

City, University of London Institutional Repository

Citation: Christofi, S. (2003). Dynamic Application Integration Using Peer to Peer

Technology. (Unpublished Doctoral thesis, City, University of London)

This is the draft version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30888/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

City University
London

Dynamic Application Integration Using Peer to Peer
Technology

by

Stelios Christofi

Research Supervisor

Dr. Bill Karakostas

A thesis submitted to

THE CITY UNIVERSITY OF LONDON

for the degree of

DOCTOR OF PHILOSOPHY

School of Informatics
Centre for Human Computer Interaction Design

October 2003

1

Dynamic Application Integration Using Peer to Peer Technology

TABLE OF CONTENTS

Table of contents

Table of Figures

Acknowledgements

Declaration

Abstract

Principal abbreviations

CHAPTER 1 INTRODUCTION

1.1 Introduction

1.2 Problem Definition and Objectives

1.3 Technical Merits

1.4 Structure of the Thesis

1.5 Concluding Remarks

CHAPTER 2 LITERATURE SURVEY

2.1 Introduction - Dynamic application integration

2.2 The need for peer to peer architecture in application integration

2.3 Existing commercial integration systems
2.3.1 Metis Collaboration Platform V 5.0 (MCP)
2.3.2 WebV2 Peer Beans
2.3.3 Orbix E2A Web Services Integration Platform
2.3.4 Sun ONE Integration Server

2.4 Existing academic integration systems

2.5 Concluding Remarks

2

6

8

9

10

11

14

16

21

22

23

24

25

31
31
35
38
41

47

49

2

Dynamic Application Integration Using Peer to Peer Technology

CHAPTER 3 - REQUIREMENTS SPECIFICATION

3.1 Introduction 50

3.2 System Requirements 51

3.3 Survey of Methodologies 54
3.3.1 Peer-to-Peer Architecture 54
3.3.2 Web Services 56
3.3.3 Java Web Services 59
3.3.4 Web Services Description Language 61
3.3.5 Universal Description, Discovery and Integration 64

3.3.5.1 UDDI Schema 65
3.3.5.2 UDDI API 68

3.3.6 Simple Object Access Protocol 70
3.3.7 The XML language 73
3.3.8 XML Schema Languages 77

3.3.8.1 Document Type Definition 77
3.3.8.2 XML Schema Definition Language 78
3.3.8.3 Selecting the XML schema language 80

3.3.9 Extensible Stylesheet Language 81
3.3.10 XSL Transformations 83
3.3.11 JavaLanguage 84

3.4 Java Web Service Integrator 86

3.5 Overall Technical P2P Platform 92

3.6 Concluding Remarks 100

CHAPTER 4 - SYSTEM DESIGN AND ANALYSIS

4.1 Introduction 101

4.2 UML and Rational Rose 102
4.2.1 The Unified Modeling Language 102
4.2.2 Rational Rose 105
4.2.3 Elements and Notations 107

4.3 Use Case View 115
4.3.1 Use Case diagrams 115

4.3.1.1 Actors 116
4.3.1.2 Use Cases 119

4.3.2 Sequence diagrams 122
4.3.2.1 Server/Producer Sequence Diagram 122
4.3.2.2 Client/Consumer Sequence Diagram 123
4.3.2.3 Client/Consumer to Peer Sequence Diagram 124
4.3.2.4 Server/Producer to Peer Sequence Diagram 126

3

Dynamic Application Integration Using Peer to Peer Technology

4.3.3 Collaboration diagrams 127
4.3.3.1 Server/Producer Collaboration Diagram 127
4.3.3.2 Client/Consumer Collaboration Diagram 128
4.3.3.3 Client/Consumer to Peer Collaboration Diagram 129
4.3.3.4 Server/Producer to Peer Collaboration Diagram 130

4.4 Logical View 132
4.4.1 Class diagram 132

4.5 Concluding Remarks 134

CHAPTER 5 - IMPLEMENTATION

5.1 Introduction 135

5.2 Web Services Protocols 136
5.2.1 SOAP Implementation 136
5.2.2 UDDI Implementation 140

5.3 Prototype Execution 145
5.3.1 Server/Producer Execution 146
5.3.2 Client/Consumer Execution 152
5.3.3 Client/Consumer to Peer Execution 157
5.3.4 Server/Producer to Peer Execution 162

5.4 Implementation Software 164
5.4.1 JBuilder V9.0 164
5.4.2 Borland JDataStore V6.0 166

5.5 Implementation Models 169
5.5.1 Component Diagram 169
5.5.2 Deployment Diagram 171

5.6 Concluding Remarks 172

CHAPTER 6 - EVALUATION AND TESTING

6.1 Introduction 173

6.2 Evaluation 174
6.2.1 What is Evaluation? 174
6.2.2 Benefits of the System 175
6.2.3 Analysis of Evaluation 179

4

Dynamic Application Integration Using Peer to Peer Technology

6.3 Testing 180
6.3.1 Software Testing 180
6.3.2 Software Verification 180
6.3.3 Validation testing 182
6.3.4 Server/Producer Testing 183
6.3.5 Client/Consumer Testing 188
6.3.6 Simulation Testing 193
6.3.7 Additional Testing 194

6.4 Concluding Remarks 196

CHAPTER 7 - CONCLUSIONS AND FURTHER WORK

7.1 Thesis Summary 197

7.2 Research Contributions 197

7.3 Recommendations and further work 201

Appendix A Java Classes 204

Appendix B Data Gathering 226

References 238

5

Dynamic Application Integration Using Peer to Peer Technology

TABLE OF FIGURES

Figure 1.1 The traditional hub-and-spoke architecture for EAI 16
Figure 1.2 A general Peer-to-Peer Architecture 18

Figure 2.1 Napster and Gnutella approaches 29
Figure 2.2 The WebV2 Peer-to-Peer Architecture 35
Figure 2.3 The Sun ONE Integration Server Architecture 43

Figure 3.1 The traditional hub-and-spoke architecture for EAI 54
Figure 3.2 A general Peer-to-Peer Architecture 55
Figure 3.3 Java Web Service Architecture 60
Figure 3.4 A client invoking a Web Service 61
Figure 3.5 WSDL terminology describing Web Services 62
Figure 3.6 An example of WSDL technology 62
Figure 3.7 Live types o f XML data structures that comprise the UDDI schema 65
Figure 3.8 Part Business Entity Structure for UDDI Schema 66
Figure 3.9 Part Business Service Structure for UDDI Schema 67
Figure 3.10 Part Binding Template Structure for UDDI Schema - Part 1 68
Figure 3.11 Part Binding Template Structure for UDDI Schema — Part 2 69
Figure 3.12 Part structure o f an Inquiry APIfor UDDI API 69
Figure 3.13 An example o f a SOAP Message 71
Figure 3.14 An example o f the body o f a SOAP Response 72
Figure 3.15 An example o f an XML Document 74
Figure 3.16 An example o f XML Document Logical Structure 74
Figure 3.17 An example o f a Document Type Definition 78
Figure 3.18 An example of an XSD File 79
Figure 3.19 Applying XSL on an XML File 82
Figure 3.20 An example o f an XSLT Document 83
Figure 3.21 The Java Web Service integrator 86
Figure 3.22 An Overall Architecture o f the Platform 92

Figure 4.1 Use Case View in the Rational Rose Browser 105
Figure 4.2 Logical View in the Rational Rose Browser 106
Figure 4.3 Component View in the Rational Rose Browser 106
Figure 4.4 Deployment View in the Rational Rose Browser 107
Figure 4.5 UML notation for a Use Case 108
Figure 4.6 UML notation for an Actor 109
Figure 4.7 UML notation for Use Case Relationships 110
Figure 4.8 UML notation for Sequence Diagrams 111
Figure 4.9 UML notation for Collaboration Diagrams 111
Figure 4.10 UML notation for Component Diagrams 112
Figure 4.11 UML notation for Deployment Diagrams 113
Figure 4.12 UML notation for Class Diagrams 114
Figure 4.13 Overall Use Case Diagram o f the system 121
Figure 4.14 The Server/Producer Sequence Diagram 122
Figure 4.15 The Client/Consumer Sequence Diagram 123
Figure 4.16 The Client/Consumer to Peer Sequence Diagram 125

6

Dynamic Application Integration Using Peer to Peer Technology

Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22

The Server/Producer to Peer Sequence Diagram
The Server/Producer Collaboration Diagram
The Client/Consumer Collaboration Diagram
The Client/Consumer to Peer Collaboration Diagram
The Server/Producer to Peer Collaboration Diagram
Overall Class Diagram o f the System

126
127
128
129
131
132

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20
Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24

An Example o f a SOAP Connection in Java
An Example o f a SOAP Request using the JAXM API
An Example o f a SOAP Response using the JAXM API
An Example o f the contents o f a SOAP Request in Java
The JAXR(Java API for XML Registries) Architecture
An Example o f a adding an Organisation to the UDDI Registry
An Example o f a adding a Web Service to the UDDI Registry
An Example o f a Web Service discovery on the UDDI Registry
The Java Web Service Integrator login screen - Server site
Main window o f the Java Web Service Integrator - Server site
Configuration o f Organisation details o f the Server JWSI
Create Java Web Service Wizard o f the JWSI
XML specification o f the Java Web Service
Exit window o f the Java Web Service Integrator
The Java Web Service Integrator login screen - Client site
Main window o f the Java Web Service Integrator - Client site
Configuration o f Client Application Wizard o f the JWSI
XML specification o f the Configuration File
Newly found service window in JWSI
XML Mapper Tool in JWSI
Interface o f the Borland JBuilder V8.0
Interface o f the Borland JDataStore V6.0
Component diagram o f the system
Deployment diagram o f the system

137
138
139
139
141
143
143
144
146
147
148
150
151
151
152
153
154
155
157
158
165
168
170
171

Figure 6.1 Estimated graphical comparison regarding cost o f Integration
between existing Integration systems and the proposed Integration
system 178

Figure 6.2 Error message returned by login screen o f the Java Server Peer 184
Figure 6.3 Error message returned by the Create Java Web Service Wizard 185
Figure 6.4 Testing the XML specification o f the Java Web Service 186
Figure 6.5 Testing the publishing o f the Java Web Service 187
Figure 6.6 Invalid username returned by the Java Peer Client 189
Figure 6.7 'resting the Configuration o f Client Application Wizard 190
Figure 6.8 Testing the XML specification o f the Configuration File 191
Figure 6.9 Error message - XML mapping Tool 192
Figure 6.10 Events under the JDataStore Server Tool 195

7

Dynamic Application Integration Using Peer to Peer Technology

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation to my project supervisor Dr.

Bill Karakostas for his valuable help, suggestions, time, technical guidance, continuing

motivation and support throughout the project period.

The support of the Overseas Research Students Awards Scheme, which partially pay the

university fees, are gratefully acknowledged. I would like to thank all colleagues in

INLECOM Systems Ltd for their help and support. In particular, I would like to thank

the director of INLECOM Systems, Dr. Takis Katsoulakos for his help, advice and

financial support, as well as Mrs. Anna Katsoulakos for her valuable suggestions.

I owe my parents, Titos and Chrystalla Christofi, the greatest thanks for their continuous

encouragement, generous financial support and love they have given me throughout my

studies at City University. Thanks are also expressed to my brothers, Fanos and Louis

for their help and suggestions for this Thesis report.

Last but not least I would like to express my greatest thanks to my girlfriend Agathi

Lambrou for her continuous support throughout the duration of my Thesis.

8

Dynamic Application Integration Using Peer to Peer Technology

DECLARATION

No portion of the work referred in this Thesis has been submitted in support of an

application for another degree or qualification at this university or other institution of

learning.

I grant powers of discretion to the University Librarian to allow this Thesis to be copied

in whole or in part without further reference to me. This permission covers only single

copies made for study purposes, subject to normal conditions of acknowledgement.

9

Dynamic Application Integration Using Peer to Peer Technology

ABSTRACT

Today's business imperatives are clearer than ever. Businesses are trying to beat
competitors by introducing new products to the market, deliver personalised services,
increase customer loyalty and evolve at electronic speeds. These imperatives demand a
technology infrastructure that is more flexible, more dynamic and more intelligent than
ever. Java Web services based on Universal Description, Discovery and Integration
(UDDI) are an evolution in e-business applications that will help businesses reach these
goals and take Business-to-Business (B2B) to the next level.

In the last couple of years, the concept of a Web Service (WS) has emerged as an
important paradigm for general application integration in the internet environment.
More particularly, WS is viewed as an important vehicle for the creation of dynamic e-
business applications and as a means for the Java 2 Enterprise Edition (J2EE) and
Microsoft .NET platforms to come together. This will be achieved through
WS standards and several companies have been collaborating in such standardisation
activities.

This Thesis describes research aiming to allow the dynamic integration of different
software applications and information sources, including legacy systems, using the
latest state of the art Internet technology called “Peer-to-Peer (P2P)”. The term
“dynamic” is used in order to indicate that different software applications, in different
geographical locations, that need to be integrated are able to establish a communication
link and interchange data without manual intervention or without any intermediate
integration server. To achieve this goal, several technologies have been combined,
including Java Web Services and the Extensible Stylesheet Language (XML), in order
to design, develop and implement an innovative architecture that will satisfy such
requirements. Amongst others, the main programming language used is the widely
accepted Java language, which acts catalytically in the creation of the system
architecture described in this Thesis.

10

Dynamic Application Integration Using Peer to Peer Technology

PRINCIPAL ABBREVIATIONS

A2A Application to Application

AOL America Online

ART Adaptive Runtime Technology

API Application Programmers Interface

ASI Application Service Interface

B2B Business to Business

BPML Business Process Modeling Language

COM Component Object Model

CORBA Common Object Request Broker Architecture

CRM Customer Relationship Management

CSV Comma Separated Values

DCOM Distributed Component Object Model

DNS Domain Name Service

DTD Document Type Definition

E2A End 2Anywhere

EAI Enterprise Application Integration

EBNF Extended Backus Naur Form

EDI Electronic Data Interchange

EJB Enterprise Java Beans

ERP Enterprise Resource Planning

FSM File Storage Manager

FTP File Transfer Protocol

GISP Global Information Sharing Protocol

GSM Global System for Mobile Communication

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

HTTPS Hyper Text Transfer Protocol Secure

IP Internet Protocol

IT Information Technology

l l

Dynamic Application Integration Using Peer to Peer Technology

J2EE Java 2 Enterprise Edition

J2ME Java 2 Micro Edition

JAXM Java API for XML Messaging

JAXR Java API for XML Registries

JAX-RPC Java API for XML-based Remote Procedure Call

JDBC Java Database Connectivity

JMS Java Message Service

JVM Java Virtual Machine

JWS Java Web Service

JWSDP Java Web Services Developer Pack

JWSI Java Web Service Integrator

JWSIMT Java Web Service Integrator XML Mapper Tool

LDAP Lightweight Directory Access Protocol

MQ Message Queues

MQSeries Message Queues Series

MSMQ Microsoft Message Queues

NAICS North American Industry Classification System

NASSL Network Accessible Service Specification Language

OASIS Organisation for the Advancement of Structured Information Standards

ODBC Open Database Connectivity

P2P Peer to Peer

RDBMS Relational Database Management System

RMI Remote Method Invocation

ROI Return On Investment

RPC Remote Procedure Call

SDK Software Development Kit

SGML Standard Generalized Mark-up Language

SME Small and Medium Enterprise

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

TCP/IP Transmission Control Protocol/Intemet Protocol

UDDI Universal Description, Discovery and Integration

12

Dynamic Application Integration Using Peer to Peer Technology

UML Unified Modelling Language

UN/CEFACT United Nations Centre for the Facilitation of Procedures and Practices in

Administration, Commerce and Transport

URL Uniform Resource Locator

UUID Universal Unique Identifier

VPN Virtual Private Network

W3C World Wide Web Consortium

WS Web Service

WSDL Web Services Description Language

WYSIWYG What You See Is What You Get

XML Extensible Mark-up Language

XSD XML Schema Definition Language

XSL Extensible Stylesheet Language

XSLT Extensible Stylesheet Language Transformations

13

Dynamic Application Integration Using Peer to Peer Technology Chapter 1

Chapter 1

INTRODUCTION

1.1 INTRODUCTION

Recent technology advances have enabled Business-to-Business (B2B) integration:

linking a business tightly with those valued networks partners, to provide a quantum

leap in competitiveness [15, 16, 66], B2B integration presents an enormous opportunity

for companies to create a coordinated community of partners that collaborate in a

variety of areas, from planning to distribution to customer service.

Coordination of business processes, both internally as well as between the organisation

and its trading partners can be problematic if the processes are not supported by

adequate, relevant and timely information.

As the business processes in general rely for support on information generated by

software applications, the adequacy of such applications comes under scrutiny.

Applications are expected to be able to interoperate in order to exchange mutually

understood data in a timely manner. Interoperability is a broad term with scope that

ranges from application interfacing to full application integration. Naturally, the costs

of achieving application interoperation escalate as one moves from simple interfacing to

complete integration.

14

Dynamic Application Integration Using Peer to Peer Technology Chapter I

The problems of application integration (or the lack of it) due to applications that do not

inter-operate are faced by all industries. Application integration has grown to a multi-

billion dollar industry but has yet to arrive at truly universal solutions. Application

integration is still a highly customised, ad-hoc and costly process.

Optimising and automating business processes within and across enterprises will

continue to drive enterprise Information Technology (IT) initiatives for the foreseeable

future. Application integration is essential to the automation of business processes.

Enterprises need to improve process integration with their business partners, customers,

and suppliers. Existing enterprise application integration (EAI) solutions are highly

proprietary and centralised, and do not fully meet the needs of B2B and Web Services

integration. Customers demand lower costs, standards-based and lightweight integration

approaches that are capable of complete process integration between businesses.

The topic of this thesis is concerned with defining an innovative approach and providing

the technology required to support Dynamic Application Integration using the latest

state of the art peer-to-peer (P2P) technology. For the thesis it has been decided to use

as a case study, the shipping sector, because the author has experience in designing and

developing applications related to the shipping industry. This does not mean that the

architecture that will be discussed in this thesis will not be applicable for other sectors

but on the contrary, the architecture has been designed in such a way so that it can be

universally applied to any industrial sector.

15

Dynamic Application Integration Using Peer to Peer Technology Chapter 1

1.2 PROBLEM DEFINITION AND OBJECTIVES

The goal of application integration, whether it is within or beyond the enterprise, is to

allow disparate enterprise systems to interact automatically with each other in order to

more effectively optimise business processes. These systems are often provided by

different vendors and have no pre-established way of communicating or exchanging

data.

It is up to application integrators to provide mechanisms to facilitate the coordination of

applications and a number of solutions are available in the market for this purpose.

The vast majority of the solutions for application integration used today are based on a

“hub-and-spoke” architecture, as illustrated in figure 1.1. A central hub manages all

message exchange between the applications. As such, the hub is responsible for:

□ Message Routing: Receiving and forwarding all messages

□ Message Transformation: Translating message formats

□ System Management: Establishing secure connections, authentication,

transaction handling, monitoring, and logging.

□ Coordination of the Business Process: Directing which applications

should do what tasks and when.

Figure 1.1 The traditional hub-and-spoke architecture for EAI

16

Dynamic Application Integration Using Peer io Peer Technology Chapter 1

However, a number of problems are associated with the hub-and-spoke architecture,

some of which are as follows:

□ Expensive to deploy: A large monolithic server is expensive to develop

and to deploy. Interfaces must be agreed upon beforehand and changes are

difficult to incorporate.

□ Overkill for simple processes: Most business-to-business interactions

require only simple business processes, for example notification of

purchase order status, dealing with electronic change orders, etc. Such

simple processes call for lightweight and flexible solutions.

□ Expensive to scale and build reliability: The hub must accomplish many

processing and communication tasks. Typical message brokers can only

handle 10 to 100 messages a second. The hub presents a major bottleneck;

scalability and reliability issues quickly arise. Current systems attempt to

avoid these issues by using increasingly sophisticated software and

hardware, but this only alleviates the symptoms as opposed to curing the

problem. Merely linking hubs together also does not help, as ultimately

message traffic must then flow through all the hubs, slowing them down

even further.

□ Hard to manage changes: With the centralised business logic engine

ultimately being tailored for those applications that are integrated, it is

hard to manage changes in the system, for example, adding new

applications or detaching and reattaching existing applications. Updating

the business logic to new circumstances is a difficult task. As such, hub-

and-spoke based solutions quickly become legacy systems in their own

right. An enterprise is quickly plagued with many of these “islands” of

integration. Once the interfaces are established, it is hard to change them to

accommodate new data formats. It is hard to incorporate new business

processes on the fly.

□ Lack of autonomy: Individual participants do not preserve control over

their participation in the business process and cannot incorporate their own

business processes. This is especially important in B2B scenarios.

□ Resistance to proprietary deployments: The deployed solutions require

the use of proprietary networks, interfaces, and implementations.

Therefore all participants are required to deploy the same software. Many

17

Dynamic Application Integration Using Peer to Peer Technology Chapter 1

participants do not wish to be dictated to, as to which software to deploy.

This is especially important in B2B scenarios, where participants may be

participating in different networks.

To avoid the problems and limitations of the “hub-and-spoke” architecture, this thesis

has concentrated in proving a dynamic application integration architecture using the

latest and currently most advanced technology of EAI, the P2P architecture

[3,38,39,49,75,76,88,91,132]. This is similar to the message broker architecture,

described above, but with one main difference. There is no central integration server.

Instead, the message translation, routing, splitting, and combining occur at the source

and target systems within little message brokers known as agents or peers, as shown in

figure 1.2.

Figure 1.2 A general Peer-to-Peer Architecture

The agents consume information from the single system they are connected to, process

that information and send it directly to any target system(s) interested in receiving that

information or message. The result is a virtual “hub-and-spoke” type architecture,

where the description of each service is located on a central location called UDDI.

The main advantages of a Peer-to-Peer architecture are [97, 98, 111, 113]:

18

Dynamic Application Integration Using Peer to Peer Technology Chapter 1

□ A P2P application s capable of locating other peers in the network.

□ Once an application is able to locate other peers, it is capable of communicating

with them using messages.

□ Once the communication is established with other peers, the application is able

to receive and provide information, such as content.

The objective of this thesis is to design, develop and implement an innovative Peer-to -

Peer architecture that will be used for dynamic application integration in order to solve

the problems stated above. This architecture will be based on the widely accepted Java

language and the Web Services technology. Using this architecture, enterprises will be

able to integrate their applications effortlessly thus avoiding manual intervention during

the integration process.

The following section describes a typical problem that shipping companies are facing

today during the processes of designing and constructing a ship.

A hypothetical ship designer wishes to test his company’s passenger evacuation

software using different ship designs, generated by various ship design tools or different

ship hull forms from different companies in order to generate some evacuation statistics

to measure the performance of the software. Nowadays, to achieve this requirement, the

company has to either purchase a license for each and every ship software needed, test it

locally or physically transfer the software to another company to be tested with existing

hull forms tools. Both the above approaches require a considerable amount of effort,

time and money since the transfer of software, especially for the shipping sector, cannot

be accomplished using the latest electronic means for many reasons. The available

electronic means may be:

□ Electronic mail (e-mail) using the Simple Mail Transfer Protocol (SMTP)

□ File Transfer Protocol (FTP)

□ Hyper Text Transfer Protocol (HTTP)

The above electronic means are not so efficient. This is mainly because the software

used for the shipping sector is very specialised and can cost a great amount of money

19

Dynamic Application Integration Using Peer to Peer Technology Chapter 1

even for a single license. Buying the license for the purpose of evaluating an evacuation

program is not worth while and even transferring the software from one vendor to

another using the above electronic means is not a practical solution. In this thesis the

attempt to solve this problem is presented by proposing a different and innovative

approach. A dynamic application integration methodology can be used in order to avoid

the problems mentioned above. The dynamic application integration will be achieved

using the Peer-to-Peer technology, which is the latest technology in the modem Internet

environment.

During the lifecycle of the design of the ship, a ship designer (the client), wishes to test

his company’s passenger evacuation software using ship designs from other companies,

in order to generate some evacuation statistics to measure the performance of the

software. The above software requires a hull generator tool. This tool creates basic hull

designs for ships in order for other software to get these hulls and tests them prior to

designing the final hull form of a ship. In order to accomplish this task, he/she

configures the client (Java Web Service Integrator) JWSI based on the input and output

information of the above passenger evacuation software. The JWSI is software that will

be developed for this thesis. This software will be installed on the client and server sites

in order to perform the P2P integration. Then the JWSI contacts the appropriate UDDI

to discover existing Java Web Services that offer this kind of service. When a Web

Service is found that closely matches the criteria of the client software, the client JWSI

and the server JWSI establish between each other a Peer-to-Peer connection for the

purpose of integrating the two software applications. The whole integration is done

dynamically without the intervention of the client or the server user. Once the hull

design is downloaded to the client site, the passenger evacuation software runs in order

to generate the appropriate evacuation statistics. By completing the above, the two

software applications are integrated without the physical transfer of the whole software

and the installation on the local client, but rather the transfer of only the integrated data.

The system is developed in such a way, so that any two applications requesting to be

integrated together do not need to know about each other. This ensures that systems on

any location can be deployed independently and still interoperate, as long as they

comply to certain interchange standards that are specified in Chapter 3.

