

City, University of London Institutional Repository

Citation: Braun, H. (2003). A Neural Network Linking Process. (Unpublished Doctoral

thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30885/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Neural Network Linking Process

by

Harald Braun

City University, London

A Thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy,

School of Engineering and Mathematical Sciences,
City University, London

© Copyright 2003 by Harald Braun

Abstract

A novel method of integrating multiple neural networks into one large network via a

process referred to as a neural network linking process is proposed.

Neural networks are commonly trained to solve a specific problem for an

encapsulated problem domain. A single network can undertake simple classification

or generalisation problems. Dividing them into sub-problems, which in turn are

solved by a sub-network, can disentangle more complicated classification or

generalisation problems. A controller generally combines sub-network results. A

controller can be, for instance, a gating network, voting system or a mathematical

combiner. In each case, every sub-network is used as a separate unit and is not inter-

connected to any other sub-network.

However, with the linking process a novel method for linking trained sub-networks

into one large network by maintaining the knowledge of each individual sub-network

is introduced. Furthermore, the linked network will utilize a stimulus process in order

to distinguish the type of sub-problem to be solved, by largely retaining the accuracy

of the sub-network, as well as being one step closer to the biological reality.

f

Original Contributions

The original contributions of this thesis may be summarised as follow:

• The creation of a framework for combination of hidden neurons by means of

linking weight vectors, referred to as the linking process.

• Pruning of trained neural networks using the linking process.

• Introduction of domain membership that is held within neurons so that the

weight vector length of each hidden neuron can be controlled.

• Study on where domain membership information can be induced into neurons

to control their individual outputs and subsequently their contribution to the

output of the overall network.

• Development of a stimuli network that generates input vector domain

membership information for control of hidden neurons.

• Creation of penalty function to reduce weight updates for the backpropagation

training algorithm to prevent the saturation of the summed input of hidden

neurons.

• Linking of entire neural network weight matrixes for sharing of information

for the purpose of improving the generalisation.

• Application of neural networks to claims reservation for general insurance

companies and subsequent linking for improving forecasting capability.

List of Publications

1. H Braun, LL Lai “A Neural Network Linking Process”, submitted to IEEE

Transactions on Neural Networks, 2003.

2. H Braun, LL Lai “Neural Network Linking for Insurance Claims

Reservation”, submitted to IEEE Transactions on Neural Networks, 2003.

3. E Georges, LL Lai, H Braun, FN Che “Implementation of neural networks

with VLSI”, 6th European Conference on Power Electronics and Applications,

pp 2.261-2.265, 19-21 September 1995.

4. LL Lai, FN Che, H Braun “Applications of neural networks to predicting

harmonics”, 6th European Conference on Power Electronics and Applications,

pp 3.533-3.538, 19-21 September 1995.

5. H Braun, “Application of Neural Networks for Weather Forecasting”,

Proceedings of the British Council Workshop on Intelligent Weather

Forecasting, Fudan University, Shanghai, China, pp 42-54, 21 March 2003,

Invited Paper.

6. H Braun, LL Lai, “Application of the Internet to Power System Monitoring

and Trading”, chapter 12 in “Power Systems Restructuring and Deregulation”,

John Wiley & Sons Ltd, September 2001.

Table of Contents

Abstract...ii

Original Contributions.. iii

List of Publications...iv

Table of Contents... v

List of Figures...xiii

List of Tables... xix

Acknowledgements..xxv

Declaration.. xxvi

Chapter 1: Introduction..1

1.1 Introduction...1

1.2 Problem Separation...5

1.2.1 Self Organising Maps..5

1.2.1 Multi-Layer Perceptron..5

1.2.3 Classic Methods 6

1.2.4 Avoiding Need for Problem Separation... 6

1.3 Expert Training..6

1.3.1 Rule Based Systems.. 7

1.3.2 Neural Networks...8

1.3.3 Fuzzy Systems.. 8

1.3.4 Genetic Algorithms...10

1.3.5 Decision Trees.. 11

1.4 Expert Recombination..12

1.4.1 Mathematical Combiners.. 13

1.4.2 Gating Network.. 13

1.4.3 Democratic Systems..14

1.4.4 Boosting and Bagging..15

1.5 Neural Network Pruning...16

1.5.1 Magnitude Based Pruning.. 17

1.5.2 Optimum Brain Damage...19

1.5.3 Optimal Brain Surgeon.. 20

1.6 Structure of the Thesis... 20

1.6.1 Summary of Chapter 2: Derivation of the linking equation.. 21

1.6.2 Summary of Chapter 3: Pruning of Neural Network Weight Matrixes........................... 22

1.6.3 Summary of Chapter 4: The Stimuli Network... 22

1.6.4 Summary of Chapter 5: Linking of Neural Network Weight Matrixes........................... 24

1.6.5 Summary of Chapter 6: Claims Reservation..25

Table of Contents__ vi

Chapter 2: Derivation of the Neural Network Linking Equation...27

2.1 Introduction.. 27

2.2 Linking of Neurons...29

2.3 Linking Based on Averaging...31

2.4 Linking Based on Weighted Average by Vector Length...34

2.5 Linking Based on Weighted Average by Vector Components... 38

2.6 Linking Based on Weighted Average by Vector Components and Length Manipulation..41

2.7 Combination of the output weights... 48

2.9 Conclusion... 50

Chapter 3: Pruning of Neural Network Weight Matrixes..52

3.1 Introduction.. 52

3.2 Linking of two Hidden Neurons..54

3.2.1 Combination of Output Weights... 58

3.2.2 Linking for the Purpose of Pruning.. 59

3.2.3 Measuring Linked Neurons Output Performance.. 61

3.3 Hidden Neuron Linking of a Neural Network for Pruning..64

3.3.1 Training of Hidden Neurons..65

3.3.2 Analysis of Hidden Neuron Weight Vectors... 68

3.3.3 Linking of Hidden Neurons...70

3.4 Linking Analysis... 71

3.4.1 Analysis of Linked Neurons..71

3.4.2 Analysis of Linked Network..73

Table of Contents___ vii

Table of Contents viii

3.8 Conclusion..75

Chapter 4: The Stimuli Network...77

4.1 Introduction..77

4.2 Stimuli Induction..82

4.3 Weight Vector Adjustment.. 83

4.4 Input Neuron Sensitivity.. 86

4.5 Hidden Neuron Sensitivity... 87

4.6 Neuron Saturation Analysis... 90

4.7 Numerical Experiment: Linking Saturated and Unsaturated Networks................................95

4.7.1 Domain Memberships..97

4.7.2 Network Topologies.. 98

4.7.3 Non-Saturated Neurons... 101

4.7.3.1 Linear Combined Output... 102

4.7.3.2 Linked Output...104

4.7.3.3 Stimuli Induction prior to Activation Function...107

4.7.3.4 Stimuli Induction after Activation Function...109

4.7.4 Saturated Neurons... I l l

4.7.4.1 Linear Combined Output... 112

4.7.4.2 Linked Output...113

4.7.4.3 Stimuli Induction prior to Activation Function...114

4.7.4.4 Stimuli Induction after Activation Function...116

4.8 Conclusion...118

Table of Contents IX

Chapter 5: Linking of Neural Network Weight Matrixes...119

5.1 Introduction...119

5.2 The Principles of Linking Sub-Networks... 120

5.3 Linking Sub-Networks...124

5.3.1 The Neural Network Linking Process.. 125

5.3.2 Training Sub-Networks.. 125

5.3.3 Sub-Network Linking Process...132

5.3.4 Analysis of Hidden Neuron Weight Vectors..134

5.3.5 Linking of Hidden Neurons from Different Domains.. 135

5.4 Linking Analysis... 136

5.4.1 Analysis of Linking Neurons... 136

5.4.2 Analysis of Linked Network.. 140

5.5 Numerical Experiment: Linking of Extrapolating Networks...142

5.5.1 Clustering of Input Space.. 144

5.5.2 Training of Domain Networks...146

5.5.3 Linking of Domain Networks..151

5.5.4 Linking Analysis...153

5.5.5 Linking Results...154

5.6 Numerical Experiment: Linking of Inter- and Extrapolating Networks.............................158

5.6.1 Clustering of Input Space.. 158

5.6.2 Training of Domain Networks...159

5.6.3 Linking of Domain Networks..162

5.6.4 Linking Analysis...164

Table of Contents x

5.6.5 Linking Results..165

5.7 Conclusions... 168

Chapter 6: Claims Reservation..169

6.1 Introduction...169

6.2 Claims Reserving.. 170

6.2.1 Claims Reserving for Different Types of Business.. 171

6.2.2 Types of Business... 172

6.2.3 Claims Estimation Methods... 172

6.3 Data Preparation... 173

6.3.1 Types of Data used for Claims Reservation..174

6.3.2 Statistical Credibility of the Sample.. 175

6.3.3 Representation of Claims Data..176

6.3.4 The Claims Triangle...176

6.3.5 Economic Factors... 178

6.3.6 Claims Data Normalisation.. 179

6.3.7 Feature Selection Process.. 180

6.4 Claims Reservation with Chain Ladder Method..181

6.4.1 Chain Ladder Method...181

6.4.2 Other Forecasting Methods.. 187

6.5 Claims Reservation with Neural Networks... 187

6.5.1 Claims Reservation with Data from one Company.. 188

6.5.1.1 Training Data Preparation 188

6.5.1.2 Training of Domain Networks... 191

6.5.1.3 Linking of Domain Networks.. 197

6.5.1.4 Linking Analysis... 198

6.5.1.5 Training of Stimuli Network..203

6.5.1.6 Linking Results... 207

6.5.1.7 Comparison with Single Network..210

6.5.2 Claims Reservation with Data from two Companies... 213

6.5.2.1 Training Data Preparation.. 213

6.5.2.2 Training of Neural Networks...215

6.5.2.3 Linking of Domain Networks..221

6.5.2.4 Linking Analysis... 221

6.5.2.5 Training of Stimuli Network..224

6.5.2.6 Linking Results... 226

6.5.2.7 Comparison with Single Network..229

6.6 Conclusions... 232

Chapter 7: Conclusions and Future W ork ..233

7.1 Conclusions.. 233

7.2 Future Work.. 234

7.2.1 Simplifications..234

7.2.1.1 Combination of Output Layer Weights... 234

7.2.1.2 Search for Similar Knowledge in Neurons... 235

7.2.2 Improvements...235

Table of Contents__ xi

Table of Contents xii

7.2.2.1 Dynamic Pruning and Growing... 235

1.2.2.2 The Need for a Stimuli Network..235

7.2.2.3 Linking Multiple Networks.. 236

7.2.2.4 Extension of Linking Equation.. 236

7.2.2.5 Extension of Linking for Different Types ofNetworks...236

7.2.2.6 Extension of Linking for Different Types of Fields... 237

Chapter 8: Bibliography 238

List of Figures

Figure 1.1 Linking source code and functions from a general-purpose library..2

Figure 1.2 Linking can be categorised as an expert recombination method...4

Figure 1.3 Three major components of a rule based system.. 7

Figure 1.4 Major components of atypical fuzzy system..9

Figure 1.5 Bagging is a bootstrap method where every NN receives different training data.................. 15

Figure 1.6 With boosting poorly performing records are duplicated to boost performance.................... 16

Figure 2.1 Vectors are defined by direction and magnitude.. 27

Figure 2.2 Neurons can be written as three-dimensional vectors or a row matrix................................... 28

Figure 2.3 Linking of neurons A and B into a neuron R with changes in generalisation........................29

Figure 2.4 Transforming a 2:2:1 network into a 2:1:1 network by linking hidden neurons....................30

Figure 2.5 Creation of the resulting vector vr via simple component averaging...................................... 31

Figure 2.6 Division of a straight line ab by a given ratio Rab..35

Figure 2.7 Weighting of individual dimensions by a dimension specific ratio R„................................... 39

Figure 2.8 Reducing the errors between vectors by vector length multiplication.................................... 42

Figure 2.9 Graphical representation of distance reduction by vr vector length adjustment.....................43

Figure 2.10 Vectors with the same direction have identical component ratios....................................... 45

Figure 2.11 Linking hidden neurons requires weight combination from the next layer......................... 48

Figure 3.1 SSEtrn during training plotted against the number of batch training iterations......................55

Figure 3.2 SSEgcn during training plotted against the number of batch training iterations.....................55

Figure 3.3 Transformation of a 2:2:1 network into a 2:1:1 network by linking of a hidden neuron......57

Figure 3.4 Linking of vectors va and vb into one vector vr, and a length adjustment factor F.................60

Figure 3.5 Network with only one hidden neuron after linking... 61

Figure 3.6 The trained and linked network hyperplanes presented for the entire input space............... 63

Figure 3.7 The objective function compared with the network output after initialisation..................... 65

Figure 3.8 The recall and generalisation error during training of the neural network............................ 66

Figure 3.9 The objective function compared with the network output after training..............................67

Figure 3.10 Vectors of quadrants Q3 and Q4 can be mapped into Q1 and Q2 respectively.................. 69

Figure 3.11 The objective function compared with the network output after linking.............................74

Figure 3.12 SSEtrll and SSEgcn as a function of the acceptance angle cp for finding cpopt.........................75

Figure 4.1 Functions of the Cerebral Cortex..78

Figure 4.2 Hidden neurons before and after linking..79

Figure 4.3 Stimuli networks induce stimuli information directly into neurons.......................................80

Figure 4.4 Gating networks regulate overall output via a combiner.. 81

Figure 4.5 Stimuli network induction points prior and after the activation function..............................82

Figure 4.6 Vector length adjustments for recalling information for multiple domains.......................... 84

Figure 4.7 Symmetric-sigmoid activation function... 87

Figure 4.8 Neuron output out, as a function of netj and domain membership S..................................... 88

Figure 4.9 Neuron output outj as a function of parameterised netj and domain membership S.............. 89

Figure 4.10 Neuron output outj for to define point of saturation.. 91

List of Figures__xiv

Figure 4.11 Penalty term to adjust the learning factor during training to avoid neuron saturation........93

Figure 4.12 Training data for domain A (A) and B (■) ..96

Figure 4.13 Input vector domain membership distribution of domains A and B.....................................97

Figure 4.14 Network topology with its frozen output layer...99

Figure 4.15 Network output for domain A (A) and B (■) with small weights......................................101

Figure 4.16 Linear combined output for domain A (A) and B (■) with small weights........................103

Figure 4.17 Linked neural network for illustration of stimuli induction points.................................... 106

Figure 4.18 Linked output for domain A (A) and B (■) with stimuli prior to activation function.108

Figure 4.19 Linked output for domain A (A) and B (■) with stimuli after activation function...... 109

Figure 4.20 Comparison of SSE between different types of network assembles................................... 110

Figure 4.21 Network output for domain A (A) and B (■) .. I l l

Figure 4.22 Linear combined output for domain A (A) and B (■) .. 112

Figure 4.23 Linked output for domain A (A) and B (■) ..115

Figure 4.24 Linked output for domain A (A) and B (■) networks... 116

Figure 4.25 Comparison of SSE between different types of network assembles.................................. 117

Figure 5.1 Linking trained weights with pre-trained weights from library...121

Figure 5.2 Similar knowledge contained in a database or in a weight matrix.. 122

Figure 5.3 In C-based languages use memory maps to locate functions..123

Figure 5.4 A Knowledge Domain Map locates areas of knowledge in a weight matrix.......................123

Figure 5.5 3D plot of the training and testing data for networks A and B.. 126

Figure 5.6 The recall and generalisation error during training of network A.................................... 127

Figure 5.7 The target function plotted against the trained function of network A................................ 128

Figure 5.8 The recall and generalisation error during training of network B.................................... 128

List of Figures__ xv

Figure 5.9 The target function plotted against the trained function of network B................................ 129

Figure 5.10 Input space separation of the training data...131

Figure 5.11 Linked domain sub-networks activated by a stimuli network.. 133

Figure 5.12: Training data input space shown as a 2D diagram...143

Figure 5.13 Input space divided into 16 equally sized quadrants.. 145

Figure 5.14 Dataset A for extrapolation ..146

Figure 5.15 Dataset B for extrapolation...146

Figure 5.16 The objective function of the output for networks A and B..147

Figure 5.17 SSE for each cluster after training from figure 5.14..149

Figure 5.18 SSE for each cluster after training from figure 5.15..150

Figure 5.19 3D representation of figure 5.17.. 150

Figure 5.20 3D representation of figure 5.18.. 150

Figure 5.21 Error distribution for each cluster after linking 3 neurons of clusters from figure 5.15... 156

Figure 5.22 Error distribution for each cluster after linking 3 neurons of clusters from figure 5.16... 156

Figure 5.23 Cluster errors after linking for A... 157

Figure 5.24 Cluster errors after linking for B..157

Figure 5.25 Dataset C for interpolation... 159

Figure 5.26 Dataset D for extrapolation.. 159

Figure 5.27 Error distribution for each cluster after training of clusters from figure 5.25.............. 161

Figure 5.28 Error distribution for each cluster after training of clusters from figure 5.16.............. 161

Figure 5.29 Cluster errors after training for A.. 162

Figure 5.30 Cluster errors after training for B...162

List of Figures__xvi

Figure 5.31 Error distribution for each cluster after linking 3 neurons of clusters from figure 5.25... 166

Figure 5.32 Error distribution for each cluster after linking 3 neurons of clusters from figure 5.16... 167

Figure 5.33 Cluster errors after linking for A... 167

Figure 5.34 Cluster errors after linking for B..167

Figure 6.1 Data triangle of incremental claims figures... 177

Figure 6.2 Data triangle of cumulative claim figures.. 178

Figure 6.3 Training pattern generation for time series forecasting...189

Figure 6.4 Recall and generalisation error of network trained with x-direction data............................. 192

Figure 6.5 Recall and generalisation error of network trained with y-direction data............................. 193

Figure 6.6 Prediction of claims reservation for x-direction..195

Figure 6.7 Prediction of claims reservation for y-direction..195

Figure 6.8 Prediction of claims reservation for x-direction after linking..201

Figure 6.9 Prediction of claims reservation for y-direction after linking..202

Figure 6.10 Generation of classification data by linear search... 204

Figure 6.11 Training results of stimuli network...206

Figure 6.12 Prediction of claims reservation for x-direction after linking and stimuli network............208

Figure 6.13 Prediction of claims reservation for y-direction after linking and stimuli network............208

Figure 6.14 Prediction of claims reservation for y-direction after linking and stimuli network............209

Figure 6.15 Recall and generalisation error of network trained with both domains..............................210

Figure 6.16 Recall and generalisation error of network trained with Co-operative data.......................216

Figure 6.17 Recall and generalisation error of network trained with Legal&General data................... 217

Figure 6.18 Prediction of claims reservation for Co-operative after training.. 218

List of Fieures___ xvii

Figure 6.19 Prediction of claims reservation for Legal&General after training....................................219

Figure 6.20 Recall and generalisation error of network trained with Legal&General data..................225

Figure 6.21 Prediction of claims reservation for Co-operative after linking and stimuli network...... 226

Figure 6.22 Prediction of claims reservation for Legal&General after linking and stimuli network...227

Figure 6.23 Recall and generalisation error of network trained with both domains............................. 229

List of Figures__ xviii

List of Tables

Table 3.1 Comparison between trained and linked network benchmarks for 30 runs............................. 62

Table 3.2 The parameters of the neural network used in this section.. 64

Table 3.3 Weight vectors of the hidden layer after training..68

Table 3.4 Angles between weight vectors in ascending order... 69

Table 3.5 Results of the combination of vectors with angles below 10° as listed in table 3.3................70

Table 3.6 Vector component change impact analysis...72

Table 3.7 Vector length change impact analysis...73

Table 3.8 Comparison between trained and pruned network benchmarks for 30 runs............................ 73

Table 3.9 List of vectors satisfying the acceptance angle limitation...74

Table 4.1 The parameters of the neural networks used in this section... 99

Table 4.2 Weight vectors of the hidden layer of domain A trained with penalty function....................100

Table 4.3 Weight vectors of the hidden layer of domain B trained with penalty function.................... 100

Table 4.4 Weight vectors of the hidden layer of domain A trained without penalty term.....................100

Table 4.5 Weight vectors of the hidden layer of domain B trained without penalty term..................... 100

Table 4.6 Calculation of the linearly combined network output for a selection of 5 data points..........102

Table 4.7 SSE of individual domains.. 104

List of Tables xx

Table 4.8 Angles between weight vectors in ascending order...104

Table 4.9 Results of the linking of two neurons with acceptance angles below 10°............................ 105

Table 4.10 Vector component change impact analysis.. 105

Table 4.11 Network output with stimuli induction prior to activation function.....................................107

Table 4.12 SSE of linked domains with stimuli induction prior to activation function..........................109

Table 4.13 Network output with stimuli induction after activation function...109

Table 4.14 SSE of linked domains with stimuli induction after activation function............................. 110

Table 4.15 SSE between individual and linearly combined domains...113

Table 4.16 Angles between weight vectors in ascending order..113

Table 4.17 Results of the linking of two neurons with acceptance angles below 10°.......................... 114

Table 4.18 Vector component change impact analysis.. 114

Table 4.19 Network output with stimuli induction prior to activation function.....................................115

Table 4.20 SSE of linked domains with stimuli induction prior to activation function......................... 116

Table 4.21 SSE of linked domains with stimuli induction after activation function............................. 117

Table 5.1 The parameters of the neural networks used in this section... 126

Table 5.2 Performance benchmarks of network A and B after training... 129

Table 5.3 Weight matrixes of the hidden layers of networks A and B after training..............................130

Table 5.4 Knowledge Domain Maps for both training data sets...130

Table 5.5 Angles between weight vectors in ascending order... 135

Table 5.6 Results of the combination of vectors with angles below 13° as listed in table 5.5..............136

Table 5.7 Vector component change impact analysis.. 137

Table 5.8 Vector length change impact analysis...139

List of Tables xxi

Table 5.9 Weight matrixes of the hidden layers of networks A and B after reconstruction...................141

Table 5.10 Comparison between trained and linked network benchmarks..141

Table 5.11 The clusters and their range in input space...145

Table 5.12 Sum Square Errors for each cluster after training of network A.. 148

Table 5.13 Sum Square Errors for each cluster after training of network B...149

Table 5.14 Weight matrixes of the hidden layers of networks A and B after training..........................151

Table 5.15 Angles between weight vectors in ascending order.. 152

Table 5.16 Knowledge Domain Maps for both training data sets...152

Table 5.17 Linking results of vectors with angles below 10° as listed in table 5.15............................. 152

Table 5.18 Vector component change impact analysis..153

Table 5.19 Vector length change impact analysis..153

Table 5.20 Weight matrixes of the hidden layers of networks A and B after reconstruction...............154

Table 5.21 Sum Square Errors for each cluster after linking of dataset A..155

Table 5.22 Sum Square Errors for each cluster after linking of dataset B..155

Table 5.23 Sum Square Errors for each cluster after training of network C...160

Table 5.24 Sum Square Errors for each cluster after training of network D.. 160

Table 5.25 Weight matrixes of the hidden layers of networks A and B after training............................. 163

Table 5.26 Angles between weight vectors in ascending order..163

Table 5.27 Linking results of vectors with angles below 10° as listed in table 5.26...............................163

Table 5.28 Vector component change impact analysis... 164

Table 5.29 Vector length change impact analysis..164

Table 5.30 Weight matrixes of the hidden layers of networks A and B after reconstruction...............165

Table 5.31 Sum Square Errors for each cluster after linking of network C..165

Table 5.32 Sum Square Errors for each cluster after linking of network D..166

Table 6.1 Insurance risks split by type of business..172

Table 6.2 Incremental run-off triangle for AXA with actual 1999 data...182

Table 6.3 Cumulative run-off triangle for AXA without 1999 data... 183

Table 6.4 Cumulative run-off triangle for AXA with predicted 1999 data using CLM..........................185

Table 6.5 CLM result analysis for 1999... 186

Table 6.6 Creation of training data using time series window size of 5 inputs and one output............. 190

Table 6.7 The parameters of the neural networks used in this section... 192

Table 6.8 Extract of claims triangle with predictions from x and y directions.. 194

Table 6.9 Forecasting results for x and y directions after training..194

Table 6.10 Performance benchmarks of both networks after training for 10 runs.................................. 196

Table 6.11 Hidden layer weight matrix of network trained for the x-direction...................................196

Table 6.12 Hidden layer weight matrix of network trained for the y-direction...................................197

Table 6.13 Angles between weight vectors in ascending order...198

Table 6.14 Results of the combination of vectors with angles below 20°as listed in table 6.13...........198

Table 6.15 Vector component change impact analysis.. 199

Table 6.16 Vector length change impact analysis...199

Table 6.17 Hidden layer weight matrix of network trained for the x-direction after reconstruction. ...200

Table 6.18 Hidden layer weight matrix of network trained for the y-direction after reconstruction. ...200

Table 6.19 Forecasting results for x and y directions after linking.. 201

Table 6.20 Performance comparison of trained and linked networks for 10 runs.................................. 203

List of Tables__ xxii

Table 6.21 Stimuli network training data with clustered 1 or 0 outputs.. 204

Table 6.22 Stimuli network training data with generated memberships..205

Table 6.23 The parameters of the stimuli network..205

Table 6.24 Performance benchmarks of stimuli network after training...206

Table 6.25 Forecasting results for x and y directions after linking.. 207

Table 6.26 Performance comparison of trained, linked and linked with stimuli after 10 runs.............. 209

Table 6.27 The parameters of the neural network used in this section.. 210

Table 6.28 Training results of single NN trained for both domains...211

Table 6.29 x-Direction forecasting of single NN trained with both domains..211

Table 6.30 y-Direction forecasting of single NN trained with both domains..212

Table 6.31 RMSE results from tables 6.26 and 6.28.. 212

Table 6.32 Incremental claims triangle for Co-operative... 214

Table 6.33 Incremental claims triangle for Legal&General... 215

Table 6.34 The parameters of the neural networks used in this section...216

Table 6.35 Forecasting results for Co-operative and Legal&General after training...............................218

Table 6.36 Performance benchmarks of both networks after training for 10 runs................................ 219

Table 6.37 Hidden layer weight matrix of network trained for Co-operative... 220

Table 6.38 Hidden layer weight matrix of network trained for Legal&General..................................... 220

Table 6.39 Angles between weight vectors in ascending order...221

Table 6.40 Results of the combination of vectors with angles below 22°as listed in table 6.39...........221

Table 6.41 Vector component change impact analysis.. 222

Table 6.42 Vector length change impact analysis...222

Table 6.43 Hidden layer weight matrix of Co-operative after reconstruction...223

Table 6.44 Hidden layer weight matrix of Legal&General after reconstruction.....................................223

List of Tables___ xxiii

List of Tables xxiv

Table 6.45 Stimuli network training data with memberships generated by linear search...................... 224

Table 6.46 The parameters of the stimuli network.. 224

Table 6.47 Performance benchmarks of stimuli network after training...225

Table 6.48 Forecasting results for Co-operative and Legal&General after linking................................ 226

Table 6.49 Performance comparison of trained, linked and linked with stimuli after 10 runs.............. 227

Table 6.50 Error analysis for Legal&General..228

Table 6.51 The parameters of the neural networks used in this section...229

Table 6.52 Training results of single NN trained for both domains...230

Table 6.53 Co-Operative forecasting of single NN trained with both domains...................................... 230

Table 6.54 Legal & General forecasting of single NN trained with both domains.................................231

Table 6.55 RMSE results from tables 6.49 and 6.52............................... Error! Bookmark not defined.

Table 6.56 Summary of generalisation error change for both examples... 232

Acknowledgements

The author wishes to thank his wonderful supervisor Dr L. L. Lai for his help and

guidance throughout the course of this work. His comments and advice have been

invaluable. Thanks to all the people in the Energy Systems Group who have advised

me throughout the years.

Thanks also to Mr. Brian Martin from A. M. Best International for the permission to

use the Insight Non-Life product and the extracted insurance data for publication in

this thesis.

Special thanks to Dr. Fidelis Ndeh Che who was one of the first researchers within

our group in the field of artificial intelligence and who taught me the English

language. Furthermore to my lecturing colleague Dr. Mathias Belz for driving our

efforts in teaching students in C programming that initiated the concept of neuron

linking. Furthermore, to Jon Scott for correcting my spelling and grammar, my

girlfriend Jeanetta McLean for her long standing support and finally to my mother

Ursula Braun to whom this thesis is dedicated.

Declaration

The author hereby grants powers of discretion to the City University Librarian to

allow this thesis to be copied in whole or in part without further reference to the

author. This permission covers only single copies made for study purposes, subject to

normal conditions of acknowledgement.

Chapter 1

Introduction

1.1 Introduction

The term linking, as used throughout this thesis, has originated from the

C programming language. Creating a working program in C from source code, in its

simplest form, employs two-step process. Step one is the compilation and pre-

processing of the source code into a tokenised form. Step two is to link references

tokens within the code to existing library functions into the compiled code to create

the entire program [1, 2, 3],

Already existing code is the foundation of every software program. This is because

the programmer can concentrate on the business logic that is to be implemented

instead of writing code to access hard disks or graphics cards. With so many different

computer hardware configurations, the most efficient method of writing software is by

using the computers operating system device and function libraries because all

appropriate drivers are present.

A direct comparison between the program creation of the C programming language

and neural networks has been the basis of the concept of the neural network linking

process. Because basic operations are contained in pre-compiled repositories or

libraries, utilisation of such component libraries is archived by linking them together

Introduction 2

with the program source code in need of the additional functionality, as shown in

figure 1.1.

Figure 1.1 Linking source code and functions from a general-purpose library.

Most general-purpose functions contained in function libraries are used in

programming source code to simplify the task for the developer and to speed up

product development. For the reason that the functions contained in libraries can be

called from different locations in the programming source code they are referred to as

being reusable. With this, programming time and the size of the completed program

can be considerably reduced. General-purpose libraries are a substantial part of every

programming language. They can be shared, bought or sold on the open market,

permitting developers to extend their programming environment easily.

In this thesis, the analogy of sharing and re-using libraries in programming languages

has been successfully applied to the development of neural network structures. To

date, neural networks are commonly trained to solve one specific problem with data

from one problem domain. As a consequence, many researchers are continuously

training new neural networks for data modelling, classification or interpolation issues.

Once a neural network has been trained it is generally used in isolation without further

integration of knowledge from other sources. Some attempts have been made to

include symbolic knowledge into neural networks [4-9]. Every neural network is able

to gain knowledge from different domains by learning from examples [10, 11]. But

Introduction 3

they are generally trained to solve one particular problem for a single problem

domain.

Complex problems which belong to more than one problem domain, can be simplified

by using the divide-and-conquer principle in which a set of specialized sub-networks

can be combined to form the final network [12-14].

The divide step of the divide and conquer principle can be done either by designing

different networks for each problem domain or by purely probabilistic methods [15-

17]. The conquer step can be a specific function of the outputs of one or more sub-

networks or the output of the sub-network with the best performance [18, 19].

This thesis will introduce the utilisation of two different knowledge domains to train

sub-neural networks which will be combined via a linking process into a single

network. This follows the analogy of creating an application in a high level

programming language, where the building blocks are firstly compiled (training of

sub-networks) and then linked (network linking process).

The combination of neural network outputs to obtain a better result has been well

researched and documented in the past [20-23], The most common systems separate

the training data by input space, train several networks for each problem domain and

recombine the individual results. Such systems called Mixtures of Experts (ME),

break one problem into sub-tasks, train a neural network and then combine the results

with an output function or voting scheme [24-27],

The methodology that combines the outputs can be based on a linear or non-linear

mathematical function (mathematical combiner) [28, 29] or a neural network itself

(gating network) [30, 31]. Possible voting schemes between experts are Winner Takes

All (WTA) or democratic systems [32-35], The general concept of a ME system with

gating network [36] is that a single expert is responsible for the output of a region

within the input space. Whereby the decision of which network(s) to choose for that

region lies with the implementation of the network controlling the gate.

Figure 1.2 shows the underlying principles of problem separation, expert training and

expert recombination in one illustration. Problem separation can be used to divide the

Introduction 4

training data into several domains. In order to find a suitable representation of the data

for domain separation, linear transformation such as Principal Component Analysis

(PCA) [37, 38], Factor Analysis (FA) [39, 40], Projection Pursuit (PP) [40] and

Independent Component Analysis (ICA) [41] can be used. Most of these methods

reduce the dimensionality so that clusters within the data can be found. Such clusters

can then be used for the creation of separate knowledge domains and to train domain

experts.

After separation of the training data into domains, individual neural network experts

can be trained for optimal performance within their domain. Depending on the

distribution of data within the domains input space and the location of the desired

generalisation in hyperspace, the generalisation can be divided into interpolation or

extrapolation [42],

Expert recombination amalgamates the outputs of the individual domain experts into

one output. The most recent research topic that involves expert recombination

currently is Hierarchical Mixture of Experts (HME) [43-49],

Problem Separation'

t . . . g

- Expert Training

Expert Recombination

n e
Weighted Summed Linked

Figure 1.2 Linking can be categorised as an expert recombination method.

Introduction 5

1.2 Problem Separation

Breaking up the input space into piecewise solutions will reduce the complexity of

their interpretation [50-52], In particular, the role of individual parameters and

individual sub models (domain experts) is easily discerned. This is not the case for

global models, where it is more difficult to ascertain the role of domain experts [53],

The advantage of domain experts is that they can be discarded or re-trained if their

performance is substandard. Other advantages are rapid incremental learning of

domain experts, fast cross-validation and no major local minima issues [54],

1.2.1 Self Organising Maps

There are several possible methods of partitioning the input space. For example,

SOM’s have the ability to perform an optimal partitioning of the input space. Their

hierarchical decomposition of the input space yielded good results in many

applications [55], SOM’s are beneficial for input space partitioning because of several

reasons. They are less prone to local minima during the optimisation of the cluster

centres, clustering results in Voronio tessellation (tiling of space without major gaps),

the probability density of the inputs is preserved and the map is aligned to the largest

principle components in the data set, i.e. it performs PCA.

1.2.1 Multi-Layer Perceptron

Other neural networks such as the standard Multi-Layer Perceptron (MLP) network or

the Radial Basis Function (RBF) neural network, too, have the ability of partitioning

multidimensional data [56-59], The basic functioning of a MLP neural network is that

the first hidden layer uses hyperplanes to partition the input space into a number of

sections by way of dividing space with decision boundaries. The shape or the decision

boundaries is depending on the neuron activation function e.g. linear, non-linear or

radial. Decision boundaries are based on the fact that boundaries are located at the

Introduction 6

point in input space where a small change of an input value causes a large change in

output value [60-62],

1.2.3 Classic Methods

Whatever the partitioning method, it is imperative to consider the scalability of the

proposed method. Some classic methods for partitioning, for instance, Delaunay

tessellation [63] is known to optimally partition the input space, yet costs increase

almost quadratic if the number of samples increases for high-dimensional functions

[55], This means that the method is prohibitive for problems where many patterns are

expected. For this reason, many researchers use neural network based methods for

input space partitioning especially SOM’s [55], Additionally, there are other more

traditional methods for input space separations such as Fourier transform and

polynomial approximation.

1.2.4 Avoiding Need for Problem Separation

One of the most uncomplicated way of partitioning the training data input space into

domains is to prevent mixing domain information in the first place. If data originated

from different sources that have nothing or very little in common, it can be assumed

that the extracted data originated from different domains [64, 65], Therefore if the

data is collected independently or can be separated accurately, the need for complex

input space separation can be avoided.

1.3 Expert Training

Using multiple experts requires that the problem domain can be separated into

different partitions and that each partition can be solved by a domain expert that can

be either rule based, a neural network, a fuzzy system, a genetic algorithm or others.

Introduction 7

Because this thesis is in relation to linking of neural network weight matrixes, only

neural networks will be used as domain experts.

The quality of expert training and the resulting approximation of the output generated

depend for the most part on the partitioning of the input space and on the complexity

of the objective function [66]. If the partitioning algorithm awkwardly chose

boundaries, continuous partitioning of the input space can further reduce the

complexity of an objective function to simplify expert training.

Some disadvantages of training multiple experts are poor generalisation performance

since other domains are not present in training data of a single expert and increased

memory and disk space since every expert needs to be treated in separation. But the

linking process eliminates some of the disadvantages caused by multiple experts such

as inadequate generalisation and increased network size.

1.3.1 Rule Based Systems

Rule based systems are algorithms in form of a computer program that emulates a

human expert in a well-bounded domain of knowledge [67-69]. Characteristically, a

rule based expert system consists of three major components as shown in figure 1.3.

The first one being the dialog structure, second one the inference engine and the last

one the knowledge base [70], The dialog structure is the interface between the user

and the system. User interfaces are designed to verbally explain their reasoning, much

like a human expert would. The inference engine “drives” the computer to perform

search strategies that arrive at various conclusions. The knowledge base is the set of

facts and rules (heuristics) about the specific task at hand. Fore more information on

rule based systems, please refer to the following publications and textbooks [71, 72],

Figure 1.3 Three major components of a rule based system.

Introduction 8

1.3.2 Neural Networks

The inspiration of neural networks originated form the biological nervous system [73-

78]. A neural network consist of a collection of interconnected processing units

referred to as neurons that have the ability of performing many computational tasks

such as classification, generalisation and optimisation [79]. One important feature is

the capability to adjust the internal representation of the model to the data that is used

for training. A process referred to as learning or training accomplishes the flexibility

of a neural network. A neural network consists of two major building blocks, the

neurons and their connection weights.

Neurons, as used commonly, can have multiple inputs but only one output. The

responsibility of the neuron is to sum up all incoming connections and process the

sum by its activation function. This thesis has used sigmoidal-based activation

functions such as the symmetrical and non-symmetrical sigmoid [80],

Weights determine the strength of connection between neurons in the network. This

quantity is analogous to the biological synapse that determines the amplitude and sign

of the signal affecting each neuron. The weights used in this thesis were continuous

numbers with accuracy of 6 decimal places.

1.3.3 Fuzzy Systems

Fuzzy systems are related to rule based systems introduced in 1.3.1 and distinguish

themselves mainly by the inference engines. Fuzzy systems are used where a system

is difficult to model exactly i.e. limited or no data is available as it might be the case

in a manually operated process.

Such processes are in general controlled by a human operator or expert because

ambiguity or vagueness is common and key decisions must be made. A typical fuzzy

system consists of fuzzyfication and defuzzyfication interfaces, a rule base and an

inference engine as shown in figure 1.4.

Introduction 9

Figure 1.4 Major components of a typical fuzzy system.

The fuzzyfication interface the membership functions defined for the input variables

are applied to determine the degree of membership for each premise. During the

inference process, each premises truth-value is computed that is used for the

conclusion part of each rule.

There are basically two inferences, Min or Product. If Min inference is used, the

output membership function is clipped at a height that corresponds to the truth-value.

If Product inference is used, the truth-value is used to scale down the output

membership function.

During composition all domain memberships are combined to form a single truth-

value for the entire fuzzy subset. As with the inference stage, there are two possible

methods of composition, Max or Sum. If Max composition is used, the output fuzzy

subset is constructed by using the largest output of all fuzzy subsets. If Sum

composition is used, all fuzzy subset outputs are summed up to form a single output.

The final stage is the defuzzyfication stage. Its purpose is convert the output of the

fuzzy subsets into a numeric value. The most common defuzzyfication functions are

Centre of Gravity (COG) or Mean of Maxima (MOM). If COG is used, the centre of

gravity of a membership function is used and if MOM is used the mean value of all

points where the membership function has its highest value.

Introduction 10

For more information on fuzzy systems, please refer to the following publications and

textbooks [81-84],

1.3.4 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive multi-dimensional search techniques, which

were introduced by Holland [85-87] and are founded on the genetic processes of

biological organisms based on Darwinian evolution theory. They have been applied

successfully to solve many kinds of problems on search, optimisation, and machine

learning.

Genetic algorithms and their extension to genetic programming make liberal use of

vocabulary and concepts borrowed from the study of genetics. In particular, the

existence of a genetic code, and the variation resulting from recombination and

mutation during the reproductive process are fundamental to these methodologies. It

is important to note however, that an extremely simplified version of human genetics

is employed as the basis for genetic algorithms.

A GA operates on a problem that is specified in terms of a number of parameters that

need to be optimised. One of the main features of GAs is that they hold a population

of such parameters, so that many points in the problem space are sampled

simultaneously. The population is generated by some heuristic and referred to as a

vector or more traditionally as a string. Such strings contain coded data that are

usually bit strings representing numbers or binary information with regards to a

possible solution.

The search for the best strings starts by rating each strings solution against some form

of test performance. A new population is then generated, by choosing the best strings

preferentially. The simplest technique of doing this is to allocate children in

proportion to their test performance. With this, the result is that the best string

increases in number exponentially, and hence rapidly takes over the whole population.

Other ways are to choose two members of the new population at random, or

depending on their performance, and produce new offspring by mixing parameters

Introduction U

from the parents by means of crossover. As a result the strings ABCD and EFGH

might be crossed to produce AFCD and EBGH.

There are numerous surveys of the GA field such as Goldberg [88] gives a survey of

the field within a textbook on genetic algorithms, Davis [89-91] who contributed

numerous research papers and on a more practical matter [92] a handbook of GA and

Michalewicz [93] gives an overview of genetic algorithms and their applications.

1.3.5 Decision Trees

Decision trees are graphical representations of actions that categorise the decisions

made. Decision trees have been successfully applied in fields where multiple

decisions based on an analysis lead to an outcome e.g. medicine and law. In medicine,

a decision tree can be used to analyse a patient’s condition and suggest a course of

treatment [94-97]. In law, a decision tree can be used to search existing cases by

keywords to find similarities [98, 99],

A decision tree consists of a root node, branches and leaves. It represents a series of

tests where each test is imposed at every step along the tree to form a complete

analysis. Therefore, representing a functional map of domain knowledge starting from

the root node, along its branches that are processed in order to reach a conclusion that

is located in a leaf. Each path from the tree root to a leaf corresponds to a combination

of tests and the tree itself corresponds to a collection of tests.

In more detail, classifications of instances are made by sorting them along the tree

starting from the root node until a leaf is reached. Leaves provide classifications of

the instance that is to be analysed. Every node within the tree denotes a test of some

attribute and each branch descending from that node matches to one of the available

values for this attribute. Each instance starts at the root node of the decision tree and

is moved towards the tree branches whiles testing the attribute specified by each node,

repeating this procedure until a leaf is reached. For a more complete and accurate

treatment of the subject, the reader is encouraged to consult one of the many standard

texts on decision trees [100-102],

Introduction 12

1.4 Expert Recombination

The identification of the conditions under which the combination of an ensemble of

experts yields improved performance compared to the individual expert is the

underlying objective of expert recombination.

The creation of experts with de-correlated errors can be accomplished by a variety of

methods. Such methods include the training of different types of experts, same experts

with different topologies or structures [103-106], training of expert systems with

different initial starting points. All these methods can be used to create distinct experts

on the same data without the need for input space separation.

Other methods that can be used for the same type of experts are training on separate

or partly overlapping data, experts with different training algorithms using different

input signals [107] or dissimilar feature representations of the input [108],

It is well understood that combining several experts is often superior to using the

expert that performed best after training. Generally, each expert can consist of any

model as illustrated in the previous sections. In its simplest form, experts can be

combined linearly as a mean average a weighted sum or voting schemes.

There are two distinct types of expert recombination schemes, static and dynamic.

With the static scheme, experts are evaluated on their performance and connected into

a scheme of fixed weighting [109], With the dynamic scheme, the certainty of an

expert in its output or its domain membership towards the input vector is determined

and the contributions of each expert are evaluated during runtime [110].

The dynamic scheme, that calculates the contribution of each expert, requires some

means of discriminatory quantity. Mostly the input vector that is applied to the experts

is evaluated by some implementation of a gating network that is used to weight the

output of the experts. This is arguably the preferred method because the weights

connecting the experts are not static but instead depend on the input vector.

Introduction 13

1.4.1 Mathematical Combiners

The process of expert recombination requires a means of combining the outputs of

experts. Outputs of multiple experts can be combined by means of sum, product,

weighted sum, or more complex functions that may or may not be dynamic.

One of the most common methods of recombination of experts is the combination of

their individual outputs via the mean (mean-rule), where the outputs of the individual

classifiers are averaged. Several studies have been undertaken and shown that mean-

rule combination reduces the mean-squared error when independent experts produce

independent errors [111, 112].

Developments in a common theoretical framework for combining classifiers which

use distinct pattern representations outlined a number of possible combination

schemes such as product, sum, min, max, and majority vote rules [113]. The results

demonstrate that the sum rule outperformed the other classifier combination schemes.

One explanation given was that the sensitivity of various schemes to estimation errors

and that the sum rule is the most resilient to estimation errors, so almost certainly

explaining its superior performance.

1.4.2 Gating Network

The purpose of a gating network is to predict the probability that the output of specific

domain experts is accurate. It is part of the expert recombination process insofar that

the gating network decides the amount of contribution from each expert to some

means of mathematical combiner that will produce the overall network output.

Its decision to chose one or more experts from an ensemble of experts could be based

on many factors. Gating networks are generally connected to the same inputs as the

experts are but this is not imperative. Gating networks can receive a subset or entirely

different inputs to the experts located in the ensemble.

Gating networks can consist of SOM, MLP, Hopfield or any other networks. They are

usually trained to classify input vectors into domain memberships. Subsequently, they

Introduction 14

can be using the same training data as the experts but do not require their targets since

classification, not generalisation on the data is the objective. Alternatively, gating

networks can be trained on separate data that contains expert membership information

generated by i.e. feature extraction or PCA.

During the training of an ensemble with a gating network output and the output of

experts, each network’s output influences the whole ensemble in a different way.

Whereas the experts contribute their outputs to the combiner, that forms the output of

the entire system, the output of the gating network is connected to the combiner. The

combiner then processes the outputs of the experts and the gating network to generate

the output(s) of the entire ensemble. With this, the gating network controls the

propagation of each expert’s output to a greater or lesser extent.

During training the expert networks compete to let their output determine the system's

output. Each expert network's weights are changed according to the back-propagation

learning rule, which is applied in order to minimise the error of the whole system. The

gating network's learning algorithm differentiates between winner and loser expert

networks. It rewards the winner network by increasing its influence over the output of

the whole system. This is achieved by increasing a factor for each winner that

operates within the mathematical combiner. The gating network punishes the losers

respectively by reducing the factor. The ready trained network is then able to rely on

the specific task knowledge of the expert networks, as the gating network allows that

network most suitable for a specific task to influence the output of the whole system

to the greatest extent [114].

1.4.3 Democratic Systems

Another way of combining experts in an ensemble is the democratic approach of

classifier voting. There is no controlling network, such as a gating network, in a

democratic system. Each expert is analysing the incoming data and the output

response and generate a means of best performance. This is followed by a voting

system that will make a decision based on each expert’s performance. There are

Introduction 15

several voting schemes that have been researched [24, 25] but the two most popular

ones are the “maximum votes” and the “majority” schemes. With the “maximum

votes” scheme the system returns the classification suggested by the most experts

[115]. With the “majority” scheme the system returns a classification if one is

suggested by more than half of the modules [116].

1.4.4 Boosting and Bagging

Another method of creating multiple neural networks to solve a complex problem is

the use of network ensemble methods. Ensemble methods differ from ME models in

so far that all networks contribute towards the combined result. An ensemble consists

of a set of individually trained networks whose predictions are combined when

classifying unseen data for generalisation. Many researchers have proved that

combination of individual network results in an ensemble improves generalisation.

The two most popular techniques for creating networks that form part of an ensemble

are Bagging and Boosting [106, 195, 196],

Bagging creates new training sets of the size of the original training set for each

individual in the ensemble by randomly redistributing training records. As a result

some training vectors may be repeated or omitted. This has the effect that each

network is trained with different training data, therefore separating the input space. It

is most effective on data with a high sensitivity where small changes in the inputs are

related to large changes at the output or where similar input vectors have large

differences in the output value [200],

A A A A
R R R R
C C c c
n D n D
E E E E
F F F F
n G o G
H JU___ H H

_i______________ _ j --------------------------- J ________________ j ________________

Entire training dataset Subset for Expert A Subset for Expert B Subset for Expert C

Figure 1.5 Bagging is a bootstrap method where every NN receives different training data.

Introduction 16

Boosting is the process of creating a series of classifiers, which are using training data

based on the performance of the previous classifier. Boosting has received its name

because it is boosting data samples that have been predicted poorly by the predecessor

of the current classifier by repeating the most erroneous data sample in the training

set. Therefore boosting is creating new classifiers in each generation that are better for

prediction than the current classifier.

Figure 1.6 With boosting poorly performing records are duplicated to boost performance.

1.5 Neural Network Pruning

Real world problems can be solved with highly structured neural networks of large

size. One of the issues arising with large network sizes is to minimise the size of the

network whilst maintaining good performance. Neural networks that have been

optimised in size are less likely to overfit and may thus generalise better on unseen

data. In principle, there are two approaches to find the optimal size of a neural

network, network growing and network pruning.

Network growing is a process where the network training has started with a relative

small number of neurons and neurons are added during training to archive the

required accuracy [201-203]. Since the linking process is a network reduction

technique, network growing will not be discussed in great detail.

Network pruning is a process where weights or neurons are removed from a network

that has started with a relative large number of neurons.

Introduction 17

Pruning is based on evaluation of the performance of a trained network by means of

determining weights or neurons that do not affect the accuracy to any large extent and

removing those weights or neurons [120, 204], The most widely used approach to find

non-contributing neurons is by means of sensitivity analysis [60-62, 119]. In this

method, a weight or all weights of a neuron are set to zero and the effect on the

overall network performance is evaluated. Weights or neurons that have little effect

can be identified and removed [138, 139, 205].

With the removal of non-contributing weights or neurons, pruning techniques can be

split into three major categories, magnitude based, optimum brain damage and

optimum brain surgeon.

