significantly contribute to the upper bound performance: query expansion via the 
MST and term weighting assuming term dependence.

Terms taken from the MST are weighted not according to their similarity to the 
original term but according to their ability to discriminate relevant from non-relevant 
documents. Further, Harper and Van Rijsbergen derived another method of evaluating
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a term’s relevance discriminating ability -  by modifying EMIM as term weight. They 
suggested calculating EMIM between the term assignment and the relevance 
assignment rather than between two terms as in its original use. The new term 
weighting model uses a linear weighting function together with EMIM term weights 
summed over the query set.

The evaluation of the EMIM weighting model showed that with the original queries it 
performed better than the independence model and the previously defined strict 
dependence model. With expanded queries it gave similar performance to the 
dependence model.

Harper and Van Rijsbergen concluded that the EMIM weighting model (modified 
dependence model) is preferable to the strict dependence model because, first, EMIM 
weights require half as many parameters as the dependence weights and, second, its 
performance results are not worse than those of the dependence model. Though term 
weighting in the modified dependence model is based on a linear function, the term 
dependence is still accounted for by the fact that expansion terms are taken from the 
MST.

Experiments on relevance feedback also showed that the modified dependence model 
performed better with relevance feedback than the independence model. However the 
experiments were conducted on rather small collections, and as the authors 
themselves admit, more testing with larger and more heterogeneous collections should 
be undertaken before making the final conclusions.

Van Rijsbergen [Van Rijsbergen77] also suggested other uses for the co-occurrence 
based MST. It can be used as a classification of index terms, being transformed into a 
hierarchy of single-link inter-term relationships. Another application is in interactive 
searches, where users can have access to MST as a resource with information on 
related terms, and use it to formulate their queries.

Related research by Smeaton & Van Rijsbergen [Smeaton83] experimented with 
automatic query expansion on three types of terms:

-  MST terms;
-  Nearest neighbours (NN) -  terms most strongly related statistically;
-  Index terms from the relevant documents.

The three query expansion methods were comparatively evaluated against no query 
expansion and expansion with randomly selected terms. The results were rather 
pessimistic: no query expansion gave best results, followed by expansion with random 
terms, followed by terms from relevant documents, which in turn were better than 
MST terms and NN terms. Moreover, more added terms meant more decrease in 
performance. The authors attributed these results to several possible factors, one of 
which was poor probability estimations.

Later Peat and Willet [Peat91] suggested that the cause of the problems of using 
document-level co-occurrence information in automatic query expansion lies in the 
methods of estimating similarity between terms co-occurring in documents. They 
pointed that terms considered ‘similar’ by these methods tend to have corresponding 
frequency parameters; since query terms often have high collection frequencies, terms
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estimated to be ‘similar’ to them will also tend to have high collection frequencies. 
Being high frequency terms, ‘similar’ terms are poor relevance discriminators, and 
hence will not improve performance by being added to the original query.

3.3.2 Long-span collocations

There have been much less active research in the area of long-span collocations 
within a limited text area. Some of this research has been directed at integration of 
collocation data into probabilistic models: Losee [Losee94] used the Bahadur 
Lazarsfeld expansion method and Mittendorf et al. [Mittendorf2000] conducted 
experiments on including different levels of collocation information into the 
Robertson & Sparck Jones model.

Losee [Losee94] attempted to incorporate term dependence information into 
probabilistic retrieval, limiting term dependence to a certain window within a 
document. The results he obtained, however, cannot be extended without further 
testing to full-text retrieval since he used abstracts only for evaluation.

Losee conducted his experiments using Bahadur Lazarsfeld expansion with varying 
degrees of truncation to estimate probabilities. He chose retrospective type of 
experiments, using full relevance information. The documents were ranked by the 
Expected Precision (EP) of the document, which is calculated from the ratio of the 
probability that the feature occurs in a relevant document to the probability that it 
occurs in a nonrelevant document, the latter being estimated by the probability of the 
feature’s occurrence in the collection. The performance measure used in the 
experiments was Average Search Length (ASL) -  the average number of documents 
retrieved when retrieving any relevant document.

Results of the experiments on different degrees of document-wide term dependence 
showed the general tendency of performance increase corresponding to increase of the 
degree of dependence. However, a significant increase in performance was observed 
only for pairs and triples of words, used in estimation of the feature’s occurrence 
probability in relevant documents. A greater level of dependence gave little 
performance improvement.

The second stage of Losee’s experiments was aimed at testing his hypothesis that 
limiting term dependence to a span within a document could improve performance. 
Losee defined a span as a maximum number of words between two terms whose 
dependencies are computed. The experiments showed that there is a general tendency 
of increase in performance (decrease in the ASL) corresponding to the increase of the 
span of dependence. The major performance increase was observed for the span of 3- 
5 words.

Losee’s experiments on span-limited dependence were correlated with a parallel 
research on text windows by Haas and Losee [Haas94]. The motivation behind this 
research was to identify the optimum window size in a document that could be useful 
in information retrieval tasks. By window the authors understand a group of words in 
contiguous positions in text. This understanding of window is different from the one 
assumed in this thesis as left and right spans of text around a centre -  node. Haas and
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Loose’s understanding of window has no idea of a centre, instead it is seen as a range 
of words within which lexical-syntactic relations are at their strongest. They also 
focused mainly on short-span relations between words, whereas in this thesis the 
focus is on long-span topical relations.

Haas and Losee conducted retrieval experiments on an abstracts collection, using 
windows of different sizes (from 2 to 17 words) as a range within which query terms 
must appear. In each document the best window (i.e. the window with the maximum 
concentration of query terms) is identified and its similarity to the query is calculated 
by the number of common token types -  Coordination Level Match (CLM). The 
performance is evaluated by Average Search Length.

The results corresponded to those by Losee [Losee94]: the ASL decreased gradually 
with the increase in window length, the sharpest decrease being observed for window 
sizes 3 to 5.

Mittendorf et al. [Mittendorf2000] applied the Robertson-Sparck Jones probabilistic 
weighting formula to word collocations (co-occurrences in their terminology) as 
indexing features, as distinct from the original word-based features. They hypothesise 
that accounting for word co-occurrences by simply adding complex indexing units 
like phrases into the word-based indexing vocabulary in weighted retrieval was not 
yielding significant improvement due to the resulting probabilistic inconsistencies. To 
avoid such inconsistencies, they suggest using only one type of indexing features -  
either single terms, or co-occurrence based complex indexing units.

Mittendorf et al. aimed to test whether accounting for positional closeness of query 
terms in documents in term weighting has any effect on retrieval performance. They 
defined second-order features as opposed to first-order features -  the single words that 
the traditional Robertson-Sparck Jones model uses. Their second-order features are 
order-sensitive word co-occurrences within the pre-defined set window sizes. The 
window ranges they defined for their experiments were aimed to approximate to 
various NL text constructs:

-  window range (from -1 to 0 words) corresponds to standard indexing units 
used in Robertson-Sparck Jones weighting;

-  window range (from 0 to 1 words) corresponds to phrases;
-  window range (from 1 to 10 words) approximates to the size of a sentence;
-  window range (from 10 to 30 words) approximates to the size of an 

average paragraph;
-  window range (from 30 to 200 words) corresponds to document size.

The motivation behind using co-occurrences within windows of limited size was to 
capture the local information that they claim will be lost if the upper bound of the 
window range is too large or if the co-occurrence is only accounted for on a 
document-wide basis.

They chose the routing task as the testbed for their evaluation. The co-occurrence 
based weighting was tested with different query sizes: from 3 to 60 terms. The results 
showed that only for query sizes larger than 10 terms did the sentence- and paragraph-
wide co-occurrences yield a significantly better average precision than the original
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model. Co-occurrences corresponding to phrases were better than single terms only 
when the query size was very large. The general tendency observed for phrase-, 
sentence- and paragraph-wide co-occurrences was an increase in average precision 
with the increase of the query size. The use of large window sizes with the upper 
bound of 200 gave very similar average precision to the original model, with the 
query length having similar influence on both methods. The conclusion the authors 
arrive at is that large window sizes do not provide sufficiently local information, apart 
from the information on the presence or absence of terms in a document.

Further, Mittendorf et al. attempted to derive a new ranking formula which would 
combine the ranking of documents on different feature sets (co-occurrences in 
different window sizes) by query-specific logistic regression. The same regression 
analysis did not work for all queries, therefore for each query a different combination 
of co-occurrence types is needed, which the authors explain by the fact that the types 
of co-occurrences that better describe one information need may not work for another. 
The evaluation of the query-specific combined ranking in the routing environment 
showed an acceptable performance (in terms of average precision) for a routing 
method, however they admit that more tuning should be done.

Other attempts to use collocation information were targeted either at interactive 
search, by composing a collocation-based term resource and offering it to users for 
interactive query expansion [McDonald97], or at automatic query expansion [Jing94, 
Xu96]. Another factor by which these approaches can be categorised is the scope of 
collocation analysis, according to which there can be distinguished global analysis 
techniques [e.g. Jing94] and local analysis techniques [e.g.Xu96]. Global techniques 
consist in processing the entire document collection to extract term collocations, 
whereas local techniques use either known relevant documents or top ranked 
documents for deriving collocations.

Work done by McDonald et al.[McDonald97] was intended to minimise the effort on 
the part of users in refining their queries following an initial search. They attempted to 
substitute the traditional relevance feedback mechanism, requiring the users to 
examine documents, by offering them more structured information about the database 
contents. This information is structured in the form of collocation (here termed co-
occurrence) based term networks, which the authors claim have two major advantages 
over document output for relevance feedback: first, the networks maximise the 
database content coverage and, second, they minimise effort required by the users in 
familiarising themselves with the database contents.

During the pre-processing stage a subset of indexing terms across the database is 
selected, consisting of the most content-discriminating terms. Within this subset term 
collocations are identified based on within-sentence co-occurrence, and selected using 
Dice’s coefficient. The window size as one sentence was an arbitrary decision, which 
was not comparatively evaluated against other possible window sizes. The term 
networks are generated from the co-occurrence data using their Pathfinder algorithm 
which filters out insignificant term associations based on frequency of term co-
occurrence.
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At search stage following the initial query submission, the user is presented with a 
graphical representation of the portion of the network, related to the query terms. The 
user then can substitute the existing query terms, add new ones, remove or negatively 
weight inappropriate terms.

Although no large-scale evaluation of the method using global co-occurrence based 
network was performed, the authors observed that associations were not always topic- 
related because networks captured term associations throughout the collection and 
across topics. Therefore no distinction was made between different uses of a term. To 
mitigate this negative effect they suggested that networks should be constructed from 
the retrieved sets of documents, i.e. using a local rather than global technique.

The evaluation of the second method was conducted using TRJEC-6 interactive track 
topics. During the pre-processing stage, sets of documents were obtained by using a 
Boolean search on terms from topic titles. A separate database was constructed for 
each set and was invoked when a query derived from the corresponding topic was 
submitted. The results were inconclusive. The authors admit the limitations of using 
Boolean search for the task of retrieving relevant documents. Also it is not clear what 
would be the mechanism for index-time construction of topic-specific networks for 
real-life operability of the model, or whether search-time network construction is 
feasible.

Jing and Croft [Jing94] developed an approach for the automatic construction of an 
association thesaurus through the global analysis of collocation (co-occurrence in 
their terminology) data. The program they designed for automatic thesaurus 
construction -  PhraseFinder -  works as an adjunct to the IN QUERY retrieval system. 
Index units can be either single or composite terms, identified in the text through a set 
of phrase rules. Co-occurrences between index units are identified within window 
sizes of 3-10 sentences, as these approximate the size of an average paragraph. After 
filtering out co-occurrences that are too frequent or too rare, each index unit is 
recorded with the list of its co-occurrences in the thesaurus.

The co-occurrence thesaurus is used in query expansion. It is implemented as an 
INQUERY database, with each entry being a separate pseudo-document. When a 
query is submitted, the system retrieves a corresponding pseudo-document for each 
query term and outputs a ranked list of collocates from these pseudo-documents. The 
top N collocates are then used for query expansion.

The evaluation of the above query expansion technique was aimed at testing several 
parameters, among which are the following:

-  How expansion with different indexing units (duplicate/nonduplicate) 
affects performance;

-  What phrase rules result in better performance;
-  What is the optimum window size.

Expansion with two types of index units was tested: duplicates and nonduplicates. 
Duplicates are indexing units each component of which is present in the original 
query. Nonduplicates must consist of components that are not part of the original 
query. The purpose of adding duplicates was mainly to test how thesaurus data can be 
used to reweight the original query. The purpose of the expansion with nonduplicates
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was to evaluate the thesaurus by the usefulness of new terms it provides for request 
formulation.

Experiments with phrase rules showed that among single word index units the use of 
only nouns for query expansion resulted in better performance than the use of any 
other part of speech alone or when no part of speech distinction is made. Among 
complex units again the use of phrases containing only nouns resulted in better 
performance. The maximum performance improvement was achieved by using the 
phrase rule: one noun, two adjacent nouns and three adjacent nouns.

The window sizes for collocates extraction tested in the experiments were 3, 5 and 10 
sentences. Three thesauri based on different window sizes were constructed. The 
experiments were conducted on TIPSTER sample collection, with the queries derived 
from the concept field of the topics. The results showed that a 10 sentence window 
size gave better performance than 3 and 5, however the difference was not significant. 
The conclusion the authors came to was that the method was rather insensitive to the 
window size. The window must be of paragraph size order, but the exact number of 
sentences in the hypothetical paragraph does not affect performance significantly.

The evaluation of the global co-occurrence based query expansion technique, 
implemented as PhraseFinder, proved to be rather robust, improving the average 
performance of queries. Another advantage is that it constructs a term association 
resource that can also be offered to users for interactive query expansion.

There have also been somewhat marginally related, formalistic global methods 
applied to building automatic thesauri for the use in IR. They encode word co-
occurrence statistics into inference models, such as Bayesian networks [Han93, 
Park96] and use other techniques such as term clustering. Han et al. [Han93] 
suggested the method of building collocation maps -  inference models encoding 
statistical evidence on word co-occurrence in delimited text windows in the 
collection. Park et al. [Park96] later developed a method of building automatic 
hierarchical thesauri by extracting term pairs within limited spans, encoding them into 
the collocation map, building thesaurus classes using term clustering methods and 
linking similar clusters. They evaluated the thesaurus constructed using the proposed 
method in query expansion. Only abstract databases were used for thesaurus 
construction, also they manually selected indexing terms from one of them. The 
results showed some improvement for the collocation map built from automatically 
extracted terms and more considerable improvement for the collocation map built 
from manually selected terms.

Xu and Croft [Xu96] compared the global co-occurrence technique used by 
PhraseFinder [Jing94] with their own technique of Local Context Analysis (LCA) also 
implemented with INQUERY. The collocates of query terms are defined as noun 
groups, taken from the retrieved N top ranked passages of fixed size of 300 words. 
The authors point at the downside of using whole documents for term extraction, 
especially in long documents, where the co-occurrence of terms over a very long span 
may not reflect any topical relationship.

The noun groups from the top-ranked passages are ranked according to a variant of 
tf/idf measure - a function of the individual frequencies of occurrence of query terms
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and noun groups, their co-occurrence frequencies in the retrieved passages and their 
inverse passage frequencies in the entire collection. The ranking function penalises 
units with very high frequency, rewards units co-occurring frequently with the query 
term, and emphasises co-occurrence of a unit with all query terms.

The evaluation carried out on three collections: TREC-3, TREC-4 and WEST, 
showed that LCA improves performance significantly for both TREC-3 and TREC-4 
collections. Performance for WEST is improved only with downweighted expansion 
terms, which is explained by the fact that the original query terms are good and should 
be emphasised.

Comparison with PhraseFinder showed that LCA gives a better performance 
improvement, for example on TREC-3 Phrasefinder is 7.8% better than the baseline, 
while LCA, using 100 top passages, is 23.3% better. Among the observed downsides 
of the global technique, the authors pointed out the fact that frequent terms which 
nevertheless can be good content indicators are inevitably filtered out, whereas in 
local technique they can be added to the query. Another negative factor observed for 
the global technique used in Phrasefinder is that it does not account for co-occurrence 
with all query terms, which can increase the chance of adding unrelated terms.

The authors also compared LCA with local feedback, which uses top ranked 
documents for query expansion. The performance of local feedback for different 
collections indicated that it was sensitive to the number of documents used for 
feedback, which appeared to depend on the number of relevant documents in the 
collection for the query. LCA was relatively insensitive to the number of passages. 
Another downside of local feedback is that it is very sensitive to the number of 
relevant documents in the top ranked documents, LCA on the contrary is not so 
sensitive.

Ishikawa et al. [Ishikawa98] also suggested an approach based on the local analysis 
technique for blind query expansion in the routing task. Their method uses top ranked 
passages to extract terms (noun phrases), for which a strength of association with 
query terms occurring in the same passages is calculated. A modified mutual 
information measure is used for this purpose. Terms with a mutual information score 
above the set threshold are selected for query expansion. Expanded terms are assigned 
the weights of the query terms with which they have the strongest association level. 
For term weighting they use Robertson’s term relevance weighting formula 
[Robertson76]. The evaluation of runs with expanded queries did not show any 
improvement over initial queries.

3.4 Applications of lexical cohesion in IR

Research undertaken by Stairmand [Stairmand97] was motivated by the analysis of 
lexical cohesion by Morris and Hirst [Morris91] (see section 2.3.2 Lexical links and 
lexical chains). In Stairmand’s method the lexical contents of documents is mapped 
into WordNet synsets. Then two main types of constructs are identified in each 
document: lexical clusters and lexical chains. Lexical clusters consist of the related 
synsets co-occurring in the document and representing a distinct textual context,
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which can manifest itself in different parts of the document. To identify where in text 
such context manifests itself, the method locates lexical chains, using Morris and 
Hirst’s algorithm (see section 2.3.2). To eliminate spurious synsets, only those synsets 
are kept in clusters which are also members of lexical chains. The clusters in each 
document are then ranked by their ‘strength’, which is derived from the distribution of 
cluster members throughout the document. The document representation consists of 
synsets from the ‘strongest’ or dominant clusters. Each synset in the representation is 
assigned a weight which reflects the dominance of its cluster, and hence its context of 
occurrence in the document.

At search time, each query term, mapped into a WordNet synset, is matched against 
the weighted synsets representing the documents. Since the weight of each synset in 
the document representation reflects the score of its cluster, the matching implicitly 
takes into account the whole context of occurrence of the query term, and determines 
how pertinent to the document is this context, and hence the query term belonging to 
it.

Stairmand hypothesised that accounting for the context of occurrence of the query 
term in indexing and matching could be superior to term based methods. However he 
recognises that representing document contents with WordNet synsets has severe 
limitations due to WordNet’s restricted coverage. The evaluation based on rather 
simple queries compared the above method with a term-based system -  SMART. Top 
three documents retrieved by each system were given to users for relevance 
judgement. The results demonstrated improved performance for simple queries.

A further extension to the above method is aimed at capturing global statistical co-
occurrences of synsets in document representations, and bringing them together in 
synset groupings. The author points at the inadequately specific nature of relations 
holding between synsets in WordNet, which do not cover all possible semantic 
relations between words in text, the exact nature of which is often difficult to 
establish. For this reason he points at the potential benefits of exploiting statistically 
significant co-occurrence relations between synsets for both document indexing and 
query expansion.

The co-occurrences were identified globally on a document-wide basis. The strength 
of association was measured using mutual information score. For each synset a set of 
significantly associated collocates was created, forming a cluster of associated terms 
around it. Finally only those clusters were selected, whose nodes attracted a high 
number of strongly associated synsets. The method creates a resource of co-
occurrence based clusters of synsets, which can be used as a supplement to WordNet. 
The intuitive observation suggested that the majority of generated clusters were 
semantically coherent, however no formal evaluation of this resource was reported.

Another use of lexical cohesion in IR is in summarisation of documents and retrieval 
only of the information relevant to the user’s request. Manabu et al. [Manabu2000] 
conducted a research on query-biased summarisation of the documents in retrieval, 
using lexical chains. Their method is a variant of passage retrieval (see section 3.5 
Document passages). Many query-biased summarisation methods produce document 
summaries by identifying best sentences. Manabu et al. argue that such summaries are 
likely to have low cohesion, since adjacent sentences may not be related. Instead they
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claim that identifying the best passages using information from lexical chains can 
result in more coherent summaries.

The building of lexical chains requires the use of some knowledge about the 
relatedness of terms in a stretch of text. As described in section 2.3.2 one method is to 
use a knowledge base like a thesaurus [Morris91] or WordNet [Hirst97] to obtain 
information about term relatedness. Another method that Manabu et al. adopt is to 
estimate statistical similarity between words, for which they use semantic similarity 
score, based on the degree of co-occurrence of two words in the same document. 
Similarity scores are then used to group words into clusters. Lexical chains are built 
from words belonging to the same clusters.

At search time query terms are matched against the members of lexical chains. 
Lexical chains containing query terms are identified and the passages are extracted as 
the text segments covered by overlapped lexical chains. The boundaries of the 
passage correspond to the left- and rightmost members of the overlapping chains. The 
identified passages are output to the user, ranked by the scores based on the length of 
the chains composing each passage and the degree of their overlap.

The query-biased chain method was evaluated by recall, precision, F-measure, time 
required for the task and the number of times the users referred to full-text. The 
authors comparatively evaluated this method with full document retrieval and 
retrieval using three other summarisation methods:

-  location method - first N sentences of the document);
-  term frequency method - top sentences ranked on the basis of tf/idf 

measure of words each sentence contains;
-  query-biased term frequency method - similar to the previous method, but 

the score of words is calculated to bias towards the query terms (for more 
detail on sentence-based summarisation methods see section 3.5).

F-measure results for the chain method were significantly better than location and 
query-biased frequency methods, but no significant improvement against frequency 
method and full documents. Recall levels for both query-biased methods (chain and 
query-biased frequency) were better than the rest. The authors admit that allowing the 
users access to full text may result in better performance than display of summaries 
only. After adjusting the accuracy by the number of times full documents were 
accessed, full text retrieval became the best, however the results for the chain method 
were still better than other summarisation methods.

3.5 Document passages

Passage retrieval, although a rather different technique from collocation methods, has 
one major aspect in common with it, namely capturing the locality of the text. It is 
motivated by the same idea -  that a local context is more semantically homogeneous 
than an entire document and that lexical units occurring within a liamited span of text 
are more likely to be semantically connected than words in different parts of a 
document.
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Many authors recognise the problems associated with document retrieval from full- 
text collections [Hearst93, Salton93, Hawking96, Kaszkiel97], namely that full-length 
documents often contain only some parts that are relevant to the user’s need, and that 
these documents can be ranked low because of the overall higher proportion of 
unrelated terms in non-relevant parts. Traditional document retrieval approaches 
could not isolate relevant passages in full-length documents, therefore what was 
needed was a more granular approach to document contents.

The advantages that passage retrieval offers are:

-  more convenient for the users, since they do not have to process large 
amounts of non-relevant information contained in full-length multi-topic 
documents [Salton93, Kaszkiel97];

-  relevant passages are easier to retrieve than relevant full-length multi-topic 
documents, which may have high concentration of non-relevant items, and 
therefore, can be rejected [Salton93];

-  fixed-length passages can alleviate the problem of document normalisation 
when they are used as a mechanism for document retrieval [Kaszkiel97];

-  arguably a document containing a passage with a high concentration of 
matching terms is more likely to be relevant than a document with 
matching terms scattered throughout its length [Kaszkiel97].

At the same time Kaszkiel et al. pointed several problems that can be associated with 
passages [Kaszkiel97]:

-  retrieval can be more computationally expensive as it involves more items 
to rank;

-  passages with varying length do not solve length normalisation problem;
-  relevant documents with no high-scoring passage can be ignored.

There are different ways passages can be used in information retrieval. Robertson et 
al. [Robertson95] pointed out three uses passages can have in IR:

-  The score of the best passage(s) can be used in calculating the document 
score;

-  The best passage(s) can be displayed to the user instead of the whole 
document;

-  Only relevant passages are used for relevance feedback.

Different methods for passage definition either at file-time or query-time have been 
proposed. One of the earliest approach to passage definition and text summarisation is 
sentence-based [Luhn58]. Sentences in the text are ranked according to the combined 
weights of the terms they contain, optionally modulated by the frequency and 
concentration of terms in these sentences. The higher the weights of the terms in the 
sentence, and the higher the concentration and closeness of these terms in the 
sentence, the greater the score. Sentences with top scores are combined together to 
form a passage. A modification of this approach takes account of the query term 
presence in the sentences for ranking -  query-biased approaches [Tombros98]. Here 
term weighting depends on whether a word is a query term or not. Other 
modifications of the sentence scoring approach summarised by Salton et al. 
[Salton93] are:
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-  the location of sentences in the text;
-  the occurrence of special “clue” words in the sentences;
-  the use of syntactic relations between words in different sentences.

The problem with sentence-based passages is their often poor readability, which is 
due to the fact that rather crude term frequency measures are used to estimate 
sentence importance [Salton93] and that sentences are taken from all over the 
document and are not necessarily coherent [Manabu2000].

Another approach is to use other larger natural language constructs like paragraphs or 
sections of long documents. Wilkinson [Wilkinson94] experimented with the use of 
text segments as passages for document retrieval. Salton [Salton93] suggested a top- 
down approach for gradual retrieval of successively smaller document parts: full- 
texts, text sections, text paragraphs or sets of adjacent sentences. Initial search 
retrieves full-texts by query-document matching, then local structures (sections, 
paragraphs and sentences) in the retrieved documents are compared to the query, and 
documents are re-ranked by the similarity of their substructures. A passage with the 
highest score, given it is also higher than the document’s score, is presented to the 
user. The user is also given an option to view smaller or larger text structures. The 
evaluation of this method demonstrated significant performance improvements over 
document retrieval.

Passage experiments with Okapi [Robertson95, Sparck Jones98] also use passages 
built from natural text paragraphs. Paragraphs are identified in text by their 
orthographic delimiters: indentation and/or blank lines. Passages are arbitrary length 
windows, consisting of at least one paragraph and a maximum of twenty consecutive 
paragraphs with the default distance between passages as one paragraph. The entire 
document is also considered for the best passage selection.

Passages are identified at query time and only the top 10000 ranked documents are 
analysed, based on experimental evidence that further down the ranked set the 
chances of getting a document with a good passage are very low. Passages are used in 
Okapi for document retrieval, i.e. the documents receive the scores of their best 
passages and are ranked according to them. Experiments demonstrated performance 
improvements with the use of passages, but they are not always consistent. Average 
precision and recall/precision at higher cutoff points are often increased by 2-10 
percent, however at smaller cutoff points precision decreases [Robertson99].

Another group of approaches uses some lexical-semantic evidence from a text to 
determine the best passages [Hearst93, Manabu2000, Mittendorf94].

Hearst [Hearst93, Hearst94] developed a technique called TextTiling to identify best 
passages from the lexical-semantic evidence that signals topic shifts. The pairs of 
adjacent fixed-size blocks of text, each consisting of N fixed-size word sequences, are 
compared according to how similar they are using a cosine similarity measure. 
Boundaries of a semantically homogeneous passage are identified via changes in the 
sequence of similarity scores and are adjusted to the nearest paragraph breaks. In 
other words a passage is built from a maximum number of adjacent semantically 
similar word sequences.

53



Mittendorf et al. [Mittendorf94, Knaus95] developed a method of inferring passage 
boundaries from text using Hidden Markov Models. Passages are of variable length 
and are identified at query-time by evaluating the query against the entire document. 
TREC experiments demonstrated the capabilities of the method to improve the initial 
ranking of the documents.

Kaszkiel et al. [Kaszkiel97] noted that methods using variable-length passages are 
susceptible to problems of length normalisation. They argue that fixed length passages 
are simpler to define, more robust and effective. There have been numerous 
experiments that use fixed-length passages. Callan [Callan94] proposed defining 
passages at query-time as windows of fixed wordcount length. The windows overlap, 
so that the beginning of the next window is in the middle of its predecessor. The 
beginning of the first window is set to the first occurrence of a query term. Other 
approaches that use fixed-size windows, each overlapping with its neighbouring 
windows, were used in TREC for an ad hoc task by [Buckley95] and for a routing 
task by [Yochum96], both of whom use passage scores for calculating the final 
document scores. The window sizes defined in these approaches range between 100 
and 200. The evaluations of these methods on TREC data demonstrated some 
improvements.

Kaszkiel et al. [Kaszkiel97] conducted extensive experiments comparing their 
technique of fixed-length arbitrary passages with some other methods. They 
experimentally confirmed that fixed-length arbitrary passages with the minimum size 
of 150 and heavily overlapping give substantial performance improvements, 
especially for long document collections. They demonstrate that their method is 
robust in contrast to some other methods like the use of natural text constructs, which 
in their experiments were not always reliable.

Another approach to identifying passages for pseudo relevance feedback was 
suggested by Hawking et al. [Hawking98], They define a passage or a hotspot as a 
contiguous stretch of text within n characters of a query term occurrence. This 
approach to defining a window of text is similar to window definition in some 
collocation methods including our method, however this approach cannot be regarded 
as a collocation method, since it does not estimate the strength of association between 
the query term and its neighbours in text. Terms extracted from all hotspots in the top 
N ranked documents are weighted using a variation of the Offer Weight formula 
designed by Robertson [Robertson90]. The results showed considerable improvement 
in recall, but no significant precision gains.

Another approach to passage retrieval is based on lexical chaining technique by
[Manabu2000] and was described in detail in the previous section.
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4. Probabilistic information retrieval

Early attempt to apply probabilistic theory to information retrieval dates back to the 
work by Maron and Kuhns [MaronôO] on probabilistic indexing. Their work made 
substantial contribution to the formulation of probabilistic approaches to such 
principal concepts as relevance and ranking. However the idea of probabilistic 
indexing is essentially different from probabilistic retrieval, the models of which 
were developed by Robertson and Sparck Jones [Robertson76], Van Rijsbergen [Van 
Rijsbergen79] and Croft and Harper [Croft79]. Beginning from the eighties there has 
also been attempted integration of probabilistic indexing and retrieval approaches into 
a unified theory of information retrieval [Robertson82].

Before moving on to the discussion of the probabilistic model used in this project -  
Robertson & Sparck Jones model -  it is worthwhile to mention the main principles 
characteristic of all probabilistic retrieval theories. The aim of probabilistic theories is 
to rank documents in descending order of the probability of their relevance to the 
query. Since each document is unique and it is impossible to estimate probabilities of 
unique events, the models derive these probabilities from the characteristics of non-
unique events constituting the documents -  terms. The estimation of the term’s 
usefulness in discriminating relevant from non-relevant documents is done through 
term weighting. The probability of relevance of each document to the query is 
estimated through the corresponding weighting matching function. The main 
differences between probabilistic models are in the weighting functions they use, and 
the ways these functions are derived.

4.1 Robertson & Sparck Jones model of probabilistic IR

The probabilistic model developed by Robertson and Sparck Jones [Robertson76] 
approaches the general problem of information retrieval by asking for each document 
and query the Basic Question [Sparck Jones98, p. 5]:

“What is the probability that this document is relevant to this query?”

There are two assumptions about relevance implied by the Basic Question:

1. Relevance is a binary attribute;
2. Relevance can be attributed to a document irrespectively of other 

documents in the collection.
These assumptions are of course simplifications, but they are essential for the model. 
The main idea of the model is to estimate the probability of relevance of each 
document in order to use this estimation in ranking the documents for presentation to 
the user. This idea of the model is known as a Probability Ranking Principle 
[Robertson77], quoted from [Sparck Jones98, p.7]:

PI : If retrieved documents are ordered by decreasing probability of relevance 
on the data available, then the system’s effectiveness is the best to be 
gotten for the data.

The probability of relevance of each document is estimated from the relevance- 
predicting characteristics of attributes constituting a document -  terms, specifically
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query terms. Relevance-based term weighting developed by Robertson & Sparck 
Jones, and which will be covered in more detail in the next subsection, has been 
derived from a formal theory of relevance weights [Robertson76]. The theory’s aim is 
to achieve document ranking through weighting of terms given some known 
information on their behaviour in relevant and non-relevant documents. There are two 
principal assumptions underlying the theory [Robertson76, p.132]:

Independence assumption: The distribution of terms in relevant documents is 
independent and their distribution in non-relevant documents is 
independent.

Ordering principle: That probable relevance is based on both the presence of 
search terms in documents and the absence from documents.

For more detailed discussion of the independence assumptions see section 4.2.

4.1.1 Term relevance weighting

The theory of relevance weights based on the above assumptions, also known as the 
binary independence retrieval model, is represented on the general level by the 
formula:

W- -

Pid-P, )
(4.1)

where pi is the probability of occurrence of term i in a relevant document; 
Pi is the probability of term i occurrence in a non-relevant document.

The estimation of the above probabilities requires presence of information about 
occurrence of terms in relevant and non-relevant documents. The relevance 
information for a query need not be complete, and in practice it is usually available 
only to some extent. This information is obtained in the form of user relevance 
judgements. The following contingency table of term incidence has been proposed as 
a basis for a more specific representation of the model [Robertson76]:

Relevant Non-relevant
Containing the term r n - r n

Not containing the term R - r N -  n -  R + r N - n
R N - R N

where R is the number of known relevant documents
r is the number of known relevant documents with term i 
N is the number of documents in the collection 
n is the number of known documents containing term i

Given the term incidence information in the contingency table, general term 
weighting function (4.1) can be re-written as following:

w = log
r(N - n -  R + r) 

CR - r f n - r ) (4.2)
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Before any relevance information is obtained, the estimation of p,- and p, is performed 
on the assumption that the number of relevant documents R in the collection is much 
smaller than the number of non-relevant, therefore p, is estimated as the number of 
documents in the collection with term i, i.e. n/N, while p,- is assumed to be a constant. 
In these conditions the term weighting function (4.2) gives the same result as a 
collection frequency weight (CFW) function, introduced first in [Sparck Jones71(b)]:

CFW = l o g -  (4 .3)
B,

The problem with function (4.2) is that when no or very little relevance information is 
known, i.e. when the value of any of the central cells in the contingency table is zero, 
it results in the infinite weights. To avoid this problem 0.5 was added to each of the 
four parameters of the function. The resulting Relevance Weight (RW) formula is:

j?w=iog(-r-+ Q-5)(iV~ n ~ jR+r+Q-5)
( R - r  + 0.5)(n -  r + 0.5) (4.4)

The matching score (MS) for a document is simply the sum of the weights of the 
present query terms:

M S - R W  = 2 loS
(r + 0 . 5 ) ( N - n - R  + r + 0.5) 

(R -  r + 0.5)(n -  r + 0.5)

Further elaboration of the term weighting function was targeted at exploiting the 
information on term frequencies within documents [Robertson94] and document 
length normalisation. Robertson and Walker suggested a formula which modulates the 
weight of term i by its within-document frequency - 7Y7,:

W (777 ) =
TF.{kx+1)
ki+TFt

w, (4.5)

The formula has the following behaviour: it returns zero for term absence, i.e. TFi = 0, 
and it increases monotonically with term frequency, but only to a certain point. The 
weight increase is adjustable by the tuning constant k{: if k{ = 0, no account of TFi is 
taken, whereas a high value for ki results in the linear increase of weight with TFi. 
The most effective value was experimentally determined to be from 1.2 to 2 [Sparck 
Jones98]. From this evidence the authors infer that TFi has a non-linear effect on 
performance, i.e. after a certain point, taking account of more term occurrences 
contributes very little.

Inclusion of term frequency into weight estimation in turn requires a mechanism to 
equally handle documents of different lengths. To develop document normalisation

57



function Robertson and Sparck Jones made a simple assumption that “where there are 
two documents about the same topic but of different lengths, this is just because the 
longer is more wordy” [Sparck Jones98, p.25]. The normalisation factor they 
suggested can be tuned using the constant b to vary the strength of the above 
assumption:

NF = ((1 -  b) + (4-6)
AVDL

where DL is document length
AVDL is average document length 
b is a tuning constant

If b is set to 1, the formula will normalise document length on the above assumption, 
i.e. that longer documents are simply more verbose. Whereas smaller values will 
reward longer documents on the premise that their length is not entirely due to higher 
verbosity, but to a greater topic development. Experimental evidence suggests an 
optimum value of 0.75 for b [Sparck Jones98].

Inclusion of the document normalisation factor (4.6) into function (4.5) leads to the 
following formula:

W(TFi) =
77-(/:,+!)

*((1 -b )  + b
DL

AVDL

- w,.
) + TFi

(4.7)

The function (4.7) can be instantiated either with, or without relevance information. 
The function where w,- is CFW formula (4.3), i.e. without relevance information, is 
known as Combined Weight (CW). The function with RW (4.4) as w, is known as 
Combined Iterative Weight (CIW).

There have also been developed variations of function (4.7) to take account of query 
term frequency for long queries: query adjusted combined weight (QACW):

QACW = CW * QTF (4-8)

and query adjusted combined iterative weight (QACIW):

QACIW = CIW * QTF (4-9)

where in both formulas QTF is query term frequency.
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4.1.2 Relevance feedback

The mechanism for reweighting/reformulating the original query by means of the 
terms in the retrieved relevant documents is known as relevance feedback. Since first 
suggested by [Rocchio65], the idea of reformulating the query by adding selected 
terms from the relevant documents is widely considered to be more effective than 
reweighting the original terms alone.

In the Robertson & Sparck Jones probabilistic model, relevance feedback is 
implemented through selection of terms from the relevant documents as candidates 
for the new expanded query. Robertson and Sparck Jones emphasise the selective 
approach to query expansion, as opposed to an alternative strategy of massive query 
expansion, advocated by some research groups, e.g. SMART [Buckley95], where any 
term is added to the query, for which there is some positive/negative evidence of 
usefulness. Robertson and Sparck Jones argue that selection is useful, since it makes 
possible adapting query expansion to the environment conditions of the search, i.e. 
varying the number of added terms according to the size of the original query. The 
size of the expanded query is, therefore, predictable, and not affected by the size of 
the relevant documents, which, if massive expansion is used, can yield a very large 
number of terms.

They suggest ranking terms in the relevant documents and applying a threshold for 
term selection, which varies with the size of the original query. The ranking function 
used for term selection should be different from the function used for term weighting. 
Robertson and Sparck Jones argue that the question answered by relevance weight:

Ql: “How much evidence does the presence of this term provide for the
relevance of this document?”

is different from the question that should be answered by the term selection value 
(TSV):

Q2: “How much will adding this term to the request benefit the overall
performance of the search formulation?” [Sparck Jones98, p.30]

The term selection value should, therefore, reward those terms which are likely to 
have a strong impact on bringing relevant documents to the top of the ranked list, and 
not those, which though being good relevance indicators for one document are unable 
to contribute more because they are too infrequent. To achieve this kind of term 
selection Robertson [Robertson90] derived the following term selection formula, 
known as offer weight (OW):

OW = rRW (4.10)

Terms selected by OW are then weighted using the term weighting function.

A set of Okapi experiments on TREC data [Sparck Jones98], aimed at identifying the 
size of the optimum query expansion set for different length types of original queries, 
established that the following sizes work reliably well: 32 terms for long queries (title, 
description and narrative fields of TREC topics), 24 for medium (title and description) 
and 16 for very short queries (title field only). The experiments also suggested that 
small changes in the sizes of expansion sets did not affect performance.
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Another question put forward by Robertson et al. is whether original query terms 
should be rewarded by the term selection value. They conducted experiments, which 
emphasised original query terms by assuming the existence of 20 hypothetical 
documents, with each query term occurring in 19 of them. The results showed no 
performance improvement from rewarding original query terms.

A query expansion strategy related to relevance feedback, and which was extensively 
tested with Okapi, is blind query expansion. Instead of known relevant documents, it 
uses documents assumed to be relevant through the information implied by their 
ranking position in the initial ranked set. The documents for query expansion are 
taken from the top of the ranked set and terms are selected from them on the same 
principle as for relevance feedback described above. Okapi experiments showed that 
blind feedback, though not always as good as relevance feedback, can be better than 
no query expansion.

4.2 Term independence assumptions

There are three fundamental assumptions commonly underlying probabilistic retrieval 
theories:

II: Terms occur independently within the whole collection.

P(A,B) = P(A)P(B)

12: Terms occur independently within the set of relevant documents.

P(A,B\R) = P(A\R)P(B\R)

13: Terms occur independently within the set of nonrelevant documents. 

P(A,B\R) = P(A\R)P(B\R)

Robertson and Sparck Jones [Robertson76] preferred assumptions 12 and 13 over II 
and 12, since the latter contradict each other, as was recognised by the authors, and 
later demonstrated by [Cooper90]. Because of 12 and 13 assumptions, the model 
developed by Robertson and Sparck Jones became known as binary independence 
model.

Though independence within relevant and non-relevant documents is a less stringent 
assumption than independence within the whole collection, it is still an 
oversimplification of the data known about the real word behaviour in texts. 
Independence assumptions are needed however for the following benefits they bring 
[Sparck Jones98]:

-  They simplify the task of model development;
-  Model instantiation as an operable system is made possible;
-  They result in performance improvements over simple term matching.
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However it has been argued [Sparck Jones98] that estimation of all term dependencies 
may not be needed under the model, since the assumptions it is built on -  12 and 13 -  
imply term dependencies within the whole collection. Specifically, if it is known that 
two terms occur more often in relevant documents than in non-relevant, then they can 
be considered to have some degree of dependency in the whole collection.