20

Dynamic Application Integration Using Peer to Peer Technology Chapter 1

1.3 TECHNICAL MERITS

The difficulty of the thesis lies with the design and implementation of an advanced peer-

to-peer architecture for the purpose of achieving dynamic application integration. A

Peer-to-Peer enabled application should be capable of locating other peers in the

network. Once an application is able to locate other peers, it should be able to

communicate with them using messages or data.

Also, the creation and discovering of Java Web Services, which comply with the Simple

Object Access Protocol (SOAP) and the Web Services Description Language (WSDL)

specification, on universally accepted registries like the Universal Description,

Discovery and Integration (UDDI) was another difficulty during the design and

development of this platform. This is extremely important because in order for a P2P

system to function properly it requires a global registry where all the Java Web Services

will be registered and hence to be discovered dynamically by Java peers.

The actual integration between the various applications, especially to legacy

applications that do not provide any open Application Programmers Interface (API)

creates another challenging area for establishing a technical solution. In addition, the

use of some verification algorithms was required to ensure the integrity, confidentiality

and accuracy of the data sent by the two integrated applications.

Last but not least, the difficulty of this thesis extends to the use of a mechanism for

negotiating the communication and security protocol during the actual integration

process. This is extremely important since the bandwidth all over the world is expensive

and selecting the appropriate communication protocol is of great importance in order to

minimize integration costs for a business.

21

Dynamic Application Integration Using Peer to Peer Technology Chapter I

1.4 STRUCTURE OF THE THESIS

The rest of the thesis is structured in six chapters

Chapter 2: The second chapter of the thesis discusses the need for a Peer to Peer

architecture in application integration and what are the advantages over

other technologies. It continues by providing a literature survey of some

existing integration systems in the market followed by a comparison

between them and in relation to the proposed integration server.

Chapter 3: This chapter demonstrates the detailed requirements specification of the

system. It begins by providing a description of the system requirements

followed by a detailed survey of methodologies, highlighting the basic

features of each methodology and giving reasons why they have been

selected to satisfy the requirements set above. It continues by presenting

a detailed description of the latest techniques used in this thesis. Finally,

a more detailed description of the overall architecture of the integration

platform is presented explaining how the selected methodologies can be

integrated to achieve the goals of the proposed architecture.

Chapter 4: This chapter covers the design activities for the prototype system. It

explains the procedure that has been followed for the design of this

system and the output diagrams created. The models that were produced

are then shown along with a detailed description. The Unified Modelling

Language (UML) and Rational Rose software are also presented.

Chapter 5: This chapter presents the implementation of the prototype application.

This is achieved by proving a prototype execution demonstration

followed by a detailed description of how the implementation part has

actually been achieved.

Chapter 6: This chapter covers the evaluation of the final implementation. This is

organised as a general discussion of the evaluation techniques used for

this system, followed by some testing of the results using advanced

testing tools.

Chapter 7: The final chapter summarises the work that has been done and presented

in this thesis. The conclusions drawn from the implementation are also

discussed. Finally, suggestions for further work are also indicated.

22

Dynamic Application Integration Using Peer to Peer Technology Chapter 1

1.5 CONCLUDING REMARKS

The introductory chapter provides essential information about the rest of the thesis. A

definition of the problem that the thesis addresses is introduced first, along with some

initial objectives derived from the identification of the problem. Following the

description of what the thesis deals with, this chapter presented the technologies used to

confront this problem. It ends with a layout of the thesis structure.

23

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

Chapter 2

LITERATURE SURVEY

2.1 INTRODUCTION - DYNAMIC APPLICATION INTEGRATION

Application integration is the process of bringing data or a function from one

application program together with that of another application program [6, 19, 36, 130,

142],

Dynamic application integration is the integration of applications in a “dynamic”

business environment [106,127], A dynamic business environment is one that changes

at any time without informing the participants about the changes. An application

participating in that environment must in a way inform the other applications, which are

part of that environment, about the changes. Dynamic application integration in the

context of this Thesis means that any application may be integrated and hence

interchange data with another application on the Network or Internet dynamically,

without prior knowledge of the underlying infrastructure or data structure of the other

application. This is accomplished with the help of a Java Web Service Integrator

(JWSI), which generates java web services on the fly (dynamically), while the potential

applications to be integrated are running. These Java web services are published on a

registry, called Universal Description, Discovery and Integration (UDDI) in order to be

dynamically discovered by other applications on the Internet for the purpose of

interchanging information [55, 56, 77, 134, 135], A UDDI is an XML registry

infrastructure that enables the building, deployment, and discovery of Web services. It

24

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

is a neutral third party that facilitates dynamic and loosely coupled business-to-business

(B2B) interactions. A registry is available to organisations as a shared resource, often in

the form of a Web-based service.

The more common usage of "dynamic discovery" is to describe systems, in which

clients search through registries to first discover and then invoke services supporting the

capabilities they require. Such systems are described as dynamic because the clients

supposedly have no prior knowledge of the services they are searching for. The client

finds a service based on some criteria, and then interacts with the service based on

communication instructions that it finds as part of the service characteristics stored in

the registry.

Since integration is probably one of the most important factors that determines the

success or failure of a business, many software companies have tried and are still trying

to implement efficient B2B solutions that take into consideration dynamic integration

issues, as mentioned above. Few of them have actually succeeded in doing so [22, 23,

24, 48, 64, 71, 82, 85, 86, 87]. What is more important, is the fact that none of the above

have ever succeeded in developing such a dynamic integration solution addressing

essential issues like the dynamic re-configuration of java web services on the fly. This

Thesis addresses these issues concentrating on the dynamic modification of published

web services without the manual intervention of the user.

2.2 THE NEED FOR PEER-TO-PEER ARCHITECURE IN APPLICATION

INTEGRATION.

A number of integration efforts in most companies today are being driven by the need to

automate business processes, both within and across enterprises [7, 16, 120], This is

very important since business partners can gain greater operational efficiencies through

supply chain integration.

Some enterprises are even building their own custom integration servers to solve

sourcing problems and are looking for applications to provide real-time views of work

in progress and inventories. In addition, the demand for businesses to integrate disparate

25

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

components of automation through cross-enterprise application integration has never

been as high or as crucial to keep on competitive advantage.

Because this demand for integration is rising and system integrators are being pressured

increasingly to deploy solutions faster and more cost-efficiently, current integration

tools have not evolved to meet their needs.

Unfortunately, centralised “hub-and-spoke” architectures that grew out of intra-

enterprise application integration are ill suited to meet the demands of what is

fundamentally a distributed problem [16]. A “hub” architecture is a messaging server

that exchanges important information between different applications so that the

applications can interact in a meaningful way. Centralised architectures applied to

decentralised business relationships result in a loss of efficiency and increased costs for

companies since the initial design of these centralised architectures do take into

consideration the different aspects of decentralised architectures. Web services promise

a potential solution, but the standards and solutions being developed do not provide the

necessary process integration capabilities [5, 18, 33, 42, 43, 63, 90],

The answer to this problem is a viable, fully distributed, network-based integration

architecture, known as peer-to-peer or P2P which can help meet these new cross-

enterprise challenges [68, 81, 118].

The P2P technology, like many other emerging technologies, needs to interoperate with

other platforms in order to become well-established in today’s business environment.

There may not yet be a specific law of physics about this, but it seems that for every $1

spent on an application, at least $3 more (and maybe as much as $10 more) needs to be

spent on integrating that application with other applications and systems [32]. That is

why it is extremely important to implement a robust P2P architecture for application

integration, being at the same time widely accepted.

The essential element of any distributed system is to enable the participants to maintain

autonomy and control. This greatly simplifies development and ongoing change

management, resulting in dramatically lower implementation costs, deployment time

and the ongoing cost of maintaining the network. A major disadvantage in the

26

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

centralised “hub-and-spoke” model is that it requires a top-down development

methodology for what has always been a bottom-up problem [16,120].

The cross-enterprise integration problem can be defined as "bottom-up" because

applications that are to be integrated across a distributed network are already pre-

existing software in their own right. To operate at maximum profitability, application

owners need to keep specific control over their applications and the way in which they

are accessed [120]. That is to be able to change or replace an application without

impacting the entire integration solution is important to the stability and effectiveness of

the network.

Finally, application owners must be able to be involved in a number of different systems

across the Internet, simultaneously. To be precise, they need the ability to offer their

services to separate businesses without having to purchase additional software systems

for communicating with them [120].

Current integration solutions can be defined as "top-down" because they use software

engineering techniques that look at an entire system as a single program distributed

across several nodes, as opposed to individual pre-existing applications with individual

needs for autonomy, security, etc. This requires specifying and implementing all

components of the system and their interactions in a predefined or “hard-coded”

method.

In general, message brokering, transformation and the business processes are controlled

through a single hub that acts as a client to all involved applications. Changes to the API

and other interfaces of the applications, as well as the addition of new applications,

require modifying and updating the hub or centralised business process engine [120],

Even if a standard client interface is used on the hub side, the owner of the hub, not the

application, has complete control over the business process.

Additionally, the current messaging constructs are based on the client-server

methodology of request/reply. This requires both sided communication, whether

synchronous or asynchronous, between any two nodes on the network. As

communication cannot flow directly between network participants but, rather, must pass

through the original request initiator, information that needs to be sent to a third party,

27

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

the system becomes extremely inefficient. Publish/subscribe messaging may be great

for information or data dissemination, but it is highly impractical for obtaining

responses to specific queries [120],

Finally, the resulting system itself becomes a legacy system because the code written for

a specific business process can quickly discarded, as the dynamic nature of business and

Internet requires immediate transitions in process.

On the other hand, the need for a viable, fully distributed, network-based integration

architecture that can meet new cross-enterprise challenges, supports the notion that a

new peer-to-peer approach will better serve the technology requirements of competitive

businesses. A peer-to-peer architecture, developed with a software engineering

methodology that emphasises the variables of security, control, dynamic accessibility

and flexibility, will deliver significant time and cost savings. The use of the bottom-up

approach in software development will deliver power to the individual nodes on the

network rather than leaving it locked with one central node, just like the centralised

client/server methodology [32, 68, 81, 100, 118, 121, 144],

Napster and Gnutella are two of the most popular and early to market P2P applications

were, however, built from scratch. They have followed different approaches to sharing

information [32, 81] (see figure 2.1):

□ Napster uses a central server directory to communicate the location of music

servers in a P2P network. Napster has a centralised index where the

scalability can be limited by the machine power and the network bandwidth

of the central point. There is a way to have multiple index servers which are

all identical, but it would only scale if the machine power were big enough

and there were much less frequent insert messages than query messages [93],

□ Gnutella, which began as an underground product in an AOL (America

Online) acquired company, avoids a central server but is relying instead on

the point to point communication amongst peers in a network. Gnutella is a

fully decentralised system and have no single point of failure. However, its

messaging mechanisms are based on application-level broadcasting, which is

likely to limit scalability [44],

28

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

NAPSTER GNUTELLA
(peer to peer with central directory) (peer to peer without central directory)

Figure 2.1 Napster and Gnutella approaches

To manage change and to provide for essential network functions that may be

independent from the actual applications, such as security, organisations should move to

a peer-to-peer architecture to enable automated provisioning, location, preparation and

execution of services across a network [15, 32, 49, 132]. Rather than trying to solve

problems, such as scalability and reliability, that are often associated with standard

messaging technologies by creating more sophisticated and elaborate Enterprise

Application Integration (EAI) projects, businesses should move to a fully distributed

framework [143].

Such a framework would allow each application to automatically discover other

applications via Web Services and to coordinate the business process from application

to application (A2A) or peer to peer. By replacing the centralised “huh-and-spoke”

architecture with software components associated with the individual applications that

need to be integrated, businesses can construct systems that will deliver a high level of

fault tolerance and scalability, require little maintenance, adapt to rapid change and be

cost-efficient to deploy [16, 120],

The current goal of most application integration projects is to allow disparate enterprise

systems to interact automatically with one another in order to optimise business

processes. However, the centralised “huh-and-spoke” architectures that grew out of

intra-enterprise application integration will not answer the existing demand for

businesses to integrate disparate systems through cross-enterprise application

29

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

integration [16]. A more effective and less costly approach to integration is the use of

distributed, network-based peer-to-peer integration architectures.

While it will be a challenge to migrate from today's traditional approach to enterprise

integration and development, companies that wish to achieve full integration with

partners and customers, or hope to refine their internal business processes, must accept

and meet this challenge.

In this Thesis, a novel peer-to-peer integration architecture is proposed, from which any

application may be integrated with another application in order to share data,

information and knowledge, as well as to solve typical problems that shipping

companies may be facing today during the processes of designing and constructing a

ship. This integration platform will be designed in such a way so that it can be

universally applied to other sectors, not just to the shipping industry. The benefits of

designing and implementing such a platform are enormous, since dynamic application

integration is easily achieved without having to spend time and money to develop

specific software code.

This will be achieved by providing to the application users some easy-to-use guidelines

on how to integrate their applications to the integration platform. These guidelines,

which will be in a form of a wizard, will create a Java web service that will wrap their

applications in order to communicate with the platform. This Java web service will then

be dynamically published on the UDDI. A second application user that has already

created a wrapper for his/her application may need to share some information with other

applications in this dynamic platform. The wrapper will be in a position to dynamically

discover the already published Java web service and download it in order to initiate a

direct peer-to-peer communication between the two applications that need to share some

information. After the communication is established, the two applications will exchange

all necessary information. By this way, the two applications are integrated seamlessly,

without manually intervention from both users.

The sections that follow describe in detail some existing systems in the market and

educational research with respect to application integration and how they differ from the

approach proposed in this Thesis.

30

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

2.3 EXISTING COMMERCIAL INTEGRATION SYSTEMS

A large quantity of B2B protocols and proposals are available in today’s market

[15,16,105], Some of the existing protocols are Electronic Data Interchange (EDI) [4],

SWIFT [128], RosettaNet [109], ebXML [35] and OAGIS [94],

Each implementation of the above protocols is different and was designed for specific

reasons. Specifically, the “RosettaNet” and “ebXML” standards focus on peer-to-peer

based B2B protocols and have developed formalisms for the description of B2B

protocols. However, no formal semantics are in place so that the interpretation of the

formalisms might cause incompatibility in a compliant software.

Several standards like ebXML [35], XLANG [129] and Business Process Modeling

Language (BPML) [12] address the definition of “processes” in the context of web

services and B2B protocols. All of those are initial versions of the standards and are not

widely adopted yet.

Furthermore, currently there are thousands of integration solutions in the market trying

to address the integration problem in general [22, 23, 24, 64] as well, such as Microsoft

BizTalk Server [48, 71, 82, 85, 86, 87], IBM Server Integration Solutions [46, 52, 53,

54], Compaq NonStop Solutions Integrator [28], Oracle Integration Server [95, 96],

TIBCO [131], Versata [137] etc. Each of them is providing its own solution, based on

some specific requirements but only a few have tried to address the “dynamic” issues of

integration using the peer-to-peer technology. This section presents some of the

existing systems that are widely accepted by the international market.

2.3.1 Metis Collaboration Platform V 5.0 (MCP)

MCP is a Peer-to-Peer application integration platform that powers large-scale

commerce and e-Business solutions for global enterprises. MCP uses modules as the

basis for complex technology integrations and composite application development,

enabling seamless interoperability through protocol-neutral architecture. The pre-built

modules leverage the existing network and applications within the enterprise, without

having to be modified or reconfigured to collaborate freely [83],

31

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

MCP has three major applications within an enterprise:

a) Peer to Peer Application Integration

MCP integrates legacy assets, protocols, middleware, hardware and networks as

well as a wide range of applications. All technologies, irrespective of protocols,

operating system or language, are integrated together through MCP enabling

complete interoperability across all technologies and the enterprise.

b) Composite Application Development

MCP can build composite applications, either web-based (in the vein of web

services) or for essential enterprise-critical applications. Enabling fast, easy

application development reducing time frames and rapid generation of Return

On Investment (ROI).

c) MCP's Virtual Stack

MCP can achieve a robust, flexible, open and distributed vertical stack by acting

as the business operating system. This may result in leveraging the existing

systems and saving time and money in the process.

The MCP consists of three logical environments: a) a Development Environment, b) an

Application Assembly Environment and c) an Execution Environment, which contain

specific tools and facilities used to build, assemble, deploy and manage collaborative

applications. APIs and core modules provide the basis of the environment. A Java-based

graphical facility enables the configuration of modules, the definition of components

and applications, the deployment and later management of executing applications [83],

a) The Metis Development Environment: Consisting of lightweight APIs and a

graphical tool for configuring modules, the Metis Development Environment

provides developers with tools to build Metis-enabled application components

from new and existing C, C++ and Java application code.

b) The Metis Application Assembly Environment: Consisting of a graphical

Application Builder tool and pre-built modules, the Metis Application Assembly

Environment enables developers to build deployable applications from Metis-

32

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

enabled modules and components. Metis is building a comprehensive list of pre-

built components that can be used within Metis applications. These components

include a data archiver and custom database modules for commercial databases

and will include message queue modules for IBM Message Queues (MQ) and

Microsoft Message Queues (MSMQ) products, transaction system modules for

Netscape Transaction Server and Net Dynamics and a CORBA module, among

others. All pre-built modules are completely configurable and extensible.

c) The Metis Execution Environment: Applications developed within the

Application Assembly Environment are ready to be deployed and run on the

network. To do this, the Network Deployment Tool is used to install the Metis

Runtime Environment and distribute application components onto the network

devices.

By utilising pre-built components, the Metis Collaboration Platform enables companies

to extend their technology environment by leveraging existing technology investments.

These components handle specific tasks and interface with specific third-party

technology products. Using these components, the Metis Collaboration Platform enables

integration with common industry functionality and products.

□ Data Archiving: The Data Archiving component can be used as a generic

distributed data store. It provides a general storage and retrieval facility for

archived data. It enables joining across archives, grouping of data sets and

secure storage and retrieval of data.

□ Database Integration: MCP includes database access components for Sybase,

Oracle, MySql, Microsoft SQL, and ODBC data sources. These components

extend each vendor's native library calls directly into Metis messages, enabling

Metis-enabled modules to transparently access data from traditional databases

and bring the complete functionality of each vendor's DBMS into Metis

applications.

□ MQ Series: The IBM MQ Series message queuing product is used in many

systems that require communication between mainframes and UNIX machines.

MCP will fully support communications to and from MQ Series with a

33

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

component that enables rapid integration into systems that utilise MQ Series as a

communication vehicle.

□ MSMQ: MCP will enable access to Microsoft’s MSMQ message queuing

product with a transformation module that encapsulates the native MSMQ API

to allow access to Microsoft-supported queues.

□ Transaction Systems: The Netscape Transaction Server and Net Dynamics

Transaction server are widely used in the industry today. MCP will support these

servers bi-directionally with modules that facilitate access to these servers from

any Metis-enabled module. In addition, Metis will supply a plug-in module for

these transaction servers, which will allow requests to be made from the servers

to any Metis-enabled module.

□ CORBA: This component will enable Metis-enabled modules to communicate

with Common Object Request Broker Architecture (CORBA) and other Remote

Method Invocation (RMI) based systems. The messages that invoke CORBA

methods will be loosely bound and applied to any CORBA object. The Metis

CORBA component will maintain state among requests to CORBA services

from other modules.

□ Palm Devices: The Metis Runtime Environment will run in a very small

footprint on Palm devices, enabling developers to write Metis-enabled modules

for Palm devices.

After reviewing the Metis overview architecture, this platform may appear to be an

appropriate solution for dynamic application integration. However, this is not the case,

since the Metis Platform addresses the dynamic application integration problem by

having all possible components integrated into one platform, so when a business

requires integration, the appropriate modules are used to design the integration solution

for that business. This approach inherits a lot of problems since some integration

solutions may require specific integration requirements that cannot be handled by the

existing modules already integrated into the Metis Platform.

In this Thesis, a more dynamic and robust solution is addressed that will satisfy the

needs of any integration solution without depending on existing modules already

developed for specific tasks.

34

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

2.3.2 WebV2 Peer Beans

WebV2 provides a next generation approach to application integration and business

process automation using Web Services [140, 141]. WebV2 eliminates the central

server and provides for totally decentralised business process execution across

applications, services, EAI hubs, and application servers with lightweight software

components.

WebV2’s approach is to replace the monolithic hub with software components

associated individually with the applications to be integrated, as illustrated in figure 2.2

[141]. These components are based upon WebV2’s PeerBeans software development

and execution environment. The PeerBeans service-oriented architecture allows for the

automated provisioning, location, preparation, and execution of services across a

network. As such, the PeerBeans components provide the functionality provided by the

hub, but in a fully distributed and decentralised web services manner.

Figure 2.2 The WebV2 Peer-to-Peer Architecture

Applications are linked to other applications by means of the PeerBeans components,

which handle the business process associated with that application, as well as message

routing and transformation. The PeerBeans components interact through Intranet,

Extranet or Internet and support dynamic change in the business logic and participating

applications. The PeerBeans solution is totally distributed, that is, no central server is

required. There is no single point of failure and massive scalability is inherent in the

architecture. Furthermore, applications are provided with complete autonomy and

control of the business logic is distributed to where it belongs.

35

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

The “ Peer Beans'” product is a Java-based core infrastructure development and

deployment software for peer-to-peer networks. The PeerBeans product provides a

comprehensive suite of peer-to-peer and application integration functions, including

functions for network interconnection (opening, closing and managing network

connections), message management (transformation and routing), security

(authentication, encryption), and collaboration (resource sharing, transactions). The

WebV2 implementation of the core PeerBeans container is one hundred percent Java

and extremely compact, allowing it to run on virtually any computer system, including

mobile devices. The PeerBeans infrastructure is highly scalable, fast, fault tolerant, and

requires little maintenance. Each application is tied into its own PeerBeans software,

automatically providing its services and resources to other applications in the network.

The PeerBean framework automatically takes care of discovery of other applications,

and coordinating the business processes as defined by the applications.

A peer is simply a computing process implementing a PeerBean container. Any number

of peers may run on any number of machine hardware nodes in a network. The system

is made up entirely of the PeerBeans software distributed across the network and no

extra server is needed for management of the PeerBeans software.

In order to support the network of peers, WebV2 provides a number of so-called system

peers, which themselves are implemented using the PeerBeans solution. These peers

provide special domain-independent services, called interoperability services. These

services can be provided by any number of peers on the network in a decentralised,

distributed, and redundant fashion. These services are described in more detail below.

□ Application Discovery Service: An intelligent registry of resources and

services provided by application peers, allowing for the automatic determination

of which applications participate in any given business process. When new

applications are linked to their corresponding PeerBeans software, they

automatically register their services with the Application Discovery Service and

are immediately available for business. This extends the web services UDDI

standard with the following features:

• Subscription: Updates in information about services is automatically

distributed to subscribing clients.

36

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

• Service Request Forwarding: Service requests are automatically

forwarded by the Application Discovery Service to the appropriate

service, which responds in turn directly to the client. This saves

communication overhead.

• Networking: Much like the Domain Name Service (DNS) system in the

Internet, arbitrarily many and partially redundant Application Discovery

Services can be deployed on the network so as to ensure massive

scalability and robustness.

□ System Monitor Service: This provides the administrator with an overview of

the system, the currently running application peers, system services, their

communication, and network load.

□ Network Transformation Rule Library Service: When an application peer

receives a message from another application peer in a format unrecognised by

the application, it must employ transformation rules to convert the message into

its own format. The transformation rule library provides a repository of

transformation rules; the appropriate ones can be downloaded dynamically,

cached, and applied by the application peer.

□ Network Business Logic Library Service: A repository of generic and

application-specific business logic rules available on the network for access by

application peers. The rules can be dynamically downloaded and followed by an

application peer.

□ Security and Authentication Services: These are used for supporting

establishment of secure transactions and authentication of nodes in the network.

WebV2 provides several mechanisms of establishing security and authentication

i.e. username and password, kerberos.

□ Transaction Logging Service: This handles and preserves a complete history of

all transactions carried out among the applications registered with this service.

37

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

WebV2 eliminates the problems of flexibility, robustness, and scalability associated

with the point-to-point and hub-and-spoke architectures by providing a peer-to-peer

architecture based on a loosely-coupled messaging-based coordination middleware

called PeerBeans software. The PeerBeans product allows for distributing message

brokering and business logic control functionality across the network, thereby avoiding

a single point of failure and allowing total autonomy of the applications. The peer-to-

peer network provides supporting system services.

After a thorough reviewing of this platform, it was deduced that the architecture

approach applied is similar to the approach taken by the Metis Collaboration Platform.

This is supported by the fact that each pre-complied PeerBean can perform a specific

task assigned by the Platform, since each PeerBean correspond to one component. Then

these PeerBeans can work together to simulate the business process of one application.

Moreover, this approach inherits many problems as well, just like the Metis Platform,

for the reasons already discussed in section 2.3.1.

In this Thesis, this kind of integration is avoided, because a number of pre-compiled

modules can be put together to produce a dynamic integration platform where

applications can be integrated dynamically. Instead, the main thrust of this Thesis, is

focused on dynamic issues that will satisfy the needs of any integration solution without

depending on existing modules already developed for specific tasks.

2.3.3 Orbix E2A Web Services Integration Platform

IONA's Orbix End 2 Anywhere (E2A) Web Services Integration Platform is the first

Web services platform built to handle critical business integration processes both inside

and outside the firewall. Orbix E2A leverages Web services standards and service-

oriented architectures to provide an open, flexible and low-cost integration solution. The

Orbix approach eliminates the requirement to deploy one vendor's technology on both

ends of an integration connection. Orbix provides all the tools and management services

required for reliable, scalable and secure business integration [59, 136],

The Orbix E2A Web Services Integration Platform is available in three editions:

38

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

□ The Collaborate Edition is a single platform for total business integration that

provides a comprehensive set of integration solutions for process collaboration

both inside and outside the enterprise.