1.5.1 Magnitude Based Pruning

The Magnitude Based pruning technique (MB) is based on the removal of weights

that have the least affect on the training error and therefore a small saliency. The

simplest approach of locating weights that can be removed is where saliencies are

assumed to be corresponding to the magnitude (weight) value of the neuron

connections. With this, weights that have small values are thought to have minor

effect on the overall network output.

The basic approach is to start with an oversized neural network that contains too many

weights for the objective function. After a reasonable amount of training, training is

stopped (early stopping) and the weights are analysed. Weights are removed if their

value lies outside the threshold. This removal process is referred to as weight

elimination [211], This is generally followed by a continuation of the network

training. This process is then continued until no more weights below the threshold can

be found or the training and generalisation error reach satisfactory readings.

Given that neural network training is permanently updating weights into positive and

negative directions, it cannot be guarantee that once weight values are outside the

threshold limits that they will fall back into the limits. Therefore a method of “weight

decay” has been used that will reduce weights by a certain amount during each

Introduction 18

training iteration [197-199]. The simplicity of the basic decay function, shown in

equation (1.1) makes it a popular choice.

wnew = w 0,d(l - £) (1.1)

With e being the decay parameter chosen between 0 and 1 [197]. In this way, weights

that are not required for reducing the error of the objective function become smaller

and smaller until they fall within the threshold limits so that they can be removed

altogether.

Weights that are required for the training to match the objective function cannot be

decayed indefinitely otherwise the decay may offset the weight update and the

network may start to oscillate. Furthermore, there is a necessity for determining how

important additional requirements are in relation to the error of fit. With early

stopping, it is important to find the best stopping point [206, 207].

The value used for the decay parameter e can be static e.g. 0.1 or dynamic. It is

important for static weight decay parameters to be so small that they do not reduce the

generalisation capabilities of the network significantly. They should also be large

enough in order to prevent the training algorithm from being trapped in local minima.

Dynamic weight decay values e.g. the quadratic weight decay function uses the sum

of all vector lengths as a penalty term as shown in equation (1.2) [209],

f (vv) = H |2 = X w ,2 (1-2)
i=N

With N as referring to all weights within the neural network. This procedure operates

during training by forcing some of the weights in the network to take values close to

zero, while permitting other weights to retain their relatively large values. With this,

all the weights in the network are treated equally.

Weights can be treated independently if an additional term is added to the update rule

that takes the current weight into account. The simplest case uses a term that is

Introduction 19

proportional to the present size of the weight that is subtracted from the standard

backpropagation weight change. Although usually better than no penalty at all, the

problem with weight decay for non-linear networks is that it makes it hard for the

network to develop significant non linearities since these can only be achieved

through large weights [210].

1.5.2 Optimum Brain Damage

The Optimum Brain Damage pruning algorithm (OBD) aims to iteratively delete

weights whose deletion will result in the least increase of the recall error of the neural

network for the purpose of reducing and optimising the architecture of a neural

network [212].

The OBD algorithm is estimating the importance of the weights for the recall error

(training error) and ranks the weights accordingly to their saliency. Saliencies can be

estimated by a second order expansion of the training error around its minimum. For

weight Wj, the saliency is given by equation (1.3).

s , = - A H .
V ^ train ^

W„ (1.3)

With Hii as the i-th diagonal element of the Hessian matrix of the un-regularized cost

function and e as the weight decay associated with Wj. For reasons of simplification of

the OBD algorithm, the following assumptions have been made:

• Terms of third and higher orders for the deleted weights can be neglected.

• The off-diagonal terms in the Hessian can be neglected (if more than one

weight is pruned).

By repeatedly elimination of weights with the smallest saliencies (weight values not

equal to zero) and retraining the resulting network, a size-optimised network is

obtained. The iterative process can be stopped when the obtained estimate of the

networks generalisation error is close to a required forecasting accuracy [213].

Introduction 2 0

1.5.3 Optimal Brain Surgeon

The Optimum Brain Surgeon pruning algorithm (OBS) can be considered as the

slightly more complex extension of the Optimum Brain Damage (OBD) algorithm.

Even though OBS and OBD are essentially founded on the same theoretical approach,

OBS does not make any assumption about the form of Hessian matrix as the OBD

does as described in section 1.4.5.2. This causes the OBS to be more complex but on

the other hand more robust than OBD. Many researchers have found that optimum

brain surgeon (OBS) is superior to magnitude based (MB) and optimal brain damage

(OBD) techniques. Furthermore, OBS permits the pruning of more weights than other

methods for the same error on the training set. With this, it has produced better

generalisation results on test data. The disadvantage with OBS is that the inverse of

the Hessian matrix has to be computed fully to judge saliency and weight change for

every link. The computation of the full inverse Hessian matrix makes the OBS a

complicated algorithm that is quite slow and takes much memory compared to the

other methods. OBS is only mentioned for reasons of completeness and more detailed

information can be found in [213-216],

1.6 Structure of the Thesis

This thesis is organised into 6 chapters with contain sections that relate to the subject

of their corresponding chapters. The next paragraph denotes an executive summary of

this thesis followed by more comprehensive summaries for each chapter.

Chapter 1 represents a short survey of topics that represent the background required

to other chapters. Chapter 2 shows how the equations used for linking have been

derived, this chapter contains the mathematical foundation of the linking process.

Chapter 3 presents a simple application of linking to pruning. Chapter 4 introduces

the stimuli network that is used as a classifier for the linked network. Chapter 5

Introduction 21

introduces the linking of two networks for inter and extrapolation. Chapter 6 uses the

linking process for a real-life data example relating to the insurance industry.

Furthermore, chapter 3 introduces a standard reporting linking results in table format.

Once the table layout and contents have been understood, all other linking results can

be comprehended easily.

1.6.1 Summary of Chapter 2: Derivation of the linking equation

This chapter introduces vectors and their notation in multidimensional space. Since

neurons are written as weight vectors, they contain the knowledge of the neuron.

Linking is a process at the heart of neurons because of that, chapter 2 describes the

process of combining two neuron’s knowledge into one neuron. Neuron linking

manipulates the network topology since neurons are removed with the objective to

improve the generalisation capability and reduce the size of a linked network. Linking

can be used for knowledge optimisation (network pruning) [117, 118] or knowledge

combination (mixture of experts) [43-49],

Chapter 2 shows that weight vectors pointing in similar directions express similar

knowledge. It shows how a 2:2:1 network is pruned into a 2:1:1 network by linking

using 4 different ways of combining the knowledge of both neurons. The first linking

method uses weight averaging, where weights of two neurons are summed and

divided to create the mean average. After defining two methods for measuring vector

component errors, an equivalent rate of error is calculated. The second linking method

adds a weighting factor into the weight combination process with the objective to

derive a function that shifts the error towards smaller weights. The third linking

method derives the weighting factors from vector components, where each vector

dimension will be individually weighted. The fourth linking method will utilise all

findings from the previous linking methods. It is additionally introducing a vector

length manipulation to allow linking of two vectors that have substantial length

differences but point in the same, or opposite, direction.

Introduction 22

1.6.2 Summary of Chapter 3: Pruning of Neural Network Weight
Matrixes

This chapter demonstrated the use of linking for pruning weight matrixes. It shows

how neurons can be combined by linking instead of being removed by more

traditional pruning algorithms [119-123], A neural network has been trained with a

mathematical function and the recall and generalisation errors have been logged for

benchmarking so that the performance of the pruned network can be evaluated.

This chapter discusses the loss of recall accuracy that may occur if hidden neurons are

linked that have a large angle difference. It visualises weight vectors in 3D graphics to

illustrate the pruning of complete neurons. In this process, a vector length adjustment

factor F is calculated for vectors that point in similar, or opposite, directions but differ

in length.

After the theory of hidden neuron linking has been discussed with a simple 2:2:1

network, a numerical example with a more complex 2:20:1 network is introduced.

Pruning by utilisation of the linking algorithm has reduced the network size from 20

hidden neurons to just 15.

This chapter introduces the standard tables that will be used for analysis of the linking

process. Such tables are: the list of angles between vectors (table 3.4), results of

vector combination (table 3.5), vector component change impact analysis (table 3.6),

vector length change impact analysis (table 3.7) and benchmark comparison (table

3.8). Once the tables are understood it should be easy to follow all other analysis since

the order and appearance of the tables is consistent throughout this thesis.

1.6.3 Summary of Chapter 4: The Stimuli Network

This chapter introduces the stimuli-response theory, which originated from the field of

psychology but it remained unused in the field of neural networks. It describes in its

simplest form how knowledge held in the brain is accessed if different stimuli

information is applied [124].

Introduction 23

Chapter 4 introduces the activation of neurons by induction of stimuli into a neural

network. Because the linking process is tagging neurons depending on their domain

membership(s), each neuron holds information to which domain(s) it belongs.

Depending on the stimuli information, neurons are encouraged to contribute to the

overall network output if they belong to the domain(s) activated by the stimuli

network. This is achieved by multiplication of each domain membership factor

generated by the stimuli network with weight vector adjustment factors held in each

linked neuron.

Two stimuli induction points in the neuron have been analysed given that the stimuli

induction can be made prior or after the activation function. For that reason, an

analysis of neuron sensitivity has been included. It has been found that neurons that

have large numbers at their summed inputs prior to the activation function suffer from

saturation.

To avoid neuron saturation, a modified backpropagation training update algorithm has

been developed which uses a penalty function to reduce the weight updates of neurons

that are close to saturation. With reduced weight updates on saturated neurons, weight

updates of neurons that are not saturated change as usual to create a more uniform

weight distribution throughout the entire weight matrix during training.

At the end of this chapter, linking of numerical experiments has been carried out with

combinations of different stimuli induction points, saturated and unsaturated

networks. Linking equations are calculated in detail including all explicit calculations

and sub-totals to permit easy understanding. All linking results are subsequently

compared with results obtained by utilisation of a gating network and a linear

combiner. The chapter concludes with a direct comparison of recall error between all

networks and ensemble methods discussed.

Introduction 24

1.6.4 Summary of Chapter 5: Linking of Neural Network Weight
Matrixes

This chapter introduces linking for the purpose of combining domain knowledge from

separate neural network weight matrixes. It extends the framework of linking single

neuron to the linking of entire weight matrixes for the formation of a single entity.

Such entities will consist of linked and non-linked neurons that have the ability to

share common information between domains.

For controlling the neurons, a stimuli network has been deployed in order to

categorise the domain membership of input vectors. Each neuron contains an internal

table of domain memberships that determine to which domains it belongs. Once a

domain classification of the input vector has been made, each neuron’s output will be

depending on a match between the stimuli classification and the neuron’s internal

classification table.

Furthermore, this chapter introduces the advantage network linking can make to a

changing environment. Linking is beneficial for the reusability of already trained

matrixes. This means that already trained networks can be linked with new or

changing networks without the need to re-train networks that have already been

successfully trained. With this, a collection of neural network weight matrixes can be

stored, e.g. in a database and whenever a problem contained by a single domain needs

solving, all networks that have been trained on sub-domains can be linked to form a

new network that contains knowledge of the entire problem domain.

This chapter is training two networks with functions describing a path through

3-dimensional space. After training, the input space is analysed to ensure both

networks are sharing some input space sections so that the linked network is dealing

with intersecting domains. Following the training, every single step required for

linking of entire weight matrixes is presented. After linking, an error analysis on the

linked weights is shown with tables that present an impact analysis for each linked

neuron.

Introduction 25

At the end of chapter 5, a numerical experiment is included that studies the influence

that linking can have on interpolation and extrapolation. For that reason, training and

testing data has been created that uses different sections of the input space, which has

been spit into quadrants. Each quadrant of the input space represents interpolation or

extrapolation depending on its position. Several neural networks have been trained

with different quadrants in the training and testing data to create networks that are

interpolating or extrapolating.

1.6.5 Summary of Chapter 6: Claims Reservation

This chapter focuses on a real-life application of linking neural networks for claims

reservation for the insurance industry. Claims reservation is a very important issue for

non-life Property and Casualty (P&C) insurance companies [125]. Insurance

companies need to generate financial reserves for many reasons including liability

management. If claims become payable, financial reserves that were taken from the

money earned by premiums, need to be used. But how much money is reserved for

this purpose depends strongly on history data for a particular risk group.

So far, no attempts have been found in the literature where neural networks were used

for insurance claims reservation. Therefore a detailed analysis of available insurance

data has been undertaken for the purpose of training data preparation. The result of

this analysis includes the presentation of claims figures in triangular form and the

extraction of training and testing data.

Two numerical examples are present in chapter 6. The first one uses data from only

one insurance company and the second example uses data from two insurance

companies. In each example, the data has been split into two domains and neural

networks have been trained for each domain, which were subsequently linked after

training.

There are already many existing numerical methods of calculating claims reservation.

The most common one, the basic Chain Ladder Method (CLM) is introduced and

Introduction 26

discussed in detail. The results of the CLM will be used as a benchmark to compare

the results obtained with the neural networks.

In the first example, training data from one company has been normalised and split

into two domains, one domain contains information about development years (x-

direction) and the other domain contains information about years of origin (y-

direction). Following this, two networks have been trained for each of the domains

and linked. During each stage, each neural network has been tested on its ability to

forecast and all forecasting results have been summarised for comparison.

In the second example, training data from two companies has been normalised and

split into two domains. Two training and testing data files, consisting of data from one

company each, were used for training and testing. After training, the networks have

been evaluated for their forecasting capabilities and linked. The objective of this

numerical experiment was to attempt to transfer knowledge obtained by one company

to the other company. For this purpose, both networks have been re-evaluated after

linking and compared with their forecasting performance prior to linking.

Chapter 2

Derivation of the Neural Network Linking

Equation

2.1 Introduction

Vectors are defined as being complete if the magnitude and the direction are given. A

vector represents a quantity that has a direction as well as magnitude. A two-

dimensional vector is shown in figure 2.1, which introduces the notation used in this

thesis. The magnitude of a Vector is denoted graphically by its length and

mathematically by its absolute value |w|. The vector direction is represented by its

angle 9 between a point of reference and the vector itself. To fully describe a two-

dimensional vector, only two numeric quantities (|w|, 0) are required [126].

W

Figure 2.1 Vectors are defined by direction and magnitude.

Derivation of the Neural Network Linking Equation 28

Vector representation can be used for displaying many physical quantities in a

graphical manner such as force or speed. Vectors can be used for graphical

representation of neuron weights, as long as their dimensions do not exceed three. The

most common coordinate system for representing vectors is the Cartesian coordinate

system where every dimension is perpendicular to each other. This is also applicable

to dimensions exceeding the all to familiar three-dimensional coordinate system. A

coordinate system exceeding three dimensions is called Hyperspace because of their

inherent difficulties of visualisation [127].

Weights associated with a neuron are a set of numbers that can be expressed as a

vector or a row matrix in mathematical terms shown in figure 2.2.
'With W]B as the neuron bias.

Neuron with three weights Vector representation Row matrix representation

Figure 2.2 Neurons can be written as three-dimensional vectors or a row matrix.

Vectors representing neuron weights are called weight vectors. They are in principle

ordinary vectors that can be manipulated with all the pre-defined mathematical

methodologies from the field of vector algebra. Weight vectors contain all the

knowledge held by a neuron and are the basis of neural network knowledge

representation [128, 129]. Manipulation of a neuron’s weight vector will manipulate

the knowledge of the neuron, therefore permitting knowledge manipulation based on

the well-defined rules of vector algebra.

Linking of neurons is a process at the heart of neurons. It describes the process of

combining two neuron’s knowledge into one neuron, minimising the inaccuracy of the

combined knowledge if compared to the original neurons. Neuron linking

encompasses areas of neural network research where network topology manipulations

are considered necessary to improve network generalisation for inter- or

Derivation of the Neural Network Linking Equation 29

extrapolation. Linking is a new knowledge combination approach, enriching the tools

of neural network engineering for neural pruning and network fusion. It can be

applied to the combination of entire neural networks or for the purpose of pruning a

single network.

2.2 Linking of Neurons

Linking of neurons, which are representing similar knowledge into one single neuron,

is a network topology manipulation algorithm. Like other topology manipulation

algorithms, it will improve certain neural network behaviours at the price of loosing

others. For example, behaviours such as generalisation can be improved but at the

price of reduction of recall-accuracy [116, 130, 131].

Linking in this sense is effectively the combination of two multi-dimensional weight

vectors from two neurons A and B into one weight vector of neuron R, as shown in

figure 2.3. In other words, the removal of neurons will reduce the size of the hidden

layer but may introduce changes in recall accuracy and generalisation.

Figure 2.3 Linking of neurons A and B into a neuron R with changes in generalisation.

Derivation of the Neural Network Linking Equation 30

In the following sections different neuron linking algorithms will be introduced,

starting with basic vector averaging and ending with weighted vector length and

weight value averaging with correction factor. All linking algorithms introduced will

try to link two weight vectors va and Vb to create a resulting vector vr. Vectors va and

Vb are representing two hidden neurons and follow the standard weight indexing for

the first two hidden neurons of a fully connected 2:2:1 neural networks as shown in

figure 2.4. Equation (2.1) expresses the linking of vectors va of neuron A and vb of

neuron B into vector vr of neuron R in mathematical vector notation.

Figure 2.4 Transforming a 2:2:1 network into a 2:1:1 network by linking hidden neurons.

Derivation of the Neural Network Linking Equation 31

=

' V
W l 2 V „ =

' V
w22

Linking

r - , v
w ; 2

\ W 2 B ; / U . ' J

(2.1)

2.3 Linking Based on Averaging

Averaging is probably the most basic mechanism for combining two vectors. The

resulting vector will simply be positioned between the two original vectors. Vectors

are expressed as components in a Cartesian co-ordinate system or as row vectors.

Combination of two vectors, which are placed in a two dimensional Cartesian co-

ordinate system, into an averaged vector, involves calculating the mean value of the

components for each dimension as shown in equation (2.2) and graphically in figure

2.5.

Figure 2.5 Creation of the resulting vector vr via simple component averaging.

Derivation of the Neural Network Linking Equation 32

fw > w2\
V V U T YV

2
v b -

(W22j
V r - wl2 + w

V 2

(2.2)

To be able to compare different ways of vector linking, a measure of error is required.

A definition of error needs to be defined to suit the purpose to analyse the fitness of

the resulting vector vr with regards to the original vectors. The most apparent measure

of error is the distance between the resulting vector vr and each of the original vectors

va and Vb. It can be expressed as the ratio of the distance between an original vector

and the resulting vector (e.g.ar) divided by the total distance between the original

vectors (ab). Whenever two vectors are linked, as shown in figure 2.5, two errors

errar and errrb can be calculated as shown in equation (2.3)

err = ar
~ab

err, rb_
ab

(2.3)

In an n-dimensional space, the distance ab between two vectors va and Vb can be

determined via (2.4). The calculations of the distance ar between vector va and vr and

the distance rb between vr and Vb are shown in (2.5) and (2.6) respectively.

ab = ^ (a t -Ò ,)2 +(a2 - b2)2 +... + («„ ~ b n)2

ar = V(a i - n) 2 + {a2 ~ ri Y + - + (<*„-r„)2

rb = J{rl - è ,)2 + (r2 - b 2)2 + ... + (r„ - bn)2

(2.4)

(2.5)

(2 .6)

Derivation of the Neural Network Linking Equation 33

Substitution of the components an, bn and rn for vectors va, Vb and vr from (2.2) into

(2.4) to (2.6) and substitution of ab , ar and rb from (2.4) to (2.7) into (2.3) leads to

equations (2.7) and (2.8) for the errors of vector va (errar) and vector Vb (errrb) with

respect to vr.

err,,
V(^n -w i i)2 +(w,2 - w [2)2 + ... + (w,„ - w [„)2

V(W11 ~ W2l)2 + (W12 - W22)2 + - + (W.„ ~ W2nf

Z k - <) 2
7=1

wXj - w2J Ì

(2.7)

7=1

r r i \2 / ! \2 77 ; 7 ¿ (wi7 w2j)
V W l - ^ 2 l) +{WU - W22) + - + W h - W 2 J TH___________

V (W 11 “ W 2 l) 2 + (W 12 - W 22) 2 + - + (W 1„ - W 2 „) 2 J (w |y - W 2y) 2

(2 .8)

In the case of simple vector component averaging, the resulting vector’s components

are determined as shown in (2.2) or more generally in (2.9). Using (2.9) to substitute

w’in in (2.7) and (2.8), the errors errar and errrb can be evaluated for the two

dimensional example from figure 2.5 as shown in (2.10) to (2.12).

Wln + W2n (2.9)

wn +W21
- w ,

\ 2 / \ 2 ' ' W)2 + W22
2 ■ »O+

err = \ y

V (wi 1 - w2l)2 + (W12 - W22)2
(2 . 10)

w2 i~ wn +

err,..
V(W1I ~ W2\)2 + (W12 - W22)2

(2 . 11)

err,,. =
-J {w 2i- w n)2 +(w22- w n)2 J

^/(w,, - W21)2 + (w,2 - w22)2 2
(2. 12)

Derivation of the Neural Network Linking Equation 34

err■ar (2.13)ab 2 ab 2

Following the same simplifications for errrb as for errar in (2.10) to (2.12) results in the

equivalent rate of error of 50% between the resulting vector and the original vectors.

Observation of equation (2.13) proves the equal distribution of the error between both

original vectors, concluding that ar = rb as expected from an un-weighted mean

average in (2.9).

2.4 Linking Based on Weighted Average by Vector Length

Linking of neuron weight vectors into one resulting weight vector can be achieved by

different methods of vector combination. In section 2.3, a simple averaging method

was introduced, which distributed the distance ab between the two vectors va and Vb

equally to 50% each. But simple weight component averaging does not take into

account that stronger neuron weights have generally a higher contribution to the total

neuron output [132, 133], This is specifically true if two neurons point in similar

directions but have substantially different vector lengths. The linking of two neurons

where one neuron’s vector length exceeds the other neuron’s vector length by a

noticeable magnitude, should take this unbalanced contribution towards the total

neuron output into consideration.

To overcome the disadvantages of the simple averaging method, a weighted average

can be used. The weighted average used for the linking of neurons is the weighted

arithmetic mean. There are several other weighted average methods available, such as

the weighted geometric mean, but for reasons of direct comparison to the simple mean

average presented in section 2.3, only the weighted arithmetic mean is discussed.

Derivation of the Neural Network Linking Equation 35

In this method each neuron weight vector error errar and errrb is weighted with the

vector lengths |va| and |vb| in such a way that the resulting vector vr is closer to the

longest vector. A reduced distance towards the resulting vector vr represents a smaller

error with respect to vr. An association between the vector lengths |va| and |vb| and the

errors errar and errrb can be implemented to describe almost any functional

relationship. But for reasons of simplicity a linear inversely proportional relationship

between the vector lengths |va| and |vb| and their errors errar and errrb towards the

resulting vector vr has been applied as shown in (2.14) to (2.16).

h i
i l1^l errrb

errar

h i
1 ~ ar ~ errar

errrh
rb

h i errrb _ ab _ rb

h i errar ar ar
ab

(2.14)

(2.15)

(2.16)

Equation (2.16) can be interpreted as the “division of a straight line by a given ratio”.

With this interpretation, the straight line ab is to be divided into ar and rb by the

ratio Rab as shown in (2.17) and graphically represented in figure 2.6.

R.ab
K j = rb_
M ar

(2.17)

Figure 2.6 Division of a straight line ab by a given ratio Rat,.

Derivation of the Neural Network Linking Equation 36

The calculation of the position of the resulting vector vr in terms of the ratio Rab is

--- — — GV GV
dividing the line ab into ar and rb . Using the distance ratio — = = —= and with

ab ar + rb

rb being proportional to |va| (2.14) and ar being proportional to |vb| (2.15) equation

(2.18) can be derived.

or _ |v6|
(2.18)

ab (2.19)

The objective is to derive a function, which determines the position of vector vr by the

means of va and Vb, taking into account the weighting constraint. Therefore, following

the rules of vector algebra of free vectors1, vector vr can be defined by summing up

the vectors va, vr and distance vector ar as shown in (2.20).

Resolved to ar :

ab vJ+v„

ar
f

v h
\

I k
+

v * i J

Resolved to vr:

va + ar - vr = 0

vr =va +ar

Substituting (2.19) into (2.21):

v = v +
r

V b
\

I k
+ V a \)

■ ab

(2 .20)

(2 .21)

(2.22)

Equation (2.22) leaves ab as being the only unknown left to conclude. Following the

same steps as in (2.20), equation (2.23) can be derived and used for substitution in

(2.22) to obtain (2.24).

V a + a b ~ V b = 0 (2.23)

1 Free vectors may be drawn anywhere in n-dimensional space as long its magnitude and direction are
preserved.

Derivation of the Neural Network Linking Equation 37

V = V „ +
f \

Ik + Va\)
• (v . - v j (2.24)

e,(KKK1)1 (kK~KK)
Kl+Kl KI+KI

KlV „ + \ KK + KK-lKK
K+ V a\

(2.25)

After simplification of (2.25), the resulting vector vr can be determined as:

v. = KK+Kllv*
1K+ 1 (2.26)

Equation (2.26) can be interpreted as the derivation of the resulting vector vr by

applying the weighted arithmetic mean to vectors va and Vb so that the error distances

ar and rb between vector va and vr and vector vr and Vb are inversely proportional to

their vector lengths |va| and |vb|.

To express this result in Cartesian coordinates as shown in section 2.3 equation (2.2)

for the case of simple mean average, let va be

presented in figure 2.5 so that:

V*W
and Vb be

f w ^ w2\
Vw22 y

as graphically

f + V, w2.

lv J + lv *Vr -
{ <) V0K 2 + I v i W22

K l + K

(2.27)

Equation (2.27) shows how the components of the resulting vector vr for a two-

dimensional space are computed by substitution of the vector references in (2.26) with

coordinate components. It shows that (2.26) is not restricted to any size of the

dimensions and can be applied to any n-dimensional hyperspace. This is important

since the number of input neurons, plus bias e.g. wib in (2.1), determine the

dimensionality of the first hidden layer. The constraint of unlimited dimensionality

Derivation of the Neural Network Linking Equation 38

within (2.26) is given and therefore its usability for linking of n-dimensional hidden

neurons is satisfied.

Following the derivation of (2.26) for weighted vector linking, the error errar and errrb

in relation to vectors va and Vb can be determined by applying (2.19) to (2.14) and

(2.15), under the constraint of (2.28).

errar + errrh = 1 (2.28)

ar Kl
ab vhl+h

r 1 I
rb r hi
ab Jh+hi

err,
err + err.rb

err*
errar + errrh

errar
1

= err

errrb
1

= err,

(2.29)

(2.30)

err - h
hi + hi

hi
hi + hi (2.31)

To verify the correctness of equations (2.31), errrb can be divided by errar in order to

reconstruct equation (2.16) as shown in (2.32).

e r r rb _ hi hi +hi hi
e r r ar h +Kl h hi

(2.32)

2.5 Linking Based on Weighted Average by Vector Components

This section is introducing a less coarse method of weighted vector linking. It will not

use the vector lengths as discussed in section 2.4. Instead it will utilise an error

calculation for each dimension to gain a more precise weighting of the errors. In other

words, instead of using only one weight ratio (the vector length ratio Rab) for

weighting the overall error of a vector, each vector dimension will be individually

Derivation of the Neural Network Linking Equation 39

weighted. This can be achieved by creating a dimension specific ratio Rn in order to

weight individual errors for each dimension.

Figure 2.7 Weighting of individual dimensions by a dimension specific ratio Rn.

Calculation of the ratio Rn for each dimension is based on the individual component

values j for every dimension n. Each component value is denoted by Wj„, with wn

being located in the first dimension of neuron 1 (vector va) and W22 being located in

the second dimension of neuron 2 (vector Vb).

Following the results from section 2.4, equations (2.14) and (2.15), we can substitute

the vector length |va| with wi„ and |vb| with W2n for each dimension n.

wln---------- winw2n ~ err2n
err,„

err,,

(2.33)

(2.34)

Equations (2.33) and (2.34) can be interpreted as the larger the value of wjn (wi„ or

W2n), the lower its error errjn (errin or err2n) with respect to the distance of the resulting

vector component w'in as graphically presented in figure 2.7.

Derivation of the Neural Network Linking Equation 40

Following the analogy from section 2.4, equivalent equations to (2.16) and (2.17) with

respect to individual weighting ratios for each dimension Rn can be derived.

win _ err2n . Wl nW2n
W2n errXn w,

K = W1 n _ Wi W2n
W2 n Wl n K

(2.35)

(2.36)

Because of the apparent similarities between (2.16) and (2.35) and between (2.17) and

(2.36), the derivations of the equations for the resulting vector components will be

equivalent to (2.18) to (2.26) with the following substitutions: wi„ for |va|, w2n for |vb|,

win for va and w2n for vb. Therefore the derivation will not be repeated and only the

result from (2.26) after substitution is shown in equation (2.37).

Wln ' I% + W2n • W2n
+ W2n

WU/ + W2n2
W,n + W2n

(2.37)

Equation (2.37) can be interpreted as the derivation of the resulting vector

components vr={w'n, w'i2---w'in} by applying the weighted arithmetic mean to the

original vector components of va and vb, weighted by the individual components for

each dimension, with n as the number of dimensions.

To express this result in Cartesian coordinates as shown in section 2.3 equation (2.2)

for the case of simple mean average, let va be

presented in figure 2.5 so that:

and vb be
v”W

as graphically

v. =
w,
MV

2 \+ w 2l
') 11 w n + w 2i

2 , 2— o r more generally: v r —
12 J w n + w 22

1 W12 + W22)

(2.38)

v

Derivation of the Neural Network Linking Equation 41

Extending the analogy to equations (2.28) to (2.30), equation (2.31) can be expressed

with reference to the substitutions used to derive (2.37). Consequently, the errors for

each individual dimension are:

w.,

+ ^2«

w,

+ W2n (2.39)

As for the example in figure 2.5, the two dimensional Cartesian coordinate system

will find two error figures for each dimension, errn and err2i for dimension 1 (x-axis)

and erri2 and err22 for dimension 2 (y-axis). Each error can be individually obtained

by substituting n in (2.39) with 1 and 2 for each dimension respectively.

To determine the overall errors errar and err,t of the resulting vector vr with respect to

the distances ar and rb between the original vectors va and Vb as shown in (2.5),

equations (2.7) and (2.8) apply. Since the original vector components have

participated individually for each dimension, the equations (2.7) and (2.8) cannot be

expressed by the means of |va| or |vb| as in (2.13) or (2.31). For that reason, (2.7) and

(2.8) cannot be simplified and requires the errors to be calculated as presented.

2.6 Linking Based on Weighted Average by Vector Components

and Length Manipulation

The combination of two vectors va, Vb into one resulting vector vr will always

distribute the existing distance ab between the original vectors to some extent. Such

distribution can be regulated by different error distribution methodologies, which can

be derived in order to share the overall error under different conditions. These

algorithms are only manipulating the error distribution but not the overall error. While

the overall error is proportional to the distance between the endpoints ab of the

original vectors, it will remain constant unless the original vectors are moved towards

each other and the distance ab is reduced. But at this stage, the training of the

Derivation of the Neural Network Linking Equation 42

network may have already been completed and manipulation of a cluster of trained

weight vectors with the objective to reduce the distance between two vectors would

affect the network behaviour to some unknown extent. Therefore, a more precise

method, which manipulates the resulting weight vectors length |vr|, will be introduced

in this section.

The objective to reduce the error components errar and errrb of the original vectors va

and Vb without manipulating their original positions and the constraint for simplicity

to keep the required computational complexity low, leads to the manipulation of the

only free parameter, the resulting vector vr. With the findings of sections 2.3 to 2.5,

the resulting vectors position and length can be adjusted to comply with the aims of

each particular section to shift the error distribution closer to any one of the original

vectors. If one of the resulting vector’s parameters (|vr|, 9r) is to be manipulated for

the purpose of reducing the overall error, it would be the vector length |vr| because the

vector length can be changed through simple multiplication by a number (scalar) F.

Multiplying a vector by a scalar F changes the length of the vector by this factor so

that if F = 4 a vector would be obtained with four times the length of the original

vector. Multiplication with a negative number inverts the vector direction as well as

changing its length, allowing even the linking of vectors of opposite direction.

This process is effectively a conversion of two vectors va and Vb into one resulting

vector vri and a scalar F which can be used to multiply the resulting vector vri to

change its length in order to get closer to any of the original vectors and subsequently

reduce the overall error, see figure 2.8.

Error between vr2 and
original vector vb

Figure 2.8 Reducing the errors between vectors by vector length multiplication.

Derivation of the Neural Network Linking Equation 43

Figure 2.9 presents a graphical solution to the calculation of the resulting vector vr

and the vector length-adjusting factor F. It will be used to aid the derivation of the

mathematical equations required to find vr and F.

Figure 2.9 Graphical representation of distance reduction by vr vector length adjustment.

The method of deriving the resulting vector vr compared to previous sections in this

chapter is similar to the method based on weighted average by vector components in

section 2.5. In this section, one vector vr has been created that has a fixed length and

location in n-dimensional space. For the purpose of reducing the errors errar, errrb

between the original vectors and vr, the vector length |vr| is changed so that vr moves

closer to one of the original vectors. In figure 2.9, vr can be seen as a solid line

starting from the point Po and ending at Pr. This vector has been calculated with

equation (2.37) of section 2.5. Analysis of the error errar between va and vr from

section 2.3 has proven a direct relationship between the distance ar and the error

errar. Hence, reduction of the error errar can be achieved by reducing the distance

between vector va and vr. This can be achieved by reducing the vector length |vr| so

that the minimum distance ar' , at point Pa between va and Pa, is met by adjusting the

length of vector vr.

Derivation of the Neural Network Linking Equation 44

To formulate the algorithms required finding the optimal vector length of vr towards

vector va with mathematical means, a graphical solution can be found by producing an

intersection Pa on vr by a circle ra with its centre point at va. The distance between Po

and Pa is the length of vector vri, which is unknown. According to the law of

Pythagoras, the distance ar' is part of a right-angled triangle where va is the

Hypotenuse. Because of this, ar' will always be orthogonal to vr, permitting a

trigonometric solution as shown in (2.40).

P0Pa = K l I = COS(°0 • K I (2‘40)

To find the unknown angle a between vector va and vr the dot product between two

vectors can be used for substitution into (2.40), shown in equations (2.41) and (2.42).

a .b = \a • \b • cos(a) (2.41)

cos(or) = a .b
|a| • |¿| (2.42)

After substitution of cos(a) and replacement of the letters a and b to the relevant

vector references, equation (2.43) can be used to find the minimal distance between va

and vri ■

(2.43)

Subsequent replacement of the dot product va . vr with the individual components of

an n-dimensional vector, equation (2.44) can be formed.

Z (w.,
with vectors va =

' V
W,2

and vr -v /-l 1 1
k l

, W>nJ

(2.44)

Derivation of the Neural Network Linking Equation 45

Given that the direction of vector vr remains unchanged and vri is pointing in the same

direction, the length of vr must be adjusted by altering the vector component values

for each dimension. To find the new vector components without changing the vectors

direction, each angle for each dimension needs to be kept constant. In coordinate

geometry, if two points are on the same line, then their height distance ratios are

constant, as illustrated in figure 2.10 and equation (2.45).

AC _ AB
AD ~ AE

(2.45)

Figure 2.10 Vectors with the same direction have identical component ratios.

In analogy to (2.45), the resulting vector length vr is equivalent to the distance AC

and the distance AD can be represented by any arbitrary vector component of vr. The

same is valid for the new error minimised vector vri, the distance AB can represent

its length equivalent and the distance AE can represent any arbitrary vector

component.

On the basis that the vector components of vectors vr and vri are defined as in (2.46),

the replacement of the triangle components in (2.45) with their appropriate vector

representations, is leading to equation (2.47).

(<)
(w) w r 11

II> w 'n

II

..
.

^ to

Substitution of equation (2.45) with the vector lengths and components from equation

(2.46) leads to equation (2.47).

Derivation of the Neural Network Linking Equation 46

(2.47)

Changing (2.47) in order to show the unknown vector components wrin of vector vri

to the left, leads to (2.48).

" rta= A " k , | (2A8)

With equation (2.44), |vri| can be substituted in (2.48), leading to equation (2.49).

wr\n
j-i 7 = 1 (2.49)

Equation (2.49) can be interpreted as follows: Each component of vector vr] (wr]n),

which has been error minimised with regards to vector va, can be determined by

multiplying any of the n-dimensional components of vr (w'in) with the dot product of
/ v

va . vr or expressed with vector components X (wi»
V «

wi) and divided by the

resulting vector length squared |vr|2.

Looking back to figure 2.8, vector vr can be calculated with vectors va and Vb and

vector vri can be calculated with vectors va and vr. Suppose that vectors va and Vb are

interchangeable by swapping their indexes, vector vr2 can be calculated with the same

equations as vector vri except using vector pair Vb and vr instead of pair va and vr.

To find the factor F, which extends the length of vector vri to vector vr2, both vectors

need to be computed and divided as shown in equation (2.50).

F = so that vr2 - vrl • F (2.50)

Derivation of the Neural Network Linking Equation 47

With equation (2.44) altered to determine vectors vri and vr2, equation (2.51) can be

derived.

Z k ' l%) Z (w2/ ' w\j)
v ,.l= M t |------ and K 2| = 'j=1 I - j------ (2.51)V V| r | | r I

Utilising the vector lengths |vri| and |vr2| in equation (2.51) for substitution in (2.50),

equation (2.52) can be constructed.

Z (W2 j ' K)
i , "V------------- (2-52)
Kl1 I k — t

7 = 1

Equation (2.52) can be interpreted as the division of the cross products of vectors Vb.

vr and vectors va . vr. Therefore, equation (2.52) can be expressed in vector algebra as

the division of two cross products as shown in equation (2.53) or derived in the same

way as equation (2.52) but using (2.43) instead of (2.44).

V , , V
F = - b~ r (2.53)

k .v r

To summarise the process of converting the original vectors va and Vb into vri and F

e.g. with both original vector in two-dimensional space (n=2), the following steps are

required:

1. Calculation of the resulting vector vr weighted by the original vector

components as presented in section 2.5 and equation (2.37). 2

M and vb =
(w > w2l

, vector vr =

k . + ^ 2 1

w n + w 2 ,

2 2

U w 1 ^ 2 2 J l W 1 2 j W 12 +W22
{ k 2 + W 22)

2. Modification of the length of vr to obtain vri to minimise the distance between

vr and one of the original vectors e.g. va as presented in section 2.6 and

Derivation of the Neural Network Linking Equation 48

equation (2.49) so that v rl

w ' u • [(w l l ■ W l ' l) + (W 12 K)]

w i 2 • i w u

1 |2

N

W i l) + (* ' . 2 • < 2)

3. Calculation of the length adjustment factor F to obtain vr2 for the minimisation

of the distance between vr and the second original vector e.g. Vb as presented

in section 2.6 and equation (2.52), n=2, so that F -
(w2l ■w;i)+(w22 -w[2)

(w .i ■w 'n)+(w i2 -w 'n) '

2.7 Combination of the output weights

With neuron linking only the weights associated to the neurons in question are

involved in the calculations for the linking process. Because linking is applicable to

the neurons of the hidden layer, further connections towards the next layer or to the

output layer must be considered. The fact that two neurons will be converted into one

neuron is that after linking one connection to the next layer will become superfluous,

see figure 2.11. Superfluous weight connections cannot just be dismissed. They need

to be integrated into the weight connection used after linking. Therefore output weight

connection algorithms or simplifications to avoid inaccuracies need to be derived.

Figure 2.11 Linking hidden neurons requires weight combination from the next layer.

Derivation of the Neural Network Linking Equation 49

Since linking will always involve two neurons at a time as shown in figure 2.11, the

forward path calculation of a network consisting of two neurons can be written as

shown in equation (2.54).

out = f (f (x in m J) - v 0
r (« / s: \

f If, ■wu) •En + / Z \Xj ' W2j) * —12
V 7 \ J=l ^ y

(2.54)

With xin being the input vector, mh being the hidden layer matrix and v0 as the output

vector. The neuron activation function is denoted as f() and the number of vector

components in xin is represented as n.

Combination of the weights connecting the next layer should accomplish the same

output as achieved prior to linking. As a result, it can be assumed that out = out' with

the linked neuron vectors. Consequently, the forward path of the linked network can

be written as shown in equation (2.55).

out' — f
/ (» , \
/ If, K) • w 11 • (l + F)

V J y
(2.55)

The term (1+F) is used to expand the single linked neuron into two neurons, namely

vri and vr2. It represents the length adjustment factor required to allow the linking of

vectors with distinctive lengths.

In order to equate out (2.54) with out' (2.55) an easy but important simplification is

made. With the assumption what the neuron activation function is a linear activation

function with a slope of 1 and going through the point of origin (0,0), all activation

functions can be ignored. With this assumption, the results of the following equations

will only be valid for neurons with linear activation functions.

I f
VM

w1 j . +
» ,

I (-
U=>

X , -w
2 j ,

W,, =
" /
I f

U=>

\ ,

w[j) • w ii ■ (l + F) (2.56)

v J-1 /

(2.57)

Derivation of the Neural Network Linking Equation 50

Setting the linked network output equal to the original network output equation (2 . 5 6)

can be derived. In order to calculate the combined output weight for the next layer,

equation (2 . 5 7) is resolved for the output weight w ' n . Because the input vector values

can be of any arbitrary value, they have been set to 1 for further simplification.

In a case where the input vector consists of two components (n=2) and the network

activation functions are all linear, equation (2.58) can be used to calculate the

combined output weight.

W 11
(wu +wn)-wu +(wn +w22)-wi2

(w[i + w[2) • (l + .F) (2.58)

Under perfect conditions w'n = wu, w'n = W12 and w'n • F = W21, w'12 • F - w22,

equation (2.59) can be derived.

w 11
{wu + w]2) - w u + { w 2l + w 22) - w n

{wu + wl2) + (w 2l + w 22)
(2.59)

2.9 Conclusion

Neurons and their knowledge can be seen as pure vectors, containing information

extracted from the training data. If two neurons contain similar knowledge their

vectors will point in similar directions in hyperspace. But the length of the vectors

does not seem to represent knowledge as such; it can be seen as a representation of

certainty or strength of the knowledge. Therefore, neurons can be linked if they

contain similar knowledge even if their length or certainty differs.

With the introduction of the vector length correction factor F, neurons that point in

similar or opposite direction can be linked as long as the angle difference does not

exceed a certain value. If weight vectors are facing opposite directions, the factor F

will be negative, restricting the angle a vector can point to 0...180 0 instead of

0.. .360° doubling the probability that vectors are pointing in similar directions.

Derivation of the Neural Network Linking Equation 51

In this chapter, different types of neuron combination methods have been discussed

and analysed on their performance on a measure of error. Simple averaging has an

error distribution of 50% for each vector as shown in equation (2.13). In the case of

weighted averaging by vector length the error distribution is non-proportional to the

length of each vector as shown in equation (2.32). If weighting is performed on a

vector component basis the error distribution for each vector component is it’s

component length divided by the sum of all component lengths as shown in equation

(2.39). This weighting of vector components has been further extended to

accommodate the vector length correction factor F that permits linking of vectors that

have substantial differences in vector lengths.

There are certainly more possible techniques of linking neuron weight vectors into a

new vector but the simplicity of the method using weighted vector components and

length adjustment bears a great advantage.

Chapter 3

Pruning of Neural Network Weight Matrixes

3.1 Introduction

After the derivation of the linking equations in chapter 2, these equations are now

used to demonstrate their application for pruning of weight matrixes. This chapter will

highlight the effectiveness of pruning with the linking algorithm on a small, fully

connected neural network. It will show how neurons can be combined to achieve

pruning with the linking process instead of being removed to reduce redundant

information held within the network. For this purpose, a single neural network will be

trained on a simulated function approximation problem constructed as a numerical

example of the utilisation of the linking process for pruning of post-trained networks.

After network training, statistical analysis has been used to measure its accuracy on

seen and un-seen training data. This analysis has been used as reference for the

pruning results in order to evaluate its performance.

The outcome of network pruning is heavily dependent on the complexity of the

objective function contained in the training patterns and the size of the hidden layer(s)

of the network. If the objective function is uncomplicated, for example linear, not

many hidden neurons will be required for modelling. If too many hidden neurons have

been used on a simple objective function, the weights of some redundant neurons will

Pruning of Neural Network Weight Matrixes 53

have counterweights within the weight matrix that will render them superfluous [134].

If only one half of the set of compensating weights is removed, an imbalance can

occur. Therefore it is important to find compensating weights in couples or groups.

Furthermore, many redundant neurons can be expected if a simple objective function

is used in conjunction with a large number of neurons in the hidden layer.

If, on the other hand, the objective function is complex and the number of hidden

neurons in the hidden layer is small, redundant neurons may not be easily found. For

the experiment in this chapter, a medium sized network with 20 hidden neurons and a

reasonable complex objective function have been used in order to find redundant

neurons that can be linked.

During network pruning the network accuracy may be reduced since trained

information contained within the neurons is altered. But during pruning the number of

free parameters is reduced, which will influence the generalisation capabilities of the

network [135-137],

It is essential to set an objective for initiating the action of network pruning. This

utilisation objective is dependant on the area of intended use of the network. If the

network utilisation objective lies within the region of extrapolation, good

generalisation capabilities outside the input space present in the training data is the

priority. For this purpose it is recommended that the extracted testing data should be

close to the extrapolation space.

But if the utilisation objective is interpolation of the input space close to the location

of the training patterns, recall accuracy of the network must remain high during and

after pruning.

Therefore it is recommended to analyse the sensitivity of the neurons prior to pruning

[119, 138, 139], Neurons with high sensitivity towards the overall network

performance should only be included in the linking process if their induced error is

low, keeping the overall network performance mainly unchanged. Neuron sensitivity

analysis as a significance measure can be in included in the linking equation if used

for weighting of the total error between the weight vectors.

Pruning of Neural Network Weight Matrixes 54

3.2 Linking of two Hidden Neurons

This section gives an introduction to pruning using a simplified numeric example to

show how two hidden neurons can be linked into one hidden neuron. For this purpose

a neural network with two inputs, two hidden neurons and one output neuron (2:2:1)

has been trained on a two dimensional mathematical function. For reasons of

simplicity and to concentrate on the linking of hidden neuron weight vectors, all

neurons have a linear activation function f(x) = x. To make it difficult for neurons

with a linear activation function to exactly memorise the objective function [77], a

non-linear objective function, shown in equation (3.1), has been used to generate

training and testing data.

/ (x) = 3.5 ■ x, + 1.5 • *2 +1 (3-1)

The network weights have been initialised in the range of ±0.7 with 400 training and

100 testing patterns. The stopping criterion has been set to the point where the Sum

Square Error (SSE) of the testing data set, referred to as the generalisation error,

ASSE en
SSEgen reached a plateau and did not increase any further ------- — « 0 . After

At

approximately 3000 training iterations this point was found with the learning rate of

r)=0.01 and the momentum of m=0.3. At this point training was stopped and the SSE

of the network with the training data SSEtm was 0.4702 as shown in figure 3.1 and the

testing data SSEgen was 7.681 as shown in figure 3.2.

Although generating the training data is simple, there were considerations to be taken

into account with regards to the testing data. For a fair measure of the generalisation

error of a neural network for a simulated problem, the testing data has been extracted

mainly from the centre of the generated data set to avoid extrapolation issues. In cases

where the majority of the testing data is taken at the edges of the input space, the

network will have to extrapolate causing high generalisation errors. Consequently,

Pruning of Neural Network Weight Matrixes 55

testing data is best taken where training data is surrounding the input space, thus

leaving input space borders in the training data for better generalisation results [54],

Figure 3.2 SSEgen during training plotted against the number of batch training iterations.

Pruning of Neural Network Weight Matrixes 56

Simplification of an uncomplicated 2:2:1 neural network into a 2:1:1 network via

linking of neurons does not seem to bring an advantage to the user at first sight. But

the principle of combining neurons remains the same regardless of the size of the

network or the dimensionality of the hidden weight vector. With the ability to link

neurons, large networks can be pruned or small networks can be linked to alter the

knowledge of a network. For these reasons, the hidden neurons of the trained 2:2:1

network are linked into one hidden neuron to emphasise the simplicity of the linking

paradigm.

Prior to linking, the weight vectors need to be tested for their direction because for the

linking process to succeed they have to be sufficiently close. In this instance the

neural network training has been restarted if the hidden weight vectors were not

sufficiently close in direction, until a suitable set of weight vectors was found.

After only a few restarts, a suitable weight matrix with an angle difference of 172.89°

was found. Although the angle difference appears to be high, caused by the fact that

the vectors are pointing in opposite directions, the deployment of a negative

reconstruction factor F will move both vectors into the same quadrant, leaving an

angle difference of only 7.11°. The networks hidden and output weight matrixes and

their vector notations, as denoted in chapter 2, are shown in equations (3.2) and (3.3).

w ,
-2 .94
4.35

-7 .70 -0 .32
8.21 0.52

wkj = [1.04 1.03 -0.39] (3.2)

' -2 .94s "4.35N ' 1.04 N

v . = -7.70
,-0 .32,

V6 = 8.21
,0-52,

v 0 = 1.03
-0 .39 ,

With help of the equations derived in chapter 2 for linking two hidden neurons into

one, the objective is to create only two vectors, one for the resulting hidden neuron

and a modified vector for the output neuron, since the hidden layer has been reduced

Pruning of Neural Network Weight Matrixes 57

from 2 to 1 hidden neuron, as shown in figure 3.3. The new hidden and output weight

matrixes and vectors after pruning are shown in equations (3.4) and (3.5).

W j l = k ' i K W ' l B] wu = W 11 W \B (3.4)

f v O
(' \

K
W 11h.