Cooper [Cooper90] suggested a weaker assumption, which he called linked 
dependence assumption (14):

P(A,B\R) = P(A\R) P(B\R)
1 P(A ,B\R ) P(A\R) P(B\R)

This assumption associates the relevance-implied dependency between A and B with 
the nonrelevance-implied dependency. As Cooper argued this is not an independence 
assumption, but assumption of linked dependencies. What important is that it leads to 
exactly the same equation as that of binary independence model.

All this leads to the conclusion that the binary independence model already accounts 
to some extent for relevance-implied document-level term dependencies. In the early 
days after the appearance of Robertson & Sparck Jones model, there have been many 
formal/less formal attempts to compensate for independence assumptions in 
probabilistic retrieval [e.g., Van Rijsbergen77, Harper78, Smeaton83] (see section 
3.3.1), which hardly led to any significant or consistent improvements. Cooper argues 
that present cooling of interest to such modifications is due to the wider recognition of 
the above-described implied dependencies. Moreover, he hypothesises that document- 
level co-occurrence data may not in itself be an important factor in retrieval 
performance [Cooper90],

If no term independence was assumed, the implementation of such model as a
working system would be unrealistic, since the probabilities would need to be
estimated for every possible combination of terms in the documents.
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5. Collocation analysis in this project

5.1 Research question

The basic research question of the project is whether the use of long-span collocates 
of query terms can improve performance of the probabilistic model. We aimed to 
answer this research question by investigating different ways of integrating 
collocation information with the probabilistic model. Over the course of the project 
four main hypotheses were examined and tested.

Initially we hypothesised that query expansion with collocates of query terms, 
extracted globally, i.e. from the entire corpus, can lead to performance improvement. 
Formal hypothesis statement is as follows:

Hypothesis 1: Expansion of the initial query with statistically significant
global collocates of query terms results in significant 
performance improvement over the initial query evaluated 
under the same conditions.

Experiments to explore and test the first hypothesis formed the first experiment set: 
global collocation analysis. The detailed description of these experiments, their 
methodologies and results are given in chapter 6. The results of the exploration of 
global collocations and their contribution to retrieval performance through query 
expansion, led us to the study of a related technique -  the use of local collocations, i.e. 
collocates of query terms extracted from relevant documents only. This technique was 
called local collocation analysis. The aim of this study was to explore query 
expansion with local collocates of query terms following relevance feedback, and to 
compare it to the existing Okapi query expansion technique. We hypothesised that 
query expansion with local collocates can perform better than Okapi query expansion.

Hypothesis 2: Expansion of the initial query with statistically significant local
collocates following relevance feedback results in significant 
performance improvement over Okapi relevance feedback 
under the same conditions.

We explored this hypothesis in the second experiment set: local collocation analysis, 
described in chapter 7.

From the study of collocates of query terms in two different scenarios: global and 
local collocation analysis, we moved on to the investigation of another parameter: 
lexical cohesion between query terms, estimated through their local collocates. 
Initially we hypothesised that relevant documents tend to have a higher level of 
lexical cohesion between query terms than non-relevant documents. This hypothesis 
was based on the following premise: query terms are used together to describe the 
topic the user is interested in, hence in a relevant document, i.e. containing this topic, 
the query terms are likely to be also used to describe the relevant topic. If terms occur 
in the same topic, they tend to cohere with each other and have similar collocation
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We aimed to explore whether the level of lexical cohesion between query terms in a 
document can be linked to the document’s relevance property, and if so, whether it 
can be used to predict the document’s relevance to the query.

Initially we formulated a hypothesis to investigate whether there is any statistically 
significant relation between two document properties -  its relevance to a query and 
lexical cohesion between query terms occurring in it.

environments. In a non-relevant document, the occurrence of these query terms is not
motivated by the presence of a relevant topic, but due to other factors, therefore they
are less likely to occur in the same semantic context.

Hypothesis 3: There exists statistically significant association between the
level of lexical cohesion of the query terms in documents and 
relevance.

We conducted a series of statistical analyses, which formed the first half of the third 
set of experiments: lexical cohesion analysis using local collocations (Chapter 8). 
Statistical dependency, discovered between documents’ lexical cohesion scores and 
their relevance property, suggested the next step: retrieval evaluation of the usefulness 
of lexical cohesion in predicting documents’ relevance. We hypotheised that re-
ranking the initial Okapi document sets by the documents’ lexical cohesion scores can 
yield better performance results than the initial Okapi ranking. Formal statement of 
this hypothesis is:

Hypothesis 4: Re-ranking of Okapi document sets by lexical cohesion scores
results in significant performance improvement over initial 
Okapi ranking.

Retrieval experiments exploring this hypothesis formed the second half of the third set 
of experiments, also presented in chapter 8.

5.2 Overview of the experiments

Any IR system is a very complex mechanism, whose performance is a result of 
interplay of a multitude of variables. Some of these variables are characteristics of the 
core of the system -  its indexing and retrieval mechanisms. Others are determined by 
the environment, the system operates in: the documents, the users, their requests, type 
of their interaction with the system, etc. The scope of our research is the core of the 
system, specifically its retrieval mechanism. By hypothesising that introducing certain 
changes into the retrieval system will improve its performance, we aim to understand 
how each of these changes affects the dependent variables of the system.

The two types of experimental environments -  laboratory and operational -  offer 
different conditions for variable testing. In the laboratory environment, it is easier to 
maintain control over all system variables, while testing the effect of one variable on 
the dependant variables. The same experimental conditions can be replicated as many 
times as needed, facilitating a uniform comparison of different variable values. In the
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operational environment, the picture is quite different. Introduction of such 
unpredictable and changeable variable as the user makes it impossible to maintain 
control over the experimental parameters. However it is understood that the ultimate 
test of any system’s effectiveness lies in user satisfaction, and should be performed 
with real users and their genuine needs. But first it is necessary to form a sound 
understanding of the system’s internal mechanism, which is the aim of this project, 
real-life testing being outside its scope.

The work done within this project is grouped into three sets of experiments:

• I set: Global collocation analysis
• II set: Local collocation analysis
• III set: Lexical cohesion analysis using local collocations

Each set of experiments will be discussed in detail in subsequent chapters 6, 7 and 8. 
The details of methodologies specific to each of these experiments, and motivation of 
their choice will also be described in the corresponding chapters. In the following 
three subsections a concise overview of the experiment sets will be presented. This 
chapter also contains sections with the detailed description of some methodologies 
which are common to most or all of the experiments in this project.

All coding for the experiments was done by the author. Perl scripting language was 
used to write the programs. Being an interpreted language, Perl works more slowly 
than compiled languages like C or C++. But, first, because the author does not have 
C/C++ skills and, secondly, because system speed was not an issue in this project, 
Perl was used instead. Many experiments were associated with a large-scale 
processing of textual data. Perl is very suitable for text processing tasks, since it is 
well integrated with the Unix operating system and fully supports regular expressions 
and pattern matching/replacement.

The testbed for the experiments was the Okapi experimental IR system, largely 
developed at City University. It implements the Robertson-Sparck Jones probabilistic 
model, described in chapter 4. The core of Okapi is the Basic Search System (BSS), 
which implements the probabilistic retrieval mechanism. It is accessible in the form of 
the command line interface i1+, either directly to the user from Unix shell, or from 
scripts for batch processing. The author wrote Perl scripts to interact with i 1 + in batch 
mode, submitting all test queries, and receiving ranked document sets.

5.2.1 Global collocation analysis

There are two stages to these experiments. The first stage concerns itself with testing 
query expansion with global collocates. The second stage consists of statistical 
analyses of measures of collocation association -  Mutual Information (MI) and Z 
score (see sections 5.4.1 and 5.4.2 below).

The first stage of this set of experiments was directed towards testing automatic query 
expansion with global collocates of query terms. The global collocates of a term are 
all words occurring within a fixed-size window (see section 5.3) around every 
occurrence of a term in the corpus. Significance of association of these collocates with

64



the node term in question is estimated using statistical measures, in our experiments 
MI and Z statistics.

Global collocation analysis requires a pre-processing stage to extract global collocates 
of terms from the corpus. For a fully operational system that uses global collocates, a 
resource must be built, where each index term is associated with a list of its 
significant global collocates. For the purposes of testing query expansion with global 
collocates, we did not need to have lists of collocates for every indexing term. Instead 
we built a test resource only for terms from the test queries. Each query term was 
associated with all collocates from windows of 200 words around each of its 
occurrences in the collection. These collocates were then ranked separately by MI and 
Z statistics. Query expansion was tested under a range of conditions, with different 
numbers of top Mi-ranked and Z-ranked global collocates.

The second stage of the experiments consisted of a range of regression analyses of MI 
and Z measures, in order to achieve a clearer understanding of their ability to select 
relevance-discriminating terms. Starting from the assumption that the Offer Weight 
(OW) (see section 4.1.2), estimated given some relevance information, is the best 
method available in the probabilistic model for selecting good relevance- 
discriminating terms, we used regression analysis to test if it is possible to achieve 
term rankings similar to OW by using MI, Z and other term frequency data, i.e. 
without any relevance information.

5.2.2 Local collocation analysis

The second set of experiments was targeted at iterative query expansion with local 
collocates. Local collocation analysis can be used as a form of either relevance, or 
pseudo-relevance (blind) feedback. Because relevance feedback in the probabilistic 
model on the whole yields better results than blind feedback, it was decided first to 
test local collocation analysis as relevance feedback mechanism, then if it showed 
improvement over Okapi relevance feedback results, it could be tested as blind 
feedback.

In relevance feedback experiments we simulated user’s relevance judgments by using 
5 known (from TREC relevance judgments) relevant documents found among the top 
1000 Okapi ranked documents following the initial run.

Local collocates were extracted from the windows around every occurrence of the 
query terms in relevant documents. Local and global variants of Z and MI scores (see 
5.4.2) were applied for collocate ranking. Expanded queries were built from a fixed 
number of the top ranked collocates of each query term.

A method of query expansion with local collocates and Okapi relevance feedback 
terms (i.e. selected using Offer Weight function) was also tested.

Relevance feedback was evaluated with a range of values for the following variables:

-  Window size;
-  Measure of collocation significance for ranking collocates;
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-  Number of top ranked collocates used in the query;
-  Number of Okapi relevance feedback terms used in the query.

Another experiment involved deriving and testing a new collocation weighting 
measure -  Collocate Relevance Weighting (CRW). It was derived from a contingency 
table containing collocation frequency parameters, on an analogy with the 
contingency table used by Robertson & Sparck Jones for the derivation of the 
Relevance Weight (RW) function. CRW was used in term selection on the analogy to 
the use of Offer Weight (OW) in the probabilistic model. (For OW and RW see 
sections 4.1.1 and 4.1.2).

All above experiments were run within two types of experimental searching 
scenarios:

• Retrospective searching. 5 relevant documents for local collocation analysis are 
taken from the same document collection, which is then searched with the 
expanded queries;

• Predictive searching based on half collections. 5 relevant documents in the even 
half of the collection are used for the extraction of local collocates. Searching with 
the expanded queries is done on the odd half of the collection.

The expanded queries constructed in the experiments consisted of different types of 
terms. Retrieval evaluation does not give us information on how each category of 
terms contributes to performance. In order to gain a deeper insight into the influence 
each category has on performance we undertook the following analysis.

The categories of terms that could be found in the queries expanded by local 
collocates and Okapi relevance feedback terms are:

-  Collocate;
-  Collocate of 2/more query terms;
-  Collocate of 1 query term;
-  Okapi relevance feedback term;
-  Original query term;
-  Collocate of 2/more query terms and an Okapi relevance feedback term;
-  Collocate of 1 query term and an Okapi relevance feedback term;
-  Collocate and an Okapi relevance feedback term;
-  Collocate and an original query term;
-  Okapi relevance feedback term and an original query term;

The analysis was done by excluding each term in turn from each query, running this 
query and recording the difference in average precision between the complete query 
and the query without the term in question. According to this difference, the term was 
considered to improve, degrade or not affect performance. Results summed for each 
term category gave information on the level of its contribution to performance.
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5.2.3 Lexical cohesion analysis using local collocations

The broad aim of this set of experiments was to understand the relationship between 
two document properties: its lexical cohesion and relevance to a query. More 
specifically, we are interested in the lexical cohesion between different query terms in 
a document, and whether the strength of lexical cohesion can predict documents’ 
relevance. Our approach towards measuring the level of lexical cohesion between 
query terms is based on the method of lexical bonds analysis, whereby sentences are 
considered to be bonded if they have a minimal number of links between them (see 
section 2.3.3).

The aim of sentence bonds analysis, however, is different from ours. Sentence bonds 
analysis aims to identify sentences in text which are semantically related. We want to 
identify if, given the query Q = (q,, q2, q3), query terms q,, q2, q3, occurring in a 
document, are semantically related. We do this by identifying the similarity between 
their collocation environments. We build a collocation environment of query term q: 
by merging the fixed-size windows around all occurrences of this term in a document. 
Collocation environments of the query terms are then compared using two criteria:

-  The number of links they have;
-  The number of token types they share;

Using either of these two methods, for each document we get a number of links or 
types shared by two or more query terms occurring in it. A lexical cohesion score 
(LCS) is then calculated for each document.

Our next step was to test whether the lexical cohesion scores have any relation to 
documents’ relevance. We designed an experiment, wherein we compared sets of 
relevant documents with sets of non-relevant documents on the basis of their lexical 
cohesion scores.

Finally, a set of retrieval experiments was conducted, wherein we tested the use of 
local cohesion scores in document ranking. We evaluated a set of runs, in which 
documents retrieved by Okapi in the initial run were re-ranked by a linear 
combination function of LCS and Okapi document score.

5.3 Windowing technique

We define collocates of a single instance of the term in question as all words that 
occur within a fixed-length window surrounding this term. Each window is centred 
around a node term (see section 2.4.1). A node can be any word in text whose 
collocates we want to identify. In our experiments collocates were identified for query 
terms, therefore a window is defined for each instance of each query term in a set of 
relevant documents (local analysis) or corpus (global analysis).

A window is defined as a fixed number of words to the left and right of the node. 
Ideally left and right sides of the window are of equal lengths, but, as will be 
described later, in practice it is not always the case. The choice of defining windows 
by counting the number of words, instead of using natural language constructs like 
sentences and paragraphs was made, first, because the lengths of the latter are highly
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irregular, which will complicate the estimation of association strength between 
collocates. The second reason is that NL structures require more computational effort 
to delimit in text. For some corpus linguistics applications the order in which 
collocates occur in text is important, for example in machine translation, speech 
recognition, optical character recognition. Order-sensitive collocation statistics in 
such applications is necessary for making correct lexical choices in short-span lexical- 
syntactic structures. Church et al. [Church90, Church91, Church94], for example, 
were studying ordered collocations. Here, on the contrary, the order in which 
collocates occur together is unimportant, since we are interested in semantically 
related collocates that can occur anywhere within the large area surrounding the node. 
In other words, collocates of a term instance are all words that have either backward 
co-occurrence with it, i.e. occur within S word span to its left, or forward co-
occurrence, i.e. occur within S word span to the right (figure 5.1).

S words
[ V|'.: r'  ̂ : ■ ■ - • • ' - I ^ !~

S words

window

Figure 5.1. Window around node *, defined as spans of S words to the left/right of x

However, for two reasons, the windows actually used are often smaller than suggested 
by this distance. A window around term * may be truncated if either (a) it hits a 
document boundary (figure 5.2), or (b) it hits another occurrence of term x (figures
5.3 and 5.4). The latter truncation of the window is necessary to avoid duplicate 
extraction of the same word as a collocate of two instances of x when they occur near 
each other, i.e. when the distance between them is less than S words. If another 
instance of x is found after the node x, we truncate the window at this point (figure 
5.3), if another x is found before the node * we ignore the left-hand half of the 
window altogether (figure 5.4).

Figure 5.2. Window truncated by hitting the document boundary
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Figure 5.3. Right-hand half of the window truncated by hitting another occurrence of
x after the node
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Figure 5.4. Left-hand half of the window ignored when another occurrence of * is
found before the node

A decision must be made in the windowing technique regarding the size of the span 
(S) to the left/right of the node. As described in sections 2.4.2 and 3.3.2 the span sizes 
used in various projects vary widely from 1 (adjacency) to 400 words. The choice of 
the span size in collocational analysis is usually determined by which syntactical or 
semantic constructs of the NL text are under analysis, e.g. phrases, sentences, 
paragraphs, topics. Since we are interested in topical or semantic relations between 
words, the span size must be of the scale of a topic in text. A topic, as discussed in 
section 2.1.2 is a rather nebulous entity, which often cannot be indisputably delimited 
even by humans. Moreover it is not necessarily present in the form of an 
uninterrupted stretch of text, but can re-surface throughout the text, being interwoven 
with other topics. As discussed in sections 2.3.2 and 2.3.3 more complex approaches 
for topic detection have been proposed by using, for example, lexical chains. It is not 
the aim of this project to develop precise topic delimitation method for collocate 
selection, which can be rather computationally demanding, and hence not suitable for 
search-time use. Instead, a more crude and fast technique of collocate extraction from 
fixed-length windows is used, which is complemented by the second stage -  selection 
of significant collocates via statistical measures.

The initial span chosen for the global collocation analysis experiments (chapter 6) was 
100 words. This decision was motivated by the research of Beeferman et al. 
[Beeferman97] described in section 2.4.2, who established that a word’s influence on 
its environment stretches as far as several hundred words, leveling off at 400 words. 
In other words, they were able to prove that the distribution of words within several 
hundred words of the node is different from the global distribution of words in corpus.
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The factors affecting this distribution at such big distances from the node cannot be 
lexical-syntactical, but semantic and topical. In subsequent experiments on local 
collocation analysis (chapter 7) other smaller span sizes were tried: 50, 25, 15 and 10 
all of which were still sufficiently larger than short-span environment, where lexical- 
syntactic factors dominate word relations. The decision of not using span sizes larger 
than 100 was made, first, because the monotonic decay of the word distribution curve 
in Beeferman’s experiments suggests that the influence of the node weakens with the 
distance, therefore increasing the chance of noise terms. Secondly, the spans used 
would still yield a sufficiently large number of terms needed for the experiments.

Since an ideal window is symmetrical, its size is S + S + 1, where S is the span size. 
However as the observed window sizes around instances of a given term in a 
document/corpus are variable (figures 5.2, 5.3 and 5.4), we calculate the average 
window size - vx - around the term x. Average window sizes, as will be described in 
the next section, are needed to calculate collocation significance scores -  MI and Z. 
Also, as will be described later, we defined two variants of Z and MI statistics: for the 
global collocation analysis, where collocates are found for every occurrence of x in 
the collection, and for the local collocation analysis, where collocates are identified 
for the instances of x in relevant documents.

In the global method, v* is estimated by summing the observed window sizes around 
all instances of x in the corpus and dividing them by the frequency of occurrence of x 
in the corpus /(x):

v .

/ ( . V )

t w .
1 =  1

/ ( * )

(5.1)

where Wt is the observed window around zth instance of x in the corpus;
/(x) is the frequency of x in the corpus.

In the local method, v* is estimated similarly by dividing the sum of observed 
windows of x in relevant documents by / r(x) -  the frequency of x in relevant 
documents.

5.4 Choice of statistical measures of collocation significance

There exist several statistical measures for collocation selection. It is out of the scope 
of this project to evaluate all statistical measures. Instead we have chosen two 
statistics which are most commonly used in corpus linguistics [McEnery96] -  mutual 
information (MI) and Z score. Moreover, these statistics are also used together, as in 
lexical analysis research by [Church91, Church94] and in [CobuildDirect] -  a 
concordance/collocation on-line service, based on “The Bank of English” corpus.

Mutual information originated in the field of information theory [Fano61], and since 
then has been used extensively in a wide variety of applications, e.g., speech
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Z score is a statistic for hypothesis testing, i.e. for assessing whether a certain event is 
due to chance or not. When used for collocation selection, Z score tests whether the 
co-occurrence of two words is due to other factors than chance. It is very similar to a t 
score, the difference lying in the fact that Z is used with the data distributed normally. 
As will be described in more detail later, the large size of the corpus used in this 
project warrants normal distribution, hence Z score instead of t.

Both Church et al. [Church94] and Clear [Clear99] pointed out that t score and mutual 
information tend to bring to the top different kinds of collocations, t score tends to 
pick high frequency word combinations, and may have a drawback of showing 
syntactical collocations with functional words like ‘by post'. Mutual information 
highlights less frequent word combinations that are specific to both words, e.g. fixed 
phrases, some compound terms and proper names, e.g. ‘Laurens van der Post' 
(examples taken from [Clear99]). The drawback of MI is that it can reward very low- 
frequency corpus-specific collocates, that are not easily generalised across corpora.

Church et al. [Church91, Church94] used MI and t score in their study of synonymy 
and lexical substitutability. Specifically they were interested in the possibilities of 
identifying differences between near-synonyms from the patterns of their use in text,
i.e. from the regularities of their co-occurrence with other words. They argued that MI 
is a better tool for finding associations between words, while t is good for identifying 
dissimilarities in the use of near synonyms.

Church et al. [Church94] and Clear [Clear99] suggested the combined use of MI and 
t, by intersecting the results obtained by both measures and selecting collocates scored 
highly by both of them. They claim that such selection will return the most significant 
collocates. More specifically, Church et al. pointed that it will reduce the number of 
unwanted terms, that MI and t can bring up, i.e function words (t score) or very low- 
frequent words (MI).

The following two subsections will describe MI and Z measures and our modified 
formulas, some of which were originally presented in [Vechtomova2000].

recognition [Jelinek90], information retrieval (e.g. see [Van Rijsbergen77] in section
3.3.1) and various uses of corpus linguistics like lexicography [CobuildDirect], lexical
analysis, sense discrimination, and analysis of aligned corpora [McEnery96],

5.4.1 Mutual information (MI)

The mutual information score between a pair of words or any other linguistic units 
"compares the probability that the two words are used as a joint event with the 
probability that they occur individually and that their co-occurrences are simply a 
result of chance" [McEnery96, p.71 ]. The mutual information score grows with the 
increase in frequency of word co-occurrence. If two words co-occur mainly due to 
chance their mutual information score will be close to zero. If they occur 
predominantly individually, then mutual information will be a negative number.

The standard formula for calculating mutual information score is:
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I (x, y) = log2 P(x, y) (5.2)
P(x)P(y)

where P(x,y) is the probability that words x and y occur together;
P(x) and P(y) are the probabilities that x and y occur individually.

MI statistic is usually applied where term x immediately follows term y in text, e.g. as 
used in [Church91, Church94]. The probability that two words occur as a joint event 
P(x,y) is estimated as f[x,y)/N, where joint frequency - f{x,y) denotes the number of 
times that y appears immediately after x. In this thesis a different interpretation of 
f{x,y) is assumed -  as the frequency with which y occurs either sides of x within the 
maximum distance of S words (where 5 is the span size). Therefore the standard MI 
formula was modified to provide for unordered co-occurrence within a distance more 
than one word. But the most important difference from the standard MI is the 
asymmetry of our approach. Standard MI is a symmetrical measure, i.e. I(x,y) = I(y,x) 
as joint probabilities are also symmetrical: P(x,y) = P(y,x). The asymmetry of our 
approach arises due to the use of average window sizes. As described above in section 
5.3, the actual window sizes around instances of a term x are often smaller than the 
ideal window size of (S + S + 1). For this reason we use the average of all windows 
around term x -  v* to estimate the probability of occurrence of y in the windows 
around x -  Pv(x,y). However, if we were to start with y and consider the occurrences 
of x in the windows around y, we would replace vx in the formula with vy. In general 
these two are different.

The modified MI formula for the global method is:

where f(x,y) - joint frequency of x and y in the corpus;
f(x) and f(y) - frequencies of independent occurrence of x and y in the corpus; 
vx - average window size around x in the corpus;
N - corpus size.

The modified MI formula for the local method is:

f(x,y)

Iv(x, y) = log (5.3)

fr(X>y)

r  '  '  J  c

R N

(5.4)

where f r(x,y) - joint frequency of x and y in the relevant documents; 
f c(y) - frequency of y in the corpus; 
f r(x) - frequency of x in the relevant documents;
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vx(R) - average window size around x in the relevant documents;
N - corpus size;
R - size of the relevant set (in tokens).

While mutual information is useful in filtering out pairs of words whose joint 
probability of occurrence is greater than chance, it gives very limited information as 
to how far joint probability differs from chance. Very high mutual information scores 
generally indicate strong bond between two words, whereas lower scores can be 
misleading, especially with low frequencies. Therefore it is not safe to make 
assumptions about the strength of words’ association without knowing how much of 
that association is due to chance.

5.4.2 Z score

Z score is a more reliable statistic: it gives us an indication with varying degrees of 
confidence that an association is genuine by measuring the distance in standard 
deviations between the observed frequency of occurrence of y around x, and its 
expected frequency of occurrence given the null hypothesis. For a chance pair of 
words in the conditions of low word frequencies we may misleadingly get a high 
mutual information score, whereas their Z score will not be high since the variances 
of probabilities will be large.

Our approach to measuring the significance of collocations with Z score is somewhat 
similar to Church’s et al. use of a t statistic [Church91, Church94], However, there 
are three main differences:
(a) We are interested in collocations within a substantial window around the starting 

node;
(b) The argument on which the measure is based is asymmetric: it considers, given a 

word x, the probability that word y will occur within the window. (The resulting 
formula is also asymmetric, for the same reasons as those leading to the 
asymmetry of the MI formula, discussed above);

(c) Because we are dealing with collocations over a large corpus, the small-sample 
characteristics which lead to the choice of the t statistic do not apply -  we use the 
Z statistic instead.

We take as null hypothesis that the presence of x does not predict the presence or 
absence of y in the windows -  that any location in these windows is exactly as likely 
to contain y as any other location in the corpus.

In the global method the total number of locations which might contain term y 
collocated with x is vx fix). Under the null hypothesis, the probability that any given 
one of these locations contains y is f(y)/N. Thus the expected number of occurrences 
of y in these locations is the mean of a binomial distribution, v* fix) fiy)/N. Also, 
because the probability f(y)/N is in general very small, the mean square error of this 
expected value (the variance of the binomial distribution) is approximately also vxf{x) 
f(y)/N.

But we actually observe f(x,y) occurrences of y within these windows around x. 
Therefore we can calculate a normal deviate (Z score) as
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z= u.m m   (5 '5)
V N

This score can be compared with normal distribution tables in the usual way.

Under the null hypothesis as formulated above, for small samples this could be 
interpreted as a r-score with vxf{x)-l degrees of freedom. In our case this will always 
be large enough to warrant the normal approximation. However, it does flag up one 
problem: suppose fix) were only one. It would then appear that we artificially inflated 
our sample by considering a window of size 100 words (say) either side, when the 
locations we are considering all relate to a single instance of x. Our response to this 
problem is simply to avoid using the method on terms with very small frequencies 
(fix) < 30).

Church and Hanks use a different estimate for the variance, involving the co-
occurrence frequency f(x,y). Our asymmetric argument and explicit formulation of the 
null hypothesis suggest the variance based on the individual frequencies.

For the local method, we modified the above global Z function as:

> ,(« )
Local Z = ------ , ........ ....... rs

f  (y) W }
^ / rW u (^ )

where f r(x,y) - joint frequency of x and y in the relevant documents; 
f c(y) - frequency of y in the corpus; 
f r(x) - frequency of x in the relevant documents; 
vx(R) - average window size around x in the relevant documents;
N - corpus size.

According to Church et al. [Church91] the threshold of significance of association 
between two collocates measured by t score should be no less than 1.65 standard 
deviations. In our experiments we adopted the same threshold for filtering out 
insignificant associations in both global and local analyses.

5.5 Document collection and topics

5.5.1 Choice of the database

The database chosen for the experiments in this project was FT 96 from TREC Disk 
4. The collection contains news articles from the Financial Times newspaper from 
1991 to 1994 inclusive. The size of the database is 210,158 documents, 565 MB.
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The size of documents ranges from 1-2 sentences (articles of “News in brief’ type) to 
several hundred words length. However many documents are several hundred words 
long.

The choice of the database was motivated by the fact that it contains many documents 
of reasonable length, what is essential to our experiments on long-span topic related 
collocations. It is hypothesised that the use of long-span collocational methods on 
short documents is not needed, since, first, short-span documents are more likely to be 
semantically homogeneous, i.e. contain just one topic, and secondly, large window 
sizes that capture semantic relations are likely to approximate or exceed the 
boundaries of short documents, in effect leading to document-wide term analysis.

Long documents are more likely to cover more than one topic, hence terms separated 
by large distances in such documents have more chance to be semantically unrelated 
than terms within shorter distances. As it is assumed that a user’s query term more or 
less precisely describes the topic the user is interested in, the environment around the 
occurrence of this term in a document has more chance of being related to the user’s 
request, than environments of many other terms in a document. Therefore restricting 
term selection by large-size windows around query terms in long documents will 
reduce the chances of getting unwanted terms describing unrelated topics.

The reason for choosing a database from TREC collection is the availability of topics 
and relevance judgements, which were used in evaluation.

5.5.2 Indexing the database

Since the Okapi retrieval system was used in the experiments, the FT 96 collection 
was indexed as an Okapi database.

There are two indexes in FT 96 database: dn and kw. The first index -  dn (document 
number) is built from the “DOCNO” fields of database records, containing numbers 
of the documents. The second index -  kw (keyword) is built from the “TEXT” fields, 
containing the full texts of documents.

Each term in the “TEXT” fields of records before being included into the index was 
subjected to two processes:

-  Checking against the go-see-list (GSL);
-  Stemming.

The GSL file used was compiled by Steve Walker for Okapi TREC runs. In the GSL 
file there are several categories of terms, which should be handled differently from 
simple index terms. Specifically, there are four categories:

1. Phrases;
2. Stopwords;
3. Semi-stopwords;
4. Synonyms.
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-  Some proper nouns like geographical names (e.g., Las Vegas, Saudi 
Arabia);

-  Terminological expressions (e.g., global warming, genetic engineering);
-  Idioms (e.g., black Monday, fat cat);
-  Phrasal verbs (e.g., catch up, dress up).

The category of stopwords specifies terms that should be excluded from the index. 
There are 213 stopwords in the list, which are either function words (like articles and 
prepositions), or very frequent content words (e.g., go, longer, look, say, tell). 
Function words do not have lexical meaning of their own, therefore cannot be used as 
contents discriminators. Highly frequent content words have a lexical meaning, but it 
is usually a very general one. Such words can occur in virtually any context, what 
makes them incapable to act as content discriminators.

Semi-stopwords are indexed, but not used in relevance feedback. There are 107 semi- 
stopwords, which include numbers, years, some frequent content words (e.g., obtain, 
order, problem, time), names of months and days of week. Such terms could be useful 
in specific queries, therefore their exclusion from the index would limit search 
flexibility. However, due to their high frequency and multicontextual nature they are 
not likely to bring benefit to the relevance feedback process.

The fourth category contains sets of words that should be treated interchangeably in 
retrieval. Not all of them are synonyms in linguistic sense; specifically there are the 
following types of interchangeable sets of words:

-  part-of-speech variants of the same lexeme (e.g., administrative, 
administration);

-  alternative spellings (e.g., auto immune, autoimmune);
-  abbreviations and full variants (e.g., CEO, chief executive officer);
-  name of a country and nationality (e.g., Denmark, Danish, Dane);
-  synonyms (e.g., visual display unit (VDU), visual display terminal (VDT) 

or star wars, strategic defense initiative (SDI)).

In the GSL file used, there are 443 synonym sets. During indexing Okapi assigns a 
unique code to each set, for example @0012 to represent [Alps, Alpine].

It is reasonable to question whether the results of collocation analysis with and 
without using lists of phrases and synonym sets would be the same. If the system 
supported full-scale phrase indexing, then the results can be expected to be 
significantly different from the system using single-term indexing. However, here, the 
sizes of phrase and synonym lists are small compared to the overall index size of 
193,550, which leads us to assume that they are not likely to lead to significant 
differences in performance. Besides, the results of all collocation runs were compared 
to Okapi runs performed under the same conditions, what makes the comparative 
evaluations uniform.

Under the first category, word combinations which should be indexed as single index
units are specified. In total the GSL file used contained 59 phrases. They include the
following types of phrases:

76



The second process each index term undergoes is stemming. There are two stemming 
functions implemented in Okapi indexing software: weak and strong. Both are based 
on Porter’s stemming algorithms [Porter80] and differ in the degree of reducing word 
forms to stems. This is a rather crude process, which does not necessarily bring words 
to their linguistically correct root morphemes; however this is not important for the 
retrieval task.

We used strong stemming, simply because it was also used in Okapi TREC runs.

In all our experiments, the collocates extracted from the corpus (in global analysis) or 
individual documents (local analysis) were subjected to both GSL look-up and 
stemming. Therefore the collocates we analysed are handled uniformly to index 
terms: they are stemmed, stopwords in the GSL file are discarded, and some 
collocates are recorded as GSL phrases or GSL synonym set codes.

There is another effect the GSL look-up has on windowing technique. In all 
experiments windows are built around query term instances after all terms were 
looked up in GSL file, i.e. stopwords were eliminated and (possibly compound) 
members of synonym sets were changed to codes. Therefore, we build windows by 
counting these normalised terms, and not the original words in the unprocessed texts.

5.5.3 Topics

50 TREC topics 251-300 were used as queries in our experiments. We created short 
requests from the contents of title fields of the topics. Such requests correspond to the 
type of briefly formulated queries, which are frequently submitted by average users in 
practice. Below is an example of a TREC topic:

Topic title: Exportation of Industry 

Description:
Documents will report the exportation of some part of 
U.S. Industry to another country.

Narrative:
Relevant documents will identify the type of industry 
being exported, the country to which it is exported; 
and as well will reveal the number of jobs lost as a 
result of that exportation.

In our experiments, queries were composed from the contents of title fields. The 
query for the above topic would be “ exportation industry” . Long queries, for example 
in previous Okapi experiments, are composed from the contents of all fields in a topic.

The first two sets of experiments explore the use of collocates for query expansion. 
Short queries are good candidates for query expansion, as there is more scope for 
expansion, than with long queries. However, it is not obvious from previous Okapi 
experiments that they perform better after query expansion than, say, medium or long 
queries [Sparck Jones98]. Therefore other query types could be also evaluated, if 
there is evidence for any significant performance improvement for short queries.
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In the third set of experiments -  lexical cohesion analysis using local collocates -  
short queries were believed to be more suitable for the technique we developed. A 
document’s lexical cohesion score is estimated from the number of types or links 
shared by collocational environments of two or more query terms. If we compare 
collocational environments of a large number of query terms, then we are more likely 
to get a high number of topic-neutral words as shared links or types, which do not 
provide evidence that query terms are lexically coherent. In this case we would need 
to apply some statistical criteria for the selection of collocates, as in the first two 
experiment sets.

Request formulations were automatically built from the title fields of topics by 
applying the same two-stage process -  GSL look-up and stemming, as was used in 
collection indexing.
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6. Global collocation analysis experiments

6.1 Introduction

The aim of this set of experiments was to examine the hypothesis that global long- 
span collocates of query terms, used for query expansion, can lead to performance 
improvements over the initial query.

Initial stage was to prepare the necessary platform for the experiments, i.e. to build a 
resource of global collocates. Then two stages of experiments were conducted:

1. Retrieval experiments on query expansion with global collocates;
2. Statistical analysis of collocation association measures MI and Z, which 

were used for selecting collocates for query expansion.

The first stage of experiments is directly targeted at testing the above hypothesis. The 
objective was to evaluate the retrieval performance of the expanded queries and to 
compare it to the performance of the initial queries. The objective of the second 
experiment stage was to get a statistical evidence about the capability of collocation 
association measures (MI and Z) applied to global collocates, of predicting their 
usefulness as relevance-discriminating terms. The second stage is seen as a deeper 
quantitative analysis of the global collocates, which throws light on the 
interrelationship of their statistical characteristics, such as Offer Weight, MI, Z and 
collection frequency.

6.2 Construction of the database of global collocates

The first step in the construction of the database of global collocates was to create a 
corpus from FT 96 collection. FT 96 has been indexed as an Okapi database. The 
corpus was built by extracting every record from the database and parsing it using the 
Okapi parsing algorithm, consisting of GSL look-up and stemming (see section 5.5.2 
above). The corpus was recorded as a single text file, consisting of concatenated 
records. Each record, delimited with record boundaries, is represented as a sequence 
of tokens -  stems and GSL synonym codes of the original wordforms appearing in 
text. The order of tokens is the same as the order of their corresponding wordforms in 
the text of each record.

If we were to build a fully operational system supporting query expansion with global 
collocates, we would have to identify global collocates for each index term in the 
database. Since our task was laboratory evaluation of this technique, in which we used 
50 request formulations, we had to identify global collocates only for the query terms 
from these request formulations. This significantly reduced our time for building the 
global collocates database, yet did not impose any limitations on the experiments 
conducted using this collocation database.
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Request formulations were constructed from 50 TREC topics as described in section 
5.5.3. Each request formulation is represented as a list of stems and/or GSL synonym 
codes of the corresponding query terms. For convenience we will refer to stems/GSL 
codes of words in the request formulation simply as query terms.

The next step was to extract for every occurrence of every query term in the corpus all 
its collocates using the windowing technique presented in section 5.3. The window 
size set for global collocates extraction was 201 (for rationale of this decision also see 
section 5.3). For each identified collocate of a query term instance we recorded a 
collocation pair: [query term, collocate].

After all collocation pairs have been recorded, the next step was to rank collocates of 
each query term by two association measures -  MI and Z (see sections 5.4.1 and 5.4.2 
above). MI and Z scores were calculated only for those collocates which have 
individual collection frequency greater than 30 (see section 5.4.2). Terms with smaller 
frequencies were discarded from the collocation lists. For each query term two files 
were created -  one with its collocates ranked in descending order of their MI scores, 
the other -  containing collocates in descending order of their Z scores. For samples of 
MI- and Z-ranked collocation lists see Appendix A.l.

In the Mi-ranked lists, collocates with MI > 0 are considered to have association 
greater than chance. The higher the collocate’s MI score, the stronger is its association 
with the node. It was observed that on average the number of collocates with MI > 0 
is quite large for most query terms, well exceeding 100 terms. For most query terms, 
top 100 collocates ranked by MI also tended to have significant Z scores. As noted in 
section 5.4.2 we consider Z > 1.6 as significant.

In the Z-sorted list, again the number of significant collocates was quite large -  most 
query terms had more than 100 collocates with Z > 1.6. Z scores in the top of the list 
tended to be quite high, top collocates of some query terms had Z > 100. However, 
some terms in the top 100 of the Z-ranked lists had rather low MI scores (MI = 0).

The next decision to be made was whether to use a fixed number of top-ranked 
collocates in MI- and Z-ranked lists for query expansion, or collocates with scores 
above a certain threshold. The problem with the latter approach is that the scores are 
highly variable for collocates of different query terms. Top collocates of some query 
terms have, for example, Z scores well above 100 (table 6.1), others have much lower 
scores (table 6.2). MI scores have smaller variance than Z, but the values of top scores 
and the numbers of collocates with MI above a certain value are also too variable. 
This strategy would result in a huge number of collocates selected for some terms, 
and none for others. For this reason we decided to select a fixed number of top ranked 
collocates for query expansion from both MI- and Z-ranked lists. A very large margin 
of significant collocates in both MI- and Z-ranked will still exceed the fixed number 
of top collocates we need for query expansion. This means that all collocates we 
choose either from Z-, or Mi-ranked lists will have significant values of the 
corresponding statistic.
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collocate Z score
tobacco 383.515

m a r l b o r o 218.875

smoke 178.732

bat 172.081

smoker 158.420

m o r r i s 154.348

n i c o t i n 145.943

r j r 145.569

seita 136.464

@0018 118.345

filip 111.361

r o t h m a n 107.858

na b i s c o 103.962

b r a n d 102.078

bppc 88.9071

m o r r i s s 80.7002

p a c k e t 70.8662

rj 66.7835

h a b g o o d 65.9124

bunzl 64.0986

Table 6.1 Top 20 collocates of the query term cigarette (topic 257) ranked by Z score

collocate Z score
n a r v a 43.6465

c u r z o n 39.3772

seti 33.4198

e s tonia 30.8962

e s t o n i a n 30.5858

immigr 28.7626

parti 27.7749

hind u s 24.8815

c a macho 24.8815

kas h m i r i s 24.5734

v o t e r 23.8587

zoe 23.3030

k a r a j a n 23.1119

b a i r d 22.8774

h a i d e r 22.7896

@0111 21.9208

poe 21.4189

thian 21.1312

b o a r d e r 21.0979

c u l t u r 20.5486

Table 6.2 Top 20 collocates of the query term alien (topic 252) ranked by Z score
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6.3 Lexical-semantic Analysis of Collocations

To understand the tendencies MI and Z statistics show in the collocates ranking a 
comparative lexical-semantic analysis of collocations has been carried out. 
Specifically we looked into the following aspects:

• differences between MI and Z in selecting collocates for general and more 
specific terms;

• collocates of polysemantic words;
• differences between collocates and terms found in manually engineered 

term structures.