□ The Partner Edition provides a low-cost, easy-to-deploy Web services connector

that enables customers to seamlessly collaborate with trading partners that have

deployed the Collaborate Edition or other integration technologies.

□ The XML Bus Edition is a low-cost Web services integration platform built for

developers who want to take a 'pure' Web services approach to integration.

Orbix E2A Collaborate Edition is a comprehensive, next-generation integration broker

that enables multi-vendor, multi-technology process collaboration both inside and

outside the enterprise. This Web services-based platform leverages new and existing

integration standards to reduce the cost of application integration and ensure complete

interoperability with disparate systems. Orbix E2A Collaborate Edition offers a service-

oriented architecture, based on IONA's patented Adaptive Runtime Technology (ART) -

a flexible, scalable and extensible infrastructure that speeds time-to-value in any

integration initiative.

Orbix E2A Partner Edition enables efficient communication across multiple tiers of the

supply chain by providing a low cost and easy-to-use connector application for seamless

collaboration between trading partners. Built for small and medium enterprises (SMEs),

the Partner Edition provides easy access to Collaborate-based information hubs, other

individual Partner Edition deployments, or any other integration or web services

technology. Based on IONA's Web Services Integration Platform, the Partner Edition

allows trading partners to securely send, receive and respond to business

communications with minimal effort.

IONA's XML Bus Edition (part of the Orbix E2A Web Services Integration Platform

family) is an integration platform for the integration of heterogeneous applications built

with .NET, Java, Java 2 Enterprise Edition (J2EE), Java 2 Micro Edition (J2ME), and

CORBA. This platform provides the qualities of service that mission-critical Web

services demand, including rapid development tools, scalable and reliable deployment

infrastructure, and enterprise-class management for deployed Web services.

39

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

The XML Bus Edition is the most interoperable Web services implementation available,

with broadly-vendor-tested XML, Simple Object Access Protocol (SOAP), Web

Services Description Language (WSDL), and Universal Description, Discovery and

Integration (UDDI) compatibility, and a wide range of standard API support, including

Java API for XML Registries (JAXR), Java API for XML Messaging (JAXM) and

more.

E2A is driven by two simple ideas [57, 58, 60], Firstly, any application, whether firmly

established or newly developed, should be able to interact with any other relevant

application, no matter where it resides or how it was developed. Secondly, application

development and application integration should not be treated as separate processes. In

a fully connected world, they must be part of the same process.

Orbix E2A offers a service-oriented architecture, based on IONA’s patented Adaptive

Runtime Technology (ART) - a flexible, scalable and extensible infrastructure that

speeds time-to-value in any integration initiative. Some features of the Collaborate

Edition are the following:

□ High-productivity graphical tools allow rapid creation of business process

models.

□ Flexible architecture designed to address both EAI and B2B integration

problems.

□ Wide array of Customer Relationship Management (CRM) and Enterprise

Resource Planning (ERP) adapters extend the value of internal systems, by

seamlessly incorporating them into business process flows.

□ Technology adapters support major industry technologies and protocols (i.e.

Relational Database Management System (RDBMS), Common Object Request

Broker Architecture (CORBA), Java, Java Message Service (JMS), Message

Queues Series (MQSeries), XML) to bridge to important middleware, database,

mainframe, and legacy systems.

□ Graphical data transformation tools for integrating Enterprise Applications with

no coding.

□ Support for standard B2B collaborations enables rapid implementation of

business processes.

40

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

□ One hundred percent J2EE and XML-based, providing extensibility and a wide

range of compatible developer tools.

□ Graphical tools for the creation of Web services from existing systems,

including Java, EJB, and CORBA-based applications.

□ Graphical tools for monitoring and optimising business processes.

□ Structured adapter framework for easy creation of custom adapters to integrate

with legacy systems and mainframe applications.

The purpose of this platform is to support enterprise applications, which implement the

enterprise’s core, mission-critical business processes. IONA’s primary focus is on

applications in telecommunications, financial services, and high-technology

manufacturing, and govemment/public sector. The Orbix platform minimises the time to

integrate these applications together.

On the other hand, the purpose of this Thesis is to provide a quick and robust dynamic

integration solution for legacy applications by creating java web services dynamically.

This solution is important since it is not required to take the legacy applications off-line

in order to accomplish the dynamic integration. In addition it not required to have a

prior knowledge of the underlying data structure of the application. The time it takes to

integrate two applications via the web services technology will only take few minutes

and hence the cost of integration is minimised.

2.3.4 Sun ONE Integration Server

The Sun ONE Integration Server, Enterprise Application Integration (EAI) Edition, is a

software product designed for enterprises that need to integrate packaged, custom,

legacy, and new Java applications [125].

This platform makes it possible for companies to integrate core business processes with

multiple applications running on multiple operating systems across multiple

communication protocols within the enterprise. Companies benefit from the automation

of business processes across distributed heterogeneous information systems with

increased productivity and efficiency.

41

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

Moreover, this platform provides support for Web services through SOAP messaging,

which can export a service definition via Web Services Description Language (WSDL)

to UDDI or other SOAP clients. This is achieved by a remote procedure call, of type

XML that invokes a call on another application using SOAP and the Web. It allows

different parts of the enterprise to exchange structured information over the Web,

independent of the types of systems or application platforms. SOAP functions as a wire

protocol to connect Web services to multiple Web portals [125].

The Key Features of the Sun ONE integration server are:

□ Flexible Business Process Management: Fully featured integration broker for

the enterprise including business process management, message transport, data

transformation, intelligent routing, and adapters. Integrating systems, data and

applications requires business process management to create, deploy and

manage new business solutions. This platform provides support for both fully

automated process flow as well as human interaction workflow. It enables an

entirely new class of flexible enterprise applications that can incorporate existing

components into powerful, graphically defined process definitions.

□ Data Transformation: Sun ONE Integration Server contains an XSL processor

that utilizes the Extensible Stylesheet Language Transformations (XSLT) to

transform XML documents. This process translates data elements among

multiple structures of XML. These Modules for XML and XSLT, help enable

faster development time to market.

□ Message Transport: The message transport for the Sun ONE Integration Server

is a two-way channel for XML/SOAP-based data messages sent over

HTTP/HTTPS or the Java Message Service (JMS) Application Programmers

Interface (API), a publish-and-subscribe solution with persistent message

queuing. This enables integration for Web services through SOAP Messaging,

which can export a service definition via WSDL to UDDI or other SOAP clients.

□ Intelligent Routing: The flexibility that exists on this Integration Server is that

the intelligent routing function enables customers to pick out arbitrary elements

42

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

from the exchanged document and make routing decisions based upon the

content. Unlike other approaches, a customer does not need to specify header

fields. The primary benefit is that the proxy or message transport defines how

the message is going to be routed.

□ Adapters: This integration server offers technology adapters for Common

component technologies, Custom, Mainframe and Packaged Systems. The vast

majority of integration connections are to legacy and custom applications. The

Sun ONE Integration Server facilitates the rapid development of robust, XML-

based custom adapters with the XML Adapter Designer. This powerful adapter

Software Development Kit (SDK) provides a fully leveraged XML and

framework-based approach, ease of use, state management, application session

context and performance agents.

□ Authentication: Lightweight Directory Access Protocol (LDAP) integration

provides a single source of authentication, user data, and roles definition.

The
Integration
Backbone

The Business Process
Controller

Application
Adapters and
Connectors

Figure 2.3 The Sun ONE Integration Server Architecture

43

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

The Sun ONE Integration Server application system consists of the following

components, as illustrated in figure 2.3 [125]:

□ The Business Process Controller engine: This Integration Server offers an

integrated process management solution that merges open component

development with business process automation. The process controller enables a

whole new class of flexible enterprise applications, by allowing business process

managers to incorporate existing components, including packaged application

components, into powerful, graphically defined process definitions.

This combination of process automation controls applied to components is

known as Open Component Sequencing.

□ An Integration Backbone: The Sun ONE Integration Server Backbone

facilitates communication between the business process engine and participating

applications. The backbone consists of a manager and its associated proxies. A

proxy acts as a two-way channel for messages sent over HTTP or JMS. It is a

client of the process engine and can act as a client or server with respect to its

application.

The proxy interprets and transforms XML messages from its application to the

process engine, as well as messages from the process engine to its application.

The Integration Backbone consists of:

■ A set of application proxies, each representing the business service

provided by its application.

■ A manager to handle start-up, shutdown and general administration.

■ An XSL rule base, consisting of rule documents. Specific rule documents

are assigned to proxies to interpret and transform messages

□ Application Adapters and Connectors: The Integration Server Adapters allow

package or custom applications to participate in a business process by translating

to and from application APIs and XML. Sun ONE Integration Server Adapters

are:

■ Lightweight: These small in size Java or compiled C++ routines use a

simple API to XML schema, and contain no application logic.

44

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

■ Standards-based: XML/HTTP is an open, ubiquitous protocol usable by

HTML or Java clients.

« Scalable and reliable: Adapters use XML document handling and

interpretation, connector replication, standard exception handling,

management agents, with logging and performance instrumentation.

To sum up, the Sun ONE Integration server provides either a set of ready-made and not

application-specific tools that will enable developers or companies to create their own

integration packages to be incorporated to their existing applications or a set of

integration packages that require additional coding to create adapters in order to

incorporate existing legacy applications with their integration servers. Either of these

features is not required to create a dynamic application integration server.

On the other hand, the proposed integration solution includes the peer-to-peer

technology, which is not part of the Sun’s Integration architecture as illustrated in figure

2.2. This is the most important factor in order to implement robust and dynamic

application integration solutions.

The systems that have been evaluated in the previous pages address a number of issues

regarding application integration using the peer-to-peer technology and the web services

infrastructure. Most of them use pre-configured components from other vendors and

they use them in a co-operative environment so that by combining two or more of these

components together they achieve the integration solution they need.

The main difference between these systems and the system proposed in this Thesis is

the fact that the author suggests a more dynamic and easier application integration

approach, where the Java Web Services, created by the Java Web Service Integrator

(JWSI), are dynamically re-configured based on the state of the application. This is

critically important since the status of the applications change rapidly according to

external factors and the dynamic nature environment of the Internet. Many people

wrongly assume that all users and applications are connected to the Internet and that the

bandwidth is always available. For example, with the existing systems, a newly created

web service could not be in a position to adapt to changes made to an application.

45

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

On the other hand, the benefits of the proposed architecture are enormous in comparison

to the existing solutions discussed in section 2.3. The java web service module will be

in a position to modify dynamically the characteristics of the published web service so

that other applications on the Internet can make advantage of these newly added

characteristics.

In addition, any application linked to the JWSI can dynamically and without the

knowledge of the application user, be integrated with other applications based on some

criteria, for the purpose of interchanging information using a direct peer-to-peer

connection. This approach, which appears to be novel, leads to tremendous advantages,

as there is no need to pre-design and thus implement specific integration solutions

between the participated applications. This is of great importance since any new

applications can be integrated seamlessly in a P2P environment.

As an example, a new application has been designed and developed to measure the

stability of the ship in a simulated environment. This application requires information

that is generated by other ship-related applications in order to function properly and to

produce the correct results. In order to achieve this integration requirement in the above

existing system, it would take a lot of time and money to produce a viable solution.

Using the solution proposed in this Thesis, the new application would be easily

integrated into the P2P integration platform and will also be able to use the data that has

been generated by another application in this platform for the purpose of producing the

expected data from that application.

Moreover, in order for any application clients to be integrated with the proposed

integration server, they just need to install the JWSI. This Java application is relatively

small in size (1 Mbyte) and can be installed in a number of operating systems. The

installation process is simple and the pre-configuration, before dynamic integration can

take place, is minimal.

To sum up, it can be seen that the proposed solution contains a number of benefits over

other or similar P2P architectures that will enable the easy and dynamic application

integration not only in the shipping sector but essentially in any sector in the business

market.

46

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

2.4 EXISTING ACADEMIC INTEGRATION SYSTEMS

As already mentioned in section 2.3, there are a number of protocols in the market

which try to address the P2P architecture. One educational protocol that addresses this

area is the GISP (Global Information Sharing Protocol) project, which aims at a world-

wide distributed index [65], A distributed index consists of a set of pair data (key,

value) shared by many peers. Each peer is responsible for a part of the index based on a

hash function. Every peer is basically flat and there is no single point of failure. A

distributed index is an essential building block for peer-to-peer systems. Each peer

promotes its strengths so that stronger peers contribute more than weaker peers.

Redundancy is important for defending against undesirable peers. Peers replicate pair

data so that each pair data of the index is covered by several peers.

In terms of Peer-to-Peer security and reliability there are a number of educational

researches that try to address this subject as well. One of them is the E-Speak project

[68]. E-Speak is an e-service infrastructure where services advertise, discover, and

interoperate between each other in a dynamic and secure way. The E-Speak security

adopts a multi-layered approach and builds a range of protection mechanisms on top of

the Public Key Infrastructure. The E-Speak advertising services have a dynamic

pluggable architecture and implement a scalable wide-area discovery based on

distributed queries. It is argued that E-Speak may be used as the common secure,

scalable infrastructure for different multiple P2P applications. In addition, substantially

research has been performed by the Stanford University which concentrates on issues

like locating resources in P2P systems, resource aggregation, availability and

authenticity using the Peer to Peer technology [78, 79, 114], Although these are very

important factors for a reliable P2P, it is not fully applicable for the purpose of this

Thesis, since this Thesis is concentrating on the dynamic Application Integration using

the P2P technology and not how to design and develop a P2P infrastructure.

One the other hand, Application Integration can also be achieved via Web and not using

the P2P technology. An example of such an implementation is a framework for web-

based Enterprise Application Integration from San Jose State University [102], This

framework provides a very flexible architecture for seamless integration of enterprise

applications using available technologies like XML. This implementation does not refer

47

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

to the dynamic nature of Application Integration with the help of P2P, but rather

concentrates on the Application Integration via the Web.

A very good research topic that refers to the dynamic nature of application integration is

the proposal from University of Twente in England. This proposal suggests a

framework for dynamic B2B interaction [51]. A B2B transaction is divided into the

interaction part and business implementation part to support flexible interaction. A

component based system framework is proposed to support the B2B transaction

execution. To support dynamic B2B services, dynamic component composition is

required. Service and component notions are combined into a composable service

component.

Although this implementation is very much close to the proposed solution of this

Thesis, this implementation does to refer to the dynamic Application Integration using

the P2P technology but uses a component-based approach to solve the problem of

application integration.

However, all of these solutions require manual coding to integrate the different types of

applications. Given the multi-tier nature of B2B applications, where each tier has to be

developed separately, it becomes a very complex task to integrate these applications

without an integrated visual and code generator environment. A framework that

addresses these issues is called GAIL (the Gen-it Abstract Integration Layer) [67].

GAIL provides a B2B application framework and customised model-driven architecture

approach for deploying and integrating different applications together. In addition,

GAIL plugs into most of the leading Unified Modeling Language (UML) modeling

tools and provides a parameterised architecture to generate most of the code needed in

deploying and integrating applications.

To sum up it can be seen that there are several on-going educational projects and

proposals that try to solve the Application Integration problem, which use either the

Peer-to-Peer or other related technologies. None of them addresses the problem stated in

Chapter 1, using the “dynamic” factor on top of the Peer to Peer technology, which is

one of the most important aspects of this Thesis.

48

Dynamic Application Integration Using Peer to Peer Technology Chapter 2

2.5 CONCLUDING REMARKS

In this chapter, an overview of the dynamic application integration is presented and the

importance of a peer-to-peer architecture in application integration is discussed in detail.

A comprehensive literature survey for existing commercial systems or educational

projects in the market has been presented in conjunction with a comparison between

them and in relation to the dynamic integration solution proposed in this Thesis.

The chapter ends with a summary of what has been discussed giving an overall picture

of the differences between the proposed solution and the integration servers discussed

earlier in this chapter.

49

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

Chapter 3

REQUIREMENTS SPECIFICATION

3.1 INTRODUCTION

Details relating to the organisational context and requirements for the thesis will be

presented in this chapter. A detailed survey of methodologies is then conducted,

highlighting the basic features of each methodology, giving reasons why they have been

chosen to satisfy the thesis’s requirements.

Specific focus is given to the Web Services and how they can work together to provide

a P2P architecture for dynamic integration. This is important since, one of the

requirements of this thesis is to investigate the dynamic issues of application integration

and how each peer program, without any user intervention, can find other peers on the

Internet for interchanging data.

The focus of this chapter is to provide a detailed description of the architecture of the

designed system.

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.2 SYSTEM REQUIREMENTS

The following section lists the requirements considered in this thesis. This will help not

only the author but also the users of this system to better evaluate and verify the

integrity of the system. In addition, this section will help to prepare a comparison

between the initial and accomplished requirements of this thesis. The system is designed

and implemented taking into consideration the following requirements, in order to solve

the problems that have been identified in Chapter 1.

i. Provide Dynamic Application Integration

As explained in section 2.1, dynamic application integration in the context of this

thesis means that any application can be integrated and hence interchange data

with another application in the Network or Internet, dynamically without prior

knowledge of the underlying infrastructure or data structure of the other

application. This is accomplished with the help of the Java Web Service

Integrator (JWSI), which generates Java Web Services on the fly, that is

dynamically, while the potential applications to be integrated are running. How

this is achieved, is described later in section 3.5 of this Chapter.

ii. Provide peer to peer functionality

One of the main requirements of this thesis is to design and develop a system with

peer-to-peer capabilities. A P2P enabled application should be capable of locating

other peers in the network. Once an application is able to locate other peers, it

should be able to communicate with them using messages. Once the

communication is established with other peers, the application should be able to

receive and provide information, such as content.

iii. Provide dynamic discovery and publishing of Java Web Services

An essential requirement on top of the P2P functionality is the ability of the

system to dynamically discover and publish Java Web Service using the Universal

Description, Discovery and Integration (UDDI) registry. This is an important

requirement because in order for a P2P system to function properly it requires a

global registry where all Java Web Services will be registered and subsequently

be discovered dynamically by other Java peers.

51

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

iv. Provide small Java peers

To establish a communication link between the two dynamically integrated

applications, peers are required to act as agents on the client’s and server’s

machine, to send and receive requests from both locations. These peers are

universal enough and can be installed in different machines under different

operating systems because they are based on the Java language. The purpose of

these peers is to dynamically publish Java Services on a UDDI and at the same

time dynamically discover new Java Services for the purpose of integrating two or

more applications together.

v. Provide SOAP and WSDL specification compatibilities

Another requirement of the proposed system is the ability to generate dynamic

Java Web Services, which comply with the Simple Object Access Protocol

(SOAP) and the Web Services Description Language (WSDL) specification. This

requirement is also significant in case external systems may want to discover and

hence use the already published Java Web Services produced by the system. This

makes the system extremely flexible and adaptable to future collaboration with

other systems, which are already compatible with these standard specifications.

vi. Provide various transfer and security protocols

Another important aspect of this thesis is the dynamic selection and negotiation of

different transfer and security protocols between the two peers. Firstly, this is

accomplished by having the two peers negotiate the appropriate transfer protocol

based on the bandwidth availability of the communication between them.

Secondly, based on some parameters found on each Java Web Service, the

security protocol is dynamically selected, in case the information sent is

confidential and based on the availability of that protocol between the peers.

Sometimes, the information sent is not so confidential and the two peers may

decide not to use any security protocols for that session. This is important since

sometimes the communication link, for example a satellite link between the ships

and the shore offices, is very expensive especially for large data transfers.

52

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

vii. Provide dynamic XSLT transformations

Occasionally, the web services are not capable to handle all relevant information

needed to be sent between two peers. In such a case, a mechanism is required to

dynamically convert the data structure from the source peer to the data structure of

the destination peer. This is archived via the use of the XSLT language. This

language creates the mappings of two different data structures by describing a

template that needs to be applied to the given data structure. The user of each

application usually creates these mappings manually. This thesis is trying to

suggest ways to dynamically generate these mappings and hence dynamically

apply them to transform the given data format to the destination.

In addition, some applications may use databases to store their information and

hence these data must be exported in a format that is readable by the requested

peer. This can be also achieved using the XSLT generator, which will transform

the data stored into the database to XML and vice-versa.

viii. Demonstration of all the above features in a simulated environment

This requirement will help the author and the users of this system to evaluate the

overall functionality and performance of the system as well as to identify whether

the system has been designed and developed according to the requirements

specified and explained in this section.

Since the requirements have been identified and explained, it is now proper to perform a

research on methodologies that exist in the market, which will be used to attain, in a

way acceptable to the users, the proposed above requirements. The following section

concentrates on this research.

53

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.3 SURVEY OF METHODOLOGIES

To achieve the above-mentioned requirements, a thorough research has been carried out

to find the most suitable methodologies to be used for this thesis. The following section

discusses the methodologies used, giving at the same time an explanation of why these

particular methodologies have been selected for the proposed goal. Because some of

these methodologies have limitations in achieving a particular set of tasks, combination

and collaboration between these methodologies may be required, which will be

discussed further in this report.

3.3.1 Peer-to-Peer Architecture

Message broker processing is a mixture of schema and content transformation, rules

processing, message splitting, and combining, as well as message routing. Once the

processing is complete, the information is sent to any target systems that need to receive

that information using whatever native format the target application can understand,

such as XML, Java Message Service (JMS) message, proprietary, etc, see figure 3.1.

The hub-and-spoke EAI solution is resource-constrained because all the processing

takes place on a single server. Eventually, the number of connected systems and the

information traffic will saturate the available resources of the integration server

(memory, processor, and disk), resulting in reduced performance.

Figure 3.1 The traditional hub-and-spoke architecture for EAI
54

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

The latest and most advanced technology in the world of EAI is the peer-to-peer

architecture [25, 76, 110, 121, 132]. This is similar to the message broker architecture

(see figure 3.1) but with one difference. There is no central integration server. Instead,

the message translation, routing, splitting, and combining occurs at the source and target

systems within little message brokers known as agents or peers (see figure 3.2).

The agents consume information from the single system they are connected to, process

that information, and send it directly to any target system(s) interested in receiving that

information or message. The result is a virtual “hub-and-spoke” type architecture,

where the description of each service is located on a central location called UDDI.

Application

Integration
Server

Integration 1
Server

!
Application

Figure 3.2 A general Peer-to-Peer Architecture

Because the processing occurs on many systems in parallel, this architecture has the

potential for integrating hundreds if not thousands of systems, within both EAI and B2B

solution domains. Peer-to-peer eliminates many problems, including single point of

failure and single-server saturation.

55

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

The advantages of a Peer-to-Peer architecture are [113,120] :

□ A P2P application is capable of locating other peers in the network.

□ Once an application is able to locate other peers, it is capable of communicating

with them using messages.

□ Once the communication is established with other peers, the application is able

to receive and provide information, such as content.

Finally, peer-to-peer is the future of EAI, and there are a number of aggressive

middleware companies, both start-up and existing, looking to move into this

architecture.

3.3.2 Web Services

A Web Service is an application that exposes a programmatic interface using standard,

Internet-friendly protocols. Web Services are designed to be used by other programs or

applications rather than by humans. Programs invoking a Web Service are called clients.

Simple Object Access Protocol (SOAP) over Hyper Text Transfer Protocol (HTTP) is

the most commonly used protocol for invoking Web Services. By exposing data and

functionality using standard protocols, Web Services make it easy to build sophisticated

dynamic applications that integrate many features and content. There are three main

uses of Web Services [42, 50, 55, 56, 90, 99]:

□ Application Integration. Web Services within an intranet are commonly used

to integrate business applications running on disparate platforms. For example, a

.NET client running on Windows 2000 can easily invoke a Java Web Service

running on a mainframe or UNIX machine to retrieve data from a legacy

application.

□ Business Integration. Web Services allow trading partners to engage in e-

business leveraging the existing Internet infrastructure. Organisations can send

electronic purchase orders to suppliers and receive electronic invoices. Doing e-

56

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

business with Web Services means a low barrier to entry, because Web Services

can be added to existing applications running on any platform without changing

legacy code.

□ Commercial. Web Services focus on selling content and business services to

clients over the Internet similar to familiar Web pages. Unlike Web pages,

commercial Web Services target applications not humans as their direct users.

Many airlines, for example, expose flight schedules and status Web Services for

travel Web sites and agencies to use in their applications. Like Web pages,

commercial Web Services are valuable only if they expose a valuable service or

content. It would be very difficult to get customers to pay for using a Web

Service that creates business charts with the customers’ data. Customers would

rather buy a charting component, for example a Component Object Model

(COM) or .NET component and install it on the same machine as their

application. On the other hand, it makes sense to sell real-time weather

information or stock quotes as a Web Service.

In order to understand better the advantages of Web Services, the following section lists

a few of the most essential differences between traditional Enterprise Application

Integration (EAI) solutions and Web Services [5, 18, 33, 43, 111, 112, 115, 119, 133]:

□ Simple: Web Services are much simpler to design, develop, maintain, and use as

compared to a typical EAI solution, which may involve distributed technology

such as Distributed Component Object Model (DCOM) and Common Object

Request Broker Architecture (CORBA). Once the framework of developing and

using Web Services is ready, it will be relatively easy to automate new business

processes spanning across multiple applications.