© 1

y i B , I f f 1 b)

(3.5)

Changing the network topology has created an equivalent network that performed

similarly on testing data as the original network did. The change from a fully

connected to the linked network topology is graphically presented in figure 3.3.

Figure 3.3 Transformation of a 2:2:1 network into a 2:1:1 network by linking of a hidden neuron.

Several possible techniques for creating a resulting hidden neuron weight vector v’r

have been introduced in chapter 2 but only one for the combination of the output

weight vector v '0. Therefore the combination of the output vector v '0 will be

introduced in the next section and alternative equations for the creation of the

resulting vector v 'r will be introduced in later sections.

Pruning of Neural Network Weight Matrixes 58

3.2.1 Combination of Output Weights

In section 2.7 the equation for the modified output weight vector has been derived. Its

purpose is to compensate for the loss of one of the hidden neurons involved in the

linking process. When two hidden neurons are linked, one of the connections to the

next layer, in this example the output layer, will become superfluous and must

therefore be combined with the weight used to connect the resulting hidden neuron.

One of the major simplifications with respect to the combination of the output weight

vector has been the linear neuron activation function, which has been intentionally

used for this example to concentrate on linking of hidden neurons.

With equation (2.58) the combined output weight can be calculated with the vectors in

(3.3) and (3.4) as given in equation (3.6).

wh + W 12) ' f f n + (w 2i + w 2 2) - ™ n

(wu +w,2)+(w21 +w22)

(- 2.94 - 7.70)-1.04 + (4.35 + 8.21) -1.03
(-2.94-7.70)+(4.35+ 8.21)

0.994 (3.6)

Since the bias of the output neuron is not affected by the linking of the hidden

neurons, no changes to w 'ib take place. Because of this, the bias remains unchanged

and with the combined weight, the modified output weight vector v '0 for the linked

hidden neuron can be calculated as shown in equation (3.7).

v’ =
f ’ \

W 11 "0.994"
1

Ilf ìb) ,-0 .39,
(3.7)

Pruning of Neural Network Weight Matrixes 59

3.2.2 Linking for the Purpose of Pruning

The essence of linking neurons is to link two hidden neurons trained with the training

data into one resulting hidden neuron and a reconstruction factor F. The equations

derived in section 2.6 for hidden neuron linking will now be used for this numeric

example to create the resulting hidden neuron. For this purpose the following three

steps are required:

1. Calculation of the resulting vector vr

2. Modification of the length of vr to obtain vri

3. Calculation of the length adjustment factor F.

Step 1 involves the evaluation of equation (2.37) as shown in equation (3.8) below.

v. = w'

\ w xbJ

w,i + w212 3

w u + w 21
2 2

w n + W 22

w i2 + w 22
2 2

W IB + w 2B

v B + W2 B J

f 2,942 + 4.352 ^
2.94 + 4.35

7.702 + 8.212
7.70 + 8.21

0.322 + 0.522
0.32 + 0.52

- 3 .7 8 0
-7.963
-0.447

(3.8)

For the second step equation (2.49) is used to move the resulting vector vr closer

towards vector va as shown in equation (3.9).

w r 12

\ WrXBj

K -((wn - S J + K b 'O Ib))

w¡2 ■ ((WU ■) + (W 12 ' K) + (W,B ■ W'lB))

• ((■w'u) + (w i2 ■ ^ n) + h v \B - w 'xb))

^-3.523 A
-7.419

0.4 1 6 y
(3.9)

Pruning of Neural Network Weight Matrixes 60

In the last step equation (2.52) is used to calculate the vector length adjustment factor

F, which is used to stretch vector vri towards vector Vb to minimise the distance

between the vectors. The computation ofF is given in equation (3.10).

r, . A wn ■w 'n)+(^22-w 'n)+(w2B -w Ib) _ ,
b - 1 -------- 7X~7-------- TTT7---------TY - ' 1' 1304 (3-10)(wn -wu)+(wl2 ■Wn)+ (w w -wlB)

For easier visualisation, both vectors va and -Vb are shown with their resulting vectors

vri and -vr2 (vr2 = F • vri) in figure 3.4. It becomes apparent, that vectors va and Vb are

pointing in opposite directions since the correction factor F is negative. Therefore,

vectors Vb and vr2 have been inverted in figure 3.4 so that all vectors can be presented

in the same quadrant for easier visualisation.

Figure 3.4 Linking of vectors va and Vb into one vector vrl and a length adjustment factor F.

Pruning of Neural Network Weight Matrixes 61

With all calculations completed, the new linked network can be assembled as shown

in figure 3.5.

Figure 3.5 Network with only one hidden neuron after linking.

3.2.3 Measuring Linked Neurons Output Performance

To measure the performance benchmarks of the network after linking, a modified

backpropagation forward path calculation needs to be applied. The forward path

calculation will act as if the linked neuron contains two vectors instead of one. The

first vector involved in the forward path calculation is vri, without vector length

adjustment, and the second vector is vr2, which includes the adjustment factor F.

In the current example the hidden layer neurons are denoted with the indices j and the

output neurons with k. With this notion, the summed input into the neurons are

denoted as netj and netk and the neurons output as Oj and Ok for hidden and output

neurons respectively. The linear activation function used caused the neurons output to

be equal to the neurons summed input Oj = netj and Ok = netk. Following the

definitions, the forward path can be calculated as given in (3.11).

o \ = net\ = o) ■ w'u +w \B = net', ■ w'„ + WlB (3.11)

The summed input of the linked neuron net, will act as if the linked neuron contains

two vectors vri and vr2.

net) = {xin ■ vrl + x m -vr2) = (x w ■ vH + x in ■ vr, • F) = (1 + F) • ■ vrl (3.12)

With Xin as the input vector xin =

Pruning of Neural Network Weight Matrixes 62

Substitution of the appropriate vector components of vri in equation (3.12) with (3.5)

will lead to (3.13).

net) = ((*, ■w'n +x2 -w[2 +w ;B)+ (x , •w’11+x2 ■ w'l2 +w[B) - F) (3.13)

Now substituting equation (3.13) into (3.11) will produce the entire equation for the

network output Ok with respect to the linked neuron as shown in (3.14).

= ((* w u +x2 + w1B w u +x2 w, + w'lB)• F)- w n + w \b (3.14)

After reapplication of the training and testing data on the simplified linked network

the linked network performance benchmarks have been calculated and presented in

table 3.1. To increase statistical reliability the entire experiment has been repeated 30

times and the averages, minimums and maximums for training and testing pattern are

reported. It can be seen, that the neuron linking has caused an improvement of the

networks overall generalisation accuracy on average from 7.675 to 2.870 a reduction

of 63%. This result can be based on the fact that the network has been over-trained,

since the network did learn the objective function very accurately. On the other hand,

the recall error SSEtm has increased by a significant amount, by factor 13, after

linking. The low SSEtrn error of only 0.49 confirms that the network was over-trained.

Overall, linking has reduced the generalisation error but increased the recall error.

Table 3.1 Comparison between trained and linked network benchmarks for 30 runs.

Description Trained Network Linked Network
Min Max Average StDev Min Max Average StDev

S S E trn 0.265 1.221 0.4931 0.2451 5.695 7.486 6.950 0.4484
S S E gen 6.708 8.052 7.675 0.3399 2.466 3.044 2.870 0.1598

With the linking, the network hyperplane has been shifted towards the solution space

of the linked weight vector vri as shown in figure 3.6, where the complete input space

for xi and X2 (0 < xi < 1 and 0 < X2 < 1) against the networks output Ok is presented in

a 3-dimensional coordinate system.

Pruning of Neural Network Weight Matrixes 63

Figure 3.6 The trained and linked network hyperplanes presented for the entire input space.

This simplified pruning example on a regression-based problem has utilised all

relevant equations introduced for neuron linking on a small example. It has addressed

the linking process in detail with little consideration of the combination of the weights

connected to the neurons output, referred to as the output layer. To overcome the

problem of combining the weights connecting the linked hidden neurons to the output

layer, the chosen activation function for the output neuron was linear. In the next

section a larger network has been trained with a more complex non-linear regression

problem where the activation function is sigmoidal. This network has the output

weights set to 1, which are frozen during training, to avoid the constraint of a linear

activation function in the output neuron.

Pruning of Neural Network Weight Matrixes 64

3.3 Hidden Neuron Linking of a Neural Network for Pruning

For the purpose of conceptual presentation of the linking process applied to pruning, a

reasonable complex non-linear objective function (3.15) and a medium-size network

have been chosen. To get around the problem with the combination of weights

connected to the output of the linked neurons, the weights between the hidden layer

and the output layer have been set to 1 and frozen, so that they cannot be altered

during training. By setting the weights between the hidden and output layer to 1, no

weight combination calculations on the output layer are required. Because of this, a

more complex activation function than the linear activation function, which has been

used in the previous section, can be used. Since non-linear activation functions

perform better on a non-linear objective function, a more complex objective function

can now be used for the training of the neural network. A summary of the neural

network configuration parameters used in this section is given in table 3.2.

Table 3.2 The parameters of the neural network used in this section.

Description Value
Input Neurons 2
Hidden Neurons 20
Output neurons 1
Activation Function non-symmetric sigmoid
Initialisation ±0.6
Learning Factor 0.1
Momentum 0.3
Number of training patterns 500
Number of testing patterns 100

The networks topological parameters are 2:20:1 with a non-symmetric sigmoid

activation function and frozen output weights of the value 1. For the generation of the

training and testing data a non-linear objective function as shown in equation (3.15)

has been employed.
(-*1*2)/(* ,, x2) = 0.5 + 0.5 ■ sin^Oxj) • e (3.15)

Pruning of Neural Network Weight Matrixes 65

3.3.1 Training of Hidden Neurons

Training and testing data has been generated with random numbers for xi and X2 in

the input space range of 0 < xi <1 and 0 < X2 <1. After training and testing data

generation, the network has been initialised with weight values in the range of ±0.7

and its output together with the target values are graphically presented in figure 3.7.

A NN Target
■ NN Output

▲

■ ■ 4 "
▲ ■

0.2 --
▲

▲

0.0 I I I I I I I I I I I I I I I I I I I I I I i t I I I I I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Training Pattern Number

Figure 3.7 The objective function compared with the network output after initialisation.

In order to prevent training from being affected by the pattern sequence, if presented

in a numerical ascending or descending order, xi and X2 have been generated by a

linear distribution random number generator, which has the same effect as shuffling

the training data set. Shuffling training patterns prevents the network from learning

associations between the data, instead of learning the objective function. It is

important for optimal learning that the various patterns are presented in a different

order for each training cycle.

Normalisation of the training and testing data was not required since the input range

was chosen to be limited to a maximum of 1. The range of the network output was

restricted by the sigmoid activation function and has been indirectly normalised by

Pruning of Neural Network Weight Matrixes 6 6

defining the objective function in equation (3.15) in such a way that the largest output

does not exceed 1.

The training algorithm selected was the standard backpropagation-learning algorithm

for its good performance and ease of implementation. In the forward pass, the neuron

errors and weight updates have been computed in batch mode, causing neuron weight

only to be updated after presentation of the entire training data set. Batch mode

reduces the risk of oscillation during training and convergence problems, but can only

be effective if sufficient data samples are present.

Training has been continued until a specified training error stopping criterion was

met. The stopping criterion has been met if there was no relevant change in the SSEtm

for more than 1000 iterations. This point can be seen as the energy minimum found by

the steepest descent.

During training, the training or recall Sum Square Error SSEtm on the training data

and the generalisation performance on the testing data SSEgen have been collected

from the point of initialisation to the point where the stopping criteria was met, both

are shown collectively in figure 3.8.

2.0

Generalisation error SSEgen

A
1.0

0.0

0.5

100k 200k
Training Iteration

Figure 3.8 The recall and generalisation error during training of the neural network.

Pruning of Neural Network Weight Matrixes 67

After approximately 200,000 iterations the stopping criterion for the training was

satisfied. To visualise the network performance on the training data, the objective

function against the network output it is plotted in figure 3.9.

u 1.0W)
-o
§ 0.8

É * A
■ ■ ■

A NN Target
* NN Output

0.6

Z 0.4

0.2

0 0 I i I I I I I I I I I I I I I I I I— I— I— !— I— I— I I I I
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Training Pattern Number

Figure 3.9 The objective function compared with the network output after training.

It can be seen in figure 3.8 that the SSEtm after initialisation is high and is falling

during the training. On the other hand, the generalisation error SSEgen is increasing as

training progresses. This is because the network is getting more specialised as training

continues. During training, some weight vectors are changed to improve recall

accuracy on the training data set and as training continues, the changes in weight

vectors where definite data points are available gradually lessen. Whilst weight

vectors, which are directly correlated to data points in the training patterns stabilise,

uncorrelated weight vectors, which are free parameters used for generalisation,

continue to change in one direction. This is causing the values of the weights to

increase into extreme areas. Such an increase on one hand will create weights to

counterweight on the other. These free weight vectors are generally pointing in the

opposite direction to compensate for large weights of other free vectors. Weight

vectors, which are most likely to be affected by counter weight increase, are vectors

that are not associated to a data point in the training data. The problem is that exactly

Pruning of Neural Network Weight Matrixes 6 8

these free vectors are responsible for the generalisation performance of the network

and as a result the generalisation performance is reduced on an over-trained network.

To overcome the problems with too many free parameters and over-training, the

generalisation error SSEgen can be monitored during training, which can be stopped if

the generalisation error has reached a minimum. Another solution is to remove such

free vectors via pruning [137, 140, 141].

3.3.2 Analysis of Hidden Neuron Weight Vectors

After completion of the training, the hidden weight vectors need to be analysed to

identify those, which are pointing in the same or opposite directions. Table 3.3 shows

the weight vectors of all hidden neurons of the network after training.

Table 3.3 Weight vectors of the hidden layer after training.

Vector
Reference W ll Wl2 w , B

Vector
Length

Vl -1.212439 -3.047107 -9.828882 10.362

V2 -48.65868 26.43653 27.10182 61.653

V3 -28.27503 87.87204 -9.422333 92.789

V4 -87.9455 88.14407 -41.08837 131.118

v 5 -0.370743 -6.823745 -10.10476 12.199

v 6 90.95148 19.12648 -34.60433 99.174

V7 -46.05195 -90.5919 67.69712 122.109

Vg -0.5285 -6.055976 -10.09197 11.781

v 9 -53.18032 0.324787 38.83406 65.851

Vio -89.86122 90.19841 -42.12809 134.110

V ii 87.29947 -59.57665 -2.45873 105.720

Vl2 -118.0139 11.72936 15.38128 119.589

Vl3 90.14281 -38.08962 -33.1463 103.321

V|4 -117.8034 11.68759 15.35809 119.374

Vl5 19.48965 64.01544 -56.13136 87.342

V|6 51.67821 73.66065 -81.22998 121.222

Vl7 -59.00057 2.313215 43.91528 73.586

Vis 64.05762 -40.98364 -23.74516 79.667

Vl9 110.1794 -251.8599 74.11477 284.721

v 20 19.74688 -48.62996 -7.57796 53.031

Pruning of Neural Network Weight Matrixes 69

To find weight vectors suitable for linking, each angle between all vectors needs to be

analysed. Since the weight matrix contains 20 rows, there are 380 possible angle

calculations, which have been tested for the vector angle constraint of cp = 10°.

Weight vectors that have an angle below 10° have been sorted in ascending order as

presented in table 3.4. Because the sign of factor F can be changed, vectors located in

Q3 are mapped into quadrant Q1 and vectors located in Q4 are mapped into Q2 as

shown in figure 3.10.

Figure 3.10 Vectors of quadrants Q3 and Q4 can be mapped into Q1 and Q2 respectively.

By mapping vectors from four quadrants into two, the probability of finding

acceptably close vectors doubles.

Table 3.4 Angles between weight vectors in ascending order.

Vector p a i r Angle between vectors
V |2, V ,4 0.0102°
V 4, V 10 0.0612°
V9, V i7 1.606°
v8. v5 3.172°
V 2, V , 3 180°-171° = 9°2

2 This vector has been mapped from Q3 to Q1.

Pruning of Neural Network Weight Matrixes 70

Table 3.4 is presenting a list of vectors where the vector angle does not exceed 10°.

This angle limitation has been defined as the acceptance angle (p throughout this

thesis and has been chosen after a sequence of tests. A precise analysis of the effects

of the acceptance angle on the SSEtm and SSEgen is given in a later section of this

chapter.

3.3.3 Linking of Hidden Neurons

Subsequent to the vector angle analysis is the process of neuron linking. It follows the

same method as linking from previous sections but without the requirement of

combining the weights to the output layer since they have been set to one and frozen

during training. Without repeating the equations used for linking of weight vector

pairs listed in table 3.4, table 3.5 presents the linking results.

Table 3.5 Results of the combination of vectors with angles below 10°
as listed in table 3.4.

Original vector references
Resulting vector vrl

W,1 Wl2 W in Factor
Vl2, V14 -118.015 11.729 15.381 0.9982
v4, v10 -87.899 88.166 -41.140 1.0228
Vs. V]7 -52.933 1.947 39.088 1.1178
Vs. V5 -0.455 -6.343 -9.911 1.0355
v2, V|3 -33.822 24.667 40.552 -1.5698

Table 3.5 lists the components of all linked vectors involved in pruning. The

components of the first two vector pairs were almost identical. Therefore the linked

vector components in table 3.5 do not differ significantly if compared to table 3.3. It

can be noted, that with increasing angle difference, the differences of linked and

original vector components increase. In section 3.4, a more detailed investigation of

vector component changes is presented.

Pruning of Neural Network Weieht Matrixes 71

3.4 Linking Analysis

The linking analysis is used to analyse the errors on individual weights of linked

neurons. Neuron weights after training but before linking will be compared with

neuron weights after linking by using the relative error with regards to the weight

prior to linking. This is followed by a comparison of the neural network performances

after training and after linking.

3.4.1 Analysis of Linked Neurons

To validate the results of table 3.5 an impact analysis on the effects of linking towards

the differences between the original vectors and the reconstructed vectors vri and vr2,

the relative errors of the changes in weight values are listed in table 3.6. The notation

in table 3.6 will be that v ’ 12 and v ’ 14 represent vri and vr2 respectively for all vectors

involved in the linking process, in accordance with figure 3.4.

Because of the extremely small angle difference of 0.01° between vectors Vn, V14 and

0.06° between vectors V4, vio, the relative errors of their reconstructed vectors are

expected to be very small. Consequently, these two vector pairs are ideal candidates

for linking.

In the case of vector pair V 9 , vn, an unbalanced error of almost 500% on W12 can be

noted. Even if the angle difference between V9 and vn was only 1.6°, see table 3.4,

such a large error on a single weight was not expected.

The justification for allowing such a high error lies within the relatively small weight

value of W12 of vg, which is 0.32 compared to W12 of vn, which is 2.31. Since the

value from W12 of V9 is smaller by several orders of magnitude than the largest weight

involved (|0.32|«|-59.0|), the increase from 0.32 to 1.94 seems to be acceptable. In

other words, considering that most absolute weight values of vectors V9 and vn lie in

the range between 40-60, smaller weights <1 contribute not as much towards the

overall output compared to the large weights. Therefore small weights can accept a

higher percentage error than large weights.

Pruning of Neural Network Weight Matrixes 72

Vectors vg and V5 with an angle difference of 3.17° are pointing almost in the same

direction. Their component weights are very much in the same range and do not have

the magnitude problem as encountered with vectors V 9 and v 1 3 . As a result, the relative

errors are acceptably distributed among the weight components involved.

Table 3.6 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors w’„ W,2 w'lB f(wn,w'n) f(Wl2, w',2) f(w1B, w'1B)
V'l2 -118.015 11.729 15.381 0.00% -0.09% 0.01%

V ' , 4 -117.803 11.698 15.356 0.00% 0.09% -0.01%

V ’ 4 -87.899 88.166 -41.140 -0.05% 0.02% 0.13%

v'10 -89.905 90.178 -42.079 0.05% -0.02% -0.12%

v's -52.933 1.947 39.088 -0.46% 499.39% 0.65%

V '] 7 -59.170 2.176 43.693 0.29% -5.93% -0.51%

v's -0.455 -6.343 -9.911 -13.93% 4.74% -1.79%

V's -0.471 -6.568 -10.264 27.05% -3.74% 1.57%

v'2 -33.822 24.667 40.552 -30.49% -6.70% 49.63%

V ' l 3 53.095 -38.722 -63.660 -41.10% 1.66% 92.06%

So far each vector pair was positioned in the same quadrant because the signs for each

component, which define the vector directions, are the same. Another indicator is the

sign of the length adjustment factor F, which has been positive for all vector pairs

except V 2 and V 1 3 . Their angle difference is 171° without mapping, but if mapped from

Q3 to Ql, the angle difference turns into 9°, only 1° below the acceptance angle

threshold. Because of the increased angle, higher component as well as vector length

errors are expected. Up to this point, the errors with regard to the reconstructed vector

lengths have been very small, as shown in table 3.7. But without error induction, the

generalisation error will remain unchanged. With the objective to improve on

generalisation for the purpose of interpolation, errors will be introduced on vector

removal to reduce the degree of freedom.

Pruning of Neural Network Weight Matrixes 73

Table 3.7 Vector length change impact analysis.

Vector Original length Reconstructed
length

Relative Error

V|2 1 1 9 . 5 8 9 1 1 9 . 5 8 9 (M) 0 . 0 0 %

V | 4 1 1 9 . 3 7 4 1 1 9 . 3 7 4 (|V r l |* F) 0 . 0 0 %

v4 1 3 1 . 1 1 8 1 3 1 . 1 1 8 (K l D 0 . 0 0 %

Vio 1 3 4 . 1 1 0 1 3 4 . 1 1 0 (k.l*F) 0 . 0 0 %

V9 6 5 . 8 5 1 6 5 . 8 3 0 (|v,i I) - 0 . 0 3 %

V l 7 1 0 3 . 3 2 1 7 3 . 5 8 6 (|v,i|*F) 0 . 0 0 %

V8 1 1 . 7 8 1 1 1 . 7 7 6 (|Vrl |) - 0 . 0 4 %

V5 1 2 . 1 9 9 1 2 . 1 9 5 (| V r , | * F) - 0 . 0 3 %

V2 6 1 . 6 5 3 5 8 . 2 8 3 (|Vrl |) - 5 . 4 7 %

V , 3 1 0 3 . 3 2 1 9 1 . 4 9 4 (|vr,|*F) - 1 1 . 4 5 %

3.4.2 Analysis of Linked Network

Pruning has caused the removal of 5 hidden neurons and reduced the size of the

hidden layer from initial 20 neurons to 15. This represents a network size reduction of

25%, with the objective of reduction of the generalisation error being successful.

In table 3.8 a comparison of the benchmarks for the trained and the linked networks is

presented. To increase statistical reliability the entire experiment has been repeated 30

times and the averages, minimums and maximums for training and testing pattern are

reported. It can be noted that the recall accuracy has suffered on average by 54.3%,

while the generalisation error has improved an average of 1 2 .6%.

Table 3.8 Comparison between trained and pruned network benchmarks for 30 runs.

Description Trained Network Pruned Network
Min Max Average StDev Min Max Average StDev

S S E lrn 0.515 1.338 0.785 0.1992 0.709 2.894 1.172 0.6118
S S E gen 0.750 0.963 0.852 0.0499 0.393 0.956 0.757 0.1699

Generally, if recall accuracy is more important than generalisation network pruning is

not recommended. A graphical representation of the recall accuracy on the training

data after linking is given in figure 3.11. Please note that all details given in this

section are referring to the very first run from 30 repeated experiments.

Pruning of Neural Network Weight Matrixes 74

1 . 0 -

T3ca
f°.s-

I 0.6

NN Target
NN Output

0.4

0.2

0.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Training Pattern Number

Figure 3.11 The objective function compared with the network output after linking.

Resuming the analysis of identification of the optimal acceptance angle for linking, an

iterative approach has been employed where the acceptance tp has been increased in

steps of 5° for the first run. During this process, the network has been linked for every

iterative increase of the acceptance angle. To find the optimal acceptance angle for the

objective to improve network generalisation, the error benchmarks SSEtm and SSEgen

have been recorded. At the angle where generalisation reaches a minimum, the

optimal point for linking is found.

Table 3.9 summarises which vectors satisfy the acceptance angle range limitations. To

find the optimal acceptance angle (popt for generalisation, more and more vectors are

included in the linking process.

Table 3.9 List of vectors satisfying the acceptance angle limitation

Acceptance angle Linked vectors SSEtrn SSEgen

O o ky
t o vl2, 14; v4, vlO; v9, vl7; v5, v8. 0.31126 0.85867

oOo«o v2, vl33. 0.52827 0.80907

o»0oO

v7, vl5; v3, vl92. 0.86842 0.9278
15° -20° vll, vl83. 0.92567 1.1628

3 Including all of the above

Pruning of Neural Network Weight Matrixes 75

Figure 3.12 shows the results from table 3.9 graphically. It has been found that

acceptance angles above 15° usually worsen the generalisation and recall

performances of a linked network. Figure 3.12 shows an increase of the recall and

generalisation error if the acceptance angle cp is increased.

3.8 Conclusion

The linking process is the ideal candidate for the removal of vectors that are pointing

in opposite directions because opposite vectors will only affect the sign of the length

adjustment factor F. Compared to pruning methods which are only removing small

weights or which attempt to cause only small changes in the overall recall error (small

saliency) on neuron removal, the linking process is able to prune large weights which

would have a substantial impact on the overall network error (large saliency) if

removed without further consideration.

Pruning of Neural Network Weight Matrixes 76

In the first example, two hidden neurons have been linked to create a single hidden

neuron. For reasons of simplification, linear activation functions have been used

whilst the linking process is analysed for its suitability of pruning hidden neurons.

Linear activation functions within all neurons permits the combination of the weights

of the hidden layer that is required for pruning an entire neuron.

In the second example non-linear activation functions have been used. To overcome

the combination problem of the output neurons, all weights in the output layer have

been set to 1 and frozen. Thus permitting the removal of hidden neurons via linking

without disturbing the integrity of the output layer.

The sum square errors of the recall and generalisation accuracy have been recorded

prior to and after pruning to perform as benchmarks for evaluation. As a result after

30 runs of each experiment, pruning has caused an increase in the error of the recall

accuracy and a decrease of the generalisation error. This behaviour is typical for

pruning since it reduces the network’s degree of freedom that causes improvement on

the generalisation but loss on the recall accuracy [142].

Many neural network variables such as the learning rate and momentum are

dependent on the experience of the engineer responsible for training. The same

applies for the acceptance angle cp unless an exhausting search for the optimal

acceptance angle is performed as shown in figure 3.12. Experience of many linking

applications for pruning by the author has shown that acceptable pruning results were

still be obtained with an acceptance angle of 15° but angles above 20° resulted in

intolerable loss of recall accuracy.

Chapter 4

The Stimuli Network

4.1 Introduction

A central area of study in psychology is how organisms change as a result of

experience, that is, how they learn. Two major kinds of learning are usually

distinguished: instrumental learning and classical conditioning [124, 143, 144].

In instrumental learning emphasis is placed on what kind of outcomes, reward or

penalty, follows an action. This type of learning is referred to as reinforcement

learning and is well known in the neural network research field [145]. In classical

conditioning a conditioned event, the stimulus, can trigger an unconditioned response.

Many researchers in the field of cognitive sciences have studied the stimulus-response

theory, which originated from the field of psychology but its use is not widespread in

the area of neural networks.

The human brain receives and interprets countless signals, called stimuli, which are

generated from sensory parts of the body responding to the external environment.

Physiologists and neurologists have mapped areas of the cerebral cortex and

determined the purpose of each region as shown in figure 4.1. The crucial relay

stations for incoming sensory signals can be found in parts of the brainstem. All

sensory inputs to the brain connect to individual clusters of nerve cells, called nuclei,

The Stimuli Network 78

which are stimulating groups of neurons in the cerebral cortex. Although the cortex is

subdivided into distinct functional areas, fibres interconnect those clusters to share

information [146].

Skilled movements
Basic movements

Central fissure

Emotion, behaviour

Awareness, memory

Frontal lobe
Somatosensory

cortex

Speech (Broca's area)

Hearing - T

Motor cortex

Parential lobe

r i f ^ /
/ / f f I
 ̂ T ■ (f ^

•K l ,r /
T V A ' V f wJ % \ ^

Visual recognition

- Occipital lobe

Vslon

Temporal lobe

Speech (Wernicke’s area)

Balance and muscle
coordination

Figure 4.1 Functions of the Cerebral Cortex.

Knowledge held in the brain is accessed by the firing activity of ensembles of

neurons. Present knowledge can be accessed if the right stimuli patterns are generated.

Precise generation of stimuli in the brain is currently not fully understood but

scientists can record and graphically present such firing patterns. The functional

partitioning of the human brain has mainly been derived from analysing such stimuli

patterns combined with studies of the preserved and impaired abilities in brain-

damaged patients [147].

Reconstruction of sensory stimuli from observation of neural activity has been used to

form an understanding of information processing in animals. Since visual stimuli can

The Stimuli Network 79

be created under controlled conditions, they are used to analyse muscular responses of

animals. For example, neurons from the visual systems from flies have been used to

reconstruct stimuli for wing motion [148], Visual stimuli have been reconstructed in a

salamander retina from recorded responses of salamander cells [149]. Such studies are

used to characterise neural dynamics in response to controlled stimuli.

In analogy to the brain, where specific tasks are assigned to distinct functional areas

the linking process combines sub-networks by tagging their hidden neurons with a

unique identifier, the stimulus code. Hidden neurons, of two or more knowledge

domains, which have been involved in the vector linking process from chapter 2 , will

be tagged with more than one stimulus code, thus building the connections between

the functional clusters, as presented in figure 4.2.

Figure 4.2 Hidden neurons before and after linking.

Different knowledge domains or functional clusters can be activated if a

corresponding stimulus exists. Neuron activity between various knowledge domains

The Stimuli Network 80

will change according to the stimuli they receive. Strong stimuli signals towards a

knowledge domain resemble a strong membership of the input signal to the domain.

But input signals can belong to more than one knowledge domain. In such cases,

stimuli of different strengths for each domain can be generated reflecting their

membership towards each domain.

There are many different ways of generating stimuli signals. Stimuli signals denote

the membership of an input signal towards existing domains in a linked neural

network. The generation of memberships is basically a classification task. Systems for

classification include neural networks, Fuzzy Logic, statistical methods and expert

systems [151, 152].

In this thesis, neural networks have been used for input signal classification and

stimuli generation. The stimuli generated by such a neural network are directly

induced into clusters of neurons instead of a combiner, as shown in figure 4.3. Such

neural networks are in many ways similar to gating networks used in hierarchical

expert systems but differ in one important aspect. They affect a neuron’s output by

changing its internal activation, thus changing the networks output on a basis of

manipulating each individual neuron. Gating networks do not affect the overall output

of a sub-network, they are used to control a linear or non-linear combiner to create an

aggregated result, as shown in figure 4.4. For this reason, the networks used for

stimuli generation are referred to as stimuli networks throughout this thesis.

Figure 4.3 Stimuli networks induce stimuli information directly into neurons.

The Stimuli Network 8 1

Figure 4.4 Gating networks regulate overall output via a combiner.

Stimuli networks can activate each knowledge domain or functional cluster, which is

represented by a cluster of hidden neurons, by sending a stimulus identifier. They are

generally designed to have outputs for each knowledge domain, which do not

necessarily sum up to 1. If an input vector does not belong to any domain all outputs

should be low. Otherwise if an input vector belongs to all domains all outputs should

be high, activating neurons of all domains. Because of this, more than one output of

the stimuli network can be high if the membership information request involves

multiple domains to activate multiple clusters within the linked network.

Any type of expert systems, which has the capability to classify incoming data vectors

into knowledge domains, can represent a stimuli network. The real distinction

between stimuli networks and gating networks does not lay with the classifier itself or

how it is trained. It lies with the points of induction where the classification results are

used. Because linked neurons carry an internal length correction factor for different

domains and consequently require integrated functionality for vector length

corrections, this existing neuron functionality for the purpose of domain membership

adjustments can be reused by utilisation of a stimuli network.

The Stimuli Network 82

4.2 Stimuli Induction

Induction of the stimuli into neurons can be done in different ways. One way is to

affect a neuron’s netj input, prior to the activation function. Another way is to alter a

neuron’s output after utilisation of the activation function. There are subtle differences

at a neuron’s output depending on the point of induction, as illustrated in figure 4.5.

It is important to take into consideration the distinction with respect to the neuron type

required. There are different types of neurons available e.g. normal neurons, fuzzy

neurons, GA neurons and linked neurons. Each neuron type can have different points

of induction depending on its functional layout. As with linked neurons, stimuli

information can be used to adjust the length of the weight vectors for each domain, as

described later in this chapter.

One of the major differences between using a stimuli network and a gating network is

that with a stimuli network domain memberships are depending on the activation

function of the neurons involved. Whereby gating networks are situated at the overall

network output and are not affected by the individual neurons configuration.

Figure 4.5 Stimuli network induction points prior and after the activation function.

The Stimuli Network 83

The classification information induction point plays an important role in the neuron’s

membership function and its contribution to the overall network output. If the

induction point is located prior to the activation function, it can be seen as a weight

length correction on the current layer, as illustrated in section 2.6. If the induction

point is after the activation function, it can be interpreted as a weight length correction

on the next layer. Consequently, induction of stimuli information into a neuron can be

interpreted as a means of adjusting the length of the weight vector of a neuron for

different layers. A more detailed discussion can be found in sections 4.7.3 and 4.7.4.

4.3 Weight Vector Adj ustment

The working principle of a stimuli network can be summarised verbally to explain its

functionality. A stimuli network classifies the input vector Xjn applied to the linked

neural network to activate knowledge domains q with relevant information. Each

identified knowledge domain q is receiving a domain stimulus factor S with a value in

the range of 0 to 1. The value of the stimulus code S reflects the degree of

membership of the input vector xm to a specific knowledge domain q. If, for example,

an input vector belongs 80% to domain A and 20% to domain B, the stimuli produced

for domain A will be Si = 0.8 and S2 = 0.2 for domain B. Depending on the design of

the training data for the stimuli network, the sum of all domain memberships can be

1.0 but is not imperative. The higher the domain stimulus factor S is, the higher the

contribution of that domain to the overall network output.

The net input calculation of a linked hidden neuron, netj, differs from the normal

backpropagation feed-forward calculation because the length correction factors F and

the domain stimulus factors S need to be included. If two neurons of domain A and

domain B are linked, they result in a linked neuron of domains A and B with factor 1

for domain A and F for domain B, as introduced in equation 2.50. With the

consideration of linking q domains, each vector length adjustment factor F can be

extended with indices starting from l,...,q. Therefore, domain A will use the length

The Stimuli Network 84

correction factor Fi (=1), domain B will utilise F2 and the last domain will utilise

factor Fq, as illustrated in figure 4.6.

Resulting
NeuronWeights

Wii Stimulus:
Wi2 A = F,
W,b B = F2

q = Fq

..■V ^ rtl = ^ r * * ^ 'cl

V..
Vr2 = V r t - F 2

V r l - V r i - F ,

Figure 4.6 Vector length adjustments for recalling information for multiple domains.

The equations for the summed input of neurons A and B of domain A and B prior to

linking are given in equation (4.1) and after linking in equation (4.2).

f /

A = Z W An • X” n e t B = Y . W B n - X " (4.1)
n=\ n= 1

net) = (1 + F) • X w'rn ■ x, = (1 + F) • x m ■ vrl (4.2)
n=1

In the equations (4.1) and (4.2), A and B are representing two possible knowledge

domains, i is the number of input neurons of the input layer, net) is the summed input

of the linked neuron and w 'm is the weight matrix of the linked neuron of domains A

and B. The vector length adjustment factor is denoted with F and the input vector with

Xin-

On extending equation 3.12 from chapter 3 for the calculation of net) of a linked

neuron with the notation Fi...Fq for q dimensions as shown in figure 4.6, equation

(4.3) can be derived.

”e t) = (*,„ ' vrl • Fj + x m • vrl • F2 + ... + x in ■ v rl ■ F J = x m • vrl • £ Fd (4.3)
j = i

The Stimuli Network 85

In the equation above, xm is the input vector, vri is the resulting weight vector of the

linked neuron and Fi^.^Fq are the vector length adjustment factors for every domain

involved.

Equation (4.3) has been used in chapter 3 for pruning of two neurons within only one

domain. Because pruning involves only one domain, both reconstructed vector

portions (vri and vri • F) in equation 3.12 can be summed up without constraints.

Because linking of two or more domains is using a stimulus to determine the domain

membership, an additional factor called a domain stimulus factor S has been

introduced. For q domains held in a linked network, q stimulus factors S are produced

for the identification of the membership from each input vector Xjn to every domain.

The stimulus factor S is created by the stimuli network and will regulate the

contribution of each linked domain towards the output. Equation (4.4) is analogous to

equation (4.3) but takes the stimulus factor S for every domain q into account.

net) = x m ■ Wj = x m ■ v rl • £ (Sd ■ Fd) (4.4)
d =1

In the equation above, Sd is the input vector membership and Fd the vector length

adjustment factor for every domain q involved in the network linking process.

To summarise, each linked neuron r contains a resulting weight vector vri and a

domain map with vector length adjustment factors Fd for each domain. On data recall,

the stimuli network generates domain membership factors Sd for each domain by

utilising the input vector X jn . To calculate the summed input to the linked neuron net),

the input vector is applied to the weight matrix and multiplied with the sum of all

domain stimuli multiplied by their vector length adjustments as given in equation

(4.4). With regard to figure 4.5, equation (4.4) represents stimuli induction prior to the

activation function.

If all neuron activation functions are linear the vector length correction as described

will be equivalent to the usage of a gating network with a linear combiner. But with

non-linear neuron activation functions, domain membership information has to pass

through the neuron activation function, which will affect the output of the neuron in a

The Stimuli Network 8 6

non-linear manner. Because of this, even a low membership factor multiplied with a

large weight can create a large neuron output on sensitive neurons.

4.4 Input Neuron Sensitivity

Sensitivity analysis describes methods that produce a measure to determine the

functional contribution of inputs to outputs. It is a simple method of finding the effect

an input has on the output of the network. The relationship of an input neuron to an

output neuron is found by determining the impact that a small change in the input has

on the output. If a drastic change occurs at the output, the input is considered to be

one of the key factors in producing the current activation value of the output and

therefore reasonably high in sensitivity [60-62],

Furthermore, inputs with minor but unique information can be more significant than

inputs with higher magnitude but redundant information. Inputs with unique

information are more likely to have a large effect on the overall network output and

can be defined as being reasonably high in sensitivity. Redundant input neurons are

likely to represent a low sensitivity to the output and can be subject to pruning [119].

The brute-force sensitivity analysis is largely concerned about reducing the number of

input neurons in a black-box approach. It changes input vectors within a set range to

determine the effect on the output only. Other mathematical approaches on the weight

matrixes try to identify sensitive inputs for elimination [139, 153].

Neuron sensitivity is an important factor if stimuli induction methods are used to

control individual neuron contribution. Sensitive neurons are more dynamic than less

sensitive neurons if the length of a weight vector changes. Because of this, non-

sensitive neurons represent neurons with an almost constant output and are less

affected by incoming stimuli. Non-sensitive neurons can still generate a dominant

contribution to the overall network output, even if the stimulus for the domain they

belong to is small. This can be a problem since unwanted domain contributions from

non-sensitive neurons will reduce the accuracy of domains of interest.

The Stimuli Network 87

4.5 Hidden Neuron Sensitivity

In order to control neuron outputs via the stimuli method, the summed input netj and

the activation function need to be considered as important factors. If a domain

membership expressed as Sd in (4.4) is 0% the neuron contribution to the overall

network output should be 0. This requires a non-linear neuron activation function that

will go through the point of origin (0,0) for non-linear objective functions. There are

several non-linear activation functions available that fulfil this requirement. Because

of its widespread use, the symmetrical-sigmoid function has been chosen as the

activation function throughout this thesis, as given in equation (4.5) and illustrated in

figure 4.7.

/ w ° i +<.2-i-»)~ ‘ (4-5)

Figure 4 .7 S y m m e t r i c - s ig m o id a c t iv a t io n f u n c t io n .

The summed neuron input netj plays an important role if the domain membership

stimulus is applied prior to the application of the neuron activation function. If, for

instance, netj is large e.g. netj=12, a change in domain membership from S=90% to

S=30% will change the neurons output from outj=0.999 to outj=0.946 A=5.32%.

The Stimuli Network 8 8

Consequently, large neuron inputs will not follow the domain membership in a linear

fashion as experienced with linear combiners used with gating networks. If on the

other hand the neuron input is relative small e.g. netj=1 .2 , a change in domain

membership from S=90% to S=30% will change the neurons output from outj=0.493

to outj=0.178 A=63.88%.

It can be said that with stimuli induction the neuron output is not only dependent on

the domain membership but also on the sum of all weight connections contributing to

the neuron’s input netj. Equation (4.6) and figure 4.8 and represent the neuron output

as a function of the neuron’s summed input netj and its domain membership S. Note

that domain memberships S can be expressed as a negative to reduce the output value.

= <4 '«>

Figure 4 .8 N e u r o n o u tp u t o u tj a s a f u n c t io n o f n e tj a n d d o m a in m e m b e r s h ip S .

The Stimuli Network 89

Since the neuron output outj is depending on the summed input net, and the

membership factor S, the higher netj is, the higher the non-linearity of the domain

membership factor S, as shown in figure 4.9. If the training data is normalised, for

example ±1 for a symmetrical-sigmoid activation function, large values of netj for a

neuron of a hidden layer can only be computed if large weights or many connections

are present. This form of input saturation can be found in over-trained networks or

networks with many inputs.

Figure 4 .9 N e u r o n o u tp u t o u tj a s a f u n c t io n o f p a r a m e te r i s e d n e tj a n d d o m a in m e m b e r s h ip S .

To avoid neuron saturation caused by large weights, penalty terms can be included to

reduce weights during training. To avoid neuron saturation caused by many incoming

connections, the learning rate must initially be low and can be increased or further

decreased during learning [155]. Dynamic parameter adjustments, such as weight

decay, simulated annealing or pruning, are generally associated with network

convergence and/or stability issues. But these are not the only problems, which can be

resolved or prevented by implementing extended training algorithms. The next

sections will illustrate the problem with reference to domain memberships if the

neuron saturation problem is ignored.

The Stimuli Network 90

4.6 Neuron Saturation Analysis

Applying increasing input values on the neuron and monitoring the overall network

output can measure a neuron’s sensitivity. Generally, it can be said that the higher the

weights attached to a neuron are, the higher its sensitivity. A neuron with a very high

sensitivity is most likely to suffer from saturation problems, which cause its output to

remain on activation function extremes e.g. ±1. If a neuron has a very high sensitivity

it can be stated that it contains large weight connections and therefore it has a higher

steepness towards its domain membership, as shown in figure 4.9. That means

sensitive neurons will contribute towards the overall network output even if their

domain membership is very low.

Linear domain contributions on non-linear activation functions can only be archived

by utilisation of a gating network in conjunction with a linear combiner. Stimuli

induction points are dependent on the neuron’s activation function and can only result

in a linear membership contribution if the neuron’s activation function is linear or

nearly linear. But training a neural network with a non-linear objective function

requires a non-linear activation function to achieve acceptable convergence and recall

errors.

To identity a neuron that can be declared as being saturated, the author has made the

following definition:

A neuron is saturated for a domain membership S between ±0.8 i f the area below its

parameterised activation function is equal or less than the area o f an equivalent

linear function.

In a graphical context, neurons with a netj equal or below of approximately ±2.3 are

outside the saturation range for a standard symmetrical-sigmoid function. This value

has been determined graphically by means of visual analysis of figure 4.10.

The Stimuli Network 91

The graphical approach to find netj to avoid neuron saturation, involves a

parameterised neuron activation function netj and a reference linear function. In figure

4.10, several parameterised neuron output functions for different netj are printed with

the domain membership S on the x-axis. For netj=2.3, the area below the curve is

almost equal to the area below the linear function. An exact figure can be obtained by

definite integration of equation (4.6) between 0 and 0.8.

Figure 4.10 N e u r o n o u tp u t o u tj f o r to d e f in e p o in t o f s a tu r a t io n .

Determine netj, where the area below the curves of f(s) and f(X) are equal.

with : f (S) =
1 + e a n d f (x) = x (4.7)

0.8 2 0 8

Area = | -------;----— - \ d S - \x -dx =J i , -(«*', s> J0 1 + £ 0

0 . 82 = 0.32
2

(4.8)

The Stimuli Network 92

The solution of (4.8) has been obtained with help of figure 4.10 and is:

Area (S, net j) s +

f

In
f 1 Ì
------+ e ne‘‘
n et,

■ (l - e ' Sne,‘)
_ \ J /) _

0.32 (4.9)

With S = 0 and netj = 0, Area = 0, leaving the calculation of netj if S=0.8. Because of

the complexity of the equation, equation (4.9) has been plotted and an iterative

approach has been chosen to find a solution for netj with S = 0.8 and Area = 0.32. The

iterative process resulted in netj = 2.25565.

With a definition of a neuron saturation point and a definite figure for netj, in

conjunction with the symmetric-sigmoid activation function, a more precise penalty

term based not on the individual weights but based on the actual neuron input netj can

be derived. This penalty term, applied to a learning parameter i.e. learning rate, should

prevent netj exceeding 2.25565 by manipulation of weight updates.

Most weight decay regulators depend only on the network parameters such as weights

and number of connections. They are generally avoiding that any single weight will

not exceed a certain determined value and do not take the entire neuron input netj into

account.

Supervised backpropagation with batch weight updates generally uses a combination

of training factor and momentum to avoid oscillation, given in equation (4.11). There

are algorithms such as simulated annealing and weight decay available to avoid large

weights but most algorithms do not take the total neuron activation into account.

Equations (4.10) to (4.14) show how the neuron input netj(t+l) is affected by a weight

update Awj compared to its previous input netj(t). It can be seen from equation (4.14)

that if netj max(t) and the input vector x for the largest activation are known, the neuron

input change Anetj, which would arise after the weight update, can be computed. With

the information on what the largest neuron activation will be prior to updating of the

neuron’s weights, a penalty term can be applied to keep the neuron away from

saturation.

The Stimuli Network 93

Consequently, neuron saturation can be avoided if the maximum neuron saturation

netj max and the sum of its associated input vector are stored for each neuron after

completion of an entire training epoch. After completion of the epoch, this stored

information on a per neuron basis can be used to determine the penalty term x to be

applied on the weight update prior to updating of the weights. This process is

graphically presented in figure 4.11.

netj (t + 1) = net / (t) + A net j (t +1) (4.10)

/
netj(t) = Y,Wj„(t)- x"

n=1
(4.11)

netj (t + 1) = £ (wJn (t) + AWj (t + 1)) • x»
«=1

(4.12)

1 /
netj (t + 1) = Y j wjn(0 ' * + 1) '

«=1 «=1
(4.13)

/
A net j(t + 1) = A w(t + 1)

«=i
(4.14)

Figure 4.11 Penalty term to adjust the learning factor during training to avoid neuron saturation.

A constant of 0.1 has been added to the penalty function. Without this constant the

weight update can reach 0 and the training will stagnate.

The Stimuli Network 94

The penalty function shown in figure 4.11 has been developed with the requirement

that the penalty factor % should be 1 .0, leaving the backpropagation algorithm

unchanged for small neuron activations. For large neuron activations, the penalty

factor x should reduce to lower weight updates determined by the batch

backpropagation algorithm. For large input activations close to 2.25 the penalty factor

X should be close to 0.0001, avoiding a further increase of the activation. With all

these considerations, equation (4.15) has been developed to represent a suitable

penalty function.

+ 0.1 (4.15)

With e as the function form factor, where f(netj)

be calculated as shown in (4.16).

f 2 . 2 5 s „ ^£ = ---------7------------r - 2 . 2 5
^ln(O.OOOl)

After calculation of the penalty term, neuron weights can be updated with the

modified update formula as shown in equation (4.17).

A w(n + 1) = %[ri (<5yo ,) + aAw{n)) (4.17)

= 0.0001 for netj = 2.25, which can

= 16.33703 (4.16)

With the introduction of the penalty term, neurons stay dynamic and are able to

respond to different levels of domain membership. It should be noted that neuron

saturation could be prevented by an appropriate input vector normalisation.

This normalisation should not just be restricted to its dynamic range e.g. ±0.9 or ±0.8,

but also the removal of any constants, which can be determined by calculation of the

average mean. With the subtraction of the mean and division of all input vectors by

the largest number from all input vectors in the training set (scaling factor), network

dynamics can be greatly improved.

The Stimuli Network 95

On denormalisation, the mean and the scaling factor can be reapplied to the network

output. With the penalty function from figure 4.11, the neurons cannot saturate at their

input activation and therefore stay more dynamic than neurons with a saturated input.

4.7 Numerical Experiment: Linking Saturated and Unsaturated

Networks

To highlight the effects and the associated problems with neuron saturation, a

numerical example, based on a mathematical problem, has been carried out. Two

networks with frozen weights on the output layer have been trained with 400 data

points from two different domains A and B. Each of the networks was trained with

data of one domain only. Their topologies are two input neurons, two hidden neurons

and one output neuron to form a fully connected 2 :2:1 backpropagation network.

After training, a comparison was made between combining both networks with a

gating network and with a stimuli network. The purpose of the comparison is to

analyse differences between the linearly combined output of a gating network with the

output of a set of linked networks controlled by a stimuli network with unsaturated

and saturated neurons.

Because neuron saturation problems are examined, comparisons with linearly

combined networks with gate and linked networks with stimuli have been performed

each with unsaturated and saturated neurons. Unsaturated neurons can be found in

networks trained with the penalty function and saturated neurons in networks without

penalty function, as discussed in section 4.6.