6.3.1 Differences between collocates selected with MI and Z statistics

Many top collocates ranked by Z score tend to be related to the nodes semantically 
and there is a large number of collection-independent collocates. This tendency was 
observed in collocation lists for both general and specific terms. The picture is 
distinctly different in the Mi-ranked term lists. For general terms MI tends to pick rare 
collection-dependent collocates, which are predominantly proper names, whereas for 
more specific terms the results yielded by MI statistic were resembling those of Z 
score, i.e. it selected more general conceptually associated terms. For example the 
types of significant collocates for the term acquire in Mi-ranked and Z-ranked lists 
have marked difference (table 6.3).

M l Z
N o o rd a  4 .1 9  (su rn a m e ) a c q u is it io n  141.64
H u n ts m a n  4 .1 8  (c o m p a n y  nam e) p o u n d  114.25
N e x te l 4 .1 8  (co m p a n y  na m e) s ta k e  104 .267
G a r t la n d  4 .1 4  (su rn am e ) c o m p a n y  102.65
R e v c o  4 .0 8  (co m p a n y  na m e) g ro u p  99 .77
V ig le n  4 .0 7  (co m p a n y  na m e) p u rc h a s e  84 .33
T a m p e lla  4 .0 2  (c o m p a n y  nam e) s h a re  84 .17
C in z a n o  4 .0 2  (co m p a n y  na m e) p r o f i t  66 .67
C o n s p re s s  3 .9 8  (c o m p a n y  nam e) o p e ra t io n  61 .70
C C L  3.91 (c o m p a n y  nam e) b u s in e s s  59.141

Table 6.3. Lists of top collocates for the term acquire sorted by MI and Z statistics

The table illustrates that all top Mi-ranked terms are proper names. The inspection of 
documents containing the instances of the node term together with the listed company 
names or surnames showed that their topics are all related to the idea of 
acquisition/purchase of companies by other enterprises. All listed company names and 
surnames denote parties in company acquisition transactions.

The Z-sorted list in contrast contains more general terms, of the type expected to be 
found in manually engineered term structures. They are all related to the sense of 
acquire as obtaining by means of a financial transaction. This is explained by a large 
number of economy/finance related documents in the FT 96 collection.

Another example is collocations for the synonym group @0104 (environment, 
environmental). It illustrates similar tendency of MI to select specific and rare terms 
and of Z to select higher frequency general terms (table 6.4).
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Ml Z
trib a l 5.98 w a s te  152.12
G E F  4.34  (G lob a l E nv iron m en t Facility) p o llu tio n  150.42
ec o la b e l 4 .22 e m is s io n  146 .35
L a lo n d e 4 .1 7  (B. La londe , E nv iron m en t M in is te r, F rance) re c y c le  131 .15
V O C  4.15  (V o la tile  O rgan ic  C om pounds) e n e rg y  101.45
M ea n a  4 .1 4  (R ipa  di M eana . EC E nv iron m en t C o m m iss io n e r! c a rb o n  100 .39
T o p fe r 4 .1 3  (C .T op fe r, E nv iron m en t M in is te r, G erm any) w a te r  95 .49
C P R E  4 .1 3  (T he  C o un c il fo r the  P ro tec tion  of R ura l E ng land) p o llu te  93 .37
R ip a  4.11 (R ipa  d i M eana) d io x id e  92 .26
D S D  4 .0 3  (D u a le s  S ystem  D eu tsch land  - sche m e  ad op te d  by G u m m e r 86 .27  (R .G um m er, the
co m p a n ie s  In G e rm a n y  to  reco ve r w as te  from  h o use ho lds  and reuse M in is te r o f A g ricu ltu re )
th e  raw  m a te ria ls ) fo re s t 86 .10
U N E P  4.01 (U N  E n v iron m en t P rog ram m e) G re e n p e a c e  84 .20
d e fo re s t 4 .00
LR B  3.98 (Lo nd on  R e s idu a ry  B ody)

c le an  up  79 .43

Table 6.4. Lists of top collocates for the synonym group @0104 (environment, 
environmental) sorted by MI and Z statistics

Here Mi-sorted list is also dominated by low-frequency collocates, most of which are 
proper names, specific to this particular collection. All of them, as evident from the 
comments, are topically related to the sense of the term environment as:

the complex of physical, chemical, and biotic factors (as climate, soil, 
and living things) that act upon an organism or an ecological 
community and ultimately determine its form and survival

Z score highlights more general terms with higher collection frequency for the above 
sense of the node. Many of these terms, as seen from the table, are conceptually 
related to this sense and could be considered key terms in the textual topics about 
environmental protection issues.

Similar pattern is evident in the collocation lists for the term education (table 6.5).
Ml Z

O fs ted  (The O ffice  fo r S tan da rd s  in E duca tion ) 5 .00365  
G N V Q  (G ene ra l N a tiona l V oca tion a l Q ua lifica tions ) 4 .9 852 5  
B latch  (La dy  B la tch , scho o ls  m in is te r) 4 .9 118 8  
N a tfh e  (T he  U n ive rs ity  and C o lle ge  Le c tu re rs ’ U n ion ) 4 .8 537 0  
G ru c h y  (N ige l de  G ruchy, ge ne ra l se c re ta ry  of the  N a tiona l 
A sso c ia tio n  o f S ch o o lm a s te rs /U n io n  of W om en  T e a ch e rs ) 4 .7 981 9  
G C S E  4 .7 928 9
E d u c a tio n a lis t/e d u c a tio n a lly  4 .7 848 3  
tru a n c y  4 .7 6 4 9 6  
A -lev e l 4 .7 280 6
N a s u w t (N a tiona l A ssoc ia tio n  o f S cho o lm as te rs /U n ion  o f W om en  
T e a ch e rs ) 4 .7 1 9 5 2

sc h o o l 3 5 1 .41 3  
te a c h e r  22 0 .43 8  
s tu d e n t 169.629  
p u p il 155 .444  
c u rr ic u lu m  155 .220  
u n iv e rs ity  147 .055  
c o lle g e  144 .692  
A -le v e l 141 .422  
v o c a tio n  130 .109  
P atte n  (C h ris to p h e r P atten , 
ch a irm a n , C o n se rva tive  pa rty ) 
12 0 .88 5

Table 6.5. Lists of top collocates for the term education sorted by MI and Z statistics

In contrast to the previous examples of general terms, specific terms have a different 
distribution of MI and Z significance scores, with more overlap between the top 
collocates. Typical examples are collocation lists of the terms nitrogen (table 6.6) and 
gene (table 6.7). *

* the definition is taken from Merriam-Webster Online Dictionary (http://www.m-w.com)
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Ml Z
N O x* (n itro ge n  ox ide s) 9 .2 698 4 o x id e * 200 .956
m o n o x id e * 9 .24756 e m is s io n  181.221
p artic u la te * 9 .2 025 3 m o n o x id e* 168 .745
s u p e rc o n d u c to r* 9 .18177 p articu la te * 162 .550
leg u m e 8 .68129 d io x id e  154.997
g as ifica tio n  8.65821 N O x* 154 .909
urea  8 .5 651 0 s u lp h u r 152.579
a m m o n ia * 8 .2 431 7 s u p e rc o n d u c to r* 11 5 .374
a u to c a ta ly s t 8 .17606 ca rb o n  111.171
s u p e rc o n d u c t(in g /iv ity ) 8 .1 119 3 d iese l 102.248
s o o t 8 .0 505 3 p o llu tio n  102.000
o x id e * 7.99091 fe r tilis e r  94 .1899
co -g e n e ra tio n  7 .90757 h yd ro ca rb o n  89 .7 9 6 4
p h o s p h o r 7 .90368 p o llu te  89 .7602
n itra te * 7 .85498 n itra te * 84 .3515
lo lly  7 .81349 am m onia* 81.3761

Table 6.6. Lists of top collocates for the term nitrogen sorted by MI and Z statistics
(* terms are top ranked in both lists)

Ml Z
g e n o m e * 9.11 g e n e tic * 426 .08
P C R  8 .8 6  (po lym era se  cha in  reaction ) D N A * 261 .99
tra n s g e n ic * 8 .79 g e n o m e * 187.77
N IH * 8 .7 7  (N a tiona l Ins titu te  o f H ealth ) th e ra p y  165.13
V e n te r 8.77  (C ra ig  V en te r, o n e  o f A m e rica ’s lead ing p ro te in  156.88
ge ne  rese a rch e rs ) ce ll 145.23
fib ro s is * 8 .77 fib ro s is * 144.57
c y s tic * 8 .77 c y s tic * 144.57
c h ro m o s o m e * 8 .68 tra n s g e n ic * 132 .89
D N A * 8.65 c h ro m o s o m e * 131 .04
L o c kh art 8 .6 0  (G ene  Lockha rt) 
g e n e tic * 4.39

N IH * 123.71 (N a tion a l Ins titu te  o f H ea lth )

Table 6.7. Lists of top collocates for the term gene sorted by MI and Z statistics 
(* terms are top ranked in both lists)

As it can be seen from the two above tables, 7 out of 11 top collocates of the term 
nitrogen and 8 out of 11 collocates of the term gene occur in both MI and Z lists. The 
majority of collocates in MI and Z lists of both nodes represent domain-independent 
semantic associations. The tendency of MI to give high scores to low-frequency 
collocates like proper names applies, though to a less extent, to specific terms too (as 
evident from table 6.7). Selection of low-frequency associations has, however, its 
downside. One of the collocates picked by MI for the term gene -  Lockhart -  is a 
surname of a person whose first name is ‘Gene Although words gene and lockhart 
co-occur in the collection only nine times, the term gene is very specific to lockhart, 
i.e. the latter term has a very distinct pattern of co-occurrence with the former among 
its collocates. Z also ranked lockhart high, but its position is relatively low compared 
to the position in the Mi-ranked list.

6.3.2 Collocates of polysemantic words

The example mentioned in the previous passage spotlights a significant problem of 
automatic term extraction, namely, multiple word senses. Statistical methods of
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collocate extraction do not provide for word sense disambiguation, therefore both MI- 
and Z-ranked collocation lists for polysemantic query terms can feature collocates 
related to different word senses of these terms. Collocates of the term pyramid 
provide a good illustration of the co-occurrence patterns of polysemantic words (table 
6.8) .

Ml Z
A m w a y ’ 9 .2 4  (the  nam e o f th e  py ra m id  se lling M M M 1 184.46
sche m e) C a rita s 1 156.58
C a rita s  9 .0 6  (the nam e o f th e  R o m an ian  pyram id M a v ro d i1 143.59
sche m e) A m w a y 1 125.19
M a v ro d i1 8 .9 7  (su rn am e  o f th e  he ad  o f th e  R ussian L o u vre2'2 122.75
py ra m id  c o m p a n y  M M M ) A lc h e m y 1 88 .09
C lu j1 8 .6 3  (h o m e to w n  o f C a ritas ) C lu j1 84.28
M M M 1 8 .32  (the  na m e  o f the  R u ss ian  pyra m id P ro je t2 2 71 .98
com p an y) L uxor2 1 50 .94
P ro je t2 2 8 .1 7  (G rand s  P ro je ts) E g yp t2 1 50.31
A lc h e m y 1 8 .1 2  (the nam e o f th e  py ra m id  com pany)
L o u v re 2 2 7 .8 4
A n g k o r2 1 7 .79
T y z a c k 1 7 .7 5  (su rn a m e  o f th e  head  o f a  pyram id
se llin g  sche m e)

Table 6.8. Lists of top collocates for the term pyramid sorted by MI and Z statistics

The collocates listed in table 6.8 refer to the following senses of the word pyramid:
1. financial scheme or company
2. architectural construction (2.1. Egyptian pyramids; 2.2. Glass pyramids in 

Louvre courtyard)
Because many documents in the FT 96 collection are financial and business 
newsarticles, the predominant number of significant collocates refer to the first sense 
of the word pyramid -  financial scheme or company.

6.3.3 Comparison of collocates with terms from engineered term networks

Comparison of statistically formed collocation lists with engineered term structures -  
thesauri and lexical networks -  showed a rather insignificant overlap of terms. We 
compared MI- and Z-ranked collocation lists with WordNet term relations and 
INSPEC thesaurus entries. For a brief description of WordNet see section 3.1.1 earlier 
in this thesis. WordNet contains general lexicon of the language, INSPEC thesaurus, 
however, is limited to the physics domain. In our analysis we had to select only those 
terms which are present in both INSPEC and WordNet.

First we analysed a polysemantic word pressure. All top collocates of pressure in 
both MI and Z lists (table 6.9) are related to either of its two general lexicon senses:

1. pressure - a force that compels;
2. pressure - imperativeness, insistence, press (the state of urgently demanding 

notice or attention) .

' •21,2 2 collocates related to the corresponding senses of the term p y r a m id  
definitions are taken from WordNet
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Ml Z
P W R  3.28301 ra te  111 .394
ID O  2 .9 4 3 5 2 in fla tio n a ry  95 .2 3 3 5
b lo c k e r 2 .7 6 1 4 8 in fla tio n  76 .6 9 1 2
In fla tio n a ry  2 .6 5 7 9 7 B u n d e s b a n k  73 .6 8 5 2
V V E R  2 .6 280 2 u n d er 71 .3 4 5 0
E A P  2 .6 101 0 E R M  66 .2900
U A C  2 .5 7 0 5 7 d m ark  65 .5 7 2 0
V O C  2.55431 cu rre n c y  60 .1 1 0 4
n o n ft 2 .5 4 5 5 6 cu t 59 .3700
m ic ro m a c h in e  2 .5 4 5 5 6 p rice  5 4 .834 6

Table 6.9. Lists of top collocates for the term pressure sorted by MI and Z statistics

S e n s e  1 S e n s e  2
S y n o n y m s
fo rce Im pe ra tiven ess , in s is te n ce , p ress

u rgency
C o o rd in a te  te rm s  (te rm s  w ith  th e  com m on hypernym )
fo rce u rgency
du ress hurry, haste
life b lo od critica lity , c rit ica ln e ss , c ru c ia lity
w h ee ls
H y p e rn vm s
fo rce u rgency
in flu e n ce necess ity
po w e r, p o w e rfu ln e ss , po te n cy need, de m an d
qu a lity con d ition , s ta tus
a ttribu te sta te
a b s tra c tion

Table 6.10. Terms related to the above two senses of the term pressure in WordNet

There are no terms in common with either INSPEC, or WordNet. The most striking 
fact about the selected collocates (table 6.9) is that most of them belong to the subject 
domain of economy/finance, as was already noted for some other general terms in 
previous sections. Since INSPEC contains terms in the physics domain, the lack of 
any common terms with the collocation lists is self-explanatory. As for the lack of 
common terms with WordNet, one of the reasons is that WordNet contains a very 
restricted set of relations -  synonymy, hyponymy, meronymy and antonymy (table 
6.10). The majority of collocates do not fit into these categories. They are related to 
the node situationally through a wide range of lexical-semantic relations, which are 
often difficult or impossible to classify (cf. the attempt to classify collocates by 
[Halliday76] in section 2.4.1). Moreover, engineered term networks do not contain 
proper nouns, which are common especially in MI lists.

Comparison of the collocation lists and WordNet/INSPEC entries for technical terms, 
e.g. fuel, plutonium, uranium also showed little overlap. There were no matching 
terms for the top 12 collocates of plutonium and uranium in INSPEC and 
hyponymical, holonymical and synonymical relations in WordNet. Collocates of the 
term fuel, top ranked by MI, did not have any matching terms in either INSPEC, or 
WordNet , however the top 12 collocates selected by Z score for the term fuel 
contained 1 word which matched an entire term in INSPEC and 3 words which 
matched parts of the compound terms in INSPEC or WordNet (table 6.11). This

86



highlights one more important difference between engineered term networks and 
collocates -  each term in either INSPEC, or WordNet represents a concept, therefore 
complex concepts are represented by compound terms. Collocation lists built in this 
project, in contrast, always contain single words.

C o llo c a te s  o f th e  te rm  fuel 
s e le c te d  by Z  sco re

C o m p le te ly /p a rtia lly  m a tch in g  te rm s  in IN S P E C  and 
W o rd N e t

d ie se l 156 .83 d ie se l oil (hyp on ym ) W o rd N e t
e n e rg y  138 .17 e n e rg y  re so u rce s  (b ro a d e r te rm ) IN S P E C
re a c to r 137 .04 fis s io n  re ac to r fu e l (n a rro w e r te rm ) IN S P E C
co a l 118.01 co a l (n a rro w e r te rm ) IN S P E C

co a l gas  (hyp on ym ) W o rd N e t

Table 6.11. Top terms in Z-ranked collocation list matching INSPEC and WordNet
terms related to the term fuel

6.4 Retrieval experiments

6.4.1 Experimental design

The experiments were designed to evaluate separately query expansion with Z- and 
Mi-ranked collocates. In section 6.2 the rationale was given for using a fixed number 
of top ranked collocates for query expansion, instead of setting a threshold on 
collocation scores. The general mechanism of query expansion with global collocates 
we used is to take the top n collocates of each query term ranked by one of the 
statistics, merge them together and remove duplicates. The original query terms were 
kept in the expanded query.

First it was decided to evaluate top 8 and 16 ranked collocates for each query term. If 
the results suggest any significant improvement, then other numbers of collocates 
could be considered.

Query expansion with global collocates was implemented using the Okapi system by 
creating databases of collocates in Okapi format. Four separate collocation databases 
were built:

top8-mi - top 8 Mi-ranked collocates; 
top 16-mi - top 16 Mi-ranked collocates;
top8-z - top 8 Z-ranked collocates;
topl6-z - top 16 Z-ranked collocates.

Each database contains one record for each query term. Each record has three fields: 
dn (record number), kw (node) and co (collocates). The kw field of a record contains a 
node, and the co field contains a list of its collocates.

Two indexes are created for each database: dn -  index of the record number field 
(dn), and te -  index of the node field (kw). Each record was, thus, indexed by a single 
node term in the kw field.

Okapi collocation databases serve as an intermediate layer in the existing querying 
technique. When the initial query is submitted, it is searched first against one of the



collocation databases. Each query term matches a single record by the indexable node 
term in the kw field. The contents of both kw and co fields of all found records is then 
merged together and, after removing duplicates, submitted to FT 96 Okapi database as 
the expanded query (fig.6.1). For the Perl script implementing this algorithm see 
Appendix D.1.2.

te rm  a te rm  a -  collocate 1a, te rm  a
te rm  b collocate 2a, co llocate 3a collocate  1a
te rm  c W te rm  b -  collocate 1b, Ik collocate  2a

P collocate 2b, co llocate 3b P collocate  3a
te rm  c -  collocate 1c, te rm  b
collocate 2c, collocate 3c collocate  1b

l

in itia l q u e ry co lloca tion  d a ta b a se e x p a n d e d  query

Figure 6.1. Query expansion with global collocates

The collocation database was searched using a simple unweighted search, since there 
is only one record corresponding to each query term. The expanded query was 
searched against FT 96 using weighted function bm2500 without relevance 
information, which instantiates Robertson-Sparck Jones’ Combined Weight formula 
(see section 4.1.1). The value for the tuning constant kj (section 4.1.1), controlling the 
effect of within-document frequency (FF,), was set to 1.2. Another tuning constant b, 
controlling document length normalisation, was set to 0.75. These values proved to 
work well in the previous Okapi runs.

First 1000 documents of each ranked set were evaluated using the trec_eval program 
and a file with TREC relevance judgements. Out of 50 topics (250-300), 6 topics 
(262, 270, 276, 279, 281, 296) have no relevant documents, and were ignored by 
trec_eval. For this reason all evaluation results are based on 44 topics.
We evaluated 4 query expansion runs:

top 8 Ml -  query expansion with top 8 MI collocates per query term; 
top 8 Z -  query expansion with top 8 Z collocates per query term; 
top 16 Ml -  query expansion with top 16 MI collocates per query term, 
top 16 Z -  query expansion with top 16 Z collocates per query term.

The results of expanded query runs were compared to the results of Okapi 
unexpanded weighted search with the initial queries. The search was done also with 
bm2500 with the same settings for tuning constants.

6.4.2 Analysis of results

All query expansion runs -  top 8 Ml, top 8 Z, top 16 Z and top 16 Ml -  performed 
worse than Okapi run without query expansion, as the summary of trec_eval results 
shows in table 6.12.
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no
expansion top 8 Ml top 8 Z Top 16 Ml top 16 Z

Retrieved 42686 43534 44000 44000 44000
Relevant 1583 1583 1583 1583 1583
Relevant retrieved at 1000 632 573 520 526 504
Average precision (non- 
interpolated) for all rel docs 
(averaged over queries)

0.1310 0.0432 0.0375 0.0344 0.0340

Table 6.12. Summary of retrieval results for query expansion with global collocates

The analysis of runs top 8 Ml and top 8 Z by query shows that top 8 Z improved 7 
queries, did not affect 3 and hurt 34 queries, top 8 Ml improved 3, did not affect 2 and 
hurt 39 queries.

A large difference between the performance of all expanded runs and the unexpanded 
Okapi run suggested that fine tuning of variables such as the number of query 
expansion terms will not result in significant performance improvements over Okapi 
search with initial queries. Therefore, to decide whether further retrieval experiments 
with different variable values are necessary, it was decided to gain a deeper 
understanding of the potential of collocates to retrieve relevant documents. To achieve 
this we undertook a series of statistical analyses, described in the following section.

6.5 Statistical analysis

6.5.1 Presence of global collocates in relevant documents

We decided first to find out how many collocates occur in relevant documents. We 
did this by calculating for each collocate its term selection value in the probabilistic 
model -  Offer Weight (OW), described in section 4.1.2. Offer Weight below or equal 
to zero indicates that the term has no occurrence in relevant documents. To calculate 
OW scores of collocates, first their Relevance Weights (RW) have to be determined. 
We used the Okapi term weighting operation, which implements RW formula (section 
4.1.1). Weighting was done with complete relevance information, i.e. r; = the number 
of all relevant documents with term i for a given query, R = total number of relevant 
documents for a given query. Relevance information was obtained from TREC 
relevance judgements. Offer Weight was then calculated by multiplying RW with r,- 
(the same as for RW).

Occurrence of collocates in relevant documents was calculated for top 30 MI, top 30 
Z and top 100 Z collocates (table 6.13).
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Total number 
of collocates

Collocates with 
OW<0

Percentage of 
collocates present in 
relevant documents

Top 30 Ml collocates 4080 3750 8%
Top 30 Z collocates 4080 2589 36.5%
Top 100 Z collocates 13261 9277 30%

Table 6.13. Presence of global collocates in relevant documents

We then conducted a correlation analysis between MI and OW on the top 100 MI 
collocates, and Z and OW on the top 100 Z collocates. It was then decided that a more 
suitable statistical method for the analysis of these variables would be regression 
analysis, described in the following section.

6.5.2 Regression analysis

Offer Weight is a standard term selection value in Okapi query expansion following 
relevance feedback. Previous experiments showed that Okapi relevance feedback 
achieves significant performance improvements over unexpanded runs. Based on 
these results we assumed that Offer Weight is the best available method in the 
probabilistic model to identify good relevance-discriminating terms for query 
expansion. The higher the Offer Weight, the stronger is the term’s relevance 
discriminating capability. OW, however, is calculated when some relevance 
information is obtained. We carried out regression experiments in order to find out 
whether it is possible to predict OW from the statistical information on collocates 
available to us prior to relevance feedback.

We have the following variables characterising each collocate:

1. Ml-M I score;
2. Z -  Z score;
3. JF -  joint frequency of the collocate and the node term (f(x,y) in MI and Z 

formulae);
4. NOPOS -  number of postings (documents) containing the collocate in 

question.

Another variable -  individual term frequency -  was considered to give similar 
information as NOPOS, therefore was not used in the regression.

Multiple linear regression is a suitable technique to examine whether the above 
variables can be used to predict Offer Weight. The SPSS package was used for this 
purpose.

To explore the relationship between the independent variables above and the response 
variable OW, we first ran a regression on all four variables. All significant collocates 
(with Z > 1.6) of all query terms in 50 topics were used in the analysis. The summary 
statistics of this regression run are presented in table 6.14.
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Model R R Square Adjusted R Square Std. Error of the Estimate
1 .211(a) .045 .045 7.9502

a Predictors: (Constant) .NOPOS, Z, Ml, JF

ANOVA
Model Sum of Squares df Mean Square F Sig-

1

Repression 1915569.482 4 478892.370 7576.645 .000(a)

Residual 41011024.834 648843 63.206

Total 42926594.316 648847

a Predictors: (Constant , NOPOS, Z, Ml, JF
b Dependent Variable: OW

Coefficients

Unstandardized Coefficients t Sig.
IVodel B Std. Error

1

(Constant) .181 .018 10.153 .000
Ml -.309 .010 -30.805 .000
Z .152 .001 115.846 .000

JF 1.787E-04 .000 26.518 .000
NOPOS 1.090E-04 .000 49.193 .000

a Dependent Variable: OW

Table 6.14. Summary for regression using MI, Z, JF and NOPOS to predict OW

The significance values in the table above show that all four regression coefficients 
are significantly different from 0. Z coefficient indicates that Z is the best predictor 
variable, while negative coefficient for MI indicates that it has negative correlation 
with OW. The positive intercept value shows that this four-variable model has some 
explanatory power.

Since Z appeared to be the best predictor variable, we re-ran the regression dropping 
all other variables in turn. The following regression models were tried:

1. Z,JF, NOPOS
2. Z, JF
3. Z, NOPOS
4. Z, MI
5. Z

The statistical characteristics of these models are given in Appendix A.3.

Comparison of the squared multiple correlation (R Square) values for all models 
showed that the initial four variable model (MI, Z, JF, NOPOS) has the best 
explanatory power. It was then decided to conduct a retrieval experiment with a four- 
variable regression equation as a collocate-ranking function. The following regression 
equation was used to calculate predicted Offer Weights (PREDICTED OW) for 
collocates in the analysis:
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PREDICTED OW = .181 -  .309 * MI + .152 * Z+ 1.787E-04 * JF + 1.090E-04 * NOPOS

Collocates of each query term were then ranked by their PREDICTED OW scores. 
Since top 8 collocates per query term showed better results in the initial query 
expansion runs, than top 30, we also used top 8 PREDICTED OW-ranked collocates.

The algorithm for query expansion and the values for bm2500 tuning constants were 
the same as in the previous runs. The summary of results for this run is given in table 
6.15.

PREDICTED OW

Retrieved 44000

Relevant 1583

Relevant retrieved 554
Average precision (non-interpolated) for 
ail rel docs (averaged over queries)

0.0364

Table 6.15. Summary of retrieval results for PREDICTED OW run

The recall/precision values in the table show that PREDICTED OW performs 
similarly to top 8 Ml and top 8 Z runs.

Following these results, we conducted two more regression analyses. The first 
regression was run to predict OW on only those terms whose JF > 30. Four 
explanatory variables were used as before. The second regression was run to predict 
RW on the data consisting of both collocates and original query terms. The 
explanatory variables included four variables as before plus another variable QT 
(query term) -  a binary variable with values: 1 -  the term is a query term and 0 -  the 
term is a collocate. The characteristics of these models are given in Appendix A.3. All 
these models had weaker explanatory power than the initial four-variable model to 
predict OW. Retrieval run on the scores predicted by one of them also proved to be 
worse than PREDICTED OW run.

6.6 Concluding remarks

The hypothesis examined in this set of experiments was:

Hypothesis 1: Expansion of the initial query with statistically significant
global collocates of query terms results in significant 
performance improvement over the initial query evaluated 
under the same conditions.

The experiment results achieved do not support this hypothesis. Retrieval 
performance of the top ranked collocates was significantly worse than no query 
expansion. Regression on the statistical parameters of collocates to predict their value 
as relevance-discriminating terms showed some explanatory power, although retrieval
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Regression analysis also suggested that Z overall is a better statistic for predicting 
collocates’ relevance discriminating power, than MI. The fact that the top 30 MI 
ranked terms only occur in 8% of relevant documents, in contrast to 36.5% for top 30 
Z collocates, also suggests that Z is more suitable for ranking collocates in query 
expansion.

One conclusion was that the use of global collocates alone without any other 
information did not look promising. As mentioned earlier in this section, in view of 
such big difference in performance between expanded and unexpanded queries, fine 
tuning of different parameters, like the number of query expansion terms or ranking 
function, was not expected to lead to significant improvements.

A possible reason why global collocates performed badly was the fact that collocates 
come from the many different contexts in which query terms occur throughout the 
collection. Since the number of non-relevant documents is much larger than relevant, 
only a small proportion of these contexts occur in relevant documents and have 
anything to do with the query topic. Even occurrences of the same sense of the query 
term can be used to describe a wide variety of topics. If, for example, a term has very 
broad lexical meaning and occurs in a wide range of topics, then its significant 
collocates can relate to any of these topics, not necessarily to the one meant in the 
query. And, of course, the problem is aggravated further if the query term is 
polysemantic.

Many of the query terms we used have fairly broad lexical meanings. To a certain 
extend they narrow each other’s meaning through combined use in the query. If many 
collocates of the query terms happen to be from unrelated topics, their addition simply 
introduces more noise to the query and degrades its performance.

It was realised that some solution is needed to reduce the number of collocates from 
unwanted contexts. One direction to follow is to extract collocates not from the 
corpus, but from a limited number of documents, for which there exists some 
relevance information, implied (in the case of blind feedback) or asserted via a 
relevance judgement. The next set of experiments, described in the following chapter, 
was designed to explore this research direction.

results of collocates ranked by the best regression equation were very similar to using
Z or MI alone.
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7. Local collocation analysis experiments

7.1 Introduction

The aim of this experiment set was to examine the hypothesis that local collocation 
analysis -  query expansion with local collocates of query terms following relevance 
feedback -  can result in performance improvements over Okapi query expansion from 
relevance feedback.

The hypothesis was explored through a systematic retrieval evaluation of the local 
collocation analysis technique with different values for the following key variables:

-  Window size;
-  Measure of collocation significance for ranking collocates;
-  Number of top ranked collocates in the expanded query;
-  Number of Okapi relevance feedback terms in the expanded query.

A large number of combinations of different values for the above variables is 
possible. We did not replicate runs for every possible combination of variable values. 
Instead a more selective approach has been adopted: those runs which showed best 
results with a certain value for one variable, were replicated with a range of values for 
other variables.

The objective of this set of experiments was to evaluate the performance of the local 
collocation analysis technique with a range of variable values, and to understand how 
the performance is affected by the changes in each of these variables. The 
methodologies and results of retrieval experiments undertaken are presented in 
sections 7.2 and 7.3.

Following the retrieval evaluation experiments, a complementary study was 
conducted, which was targeted at evaluating the influence of each category of terms 
found in the expanded queries on performance. Its objective was to get a better 
understanding of each category’s contribution to performance, what was not evident 
from the main retrieval experiments. The study of query terms by category is detailed 
in section 7.4.

7.2 Query expansion with local collocates ranked by Z and MI scores

Before starting full-scale retrieval experiments on all 50 topics, we decided first to 
explore whether local collocation analysis holds any potential for performance gains 
over global collocation analysis technique and standard Okapi query expansion, and 
hence, whether it is a feasible direction to pursuit. We did this by trying out the 
technique on a single query. The results appeared to be somewhat promising and 
suggested full-scale systematic testing under a range of system parameters.

First, we conducted a series of evaluations on all topics using retrospective searching 
technique, whereby expanded queries are applied to the same set of documents (the
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whole collection), from which the documents used for query expansion were derived. 
Retrospective runs were later replicated in a less idealistic setting of predictive 
searching based on half collections. The advantage of using predictive searching is 
that it allows us to see whether expansion terms have any predictive value. In 
retrospective searching very rare collocates, occurring, say, only in the known 
relevant documents, could perform well simply because they retrieve the same 
relevant documents form which they are derived. In predictive searching it would be 
evident that such terms have no or little predictive value to retrieve new relevant 
documents.

7.2.1 Experimental design

Retrospective relevance feedback searches were run on the whole FT 96 collection. 
Relevance information for relevance feedback was obtained using the following 
method: FT 96 database was searched with the initial queries using Okapi weighted 
search -  bm2500 without relevance information. First 5 relevant documents from each 
retrieved set of 1000 documents were extracted and recorded as relevant documents to 
be used in relevance feedback runs. Information about the relevance of the documents 
in the Okapi sets was taken from TREC relevance judgements file.

To run predictive searches based on half collections, FT 96 database was divided into 
two equal halves: the odd half -  containing all records with odd internal record 
numbers (IRN), and the even half -  containing all records with even internal record 
numbers. IRN is an integer number assigned to each record in the Okapi database by 
Okapi BSS. The even half of the collection was used for deriving relevant documents. 
The expanded queries were searched against the odd half.

To obtain relevant documents for relevance feedback in predictive evaluation, the 
same technique as for retrospective experiments was used, with the relevant 
documents taken from Okapi sets retrieved from the even half of the collection 
instead of the full database.

A range of retrospective and predictive query expansion runs using local collocates 
was conducted with different values of variables, listed in section 7.1. The specific 
runs conducted will be presented in the next section 7.2.2 Analysis of results together 
with their performance results. In this section the methodology for these runs will be 
presented.

Local collocates for all runs were extracted from the relevant documents using the 
same technique, described below.

For every topic all occurrences of each query term are located in the relevant 
documents used for relevance feedback. Collocates are extracted from the windows 
around every occurrence of query terms in these documents using the windowing 
technique described in 5.3. Window size is one of the variables, whose effect on 
performance was tested in the experiments. All runs were performed with the window 
size 200. The best performing runs were replicated with other window sizes: 100, 50, 
30 and 20.
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In more detail, the algorithm for extracting local collocates of query terms (Perl 
scripts listed in Appendix D.2) consists of the following stages:

1. 5 relevant records per topic obtained for retrospective/predictive searching 
(see earlier in this section) are parsed using Okapi parsing algorithm: GSL 
look-up and stemming, the same as applied to the collection during 
indexing (see section 5.5.2). The result is a sub-corpus, consisting of 
concatenated records with marked record boundaries. Each record is 
represented as a sequence of stems and GSL codes in the original order of 
their corresponding wordforms.

2. Each query term is looked up in the sub-corpus, and for each of its 
occurrence collocates are extracted using the windowing technique 
(section 5.5).

3. Extracted collocates are recorded in a separate file for each query term.

After all local collocates of query terms are extracted from the relevant documents, 
they are ranked by the significance of their association with the node. The measures 
used for collocate ranking were Z and MI scores, specifically their global and local 
variations (described in sections 5.4.1 and 5.4.2).

The next step is the construction of the expanded query. The main questions at this 
stage are: should the original query terms be retained in the query, and how many top 
ranked collocates should be selected into the expanded query.

Original query terms were kept in the queries expanded with their local collocates. To 
ensure consistent comparison of results it was decided to keep original query terms in 
the expanded queries of Okapi relevance feedback (RE) runs as well.

It was decided to use a fixed number of top-ranked collocates for query expansion, 
instead of setting a threshold on the ranking scores. The rationale for this was the 
same as in the global collocation analysis technique (section 6.2), i.e. high variability 
of scores for collocates of different query terms.

The initial experiment on a single topic suggested that merging local collocates with 
Okapi relevance feedback (RF) terms in the expanded query can possibly lead to 
performance gains over Okapi query expansion from relevance feedback. It was 
decided to evaluate this technique on all topics with different variable settings.

The algorithm for building expanded queries from both local collocates and Okapi RF 
terms consists of the following stages:

1. Collocates are extracted from the relevant documents (as in the previous 
method of query expansion with local collocates only) and ranked by 
either global, or local Z or MI.

2. Okapi RF terms are extracted from the relevant documents and ranked by 
OW as in the standard Okapi relevance feedback.

3. Top A collocates per query term are added to the expanded query.
4. Top I Okapi RF terms are added to the expanded query.
5. Duplicates are eliminated from the expanded query.
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The numbers of Okapi RF terms added to the query were 10 and 20. We evaluated the 
combinations of different numbers of local collocates per query and 10 or 20 Okapi 
RF terms.

Expanded queries in retrospective runs were searched against FT_96 collection, and 
in predictive runs -  against the odd half of the collection. Searching was done using 
Okapi weighted function bm2500 with relevance information (the relevant documents 
used for query expansion). bm2500 with relevance information instantiates 
Robertson-Sparck Jones’ Combined Iterative Weight (CIW) formula (see section 
4.1.1). R and r values used in term weighting were the same as in the OW calculation 
above. Tuning constant kj (controlling the effect of within-document frequency) was 
set to 2 and b (controlling document length normalisation) was set to 0.75.

In all runs top 1000 documents of each ranked document set were evaluated using 
trec_eval program and a file with TREC relevance judgements.

OW was calculated for Okapi RF terms using formula 4.10 (p. 59) with r, = the
number of documents containing term i in the set of R (R < 5) -  relevant documents
used for query expansion for the topic in question.

7.2.2 Analysis of results

Retrospective evaluation

Each run will be referred to by an abbreviated name which reflects the query 
expansion method. Names for retrospective runs are preceded with the abbreviation 
‘RETRO’.

Performance of local collocation analysis runs was evaluated against Okapi relevance 
feedback (RF) runs with the same sets of relevant documents and using comparable 
numbers of Okapi RF terms for query expansion. Retrospective performance results 
of Okapi runs are presented in table 7.1. Trec_eval summaries for all retrospective 
runs are given in Appendix B.l.

Run name Query description Average
precision

RETRO UNEXPANDED Original query terms 0.1310
RETRO OK 20 20 Okapi RF terms 0.4945
RETRO OK 25 25 Okapi RF terms 0.5096
RETRO OK 30 30 Okapi RF terms 0.5184
RETRO OK 35 35 Okapi RF terms 0.5259

Table 7.1. Retrospective performance results of Okapi runs
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Expansion with Z-ranked collocates

Initially we evaluated query expansion with local collocates ranked by global Z. 
Expansion with 8 local collocates per query term, extracted from windows of size 200 
and ranked by global Z (run ‘RETRO 8 GLOBAL Z COL’ in table 7.2) turned out to be 
worse than all retrospective Okapi relevance feedback runs. Evaluation on a single 
topic suggested that merging in the expanded query 8 local collocates per query term 
ranked by global Z with 20 Okapi RF terms could lead to performance gains over 
Okapi relevance feedback. We evaluated this method on all topics, conducting a 
retrospective run ‘RETRO 8 GLOBAL Z COL + 20 OK’ The result of this run was 
similarly worse than all RETRO Okapi RF runs.

Run name Query description Average
precision

RETRO 8 GLOBAL Z 
COL

8 collocates/query term ranked by global Z (only terms 
with term frequency > 30) 0.3220

RETRO 8 GLOBAL Z 
C O L + 20 OK

8 collocates/query term ranked by global Z (only terms 
with term frequency > 30) + 20 Okapi RF terms 0.3148

Table 7.2. Retrospective performance results of query expansion runs with local
collocates ranked by global Z

We then conducted a similar run ‘RETRO 8 Z COL + 20 OK’ (top 8 collocates/query 
term from 200 window size + 20 Okapi RF terms) but this time ranking collocates by 
local Z. The performance of this run (RETRO 8 Z COL + 20 OK in table 7.3) was better 
than ‘RETRO 8 GLOBAL Z COL + 20 OK’ and some of the Okapi RF runs. The gain over 
‘RETRO 8 GLOBAL Z COL + 20 OK’ was significant -  39.4%.

As this performance result was more promising than those of collocates ranked by 
global Z, we decided to explore this technique further with different parameter values. 
Table 7.3 lists all conducted retrospective runs with collocates ranked by local Z. First 
we tried different numbers of collocates per query term without Okapi RF terms (8, 
12, 16, 21) extracted from window size 200. The table shows that average precision 
grows slowly with the increase in the number of collocates used: from 0.4758 in 
‘RETRO 8 Z COL’ to 0.5029 in ‘RETRO 21 Z COL’. There can also be observed a very 
slow growth in average precision with the decrease in the window size: from 0.4758 -  
in ‘RETRO 8 Z COL (window size 200)’ to 0.4810 -  in ‘RETRO 8 Z COL (window size 20)’.
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Run name — -~̂ _J/Vindow size 
Query --------------------------- 200 100 50 30 20

RETRO 8 Z COL 8 Z collocates/query term 0.4758 0.4720 0.4733 0.4857 0.4810
RETRO 12 Z COL 12 Z collocates/query term 0.4896
RETRO 16 Z COL 16 Z collocates/query term 0.5034
RETRO 21 Z COL 21 Z collocates/query term 0.5029
RETRO 8 Z COL + 
20 OK

8 Z collocates/query term + 
20 Okapi RF terms 0.5194 0.5230 0.5245 0.5258 0.5263

RETRO 16 Z COL 
+ 10 OK

16 Z collocates/query term 
+ 10 Okapi RF terms 0.5257

RETRO 16 Z COL 
+ 20 OK

16 Z collocates/query term 
+ 20 Okapi RF terms 0.5171 0.5264 0.5271 0.5313 0.5316

RETRO 21 Z COL 
+ 10 OK

21 Z collocates/query term 
+ 10 Okapi RF terms 0.5219

Table 7.3. Retrospective performance results (in average precision) o f query 
expansion runs with local collocates ranked by local Z

We then tried several combined runs -  combinations o f collocates and Okapi RF 
terms in the expanded queries (16 collocates + 10 Okapi terms, 16 collocates + 20 
Okapi terms, 21 collocates + 10 Okapi RF terms). Addition o f Okapi terms to 
collocates improves performance to a varied extent. For example average precision of 
‘RETRO 8 Z COL + 20 OK (200 window size)’ is 8.4% better than ‘RETRO 8 Z COL (200 
window size)’, while average precision of ‘RETRO 16 Z COL + 20 OK (200 window size)’ 
is only 2.6% better than ‘RETRO 16 Z COL (200 window size)’.