□ Open Standards: Unlike proprietary EAI solutions, Web Services are based on

open standards such as UDDI, SOAP, HTTP and this is probably the single most

important factor that would lead to the wide adoption of Web Services. The fact

that they are built on existing and ubiquitous protocols eliminates the need for

companies to invest in supporting new network protocols.

57

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

□ Flexible: Since EAI solutions may require point-to-point integration, changes

made at one end have to be propagated to the other end, making them very

difficult and time consuming in nature. Web Services based integration is quite

flexible, as it is built on loose coupling between the application publishing the

services and the application using those services.

□ Cost Effective: EAI solutions, such as message brokers, are very expensive to

implement. On the other hand, Web Services may accomplish many of the same

goals faster and are much more cost effective than EAI solutions.

□ Scope: EAI solutions, such as message brokers, integrate applications treating

them as single entities, whereas Web Services allow companies to break down

large applications into small independent logical units and build wrappers

around them. For example, a company can write wrappers for different business

components of an Enterprise Resource Planning (ERP) application, such as

order management - purchase order acceptance, status of order, order

confirmation, accounts receivable and accounts payable.

□ Efficient: As mentioned in the previous point, Web Services allow applications

to be broken down into smaller logical components, which make the integration

of applications easier as it is done on a granular basis. This makes Web Services

solutions for EAI much more efficient than traditional EAI solutions.

□ Dynamic: Web Services provide a dynamic approach to integration by offering

dynamic interfaces, whereas traditional EAI solutions are pretty much static in

nature.

In conclusion, by using Web Services the requirement “L” in section 3.2 is satisfied.

The following section discusses in detail the architecture of Java Web Services and how

they can be applied in order to develop the system proposed in this thesis.

58

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.3.3 Java Web Services

As already discussed in the previous section, Web Services are essential for the design

and development of a dynamic platform. For this thesis, it is proposed to use Java Web

Services, which have all the advantages of traditional Web Services plus they are

platform independent. The following section discusses how Java Web Services fit into

the architecture proposed in this thesis.

The Java Web Services Developer Pack (Java WSDP) is an integrated toolset [70, 77],

that in conjunction with the Java platform, allows Java developers to build, test and

deploy XML applications, Web Services, and Web applications. The Java WSDP

provides Java standard implementations of existing key Web Services standards

including WSDL, SOAP, ebXML, and UDDI. These Java standards allow developers to

send and receive SOAP messages, browse and retrieve information in UDDI and

ebXML registries, and quickly build and deploy Java Web Service.

Java Web Services are platform-independent, like Java, language-agnostic, a clear

advantage over Java Remote Method Invocation (RMI), can easily be tunnelled through

firewalls, which are one of the drawbacks in modem enterprise networks, object-

oriented and tend to be loosely coupled allowing more flexible application development

[62],

Among other features, the Java Web Services Developer Pack Version 1.0 includes the

following:

□ Java XML Pack which includes the following:

. Java API for XML Messaging (JAXM)

• Java API for XML Processing (JAXP) with XML Schema support.

• Java API for XML Registries (JAXR)

• Java API for XML-based Remote Procedure Call (JAX-RPC)

• SOAP with Attachments API for Java (SAAJ)

59

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

□ Java WSDP Registry Server

□ Web Application Deployment Tool

□ Apache Tomcat container

Figure 3.3 illustrates how a Web Service is registered, found and called in a scenario

based on Java technology [63].

Web Service Requester find

Business partner or
other system

bind

Retrieve WSDL
Definition

O'S
cc
—<
o
cr

Call Web Service

cro
OS
Û.<o
t/t

Servels

Look up Web Service / IJDDI
Service

SOAP Request

firewall -

JAXR

WSDL Document

publish

Register Web Service
(at development time)

SOAP Request

Web Service Provider

Figure 3.3 Java Web Service Architecture

In figure 3.3, the Web Service is registered in a UDDI repository using the Java API for

XML Registries (JAXR, step 1), where a business partner or other system can find the

service (step 2). The registry information from UDDI is used to locate a WSDL

document that details the call semantics for the Web Service (step 3). With the WSDL

document in hand, the Java programmer can then feed it to a tool that can generate a

Java object proxy to the Web Service, or simply use it as a reference document along

with a lower-level SOAP API (step 4).

60

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.3.4 Web Services Description Language

Web Services Description Language (WSDL) is an XML-based language used to define

Web Services and describe how to access them [21, 117, 139]. Being XML-based,

WSDL is both machine and human readable, which is an important advantage. Some

modem development tools can generate a WSDL document describing any Web Service

as well as consume a WSDL document and generate the necessary code to invoke the

Web Service.

WSDL is the keystone of the Universal Description, Discovery, and Integration

(UDDI) initiative spearheaded by Microsoft, IBM, and Ariba. UDDI is an XML-based

registry for businesses worldwide, which enables businesses to list themselves and their

services on the Internet. WSDL is the language used to do this.

WSDL is derived from Microsoft's Simple Object Access Protocol (SOAP) and IBM's

Network Accessible Service Specification Language (NASSL). WSDL replaces both

NASSL and SOAP as the means of expressing business services in the UDDI registry.

Figure 3.4 shows an example of a Web Service and a client invoking it in two different

ways: Either by using SOAP or HTTP GET. Each invocation consists of a request and a

response message.

SOAP/HTTP request
message

SOAP/HTTP response
message

HTTP GET request
message

*-
◄-----------------

HTTP response
message

Figure 3.4 A client invoking a Web Service

Figure 3.5 shows the same example with WSDL terminology pointing out the various

elements that WSDL describes.

61

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

■ ___ ■ SOAP/HTTP requ (st
message

Each message part is of some
data type. XSD predefined
types i.e. xsdrint

The input and output messages
from an operation. A
collection of these operations
form a port type.

Port 1

SOAP/HTTP response
message

HTTP GET request
message

HTTP response
message

Port 2

A binding specifies how operations
are accessed using a particular
protocol i.e. SOAP or HTTP GET

Figure 3.5 WSDL terminology describing Web Services

In order to better understand the WSDL. an example is illustrated in figure 3.6 which

describes a service called “weatherservice'".

«definitions name =’weatherservice xmlns=http://schemas.xmlsoap.org/wsdl/>

«service name=’WeatherService' >

«port name=WeatherSoapPort bindings wsdlns:WeatherSoapBinding >

<soap:address

location='http://localhost/demos/wsdl/devxpert/weatherservice.asp />

</port>
</service>

</definitions>

Figure 3.6 An example o f WSDL technology

62

http://schemas.xmlsoap.org/wsdl/
http://localhost/demos/wsdl/devxpert/weatherservice.asp

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

The <definitions> element is the root element of the WSDL document. In this section

the WSDL namespace is declared as the default namespace for the document so all

elements belong to this namespace unless they have another namespace prefix. All other

namespace declarations are omitted from this example to keep it clear.

Each service is defined using a service element. Inside the service element, the different

ports can be specified on which this service is accessible. A port specifies the service

address, for example, hitp://localhost/demos/wsdl/devxpert/wealherservice, asp.

Each port has a unique name and a binding attribute. When using SOAP, the port

element contains a “<soap:address/> ” element with the actual service address. In this

example the soap namespace prefix refers to the namespace

'’‘‘http://schemas.xmlsoap.org/wsdl/soapr.

This namespace is used for SOAP-specific elements within WSDL. Such elements are

also known as WSDL SOAP extension elements.

A Web Service does not have to be exposed using SOAP. For example, if the Web

Service is exposed via HTTP GET, the port element would contain an

“<http:address/> ” element similar to the following script:

<http: address location="http://localhost/demos/wsdl/devxpert/weatherGET.asp"/>

A Web Service can be accessible on many ports. For example, it makes the Web

Service available via SOAP and HTTP GET and possibly even via SMTP. For this Web

Service, all three ports are available, each one with a different name.

63

http://schemas.xmlsoap.org/wsdl/soapr
http://localhost/demos/wsdl/devxpert/weatherGET.asp%22/

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.3.5 Universal Description, Discovery and Integration

Universal Description, Discovery and Integration (UDDI) is a platform-independent

framework for describing services, discovering businesses, and integrating business

services by using the Internet. More specifically, UDDI is a directory for storing

information about Web Services, which they communicate via the SOAP standard. This

directory consists of Web Service interfaces described by the WSDL language.

UDDI is a cross-industry effort driven by all major platform and software providers like

Dell, Fujitsu, HP, Hitachi, IBM, Intel, Microsoft, Oracle, SAP, and Sun, as well as a

large community of marketplace operators, and e-business leaders [134,135],

A UDDI registry provides simple information about:

□ Who it is. A registration includes the name of the Web Service provider, and

can include additional identifiers such as a North American Industry

Classification System (NAICS) code or a Dun & Bradstreet D-U-N-S number.

D&B D-U-N-S Number is a unique nine-digit identification sequence, which

provides unique identifiers of single business entities.

□ What it is. A registration includes the name of a Web Service and, typically, a

brief description.

□ Where it is. A registration contains "binding templates" that point to an address

where the service can be accessed.

□ How to request it. A registration contains the ways that describe the interface

for the Web Service.

Each registry that conforms to UDDI is operated at its own site and hence the UDDI

specifications refer to this as the "operator" site. The operator site contains the master

copy of its registry. However, the collection of UDDI registries is replicated. If a

business searches for a Web Service in a registry at one operator site, the search is done

across the information in the master copy, including the information replicated from the

other UDDI registries.

64

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

The UDDI specifications define how to publish and discover information about Web

Services in a UDDI-conforming registry. More specifically, the specifications define a

UDDI schema and a UDDI API. The schema identifies the types of XML data

structures that comprise an entry in the registry for a Web Service. The API describes

the SOAP messages that are used to publish an entry in a registry, or discover an entry

in a registry. The UDDI schema and the UDDI API are described in detail in the

following sections.

3.3.5.1 UDDI Schema

The UDDI schema identifies the types of XML data structures that comprise an entry in

the registry for a Web Service. The following figure illustrates the schema. It shows the

five types of XML data structures that comprise a registration.

Business Entity:
Information about the party
who publishes information
about a family of services.

TModel:
Description of specifications
for services or taxonomies.
Basis of technical fingertips

I
Business Service:

Descriptive information about
a particular service.

Binding template data
contains reference to
tModels. These tModels
designate the interface
specification for a service.

Binding Template:
Technical information about a
service entry point and
construction specifications.

Publisher Assertion:
Information about a relationship
between two parties, asserted by one
or both.

Figure 3.7 The five types o f XML data structures that comprise the UDDI schema

65

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

The five types of XML data structures that comprise the UDDI schema are described

below:

Business Entity: This structure represents all known information about a business or

entity and the services that it offers. From an XML standpoint, a business Entity is the

top-level data structure that holds descriptive information about a business or entity.

A business Entity element contains attributes that:

• Uniquely identify the business Entity with a businessKey. The key is a Universal

Unique Identifier (UUID) that is generated by the registry. The mechanism that

produces UUIDs guarantees uniqueness through a combination of hardware

addresses, timestamps and random numbers.

• Name the individual who published the business Entity data (authorisedName).

• Specify the UDDI registry site that manages the master copy of the

businessEntity data {operator).

Other elements within the structure identify the name recorded for the business or entity

{name), and optionally specify additional information about the business or entity.

Figure 3.8 shows part of a complete Business Entity structure for a company named

Inlecom Systems Ltd. The company provides various Web Services, including an online

product ordering service.

<businessEntity businessKey="35AF7F00-1419-11D6-
A0DC-000C0E00ACDD"
authorizedName="0100002CAL"
operator="www.inlecom.com/services/uddi">

<name>Inlecom Systems Ltd</name>
<descr±ption xml:lang="en">

The source for all products
</description>
<contacts>
<contact>
<personName>Christofi Stelios</personName>
<phone>

(0161)1111111
</phone>
</contact>
</contacts>

Figure 3.8 Part Business Entity Structure for UDDI Schema

66

http://www.inlecom.com/services/uddi

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

Business Service: This structure identifies a service provided by the business or entity

that is represented by the parent Business Entity. A business or entity can provide

multiple services, so there can be multiple business Service elements within a business

Entity. The set (or "family") of business Service elements are specified in a business

Services structure.

Figure 3.9 shows part of a complete business Service structure for an online product

ordering service offered by Inlecom Systems Ltd. Notice especially the “categoryBag”

element, which is used to specify a classification scheme (formally this is known as a

"taxonomy"). In this example, the taxonomy is NAICS.

< b u s i n e s s S e r v i c e s >

< b u s i n e s s S e r v i c e s e r v i c e K e y = "
2 A B 3 4 6 C 0 - 2 2 8 2 - 4 3 B 0 - 7 5 6 B - 0 0 0 3 C C 3 5 C C l D " >

< n a m e > O n l i n e P r o d u c t O r d e r i n g < / n a m e >

d e s c r i p t i o n x m l : l a n g = " e n " >

O r d e r i n g p r o d u c t s o n l i n e

< / d e s c r i p t i o n >

< c a t e g o r y B a g >

n t i s - g o v : n a i c
< c a t g e o r y B a g >

Figure 3.9 Part Business Service Structure for UDDI Schema

Binding Template and tModel: A binding Template along with a tModel provides two

important pieces of information about a Web Service: its technical specification and its

accessPoint. A technical specification (also called a "technical fingerprint") typically

provides details about things such as protocols and interchange formats used in

communicating with the service.

The accessPoint is an address, such as a Uniform Resource Locator (URL) or email

address, at which the service can be called. Contained within a binding Template

structure is a tModellnstancelnfo element that references a tModel by its key. The

referenced tModel provides the technical specification.

There can be multiple binding Template elements for the family of services identified in

a business Services structure. The multiple binding Template elements are specified in a

binding Templates structure.

67

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

Figure 3.10 illustrates part of a complete binding Template structure for the online

product ordering service offered by Inlecom Systems Ltd. Notice the reference to the

tModelKey in the “tModellnstancelnfo” element.

< b i n d i n g T e m p l a t e s >

< b i n d i n g T e m p l a t e b i n d i n g K e y = "

4 B C 7 C 3 4 0 - 2 3 9 8 - 1 2 E 6 - 8 8 7 C - 0 0 0 5 A C 3 3 C C 2 D "

< d e s c r i p t i o n >

J A X R P C (S O A P / H T T P) b a s e d b i n d i n g

< / d e s c r i p t i o n >

< a c c e s s P o i n t >

h t t p : / / w w w . i n l e c o m . c o m : 8 0 8 0 / p r o d u c t s /

< / a c c e s s P o i n t >

< t M o d e l I n s t a n c e D e t a i l s >

< t M o d e l I n s t a n c e I n f o t M o d e l K e y = " U U I D :

3 6 E 1 3 5 2 6 - 4 5 5 3 - 3 2 6 5 - B 5 F 7 - C 4 B 5 2 2 E 7 5 A 0 5 " / >

< / t M o d e l ! n s t a n c e D e t a i l s >

Figure 3.10 Part Binding Template Structure for UDDI Schema

Publisher Assertion: This structure is used as a way of asserting a relationship between

one business Entity and another. For example, the structure can be used to show that

two businesses are subsidiaries of the same company. To assert the relationship, each of

the two businesses Entity structures specify its own publish Assertion structure.

However the information in each structure needs to be exactly the same.

3.3.5.2 UDDI API

The UDDI API describes the Simple Object Access Protocol (SOAP) messages that are

used to publish an entry in a registry (the "Publish" API), and those that are used to

discover an entry in a registry (the "Inquiry" API).

• Publish API. There are a variety of messages defined in the Publish API. What

they have in common is that they perform some action related to one of the types

of structures that comprise the UDDI schema. For example, the Publish API

message “save business” is used to save or update one or more complete

business Entity structures in a registry.

68

http://www.inlecom.com:8080/products/

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

Figure 3.11 shows an example of a message that saves the business Service structure

(named Online Product Ordering) that was presented in section 3.3.3.1. The “authinfo”

element is used to specify an authentication token. This is a value that is a standard part

of UDDI's authentication mechanism and needs to be specified in all Publisher API

calls. The authentication token is obtained by issuing a call to “getjiuthToken”.

< s a v e _ s e r v i c e g e n e r i c = " 2 . 0 " x m l n s = u m : u d d i -

o r g : a p i - v 2 " >

< a u t h i n f o > a u t h e n t i c a t i o n t o k e n g o e s h e r e

. . , < / a u t h i n f o >

< b u s i n e s s S e r v i c e s >

< b u s i n e s s S e r v i c e s e r v i c e K e y = "
2 A B 3 4 6 C 0 - 2 2 8 2 - 4 3 B 0 - 7 5 6 B - 0 0 0 3 C C 3 5 C C l D " >

< n a m e > O n l i n e P r o d u c t O r d e r i n g < / n a m e >

d e s c r i p t i o n x m l : l a n g = " e n " >

U s e t h i s s e r v i c e t o p u r c h a s e p r o d u c t s

o v e r t h e W e b
< / d e s c r i p t i o n >

Figure 3.11 Part Binding Template Structure for UDDI Schema

• Inquiry API. The Inquiry API contains two types of messages: "find" messages

that search UDDI registries for entries that meet specified search criteria, and

"get" messages that retrieve detailed information about a specified registration.

For example, the Inquiry API message “find business” is used to search for all

registered business entities that meet search criteria specified in the call. Figure

3.12 shows the “find business” message that searches for all business entities

whose registered name begins with the characters "Products".

< f i n d ^ b u s i n e s s g e n e r i c = " 2 . 0 " x m l n s = u m : u d d i -

o r g : a p i - v 2 " >

< n a m e > P r o d u c t s % < / n a m e >
< / f i n d b u s i n e s s >

Figure 3.12 Part structure o f an Inquiry API for UDDI API

The call returns a “businessList” structure that contains information about each

matching business, and summaries of the “businessService” elements exposed by those

businesses. The "get" messages include those that return detailed information about one

or more business entities i.e. “get businessDelaiT or “get businessDetailExt”.

69

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.3.6 Simple Object Access Protocol

SOAP stands for Simple Object Access Protocol and provides the standard Remote

Procedure Call (RPC) mechanism used for invoking Web Services. It implies that the

underlying Web Service representation is an object when in fact it does not have to be.

The Web Service can be written as a series of functions in JAVA and still invoke it

using SOAP. The SOAP specification provides standards for the format of a SOAP

message and how SOAP should be used over HTTP. SOAP also builds on XML and

XML Schema Definition (XSD) Language to provide standard rules for encoding data

as XML [11,20],

Like UDDI, SOAP is XML based. Moreover, SOAP is a generally accepted standard for

Web Services and the reason for SOAP's widespread adoption is its simplicity. SOAP is

"lightweight," that is, it involves a relatively small amount of code, and it is fairly easy

to understand. The basic item of transmission in SOAP is the SOAP message, which

consists of a mandatory SOAP envelope, an optional SOAP header, and a mandatory

SOAP body.

Figure 3.13 illustrates a SOAP message, designed to retrieve the current price of a

stock. Specifically, the SOAP message makes a request to “GetLastTrade Price”,

passing it a symbol called DEF. “GetLastTradePrice” is an operation performed by a

Web Service, and DEF is the symbol for a specific stock. Clearly, for the request to be

satisfied, “GetLastTradePrice” needs to be described, and its description needs to

specify that the operation takes a stock symbol as input and returns a stock price as

output. This is not done in SOAP. Instead it's done through Web Services Description

Language (WSDL), an XML-based language for describing a Web Service. A WSDL

description for a Web Service is contained in a WSDL document for the service.

For the purposes of this example, it is assumed that a WSDL document exists for a Web

Service and in that document, the “GetLastTradePrice” operation is appropriately

defined.

70

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

< S O A P - E N V : E n v e l o p e

x m l n s : S O A P - E N V =

" h t t p : / / s c h e m a s . x m l s o a p . o r g / s o a p / e n v e l o p e / "

SOAP-ENV:
e n c o d i n g S t y l e =

"http ://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Header>

< t : T r a n s a c t i o n x m l n s : t = " s o m e - U R I " >

S O A P - E N V : m u s t U n d e r s t a n d = " 1 " > 5

< / t : T r a n s a c t i o n >

< / S O A P - E N V : H e a d e r >

< S O A P - E N V : B o d y >

< m : G e t L a s t T r a d e P r i c e x m l n s : m = " s o m e - U R I " >

< s y m b o l > D E F < / S y m b o l >

< / m : G e t L a s t T r a d e P r i c e >

< / S O A P - E N V : B o d y >
< / S O A P - E n v e l o p e >

Figure 3.13 An example o f a SOAP Message

The SOAP Message consists of the following items:

□ Envelope. The Envelope element is the top element of the envelope. In figure

3.13, the Envelope element specifies two parameters: an XML namespace and

an encoding style. An XML namespace is a collection of names that can be used

in XML element types and attribute names, in other words, it is an XML

schema. The example points to the Uniform Resource Identifiers (URI)

^http.V/schemas.xmlsoap.org/soap/envelope”. This URI defines the XML

schema for SOAP messages.

The “encodingStyle" attribute identifies the encoding style. An encoding style

identifies the data types recognised by SOAP messages and specifies rules for

how these data types are serialised, that is transformed into a stream of bytes, for

transport across the Web. The example points to the URI

http://schemas.xmlsoap.org/soap/encoding/ This URI specifies the encoding

style for "Section 5" encodings, the ones described in Section 5 of the SOAP

specification.

□ Header. As mentioned earlier, the header is optional. However, if it is included

in a SOAP message it must be the first child of the Envelope element. The

Header element, through attributes, extends the SOAP message in a modular

way. A SOAP message travels from an originator (a client application) to a final

71

http://http.V/schemas.xmlsoap.org/soap/envelope%e2%80%9d
http://schemas.xmlsoap.org/soap/encoding/

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

destination, potentially passing through a set of intermediate nodes along the

message path. Each node is an application that can receive and forward SOAP

messages. The SOAP header can be used to indicate some additional processing

at a node independent of the processing done at the final destination. In the

example in figure 3.11, the Header element indicates that this is a transaction (a

URI specifies the namespace for the transaction). The header could just as easily

have specified attributes for another type of process, such as authorisation

checking. The attribute value “mustUnderstand=l” means that the initial node in

the SOAP message path must process the header. The value 5 is passed to the

initial node as input.

□ Body. The SOAP body contains the main part of the SOAP message. In

particular, the Body element contains information for the final recipient of the

SOAP message. In the above example, the Body element contains two items of

information: GetLastTradePrice (with its namespace) and the symbol DEF. This

information is passed to the final destination. The application at that destination

needs to understand the request and take the appropriate action. As mentioned

earlier, for the purposes of this example, it is assumed that a WSDL document

exists for a Web Service, and in that document, the “GetLastTradePrice”

operation is appropriately defined. Based on the information in the WSDL

document, it is assumed that the application calls the “GetLastTradePrice”

operation, passing it the DEF ticker symbol as input. The WSDL document also

indicates that the output returned by the “GetLastTradePrice” operation is a

price. The returned price information is also passed in a SOAP message. The

body of the response is illustrated in figure 3.14.

<SOAP-ENV:Body>
< m : G e t L a s t T r a d e P r i c e O u t p u t x m l n s : m = " s o m e - U R I " >

< p r i c e > 4 2 . 5 0 < / p r i c e >

< / m : G e t L a s t T r a d e P r i c e O u t p u t >
</SOAP-ENV:Body>

Figure 3.14 An example o f the body o f a SOAP Response

72

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.3.7 The XML language

"Extensible Markup Language (XML) is a simple, very flexible text format derived from

SGML. Originally designed to meet the challenges o f large-scale electronic publishing,

XML is also playing an increasingly important role in the exchange o f a wide variety o f

data on the Web and elsewhere” [29],

XML, describes a class of data objects called “XML documents” and partially describes

the behavior of computer programs which process them. XML is an application profile

or restricted form of SGML, the Standard Generalized Markup Language. By

construction, XML documents are conforming SGML documents.

XML documents are made up of storage units called “entities”, which contain either

parsed or unparsed data. Parsed data is made up of “characters”, some of which form

“character data”, and some of which form “markup”. Markup encodes a description of

the document's storage layout and logical structure. XML provides a mechanism to

impose constraints on the storage layout and logical structure [29, 31, 92, 138],

The main differences between XML and Hyper Text Markup Language (HTML) are:

□ XML is not a replacement for HTML

□ XML and HTML were designed with different goals:

□ XML was designed to describe data and to focus on what data is

□ HTML was designed to display data and to focus on how data looks

□ HTML is about displaying information, XML is about describing

information

□ XML allows new elements to be defined by the programmer.

□ XML separates presentation from data

□ XML is case-sensitive.

□ HTML is for web browsers, XML is for any sort of data transfer.

73

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

An example of an XML document is illustrated in figure 3.15.

<?xml version="1.0" ?>
<!— Create by Christofi Stelios — >

- <JWSI_Message>
- <Java_Web_Service_Message>

<Service_Name>Hull Generation</Service_Name>
<Service_Description>This service provides Hull generation mechanisms</Service_Description>
<Service_Keywords>Hull,Generate,ship</Service_Keywords>
<Service_Domain_Area>Ship Sector</Service_Domain_Area>
<Application_Filename>c:\programs\hull.exe</Application_Filename>
<Applicatian_IP_Address>192.0.0.10</Application_IP_Address>
<Security_Protocol>SSL 128 bit</Security_Protocol>
<Communication_Protocol>SOAP</Communication_Protocol>

- <Application_Inputs>
- d n p u t Number="l“>

<Name>Structure.xml</Name>
</Input>

</Application_Inputs>
- <Application_Outputs>

- «Output Number=“l">
<Name>HullStructure.xml</Name>

</Output>
</Application_Outputs>

</Java_Web_Service_Message>
</JWSI_Message>

Figure 3.15 An example o f an XML Document

To better understand the structure of the above XML document, it is converted into its

equivalent logical structure using a tree-like hierarchical structure. This is illustrated in

figure 3.16.