To create training data of different domains, the input space has been divided into two

sections, one for domain A and one for domain B as shown in figure 4.12. The

network trained with data of domain A is limited to the input space of domain A and

will be referred to as network A. The network trained with data of domain B is limited

to the input space of domain B and will be referred to as network B. With the

separation of the input space into A and B it is possible to analyse the impact of

The Stimuli Network 96

different kinds of assembly methods (linearly combined or linked) of networks trained

with different input spaces.

The input space division into domains A and B is illustrated in figure 4.12, where

their corresponding domain memberships are shown as triangular markers (A) and

square markers (*) for domains A and B respectively. All input vectors Va = [xi X2]

belonging to domain A are located in the top left hand corner and input vectors for

domain B vb = [xi X2] are located in the bottom right hand corner.

The dividing line in figure 4.12, which separates domain A from B, does not represent

the actual domain partitioning. This line divides the training data sets into two files

used for training. Because the training data used resembles two domains, it has been

physically split into two files, allowing individual network retraining in cases of data

changes.

Furthermore, for the purpose of investigation of neuron saturation, it is necessary to

explore the whole input space range of ± 1 , because the activation function used for

each neuron is the symmetric sigmoid function.

Figure 4.12 Training data for domain A (A) and B (*) .

The Stimuli Network 97

4.7.1 Domain Memberships

In this thesis, a single network trained to perform on one partition of the input space

only, represents a domain. The domain membership to a domain is defined as the

weighting factor associated to an input vector to limit its contribution to the overall

network output. The domain transition is a function of how domain memberships

change, plotted over the entire input space.

Although the data has been split into two domains for network training, the domain

transition chosen for the linear combiner used in this experiment is not abrupt. Instead

each domain transition function gradually changes from domain A to domain B and

vice versa on a linear scale as shown in figure 4.13.

For example, the further the input vector coordinates Xi and X2 located in domain A

move towards domain B, the lower the domain membership of A and the higher the

domain membership of B. Let point pi(0.45, 0.35) have a domain membership of 0.3

of A and 0.7 of B, if moved towards domain B to become point P2, then point p2(0.5,

0.35) has a domain membership of 0.2 to A and 0.8 to B. For any point in this

example, the sum of both domain memberships is 1 .

Figure 4.13 Input vector domain membership distribution of domains A and B

The Stimuli Network 98

To present more in depth information about the membership function shown in figure

4.13, the function has been pseudo programmatically expressed with the conditions

outlined in equation (4.18).

Membership o f domain A and B as a function o f x / and xv (4.18)

i f ((xr x,)>0.25){

Membership A = 1

Membership B = 0

} else i f ((x:-xi)<-0.25)){

Membership A = 0

Membership B = 1

} else {

Membership A = 0.5+(0.5*(xj-Xi)/0.25)

Membership B = 1-A

}

The objective of this linear transition between domains is to emphasize the impact a

linear combiner has on the combined output of two already trained networks. Thus

permitting comparison between the outputs of a linearly combined and a linked set of

networks, without taking generalisation or recall accuracy into account. For this

reason, all 400 data points have been used for training and have not been split into

training and testing data sets.

4.7.2 Network Topologies

To keep all detailed calculations small and manageable, uncomplicated networks have

been used to concentrate on the gating and linking processes. Thus, for the training of

each domain, simple 2 :2:1 backpropagation networks with frozen weights set to 1.0 at

the output layer and symmetrical sigmoid activation function (see figure 4.7) have

been used, as illustrated in figure 4.14. The only purpose of the networks is to supply

weight matrixes with unsaturated and saturated neurons so that linear combination

using a gating network can be compared with linking using a stimulus network.

The Stimuli Network 99

Figure 4.14 Network topology with its frozen output layer.

The network training parameters applied for all networks are presented in table 4.1.

Note that the weight initialisation is set to ±2.6, which is approximately the maximum

netj for a single neuron. This rather large starting point increases the probability of

large weights for the creation of saturated neurons if no restrictive measures are taken

during training.

To avoid neuron saturation for the first set of weight matrixes, the penalty function

from section 4.6 has been exercised during training. The resulting weight matrixes

after training of both networks for domain A and B with unsaturated neurons are

shown in tables 4.2 and 4.3.

Table 4.1 The parameters of the neural networks used in this section.

Description Value
Input Neurons 2
Hidden Neurons 2
Output neurons 1
Activation Function symmetric sigmoid
Initialisation ±2.6
Learning Factor 0.1
Momentum 0.5
Number of training patterns 400

The Stimuli Network 1 0 0

Table 4.2 Weight vectors of the hidden layer of domain A
trained with penalty function.

Vector Vector
Reference wn Wn W1B Length

V| -0.201919 0.103184 -0.68289 0.7195

V2 -0.62344 -0.364037 -1.166956 1.3722

Table 4.3 Weight vectors of the hidden layer of domain B
trained with penalty function.

Vector Vector
Reference Wn Wl2 Win Length

v3 -0.195099 -0.191644 -0.372048 0.4617

V4 0.306013 -0.498975 1.265225 1.3941

To create saturated neurons, in the second set of weight matrixes, the penalty function

from section 4.6 has not been exercised during training. Therefore, the resulting

weight matrixes after training of both networks for domains A and B with saturated

neurons are much higher in value and are shown in tables 4.4 and 4.5.

Table 4.4 Weight vectors of the hidden layer of domain A
trained without penalty term.

Vector Vector
Reference wn W,2 Win Length

v5 -6.6214 9.5011 -1.6889 11.7032

V6 7.9496 -2.061 -2.3524 8.5427

Table 4.5 Weight vectors of the hidden layer of domain B
trained without penalty term.

Vector Vector
Reference W|| Wl2 w1B Length

v? 21.349 -3.595 -6.9314 22.7325

Vs 2.2002 4.0911 -3.1837 5.6315

The Stimuli Network 101

4.7.3 Non-Saturated Neurons

Neuron saturation in a neural network reduces the individual neurons dynamic

characteristics because saturated neurons supply the overall network output with a

nearly constant contribution. Such constant contributions can be found on over-

trained networks, which have characteristics of erratic behaviour if unseen input

vectors for generalisation or more precisely for inter or extrapolation are presented.

The following analysis has been comparing how the overall output of combined

networks with unsaturated neurons changes if saturated neurons are used. The output

for this comparison has been produced with linearly combined and linked networks.

For the purpose of comparing output changes, the individual network outputs are

plotted with their corresponding input space coordinates in figure 4.15. This graph has

been used as a reference for comparing combined network outputs created by a gating

network and a stimuli network for saturated and unsaturated neurons.

a Domain A

m Domain B

. out
0.6

0.4

m * » JP*

-0.5

a * * a
- 0.2

X,
0.5

‘AAftkAA

- 0.6 -

Figure 4.15 Network output for domain A (A) and B (■) with small weights.

Besides highlighting the problems of neuron saturation, changes at the output of

combined networks will determine the suitability of a specific combination method.

Figure 4.15 shows the problem of domain separation, where each domain only

responds within the boundaries of its own training data. Such separation issues cannot

The Stimuli Network 102

be avoided in cases where data is received from distinct sources, operating in different

input and output spaces. With the help of network combination methods, individual

network responses can be combined where contributions of both domains are

valuable. This is generally the case where clear domain boundaries in the input space

exist or input vectors are reasonably close to several domains.

In this numerical example, such an area, where both domain responses are important,

has been introduced in section 4.7.1 and figure 4.13.

4.7.3.1 Linear Combined Output

A linear combined network assembly will apply the received input vector [xj X2] to all

network inputs in the assembly and additionally to the gating network, which is

regulating the linear combiner as shown in figure 4.4. The network outputs are then

weighted for each domain as graphically illustrated in figure 4.13 and summed to

construct the combined network output.

For reasons of simplification the domain transition function shown in figure 4.13 is

representing the gating network and the linear combiner as one unit. This eliminates

the need for training of a domain classifier, thus permitting well-defined domain

weighting for the network combination analysis.

An extract of five data points from the training set is shown in table 4.6. It includes

domain memberships calculated with equation (4.18), individual network outputs and

the linearly combined output.

Table 4.6 Calculation of the linearly combined network output for a selection of 5 data points.

Input x, Input x2 Membership
domain A

Membership
domain B

NN output
domain A

NN output
domain B

Combined
output

-0.21668 0.59406 1 0 -0.39488 0.10198 -0.39486
0.244674 0.38550 0.7816 0.21833 -0.44466 0.13725 -0.31761
-0.08546 -0.05403 0.56286 0.43713 -0.38924 0.19223 -0.13506
-0.87317 -0.99972 0.24689 0.75310 -0.20905 0.30459 0.177781
0.73945 -0.64336 0 1 -0.47138 0.25678 0.256780

The Stimuli Network 104

bars are giving an indication of how much and into which direction a data point has

moved. The linked output from figure 4.16 has been compared against the individual

network output from figure 4.15 and the SSE calculated as presented in table 4.7.

Table 4.7 SSE of individual domains.

Domain Sum Square Error (SSE)
A 1.6560
B 1.4840

4.7.3.2 Linked Output

Equally to the gating network in the linearly combined output, the stimuli network for

the linked output represents a classification network utilising the same classification

function shown in figure 4.13 and equation (4.18). The most important distinction

between the stimuli network and the gating network is, that the stimuli network

controls individual neuron outputs instead of entire network outputs, as it is the case

with gating networks.

For linking of neurons, vector angle comparisons must be made to find suitable

linking candidates. Because this analysis is utilising very small networks, several

training runs were required to find neurons where the angle difference was less than

10°. The value of 10° was acquired from figure 3.12. The weight matrixes found are

shown in tables 4.2 and 4.3 and their corresponding angle differences in table 4.8.

Table 4.8 Angles between weight vectors in ascending order.

Vector pair Angle between vectors

v2, v3 9.147°
V |, V3 34.54°
V2, V4 140.95°
V i, V4 166.97°

The Stimuli Network 105

An acceptance angle of 10° has been chosen on the basis that a reasonable amount of

recall accuracy is maintained so that a combined network output can be compared

with the individual network outputs from figure 4.15. The angle difference between

vectors \ 2 and V3 is below the acceptance angle of 10° and therefore can be linked as

outlined in section 2.6 and equation (2.49).

The resulting vector vri after linking is presented in table 4.9 with its relative errors in

table 4.10. Please note that the vector length correction factor F) utilised for domain A

is always 1 and F2 utilised for domain B is 0.33224.

Table 4.9 Results of the linking of two
below 10°.

neurons with acceptance angles

Original vector references
Resulting vector vrl

«'ll «■lZ «'IB Factor F2

v3 -0.62391 0.3645 -1.16656 0.33224

Table 4.10 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors

w'n w ’ i z W ' ib f (« 'u >« ' , i i) ffiviz, w'12) fh V lB .w 'lB)

v 'z -0.6239 -0.3645 -1.16656 0.08% 0.13% -0.03%

v ’3 -0.20728 -0 . 1 2 1 1 -0.38757 6.25% -36.81% 4.17%

Table 4.10 shows one of the characteristics of equation (2.49), which is that the

largest error should be with the smallest weight and the smallest errors with the

largest weight.

In section 4.2 two different points of stimuli induction to a linked neuron were

introduced and equations (4.1) to (4.4) were derived for stimuli induction prior to

activation function. Having determined the output of a linked neuron with stimuli

induction prior to the activation function in equation (4.19), the change of the stimuli

induction point after the activation function is easy. It involves simply moving the

The Stimuli Network 106

summed product of stimuli Sd and length correction factors Fd outside the activation

function as shown in equation (4.20).

out) = act ■t (S d -Fd) (4.19)

out) = act[x(fl • v rl]- £ (Sd ■ Fd) (4.20)
d = 1

Equations (4.19) and (4.20) define the neuron outputs in a linked network for two

different stimuli induction points. To visualise and verify the appropriateness of both

equations, figure 4.17 shows a corresponding diagram in more detail as previously

shown in section 4.2, figure 4.5.

Figure 4 .1 7 L in k e d n e u r a l n e tw o r k f o r i l l u s t r a t io n o f s t im u l i in d u c t io n p o in t s .

The Stimuli Network 107

4.7.3.3 Stimuli Induction prior to Activation Function

This section is demonstrating the calculation details of the neural network with three

neurons, as shown in figure 4.17. Because vectors V2 and V3 have been linked, vectors

vi, vir and V4 correspond to the neurons in figure 4.17. Therefore, the network consists

of one linked (v)r) and two non-linked neurons (vi and v4). Stimuli induction is prior

to the activation function and all detailed calculations are referring to the second point

(0.24467, 0.38550) from table 4.6 and are presented for each neuron at different

stages, as shown in table 4.11.

Table 4.11 N e t w o r k o u t p u t w i th s t im u l i i n d u c t io n p r io r to a c t i v a t io n f u n c t io n .

ref in, in2 netj S netj ■ S outj netk Output
V) 0.24467 0.38550 -0.6925 0.78166 -0.5413 -0.2642 ^
Vri 0.24467 0.38550 -1.4597 0.85420 -1.2469 -0.5535 >-0.6931 >-0.3333
V4 0.24467 0.38550 1.1477 0.21833 0.2506 0.1246 '

Examination of the top row in table 4.11 for a non-linked neuron (vi) with 100%

membership to domain A yield the following calculations:

netjvl = (0.24467 •-0.2019)+ (0.38855 • 0.10318) +-0.6829 =-0.6925

Svl = 1.0 • 0.7816 = 0.7816

= -0.5413netiVl • Svl =-0.6925-0.78166

outjVl = (2/(1 +EXP(0.54132))-1) -0.2642

(4.21)

(4.22)

(4.23)

(4.24)

Examination of the second row in table 4.10 for a linked neuron (vri) with 100%

membership to domain A and 33.22% to domain B, with factor Fi = 1 from section

4.3 and F2 from figure 4.8, yield the following calculations:

netjvrl= (0.24467 • -0.6239) + (0.38855 •

Svrl = 1.0-0.7816 + 0.3322-0.2183

net" 1 ■ Svrl = -1.4597 • 0.8542

outjvl = (2/(1+EXP(1.2469))-!)

0.3645) + -1.1666) =-1.4597 (4.25)

= 0.8542 (4.26)

= -1.2469 (4.27)

= -0.5535 (4.28)

The Stimuli Network 108

Examination of the last row in table 4.10 for a non-linked neuron (V4) with 33.22%

membership to domain B yield the following calculations:

net/ 4 = (0.24467 • 0.3060) + (0.38855 ■ -0.49898) + -1.2652) = 1.1477 (4.29)

Similar output characteristics of the linked network in figure 4.18 and of the linearly

combined network in figure 4.16 can be observed. The reason for this is, that small

weights are causing linear operation of the linked networks, as discussed in section

4.6 and presented in figure 4.10. On comparison of the SSE’s shown in tables 4.7 and

4.12, only a slight reduction in domain A is noticeable, which is a result of a reduced

movement of domain A towards domain B.

a Domain A 0.6°Ut

Sv4 = 1.0-0.2183

netjv4 -Sv4 =1.14774-0.21833

out/4= (2/(l+EXP(-0.25059))-!)

= 0.2183 (4.30)

= 0.2506 (4.31)

= 0.1246 (4.32)

Domain B

0.4

- 0.6

Figure 4.18 Linked output for domain A (A) and B (■) with stimuli prior to activation function.

Above, error bars are denoting the directional change of the neuron outputs, whilst the

input Xi remain the same for all figures showing such error bars. Horizontal dashes

represent the individual network outputs and the markers represent the current.

The Stimuli Network 110

If figures 4.16 and 4.19 are compared, similar characteristics in the change of output

can be observed. Stimuli induction prior or after the activation function does not differ

largely when unsaturated neurons are present. The almost identical SSE in table 4.14

compared to tables 4.7 and 4.12, supports this statement.

Table 4.14 SSE of linked domains with stimuli induction
after activation function.

Domain Sum Square Error (SSE)
A 1.6035
B 1.5272

A SSE comparison between the three different network combination methods in

figure 4.20 shows little differences. Linked networks behave similar to linearly

combined networks if no neuron saturation is present.

SSE
2.0

1.6560
1.6035

Domain A

1.4840 1.4890

□ Linear Combined
E Linked Prior Activation
B Linked A fter Activation

1.5272

Domain B

Figure 4.20 Comparison of SSE between different types of network assembles.

In the following sections, saturated neurons will be analysed and a repeat of all tests,

which have been applied to non-saturated neurons, is made to saturated neurons to

draw attention to the differences between stimuli induction prior and after neuron

activation function.

The Stimuli Network 112

4.7.4.1 Linear Combined Output

If networks used in an assembly are investigated for their individual performance,

linear combiners are generally suitable for domain interaction as shown in section

4.3.7.1. But if networks in an assembly are suffering from over training or high

sensitivity caused by neuron saturation, linear combiners may not sufficiently

amalgamate individual network outputs. This section is investigating the effects of

neuron saturation in a linearly combined network assembly.

Since the training input vectors remained unchanged but outputs have been changed,

domain membership calculations remain unaffected. Because of this, individual

network contributions are multiplied by the same magnitude prior to summation,

computing the overall output with the same weighting factors as in section 4.7.3.1.

Figure 4.22 shows slight changes in the linearly combined output for domains A and

B, observable by the error bars. These changes do not show as much knowledge

domain interaction, if compared to figure 4.16. The reasons for this are that each

network outputs operate in their own input space and are within extremes of the

activation function.

out
a Domain A 1
« Domain B

0.8

-1 -

Figure 4.22 Linear combined output for domain A (A) and B (*).

The Stimuli Network 113

If an input vector has membership of both domains, the output of the domain in which

it was present during training will be weighted whilst the output of the remaining

domain is small. Thus only the network with matching domain can contribute.

Because of this, satisfactory domain interaction cannot be achieved by linear

combination. With this, the calculation of the SSE between figure 4.21 and 4.22 for

both domains is relatively small, as shown in table 4.15.

Table 4.15 SSE between individual and linearly
combined domains.

Domain Sum Square Error (SSE)
A 0.4332
B 0.2880

4.7.4.2 Linked Output

To find suitable neurons with vector angle differences of less than 10° for linking,

several training runs similar to section 4.7.3.2 have been made. The weight matrixes

found are shown in tables 4.4 and 4.5 and their corresponding angle differences in

table 4.16.

Table 4.16 Angles between weight vectors in ascending order.

Vector pair Angle between vectors

V j , v 7 128.01°
V5, v 8 63.24°
V s, v 7 5.078°
V s, Vg 69.88°

An acceptance angle of 10° has been chosen, for the reasons mentioned in section

4.7.3.2. The angle difference between vectors V6 and V7 is below the acceptance angle

of 10° and therefore can be linked as outlined in section 2.6 and equation (2.49).

The Stimuli Network 114

The resulting vector vri after linking is presented in table 4.17 with its relative errors

in table 4.18. Please note that the vector length correction factor Fi utilised for domain

A is always 1 and F2 utilised for domain B is 2.6710.

Table 4.17 Results of the linking of two neurons with acceptance angles
below 10°.

Resulting vector vrl
w„ W 12 W , B Factor F2

v6, v 7 7 . 9 8 6 8 - 1 . 3 6 9 1 - 2 . 6 0 2 1 2 . 6 7 1 0

Table 4.18 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors w'u w'12 w',B hwn.w'n) f(w12> w',2) f(W]B, w ' ib)

v'6 7.9868 -1.3691 -2.6021 0.47% -33.57 % 10.62%

v'7 21.3328 -3.6567 -6.9502 -0.08% 1.70% 0.27%

Table 4.18 shows one of the main characteristics of equation (2.49), which is that the

largest error should be with the smallest weight and the smallest errors with the

largest weight.

4.7.4.3 Stimuli Induction prior to Activation Function

In this section both neural networks are linked and controlled by a stimuli network by

utilising the domain membership function from figure 4.13. This section is equivalent

to section 4.7.3.3 with the only difference being the network weights used are from

tables 4.4 and 4.5.

The calculation for stimuli induction prior to the activation function was given in

equation (4.19). All detailed calculations in equations (4.21) to (4.32) are applicable

to this section if the corresponding parameters from table 4.19 are substituted. These

are minor changes to equations (4.21) to (4.32) and further calculation details are

omitted and the results shown in table 4.19.

The Stimuli Network 116

Table 4.20 SSE of linked domains with stimuli induction
prior to activation function.

Domain Sum Square Error (SSE)
A 0.9394
B 0.6997

4.7.4.4 Stimuli Induction after Activation Function

On observation of the error bars in figure 4.24, a strong shift of domain B towards

domain A can be seen. This is caused by neuron saturation combined with induction

of the stimuli after the activation function, which has only a scaling effect on the

totally saturated output. This loss of information has resulted in the display of the

sigmoid function for domain A. The saturated neurons of domain B combined with

the stimuli induction after the neuron activation function has caused a stark domain

interaction between domain A and B in quadrant 1, shifting the output of network B to

domain A.

out
a Domain A 1 -

Figure 4.24 Linked output for domain A (A) and B (■) networks.

The Stimuli Network Ü 7

The large SSE shown in table 4.21 indicates a very strong interaction between

networks A and B to such an extent that network B has almost the same output as

network A in quadrant 1.

Table 4.21 SSE of linked domains with stimuli induction
after activation function.

Domain Sum Square Error (SSE)
A 1.3336
B 4.2573

A SSE comparison between the three different network combination methods in

figure 4.25 shows a large difference for saturated neurons. Therefore it can be stated

that the output of a linked network is affected by saturated neurons more severely if

the stimuli injection is located after the activation function.

SSE
4.5 -

4.0

3.5 j

3.0

2.5

2,0

1.3336

1.0

0.5

0.0
Domain A

□ Linear Combined
B Linked Prior Activation
B Linked After Activation

4.2573

Domain B

Figure 4.25 Comparison of SSE between different types of network assembles.

The Stimuli Network

4.8 Conclusion

For the purpose of activating the most appropriate domain experts a stimulus for each

domain has been introduced. The domain stimuli, generated by a stimuli network,

have been used to control the outputs of individual experts in order to generate the

overall network output. One of the major differences of existing multiple expert (ME)

systems is that the classification results, generated by the stimuli network, are used to

control individual neurons in each expert, instead of the output of the entire network,

as shown in figure 4.3. The classification from the stimuli network, referred to as the

stimuli factor S, has been used in conjunction with the weight vector length correction

factor F of linked neurons to control the contribution of neurons to the entire network

output.

Because classifiers networks that produce stimuli act on neurons internally, the

combined input netj of a neuron should not exceed 2.3, as shown in section 4.6. This

is because the summed neuron input netj is multiplied with the stimulus factor S and if

the stimulus S is small the neuron contribution should be reduced, which is not the

case if netj is very large. Neurons with a large netj have been defined in section 4.5 as

saturated and neuron saturation should be avoided if the linked neurons should

operate satisfactory.

The numerical experiment in section 4.7 concludes that the presents of saturated

neurons has been the cause for interaction between two domains even if the input

vector originated from one domain only. This is not desirable since the contribution of

each domain expert should be controllable by the stimuli network, which is not the

case if saturated neurons are present. Furthermore, the neuron output is less affected

by saturation if the stimuli induction point is located after the activation function. But

outputs of neurons that were not saturated had only a slight variation in the recall and

generalisation errors. Since neuron saturation cannot be prevented in all cases, stimuli

should be applied prior to the activation function to reduce the effects of saturation.

Chapter 5

Linking of Neural Network Weight Matrixes

5.1 Introduction

This chapter will show how neural networks can be linked to alter their recall and

generalisation capabilities. In the first example, two neural networks will be trained

with data describing a 3D path. This example is using the same number of training

patterns as the number of hidden neurons, causing the network to suffer from

memorisation or overfitting [38, 138]. In the subsequent examples, the training and

testing patterns are split into quadrants to investigate the impact of linking to

interpolation and extrapolation [161, 169],

The next section will extend the framework of neuron linking to the linking entire

trained weight matrixes, each trained for a particular knowledge domain, to create a

single entity. This entity will consist of one or more partially linked matrixes to share

common information between knowledge domains. Furthermore, to categorise the

domain a possible knowledge request belongs to, a classification network is used

similar to existing structures of mixtures of expert systems [14, 31, 43, 48, 49], Since

the linked network structure will generate the overall network output, conventional

network combination methods as used in mixtures of experts, such as switching,

averaging or voting, differ substantially to a linked network [156-158].

Linking of Neural Network Weieht Matrixes 120

Hidden neurons in linked networks differ in their composition and functionality to

regular hidden neurons used in ordinary neural networks. Regular hidden neurons

consist only of a weight matrix, a summing input and an activation function [11].

Linked hidden neurons additionally contain a vector length adjustment factor F that

represents information about the degree of membership towards a particular

knowledge domain. On data recall, the internal activation of a linked neuron depends

on the input vector, the weight vector and their membership to the knowledge domain

in question.

Commonly, a classification network is generating the knowledge domain membership

categorisation [106, 159, 160], This classification network computes the knowledge

domain membership from the input space of the input vector. While a gating network

acts generally on the outputs of multiple experts, the classification network for a

linked network acts on the hidden neurons directly. The difference is that gating

networks operate on experts as a whole, whereas in the case of a linked network, the

individual neurons compute their output depending on the domain membership S and

the vector length adjustment factor F.

Because of the influence of the classification network on the neurons an analogy to

the terms used in psychology can be introduced. In psychology, respondent behaviour

describes behaviour that occurs as an automatic response to some stimulus [124].

Since in a linked network different neurons are activated for different domain

requests, the network response is depending on all stimuli received. For that reason,

the classification network will be referred to as the stimuli network, and the outputs of

the stimuli network will be referred to as the stimuli.

5.2 The Principles of Linking Sub-Networks

The linking of weight matrixes is bringing a variety of advantages, for example,

reduced training time, weight matrix reusability, distributed training on different

locations or computers, parallel training by divide-and-conquer of the training data,

Linking of Neural Network Weight Matrixes 121

domain knowledge sharing and improved generalisation caused by the implicit

mixture of experts strategy. Once a weight matrix contains knowledge it can be added

to an existing matrix without any re-training. Therefore, knowledge can be reused by

induction into a system without the need of the original training data, avoiding re-

training and associated issued such as training data preparation.

The linking of entire weight matrixes demonstrates the possibility of combining pre-

trained matrixes with newly trained matrixes as shown in figure 5.1. Pre-trained

matrixes could have been purchased from third parties or taken out from an existing

repository.

Figure 5.1 Linking trained weights with pre-trained weights from library.

Linking of trained network matrixes will allow integrating knowledge from different

sources into one weight matrix without the need for the training data. With linking,

pre-trained weight matrixes will become available for different problem domains

without the need for data preparation, network training and testing. It will be much

easier to build data models on information about different areas of interest, without

having to comb through masses of data for the purpose of creating training patterns

containing all the portions of interest. Instead of consolidating the training data,

separate networks can be trained on independent sets of training data and

subsequently combined via linking.

Databases are used to collect data subjects of interest e.g. company performance

figures or weather information, but this can be converted into a collection of pre-

trained neural network weight matrixes that can store similar information about the

Linking of Neural Network Weight Matrixes 122

knowledge domain, see figure 5.2. The user of a pre-trained weight matrix needs to

keep in mind for which purpose a certain weight matrix has been created and for

which functionality it was optimised. If for example two weight matrixes of two

different domains are to be linked for the purpose of interpolation, both matrixes

should have been trained and tested for optimal performance on generalisation for a

defined input space. Once the individual networks are linked, the combined network

is able to cover the combined input space of each individual network with confidence.

Figure 5.2 Similar knowledge contained in a database or in a weight matrix.

Further extension of the analogy of C-based programming languages will bring us

into the more complex field of memory maps, which can be compared with the input

space for which a weight matrix has been tested and found appropriate for its purpose.

If a C-based programming language is supplied with a library of functions, it needs to

have an associated memory map to locate the point of entry, as presented in figure 5.3

[1-3]. A memory map is a guide for locating where a certain function can be found in

memory. The equivalent of a memory map in C-programming is the input space of a

weight matrix for neural networks. In C the memory map defines where a function

can be found, whereby a description of the tested input space of a weight matrix

outlines where reliable knowledge can be found. In order to locate reliable knowledge

in a weight matrix the associated input space is required, this is referred to as a

knowledge domain map (KDM) in this thesis and is shown in figure 5.4.

Linking of Neural Network Weight Matrixes 123

Figure 5.3 In C-based languages use memory maps to locate functions.

Identification of knowledge in a training data set can be achieved via an input space

analysis. Such an analysis is basically a search for clusters within the input space to

identify areas of interest where a high data density exists. Areas with high data

density are higher in recall confidence than areas with sparse data density. Self

Organising Maps (SOM) [77] or Principal Component Analysis (PCA) [37] are the

two most common methods to find such clusters of high data density. Both are

iterative dimension reduction methods, which are based on data observations.

Figure 5.4 A Knowledge Domain Map locates areas of knowledge in a weight matrix.

Linking of Neural Network Weight Matrixes 124

5.3 Linking Sub-Networks

The linking process will combine two or more trained and fully connected sub-

networks into one large network. This will be accomplished by comparing hidden

neuron vectors of each sub-network or knowledge domain. If two or more similar

vectors have been found, the neuron linking process combines them to create a single

linked hidden neuron. The weight vectors of the resulting hidden neuron will be

calculated as specified in section 2.6 and chapter 3. These resulting hidden neurons

will build links between the sub-networks or knowledge domains and will be shared

by data requests for a particular domain.

In order to retain the accuracy of each knowledge base, a unique number, referred to

as a stimulus code, will be assigned to all hidden neurons. This number is used to tag

every hidden neuron in each knowledge domain prior to linking. If two or more

hidden neurons of different knowledge domains are linked, the resulting neuron will

carry both stimuli codes, one from each knowledge domain. The stimuli code is used

to identify the appropriate vector length adjustment factor to be utilised on data recall.

All hidden neurons will carry a code for every knowledge domain involved in the

linking process. Neurons, which do not satisfy the acceptance angle constraint on

linking from chapter 3, will not contribute to the domain they were linked to. Such

neurons will still carry a stimuli code reference to the domain linked to, but the

contribution to the output on data recall will be zero.

If an input vector of a particular problem domain is applied to a linked network for

data recall, a process of activating hidden neurons to contribute to the domain in

question is required. This has been achieved by utilising a stimuli network to classify

the input space of the incoming vector to the input layer and produce one or more

stimuli. Only neurons, which are contributing to the stimulus categories generated by

the stimuli network, will be contributing in the feed forward calculation of the linked

network to produce the overall network output.

Linking of Neural Network Weight Matrixes 125

5.3.1 The Neural Network Linking Process

The neural network linking process will combine two or more trained and fully

connected neural networks into one large network. The linking process can be split

into five major steps:

1) Training of sub-networks with data from different knowledge domains.

2) Identification of all hidden neurons that satisfy the acceptance angle constraint

from both sub-networks involved.

3) Calculation of the resulting vectors vri for each group of linked hidden neurons.

4) Tagging all hidden neurons with a stimulus code.

5) Training of a stimuli network, which will be used to produce the input vector

classification stimuli for the linked network.

5.3.2 Training Sub-Networks

For the purpose of linking, two 2:10:1 neural networks A and B have been trained

with the standard backpropagation algorithm. The training data used for each of the

networks describes an arbitrary path in a 3 dimensional space. The testing data used to

calculate the generalisation error of each of the networks were data points chosen in-

between training data points plus 10% noise to avoid direct linear relationship to the

training data. Figure 5.5 portrays two 3D functions A and B used to train both

networks A and B respectively. Data points used for training are shown as filled

markers (suffix: tm) and test data points as empty markers (suffix: gen). In order to

use a symmetric sigmoid activation function, the weights connecting the hidden layer

to the output layer have been set to 1 and frozen in the sense that they are not adjusted

during training, permitting simplified linking without taking the weights connecting

the hidden layer to the output layer into consideration, as mentioned in section 3.3.

The parameters of the networks used are given in table 5.1.

To emphasise the problem with generalisation for over-trained networks, only 10 data

points per function have been used to train the 2:10:1 networks. The reason for using

Linking of Neural Network Weight Matrixes 126

the same number of training patterns, as there are hidden neurons, is to cause a direct

mapping of the training data into the hidden layer. With direct mapping, the network

is effectively learning the input data as a lookup table and will not be able to

generalise satisfactory, as it is the case with over-trained neural networks.

Table 5.1 The parameters of the neural networks used in this section.

Description Value (for each network)
Input Neurons 2
Hidden Neurons 10
Output neurons 1
Activation Function symmetric sigmoid
Initialisation ±0.7
Learning Factor 0.3
Momentum 0.5
Number of training patterns 10
Number of testing patterns 9 per data set

Figure 5.5 3D plot of the training and testing data for networks A and B.

Linking of Neural Network Weight Matrixes 127

During the course of training, the training SSEtm and testing SSEgen errors have been

recorded as illustrated in figure 5.6.

1 50k 100k
Training Iteration

Figure 5.6 The recall and generalisation error during training of network A.

It can be observed that the generalisation error SSEgen is rising during training whilst

the recall error SSEtm is falling. After approximately 100,000 training iterations the

generalisation error as well as the recall error remain unchanged. This is because the

training patterns are memorised in the hidden weight matrix. Because there are no free

parameters within the network and the weights between the hidden and output layer

are frozen, free large weights and large counter weights cannot be created [140, 141].

Such increasing weights are responsible for an increase in the generalisation error.

But without them, the generalisation error is levelling off and remains constant.

With frozen weights in the output layer, the error optimisation used in the

backpropagation training algorithm can only adjust the parameters of the hidden layer.

Because of this restriction, the network is not able to use the output layer to

compensate for a local minimum that it may encounter in the hidden layer. Hence it is

not able to memorise the training data precisely and therefore a difference between

the target function and the recall function in recall mode is certain and can be

observed in figure 5.6. SSEtm and figure 5.7

Linking of Neural Network Weight Matrixes 128

Training Pattern Number

Figure 5.7 The target function plotted against the trained function of network A.

The weight matrix of network B, which has been trained on function B from figure

5.5, has been created with the same configuration as network A. The stopping criteria

chosen to end training for both networks has been that the generalisation error

remained almost unchanged for 1000 training iterations in batch update mode, as

shown in figures 5.6 and 5.8.

S 2.0

Figure 5.8 The recall and generalisation error during training of network B.

Linking of Neural Network Weight Matrixes 129

The output graphs for the training of network B with function B is shown in figure

5.9. It suffers from the same constraint of frozen output layer weights as network A,

which is evident from the small difference in the target and recall output functions.

Figure 5.9 The target function plotted against the trained function of network B.

To compare the trained networks performance benchmarks before and after linking

later in this chapter, the final recall error SSEtrn and generalisation error SSEgen are

summarised in table 5.2.

Table 5.2 Performance benchmarks of network A and B after training.

Description Network A Network B
SSEtra 0.02 0.019
S S E ge„ 1.243 1.149
RMSE for SSEtm on 10
training record sets

0.00667 0.00633

RMSE for SSEge„ on 9
training record sets

0.41433 0.383

Because of the stopping criteria chosen, both networks training objectives have been

for optimal performance in recall accuracy not for generalisation, thus causing the

Linking of Neural Network Weight Matrixes 130

generalisation error being much higher than the recall error. This is evident if recall

and generalisation error are compared in table 5.2 for each of the two networks.

With the training of the two networks completed, the training data can now be

represented as weight matrixes in conjunction with knowledge domain maps (KDM)

as shown in figure 5.4. These components are presented in table 5.3 and in table 5.4

and describe the training data and their valid input space for each of the networks. The

knowledge domain maps used are linear approximations, which accommodate 80% of

the training data in a linear equation of least squares.

Table 5.3 Weight matrixes of the hidden layers of networks A and B after training.

Reference
Network A Network B

W u W 12 W 1B Length Wn W 12 W in Length

Vl -31.489202 29.520323 1.720558 43.197 -27.725769 14.899946 1.5787 31.515

V2 7.949682 -2.061007 -2.352439 8.543 -2.445928 -1.432772 2.473297 3.762

V3 15.573389 -15.559452 4.65308 22.501 2.200211 4.091093 -3.183682 5.632

V4 -27.809488 26.555424 1.196535 38.471 -1.109374 0.43771 1.62007 2.012

V5 -8.129432 -5.704075 2.906335 10.348 4.130769 -22.998222 2.681815 23.520

V6 -3.471851 -3.113786 -0.185395 4.667 -20.964043 9.694241 1.382 23.138

V7 -8.509409 -17.838032 19.4095 27.701 8.137968 -20.65534 0.620016 22.209

VS -6.621395 9.501069 -1.688886 11.703 -5.420225 -0.115172 0.124454 5.423
v9 -18.781784 20.524035 -1.14477 27.844 -6.010482 -28.537815 7.361526 30.079

Vio 5.840691 4.331159 -9.77996 12.187 21.349447 -3.595532 -6.931421 22.733

Table 5.4 Knowledge Domain Maps for both training data sets.

Network Area which matrixes were trained for
Matrix A
Matrix B

f(a) = x2 = 1.05 • x, -0 .03 (0.26<X!<0.86)

f(b) = x2 = 1.47 x, -6 .04 (0.15<x,<0.84)

In table 5.4 the KDMs for each of the weight matrixes have been represented as linear

equations and the range in which they are valid. The linear equations have been

derived with help from figure 5.10, where the training data input space xj and X2 has

been plotted into a 2-dimensional graph for better visualisation. It can be observed

that the input space region of network A lies mainly below the region separation line

whereby the input space region of network B lies above. Hence f(a) is situated by

Linking of Neural Network Weight Matrixes I l i

around 80% of data points from network A and f(b) is surrounded by 80% of data

points from network B. Functions f(a) and f(b) have been calculated via the least

squares of their surrounding data points. KDMs are used to coarsely describe the input

space region for which the weight matrix has been trained. They can be used for

guidance so that interpolation can be performed with confidence.

To bear in mind, the primary objective for linking of the two networks is to share

knowledge acquired during training, with the purpose of improved generalisation for

areas in the input space omitted by the training data of both networks involved.

Therefore, the right candidates to demonstrate improved generalisation are over-

trained networks of different domains, as used in this section.

To generate the appropriate training data for domain separation, the 2-dimensional

input space xi and X2 has been divided into two domains, A and B, as demonstrated in

figure 5.10. Each set of the training data has been used to train one of the networks,

set A with input space of domain A for network A and set B with input space of

domain B for network B. The region separation line shown in figure 5.10 resembles

the best fit for linear domain separation of the input space into A and B.

region

Figure 5.10 Input space separation of the training data.

Linking of Neural Network Weight Matrixes 132

Note that outliners from network A can be seen in domain B and vice versa. These

outliners have been added to avoid total linear input space separation since linking

requires neurons with similar knowledge. If the networks had been trained with data

from different domains without any intersections, the probability of finding similar

neurons would have been reduced, demanding a higher acceptance angle for linking

with lower recall accuracy.

5.3,3 Sub-Network Linking Process

If two or more hidden neurons from different knowledge domains have highly

correlated weight vectors, e.g. identical or opposite, then one of them can be made

redundant by linking both hidden neurons into a single hidden neuron, as discussed in

chapter 2. Hidden neuron vectors are unlikely to be exactly correlated, they will not

match accurately. Therefore, an analytical approach utilising the acceptance angle (p,

as introduced in chapter 3, is used. Hidden neurons will be understood as sufficiently

correlated if the angle between their weight vectors in hyperspace does not exceed the

acceptance angle cp.

Correlated hidden neuron weight vectors belong to the same domain and are holding

similar knowledge. The process of linking correlating hidden neurons from different

sub-networks of different knowledge domains will partially combine the knowledge

of each network into one resulting network as shown in figure 5.11. Furthermore,

removing superior correlations in the hidden layer will reduce the degree of freedom

and therefore avoid problems such as over-fitting that can lead to an improved

generalisation capability of the network as shown in section 3.3.4.

Figure 5.11 illustrates a linked network as a result of linking three domains. This

network combines three knowledge domains A, B and C together into a single

network and is capable of responding to requests from any of the domains involved.

Intersecting areas between knowledge domains signify regions where hidden neurons

have been linked and tagged with stimuli codes as members of the domains. The

neurons contained in the intersections are used for recalling information by more than

Linking of Neural Network Weight Matrixes 133

one domain. If for instance a recall request has been received belonging only to

domain A, only neurons carrying a membership code for domain A will be included

in the generation of the overall network response. If, on the other hand, a request is

received belonging to some degree to domain A and to some degree to domain B,

neurons with appropriate membership codes of domain A and domain B will

participate to the overall network response.

A stimuli network is used for classification to generate the degrees of memberships a

specific input vector request may have. It analyses the input space and generates a

measure of membership for each domain and each request. Depending on the strength

of the measure, which has been referred to as the stimulus S, neurons of certain

domains are activated to contribute to the overall network output.

Linked neurons
between domain
A, B and C.

Linked neurons
between domain
A and C.

Linked neurons
between domain A
and B.

Linked neurons
between domain B
and C.

Stimulus S, to activate Stimulus S2 to activate Stimulus S3 to activate
neurons of domain A neurons of domain B neurons of domain C

▲ i ▲

Stimuli
Network

Input vector
k

Figure 5.11 Linked domain sub-networks activated by a stimuli network.

Linking of Neural Network Weight Matrixes 134

In order to determine whether two hidden neuron vectors can be linked, an angle

difference calculation must be performed for every weight vector for both sub-

network weight matrixes. If the angle difference between two vectors exceeds the

acceptance angle cp, the neurons cannot be linked. In this case it can be stated that

weight vectors are not sufficiently linear dependent. Hidden neuron vectors where the

angle difference does not exceed the acceptance angle cp can be stated as being

sufficiently linear dependent and can be linked. However, in practice, there are only a

few cases in which the weight vectors are exactly linear dependent. Therefore,

increasing the acceptance angle cp will increase the angle tolerance, which in turn

increases the probability of finding hidden neurons for linking. For the purpose of

quantification of the hidden neurons involved in the linking process, a ratio called

linking rate p has been defined. The more hidden neurons are combined the higher

the linking rate p. The linking rate, as referred to in this thesis, is computed as the

sum of all hidden neurons involved in the linking process divided by the sum of

successfully linked neurons, as given in equation (5.1).

N

(5.1)
z » .¿> = 1

With N as the number of all hidden neurons from both sub-networks, v as the vector

reference of neurons of domain A or B in the hidden layer and P as the number of

successfully linked hidden neurons after completion of the linking process.

5.3.4 Analysis of Hidden Neuron Weight Vectors

Following the training of the domain sub-networks, hidden weight vectors need to be

analysed for identification of those suitable for linking. For this purpose, all angles

between vectors of domains A and B have been calculated. The number of angle

Linking of Neural Network Weight Matrixes 135

calculations £, required for a full search of matching weights between domains A and

B is given in (5.2).
t = N A-NB (5.2)

With Na and NB as the number of neurons to be linked from domains A and B

respectively. The total number of angle calculations for the current example is N a = T 0 ,

N b = 1 0 , £,= 100. Once all angles between the vectors of the domains A and B are

known, they can be sorted in ascending order so that the acceptance angle constraint

can be applied. Stepwise linking of neurons and measurement of the SSEtm and

SSEgen has found the best acceptance angle of 13° for lowest generalisation error. The

search of the 13° angle is presented later in this chapter. Table 5.3 shows the first

three vector pairs that fall within the acceptance angle constraint of 13°.

Vectors from quadrants Q3 and Q4 have been mapped into quadrants Q1 and Q2 via

vector inversion as previously mentioned in section 3.3.2 figure 3.10. Vector

inversion will always be applicable, regardless of the number of vector dimensions,

because the angle between two vectors is a scalar and the vector length adjustment

factor F can be negative, as shown in tables 3.4 and 3.5 pruning of vectors \ 2 and V13.

Table 5.5 Angles between weight vectors in ascending order.

Vector pair Angle between
Network A Network B vectors

v2 V |0 5.078°
V7 V3 180°- 169.72 = 10.28° 1

Vio v2 180°- 167.06= 12.94° 1

5.3.5 Linking of Hidden Neurons from Different Domains

Linking of the three vector pairs from table 5.5 with vector angles below 13° follows

the approach derived in section 2.6 and used in section 3.3.3. After applying equations

1 This vector has been mapped from Q3 to Q 1.

Linking of Neural Network Weight Matrixes 136

(2.37), (2.49) and (2.52), as expressed in section 2.6, resulting vectors as shown in

table 5.6 can be produced.

Table 5.6 Results of the combination of vectors with angles below 13°
as listed in table 5.5.

Original vector references Resulting vector vrl
Network A Network B W|| W,2 Win Factor F2
v2 V |0 7.986931 -1.369088 -2.602153 2.670965
V7 V3 -9.347131 -18.599433 18.201234 -0.202205
V 10 v2 7.248415 4.406580 -8.547272 -0.311576

Linking will always involve two domains, one domain will use the resulting vector

vri • Fi = vr] and all other domains will use vri • Fj. Because the length correction

factor F2 for linking of domains A (d=l) and B (d=2) is only applicable to domain B,

table 5.6 shows the vector length correction factor as F2 since Fi, which is referring to

the reference domain, will always be 1. If a third domain would be linked into a

neuron already containing two domains, a new length correction factor F3 would be

added to the neuron’s domain lookup table, as illustrated in chapter 4, figure 4.6.

5.4 Linking Analysis

5.4.1 Analysis of Linking Neurons

In order to evaluate the resulting weight vectors after linking, each vector component

before and after linking is compared and analysed by the means of the relative error in

percent, as shown in equation (5.3). Once neurons are linked, they contain the linked

weight vector and a vector length adjustment factor Fa for each knowledge domain d

involved in the linking process. Since this example involves only two domains (d =

2), only two vector length adjustment factors Fi and F2 and two domain stimulus

factors Si and S2 are given for each neuron. Whenever two neurons are linked, Fi will

Linking of Neural Network Weight Matrixes 117

be 1 and F2 is the weight correction factor as listed in table 5.6. The stimuli factors Si

and S2, calculated by the stimuli network during data recall, will determine the degree

of membership of an input vector to each domain A and B.

w — w
f (w W ') = ^ ------- i

w „
(5.3)

If the stimuli network has classified an input vector on the input layer with a 100%

membership to knowledge domain A and 0% to domain B, Si will be 1 and S2 will be

0. The result will be, that the resulting vector vri will be multiplied with the sum

(Si • Fi)+(S2 ■ F2), but because S2 = 0 only (Si • Fi) is significant. If, on the other hand,

an incoming vector has been classified with a 0% membership to domain A and 100%

membership to domain B, Si will be 0 and S2 will be 1, but with Si=0, only S2 ■ F2 is

significant.

With this scenario, weights for each knowledge domain can be calculated, which

serve the purpose that the original weights, prior to linking, can be compared to the

reconstructed weights, after linking. Possible changes in domain recall accuracy can

be evaluated with the assumption that small weight changes on small weights will

have a less prominent effect on the overall network output.

Table 5.7 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors w'„ w'lB f(w„, w'„) f(wi2, w'n) f(w1B,w'1B)
A: v'2 7.986931 -1.369088 -2.602153 0.47% -33.57% 10.62%
B: v',o 21.33281 -3.656787 -6.950259 -0.08% 1.70% 0.27%
A: v'7 -9.347131 -18.599433 18.201234 9.84% 4.27% -6.23%
B: v'3 1.890038 3.760902 -3.680384 -14.10% -8.07% 15.60%

A: v'10 7.248415 4.406580 -8.547272 24.10% 1.74% -12.60%
B: v'2 -2.258432 -1.372984 2.663124 -7.67% -4.17% 7.68%

The notation in table 5.7 will be that the reconstructed vectors v '2 and v'io represent

vri and vr2 respectively for all vectors involved in the linking process, in accordance to

Linking of Neural Network Weight Matrixes 138

figure 3.4 in section 3.2.2 and replace vectors \ 2 and vio from table 5.3. Furthermore,

prefixes A: and B: refer to the knowledge domain for which the network matrix was

trained for. Equation (5.4) has been utilised to reconstruct the vectors for domains A

and B. It represents the actual weight matrix calculation for linked networks with

multiple domains and has been extracted from chapter 4, equation (4.4).

" J = ' > r f i (S d -Fd) (5.4)
d = 1

Equation (5.4) has been used for the calculation of the reconstructed vectors for input

vectors solely belonging to domains A and B. For example A: v'2 is the reconstructed

vector for V2 of network A and can be compared to the original vector as listed in

table 5.3. It has been computed as v ' 2 = vri • Si • Fi = vri for domain A (d=2, Si=l,

S2=0, Fi=l, F2=0) from table 5.6. Vector B: v' 1 0 is the reconstructed vector for vio of

network B. It has been computed as v' 1 0 = vri ■ S2 • F2 for domain B (d=2, Si=0, S2 =l,
Fi=0, F2=1.0205) from table 5.6.

In section 2.6 the linking equations (2.37) and (2.49), used for this chapter, were

derived. The primary objective of the equations was to place the lowest errors with

the highest weights under the assumption that the highest weights have the highest

sensitivity towards the neuron output. This can be observed in table 5.7, where the

general tendency is that larger weights have lower errors and smaller weights have

higher errors. But with an increased acceptance angle, this objective might not be met.

For instance vectors v' 1 0 and v'2 with the highest acceptance angle of 12.94 0 do not

fully comply with the primary objective. Their largest relative error lies with

component w'u of vector v'1 0 , which is the second largest weight value in terms of

absolute values. The same applies to component w ' i b of vector v'2 , which is the

largest weight with the largest error.

One conclusion of the analysis of relative errors is that the larger the angle between

weight vectors, the larger the relative errors of individual vector components and the

higher the possibility that the smallest weight will not have the largest error.