In the combined runs there cannot be seen a pattern of precision growth with the 
increase in the number of collocates, which was observed in the expansion runs with 
collocates only. The differences between combined runs are marginal, therefore they 
can be considered to be relatively unaffected by either the number o f collocates, or the 
number of Okapi RF terms within these ranges.

Next, we tested the effect o f different window sizes on performance in combined 
runs. Two runs: ‘RETRO 8 Z COL + 20 OK’ and ‘RETRO 16 Z COL + 20 OK’were 
evaluated with window sizes: 100, 50, 30 and 20. Here also, like in the runs ‘RETRO 8 
Z COL (window sizes 200-20)’ we can observe a tendency towards increase in average 
precision with the decrease in the window size. However, the difference in precision 
between the runs with different window sizes is negligible, for example run ‘RETRO 
16 Z COL + 20 OK (20 window size)’ is only 2% better than ‘RETRO 16 Z COL + 20 OK 
(200 window size)’. This suggests that window size does not have significant influence 
on performance o f combined runs.

Overall combined runs yielded similar performance results to Okapi RF runs. 
Performance gains of the best combined runs ‘RETRO 16 Z COL + 20 OK (30 window 
size)’ and ‘RETRO 16 Z COL + 20 OK (20 window size)’ over the best Okapi RF run 
‘RETRO OK 35’ are not statistically significant.
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Expansion with Mi-ranked collocates

Results of query expansion with local collocates ranked by global MI (table 7.4) are 
similar to the results of query expansion with local collocates ranked by global Z 
(table 7.2).

Run name Query description Average
precision

RETRO 8 GLOBAL Ml 
COL

8 collocates/query term ranked by global Ml (only terms 
with term frequency > 30) 0.3177

RETRO 8 GLOBAL Ml 
COL + 20 OK

8 collocates/query term ranked by global Ml (only terms 
with term frequency > 30) + 20 Okapi RF terms 0.3104

Table 7.4. Retrospective performance results of query expansion runs with local
collocates ranked by global MI

Next, we tested local MI for collocates ranking (table 7.5), which resulted in 
noticeably better performance than global MI.

Run name '—----------Window size
Query description— — __ 200 100 50 30 20

RETRO 8 Ml COL 8 Ml collocates/query term 0.4458 0.4610 0.4551 0.4690 0.4733
RETRO 12 Ml COL 12 Ml collocates/query term 0.4688
RETRO 16 Ml COL 16 Ml collocates/query term 0.4877
RETRO 21 Ml COL 21 Ml collocates/query term 0.4991
RETRO 8 Ml COL 
+ 20 OK

8 Ml collocates/query term 
+ 20 Okapi RF terms 0.5227 0.5251 0.5240 0.5249 0.5274

RETRO 16 Ml COL 
+ 10 OK

16 Ml collocates/query term 
+ 10 Okapi RF terms

0.5274 0.5260 0.5292 0.5291 0.5270

RETRO 16 Ml COL 
+ 20 OK

16 Ml collocates/query term 
+ 20 Okapi RF terms 0.5264 0.5267 0.5282 0.5301 0.5290

RETRO 21 Ml COL 
+ 10 OK

21 Ml collocates/query term 
+ 10 Okapi RF terms 0.5272

Table 7.5. Retrospective performance results (in average precision) of query 
expansion runs with local collocates ranked by local MI

Runs with different numbers of local MI collocates alone (in table 7.5) were slightly 
worse than corresponding runs with local Z collocates (in table 7.3), for example 
‘RETRO 8 Ml COL’ is 6 %  worse than ‘RETRO 8 Z COL’. The pattern of results is 
similar to Z runs: precision increases with the increase in the number of collocates -  
run ‘RETRO 21 Ml COL (200 window size)’ is 10.6% better than ‘RETRO 8 Ml COL (200 
window size)’. Also, similarly to Z runs, precision grows slowly with the decrease in 
the window size: ‘RETRO 8 Ml COL (20 window size)’ is 5% better than ‘RETRO 8 Ml 
COL (200 window size)’.

Combined runs of local MI collocates with Okapi RF terms (in table 7.5) yielded 
similar performance results to combined runs with local Z collocates and Okapi RF 
terms (in table 7.3). Similarly to Z combined runs, performance was only marginally
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affected by the numbers of added Okapi terms (10 or 20) or collocates used (8, 16 or
21). Window sizes similarly do not have noticeable effect on performance.

Predictive evaluation

Following the retrospective evaluation, the same runs were replicated using predictive 
searching based on half collections. Predictive runs presented below are marked as 
‘PRED’. Trec_eval summaries for all predictive runs are given in Appendix B.2.

Performance results of Predictive Okapi runs are presented in table 7.6.

Run name Query description Average
precision

PRED UNEXPANDED Original query terms 0.0799
PRED OK 10 10 Okapi RF terms 0.1343
PRED OK 20 20 Okapi RF terms 0.1400
PRED OK 25 25 Okapi RF terms 0.1520
PRED OK 30 30 Okapi RF terms 0.1483
PRED OK 35 35 Okapi RF terms 0.1533

Table 7.6. Predictive performance results of Okapi runs

Expansion with Z-ranked collocates

Query expansion with 8 collocates per query term ranked by global Z -  ‘PRED 8 
GLOBAL Z COL’ (in table 7.7) is worse than all Okapi RF runs. Addition of 20 Okapi 
RF terms (run ‘PRED 8 GLOBAL Z COL + 20 OK’ in table 7.7) improves performance 
drammatically -  by 28%.

Run name Query description Average
precision

PRED 8 GLOBAL Z 
COL

8 collocates/query term ranked by global Z (only terms 
with term frequency > 30) 0.0974

PRED 8 GLOBAL Z 
COL + 20 OK

8 collocates/query term ranked by global Z (only terms 
with term frequency > 30) + 20 Okapi RF terms 0.1360

Table 7.7. Predictive performance results of query expansion runs with local
collocates ranked by global Z

PRED expansion runs with local collocates ranked by local Z (runs ‘PRED 8 Z COL’, 
‘PRED 12 Z COL’, ‘PRED 16 Z COL’ and ‘PRED 21 Z COL’ in table 7.8) are not better 
than the best PRED Okapi RF run ‘PRED OK 35’(in table 7.6). Some of them show 
similar performance to Okapi runs with comparable number of terms, for example, 
run ‘PRED 8 Z COL (20 window size)’, in which the average length of queries is 15.5 
terms, has similar average precision to ‘PRED OK 20’.

The tendency of precision growth with the increase in the number of collocates in 
PRED runs expanded with collocates only (200 and 100 window sizes) is similar to 
the corresponding previous retrospective runs. For example, ‘PRED 21 Z COL (200
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window size)’ is 8.8% better than ‘PRED 8 Z COL (200 window size)’ (in table 7.8). 
However this tendency was not observed in the runs with window sizes 50, 30 and 20: 
‘PRED 21 Z COL (20 window size)’ is even slightly worse than ‘PRED 8 Z COL (20 
window size)’ . This suggests that terms from smaller window sizes, situated lower in 
the ranked list, have weaker relevance-predicting power than terms from larger 
window sizes, in the same ranking positions.

Tendency of precision increase with the decrease in the window size is not very 
consistent: while in ‘PRED 8 Z COL’ and ‘PRED 12 Z COL’ runs the difference in 
precision between 200 and 20 window sizes is 11%, in ‘PRED 16 Z COL’ and ‘PRED 
12 Z COL’ the difference is very small.

The results suggest that either increasing the number of collocates, or shortening the 
window size tends to improve precision to approximately the same extent.

Expansion with 12 collocates taken from windows of size 20 -  run ‘PRED 12 Z COL 
(20 window size)’ -  performs best among runs with collocates only.

The gain from adding 20 Okapi RF terms to collocates in the combined runs was, 
similarly to combined RETRO runs, not consistent: while ‘PRED 8 Z COL + 20 OK (100 
window size)’ is 19% better than ‘PRED 8 Z COL (100 window size)’ , ‘PRED 16 Z COL + 
20 OK (20 window size)’ is only 3% better than ‘PRED 16 Z COL (20 window size)’ (in 
table 7.8). Addition of 10 Okapi RF terms yields similar results to the corresponding 
runs with collocates only (compare ‘PRED 16 Z COL + 10 OK’ with ‘PRED 16 Z COL’ 
or ‘PRED 21 Z COL + 10 OK’ with ‘PRED 21 Z COL’ in table 7.8)

Run name ~___Window size
Query description------—_ 200 100 50 30 20

PRED 8 Z COL 8 Z collocates/query term 0.1268 0.1294 0.1302 0.1376 0.1433
PRED 12 Z COL 12 Z collocates/query term 0.1346 0.1383 0.1459 0.1401 0.1518
PRED 16 Z COL 16 Z collocates/query term 0.1386 0.1456 0.1362 0.1367 0.1432
PRED 21 Z COL 21 Z collocates/query term 0.1391 0.1480 0.1325 0.1396 0.1384
PRED 8 Z COL 
+ 20 OK

8 Z collocates/query term + 
20 Okapi RF terms 0.1536 0.1602 0.1549 0.1568 0.1553

PRED 16 Z COL 
+ 10 OK

16 Z collocates/query term 
+ 10 Okapi RF terms 0.1388

PRED 16 Z COL 
+ 20 OK

16 Z collocates/query term 
+ 20 Okapi RF terms 0.1527 0.1561 0.1495 0.1485 0.1477

PRED 21 Z COL 
+ 10 OK

21 Z collocates/query term 
+ 10 Okapi RF terms 0.1413

Table 7.8. Predictive performance results (in average precision) of query expansion 
runs with local collocates ranked by local Z

The window sizes in the combined PRED runs (similarly to RETRO) do not have a 
noticeable effect on performance.
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The best PRED run in this group is ‘PRED 8 Z COL + 20 OK (100 window size)’ with the 
average precision of 0.1602, which is slightly better than the best Okapi RF run 
‘PRED OK 35’ with the average precision of 0.1533.

Expansion with Mi-ranked collocates

Predictive expansion runs with local collocates ranked by global MI (table 7.9) are 
worse than all PRED Okapi RF runs.

Run name Query description Average
precision

PRED 8 GLOBAL Ml 
COL

8 collocates/query term ranked by global Ml (only terms 
with term frequency > 30) 0.1155

PRED 8 GLOBAL Ml 
COL + 20 OK

8 collocates/query term ranked by global Ml (only terms 
with term frequency > 30) + 20 Okapi RF terms 0.1099

Table 7.9. Predictive performance results of query expansion runs with local
collocates ranked by global MI

Predictive runs with different numbers of collocates ranked by local MI alone (in 
table 7.10) are either worse or similar to the corresponding PRED runs with local Z 
collocates (in table 7.8). For example, run ‘PRED 8 Ml COL (200 window size)’ is 20% 
worse than ‘PRED 8 Z COL (200 window size)’, while run ‘PRED 21 Ml COL (200 window 
size)’ yields the same results as ‘PRED 21 Z COL (200 window size)’.

Run name -— -— YSiindow size 
Query description" — 200 100 50 30 20

PRED 8 Ml COL 8 Ml collocates/query term 0.1006 0.0971 0.1158 0.1399 0.1371
PRED 12 Ml COL 12 Ml collocates/query term 0.1222 0.1202 0.1365 0.1435 0.1524
PRED 16 Ml COL 16 Ml collocates/query term 0.1302 0.1437 0.1341 0.1372 0.1380
PRED 21 Ml COL 21 Ml collocates/query term 0.1390 0.1440 0.1295 0.1355 0.1359
PRED 8 Ml COL 
+ 20 OK

8 Ml collocates/query term 
+ 20 Okapi RF terms

0.1455 0.1426 0.1501 0.1565 0.1528

PRED 16 Ml COL 
+ 10 OK

16 Ml collocates/query term 
+ 10 Okapi RF terms 0.1398

PRED 16 Ml COL 
+ 20 OK

16 Ml collocates/query term 
+ 20 Okapi RF terms 0.1515 0.1626 0.1522 0.1486 0.1487

PRED 21 Ml COL 
+ 10 OK

21 Ml collocates/query term 
+ 10 Okapi RF terms

0.1477

Table 7.10. Predictive performance results (in average precision) of query expansion 
runs with local collocates ranked by local MI

Precision o f PRED expansion runs with M I collocates only, taken from window sizes 
200 and 100, similarly to PRED Z runs (in table 7.8) demonstrates the tendency of 
growth with the increase in the number of collocates: 2 7 %  difference between ‘PRED 
8 Ml COL (200 window size)’ and ‘PRED 21 Ml COL (200 window size)’ . However, again 
like in PRED Z runs, this tendency is less evident in the runs with window sizes 30 
and 20.
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The best run using collocates only is (like in local Z runs) expansion with 12 
collocates taken from windows of size 20 ‘PRED 12 Ml COL (20 window size)’.

Combined runs with local MI collocates and Okapi RF terms showed similar results 
to the corresponding combined Z runs. The best run in this group is ‘PRED 16 Ml COL 
+ 20 OK (100 window size)’ with the average precision of 0.1626, which is 5.7% better 
than the average precision 0.1533 of the best PRED Okapi RF run ‘PRED OK 35’.

7.3 Collocation relevance weighting

7.3.1 Experimental design

In this experiment we derived and evaluated a new weighting function for the 
selection of collocates from relevance feedback -  Collocation Relevance Weighting 
(CRW) function. The CRW function is the adaptation of Robertson-Sparck Jones’ 
RW function (see section 4.1.1). In probabilistic model each term is weighted by RW, 
based on the relevance data about this term, which is usually represented as a 
contingency table (p. 56). The unit of data in the contingency table is a document. We 
decided that instead of counting the number of documents the term is present in, we 
can count the number of term-slots in the documents containing or not containing the 
term in question. Each term-slot is classified as belonging to either relevant, or non- 
relevant windows. By relevant windows we mean fixed-size windows around all 
occurrences of any query term in the relevant document(s). A non-relevant window 
covers all remaining term-slots in the collection. Each term-slot in either relevant, or 
non-relevant windows is classified as either containing, or not containing the term in 
question. The resulting contingency table is as following:

Positions in relevant 
windows

Positions in non- 
relevant windows

Containing the collocate c n -  c n
Not containing the collocate C - c N -  C -  n + c N - n

C N - C N

where:
c - number of occurrences of term i in the relevant windows; 
n - total number of occurrences of term i in the collection;
C - total number of term-slots in the relevant windows;
N - total length of the collection (in term-slots).

If a relevant window was set to the entire document, then we would end up with a 
method similar to the existing weighting method in the probabilistic model, but of 
course, with different numbers in the contingency table (term occurrences, instead of 
numbers of documents). What we get from our method, is the contextual information 
about term occurrence. The method rewards those terms, which occur not in any 
random part of the relevant documents, but in the windows around query terms in 
these documents.
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The CRW function (7.1) derived from our contingency table is analogous to RW 
function derived from the contingency table in the probabilistic model.

CRW = log (c + 0 .5 ) ( N- n - C  + c + 0.5) 
(C - c  + 0.5)(n -  c + 0.5)

(7.1)

We evaluated this technique in both retrospective and predictive searching scenarios 
on the same relevance information as in the previous experiments with local Z-ranked 
collocates.

The collocate extraction method is slightly different in this technique, than in the 
previous ones. In this method we define one set of windows for all query terms. If we 
were extracting collocates with our usual windowing technique (section 5.3), then we 
would come across the following problem:

Two different query terms can occur close to each other, i.e. their windows overlap, as 
shown in figure 7.1.

window 
of query 
term x

Figure 7.1. Overlapping windows of two different query terms x and y

In our usual windowing technique collocates of each query term are extracted 
independently of other query terms. Therefore, in a case like this we would record two 
collocation pairs:

x - a 
y - a

In CRW method, we identify only one set of relevant windows -  for all query terms, 
therefore, if we were using the usual windowing technique, the term-slot containing 
collocate a would be counted twice in c (number of occurrences of a term in the 
relevant windows). For this reason, we record collocates in overlapping windows of 
different query terms only once.

One possible drawback of this method is that we cannot account for closeness of a 
collocate to more than one query term.
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After all collocates are extracted, they are ranked for query expansion. On the analogy 
with the use of Offer Weight (RW * r) for the selection of terms from relevance 
feedback in the probabilistic model, we used CRW * c for collocation ranking.

To ensure consistent comparison with the previous expansion runs with MI and Z 
collocates, here the original query terms were similarly kept in the expanded queries

7.3.2 Analysis of results

CRW query expansion was evaluated using both retrospective and predictive 
searching. We tested query expansion with top 20 and 35 ranked collocates. Results 
of retrospective runs are given in table 7.11, results of predictive runs -  in table 7.12. 
More detailed trec_eval summaries for CRW runs are given in Appendix B.3.

Run name — -----__J/Vindow size 
Query description ———. 200 100 50 30

RETRO 20 CRW 20 CRW collocates per 
query (retrospective) 0.3917 0.3845

RETRO 35 CRW
35 CRW collocates per 
query (retrospective) 0.4000 0.4048

Table 7.11. Retrospective performance results (in average precision) of query 
expansion runs with local collocates ranked by CRW * c

Run name ~ ~-____Window size 
Query description ------- 200 100 50 30

PRED 20 CRW 20 CRW collocates per 
query (predictive) 0.1082 0.1228

PRED 35 CRW
35 CRW collocates per 
query (predictive) 0.1085 0.1221

Table 7.12. Predictive performance results (in average precision) of query expansion 
runs with local collocates ranked by CRW * c

Both RETRO and PRED CRW sets of runs were worse than corresponding Okapi 
runs. They did not suggest either that CRW is superior to using local Z or MI for the 
ranking of local collocates.

7.4 Evaluation of performance by categories of terms in the 
expanded query

Retrieval experiments with local collocates ranked by local measures of MI and Z 
(section 7.2 above) showed that in both retrospective and predictive evaluations 
combined queries with local Z-ranked collocates and Okapi terms, though did not 
demonstrate significant performance gains, suggested some possible tendency 
towards improving performance over Okapi RF. Because combined queries consisted 
of several categories of terms, it was interesting to see what impact on performance
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each category of terms has. The retrieval experiments did not give us such 
information. Knowing which category/ies contributes most to performance gain or 
loss, would let us adopt a more focused approach, and develop a more selective 
technique of query expansion. We could emphasize the terms of the category, which 
has evidence to contribute most to performance improvement, and remove/ 
downweight terms of the category deteriorating performance.

For analysis we chose one o f the best runs in the predictive experiments -  ‘PRED 8 Z 
COL + 20 OK (100 window size)’ . Expanded queries in such combined runs can include 
the following categories o f terms:

1. Collocate;
2. Collocate of 2 or more query terms;
3. Collocate of 1 query term;
4. Okapi relevance feedback term;
5. Original query term;
6. Collocate of 2 or more query terms and an Okapi relevance feedback (RF) 

term;
7. Collocate of 1 query term and an Okapi relevance feedback term;
8. Collocate and an Okapi relevance feedback term;
9. Collocate and an original query term;
10. Okapi relevance feedback term and an original query term.

Since we did not want original query terms to interfere with the evaluation of 
performance of categories 1, 2, 3, 4, 6, 7 and 8, we did not include them into these 
categories.
The experiment methodology consisted of the following stages.

First, each term in all expanded queries for 50 topics was tagged in the following 
format:

term <r> <a> <b> <c>

where:
r -  number of relevant documents the term occurs in; 
a -  number of original query terms the term co-occurs with [0-n]; 
b -  binary variable indicating if a term is an Okapi RF term or not [0, 1]; 
c -  binary variable indicating if a term is an original query term or not [0, 1].

The influence of each term on performance was identified by taking out the term from 
the query, running this query and recording its performance in average precision. 
Average precision of the query without the term in question was compared *o average 
precision of the complete query. If, for example, average precision of the former is 
greater, then the term is considered to degrade the performance.

The influence of each term on performance is classified as:

■ Improving;
■ Indifferent;
■ Degrading.
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After performance data for each query term is obtained, we total the number of query
terms in each term category for each performance group.

The results are summarised in tables 7.13 and 7.14 and presented as a chart in figure 
7.2.

Category Improve Indifferent Degrade Total

1. Collocate 83 181 151 415
2. Collocate of 2 or more query terms 21 62 39 122
3. Collocate of 1 query term 62 119 112 293
4. Okapi RF term 187 170 302 659
5. Original query term 84 51 25 160
6. Collocate of 2 or more query terms 
and an Okapi RF term 11 23 15 49

7. Collocate of 1 query term and an 
Okapi RF term 22 30 40 92

8. Collocate and an Okapi RF term 33 53 55 141
9. Collocate and an original term 11 1 2 14
10. Okapi RF term and an original 
query term 43 2 5 50

Table 7.13. Influence of categories of terms in the expanded queries 
‘PRED 8 Z COL + 20 OK (100 window size)’ on average precision

Term category Improve Indifferent Degrade

1. Collocate 20% 44% 36%
2. Collocate of 2 or more query terms 17% 51% 32%
3. Collocate of 1 query term 21% 41% 38%
4. Okapi RF term 28% 26% 46%
5. Original query term 52% 32% 16%
6. Collocate of 2 or more query terms 
and an Okapi RF term

22% 47% 31%

7. Collocate of 1 query term and an 
Okapi RF term 24% 33% 43%

8. Collocate and an Okapi RF term 23% 37% 40%

9. Collocate and an original term 79% 7% 14%
10. Okapi RF term and an original 
query term 86% 4% 10%

Table 7.14. Influence o f categories of terms in the expanded queries 
‘PRED 16 Z COL + 20 OK (200 window size)’ on average precision (in percentage)
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Figure 7.2. Influence of categories of terms in the expanded queries 
‘PRED 16 Z COL + 20 OK (200 window size)’ on average precision

The results, rather surprisingly, showed that either collocates, or Okapi RF terms hurt 
precision in a larger number of cases, than improve it. More Okapi RF terms 
(category 4) than collocates (category 1) improve precision, however even more of 
them hurt precision.

It was expected that collocates of more than 1 query term would be better relevance 
discriminators than collocates of 1 query term only. The results showed that fewer 
collocates of 2 or more query terms (category 2) improve precision, than any 
collocates (category 1) or collocates of 1 query term (category 3). On the other hand, 
fewer collocates of 2 or more query terms hurt precision in comparison with 
categories 1 or 3.

Terms which are both collocates and okapi terms (categories 6, 7 and 8) improve 
precision in a larger number of cases than terms of categories 1, 2 and 3. Although, 
except category 6 (collocates of 2/more query terms), they hurt precision in a larger 
number of cases either.

A category that suggested greater improvement than degradation of performance is 
category 5: Original query terms. The term’s status as an original query term plus 
either a collocate (category 9), or an Okapi RF term (category 10), indicates a much 
higher relevance discriminating ability. There is, however, a rather low number of 
terms in these categories: 14 in category 9 and 50 in category 10.

It is not clear, however, from this data to what degree terms in these categories 
improve or hurt precision. For example, a small number of terms could strongly 
improve precision, while a larger number of terms could hurt precision 
insignificantly. To test whether this could be the case, we created histograms on the 
data of differences between the precision of a complete query and the precision of a 
query without a term of the category in question (figures 7.3 -  7.9).
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Figure 7.3. Distribution of precision differences for category 1. Collocate
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The histograms show that in all categories individual contribution of the majority of 
terms to performance increase is to a very small degree. It appeared, for example, that 
in the category 10. Okapi RF term and an original query term (figure 7.9) 29 out of 
43 terms improving performance, resulted in the negligible increase of precision by 
up to 0.00001. The influence of the majority of terms on performance loss is also 
rather low.

The same analysis was done on the best run with local M I collocates -  ‘PRED 16 Ml 
COL + 20 OK (100 window size)’ . The patterns of term influence on average precision 
are similar to those of the run ‘PRED 8 Z COL + 20 OK (100 window size)’ , analysed in 
this section. Results o f the analysis of the run ‘PRED 16 Ml COL + 20 OK (100 window 
size)’ are given in Appendix B.5.
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7.5 Concluding remarks

In this set of experiments we examined the following hypothesis:

Hypothesis 2: Expansion of the initial query with statistically significant local
collocates following relevance feedback results in significant 
performance improvement over Okapi relevance feedback 
under the same conditions.
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Two types of retrieval experiments were conducted -  query expansion with local 
collocates ranked by Z or M I, and query expansion with local collocates ranked by 
CRW. Also, a study of contribution of terms to performance by categories was carried 
out.

Query expansion with local collocates ranked by local variants of M I and Z was better 
than expansion with local collocates ranked by global variants of M I and Z.

There has been observed a strong tendency in the runs with local M I/Z collocates 
taken from windows 200 and 100 o f precision growth with the increase in the number 
of collocates in the queries. This tendency weakened, however, with the decrease in 
the window sizes. This implies that collocates from smaller window sizes, ranked 
lower by M I or Z, have weaker relevance-predicting power than terms from larger 
window sizes, ranked similarly.

Another tendency, observed in M I and Z runs with 8 and 12 collocates per query 
term, consisted in precision growth with the decrease in the window sizes. It was less 
evident in the predictive runs with other numbers of collocates per query term.

An interesting fact is that precision of the lowest performing runs ‘8 Ml COL (200 
window size)’ and ‘8 Z COL (200 window size)’ can be improved in two ways: either by 
decreasing the size o f windows, or by increasing the number of collocates per query 
term. The upper limits o f both ways of precision improvement are, however, very 
similar.

The best performance among both M I and Z runs with collocates only was achieved 
by using 12 collocates from windows of size 20.

Combining of local Z collocates with Okapi RF terms for query expansion showed to 
perform reasonably well both retrospectively and predictively. Often addition of 20 
Okapi RF terms results in precision gains over the corresponding runs with collocates 
only. Combined runs suggested some improvement over Okapi relevance feedback: 
combined run ‘PRED 8 Z COL + 20 OK (100 window size)’ is 4.3% better than ‘PRED OK 
35’ and run ‘PRED 16 Ml COL + 20 OK (100 window size)’ is 5.7% better than ‘PRED OK 
35’ . Both gains are not statistically significant though.

Window size has no consistent effect on the performance of combined runs. 
Combined runs did not demonstrate the pattern o f precision growth with the increase 
in the number of collocates either.

M I on the whole turned out to perform similarly or in some cases slightly worse than 
Z. Z can be considered a somewhat better statistic than M I for the selection o f query 
expansion terms, however the difference between the performance results of M I and Z 
collocates is usually very narrow.

Query expansion with collocates ranked by our derived measure -  Collocation 
Relevance Weighting -  did not prove to be superior to either Okapi relevance 
feedback, or combined expansion with local Z/M I collocates and Okapi terms.
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Overall, the results of retrieval experiments suggested that we are gaining some 
precision increase from including both Okapi terms and local Z /M I collocates in the 
expanded queries. But, these results were not consistent enough, and precision 
increase was not substantial enough to lead to a firm  conclusion that this is a more 
efficient query expansion method than using Okapi RF terms alone.

To understand better which terms in the combined queries contribute most to 
performance growth or loss, we evaluated the influence of each category of terms on 
performance. It was hoped that such analysis would give us some distinct patterns of 
effect each term category has on performance. The only categories o f terms that 
improve precision in a larger number of cases than degrade, are those with original 
query terms. Original query terms improve precision in 52% of cases, while degrading 
it in only 16% of cases. Terms that have a status of both an original query term and a 
collocate, or an original query term and an Okapi RF term, demonstrate a significantly 
more positive influence on precision, than just original query terms.

The analysis o f degrees o f terms’ influence on precision change showed more or less 
similar degrees of positive and negative effects on performance by categories. The 
majority o f terms in the categories including original query terms, that showed more 
positive effect on performance, turned out to improve precision only marginally.

The results obtained over the course of this set of experiments could not provide 
strong support for the above hypothesis. Though some tendency towards performance 
improvement (combined runs of local Z/M I collocates and Okapi RF terms) was 
observed, no statistically significant improvement was achieved by the experimental 
runs.
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8. Lexical cohesion analysis using local collocations

8.1 Introduction

In the previous experiments we focused mainly on the use of collocates associated 
with each query term independently of others. In this experimental set we aimed to 
examine another aspect of a document’s textual characteristics, which builds on the 
relationship between all query terms occurring in it. The object of study in these 
experiments is lexical cohesion between query terms in a document, estimated 
through their local collocational environments. Specifically we were interested in 
examining the hypothesis that document’s level of lexical cohesion between query 
terms is related to its relevance property.

The rationale for this hypothesis is based on the following assumption. A relevant 
document contains the topic the user is interested in. Query terms in a relevant 
document are most likely to be used to describe the relevant topic. Words pertinent to 
the same topic tend to cohere with each other lexically and have some degree of 
similarity in their local collocational environments. In a non-relevant document query 
terms are not necessarily bound by the same topic as in relevant documents, therefore 
can occur in unrelated topics, and hence have no or little lexical cohesion.

We designed experiments to test whether sets of relevant documents have on the 
whole higher levels of lexical cohesion than sets of non-relevant documents. The 
experiments, their methodologies and results are presented in section 5.2.

Following these experiments, we explored another hypothesis -  whether lexical 
cohesion scores estimated for each document can lead to a better document ranking 
than Okapi document scores.

A set of retrieval experiments was carried out to test this hypothesis. Their 
methodology and results are presented in section 8.3.

8.2 Comparison of relevant and non-relevant sets by the level of 
lexical cohesion

8.2.1 Experimental design

Our method of estimating the level of lexical cohesion between query terms was 
influenced by Hoey’s method [Hoey91] of identifying lexical bonds between 
sentences (see section 2.3.3 earlier in the thesis). There is, however, a substantial 
difference between the aims of these two methods. Sentence bonds analysis is aimed 
at finding semantically related sentences. Our method is aimed at identifying whether 
query terms occurring in a document are semantically related, and measuring the level 
of such relatedness.
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In both methods the similarity of local context environments is compared: in our 
method -  fixed-size windows around query terms; in Hoey’s method -  sentences. A 
further difference is that Hoey’s method identifies bonds between specific sentences; 
whereas the objective of our method is to compare the contextual (collocational) 
profiles of different query terms in a document. For this reason we combine all 
windows for one query term, building a merged window for it. Each query term’s 
merged window represents its collocational environment in this document. We then 
identify the level of lexical cohesion between query terms by comparing their 
collocational environments. Each document can then be assigned a lexical cohesion 
score (LCS), based on the level of lexical cohesion between query terms occurring in 
it.

In more detail the algorithm for building merged windows for a query term is as 
follows:

Fixed-size windows are identified around every instance of a query term in a 
document. In the windowing technique we can encounter a situation, described on 
page 105 (section 7.3.1), namely -  overlapping windows of two different query terms. 
This, as already explained, does not matter when we extract collocates for each query 
term independently of other query terms. Here, we run into the following problem: let 
us assume that query terms x and y have overlapping windows and, hence, both are 
considered to collocate with term a (see figure 7.1 on page 105). If we were using our 
usual windowing technique we would add this instance of term a into the merged 
windows of both x and y. Next, when we compare these two merged windows, we 
would count this instance of a as a similar term between them. This would be wrong, 
since we refer to the same instance of a, as opposed to a genuine similarity link by 
two different instances of a. Our solution to this problem was to tag each term in a 
document with a unique number. When we extract collocates of query terms, we 
record them in the following format:

E.g. environment 15 forest
protection 15 forest

node term unique number collocate
assigned to the 

collocate

In most cases it is impossible to give preference to either of the two nodes and 
attribute the collocate to it. As we handle large-span collocates, most of them are 
related to the nodes topically, it is reasonable to assume that in most cases the 
collocate is likely to be there because it belongs to this topic, and not because it forms 
lexical-syntactic relationship with one of the nodes. For this reason, we attribute the 
collocate to one of the nodes randomly.

Two window sizes were tested: 20 and 40. These window sizes are large enough to 
capture long-span topically-related collocates. We did not use larger window sizes 
since it would increase the number of overlapping windows of different query terms. 
Random attribution of collocates to one of such query terms could be less accurate
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with very large window sizes, as such windows have more chance to transcend topic
boundaries. Thus, a collocate situated in the topic containing one query term, can be
wrongly attributed to the other query term, situated further away in a different topic.

Comparison of similarity between merged windows

After merged windows for all query terms in a document are built, the next step is to 
compare their similarity by the collocates they have in common. We do pairwise 
comparisons between query terms, using two following methods:

* Method 1: Comparison by the number of links they have;
■ Method 2: Comparison be the number of types they have in 

common.

Method 1

The first method is similar to Hoey’s technique used in identifying bonded sentences 
(see section 2.3.3). This method takes into account how many instances of common 
collocates each query term has. In figure 8.1 the first column contains collocates in 
the merged window of query term x, the second column contains collocates in the 
merged window of query term y. Lines between instances of the same collocate 
represent links.

query term x query term v

a
b
c
a
b
d

e
f
a
f
b
a

Figure 8.1. Links between instances of common collocates in merged 
windows of query terms x and y

In this example there are altogether 6 links. If there are more than 2 query terms in a 
document, a comparison of each pair of query terms is done, with the total number of 
links being recorded for the document.

A document’s lexical cohesion score calculated using method 1 will be referred to as 
LCSunks. To calculate this score we need to normalise the number of links in a 
document by the total size of all merged windows in a document. The normalised 
LCSunks score is:
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LCS links

L
V

where:
L -  the number of links in a document;
V -  the size of all merged windows in a document.

Method 2

In method 2 no account is taken of the number of common collocate instances each 
query term co-occurs with. Instead only the number of common types between each 
pair of merged windows is counted.

Comparison of merged windows in figure 8.1 will return 2 types they have in 
common: a and b. Again, if there are more than 2 query terms, a pairwise comparison 
is done. For each document we record a number of types common between at least 2 
merged windows.

A document’s lexical cohesion score estimated using this method is LCS types- It is 
calculated by normalising the number of common types by the total size of all merged 
windows in a document:

L e s t e s L
V

where:
T -  the number of types common to 2/more merged windows in a document; 
V -  the size of all merged windows in a document.

In this formula the size of merged windows in a document -  V is used as a simple 
normalisation factor on the analogy with LCSimks-

Construction of sets of relevant and non-relevant documents

To test the hypothesis that lexical cohesion between query terms in a document is 
related to a document’s property of relevance to the query, we estimated average 
lexical cohesion scores for sets of relevant and non-relevant documents.

Initially we built two sets by taking top 10 relevant and non-relevant documents from 
the top 100 Okapi-ranked documents retrieved by the initial queries for 50 topics 
using bm2500. Relevance of documents was established using TREC relevance 
judgements file. Each set contains 187 documents.

Building relevant and non-relevant sets using the above method means that relevant 
and non-relevant documents for one topic are taken from different parts of the Okapi-
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ranked list of documents. For example relevant documents could be spread throughout 
the list, in which case non-relevant documents, taken from the top of the list, will have 
higher average Okapi score than relevant documents found further down in the list. 
Also the standard deviation of Okapi scores will vary significantly between the sets. 
To ascertain that the difference between average cohesion scores in the relevant and 
non-relevant sets is not affected by the difference between average Okapi scores in 
the two sets, we should compose the sets where documents for each topic have similar 
mean and standard deviation of Okapi scores.

The procedure for selecting documents with similar Okapi scores was as follows:

First all documents in Okapi-ranked sets are marked as relevant and non-relevant 
using TREC relevance judgements file. Then each time a relevant document is found 
it is added to the relevant set and the nearest scoring non-relevant document is added 
to the non-relevant set until we select 10 documents per topic for each set. If relevant 
documents are clustered at the top of the list and the extraction of non-relevant 
documents with similar Okapi scores is impossible, we ignore these relevant 
documents and extract others further down in the list which have non-relevant 
documents around them.

After the sets are composed, the mean and standard deviation of Okapi scores are 
calculated for each topic in the relevant and non-relevant sets. If there is significant 
difference between the mean and standard deviation in the two sets for a particular 
topic, then the sets are edited by changing some documents until the difference is 
minimal.

We created two pairs of sets using this method: from the top 100 Okapi-ranked 
documents and from the top 1000 Okapi-ranked documents. In the first case each set 
comprised 178 documents, in the second - 268.

Relevant and non-relevant sets created by the first method will be referred to as non- 
aligned, while sets created by the second method will be referred to as aligned.

Comparison between corresponding relevant and non-relevant sets was done by 
average lexical cohesion score, which was calculated as:

¿LC S ,
Average LCS = l~l ^----

where:
LCSi -  lexical cohesion score of z'th document in the set. 
S -  number of documents in the set size.
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8.2.2 Analysis of results

Comparison of non-aligned relevant and non-relevant sets using the two methods 
described in the previous section showed significant differences between their average 
lexical cohesion scores (Table 8.1).

Relevant set Non-relevant set Difference between sets

Method 1 (links)
Window size 20 0.128 0.105 18%
Window size 40 0.124 0.095 23.4%
Method 2 (types)
Window size 20 0.033 0.028 15.1%
Window size 40 0.028 0.023 17.8%

Table 8.1. Difference between the non-aligned relevant and non-relevant sets 
(documents taken from the top 100 Okapi documents)

Following the results of comparison of non-aligned sets, we decided to ascertain that 
they are not affected by differences in Okapi scores. Comparison of two pairs of 
relevant and non-relevant aligned sets -  derived from 100 and 1000 Okapi ranked 
documents, also showed large difference between the sets (Tables 8.2 and 8.3). This 
proves that the difference between lexical cohesion scores of relevant and non- 
relevant documents is genuine, and not due to the differences in the documents’ 
ranking positions in Okapi ranked output.

Relevant set Non-relevant set Difference between sets

Method 1 (links)
Window size 20 0.111 0.080 27.9%
Window size 40 0.099 0.071 28.3%
Method 2 (types)
Window size 20 0.029 0.023 20.7%
Window size 40 0.023 0.018 21.7%

Table 8.2. Difference between the aligned relevant and nonrelevant sets 
(documents selected from the top 100 Okapi documents)

Relevant set Non-relevant set Difference between sets

Method 1 (links)
Window size 20 0.114 0.093 18.4%
Window size 40 0.110 0.094 14.5%
Method 2 (types)
Window size 20 0.030 0.026 13.3%
Window size 40 0.026 0.022 15.4%

Table 8.3. Difference between the aligned relevant and non-relevant sets 
(documents selected from the top 1000 Okapi documents)
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The first method of comparison by counting the number of links between merged 
windows appeared to be better than the second method of comparison by types. This 
suggests that the density of repetition of common collocates in the contextual 
environments of query terms offers some extra relevance discriminating information.

Interestingly, aligned sets of documents selected from top 100 Okapi ranked 
documents have greater difference in LCS than aligned sets selected from top 1000 
Okapi documents. One possible explanation to this is the fact that further down in the 
Okapi ranked list, documents contain fewer instances of query terms. In this case it is 
more difficult to establish similarity between collocation environments of query terms 
by using simple lexical repetition alone. We might need to take into account other 
types of repetition (see section 2.3.1) or even count links between semantically related 
words, establishing their relatedness through a thesaurus (e.g., technique developed by 
[Morris91] described in section 2.3.2). But these methods would require either more 
complex NLP processing, or the use of engineered term networks.

Another important point is the distribution of LCS scores in the sets (Appendix C.2). 
Although, the mean LCS of relevant documents is higher than the non-relevant, 
individual documents in both relevant and non-relevant sets have rather variable 
scores. For example mean LCSunks (window 20) in the relevant aligned set selected 
from top 100 Okapi documents is 0.111, and the score of the corresponding non- 
relevant set is 0.08 (see table 8.2). However, scores in both sets have similar standard 
deviation: 0.164 -  in the relevant set and 0.15 -  in the non-relevant set. This means 
that in both sets there is a large proportion of documents with the same scores. This 
can be seen from charts in Appendix C.2.

8.3 Re-ranking of document sets by lexical cohesion scores

8.3.1 Experimental design

Statistically significant difference in the average lexical cohesion scores between 
relevant and non-relevant sets, discovered in the previous experiments, prompted us 
to evaluate LCS as a document ranking function.

It was decided to conduct experiments on re-ranking the set of top 1000 Okapi- 
retrieved documents by their LCS scores.

Okapi sets were formed by using weighted search with the initial queries for 50 
topics. Bm25000 weighting function without relevance information, instantiating 
Combined Weight (CW) was used for searching. Tuning constant ki (controlling the 
effect of within-document frequency) was set to 1.2 and b (controlling document 
length normalisation) was set to 0.75.

Okapi bm2500 function outputs each document in the ranked set with its matching 
score -  MS. We decided to test re-ranking with a linear combination function 
(COMB-LCS) of MS and LCS. Tuning constant x was introduced into the function to 
regulate the effect of LCS:
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COMB-LCS = MS+ x*LCS

The following values of* were tried: 0.25, 0.5, 0.75, 1, 1.5, 3 and 30.