Figure 3.16 An example o f XML Document Logical Structure

74

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

As it can be seen from figure 3.16, an XML document has a tree-like structure, with the

root element (<JWSI_Message>) at the top of the tree. All the elements that are inside

the root element are also contained within each other. The document must contain one

and only one root element. An element is the parent of the elements it contains. The

elements that are inside an element are called children. Similarly, the elements that have

the same parent element are called siblings.

In this example, <JWSI_Message> is the parent of all other elements, <Service_Name>

is a child of <Java_Web_Service_Message>, and <Service_Name> and

<Service_Description> are siblings. Going down the element tree, each child element

must be fully contained with its parent element. Sibling elements may not overlap.

The XML language has been chosen as the infrastructure for data manipulation in

contradiction to the Comma Separated Values (CSV) files also known as “text” files, for

the following reasons [37, 80, 101, 103]:

a Standardisation

Standardisation in information representation and transfer is crucial to both B2B

and Business-To-Client (B2C) E-Commerce. XML is platform, application

independent, and vendor-neutral mechanism. XML relies on other technologies,

in particular, SGML for syntax, URIs for name identifiers, Extended Backus

Naur Form (EBNF) for grammar and Unicode for character encoding, which are

all standards.

□ Longevity

Electronic document formats can and do become "legacy formats" just like

punched-cards or micro-fiche. XML on the other hand, will never become a

legacy data format as everything about XML is open. In 20 years time XML 1.0

will certainly be "old" compared to, XML 6.0 but it will always be possible to

programmatically access the structure and content of XML 1.0 documents. XML

will never be legacy data. XML data will never need to be re-keyed. Even if a

75

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

system becomes obsolete, the XML data will live on and will remain accessible

in the long term.

□ Manageability

XML is very programmable. This is one of its major attractions when processing

high volume document collections. Other document formats-notably What You

See Is What You Get (WYSIWYG) formats-are notoriously difficult to process

in an automated fashion. The benefits of the high level of automation that can be

achieved with XML really become apparent as the volume of information

increases. For this thesis, it could have manually performed the conversion from

one XML document to another. However, the amount of time involved would

have been excessive. Moreover, mistakes due to human editing would have been

an inevitable consequence of manual intervention. The amount of human effort

involved in a manual XML transformation system is enormous.

□ Neutral

XML is the basic format for representing data on the Web Services platform. In

addition to being simple to create and parse, XML was chosen because it is

neither platform nor vendor specific. Being neutral is more important than being

technically superior. Software vendors are much more likely to adopt a neutral

technology rather than one that was invented by a competitor.

□ Business-to-Business Communication

Conducting Business-to-Business requires communicating with other companies

and often poses a challenge. XML simplifies B2B communication, particularly

in vertical industries for the following reasons:

• The only thing that is to be mutually agreed upon is the XML

vocabulary that will be used to represent data.

• Neither company has to know how the other's back-end systems are

organised, which does not put any extra technical burden whilst

76

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

maintaining privacy requirements. All that is required is that each

company develops the mappings to transform XML documents into

the internal format used by the back-end systems.

• XML-based solution is scalable. If there is an addition of another

partner, there is no need by the host company to interact with the

systems of the new company. What is needed is that the new

company follow the protocol established by the hosting company.

(The XML vocabulary).

3.3.8 XML Schema Languages

XML Schemas express shared vocabularies and allow applications to carry out rules

made by people. They provide a means for defining the structure, content and semantics

of XML documents [14, 30], There are currently a number of different schema language

representations in the market. In this section, a description of the two most known

schema languages will be presented.

3.3.8.1 Document Type Definition

The Document Type Definition (DTD) [73] specifies the structure of an XML

document, thereby allowing XML parsers to understand and interpret the document's

contents. The DTD contains the list of tags, which are allowed within the XML

document along with their types and attributes.

More specifically, the DTD defines how elements relate to one another within the

document's tree structure and specifies which attributes may be used with which

elements. Therefore, the DTD constrains the element types that can be incorporated in

the document and determines its conformance. An XML document, which conforms to

its DTD, is said to be “valid’.

Figure 3.17 illustrates the document type definition of the XML described in figure

3.15.

77

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

<?xml version-’ 1.0"?>
<!DOCTYPE JWSI Message [

<!ELEMENT JWSI Message (Java Web_Service_Message+)>
<!ELEMENT Java Web Service Message (Service_Name,Security_Protocol,
ApplicationFilename, ServiceDescription, Application IP Address, CommunicationProtocol,
SecurityKeywords, Service Domain Area, Application_Inputs+, Application_Outputs+)>
<!ELEMENT Service Name (#PCDATA)>
<!ELEMENT Security Protocol (#PCDATA)>
<!ELEMENT Application Filename (#PCDATA)>
<!ELEMENT Service Description (#PCDATA)>
<!ELEMENT Application ^ Address (#PCDATA)>
<!ELEMENT Communication Protocol (#PCDATA)>
<!ELEMENT Security Keywords (#PCDATA)>
<!ELEMENT Service Domain Area (#PCDATA)>
<!ELEMENT Applicationlnputs (Input+)>
<!ELEMENT Input (Name)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Application Outputs (Output+)>
<!ELEMENT Output (Name)>
]>

Figure 3.17 An example o f a Document Type Definition

An XML language is defined in a Document Type Definition (DTD). The DTD is either

contained in a “<!DOCTYPE> ” tag, contained in an external file and referenced from a

“<!DOCTYPE> ” tag, or both.

XML provides an application independent way of sharing data. With a DTD,

independent groups of people can agree to use a common DTD for interchanging data.

An application can use a standard DTD to verify that the data sent or received from the

outside world is valid.

3.3.8.2 XML Schema Definition Language

An XML Schema Definition (XSD) consists of components such as type definitions and

element declarations. These can be used to assess the validity of well-formed element

and attribute information items, and furthermore may specify augmentations to those

items and their descendants.

This augmentation makes explicit information which may have been implicit in the

original document, such as normalised and/or default values for attributes and elements

and the types of element and attribute information items [17].

Schema-validity assessment has two aspects:

78

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

□ Determining local schema-validity, that is whether an element or attribute

information item satisfies the constraints embodied in the relevant components

of an XML Schema.

□ Synthesising an overall validation outcome for the item, combining local

schema-validity with the results of schema-validity assessments of its

descendants, if any.

Figure 3.18 illustrates the XML Schema Definition (XSD) of the XML described in

figure 3.15.

<?xml version=" 1.0" encoding="UTF-8"?>
<xs:schema xm lns:xs-’http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">

<xs:e!ement name- "Application Filename" type="xs:string"/>
<xs:element name="Application_IP_Address" type="xs:string"/>
<xs:element name="Application_Inputs">

<xs:complexType> <xs:sequence>
<xs:element ref="Input" maxOccurs-'unbounded”/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name- ”Application Outputs">

<xs:complexType> <xs:sequence>
<xs:element ref="Output" maxOccurs="unbounded”/>

</xs:sequence>
</xs:complexT ype>

</xs:element>
<xs:element name="Communication Protocol" type="xs:string”/>
<xs:element name="Input">

<xs:complexType> <xs:sequence>
<xs:element ref="Name"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="JWSI_Message">

<xs:complexType> <xs:sequence>
<xs:element ref="Java_Web_Service_Message" maxOccurs="unbounded"/>
</xs:sequence>

</xs : complexType>
</xs:element>
<xs:element name="Java_Web_Service_Message">

<xs:complexType> <xs:sequence>
<xs:element ref="Service_Name"/>
<xs:element ref="Security Protocol"/>
<xs:element ref="Application_Filename"/>
<xs:element ref="Service_Description7>
<xs:element ref- "Application lP_Address"/>
<xs:element ref="Communication Protocol"/>
<xs:element ref=”Security_Keywords"/>
<xs:element ref="Service_Domain_Area"/>
<xs:element ref="Application Inputs" maxOccurs="unbounded"/>
<xs:element ref="Application_Outputs" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Output"> <xs:complexType> <xs:sequence>

<xs:element ref="Name"/>
</xs:sequence>

</xs: complexType>
</xs:element>
<xs:elcment name-"Sccurity_Keywords” type="xs:string"/>
<xs:element name^"Security Protocol" type="xs:string"/>
<xs:element name="Service_Description" type="xs:string"/>
<xs:element name="Service Domain Area” type="xs:string"/>
<xs:element name="Service_Name" type="xs:string"/>

</xs:schema>

Figure 3.18 An example o f an XSD
79

http://www.w3.org/2001/XMLSchema

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

33.8.3 Selecting the XML schema language

XML Schema is a more advanced version of DTD. DTD has lots of disadvantages over

schema, such as it does not support strong data typing, has syntax other than XML, and

it is not expandable. Schema was introduced to overcome those drawbacks. The most

common features of XML Schema are [17]:

□ Syntax is very similar to XML. This means that the schema can be edited by

using any XML editor.

□ Data types are not limited to string, integer, long, float but also it supports

custom data types.

□ XSDs are more robust and flexible than DTDs. Schemas are XML documents,

unlike DTDs, which contain non-XML syntax. Schemas also support

namespaces, which are required to avoid naming conflicts, and offer more

extensive data type and inheritance support.

□ XML Schema provides Content-Based Validation (the order in which the child

elements are nested) and also provides Data Type validations. Its functionality

and validation checks are supported for simple and complex data types.

□ XML Schema is easily extendible to incorporate more features in the future.

XML provides a simple way of representing data but it says nothing about the standard

set of data types available and how to extend that set, for example, whether an integer is

a 16, 32 or 64 bit. Such details are important to enable interoperability. The W3C XML

Schema (XSD) is a standard that specifies some built-in types and language to define

additional types. The Web Services platform uses XSD as its type system. When a Web

Service is build, the data types that are used must be translated to XSD types to conform

to the Web Services standards.

Taking into consideration the above limitations of DTDs, and the wide use of XSD, it

has been decided to use the XML schema definition language as the infrastructure for

describing the XML documents that will be used in this thesis.

80

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.3.9 Extensible Stylesheet Language

XSL stands for extensible Stylesheet Language. XSL [1, 13] is a language for

expressing stylesheets and consists of two parts [116]:

□ XSL Transformations (XSLT), a language for transforming XML documents,

and

□ XSL Formatting Objects, an XML vocabulary for specifying formatting

semantics.

An XSL stylesheet processor accepts a document or data in XML and an XSL stylesheet

and produces the presentation of that XML source content as intended by the designer

of that stylesheet.

There are two aspects of this presentation process: first, constructing a result tree from

the XML source tree and second, interpreting the result tree to produce formatted results

suitable for presentation on a display, on paper, or onto other media. The first aspect is

called “tree transformation” and the second is called “formatting”. The process of

formatting is performed by the "formatter \ This formatter may be a rendering engine

inside a browser.

Tree transformation allows the structure of the result tree to be significantly different

from the structure of the source tree. For example, a table-of-contents can be added as a

filtered selection of an original source document, or source data can be rearranged into a

sorted tabular presentation. In constructing the result tree, the tree transformation

process also adds the information necessary to format that result tree.

Figure 3.19 shows a sample XML file and how it can be transformed and rendered.

81

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

<Java _Web_Service>
<Service_Name>Passenger Distribution</Service_Name>
<Security_Protocol>SSL </Security_Protocol>
<Communication_Protocol>SOAP </Communication_Protocol >

</Java Web Service>

r XML file

Combining the XML file with the XSL file

<?xml version="1.0"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0" >

<xsl:output method="htinl" indent="yes"/>
<xsl:template match="Service_Name">

<xsl:apply-templates/>

</br>

</xsl:template>

<xsl:template match="Security_Protocol">

<xsl:value-of select="Communication_Protocol"/>

<xsl:apply-templates/>:

</xsI:template>
</xsl:stylesheet>

: Will result to the following output format

Passenger Distribution
SSL: SOAP

Figure 3.19 Applying XSL on an XML file

The stylesheet can be used to transform any instance of the XML it was designed for.

The first rule says that a “Service Name” element will be transformed into an html

block with a bold font. “<xsl:apply-templates/>” is a recursive call to the template rules

for the contents of the current element. The second template applies to all

“Service Protocol” elements and formats them as text colour blue and the third

template is applied to all “Communication ProtocoF elements as shown in figure 3.19.

82

http://www.w3.org/1999/XSL/Transform

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.3.10 XSL Transformations

XSLT [26, 34, 80] stands for extensible Stylesheet Language Transformations. XSLT

is a language for transforming XML documents into other XML documents.

XSLT is designed for use as part of XSL, which is a stylesheet language for XML. In

addition to XSLT, XSL includes an XML vocabulary for specifying formatting. XSL

specifies the styling of an XML document by using XSLT to describe how the

document is transformed into another XML document that uses the formatting

vocabulary.

XSLT is also designed to be used independently of XSL. However, XSLT is not

intended as a completely general-purpose XML transformation language. Rather it is

designed primarily for the kinds of transformations that are needed when XSLT is used

as part of XSL.

Figure 3.20 illustrates and gives a brief description of an example of an XSLT

document.

XML Declaration

Document
Element <?xml version=”1.0”?> XSLT Namespace Declaration

<xsl:transform xmlns:xsl-http://www.w3.org/xsl/Transform
version =”1.0”> ___________

Result Tree
Template<xsl:output method=”xml” indent =”yes”/>

<xsl:template match=”/”
<xsl:value-of-select=”Java Service Name”/>

/xsl:template>

L</xsl:transform>
Template
Rule

XSLT
Instruction

Figure 3.20 An example o f an XSLT

After discussing the different technologies of the XML language, the next section is set

to discuss the advantages and drawbacks of using the Java language to implement the

proposed system.

83

http://www.w3.org/xsl/Transform

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.3.11 Java Language

Based on the 4th requirement of this thesis [see section 3.2], it is necessary to design and

develop small peers to participate into the integration process. These peers will be

developed using the Java language for the reasons that will be discussed further in this

section. The purpose of these Java peers is to establish a communication line between

the two dynamic integrated applications, which will act as agents on the client’s and

server’s machine, to send and receive requests from both locations. Furthermore, they

will have the ability to dynamically publish Java Services on a UDDI and at the same

time dynamically discover new Java Services for the purpose of integrating two or more

applications together.

More specifically, the main requirements of these Java peers are:

□ The portability to many operating systems.

□ Usability, since most of the users may not be computer literate.

□ Ease of navigation and control, for the purpose of minimising the time

required to initiate communication between the client and the server.

□ Easy setup and configuration.

After evaluating a number of programming languages like Visual Basic, Visual C++,

Visual Fortran, .NET language, it has been decided to use the Java language, which

satisfies all the above requirements. A more detailed discussion about the Java language

follows.

“Java is a simple, object-oriented, network-savvy, interpreted, robust, secure,

architecture neutral, portable, high-performance, multithreaded, dynamic

language.'^ 126]

The above statement taken from the Sun Microsystems’s Web site gives an overall

picture of the capabilities of the Java language.

84

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

The Java programming language offers several distinct advantages [27, 40, 74, 80, 122]:

□ Simplicity

The Java programming language is easy to learn and use. The language also

brings the productivity enhancements from object-oriented methodologies.

There is a large and rapidly growing supply of developer talent in the industry,

making it easier to staff new projects.

□ Security

For distributed networked applications, the Java programming language features

robust security. The run-time environment creates a "sandbox" where

applications can execute safely, with fine-grained access restrictions on system

resources. The lack of pointers also eliminates direct memory access, resulting

in fewer bugs.

□ Portability

By using an underlying Java run-time environment, applications can be easily

developed on a desktop system using standard software development tools. By

taking into account the underlying target hardware characteristics, developers

can then move applications with minimal effort to the target device.

As a result, applications written in the Java programming language are easily migrated

across product lines, greatly simplifying porting and development efforts. In this way,

the Java programming language can provide a much higher degree of standardisation in

the real-time world.

As it can be seen, the advantages of using the Java language are great, as already

discussed in this section, and that is why it has been selected as the main programming

language of developing the Java peers.

To satisfy the requirements set out in section 3.2, it is now appropriate to describe the

overall peer-to-peer architecture and how the methodologies stated in that section fit

into the overall architecture. The following section provides a detailed description of the

Java Web Service Integrator (JWSI), as well as a detailed discussion of the overall

technical peer-to-peer platform proposed in this thesis.

85

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.4 Java Web Service Integrator

This section describes in detail the functionality of the Java Web Service Integrator

(JWSI). It continues with a detailed description of each JWSI component. The JWSI is a

small java agent that is installed on the client machine together with the application that

needs to be integrated. It acts as a peer for the client and provides the necessary

functionality to the client to integrate the client application with other applications on

the Internet. This system has been developed in order to prove the concepts already

discussed in this thesis and to demonstrate the proposed P2P architecture in a fully

simulated environment. Figure 3.21 illustrates the architecture of the Java Web Service

Integrator.

Java Web Service Integrator

XML Controller

XML Converter
Manager

XSLT Engine

XML Mapper
Tnnl

! < = ■

\< = >

«

»

Service Controller

Service Discovery
Manager

Publish Sers ice
Manager

Û t
Schedule Manager

Security Manager

I I

«
Communication

Manager

k = o

Java
DB

n
Database Storage

Manager

Figure 3.21 The Java Web Service Integrator

The Java Web Service Integrator comprises of the following components:

□ File Storage Manager

The purpose of the File Storage Manager is to enable the interaction between the

JWSI and the File System of the Operating System. The main role is the

manipulation of physical files (i.e. Read, Write, Check file timestamp) on the

Physical drive of the machine that is running the JWSI. These functions are

86

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

executed in predefined interval of times as scheduled by the Schedule Manager.

The Communication Manager will transfer these physical files to other peer

agents after a Java Web Service request.

□ ODBC Java Manager

The purpose of the Open Data Base Connectivity (ODBC) Java Manager is to

enable the interaction between the JWSI and the client Database. This is

achieved via the ODBC driver that is found in all operating systems and the Java

Data Base Connectivity (JDBC) driver that exists as part of the JWSI library.

The two drivers work together so as the JWSI can access information that is

stored in any ODBC enabled database on the client site. An ODBC enabled

database is a database that can communicate with an ODBC driver. The

advantage of this component is to enable the JWSI to extract any information

that is stored in a custom made database, unknown to the JWSI and publish this

information on the UDDI. Other legacy systems running the JWSI can download

this information via a Java Web Service and integrate it with their existing

custom made databases to be used by their legacy systems.

□ Database Storage Manager

The purpose of the Database Storage Manager is the storage and retrieval of

information, including the transmitted XML files, in the local Java Database of

the JWSI. The advantages of using a light Java Database Engine as part of the

JWSI architecture are endless. Firstly, the JWSI does not have to retrieve any

information which is part of the local application profile from a remote server,

and hence reduce the time of accessing the information and minimise the remote

communication costs. Secondly, the JWSI is independent of any other

application or server and hence can be installed on any machine with minimal

requirements. Last and not least, the JWSI keeps a history of all integrated

applications in the Database so that next time an application needs to be

integrated with another application, the mappings between these two does not

have to be created again. By doing that, the JWSI keeps a history of all

information that is stored in the Database and hence the JWSI uses this

information intelligently to be used for future integrations.

87

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

□ Schedule Manager

The Schedule Manager has an important role on the JWSI overall architecture.

The Schedule Manager is responsible to schedule almost all components that are

found in the JWSI and subsequently, provide a better way to increase the

efficiency of the JWSI. It schedules not only the File Storage Manager, the

ODBC Java Manager and the Database Storage Managers but also it schedules

the Service Controller to publish and subscribe the different services that the

JWSI has to offer. Moreover, it schedules the XML controller to start at specific

times in order to convert any file coming from the local legacy application to an

XML file where it can be converted to a Java Web Service.

□ XML Controller

The XML Controller comprises of three main parts.

• The XML Converter Manager

• The XSLT Engine

• The XML Mapper Tool

Each part has specific responsibilities. The XML Converter Manager is

responsible for converting Comma Separated Values (CSV) files to XML files

and vice versa. Furthermore, it is responsible to convert from any XML file to

another XML file with different XML schemas. This is accomplished using the

XSLT Engine as a catalyst during the XML conversion process. The XML

conversion starts and finishes according to the instructions sent by the Schedule

Manager during the lifecycle of the integration process.

The role of the XSLT Engine is twofold. Firstly, it is responsible to act as a

catalyst to the XML conversion process by applying the XSLT templates during

the conversion and secondly, it is responsible to create the dynamic XSLT

templates during the creation of the XML mappings. This is done via the XML

Mapper Tool. This Tool provides an interface where the source and destination

schemas of two different CSV or XML files are loaded and hence provides to

the client an easy to use tool for the purpose of creating dynamically XSLT

templates for the two corresponding files. It is important to note that the XSLT

of any pair files can be created only once and the corresponding XSLT

88

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

mappings are being stored into the local Java Database for future access. In

cases when the Java Web Service is clearly understood (i.e. each attribute of the

published Java Web Service corresponds to the attributes needed to be

consumed by the client) by a newly created application wanted to be integrated

into the architecture, then the client does not have to create the XSLT mappings.

These mappings will be created by the JWSI automatically and therefore, this

helps the user to simplify the dynamic integration process with other

applications.

□ Service Controller

The Service Controller comprises of two main parts.

• The Publish Service Manager

• The Service Discovery Manager

The purpose of the Publish Service Manager is to publish on the UDDI any new

Java Web Services that will be created by the JWSI. The JWSI provides to the

client an easy-to-use wizard where the service can be created according to the

inputs and outputs of the legacy application. Besides inputs and outputs, this

service will contain information, such as the purpose of the service, any special

integration requirements, security restrictions etc. The JWSI will be in a position

to recognise these service “tags” and will take appropriate actions to initiate the

integration process. A number of services can be published based on the same

application but with different “tags”.

The purpose of the Service Discovery Manager is to search periodically the

UDDI registry for new Java Web Services. These newly found services are

downloaded and stored in the local Java database to be accessed by the local

legacy applications. Only the Java services that are compatible with the local

legacy application are downloaded to the client so as to avoid the download of

unnecessary potential services that are not applicable to the client. These newly

found services are evaluated based on some criteria that the client has to supply

prior to initiating the Service Discovery Manager. Moreover, the Discovery

Manager is responsible to synchronise the existing services between the above

registry and the services that are found in the local Java database in case the

89

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

client has modified them. This is done to ensure consistency and to guarantee

that no unexpected errors will occur during the integration process of the two

applications. As already mentioned above, the Schedule Manager initiates the

Service Controller.

□ Communication Manager

The purpose of the Communication Manager is to negotiate the available

transport protocols that exist between the two peers and establish a secure

communication between them. During the negotiation, a lot of parameters have

to be taken into consideration before both peers agree to communicate. One of

these parameters is the security, which is handled by the Security Manager. The

Java Web Service specifies the level of security that needs to be used during the

communication. If any of the security parameters does not exist in a service,

then this means that the information needed to be interchanged between the

peers is not confidential and consequently, no security measures need to be

taken. After the handshake has been achieved, the Communication Manager

sends the necessary information to the requested application. The Internet

Protocol (IP) address of the ‘server’ application that published the service can

be found on the envelope of the Java Web Service. This process enables the

dynamic discovery of Java Web Services on the UDDI and the dynamic

integration of legacy applications without prior knowledge of the two legacy

applications.

□ Security Manager

Due to the architecture of the Internet and Intranet, there will always be ways for

unscrupulous people to intercept and replace data in transit. Without security

precautions, users might encounter security problems when sending information

over the Internet or an Intranet. The Security Manager is responsible to ensure

the secure communication between the two peers. This is accomplished by using

a number of security protocols that will guarantee the delivery and the integrity

of the data sent between the two peers. Each Java Service has to list all security

parameters that are applicable for the published service so that the requested

peer knows what security parameters needs to be inserted to that service before

the two peers come to a handshake. The following security parameters may be

90

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

used to ensure a secure communication. For each service a unique identifier is

generated bound between the published service and the legacy application that is

involved. When the requested peer tries to check the credentials of that service

then this unique identifier will be cross-checked against the unique identifier that

is found on the JWSI of the published service. By this way, it is guaranteed that

the requested peer using the service is communicating with the correct peer

holding the same unique identifier as the published service.

Another major security problem is impersonation, where information passes to

or from a person who poses as the intended recipient or as the sender of the

message. The chances of impersonation can be reduced if people are forced to

authenticate (or verify their identities) before communicating information. On

the Internet and Intranet someone can use digital certificates to ensure that users

or computers are who they say they are. In this way, a certificate acts as a digital

ID. This is one of the security technologies that the Security Manager is using to

solve the problem of impersonation.

On top of these security techniques, an encryption algorithm of 128bit key is

being used in order to make sure that nobody can manipulate the communication

lines and hence read the transmitted data.

By using the above security techniques, it is guaranteed that the communication

path between the two peers is secured and ready for transmission. These security

techniques can be used either individually or by a combination of them to

increase the security according to the confidentially of the data needed to be

integrated.