Linking of Neural Network Weight Matrixes 139

Without inducing changes into an existing weight matrix, the generalisation error will

remain unchanged. Generally, changes will only worsen the recall accuracy if the

network was over-trained. Consequently, if the intent is to improve the generalisation

error, it is required that the linking process is inducing errors into the trained weight

matrixes. Analysing where errors are induced and to which extent will assist the

verification of the acceptance angle used. High errors in weight components suggest

that the chosen acceptance angle (p may be to high and non-correlating vectors are

linked. The error ceiling depends on the objective, if recall accuracy is insignificant

and emphasis lies only with generalisation, tolerable errors will be high e.g. up to

200%, if recall accuracy is significant, tolerable errors will be much smaller e.g.

below 50%. These margins have been determined by many practical experiments and

are purely based on experience. The chosen acceptance angle cp determines the field in

which the linked network performs best, which can be recall or generalisation.

Table 5.8 lists the induced vector length errors of the reconstructed vectors if

compared against their original lengths from table 5.3. As identified previously in the

vector component change impact analysis, the vector length change impact analysis

reveals the same error distribution behaviour. The general tendency is that the larger

vector in a linked vector pair carries the smaller error and the smaller vector carries

the larger error with the exception of v'io- This vector’s components suffer from

increased relative errors, see table 5.7, and therefore has a higher vector length error

than v'2.

Table 5.8 Vector length change impact analysis.

Vector Original length Reconstructed length Relative Error
A: v'2 8.542784 8.510973 (|Vr.l) -0.37%
B: v',o 22.732605 22.732509 (K,|*F2) 0.00%
A: v'7 27.700796 27.651269 (|v„|) -0.18%
B: v'3 5.631501 5.591230 (|v„|*F2) -0.72%
A: v',o 12.186887 12.042148 (|v,i |) -1.19%
B: v'2 3.761994 3.752044 (|vr,|*F2) -0.26%

Linking of Neural Network Weight Matrixes 140

Because the calculation of the vector length involves all vector components, high

errors on proportionally small vector components are not impacting the vector length

error to any large extent, keeping them relatively small. The search for the optimal

acceptance angle for interpolation or extrapolation is solely determined by the

generalisation error not errors of individual vector components. Errors in individual

vector components demonstrate that induction of errors into a trained weight matrix

will improve generalisation on over-trained networks.

5.4.2 Analysis of Linked Network

The linking of three neurons from two sub-networks each with 10 hidden neurons has

reduced the overall number of hidden neurons from 20 to 17. This represents a

network size reduction of 15%. Size reduction is one of many objectives of linking

sub-networks. Since size reduction is depending on the chosen acceptance angle, the

network will be trimmed to its optimum size for the field in which the linked network

should perform.

In order to analyse the linking results without the necessity of training a stimuli

network for classification, the individual weight matrixes for each knowledge domain

A and B can be reconstructed in isolation by using equation (5.3), as introduced in

section 5.4.1. To create a weight matrix where the original vectors after training are

replaced with vectors involved in linking, vectors from table 5.3 are substituted with

reconstructed vectors from table 5.7.

Because no stimuli network will be used, the generalisation data points are tested in

the domain for which they were created. For example data points along the path of

function A in figure 5.5 will be tested on the reconstructed weight matrix for network

A. Whereby data points on the path of function B will be tested on the reconstructed

weight matrix for network B.

With this analysis the recall and generalisation performances of each linked domain

network can be directly compared to the trained domain network, providing valuable

information on how both errors change.

Linking of Neural Network Weight Matrixes 141

Table 5.9 Weight matrixes of the hidden layers of networks A and B after reconstruction.

Reference
Reconstructed weight matrix for network A Reconstructed weight matrix for network B

W,l Wu Win Length W|1 w,B Length

Vl -31.4892 29.5203 1.7205 43.197 -27.7257 14.8999 1.5787 31.515

V2 7.9869 -1.3691 -2.6021 8.510 -2.2584 -1.3729 2.6631 3.752

V 3
15.5734 -15.5594 4.6530 22.501 1.8900 3.7609 -3.6803 5.591

V4 -27.8095 26.5554 1.1965 38.471 -1.1093 0.4377 1.6200 2.012
V5 -8.1294 -5.7041 2.9063 10.348 4.1307 -22.998 2.6818 23.520

V6 -3.4718 -3.1138 -0.1853 4.667 -20.9640 9.6942 1.382 23.138

V 7
-9.3471 -18.5994 18.2012 27.651 8.1379 -20.6553 0.6200 22.209

V s
-6.6214 9.5011 -1.6889 11.703 -5.4202 -0.1151 0.1244 5.423

V9 -18.7818 20.5240 -1.1448 27.844 -6.0104 -28.537 7.3615 30.079

Vio 7.2484 4.4066 -8.5473 12.042 21.3328 -3.6568 -6.9502 22.732

In table 5.9 the framed row entries on grey backgrounds are vectors that have been

replaced with reconstructed vectors. With the resulting weight matrixes, evaluation of

the recall accuracy and the generalisation errors can be repeated for networks A and B

as shown in table 5.2 for the originally trained networks.

Table 5.10 Comparison between trained and linked network benchmarks.

Description
Network A Network B

Trained Linked Trained Linked
SSEtrn 0.02 0.584 0.019 0.237
SSEgen 1.243 1.047 1.149 1.122
RMSE for SSE,m on 10
training record sets

0.00667 0.19467 0.00633 0.079

RMSE for SSEgen on 9
training record sets

0.41433 0.349 0.383 0.374

Re-evaluation on the weight matrixes with 3 linked neurons is shown in table 5.9 and

has been undertaken with the same data used for the initial evaluation of the recall

accuracy SSEtm and the generalisation error SSEgen during the training of the

networks.

On inspection of table 5.10 it can be noted that the recall error has increased and the

generalisation error has decreased because of the error induction of the linking

process. Although the generalisation error has been reduced, it has not been reduced

Linking of Neural Network Weight Matrixes 142

to any significant amount so that generalisation confidence is boosted. This is because

the generalisation data has been applied in their original domains and no advantage of

knowledge domain intersection has been taken. For the re-evaluation of network A,

generalisation data only from domain A has been used only on weights from domain

A, without taking into account a possible degree of membership to domain B.

It might be the case that the generalisation data of domain A lies in the region outside

the input space of the training data of domain A, therefore causing extrapolation

problems and an increased generalisation error for domain A, as discussed in section

3.1. Hence, domain B can be included to assist in cases where the input space of an

incoming input vector covers parts of the input space of domain B.

For this reason, classification by a stimuli network for the purpose of determining the

degree of membership of unseen data for different domains will reduce the possibility

of extrapolation errors, since it includes neurons from different domains to create an

overall network output. Knowledge domain intersection with stimuli network was

introduced in chapter 4 and will not be repeated at this point.

5.5 Numerical Experiment: Linking of Extrapolating Networks

Practical applications with neural networks very often involve finding functional

relationships between variables. For such situations, neural networks can be used to

transform training data into a mathematical data model equation, which is

representing an approximated mathematical relationship called objective function

between the training data input and output. The more variables or dimensions that are

used for the problem representation, the more complex the objective function. To

determine an equation that represents the objective function, a neural network must be

trained to model the relationship between the input and output. Once training is

completed, the data model, contained within the neural network weight matrix can be

used for estimating data values missing from the training data set. Gaining access to

results of unknown data values is one of the major utilisation of neural networks. If

Linking of Neural Network Weight Matrixes 143

good quality estimations of unknown data can be added to an incomplete database the

end product will add value to the data, making this process a valuable business tool.

Depending on the area of interest for the prediction, a neural network can be used for

interpolation or occasionally for extrapolation of unknown data.

Interpolation is a mathematical procedure, which estimates values of a function at

positions between listed or given values [161, 162], Interpolation works by fitting a

"curve", i.e. a function, to two or more given points and then applying this function to

the input values of the prediction. Generally, the more parameters are used to model

such an approximated curve, the more accurate its interpolation. But if too many free

parameters are used, which are represented as hidden neurons in neural networks, the

easier a network can over-train and interpolation will become unsatisfactory.

Interpolation in relation to neural networks means that the unknown input vector lays

inside, or interior to, the given training data, e.g. region C in figure 5.12.

Extrapolation is using a fitted curve for estimating a value of a variable outside a

known data range, which has been used for creating the approximated curve. It is

assuming that the estimated value follows logically from the known data values [163].

Extrapolation with neural networks is suffering from the same parameterisation

problems as interpolation, where over-training can occur. Extrapolation in relation to

neural networks means that the unknown input vector lies outside of, or exterior to,

the given training data, e.g. region D in figure 5.12.

X

U n k n o w n

R e g io n s

K n o w n

R e g io n
K n o w n

R e g io n s

y

Figure 5 .1 2 : T r a in in g d a t a i n p u t s p a c e s h o w n a s a 2 D d ia g r a m .

Linking of Neural Network Weight Matrixes 144

Graphical analysis of training data input-space can be used to identify if certain

regions of interest are encapsulated within known training data, e.g. region C, or

outside known training data e.g. region D in figure 5.12. But this analysis is limited to

3-dimension. If more dimensions need to be analysed, a hyperspace navigation system

of other mathematical analysis is required [164-166].

Because a trained neural network interpolates unknown areas, which are encapsulated

by known data regions and extrapolates for areas outside known data regions,

analysing the training data set can answer the question if the area in which the

unknown values for prediction are located requires interpolation or extrapolation. This

is an important question since in most cases interpolation can be performed with

higher confidence than extrapolation [167-169],

Additionally to the objective function complexity, there are two major factors to be

determined as a measure of an interpolation/extrapolation confidence. They are

distance from the unknown data to the known training data and the known data

granularity often referred to as data density [170, 171].

The purpose of this analysis is to train two neural networks each with data containing

only selected clusters of the available input space and use linking to combine the

trained networks into one network. The aim is to show how linking of neural

networks trained with selected input space clusters will change the generalisation

error on unseen extrapolated clusters not used for training. Depending on where the

unseen testing data is located in the input space in relation to the training data,

interpolation or extrapolation will be used to analyse the generalisation performance

of the linked networks.

5.5.1 Clustering of Input Space

The two-dimensional input space (xi X2)T used for 2:10:1 neural networks are divided

into 16 equally sized quadrants or clusters, as illustrated in figure 5.13. Each quadrant

is defined by its position in the coordinate system and its boundaries with respect to xi

and X2, which are listed in table 5.11. Two numbers compose the numbering of the

Linking of Neural Network Weight Matrixes 145

clusters in clockwise direction. The first number represents the quadrant in which the

cluster is located for Cartesian systems. The smallest second number 1 is located in

the outside corner and the largest 4 in the inside corner, with 2 and 3 mirrored on each

of the axis. With this arrangement, Qxl represent all outside clusters, Qx4 all inside

clusters and Qx2 and Qx3 clusters in-between.

i l x 2

Q ll Q12

+1
Q22 Q21

Q13
-1

Q14 Q24 Q23
+1

Q43 Q44 Q34 Q33

■w-
Xl

Q41 Q42 Q32
-1

Q31

Figure 5.13 I n p u t s p a c e d iv id e d in to 16 e q u a l ly s iz e d q u a d r a n t s .

Each cluster can be used for either training or testing but are mutually exclusive and

no cluster used for training will be used for testing. By arranging the input space

graphically into clusters, generalisation by interpolation or extrapolation can be easily

distinguished, permitting categorisation of the linking results.

Table 5.11 T h e c lu s te r s a n d t h e i r r a n g e in i n p u t s p a c e .

Quadrant *2 Quadrant
Qll -1.0 < Xi < -0.5 +1.0 < x2 < +0.5 Q13 -1.0 < X, < -0.5 +0.5 < x2 < 0.0
Q12 -0.5 < X] < 0.0 +1.0<x2<+0.5 Q14 -0.5 <Xi < 0.0 +0.5 < x2 < 0.0
Q21 +1.0 < X] < +0.5 +1.0 < x2 < +0.5 Q23 + 1.0 < x, < +0.5 +0.5 < x2 < 0.0
Q22 +0.5 < Xi < 0.0 +1.0 < x2 < +0.5 Q24 +0.5 < Xi < 0.0 +0.5 < x2 < 0.0
Q31 +1.0 < X| < +0.5 -1.0<x2<-0.5 Q33 +1.0 < X] < +0.5 -0.5 < x2 < 0.0
Q32 +0.5 < X, < 0.0 -1.0 < x2 < -0.5 Q34 +0.5 < Xi < 0.0 -0.5 < x2 < 0.0
Q41 -1.0 < X| < -0.5 -1.0 < x2 < -0.5 Q43 -1.0 < X) < -0.5 -0.5 < x2 < 0.0
Q42 -0.5 < Xi < 0.0 -1.0 <x2 < -0.5 Q44 -0.5 <x, < 0.0 -0.5 < x2 < 0.0

Linking of Neural Network Weight Matrixes 146

i x2
+ 1

Q ll Q12 Q22 Q21

Q13
-1

Q14 Q24 Q23
+ 1

Q43 Q44 Q34 Q33
Xi

Q41 Q42 Q32
-1

Q31

Figure 5 .1 4 D a ta s e t A f o r e x t r a p o la t io n .

Âl x 2

Q ll Q12

+1
Q22 Q21

Q13
-1

Q14 Q24 Q23
+ 1

Q43 Q44 Q34 Q33
Xl

Q41 Q42 Q32
-1

Q31

Figure 5 .1 5 D a ta s e t B f o r e x t r a p o la t i o n .

This section is analysing how generalisation performance is changing if two

extrapolating networks are linked. For this reason the training data used for each

network is located in the corners of the input space, causing forced extrapolation for

each unseen quadrant. Extrapolation is forced because all unseen clusters are exterior

to the clusters used for training.

Network A is trained with dataset A from figure 5.14, which is including all clusters

of quadrant Q3x. Network B is trained with dataset B, which is including all clusters

of quadrant Qlx.

5.5.2 Training of Domain Networks

The training and testing data will consist of two inputs xi and X2 and one output oj.

It’s objective function oi = f(xi, X2) is given in equation (5.5) and is valid for the

entire input space (0<xi<l; 0 < X 2 < 1) . The chosen objective function shown in figure

5.16 is non-linear and continuous for the entire input space, thus permitting good

generalisation for interpolation. The graph has been rotated anti-clockwise by 90° for

better visualisation because the steepness of Q4x would otherwise cover all other

Linking of Neural Network Weight Matrixes 147

quadrants. For easier orientation all quadrants from figure 5.13 have been rotated and

projected on top of the graph. It can be noted that Q41 has the highest target value of

approximately 0.80 and Q31 the lowest target value of approximately -0.76.

Training and testing data records have been generated with random values of xj and

X2, within the cluster boundary constraints of table 5.11, and the target value has been

calculated with equation (5.5).

The training data of selected clusters has been used to train neural networks, which

act as domain experts for each of the clusters used. Networks A and B have been

trained with the same training parameters and stopping criteria from section 5.3.2 and

are shown in table 5.1. The stopping criteria chosen to end training for both networks

has been that the SSE remained unchanged for 1000 training iterations in batch update

mode. This stopping criterion used represents the location of a minimum of the error

function.
_iL

y = 0.55-e 5 ■ {[(x, - 0.26)- (x2 - 0.73)]- 0.4} (5.5)

Figure 5 .1 6 T h e o b je c t iv e f u n c t io n o f th e o u tp u t f o r n e tw o r k s A a n d B.

Linking of Neural Network Weight Matrixes 148

After training each of the 16 clusters have been presented to each of the networks for

measuring its SSE with respect to the target values. Tables 5.12 and 5.13 show the

SSE for each cluster for networks A and B respectively and figures 5.17 and 5.18

present the data graphically in 2D and figures 5.19 and 5.20 in 3D.

It can be noted that the clusters used for training have low errors. Network A has been

trained with all data from quadrant Q3. Therefore clusters Q31, Q32, Q33 and Q34

have the lowest errors. After inspection of table 5.12, it can be seen that quadrant Q1

and especially Q 11 have the highest error. This is because cluster Q11 has the largest

distance from quadrant Q3.

T a b l e 5 .1 2 S u m S q u a r e E r r o r s fo r e a c h c lu s te r a f te r t r a i n in g o f n e tw o r k A .

Cluster SSE Cluster SSE
Qll 5.28756 Q31 0.04748
Q12 2.13071 Q32 0.01790
Q13 3.55409 Q33 0.03569
Q14 1.18332 Q34 0.02579
Q21 0.52109 Q41 0.96923
Q22 0.30077 Q42 0.25616
Q23 0.07540 Q43 1.74874
Q24 0.10328 Q44 0.54570

The distance of Q21 and Q41 to quadrant 3 is the same but the SSE for Q21 (0.52)

and for Q41 (0.96) differs substantially, see table 5.12. The explanation for this is that

the target value of Q21 (-0.25) is lower than the target value of Q41 (0.8). High target

output values require an even higher netj within a neuron because of the squashing

characteristic of the sigmoid activation function and are therefore more difficult to

extrapolate.

On inspection of table 5.13, which shows the SSE for each cluster for network B, the

same extrapolation behaviour as found for network A can be noted. Here, quadrant

Q1 has been used for training, causing the lowest errors in Ql l , Q12, Q13 and Q14.

Cluster Q31 has the furthest distance to quadrant Q1 and therefore the highest error

and Q41 has a much higher error than Q21 because of the higher target value.

Linking of Neural Network Weight Matrixes 149

Table 5 .1 3 S u m S q u a r e E r r o r s f o r e a c h c lu s te r a f t e r t r a i n in g o f n e t w o r k B .

Cluster SSE Cluster SSE
Qll 0.01680 Q31 5.24866
Q12 0.00758 Q32 2.41018
Q13 0.01542 Q33 2.49046
Q14 0.00774 Q34 0.88148
Q21 0.52966 Q41 1.32985
Q22 0.12068 Q42 0.52379
Q23 0.73015 Q43 0.35050
Q24 0.16115 Q44 0.12920

As a result, it can be said that the larger the distance Ad of a cluster for extrapolation

is from the training data, the higher its error and the lower its confidence.

Additionally, the higher the expected target value |t| of the extrapolation, the higher its

error and the lower its confidence. With this, a simple proportional equation for a

confidence measure c can be derived as shown in equation (5.6).

1

Ad- \ t \ (5-6)

S S E
6.00

Q 1 1 Q 1 2 Q 1 3 Q 1 4 Q 2 1 Q 2 2 Q 2 3 Q 2 4 Q 3 1 Q 3 2 Q 3 3 Q 3 4 Q 4 1 Q 4 2 Q 4 3 Q 4 4

Figure 5.17 S S E f o r e a c h c lu s te r a f t e r t r a in in g f ro m f ig u r e 5 .1 4 .

Linking of Neural Network Weight Matrixes 150

S S E
6.00

Q Ï 1 Q T 2 Q T 3 Q Ì 4 Q 2 1 Q 2 2 Q 2 3 Q 2 4 Q 3 1 Q 3 2 Q 3 3 Q 3 4 Q 4 1 Q 4 2 Q 4 3 Q 4 4

F i g u r e 5 .1 8 S S E f o r e a c h c l u s te r a f te r t r a in in g f ro m f ig u r e 5 .1 5 .

F i g u r e 5 .1 9 3 D r e p r e s e n ta t i o n o f f ig u r e 5 .1 7 . F i g u r e 5 .2 0 3 D r e p r e s e n ta t i o n o f f i g u r e 5 .1 8 .

The 3D SSE representation of all clusters in figures 5.19 and 5.20 for networks A and

B shows that the SSE increases with distance Ad and that Q41 is larger than Q21

located at the opposite corner. In the following section, both networks will be linked

Linking of Neural Network Weight Matrixes 151

and all SSE for each cluster will be measured again and compared with the results of

this section.

5.5.3 Linking of Domain Networks

In order to combine the knowledge of each domain expert networks A and B are now

linked as described in detail in sections 5.3.3 to 5.3.5. An acceptance angle of 10° has

been used for linking of both domains. This value has been chosen empirically from

experience because the intention is not to optimise the generalisation error as was the

case in section 3.4.2 in figure 3.12, instead the impact of linking on interpolation and

extrapolation are investigated.

Table 5.14 shows the trained weight matrixes of networks A and B. To find suitable

vectors for linking, each vector from one domain is compared against the vectors of

the other domain as described in section 3.3.2 and equation (5.1). The three vectors

listed in table 5.15 have an acceptance angle below 10 ° and are therefore suitable for

linking. Vector pairs V7, V3 and V6 and Vi are pointing in opposite directions and are

mapped from quadrant Q3 to Q1 as indicated in section 3.3.2.

Table 5.14 Weight matrixes of the hidden layers of networks A and B after training.

Reference
Network A Network B

w n W U WlB Length W |i W12 w 1B Length

V| -0.83348 -0.90902 -0.91949 1.53833 1.96033 -1.33922 -0.45051 2.41648

V2 0.50862 0.53704 0.18746 0.76305 -0.68043 -0.04933 -0.09201 0.68839

V3 0.46481 -0.12644 0.05564 0.48490 0.12802 1.23932 0.75058 1.45453

V4 0.46683 -0.05713 0.73720 0.87444 0.21231 0.76366 -0.42105 0.89752

V5 -1.62017 -0.82645 -0.75155 1.96794 -0.69594 0.83353 1.62410 1.95367

V6 -1.93530 1.56101 0.09489 2.48820 0.42754 0.30195 0.02316 0.52393

V7 0.03216 -0.42111 -0.25007 0.49082 -0.98202 -0.55862 -0.71396 1.33648

V8 0.58610 -0.41012 0.81301 1.08291 -1.29074 -0.83226 -0.76685 1.71660

V9 -0.64106 -0.85676 -0.84200 1.36160 -1.74247 -1.31733 -1.04761 2.42261

V10 1.28727 0.32535 -0.35149 1.37348 -0.60833 0.88289 1.57870 1.90836

Linking of Neural Network Weight Matrixes J52

Table 5.15 Angles between weight vectors in ascending order.

Vector pair Angle between
Network A Network B vectors

V5 Vg 6.66°
v7 v3 180°- 171.18=8.82° 1
v6 Vi 180°- 170.32 = 9.68° '

Since weight matrixes contain domain knowledge specific to the area they were

trained for, a knowledge domain map should be supplied, as shown in table 5.4. This

is particularly important if weight matrixes are exchanged without the presence of

training data. In table 5.16 the Knowledge Domain Maps (KDMs) for each of the

weight matrixes have been represented as the boundaries of their training data

quadrants Q3 for network A and Q1 for network B.

Table 5.16 Knowledge Domain Maps for both training data sets.

Network Area which matrixes were trained for
Matrix A (0<x,<l) and (-l<x2<0)
Matrix B (-1<X|<0) and (0<x2< 1)

Linking of vectors listed in table 5.15 follows the approach derived in section 2.6 and

the results are shown in table 5.17. Factor F2 is negative for the second and third

vector because of the mapping from Q3 to Ql. The next section is a short analysis of

the impact the linking has on the weights if the trained weight matrix is compared

against the linked weight matrix.

Table 5.17 Linking results of vectors with angles below 10° as listed in table 5.15.

Original vector references Resulting vector vr.
Network A Network B Wu W|J w,B Factor F2
V5 Vg -1.56289 -0.87932 -0.80501 0.87126
V7 V3 -0.02173 -0.41842 -0.24989 -2.97867
V6 V] -1.83004 -0.11512 0.00360 -1.02160

1 This vector has been mapped from Q3 to QL

Linking of Neural Network Weight Matrixes 153

5.5.4 Linking Analysis

Linking analysis was introduced in detail in section 3.4 and all items discussed are

applicable to this section. Table 5.18 is equivalent to table 3.6 and shows that the

relative errors between the weights are generally lowest for large weights and largest

for small weights and that the error increases as the angle between the linked vectors

grows.

Table 5.18 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors w’„ W',2 W',B f(wn, w ' ii) f(Wi2, w'12)
A: v'5 -1.56289 -0.87932 -0.80501 -3.54% 6.40% 7.11%

B: v 'g -1.36168 -0.76611 -0.70137 5.50% -7.95% -8.54%

A: v'7 -0.02174 -0.41842 -0.24989 -167.58% -0.64% -0.07%
B: v'3 0.06474 1.24633 0.74433 -49.43% 0.57% -0.83%

A: v'6 -1.83004 -0.11512 0.00360 -5.44% -107.37% -96.21%

B: v \ 1.86956 0.11761 -0.00368 -4.63% -108.78% -99.18%

Table 5.19 is equivalent to table 3.7 and shows that the relative errors between the

vector lengths are generally lowest on linked vectors with small angle differences and

increases as the angle between the vectors grows.

Table 5.19 Vector length change impact analysis.

Vector Original length Reconstructed length Relative Error
A: v'5 1.96794 1.96567 (|Vrll) -0.12%
B: v's 1.71660 1.71261 (|v„|*F2) -0.23%
A: v'7 0.49082 0.48784 (M i -0.61%
B: v'3 1.45453 1.45312 (K,I*f 2) -0.10%
A: v'6 2.48820 1.83366 (|Vrll) -26.31%
B: v'i 2.41648 1.87326 (|vri|*F2) -22.48%

The high linking error between vectors V6 and vi are an indication that the recall

accuracy will be considerably reduced. This has been caused by network over-training

Linking of Neural Network Weieht Matrixes 154

and is unavoidable if better generalisation is desired. Improving the generalisation

error that causes loss of recall accuracy has been discussed in the previous chapters.

Table 5.20 is equivalent to table 3.9 and shows the reconstructed weight matrix for

domains A and B after linking. In table 5.20 the framed row entries on grey

backgrounds are vectors that have been replaced with reconstructed vectors. With the

resulting weight matrixes, evaluation of each of the input space clusters from figure

5.13 can be repeated for networks A and B as shown in tables 5.12 and 5.13 for the

originally trained networks. The next section repeats the process of measuring all SSE

for all clusters as shown in section 5.5.2 for the linked weight matrixes of table 5.20.

Table 5.20 Weight matrixes of the hidden layers of networks A and B after reconstruction.

Reference
Reconstructed weight matrix for network A Reconstructed weight matrix for network B

W n W u W in Length « ' l l «'12 «4b Length

V] -0.83348 -0.90902 -0.91949 1.53833 1.86956 0.11761 -0.00368 1.87326

V2 0.50862 0.53704 0.18746 0.76305 -0.68043 -0.04933 -0.09201 0.68839

v3 0.46481 -0.12644 0.05564 0.48490 0.06474 1.24633 0.74433 1.45312

V4 0.46683 -0.05713 0.73720 0.87444 0.21231 0.76366 -0.42105 0.89752

v5 -1.56289 -0.87932 -0.80501 1.96567 -0.69594 0.83353 1.62410 1.95367

v6 -1.83004 -0.11512 0.00360 1.83366 0.42754 0.30195 0.02316 0.52393

V? -0.02174 -0.41842 -0.24989 0.48784 -0.98202 -0.55862 -0.71396 1.33648

V8 0.58610 -0.41012 0.81301 1.08291 -1.36168 -0.76611 -0.70137 1.71261

V9 -0.64106 -0.85676 -0.84200 1.36160 -1.74247 -1.31733 -1.04761 2.42261

Vio 1.28727 0.32535 -0.35149 1.37348 -0.60833 0.88289 1.57870 1.90836

5.5.5 Linking Results

To evaluate the impact of linking, if the networks involved are used for extrapolation,

the trained weight matrixes have been replaced with the linked weight matrixes from

table 5.20. The impact of linking has been measured with regards to the SSE for each

cluster of the entire input space. By using the linked weight matrixes, the errors for

each cluster can increase or decrease if compared with the trained SSE results listed in

tables 5.12 and 5.13 for networks A and B respectively. Table 5.21 contains the SSE

Linking of Neural Network Weight Matrixes 155

for each cluster for network A and table 5.22 for network B. It can be noted that the

linking process has reduced the extrapolation errors with the furthest distance;

quadrant Q1 in table 5.21 for network A and quadrant Q3 in table 5.22 for network B.

Quadrant Q4 shows a slight improvement for network A but worsened for network B.

Table 5.21 Sum Square Errors for each cluster after linking of dataset A.

Cluster SSE Cluster SSE
Qll 2.55619 Q31 0.08766
Q12 0.48926 Q32 0.04759
Q13 1.72065 Q33 0.04364
Q14 0.25082 Q34 0.03166
Q21 0.38004 Q41 1.08590
Q22 0.48450 Q42 0.22921
Q23 0.06479 Q43 0.79075
Q24 0.19843 Q44 0.17832

Table 5.22 Sum Square Errors for each cluster after linking of dataset B.

Cluster SSE Cluster SSE
Qll 0.35056 Q31 4.44658
Q12 0.23728 Q32 2.03295
Q13 0.36733 Q33 1.80917
Q14 0.28527 Q34 0.55317
Q21 0.82563 Q41 1.92059
Q22 0.29750 Q42 0.66472
Q23 0.33802 Q43 0.74010
Q24 0.20874 Q44 0.42719

For easier visualisation, figures 5.21 and 5.22 compare the SSE from training with the

SSE after linking by utilisation of error bars. The horizontal marker of the error bars

represents the SSE after training and the bar graph the SSE after linking.

Linking of networks of two distinct domains has reduced the extrapolation error for

quadrants included in the training data of the other network. Quadrant Q1 used to

train network A has been reduced in SSE error by linking in network B and quadrant

Q3 used to train network B has been reduced in SSE error in network A after linking.

The combination of knowledge between both networks has been successful only for

Linking of Neural Network Weight Matrixes 156

areas they were trained in but not for areas not contained in both networks. It can be

observed in figure 5.21 that Q43 and Q44 slightly reduced their SSE after linking but

quadrant Q2 worsened. But in figure 5.22 quadrants Q2 and Q4 increased their SSE

after linking.

Q 11 Q 1 2 Q 1 3 Q 1 4 Q 2 1 Q 2 2 Q 2 3 Q 2 4 Q 3 1 Q 3 2 Q 3 3 Q 3 4 Q 4 1 Q 4 2 Q 4 3 Q 4 4

Figure 5.21 Error distribution for each cluster after linking 3 neurons of clusters from figure 5.15.

SSE
6.00

5 . 0 0

Q 11 Q 1 2 Q 1 3 Q 1 4 Q 2 1 Q 2 2 Q 2 3 Q 2 4 Q 3 1 Q 3 2 Q 3 3 Q 3 4 Q 4 1 Q 4 2 Q 4 3 Q 4 4

Figure 5.22 Error distribution for each cluster after linking 3 neurons of clusters from figure 5.16.

Linking of Neural Network Weight Matrixes 157

For an area view of figures 5.21 and 5.22, figures 5.23 and 5.24 are representing the

SSE measures in 3D.

Figure 5.23 Cluster errors after linking for A. Figure 5.24 Cluster errors after linking for B.

It can be concluded that the linking of two networks trained for generalisation in

extrapolated areas will reduce the SSE for areas, which were available for training. It

is evident that after linking the confidence c for a cluster increases even if the relative

distance Ad to the closest cluster used for training is large. If P denotes the probability

that a cluster for extrapolation is included in a domain for linking, equation (5.6) can

be extended to form equation (5.7).

P
C~ ^ [7 j (5-7)

With Ad as the distance between the cluster for extrapolation and the nearest cluster

used for training, | t | as the expected target value of the extrapolation and P as the

probability that the cluster for extrapolation is present in any other domain included in

the linking process.

Linking of Neural Network Weight Matrixes 158

5.6 Numerical Experiment: Linking of Inter- and Extrapolating

Networks

In the previous example in section 5.5, two networks trained for extrapolation have

been linked and their changes in extrapolation have been analysed. In this section, two

networks, one for interpolation and one for extrapolation are linked to investigate the

impact linking can have on the interpolation and extrapolation errors of each network.

Interpolation requires unseen testing data to be located in region C and extrapolation

requires unseen testing data to be located in region D as illustrated in figure 5.12.

This numeric example will follow exactly the same process as the previous example

in section 5.5. The only difference is the composition of clusters used for training and

testing for each of the networks involved, which in turn defines if a network is used

for interpolation or extrapolation.

5.6.1 Clustering of Input Space

The total number of sectors that divide the input space into clusters and their

numbering are the same as introduced from section 5.5.1 and were illustrated in figure

5.13. With this, only the clusters used for training and testing of both domain

networks C and D must be changed according to their purpose of interpolation or

extrapolation.

This section is analysing how generalisation performance is changing if an

interpolating and an extrapolating network are linked. For this reason the training data

used for the interpolating network C is located in each of the comers of the input

space as indicated in figure 5.25, leaving all other clusters of unseen testing data for

generalisation surrounded by data. Network D is extrapolating and therefore has its

training data in a diagonal cluster formation as indicated in figure 5.26 thus, leaving

all other clusters of unseen testing data for generalisation outside the training data

area.

Linking of Neural Network Weight Matrixes 159

In terms of confidence, unseen clusters of testing data with the furthest distance to the

clusters used for training are Q21 and Q41. These clusters will have the lowest

confidence and are therefore of prominent interest. Because Q41 has a higher target

value than Q21 the extrapolation error of Q21 should be lower than the error of Q41.

à l x2 i kx2
+1 +1

Q ll Q12 Q22 Q21 Q ll Q12 Q22 Q21

Q13
-1

Q14 Q24 Q23
+1

Q13
-1

Q14 Q24 Q23
+ 1

Q43 Q44 Q34 Q33
Xi

Q43 Q44 Q34 Q33
Xi

Q41 Q42 Q32
-1

Q31 Q41 Q42 Q32
-1

Q31

Figure 5.25 Dataset C for interpolation. Figure 5.26 Dataset D for extrapolation.

5.6.2 Training of Domain Networks

The training and testing objective function used in this section is exactly the same as

previously used in section 5.5.2, which is illustrated in figure 5.16 and expressed in

equation (5.5).

Both domain networks C and D used are equivalent to the ones used in the previous

section 5.5.2, which are 2:10:1 backpropagation networks with a symmetric sigmoid

activation function and frozen output weights that are set to 1 .

Because the data contained in each of the clusters remained unchanged, the same

training parameters with a learning factor of 0.7 and a momentum of 0.5 as presented

in section 5.3.2 table 5.1 have been used.

After training each of the 16 clusters have been presented to each of the networks for

measuring its SSE with respect to the target values. Tables 5.23 and 5.24 show the

Linking of Neural Network Weight Matrixes 160

SSE for each cluster for networks C and D respectively and figures 5.27 and 5.28

present the data graphically in 2D and figures 5.29 and 5.30 in 3D.

Table 5.23 Sum Square Errors for each cluster after training of network C.

Cluster SSE Cluster SSE
Qll 0.01543 Q31 0.01644
Q12 0.02860 Q32 0.03608
Q13 0.07019 Q33 0.02550
Q14 0.04451 Q34 0.01569
Q21 0.01548 Q41 0.02478
Q22 0.04949 Q42 0.08384
Q23 0.02615 Q43 0.06368
Q24 0.03627 Q44 0.04345

Table 5.24 Sum Square Errors for each cluster after training of network D.

Cluster SSE Cluster SSE
Qll 0.02270 Q31 0.03522
Q12 0.04658 Q32 0.14554
Q13 0.05418 Q33 0.10358
Q14 0.01799 Q34 0.01826
Q21 1.21126 Q41 1.65331
Q22 0.38512 Q42 0.53847
Q23 0.40224 Q43 0.38204
Q24 0.09621 Q44 0.06228

It can be noted that the clusters used for training have low errors. Network C has been

trained with data located in the comers Q11, Q21, Q31 and Q41. Therefore these

clusters have the lowest errors. Clusters used for training are represented in a lighter

grey colour in figure 5.27 and 5.28 than unseen clusters.

In table 5.23 all interpolation errors are relatively low if compared to the extrapolation

errors in table 5.24, with none of them exceeding 0.1. The main reason for this is that

the objective function from equation (5.5) is very smooth and can therefore be

described quite accurately by a network with 10 hidden neurons, thus permitting

excellent interpolation.

Linking of Neural Network Weight Matrixes 161

In table 5.24, on the other hand, all extrapolation errors are quite large with quadrant

Q41 and Q21 boasting the highest errors. Even if clusters Q41 and Q21 have the same

distance Ad to the training data, Q41 has a higher extrapolation error because its target

value 11 1 is larger (0.96) than the target value of Q21 (0.52).

SSE
0.10 -

0.09

Q 1 1 Q 1 2 Q 1 3 Q 1 4 Q 2 1 Q 2 2 Q 2 3 Q 2 4 Q 3 1 Q 3 2 Q 3 3 Q 3 4 Q 4 1 Q 4 2 Q 4 3 Q 4 4

Figure 5.27 Error distribution for each cluster after training of clusters from figure 5.25.

SSE
2.00
1 .8 0 -

1 .6 0

1 .4 0

1.20
1.00
0 .8 0

0 .6 0

0 .4 0

0.20
0.00

Q 1 1 Q 1 2 Q 1 3 Q 1 4 Q 2 1 Q 2 2 Q 2 3 Q 2 4 Q 3 1 Q 3 2 Q 3 3 Q 3 4 Q 4 1 Q 4 2 Q 4 3 Q 4 4

Figure 5.28 Error distribution for each cluster after training of clusters from figure 5.16.

Linking of Neural Network Weight Matrixes 162

Figures 5.29 and 5.30 show the spatial representation of the cluster errors across the

input space from figures 5.27 and 5.28 in 3D. It can be noted that the interpolation

errors shown in figure 5.29 are higher than the errors of the clusters used for training

(Q11, Q21, Q31 and Q41). The highest interpolation error of 0.083 can be found in

cluster Q42, followed by Q13 (0.07) and Q43 (0.063). Figure 5.30 shows the

extrapolation error distribution, which is highest at the clusters Q41 (1.65) and Q21

(1.21) with the largest distance Ad to the training data.

Figure 5.29 Cluster errors after training for A. Figure 5.30 Cluster errors after training for B.

5.6.3 Linking of Domain Networks

To combine the knowledge of both domain experts, networks C and D are now linked

as described in section 5.5.3. As in previous chapters, an acceptance angle of 10° has

been used for linking of both domains. The linking process follows exactly the same

process as demonstrated in section 5.5.3 and will therefore be described in brief.

Table 5.25 shows the trained weight matrix of networks C and D and table 5.26 shows

the vectors, which have an angle difference below the acceptance angle. All four

vectors listed in table 5.26 qualify for linking and table 5.27 shows the resulting

vectors and their associated length correction factor F2.

Linking of Neural Network Weight Matrixes 163

It can be observed that both training domains have intersecting clusters Q11 and Q31

in datasets C and D. Because of this, more neurons contain similar information and

are pointing in the same direction in hyperspace. Therefore more neurons have been

identified for linking than in the previous example in section 5.5.

Table 5.25 Weight matrixes of the hidden layers of networks A and B after training.

Reference
Network A Network B

w„ W 12 WiB Length wn Wl2 WiB Length

Vl 0.01814 0.12714 0.32884 0.35303 -0.20192 0.10318 -0.68289 0.71955

v2 -1.45389 0.74088 1.61548 2.29619 -0.30162 0.03888 -0.64425 0.71242

v3 -0.64706 -0.47454 -0.33795 0.87068 0.43947 -0.48111 0.25449 0.69954

V4 -1.61199 1.73849 4.55330 5.13356 -0.29893 0.00092 -0.81110 0.86443

V5 -2.51647 1.80877 5.94466 6.70397 -1.18565 1.56259 2.60402 3.26012
-1.46253 -2.22265 -4.75988 5.45304 -3.38593 2.23422 7.43186 8.46692

V7 1.80993 -1.22117 2.55825 3.36329 2.02362 -0.98535 2.57601 3.42079

v8 -1.45224 -0.77717 -1.00396 1.92897 -0.62344 -0.36404 -1.16696 1.37222

V9 2.04481 1.01383 -2.60103 3.46042 0.14505 1.12559 0.76522 1.36878

Vio -3.30301 -3.13889 -7.48923 8.76647 -1.87252 -1.64221 -1.31091 2.81454

Table 5.26 Angles between weight vectors in ascending order.

Vector pair Angle between
Network A Network B vectors

V5 V6 1.53°
V7 v7 180°- 174.70=5.30° 1
V3 Vio 180°- 173.32=6.67° '
Vio V8 6.93°

Table 5.27 Linking results of vectors with angles below 10° as listed in table 5.26.

Original vector references Resulting vector vri
Network A Network B wn W ,2 W ,B Factor F2

v5 v6 -2.62866 1.78183 5.90283 1.26314
v7 V7 1.90235 -1.10403 2.53995 1.01694
v3 Vio -0.57040 -0.50546 -0.40698 3.25751
Vio Vs -3.24420 -3.21372 -7.48258 0.15518

1 This vector has been mapped from Q3 to Ql.

Linking of Neural Network Weight Matrixes I M

5.6.4 Linking Analysis

Table 5.28 shows the relative errors between the trained weights and the weights after

linking. It can be observed that the relative errors are generally lowest for large

weights and largest for small weights and that the error increases as the angle between

the linked vectors grows. All relative errors are comparatively low with only five

weights being above 10%. Similarly in table 5.29, which lists the relative errors of the

vector length, where none of the errors exceeds 1%. 1

Table 5.28 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors w'n w'12 W'lB ffwn.w'n) f(Wn, w'n) f(wJB, w ' jb)
A: v'5 -2.62866 1.78183 5.90283 4.46% -1.49% -0.70%
B: v'6 -3.32035 2.25070 7.45608 -1.94% 0.74% 0.33%

A: v'7 1.90235 -1.10403 2.53995 5.11% -9.59% -0.72%
B: v'7 1.93458 -1.12274 2.58298 -4.40% 13.94% 0.27%

A: v'3 -0.57040 -0.50546 -0.40698 -11.85% 6.52% 20.43%

B: v'l0 -1.85810 -1.64653 -1.32575 -0.77% 0.26% 1.13%

A: v',o -3.24420 -3.21372 -7.48258 -1.78% 2.38% -0.09%

B: v's -0.50343 -0.49871 -1.16115 -19.25% 36.99% -0.50%

Table 5.29 Vector length change impact analysis.

Vector Original length Reconstructed length Relative Error
A: v'5 6.70397 6.70285 (brìi) -0.02%
B: v'6 8.46692 8.46662 (|vr,PF2) 0.00%
A: v'7 3.36329 3.35993 (brìi) -0.10%
B: v'7 3.42079 3.41686 (|Vrll*F2) -0.11%
A: v'3 0.87068 0.86399 (brìi) -0.77%
B:v'l0 2.81454 2.81446 (brll*F2) 0.00%
A: v'jo 8.76647 8.76595 (brìi) -0.01%
B: v'8 1.37222 1.36030 (br,l*F2) -0.87%

1 This vector has been mapped from Q3 to Q 1.

Linking of Neural Network Weight Matrixes 165

Table 5.30 shows the reconstructed weight matrix for domains C and D after linking,

where the framed row entries on grey backgrounds are vectors that have been

replaced with reconstructed vectors. With the resulting weight matrixes, evaluation of

each of the input space clusters from figure 5.13 can be repeated for networks C and

D as shown in table 5.23 and 5.24 for the originally trained networks.

Table 5.30 Weight matrixes of the hidden layers of networks A and B after reconstruction.

Reference
Reconstructed weight matrix for network A Reconstructed weight matrix for network B

W u w 12 W i n Length wn W l 2 W i n Length

V| 0.01814 0.12714 0.32884 0.35303 -0.20192 0.10318 -0.68289 0.71955

V 2
-1.45389 0.74088 1.61548 2.29619 -0.30162 0.03888 -0.64425 0.71242

V 3 -0.57040 -0.50546 -0.40698 0.86399 0.43947 -0.48111 0.25449 0.69954

V 4
-1.61199 1.73849 4.55330 5.13356 -0.29893 0.00092 -0.81110 0.86443

v 5 -2.62866 1.78183 5.90283 6.70285 -1.18565 1.56259 2.60402 3.26012

V 6
-1.46253 -2.22265 -4.75988 5.45304 -3.32035 2.25070 7.45608 8.46662

V7 1.90235 -1.10403 2.53995 3.35993 1.93458 -1.12274 2.58298 3.41686

Vg -1.45224 -0.77717 -1.00396 1.92897 -0.50343 -0.49871 -1.16115 1.36030

V 9 2.04481 1.01383 -2.60103 3.46042 0.14505 1.12559 0.76522 1.36878

V i o -3.24420 -3.21372 -7.48258 8.76595 -1.85810 -1.64653 -1.32575 2.81446

5.6.5 Linking Results

The impact of linking of an interpolating and an extrapolating network has been

measured with respect of the SSE changes in each cluster. Table 5.31 and table 5.32

list the SSE error of each cluster for networks C and D.

Table 5.31 Sum Square Errors for each cluster after linking of network C.

Cluster SSE Cluster SSE
Qll 0.36684 Q31 0.03593
Q12 0.18797 Q32 0.07329
Q13 0.39388 Q33 0.05525
Q14 0.21208 Q34 0.12181
Q21 0.02651 Q41 0.29644
Q22 0.11790 Q42 0.15367
Q23 0.05978 Q43 0.38837
Q24 0.14428 Q44 0.22603

Linking of Neural Network Weight Matrixes 166

Table 5.32 Sum Square Errors for each cluster after linking of network D.

Cluster SSE Cluster SSE
Qll 0.44401 Q31 0.25628
Q12 0.34688 Q32 0.15527
Q13 0.19470 Q33 0.14888
Q14 0.15266 Q34 0.11817
Q21 0.98650 Q41 1.47453
Q22 0.35590 Q42 0.36705
Q23 0.35842 Q43 0.34347
Q24 0.13925 Q44 0.03899

It can be noticed that the interpolation errors have increased substantially. This is

because the objective function was easy to interpolate for the network used, which has

resulted in very low interpolation errors to begin with. The error induction into

network C caused by linking has reduced the networks recall accuracy and its

interpolation capability on a similar scale. Figure 3.31 presents the SSE of the

interpolating network in 2D and figure 5.33 in 3D. It can be observed that the

quadrant with the highest error prior to linking Q42 is now on 8’th position if all

quadrants are ranked by their errors.

SSE

Q 1 1 Q 1 2 Q 1 3 Q 1 4 Q 2 1 Q 2 2 Q 2 3 Q 2 4 Q 3 1 Q 3 2 Q 3 3 Q 3 4 Q 4 1 Q 4 2 Q 4 3 Q 4 4

Figure 5.31 Error distribution for each cluster after linking 3 neurons of clusters from figure 5.25.

Linking of Neural Network Weight Matrixes 167

All errors for each cluster for network D have been exacted in the same manner as

network C and are listed in table 5.32 and presented in figures 5.32 and 5.34. If the

errors are compared with the errors after training, a general increase can be noted

except for the extrapolated quadrants Q2 and Q4, where the error decreased.

S S E
1 .8 0

1 .6 0 -

1 .4 0

1.20

1.00

0 . 8 0

0 . 6 0

Q 1 1 Q 1 2 Q 1 3 Q 1 4 Q 2 1 Q 2 2 Q 2 3 Q 2 4 Q 3 1 Q 3 2 Q 3 3 Q 3 4 Q 4 1 Q 4 2 Q 4 3 Q 4 4

Figure 5 .3 2 E r r o r d i s t r i b u t io n fo r e a c h c lu s te r a f t e r l i n k in g 3 n e u r o n s o f c lu s te r s f r o m f ig u r e 5 .1 6 .

Figure 5 .3 3 C l u s t e r e r r o r s a f te r l i n k in g f o r A . Figure 5 .3 4 C lu s t e r e r r o r s a f t e r l i n k in g f o r B .

Linking of Neural Network Weieht Matrixes 1 6 8

5.7 Conclusions

Data commonly held in databases can easily be used for the creation of data models

for the purpose of forecasting or analysis of input parameters for what-if cases [172],

With linking, the reusability of trained weight matrixes should be encouraged given

that linking can be used for rapid integration and combination of knowledge. In order

to use a trained weight matrix from a third party the input space margins for all input

parameters should be known so that a generalisation request can be categorised into

inter or extrapolation for a measure of confidence. In section 5.3.3 two networks with

objective functions not based on mathematical functions have been trained and linked.

After linking of three neurons, the linking analysis from section 5.4.2 has shown a

reduction in the generalisation error but an increase in the recall accuracy error.

To analyse linking results from networks that have been trained for inter or

extrapolation, the input space of an objective function based on a mathematical

function has been split into partitions. Depending on the selection of partitions,

networks have been trained for inter and extrapolation and subsequently linked to

study their performance change on generalisation based on inter and extrapolation.

Extrapolation errors for clusters are increasing with distance to the nearest cluster

used for training and with increasing target value. The larger the extrapolation target

value, the larger the error because the extrapolation of smaller target values e.g. 0.6

resulted in smaller errors compared to extrapolation of higher values e.g. 0.8. After

linking of three neurons, the analysis has shown good improvements for both

networks with clusters located in the extrapolation areas of the input space.

In section 5.6 one interpolating network C and one extrapolating network D have been

linked. The objective function was based on a mathematical function and was

therefore relatively easy to interpolate by the network C, whilst the extrapolation error

of network D was high. After linking of four neurons, the analysis has shown

increased recall errors but improved extrapolation was achieved by network D. As a

result, linking of interpolating and extrapolating networks improved extrapolation.

Chapter 6

Claims Reservation

6.1 Introduction

Claims reservation is a very important topic for non-life or property and casualty

insurance companies such as liability and accident insurance. Financial reserves are

needed for accounting, calculation of premium, reinsurance and asset liability

management [125, 173, 174], Reserves have to be present, due to the legal agreement

in insurance contracts. Insurance companies must pay a claim if the claim has

occurred during the insured period and has been delayed by claims processing or long

court cases. There are two kinds of problematic claims for which reserves have to be

built: IBNR (Incurred But Not Reported) reserves for claims, that are reported years

after they occurred and IBNER (Incurred But Not Enough Reserved) for claims that

have a very long regulation period like liability [175].