We conducted experiments with two types of lexical cohesion scores:

LCSunks -  calculated using method 1 of comparing query terms’ collocation 
environments (p. 119);

LCStypes -  calculated using method 2 of comparing query terms’ collocation 
environments (p. 119).

The window sizes tested were 40 and 20.

8.3.2 Analysis of results

Average precision results of re-ranking with the combined linear function of MS and 
LCS with different values for the tuning constant x are presented in table 8.4. 
Trec_eval summaries are given in Appendix C.3.

Runs with different x  values Window size 40 Window size 20

Okapi 0.1310
Method 1 (links)
0.25 0.1332 0.1348
0.5 0.1339 0.1348
0.75 0.1348 0.1336
1 0.1341 0.1337
1.5 0.1327 0.1335
3 0.1278 0.1320
30 0.0809 0.0924
Method 2 (types)
0.25 0.1310 0.1312
0.5 0.1309 0.1313
0.75 0.1311 0.1313
1 0.1320 0.1318
1.5 0.1314 0.1318
3 0.1308 0.1316
30 0.1175 0.1241

Table 8.4. Results (in average precision) of re-ranking Okapi document sets
by COMB-LCS

The results show that there is no or negligible gain from using LCS in ranking over 
Okapi. One possible reason for this could be sought in the fact that LCS scores in the 
relevant/non-relevant sets, compared in the previous experiment, were highly variable 
(see Appendix C.2). As mentioned in section 8.2.2, a high proportion of documents in 
both relevant and non-relevant sets have similarly high or low LCS scores. Another 
possible reason for no or little gain from LCS is the fact that for a large number of 
relevant documents no links or common types could be identified (see Appendix C.2). 
We assume that with our method of comparing lexical environments of query terms
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through repetition of their collocates, only a certain proportion of lexical links is 
determined. For a fuller analysis other phenomena forming lexical cohesion could be 
considered.

8.4 Concluding remarks

In this set of experiments we explored the property of lexical cohesion between query 
terms in documents, if it is related to relevance, and whether it can be used to predict 
relevance in document ranking. Two hypotheses were put forward. The first 
hypothesis we studied was:

Hypothesis 3: There exists statistically significant association between the
level of lexical cohesion of the query terms in documents and 
relevance.

We conducted experiments (section 8.2) by building sets of relevant and non-relevant 
documents, calculating their lexical cohesion scores and comparing the averages of 
these scores. The experiments showed that there exists a statistically significant 
difference between average LCS of relevant and non-relevant documents. They also 
proved that this difference is genuine, and not due to the difference in the documents’ 
positions in Okapi-ranked lists.

The experimental results provided support for hypothesis 3, giving evidence that there 
exists a statistically significant relation between the probability of relevance and the 
level of lexical cohesion between query terms.

Following these experiments, we explored another hypothesis:

Hypothesis 4: Re-ranking of Okapi document sets by lexical cohesion scores
results in significant performance improvement over initial 
Okapi ranking.

We conducted experiments on re-ranking Okapi document sets with a linear 
combination function of Okapi matching score and lexical cohesion score. Different 
values of a tuning constant jc, regulating the effect of LCS were tried. The results 
suggested no significant improvement over Okapi ranking, thus providing no support 
for hypothesis 4.

Results achieved in the first half of this set of experiments -  i.e., difference between 
relevant and non-relevant documents by their average lexical cohesion scores -  are 
considered to be rather optimistic. Although, our approach to using LCS in document 
ranking tried in the second half of the experiments did not prove useful, the first half 
of experiments suggested that the concept of lexical cohesion is linked to relevance. 
To achieve practical benefit from lexical cohesion in document relevance 
discrimination, more experimentation is needed. Lexical cohesion, as a text property, 
is formed not only through word repetition, but other more complex lexical relations 
(see section 2.3.1). Limited by the scope of this project, we looked into lexical
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cohesion between query terms achieved only through repetition of their collocates. 
Other phenomena forming lexical cohesion, which are out of the scope of this project, 
could also be taken into account in identifying lexical cohesive links between 
environments of query terms. A more complete analysis of lexical environments of 
query terms is expected to provide more support to what has been suggested by the 
results of the first half of our experiments. As mentioned in section 2.3.2, the analysis 
of lexical link distribution by [Ellman2000], showed that the most common link type 
-  between repetitions of the same word, is closely followed by the link between words 
belonging to the same thesaurus category. A possible future development of our 
method could, thus, consist in defining links on the basis of repeated words and words 
related through an engineered term structure like a thesaurus or a lexical net.
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9 Conclusions and recommendations

In this project we have undertaken an experimental study of long-span collocation in 
its application to probabilistic information retrieval. The research question 
investigated in the project was whether the use of long-span collocates can improve 
performance of probabilistic IR. To examine this research question, three different 
methods of integrating collocation information into a probabilistic model were 
developed and evaluated.

The type of collocation, we aimed to explore and apply for the use in IR, is long-span 
collocation, motivated by the lexical-semantic relations. Long-span collocates occur 
together within large contextual environments because they are bound by some 
lexical-semantic relationship. They belong together to the textual topic they co-occur 
in. Long-span collocation is different, on the one hand -  from short-span collocation, 
motivated by lexical-grammatical or habitual relations, and on the other hand -  from 
document-wide co-occurrence.

Four hypotheses were examined over the course of the project. The studies exploring 
these hypotheses formed three groups:

G lo b a l  c o l lo c a t io n  a n a ly s i s

This group of study was aimed at exploring the first hypothesis:

Hypothesis 1: Expansion of the initial query with statistically significant
global collocates of query terms results in significant 
performance improvement over the initial query evaluated 
under the same conditions.

Performance of the queries expanded with global collocates of query terms, ranked 
either by MI, or Z did not prove to be better than performance of the original queries.

The main finding of this study was that information gathered in the form of single 
words occurring in the environments of all instances of a query term in the corpus, 
does not have substantial relevance-discriminating power, even though the terms are 
ranked by significance of their co-occurrence with the query terms. The main reason 
for this is thought to be the fact that many query terms are words from the general 
lexicon, that can occur in a broad range of contexts. Even occurrences of the same 
sense of a word can be used in a wide range of topics. As the number of relevant 
documents in which a query term occurs is usually much smaller than the number of 
non-relevant documents with this term, only a small proportion of collocates come 
from contexts which have any relatedness to the topic of user’s interest. It was 
therefore considered that using collocates from the contexts of query terms in 
documents for which there exists some evidence of relevance to the user’s need, 
might result in a better performance. This led us to the second hypothesis, explored in 
the next group of studies.
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L o c a l  c o l lo c a t io n  a n a ly s i s

The hypothesis examined in this study group was:

Hypothesis 2: Expansion of the initial query with statistically significant local
collocates following relevance feedback results in significant 
performance improvement over Okapi relevance feedback 
under the same conditions.

The experimental results confirmed our initial assumption that using collocates from 
the documents, for which some relevance information is known, gives significantly 
better results than using collocates from any contexts of query terms in the collection 
indiscriminately. As for the improvement over Okapi relevance feedback some 
tendency towards performance gain was observed, when using both collocates and 
Okapi RF terms. However it was not significant enough to conclude that local 
collocation analysis method is superior to the existing Okapi relevance feedback.

Some findings of this study group are summarised below:

1. There is no substantial performance difference between the use of MI and Z 
ranked collocates, though there is slightly more evidence in favour of using Z 
statistic.

2. On the whole local variants of MI and Z statistics perform better than global 
variants of these statistics.

3. Top 8/16 MI- or Z-ranked collocates extracted from smaller window sizes tend to 
have higher relevance-predicting value than top 8/16 MI- or Z-ranked collocates 
extracted from larger window sizes. Further down in the ranked lists collocates 
from different window sizes show rather similar relevance-predicting values.

4. Adding more Z/MI ranked collocates from larger window sizes improves 
performance noticeably, while adding more collocates from smaller window sizes 
does not have a significant effect on it.

5. Expanding queries with both collocates and Okapi RF terms on the whole gives 
better results than using collocates alone. Some runs are also slightly better than 
the best Okapi RF runs.

6. Query expansion with collocates ranked by Collocation Relevance Weight (CRW) 
measure is not better than expansion with MI or Z collocates.

7. Analysis of terms’ influence on precision by categories showed that original query 
terms, particularly if they are also either collocates, or Okapi RF terms, improve 
performance significantly more often then they degrade it. However, the majority 
of them improve it only marginally.

The conclusion prompted by this study is that no or very little advantage is gained 
from using long-span collocates, over the use of document-wide co-occurrence, 
present in the existing Okapi relevance-feedback technique. Although individual 
results were suggesting some improvement over Okapi RF, they were not conclusive.
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It can be inferred from the experiments that the key variables we were focusing on -  
window size and collocation ranking measures -  are not the most critical factors 
affecting performance (evident from rather similar results of MI/Z collocates and non- 
consistent effect of window length). Considering, for example, certain composite 
lexical units as candidates for significant collocates instead of single words could be a 
more decisive factor. There has been some evidence in past research that selecting 
collocates as noun groups can lead to improved performance (Xu and Croft’s Local 
Context Analysis [Xu96]).

L e x ic a l  c o h e s io n  a n a ly s i s  u s in g  lo c a l  c o l lo c a t io n s

This study group was aimed at analysing documents’ property of lexical cohesion 
between query terms, estimated through comparison of their collocation 
environments. Specifically we aimed to understand how lexical cohesion is related to 
relevance, and whether it can be useful for relevance prediction. Two hypotheses were 
examined in this study. The first hypothesis was:

Hypothesis 3: There exists statistically significant association between the
level of lexical cohesion of the query terms in documents and 
relevance.

The experimental results proved that there is statistically significant difference 
between the average level of lexical cohesion in relevant and non-relevant document 
sets. Moreover, it was ascertained that this difference is genuine and not due to the 
difference in documents’ Okapi scores. Difference between sets created from top 100 
Okapi-ranked documents was larger than between sets created from top 1000 Okapi- 
ranked documents.

Our next research direction was targeted at using the relevance-predicting quality of 
lexical cohesion to improve Okapi document ranking. The hypothesis investigated 
was:

Hypothesis 4: Re-ranking of Okapi document sets by lexical cohesion scores
results in significant performance improvement over initial 
Okapi ranking.

The results did not prove that re-ranking documents by their lexical cohesion scores is 
superior to the original Okapi ranking. One reason for this could be that a number of 
relevant documents does not have any common types or links. This is evident from 
the results of the analysis of relevant sets in the first half of the experiment. Limited 
by the scope of this project, we were counting cases of word repetition alone in the 
form of common collocates. Lexical links, formed by other textual devices, were left 
out. Taking account of a larger proportion of lexical links could possibly lead to 
bigger performance gains.

128



In the recent years there have been undertaken a number of research activities which 
focus on the related aspects of the IR ad hoc task as this project. Our first two 
techniques described in chapters 6 and 7, Global collocation analysis and Local 
collocation analysis, are methods of automatic query expansion. Query expansion is a 
very widely used technique of incrementing relevance-discriminating potential of the 
query. Over the years there have been developed, with varying degree of success, 
numerous variations of statistically-based query expansion. Although our specific 
techniques of implementing query expansion are novel, there have been and are being 
undertaken experiments on query expansion comparable to ours, i.e. global query 
expansion techniques, which analyse the entire collection, and local techniques -  
relevance and pseudo-relevance feedback. Therefore it is useful to compare our 
results with the results achieved in related work and see if there are any common 
patterns of success or failure from using specific techniques. We will attempt to 
outline what lessons can be learned from our and related research and which 
techniques appear to work better.

In both of our query expansion approaches -  global and local -  we selected collocates 
on the basis of the strength of their association with each query term independently, 
i.e. without considering the level of association with other query terms. There is an 
experimental evidence [Qiu93, Xu96] that both global and local query expansion 
techniques could benefit from taking into account similarity of terms to the whole 
query.

Qiu and Frei [Qiu93] analysed previous, mostly unsuccessful, attempts at automatic 
collection-wide query expansion and came to the conclusion that the main unsolved 
problems are:

“ 1) the selection of suitable terms;
2) the weighting of the selected additional search terms. ” [Qiu93, p. 162]

Specifically they point out that although many methods of estimating relatedness 
between terms have been tried, one thing they have in common is that all of them 
select terms that are strongly related to a single query term. Qiu and Frei believe that 
it is important to select terms that are strongly related to what they call ‘query 
concept’, expressed by all query terms. They developed a global query expansion 
method which attempted to solve the above two problems. Their method relies on an 
automatically constructed co-occurrence based term-term similarity thesaurus. The 
main principle of their method is that query expansion terms are selected from the 
thesaurus depending on the degree of their similarity to all the terms in the query. The 
expansion terms are assigned weights which also reflect their similarity to the entire 
query. Their retrieval experiments demonstrated improvements in average precision 
from 18% to 29%.

Qiu and Frei also warn against the hazard of using in query expansion terms above 
rather high thresholds of similarity. They argue that although setting high thresholds 
allows us to get terms very strongly related to individual query terms, the chances of 
finding among such terms a sufficient number of those similar to all query terms are 
very weak.

From this it follows that performance of our global query expansion approach might 
be improved if, instead of adding collocates with very high degree of association with
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a single query term, we applied a secondary term selection to collocation lists of all 
query terms. The secondary term selection stage, applied at search time, should re-
rank collocates by their strength of association with all query terms. This task is, 
however, not trivial in the framework of our approach: MI and Z scores of collocates 
of different query terms are not comparable (see p. 80). In order to estimate the degree 
of relatedness of a collocate to all query terms, we need to normalize its different 
scores of association (i.e. in different collocation lists).

Another query expansion approach which also uses the principle of term relatedness 
to the entire query is Xu and Croft’s LCA -  Local Context Analysis [Xu96] (see 
section 3.3.2, p. 48). LCA is a type of local feedback. Over time it has shown rather 
consistent performance improvements over the baseline (INQUERY) on TREC 
collections. Similarly to our local approach to query expansion Xu and Croft extract 
candidates for query expansion from fixed-size windows (300 words), which are, 
however, located differently in text. In our method we locate windows around each 
occurrence of a query term. In LCA the window is the best passage. The best passage 
is usually a section of text with a maximum concentration of query terms, therefore 
query expansion terms from best passages could be argued to have an extra value of 
occurring close to more than one query term.

Another difference between LCA and our method is that in LCA the query expansion 
units are noun phrases of the form N, NN, NNN, whereas in our method collocates are 
always single words. Earlier Jing and Croft [Jing94] conducted a rather extensive 
research of the effect expansion with different syntactic categories has on 
performance (see p. 48). Their experiments showed that above types of noun phrases 
result in better performance than any other types of single or compound terms.

Term selection formula in LCA is based on a widely used tf*idf measure, but its main 
feature is that it promotes terms which are significantly related to all query terms. In 
our local query expansion method, like in our global method, we select terms most 
strongly associated with a single query term. We did, however, assess the impact of 
local collocates of 2 or more query terms on performance (see p. 109); this did not 
show that such collocates are better query expansion terms than collocates of 1 query 
term. But it might be partially attributed to the problem pointed out by Qiu and Frei 
(see earlier), i.e. that we only selected collocates ranked high by their relatedness to 
individual query terms. It is reasonable to hypothesise that collocates which have 
weaker relatedness to several query terms (i.e. ranked low in individual collocation 
lists and ignored by our method) might be better query expansion candidates than 
collocates related strongly to just one query term.

A major problem that we believe affects all title-only retrieval approaches in TREC 
experimental environment is the fact that TREC documents are judged relevant on the 
basis of the complete topics. Titles never reflect all nuances of the information need 
specified in the description and narrative. If relevance of documents was determined 
on the basis of titles only, we would in many cases have rather different relevant sets 
from those we have now. For example the title of the topic 292 -  “Worldwide 
Welfare” -  contains no indication of the major relevance criterion for this information 
need, which we find from the topic description: “Identify social programs for poor 
people in countries other than U.S.”. We can find further restrictive criteria in the
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narrative: “...A relevant document should identify the source of the monies used to 
support such welfare programs”. No matter how sophisticated a query expansion 
algorithm is it cannot infer such restrictions from short underspecified titles.

Strzalkowski et al. (GE research group) from their TREC-8 experiments concluded 
that type and length of the query are some of the major factors contributing to the 
performance of IR systems, particularly those using NLP techniques 
[Strzalkowski2000]. They developed a query expansion method in which a query 
derived from all fields of the topic is expanded with top ranked paragraphs, creating a 
meta-document which is used as a query (see also p. 40). Their approach is related to 
ours in the sense that they also make use of locality in text for query expansion.

One distinctive feature of GE approach is that they link all words in the query, co-
occurring in the same sentence less than 3 words apart and use them as phrases in 
searching (applying INQUERY’s #phrase operator, which requires ordered co-
occurrence within a limited span if words co-occur frequently in the collection). By 
this they take into account mainly lexical-grammatical relations, whereas in our 
experiments we were interested in words co-occurring due to pertinence to the same 
topic, therefore we did not set any restrictions as to how near collocates (from the 
expanded query) need to occur in the retrieved documents. Moreover, we did not 
require both members of the collocation pair to occur in a document. Our idea was to 
retrieve documents which may not contain query terms, but have their collocates 
instead. The GE group claims that their method results in quite dramatic improvement 
in average precision -  from 40% to 130%.

GE group’s strategy of using top best paragraphs for expansion is reminiscent of Xu 
and Croft’s use of best paragraphs for LCA. However, unlike stringent selection of 
expansion terms from best passages in LCA, they simply add best paragraphs to the 
original query. They argue that passages from related but not necessarily relevant 
documents are also useful, since their role is to uncover different aspects of the initial 
query [Strzalkowski2000].

Their query expansion terms, selected from best passages on the basis of maximum 
concentration of query terms (like in LCA), have a characteristic of occurring close to 
many query terms. In our approach we defined windows for collocate extraction 
independently around each query term occurrence, based on the idea that topic does 
not necessarily manifest itself in text as a single uninterrupted piece of text, but can 
re-appear in different parts of it. Therefore we decided not to select collocates only 
from those documents which have query terms near each other. However, it could be 
argued that topics characterised by the concentration of query terms may be a better 
source of expansion terms than parts of a topic scattered across the document. The 
success of results gained by some groups may be partly attributed to their passage- 
based method of defining text areas for the extraction of query expansion terms. Best 
passages might be a better source of expansion terms than windows around query 
terms. Examples of successful passage-based approaches, which could support this 
argument, include those by the above mentioned GE [Strzalkowski2000] and UMass 
[Xu96] groups, as well as MultiText team [Cormack2000]. MultiText team’s 
approach consists in selecting only those passages during the first run in which all 
query terms occur. By this they claim to improve precision, as well as efficiency of 
the system.
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AT&T group [Singhal2000] also make use of the idea of concentration of query terms 
in a limited span of text. Their document re-ranking technique rewards those 
documents which contain query terms in the same sentence or adjoining sentences. 
However, they did not obtain any evidence that this method improves performance.

Cornell group [Buckley97, Buckley2000] too used proximity information of the query 
terms to re-rank the initial set retrieved by SMART. In addition they also used co-
occurrence information between query terms and other terms in query expansion. 
Following the initial run, they calculate correlation between all query terms in the top 
1000 documents, i.e. they determine how frequently each query term co-occurs in the 
same document with any other query term. Then, taking the top 50 documents, and 
breaking them into overlapping fixed-size windows, they compare each window to the 
query. Each query term is assigned a weight which is inversely proportional to the 
maximum correlation the term has with any previous occurrence of any query term in 
the same window. The motivation behind this is that if two terms are known to 
correlate strongly, the occurrence of the second term is not going to contribute much 
information about the relevance of a window to the query. They identify top 20 
documents with the highest scoring windows and use them for blind feedback.

The Cornell’s approach to downweighting the terms highly correlated with previously 
occurring terms is opposite to Xu and Croft’s Local Context Analysis, which on the 
contrary rewards query terms highly correlated with each other. TREC 8 performance 
results of the two systems -  Cornell’s SMART [Buckley2000] and INQUERY 
(implementing LCA) [Allan2000] - were very close. Therefore it is difficult to say 
which of these two approaches to weighting correlated terms is better.

In our approach we, similarly to LCA, rewarded those documents which contain more 
query terms or their highly associated collocates, relying on the standard Okapi term 
weighting and document scoring functions. It is difficult to say at this stage whether 
our method can benefit from a different weighting technique for queries expanded 
with collocates significantly co-occurring with query terms.

Kwok et al. [Kwok98, Kwok2000], participating in TREC with their PIRCS system, 
developed a blind feedback technique somewhat related to our local query expansion 
approach. From top-ranked documents they select terms by the significance of their 
document-level co-occurrence with query terms. They use expected Mutual 
Information to estimate the strength of association between each query term and each 
term occurring in a given document. They then calculate average MI for each term 
from the MI values of its association with every query term. By doing this they take 
into account relatedness of a term to the entire query. Another important aspect of 
their technique is that they filter out terms with too high or too low collection 
frequencies. They have obtained experimental evidence that setting certain frequency 
thresholds on expansion terms has positive effect on performance. The number of 
terms that they add to the original query is rather small, and is dependant on the query 
size, for example a 3-word query is expanded with only 1 additional term, and 12- 
word query is expanded with 6 additional terms.

Our local method is different from Kwok’s approach by the following features:
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■ The collocates in our method are selected from the limited areas around query 
terms, which we believe is a better technique in long multi-topic documents;

■ The association is estimated in relation to each query term independently (see 
discussion above);

* High- and low-frequency terms are not filtered out; however we apply Okapi term 
weights to all expansion terms which partly depend on the term’s collection 
frequency.

■ We experimented with larger numbers of expansion terms.

Kwok et al. use a range of other techniques alongside co-occurrence based query 
expansion. They analysed the contribution of each technique to performance and 
came to the conclusion that their co-occurrence based query expansion contributes to 
performance only marginally [Kwok98, p. 253],

A somewhat different research direction that could be explored in relation to 
collocation techniques is their use in interactive IR. It is interesting to explore the 
effectiveness of automatic term suggestion to users either using global collocation 
analysis or local collocation analysis following blind feedback.

The Rutgers team [Belkin2000] conducted a study within TREC 8 Interactive Track 
framework, comparing the performance of user-controlled term suggestion -  RF, and 
system-controlled term suggestion -  LCA. Initially, based on earlier studies 
[Koenemann 1996 and Park 1999 cited in Belkin2000] which indicated that users 
prefer having more control over the system, they hypothesised that user-controlled 
term suggestion will be preferred by the users. Their experiments however indicated 
the opposite. The reason for this is believed to be the fact that the complexity of the 
system, requiring the users to make relevance judgements, is much higher than that of 
the system suggesting terms automatically. The higher degree of control over the 
system was simply not worth the increased task complexity. The performance of two 
systems was rather similar, however the number of terms that users selected among 
LCA-suggested terms was higher than the number of terms selected among RF- 
suggested terms. In the RF system users also spent more time defining their own 
terms than in the LCA system.

The Rutgers team’s study provides positive evidence that terms extracted using their 
co-occurrence statistics and suggested automatically to users in interactive IR can be 
useful.

McDonald et al. [McDonald97] (see p. 46) also argue that automatically constructed 
co-occurrence based term networks can be used in interactive IR as a less effort-
demanding alternative to RF. Co-occurrence term networks in their view have an 
advantage of giving the user a broader perspective of the database coverage, which is 
more difficult to achieve by examining full texts of documents.

Analysing the results of our query expansion experiments, aimed at studying whether 
information about words’ patterns of collocation in text can give us more relevance- 
discriminating evidence, we came to the conclusion that the reality of language- 
behaviour and the nature of the IR task itself are characterised by too many degrees of
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uncertainty, making this task not trivial. First, uncertainty is already present to a 
greater/less extent in the short queries that we used. Secondly, it is often amplified by 
an even greater uncertainty, when we take into account all the variety of a word’s 
instances in a large thematically heterogeneous text collection. As discussed earlier 
one way to reduce the effect of the uncertainty is to consider only those features in the 
environments of query terms’ occurrences that are related to the entire query, i.e. that 
are associated with all query terms.

Local analysis of environments of each query term in a limited set of documents (in 
our experiments in the known relevant documents) worked better than analysis of the 
entire collection using the same approach, because here we deal with a much more 
homogeneous set of contexts which are likely/known to be related to the user’s topic. 
However, here as well we might benefit if we select the candidate expansion features 
by their relation to the entire query.

There is, however, a possibly negative side to local approaches: if we consider only 
few documents from the top of the retrieved set, which are likely to be biased towards 
the initial query, is the information we get from them always enough to retrieve other 
documents which might cover different aspects of the topics relevant to the user’s 
need? In other words, do we get enough information to diversify the query 
formulation if we consider only a limited number of documents biased towards the 
underspecified short query formulation? It might be that global techniques, provided 
that they can handle the task of selecting features related to the entire query, could 
give us a richer query expansion material than local techniques. For example, the 
above mentioned global technique by [Qiu93] or Phrasefmder [Jing94] (see also p. 
47) showed improvements over initial queries. Although Phrasefmder performed 
worse than LCA, Xu and Croft point out that one of the main reasons is that 
Phrasefinder did not require terms to be related to the entire query [Xu96]. Although 
at present much of the research effort is directed towards improvement of local 
feedback techniques, we believe that global techniques also need to be studied further.

One other role of collocates, that we believe is important, is their use in determining 
contextual relatedness -  cohesion -  of query terms in documents. There has been very 
little research of lexical cohesion in IR. Previous studies of cohesion in IR focused 
either on document indexing [Stairmand97], or text summarisation/passage retrieval 
[Manabu2000, Hearst93, Hearst94]. Our idea of identifying the degree of relatedness 
of query terms in text through their lexical cohesion is novel. Cohesion between query 
terms, determined through their collocates, has been shown by our experiments to be 
associated with relevance. So far we have not achieved practical benefit from it in IR. 
But the main objective of this experiment was to ascertain if there is a genuine 
relation between relevance and cohesion, unaffected by other factors. To achieve 
practical benefits from it in IR we might need to combine a number of different 
techniques. For example, our method was specifically developed to determine if query 
terms occurring in different parts of text are topically related (since the same topic can 
resurface in different parts of text). This method does not address relatedness of query 
terms occurring close to each other in text, since their relatedness can already be 
assumed from the proximity of their occurrence. We need to combine a method which 
rewards documents where query terms co-occur in the same part of text with the
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method rewarding documents with coherent query terms occurring in different parts 
of text.

The technique of estimating lexical cohesion might also be refined. First, collocates 
used to compare the similarity between lexical environments of query terms, could be 
weighted to reflect their collection frequency. Words in the environments of query 
terms include a large share of topic-independent words, e.g., very common and 
discourse organising words. Occurrences of such words in the environments of query 
terms give us less certain indication that these environments are topically related, than 
occurrences of less frequent terms with higher information value. Therefore we may 
improve the accuracy of the estimation of cohesion levels between terms if we use 
term weighting.

It is also worth experimenting with other types of cohesive links between lexical 
environments, for example considering synonyms and other paradigmatically related 
words, identified through manually constructed resources.

Taking a broader perspective on collocation research, we can say that this project 
represents a specific direction in the study of collocation in IR, and it certainly draws 
no final line under collocation research in IR. One dimension within which we 
delineated the scope of this project is the approach to text analysis. Our approach is 
largely statistical. It is agreed that statistical methods are crude and that they treat 
language elements simply as tokens, ultimately capturing only what lies on the 
surface of language-expression. However, they have one big plus -  namely, not being 
affected by subjectivity. They rely only on the first-order resources -  texts. When we 
move away from the domain of purely statistical corpus analysis, to the domains of 
NLP, knowledge-based approaches or AI, we start to rely on second-order human- 
engineered resources, like dictionaries, rules and knowledge bases; and hence on the 
degree of their representativeness, generality and objectivity. Such approaches may 
bring certain performance improvements, though often at a cost of reduced 
robustness, universality and self-sufficiency -  strong points of statistical methods.

Another dimension, in which we delimited the scope of this project, is the IR model. 
We evaluated our methods within the context of probabilistic retrieval. We believe 
that collocates do indeed represent useful information, however, first, this information 
may already be present to some extent in the probabilistic model, and secondly, the 
relevance-discriminating potential of collocation may be realised differently with 
other models, for example using different term weighting approaches. It is, therefore, 
believed that before the final word can be said about the usefulness of collocation in 
IR, it should be studied in the context of other retrieval models too.
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Table A .l. Top 50 MI and Z ranked collocates of the stem export (topic 251)

Ml list Z list

ulc; 4.07097 qtr; 190.15
intmd; 3.82043 import; 158.985
housg; 3.82043 trade; 145.509
cnsmer; 3.82043 tonn; 127.831
ploy; 3.81024 output; 113.17
cofac; 3.80356 product; 104.248
sdrbase; 3.80228 @0192; 99.9556
cocom; 3.80132 @0135; 99.9199
ecgd; 3.7894 @0007; 97.1803
beston; 3.78801 @0290; 96.5365
sace; 3.74935 countri; 95.7611
frigg; 3.74243 @0180; 91.3817
pigmeat; 3.71352 @0099; 89.9242
atpc; 3.7094 produc; 89.2063
trefgarn; 3.70854 surplus; 88.8642
mfg; 3.70339 @0136; 88.7311
unem; 3.69574 manufactur; 83.1684
eep; 3.67957 economi; 82.4373
countertrad; 3.66289 growth; 81.1221
westar; 3.6328 tariff; 80.2385
taa; 3.62451 deficit; 79.543
vac; 3.60526 quota; 79.0593
ncm; 3.60072 domest; 77.3983
tequila; 3.59804 oil; 75.6102
durum; 3.56366 wheat; 75.1104
poundsm; 3.5284 balenc; 74.6966
dollarsbn; 3.51058 @0060; 72.2969
presilei; 3.50632 @0176; 72.1151
natuna; 3.48163 textil; 71.6311
glazebrook; 3.47648 coffe; 71.5933
bcm; 3.47648 foreign; 71.1713
ouzo; 3.43856 econom; 68.8515
gsp; 3.41604 farmer; 68.8443
mfa; 3.37565 farm; 68.2448
exlmbank; 3.37027 @0330; 67.1462
vra; 3.36587 @0400; 67.0024
sd; 3.36207 ecgd; 66.1734
yrend; 3.34399 year; 66.1065
paranapanema; 3.335 yen; 65.5251
exim; 3.335 crop; 65.0673
forgemast; 3.32567 banana; 63.4647
cashew; 3.31142 bn; 60.5497
wobb; 3.30106 @0399; 60.1472
kembl; 3.2996 @0186; 60.1427
gutterldg; 3.2996 consumpt; 60.0868
reexport; 3.29601 dump; 59.3323
baxendal; 3.28992 cnsmer; 59.0653
gluten; 3.28609 devalu; 58.5056



Table A.2. Top 50 MI and Z ranked collocates of the synonym group @0180
[industrial, industry] (topic 251)

Ml list Z list
opaqu; 7.64165 manufactur; 121.525
anz; 7.64165 product; 102.841
vondran; 2.09382 coal; 86.0634
fls; 2.06849 steel; 84.156
groupfiat; 2.04023 @0192; 82.7379
hurn; 2.03648 export; 81.4553
mhi; 1.99841 @0068; 80.0811
kukj; 1.99112 sector; 79.8543
ysx; 1.98134 competit; 77.065
wobb; 1.97654 @0134; 70.0765
jandec; 1.97654 output; 68.6317
hhi; 1.97369 electr; 68.4795
iai; 1.95048 technologi; 67.8816
standardpoor; 1.94843 engin; 63.0258
guarino; 1.94572 heseltin; 62.9607
sematech; 1.92101 @0290; 61.3095
vda; 1.91095 regul; 59.4547
nonaid; 1.91095 @0104; 59.2109
intmd; 1.91095 plant; 58.3445
interoper; 1.91095 aerospac; 58.1132
hsct; 1.91095 car; 57.3793
housg; 1.91095 energi; 57.3755
cefic; 1.91095 cbi; 56.1282
cecimo; 1.91095 produc; 56.0842
ploy; 1.90076 economi; 56.0096
cenelec; 1.87992 capac; 54.9737
iro; 1.87853 confeder; 54.281
bitterfeld; 1.87443 develop; 53.5562
baoshan; 1.87443 dti; 53.4666
unem; 1.87372 consum; 52.9895
endperiod; 1.87248 trade; 52.7232
ifpi; 1.86913 busi; 52.2626
allgold; 1.86723! employ; 52.2346
Ipf; 1.86656 import; 50.136
fonograf; 1.86515 econom; 49.7428
gerl; 1.86365 chemic; 49.1703
spector; 1.86286 recess; 48.5055
mitis; 1.86033 supplier; 47.7412
savona; 1.85751 dow; 47.596
incl; 1.8565 invest; 46.876
cen; 1.85437 textil; 46.7642
sabic; 1.84955 year; 46.5295
hatakeyama; 1.8382 privat; 46.0643
bdi; 1.8382 growth; 45.7196
vdma; 1.83695 motor; 45.5842
mercosul; 1.83695 job; 44.9389
epb; 1.83295 automot; 44.4913
unemp; 1.83003 @0013; 44.226



Table A.3. Top 50 MI and Z ranked collocates of the stem alien (topic 252)

Ml list Z list
narva; 6.67601 narva; 43.6465
seti; 6.45783 curzon; 39.3772
curzon; 6.00015 seti; 33.4198
@0111; 5.95533 estonia; 30.8962
kashmiris; 5.8298 estonian; 30.5858
thian; 5.68916 immigr; 28.7626
corang; 5.68023 parti; 27.7749
zoe; 5.56167 hindus; 24.8815
kelman; 5.49848 camacho; 24.8815
blasfemi; 5.42809 kashmiris; 24.5734
channon; 5.41053 voter; 23.8587
daim; 5.37983 zoe; 23.303
celin; 5.37983 karajan; 23.1119
karajan; 5.32659 baird; 22.8774
boarder; 5.28791 haider; 22.7896
siegmund; 5.28198 @0111; 21.9208
nostrik; 5.27726 poe; 21.4189
poe; 5.21967 thian; 21.1312
lyceum; 5.20629 boarder; 21.0979
hindus; 5.11081 cultur; 20.5486
beater; 5.09526 polit; 20.3707
bobsleigh; 5.0886 kashmir; 19.9378
meri; 5.07317 pkk; 19.6618
wicked; 5.0428 underclass; 19.4798
todo; 5.0428 film; 19.3725
abram; 5.02785 abram; 19.1794
stallon; 5.00717 democrat; 18.7775
salaryman; 4.9984 corang; 18.5761
csurka; 4.99443 siegmund; 18.2318
bradman; 4.98968 csurka; 18.138
xerx; 4.97241 blasfemi; 18.1279
sulli; 4.96479 democraci; 17.6826
yamahana; 4.95533 abduct; 17.4898
ajax; 4.95533 mortier; 17.4347
bischof; 4.93846 bjp; 17.2956
lehel; 4.91351 aspen; 17.2692
ardzinba; 4.91351 bradman; 17.2637
bite; 4.90894 opus; 16.8878
armscor; 4.90529 illeg; 16.6208
mortier; 4.88752 skier; 16.4487
Irt; 4.87287 citisenship; 16.3073
haider; 4.87287 sulli; 16.2279
underclass; 4.86147 @0195; 16.1748
camacho; 4.85211 kelman; 16.1051
glaswegian; 4.84116 @0330; 15.9246
tasso; 4.83334 bite; 15.896
d’amato; 4.80576 republican; 15.8795
sitter; 4.79487 todo; 15.7464



Table A.4. Top 50 MI and Z ranked collocates of the synonym group @0104
[environment, environmental] (topic 255)

Ml list Z list
tribal; 5.98753 wast; 152.124
get; 4.34336 pollution; 150.426
ecolabel; 4.2203 emiss; 146.35
lalond; 4.1759 recycl; 131.157
voc; 4.15081 energi; 101.456
meana; 4.1442 carbon; 100.399
topfer; 4.13526 water; 95.4962
cpre; 4.13408 pollut; 93.3731
ripa; 4.11802 dioxid; 92.2648
dsd; 4.03618 gummer; 86.2703
unep; 4.01085 forest; 86.1083
deforest; 4.00715 greenpeac; 84.2011
Irb; 3.98326 @0064; 79.4353
paleokrassa; 3.97309 nuclear; 77.4004
chisso; 3.97237 rio; 76.2514
tcf; 3.96018 fuel; 73.6179
minamata; 3.95351 green; 73.2138
benzen; 3.93946 earth; 70.7988
groundwat; 3.92593 ozon; 68.4786
greenpeac; 3.92232 develop; 64.3111
tace; 3.91626 landfil; 61.2398
superfund; 3.91604 ecolog; 60.886
gorleben; 3.91287 toxic; 60.463
scrubber; 3.8896 nafta; 60.3932
narmada; 3.8896 contamin; 60.3529
biodivers; 3.88293 thorp; 59.0407
baldri; 3.8701 @0180; 58.5672
nox; 3.8647 sulfur; 58.0801
chlorofluorocarbon; 3.84874 inciner; 56.9197
oxlea; 3.83487 cfc; 56.4844
effluent; 3.83322 local; 55.382
wallach; 3.80667 meana; 53.2251
hsct; 3.80667 council; 52.5427
emiss; 3.77561 reprocess; 51.9274
cfc; 3.77151 plant; 51.5546
inciner; 3.76346 ripa; 51.3526
dioxid; 3.75743 timber; 51.3039
mto; 3.75533 project; 50.7709
audubon; 3.74706 whale; 50.4413
greenest; 3.74527 greenhous; 50.2784
nitrous; 3.73533 site; 50.0514
maxus; 3.73533 @0380; 49.9454
pollut; 3.73246 depart; 49.4913
wetland; 3.72984 radioact; 47.8375
reforest; 3.72524 bnf; 47.3958
landfil; 3.71726 urban; 47.2251
ozon; 3.71024 area; 46.8256
chlorin; 3.70599 sped; 46.8011



Table A.5. Top 50 MI and Z ranked collocates of the stem protect (topic 255)

Ml list Z list
reportedli; 8.72129 @0104; 96.4111
conservatori; 8.72129 regul; 78.4392
cpre; 4.30021 law; 70.6222
unprofor; 3.8 tariff; 70.396
radon; 3.75964 patent; 68.9456
tupe; 3.75551 bankruptci; 61.6478
riina; 3.71524 creditor; 60.1808
zale; 3.68925 un; 59.8219
kws; 3.67217 @0135; 56.6553
mto; 3.61215 @0099; 54.0938
westar; 3.58651 oy; 52.9361
timeshar; 3.57874 pia; 52.8811
switchov; 3.54532 copyright; 51.8677
baranja; 3.48307 tupe; 51.1987
leakei; 3.45968 @0035; 48.9821
spc; 3.45775 privaci; 45.1032
abta; 3.45775 legisl; 43.3575
afta; 3.43347 serb; 43.1304
armscor; 3.42574 oys; 42.3228
assigne; 3.3975 file; 41.578
pera; 3.38767 troop; 41.3169
demurrag; 3.38267 court; 41.0003
novofarm; 3.37821 banana; 40.2401
maci; 3.36161 enforc; 40.227
nikkatsu; 3.34601 sib; 39.8024
pbgc; 3.32822 maci; 39.6025
carena; 3.2529 pension; 39.2045
oflif; 3.23608 insur; 39.0993
gmp; 3.23608 rule; 38.9597
vondran; 3.17822 chapter; 38.1566
oys; 3.17418 pollution; 37.8531
pia; 3.15654 fore; 37.8506
transgen; 3.1482 depositor; 37.7729
maxus; 3.13974 right; 37.3493
nuswift; 3.13331 unprofor; 37.1883
curragh; 3.13028 abta; 36.9949
morillon; 3.12388 timeshar; 36.9545
biodivers; 3.10867 @0399; 36.6657
amf; 3.10756 act; 36.2749
privaci; 3.10725 quota; 35.3157
whistleblow; 3.06317 restrict; 35.2641
borsellino; 3.06317 twa; 35.0949
azucarera; 3.06317 under; 34.9311
fsa; 3.05228 legal; 34.8502
walbrook; 3.04495 import; 34.0521
nostra; 3.04495 liabil; 33.4405
audiovisu; 3.03997 countri; 33.4311
muramoto; 3.03717 safeguard; 33.0968



Table A.6. Top 50 MI and Z ranked collocates of the stem theory (topic 259)