To sum up, the above section discussed in detail the functionally of each component

found in a JWSI peer and hence satisfied the requirement “vi” mentioned in section 3.2.

The following section is set to describe the overall technical P2P platform and how the

JWSI peers fit into this architecture proposed in this thesis. This will be achieved by the

use of a “Use Case” scenario.

91

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.5 OVERALL TECHNICAL P2P PLATFORM

Summarising all the requirements that have been identified and explained in section 3.2

and after a detailed survey of methodologies was conducted; the overall P2P platform

architecture is presented in figure 3.22.

Universal Description, Discovery
and Integration Registry

IDDI

Discover
server
application

Java Web Services

Request for file

A Publish server
application
information

Figure 3.22 An Overall Architecture o f the Platform

The above architecture comprises of three main units:

□ The Client Application and Java Web Service Integrator

□ The Server Application and Web Service Integrator

□ The Universal Description, Discovery and Integration (UDDI) Registry

Although in this architecture the terms ‘Client’ and ‘Server’ are used, it must be noted

that this is only done for convenience purposes, i.e. so that the two Applications

participating in the scenario discussed below can be distinguished. In fact, all

applications acting in a P2P fashion are both client and servers.

92

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

The UDDI is an Internet based registry containing searchable descriptions of published

Application Services Interfaces (ASIs) and of other related information (such as the IP

address of the server, supported communication protocols etc). In this Integration

architecture, these ASIs referred to ‘Java Web Services’ because they are services,

which are created by the Java peers. A Java Web Service is an XML Schema that

describes a type of business document that can be provided by the application. Once a

client identifies a suitable application, it uses information contained in the UDDI

registry to contact the server application directly. The UDDI, therefore, acts only as an

intermediary (broker) without actually intervening in the integration process. The UDDI

specification is the building block that will enable businesses to quickly, easily and

dynamically find and transact business with one another using their preferred

applications [134, 135], Today's business imperatives are clearer than ever. Business are

trying to beat competitors by introducing new products to the market, deliver

personalised services, increase customer loyalty, and evolve at electronic speeds. These

imperatives demand a technology infrastructure that is more flexible, dynamic and

business-intelligent than ever. Java Web services based on UDDI are an evolution in e-

business applications that will help businesses reach these goals and take Business-to-

Business (B2B) to the next level.

In order to understand the overall architecture presented in figure 3.22 a “Use Case”

scenario will be discussed in the following section.

Before the integration process takes place, the user of the application server needs to

create the Java Web Service. This is achieved by using the “Java Web Service Wizard”.

In this wizard, the user needs to follow some steps before the service is created and

published on the UDDI registry. Some main parameters that have to be specified for this

service are: Service name, service description, inputs values for the application, outputs

of the application, the IP address of the client running the application, available

communication protocols, confidentiality of information and the security protocols

applicable. After these parameters have been specified, the Published Service Manager

publishes the service on the UDDI registry. The integration process can now be

initiated.

93

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

Before the user of the client application initiates the Service Discovery Manager, the

JWSI needs to be configured. The configuration process is essential since the JWSI

must know the inputs and outputs of the local application needed to be integrated. This

is important in order for the JWSI to know which dynamic services are needed to be

downloaded from the UDDI. This is accomplished by comparing the description of the

service on the UDDI and the description of the local application. Not all Java Web

Services found on the UDDI are downloaded since this is unnecessary and inefficient.

After the two above steps have been completed, the integration process may commence.

During interval amounts of time the Discovery Service Manager searches the UDDI for

any new services that closely match the specification of the pre-configured JWSI, to

which the local application requested to be integrated. If a new service is dynamically

discovered for the first time then the schema of this service is downloaded and listed

under the newly found services window where the user has to create an XSLT between

the Java Web Service and the local application. This is accomplished via the XML

Mapper Tool, where the user maps the fields of the XML schema of the Java Web

Service with the fields of the schema of the local application. The outcome of this

process is an XSLT, which corresponds to the mappings of the two schemas. If a new

service is dynamically discovered and the XSLT for that service already exists, then

control is given to the Communication Manager to resolve the destination IP address of

the server application that offers this service.

If for any reason the destination server is unavailable because of a temporary computer

failure, the Communication Manager is re-scheduled to initiate a second handshake after

a predefined interval of time. If after 10 re-tries the server is still unavailable, then the

Communication Manager marks the recent service as “Not Available” and returns

control back to the Discovery Service Manger to search for any new services. If the

server is “Available” and hence the service is ready to be used, the two JWSI peers try

to negotiate the security as well as the communication protocols that are available

between each other, in order to establish a secure and reliable connection. The first step

is to negotiate the available communication protocols and the second step is to decide

on the security. For this scenario, the available communication protocols that are listed

on the envelope of the service are: HTTP, HTTPS, SMTP, FTP, and SOAP. Since all

communication protocols are available, the two peers need to decide which of them is

94

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

more appropriate to be used in this situation. For example, the following decision rules

are applied in order to select the appropriate protocol. One of the rules is the

measurement of the communication bandwidth. This is accomplished by having the two

peers send some “test data” of different sizes to each other. In this way, the bandwidth

and speed of the communication line is measured and hence the selection of the

available protocol is based on these results. Below, is a list of protocols and

explanations on where these protocols may be used for each specific scenario:

□ Simple Mail Transfer Protocol

The Simple Mail Transfer Protocol (SMTP) is likely to be used, in the shipping

context environment, when ships are in the middle of the ocean and are using the

low bandwidth but expensive satellite link as means of communication. This

asynchronous communication is also applicable when the transmission has to

obey certain timing and delivery constrains. In a general context environment,

SMTP is likely to be used when the server supporting the Java Web Service is

not available. This is critical since the requested application can send the

information via SMTP and then when the server is available can extract this

information from the SMTP server and process the transaction at a later stage.

This kind of integration is applicable when the integrated data is not so

confidential and does not require an immediate response from the server.

□ File Transfer Protocol

The File Transfer Protocol (FTP) is used when the transfer of data is very large.

This is essential when large volumes of data are interchanged between the two

applications in a timely manner. In the future, this protocol can be extended to

support Virtual Private Networks (VPNs), as well as where the transfer of data is

even faster.

□ Hyper Text Transfer Protocol or Simple Object Access protocol

Hyper Text Transfer Protocol (HTTP) over Transmission Control

Protocol/lnternet Protocol (TCP/IP), in the shipping context environment, is

likely to be used when ships are near shore and can use dial-up connections

using Global System for Mobile Communication (GSM) or similar carrier. This

protocol works over TCP/IP networks that have firewalls installed and only the

95

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

HTTP protocol is employed throughout. Firewalls are software or hardware

systems, which are installed to block any malicious incoming events from

unauthorised persons. They usually permit communication only on port 80,

which is the default port for this protocol. Hyper Text Transfer Protocol Secure

(HTTPS) will be used if confidential information needs to be exchanged

between the two legacy applications. This is because it adds a layer of

complexity, which may reduce the transfer rate of the data. In a general context

environment, the SOAP protocol over the HTTP or the HTTP alone is likely to

be used for almost all transactions taking place between the two peers.

After the most appropriate communication protocol is selected, based on the above

criteria, the Security Manager takes place to negotiate the level of security that needs to

be applied on the communication line. It is important to note that different security

techniques may be applied on different communication protocols. In this scenario, the

available security protocols are as follows:

□ Encryption over SMTP with different encryption algorithms i.e.3DES. 3DES is

a cryptosystem, which can encrypt and decrypt data using a single secret key.

□ Encryption over FTP and HTTP with 40-bit or 128-bit key. The Secure Socket

Layer (SSL) security protocol provides data encryption, server authentication,

message integrity, and optional client authentication for a TCP/IP connection.

□ Digital Signatures. Asymmetric (or public key) cryptography involves two

related keys, one of which only the owner knows (the 'private key') and the other

which anyone can know (the 'public key'). The advantages this technology has

provided are that only one party needs to know the private key; and that

knowledge of the public key by a third party does not compromise security.

A digital signature is a 'message digest' (created by processing the message

contents using a special algorithm) encrypted using the sender's private key. The

recipient can, by re-creating the message digest from the message that they

receive, using the sender's public key to decrypt the digital signature. Then by

comparing the two results, satisfy themselves not only that the contents of the

96

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

message received must be the same as that which was sent (data integrity), but

also that the message can only have been sent by the supposed sender (sender

authentication), and that the sender cannot credibly deny that they sent it (non-

repudiation) [108].

□ No Security. This is the default value of all Java Web Services and it is used

when security is not an issue and the information that needs to be interchanged is

not confidential.

After the security protocol has been selected and before it is ready to be used by the

communication protocol, a “validation check" is performed to identify if the selected

security protocol is applicable for the selected communication protocol. For example, if

the selected communication protocol was HTTP and the selected security protocol was

the “Encryption over SMTP” then the security protocol is discarded since it cannot be

applied over the HTTP protocol. In such a case, the Security Manager continues to the

next available security protocol and the “validation check” is performed once again. For

this scenario, the next available protocol will be the “Encryption with 128-bit key”,

which is compatible with the HTTP protocol.

Once the communication protocol and the security protocols have been selected, the two

peers are now ready to interchange the XML data for the purpose of integrating the two

applications.

The JWSI of the server, via the File Storage Manager (FSM), reads the exported CSV

file that has been created by the local application. The FSM converts the exported data

into the corresponding XML file, which in turn is passed to the Communication

Manager via the Schedule Manager in order to be transmitted to the requested JWSI of

the client.

When the transmitted XML file is reached to the client site then the Communication

Manager passes the XML file to the XML converter Manager. This is in order to

convert the incoming XML file to an XML file readable by the client application. This

is accomplished by the use of the XSLT Engine and the XSLT file that was created at

the beginning of this scenario. The output XML file is then converted to a CSV file and

97

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

stored into a specific folder on the Computer in order to be accessed at a later stage by

the client application. By doing that, this completes the integration process of the two

peers and the Communication Managers of both peers close the communication line.

The JWSI then enters into the same stage, as before, that is to monitor for new Java

Web Services on the UDDI registry.

As can be seen, the above scenario is composed of three phases.

A. Create/publish Server Java Web Service

B. Configuration of client legacy application

C. Dynamic integration

Below is a list of steps that summarises the process followed in these three phases.

Phase A: Create/publish Server Java Service

□ Start “Create Service Wizard’

□ Specify Service attributes.

□ Specify service application’s inputs

□ Specify service application’s outputs.

□ Prepare Service Schema.

□ Store Service Schema into local database.

□ Publish Service in UDDI.

Phase B: Configuration of client legacy application

□ Start “Configuration” Wizard.

□ Specify client application description

□ Specify client application domain area

□ Store configuration into local database

98

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

Phase C: Dynamic integration

□ New data found from legacy application.

□ Initiate the Service Discovery Manager.

□ Suitable Service found and downloaded from UDDI.

□ Contact Server peers and prepare for handshake.

□ Negotiate Communication Protocol.

□ Negotiate Security Protocol.

□ Establish connection between peers.

□ Transfer of data in a SOAP envelope.

□ Convert received data into local schema based on the XSLT.

□ Convert transformed XML data into CSV format.

The key issue of a shipping integration approach is the fact that most shipping

applications can be classified as legacy ones, i.e. they do not provide an open

Application Programming Interface (API). Application integration without the use of

API is not so efficient. But on the contrary, this research suggests a unique dynamic

integration methodology using the latest technologies. This is possible without the

dependence on the application provider, as the legacy application does not have to be

modified internally in any way.

In conclusion, it can be seen that the above detailed architecture of the platform satisfies

all the requirements listed in section 3.2 in order to achieve the dynamic application

integration using the peer to peer technology.

99

Dynamic Application Integration Using Peer to Peer Technology Chapter 3

3.6 CONCLUDING REMARKS

This chapter provided the requirements analysis for this thesis and a survey of relevant

methodologies. Java Web Services provide the potential solution for integration. These

ingredients are required to exchange information in a peer-to-peer manner for dynamic

application integration.

An approach to the dynamic application integration has been proposed, which is

followed by a detailed description of the technical architecture of the overall system.

Finally, the different communication protocols have been described, giving a summary

of the steps involved in achieving the dynamic application integration.

In the next chapter, the design of the proposed system will be presented taking into

account the results of the requirements analysis and the conclusions drawn from the

methodological and architectural issues.

100

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

Chapter 4

SYSTEM DESIGN AND ANALYSIS

4.1 INTRODUCTION

Following the requirements specification phase, the design process aims to provide an

efficient solution to the problem stated, that is to achieve P2P dynamic application

integration. Efficiency is assessed in terms of delivering a system that meets the

requirements in a way acceptable to the users, subject to constraints by the limitations of

tools and methodologies available.

The design phase uses models that can be understood by technically and none

technically agnostic people. This chapter presents such models, which are needed for

the design aspects of the Dynamic Integration platform. During the description of the

design, the Unified Modeling Language (UML) is applied, which is a standard language

for visual modeling. In this respect, Rational Rose 2002 will be used, since this tool

supports and incorporates the UML notation. The basic elements of UML and Rational

Rose together with their corresponding notations are also presented in this chapter.

101

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

4.2 UML AND RATIONAL ROSE

Modeling is an essential part of large software projects, and helpful to medium and even

small projects as well. A model plays the analogous role in software development that

blueprints and other plans, such as site maps, physical models, etc, play in the

construction of a building. Using a model, those responsible for a software development

project's success can assure themselves that business functionality is complete and

correct, end-user needs are met, and program design supports requirements for

scalability, robustness, security, extendibility, and other characteristics, before

implementation in code renders changes difficult and expensive to make. There are

many additional factors for a project's success, but having a rigorous modeling language

standard is one essential factor [107]. For these reasons a modeling language for

modeling the system during the design phase is essential. It has been decided to use the

UML as the modeling language for the reasons outlined in the following section.

4.2.1 The Unified Modeling Language

The Unified Modeling Language (UML) is the industry-standard language for

specifying, visualizing, constructing, and documenting the artifacts of software systems.

It simplifies the complex process of software design, making a "blueprint" for

construction [2,8].

The UML specifies a modeling language that incorporates the object-oriented

community’s consensus on core modeling concepts. It allows deviations to be expressed

in terms of its extension mechanisms. The objectives of the UML modelling language

are to:

□ provide sufficient semantics and notation to address a wide variety of

contemporary modeling issues in a direct and economical fashion.

□ provide sufficient semantics to address certain expected future modeling issues,

specifically related to component technology, distributed computing,

frameworks, and executability.

102

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

□ provide extensibility mechanisms so individual projects can extend the

metamodel for their application at low cost.

□ provide extensibility mechanisms so that future modeling approaches could be

grown on top of the UML.

□ provide sufficient semantics to facilitate model interchange among a variety of

tools.

□ provide sufficient semantics to specify the interface to repositories for the

sharing and storage of model artifacts.

There are nine types of Diagrams in the UML, which are outlined as follows.

□ Class diagram: Shows a set of classes, interfaces, and collaborations and their

relationships. This is the most common type of diagram used when modeling

Object Oriented systems.

□ Object diagram: Shows a set of objects and their relationships. Can be thought

of as an instance of a Class diagram.

□ Use case diagram: Shows a set of use cases and actors and their relationships.

These types of diagrams drive the whole development process since they

describe the requirements of the system.

□ Sequence diagram: Shows an interaction, consisting of a set of objects and their

relationships, including the messages that may be dispatched among them.

Emphasizes the time-ordering of messages.

□ Collaboration diagram: Shows an interaction, consisting of a set of objects and

their relationships, including the messages that may be dispatched among them.

Emphasises the structural organization of the objects that send and receive

messages.

□ Statechart diagram: Shows a state machine, consisting of states, transitions,

events, and activities.

103

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

□ Activity diagram: Special kind of a Statechart diagram that shows the flow

from activity to activity within a system. They are very similar to flowchart

diagrams except that concurrency may be modelled in Activity diagrams.

□ Component diagram: Shows the organizations and dependencies among a set

of components.

□ Deployment diagram: Shows the configuration of run - time processing nodes

and the components that live on them.

There are also five types of Views in the UMT, which are the following:

□ Use case view: Encompass the use cases that describe the behaviour of the

system as seen by its end users, analysts, and testers.

□ Design view : Encompass the classes, interfaces, and collaborations that form

the vocabulary of the problem and its solution.

□ Process view : Encompass the threads and processes that form the system's

concurrency and synchronization mechanisms.

□ Implementation view : Encompass the components and files that are used to

assemble and release the physical system.

□ Deployment view : Encompass the nodes that form the system's hardware

topology on which the system executes.

Each of the five views is a projection into the organisation and structure of the system,

focused on a particular aspect of that system. Each of these five views can stand alone

so that different stakeholders can focus on the issues of the system's architecture that

most concern them. The five views also interact with each other. For example, nodes

in the deployment view hold components in the implementation view that, in turn,

represent the physical realisation of classes, interfaces, collaborations, and active classes

from the design and process views.

104

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

4.2.2 Rational Rose

The analysis and design of the system has been supported by the use of a modeling tool

called Rational Rose. Rational Rose supports the UML (see section 4.2.1), an industry

standard, that allows analysts and designers to express object-orientated concepts.

Rational Rose uses some district views during the stages of analysis and design. These

views are: Use Case view, Logical view, Component view and Deployment view. These

views allow the users to model the components and interfaces of a system, specify its

behaviour and define the collaborations among the system elements.

A brief description of each one of these views follows.

□ Use Case View

The Use Case View includes all of the actors, Use Cases, and Use Case

Diagrams in the system. The Use Case view is an implementation-independent

presentation of the system. It focuses on a high level picture of what the system

will do, without worrying about the details of how the system will do it. The Use

Case View is illustrated in figure 4.1.

Rational Rose - JWSI.mdl I
File Edit View Format Browse Report Query Tools Add-Ins Wi

x, % m | # | * ? f n | i B i s B
--i----------■

S O Configuration Wizard

S JWSI
E Q j Use Case View

Main
B Overall Case Diagram
[} Client 2 Peer Sequence Diagram
¡ti: Client Sequence Diagram
5 Client Sequence Diagram
iHi Client2 Peer Sequence Diagram
m Server Sequence Diagram
J j Server Sequence Diagram
|H Supplier 2 peer Sequence Diagram

--[IP] Supplier 2 peer Sequence Diagram
Client Application

ft, Client/Consumer
j* Java Service Database
* Server Application
*•. Server/Producer
* XSLT Repository

0 - 0 Communication Manager

*
A8C

□

a
Q

71

S
0
a
m
s
e
3

Figure 4.1 Use Case View in the Rational Rose Browser

105

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

□ Logical View

The Logical View focuses on how the system will implement the behaviour in

the Use Cases. It provides a detailed picture of the components of the system

and describes how the components are interconnected. The Logical View

includes among other things, the Analysis Model and the Design Model. The

Logical View is illustrated in figure 4.2.
V Rational Rose - JWSI.mdl

Fie Edit View Format Browse Report Query Tools Add-Ir

d & y * ? n u s a s

S JWSI
E Cj Use Case View

Logical View
J] JWSI Class Diagram
B NewClass

Associations
0 L J Component View

SJ JWSI Component Diagram
rfj Communication Manager

Configuration Wizard
SjO Create Service Wizard
30 Java Configuration Database

IT
ABC

IB

B
-o
r

Figure 4.2 Logical View in the Rational Rose Browser

□ Component View

The Component View contains information about the executable files, runtime

libraries and other components of the system model. A Component is a physical

module of code. In Rational Rose, Component Diagrams are displayed in the

Components View. The Component View allows you to see the relationships

between the modules. The Component View can be seen in figure 4.3.

I V Rational Rose - JWSI.mdl
File Edit View Format Browse Report Query Tools Add-Ins Wi

D g$ W » . % i n ? n m @ 0

n r3 i JWSI
É Cj Use Case View ABC
à Cj Logical View E3
b 1 i

€J JWSI Component Diagram
30 Communication Manager Q
30 Configuration Wizard
30 Create Service Wizard o

30 Java Configuration Database £
30 Java Service Database r
30 <<Application>> Java Web Service Integrator: Client
30 <<Application>> Java Web Service Integrator: Server
30 Publish Service Manager
30 Service Discovery Manager
30 Universal Description Discovery & Integration
Ci XML Controllet
30 XSLT Repository: Client
30 XSLT Repository: Server

S CP Deployment View
Êà Model Properties

Figure 4.3 Component View in the Rational Rose Browser

106

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

□ Deployment View

The final view in Rational Rose is the Deployment View. The Deployment View

is concerned with the physical deployment of the system. The Deployment View

is illustrated in figure 4.4.

V Rational Rose - JWSI.mdl

File Edit View Format Browse Report Query Tools Add-]

d & y 1 & e i m n ® m si e
1 K

JWSI
1+ Cj Use Case View ABC
E Cj Logical View a
EE C j Component View
E id Deployment View

(3 Java Web Service Integrator: Client
3 Java Web Service Integrator: Server
3 Universal Description Discovery t Integration
3 Java Configuration Database *
3 Java Service Database r*
3 XSLT Repository: Client
3 XSLT Repository: Server

i2a Model Properties

Figure 4.4 Deployment View in the Rational Rose Browser

4.2.3 Elements and Notations

This section presents some elements and notation of the Unified Modeling Language.

These elements are used during the analysis and design stages of the system. The

graphical notation and textual syntax are essentially the most basic part of the UML,

utilised by tools and end-users in order to model systems.

The following are some of the important elements and graphical notations of UML [2,

27,41, 104],

□ Use Case

A Use Case (see figure 4.5) can be described as a specific way of using the

system from a user’s (actor’s) perspective. A more detailed description might

characterise a Use Case as:

107

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

□ A pattern of behaviour the system exhibits

□ A sequence of related transactions performed by an actor and the system

□ Delivering something of value to the actor

Use cases provide a means to:

□ Capture system requirements

□ Communicate with the end users and domain experts

□ Test the system

Use cases are best discovered by examining the actors and defining what the

actor will be able to do with the system.

Since all the needs of a system typically cannot be covered in one use case, it is

usual to have a collection of use cases. Together, this Use Case collection

specifies all the ways of using the system.

Use Case

Figure 4.5 UML notation for a Use Case

□ Actor

Actors represent system users (see figure 4.6). They help delimit the system and

give a clearer picture of what the system should do. It is important to note that

an actor interacts with, but has no control over the use cases. An actor is

someone or something that:

□ Interacts with or uses the system

□ Provides input to and receives information from the system

□ Is external to the system and has no control over the use cases

108

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

Actors are discovered by examining:

□ Who directly uses the system

□ Who is responsible for maintaining the system

□ External hardware used by the system

□ Other systems that need to interact with the system

The needs of the actor are used to develop Use Cases. This insures that the

system will be what the user expected.

« a c to r »
Name

Actor

Figure 4.6 UML notation for an Actor

□ Use Case Relationships

An association provides a pathway for communication. The communication can

be between Use Cases, Actors, Classes or Interfaces. Associations are the most

general of all relationships and consequentially the most semantically weak. If

two objects are usually considered independently, the relationship is an

association.

An Extend relationship (see figure 4.7) is a stereotyped relationship that

specifies how the functionality of one Use Case can be inserted into the

functionality of another Use Case. Extend relationships between Use Cases are

modeled as dependencies by using the Extend stereotype. Moreover extend

relationships are important because they show optional functionality or system

behavior.

109

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

Uses relationship (see Figure 4.7) is a stereotype set on the Generalised

specification that can be attached to a model element to give it a specialised

meaning. The Uses Generalisation indicates that one Use Case uses the

functionality of another Use Case. The Use Case being used typically contains

functionality that a number of other Use Cases may need or want.

« u s e s » Use Case 2

« A s s o c ia tio n »

Actor Use Case 1

« e x te n d s »

Use Case 3

Figure 4.7 UML notation for Use Case Relationships

□ Sequence Diagrams

A Sequence diagram is a graphical view of a scenario that shows object

interaction in a time-based sequence; what happens first, what happens next.

Sequence diagrams establish the roles of objects and help provide essential

information to determine class responsibilities and interfaces. This type of

diagram is best used during early analysis phases in design because they are

simple and easy to comprehend. Sequence diagrams are normally associated

with use cases.

A Sequence diagram has two dimensions: typically, vertical placement

represents time and horizontal placement represents different objects. Figure 4.8

illustrates the UML notation for sequence diagrams.

110

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

Object A Object B

Message

Figure 4.8 UML notation for Sequence Diagrams

□ Collaboration Diagrams

Collaboration diagrams (see figure 4.9) show objects, their links and their

messages. They can also contain simple class instances and class utility

instances. Each Collaboration diagram provides a view of the interactions or

structural relationships that occur between objects and object-like entities in the

current model.

Sequence diagrams are closely related to Collaboration diagrams and both are

alternate representations of an interaction. There are two main differences

between Sequence and Collaboration diagrams: Sequence diagrams show time-

based object interaction while Collaboration diagrams show how objects

associate with each other.

Object Sequence No
Message

1 : OneMessage

Object A ------> Object B

Figure 4.9 UML notation for Collaboration Diagrams

111

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

□ Component Diagrams

Component diagrams (see figure 4.10) provide a physical view of the current

model. A component diagram shows the organisations and dependencies among

software components, including source code components, binary code

components, and executable components.

These diagrams also show the extemally-visible behaviour of the components by

displaying the interfaces of the components. Calling dependencies among

components are shown as dependency relationships between components and

interfaces on other components. Note that the interfaces actually belong to the

logical view, but they can occur both in class diagrams and in component

diagrams.