With IBNR, the total amount of claim size is not known at the end of the insurance

period. This is especially true for persons’ injuries (liability). Therefore a variety of

mathematical methods for estimation of total loss amounts have been developed, one

of the well known is the Chain Ladder Method (CLM).

A.M. Best International has supplied all of the data used in this chapter and granted

permission for use of Insight Non-Life. Insight Non-Life contains the data of all major

Claims Reservation 170

non-life UK insurance companies that has been extensively validated and tested for

correctness, making it the ideal data source for this chapter.

6.2 Claims Reserving

Claims Reserving is a vital topic in general insurance and serves the purpose of

estimating the cost of claims to be paid out to the insured party by the insurer.

Estimation of future events and their cost has mainly been part of advanced statistics

and data modelling [176]. Improving claims estimation reliability and accuracy will

increase the profitability of insurance companies and ensure their solvency in case of

paying for claims as part of the contract. Most actuaries will use different methods to

estimate the required claims reservation for specific groups of risk. Stochastic

forecasting methods such as the Chain Ladder Technique with and without past

claims numbers, Exponential Run-off and Curve Fitting have been well established

and are used in most cases [125, 177, 178], The purpose of this chapter is to apply

neural network technology to insurance claims reserves estimation.

The insurance industry has the responsibility to meet the future claims of their

policyholders with the result that the government forces companies to disclose

information regarding their business activities under the Companies Act. For this

purpose, general insurance companies secure large amounts for the reserve of

outstanding claims. As for all insurance companies, the cost of their business lies in

the future and the unknown extent of these figures is a major uncertainty. Producing

the best estimate can be the difference between profitability and insolvency.

The problem of taxation of the whole of the claims reserve in the insurance business

is that they are exempt from tax. Reserves to allow for possible adverse circumstances

may be seen as a device adopted for the postponement of taxation properly due and

seem negative from the government point of view. However, over reserving (or

overprovision) is reducing the amount immediately available for distribution to

Claims Reservation m

shareholders and reduces it's profitability and its future prospects in the insurance

sector.

Insurance regulation has been well established over the past decades, preventing

insurance companies from insolvency and subsequent collapse [179], The Financial

Services Authority (FSA) requires claims reserves to be broken down both by class of

business and by year of origin. It’s major interests are to protect the policyholder and

therefore welcomes generous reserves, while the Inland Revenue is demanding a

paring down of those same reserves so as to maximise taxable income. The existence

of two contradictory requirements on the part of the Government apparently poses a

dilemma when it comes to reserving. There is no absolute correct value for a claims

reserve, since it depends on the purpose for which the reserve is required [125],

Statistical analysis of claims reserves is generally based on past and present

experience. There is a minimum of information required for that process, in that

statistical estimation of the reserves for very small classes becomes unreliable. For

such classes, a claims assessor prepares a case-by-case approach for claims

estimation. Many claims assessors have a life-long day-to-day claims experience,

which uniquely equips them for the estimation task.

6.2.1 Claims Reserving for Different Types of Business

Insurance companies accept a wide variation of contracts and covers. Dependent on

the type and nature of the risk, different reserving strategies need to be applied.

Therefore, a general classification of the business categories into Types of Business is

required. Types of Business can be distinguished between physical damage and

liability; direct business and reinsurance; private and commercial business. Because a

type of business can be composed of a mix of different risks, further subdivision into

risk groups is required.

Claims Reservation 172

6.2.2 Types of Business

Insurance companies commonly classify insurance risks, other than reinsurance, by

the following split in types of business:

Table 6.1 I n s u r a n c e r i s k s s p l i t b y ty p e of b u s in e s s .

No Description
1 Accident & Health
2 Motor Vehicle
3 Aircraft
4 Shipping
5 Goods in Transit
6 Property Damage
7 General Liability
8 Pecuniary Loss

Characteristics
Large number of policies, similar risks give homogeneity throughout this class.
Large number of policies, risks must be split into risk groups for homogeneity.
Small number of contracts requires case-by-case analysis.
Small number of contracts requires case-by-case analysis.
Small number of contracts requires case-by-case analysis.
Large number of policies, split into risk groups, claims settle within 2 years.
Claims settlement can take 25 years and more, requires split into risk groups.
Large number of policies, split into risk groups, dependent on economic factors.

6.2.3 Claims Estimation Methods

An insurer who accepts a premium in one year may still be paying claims in respect of

that policy many years later. This is because bureaucracy, court cases, long-term

liabilities and so forth can delay claims payments. Therefore, the insurer needs to

estimate the liability in order to have a basis for future premiums and claims

reservation calculations. There are generally two distinct procedures the first being

case-by-case estimation and the second being statistical analysis [125, 180, 181].

The case-by-case approach produces individual estimates, which is done by a claims

assessor with experience of similar claims. If a large number of policies are available,

sub-dividing similar claims into homogeneous risk groups can aid the assessor. It is

then required to add an allowance for direct claims expenses, inflation, social or

legislative changes and decide when payment is likely to occur. It is worth noting that

even companies using an aggregated case-by-case approach to report future claims

must use statistical analysis for taxation purposes.

Claims Reservation 173

Statistical analysis is a generic term covering almost any method that does not rely on

examination of the individual claim file. Those range from simple ratio methods

through a range of methods based on claims payment triangles. There is no single

method, which is universally applicable. Commonly, several statistical methods are

applied to the same set of data and their results compared. One of the major factors

for the successful appliance of mathematical methods for estimation purposes is the

availability of quality insurance data. Sometimes only limited information is available

in the early years of a new business. In such case comparative methods across

companies and years is necessary. To assist comparison between companies and

years, data models of available data can be produced which can help in the process of

comparing similar pre-existing risk groups of other companies with a new risk group

introduced by new business. This chapter will concentrate on the construction of such

data models with neural networks and compare the result with conventional statistical

methods.

6.3 Data Preparation

The first and most obvious consideration is to determine what history data might be

available. In order to generate a reliable mathematical estimation, history data of good

quality on the specific type of business or risk group must be available.

The second consideration is the purpose of the estimate. If the estimate is required for

published accounts a more cautious basis is required than that used in assessing

premium rates. This will affect the desired accuracy of the estimate since the

evaluation of premium rates can be changed on a daily basis, whereby published

accounts are generally printed once a year. Additional differentiations are type of

estimation such as long term, short term, interpolation or extrapolation.

A further consideration is the dependence on external circumstances, for example,

future inflation, interest rate, unemployment, weather conditions and political

Claims Reservation 174

changes. If any of such information is available in data format, they should be

included for the data model design and in the estimation process.

Producing an estimate with the help of a data model should not be restricted to one

narrow range. If the range of the estimation is increased, the sensitivity to changes

within the dependencies can be analysed. Highly sensitive dependencies can be

pointed out and re-valuation of those can improve the overall prediction.

6.3.1 Types of Data used for Claims Reservation

As mentioned before, the ability to make good projections of past experience lies with

the quality of historical data. Even with the best quality data available, any future

projection will be subject to error. But the error can be reduced and confidence in the

acquired results can be increased if the correct data or the correct combination of data

items has been included in the modelling process. Furthermore, not only the data itself

can influence the outcome, the data pre-processing such as the data presentation, data

normalisation and denormalisation, data validation, data consistency and the data

classification have significant involvement on the outcome of the estimation.

Historical data such as the number of claims reported, number of claims settled and

the amounts paid out by way of settlement are the first benchmark data items

beneficial for data modelling. Besides those data reflecting claims, data such as

premium written or earned and measures of risk exposure are frequently available and

may be included in the data model.

Since the future estimations are linked to time and classes of business, the history data

needs to be split by year of origin and type of business. An insurance policy is not

definitely restricted in time, some claims may occur years later; therefore the

information on years of development is required within the history data.

Claims Reservation 175

6.3.2 Statistical Credibility of the Sample

The underlying principle of insurance is statistical in nature. A sufficient number of

similar but independent risks is required to improve prediction within manageable

margins and easing prediction of amounts payable in the next financial year. Hence an

adequate premium can be set with some confidence in advance of the risk period

itself. This is a result of what is popularly known as "the law of large numbers",

which appears in statistical theory as the necessary relationship between the variance

of a sample and its size [182],

Characterisation of claims for prediction can be archived by creating groups of data of

similar but independent risks. Firstly, the data requires to be split into their main types

of business. They are reflected in the supervisory authority classification and are law

within the FSA. But the heterogeneity of many of these main classes is such to make

further subdivision essential. The further the subdivision the greater the homogeneity

in each of the resulting data groups.

Individual data groups can lose their statistical credibility because of lack of sample

size, which in turns can cause a high variance. Data classes should have a similar risk

profile and claims run-off. Similarities in claims run off can be detected if the overall

tail length and development figures are alike. Generally, physical damage claims are

settled within a few years, whereby major liability claims will take much longer.

If only a small number of data samples are available, different groups can be taken

together for combined prediction and trend analysis if their ratio and business volume

stays stable in the future.

If a large number of policies exist with the individual amount at stake relatively small,

the conditions for statistical treatment are good. But if only a small number of policies

exist within a class with large amounts at stake, case estimates (case-by-case analysis)

are required [125],

Claims Reservation 176

6.3.3 Representation of Claims Data

Representing data in an understandable format is the first step in data analysis. The

appropriate representation of data for a specific analysis can reveal certain trends just

by graphing it as a simple line. Therefore, an appropriate data format should be

considered if a successful prediction system is to be created.

Assuming a data sample, in which the risk classification, sample size and

homogeneity is already established. What are the constraints on the data to describe a

particular claims figure?

To begin with, there will be the claims amount paid during the course of the

accounting year just past. This claims figure significance for projection purposes can

be increased if the accounting year, length of the business run-off, the relative age of

the claims and the relationship to premium income is known.

6.3.4 The Claims Triangle

The most common method for claims data representation is the claims triangle [183],

In the claims triangle claims data is displayed in Year of Development and Year of

Origin on their x and y-axis respectively. The Year of Origin is the year in which the

policy covering risk was taken. The Year of Development is the age of the insurance

policy in years after a policyholder has taken it out.

For example, an insurance company has started to sell new policies of a new type of

risk beginning in 1991. Policies sold in 1991 have caused claims to be paid out in

1991.1992.. . 1996, whereby 1991 is the 1 Year of development, 1992 is the 2 Year of

Development and so forth. Policies sold in 1992 have caused claims in 1992,

1993.. .1996, whereby 1992 is the 1 Year of Development, 1993 is the 2 Year of

Development and so forth. The date in which the policies have been sold is the Year

of Origin and the difference between the date in which claims occurred and the date in

which the policy was bought are the Years of development. It is important to mention

that this chapter uses a development year counting system based on 1 not on 0.

Claims Reservation 177

If the claims data is displayed in a data grid format displaying the Year of

Development on the x-axis and the Year of Origin on the y-axis, the following

triangular shape emerges:

Y e a r o f D e v e lo p m e n t--- ►

1 2 3 4 5 6
1991 1001 854 568 565 347 148
1992 1113 990 671 648 422
1993 1265 1168 800 744
1994 1490 1383 1007
1995 1725 1536
1996 1889

Figure 6.1 D a ta t r i a n g le o f in c r e m e n ta l c l a im s f ig u re s .

Once the data has been put into the triangular format, it is very expressive of means

for analysing and prediction of claims. Down the development year columns, the

figures are indicating on how much money has been paid out in the first,

second,...,sixth year after a policy has been sold. Across the origin year rows, the

figures are indicating on how much money has been paid out for a policy sold in

1991, 1992... 1996. Lastly, the diagonals can be seen to relate to the position in

succeeding calendar years, with the lowest diagonal representing the calendar year

immediately past. The sum of the figures in this diagonal is indicating on how much

money has been paid in 1996, 1995...1991 (e.g. 1996: 1889 + 1536 +... = 5746).

There is a further variation of the table that is useful. Rather than looking at the year-

by-year addition to the claims for each year of origin, cumulative development can be

shown. The cumulative figures are obtained simply by adding the figures along each

row. The process yields the triangle shown in figure 6.2.

If the data is analysed across the origin year rows, the figures are indicating on how

much money in total for a specific development year has been paid out for a policy

sold in 1991, 1992...1996. Summation of the diagonals will indicate how much

Claims Reservation 179

6.3.6 Claims Data Normalisation

Generally, data normalisation will result in a data set in which the value range lies in-

between 0...1 for non-symmetrical sigmoid activation function or - 1...+1 for

symmetrical sigmoid or hyperbolic activation functions. This simple method for data

normalisation is sufficient on a static data set in which global minimum and

maximum are known.

Time series forecasting with financial data is not static. Whenever dynamic data

forecasting is required, the global minimum and maximum figures are generally

unknown. With claims data, the minimum can be assumed to be zero whereby

negative claims are possible but out of scope for this chapter [187]. This assumption

is not generally applicable for financial data since e.g. turnover data might be positive

or negative. The maximum figure for claims normalisation cannot be found within the

existing history data set since the data forecasting process may result in a new

maximum. Therefore, the maximum figure contained within the training data set

needs to be increased by an estimated factor. Initially, this factor could be the

forecasted inflation for this particular type of business, found via mathematical

progression or published expert opinion.

Application of such a factor in the normalisation process will result in a maximum

figure of less than one in the training and testing data, avoiding saturation of the

sigmoid activation function of the output neuron. Once the network has been trained

and data prediction started, monitoring of the network output for saturation becomes

essential.

If the normalised network output becomes close to one, the estimated inflationary

factor has most probably been too small and output neuron saturation has occurred. In

such a case, the inflationary factor needs to be adjusted appropriately and training of

the network needs to be repeated. Besides the fact that the factor can be too small, it

may be the case that it has been chosen too large. This can be detected by the network

output being below a certain value, e.g. 0.6. Finding the ideal factor to avoid over- or

under saturation can become a recurring process and can easily be automated.

Claims Reservation 180

6.3.7 Feature Selection Process

Defining which data items are relevant for the model in question is called feature

selection. Selecting the right features to describe all pertinent dependencies is the first

step to build up a fuller and more reliable data model. By definition, Incurred But Not

Reported (IBNR) claims reserving requires a data model for its estimation. Generally,

not only one mathematical approach should be used to produce a prediction result.

The more different the prediction methods are in their background, the better the

analysis of their confidence limits. But different methods require different features,

which in turn reduces the ability of correlating the results.

Total claims paid (or incurred) is the amount of money paid to settle claims (generally

including partial payments and expenses). The claim frequency is a figure reflecting

the number of claims occurring during the same period as payments are made.

Division of the total claims paid figure by the claims frequency is resulting in the

average cost per claim figure. If a company has a large proportion of direct-writing

business (low reinsurance ceded) the figures can be taken as gross. If a company has a

large reinsurance proportion (low direct business), figures should be taken as net

(gross-ceded).

Claim payments are dependent on how many losses can be recovered from

reinsurance. The ratio between net premiums earned and gross premium written is

called the retention ratio and determines the proportion of the income, which has not

been used to pay for reinsurance. If a company changes its risk policy, a distortion in

the historical data can be caused if the retention levels are changed drastically. In such

a case, adjustments for changes in the retention limits must be made.

An important choice in claims development methods is whether to use paid or

incurred loss data. The difference between paid losses and incurred losses are that

paid losses are the actual paid amount, whereby incurred losses are the sum of paid

and reserved money. If a claim has been reported and the claims figure is known (or

estimated) but is not settled, the claims figure can be reserved since a settlement is

expected. Such reserves are included in the incurred loss figure. If, for example, a

Claims Reservation 181

high percentage of claims occur close to the financial year-end and the money

required for settlement has been reserved, the figures for paid losses and incurred

losses would differ. Such difference is reflected in the ratio between the claims settled

and claims reported which is called the claims settlement rate. If the claims settlement

rate is lacking of stability across the financial periods, distortions in the projections

can occur. If the claims settlement rate is constant, projections of paid losses and

incurred losses are most likely to correlate, increasing confidence in the results. If

high fluctuations are identified, a worst-case solution is more desirable [125, 188].

6.4 Claims Reservation with Chain Ladder Method

One important part of the business of a general insurance company is to forecast

outstanding claims and setting up suitable reserves to meet these claims. The profits

of insurance companies depend not only on the actual claims paid but also depend on

the forecasts of the claims that will have to be paid.

The reserves that will be set aside to cover future claims to ensure the financial

stability of the company and the stability of its profit and loss account need to be

estimated in a reliable manner. There are a number of methods, which have proved

useful in practice, one of which is extensively used and is known as the Chain Ladder

Method (CLM) [125, 187],

6.4.1 Chain Ladder Method

This section will present the insurance data in the form of a claims triangle. It should

be emphasised that this is for notational convenience only: there are no problems in

extending the methods to other shapes of data. To reiterate, the year in which the

policy has been written is often referred to as the underwriting year, accident year or

year of origin. In the years after the policy was written the company may receive

Claims Reservation 182

claims related to that policy, and these claims are often referred to run off year or

development year.

The data in table 6.2 shows the incremental run-off triangle of AXA Insurance pic for

total claims. Since the SFA 1996 regulations limit the number of reported years to 10,

a truncation of the triangle after the 10’th development year can be noticed. This

slight derivation of the perfect triangle to a rectangle from 1989 onwards will not

adversely affect any calculations.

Table 6.2 Incremental run-off triangle for AXA with actual 1999 data.
Development Year

1 2 3 4 5 6 7 8 9 10
1981 22277 10285 6565 3382 2552 336 667 324 267 229
1982 27669 12257 7451 4555 1681 2318 918 866 675 751
1983 26038 10963 7965 2807 3363 1226 716 210 341 199
1984 24594 11093 5299 5789 2946 2265 1306 757 378 528
1985 24274 9462 9247 7209 4494 2605 1753 929 651 580
1986 24008 11695 8712 7787 5020 3503 1964 1688 1055 625
1987 23081 14739 9606 7512 6028 3898 3198 2593 1723 171
1988 19373 10551 8917 7632 4490 4815 3241 1947 1978 1909
1989 35790 16960 15252 11216 9667 4935 2779 2410 1391 865
1990 63257 28691 23044 22279 14653 10191 6139 3788 3630 2872
1991 50348 26516 27625 18287 12760 6751 3648 3472 2347
1992 42350 25735 18798 14394 9920 5642 6071 3258
1993 33864 23350 15288 10877 5273 3146 1932
1994 42833 26250 16261 9447 6351 3100
1995 40277 25012 20030 19103 12761
1996 61229 43086 48576 34089
1997 89466 50737 41399
1998 88171 79146
1999 92442

Run-off triangles can be presented in the form of incremental and cumulative claims

forms for each development year. The data in figure 6.2 is shown as incremental

figures. The main difference is that incremental figures decrease for higher run-off

years whereby cumulative figures will increase.

The incremental claims relating to year of origin i and development year j will be

denoted Zy, so that the observed data can be described in equation (6.1).

Claims Reservation 183

Zy :i = 1 t; j = 1,..., t - i + 1 (6.1)

The neural network approach will use the incremental claim figures, but the CLM is

applied to the cumulative claim figures, which are described in equation (6.2) and

shown for AXA in table 6.3.

(6.2)
k = \

Table 6.3 Cumulative run-off triangle for AXA without 1999 data.
Development Year

1 2 3 4 5 6 7 8 9 10
1981 22277 32562 39127 42509 45061 45397 46064 46388 46655 46884
1982 27669 39926 47377 51932 53613 55931 56849 57715 58390 59141
1983 26038 37001 44966 47773 51136 52362 53078 53288 53629 53828
1984 24594 35687 40986 46775 49721 51986 53292 54049 54427 54955
1985 24274 33736 42983 50192 54686 57291 59044 59973 60624 61204
1986 24008 35703 44415 52202 57222 60725 62689 64377 65432 66057
1987 23081 37820 47426 54938 60966 64864 68062 70655 72378 72549
1988 19373 29924 38841 46473 50963 55778 59019 60966 62944 64853
1989 35790 52750 68002 79218 88885 93820 96599 99009 100400 101265
1990 63257 91948 114992 137271 151924 162115 168254 172042 175672
1991 50348 76864 104489 122776 135536 142287 145935 149407
1992 42350 68085 86883 101277 111197 116839 122910
1993 33864 57214 72502 83379 88652 91798
1994 42833 69083 85344 94791 101142
1995 40277 65289 85319 104422
1996 61229 104315 152891
1997 89466 140203
1998 88171

Past experience contained in the triangle is the history information that should be used

for forecasting the data missing in the lower right hand triangle. Sometimes it is also

useful to extend the forecasts beyond the latest development year (i.e. to the right of

the claims run-off triangle) but the standard actuarial technique does not attempt to do

this. This chapter will focus on the forecast of the 1999 development year only since

Claims Reservation 184

forecasting of subsequent years will follow the same procedure. The diagonal 1999

development year data to be forecast using CLM and neural networks can be seen

shaded in table 6.2 .

The CLM was developed from the theory that the amount of payments still to be

made on a group of claims was related in a stable manner to the amount that has

already been paid on those claims in earlier years. The basic CLM assumes that all

external factors such as change in the rate of settlement of claims, alterations in the

mix of business and inflation of claims costs can be ignored [125],

The CLM theory is based on development factors bj. Development factors are ratios

of cumulative payments in successive development years for each group of claims.

The assumption is that the cumulative claims for each business year develops

similarly by each development year, and estimates the development factors as ratios

of sums of cumulative claims within the same development year. Thus the estimate of

the development factor b for column j is shown in equation (6.3). Once the

development factors bj are known for progressive development years they can be used

to fill in claims reservations for future years.

With the figures from table 6.3 and equation (6.3) the development factor b2 for

column 2 can be calculated as 1.549 as shown in equation 6.4.

(6.3)

32562 + 39926 + ... + 140203
22277+ 27669+ ... + 89466

(6.4)

Summing each column in figure 6.3 and calculating the ratio by dividing the current

column by the previous column will determine the bj factors for the entire table. After

the calculation of all development factors they can be used to estimate future

Claims Reservation 185

development years Ej by multiplication with the latest loss figure as shown in

equation (6.5).

In equation (6.5) Cy is multiplied with (bj-1) and because 1 is subtracted from bj, the

estimated figure Ej is incremental. If Cy had been multiplied with bJ; Ej would have

been cumulative. Because neural networks will forecast incremental figures, equation

(6.5) is subtracting 1 from bj to permit direct comparison of results.

E j = C i r (b j - 1) (6 .5)

If more years are to be forecast, incremental forecasts can to be summed up to create

cumulative Cy figures or the subtraction of 1 can be omitted. Because one year of

forecasting is used in this chapter, equation (6.5) is used. Thus, the estimation for

1999 for all contracts of the origin year 1996 is 152891 -(1.158-1) = 24160. Table 6.4

shows all development factor ratios and claims forecasts for 1999 obtained by CLM.

Table 6.4 Cumulative run-off triangle for AXA with predicted 1999 data using CLM.
Development Year

1 2 3 4 5 6 7 8 9 10
1981 22277 32562 39127 42509 45061 45397 46064 46388 46655 46884
1982 27669 39926 47377 51932 53613 55931 56849 57715 58390 59141
1983 26038 37001 44966 47773 51136 52362 53078 53288 53629 53828
1984 24594 35687 40986 46775 49721 51986 53292 54049 54427 54955
1985 24274 33736 42983 50192 54686 57291 59044 59973 60624 61204
1986 24008 35703 44415 52202 57222 60725 62689 64377 65432 66057
1987 23081 37820 47426 54938 60966 64864 68062 70655 72378 72549
1988 19373 29924 38841 46473 50963 55778 59019 60966 62944 64853
1989 35790 52750 68002 79218 88885 93820 96599 99009 100400 101265
1990 63257 91948 114992 137271 151924 162115 168254 172042 175672 1790
1991 50348 76864 104489 122776 135536 142287 145935 149407 2446
1992 42350 68085 86883 101277 111197 116839 122910 2685
1993 33864 57214 72502 83379 88657 9179iJ 3100
1994 42833 69083 85344 94791

Y
101142 \ 5224

1995 40277 65289 85319 104422 9208 1
1996 61229 104315 152891—►24160
1997 89466 140203 40165
1998 88171 \ 48424 1

bj N.A. * 1.549 1.286 1.158 1.088 1.052 1.034 1.022 1.016 1.010

Claims Reservation 1 8 6

In table 6.4, the brackets and arrows shown graphically illustrate two ratio

calculations referring to equation 6.3. Furthermore, the forecasting results of the CLM

for 1999 are shown diagonally in bold and the development factors bj are in bold at

the bottom. One major limitation of the CLM is that no forecast for 1999 for the first

year of development can be made, since no development factor bj is available.

The CLM forecasting results are again listed in table 6.5 in a more convenient way.

They will be used as benchmarks that shall be used to compare the results obtained

with using neural networks. Because financial forecasting is an extrapolation

procedure, linking will be used in an attempt to improve the forecast.

Table 6.5 CLM result analysis for 1999.

Year of Origin Claims Occurred CLM Prediction Relative Error
1990 2872 1790 -60.47%
1991 2347 2446 4.04%
1992 3258 2685 -21.32%
1993 1932 3100 37.68%
1994 3100 5224 40.66%
1995 12761 9208 -38.58%
1996 34089 24160 -41.10%
1997 41399 40165 -3.07%
1998 79146 48424 -63.44%
1999 92442 NA NA

Table 6.5 contains the forecasting results from table 6.4 as well as the actual loss

figure from table 6.2 for reasons of comparison. The forecasting results from CLM

seem to be relatively reliable since errors are not larger than 65%. This is caused by

the fact that the chosen company AXA has a very large number of contracts and

behaves relatively consistent e.g. no major mergers. With this, the law of large

numbers applies where trends in data sets containing a large number of samples are

more stable than data sets that contain a small number of samples [182], CLM relies

on a stable development and requires a fully developed early year.

Claims Reservation 187

6.4.2 Other Forecasting Methods

Claims reserving is not limited to the CLM, there are many other methods of

calculating future claims. There are numerous methods available for claims

reservation calculations such as Bomhuetter-Ferguson method, Reid’s method,

Bayesian forecasting methods, methods based on regression models and other less

complex curve fitting methods [189], Many of these methods can include inflation,

IBNR, number of claims, claim size, cost per claim and many other factors relevant to

the claims reservation process. A discussion of claims reservation methods other than

the CLM is out of the scope of this thesis but City University and The Faculty and

Institute of Actuaries have published a comprehensive guide on claims reserving

called “Claims Reserving Manual” [125],

6.5 Claims Reservation with Neural Networks

Neural networks have been used successfully in several areas of the insurance

industry’s claims processing. Such areas include detection of fraudulent claims,

improved claims processing, pricing and prediction of claims duration [190, 191] but

nothing has been found on the application of neural networks for claims reservation.

This chapter contains two numerical examples on claims reservation. The first

example on claims reservation will restrict data availability to one company only.

Data availability is reduced in cases where certain types of business are written with

contracts specific to one company or with low policy numbers. The second example

on claims reservation will use data from two companies. Data availability is high in

cases where many companies are writing business with similar contracts for a large

number of contracts. Both numeric experiments will train two neural networks both

networks will be linked and operated with a stimuli network in an attempt to improve

forecasting. The forecasting results of the trained only, linked only and linked with

stimuli networks will be compared.

Claims Reservation 188

6.5.1 Claims Reservation with Data from one Company

To compare neural network training and linking with CLM, data must be homogenous

to a certain degree else CLM will perform badly. Therefore the risk group Private Car

Comprehensive with incremental claims reported and outstanding excluding INBR

from AXA Insurance Company pic has been chosen and its data is shown in tables

6.2, 6.3 and 6.4. The advantage of this risk group is that insurance contracts have not

changed significantly over the years thus homogeneity is present.

6.5.1.1 Training Data Preparation

Because data from one company is to be analysed in isolation, two distinct domains

are created from the run-off triangle from table 6.2 so that two neural networks can be

trained. For this purpose, training patterns are created in two directions. The first set

of training patterns are created to follow the data sequence along the x-axis, the

second set will follow the data sequence along the y-axis. Whilst the data contained in

the triangle will remain unchanged, the information held in each training pattern will

describe a different domain.

Data records created along the x-axis will contain information about the development

years. Data changes in each development year reflect claims management and the

delay of claims e.g. court proceedings, claims handling and claims processing.

Data records created along the y-axis will contain information about the year of

origin. Data changes in each year of origin reflect economic factors and the

occurrence of claims e.g. inflation, traffic management, road conditions and cost of

claims settlement.

Since financial data contains time dependent information, financial forecasting is

categorised as time series forecasting [192, 193], The neural network tries to learn

what the data changes for each time unit are. Time units are represented by individual

training patterns so that no explicit time information is required in the training data.

All financial data used in both examples are typical time series that contain

continuous data changes for a constant time interval e.g. one year.

Claims Reservation 189

Figure 6.3 shows how time series data is split into input and output windows. In the

example below, four input neurons and one output are used, which required that the

input window size must be four and the output window one. A data point that was

used as the target output in a previous pattern becomes an input in the next pattern.

Data points that were used as inputs are passed along to the next input changing the

input patterns into a time series.

Figure 6.3 Training pattern generation for time series forecasting.

There are in principle two ways of training a neural network with time-delayed data.

One way is to use a Time Delay Neural Network (TDNN). A TDNN has time delayed

input neurons that shift data points from one input neuron to the next. This requires

that the input neurons store data in memory in order to pass it on to the next. Another

way is to use a normal MLP neural network where input and output vectors are

shifted in the training data. With this, previous and next data points are stored within

the training data file and no special TDNN software is required. Both methods are

equivalent with the main difference being the location where input data is stored.

Claims Reservation 190

Several experiments with different sizes of input windows have been run and no

relevant improvements on window sizes greater than five have been noticed.

Therefore the window size of the input was set to five (five year history trail) with one

output to predict (the next year’s claim estimate).

Table 6.6 shows the cumulative claims run-off triangle from which training and

testing data has been extracted. One sample pattern is shown outlined for each domain

in x-and y direction referred to as the development and origin year direction. The first

training pattern for development years starts at column 5 and ends at 9 with the output

located at column 10. Subsequent patterns have been shifted to the left so that the next

pattern input vector starts at column 4 and ends at 8 with the output located at 9.

Patterns for origin years will follow the same logic but in a vertical position. The first

pattern input vector starts at row 1981 and ends at 1985 with the output at row 1986.

Subsequent patterns will be shifted downwards so that the next pattern input vector

will start at row 1982 and ends at 1986 with the output at row 1987.

Table 6.6 Creation of training data using time series window size of 5 inputs and one output.
Development Year

l ! 2 3 4 5 6 7 8 9 10

19S1 22277 32562 39127 42509 ; 45061 45397 46064 46388 46655 ; j
1982 27669 39926 47377 51932 53613 55931 56849 57715 58390 59141

1983 26038 37001 44966 47773 51136 52362 53078 53288 53629 53828

1984 24594 35687 40986 46775 49721 51986 53292 54049 54427 54955

1985 24274 33736 42983 50192 54686 57291 59044 59973 60624 61204

1986 24008 35703 44415 52202 57222 60725 62689 64377 65432 66057

1987 23081 37820 47426 54938 60966 64864 68062 70655 72378 72549

1988 19373 29924 38841 46473 50963 55778 59019 60966 62944 64853

1989 35790 52750 68002 79218 88885 93820 96599 99009 100400 101265

1990 63257 91948 114992 137271 151924 162115 168254 172042 175672 ?

1991 50348 76864 104489 122776 135536 142287 145935 149407 ?

1992 42350 68085 86883 101277 111197 116839 122910 ?

1993 33864 57214 72502 83379 88652 ' 91798 j ?

1994 42833 69083 85344 94791 |'l01142’ ?

1995 40277 65289 85319 104422 ?

1996 61229 104315 152891 ?

1997 89466 140203 ?

1998 88171 ?

1999 ?

Claims Reservation 191

Continuing the creation of development and origin year patterns 55 and 85 patterns

have been generated respectively. The development year pattern with the highest

origin year will be of 1993 because five inputs and one output require six data points

in horizontal direction therefore 1993 is the last data point available for the

development year, as shown outlined in figure 6.5. It comes as a disadvantage that

data from the last five years cannot be included in the training data.

Table 6.6 is not in the shape of an ordinary triangle because it benefits from additional

history data from 1981 to 1988. If data from 1981 to 1988 would not have been

available and table 6.6 would be a triangle, pattern creation for origin years would

have stopped for origin year 1989 and development year 5. This would have caused

that no training data for development years higher than 5 would be available for

training. Because extensive history data has been provided, the training patterns for

origin years include all 10 years. After creation of all patterns or vectors, they have

been normalised by a vector based normalisation process that is dividing each vector

component a, by the vector length. This process is used to create normalised vectors

with the length of 1 and is shown in its general form in equation 6.6.

6.5.1.2 Training of Domain Networks
Two MLP neural networks have been trained with the normalised data from the

previous section. The topology of both networks used has been chosen to be 5:10:1

with frozen outputs. All other important network parameters can be found in table 6.7.

For ease of use, the neural network trained with development year data is referred to

as x-direction and the one trained with origin year data is referred to as y-direction.

Training of both networks has been stopped when the generalisation has dropped or

reached a plateau after a certain amount of training epochs. The data used for

measuring the generalisation error are patterns containing 1999 data as target values.

Claims Reservation 192

Table 6.7 The parameters of the neural networks used in this section.

Description X-Direction Y-Direction
Input Neurons 5 5
Hidden Neurons 10 10
Output neurons 1 1
Activation Function symmetric sigmoid symmetric sigmoid
Initialisation ±0.7 ±0.7
Learning Factor 0.01 0.01
Momentum 0.5 0.5
Number of training patterns 55 85
Number of testing patterns 5 10

Figure 6.4 shows the recall SSEtm and generalisation error SSEgen during training of

the x-direction neural network. Training has been stopped after approximately 8000

iterations where the generalisation error reached the end of a plateau. The reason why

training has not been stopped earlier when generalisation was low e.g. 0.2 is that the

recall accuracy was too low e.g. 0.8. Whilst the generalisation error remained almost

constant at 0.582 between 5500 and 8000 iterations, the recall error has fallen from

0.374 to 0.339.

Figure 6.4 Recall and generalisation error of network trained with x-direction data.

Claims Reservation 193

Figure 6.5 shows how the recall SSEtm and generalisation error SSEgen change during

training of the y-direction neural network. Training has been stopped after

approximately 33,000 iterations where the generalisation error reached local minima.

The reason why training has not been stopped earlier when generalisation was lower

e.g. 0.6 is that the recall accuracy was too low e.g. 0.35. Whilst the generalisation

error first reached an error of 0.719 at 28,000 and again at 33,000 iterations, the recall

error has fallen from 0.202 to 0.191.

Figure 6.5 Recall and generalisation error of network trained with y-direction data.

After training, the generalisation results of both neural networks have been re-

normalised and added as two differently shaded diagonal entries into table 6.8. The

first diagonal entry is for the x-direction (x-dir) where forecasting starts at the 1994

origin year. This is because it is the first year where 5 consecutive origin years

become available for creation of an input vector. The second diagonal entry is for the

y-direction (y-dir) where forecasting is available for all years. Since history data for

1989 to 1981 has been available no origin year limitations exists.

Claims Reservation 194

Table 6.8 Extract of claims triangle with predictions from x and y directions.

.SP
Ô
(4-1o
u.a
<D

61229
89466
88171

35790 52750 68002 79218 88885 93820 96599
63257 91948 114992 137271 151924 162115 168254
50348 76864 104489 122776 135536 142287 145935
42350 68085 86883 101277 111197 116839

i 91798
122910 I

33864 57214 72502 83379 88652m ¿8 6
I 40277 65289 85319 104422 -1123

100400 101265
175672 I -2361

2884

104315

i40203H
I P

15289

NA] 58610
420.11

Table 6.9 shows a direct comparison between the occurred claims and forecasted

claims for both x and y-directions after training.

It can be noted that the x-direction forecasts are particularly inaccurate. The reason

might be that the development year information contained in the training data does

not correlate well. A possible reason for this might be changes in jurisdiction, claims

management, claims handling or claims processing occurred within the last 10 years.

Table 6.9 Forecasting results for x and y directions after training.

Year of Origin Claims Occurred x-Direction Error y-Direction Error
1990 2872 -2361 -182.22% 2884 0.40%
1991 2347 -3522 -250.07% 1115 -52.48%
1992 3258 -2525 -177.51% 786 -75.87%
1993 1932 -5379 -378.46% -386 -119.95%
1994 3100 -9251 -398.42% -1123 -136.24%
1995 12761 NA NA 6317 -50.50%
1996 34089 NA NA 27736 -18.64%
1997 41399 NA NA 21804 -47.33%
1998 79146 NA NA 58610 -25.95%
1999 92442 NA NA 42011 -54.55%

Unlike the poor performance for the x-direction, the y-direction performs reasonably

well. It is noticeable that both forecasts perform worst for the year 1994 followed by

Claims Reservation 195

1993. A graphical illustration of the x-direction forecast is given in figure 6.6 and the

y-direction forecast in figure 6.7. Only a slight parallelism in the trend for the years

1990 to 1992 can be noted in figure 6.6 whereby the prediction in figure 6.7 seems to

follow the target values to some extent.

4000

o —.................. — -------
1994 1993 1992 1991 1990

Figure 6.6 Prediction of claims reservation for x-direction.

-20000

Figure 6.7 Prediction of claims reservation for y-direction.

The findings that the training for the y-direction performs better than the x-direction

has been used in later sections where data from 2 companies will be used for training.

Claims Reservation 196

Table 6.10 summarises the recall and generalisation sum square errors of the forecast

for both domains. To increase statistical reliability the experiment has been repeated

10 times up to this point and the averages, minimums and maximums for training and

testing pattern are reported. Even if the average generalisation error SSEgen for the x-

direction 0.644 is lower than the y-direction 0.723, the RMSE errors are 0.644/5 =

0.129 and 0.723/10 = 0.0723. This shows that generalisation for the x-direction is less

accurate than the generalisation for the y-direction, since the x-direction has only 5

testing patterns compared to the y-direction with 10 .

Table 6.10 Performance benchmarks of both networks after training for 10 runs.

Description x-Direction after training y-Direction after training
Min Max Average StDev Min Max Average StDev

S S E trn 0.113 0.400 0.287 0.0753 0.191 0.328 0.265 0.0458
S S E gen 0.573 0.839 0.644 0.0927 0.688 0.773 0.723 0.0304

Even if the x-direction error is high, it contains trend information. Linking of both

networks might still be feasible to share some information between x or y-direction in

an attempt to improve extrapolation for x and y-direction. For the purpose of linking,

table 6.11 shows the hidden weight matrix of the network trained with x-direction

data and table 6.12 shows the hidden weight matrix of the network trained with y-

direction data. Please note that all particulars of the experiment refer to the first run.

Table 6.11 Hidden layer weight matrix of network trained for the x-direction.

Reference
x-Direction

w „ Wl2 W,3 W,4 w ,5 Win Length

V | -0.7061 -0.5966 -0.5052 -0.2110 0.4972 0.0390 1.1844

V2 -0.9418 1.3641 -0.1610 0.8043 0.9280 0.9029 2.2577

v 3 -1.1891 0.2811 0.0521 -0.0836 0.3082 1.0401 1.6369

V4 -0.7141 -0.7614 -0.7024 -0.2328 0.7341 -0.0777 1.4772

Vs -0.1264 -0.3282 0.4906 -0.4421 0.1188 0.3916 0.8528

V6 -0.9531 -0.5827 -0.7651 -0.0577 -0.4088 -0.0391 1.4161

V7 -0.9339 -0.6151 0.2446 -0.2631 -0.5830 0.0159 1.3114

V8 -0.6809 -0.6078 -0.7497 -0.7840 0.3700 0.8829 1.7106

V9 -0.6297 -0.8539 -0.0904 0.4080 0.0946 0.0046 1.1442

Vio 0.8189 -0.9967 -0.4257 -0.4598 -0.2967 1.0662 1.8115

Claims Reservation 197

Table 6.12 Hidden layer weight matrix of network trained for the y-direction.

Reference
y-Direction

«"12 «13 «14 «15 «1B Length

V] -0.4675 -0.5324 -0.1402 -0.3974 -0.6078 0.1928 1.0422

v2 -0.9238 1.8511 1.6697 1.3047 -3.2385 1.1987 4.5492

V3 5.1030 -2.1313 1.3624 0.9956 -0.3296 -0.3267 5.8005

V4 -0.2072 -0.4222 -0.9357 -1.2531 -1.5552 2.1702 3.1298

V5 -1.0807 -0.1954 -0.8365 -0.3476 -1.1061 1.4559 2.3172

V6 -0.6659 -0.2585 -0.2307 -0.5447 -0.9239 0.8789 1.5767

V? -3.0340 2.4388 -2.2279 -0.6553 -0.3719 2.5248 5.2018

V8 -2.4411 -0.9225 -3.3294 -3.0744 2.4209 3.2508 6.6163
v9 -0.5268 -0.5480 -0.0362 -0.3643 -0.5239 -0.0542 0.9947

Vio -0.0272 -2.0419 -0.9483 -1.3387 2.9135 1.4240 4.1686

Both networks have been trained with the algorithm developed in 4.6 to prevent

neuron saturation. As a result no excessively large weights in any of the two weight

matrixes can be found. If component values of weight vectors are spread over a wide

range, e.g. ±20 instead of ±5, the probability of finding vectors pointing in similar

directions is lower. Therefore equation 4.17 does not only prevent the creation of

dominant neurons, it keeps neuron vectors closer together thus increasing the chances

of finding neurons that can be linked.

6.5.1.3 Linking of Domain Networks

To combine the knowledge of both x and y-direction networks, linking as described in

section 5.5.3 has been performed. Contrary to previous chapters, an acceptance angle

of 20° instead of 10° has been used for linking since 5 input neurons have increased

the dimensionality of the vectors from 3 dimensions in previous chapters to 6

dimensions (5 inputs + 1 bias). An increase in vector dimensions decreases the

probability of vectors pointing in the same direction therefore an increase in the

acceptance angle has been required to find sufficient numbers of neurons for linking.

The linking process follows exactly the same process as demonstrated in section 5.5.3

and will therefore be described only in brief.

Claims Reservation 198

Table 6.13 shows the vectors, which have an angle difference below the acceptance

angle of 20°. Both vectors listed in table 6.13 qualify for linking and table 6.14 shows

the resulting vectors and their associated length correction factor F2.

Table 6.13 Angles between weight vectors in ascending order.

Vector pair Angle between
x-Direction y-Direction vectors

v8 v8 15.71°
v7 v9 19.96°

Table 6.14 Results of the combination of vectors with angles below 20°as listed in table 6.13.

Original vector references Resulting vector vrl
x-Direction y-Direction wn w,2 «13 w14 « 1 5 WlB Factor F2
v8 Vs -0.5976 -0.2317 -0.8294 -0.7579 0.6242 0.7974 4.0270
V? V9 -0.8619 -0.6390 0.2384 -0.3525 -0.6078 0.0498 0.7275

It can be observed that only two neurons comply with the acceptance angle constraint

of 20°. Because of an increased number of input neurons more vector components are

present in each weight vector, which has reduced the probability that they are pointing

in similar directions in hyperspace.

6.5.1.4 Linking Analysis

Table 6 . 1 5 shows that the relative errors between components of the trained weights

and the weights after linking. It can be observed that the relative errors are generally

lowest for large weights and largest for small weights and that the error increases as

the angle between the linked vectors grows. The table shows that the largest

component error 6 1 . 8 9 % of vectors vs:v8 (x-direction:y-direction) is much smaller

than the largest component error - 5 7 9 . 3 0 % of V 7 W 9 . The reason for this might be that

the vector angle of 1 5 . 7 1 ° between vsivs is lower than the angle of 1 9 . 9 6 ° between

V7W9 and the lower the angle is, the better the match between the vector components.

Claims Reservation 199

Even with such a high error between vectors V7W 9, an attempt of linking both vectors

seems feasible since more than half or all the other errors are less than 30%.

Table 6.15 V ecto r com ponen t change im pact analysis.

Reconstructed Vector Components
Vectors w'n w'u W' 13 w'u W',5 w'lB
x: v'g -0.5976 -0.2317 -0.8294 -0.7579 0.6242 0.7974

y: v'g -2.4065 -0.9329 -3.3400 -3.0519 2.5139 3.2112

x: v’7 -0.8619 -0.6390 0.2384 -0.3525 -0.6078 0.0498

y: V9 -0.6270 -0.4648 0.1735 -0.2565 -0.4422 0.0363

Reconstructed Relative Errors
Vectors f(w,i, w’„) f(Wi2, w'u) f(Wl3, W'13) f(w14, W'u) f(Wi5,w'15) f(W,B, W',b)
x: v 'g -12.23% -61.89% 10.63% -3.33% 68.74% -9.68%

y: v'g -1.42% 1.13% 0.32% -0.73% 3.84% -1.22%

x: v'7 -7.71% 3.88% -2.52% 33.96% 4.26% 212.56%

y= v 9 19.03% -15.18% -579.30% -29.61% -15.60% -166.89%

Similarly to the analysis in previous chapters, table 6.16 lists the relative errors of the

vector length. It can be observed that the higher error rests with the vectors V7W9 since

the angle between both vectors is larger than the angle between vs:v8.

Table 6.16 V ecto r leng th change im pact analysis.

Vector Original length Reconstructed length Relative Error
x: v'g 1.7106 1.6427 (|v,i 1) -3.96%
y: v'g 6.6163 6.6154 (|vr,|*F2) -0.01%
x: v'7 1.3114 1.3054 (M) -0.45%
y: v's 0.9947 0.9497 (K,i*f 2) -4.52%

Tables 6.17 and 6.18 show the reconstructed weight matrixes for the x-direction and

y-direction networks respectively. Rows that are framed on grey backgrounds are

vectors that have been replaced with reconstructed vectors.

With the resulting weight matrixes, evaluation of the forecasting can be repeated for x

and y-direction without stimuli network. Just as in previous chapters, input vectors

from the x-direction are tagged as belonging 100% to A and input vectors from the y-

Claims Reservation 200

direction are tagged as belonging 100% to B. Once a stimuli network has been

trained, domain memberships can be evaluated on a vector-by-vector basis.

Table 6.17 H idden layer w e igh t m atrix of netw ork tra in ed for the x -d irec tion afte r reconstruc tion .

Reference
x-Direction

w„ " ’ll «13 W14 W15 wIB Length

Vl -0.70607 -0.59656 -0.50520 -0.21096 0.49720 0.03905 1.1844
V2 -0.94179 1.36412 -0.16097 0.80429 0.92799 0.90291 2.2577
v3 -1.18914 0.28106 0.05213 -0.08358 0.30823 1.04010 1.6369
V4 -0.71408 -0.76140 -0.70238 -0.23280 0.73415 -0.07767 1.4772

V5 -0.12638 -0.32824 0.49059 -0.44205 0.11879 0.39160 0.8528

V6 -0.95311 -0.58273 -0.76507 -0.05775 -0.40877 -0.03911 1.4161

V? -0.86189 -0.63895 0.23842 -0.35251 -0.60780 0.04983 1.3054

Vs -0.59759 -0.23166 -0.82940 -0.75786 0.62425 0.79740 1.6427
v9 -0.62968 -0.85387 -0.09035 0.40803 0.09460 0.00457 1.1442

Vio 0.81887 -0.99672 -0.42566 -0.45983 -0.29666 1.06618 1.8115

Table 6.18 H idden layer w e igh t m atrix of ne tw o rk tra ined for the y -d irec tion afte r reconstruc tion .

Reference
y-Direction

«'ll W12 W u w14 Wl5 W in Length

Vl -0.46752 -0.53238 -0.14021 -0.39735 -0.60776 0.19281 1.0422
V2 -0.92383 1.85108 1.66970 1.30472 -3.23850 1.19869 4.5492

V3 5.10304 -2.13132 1.36235 0.99565 -0.32957 -0.32667 5.8005

V4 -0.20722 -0.42217 -0.93568 -1.25313 -1.55524 2.17018 3.1298

V5 -1.08066 -0.19543 -0.83652 -0.34756 -1.10606 1.45589 2.3172

V6 -0.66587 -0.25852 -0.23066 -0.54465 -0.92392 0.87887 1.5767

V7 -3.03399 2.43877 -2.22793 -0.65527 -0.37194 2.52485 5.2018

Vg -2.40653 -0.93289 -3.34002 -3.05195 2.51386 3.21116 6.6154

V? -0.62703 -0.46484 0.17345 -0.25645 -0.44217 0.03625 0.9497

Vio -0.02724 -2.04189 -0.94826 -1.33872 2.91345 1.42395 4.1686

After matrix reconstruction and input vector classification for x and y-direction, the

new forecasting results are shown in table 6.19. This table can be compared with table

6.9 for an error analysis after linking. It shows that all errors for x-direction and most

errors for y-direction have fallen and that only a few errors have increased. Figures

6.8 and 6.9 compare the predicted claims with the actual claims as they occurred.

Claims Reservation 201

Table 6.19 F o recastin g resu lts for x and y d irec tions after linking.

Year of Origin Claims Occurred x-Direction Error y-Direction Error
1990 2872 -1305 -145.42% 3693 28.59%
1991 2347 -2218 -194.49% 2103 -10.40%
1992 3258 -1057 -132.46% 3241 -0.51%
1993 1932 -3913 -302.53% 3227 67.01%
1994 3100 -6577 -312.16% -2741 -188.40%
1995 12761 NA NA 11497 -9.90%
1996 34089 NA NA 37992 11.45%
1997 41399 NA NA 32568 -21.33%
1998 79146 NA NA 82406 4.12%
1999 92442 NA NA 98242 6.27%

On comparison of figure 6.8 with figure 6.6, a shift of the forecasted claims towards

the actual claims can be noticed. This shift has reduced the generalisation error from

0.339 to 0.209. Looking back to table 6.15 where vector component errors are listed, a

high error in the bias values of V7.W9 of 212.56% can be found. Therefore it can be

assumed that the high error of the x-direction vector bias value caused by linking has

shifted the predicted claims towards the target claims.