Ml list Z list

quark; 6.02906 quark; 52.7823
cosmolog; 6.0102 particl; 50.4976
cobe; 6.00042 scienc; 46.561
endogen; 5.91709 cosmolog; 44.7105
o’higgin; 5.80462 o’higgin; 44.6625
deme; 5.72445 cobe; 41.6769
krugman; 5.29063 galaxi; 39.6123
selborn; 5.20987 @0233; 39.0239
popper; 5.1279 endogen; 38.2238
psychoanalysis; 5.05856 practic; 35.7352
penros; 5.00659 deme; 35.6691
neanderth; 4.98748 @0295; 34.2128
aburto; 4.98748 krugman; 33.9437
galaxi; 4.98069 theorist; 33.1061
baudelair; 4.94309 einstein; 32.0969
watl; 4.90002 popper; 31.9819
neutron; 4.90002 @0129; 31.6014
einstein; 4.89773 cosmic; 31.1993
baldrig; 4.88795 univers; 29.0646
cosmic; 4.8582 academ; 27.5001
particl; 4.76611 @0199; 27.4946
cjd; 4.72445 fysic; 27.2776
theorist; 4.55138 theoret; 27.2119
sperm; 4.52805 hypothesis; 26.8816
ormerod; 4.52805 conspiraci; 26.7435
hypothesis; 4.49838 econom; 26.7365
massieu; 4.47178 astronom; 26.066
meffsa; 4.44832 book; 25.2489
hesss; 4.44832 scientist; 24.9229
Wittgenstein; 4.40252 galileo; 24.6309
hypothes; 4.40252 penros; 23.9452
electromagnet; 4.38146 idea; 23.3809
kung; 4.37277 professor; 23.3789
samuelson; 4.34362 scientif; 23.2546
galileo; 4.23259 differ; 22.6054
kingdon; 4.19306 bang; 22.1813
coulter; 4.19306 selborn; 22.1479
edelman; 4.16151 baudelair; 21.4643
coppola; 4.15459 @0232; 21.4007
abstrus; 4.15459 @0322; 21.3965
astronom; 4.1493 human; 21.3798
theoris; 4.11712 neanderth; 21.1264
hazlitt; 4.11301 aburto; 21.1264
mise; 4.10135 argum; 21.1072
hrm; 4.08059 model; 20.2323
@0129; 4.05535 psychoanalysis; 20.1897
nader; 4.05202 brain; 19.9105
hopkirk; 4.03995 baldrig; 19.6721



Table A.7. Top 50 MI and Z ranked collocates of the stem scuba (topics 266, 295)

Ml list Z list

amwai; 10.275 dive; 142.061
antigua; 9.4152 amwai; 99.481
allrisk; 9.35749 swatch; 76.2636
whaler; 9.27502 diver; 64.5278
chronograf; 9.27502 antigua; 63.9099
diver; 8.85999 whaler; 55.5666
painkil; 8.82046 coral; 53.2962
calypso; 8.82046 saul; 51.6194
swatch; 8.70541 allrisk; 51.1458
dive; 8.63557 chronograf; 49.7003
saul; 8.57988 reef; 46.644
lam; 8.43 lam; 45.3582
veranda; 8.35749 shark; 43.6185
jalousi; 8.31567 isabel; 42.5771
caico; 8.31567 versac; 37.8431
coral; 8.31109 reebok; 36.9754
bermudian; 8.30199 beach; 36.7623
Isabel; 8.24855 painkil; 36.746
aerob; 8.24855 calypso; 36.746
spratli; 8.23549 spratli; 34.6061
whltelei; 8.15955 bermudian; 30.673
belisean; 8.15955 dodd; 30.5138
trapez; 8.0874 aerob; 30.1065
atol; 8.05263 smh; 29.87
versac; 7.91097 f; 29.5871
shark; 7.90579 caribbean; 27.9983
dodd; 7.87509 twobedroom; 27.2342
sunken; 7.85999 torist; 25.5711
duckworth; 7.74451 veranda; 25.5338
reef; 7.64229 jalousi; 25.1641
accra; 7.61206 caico; 25.1641
waterproof; 7.55418 island; 24.813
twobedroom; 7.55013 whitelei; 23.8302
dulsburg; 7.53806 belisean; 23.8302
sybarit; 7.49075 waterproof; 23.6189
alvin; 7.49075 trapez; 23.2375
@0049; 7.46006 bahama; 23.0805
qulszic; 7.44495 atol; 22.9571
menial; 7.44495 @0049; 22.8527
gnomic; 7.44495 asean; 21.8313
farawai; 7.44495 sunken; 21.4628
reebok; 7.43372 belis; 20.9005
flamenco; 7.42258 duckworth; 20.6134
wisp; 7.40055 brunei; 19.7113
timepiec; 7.40055 accra; 19.6797
parenthood; 7.40055 zoom; 19.6486
zoolog; 7.35749 underwat; 19.6486
unborn; 7.35749 travel; 19.2732
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Table A.8. Top 50 MI and Z ranked collocates of the stem nation (topic 268)

Ml list Z list

yiy; 2.79892 united; 122.062
amelio; 2.63746 parti; 106.8
jagan; 2.51094 un; 91.3438
united; 2.47808 anc; 85.4333
seselj; 2.47699 @0147; 80.7355
mmp; 2.47699 lotteri; 78.6053
macavoi; 2.46319 @0035; 77.7356
csurka; 2.44493 countri; 73.501
andri; 2.4326 elect; 73.2048
ramafosa; 2.43232 union; 68.346
vojislav; 2.41426 polit; 66.1742
nsf; 2.41426 state; 66.0428
rnt; 2.40299 presid; 65.0699
rdp; 2.40299 leader; 63.3824
pairin; 2.39899 abbei; 62.708
slovo; 2.38507 power; 61.7502
polsat; 2.38388 serb; 61.5737
potchefstroom; 2.35146 constitut; 58.3216
nvq; 2.35019 na; 57.3725
mbeki; 2.34489 vote; 56.7183
umkhonto; 2.34373 democrat; 56.4171
snb; 2.33015 mandela; 55.8808
scowcroft; 2.32889 mr; 54.2331
gnvq; 2.32499 klerk; 53.7606
fini; 2.318 council; 53.2645
drax; 2.31653 @0339; 53.053
pujol; 2.31571 minist; 52.5775
nasuwt; 2.29539 heritag; 52.2268
ciu; 2.29328 @0099; 52.1554
shaka; 2.29257 social; 51.7819
hendron; 2.28435 westminst; 51.7588
gruchi; 2.27845 commun; 51.6451
atl; 2.27418 labor; 51.4491
nhl; 2.27298 educ; 50.9693
pnb; 2.26678 @0080; 50.6064
if ad; 2.26126 @0431; 50.1465
zwelithini; 2.2546 militari; 49.2504
npc; 2.25143 member; 49.1629
bossis; 2.25072 parliam; 48.8495
codesa; 2.24982 peac; 47.5448
multiraci; 2.24332 inkatha; 47.4529
energis; 2.24069 region; 47.2701
pnv; 2.23598 @0352; 46.6831
sillar; 2.22907 teacher; 46.6069
relf; 2.22907 secretari; 45.2715
nssr; 2.22324 powergen; 45.2109
lotted; 2.21922 war; 44.2698
rha; 2.21396 boutro; 44.108



Table A.9. Top 50 MI and Z ranked collocates of the stem control (topic 270)

Ml list Z list

unchart; 3.81437 stake; 73.5086
hector; 3.81437 state; 61.0369
alassad; 3.81437 sharehold; 59.0246
yurko; 3.01126 serb; 57.3605
edper; 2.90108 mr; 54.2852
nazmu; 2.89879 system; 53.0294
gaie; 2.87696 @0077; 48.0472
dno; 2.86316 group; 46.209
misrahi; 2.85926 @0147; 45.6286
tace; 2.83069 privat; 45.5012
motlana; 2.83069 @0035; 43.2826
yentob; 2.82282 @0068; 41.8634
quek; 2.81195 perrier; 40.0075
kolodziejczyk; 2.81195 bank; 38.8434
maserati; 2.80481 Croat; 37.4617
cnc; 2.78114 hold; 37.4154
tajudin; 2.77993 @0339; 36.9634
deme; 2.7768 under; 36.9152
micromachin; 2.76615 bronfman; 36.466
cemig; 2.76128 own; 36.3585
wl; 2.7575 manag; 35.7183
ashman; 2.75492 author; 35.4028
pargesa; 2.74823 bid; 34.1119
elsag; 2.74823 @0190; 34.0719
schengen; 2.74432 in; 33.4942
cocom; 2.70585 power; 33.0333
bronfman; 2.69946 @0330; 32.7875
bramalea; 2.67765 uap; 32.6033
barilla; 2.67246 ownership; 32.4002
bnc; 2.67022 @0373; 31.3897
italtel; 2.65896 agnellis; 30.99
exor; 2.65851 exor; 30.8638
innocenti; 2.65617 fore; 30.6076
agnellis; 2.65241 cdollar; 30.1264
colonia; 2.65237 hachett; 29.6174
foxboro; 2.65172 reform; 29.5266
virani; 2.65016 ferruzzi; 29.4452
gardinis; 2.64353 central; 29.242
saffa; 2.64089 famili; 29.2121
ifint; 2.63575 finmeccanica; 28.4624
gge; 2.63275 ciga; 28.2497
gmf; 2.6266 skoda; 28.1374
slavonia; 2.62424 lyonnais; 28.0632
cantv; 2.62424 @0121; 27.9264
desmarais; 2.62047 local; 27.8885
kelantan; 2.61698 regul; 27.4602
suntim; 2.59622 chebol; 27.3881
pbc; 2.59622 @0060; 27.384



Table A.10. Top 50 MI and Z ranked collocates of the stem solar (topic 271)

Ml list Z list

seti; 8.71912 energi; 111.796
ulyss; 8.58816 ulyss; 80.6755
biomass; 8.41798 biomass; 80.378
geotherm; 8.19931 @0256; 68.4866
twh; 8.13005 seti; 67.924
hubbi; 7.9236 geotherm; 59.1876
spacecraft; 7.84465 hubbi; 55.95
geostationari; 7.77955 orbit; 48.9847
@0111; 7.77955 leo; 43.8943
audubon; 7.73773 renew; 43.6682
maya; 7.57108 fossil; 42.5949
geo; 7.54509 galaxi; 41.8607
lunar; 7.4698 kwh; 41.2001
kwh; 7.42407 twh; 40.8524
antipolis; 7.17585 heat; 40.8404
nino; 7.16262 earth; 39.3064
constel; 7.15277 spacecraft; 36.976
milki; 7.1391 planet; 36.4552
wenger; 7.13005 maya; 36.2928
equinox; 7.13005 lunar; 35.0275
@0256; 7.12873 constel; 33.5028
deg; 7.11213 sun; 33.1233
galaxi; 7.09578 ozon; 33.0823
nonpollut; 7.00077 galileo; 33.0771
munic; 6.88212 geostationari; 32.9946
eze; 6.73773 @0111; 32.9946
coppic; 6.68711 wind; 32.9339
grimshaw; 6.67062 audubon; 32.5155
galileo; 6.66467 astronom; 32.0261
nonfossil; 6.60649 iridium; 31.9866
nozzl; 6.59089 nino; 31.4477
castillo; 6.59089 sunlight; 31.4343
iridium; 6.56989 pavilion; 30.6845
aquascutum; 6.5602 geo; 30.395
pye; 6.54509 cfc; 30.0678
mbb; 6.54509 telescop; 30.0401
harwel; 6.54509 space; 29.2193
telescop; 6.52717 radiat; 28.4929
observatori; 6.52272 electr; 28.1797
astrolog; 6.52272 odyssei; 27.9926
sunlight; 6.5207 power; 27.6715
orbit; 6.50556 dioxid; 27.5746
@0404; 6.50069 satellit; 27.2951
leo; 6.48488 nuclear; 26.6888
odyssei; 6.47661 @0404; 26.6179
fossil; 6.46573 milki; 26.3593
astronom; 6.45057 deg; 26.1106
pane; 6.42961 cult; 26.0892



Table A.11. Top 50 MI and Z ranked collocates of the stem power (topic 271)

Ml list Z list

troup; 6.40752 electr; 159.753
gigawatt; 3.22857 nuclear; 142.951
igcc; 3.22338 parti; 102.087
kwu; 3.11701 coal; 100.753
gascool; 3.10558 station; 95.4629
schkopau; 3.10053 polit; 83.2746
kozlodui; 3.09612 powergen; 81.8653
tepco; 3.09277 energi; 79.8404
cepa; 3.08857 constitut; 75.0287
sisewel; 3.08174 turbin; 74.1796
pwr; 3.0681 @0147; 71.0559
napocor; 3.0681 parliam; 69.0011
keadbi; 3.0681 reactor; 68.6938
megawatt; 3.04257 elect; 67.5711
egat; 3.03568 @0330; 60.2462
paiton; 3.02504 yeltsin; 58.6367
rokkasho; 3.0208 presid; 58.6345
@0131; 3.01433 @0134; 58.4815
@0067; 3.01261 reform; 56.2424
huaneng; 3.01152 gener; 54.9095
gasfir; 3.00934 nation; 54.7865
scrubber; 3.00921 anc; 54.6106
ccgt; 3.00798 littlechild; 54.0736
orimuls; 3.0023 gasfir; 53.1272
magnox; 2.9908 mr; 52.829
drax; 2.9901 Idp; 52.2448
kilowatt; 2.98642 fuel; 51.3928
fgd; 2.93732 democrat; 51.1308

ipp; 2.93686 abb; 48.6415
chubu; 2.92609 util; 48.4406
oilfir; 2.92126 hydro; 48.0301
connah; 2.91283 democraci; 47.3177
pin; 2.88524 state; 47.0587
gasif; 2.88524 coalition; 47.0171
egco; 2.88169 opposit; 45.8643
rbmk; 2.87907 leader; 45.8563
kwh; 2.87309 sisewel; 45.8306
preussenelektra; 2.86299 social; 44.2793
powergen; 2.86227 minist; 42.8155
flue; 2.84304 militari; 42.636
sydkraft; 2.83984 politician; 39.4591
cegb; 2.83678 engin; 39.2409
turbin; 2.83295 vote; 39.1295
desmarais; 2.82932 plant; 38.9279
codecis; 2.7968 diesel; 38.9168
sevan; 2.788 batteri; 38.6669
omo; 2.78517 ukrain; 38.3858
desulfur; 2.7786 grid; 38.0522



Table A.12. Top 50 MI and Z ranked collocates of the stem volcan (topic 273)

Ml list Z list

lava; 9.34627 volcano; 159.008
volcano; 9.17149 crater; 119.379
crater; 8.99712 lava; 111.035
jalousi; 8.80195 erupt; 100.785
geotherm; 8.17042 island; 75.4608
westerli; 7.64583 jalousi; 59.6206
bariloch; 7.64583 geotherm; 50.7437
hierro; 7.6093 ozon; 48.9959
tenerif; 7.58073 ski; 41.7053
muirfield; 7.4718 palma; 37.3397
cove; 7.4348 cone; 36.9855
ashland; 7.38691 mountain; 36.8281
tortois; 7.34627 cove; 34.6004
waffl; 7.30674 torist; 34.2705
palma; 7.2938 tortois; 31.0543
erupt; 7.22117 tenerif; 30.7769
fuego; 7.19426 subic; 30.399
soleil; 7.08993 mile; 30.1965
rancher; 7.08993 ash; 30.0796
subic; 7.06616 helena; 29.592
skog; 7.04371 diesel; 28.2131
mountainsid; 7.00049 westerli; 28.1623
cone; 6.98127 bariloch; 28.1623
safaris; 6.97703 hierro; 27.8044
overspil; 6.97703 resort; 27.7156
iguana; 6.97703 @0139; 27.3599
gran; 6.96776 mud; 26.6394
sluic; 6.93123 lake; 26.1858
flore; 6.93123 waugh; 25.5053
ditto; 6.88684 skog; 25.4897
kinship; 6.84377 gran; 24.8172
headmistress; 6.84377 bachelor; 23.8541
antipodean; 6.84377 snow; 23.135
stratosfer; 6.80195 muirfield; 22.9469
southerli; 6.80195 mountainsid; 22.4545
millgat; 6.80195 ashland; 22.274
inferno; 6.76131 safaris; 22.2698
frigid; 6.76131 las; 22.128
conquistador; 6.76131 earthquak; 21.97
stanton; 6.70884 flore; 21.9134
gorilla; 6.6833 waffl; 21.6562
snowboard; 6.65821 filippin; 21.641
torqu; 6.63355 ditto; 21.5733
helena; 6.63355 antarct; 21.0843
spew; 6.6093 archipelago; 21.0252
fawn; 6.6093 stratosfer; 20.937
bachelor; 6.59733 fuego; 20.8175
waugh; 6.56866 debris; 20.4137



Table A.13. Top 50 MI and Z ranked collocates of the synonym group
@0375 [tax, taxation, taxable, taxability] (topic 291)

Ml list Z list
privi; 8.80379 incom; 179.093
yiy; 3.53112 budget; 174.605
iht; 3.36403 revenu; 139.268
shochu; 3.34349 vat; 120.849
prt; 3.32169 spend; 109.071
gst; 3.31964 relief; 108.797
furb; 3.31178 @0290; 104.876
youearn; 3.30873 pep; 104.472
settlor; 3.30042 inland; 99.4814
chargeabl; 3.29604 chancellor; 91.9547
fid; 3.27454 deficit; 90.992
vet; 3.26406 increas; 89.4839
taxplan; 3.26103 taxpay; 89.0197
lowtax; 3.24833 fiscal; 88.2811
nontaxpay; 3.2316 cgt; 84.0386
cgt; 3.22509 pound; 79.7894
mlsdeclar; 3.21796 labor; 78.4059
ezt; 3.20856 pension; 78.023
untax; 3.19149 rate; 77.9838
labuan; 3.18122 exempt; 77.5642
taxman; 3.17357 adollar; 77.5164
nontax; 3.17357 benefit; 76.0686
allenbridg; 3.17016 bes; 74.9358
Ipi; 3.15085 @0147; 72.511
bes; 3.11268 year; 70.5511
thorsen; 3.10645 invest; 70.4605
evasion; 3.09609 profit; 70.3891
darman; 3.075 taxfre; 69.3341
allcock; 3.06477 cut; 66.9847
taxdeduct; 3.05719 deduct; 66.086
hypothec; 3.05071 earn; 65.2715
taxexempt; 3.02041 charg; 65.1868
mavrodi; 3.01092 dividend; 64.4897
garnham; 3.00646 pay; 64.0982
Ifsc; 3.00532 scheme; 63.5085
taxeffici; 2.98883 tax; 63.2447
agerel; 2.96162 @0314; 61.5526
avc; 2.95975 inflat; 61.5507
nlc; 2.95392 lamont; 60.2571
taxfre; 2.94026 save; 60.0236
stlllerman; 2.92166 allow; 59.1358
mortgagor; 2.91286 excis; 58.5601
taxcut; 2.88538 @0069; 58.4195
ucit; 2.88406 @0136; 58.3346
ifs; 2.88286 incent; 58.3129
afgh; 2.84873 gain; 57.1742
baronworth; 2.84099 higher; 56.5863
boren; 2.83653 measur; 54.3491



Table A.14. Top 50 MI and Z ranked collocates of the stem air (topic 300)

Ml list Z list

biggest; 9.02791 @0008; 299.791
jeanniot; 4.73969 @0003; 176.804
bueno; 4.64085 carrier; 159.944
iata; 4.64025 bueno; 155.436
bosson; 4.61351 flight; 136.248
lauda; 4.59669 @0009; 129.084
orli; 4.56576 @0020; 114.725
airto; 4.44646 @0035; 112.721
aerolínea; 4.4415 passeng; 105.327
caac; 4.42982 travel; 102.52
metroga; 4.42775 serb; 102.252
sabena; 4.39419 aviat; 99.8414
tella; 4.38929 traffic; 97.6377
ftp; 4.30575 @0257; 90.0618
jas; 4.27308 ba; 88.2677
helium; 4.2702 un; 83.9231
pwa; 4.17991 airwai; 80.8904
ate; 4.15473 menem; 78.8667
meridien; 4.15165 argentin; 78.8446
perón; 4.15149 orli; 77.2939
fuego; 4.14265 lufthansa; 75.6225
aeroflot; 4.13675 boe; 74.499
merval; 4.12671 militari; 70.8615
radon; 4.11666 WT 70.6863
gripen; 4.10974 jet; 69.9276
mig; 4.07968 rout; 69.2206
tierra; 4.07226 sabena; 69.056
ypf; 4.06737 heathrow; 65.9443
airfreight; 4.05999 Sarajevo; 65.5815
rafal; 4.05859 fare; 65.259
farnborough; 4.03832 airbus; 62.419
alfonsn; 4.02336 iata; 62.3157
tupolev; 4.01189 fighter; 61.486
bisignani; 4.00012 pollution; 61.1125
igman; 3.99826 fore; 59.6625
letterbox; 3.97916 transport; 58.4025
menem; 3.94743 pwa; 57.4522
changi; 3.939 @0186; 56.6664
Inr; 3.92026 strike; 56.6491
airspac; 3.92026 meridien; 55.2733
esa; 3.91379 cavallo; 54.1811
juven; 3.90515 ypf; 53.9037
voc; 3.88671 missil; 52.3627
rudder; 3.88464 @0128; 52.1782
advanta; 3.86873 emiss; 51.4319
sofitel; 3.86076 @0114; 50.7927
plasser; 3.85753 runwai; 49.329
malev; 3.85467 usair; 49.1948



Table A.15. Top 50 MI and Z ranked collocates of the stem traffic (topic 300)

Ml list Z list
trafficmast; 5.88823 road; 165.593
jeanniot; 5.84161 passeng; 160.179
bed; 5.69913 @0009; 160.052
iata; 5.61903 @0008; 160.007
hartsfield; 5.46341 congest; 138.914
ate; 5.44306 transport; 117.282
changi; 5.30556 air; 115.221
prometheus; 5.27591 motorwai; 113.523
intermod; 5.25167 freight; 92.9153
freiburg; 5.25006 rout; 91.7011
congest; 5.20184 carrier; 91.6078
incar; 5.17419 jam; 91.5919
worldcom; 5.12999 rail; 85.5748
bosporus; 5.12113 toll; 81.046
flyover; 5.11416 network; 77.5176
paramed; 5.02379 heathrow; 77.012
teleglob; 4.97677 iata; 76.7848
jam; 4.8901 baa; 73.8284
blsignani; 4.88347 citi; 70.0296
holyhead; 4.8487 driver; 67.2903
skytraln; 4.79099 flight; 67.0757
larn; 4.7873 @0319; 65.7958
mitt; 4.77831 @0003; 64.0029
seacat; 4.76853 runwai; 63.5741
freewai; 4.74917 aviat; 63.5286
mfs; 4.72317 transit; 62.0334
tanayong; 4.7206 port; 61.312
voltri; 4.70186 termin; 60.5298
gotthard; 4.68777 hlghwai; 59.2212
huangpu; 4.68407 travel; 58.8958
narita; 4.66301 lorri; 58.3201
expresswai; 4.65606 hub; 57.0949
carriagewai; 4.62939 tunnel; 56.7785
roadwork; 4.62631 cargo; 54.3405
warden; 4.60715 distene; 54.1866
telemat; 4.60161 fare; 50.4549
farnsworth; 4.57633 servic; 50.3135
peek; 4.57152 telecom; 50.1608
vpn; 4.57102 speed; 49.8485
trucker; 4.56686 bridg; 48.9271
teus; 4.55172 ate; 47.7909
streetcar; 4.53053 gatwick; 47.5496
tranship; 4.52361 ba; 47.0051
filton; 4.52361 bangkok; 46.988
runwai; 4.5035 trafficmast; 46.0228
autobahn; 4.49852 ferri; 45.406
asynchron; 4.48613 @0045; 44.8337
airspac; 4.48613 @0296; 44.4583



A.2 Trec_eval performance results of global runs

Table A.2.16. Performance results of global runs

Retrieved: =44000
Relevant: 1583

Measure OK
UNEXPANDED TOP 8 Ml TOP 16 Ml TOP 8 Z TOP 16Z

Relevant
retrieved 632 573 526 520 504

Interpolated recall -  precision averages
at 0.00 0.3992 0.1385 0.1197 0.1828 0.1430
at 0.10 0.3013 0.1022 0.0820 0.0999 0.0873
at 0.20 0.2049 0.0759 0.0618 0.0763 0.0643
Average
precision 0.1310 0.0432 0.0344 0.0375 0.0340

Precision:
At 5 docs 0.2136 0.0682 0.0636 0.0682 0.0773
At 10 docs 0.1523 0.0568 0.0477 0.0636 0.0614
At 15 docs 0.1394 0.0561 0.0515 0.0606 0.0530
At 20 docs 0.1295 0.0591 0.0477 0.0557 0.0523
R-Precision 0.1497 0.0437 0.0355 0.0422 0.0338

Measure PREDICTED OW PREDICTED RW
Relevant
retrieved 554 617

Interpolated recall -  precision averacjes
at 0.00 0.1669 0.0798
at 0.10 0.0899 0.0652
at 0.20 0.0741 0.0500
Average
precision 0.0364 0.0296

Precision:
At 5 docs 0.0682 0.0318
At 10 docs 0.0523 0.0250
At 15 docs 0.0515 0.0273
At 20 docs 0.0523 0.0227
R-Precision 0.0419 0.0269
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A.3 Regression analysis results
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Table A.3.1. Regression (all significant collocates);
dependent variable: OW; independent variables: Z, MI, JF, NOPOS

Model Summary

Model R R
Square

Adjusted R Square Std. Error of the Estimate

1 .211(a) .045 .045 7.9502
a Predictors: (Constant), NOPOS, Z, Ml, JF

ANOVA(b)

Model Sum of 
Squares

df Mean Square F Sig.

1

Regression 1915569.482 4 478892.370 7576.645 .000(a)

Residual 41011024.834 648843 63.206

Total 42926594.316 648847

a Predictors: (Constant), ÑOPOS, Z, Ml, JF
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

t Sig.
Model B Std. Error

Beta

1

(Constant) .181 .018 10.153 .000

Ml -.309 .010 -.041 -30.805 .000
Z .152 .001 .158 115.846 .000

JF 1.787E-04 .000 .041 26.518 .000
NOPOS 1.090E-04 .000 .077 49.193 .000

a D e p e n d e n t V a ria b le : O W
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Table A.3.2 Regression (all significant collocates);
dependent variable: OW; independent variables: Z, JF, NOPOS

Model Summary

Model R R
Square Adjusted R Square Std. Error of the Estimate

1 .208(a) .043 .043 7.9847
a Predictors: (Constant), NOPOS, Z, JF

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

1

Regression 1850071.218 3 616690.406 9672.656 .000(a)

Residual 41061771.757 644045 63.756

Total 42911842.974 644048

a Predictors: (Constant), NOPOS, Z, JF
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

t Sig.
Model B Std. Error

Beta

(Constant) -.217 .012 -17.526 .000

1 Z .137 .001 .142 111.734 .000
JF 1.937E-04 .000 .045 28.677 .000

NOPOS 1.247E-04 .000 .087 57.507 .000
a Dependent Variable: OW
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Table A.3.3. Regression (all significant collocates);
dependent variable: OW; independent variables: Z, JF

Model Summary

Model R R
Square Adjusted R Square Std. Error of the Estimate

1 .195(a) .038 .038 8.0052
a Predictors: (Constant), JF, Z

ANOVA(b)

Model Sum of 
Squares

Df Mean Square F Sig.

1

Regression 1639225.417 2 819612.709 12789.794 .000(a)

Residual 41272617.557 644046 64.083

Total 42911842.974 644048

a Predictors: (Constant), JF, Z
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

Model B Std. Error
Beta t Sig.

1
(Constant) -7.814E-02 .012 -6.431 .000

Z .139 .001 .144 113.071 .000
JF 4.177E-04 .000 .096 75.501 .000

a Dependent Variable: OW
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Table A.3.4. Regression (all significant collocates);
dependent variable: OW; independent variables: Z, NOPOS

Model Summary

Model R
R

Square
Adjusted R Square Std. Error of the Estimate

1 .205(a) .042 .042 7.9629
a Predictors: (Constant), NOPOS, Z

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

1

Regression 1799377.958 2 899688.979 14188.939 .000(a)

Residual 41119495.396 648493 63.408

Total 42918873.354 648495

a Predictors: (Constant), NOPOS, Z
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

t Sig.
Model B Std. Error

Beta

1
(Constant) -.269 .012 -22.182 .000

Z .145 .001 .150 121.423 .000

NOPOS 1.605E-04 .000 .113 90.930 .000

a Dependent Variable: OW
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Table A.3.5. Regression (all significant collocates);
dependent variable: OW; independent variables: Z, MI

Model Summary

Model R R
Square Adjusted R Square Std. Error of the Estimate

1 .187(a) .035 .035 7.9896
a Predictors: (Constant), Z, Ml

ANOVA(b
Model Sum of Squares df Mean Square F Sig.

1

Regression 1508723.124 2 754361.562 11817.694 .000(a)

Residual 41417871.191 648845 63.833

Total 42926594.316 648847

a Predictors: (Constant), Z, Ml
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

Model B Std. Error
Beta t Sig.

1

(Constan
t)

.595 .017 35.148 .000

Ml -.573 .010 -.077 -60.180 .000
Z .188 .001 .195 152.923 .000

a D e p e n d e n t V a ria b le : O W
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Table A.3.6. Regression (all significant collocates);
dependent variable: OW; independent variables: Z

Model Summary
Mode

1
R R

Square
Adjusted R Square Std. Error of the Estimate

1 .172(a) .030 .030 8.0135
a Predictors: (Constant), Z

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

1

Regression 1275105.012 1 1275105.012 19856.463 .000(a)

Residual 41643768.342 648494 64.216

Total 42918873.354 648495

a Predictors: (Constant), Z
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

t Sig.
Model B Std. Error

Beta

1
(Constant) -.119 .012 -9.855 .000

Z .166 .001 .172 140.913 .000
a Dependent Variable: OW
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Table A.3.7. Regression (all significant collocates);
dependent variable: RW; independent variables: MI, Z, JF, NOPOS, QT

Model Summary

Model R R Square Adjusted R 
Square

Std. Error of the Estimate

1 .538(a) .289 .289 1.7073
a Predictors: (Constant), QT, JF, Ml, Z, NOPOS

ANOVA(b)

Model Sum of 
Squares

df
Mean

Square
F Sig.

1

Regression 769733.914 5 153946.783 52816.267 .000(a)

Residual 1891627.256 648982 2.915

Total 2661361.170 648987

a Predictors: (Constant), QT, JF, Ml, Z, NOPOS
b Dependent Variable: RW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

t Sig.
Model B Std. Error

Beta

1

(Constant) 3.401 .004 887.960 .000

Ml .692 .002 .373 321.302 .000
Z -4.860E-02 .000 -.203 -172.724 .000

JF 1.031 E-04 .000 .096 71.239 .000
NOPOS -1.202E-04 .000 -.340 -253.101 .000

QT 2.436 .144 .018 16.867 .000
a Dependent Variable: RW
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Table A.3.8. Regression (all significant collocates);
dependent variable: RW; independent variables: Z, JF, NOPOS, QT

Model Summary

Model R R
Square

Adjusted R Square Std. Error of the Estimate

1 .420(a) .176 .176 1.8380
a Predictors: (Constant), QT, JF, Z, NOPOS

ANOVA(b)

Model Sum of Squares df
Mean

Square
F Sig.

1

Regression 468828.782 4 117207.195 34692.978 .000(a)

Residual 2192532.388 648983 3.378

Total 2661361.170 648987

a Predictors: (Constant), QT, JF, Z, NOPOS
b Dependent Variable: RW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

t Sig.
Model B Std. Error

Beta

1

(Consta
nt) 4.295 .003 1515.533 .000

Z -1.552E-02 .000 -.065 -55.065 .000
JF 6.993E-05 .000 .065 45.015 .000

NOPOS -1.556E-04 .000 -.440 -312.823 .000
QT 2.021 .155 .015 12.996 .000

a  D e p e n d e n t V a ria b le : R W
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Table A.3.9. Regression (all significant collocates);
dependent variable: RW; independent variables: Z, NOPOS, QT

Model Summary

Model R R
Square

Adjusted R Square Std. Error of the Estimate

1 .417(a) .174 .174 1.8409
a Predictors: (Constant), QT, Z, NOPOS

ANOVA(b)

Model Sum of 
Squares df Mean Square F Sig.

1

Regression 461982.960 3 153994.320 45440.047 .000(a)

Residual 2199378.210 648984 3.389

Total 2661361.170 648987

a Predictors: (Constant), QT, Z, NOPOS
b Dependent Variable: RW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

Model B Std. Error
Beta t Sig.

(Constant) 4.276 .003 1523.020 .000

1 Z -1.272E-02 .000 -.053 -46.190 .000
NOPOS -1.427E-04 .000 -.403 -350.364 .000

QT 1.865 .156 .014 11.980 .000
a Dependent Variable: RW
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Table A.3.10. Regression (all significant collocates);
dependent variable: RW; independent variables: Z, JF, QT

Model Summary

Model R R
Square

Adjusted R Square Std. Error of the Estimate

1 .228(a) .052 .052 1.9718
a Predictors: (Constant), JF, QT, Z

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

1

Regression 138223.766 3 46074.589 11850.988 .000(a)

Residual 2523137.403 648984 3.888

Total 2661361.170 648987

a Predictors: (Constant), JF, QT, Z
b Dependent Variable: RW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

t Sig.
Model B Std. Error

Beta

(Constant) 4.123 .003 1382.450 .000

1 Z -1.796E-02 .000 -.075 -59.419 .000
QT 8.907E-02 .167 .001 .534 .593
JF -2.099E-04 .000 -.195 -154.040 .000

a  D e p e n d e n t V a ria b le : R W
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Table A.3.11. Regression (collocates with JF>30);
dependent variable: OW; independent variables: Z, MI, JF, NOPOS

Model Summary

Model R R
Square Adjusted R Square Std. Error of the Estimate

1 .210(a) .044 .044 11.9083
a Predictors: (Constant), NOPOS, Z, JF, Ml

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

1

Regression 1724741.138 4 431185.284 3040.660 .000(a)

Residual 37552487.718 264815 141.806

Total 39277228.856 264819

a Predictors: (Constant), NOPOS, Z, JF, Ml
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

Model B Std. Error
Beta t Sig.

(Constant) .499 .038 12.990 .000

1
Ml -1.162 .039 -.079 -29.718 .000
Z .199 .003 .196 73.155 .000

JF 1.027E-04 .000 .024 9.878 .000
NOPOS 1.096E-04 .000 .076 31.210 .000

a Dependent Variable: OW
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Table A.3.12. Regression (collocates with JF>30);
dependent variable: OW; independent variables: Z, JF, NOPOS

Model Summary

Model R
R

Square
Adjusted R Square Std. Error of the Estimate

1 .202(a) .041 .041 11.9281
a Predictors: (Constant), NOPOS, Z, JF

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

1

Regression 1599503.338 3 533167.779 3747.343 .000(a)

Residual 37677725.518 264816 142.279

Total 39277228.856 264819

a Predictors: (Constant), ÑOPOS, Z, JF
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

Model B Std. Error
Beta t Sig.

(Constant) -.204 .030 -6.730 .000

1 Z .144 .002 .142 71.874 .000

JF 1.624E-04 .000 .039 15.897 .000
NOPOS 1.340E-04 .000 .092 39.191 .000

a Dependent Variable: OW
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Table A.3.13. Regression (collocates with JF>30);
dependent variable: OW; independent variables: Z, JF

Model Summary

Model R R
Square

Adjusted R Square Std. Error of the Estimate

1 .188(a) .035 .035 11.9626
a Predictors: (Constant), JF, Z

ANOVA(b)
Model Sum  of Squares df Mean Square F Sig.

1

Regression 1380971.418 2 690485.709 4825.077 .000(a)

Residual 37896257.438 26481
7

143.104

Total 39277228.856 26481
9

a Predictors: (Constant), JF, Z
b Dependent Variable: QW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

t Sig

Model B Std. Error
Beta

1

(Constan
t)

.170 .029 5.871 .00
0

Z .141 .002 .139
70.22

5
.00

0

JF 3.952E-04 .000 .094 47.38
9

.00
0

a Dependent Variable: OW
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Table A.3.14. Regression (collocates with JF>30);
dependent variable: OW; independent variables: Z, NOPOS

Model Summary

Model R R
Square Adjusted R Square Std. Error of the Estimate

1 .200(a) .040 .040 11.9337
a Predictors: (Constant), NOPOS, Z

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

1

Regression 1563549.370 2 781774.685 5489.447 .000(a)

Residual 37713679.486 264817 142.414

Total 39277228.856 264819

a Predictors: (Constant), NOPOS, Z
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

Model B Std. Error
Beta t Sig.

1
(Constant) -.281 .030 -9.367 .000

Z .152 .002 .150 77.926 .000
NOPOS 1.657E-04 .000 .114 59.486 .000

a Dependent Variable: OW
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Table A.3.15. Regression (collocates with JF>30);
dependent variable: OW; independent variables: Z

Model Summary
Mode

1
R R

Square
Adjusted R Square Std. Error of the Estimate

1 .164(a) .027 .027 12.0132
a Predictors: (Constant), Z

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

1

Regression 1059601.907 1 1059601.907 7342.205 .000(a)

Residual 38217626.949 264818 144.317

Total 39277228.856 264819

a Predictors: (Constant), Z
b Dependent Variable: OW

Coefficients (a)
Unstandardized

Coefficients
Standardized
Coefficients

t Sig.
Model B Std. Error

Beta

1
(Constant) .212 .029 7.315 .000

Z .167 .002 .164 85.687 .000
a Dependent Variable: OW
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Table A.3.16. Regression (collocates with JF>30);
dependent variable: OW; independent variables: Z, MI

Model Summary

Model R R
Square Adjusted R Square Std. Error of the Estimate

1 .193(a) .037 .037 11.9502
a Predictors: (Constant), Ml, Z

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

1

Regression 1459498.417 2 729749.208 5110.037 .000(a)

Residual 37817730.439 264817 142.807

Total 39277228.856 264819

a Predictors: (Constant), Ml, Z
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

Model B Std. Error
Beta t Sig.

1
(Constant) 1.219 .035 35.270 .000

Z .245 .002 .241 100.578 .000
Ml -1.872 .035 -.127 -52.917 .000

a Dependent Variable: OW
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Table A.3.17. Regression (collocates with JF>30);
dependent variable: OW; independent variables: JF, NOPOS

Model Summary

Model R R
Square Adjusted R Square Std. Error of the Estimate

1 .148(a) .022 .022 12.0438
a Predictors: (Constant), JF, NOPOS

ANOVA(b)
Model Sum of Squares df Mean Square F Sig.

1

Regression 864503.407 2 432251.703 2979.940 .000(a)

Residual 38412725.450 264817 145.054

Total 39277228.856 264819

a Predictors: (Constant), JF, NOPOS
b Dependent Variable: OW

Coefficients(a)
Unstandardized

Coefficients
Standardized
Coefficients

Model B Std. Error
Beta t Sig.