1 « A p p lica tio n »
Java Web Service

! Integrator Client
Component

Dependency

XML
Controller

Communication
Manager

Figure 4.10 UML notation for Component Diagrams

□ Deployment Diagrams

A Deployment diagram (see figure 4.11) shows processors, devices, and

connections. Each model contains a single deployment diagram, which shows

the connections between its processors and devices, and the allocation of its

processes to processors.

112

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

Processor Specifications, Device Specifications, and Connection Specifications

enables modification of the respective properties. The information in a

specification is presented textually; some of this information can also be

displayed inside the icons.

Java Web Service
Integrator : Client

Java Configuration
Database

Connection >

Device

Processor

Figure 4.11 UML notation for Deployment Diagrams

□ Class & Object Diagrams

A Class diagram (see figure 4.12) is a picture for describing generic descriptions

of possible systems. Class diagrams and collaboration diagrams are alternate

representations of object models. Class diagrams contain classes and Object

diagrams contain objects, but it is possible to mix classes and objects when

dealing with various kinds of metadata, so the separation is not rigid. Class

diagrams may be constructed in conjunction with Object diagrams but are more

common than object diagrams. Normally, the class diagrams are built first, plus

occasional object diagrams, illustrating complicated data structures or message-

passing structures.

113

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

Class diagrams contain icons representing classes, interfaces, and their

relationships. One or more class diagrams can be created to depict classes

contained by each package in a model; such class diagrams are themselves

contained by the package enclosing the classes they depict; the icons

representing logical packages and classes in class diagrams.

An object diagram shows the existence of objects and their relationships in the

logical design of a system. An object diagram may represent all or part of the

object structure of a system, and primarily illustrates the semantics of

mechanisms in the logical design. A single object diagram represents a snapshot

in time of an otherwise transitory event or configuration of objects.

Operation name

Figure 4.12 UML notation for Class Diagrams

114

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

4.3 USE CASE VIEW

The first view to be presented is the Use Case View (see section 4.2.2/ The Use Case

View typically consists of Use Cases and the associated Sequence and Collaboration

diagrams. The following sections present these diagrams for the proposed dynamic

peer-to-peer application integration platform.

4.3.1 Use Case Diagrams

Use-case diagrams graphically depict system behaviour (use cases). These diagrams

present a high level view of how the system is used as viewed from an actor’s

perspective. A use-case diagram may depict all or some of the use cases of a system.

A use-case diagram can contain:

□ Actors, which are entities outside the system.

□ Use Cases, which are system boundaries identifying what the system should

do. Use Cases were first introduced by Ivar Jacobson [61] in the early 1990s.

Use Cases document the behaviour of the system from the user’s point of

view.

□ Interactions or relationships between actors and Use Cases in the system

including the associations, dependencies, and generalisations.

Use-case diagrams can be used during analysis to capture the system requirements and

to understand how the system should work. During the design phase, use-case diagrams

can be used to specify the behaviour of the system as implemented.

They are used primarily for visualising the Use Cases. The following two sections

describe the Actors and the Use Cases of the integration system.

115

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

4.3.1.1 Actors

□ Server/Producer

The Server, or the Producer, is the actor that uses the Java Web Service

Integrator (JWSI) for creating and publishing a Java Web Service. This is

achieved by having the JWSI initiating the Create Service Wizard. The purpose

of this wizard is to retrieve all relevant information from the supplier application

and any other information that is considered important by the Supplier.

Examples of this information may include the inputs and outputs of the server

application, the purpose of the application, a description etc. Then, the wizard

stores this information into a Java Service Database for future reference.

Subsequently, the JWSI initiates the Publish Service Manager. The purpose of

this manager is to retrieve the service information from the Java Service

Database and to create a Java Web Service based on this information to be

published on the Universal Description, Discovery and Integration (UDDI)

directory. Before the actual publishing of the service takes place, the Publish

Service Manager creates automatically some mappings between the data fields

of the published service and the data fields of the supplier application. These

mappings are stored into an XSLT Repository. This is very important since the

mappings will be used when the client application request some data from the

server via the Java web service. The Server/Producer may be a Client/Consumer

actor as well.

□ Server Application

The Server Application is an important actor of the system. Its main purpose is

twofold. Firstly, the Server application is being used by the Create Service

Wizard component in order to collect any information regarding that application.

This is important since this information will be used to create the published

service. Moreover, this information is stored into the Java Service Database for

further processing. Secondly, the server application is being used by the XML

controller on the server site, to execute the server application and get the

returned data. Then, the XML controller can convert these results into the

116

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

compatible format of the Java Web Service in order to be returned back to the

requested client application for further processing.

□ Java Service Database

The Java Service Database is another actor of the system, since it is also

something external to the system, which interacts and exchanges data with it.

The responsibility of this Database is to store information related to Java Web

Services. This information is taken from either the Server application or the

server actor. The information stored in this database is extremely important since

this is the information that will be used when creating and publishing the web

service on the UDDI.

□ XSLT Repository

The XSLT Repository is also an actor of the system. It is another database of the

system that holds information related to the mappings between the client or

server and the Java Web Service. These mappings are created before the Java

Web Service is ready to be published on the UDDI and are used when the JWSI

on the server site request a specific web service. In such a case, the relevant

XSLT mappings are loaded to be used when converting the server data into the

web service compatible format. The same applies on the client site when the data

has returned from the server and need to be passed to the client application.

□ Java Configuration Database

The Java Configuration Database is another actor of the system since it is also

something external to the system, which interacts and exchanges data with it.

The responsibility of this configuration Database is to store information about

potential web services that need to be discovered by the JWSI. This information

is taken from either the Client application or the client actor. The information

stored in this database is extremely important since this is the information that

will be used when the Service Discovery Manager searches for potential web

services on the UDDI matching the specification of the configuration file and

117

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

subsequently, the specification of the client application needed to be

dynamically integrated.

□ Client Application

The Client Application is an important actor of the system. Its main purpose is

also twofold, just like the Server Application. Firstly, the Client application is

used by the Configuration Wizard component so as to collect any information

regarding that application. This is important since this information will be used

to search for web services matching the specifications of the client application.

Furthermore, this information is stored into the Java Configuration Database for

further processing. Secondly, the client application is being used by the XML

controller on the client site, to return the data received from the Java Web

Service.

□ Client/Consumer

The Client or the Consumer is the actor that actually instantiates the dynamic

integration process. The client uses the JWSI, in order to initiate the

Configuration Wizard. The purpose of this wizard is to create a configuration

file that will describe the purpose and operations of the client application that

need to be integrated dynamically. This is achieved by loading all relevant

information from the client application and any other inputs that are considered

important by the client. Examples of this configuration information may include

the inputs and outputs of the application, the purpose of the application, a

description, etc. Then, the wizard stores this information into a Java

Configuration Database for future access. Subsequently, the JWSI initiates the

Service Discovery Manager, which will search for Java Web Services on the

UDDI directory based on the configuration data stored previously by the client.

The service discovery manager will download only the web service that matches

exactly the specification of the configuration data in order to prevent any

redundancies and avoid inconsistencies during the dynamic integration. The

Client/Consumer may be a Supplier/Producer actor as well.

118

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

4.3.1.2 Use Cases

The diagram in figure 4.13 illustrates the overall Use Case Model of the system.

As can be seen from the Use Case Diagram in figure 4.13, the Server/Producer initiates

the Java Web Service Integrator (JWSI), which runs as a service application on the

server machine. The JWSI uses the Create Service Wizard to create a web service

specification according to the input data taken either from the server application or the

Producer itself. All relevant information regarding the server application is important so

as to create a web service as accurate as possible. If incorrect data are passed through

this wizard, then the web service will not be completely compatible with the server

application and the potential client application needed to be integrated will not be in a

position to find that web service on the UDDI.

After the service specification is created, the JWSI initiates the Publish Service

Manager, which will publish the service on the UDDI. The Publish Service Manager

also creates an XSLT file, which corresponds to the mappings between the fields of the

web service and the fields of the server application. The JWSI on the server site can

now get into an idle mode waiting for incoming requests from potential clients.

On the other site, the Client needs to configure the client application before the

integration takes place. This is accomplished by initiating the JWSI and subsequently

using the Configuration Wizard, the configuration file holding the specification of the

client application, is created. This is important since the configuration data describes in

detail the purpose of the client application in order to find potential web services based

on that configuration.

After the configuration data has been saved into the Java Configuration Database, the

JWSI initiates the Service Discovery Manager for the purpose of searching the UDDI

and to find the Java Web Services that best fit into the specification of the client

application. After the appropriate web services have been discovered, they are

downloaded on the client site in order to initiate the integration process.

119

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

Subsequently, the JWSI initiates the Communication Manager, which will execute the

web service in order to retrieve the data directly from the server site and hence achieve

the peer-to-peer communication without any intermediate servers or applications.

Currently, the communication Manger supports a number of communication protocols.

After the server peer is contacted, the communication manager of the server site

requests the data from the XML Controller. The XML Controller will use the already

created XSLT file and will apply it to the data taken from the server application in order

to be compatible with the requested web service.

Once the conversion is completed, the converted results are returned back to the

Communication Manager of the client through the Communication Manager of the

server to be fed to the client application. Before the data are passed to the client

application, they are converted by the XML Controller on the client site using the

automatically created XSLT mappings.

The XSLT file is created based on the information taken from the configuration

database and the information taken from the service found on the UDDI. Only in very

special circumstances where the JWSI is not able to automatically create compatible

mappings, the client will use the configuration wizard again to manually create these

mappings.

By completing all the above steps, the dynamic peer-to-peer application integration is

achieved.

120

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

In itia tes S to re s Configuration

Qient/Consumer Java Wfeb Service Integrata Configiration Wizard

Load Application Info

Java Configuration
Database

L o a d X S L T

R e c e ive d D a ta

XSLT Repository <

Oient Application
« u s e s » Lo a d C onfiguration Info

XML Controller

R e q u e ste d Data

Communicatian Manager

S e a rch S e rvice
Servioe Discovery Manager

Oient Application
Tra n sfe r D ata

R etrie ve D ata
C o n v e te d R e s u ts

Server Application

L o a d X S L T

R e qu est S e rvice
D ow nload S e rvice

Universal Description, Discovery
and Integration

XSLT Repository

P u b lish e s S e rvice

S to re s X S L T D e scrip tion

Publish Service Manager

R e q u e ste d Info

XWL Controller Communcaücn btenager

« u s e s » « u s e s »

Lo a d S e rvice D e scription

XSLT Repository « u s e s »

tritia tes

Server Application

Lo a d A p p lica tio n Info

S to ie s S e rvice D e scrip tio n

Server/Prodbcer Java Wfeb Seruce Integrata Creete Service Wizard Java Service
Database

Figure 4.13 Overall Use Case Diagram o f the system

121

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

4.3.2 Sequence Diagrams

The purpose of the Use Case knowledge that has been presented in the previous section

was to provide a guideline in the design model that would organise the artifacts related

to the Use Cases. These artifacts consist typically of the Collaboration and Sequence

diagrams. A description of these diagrams is provided in section 4.2.3. The Sequence

diagrams identified for the proposed Peer-to-Peer platform are presented in the next

sections. Because of the high complexity of the system, only the high-level sequence

diagrams will be presented, and also they have been broken into four smaller

manageable sequence diagrams for better understanding.

4.3.2.1 Server/Producer Sequence Diagram

The Server/Producer Sequence Diagram shows object interaction in a time-based

sequence that occurs on the server’s site. This is illustrated in figure 4.14. As already

mentioned, a server may act as a client as well. It is important to also note here that in

order to have a complete and dynamic Peer-to-Peer integration scenario, the actions

performed on this figure must be performed before the actions performed that are

illustrated in figures 4.15 and 4.16.

: ServedProducer Java V\feb Service
Integrator

Initiates
>

Create Sendee
Wizard

Server
Application

Java Service Publish Setvtce
Manager

Universal Description
Discovery & Integration

Starts
>

<
Load Info

Stores Senjoe Description
>'■

Initiates Load Service

Publishes Services
>n

Figure 4.14 The Server/Producer Sequence Diagram

122

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

The first action shown in the diagram in figure 4.14, is performed by a user on the

server site, who initiates the Java Web Service Integrator. The JWSI then starts the

Create Service Wizard component. This component is responsible for creating the Java

Web service that needs to be published; hence, it requests data from the server’s

application running locally. After the specification of the service is created, it is stored

into the Java Service Database for further access. Subsequently, the JWSI initiates the

Publish Service Manager component, which after it loads the service specification from

the Database, it creates and publishes the service on the UDDI. The service is stored

there until it is accessed from a client requesting that service.

4.3.2.2 Client/Consumer Sequence Diagram

The Client/Consumer Sequence Diagram shows object interaction in a time-based

sequence that occurs on the client’s site. This is illustrated in figure 4.15. It is important

to note here that the actions performed on figure 4.14 precede the actions performed on

this diagram.

Java Web Service Configuration Oient Java Confiauration Service Discovery
Oient/Consimer Intearator Wzard Aoolication Database Manaaer

hi ti at es
Starts

Load Info________ _

l i_________\ !
Stores Configuration

u_ _ _
hitiates

>4
Load Configuration

>r

Figure 4.15 The Client/Consumer Sequence Diagram

123

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

The Client/Consumer, who initiates the Java Web Service Integrator, performs the first

action shown in the diagram, in figure 4.15. The JWSI then starts the Configuration

Wizard component. This component is responsible for creating a configuration file

describing in detail the client application and how it can be accessed. In order to achieve

this, the component loads information from the client application and after the

configuration file is created, is stored into the Java Configuration Database.

Next, the JWSI initiates the Service Discovery Manager component. After the

component is loaded, the configuration data are fetched from the database. This

component is responsible to discover any new Java Web services located on the UDDI.

If any new services are found, they are then downloaded in order to begin the dynamic

peer-to-peer application integration.

4.3.2.3 Client/Consumer to Peer Sequence Diagram

Because of the large number of steps invoved between the two peers after the dynamic

integration has been initiated, it has been decided to separate the entire peer-to-peer

process into two smaller sequence diagrams. The first one is called Client/Consumer-to-

Peer Sequence Diagram and the second one is called Server/Producer-to-Peer Sequence

Diagram. The latter will be discussed in section 4.3.2.4.

The Client/Consumer to Peer Sequence Diagram shows object interaction in a time-

based sequence that occurs between the client and the peer, after the dynamic

integration has been initiated. This is illustrated in figure 4.16. It is important to note

here that the actions performed on figure 4.15 precede the actions performed on this

diagram.

124

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

: Client/Consumer
Java Web Service Communication XML Controller Client Java Web Service XSLT
Intearator : Client Manager ADblication Intearator : Server ReDositorv

r i-------------------------------->Initiates Starts
S--------------- — -----------

Request Service ______

Transfer Data

Starts
>

Received Data Load XSLT
T<

>
Requested Data

Figure 4.16 The Client/Consumer to Peer Sequence Diagram

The first action of the diagram in figure 4.16 is performed by the Client/Consumer, who

initiates the JWSI. This action has already been shown in figure 4.15. Following the

final step of figure 4.15 and after a new Java Web Service is found and downloaded

from the UDDI, the JWSI starts the Communication Manager component. This

component is responsible for negotiating with the server, based on a suitable list of

communication protocols and prepares a robust and secure communication line between

the two peers. After the communication has been performed, the Communication

component invokes the service.

On the server site, the Java Web Service Integrator receives this request and after

processing it, it returns the results back to the Communication component of the client.

The steps involved on the server site will be discussed in section 4.3.2.4. Once the

client receives the data, the JWSI initiates the XML Controller component in order to

transform the returned results into a format compatible and readable by the client

application. This is achieved by loading an XSLT file from the XSLT Repository,

which describes in detail the mappings between the data of the Java Service and the data

of the client application. Finally, the transformed results are passed into the client

application for further processing. By completing the above steps the dynamic peer-to-

peer application integration is completed.

125

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

4.3.2A Server/Producer to Peer Sequence Diagram

The Server/Producer to Peer Sequence Diagram shows object interaction in a time-

based sequence that occurs between the server and the peer, after the dynamic

integration has been initiated. This is illustrated in figure 4.17.

: Server/Producer
if

Initiates

frü

Java Web Service Communication

>

XML Controller Server XSLT Java Web Service

Starts
> Request Service

— >
Requested Info

J

]

Starts
.— : i

Load XSLT

Converted Results
<

Retrieve Data
< —

Transfer Data
^ > i

Figure 4.17 The Server/Producer to Peer Sequence Diagram

The first action shown in the diagram in figure 4.17 is performed by the

Server/Producer, who initiates the JWSI. This action has already being shown in figure

4.14. Following the intermediate steps of figure 4.16 and after a request has been

received by the client to invoke the web service, the JWSI starts the Communication

Manager component. This component is responsible to negotiate a suitable and secure

communication protocol before it receives the actual request from the client. Next, the

requested information is passed to the XML Controller. The controller executes the

service in order to get the data from the server application and then it loads an XSLT

file from the XSLT Repository database.

Subsequently, the XSLT file is applied to the data for creating the transformed data that

will be compatible with the service specification. Once the transformation is completed,

the data are transferred back to the client for further processing. By completing the

above steps, the dynamic peer-to-peer application integration is completed.

126

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

4.3.3 Collaboration Diagrams

Sequence and Collaboration diagrams express similar information, but present it in

different ways. Collaboration diagrams (see figure 4.9) show objects, their links, their

messages and are used to demonstrate how objects interact with each other, to perform

the behaviour of a particular Use Case or part of a Use Case. The Collaboration

diagrams identified for this thesis are presented in the next sections, taking into

consideration their equivalent Sequence diagrams. Once again, because of the high

complexity of the system, only the high-level Collaboration diagrams will be presented.

4.3.3.1 Server/Producer Collaboration Diagram

The Server/Producer Collaboration Diagram shows how the objects interact between

each other to perform a specific task on the server’s site. This is illustrated in figure

4.18.

1: Initiates
—>

: Server/Producer

Java Web Sendee
Integrator

2: Starts
Create Service Server

Wizard < Application
3: Load Info

5: Initiates
V V

4: Stores Service Description

Publish Service Java Service Database
Manager <

6: Load Service

V 7: Publishes Services

Universal Description Discovery &
_________ htegration

Figure 4.18 The Server/Producer Collaboration Diagram

As can be seen from the diagram in figure 4.18, the action “ 1 .Initiates" is firstly

performed by the Server/Producer on the JWSI. The second action “2:Starts” is

performed by the JWSI on the Create Service Wizard object to create a specification of

the service that needs to be published.

127

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

Next, action “3:Load Info” is performed by the latter object, on the Server Application,

in order to collect the necessary information, before the service is created. Action

“4:Stores Service Description” is then executed to store the service specification into the

Java Service Database for further processing. Subsequently, action “5 initiates” is

performed by the JWSI to load the Publish Service Manager object. This object is

responsible for publishing the service that has been created previously on the UDDI.

Before this is done, action “6:Load Service” is executed to load the specified service

information from the Java Service Database. Finally, the action “7:Publishes Service” is

executed to actually publish the service on the UDDI directory.

4.3.3.2 Client/Consumer Collaboration Diagram

The Client/Cosnumer Collaboration Diagram shows how the objects interact between

each other to perform a particular task on the client’s site. This is illustrated in figure

4.19.

: Client/Consumer

1: Initiates
V

2: Starts
Java Web Service > Coniguration Client

Integrator Wizard ^ Application

3: Load Info

5: Initiates
V

4: Stores Configuration
V

Service Discovery Java Configuration
Manager < Database

6: Load Configuration

Figure 4.19 The Client/Consumer Collaboration Diagram

As can be seen from the diagram in figure 4.19, the Client/Consumer on the JWSI

performs the action “1 initiates” firstly. The second action “2:Starts” is performed by

the JWSI on the Configuration Wizard object to create a configuration file for the client

application. This is important because the configuration file describes the client

128

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

application in detail so that only Java Services found on the UDDI directory that match

the configuration file will be downloaded. This file is created by executing action

“3:Load Info” on the client application.

Then action “4:Stores Configuration” is executed to save that configuration file into the

Java Configuration Database. After this has been completed, the JWSI executes action

“”5:Initiatess” to load the Service Discovery Manager object. This object is responsible

for discovering any new services that are found on the UDDI directory. This is done

after action “6:Load Configuration” is executed, to retrieve the configuration

information from the Java Configuration Database.

4.3.3.3 Client/Consumer to Peer Collaboration Diagram

The Client/Consumer to Peer Collaboration Diagram shows how the objects interact

between each other to perform a specific task between the client and the Server Peer.

This is illustrated in figure 4.20.

1: Initiates

: Client/Consumer

5: Starts
Java Web Service
Integrator : Client

> I XML XSLT
Controller Repository

7: Load XSLT

6: Received Data
'I

2: Starts
V

8: Requested Data
V

Communication
Manager

Client
Application

4: Transfer Data 3: Reddest Service

Java Web Service
Integrator : Server

Figure 4.20 The Client/Consumer to Peer Collaboration Diagram

As can be seen from the diagram in figure 4.20, the Client/Consumer on the JWSI

performs the action “1 initiates” firstly. This action has already been performed by the

Client/Consumer in figure 4.19. It is also demonstrated here in order to better explain

129

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

the whole scenario. The second action “2:Starts” is performed by the JWSI on the

Communication Manager object after a new Java Web Service has been dynamically

discovered from the UDD1.

The Communication Manager object then executes action “3:Request Service” to

actually invoke the service on the server’s site. After the service is invoked and

processed by the JWSI of the server’s site, it returns the appropriate results back to the

Communication Manager. This is accomplished by performing action “4:Transfer

Data”. The XML Controller is then initiated by the JWSI using action “5:Starts”. After

that, action “6:Received Data” is executed by the Controller to get the results received

from the server. Subsequently, action “7:Load XSLT” is performed to load the XSLT

file from the XSLT Repository. This is important since the returned data will be

transformed based on that XSLT being compatible with the client’s application.

Finally, after the transformation is performed, action ”8:Requested Data” is executed to

pass the transformed data to the client application for further processing. By completing

the above steps, the dynamic Peer-to-Peer application integration is achieved.

The Collaboration diagrams give a better idea of how these objects collaborate between

each other in a uniform way.

4.3.3.4 Server/Producer to Peer Collaboration Diagram

The Server/Producer-to-Peer Collaboration Diagram shows how the objects interact

between each other to perform a specific task between the Server/Producer and the

Client Peer. This is illustrated in figure 4.21.

130

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

1: hitiates 5: Starts
> Java Web Sendee > XML Server

Integrator: Server Controller < — Application
7: Retrieve Data

: Server/Producer 4: Requested Info

-7
2: Starts
V

&
A

6: Load XSLT

8: Converted Results

Communication
Manager

XSLT
Repository

3: Request Service
A

9: Transfer Data
V

Java Web Service
Integrator : Client

Figure 4.21 The Server/Producer to Peer Collaboration Diagram

As can be seen from the diagram in figure 4.21, the Server/Producer on the JWSI

performs the action “1 initiates” firstly. This action has already been performed by the

Server/Producer in figure 4.18. It is also demonstrated here to better explain the whole

scenario. The second action “2:Starts” is performed by the JWSI on the Communication

Manager object after a Client Peer requested to invoke the service on the server site.

The Communication Manager object then executes action “3:Request Service” to

actually retrieve the specification of the requested service. The requested service with

the actually requested info is passed to the XML Controller by executing action

“4:Requested Info”. At the same time action “5:Starts” is performed to load the XML

Controller. The XML controller executes the service and retrieves the data from the

Server Application by using action “7:Reteive Data”. Before that, action “6:Load

XSLT” is performed to load the selected XSLT file associated with that server. This is

important in order to convert the data retrieved from the server application to a format

compatible to the specification of the requested service. These converted results are

returned back to the Communication Manager object via action “8:Conveted Results”.

Finally, the Communication Manager object transfers the transformed results back to

the requested Client using action “9:Transfer Data”. By completing the above steps, the

dynamic Peer-to-Peer application integration is achieved.

131

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

4.4 LOGICAL VIEW

The Logical View is mainly used to address the functional requirements of the system.

The Logical View focuses on how the system will implement the behaviour in the Use

Cases. Moreover, it includes the main class diagram that contains classes and their

logical relationships.

4.4.1 Class Diagram

Class Diagrams describe the static structure of a system, or how it is structured rather

than how it behaves. They also show the attributes and operations of a class and the

constraints that apply to the way objects are connected. Figure 4.22 illustrates the

overall class diagram of the system.

^»IsActive

Manage/lnitiates Manage/lnitiates Manage/lmtiates

Communication
Manager

^TransferDataO
^RequestServiceQ

Uses uses

Java Web
Servce

%lsActiue

Figure 4.22 Overall Class Diagram o f the System

132

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

As it can be seen from figure 4.22, a user on the server machine or a user on the client

may initiate the Java Web Service Integrator for the purpose of integrating the two

applications. Each user may initiate only one instance of the JWSI, since there is no

essential benefit from initiating more than one instance of the JWSI application.

Furthermore, once the JWSI is initiated, it can execute three main classes in order to

achieve the dynamic integration. These three classes can only have one instance running

at any time in order to avoid inter-class conflicts. The Publish Service Manager class

may use the Java Web Service class for the purpose of publishing the service on the

UDDI. Similarly, the Service Discovery Manager class may discover and download the

service from the UDDI in order for the two peers to start negotiation and achieve the

dynamic integration of the two applications.