4000

2000

0

-2000

-4000

-6000

-8000

Figure 6.8 P red iction o f c la im s reserva tion fo r x -d irec tion afte r linking.

Claims Reservation 202

Figure 6.9 P red iction o f c la im s reserva tion fo r y -d irec tion afte r linking.

Comparing figures 6.9 and 6.7 shows that the errors for 1999-1995 have been

reduced. This seems rather peculiar since no information for these years was present

in the weight matrix of the x-direction network. Looking back to table 6.12 and table

6.15, the higher errors affecting the y-direction lie with V9 components W13 and w]B.

For the reason that wiB has only changed from -0.0542 to 0.0363 (-166%), its effect

can only assumed to be lower than the effect of wB with a change from -0.0362 to

0.1735 (-579%).

Table 6.20 summarises the forecasting results for both domains after training and

linking for a total of 10 runs. It shows that the generalisation error has fallen on

average by 14.24% and 13.79% for x and y-direction respectively, whereby the recall

error has increased by 129.49% for the x-direction and 69.97% for the y-direction.

The high percent increase of the recall errors is somewhat alarming but since

reduction of the generalisation error is the objective, the increase in recall error

appears to be acceptable. The largest drop in generalisation error encountered during

10 runs was 54% for x-direction and 47% for y-direction. But increases of 25% and

17% were also encountered.

Claims Reservation 203

Table 6.20 Perform ance com parison o f trained and linked ne tw orks fo r 10 runs.

Description x-Direction after training y-Direction after training
Min Max Average StDev Min Max Average StDev

S S E lrn 0 .1 1 3 0 .4 0 0 0 .2 8 7 0 .0 7 5 3 0 .1 9 1 0 .3 2 8 0 .2 6 5 0 .0 4 5 8

S S E gen 0 .5 7 3 0 .8 3 9 0 .6 4 4 0 .0 9 2 7 0 .6 8 8 0 .7 7 3 0 .7 2 3 0 .0 3 0 4

x-Direction after linking y-Direction after linking
S S E trn 0 .2 9 4 1 .4 3 0 0 .6 6 0 0 .3 7 5 6 0 .3 3 5 0 .6 5 9 0 .4 5 1 0 .1 4 1 4

SSEgen 0 .3 6 2 0 .7 5 5 0 .5 5 3 0 .1 5 5 5 0 .3 6 3 0 .8 2 8 0 .6 2 3 0 .1 2 6 7

6.5.1.5 Training of Stimuli Network

A stimuli network is used as a classification network within in a linked network

environment. Its purpose is to classify incoming input vectors to domain memberships

that can be used to control vector lengths for neurons that have been linked or not.

Therefore, the stimuli network is actually controlling each neurons contribution to the

overall network output.

Since the stimuli network must be aware of the entire input space, all training patterns

that have been used to train x and y-direction neural networks must be utilised. As the

stimuli networks awareness is only required within the input space, all target values of

the training data can be omitted. Instead of using the target values for x and y-

direction, they can be replaced with classification information.

Table 6.21 shows an extract of the training data used for training of x and y-direction,

which will be referred to as domain A and B. It should be noted that two domains

A&B require the stimuli network to have two outputs (out A and out B), one for each

domain and 5 inputs since it uses the same input vector as the neural networks.

In table 6.21 the output values have been replaced with clustering information in such

a way that input vectors used for training of domain A should generate 1-0 outputs

and input vectors used for training of domain B should generate 0-1 outputs. This type

of 1-0 and 0-1 clustering is limited and only indicates the physical pattern file location

of each input vector. Input vectors of domain A are stored in a different pattern file

than domain B therefore generate a different classification and do not represent the

real domain membership that is required from the stimuli network.

Claims Reservation 204

Table 6.21 Stim uli ne tw o rk train ing da ta w ith c lu s te red 1 or 0 ou tputs.

in 1 in 2 in 3
-Direction
in 4 in 5 out A out B in 1 in 2

)
in 3

-Direction
in 4 in 5 out A out B

0.59 0.46 0.29 0.17 0.11 1 0 0.26 0.23 0.26 0.25 0.43 0 1
0.62 0.34 0.29 0.25 0.14 1 0 0.20 0.15 0.32 0.49 0.43 0 1
0.67 0.39 0.22 0.11 0.16 1 0 0.32 0.21 0.37 0.35 0.39 0 1

The 1-0 clustering training for the stimuli network did not produce good training

results because the classification of 1-0 for A and 0-1 for B did not represent the true

classification for improving the network output. They simply signified the physical

separation into 2 files but not their true classification. Instead of using 1-0 and 0-1

classifications, a simple brute force linear search for the optimal classification target

has been carried out. Figure 6.10 shows how the stimuli network can be used to find

close matches for domain memberships of A and B by incrementing the memberships

in 0.01 steps and collecting the output of the network for each step. A linear search of

this kind requires 1/0.01 * 1/0.01 = 10,000 iterations. Since the target values of all

training vectors are known, the output value closest to the target value will determine

the domain memberships for A and B.

Searching through the domain space by using a brute force linear algorithm will result

in meaningful target values for the training of the stimuli network. Table 6.22 shows

input vectors in combination with improved A&B domain memberships where the

overall network output is closest to the initial training target value.

Figure 6.10 G enera tion o f c lassifica tion data by linear search .

Claims Reservation 205

Table 6.22 shows an extract of six training data patterns for x and y-direction. The

stimuli network has been trained with 55 + 85 = 140 patterns each one with one

output for domain A and B.

The linear search through 140 patterns with a granularity of 0.01 requires 140 *

10,000 = 1,400,000 iterations. With today’s technology (2.6 GHz P4) this process

took less than 25 seconds. Reducing the granularity from 0.01 to 0.1 can speed up this

process, although this will cause less accurate domain memberships for A and B.

Table 6.22 S t im u l i n e tw o r k t r a in in g d a t a w i th g e n e r a te d m e m b e r s h ip s .

in 1 in 2
x-Direction

in 3 in 4 in 5 out A out B in 1 in 2
5

in 3
-Direction
in 4 in 5 out A out B

0.59 0.46 0.29 0.17 0.11 0.22 0.05 0.26 0.23 0.26 0.25 0.43 0.66 0.01

0.62 0.34 0.29 0.25 0.14 0.59 0.09 0.20 0.15 0.32 0.49 0.43 0.47 0.07

0.67 0.39 0.22 0.11 0.16 0.18 0.3 0.32 0.21 0.37 0.35 0.39 0.53 0.13

With the availability of the training data, the stimuli network will have to match the

data insofar that it must have 5 inputs and 2 outputs. To find the best number of

hidden neurons experiments with 5, 10 and 20 hidden neurons have been carried out

and the best training performance has been found with 10 hidden neurons. Table 6.23

presents a list of all significant network parameters used for the stimuli network.

Table 6.23 T h e p a r a m e te r s o f th e s t im u l i n e tw o r k .

Description Setting
Input Neurons 5

Hidden Neurons 10

Output neurons 2

Activation Function symmetric sigmoid

Initialisation +0.7

Learning Factor 0.01

Momentum 0.3

Number o f training patterns 110

Number o f testing patterns 30

Claims Reservation 206

Figure 6.11 shows how the recall SSEtm and generalisation error SSEgen change

during training. Training has been stopped after approximately 295k iterations where

the generalisation error reached a plateau. The reason why training has not been

stopped at earlier is that the recall accuracy has fallen from 1.93 to 1.72 whilst the

generalisation error remained nearly unchanged at about 0.83.

Table 6.24 summarises the recall and generalisation sum square errors of both domain

memberships for A and B. Even if the recall error SSEtm for both domains is high, the

RMSE is acceptable because of the high number of 110 training patterns.

Table 6.24 P erfo rm ance benchm arks o f stim uli ne tw o rk a fte r train ing .

Description Stimuli Network
SSElrn 1.721
SSEgen 0.830
RMSE for SSEnn 0.164 (110 records)
RMSE for SSEge„ 0.151 (30 records)
Iterations 295,000

Claims Reservation 207

The linear search has yielded a much more reliable stimuli classifier system compared

to a stimuli network that has been trained with data where the domain memberships

were simply set to 1-0 and 0-1 for A and B correspondingly. With this, the trained

stimuli network can now be used for classification of input vectors for linked

domains.

6.5.1.6 Linking Results

To evaluate the impact of linking with utilisation of a stimuli network, the forecasting

of claims reservation for 1999 has been repeated and is shown in table 6.25. If this

table is compared with table 6.18 a reduction for all x-direction and half of the y-

direction forecasts can be noticed.

Table 6.25 Forecasting resu lts for x and y d irections afte r linking.

Year of Origin Claims Occurred x-Direction Error y-Direction Error
1990 2872 480 -83.30% 2876 0.13%
1991 2347 1444 -38.46% 2961 26.17%
1992 3258 616 -81.09% 2092 -35.78%
1993 1932 977 -49.45% 3470 79.61%
1994 3100 223 -92.79% 2977 -3.97%
1995 12761 NA NA 10290 -19.36%
1996 34089 NA NA 30856 -9.48%
1997 41399 NA NA 42951 3.75%
1998 79146 NA NA 71279 -9.94%
1999 92442 NA NA 85313 -7.71%

On comparison of figure 6.12 with figure 6.8 a further shift of the forecasted claims

towards the actual claims can be noticed. This shift has reduced the generalisation

error from 0.211 to 0.187. Because the weights have remained unchanged since figure

6.8, this shift is attributable to the input vector classification of the stimuli network. A

comparison of figures 6.13 and 6.9 shows further reduction of the y-direction

forecasting errors.

Claims Reservation 208

3 5 0 0 -

Figure 6.12 Pred iction o f c la im s reserva tion fo r x -d irec tion afte r link ing and stim uli netw ork .

Figure 6.13 Pred iction o f c la im s reserva tion for y -d irec tion afte r link ing and stim uli netw ork .

Table 6.26 summarises the recall and generalisation errors for 10 runs. All three

stages encountered during the linking process are presented and figure 6.14 shows

them graphically. The % changes for the generalisation error during linking and

linking with stimuli were -14.24%, -42.53% for x-direction and -13.79%, -21.17% for

y-direction.

Claims Reservation 209

Table 6.26 P erfo rm an ce com parison o f tra ined , linked and linked w ith stim uli a fte r 10 runs.

Description x-Direction after training y-Direction after training
Min Max Average StDev Min Max Average StDev

SSEtrn
SSEgen

0.113 0.400 0.287 0.0753
0.573 0.839 0.644 0.0927

0.191 0.328 0.265 0.0458
0.688 0.773 0.723 0.0304

x-Direction after linking y-Direction after linking
SSEtrn
SSEgen

0.294 1.430 0.660 0.3756
0.362 0.755 0.553 0.1555

0.335 0.659 0.451 0.1414
0.363 0.828 0.623 0.1267

x-Direction after linking with stimuli y-Direction after linking with stimuli
SSEtrn
SSEgen

0.895 2.293 1.486 0.4069
0.141 0.584 0.318 0.1647

1.168 2.567 1.690 0.3830
0.231 0.672 0.491 0.1534

Figure 6.14 P réd iction o f d a im s réserva tion fo r y -d irec tion afte r linking and stim uli netw ork .

With the use of the stimuli network the recall errors of the x and y-directions have

increased substantially. The reason for this is that the membership training for the

stimuli network has been stopped to as soon as it performed well on the generalisation

data, but not the data used for training and measuring the recall accuracy. Therefore

the classification on the recall data is poor but good for the generalisation data,

resulting in poor recall accuracy but improved generalisation. Since the objective has

been to optimise the generalisation error, this has been achieved but with the price of

a high recall error on the training data.

S
u

m
 S

q
u

ar
e

E
rr

o
r

Claims Reservation 210

6.5.1.7 Comparison with Single Network

To supply a baseline comparison to the previous example, both datasets of x-direction

and y-direction have been combined into one training file to analyse if divide and

conquer did make a difference to the forecasting results.

For this purpose networks have been trained each with combined training data and

generalisation data totalling to 140 training patterns and 15 testing patterns. The

network used for the composite training was a standard 5:10:1 backpropagation MLP.

All other important network parameters can be found in table 6.27.

Table 6.27 T h e p a r a m e te r s o f th e n e u r a l n e tw o r k u s e d in t h i s s e c t io n .

Description Both Domains
Input Neurons 5

Hidden Neurons 10

Output neurons 1

Activation Function symmetric sigmoid

Initialisation ±0.2

Learning Factor 0.01

Momentum 0.3

Number o f training patterns 140

Number o f testing patterns 15

a S S E

■ S S E
trn

gen

3 .0

Figure 6 .1 5 R e c a l l a n d g e n e r a l i s a t i o n e r r o r o f n e tw o r k t r a in e d w i th b o th d o m a in s .

Claims Reservation 211

Figure 6.15 shows the average recall SSEtrn and generalisation error SSEgen during

training of the composite neural network. Training has been stopped after

approximately 24,000 iterations where the generalisation error reached the end of a

plateau. To increase statistical reliability the entire experiment has been repeated 30

times and the averages, minimums and maximums for training and testing pattern are

reported in table 6.28.

Table 6.28 T ra in in g resu lts o f single N N tra ined for both dom ains.

Description Single neural network with both domains
Average Min Max Std Dev

SSEtrn 0.4245 0.3571 0.4979 0.0418
SSEgen 1.2289 1.1412 1.3873 0.0620

All forecasting results from the 30 networks trained have been de-normalised into

numerical figures and are shown in table 6.29 for x-direction and in table 6.30 for y-

direction. All relative errors refer to the difference between the averages and the

actual Claims Occurred figures.

T a b le 6 .29 x -D irec tion forecasting o f single N N tra in ed w ith both dom ains.

Year of Origin Claims Occurred Average Min Max Std Dev Error
1990 2872 3044 2961 3150 57 5.66%
1991 2347 -5945 -8184 -4516 696 139.48%
1992 3258 751 343 1032 176 -333.71%
1993 1932 -1009 -2068 -292 428 291.40%
1994 3100 -14798 -20414 -11680 1706 120.95%
1995 12761 NA NA NA NA NA
1996 34089 NA NA NA NA NA
1997 41399 NA NA NA NA NA
1998 79146 NA NA NA NA NA
1999 92442 NA NA NA NA NA

Figures that cannot be forecasted in the x-direction because of the window size

restriction are marked NA.

Claims Reservation 212

Table 6.30 y-Direction forecasting of single NN trained with both domains.

Year of Origin Claims Occurred Average Min Max Std Dev Error
1990 2872 -4411 -6140 2872 1440 165.11%
1991 2347 -5945 -8184 -4516 696 139.48%
1992 3258 -6241 -7997 -5185 681 152.20%
1993 1932 -8433 -11920 -6515 1014 122.91%
1994 3100 -2198 -3331 -1175 619 241.03%
1995 12761 1682 918 2206 304 -658.77%
1996 34089 26293 25028 27230 549 -29.65%
1997 41399 22663 19275 25310 1833 -82.67%
1998 79146 57176 56242 58920 673 -38.43%
1999 92442 34391 27408 39302 3018 -168.80%

Comparing network training results from table 6.28 with table 6.26 requires the

division of the average errors by the number of patterns since 55 training, 5 testing (x -

direction), 85 training, 10 testing (y-direction) were used for table 6.26 and 140

training, 15 testing were used for table 6.28. Table 6.31 shows the RMSE to allow for

an equal comparison of both tables.

Table 6.31 RMSE results from tables 6.26 and 6.28.

Type Desc. Patterns Errors after training Errors after linking Errors after stimuli
Average RMSE Average RMSE Average RMSE

SSElrn 55 0.2875 0.00522 0.6598 0.01200 1.4861 0.02702
x-Direction

SSEgen 5 0.6445 0.12880 0.5527 0.11054 0.3176 0.06352

y-Direction
SSElrn 85 0.2653 0.00311 0.4509 0.00530 1.6904 0.01989
SSEgcn 10 0.7227 0.07230 0.6230 0.06230 0.4911 0.04911
SSElrn 140 0.3912 0.00279 0.7992 0.00571 2.2508 0.01608

V*2 + / SSEgen 15 0.9683 0.06455 0.8328 0.05552 0.5848 0.03899

Composite
SSEtrn 140 0.4245 0.00303 NA NA NA NA
SSEgen 15 1.2289 0.08192 NA NA NA NA

It can be noticed that the training results of the composite network are worse than the

sum of SSE errors for the x- and y-direction. The generalisation error of the

composite network is also higher. Furthermore, if the composite network is compared

to the linked or even to the linked with stimuli network, the composite network

performed even worse.

Claims Reservation 213

6.5.2 Claims Reservation with Data from two Companies

In the previous section 6.5.1, data of one company has been used to create two

distinguished domains by generating two distinct time series. In this section, data

from two companies will be used to generate two distinct time series. It has been

taken into account that both companies have been writing comparable business types

in order to contribute knowledge to each other. For this purpose, Co-operative

Insurance Society Ltd and Legal&General Insurance Ltd have been chosen since both

write business that can be classified by the risk group: “Private Car Comprehensive,

Claims reported and outstanding excluding INBR”.

Probably the most likely scenario of training neural networks is where data from one

or more company is used for training. It can then be used to produce a trained network

for the purpose of forecasting. A problematic situation will occur if companies are to

be added or removed frequently from the data model. With linking, the re-training of

networks containing data from all companies can be avoided since only sub-networks

need re-training. This section will discuss the framework for linking two companies.

6.5.2.1 Training Data Preparation

In section 6.5.1 where one company’s data was used for creation of time series

information in x and y-direction, training success for x-direction was moderate

compared to y-direction. Consequently, the time series used for training of both

companies in this section will be exclusively for the y-direction. Data for training and

testing will very much follow the arrangement outlined in section 6.5.1.1 for the y-

direction referred to as the year of origin. Table 6.32 and table 6.33 show incremental

claims reported and outstanding excluding INBR for Co-operative and

Legal&General. The creation of time series patterns for Co-operative from table 6.32

starts at 1981:1 with 14846 as the first input and ends with 25018 as the output.

Subsequent patterns should be 8628... 11680, 4670... 11107 with the last one being

34028...47350. All data from 1999 should be forecasted and should therefore be

separated from the training data. The first pattern in this file should start with 33770

Claims Reservation 214

as the first input and 61365 as the target output. Subsequent patterns should be

22923...27901, 22759...21894 with the last one being 116...1031. Since all patterns

are normalised on a vector-by-vector basis, training and testing data sets can be

normalised individually. If the data were to be normalised on a column basis, the

minimal and maximal figures of the entire data set (or each column) would be needed,

thus preventing the split into training and testing set prior to normalisation.

Table 6.32 Incremental claims triangle for Co-operative.

Development Year
1 2 3 4 5 6 7 8 9 10

1981 14846 8628 6470 4250 3012 2097 1468 1050 848 422
1982 14210 7409 5160 3844 3294 2611 1586 1087 976 384
1983 12245 6038 4505 3467 2594 1670 1182 638 418 299
1984 16073 6570 5059 4107 3646 3706 2681 2148 1455 965
1985 17306 10533 7416 6247 4837 3562 3492 1443 1005 116
1986 11680 11107 8875 7381 7190 5349 4891 4194 4874
1987 34384 18729 16794 13742 10213 8101 6845 4115 2449 1475
1988 41929 21434 20014 18696 14530 12006 11257 7050 4079 2425
1989 46408 24967 22191 20284 16270 13562 9975 7194 5838 5462
1990 52032 30601 23004 17895 13215 8468 4394 2557 2318 1031
1991 46485 31425 28117 25181 19828 15215 10804 8567 6382
1992 38394 25693 22759 20607 18191 12123 8780 2690
1993 34028 22923 20765 14471 11602 7878 3271
1994 33770 20467 14833 13149 9395 5644
1995 35103 19002 15599 14781 14401
1996 35115 19022 22483 24967
1997 37958 22279 21894
1998 47350 27901
1999 61365

The creation of time series patterns for Legal&General from table 6.33 starts at

1981:1 with 3932 as the first input and ends with 6039 as the output. Subsequent

patterns should be 1927...3014, 1383...2227 with the last one being 7783...47350.

The 1999 forecasting data should start with 7573 as the first input and 7177 as the

target output. Subsequent patterns should be 4027...6231, 2782...2436 with the last

one being 313... 55. With this, the total number of training patterns created for each

company is 85 and 10 patterns for testing.

Claims Reservation 215

After creation of all training and testing patterns, a vector based normalisation has

been used as shown in equation (6.6).

Table 6.33 Incremental claims triangle for Legal&General.
Development Year

1 2 3 4 5 6 7 8 9 10
1981 3932 1927 1383 1078 1264 193 94 41 29 17
1982 3049 1154 656 364 188 180 153 128 109 32
1983 3361 1372 1061 942 760 788 713 175 72 74
1984 5120 2306 1878 1350 754 577 566 357 195 155
1985 5241 2257 1610 1237 1005 607 678 564 330 313
1986 6039 3014 2227 1738 1595 972 428 170 107 48
1987 4925 2246 2357 1885 1668 1459 1325 1701 1713 343
1988 5200 2348 2051 2216 1749 840 617 138 43 69
1989 4695 2224 1794 1935 1367 741 468 451 113 78
1990 5767 2844 2233 1963 1118 484 365 182 58 55
1991 6780 3349 2250 1723 1405 990 753 441 -1
1992 7795 3815 2782 2536 1693 502 634 190
1993 7783 4027 3254 2300 967 609 113
1994 7573 5027 3889 3344 1833 1326
1995 5576 2861 2160 1581 747
1996 6126 3887 3056 1990
1997 6807 4426 2436
1998 9338 6231
1999 7177

It can be noticed that the claims figures of Co-operative are about 6 times higher for

the first 4 years of development compared to Legal&General. This is because Co-

operative has on average 4 times more claims during the same interval than

Legal&General (source: Insight Non-Life A.M. Best International).

6.5.2.2 Training of Neural Networks

Two MLP neural networks have been trained with the normalised data of both

companies as referred to in the previous section. The topology of both networks used

has been chosen to be 5:10:1 with the output layer set to 1 and frozen. All other

important network parameters can be found in table 6.34.

Claims Reservation 216

Table 6.34 The parameters of the neural networks used in this section.

Description Co-operative Legal&General
Input Neurons 5 5
Hidden Neurons 10 10
Output neurons 1 1
Activation Function symmetric sigmoid symmetric sigmoid
Initialisation ±0.7 +0.7
Learning Factor 0.01 0.01
Momentum 0.5 0.5
Number of training patterns 85 85
Number of testing patterns 10 10

Figure 6.16 shows the recall SSEtm and generalisation error SSEgen during training of

Co-operative. Training has been stopped after approximately 40,000 iterations where

the generalisation error reached local minima of 0.1982. At this point the recall error

was only 0.0586, which is very low indeed. With the low generalisation and recall

errors, inclusion of information from another company seems almost unnecessary.

Despite this, a second network has been trained with data from Legal&General for the

purpose of linking.

Figure 6.16 Recall and generalisation error of network trained with Co-operative data.

Claims Reservation 217

Figure 6.17 shows the recall SSEtrn and generalisation error SSEgen during training of

Legal&General. Training has been stopped after approximately 25,000 iterations

where the generalisation error reached local minima of 0.4505. At this point the recall

error was only 0.0786, which is again very low. The generalisation error of

Legal&General is almost twice as high as the error for Co-operative. Therefore

moving knowledge from Co-operative into Legal&General might be beneficial to

Legal&General, but if any improvement on the generalisation error for Co-operative

can be achieved is uncertain.

Table 6.35 shows a direct comparison between the occurred claims and forecasted

claims for both insurance companies after training. It can be noticed that the highest

error in the Co-operative forecast is only 48%, with an average of only 15.06%. On

the other hand, Legal&General has high errors e.g. 100.21% and 68.07%, with an

average of 32.02%, twice as high as Co-operative.

With both companies, the bulk of the higher errors are within the first four years from

1990-1993. This is probably caused by the low target values for these years. Because

Claims Reservation 218

the error is given as percentage, any forecast differing by a few hundreds will have a

high impact on the percentage error.

Table 6.35 Forecasting results for Co-operative and Legal&General after training.

Year of Origin Occurred Co-operative Error Occurred Legal&General Error
1990 1031 1991 48.23% 55 145 62.11%
1991 6382 6434 0.81% -1 485 100.21%
1992 2690 4199 35.94% 190 595 68.07%
1993 3271 5223 37.38% 113 283 60.04%
1994 5644 6511 13.31% 1326 1372 3.37%
1995 14401 13560 -6.20% 747 913 18.19%
1996 24967 24304 -2.73% 1990 1963 -1.38%
1997 21894 22955 4.62% 2436 2467 1.25%
1998 27901 27627 -0.99% 6231 6114 -1.92%
1999 61364 61156 -0.34% 7177 6922 -3.69%

Figures 6.18 and 6.19 are graphical illustrations of the numerical values from table

6.35 for Co-operative and Legal&General respectively. Both graphs show that the

forecasting results for both insurance companies are excellent. In figure 6.18, only the

years 1997, 1993 and 1992 show room for improvement and in figure 6.19, the years

1990-1993, 1995 and 1999 show room for improvement.

7 0 0 0 0 --- -------------- ---
—A—- Target

Figure 6.18 Prediction of claims reservation for Co-operative after training.

Claims Reservation 219

-1 0 0 0 -------- ---------- -------

Figure 6.19 Prediction of claims reservation for Legal&General after training.

To increase statistical reliability the experiment has been repeated 10 times up to this

point and the averages, minimums and maximums for training and testing pattern are

reported. A summary of generalisation and recall errors after 10 runs for both

companies can be found in table 6.36. Legal&General reached its minimum

generalisation error point on average after 25,000 iterations, much earlier than Co-

operative, which reached its minimum generalisation error point on average after

40,000 iterations. Continuous training of Legal&General beyond 25,000 iterations

only yielded an increase in generalisation error as indicated in figure 6.17.

Table 6.36 Performance benchmarks of both networks after training for 10 runs.

Description Co-operative after training Legal&General after training
Min Max Average StDev Min Max Average StDev

SSEtrn 0.0255 0.0667 0.0499 0.0158 0.0499 0.0863 0.0736 0.0108
SSEgen 0.1338 0.2230 0.1878 0.0326 0.3519 0.5584 0.4504 0.0788

The weight matrixes of the hidden layer from both insurance companies are shown in

tables 6.37 and 6.38. During training, the algorithm for the prevention of saturated

neurons from section 4.6, equation (4.17) was used. Therefore no excessively large

Claims Reservation 220

weights can be found in both weight matrixes and the highest and lowest weights are

in the region of ±6. It shall be repeated that weights connecting the hidden neurons to

the output neurons are set to 1 and were frozen during training to prevent alterations.

Table 6.37 Hidden layer weight matrix of network trained for Co-operative.

Reference
Co-operative

W || W , 2 W , 3 w,4 W ,5 w1B Length

Vl 2.1495 -0.3596 2.0154 0.0173 -1.5016 1.1796 3.5296

v2 -2.1826 -1.1504 -1.5728 -5.7996 -0.2293 5.7315 8.6659

V3 -2.1204 -0.7700 2.2681 1.8108 1.7291 -0.6245 4.1099

v4 0.1954 0.5565 -1.2248 -1.0643 -1.0793 1.1519 2.3394

v5 -0.3229 0.1614 0.0433 0.2695 -0.1806 -2.0185 2.0765

v6 -0.4960 0.0064 -0.1975 0.0336 -0.2105 -1.4475 1.5575

V7 -1.6915 -1.4217 -3.1498 0.9425 1.6507 2.9953 5.2333

Vg 1.5662 0.4022 0.1878 -0.2764 -2.6136 2.5917 4.0341

V9 -0.1234 -0.6458 -4.0680 1.2124 -2.0004 3.5142 5.8993

Vio -0.2752 -3.5429 0.1869 -4.3828 -2.4116 5.9578 8.5547

Table 6.38 Hidden layer weight matrix of network trained for Legal&General.

Reference
Legal&General

Wn Wl2 w13 w14 Wis WlB Length

Vl -3.2228 1.9822 -5.5717 1.3595 -4.0979 4.8785 9.3702

V2 -4.0550 -2.6476 -0.3744 -6.7180 0.1078 5.7267 10.0763

V3 0.1306 0.2276 -1.1178 0.3580 -1.4020 -0.7603 1.9976

v4 -0.3927 0.6945 0.9167 -0.3111 -0.6912 0.3546 1.4756

V5 0.6112 -0.8240 3.1986 -1.6984 -2.4395 1.7406 4.8114

V6 2.3534 -3.4938 -1.3883 0.6541 0.8635 2.5418 5.2257

V7 0.2291 2.4486 3.5602 0.3380 -0.9691 -0.0907 4.4480

V8 -0.5930 -4.8081 -0.9721 2.3082 -0.7187 1.7282 5.7658

V9 -0.7853 1.0394 -0.0427 1.1062 3.4995 -1.3572 4.1244

Vio 3.6956 1.6511 -2.8522 -2.4665 -0.7880 1.9100 5.9052

The next steps involve vector angle calculations and vector-by-vector comparison to

find hidden neurons that can be linked. The acceptance angle has been set to 20° but

might be reduced or increased in order to find at least two hidden neurons that can be

linked to match the linking process from the previous section 6.5.1.

Claims Reservation 221

6.5.2.3 Linking of Domain Networks

The linking of both weight matrixes from tables 6.37 and 6.38 follows exactly the

same procedures as demonstrated in 6.5.1.3 and former sections.

The first two vectors that have the closest angles are listed in table 6.39. It can be

noticed that the vectors V3 and vjo in the second row have an angle that exceeds the

acceptance angle of 20° that has been agreed on initially. But for the purpose of

consistency and comparability with section 6.5.1, where two neurons were linked, the

acceptance angle has been increased to 22° so that two vectors can be linked.

Table 6.39 Angles between weight vectors in ascending order.

Vector pair Angle between
Co-operative Legal&Gencral vectors

v2 V2 15.25°
v3 Vio 21.39°

Table 6.40 shows the resulting vectors and their associated length correction factors

F2. The negative vector length correction factor F2 in the second row indicates that

both vectors (V3 and vio) were pointing in opposite directions.

Table 6.40 Results of the combination of vectors with angles below 22°as listed in table 6.39.

Original vector references Resulting vector vr]
Co-operative Legal&General w„ W12 w13 W|4 W15 W'iB Factor F2
v2 v2 -3.0547 -1.9714 -1.2061 -5.6537 -0.1711 5.1475 1.1686
v3 Vio -2.3627 -1.0377 1.9632 1.6569 1.0859 -1.2060 -1.4655

6.5.2.4 Linking Analysis

Table 6.41 shows the relative errors between vector components of the trained

weights and the weights after linking. It can be observed that largest component errors

of over 200% are within the Legal&General vector with the lower acceptance angle of

15.25°. This is somewhat unexpected because the higher errors can generally be

Claims Reservation 222

found with vectors that have a higher angle difference. On further inspection of table

6.41 it can be noticed that all errors are quite large if compared to table 6.14 from

section 6.5.1.4. This can be seen as a warning that the information contained in both

vectors may not necessarily be of the same kind.

Table 6.41 Vector component change impact analysis.

Reconstructed Vector components
Vectors

w ' „ W,2 W ',3 W ',4 w ' i s Wie
Coop: v '2 -3.0547 -1.9714 -1.2061 -5.6537 -0.1711 5.1475

L&G: v'2 -3.5698 -2.3038 -1.4095 -6.6070 -0.2000 6.0155

Coop: v'j -2.3627 -1.0377 1.9632 1.6569 1.0859 -1.2060

L&G: v',o 3.4626 1.5207 -2.8771 -2.4282 -1.5913 1.7674

Reconstructed Relative Errors
Vectors

f (w u , w ' l ,) f(w,2, w'12) f (W i 3 , w ' i 3) f (W l4 , W14) f(w15,w ',5) f (W iB t W ' , B)

Coop: v '2 39.96% 71.37% -23.31% -2.52% -25.38% -10.19%

L&G: v '2 -11.97% -12.99% 276.45% -1.65% -285.51% 5.04%

Coop: v '3 11.43% 34.76% -13.44% -8.50% -37.20% 93.13%
L&G: v '10 -6.30% -7.89% 0.87% -1.55% 101.93% -7.46%

Table 6.42 lists the relative errors of the vector length change. It can be observed that

the largest errors rest with the vectors V3:vio since the angle between both vectors is

the largest.

Table 6.42 Vector length change impact analysis.

Vector Original length Reconstructed length Relative Error
Coop: v'2 8.6659 8.5535 (|V r , D -1.30%
L&G: v'2 10.0763 9.9958 (| v h | * F 2) -0.80%
Coop: v'3 4.1099 3.9866 (b r i D -3.00%
L&G: v ' i o 5.9052 5.8423 (|vr,|*F2) -1.07%

Claims Reservation 223

The reconstructed weight matrixes for both companies are shown in tables 6.43 and

6.44. Rows that are framed and shown on grey backgrounds are vectors that have

been replaced with reconstructed vectors.

In the previous section an analysis on the linked network has been made without the

use of a stimuli network. This step has been left out for this experiment and the linked

network has been utilised directly with a stimuli network.

Table 6.43 Hidden layer weight matrix of Co-operative after reconstruction.

Reference
x-Direction

« ' l l Wl2 W,3 Wj4 «15 Win Length
Vi 2 . 1 4 9 5 - 0 . 3 5 9 6 2 . 0 1 5 4 0 . 0 1 7 3 - 1 . 5 0 1 6 1 . 1 7 9 6 3 . 5 2 9 6

v2 - 3 . 0 5 4 7 - 1 . 9 7 1 4 - 1 . 2 0 6 1 - 5 . 6 5 3 7 - 0 . 1 7 1 1 5 . 1 4 7 5 8 . 5 5 3 5

V3 - 2 . 3 6 2 7 - 1 . 0 3 7 7 1 . 9 6 3 2 1 . 6 5 6 9 1 . 0 8 5 9 - 1 . 2 0 6 0 3 . 9 8 6 6

v4 0 . 1 9 5 4 0 . 5 5 6 5 - 1 . 2 2 4 8 - 1 . 0 6 4 3 - 1 . 0 7 9 3 1 . 1 5 1 9 2 . 3 3 9 4

V5 - 0 . 3 2 2 9 0 . 1 6 1 4 0 . 0 4 3 3 0 . 2 6 9 5 - 0 . 1 8 0 6 - 2 . 0 1 8 5 2 . 0 7 6 5

V6 - 0 . 4 9 6 0 0 . 0 0 6 4 - 0 . 1 9 7 5 0 . 0 3 3 6 - 0 . 2 1 0 5 - 1 . 4 4 7 5 1 . 5 5 7 5

v7 - 1 . 6 9 1 5 - 1 . 4 2 1 7 - 3 . 1 4 9 8 0 . 9 4 2 5 1 . 6 5 0 7 2 . 9 9 5 3 5 . 2 3 3 3

Vg 1 . 5 6 6 2 0 . 4 0 2 2 0 . 1 8 7 8 - 0 . 2 7 6 4 - 2 . 6 1 3 6 2 . 5 9 1 7 4 . 0 3 4 1

V9 - 0 . 1 2 3 4 - 0 . 6 4 5 8 - 4 . 0 6 8 0 1 . 2 1 2 4 - 2 . 0 0 0 4 3 . 5 1 4 2 5 . 8 9 9 3

Vio - 0 . 2 7 5 2 - 3 . 5 4 2 9 0 . 1 8 6 9 - 4 . 3 8 2 8 - 2 . 4 1 1 6 5 . 9 5 7 8 8 . 5 5 4 7

Table 6.44 Hidden layer weight matrix of Legal&General after reconstruction.

Reference
y-Direction

Wll w u W,3 w , 4 « 1 5 «'IB Length
V| - 3 . 2 2 2 8 1 . 9 8 2 2 - 5 . 5 7 1 7 1 . 3 5 9 5 - 4 . 0 9 7 9 4 . 8 7 8 5 9 . 3 7 0 2

V2 - 3 . 5 6 9 8 - 2 . 3 0 3 8 - 1 . 4 0 9 5 - 6 . 6 0 7 0 - 0 . 2 0 0 0 6 . 0 1 5 5 9 . 9 9 5 8

v3 0 . 1 3 0 6 0 . 2 2 7 6 - 1 . 1 1 7 8 0 . 3 5 8 0 - 1 . 4 0 2 0 - 0 . 7 6 0 3 1 . 9 9 7 6

v4 - 0 . 3 9 2 7 0 . 6 9 4 5 0 . 9 1 6 7 - 0 . 3 1 1 1 - 0 . 6 9 1 2 0 . 3 5 4 6 1 . 4 7 5 6

V5 0 . 6 1 1 2 - 0 . 8 2 4 0 3 . 1 9 8 6 - 1 . 6 9 8 4 - 2 . 4 3 9 5 1 . 7 4 0 6 4 . 8 1 1 4

V6 2 . 3 5 3 4 - 3 . 4 9 3 8 - 1 . 3 8 8 3 0 . 6 5 4 1 0 . 8 6 3 5 2 . 5 4 1 8 5 . 2 2 5 7

V7 0 . 2 2 9 1 2 . 4 4 8 6 3 . 5 6 0 2 0 . 3 3 8 0 - 0 . 9 6 9 1 - 0 . 0 9 0 7 4 . 4 4 8 0

Vg - 0 . 5 9 3 0 - 4 . 8 0 8 1 - 0 . 9 7 2 1 2 . 3 0 8 2 - 0 . 7 1 8 7 1 . 7 2 8 2 5 . 7 6 5 8

V9 - 0 . 7 8 5 3 1 . 0 3 9 4 - 0 . 0 4 2 7 1 . 1 0 6 2 3 . 4 9 9 5 - 1 . 3 5 7 2 4 . 1 2 4 4

Vio 3 . 4 6 2 6 1 . 5 2 0 7 - 2 . 8 7 7 1 - 2 . 4 2 8 2 - 1 . 5 9 1 3 1 . 7 6 7 4 5 . 8 4 2 3

Claims Reservation 224

6.5.2.5 Training of Stimuli Network

Stimuli networks need to be able to classify incoming input vectors into domain

memberships. All details about the stimuli network previously mentioned in section

6.5.1.5 will apply to this section. Again, the domain memberships of the input vectors

have been generated by means of linear search as described earlier in section 6.5.1.5

and figure 6.10. Table 6.45 shows an extract of the training data used for the stimuli

network training of both domains.

Table 6.45 Stimuli network training data with memberships generated by linear search.

in 1 in 2
x-Direction

in 3 in 4 in 5 out A out B in 1 in 2
5

in 3
-Direction
in 4 in 5 out A out B

0.11 0.47 0.27 0.45 0.65 0.65 0.48 0.34 0.40 0.46 0.46 0.45 0.61 0.51
0.12 0.40 0.33 0.57 0.59 0.35 0.72 0.35 0.26 0.27 0.43 0.65 0.62 0.46
0.12 0.01 0.62 0.19 0.31 0.63 0.30 0.35 0.40 0.42 0.53 0.30 0.74 0.38

Because of the layout of the training data, the stimuli network required 5 inputs and 2

outputs. The number of hidden units used remained 10 thus resulting in a 5:10:2

network, unchanged to section 6.5.1.5. Table 6.46 is presenting a list of all significant

network parameters used for the stimuli network.

Table 6.46 The parameters of the stimuli network.

Description Setting
Input Neurons 5
Hidden Neurons 10
Output neurons 2
Activation Function symmetric sigmoid
Initialisation +0.7
Learning Factor 0.01
Momentum 0.3
Number of training patterns 130
Number of testing patterns 40

Figure 6.19 shows how the recall SSEtm and generalisation error SSEgen change

during training. Training has been stopped after approximately 400k iterations where

the generalisation error reached a minimum of 1.135. At this point the recall error was

Claims Reservation 225

1.847, which is relatively large. The recall error SSEtrn is generally increasing the

more training patterns are used. To acquire a comparable figure that is independent on

the number of patterns, the RMSE needs to be calculated. Table 6.47 shows a

summary of generalisation and recall errors for the stimuli network. A comparison

between tables 6.47 and 6.24 confirms that the performances of both stimuli networks

are somewhat comparable.

This large number of 400k iterations was mainly caused by the low learning factor

that was set to 0.01. Because the network was small and not many training records

were used a 3.6 GHz P4, 2GB RAM computer (2004), the approximate training time

needed was only 6 minutes.

^ S S E trn

□ S S E gen

Figure 6.20 Recall and generalisation error of network trained with Legal&General data.

Table 6.47 Performance benchmarks of stimuli network after training.

Description Stimuli Network
SSElm 1.847
SSEgen 1.135
RMSE for SSElm 0.162 (130 records)
RMSE for SSEgen 0.179 (40 records)
Iterations 400,000

Claims Reservation 226

6.5.2.6 Linking Results

To evaluate the impact of linking with utilisation of a stimuli network, the forecasting

of claims reservation for 1999 has been repeated and is shown in table 6.48. If this

table is compared with table 6.35 improvements can only be noticed in the early years

from 1990 to 1994. A graphical illustration of the forecasting results listed in table

6.48 for both insurance companies is presented in figures 6.21 and 6.22.

Table 6.48 Forecasting results for Co-operative and Legal&General after linking.

Year of Origin Occurred Co-operative Error Occurred Legal&General Error
1990 1031 1868 44.81% 55 4 -1352.71%
1991 6382 5561 -14.77% -1 11 109.43%
1992 2690 2093 -28.54% 190 286 33.65%
1993 3271 3902 16.18% 113 187 39.61%
1994 5644 8975 37.11% 1326 1548 14.33%
1995 14401 13387 -7.57% 747 403 -85.54%
1996 24967 33145 24.67% 1990 2242 11.24%
1997 21894 8046 -172.10% 2436 1984 -22.76%
1998 27901 35511 21.43% 6231 6033 -3.28%
1999 61364 69585 11.81% 7177 6527 -9.96%

Figure 6.21 Prediction of claims reservation for Co-operative after linking and stimuli network.

Claim s Reservation 227

Figure 6.22 Prediction of claims reservation for Legal&General after linking and stimuli network.

Comparing figures 6.21 and 6.18 with utilisation of table 6.48 shows that only the

forecasts for the years 1990, 1992 and 1993 have reduced generalisation errors of

3.42%, 7.40% and 21.20%. The years 1997 and 1996 have had the highest increase in

errors of 167.48% and 21.94%. Comparing figures 6.22 and 6.19 with utilisation of

table 6.48 shows that only the forecasts for the years 1992 and 1993 have reduced

generalisation errors of 34.42% and 20.43%. The years 1990 and 1995 have had the

highest increase in errors of 1290.60% and 67.35%.

Table 6.49 Performance comparison of trained, linked and linked with stimuli after 10 runs.

Description Co-operative after training Legal&Gencral after training
Min Max Average StDev Min Max Average StDev

S S E trn 0 .0 2 5 5 0 .0 6 6 7 0 .0 4 9 9 0 .0 1 5 8 0 .0 4 9 9 0 .0 8 6 3 0 .0 7 3 6 0 .0 1 0 8

S S E gen 0 .1 3 3 8 0 .2 2 3 0 0.1878 0 .0 3 2 6 0 .3 5 1 9 0 .5 5 8 4 0.4504 0 .0 7 8 8

Co-operative after linking Lcgal&Gencral after linking
S S E trn 0 .1 0 5 6 0 .4 0 3 6 0 .2 3 9 2 0 .0 9 5 6 0 .0 8 2 4 0 .8 4 1 5 0 .4 7 2 6 0 .3 0 1 9

S S E ge„ 0 .1 1 2 6 0 .2 7 6 5 0.1928 0 .0 5 8 2 0 .3 2 7 1 0 .5 4 5 0 0.4226 0 .0 8 8 9

x Co-operative linking with stimuli Legal&General linking with stimuli
S S E trn 0 .4 9 1 6 1 .2 9 5 3 0 .7 8 7 0 0 .2 3 5 1 0 .5 6 2 9 1 .2 0 5 4 0 .8 5 3 3 0 .2 2 6 5

S S E ge„ 0 .1 3 9 0 0 .4 9 2 3 0.2600 0 .1 0 4 0 0 .1 3 1 9 0 .4 7 4 3 0.2763 0 .1 1 7 6

Even with the generalisation error reduced by 0.1741 (38.65%) from 0.4504 to 0.2763

, as shown in table 6.49, the forecasting results for Legal&General do not seem to

have improved whatsoever. The reason the generalisation error has fallen is that the

Claims Reservation 228

main contributors to the error, shown bordered in table 6.50, have been reduced

during linking, as indicated by arrows. This decrease in difference prior to

denormalisation has not caused a relative percentage reduction after denormalisation.

The reason for this is that the relative error has been measured with regards to the

forecasted figure, not the target figure as show in equation (6.7). Therefore the

improvements for the years 1990-1994 can be seen in the normalised network output

but are not evident in the percentage figures.

E rr* =
^ forecast - 1 arg et ''

forecast
(6.7)

Table 6.50 Error analysis for Legal&General.

Normalised
target(neural
network
training target)

Neural
network output
after training

Neural
network output
after linking

Difference
between target
and output
after training

Difference
between target
and output
after linking

0.1250 0.3200 0.0087 ; 0.1950 - f 0.1164
-0.0006 0.3001 0.0068 ; 0.3007 - f 0.0074
0.1132 0.3417 0.1697 1 0.2285 f 0.0565
0.0946 0.2332 0.1559 I 0.1385 4 0.0613
0.6147 0.6300 0.6839 0.0153 0.0691
0.2434 0.2946 0.1331 0.0512 0.1103
0.3670 0.3625 0.4084 0.0045 0.0414
0.3511 0.3552 0.2902 0.0041 0.0610
0.5494 0.5412 0.5355 0.0082 0.0139
0.4200 0.4068 0.3860 0.0132 0.0339
Claims occured Forecast after Forecast after Error after Error after
(target) training linking training linking

55 145 4 62.11% -1352.71%
-1 485 11 100.21% 109.43%
190 595 286 68.07% 33.65%
113 283 187 60.04% 39.61%
1326 1372 1548 3.37% 14.33%
747 913 403 18.19% -85.54%
1990 1963 2242 -1.38% 11.24%
2436 2467 1984 1.25% -22.76%
6231 6114 6033 -1.92% -3.28%
7177 6922 6527 -3.69% -9.96%

Claims Reservation 230

Figure 6.23 shows the average recall SSEtrn and generalisation error SSEgen during

training of the composite neural network. Training has been stopped after

approximately 250,000 iterations where the generalisation error reached the end of a

plateau. To increase statistical reliability the entire experiment has been repeated 30

times and the averages, minimums and maximums for training and testing pattern are

reported in table 6.52.

Table 6.52 Training results of single NN trained for both domains.

Description Single neural network with both domains
Average Min Max Std Dev

SSEtm 0.1650 0.0877 0.2592 0.0541
SSEgen 0.4977 0.3869 0.6241 0.0649

All forecasting results from the 30 networks trained have been de-normalised into

numerical figures and are shown in table 6.53 for Co-operative and in table 6.54 for

Legal&General. All relative errors refer to the difference between the averages and

the actual Claims Occurred figures.

Table 6.53 Co-Operative forecasting of single NN trained with both domains.

Year of Origin Claims Occurred Average Min Max Std Dev Error
1990 1031 1231 576 2543 469 16.25%
1991 6382 6633 6019 7225 303 3.79%
1992 2690 3688 3178 4353 309 27.07%
1993 3271 4730 3519 6078 493 30.85%
1994 5644 7340 4567 8678 1049 23.10%
1995 14401 13657 12807 14666 488 -5.45%
1996 24967 22459 19451 24962 1333 -11.17%
1997 21894 20117 18739 23532 1194 -8.83%
1998 27901 26252 24791 28364 933 -6.28%
1999 61364 60663 58415 63103 1314 -1.16%

Compared to table 6.29, all years can be forecast since the data preparation for the

Year of Development permits a trail long enough for creation of training patterns.

Claims Reservation 231

Table 6.54 Legal&General forecasting of single NN trained with both domains.

Year of Origin Claims Occurred Average Min Max Std Dev Error
1990 55 97 -9 180 45 43.26%
1991 -1 464 196 640 124 100.22%
1992 190 706 190 1192 229 73.09%
1993 113 277 240 319 22 59.24%
1994 1326 1229 1109 1303 52 -7.88%
1995 747 862 768 923 43 13.32%
1996 1990 1975 1737 2245 116 -0.75%
1997 2436 2259 2065 2388 91 -7.85%
1998 6231 5847 5367 6616 297 -6.56%
1999 7177 6804 6438 7238 185 -5.49%

Comparing network training results from table 6.49 with table 6.52 requires the

division of the average errors by the number of patterns since 85 training and 10

testing patterns were used for Co-operation and Legal&General in table 6.49 and 170

training and 20 testing patterns were used for table 6.52. Table 6.55 shows the RMSE

to allow for an equal comparison of both tables.

Table 6.55 RMSE results from tables 6.49 and 6.52.

Type Desc. Patterns Errors after training Errors after linking Errors after stimuli
Average RMSE Average RMSE Average RMSE

C o- SSElrn 85 0.0499 0.00059 0.2392 0.00281 0.7870 0.00926
operative SSEgen 10 0.1878 0 .0 1 8 7 8 0.1928 0 .0 1 9 2 8 0.2600 0.02600

L egal& SSEtrn 85 0.0736 0.00087 0.4726 0.00556 0.8533 0.01004
General SSEgen 10 0.4504 0 .0 4 5 0 4 0.4226 0 .0 4 2 2 6 0.2763 0 .0 2 7 6 3

C o-op + SSEtn, 170 0.0889 0 .0 0 0 5 2 0.5297 0.00312 1.1608 0.00683
L& G SSEgen 20 0.4880 0 .0 2 4 4 0 0.4645 0.02323 0.3794 0 .0 1 8 9 7

C om p osite
SSEtrn 170 0.1650 0 .0 0 0 9 7 NA NA NA NA

SSEgen 20 0.4977 0 .0 2 4 8 9 NA NA NA NA

It can be noticed that the training results of the composite network are worse than the

summed errors for Co-operative and Legal&General (Co-op+L&G). Whilst the

generalisation for Co-operative increases after linking and after stimuli, it reduces for

Legal&General. Nevertheless, the combined generalisation error (Co-op+L&G) has

been reduced after linking and after stimuli.