1
(Constant) .987 .026 38.440 .000

NOPOS 1.247E-04 .000 .086 36.122 .000
JF 3.386E-04 .000 .080 33.804 .000

a Dependent Variable: OW
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Appendix B

Local collocation analysis

B.l Trec_eval performance results of retrospective MI/Z collocate 
runs

Tables

B.1.1 Performance of retrospective Okapi runs.................................................... 173
B.1.2. Performance of retrospective Z runs........................................................... 174
B.1.3. Performance of retrospective MI runs.........................................................175

Values in all tables:

Retrieved: =44000
Relevant: 1583
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Table B.1.1. Performance of retrospective Okapi runs

Measure OK UNEXPANDED RETRO OK 20 RETRO OK 25 RETRO OK 30 RETRO OK 35
Relevant retrieved 632 936 932 926 941
Interpolated recall -  precision averages
at 0.00 0.3992 0.9545 0.9545 0.9545 0.9545
at 0.10 0.3013 0.8141 0.8271 0.8476 0.8512
at 0.20 0.2049 0.7282 0.7356 0.7519 0.7584
Average precision 0.1310 0.4945 0.5096 0.5184 0.5259
Precision:
At 5 docs 0.2136 0.6500 0.6909 0.7000 0.7227
At 10 docs 0.1523 0.4500 0.4614 0.4727 0.4841
At 15 docs 0.1394 0.3455 0.3576 0.3636 0.3652
At 20 docs 0.1295 0.2864 0.2932 0.3000 0.3057
R-Precision 0.1497 0.4735 0.4957 0.5053 0.5200



Table B.1.2. Performance of retrospective Z runs

Measure
RETRO 8 

G LO B A LZ  
COL

RETRO 8 
GLOBAL Z 

C O L + 20 OK

RETRO 8 Z 
COL (win 

200)

RETRO 8 Z 
COL (win 

100)

RETRO 8 Z 
COL (win 

50)

RETRO 8 Z 
COL (win 

30)

RETRO 8 Z 
COL (win 

20)

RETRO 12 
Z COL (win 

200)

RETRO 16 
Z COL (win 

200)

RETRO 21 
Z COL (win 

200)
Relevant
retrieved 851 839 847 858 876 852 847 868 886 924

Interpolated recall -  precision averages
at 0.00 0.9003 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545
at 0.10 0.6951 0.7018 0.7554 0.7556 0.8039 0.8180 0.8100 0.7847 0.8011 0.8326
at 0.20 0.5392 0.5549 0.6851 0.6899 0.6984 0.7207 0.7237 0.7005 0.7215 0.7366
Average
precision 0.3220 0.3148 0.4758 0.4720 0.4733 0.4857 0.4810 0.4896 0.5034 0.5029

Precision:
At 5 docs 0.4045 0.4273 0.6455 0.6182 0.6318 0.6636 0.6545 0.6545 0.6818 0.6773
At 10 docs 0.3136 0.3159 0.4182 0.3932 0.4159 0.4250 0.4386 0.4250 0.4409 0.4432
At 15 docs 0.2561 0.2636 0.3091 0.3030 0.3212 0.3333 0.3394 0.3258 0.3318 0.3455
At 20 docs 0.2273 0.2205 0.2568 0.2523 0.2591 0.2807 0.2841 0.2682 0.2818 0.2841
R-Precision 0.3218 0.3169 0.4722 0.4563 0.4495 0.4691 0.4517 0.4783 0.4949 0.5054

Measure
RETRO 8 Z 

C O L + 20 OK  
(win 200)

RETRO 8 Z 
COL + 20 OK  

(win 100)

RETRO 8 Z 
COL + 20 
OK (win 

50)

RETRO 8 Z 
COL + 20 
OK (win 

30)

RETRO 8 Z 
COL + 20 
OK (win 

20)

RETRO 16 
Z C O L  + 10 

OK (win 
200)

RETRO 16 
Z COL + 20 

OK (win 
200)

RETRO 16 
Z COL + 20 

OK (win 
100)

RETRO 16 
Z C O L + 20 

OK (win 
50)

RETRO 16 
Z COL + 20 

OK (win 
30)

RETRO 16 
Z COL + 20 

OK (win 
20)

RETRO 21 
Z COL + 20 

OK (win 
200)

Relevant
retrieved 967 955 952 954 963 979 953 965 966 960 959 972

Interpolated recall -  precision averages
at 0.00 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9318 0.9545 0.9545 0.9545 0.9545 0.9545
at 0.10 0.8376 0.8315 0.8487 0.8348 0.8283 0.8483 0.8261 0.8483 0.8391 0.8476 0.8470 0.8441
at 0.20 0.7409 0.7462 0.7496 0.7495 0.7397 0.7501 0.7324 0.7596 0.7583 0.7763 0.7853 0.7580
Average
precision 0.5194 0.5230 0.5245 0.5258 0.5263 0.5257 0.5171 0.5264 0.5271 0.5313 0.5316 0.5219

Precision:
At 5 docs 0.6955 0.7045 0.7091 0.7091 0.6909 0.6955 0.6773 0.7045 0.7000 0.7227 0.7182 0.7000
At 10 docs 0.4636 0.4636 0.4818 0.4773 0.4659 0.4727 0.4591 0.4636 0.4750 0.4795 0.4841 0.4750
At 15 docs 0.3682 0.3652 0.3712 0.3652 0.3667 0.3591 0.3561 0.3591 0.3712 0.3803 0.3652 0.3591
At 20 docs 0.3034 0.3034 0.3045 0.3034 0.3023 0.3080 0.2955 0.3011 0.3057 0.3148 0.3091 0.2989
R-Precision 0.5129 0.5139 0.5155 0.5145 0.5257 0.5258 0.5115 0.5198 0.5194 0.5243 0.5233 0.5228



Table B.1.3. Performance of retrospective MI runs

Measure
RETRO 8 

GLOBAL Ml 
COL

RETRO 8 
GLO BAL Ml 
C O L + 20 OK

RETRO 8 
Ml COL

(win 200)

RETRO 8 
Ml COL  

(win 100)

RETRO 8 
Ml COL  
(win 50)

RETRO 8 
Ml COL
(win 30)

RETRO 8 
Ml COL  
(win 20)

RETRO 12 
Ml COL  

(win 200)

RETRO 16 
Ml COL  

(win 200)

RETRO 21 
Ml COL  

(win 200)
Relevant
retrieved 789 796 794 809 818 852 835 809 848 870

Interpolated recall -  precision averages
at 0.00 0.9410 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545
at 0.10 0.6991 0.7103 0.7699 0.7777 0.7922 0.8086 0.7988 0.7901 0.8020 0.8081
at 0.20 0.5466 0.5527 0.6930 0.6895 0.6670 0.6950 0.7015 0.6993 0.6996 0.7035
Average
precision 0.3177 0.3104 0.4458 0.4610 0.4551 0.4690 0.4733 0.4688 0.4877 0.4991

Precision:
At 5 docs 0.4273 0.4318 0.6273 0.6455 0.6455 0.6545 0.6409 0.6727 0.6864 0.6864
At 10 docs 0.3227 0.3068 0.3909 0.4045 0.4159 0.4364 0.4409 0.4159 0.4455 0.4477
At 15 docs 0.2636 0.2576 0.3000 0.3045 0.3091 0.3348 0.3288 0.3076 0.3258 0.3303
At 20 docs 0.2239 0.2250 0.2500 0.2580 0.2591 0.2784 0.2841 0.2523 0.2614 0.2761
R-Precision 0.3104 0.3095 0.4323 0.4482 0.4321 0.4519 0.4439 0.4634 0.4909 0.4853

Measure
RETRO 8 Ml 
C O L + 20 OK 

(win 200)

RETRO 8 Ml 
C O L + 20 OK  

(win 100)

RETRO 8 
Ml COL + 

20 OK (win 
50)

RETRO 8 
Ml COL + 

20 OK (win 
30)

RETRO 8 
Ml COL + 

20 OK (win 
20)

RETRO 16 
Ml COL + 

10 OK (win 
200)

RETRO 16 
Ml COL + 

10 OK (win 
100)

RETRO 16 
Ml COL + 

10 OK (win 
50)

RETRO 16 
Ml COL + 

10 OK (win 
30)

RETRO 16 
Ml COL + 

10 OK (win 
20)

Relevant
retrieved 956 954 955 955 955 976 971 968 967 973

Interpolated recall -  precision averages
at 0.00 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545
at 0.10 0.8302 0.8292 0.8485 0.8422 0.8364 0.8539 0.8406 0.8360 0.8509 0.8495
at 0.20 0.7418 0.7450 0.7500 0.7396 0.7517 0.7497 0.7456 0.7506 0.7654 0.7585
Average
precision 0.5227 0.5251 0.5240 0.5249 0.5274 0.5274 0.5260 0.5292 0.5291 0.5270

Precision:
At 5 docs 0.70451 0.7136 0.7182 0.7045 0.7000 0.7182 0.7136 0.7045 0.7273 0.7182
At 10 docs 0.4659 0.4636 0.4727 0.4795 0.4682 0.4773 0.4750 0.4795 0.4773 0.4795
At 15 docs 0.3652 0.3652 0.3636 0.3636 0.3667 0.3652 0.3561 0.3652 0.3758 0.3697
At 20 docs 0.3023 0.3045 0.3000 0.3023 0.3023 0.3080 0.2977 0.3045 0.3114 0.3136
R-Precision 0.5139 0.5229 0.5136 0.5199 0.5234 0.5256 0.5274 0.5286 0.5228 0.5194



Table B.1.3 (continued)

Measure

RETRO 16 
Ml COL + 

20 OK  (win 
200)

RETRO 16 
Ml COL + 

20 OK (win 
100)

RETRO 16 
Ml COL + 

20 OK (win 
50)

RETRO 16 
Ml COL + 

20 OK (win 
30)

RETRO 16 
Ml COL + 

20 OK (win 
20)

RETRO 21 
Ml COL + 

20 OK (win 
200)

Relevant
retrieved 970 965 963 959 951 972

Interpolated recall -  precision averages
at 0.00 0.9545 0.9545 0.9545 0.9545 0.9545 0.9545
at 0.10 0.8481 0.8371 0.8335 0.8465 0.8554 0.8446
at 0.20 0.7483 0.7445 0.7571 0.7765 0.7673 0.7510
Average
precision 0.5264 0.5267 0.5282 0.5301 0.5290 0.5272

Precision:
At 5 docs 0.7182 0.7182 0.7136 0.7182 0.7318 0.7273
At 10 docs 0.4705 0.4750 0.4705 0.4818 0.4750 0.4773
At 15 docs 0.3576 0.3561 0.3682 0.3712 0.3682 0.3606
At 20 docs 0.3011 0.2977 0.3045 0.3125 0.3080 0.3023
R-Precision 0.5222 0.5258 0.5226 0.5210 0.5162 0.5301



B.2 Trec_eval performance results of predictive MI/Z collocate runs

Tables

B.2.1 Performance of predictive Okapi runs..........................................................178
B.2.2. Performance of predictive Z runs................................................................179
B.2.3. Performance of predictive MI runs..............................................................181

Values in all tables:

Retrieved: =44000
Relevant: 1583

177



Table B.2.1. Performance of predictive Okapi runs

Measure PRED
UNEXPANDED PRED OK 10 PRED OK 20 PRED OK 25 PRED OK 30 PRED OK 35

Relevant retrieved 417 548 559 567 570 577
Interpolated recall -  precision averages
at 0.00 0.3135 0.5144 0.5105 0.5441 0.5420 0.5602
at 0.10 0.2218 0.4014 0.4123 0.4582 0.4549 0.4470
at 0.20 0.1577 0.2946 0.3288 0.3455 0.3290 0.3547
Average precision 0.0799 0.1343 0.1400 0.1520 0.1483 0.1533
Precision:
At 5 docs 0.1727 0.2864 0.3318 0.3409 0.3182 0.3409
At 10 docs 0.1227 0.2159 0.2364 0.2432 0.2477 0.2432
At 15 docs 0.1076 0.1848 0.1985 0.1985 0.1955 0.1970
At 20 docs 0.0977 0.1682 0.1705 0.1727 0.1727 0.1739
R-Precision 0.1063 0.1584 0.1663 0.1707 0.1768 0.1691



Table B.2.2. Performance of predictive Z runs

Measure
P R ED 8  

G L O B A L Z  
COL

PRED8  
G LO B A LZ  

COL + 20 OK

P R E D 8 Z  
COL (win 

200)

P R E D 8 Z  
COL (win 

100)

P R E D 8 Z  
COL (win 

50)

PRED 8 Z  
COL (win 

30)

P R E D 8 Z 
COL (win 

20)

PRED 12Z 
COL (win 

200)

PRED 12 Z 
COL (win 

100)

PRED 12Z 
COL (win 

50)

PRED 12Z 
COL (win 

30)

PRED 12Z 
COL (win 

20)
Relevant
retrieved 545 590 539 538 516 531 531 564 563 540 540 529

Interpolated recall -  precision averages
at 0.00 0.4865 0.5491 0.5192 0.5136 0.5160 0.5305 0.5502 0.5352 0.5391 0.5446 0.5294 0.5358
at 0.10 0.2874 0.4330 0.3684 0.3715 0.3781 0.3821 0.4004 0.3859 0.3854 0.4411 0.4058 0.4177
at 0.20 0.1944 0.3084 0.2901 0.3022 0.3032 0.2801 0.3099 0.3018 0.2925 0.3157 0.3049 0.3289
Average
precision 0.0974 0.1360 0.1268 0.1294 0.1302 0.1376 0.1433 0.1346 0.1383 0.1459 0.1401 0.1518

Precision:
At 5 docs 0.2227 0.3182 0.2591 0.2682 0.2864 0.2955 0.2636 0.2818 0.2864 0.2909 0.2636 0.2955
At 10 docs 0.1750 0.2273 0.2045 0.2114 0.2205 0.2386 0.2250 0.2000 0.2159 0.2205 0.2205 0.2273
At 15 docs 0.1530 0.2000 0.1712 0.1788 0.1939 0.1970 0.1894 0.1712 0.1864 0.1894 0.1924 0.1924
At 20 docs 0.1307 0.1716 0.1477 0.1511 0.1670 0.1750 0.1602 0.1545 0.1625 0.1670 0.1614 0.1693
R-Precision 0.1265 0.1581 0.1686 0.1577 0.1584 0.1666 0.1718 0.1768 0.1717 0.1685 0.1727 0.1803

Measure
PRED 16Z 
COL (win 

200)

PRED 16Z 
COL (win 

100)

PRED 16Z 
COL (win 

50)

PRED 16Z 
COL (win 

30)

PRED 16Z 
COL (win 

20)

PRED 21 Z 
COL (win 

200)

PRED 21 Z 
COL (win 

100)

PRED 21 Z 
COL (win 

50)

PRED 21 Z 
COL (win 

30)

PRED 21 Z 
COL (win 

20)
Relevant
retrieved 574 567 542 533 532 576 574 552 553 531

Interpolated recall -  precision averages
at 0.00 0.5395 0.5365 0.5200 0.5351 0.5568 0.5193 0.5530 0.5230 0.5357 0.5214
at 0.10 0.3953 0.3833 0.4002 0.4117 0.4070 0.3975 0.4280 0.3982 0.4197 0.4144
at 0.20 0.3031 0.3163 0.2845 0.3014 0.3049 0.3163 0.3166 0.2963 0.3030 0.2996
Average precision 0.1386 0.1456 0.1362 0.1367 0.1432 0.1391 0.1480 0.1325 0.1396 0.1384
Precision:
At 5 docs 0.2864 0.2773 0.2682 0.2909 0.2909 0.2909 0.2955 0.2864 0.2955 0.2909
At 10 docs 0.2114 0.2227 0.2182 0.2295 0.2341 0.2227 0.2159 0.2250 0.2364 0.2273
At 15 docs 0.1818 0.1833 0.1864 0.1909 0.2076 0.1682 0.1818 0.1833 0.2015 0.1924
At 20 docs 0.1693 0.1591 0.1636 0.1659 0.1750 0.1545 0.1591 0.1614 0.1818 0.1716
R-Precision 0.1751 0.1740 0.1662 0.1696 0.1822 0.1717 0.1727 0.1669 0.1729 0.1743



Table B.2.2. (continued)

P R E D 8 Z P R E D 8 Z  
COL + 20 OK 

(win 100)

P R E D 8 Z P R E D 8 Z P R E D 8 Z PRED 16Z PRED 16Z PRED 16Z PRED 16Z PRED 16Z PRED 16Z PRED 21 Z

Measure
COL + 20 COL + 20 COL + 20 COL + 20 C O L +10 COL + 20 COL + 20 COL + 20 COL + 20 COL + 20 COL + 20
OK (win OK (win OK (win OK (win OK (win OK (win OK (win OK (win OK (win OK (win OK (win

200) 50) 30) 20) 200) 200) 100) 50) 30) 20) 200)
Relevant
retrieved

579 578 580 581 581 583 586 583 579 572 569 582

Interpolated recall -  precision averages
at 0.00 0.5421 0.5631 0.5422 0.5472 0.5426 0.5782 0.5781 0.5491 0.5417 0.5660 0.5534 0.5642
at 0.10 0.4542 0.4679 0.4441 0.4396 0.4357 0.3855 0.4347 0.4439 0.4353 0.4398 0.4372 0.3978
at 0.20 0.3613 0.3747 0.3724 0.3467 0.3480 0.3089 0.3372 0.3484 0.3370 0.3419 0.3410 0.3206
Average
precision 0.1536 0.1602 0.1549 0.1568 0.1553 0.1388 0.1527 0.1561 0.1495 0.1485 0.1477 0.1413

Precision:
At 5 docs 0.3318 0.3409 0.3273 0.3409 0.3364 0.2909 0.2955 0.3182 0.3000 0.3409 0.3364 0.3182
At 10 docs 0.2477 0.2591 0.2477 0.2500 0.2477 0.2182 0.2341 0.2386 0.2318 0.2477 0.2500 0.2318
At 15 docs 0.2091 0.2076 0.2061 0.2091 0.2030 0.1879 0.2091 0.2015 0.2045 0.2015 0.1955 0.1909
At 20 docs 0.1795 0.1795 0.1784 0.1818 0.1784 0.1682 0.1773 0.1784 0.1807 0.1739 0.1727 0.1648
R-Precision 0.1853 0.1837 0.1797 0.1822 0.1829 0.1760 0.1883 0.1855 0.1764 0.1828 0.1795 0.1763



Table B.2.3. Performance of predictive MI runs

Measure
P R ED 8  

GLOBAL Ml 
COL

PR ED 8  
GLOBAL Ml 

C O L + 20 OK

P R E D 8 M I 
COL (win 

200)

P R E D 8 M I 
COL (win 

100)

P R E D 8 M I 
COL (win 

50)

P R E D 8 M I 
COL (win 

30)

PRED 8 Ml 
COL (win 

20)

PRED 12 
Ml COL  

(win 200)

PRED 12 
Ml COL  

(win 100)

PRED 12 
Ml COL  
(win 50)

PRED  12 
Ml COL  
(win 30)

PRED 12 Ml 
COL (win 

20)
Relevant retrieved 505 503 484 490 488 514 510 521 530 513 523 521
Interpolated recall - precision averages
at 0.00 0.4745 0.4583 0.4229 0.4564 0.4589 0.5036 0.4994 0.4880 0.4946 0.5086 0.5397 0.5687
at 0.10 0.3251 0.3162 0.3057 0.2953 0.3531 0.3930 0.4002 0.3694 0.3319 0.4007 0.4093 0.4103
at 0.20 0.2485 0.2358 0.2399 0.2159 0.2531 0.2743 0.3067 0.2769 0.2656 0.2996 0.3105 0.3132
Average precision 0.1155 0.1099 0.1006 0.0971 0.1158 0.1399 0.1371 0.1222 0.1202 0.1365 0.1435 0.1524
Precision:
At 5 docs 0.2682 0.2591 0.2318 0.2273 0.2500 0.2773 0.2591 0.2591 0.2591 0.2682 0.2818 0.3000
At 10 docs 0.1955 0.2023 0.1705 0.1705 0.1886 0.2136 0.2023 0.1955 0.2068 0.2159 0.2182 0.2295
At 15 docs 0.1621 0.1727 0.1409 0.1530 0.1652 0.1803 0.1697 0.1742 0.1712 0.1758 0.1879 0.1985
At 20 docs 0.1375 0.1420 0.1284 0.1318 0.1420 0.1534 0.1443 0.1534 0.1500 0.1511 0.1580 0.1682
R-Precision 0.1396 0.1391 0.1387 0.1256 0.1551 0.1667 0.1607 0.1696 0.1539 0.1627 0.1672 0.1748

Measure
PRED 16 
Ml COL  

(win 200)

PRED 16 
Ml COL  

(win 100)

PRED 16 
Ml COL
(win 50)

PRED 16 
Ml COL
(win 30)

PRED 16 
Ml COL  
(win 20)

PRED 21 
Ml COL

(win 200)

PRED 21 
Ml COL  

(win 100)

PRED 21 
Ml COL
(win 50)

PRED 21 
Ml COL  
(win 30)

PRED 21 
Ml COL  
(win 20)

Relevant
retrieved 533 535 522 524 515 541 542 527 532 517

Interpolated recall -  precision averages
at 0.00 0.5215 0.5549 0.5071 0.5325 0.5230 0.5335 0.5329 0.5454 0.5476 0.4866
at 0.10 0.3918 0.4134 0.3874 0.4011 0.3791 0.4053 0.3889 0.3772 0.3926 0.3784
at 0.20 0.3084 0.3132 0.2833 0.3035 0.2905 0.3062 0.3093 0.2778 0.2951 0.2931
Average
precision 0.1302 0.1437 0.1341 0.1372 0.1380 0.1390 0.1440 0.1295 0.1355 0.1359

Precision:
At 5 docs 0.2636 0.2864 0.2682 0.2909 0.2864 0.2909 0.3091 0.2818 0.2864 0.2818
At 10 docs 0.1864 0.2045 0.2114 0.2182 0.2273 0.2023 0.2136 0.2091 0.2227 0.2227
At 15 docs 0.1667 0.1727 0.1803 0.1818 0.1879 0.1742 0.1682 0.1667 0.1788 0.1803
At 20 docs 0.1466 0.1545 0.1568 0.1648 0.1568 0.1523 0.1500 0.1511 0.1636 0.1580
R-Precision 0.1591 0.1677 0.1662 0.1728 0.1796 0.1658 0.1691 0.1615 0.1758 0.1618



Table B.2.3. (continued)

Measure

P R E D 8 M I 
COL + 20 
OK (win 

200)

P R ED 8  Ml 
C O L + 20 OK  

(win 100)

PRED 8 MI 
COL + 20 
OK (win 

50)

PRED 8 Ml 
C O L + 20 
OK (win 

30)

P R E D 8 Ml 
COL + 20 
OK (win 

20)

PRED 16 
Ml COL + 

10 OK (win 
200)

PRED  16 
Ml COL + 

20 OK (win 
200)

PRED 16 
Ml COL +

20 OK (win 
100)

PRED 16 
Ml COL + 

20 OK  (win 
50)

PRED 16 
Ml COL + 

20 OK (win 
30)

PRED 16 
Ml COL + 

20 OK (win 
20)

PRED 21 
Ml COL + 

20 OK (win 
200)

Relevant
retrieved 564 566 581 582 581 582 583 580 575 573 576 578

Interpolated recall -  precision averages
at 0.00 0.5260 0.5426 0.5509 0.5415 0.5339 0.5417 0.5655 0.5665 0.5383 0.5601 0.5556 0.5599
at 0.10 0.4339 0.4259 0.4379 0.4273 0.4202 0.4008 0.4412 0.4433 0.4269 0.4294 0.4241 0.4159
at 0.20 0.3437 0.3300 0.3581 0.3498 0.3472 0.3214 0.3549 0.3619 0.3513 0.3471 0.3310 0.3364
Average
precision 0.1455 0.1426 0.1501 0.1565 0.1528 0.1398 0.1515 0.1626 0.1522 0.1486 0.1487 0.1477

Precision:
At 5 docs 0.3182 0.3273 0.3182 0.3409 0.3136 0.3045 0.3182 0.3273 0.3091 0.3182 0.3273 0.3136
At 10 docs 0.2432 0.2500 0.2409 0.2364 0.2341 0.2273 0.2409 0.2523 0.2409 0.2455 0.2477 0.2273
At 15 docs 0.2000 0.2030 0.2000 0.2000 0.1970 0.1833 0.1970 0.2045 0.2000 0.1985 0.2000 0.1864
At 20 docs 0.1739 0.1773 0.1784 0.1784 0.1761 0.1625 0.1739 0.1830 0.1784 0.1773 0.1727 0.1670
R-Precision 0.1760 0.1710 0.1754 0.1825 0.1809 0.1716 0.1816 0.1880 0.1835 0.1797 0.1800 0.1737



B.3 Trec_eval performance results of CRW runs

Values in all tables:

Retrieved: =44000
Relevant: 1583

Table B.3.1 Performance results of CRW runs

Measure
RETRO  
20 CRW  
(200 win)

RETRO  
20 CRW  
(50 win)

RETRO  
35 CRW  
(200 win)

RETRO  
35 CRW  
(50 win)

PRED20  
CRW (200 

win)

P R E D 20 
CRW (50 

win)

P R E D 35 
CRW  (200 

win)

P R E D 35 
CRW  (50 

win)
Relevant
retrieved 831 800 773 811 550 538 539 544

Interpolated recall -  precision averages
at 0.00 0.8447 0.8297 0.8298 0.8320 0.4649 0.5524 0.5352 0.5331
at 0.10 0.6903 0.6905 0.7134 0.7302 0.3233 0.3749 0.3174 0.3885
at 0.20 0.6018 0.6017 0.5856 0.6363 0.2543 0.2805 0.2382 0.2799
Average
precision 0.3917 0.3845 0.4000 0.4048 0.1082 0.1228 0.1085 0.1221

Precision:
At 5 docs 0.5273 0.5000 0.5136 0.5409 0.2636 0.2909 0.2591 0.2955
At 10 docs 0.3591 0.3636 0.3523 0.3727 0.1955 0.2114 0.2045 0.2295
At 15 docs 0.2833 0.2894 0.2773 0.2864 0.1545 0.1833 0.1727 0.1985
At 20 docs 0.2477 0.2455 0.2420 0.2580 0.1352 0.1648 0.1534 0.1682
R-Precision 0.4034 0.3829 0.3972 0.4131 0.1549 0.1552 0.1390 0.1588
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B.4 Selected expanded queries from the run ‘PRED 8 Z COL + 20 OK
(100 window size)’

Tables*

B.4.1. Expanded query for topic 252: Combatting alien smuggling.................... 185
B.4.2. Expanded query for topic 255: Environmental protection.........................186
B.4.3. Expanded query for topic 257: Cigarette consumption............................. 187
B.4.4. Expanded query for topic 258: Computer security.....................................188
B.4.5. Expanded query for topic 261: Threat posed by fissionable material. . . .  189
B.4.6. Expanded query for topic 263: Algae as food supplement........................ 190
B.4.7. Expanded query for topic 266: Professional scuba diving........................ 191
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Table B.4.1. Expanded query for topic 252: Combatting alien smuggling

xenofobia collocate of 1 query term(s);
balk collocate of 1 query term(s);
immigr collocate of 3 query term(s); okapi RF term;
migrent collocate of 1 query term(s);
allai collocate of 1 query term(s);
brunt collocate of 1 query term(s);
influx collocate of 1 query term(s); okapi RF term;
surveil collocate of 1 query term(s);
understaf collocate of 2 query term(s);
cozi collocate of 1 query term(s);
breathtakingli collocate of 2 query term(s);
omar collocate of 1 query term(s);
smuggl collocate of 1 query term(s); okapi RF term; original query term;
consular collocate of 1 query term(s);
illeg collocate of 2 query term(s); okapi RF term;
sheng collocate of 1 query term(s); okapi RF term;
smuggler collocate of 1 query term(s); okapi RF term;
jianmin collocate of 1 query term(s);
emigr collocate of 1 query term(s);
asylum okapi RF term;
alien okapi RF term; original query term;
foreign okapi RF term;
agent okapi RF term;
ship okapi RF term;
seeker okapi RF term;
land okapi RF term;
vessel okapi RF term;
dm55m okapi RF term;
effort okapi RF term;
turn okapi RF term;
ring okapi RF term;
fare okapi RF term;
crime okapi RF term;
combat original query term;
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Table B.4.2. Expanded query for topic 255: Environmental protection

kampur collocate of 2 query term(s);
ganga collocate of 2 query term(s);
khodabux collocate of 2 query term(s);
borrego collocate of 1 query term(s);
macario collocate of 2 query term(s);
arrabida collocate of 2 query term(s);
nath collocate of 2 query term(s);
eloi collocate of 1 query term(s);
quercus collocate of 1 query term(s);
tombeau collocate of 1 query term(s);
pollution okapi RF term
pollut okapi RF term
protect okapi RF term original query term;
@0104 okapi RF term original query term;
pesticid okapi RF term
degrad okapi RF term
wast okapi RF term
sewag okapi RF term
factori okapi RF term
impos okapi RF term
hazard okapi RF term
water okapi RF term
untreat okapi RF term
group okapi RF term
law okapi RF term
Implement okapi RF term
earth okapi RF term
standard okapi RF term
aim okapi RF term
action okapi RF term



Table B.4.3. Expanded query for topic 257: Cigarette consumption

jinan collocate of 2 query term(s);
kremenchuh collocate of 2 query term(s); okapi RF term;
winn collocate of 2 query term(s);
zpt collocate of 1 query term(s);
swaythl collocate of 1 query term(s); okapi RF term;
radom collocate of 1 query term(s);
ixel collocate of 2 query term(s);
nyren collocate of 2 query term(s);
tabacalera collocate of 1 query term(s);
Shandong collocate of 1 query term(s);
cigarett collocate of 1 query term(s); okapi RF term; original query term;
consumpt okapi RF term original query term;
tobacco okapi RF term
brand okapi RF term
smoke okapi RF term
market okapi RF term

rj okapi RF term
@0018 okapi RF term
smoker okapi RF term
@0290 okapi RF term
rothman okapi RF term
factori okapi RF term
@0068 okapi RF term
serhi okapi RF term
pta750m okapi RF term
boriak okapi RF term
reynold okapi RF term
product okapi RF term
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Table B.4.4. Expanded query for topic 258: Computer security

urvil collocate of 1 query term(s) okapi RF term;
sundevil collocate of 2 query term(s) okapi RF term;
perv collocate of 1 query term(s) okapi RF term;
nealesbp collocate of 2 query term(s) okapi RF term;
morrisreo collocate of 2 query term(s) okapi RF term;
fono collocate of 1 query term(s) okapi RF term;
hacker collocate of 2 query term(s) okapi RF term;
firewal collocate of 2 query term(s) okapi RF term;
stoll collocate of 1 query term(s)
internet collocate of 1 query term(s) okapi RF term;
unauthor collocate of 1 query term(s)
@0071 okapi RF term original query term;
network okapi RF term
penetr okapi RF term
goddam okapi RF term
delral okapi RF term
alter okapi RF term
@0041 okapi RF term
code okapi RF term
sofist okapi RF term
suffix okapi RF term
breach okapi RF term
secur original query term;



Table B.4.5. Expanded query for topic 261: Threat posed by fissionable material

vasiliyev collocate of 2 query term(s)
plutonium collocate of 4 query term(s) okapi RF term;
smuggl collocate of 1 query term(s)
nuclear collocate of 2 query term(s) okapi RF term;
reactor collocate of 2 query term(s) okapi RF term;
grafit collocate of 2 query term(s)
weapon collocate of 1 query term(s) okapi RF term;
gram collocate of 1 query term(s)
tomonitor collocate of 1 query term(s)
geni collocate of 1 query term(s)
renegad collocate of 1 query term(s)
wean collocate of 1 query term(s)
deton collocate of 1 query term(s) okapi RF term;
deuterid collocate of 1 query term(s)
nonweapon collocate of 1 query term(s)
tritium collocate of 1 query term(s)
unenrich collocate of 1 query term(s)
deuterium collocate of 1 query term(s)
thermonuclear collocate of 1 query term(s)
remix collocate of 1 query term(s)
fissil collocate of 1 query term(s) okapi RF term;
uranium collocate of 1 query term(s) okapi RF term;
enrich collocate of 1 query term(s) okapi RF term;
novikov collocate of 1 query term(s)
kruchenkov collocate of 1 query term(s)
bomb okapi RF term;
radioact okapi RF term;
fission okapi RF term; original query term;
civil okapi RF term;
rod okapi RF term;
stockpil okapi RF term;
prevent okapi RF term;
atom okapi RF term;
@0330 okapi RF term;
dismantl okapi RF term;
storag okapi RF term;
grade okapi RF term;
threat original query term;
pose original query term;
materi original query term;
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Table B.4.6. Expanded query for topic 263: Algae as food supplement

spirulina collocate of 1 query term(s); okapi RF term
platensis collocate of 1 query term(s); okapi RF term
knoydart collocate of 1 query term(s); okapi RF term
titaghur collocate of 1 query term(s); okapi RF term
seaweed collocate of 1 query term(s); okapi RF term
spillag collocate of 1 query term(s); okapi RF term
jute collocate of 1 query term(s); okapi RF term
kilo collocate of 1 query term(s); okapi RF term
brealei okapi RF term
alga okapi RF term original query term;
chare okapi RF term
186 okapi RF term
puriti okapi RF term
jar okapi RF term
protein okapi RF term
slick okapi RF term
pond okapi RF term
Calcutta okapi RF term
reg okapi RF term
61m okapi RF term
food original query term;
supplem original query term;



Table B.4.7. Expanded query for topic 266: Professional scuba diving

woodwood collocate of 2 query term(s); okapi RF term;
mensun collocate of 2 query term(s); okapi RF term;
magnotomet collocate of 2 query term(s); okapi RF term;
bowyer collocate of 2 query term(s);
cosheril collocate of 1 query term(s); okapi RF term;
diver collocate of 2 query term(s); okapi RF term;
aldernei collocate of 1 query term(s);
codirect collocate of 1 query term(s);
divetrack collocate of 1 query term(s); okapi RF term;
matchlock collocate of 1 query term(s); okapi RF term;
flagg collocate of 1 query term(s); okapi RF term;
1600 okapi RF term
dive okapi RF term original query term;
@0043 okapi RF term
rs232c okapi RF term
16kei okapi RF term
surfac okapi RF term
exactli okapi RF term
licence okapi RF term
command okapi RF term
ship okapi RF term
kilobyt okapi RF term
scabbard okapi RF term
profession original query term;
scuba original query term;



Table B.4.8. Expanded query for topic 271: Solar power

flagsol collocate of 2 query term(s); okapi RF term;
benemann collocate of 2 query term(s); okapi RF term;
telaga collocate of 2 query term(s); okapi RF term;
otten collocate of 1 query term(s);
voltaic collocate of 1 query term(s); okapi RF term;
rheinelb collocate of 2 query term(s); okapi RF term;
etsu collocate of 2 query term(s);
energiesystem collocate of 2 query term(s); okapi RF term;
solar collocate of 1 query term(s); okapi RF term; original query term;
wlndpow collocate of 1 query term(s);
technologi okapi RF term
fotovolta okapi RF term
power okapi RF term original query term;
develop okapi RF term
cell okapi RF term
energi okapi RF term
research okapi RF term
unit okapi RF term
sun okapi RF term
fossil okapi RF term
17000 okapi RF term
4588 okapi RF term
30panel okapi RF term
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Table B.4.9. Expanded query for topic 273: Volcanic and seismic activity levels

gomera collocate of 1 query term(s);
tarawera collocate of 3 query term(s); okapi RF term;
rotorua collocate of 2 query term(s);
vulcanolog collocate of 1 query term(s); okapi RF term;
teneguia collocate of 2 query term(s); okapi RF term;
tecina collocate of 2 query term(s); okapi RF term;
taburient collocate of 2 query term(s);
muchacho collocate of 2 query term(s);
lowinterest collocate of 1 query term(s);
monica collocate of 1 query term(s);
femando collocate of 1 query term(s);
unscath collocate of 1 query term(s);
rilei collocate of 1 query term(s);
uneven collocate of 1 query term(s);
vallei collocate of 1 query term(s); okapi RF term;
earthquak collocate of 1 query term(s); okapi RF term;
letrero collocate of 1 query term(s);
rotomahana collocate of 2 query term(s);
silbo collocate of 1 query term(s);
waimang collocate of 1 query term(s); okapi RF term;
hydrotherm collocate of 1 query term(s);
inferno collocate of 1 query term(s);
crater collocate of 1 query term(s); okapi RF term;
scree collocate of 1 query term(s);
volcan okapi RF term; original query term;
erupt okapi RF term;
volcano okapi RF term;
san okapi RF term;
aftershock okapi RF term;
mountain okapi RF term;
quak okapi RF term;
disast okapi RF term;
mud okapi RF term;
santa okapi RF term;
wairoa okapi RF term;
uraba okapi RF term;
seismic original query term;
activ original query term;
level original query term;

193



Table B.4.10. Expanded query for topic 290: Foreign automobile manufacturers 
in U.S.

schriner collocate of 2 query term(s);
keiretsus collocate of 4 query term(s);
ussorc collocate of 2 query term(s);
phh collocate of 1 query term(s);
ofliv collocate of 1 query term(s);
greenfield collocate of 1 query term(s);
vehicl collocate of 1 query term(s); okapi RF term;
coolli collocate of 1 query term(s);
transplent collocate of 2 query term(s);
huf collocate of 1 query term(s);
sarcast collocate of 1 query term(s);
gefardt collocate of 1 query term(s);
honda collocate of 3 query term(s); okapi RF term;
reilli collocate of 1 query term(s);
feroc collocate of 1 query term(s);
tmm collocate of 2 query term(s);
acura collocate of 1 query term(s);
merced collocate of 1 query term(s);
kinzer collocate of 1 query term(s);
alamaba collocate of 1 query term(s);
marysvil collocate of 1 query term(s);
alliston collocate of 1 query term(s);
blueberri collocate of 1 query term(s);
car okapi RF term
engin okapi RF term
toyota okapi RF term
export okapi RF term
@0192 okapi RF term
@0014 okapi RF term
manufactur okapi RF term original query term;
largest okapi RF term
Import okapi RF term
announc okapi RF term
detroit okapi RF term
product okapi RF term
Carolina okapi RF term
533000 okapi RF term
world okapi RF term
Chrysler okapi RF term
bmw okapi RF term
freightlin okapi RF term
foreign original query term;
automobil original query term;
@0400 original query term;
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B.5 Evaluation of performance by categories of terms in the
expanded queries of the run ‘PRED 16 Ml COL + 20 OK (100
window size)’

Tables

B.5.1 Influence o f categories of terms in the expanded queries ‘PRED 16 Ml
COL + 20 OK (100 window size)’ on average precision................................ 196

B.5.2 Influence o f categories of terms in the expanded queries ‘PRED 16 Ml
COL + 20 OK (100 window size)’ on average precision (in percentage)........ 196
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Table B.5.1. Influence of categories of terms in the expanded queries
‘ PRED 16 Ml COL + 20 OK (100 window size)’ on average precision

Category Improve Indifferent Degrade Total

1. Collocate 150 461 300 911
2. Collocate of 2 or more query terms 45 176 93 314
3. Collocate of 1 query term 105 285 207 597
4. Okapi RF term 179 201 279 659
5. Original query term 73 57 30 160
6. Collocate of 2 or more query terms 
and an Okapi RF term 20 43 25 88

7. Collocate of 1 query term and an 
Okapi RF term 27 39 57 123

8. Collocate and an Okapi RF term 47 82 82 211
9. Collocate and an original term 8 1 3 12
10. Okapi RF term and an original 
query term 34 6 10 50

Table B.5.2. Influence of categories of terms in the expanded queries 
‘PRED 16 Ml COL + 20 OK (100 window size)’ on average precision (in percentage)

Term category Improve Indifferent Degrade

1. Collocate 17% 50% 33%
2. Collocate of 2 or more query terms 14% 56% 30%
3. Collocate of 1 query term 18% 48% 34%
4. Okapi RF term 27% 31% 42%
5. Original query term 45% 36% 19%
6. Collocate of 2 or more query terms 
and an Okapi RF term 23% 49% 28%

7. Collocate of 1 query term and an 
Okapi RF term 22% 32% 46%

8. Collocate and an Okapi RF term 22% 39% 39%
9. Collocate and an original term 67% 8% 25%
10. Okapi RF term and an original 
query term 68% 12% 20%
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Figure B.5.1. Influence of categories of terms in the expanded queries
‘ PRED 16 Ml COL + 20 OK (100 window size)’ on average precision

Category 1 Category 2 Category 3 Category 4 Category 5 Category 6 Category 7 Category 8 Category 9 Category
10
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Figure B.5.2. Distribution of precision differences for category 1: Collocate

500

450

400

<o 350
E
<D 3004-»

°  250o
_Q
£  200 
D
2  150 

100 

50

improve degrade
461

32
1 0 0 0 1  0 0 0 1  0 0 0 1  1 1 1 2 4 2 2 4 6 7 n

Q  ___ . ___ . . ___ _______________  __  . _  ___ , 1=3 1=1 1=1 L I

219

84

38 30

□ □ M i l
& <0

,o- o- js- ,0-
Precision difference

197



Figure B.5.3. Distribution of precision differences for category 2:
Collocate o f 2 or more query terms
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Figure B.5.4. Distribution of precision differences for category 3: 
C o l l o c a t e  o f  1 q u e r y  t e r m
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Figure B.5.5. Distribution of precision differences for category 4:
Okapi RF term
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Figure B.5.7. Distribution of precision differences for 
category 9: C o l l o c a t e  a n d  a n  o r i g i n a l  q u e r y  t e r m
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Appendix C

Lexical cohesion analysis using local collocations

C.l Mean and standard deviation of Okapi scores in the aligned sets 
of relevant and non-relevant documents

Tables

C.1.1 Mean and standard deviation of Okapi scores in the aligned sets of
relevant documents selected from the top 100 Okapi-ranked documents.. .202

C.1.2 Mean and standard deviation of Okapi scores in the aligned sets of non-
relevant documents selected from the top 100 Okapi-ranked documents . . .203

C.1.3 Mean and standard deviation of Okapi scores in the aligned sets of
relevant documents selected from the top 1000 Okapi-ranked documents . .204

C.1.4 Mean and standard deviation of Okapi scores in the aligned sets of non-
relevant documents selected from the top 1000 Okapi-ranked documents . .205
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Table C .l.l .  Mean and standard deviation of Okapi scores in the aligned sets of
relevant documents selected from the top 100 Okapi-ranked documents

Topic Mean Okapi score Standard deviation
251 8.1676 0.11853607
252 14.678 3.298275812
253 13.256 0
254 10.7855 2.131926945
255 11.016375 0.388297727
257 15.2012 1.442859722
258 11.0708 1.130715128
259 22.36266667 7.316521737
260 11.28733333 1.652631941
261 13.51733333 2.29944573
263 14.70266667 6.624058383
264 14.019 2.760295697
266 12.532 1.872610744
268 9.78 0
271 12.4041 1.970015931
272 10.5435 0.161927453
273 12.0945 2.902460525
274 12.098 1.685742566
275 26.746 0
277 18.317 2.427154095
278 20.4535 9.050259692
280 18.67088889 5.128866772
282 14.886 2.476287948
283 10.9035 0.185957791
284 13.429 0.212132034
285 14.8409 0.938582673
286 9.3501 0.404318205
287 10.12175 1.008600144
288 14.10575 2.232416684
289 11.95775 4.398466478
290 13.274 0
291 9.4157 0.680563174
292 9.986125 0.789788478
295 13.809 5.00273845
298 9.821222222 5.555214842
299 11.005 0.938172159
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Table C.1.2. Mean and standard deviation of Okapi scores in the aligned sets of non-
relevant documents selected from the top 100 Okapi-ranked documents

Topic Mean Okapi score Standard deviation
251 8.1662 0.113224114
252 14.53425 3.184937087
253 13.268 0
254 10.781 2.158089896
255 11.021 0.382975568
257 15.2591 1.484438798
258 11.115 1.160685358
259 21.34033333 4.373964144
260 11.29533333 1.666213172
261 13.353 2.005139895
263 14.5775 5.104743431
264 13.96957143 2.727472142
266 12.678 1.976198624
268 9.798 0
271 12.3896 1.944278112
272 10.5435 0.183140656
273 12.06833333 2.794842226
274 11.8755 1.342795777
275 26.579 0
277 17.741 1.204368299
278 19.2815 7.343303923
280 18.82255556 5.441571145
282 14.919 2.423962046
283 10.90433333 0.190281546
284 13.43 0.222031529
285 14.8609 1.026696585
286 9.3393 0.380719217
287 10.1215 1.005932238
288 14.332 2.672516791
289 11.10025 1.96064645
290 13.206 0
291 9.4174 0.682510757
292 10.013375 0.808739573
295 13.55533333 4.429382162
298 9.588111111 5.216169702
299 11.01766667 0.980854899
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Table C.1.3. Mean and standard deviation of Okapi scores in the aligned sets of
relevant documents selected from the top 1000 Okapi-ranked documents

Topic Mean Okapi score Standard deviation
251 7.8349 0.382867964
252 11.61025 4.002150699
253 10.814 3.453509519
254 8.508714286 1.875768439
255 10.7034 0.743391059
257 15.2012 1.442859722
258 10.43066667 1.865861052
259 19.2905 8.569742839
260 11.28733333 1.652631941
261 11.4108 3.281965258
263 14.70266667 6.624058383
264 13.0302 2.764395887
265 7.841 0
266 11.2015 3.068990333
268 8.12275 1.235707995
269 5.7587 0.348441945
271 12.4041 1.970015931
272 10.5435 0.161927453
273 10.646 3.640962196
274 8.3182 2.100927774
275 19.7575 9.883231481
277 13.66 4.192800769
278 14.17225 8.942022306
280 18.67088889 5.128866772
282 12.26766667 4.861379365
283 10.7355 0.258911933
284 13.429 0.212132034
285 14.8409 0.938582673
286 9.3501 0.404318205
287 9.279666667 1.636980106
288 14.10575 2.232416684
289 10.0958 0.632538062
290 8.9817 1.646519295
291 9.4157 0.680563174
292 9.7095 0.908787257
293 10.22533333 1.262232282
294 11.223 0
295 11.96075 5.508996302
297 7.716 0
298 9.821222222 5.555214842
299 10.2825 1.008806572
300 14.251 0

204



Table C.1.4. Mean and standard deviation of Okapi scores in the aligned sets of non-
relevant documents selected from the top 1000 Okapi-ranked documents

Topic Mean Okapi score Standard deviation
251 7.8344 0.381333683
252 11.540375 3.897662447
253 10.8225 3.458459267
254 8.508428571 1.878684722
255 10.7078 0.741658172
257 15.2591 1.484438798
258 10.46733333 1.895939099
259 18.5225 6.671964753
260 11.29533333 1.666213172
261 11.3114 3.100665993
263 14.5775 5.104743431
264 12.9976 2.726821071
265 7.841 0
266 11.31075 3.175069172
268 8.12675 1.244162201
269 5.7589 0.348893314
271 12.3896 1.944278112
272 10.5435 0.183140656
273 10.626375 3.57128164
274 8.273 1.983113097
275 19.674 9.765144648
277 13.46275 3.744605215
278 13.58925 7.825008301
280 18.82255556 5.441571145
282 12.29 4.865461849
283 10.7361 0.260921636
284 13.43 0.222031529
285 14.8609 1.026696585
286 9.3393 0.380719217
287 9.283666667 1.633704829
288 14.332 2.672516791
289 10.1016 0.636227458
290 8.9788 1.625926457
291 9.4174 0.682510757
292 9.7266 0.935044527
293 10.22533333 1.26078005
294 11.233 0
295 11.7695 5.082953898
297 7.721 0
298 9.588111111 5.216169702
299 10.28816667 1.030470071
300 14.25 0
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C.2 Distribution of lexical cohesion scores in the relevant and non-
relevant sets
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Figure C.2.1 Distribution of LCSunks scores (window size 20) in the aligned relevant and non-relevant sets,
created from the top 100 Okapi documents
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Figure C.2.2 Distribution of LCSunks scores (window size 40) in the aligned relevant and non-relevant sets,
created from the top 100 Okapi documents
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Figure C.2.3 Distribution of LCS^pes scores (window size 20) in the aligned relevant and non-relevant sets,
created from the top 100 Okapi documents
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Figure C.2.4 Distribution of LCS,ypes scores (window size 40) in the aligned relevant and non-relevant sets,
created from the top 100 Okapi documents
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Figure C.2.5 Distribution of LCSunks scores (window size 20) in the aligned relevant and non-relevant sets,
created from the top 1000 Okapi documents
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Figure C.2.6 Distribution of LCSunks scores (window size 40) in the aligned relevant and non-relevant sets,
created from the top 1000 Okapi documents

O non-relevant se t -  relevant se t



Figure C.2.7 Distribution of LCStypes scores (window size 20) in the aligned relevant and non-relevant sets,
created from the top 1000 Okapi documents
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Figure C.2.8 Distribution of LCStypes scores (window size 40) in the aligned relevant and non-relevant sets,
created from the top 1000 Okapi documents
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Table C.3.1. Performance of re-ranking Okapi sets by COMB-LCS (method 1 -  links)

Measure
LINKS
x=0.25 
win 20

LINKS  
x=0.25 
win 40

LINKS
x=0.5 
win 20

LINKS  
x=0.5 
win 40

LINKS  
x=0.75 
win 20

LINKS  
x=0.75 
win 40

LINKS x=1 
win 20

LINKS x=1 
win 40

LINKS  
x=1.5 

win 20

LINKS 
x=1.5 
win 40

Interpolated recall -  precision averages
at 0.00 0.4173 0.4131 0.4219 0.4153 0.4236 0.4235 0.4241 0.4197 0.4251 0.4248
at 0.10 0.3130 0.3133 0.3126 0.3132 0.3058 0.3140 0.3063 0.3136 0.3064 0.3146
at 0.20 0.2071 0.2049 0.2082 0.2079 0.2091 0.2096 0.2098 0.2074 0.2083 0.2031
Average
precision 0.1348 0.1332 0.1348 0.1339 0.1336 0.1348 0.1337 0.1341 0.1335 0.1327

Precision:
At 5 docs 0.2136 0.2000 0.2136 0.2091 0.2091 0.2091 0.2091 0.2136 0.2091 0.2045
At 10 docs 0.1591 0.1545 0.1614 0.1591 0.1614 0.1568 0.1591 0.1568 0.1614 0.1614
At 15 docs 0.1409 0.1424 0.1439 0.1409 0.1439 0.1409 0.1439 0.1409 0.1455 0.1439
At 20 docs 0.1284 0.1273 0.1295 0.1273 0.1295 0.1261 0.1295 0.1261 0.1284 0.1284
R-Precision 0.1499 0.1497 0.1494 0.1501 0.1502 0.1561 0.1502 0.1558 0.1502 0.1498

LINKS LINKS LINKS LINKS
Measure x=3 x=3 x=30 x=30

win 20 win 40 win 20 win 40
Relevant retrieved
Interpolated recall -  precision averages
at 0.00 0.4384 0.4092 0.3456 0.2982
at 0.10 0.3054 0.3003 0.2198 0.1922
at 0.20 0.2010 0.1978 0.1475 0.1360
Average precision 0.1320 0.1278 0.0924 0.0809
Precision:
At 5 docs 0.2136 0.2182 0.1591 0.1318
At 10 docs 0.1636 0.1568 0.1295 0.1114
At 15 docs 0.1470 0.1409 0.1197 0.1000
At 20 docs 0.1330 0.1273 0.1136 0.0943
R-Precision 0.1512 0.1435 0.0994 0.0912



Table C.3.2. Performance of re-ranking Okapi sets by COMB-LCS (method 2 -  types)

Measure
TYPES  
x=0.25 
win 20

TYPES  
x=0.25 
win 40

TYPES  
x=0.5 

win 20

TYPES  
x=0.5 

Win 40

TYPES  
x=0.75 
win 20

TYPES  
x=0.75 
win 40

TYPES x=1 
win 20

TYPES x=1 
win 40

TYPES  
x=1.5 
win 20

TYPES  
x=1.5 
win 40

Interpolated recall -  precision averages
at 0.00 0.3992 0.3991 0.3994 0.3991 0.4002 0.3990 0.4001 0.4013 0.4013 0.4013
at 0.10 0.3013 0.3013 0.3009 0.3012 0.3009 0.3011 0.3009 0.3036 0.3002 0.3036
at 0.20 0.2049 0.2049 0.2052 0.2052 0.2056 0.2052 0.2055 0.2049 0.2055 0.2050
Average
precision

0.1312 0.1311 0.1313 0.1312 0.1313 0.1312 0.1318 0.1320 0.1318 0.1314

Precision:
At 5 docs 0.2136 0.2136 0.2136 0.2136 0.2136 0.2136 0.2136 0.2091 0.2136 0.2000
At 10 docs 0.1568 0.1523 0.1568 0.1523 0.1614 0.1545 0.1636 0.1545 0.1636 0.1545
At 15 docs 0.1394 0.1394 0.1394 0.1379 0.1394 0.1379 0.1394 0.1379 0.1394 0.1379
At 20 docs 0.1284 0.1284 0.1273 0.1284 0.1273 0.1284 0.1273 0.1284 0.1273 0.1284
R-Precision 0.0144 0.1497 0.1497 0.1497 0.1497 0.1497 0.1497 0.1495 0.1490 0.1495

Measure
TYPES

x=3 
win 20

TYPES  
x=3 

win 40

TYPES  
x=30 

win 20

TYPES  
x=30 

win 40
Interpolated recall -  precision averages
at 0.00 0.4037 0.4015 0.4209 0.3756
at 0.10 0.2953 0.3039 0.2823 0.2648
at 0.20 0.2090 0.2043 0.1926 0.1875
Average precision 0.1316 0.1308 0.1241 0.1175
Precision:
At 5 docs 0.2136 0.2000 0.1909 0.1909
At 10 docs 0.1614 0.1568 0.1545 0.1500
At 15 docs 0.1394 0.1364 0.1242 0.1318
At 20 docs 0.1250 0.1284 0.1182 0.1216
R-Precision 0.1500 0.1456 0.1421 0.1411



Appendix D 

Programs

D.l Selected Perl scripts for global collocation analysis

D .l.l Script for extraction of global collocates from ft_96 corpus

This script extracts all collocates for each query term in the corpus using the windowing technique 
described in section 5.3. The corpus is scanned separately for each query term. Each time the next 
occurrence of the query term in question is located, its preceding and following collocates are 
identified and written out as a collocation pair [node term, collocate]. The script also writes out the 
total size of all windows around a query term in each document it occurs. This is necessary for 
subsequent calculation of average window sizes used in our MI and Z formulae.

#.' / b i n / p e r l

$\ = "\ n " ;

$| = 1;

$span = 101;

op e n  (KEYS, "/ h o m e / b c 5 6 0 / P A I R S / k e y s .t x t ");

op e n  (OUT, " > / h o m e / b c 5 6 0 / P A I R S / C O L S / c o l l o c a t e s .c o l ");

op e n  (WIN, " > / h o m e / b c 5 6 0 / P A I R S / W I N / w i n d o w s . c o l " );

w h i l e  ($keyword = < K E Y S > ) { 

chop $keyword;

©list = ();

open (IN, "/ h o m e / b c 5 6 0 / P A I R S / p a r s e a l l .c o l ");

w h i l e  ($line = < I N > ) { 

chop $line;

if ($line =~ /< D O C > / ){

# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  
for ($k=0; $k<@list; $k++) {

if ($list[$k] eq $keyword) {

######### E x t r a c t  p r e c e d i n g  c o l l o c a t e s  ##########

© b a c k w i n d o w  = () ;

© f o r w i n d o w  = ();

$winkount = 0;

$block = 0;

for ($ h = l ; $h<$span; $h++) {

$addr = $k - $h; 

if ($addr >= 0) {

p u s h  ©backwindow, $ l i s t [ $ k  - $h] ;
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} ; 
};

for ($d=0; $d<@backwindow; $d++) { 

if ($backwindow[$d] eq $list[$k]) { 

$block = 1;

} ;
};

if ($block == 0) {

for ($ d = 0 ; $ d <@backwindow; $d++) { 

p r i n t  O U T  "$list[$k], $ b a c k w i n d o w [$ d ] ";
$ w i nkount = $w i n k o u n t  + 1;

} ;
} ;

######### E x t r a c t  f o l l o w i n g  c o l l o c a t e s  ########## 

$stop = 0;

for ($ i = l ; $i<$span; $i++) { 

if ($list[$k + $i] ne 11") { 

p u s h  ©forwindow, $ l i s t [ $ k  + $i] ;

} ;
} ;

for ($d=0; $d<@forwindow; $d++) { 

if($forwindow[$d] eq  $list[$k]) {

$stop = 1;

} else {

if($stop != 1) {

p r i n t  OUT "$list[$k], $ f o r w i n d o w [$ d ] "; 

$winkount = $ w i nkount + 1;

} ;
} ;

} ;
p r i n t  W I N  "$winkount $list[$k]";

} ;
} ;
############################################

©list = ();

}else{

p u s h  ©list, $line;

};

} ;
c l o s e (I N ) ;

} ;

c l o s e ( K E Y S ) ; 

c l o s e ( O U T ) ; 

c l o s e ( W I N ) ;



D.1.2 Script for expanding queries with global collocates and searching ft_96 collection

This script expands initial queries with global collocates stored in Okapi collocation database. First, 
each initial query term is searched against the collocation database (here top 8 mi) using 
unweighted search. Then collocates, returned in the result of this search, are searched against ft_96 
collection. Because in Perl during a single session with BSS, the write filehandle must be closed 
before the read filehandle is opened, it was not possible to get numbers of postings, calculate term 
weights and submit final weighted query all in one go. For this reason a separate BSS session had 
to be initiated, first, to get terms’ numbers of postings, secondly, to get terms’ weights, and finally, 
to submit the weighted query. The script outputs ranked document sets for all topics, which are then 
formatted using another script for input to trec_eval program.

#! / u s r / b i n / p e r l

$\ = "\n " ;
$| = 1;

op e n  (IN, "parsed._titles . 251-3 00 ") ; 

ope n  (OUT, ">mi-8");

w h i l e  ( $ q l i n e = < I N > ) { 

chop Sqline; 

if ($qline !~ /<\d+>/){ 

p u s h  @qterms, Sqline;

}else{

for ($q=0; $q<@qterms; $ q + + ) {

######## Open c o l l o c a t i o n  d a t a b a s e ######## 

$text =

ope n  (BSS1, "| il+ -silent > tl");

p r i n t  BSS1 "ch top8-mi"; 

p r i n t  BSS1 "f t = $ q t e r m s [ $ q ] "; 

p r i n t  BSS1 "s";

close (BS S 1 ) ;

o p e n  (TEMPI, "tl");

for ($ i = 0; $ i < 6 ; $i + +) {

$junk = <TEMP1>;

} ;

$top = < T E M P 1 > ; 

cho p  Stop;

$ t o p  = ~  s / ^ \ s + 3 : \ s + ( . + ) $ / $ 1 / ;  
$ t e x t  = S t o p ;

w h i l e  ($in = <TEMP1>) {
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chop $in;

$text = $text .

} ;
• $in;

c l o s e ( T E M P I );

p u s h  Ocolset, split / /, $text; 

if ($ q t e r m s [$q] =~ /\d+/){ 

$qterm = "\@" . $ q t e r m s [$ q ] ; 

p u s h  ©colset, $qterm;

}else{

p u s h  Scolset, $qterms[$q];

} ;
};

##### Open f t _ 9 6  d a t a b a s e  I #################### 
##### to g e t  t e r m s '  numbers  o f  p o s t i n g s  ########

ope n  (BSS2, "| il+ -silent > t 2 ");

p rint BSS2 "ch ft_96"; 

for ($j = 0; $j<@colset; $ j + + ) { 

p rint BSS2 "find t = $ c o l s e t [$j ]"; 

};

close (BSS2);

open (TEMP2, "t2"); 

w h i l e  ($ i n = < T E M P 2 > ) { 

chop $in;

$in =~ s / /'S\d+\snp= (\ d + ) .+ $ / $ l / ; 

p u s h  @nopos, $in;

};

c l o s e ( T E M P 2 );

##### Open f t _ 9 6  d a t a b a s e  I I  #################### 
##### to g e t  t e r m s '  w e i g h t s #### # # # # # # # # # # # # # # # #

open (BSS3, "| il+ -silent > t 3 11 ) ;

p rint BSS3 "ch ft_96";

for ($k=0; $k<@nopos; $ k + + ) { 

p rint BSS3 "w fn=0 n = $ n o p o s [$ k ] “ ;

} ;

c l o s e ( B S S 3 ) ;

open (TEMP3, "t 3 ") ;

w h i l e  ( $ i n = < T E M P 3 > ) { 

chop $in;

p u s h  ©weights, $in;

};

Close(TEMP3);

##### Open f t _ 9 6  d a t a b a s e  I I I  #################### 
##### to s u b m i t  t h e  f i n a l  w e i g h t e d  q u e r y #########



open (BSS4, il+ -silent > t4");

print BSS4 "ch ft_96";

for ($1=0; $l<0weights; $ 1 + + ) {

$q u e r y  = $query . " s=" . $1 . " w=" . $ w e i g h t s [$1];

print BSS4 "f t = $ c o l s e t [$1]";

} ;
print BSS4 "f $qu e r y  op=bm2500 kl=1.2 bm25b=0.75"; 

print BSS4 "s f=197 n=1000"; 
c l o s e ( B S S 4 );

open (TEMP4, "t4"); 
w h i l e  ( $ i n = < T E M P 4 > ) { 

chop $in;

print O U T  "<" . $qno . ">" . $in;

};

c l o s e ( T E M P 4 );

$query = "";

©qterms = ();

@colset = () ;

@nopos = ();

©weights = ();

$qno = $qline;

$qno =~ s / < ( \ d + ) >/$1/;

} ;
};
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D.2 Selected Perl scripts for local collocation analysis

These scripts were written for the combined runs -  the runs where the initial queries 
are expanded with top N local Z-ranked collocates of query terms and Okapi RF terms 
from the relevant documents. There are five scripts run consecutively:

merge-101.pl

merge-102.pl
merge-103.pl

merge-104.pl

merge-105.pl

-  extracts collocates of each query term from the windows of size 200 
around their occurrences in the relevant documents; gets top 20 
Okapi RF terms, ranked by Offer Weight;

-  calculates local Z score for each found collocate;
-  ranks collocates of each query term by local Z and gets 8 top-ranked 

collocates per query term;
-  merges into the final expanded query top 8 collocates per query 

term, 20 Okapi terms and the original query terms;
-  searches ft 96 database with the expanded queries using bm2500 

weighted function with relevance information (the relevant 
documents used for query expansion). This script writes out a file 
with the document numbers of 1000 ranked documents per query, 
which are then submitted to trec_eval for evaluation.

Script m e r g e - 1 0 1 .p l________________________________________________________

# ! /usr/bin/perl

$\ = "\n";

$| = 1 ;

$ prevtopic = 251;
$bigr = 5 ;

ope n  (IN, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / 5 - f t - r e l ");

w h i l e  ($line = < I N > ) { 

chop $line;

($topic, $irn, $nbigr) = split / /, $line;

if ($topic == $ p r e v t o p i c ) { 

p u s h  @irnums, $irn;

}else{

### Ope n  ft_96 d a t a b a s e  I

ope n  (BSS1, "I il+ -silent > tl"); 
p r i n t  BSS1 "ch ft_96";

for ($a=0; 

p rint BSS1 

p r i n t  BSS1

$a<@irnums; $ a + + ) {

"find a=d n  t = $ i r n u m s [$ a ] "; 

"extract set=$a record=0";
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} ;
close (BSS1);

open (TEMPI, "tl");

$wcount = 0;

w h i l e  ($term = < T E M P 1 > ) { 

chop $term;

if ($term =~ //'\d+$/){ 

close (W);

ope n  (W, "| sort -u > $ p r e v t o p i c - $ w c o u n t " ); 
close (COLW);

open (COLW, " > C O L - $ w c o u n t " );

$wcount++;

}else{

$term =~ s/t=//;

$term =~ s/\sc=/</;

$term =~ s/\ss=/</;

($stem, $gsl, $lexeme) = split /</, $term;

if ($gsl eq "G" || $gsl eq "N" || $gsl eq " S “){ 
print W  $stem; 

print COL W  $stem;

} ;
} ;

} ;
c l o s e ( W ) ; 

c l o s e ( C O L W ) ; 

c l o s e ( T E M P I );

$wcount++ ;

$merge = 'sort -m $prevtopic-* | u n i q  -c > $ p r e v t o p i c - a l l ';

######### Extract collo c a t e s  # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #  

undef %smlr;

open (WORDS, "$ p r e v t o p i c - a l l “);

w h i l e  ($wo r d = < W O R D S > ) { 
chop $word;

$word =- s / ' ~ \ s *  / / ;

($smr, $trm) = split /\s+/, $word;

$smlr{$trm} = $smr;

} ;
c l o s e ( W O R D S ) ;

$span = 101;

open (KEYS, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / T O P I C S / $ p r e v t o p i c  " ) ; 

open (OUT, " > > / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / C O L S / $ p r e v t o p i c "  ) ; 

open (WIN, " > > / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / W I N S / $ p r e v t o p i c "  ) ; 

open (INDEX, " > > / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / I N D E X / $ p r e v t o p i c "  ) ;
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w h i l e  ($keyword = < K E Y S > ) { 

chop $keyword;

for ($b=0; $b<$wcount; $ b + + ) { 

©list = ();

# --------------------------------------------------

open (CIN, " C O L - $ b " );

w h i l e  ($cin = < C I N > ) {

chop $cin;

p u s h  ©list, $cin;

} ;

c l o s e ( C I N ) ;

# # # # # # # # # # # # # # # # # # # # # # # #  

for ($k=0; $k<@list; $k++) {

if ($list[$k] eq $keyword) { 

p rint INDEX $list[$k];

## Extract p r e c e d i n g  collocates

© b a c k w i n d o w  = ();

© f o r w i n d o w  = ();

$winkount = 0;

$block = 0;

for ($h=l; $h<$span; $h++) {

$addr = $k - $h; 

if ($addr >= 0) {

p u s h  ©backwindow, $list[$k - $h] ; 

} ;

} ;

for ($ d = 0 ; $d<@backwindow; $d++) { 

if ($ b a c k w i n d o w [$d] eq $list[$k]) { 

$block = 1;

} ;
} ;

if ($block == 0) {

for ($d=0; $d<©backwindow; $d++) {

p rint OUT "$list[$k],
$ b a c k w i n d o w [$ d ] < s m a l l _ r > $ s m l r { $ b a c k w i n d o w [ $ d ] }"

$winkount = $winkount + 1;

} ;
} ;

## Extract f o l lowing collocates  

$stop = 0;

for ( $ i = 1; $i<$span; $i + +) {

if ($list[$k + $i] ne "") {

p u s h  ©forwindow, $lis t [ $ k  + $ i ] ; 

};



for ($d=0; $d<@forwindow; $d++) { 

i f ( $forwindow[$d] eq $list[$k]) {
$stop = 1;

} else {

i f ($stop != 1) {

p r i n t  O U T  "$list[$k], $ f o r w i n d o w [$ d ] < s m a l l _ r > $ s m l r { $ f o r w i n d o w [ $ d ] }";

$wi n k o u n t  = $ w i n k o u n t  + 1;

} ;
} ;

} ;
p r i n t  W I N  "$winkount $list[$k]";

} ;
} ;
####################

©list = () ;

} ;
} ;
c l o s e ( K E Y S ) ; 

c l o s e ( O U T ) ; 

c l o s e ( W I N ) ; 

c l o s e ( I N D E X ) ;

######### Get Okapi RF terms # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #

## Get O W  of terms

ope n  (OUT, "> $ p r e v t o p i c - O W " ); 

ope n  (WORDS, "$ p r e v t o p i c - a l l ") ;

w h i l e  ( $ w o r d = < W O R D S > ) { 

chop $word;

$ word =~ s/^Vs*//;

($smr, $trm) = s plit /\s+/, $word;

p u s h  ©smallr, $smr; 

p u s h  ©term, $trm;

} ;

##open BSS1

ope n  (BSS1, "| il+ -silent > tl"); 

p r i n t  BSS1 "ch ft_96";

for ($u=0; $u<@term; $ u + + ) {

p r i n t  BSS1 "f t = $ t e r m [ $ u ] ";

} ;
close (BSS1);

ope n  (TEMPI, "tl"); 

w h i l e  ( $ i n = < T E M P l > ) { 

chop $in;

$np = $in;

$np =~ s/''S\d+\snp= (\d+) .+$/$!/;
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p u s h  @nopos, $np;

} ;
c lose (TEMPI);

##o p e n  BSS2

op e n  (BSS2, "| il+ -silent > t 2 "); 

p r i n t  BSS2 "ch ft_96";

for ($y=0; $y<@term; $ y + + ) {

p r i n t  BSS2 "weight n=$nopos[$y] big_r=$bigr r = $ s m a l l r [ $ y ] ";

} ;

c lose (BSS2);

op e n  (TEMP2, " t 2 ” ); 

w h i l e  ($ i n = < T E M P 2 > ){ 

ch o p  $in;

p u s h  ©weight, $in;

} ;
c l o s e ( T E M P 2 );

for ($i=0; $i<@term; $ i + + ) {

$0W = $weight[$i] * $smallr[$i]; 

p r i n t  OUT "$0W $ t e r m [ $ i ] " ;

} ;
c l o s e ( O U T ) ; 

c l o s e ( W O R D S ) ;

$sort = 'sort -n -r $pre v t o p i c - O W  -o $ p r e v t o p i c - O W - s ';

op e n  (TOPOUT, ">/ e x p o r t /I S - F / O k a p i / o l g a / L E X I C / O K - T E R M S / $ p r e v t o p i c -  

q w " ) ;
o p e n  (TOPIN, "$ p r e v t o p i c - O W - s " );

for ($q=0; $q<20; $ q + + ) {

$ t o p q w  = <TOPIN>; 

cho p  $topqw;

($ownew, $tmnew) = split / /, $topqw; 

p r i n t  T O P O U T  "$tmnew $ s m l r {$ t m n e w } ";

} ;
c l o s e ( T O P O U T ) ;

C l o s e ( T O P I N ) ;

$rm = 'rm $ p r e v t o p i c - * ';

$rm = 'rm C O L - * ';

© t e r m  = ();

© s m a l l r  = ();

©nopos = ();

© w eight = ();

© i rnums = (); 

p u s h  ©irnums, $irn;
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} ;
$prevtopic = $topic; 
$bigr = $nbigr;

} ;
c l o s e (I N ) ;

Script merge-102.pl

#! /usr/bin/perl

$\ = "\n";

$| = 1;

######### # # # # # # # # # # #  Get JF from c o l l o c .titles file 

for ($a=251; $a<301; $ a + + ) {

$sort = 'sort / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / C O L S / $ a  | u n i q  -c > 

/ e x p o r t / I S - F / O k api/olga/LEXIC/CO LS/j f - $ a ';

$uniq = 'sort / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / I N D E X / $ a  | u n i q  -c > 

/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / I N D E X / u - $ a ';

######## Cal c u l a t e  a v erage w i n d o w  sizes

open (WIN, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / W I N S / $ a " ); 

op e n  (WOUT, " > / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / W I N S / a v g - $ a " );

w h i l e  ($win = < W I N > ) { 

chop $ w i n ;

($wsize, $wterm) = split / /, $win;

$winsize{$wterm} = $winsize{$wterm) + $wsize;

$num{$wterm} = $num{$wterm} + 1;

} ;

foreach $key (sort keys % w i n s i z e ) { 

$average = $winsize{$key) / $num{$key}; 

p rint WO U T  "$key $average";

} ;

undef %winsize;

c l o s e ( W I N ) ; 

c l o s e ( W O U T ) ;

} ;

# # # # # # # # # ########## Ca l c u l a t e  local Z score # # # # # # # # # # # # # # # # # # # # # #  

$corpus = 43279064;

open (GLOB, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / q u a n t i n d e x " );

w h i l e  ($glob = < G L O B > ) { 

chop $glob;

$glob =~ s / A \ s * ( . + ) $ / $ l / ;

($globf, $gterm) = split / /, $glob;

$globfreq{$gterm} = $globf;
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close(GLOB);

for ($ i = 2 5 1 ; $i<3 01; $i++) {

ope n  (SCORES, "> / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / C O L S / z - $ i "); 

ope n  (COLLOCS, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / C O L S / j f - $ i "); 

ope n  (INDEX, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / I N D E X / u - $ i "); 

ope n  (WIN, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / W I N S / a v g - $ i ");

w h i l e  ($ind = < I N D E X > ) { 

chop $ind;

$ind =~ s / /'\s*(.+)$/$l/;

($indf, $term) = split / /, $ind;

$freq{$term} = $indf;

} ;

w h i l e  ($win = < W I N > ) { 

chop $win;

($winterm, $winsize) = split / /, $win;

$window{$winterm} = $winsize;

} ;

w h i l e  ($line = < C O L L O C S > ) { 

chop $line;

$line =~ s / /'\s*(. + )$/$l/;

($lead, $end) = split /, /, $line;

($y, $smallr) = split /<small_r>/, $end; 

($joinfreq, $x) = split / /, $lead;

if ($globfreq{$y} >= 1){

########### Cal c u l a t e  local Z score

$localz = ($joinfreq - $ g l o b f r e q { $ y } * $ f r e q { $ x } * $ w i n d o w { $ x ) / 

$ c o r p u s ) / s q r t ( $globfreq{ $ y } * $ f r e q { $ x } * $ w i n d o w { $ x ) / $ c o r p u s )

$localz =~ s / ^ ( ........).+$/$!/;

print SCORES "$x

} ;
};

};
close (S C O R E S );

close (C O L L O C S ) ;
close ( I NDEX);

close (WIN);

$y $localz $ s m a l l r ";



Script merge-103.pl

#! /usr/bin/perl

$\ = "\n " ;
$| = 1;

$qsize = 8;

$topic = 250;

ope n  (KEYS, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / t i t l e _ k e y s "); 

w h i l e  ( $ k e y = < K E Y S > ) { 

chop $key;

if ($key !~ /<topic>/){ 

p u s h  @qterms, $key;

}else{

ope n  (OUT, " > / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / C O L S / $ t o p i c - t o p 8 "); 

for ($a=0; $a<@qterms; $ a + + ) {

$f = 'egrep '''Sqterms [ $a] ' / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / C O L S / z -

$topic |sort -r -n - k 3 > / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / T E M P /  

$ q t e r m s [$ a ] ';

open (IN, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / T E M P / $ q t e r m s [$ a ] ");

for ($b=0; $b<$qsize; $ b + + ) {

$in = < I N > ; 

chop $in;

($x, $y, $localz, $smallr) = split / /, $in; 

print O U T  "$y $smallr";

} ;

d o s e  ( IN) ;

} ;
c l o s e ( O U T ) ;

$topic = $key;
$topic =~ s / ~ < t o p i c > (\ d + ) .+ $ / $ l / ;

@qterms = ();

} ;

} ;
c l o s e ( K E Y S ) ;

# # # # # # # # # # # # # # # # # # # # # # # #  Remove empty lines

for ($i=251; $i<301; $ i + + ) {

open (RIN, " / e x p o r t / I S - F / 0 k a p i / d g a / L E X I C / C 0 L S / $ i - t o p 8 "  ) ; 

open (ROUT, "> / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / C O L S / s - $ i ");
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w h i l e  ($line = < R I N > ) { 

chop $line; 

if ($line =~ / \ w / ){ 

p r i n t  RO U T  $line;

} ;
} ;
c l o s e ( R I N ) ; 

c l o s e ( R O U T ) ;

} ;

Script merge-104.pl

#! /usr/bin/perl

$\ = "\n " ;
$| = 1;

for ($a=251; $a<301; $ a + + ) {

o p e n  (COLS, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / C O L S / $ a - t o p " ); 

op e n  (OK, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / O K / o k - $ a " ); 

op e n  (OUT, " > / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / M E R G E D - Q / q u e r y - $ a " ) ; 

op e n  (TERMS, "/e x p o r t / I S - F / O k a p i / o l g a / L E X I C / T O P I C S - S M A L L R / $ a ") ;

############ W r i t e  out collocates

w h i l e  ( $ c o l l o c a t e = < C O L S > ) { 

chop $collocate; 

p r i n t  OUT $collocate;

} ;

# # # ######### W rite out Okapi RF terms

w h i l e  ( $ok=<OK>){ 

cho p  $ok; 

p r i n t  OUT $ok;

} ;

########### W rite out original q u e r y  terms

w h i l e  ( $ t e r m = < T E R M S > ) { 

chop $term; 

p r i n t  OUT $term;

} ;

###########

c l o s e ( C O L S ) ; 

c l o s e ( O K ) ; 

c l o s e ( O U T ) ; 

c l o s e ( T E R M S ) ; 

} ;

########## Remove du p l i c a t e  lines 

for ($b=2 51; $b<301; $ b + + ) {
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$sort = 'sort / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / M E R G E D - Q / q u e r y - $ b  | uniq  

> / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / M E R G E D - Q / q r - $ b ' ;

$rm = 'rm / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / M E R G E D - Q / q u e r y - $ b ';

} ;

Script merge-105.pl

#! / usr/bin/perl

$\ = "\n " ;
$| = l ;

o p e n  (OUT, " > / e x p o r t / I S - F / O k a p i / o l g a / L E X I C / R E T R O - R E S U L T S / Z / z + o k 2 0 -  
w 2 0 0 " );

###### Get b i g _ r  ######

ope n  (BIGR, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / t o p i c s - b i g r "); 

w h i l e  ($ b r = < B I G R > ) { 

chop $ b r ;

($ t o p , $big) = split / /, $br ;

$bigr{$top} = $big;

} ;
c l o s e ( B I G R ) ;

#######################

for ($qno=251; $qno<301; $qno++){

ope n  (IN, "/ e x p o r t / I S - F / O k a p i / o l g a / L E X I C / M E R G E D - Q / q r - $ q n o " );

©terms = ();

©s m a l l r  = ();

©nopos = ();

©weights = ();
$q u e r y  = "";

w h i l e  ($line = < I N > ) { 

chop $line;

($te, $sr) = split / /, $line;

p u s h  ©terms, $te; 

p u s h  ©smallr, $sr;

### O p e n  ft_96 d a t a b a s e  I

ope n  (BSS1, "| il+ - s ilent > tl");

p r i n t  BSS1 "ch ft_96";

for ($j =0; $j<@terms; $j++){

p rint BSS1 "find t = $ t e r m s [$j ]";

};

close (BSS1);
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o p e n  (TEMPI, " t l " ); 

w h i l e  ($ i n = < T E M P l > ) { 

chop $in;

$in =~ s / /'S\d+\snp= (\d+) . * $ / $ 1 / ; 

p u s h  ©nopos, $in;

} ;

c l o s e ( T E M P I ) ;

### O p e n  ft_96 d a t a b a s e  II

ope n  (BSS2, "| il+ -silent > t 2 ");

p r i n t  BSS2 "ch ft_96"; 

for ($k=0; $k<@nopos; $ k + + ) {

p r i n t  BSS2 "weight n=$nopos[$k] b i g _ r = $ b igr{$qno} r = $ s m a l l r [ $ k ] "

} ;

c l o s e ( B S S 2 );

ope n  (TE M P 2 , "12") ;

w h i l e  ($ i n = < T E M P 2 > ){ 

cho p  $in;

p u s h  ©weights, $in;

} ;

### Ope n  ft_96 d a t a b a s e  III 

ope n  (BSS3, "| il+ -silent > t3"); 

p r i n t  BSS3 "ch ft_96"; 

for ($1=0; $l<@weights; $ 1 + + ) {

$qu e r y  = $qu e r y  . " s=" . $1 . " w=" . $ w e i g h t s [$1];

p r i n t  BSS3 "f t = $ t e r m s [$1]";

} ;
p r i n t  BSS3 "f $ g u e r y  op=bm2500 kl=2 b m 2 5 b = 0 .75"; 

p rint BSS3 "s f=197 n=1000";

c l o s e ( B S S 3 );

ope n  (TEMP3, "t 3 "); 

w h i l e  ($ i n = < T E M P 3 > ) { 

chop $ i n ;

p r i n t  OUT " < ” . $qno . ">" . $in;

} ;

c l o s e ( T E M P 3); 

c l o s e (I N ) ;

};
c l o s e ( O U T ) ;



D3 GSL codes

@ 0003 a e rop lan e , a irp la ne , a irc ra ft,
@ 0007 ag ricu ltu ra l, ag ricu ltu re ,
@ 0008 a ir lines, a irlines,
@ 0009 a irpo rt, a e rod rom e ,
@ 0013 a lu m in iu m , a lum in um ,
@ 0014 am e rican , am e rica ,
@ 0018 an ti sm o k in g , no sm ok ing , no -sm oking , no nsm o k ing , non sm ok ing , a n tism ok ing ,
@ 0020 a rg en tina , a rgen tin ia n ,
@ 0035 bo sn ian , bosn ia ,
@ 0041 bt, b ritish  te lecom ,
@ 0043 bu ilt in, bu iltin ,
@ 0045 buses, om n ib us , bus,
@ 0049 ca l, ca i, c o m p u te r a ide d  ins truc tion , c o m p u te r a ide d  lea rn ing , c o m p u te r a ss is te d  learn ing ,
@ 0060 ch ina , Chinese,
@ 0064 c le an up , c le an  up,
@ 0067 co  g e ne ra tion , cog en era tio n ,
@ 0068 co, com p an y,
@ 0069 c o m m u n ity  cha rge , po ll tax,
@ 0071 co m p u ta tio n , com p u ta tio na l,
@ 0077 Croatia, Croatian,
@ 0080 cu rricu lu m , cu rricu la , cu rricu la r,
@ 0099 eec, eu ro p e a n  eco n o m ic  com m un ity , eu, eu ro p e a n  un ion, ec,
@ 0104 e n v iro n m e n t, en v iro nm en ta l,
@ 0111 e x tra -te rre s tria l, ex tra te rre s tria l, ex tra  te rres tria l,
@ 0114 fa lk la n d s , fa lk lan d  is lands, m alv inas,
@ 0121 fin a n c ia l, f inance ,
@ 0128 france , french , franca is ,
@ 0129 freud ia n , freud , s ig m u n d  freud ,
@ 0131 fue l-ce ll, fue l ce ll,
@ 0134 ga ses , gass ing , gaseous, gas,
@ 0135 ga tt, g e n e ra l a g re e m e n t on ta riffs  and trade ,
@ 0136 gdp, g ro ss  d o m e s tic  product,
@ 0139 ge o log ica l, ge o logy ,
@ 0147 gov, govt, g o ve rn m en ta l, gove rnm en t,
@ 0176 ind ia , ind ian ,
@ 0180 indu s tria l, industry ,
@ 0186 ¡rag, irag i,
@ 0190 ita ly , ita lian , ita lia , ita liana , ita liano,
@ 0192 ja pa n , japanese ,
@ 0195 je w ish , ju da ism , jew ,
@ 0199 keynes , keyn es ian ,
@ 0232 m arx, m arx ian , m arx is t,
@ 0233 m ath , m a ths , m athem atics ,
@ 0256 nasa, na tion a l ae ron au tica l space  agency,
@ 0257 na to , no rth  a tla n tic  tre a ty  o rgan iza tion ,
@ 0290 p e r cen t, pe rcen t,
@ 0295 p h ilo so p h ica l, ph ilosophy,
@ 0296 phone, te le ph on e ,
@ 0314 psbr, pu b lic  se c to r bo rrow ing  regu irem en t,
@ 0319 ra il road, ra ilroad , ra ilw ay,
@ 0322 re lig ious , re lig ion ,
@ 0330 russ ia , russ ian , sov ie t, sov ie t un ion, ussr, un ion  o f so v ie t s o c ia lis t rep ub lics ,
@ 0339 Serbia, Serb ian,
@ 0352 sou th  a frican , sou th  a frica ,
@ 0373 take ove r, take  ove r, take -ove r,
@ 0380 th ird  w o rld , 3 rd  w o rld , under de ve loped  coun tries , u n d e rd e ve lo p e d  a re as , u n d e rd e ve lo p e d  

cou n trie s , un de r-deve lo ped  countries , deve lop ing  coun tries ,
@ 0399 U ruguay, U ruguayan,
@ 0400 usa, us o f a, us, un ited  sta tes , un ited  s ta tes  o f am erica ,
@ 0404 uv, u ltra  v io le t, u ltrav io le t,
@ 0431 yu g o s la v ia , yug os lav , Yugoslavian,
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