Claims Reservation 232

6.6 Conclusions

It can be concluded that claims reservation can be accurately forecast using MLP

neural networks with five input one output time series training data. The training

patterns created in the direction of year of origin (y-direction) seem to achieve better

training results than patterns created in the direction of development year (x-

direction). Vector based training pattern normalisation on 5:10:1 neural network have

performed well and linking with acceptance angle of 20° seems to cause high loss of

recall accuracy, although this was expected. The generation of stimuli training

patterns by applying input vectors and target values by means of linear search

produced very reliable domain classification.

In the case where data from one company was used, a comparison between CLM and

the results of neural network training for origin year (y-direction) table 6.5 and table

6.18 shows that NN training has produced better forecasting results. Comparison

between CLM table 6.5 and table 6.25 shows that linking has reduced the forecasting

error even further. In the case where data from two companies was used, a

comparison between the generalisation errors after training and after linking in table

6.49 shows only a slight improvement for Legal&General. Whereby the

generalisation error of Co-operative has increased.

Table 6.56 summarises the changes in the generalisation errors after linking and after

linking with stimuli network. The first example has caused a reduction of forecasting

error in both instances for both domains. In the second example only domain B

benefited. One explanation for this could be that the testing data was somewhat

correlated to the training data and therefore an increase in the recall accuracy can

cause an increase in the generalisation.
Table 6.56 Summary of generalisation error change for both examples.

Linking without stimuli Linking without stimuli
Domain A Domain B Domain A Domain B

2-Directions -14.24% -13.79% -42.53% -21.17%
2-Companies 2.66% -6.16% 34.82% -34.63%

Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has introduced the first building blocks of a framework for a neural

network linking process. Linking of knowledge contained in C-based source code and

programming libraries has been so successful, that the application for linking of

knowledge contained in neural network weight matrixes seemed overdue.

The linking process has been applied to vectors that represent knowledge held in each

trained neuron thus utilising the existing and well-established field of vector algebra.

Most beneficial has been the simplicity underlying the linking equations since only

basic geometrical and vector algebra has been used.

The versatility of linking has been shown in the areas of pruning and in the

combination of domain experts. Linking can be used for establishing the optimal size

of a neural network by combination of similar neurons. Its purpose is to combine

vectors that are holding similar knowledge and has been successfully applied to

problems that could be described by a mathematical function and to real life data from

the insurance industry. With this, knowledge of distinct domains has been linked for

the benefit of improved generalisation.

Conclusions and Future Work 234

7.2 Future Work

A number of possibilities for future work into linking have been described in each

chapter of this thesis. These and other suggestions are listed in this section.

This section is a discussion of future work that is mainly relating to possible research

into areas that represent a simplification or an enhancement. Simplifications have

been made where it has been found to be important to continue the momentum in the

research of linking without being sidetracked. Enhancements are suggested where a

clear disadvantage exists in the methods of linking discussed in this thesis.

7.2.1 Simplifications

7.2.1.1 Combination of Output Layer Weights

The first simplification used in this thesis has been the setting of the output layer

weights to 1 and freezing them so they do not change during network training. The

requirement for this simplification originated from the need for non-linear activation

functions that complicate the combination of the output layer weights. Therefore

neural networks have been trained by updating their hidden layer weights but omitting

the output layer weights. There are basically two possible solutions. The first one is a

transformation of the output layer weights to 1 and the second one is the actual

combination of the output layer weights. A preliminary transformation algorithm has

been developed that successfully converted output layer weights to 1 by changing the

weights of the hidden layer so that the network performance remained largely

unchanged. Since this work has been mainly preliminary, it has not been included in

this thesis.

Conclusions and Future Work 235

7.2.1.2 Search for Similar Knowledge in Neurons

Another simplification that was used was the search for matching vectors that comply

with the acceptance angle restriction and for linking. This search has been brute force

where each vector has been compared with all other remaining vectors. Whilst this

type of search is fine for small matrixes, the search time will increase exponentially if

larger matrixes are used. This problem can easily be improved by using more

sophisticated search algorithms

7.2.2 Improvements

7.2.2.1 Dynamic Pruning and Growing

Linking of neurons is a versatile process that combines neurons; only two possible

scenarios, the pruning and combination of networks have been introduced in this

thesis. Other areas such as dynamic pruning in combination with dynamic growing

during training are possible future application areas for neuron linking. Dynamic

pruning could combine neurons during the training that contain similar knowledge. In

this instance, neurons are linked during network training and if found equivalent,

linked so that one can be removed. Such dynamic pruning algorithms are generally

used in conjunction with dynamic growing algorithms in cases where over-pruning

occurred [118].

7.2.2.2 The Need for a Stimuli Network

The introduction of the stimuli network has been caused by the need to generate

domain classification information. If two or more networks are linked that originate

from the same domain, no stimuli network is required. In such a case, all networks

involved in the linking will not need to store domain membership information.

Because of this, the linking of networks from the same domain will be similar to the

process that has been used for pruning but no such work has yet been undertaken.

Conclusions and Future Work 236

1.2.2.3 Linking Multiple Networks

For the introduction of linking it was sufficient to demonstrate its paradigm with the

use of two neural networks from two domains. But one of the real strengths of linking

is that knowledge from multiple domains can be combined to form a complex

structure. Linking of multiple domains will follow the same concept as demonstrated

for two domains with the exception of the training of the stimuli network. The more

domain memberships the stimuli network needs to distinguish, the lesser the accuracy

with which each domain will be identified. Therefore the focus on linking of multiple

domains may lie with the development of a more sophisticated stimuli network or the

omission of the stimuli network as mentioned in 1.2.2.2.

1.2.2 A Extension of Linking Equation

The linking equation has been derived in its basic form and proven to perform well

for combining similar neurons. But the definition of similar neurons has been

restricted to neurons that point in similar directions in hyperspace. This definition can

be extended so that other neuron attributes are included such as the neuron sensitivity

or relative error between weights. Such an extension to the definition of similar

neurons can be included into the linking process by means of manipulation of the

linking equation or insertion of an additional process.

7.2.2.5 Extension of Linking for Different Types of Networks

In this thesis, the linking process has concentrated only on MLP neural networks that

were trained with the backpropagation algorithm. Naturally, linking is not restricted to

MLP neural networks or backpropagation. For example, a very interesting subject the

linking process could be applied to would be the reduction of dimensionality in a

SOM network. Because the linking process is applied to vectors any expert system

that uses vectors, globally referred to vector machines [194], can benefit from the

linking process.

Conclusions and Future Work 237

7.2.2.6 Extension of Linking for Different Types of Fields

Combination of similar vectors for the purpose of eliminating one in exchange for a

single scalar factor is not restricted to the application of neural networks. Algorithms

that reduce the amount of parameters required to store information are generally

referred to as compression algorithms. Compression algorithms are a substantial part

of communication since they reduce the required bandwidth for the transmission of

the same information and therefore can increase transmission volume and speed. With

this and the simplicity of the linking equation, it can be used to compress data prior to

transmission for the purpose of reducing bandwidth.

Chapter 8

Bibliography

[1] H Schildt, “C the Complete Reference”, second edition, Osborne McGraw-

Hill (Textbook), 1990.

[2] P Perry, “Using Borland C++ 4”, special edition, Que Corporation

(Textbook), 1996.

[3] DJ Kruglinski, “Inside Visual C++”, Microsoft Press (Textbook), 1993.

[4] A Ultsch, D Korus, “Integration of Neural Networks with Knowledge-Based

Systems”, University of Marburg, Artificial Intelligence in Medicine,

Volume 934 of Lecture Notes on Artificial Intelligence, Springer Verlag,

1995.

[5] AH Tan, FL Lai, “Text Categorization, Supervised Learning, and Domain

Knowledge Integration”, KDD’2000 International Workshop on Text

Mining, Boston, pp. 113-114, August 2000.

[6] AH Tan, “Integrating Rules and Neural Computation”, RWCP Neuro ISS

Laboratory, Proceedings ICNN'95, IEEE International Conference on Neural

Networks, pp 1794-1799, 1995.

[7] CD Neagu, VP, “Modular Neuro-Fuzzy Networks Used in Explicit and

Implicit Knowledge Integration”, FLAIRS Conference, pp 277-281, 2002.

[8] GG Towell, JW Shavlik, “Refining Symbolic Knowledge using Neural

Networks”, Machine Learning, Volume 12, pp 321-331, 1994.

Bibliography 239

[9] S Garcez, K Broda, D M Gabbay, “Symbolic knowledge extraction from

trained neural networks: A sound approach”, Artificial Intelligence, pp 155-

207, 2001.

[10] RS Michalski, S Chilausky, “Learning by being told and learning from

examples”, Journal of Policy Analysis and Information Systems 4, pp 126-

161, 1980.

[11] TG Dietterich, RS Michalski, “A Comparative Review of Selected Methods

for Learning from Examples”, Machine Learning, Volume 1, pp 41-82, 1983.

[12] EB Messinger, LA Rowe, RR Henry, “A Divide-and-Conquer Algorithm for

the Automatic Layout of Large Directed Graphs”, IEEE Transaction on

Systems, Man and Cybernetics, Volume 21, No. 1, pp 1-12, 1991.

[13] TG Dietterich, “The divide-and-conquer manifesto”, Proceedings 11th

International Conference Algorithmic Learning Theory, Springer Verlag,

New York, pp 13-26, 2000.

[14] MI Jordan, RA Jacobs, “Hierarchical mixtures of experts and the EM

algorithm”, Neural Computing, Volume 6, Number 2, pp. 181-214, 1994.

[15] ME Ruiz, P Srinivasan, “Hierarchical neural networks for text

categorization”, Proceedings of the 22nd International ACM SIGIR

Conference on Research and Development in Information Retrieval

(SIGIR'99), pp 281-282, 1999.

[16] ME Ruiz, P Srinivasan, “Hierarchical text categorization using neural

networks”, Information Retrieval, pp 87-118, 2002.

[17] ME Ruiz, “Combining machine learning and hierarchical structures for text

categorization”, PhD Thesis, December 2001.

[18] E Black, J Lafferty, S Roukaos, “Development and evaluation of a broad-

coverage probabilistic grammar of English-language computer manuals”,

Proceedings of the 30th Annual Meeting of the Association for

Computational Linguistics, pp 185-192, 1992.

Bibliography 240

[19] SK Riis, “Combining Neural Networks for Protein Secondary Structure

Prediction”, Technical University of Denmark, Proceedings ICNN'95, IEEE

International Conference on Neural Networks, pp 1744-1749, 1995.

[20] C Boek, P Lajbcygier, M Palaniswami, A Flitman, “A Hybrid Neural

Network Approach to the Pricing of Options”, The University of Melbourne,

Proceedings ICNN'95, IEEE International Conference on Neural Networks,

pp 813-817, 1995.

[21] JA Benediktsson, J Larsen, JR Sveinsson, LK Hansen, “Optimized

Combination, Regularization, and Pruning in Parallel Consensual Neural

Networks”, Proceedings of European Symposium on Remote Sensing,

Volume 3500, Barcelona, Spain, pp. 3527-3538, 21-25, Sept. 1998.

[22] K Kirchhoff and J Bilmes, "Combination and joint training of acoustic

classifiers for speech recognition", Proceedings of ISCA ASR2000 Tutorial

and Research Workshop, Paris, 2000.

[23] J Waldemark, PO Dovner, J Karlsson, “Hybrid Neural Network Pattern

Recognition System for Satellite Measurements”, Proceedings ICNN'95,

IEEE International Conference on Neural Networks, pp 195-199, 1995.

[24] G Auda, M Kamel, H Raafat, “Voting Schemes For Cooperative Neural

Network Classifiers”, Proceedings ICNN'95, IEEE International Conference

on Neural Networks, pp 1240-1243, 1995.

[25] AJC Sharkey, NE Sharkey, “Combining Diverse Neural Nets”, The

Knowledge Engineering Review 12, pp 231-247, 1997.

[26] P Verlinde, “A Contribution to Multi-Modal Identity Verification Using

Decision Fusion”, PhD Thesis, Department of Signal and Image Processing,

Telecom Paris, France, 1999.

[27] R King, M Ouali, AT Strong, “Is it Better to Combine Predictions?”,

Department of Computer Science, University of Wales, Protein Engineering

13, pp 15-19, 2000.

Bibliography 241

[28] R Maclin, JW Shavlik, “Combining the Predictions of Multiple Classifiers:

Using Competitive Learning to Initialize Neural Networks”, Proceedings of

the 14th International Joint Conference on Artificial Intelligence (IJCAI-95),

Montreal, Canada, pp.524-530. 1995.

[29] ZH Zhou, JX Wu, W Tang, “Combining Regression Estimators: GA-Based

Selective Neural Network Ensemble”, International Journal of

Computational Intelligence and Applications, pp 341-356, 2001.

[30] C Perry, “An Integrated Developmental Connectionist Model of Orthography

to Phonology and Orthography to Semantics Translation”, Swinburne

University of Technology Melbourne, Australia, Proceedings ICNN'95, IEEE

International Conference on Neural Networks, pp 2960-2964, 1995.

[31] Y Satoshit, I Hidekiyot, N Yoshikazutt, “An Inverse Model Learning

Algorithm Using the Hierarchical Mixtures of Experts”, Proceedings

ICNN'95, IEEE International Conference on Neural Networks, pp 2738-

2742, 1995.

[32] B Sekerkiran, “A High Resolution CMOS Winner-Take-All Circuit”,

Proceedings ICNN'95, IEEE International Conference on Neural Networks,

pp 2023-2026, 1995.

[33] BJ Jain, F Wysotzki, “Efficient pattern discrimination with inhibitory WTA

nets”, Proceedings in ICANN'01, Springer Verlag, pp 827-834, 2001.

[34] R Battiti, AM Colla, “Democracy in neural nets: Voting schemes for

classification”, Neural Networks 7, pp 691-707, 1994.

[35] ML Gargano, “Classifier voting in the neural networks.” Proceedings in

IJCNN 90, pp 388-391, 1990.

[36] BJ Jain, F Wysotzki, "Distance-based Classification of Structures within a

Connectionist Framework", Forschungsbericht Nr. 763, Forschungsberichte

der Universität Dortmund, FB Informatik, LLWA 01 - Tagungsband der GI-

Workshopwoche, Dortmund, Oktober 2001.

Bibliography 242

[37] J Karhunen, L Wang, R Vigario, “Nonlinear PCA Type Approaches for

Source Separation and Independent Component Analysis”, Helsinki

University of Technology, Proceedings ICNN'95, IEEE International

Conference on Neural Networks, pp 995-1000, 1995.

[38] B Lemer, H Guterman, M Aladjem, I Dinstein, “Feature Extraction by

Neural Network Nonlinear Mapping for Pattern Classification”, The 13'th

International Conference on Pattern Recognition, ICPR13, Vienna, Volume

4, pp 320-324, 1996.

[39] LR Tucker, RC MacCallum, “Factor Extraction by Matrix Factoring

Techniques”, Chapter 8, Exploratory Factor Analysis (Textbook), pp ISO-

215, 1997.

[40] A Hyvärinen, “Survey on Independent Component Analysis”, Helsinki

University of Technology Laboratory of Computer and Information Science,

Neural Computing Surveys, Volume 2, pp 94-128, 1999.

[41] A Hyvärinen, E Oja, “Independent Component Analysis: Algorithms and

Applications”, Helsinki University of Technology, Neural Networks, pp 411-

430, April 1999.

[42] WS Sarle, “Neural Network Implementation in SAS Software”, Proceedings

of the 19th Annual SAS Users Group International Conference, pp 1551-

1573,21 April 1994.

[43] SR Waterhouse, AJ Robinson, “Classification Using Hierarchical Mixtures

of Experts”, Cambridge University Engineering Department, IEEE

Workshop on Neural Networks for Signal Processing IV, pp 177-186, 1994.

[44] W Jiang, MA Tanner, “On the Approximation Rate of Hierarchical Mixtures-

of-Experts for Generalized Linear Models”, Neural Computation, Volume 11

Number 5, pp 1183-1198, July 1999.

[45] EP Xing, MI Jordan, RM Karp, S Russell, “A hierarchical Bayesian

Markovian model for motifs in biopolymer sequences”, Advances in Neural

Information Processing Systems (NIPS) 15, 2003.

Bibliography 243

[46] K Chen, L Xu, H Chi, “Improved learning algorithms for mixture of experts

in multiclass classification”, Neural Networks 12, Pergamon Publisher,

pp 1229-1252, 1999.

[47] K Chen, D Xie, H Chi, “Speaker Identification Based on The Time-Delay

Hierarchical Mixture of Experts”, Peking University, Beijing 100871, China,

Proceedings ICNN'95, IEEE International Conference on Neural Networks,

pp 2062-2066, 1995.

[48] SR Waterhouse, “Classification and Regression using Mixtures of Experts”,

PhD Thesis, Department of Engineering, University of Cambridge, UK,

1997.

[49] J Fritsch, M Finke, A Waibel, “Adaptively Growing Hierarchical Mixtures of

Experts”, Carnegie Mellon University, Pittsburgh, pp 459-465, 1997.

[50] P Pucar, “Modelling and Segmentation using Multiple Models”, PhD Thesis,

Department of Electrical Engineering, Linköping University, Sweden, 1996.

[51] AV Rao, D Miller, K Rose, A Gersho, “Mixture of Experts Regression

Modeling by Deterministic Annealing”, IEEE Transactions On Signal

Processing, Volume 45, Number 11, pp 2811-2820, November 1997.

[52] RA Jacobs, MI Jordan, SE Nowlan, GE Hinton, “Adaptive Mixture of

Experts”, Neural Computation, Volume 3, pp 79-87, 1991.

[53] JT Kwok, “Support Vector Mixture for Classification and Regression

Problems”, Proceedings of the International Conference on Pattern

Recognition (ICPR), Brisbane, Australia, pp 255-258, August 1998.

[54] S Lawrence, AC Tsoi, AD Back, “Function Approximation with Neural

Networks and Local Methods: Bias, Variance and Smoothness”, Australian

Conference on Neural Networks, ACNN 96, pp 16-21, 1996.

[55] P Smagt, F Groen, “Approximation with neural networks: Between local and

global approximation”, University of Amsterdam, Proceedings ICNN'95,

IEEE International Conference on Neural Networks, pp 1060-1064, 1995.

Bibliography 244

[56] O Boz, “Knowledge Integration and Rule Extraction in Neural Networks”,

PhD Thesis, EECS Department, Lehigh University, US, 9 October 1995.

[57] YJ Moon, SY Oh, “On an Efficient Design Algorithm for Modular Neural

Networks”, Department of Electrical Engineering, Pohang University of

Science and Technology, Korea, Proceedings ICNN'95, IEEE International

Conference on Neural Networks, pp 1310-1315, 1995.

[58] WS Sohand, CK Tham, “Modular Neural Networks for Multi-service

Connection Admission Control”, Computer Networks, Volume 36, Number

2-3, pp 181-202, May 2001.

[59] M Fun, M Hagan, “Modular Neural Networks for Friction Modelling and

Compensation”, Proceedings of the IEEE International Conference on

Control Applications, pp 814-819, 1996.

[60] AP Engelbrecht, “Sensitivity Analysis for Decision Boundaries”, Neural

Processing Letters, Volume 10, pp 253-266, 1999.

[61] AP Engelbrecht, HL Viktor, “Rule Improvement Through Decision

Boundary Detection Using Sensitivity Analysis”, Department of Computer

Science, University of Pretoria, South Africa, pp78-84, 1999.

[62] AP Engelbrecht, “Sensitivity Analysis for Selective Learning by

Feedforward Neural Networks”, Fundamenta Informaticae XXI, IOS Press,

pp 1001-1028, 2001.

[63] D Cubanski, D Cyganski, “Multivariate classification through adaptive

Delaunay-based C° spline approximation”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Volume 17, pp 55-66, April 1995.

[64] TA Estlin, “Using Multi-Strategy Learning to Improve Planning Efficiency

and Quality”, Artificial Intelligence Laboratory, The University of Texas, TX

78712, PhD Thesis, May 1998.

[65] ZQ Liu, F Yan, “Case-based Diagnostic System Using Fuzzy Neural

Network”, Computer Vision and Machine Intelligence Lab, The University

Bibliography 245

of Melbourne, Australia, Proceedings ICNN'95, IEEE International

Conference on Neural Networks, pp 3107-3112, 1995.

[66] J Utans, GR Gindi, “Neural network approach to object recognition and

image partitioning within a resolution hierarchy”, AAAI 1996 Workshops,

Portland, Oregon, pp 238-246, 5 August 1996.

[67] DG Melvin, CT Spracklen, “Fusion of artificial neural networks and rule

based systems for reasoning in noisy domains”, Intelligent Engineering

Systems Through Artificial Neural Networks Volume 2, ANNIE, ASME

Press, New York, pp 963-968, November 1992.

[68] R Poli, M Brayshaw, “A Hybrid Trainable Rule-based System”, Technical

Report CSRP-95-3, School of Computer Science, The University of

Birmingham, March 1995.

[69] P Bonaventura, M Gori, M Maggini, F Scarselli, “A Hybrid Model for the

Prediction of the Linguistic Origin of Surnames”, IEEE Transactions on

Knowledge and Data Engineering, pp 760-763, 2003.

[70] DJ Dailey, P Ham, PJ Lin, “ITS Data Fusion”, ITS Research Program,

Research Project T9903, College of Engineering, University of Washington

USA, April 1996.

[71] J Freeman-Hargis, “Rule-Based Systems and Identification Trees”, Online

Internet Tutorial, http://ai-depot.com/Tutorial /RuleBased.html, 2003,

[72] JP Ignizio, “An Introduction to Expert Systems: The Development and

Implementation of Rule Based Expert Systems”, McGraw Hill, (Textbook)

1 September 1990.

[73] S Haykin, “Neural Networks A Comprehensive Foundation”, Prentice Hall,

Upper Saddle River, New Jersey, (Textbook) 1999.

[74] R Callan, “The Essence of Neural Networks” Prentice Hall, Upper Saddle

River, New Jersey, (Textbook) 1999.

[75] K Gumey, “An Introduction to Neural Networks”, UCL Press Limited,

(Textbook) 1999.

http://ai-depot.com/Tutorial

Bibliography 246

[76] A Blum, “Neural Networks in C++”, John Wiley & Sons Inc, (Textbook)

1992.

[77] IW Sandberg, JT Lo, CL Francourt, JC Principe, "Nonlinear Dynamical

Systems: Feedforward Neural Network Perspectives", John Wiley

Publishers, 1 February 2001.

[78] L Fausett, “Fundamentals of Neural Networks: Architectures, Algorithms

and Applications”, pp 80-86, Prentice-Hall, 1994.

[79] J Hertz, A Krogh, R Palmer, “Introduction to the Theory of Neural

Computation”, Addison-Wesley Publishing Co, Redwood City CA,

(Textbook) 1991.

[80] TR Shultz, WC Schmidt, “Modeling Cognitive Development with a

Generative Connectionist Algorithm”, Chapter 5 in Developing cognitive

competence: New approaches to process modelling, Hillsdale, NJ Lawrence

Erlbaum Associates, (Textbook) 1995.

[81] E Cox, “The Fuzzy Systems Handbook, A Practitioners Guide to Building,

Using, and Maintaining Fuzzy Systems”, Academic Press, (Textbook) 1994.

[82] L Zadeh, “Fuzzy Sets”, Information and Control, Academic Press, Volume 8,

New York, pp 338-353, (Textbook) 1965.

[83] T Terano, K Asai, M Sugeno, “Applied Fuzzy Systems”, Academic Press

Limited, (Textbook) 1997.

[84] J Sjoberg, “Non-Linear System Identification with Neural Networks”,

Linköping University, Printed in Sweden by Linkopings Trycker, (Textbook)

1995.

[85] JH Holland, “Adaptation in Natural and Artificial Systems”, University of

Michigan Press, Ann Arbor, Michigan USA, (Textbook) 1975.

[86] JH Holland, “Adaptation in Natural and Artificial Systems: An introductory

analysis with applications to biology, control and artificial intelligence”, MIT

Press, Cambridge, MA, second edition, (Textbook) 1992.

Bibliography 247

[87] JH Holland, “Genetic algorithms”, Scientific American, Volume 267, pp 44-

50, July 1992.

[88] DE Goldberg, “Genetic Algorithms in Search, Optimization and Machine

Learning”, Addison-Wesley, (Textbook) 1989.

[89] L Davis, S Coombs, “Genetic Algorithms and communication link speed

design: theoretical considerations”, Proceedings of the 2nd international

conference on Genetic Algorithms, pp 252-256, 1987.

[90] L Davis, “Adapting operator probabilities in Genetic Algorithms”,

Proceedings of the 3rd international conference on Genetic Algorithms,

pp 61-69, 1989.

[91] L Davis, “Bit climbing, representational bias and test suite design”,

Proceedings of the 4th International Conference on Genetic Algorithms,

pp 18-23, 1991.

[92] L Davis, “Handbook of genetic algorithms”, Van Nostrand Reinhold, New

York, (Textbook) 1991.

[93] Z Michalewicz, “Genetic Algorithms + Data Structures = Evolution

Programs”, 2nd edition Springer - Verlag, (Textbook) 1994.

[94] M Kamber, R Shinghal, DL Collins, GS Francis, AC Evans, “Model based

3D segmentation of multiple sclerosis lesions in magnetic resonance brain

images”, IEEE Transactions on Medical Imaging, pp 442-453, 1995.

[95] YS Tsai, PH King, MS Higgins, “An Expert-Guided Decision Tree

Construction Strategy: An Application in Knowledge Discovery with

Medical Databases”, American Medical Informatics Association Annual Fall

Symposium AMIA’97, pp 208-212, 1997.

[96] AK Jerebko, JD Malley, M Franaszek, RM Summers, “Multiple Neural

Network Classification Schemefor Detection of Colonic Polyps in CT

Colonography Data Sets”, published in PubMed, Acad Radio, Volume 10,

Number 2, pp 154-60, February 2003.

Bibliography 248

[97] ZH Zhou, Y Jiang, “Medical Diagnosis with C4.5 Rule Preceded by

Artificial Neural Network Ensemble”, IEEE Transactions on Information

Technology in Biomedicine, Volume 7, pp 37-42, 2003.

[98] K Racine, “Design and Evaluation of a Self Cleaning Agent for Maintaining

Very Large Case Bases (VLCB)”, Queen's University, Master Thesis, 1995.

[99] A Stranieri, J Yearwood, J Zeleznikow, “Tools for World Wide Web based

legal decision support systems”, Proceedings of the 8th International

Conference on Artificial Intelligence and Law, pp 206-214, 2001.

[100] JR Quinlan, “Induction of decision trees”, Machine Learning, pp 81-106,

1986.

[101] B Wilson, “Induction of Decision Trees”, an Internet tutorial, location:

http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3 .html,

2003.

[102] P Hancock, “Coding strategies for genetic algorithms and neural nets”,

University of Stirling, Centre for Cognitive and Computational Neuroscience

Department of Computing Science and Mathematics, PhD Thesis, 1992.

[103] K Turner, J Ghosh, “Analysis of decision boundaries in linearly combined

neural classifier”, Pattern Recognition, Volume 29, pp 341-348, 1996.

[104] G Rogova, “Combining the results of several neural network classifiers”,

Neural Networks, Volume 7, pp 777-781, 1994.

[105] S Hasham, B Schmeiser, “Improving model accuracy using optimal linear

combination of trained neural networks”, Technical Report SMS92-16,

School of Industrial Engineering, Purdue University, 1992.

[106] D Opitz, R Maclin, “Popular ensemble methods: An empirical study”,

Journal of Artificial Intelligence Research, Volume 11, pp 169-198, 1999.

[107] NE Sharkey, AJC Sharkey, GO Chandroth, “Neural nets and diversity,

Proceedings of the 14th International Conference on Computer Safety,

Reliability and Security”, pp 375-389, 1995.

http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/id3/id3

Bibliography 249

[108] TK Ho, JJ Hull, SN Srihari, “Decision combination in multiple classifier

systems”, Conference PAMI’94 , Volume 16, pp 66-75, January 1994.

[109] E Alpaydin, “Multiple networks for function learning”, Proceedings of the

IEEE International Conference on Neural Networks, pp 9-14, 1993.

[110] S Hashem, B Schmeiser, Y Yih, “Optimal linear combinations of neural

networks: An overview”, Proceedings of the IEEE International Conference

on Neural Networks, pp 1507-1512, 1994.

[111] RA Jacobs, “Methods for combining experts’ probability assessments”,

Neural Computation, Volume 7, pp 867-888, 1995.

[112] C Bishop, “Neural Networks for Pattern Recognition”, Clarendon Press,

Oxford (Textbook), 1995.

[113] J Kittler, M Hatef, R Duin, J Matas, “On combining classifiers”, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Volume 20,

pp 226-239, March 1998.

[114] TA Bale, “Modular Connectionist Architectures and the Learning of

Quantification Skills”, Artificial Intelligence Group, University of Surrey,

Guildford, PhD Thesis, September 1998.

[115] E Alpaydin, “Multiple networks for function learning”, Conference

IJCNN’93, pp 9-14, 1993.

[116] LK Hansen, P Salamon, “Neural network ensembles”, IEEE Transactions on

Pattern Analysis and Machine Intelligence, Volume 12, pp 993-1001, 1990.

[117] G Thimm, E Fiesler, “Neural Network Pruning and Pruning Parameters”,

Institut Dalle Molle d’lntelligence Artificielle Perceptive, Switzerland, 1st

Online Workshop on Soft Computing, 19-30 August 1996.

[118] X Liang, “Network Expansion and Network Compression: Further

Discussion on Structure Variation Methods”, Peking University, Beijing,

China, Proceedings ICNN'95, IEEE International Conference on Neural

Networks, pp 680-685, 1995.

Bibliography 250

[119] AP Engelbrecht, I Cloete, “A Sensitivity Analysis Algorithm for Pruning

Feedforward Neural Networks”, Stellenbosch University, South Africa,

International Conference on Neural Networks (ICNN '96). Sheraton

Washington Hotel Washington, DC, USA, 2-6 June, pp 1001-1028, 1996.

[120] R Reed, “Pruning algorithms - a survey”, IEEE Transactions on Neural

Networks, Volume 4, Number 5, pp 740-747, 1993.

[121] C Bucila, J Gehrke, D Kifer, W White, “DualMiner: A Dual-Pruning

Algorithm for Item sets with Constraints”, 8th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, Canada, pp 104-143,

July 23 2002.

[122] P Ponnapalli, KC Ho, M Thomson, “Formal Selection and Pruning

Algorithm for Feedforward Artificial Neural Network Optimization”, IEEE

Transactions on Neural Networks, pp 964-968, 1999.

[123] AL Prodromidis, SJ Stolfo, “Cost Complexity-based Pruning of Ensemble

Classifiers”, Knowledge and Information Systems, pp 449-469, 2001.

[124] DG Myers, “Psychology”, Hope College Michigan, fourth edition, Worth

Publishers, New York, (Textbook) 1999.

[125] “Claims Reserving Manual”, The Faculty and Institute of Actuaries, London,

Volume I+II, 1997.

[126] Bostock, Chandler, “Pure Mathematics”, Stanely Thornes, England,

(Textbook) 1996.

[127] T Harris, L Gamlyn, “Intelligent On-Line Multiple Sensor Diagnostics For

Steam Turbines In Power Generation”, Proceedings ICNN'95, IEEE

International Conference on Neural Networks, pp 686-691, 1995.

[128] M Hattori, M Hagiwara, “Knowledge Processing System using

Multidirectional Associative Memory”, Faculty of Science and Technology,

Keio University, Japan, Proceedings ICNN'95, IEEE International

Conference on Neural Networks, pp 1304-1309, 1995.

Bibliography 251

[129] A Vahed, C Omlin, “Rule extraction from recurrent neural networks using a

symbolic machine learning algorithm”, Tech. Rep. US-CS-TR-4, Computer

Science Department, University of Stellenbosch, Stellenbosch 7600, South

Africa, pp 712-717, 1999.

[130] J Sietsma, R Dow, “Creating artificial neural networks that generalize”,

Neural Networks, Volume 4, pp 67-79, 1991.

[131] T Windeatt, G Ardeshir, “An Empirical Comparison of Pruning Methods for

Ensemble Classifiers”, Springer Verlag lecture notes, http://link.springer.de/

link/service/series/0558/bibs/2189/21890208.htm, pp 208-217, 2001.

[132] TR Shultz, JL Elman, “Analyzing cross connected networks”, Advances in

Neural Information Processing Systems 6, NIPS’93, San Mateo,

p p 1 1 1 7 - 1 1 2 4 , 1 9 9 4 .

[133] M Riedmiller, “Advanced supervised learning in multilayer perceptrons -

from backpropagation to adaptive learning algorithms”, Computer Standards

and Interfaces, Special Issue on Neural Networks, Volume 5, pp 265-278,

1994.

[134] B Liu, W Hsu, Y Ma, “Pruning and summarizing the discovered

associations”, Proceedings of the 5th International Conference on

Knowledge Discovery and Data Mining, San Diego, CA, pp 125-134, August

1999.

[135] AS Weigend, DE Rumelhart, BA Huberman, “Generalization by weight-

elimination with application to forecasting”, Advances in Neural Information

Processing (NIPS’90), San Mateo, CA, pp 875-882, April 1991.

[136] J Fumkranz, G Widmer, “Incremental Reduced Error Pruning”, Machine

Learning: Proceedings of the 11th International Conference, pp70-77, 1994.

[137] G Castellano, AM Fanelli, M Pelillo, “An Iterative Pruning Algorithm for

Feedforward Neural Networks”, IEEE Transactions on Neural Networks,

Volume 8, Number 3, pp 519-531, 1997.

http://link.springer.de/

Bibliography 252

[138] AP Engelbrecht, IC Loete, “Feature Extraction from Feedforward Neural

Networks using Sensitivity Analysis”, International Conference on Advances

in Systems, Signals, Control and Computers, pp 221-225, 1998.

[139] AP Engelbrecht, I Cloete, JM Zurada, “Determining The Significance Of

Input Parameters Using Sensitivity Analysis”, International Workshop on

Artificial Neural Networks, Spain, Springer-Verlag, pp 382-388, 1995.

[140] S Waugh, A Adams, “Pruning within Cascade-Correlation”, Department of

Computer Science, University of Tasmania, Proceedings ICNN'95, IEEE

International Conference on Neural Networks, pp 1206-1210, 1995.

[141] F Castiglione, “Forecasting Price Increments Using an Artificial Neural

Network”, Advances in Complex Systems, Volume 4, Issue 1, pp 45-56

2001.

[142] Y Hirose, K Yamashita, S Hijiva. “Backpropagation algorithm which varies

the number of hidden units”, Neural Networks, Volume 4, pp 61-66, 1991.

[143] C Balkenius, “Generalization in Instrumental Learning”, Proceedings of the

4th International Conference on Simulation of Adaptive Behavior (SAB96),

pp 305-314, 9-13 September 1996.

[144] C Balkenius, J Moren, “Dynamics of a Classical Conditioning Model”,

ICANN’98, Perspectives in Neural Computing, Springer-Verlag, pp 41-56,

1998.

[145] CW Anderson, D Hittle, A Katz, R Kretchmar, “Synthesis of Reinforcement

Learning: Neural Networks, and PI Control Applied to a Simulated Heating

Coil”, Journal of Artificial Intelligence in Engineering, Volume 11, pp 423-

431, 1997.

[146] M Fenner, “The Nervous System, Pt IV Questions And Answers”, MAF

Newsletter, Volume 7, http://www.dinc.com/maf/1998/nl_05_07.htm, July

1998.

http://www.dinc.com/maf/1998/nl_05_07.htm

Bibliography 253

[147] D Haan, AW Young, F Newcombe, “Neuropsychological Impairment of

Face Recognition Units”, The Quarterly Journal of Experimental

Psychology, Volume 44A, Number 1, pp 141-175, 1992.

[148] AK Warzecha, M Egelhaaf, “Neuronal Encoding of Visual Motion in Real-

Time”, Motion Vision - Computational, Neural, and Ecological Constraints,

Springer Verlag, Berlin Heidelberg New York, pp 239-277, 2001.

[149] JM Zänker, J Zeil, “Motion Vision - Computational, Neural, and Ecological

Constraints”, Springer Verlag, Berlin Heidelberg (Textbook), New York

2001.

[150] N Kasabov, G Clarke, “A template-based implementation of connectionist

knowledge based systems for classification and learning”, Advances in

Neural Networks, Volume 3, Ablex Publishing Company, pp 137-156, 1995.

[151] N Kasabov, M Fedrizzi, “Fuzzy neural networks and evolving connectionist

systems for intelligent decision making”, Proceedings of the 8th International

Fuzzy Systems Association World Congress, Taiwan, pp 30-35, 17-20

August 1999.

[152] N Kasabov, “Decision support systems and expert systems”, published in

Handbook of brain study and neural networks, MIT Press, pp 21-26, 2002.

[153] TD Gedeon, “Data Mining Of Inputs: Analysing Magnitude And Functional

Measures”, International Journal of Neural Systems, Volume 8, pp 209-218,

1997.

[154] X Yao, “A new simulated annealing algorithm”, International Journal of

Computer Mathematics, Volume 56, pp 161-168, 1995.

[155] K Lagus, I Karanta, JY Jääski, “Paginating the generalized newspaper - a

comparison of simulated annealing and a heuristic method”, Parallel Problem

Solving from Nature (PPSN IV), pp 594-603, Springer Verlag, Berlin-

Heidelberg, 1996.

[156] RA Jacobs, “Methods for combining experts' probability assessments”,

Neural Computation, Volume 7, Number 5, pp 867-888, September 1995.

Bibliography 254

[157] K Kirchhoff, JA Bilmes, “Combination and joint training of acoustic

classifiers for speech recognition”, ISC A ITRW Workshop on Automatic

Speech Recognition - Challenges for the new millennium (ASRU2000),

pp 17-23, 2000.

[158] R Clemen, R Winkler, “Multiple Experts vs. Multiple Methods: Combining

Correlation Assessments”, Decision Analysis, November 1, 2002.

[159] M Su, M Basu, A Toure, “Multi-domain Gating Network for Classification

of Cancer Cells Using Gene Expression Data”, Proceedings of IJCNN 2002,

May 12-17, pp 286-289, 2002.

[160] Y Won, PD Gader, "Morphological Shared-Weight Neural Network for

Pattern Classification and Automatic Target Detection", University of

Missouri - Columbia, Proceedings ICNN'95, IEEE International Conference

on Neural Networks, pp 2134-2138, 1995.

[161] M Anthony, P Bartlett, Y Ishai, J Shawe-Taylor, “Valid generalisation from

approximate interpolation”, Combinatorics, Probability and Computing,

Volume 5, pp 191-214, 1996.

[162] R Mahonyt, J Mooret, L Dailey, “Locally Cl Interpolation of Functions on

an Arbitrary Simplex Mesh using a Simple Feed-forward Perceptron”,

Proceedings ICNN'95, IEEE International Conference on Neural Networks,

pp 1662-1667, 1995.

[163] D Ensley, DE Nelson, “Extrapolation of Mackey-Glass data using cascade

correlation”, Simulation, Volume 58, Number 5, pp 333-339, May 1992.

[164] M Kayama, T Okamoto, “A navigation system based on self organizing

feature map for exploratory learning in hyperspace”, Transactions of the

Institute of Electronics, Information and Communication Engineers,

pp 561-568, 2000.

[165] M Kayama, T Okamoto, “A semantic map approach to a navigation system

for exploratory learning in hyperspace”, IEEE International Conference on

Systems, Man, and Cybernetics (SMC'99), Volume 3, pp 839-844, 1999.

Bibliography 255

[166] DF Hougen, M Gini, J Slagle, “Partitioning Input Space for Reinforcement

Learning for Control”, Proceedings of the IEEE International Conference on

Neural Networks, pp 755-760, June 1997.

[167] D Kidner, M Dorey, D Smith, “What's the point? Interpolation and

extrapolation with a regular grid DEM”, Proceedings of the 4th International

Conference on GeoComputation, Mary Washington College Fredericksburg,

Virginia, USA, pp 940-1008, 25-28 July 1999.

[168] A Browne, “Representation and Extrapolation in Multilayer Perceptrons”,

Neural Computation, Volume 14, Number 7, pp 1739-1754, 2002.

[169] E Barnard, L Wessels, “Extrapolation and Interpolation in Neural Network

Classifiers”, IEEE Control Systems Magazine, pp 50-53, October 1992.

[170] MA García, “Efficient Surface Reconstruction from Scattered Points through

Geometric Data Fusion”, IEEE International Conference on Multisensor

Fusion and Integration for Intelligent Systems, Las Vegas, USA, pp 559-566,

1994.

[171] J Marti, C Bunn, “Automated path planning for simulation”, Proceedings of

the Conference on AI, Simulation and Planning, AIS94, pp 122-128, 1994.

[172] R Sharda, D Steiger, “Using Artificial Intelligence to Enhance Model

Analysis”, The Impact of Emerging Technologies on Computer Science and

Operations Research, Kluwer Academic Publishers, Norwell, MA, pp 263-

279,1995.

[173] A Bull, “Technical reserves in non-life insurance with particular reference to

motor insurance”, The Journal of the ASTIN and AFIR Section of the

International Actuarial Association Volume V, Part 2, pp 177-198, May

1969.

[174] A Halpert, S Weinstein, C Gonwa, “Evaluating reserves in a changing claims

environment”, CAS Forum Fall 2001, pp. 193-237, http://www.casact.org,

2001.

http://www.casact.org

Bibliography 256

[175] T Mack, “A Simple Parametric Model for Rating Automobile Insurance of

Estimating and IBNER Claims Reserves”, The Journal of the ASTIN and

AFIR Section of the International Actuarial Association, Volume 21,

Number 1, pp 93-109, April 1991.

[176] “Introductory Statistics with Applications in General Insurance”, London -

New York, Cambridge University Press, (Textbook) 1983.

[177] T Mack, “Which Stochastic Model is Underlying the Chain Ladder

Method?”, XXIV ASTIN, Volume 15, No 2/3, pp 133-138, Colloquium in

Cambridge 1993.

[178] BE Ollodart, “Loss Estimates Using S Curves: Environmental and Mass Tort

Liabilities”, Casualty Actuarial Society Forum, pp 111-132, Winter 1997.

[179] MB McRnight, “Reserving for Financial Guaranty Products”, Casualty

Actuarial Society Forum, pp 256-279, Fall 2001.

[180] RF Wiser, JE Cookley, A Gardner, “Loss Reserving”, Foundations of

Casualty Actuarial Science (4th Edition), Casualty Actuarial Society,

Chapter 5, pp 197-285, (Textbook) 2001.

[181] E Pinto, DF Gogol, “An Analysis of Excess Loss Development”,

Proceedings Casualty Actuarial Society, Volume 74, pp 227-255, 1987.

[182] T Apostol, “Introduction to Analytic Number Theory”, Undergraduate Texts

in Mathematics, Springer-Verlag, New York, (Textbook) 1976.

[183] F Pierson, “Using the whole triangle to estimate loss reserves”, CAS Forum

1994, http://www.casact.org, pp 11-44, 1994.

[184] DF Gogol “Using expected loss ratios in reserving”, CAS Forum, pp 241-

243, http://www.casact.org, Fall 1995.

[185] JP Evans, “Can Long Tailed Lines of Business Really Afford Higher Loss

Ratios?”, 2002 CAS Winter Forum, http://www.casact.org, Winter 2002.

[186] “UK Data Archive”, Internet data resource, http://www.data-archive.ac.uk.

http://www.casact.org
http://www.casact.org
http://www.casact.org
http://www.data-archive.ac.uk

Bibliography 257

[187] RJ Verrall, Z Li, “Negative incremental claims: Chain ladder and linear

models”, Journal of the Institute of Actuaries, Volume 120, Actuarial

Research Reports, pp 171-183, 1993.

[188] PD England, RJ Verrall, “Stochastic Claims Reserving in General

Insurance”, Presented to the Institute of Actuaries, pp 443-544, 28 January

2002.

[189] E De Alba, “Bayesian estimation of outstanding claim reserves”, 6th

International Congress on Insurance Mathematics and Economics hosted by

CEMAPRE, ISEG, Lisbon, 2002.

[190] DR Clark, “Basics of Reinsurance Pricing”, CAS Study Note and Tutorial,

http://www.casact.org, 1996.

[191] S Goonatilake, P Treleaven, “Intelligent Systems for Finance and Business”,

University College London, John Wiley Publishers (Textbook), December

1995.

[192] J Yao, CL Tan, “A Study on Training Criteria for Financial Time Series

Forecasting”, Proceedings of International Conference on Neural Information

Processing, Shanghai, China, pp 772-777, 14-18 November, 2001.

[193] J Yao, CL Tan, “Guidelines for Financial Forecasting with Neural

Networks”, Proceedings of International Conference on Neural Information

Processing, Shanghai, China, pp 757-761, 14-18 November, 2001.

[194] N Cristianini, J Shawe-Taylor, “An Introduction to Support Vector Machines

and other kernel-based learning methods”, Cambridge University Press,

(Textbook) 2000.

[195] D Grossman, T VanDeGrift, "Machine Learning Ensembles: An Empirical

Study and Novel Approach", CSE 573 - Artificial Intelligence Course,

University of Washington, Seattle, WA 98195, 2000.

[196] Z Zhi-Hua, W Jianxin,T Wei, "Ensembling neural networks: Many could be

better than all", Artificial Intelligence Volume 137, pp 239-263, 2002.

http://www.casact.org

Bibliography 258

[197] T S Rognvaldsson, "A Simple Method for Estimating the Weight Decay

Parameter", http://citeseer.nj.nec.com/67062.html, OGI Technical Report

CSE 96-003, 1996.

[198] A Krogh, J A Hertz “A simple weight decay can improve generalization”,

Advances in Neural Information Processing Systems, Volume 4, pp 950-957,

1992.

[199] J F Kolen, J B Pollack, "Back-Propagation Without Weight Transport", The

Proceedings of the IEEE World Congress on Computational Intelligence, 26

June - 2 July, pp 345-351, 1994.

[200] L Breiman, “Bagging predictors”, Machine Learning, Volume 24, pp 123-

MO, 1996.

[201] D Elizono, E Fiesler, "A Survey of Partially Connected Neural Networks",

International Journal of Neural Systems, Volume 8, pp 535-558, December

1997

[202] M Rychetsky, S Ortmann, M Glesner, "Pruning and Regularization

Techniques for Feed Forward Nets applied on a Real World Data Base",

Symposium on Neural Computation, NC’98 Proceedings, Vienna, Austria,

pp 824-829, 1998.

[203] L Orlandi, F Piazza, A Uncini, A Ascone, "Dynamic pruning in artificial

neural networks", IV Italian Workshop on Parallel Architectures and Neural

Networks, pp 199-208, May 1991.

[204] J Sietsma,R J F Dow, "Neural net pruning - why and how", IEEE

International Conference on Neural Networks, San Diego, Volume 1, pp

325-333, 1988.

[205] M Mozer, P Smolensky, "Skeletonization: A technique for trimming the fat

from a network via relevance assessment", Advances in Neural Information

Processing Systems 1, Volume 1, pp 107-115, 1989.

http://citeseer.nj.nec.com/67062.html

Bibliography 259

[206] D Plaut, S Nowlan, G E Hinton, “Experiments on learning by

backpropagation”, Technical Report CMU-CS-86-126, Carnegie Mellon

University, Pittsburg, PA, 1986.

[207] G E Hinton, “Connectionist learning procedures”, Artificial Intelligence,

Volume 40, pp 185-234, 1989.

[208] L Wu, J Moody, "A Smoothing Regularizer for Feedforward and Recurrent

Neural Networks", Neural Computation Volume 8, Number 3, pp 463-491,

1996.

[209] H C Rae,P Sollich, A CCCoolen, "On-line learning with restricted training

sets: An exactly solvable case", J.Phys.A Math.Gen.32 pp 3321-3339,1999.

[210] Y Le Cun, GE Hinton, “Improving the Convergence of Back Propagation

Learning with Second Order Methods”, Proceedings of the 1988

Connectionist Summer School, Los Angeles, pp 1608-1612, 1988.

[211] Y Chauvin, “Dynamic behavior of constrained back-propagation net-works”,

Advances in Neural Information Processing Systems (NIPS) 2, pp 642-649,

1990.

[212] Y Le Cun, J S Denker,S A Solla,. “Optimal Brain Damage”, NIPS 2, pp 598-

605, 1990.

[213] T Kavzoglu, C A Vieira, "An Analysis of Artificial Neural Network Pruning

Algorithms in Relation to Land Cover Classification Accuracy", Proceedings

of the Remote Sensing Society Student Conference, Oxford, UK, pp 53-58,

1998.

[214] B Hassibi, D G Stork, "Second Order Derivatives for Network Pruning:

Optimal Brain Surgeon", Advances in Neural Information Processing

Systems 5, pp 164-171, 1993.

[215] J Moody, "Economic Forecasting: Challenges and Neural Network

Solutions", Paper presented at the International Symposium on Artificial

Neural Networks, Hsinchu, Taiwan, December 1995.

Bibliography 260

[216] AP Engelbrecht,L Fletcher,I Cloete, "Variance Analysis of Sensitivity

Information for Pruning Multilayer Feedforward Neural Networks", IEEE

International Joint Conference on Neural Networks, Washington DC, USA,

paper 379, 1999.