The idea behind the “IsActive” attribute is to indicate if a particular instance of the class

is enable/active or not. For example, if a Java Service is published on the UDDI and the

owner of this service does not wish any more to have the Java Service listed there, then

this service can be disabled in order not to be used by other user or applications. This is

the case when the service can no longer serve the purpose of its creation.

133

Dynamic Application Integration Using Peer to Peer Technology Chapter 4

4.5 CONCLUDING REMARKS

The design phase in a software development project bridges the gap between what is

required and what is eventually implemented. During this process, the requirements are

analysed and a course of actions is clearly specified. The output of the design process

serves as a guideline for the implementation of the actual peer-to-peer dynamic

platform, which follows next. The accuracy of the models derived from the design is a

critical aspect of the system’s success in meeting the initial requirements.

The design phase approach used for the purposes of designing the dynamic architecture

and its corresponding outputs were explained in this chapter. Among these outputs, the

Sequence and Collaborations diagrams were described, which will act as input to the

next phase. Finally, the overall Class diagram of the system was presented, which will

act as a blueprint for the implementation phase.

134

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

Chapter 5

SYSTEM IMPLEMENTATION

5.1 INTRODUCTION

Using the results derived from the design phase as blueprints, the implementation phase

aims to realise the requirements specified in Chapter 2. This chapter describes the

Dynamic Peer-to-Peer platform developed using this process.

The Web Service implementation protocols are initially discussed as they appear in the

system architecture, alongside some examples of their corresponding source codes.

A description of the implemented system follows next. This is accomplished by a

demonstration of how the software components react to specific tasks from the various

users. The demonstration includes the various functionalities that both the

client/consumer and server/producer peer components incorporate to meet the user’s

needs, as well as the flow of actions performed for the completion of a task.

The software that has been implemented is described next along with the relevant

benefits. The chapter ends by presenting an overview of the implementation models of

the Peer-to-Peer platform.

135

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

5.2 WEB SERVICE PROTOCOLS

The following section describes in detail the SOAP (Simple Object Access Protocol)

implementation and how, in collaboration with the built-in software Classes of the Java

language, the appropriate modules have been implemented for dynamically

manipulating a UDDI (Universal Description, Discovery, and Integration) registry. This

is supported by providing some examples of source codes actually written for this

purpose.

5.2.1 SOAP IMPLEMANTATION

This section describes the SOAP Implementation, which has been implemented in this

thesis in order to achieve the requirements specified in Chapter 2.

In the proposed platform, the Java API (Application Program Interface) for XML

Messaging (JAXM) has been used, which makes it possible to implement Java

Components based on XML messaging via the Java platform. This is achieved by

making method calls using the JAXM API, in which the XML messages can be created

and sent over the Internet. This section also describes how the JAXM API has been used

to provide SOAP functionality to the proposed Peer-to-Peer platform.

The JAXM API conforms to the SOAP v l.l specification and the SOAP with

Attachments specification. The complete JAXM API is presented in the following

package:

□ Javax.xml.soap\ The package defined in the SOAP with Attachments API for

Java specification. This is the basic package for SOAP messaging, which

contains the API for creating and populating a SOAP message. This package has

the entire API necessary for sending request-response messages.

All SOAP messages are sent and received over a connection. The connection can go

directly to a “particular destination” or to a “messaging provider”. A messaging

provider is a service that handles the transmission and routing of messages and provides

136

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

features not available when a connection goes directly to its ultimate destination. Only a

connection to a “particular destination ” is applicable in this thesis and not to a

messaging provider because of the architecture of the proposed platform.

The JAXM API supplies the following class and interface to represent the above

connection:

□ Javax.xml.soap.SOAPConnection: A connection from the sender directly to the

receiver (a Peer-to-Peer connection)

A SOAPConnection object, which represents a Peer-to-Peer connection, is simple to

create and use since it does not required any configuration and also because it does not

need to be run in a Java Servlet container or in a J2EE (Java 2 Enterprise Edition)

container. Java Servlet technology provides Web developers with a simple, consistent

mechanism for extending the functionality of a Web server and for accessing existing

business systems. A Servlet can almost be thought of as an applet that runs on the server

side but without an interface [124],

Figure 5.1 illustrates a code fragment that creates a SOAPConnection object and after

creating and populating the message, it uses the connection to send the message. The

parameter request is the message being sent; endpoint represents where it is being sent.

SOAPConnectionFactory factory = SOAPConnectionFactory.newInstance();

SOAPConnection con = factory.createConnection();

. . . / / create a request message and give it content

SOAPMessage response = con.call(request, endpoint);

Figure 5.1 An Example of a SOAP Connection in Java

When a SOAPConnection object is used, the only way to send a message is through the

method “call”, which transmits its message and then blocks until it receives a reply.

137

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

Because the method “calF requires that a response be returned to it, this type of

messaging is referred to as request-response messaging.

A Web Service implemented for request-response messaging must return a response to

any message it receives. When the message is an update, the response is an

acknowledgement that the update was received. Such an acknowledgement implies that

the update was successful. Some messages may not require any response at all. The

Web Service that gets such a message is still required to send back a response, because

one is needed to unblock the “call” method. In this case, the response is not related to

the content of the message; it is simply a message to unblock the call method. For

example, in the context of this thesis, a client application may execute the Web Service

for the purpose of retrieving some data. If the data that will be returned by the Server

application takes several hours to be prepared, then a message is sent back to client

indicating that the message is being received and that the data will be returned back to

the client application as soon as they are ready.

Figure 5.2 illustrates, as an example, the steps that are required to create a SOAP message

using the JAXP API, as well as how to send it to the specified Peer for execution.

import javax.xml.soap.*;
import java.util.*;
import java.net.URL;

public class Request {
public static void main(String[] args) {
try {

SOAPConnectionFactory scFactory = SOAPConnectionFactory.newInstance();
SOAPConnection con = scFactory.createConnection();
MessageFactory factory = MessageFactory.newInstance();
SOAPMessage message = factory.createMessage();
SOAPPart soapPart = message.getSOAPPart();
SOAPEnvelope envelope = soapPart.getEnvelope();
SOAPHeader header = envelope.getHeader();
SOAPBody body = envelope.getBody();
header.detachNode();
Name bodyName = envelope.createName(""GetServiceFile"",""JWSI"",
""217.35.115.230"");
SOAPBodyElement gltp = body.addBodyElement(bodyName);
Name name = envelope.createName("ServiceName");
SOAPElement symbol = gltp.addChildElement(name);
symbol.addTextNode(""Hull Generation"");
java.net.URL endpoint = new URL(“217.5.155.230/JWSF’);
SOAPMessage response = con.call(message, endpoint);
con.close();

Figure 5.2 An Example of a SOAP Request using the JAXM API
138

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

As a continuation of the example shown in figure 5.2, figure 5.3 illustrates the steps that

are required to receive a response from the Server Peer after a SOAP request has been

initiated.

// Read the SOAP Response
SOAPPart sp = response.getSOAPPart();
SOAPEnvelope se = sp.getEnvelope();
SOAPBody sb = se.getBody();
Iterator it = sb.getChildElements(bodyName);
SOAPBodyElement bodyElement = (SOAPBodyElement)it.next();
String Result = bodyElement.getValue();
System.out.print("The output execution of the JWSI Service is ");
System.out.println(Result);

} catch (Exception ex) { ex.printStackTrace(); }
}

}

Figure 5.3 An Example of a SOAP Response using the JAXM API

When the SOAP request is sent over the communication line, it is converted into an

XML file format, the content of which is shown in figure 5.4. It is important to note

here that the IP (Internet Protocol) Address illustrated in this example is taken from the

specification of the Web Service when it is dynamically discovered under the UDDI

directory. In case the IP Address was mistyped during the creation of the Web Service,

or in case the Server hosting the Web Service changes its IP, then the Web Service will

not be in a position to find the destination Server and hence the Web Service will fail to

execute.

<SOAP-EN V : Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"

<SOAP-EN V :Body>

<JWSI: GetServiceFile xmlns:m= "217.5.155.230">

<ServiceN ame>H ul 1 Generation</ServiceN ame>

</JWSI: G e t S e r v i c e F i l e >

</SOAP-EN V :Body>

</SOAP-ENV:Envelope>

Figure 5.4 An Example of the contents of a SOAP Request in Java

139

http://schemas.xmlsoap.org/soap/envelope/

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

5.2.2 UDDI IMPLEMENTATION

Before the JWSI on the client site can send a SOAP Request to the server to get the

required data, it first needs to dynamically discover the Web Service that is hosted on

the UDDI directory. The following section presents some examples of how this can be

achieved using the Java language and the Java API for XML Registries (JAXR) and

how the server JWSI can publish Java Web Services on the UDDI.

As already explained in Chapter 3, a Universal Description, Discovery, and Integration

(UDDI) is an XML registry infrastructure that enables the building, deployment, and

discovery of Web services. It is a neutral third party that facilitates dynamic and loosely

coupled business-to-business (B2B) interactions. A registry is available to organisations

as a shared resource, often in the form of a Web-based service.

Currently, there is a variety of specifications for XML registries. These include:

□ The ebXML Registry and Repository standard, which is sponsored by the

Organisation for the Advancement of Structured Information Standards (OASIS)

and the United Nations Centre for the Facilitation of Procedures and Practices in

Administration, Commerce and Transport (U.N./CEFACT)

□ The Universal Description, Discovery, and Integration (UDDI) registry, which is

being developed by a vendor consortium.

A registry provider is an implementation of a business registry that conforms to a

specification for XML registries.

For the purpose of this thesis, the UDDI registry has been used along with the JAXR

(Java API for XML Registries) package. JAXR enables Java software programmers to

use a single, easy-to-use abstraction API to access a variety of XML registries. A

unified JAXR information model describes content and metadata within XML registries

[123], Figure 5.5 illustrates the JAXR Architecture.

140

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

Registry - Specific
JAXR Provider

Diverse
Registries

Figure 5.5 The JAXR(Java API for XML Registries) Architecture

In order for the server application to publish a Java Web Service on the UDDI or the

client application to discover a Web Service, firstly the appropriate permissions must be

obtained from the registry to access it. Following, is a list of public UDDI registries that

the users of each application can apply to gain access to registry, hence publish and

dynamically discover Web Services:

□ Microsoft: http://uddi.microsoft.com

□ IB M : http://uddi.ibm.com/testregistry/registry.html

□ SAP: http://udditest.sap.com

After the users of the applications that need to be integrated have registered with one of

the registry providers listed above, they can query the registries for publishing or

discovering of Web Service.

One way for a client JWSI to use a registry is to query it for information about the

organisations that have submitted data to it. The “BusinessQueryManager” interface

supports a number of find methods that allow search for data using the JAXR

information model. Many of these methods return a “BulkResponse ” (a collection of

141

http://uddi.microsoft.com
http://uddi.ibm.com/testregistry/registry.html
http://udditest.sap.com

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

objects) that meets a set of criteria specified in the method arguments. The most useful

of these methods are:

□ FindOrganisations : Returns a list of organisations that meet the specified

criteria, often a name pattern or a classification within a classification scheme.

□ FindServices : returns a set of Web Services offered by a specified organisation.

□ FindServiceBindings : Returns the service bindings (information about how to

access the service) that are supported by a specified service.

If a client JWSI has the appropriate authorisation, then it can submit data to a registry,

modify it and remove it. It uses the BusinessLifeCycleManager ” interface to perform

these tasks. Registries usually allow a client to modify or remove data only if the data is

being modified or removed by the same user who first submitted the data.

Before it can submit data, the client JWSI must send its user name and password to the

registry in a set of credentials. Figure 5.6 illustrates an example of a Java source code of

how to send these credentials and how to create a registry entry and publish the details

of the organisation prior to publishing the Java Web Services.

String username = "myUserName";
String password = "myPassword";

// Get authorization from the registry
PasswordAuthentication passwdAuth = new PasswordAuthentication(usemame,
password.toCharArrayO);

Set creds = new HashSet();
creds. add(pass wdAuth);
connection.setCredentials(creds);
// Create organization name and description
Organization org = blcm.createOrganization("Shipping Services Ltd");
IntemationalString s = blcm.createIntemationalString("Provides web services for the
shipping sector.");
org.setDescription(s);

// Create primary contact, set name
User primaryContact = blcm.createUser();
PersonName pName = blcm.createPersonName("Stelios Christoff);
primaryContact.setPersonName(pName);

// Set primary contact phone number
TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setNumber0044-0000-0000");
Collection phoneNums = new ArrayList();
phoneNums.add(tNum);
primaryContact.setTelephoneNumbers(phoneNums);

142

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

. . Continued
// Set primary contact email address
EmailAddress emailAddress = blcm.createEmailAddress("something@mail.com");
Collection emailAddresses = new ArrayList();
emailAddresses.add(emailAddress);
primaryContact.setEmailAddresses(emailAddresses);

// Set primary contact for organization
org.setPrimaryContact(primaryContact);
// Set classification scheme to NAICS
ClassificationScheme cScheme = bqm.findClassificationSchemeByName(null,
"UDDITYPE");
// Create and add classification
Classification classification = blcm.createClassification(cScheme, " Java Web Services",
"732213");
Collection classifications = new ArrayList();
classifications.add(classification);
org.addClassifications(classifications);

Figure 5.6 An Example of a adding an Organisation to the UDDI Registry

After the server JWSI successfully adds the organisation details to the UDDI registry,

the Java Web Services can now be added. Figure 5.7 shows a Java code fragment on

how to create a collection of services, add service bindings to a service and then add the

services to the organisation.

// Create services and service
Collection services = new ArrayList();
Service service = blcm.createService("Hull Generation");
International String is = blcm.createIntemationalString("The purpose of this service is
to generate the hull of the ship");
service.setDescription(is);

// Create service bindings
Collection serviceBindings = new ArrayList();
ServiceBinding binding = blcm.createServiceBinding();
is = blcm.createlntemationalStringC'Hull Generation Binding Description");
binding.setDescription(is);

// allow us to publish the service URL without an error
binding.setValidateURl(false);
binding.setAccessURI("http://217.35.115.230:5151/JWSI/");
serviceBindings.add(binding);

// Add service bindings to service
service.addServiceBindings(serviceBindings);

// Add service to services, then add services to organisation
services.add(service);
org.addServices(services);

Figure 5.7 An Example of a adding a Web Service to the UDDI Registry

143

mailto:something@mail.com
http://217.35.115.230:5151/JWSI/

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

By completing the above steps, the Java Web Service is published on the UDDI registry

and waiting to be dynamically discovered. Figure 5.8 shows one way to dynamically

discover the Java Web Service for the purpose of dynamic Application Integration.

R egistryService rs = null;
B usinessQ ueryM anager bqm = null;

/ / G et registry service and query m anager
rs = connection.getR egistryServiceQ ;
bqm = rs.getB usinessQ ueryM anager();

// Define find qualifiers and nam e patterns
C ollection findQ ualifiers = new ArrayListQ;
findQ ualifiers.add(F indQ ualifier.SO R T BY N A M E DESC);
C ollection nam ePattem s = new ArrayListQ;
nam ePattem s.add("% " + qString + "% ”);

// Find using the name
B ulkR esponse response = bqm .findO rganizationsffindQ ualifiers, nam ePatterns, null, null, null, null);
C ollection orgs = response.getC ollection();

// D isplay inform ation about the organisations found
Iterator o rg lter = orgs.iterator();
i f (!(orgIter.hasN ext())) {

System .out.println("N o organisations found");
} else w hile (org!ter.hasN ext()) {

O rganization org = (O rganization) orglter.next();
System .out.println("O rg name: " + getN am e(org));
System .out.println("O rg description: " + getD escription(org));
System .out.println("O rg key id: " + getK ey(org));

// D isplay prim ary contact inform ation
U ser pc = org.getPrim aryContactQ ;
if (pc != null) {

PersonN am e pcN am e = pc.getPersonN am e();
System .out.println(" C ontact name: " + pcN am e.getFullN am e());
Collection phN um s = pc.getTelephoneN um bers(null);
Iterator ph lter = phN um s.iterator();
w hile (phlter.hasN extQ) { T elephoneN um ber num = (TelephoneN um ber) phlter.next();

System .out.println(" Phone num ber: " + num .getN um ber());
}
C ollection eA ddrs = pc.getEm ailA ddresses();
Iterator ealter = eA ddrs.iterator));
w hile (ealter.hasN ext))) {

Em ailA ddress eA d = (Em ailA ddress) ealter.next));
System .out.println(" Em ail Address: " + eA d.getA ddress());

} !
// D isplay service and binding inform ation
C ollection services = org.getServices();
Iterator svclter = services.iteratorQ ;
while (svcIter.hasN extO) {

Service svc = (Service) svclter.next();
System .out.printlnC ' Service name: " + getN am e(svc));
System .out.println(" Service description: " + getD escription(svc));
Collection serviceB indings = svc.getServiceB indings();
Iterator sb lter = serviceB indings.iterator();
w hile (sblter.hasN ext))) {

ServiceB inding sb = (ServiceB inding) sblter.next();
System .out.printlnC ' B inding " + "D escription: " + getD escription(sb));
System .out.printlnC ' Access U R I : " + sb.getA ccessU RI());

}
}

Figure 5.8 An Example of a Web Service discovery on the UDDI Registry
144

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

5.3 PROTOTYPE EXECUTION

In this section, a typical scenario will be presented, demonstrating the functionality of

the proposed system. Some screenshots of the system’s user interface will be presented,

together with the respective source code when appropriate, to better explain in detail the

effort of the technical work involved behind the user friendly interface.

Scenario: A client application (Passenger Evacuation) requests to be interacted with a

server application (Hull Generation Tool).

During the lifecycle of the design of the ship, a hypothetical Ship Designer (the client),

wishes to test a Passenger Evacuation software from his company using Ship designs

from other companies, in order to generate some Evacuation statistics to measure the

performance of the software. The above software requires a Hull Generator Tool. This

Tool creates basic Hull designs for ships in order for other software to get these Hulls

and tests them prior to designing the final Hull form of a ship. In order to accomplish

this task, the Ship Designer configures the client JWSI based on the input and output

information of the above Passenger Evacuation software.

Then the JWSI contacts the appropriate UDDI to discover existing Java Web Services

that offer this kind of service. When a Java Web Service is identified that closely

matches the criteria of the client software, the client JWSI and the server JWSI establish

between each other a Peer-to-Peer connection, in order to integrate the two ship

applications.

The whole integration process is done dynamically without the intervention of the client

or the server user. Once the Hull design data is downloaded to the client site, the

Passenger Evacuation software runs automatically so as to generate the appropriate

Evacuation statistics. By completing the above process, the two applications are

integrated between them by only downloading or uploading the minimal necessary data,

without the physical transfer of the whole software and its installation on the local

client.

The following sections demonstrate in detail how the above scenario is achieved.

145

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

5.3.1 Server/Producer Execution

Taking into consideration the scenario described in section 5.3, this section

demonstrates the functionality of the Java Web Service Integrator as well as the actions

required to be performed by the user on the Server site. These actions consist of

configuring the server application for publishing the newly created Java Web Service on

the UDDI for the purpose of dynamic integration.

Before the integration process takes place, the user of the application server needs to

create the Java Web Service. This is achieved by using the “Java Web Service Wizard”

of the JWSI.

After running the JWSI on the server site, a window will appear requesting login

information to be filled as shown in figure 5.9.

Figure 5.9 The Java Web Service Integrator login screen - Server site

The first five fields, i.e. proxy information, whose letters are illustrated by the light grey

colour, indicate optional parameters. This means that some clients may require

specifying a proxy server in order to have access to the Internet. These optional

parameters are discussed in detail in section 6.3.5.

The following two fields, whose letters are illustrated by the black colour, indicate

compulsory parameters. By providing a username and a password to the application, the

146

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

JWSI authenticates and connects to the local Java database server. It is assumed that the

user of the application has already registered with the system and has received a

username and a password from the system administrator.

After the user has successfully been granted access by the Java database server, the

JWSI loads the main application window as shown in figure 5.10.

Figure 5.10 Main window o f the Java Web Service Integrator - Server site

The above user interface takes into consideration issues like ease of use, ease to add

dynamically services and ease to navigate with the help of a task-oriented paradigm.

This paradigm helps the user to access business documents according to the user’s task

and role. So, usability is achieved by a close mapping between the system and the user

conceptual model.

On the right hand side of this user interface, a task navigator menu appears. This menu

corresponds to a list of tasks that the current logged-in user has been granted access by

the Java database server. This means that different users may have different tasks under

this navigation menu, according to their roles. By selecting a task, for this scenario the

147

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

“Manage Organisation Details” task, the application shows a list of associated sub tasks

just below the selected task. In this case, there is only one sub task called “Edit

Organisation D e ta ils By selecting that sub task, the server application shows a list of

associated folders on the left hand side of the application window. These folders help to

divide the sub task into more meaningful distinct categories. For this scenario, the folder

“Organisation Details” appears. By selecting that folder, a description of the business

document appears in the middle of the main application window and simultaneously a

list of actions “Modify Organisation Details” associated with that business document

appear at the bottom of the application window.

Pressing the “Modify Organisation Details” button located at the bottom of this

window, a new window is displayed requesting certain field names to be entered, as

shown in figure 5.11.

Figure 5.11 Configuration o f Organisation details o f the Server JWSI

148

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

The user has to fill the organisation details form before any Java Web Services are

published on the UDDI directory.

This organisation form includes field names, like the organisation name, organisation

description and the classification, which will help during the discovery of the web

service. Moreover, it includes the contact details of the company in charge of the web

service, as well as the URL that the web services of the organisation will be registered.

Finally, the username and password are very essential fields that need to be entered

since any attempt to access the UDDI registry, requires authentication. Once all above

field names have been entered, the user must save the organisation settings in the Java

Database Server by pressing the “Save Settings” button.

After completing the previous task, the user may now continue to the next task for

creating and publishing the Web Service. By selecting the task called “Manage Java

Web Services”, the application shows a list of associated sub tasks just below the

selected task. In this case, there is only one sub task called “Create Java Web Service”.

By selecting that sub task, the server application shows the folder called “Service

Wizard

By selecting that folder, a description of the business document appears in the middle of

the main application window and at the same time, a list of actions “Create Service,

Modify Service” associated with that business document appear at the bottom of the

application window.

By pressing the “Create Service” button located at the bottom of this window, a new

window is displayed requesting certain field names for the web service wizard to be

entered as shown in figure 5.12.

149

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

Figure 5.12 Create Java Web Service Wizard o f the JWSI

In this wizard, the user needs to follow certain steps before the service is created and

published on the UDDI registry. Some main parameters that have to be specified for this

service are

□ service name,

□ service description,

□ service keywords,

□ the domain area of the service,

□ the application that corresponds to this service,

□ the IP address of the client running the application,

□ available security and communication protocols, and finally,

□ the input and output parameters for the application.

150

Dynamic Application integration Using Peer to Peer Technology Chapter 5

After these parameters have been specified, and after the user presses the “Save

Settings ”, the Publish Service Manager component publishes the service on the UDDI

registry. Figure 5.13 illustrates the specification of the Java Web Service that is

dynamically created and published on the UDDI, in XML format.

Similarly to the above task, the user may edit an existing Web Service if he/she wishes

to alter some properties of the Web Service on the UDDI.

<?xml version=''1.0" ?>
<!— Create by Christofi Stelioa — >

- <JWSI_Message>
- <Java_Web_Service_Message>

<Service_Name>Hull Generation</Sarvice_NamB>
<Service_Description>This service pro vide s Hull generation mechanisms</Service_Description>
<Service_Keywords>Hull,Generate,ship</Service_Keywords>
<Service_Domain_Area>Ship Sector</Service_Domain_Ar8a>
<Application_Filename>c:\programs\hull.ex8</Application_Filename>
<Application_IP_Address>192.0.0.10</Application_JP_Address>
<Security_Protocol>SSL 128 bit</Security_Protocol>
<Communication_Protocol>SOAP</Communication_Protocol>

- <Application_Inputs>
- clnput Number="l">

<Nam e>Structure.xm l</Nam e>
</Input>

</Application_Inputs>
- <Application_Outputs>

- cOutput Number=“l">
<Nam e>HullStructure.xm l</Nam e>

</Output>
</Application_Outputs>

</Java_Web_Service_Message>
</JWSI_Message>

Figure 5.13 XML specification o f the Java Web Service

Following the above steps, the integration process can now be initiated. Before the user

of the client application initiates the Service Discovery Manager, the JWSI needs to be

configured. The configuration process is essential, since the JWSI must know the inputs

and outputs of the local application needed to be integrated. This is important in order

for the JWSI to know which dynamic Java Web Services are needed to be downloaded

from the UDDI. This is accomplished by comparing the description, keywords and

domain area of the service on the UDDI with the description of the local application.

Not all Java Web Services found on the UDDI are downloaded since this is unnecessary

and inefficient.

151

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

Finally, when the “Exit” button on the Main window of the JWSI is clicked, the user is

prompted to select the “YES” button to close the JWSI server application. This is

illustrated in figure 5.14.

Figure 5,14 Exit window o f the Java Web Service Integrator

Once the JWSI server application is closed, then any clients wishing to dynamically

integrate their application with the closed JWSI server application will be denied access,

since the Java Web Service will not be in a position to process the incoming request

with the JWSI application closed.

The following section describes in detail how the user of the client application can

configure the client application and initiate the Service Discovery Manager.

5,3.2 Client/Consumer Execution

Taking into consideration the scenario described in section 5.3, this section

demonstrates the functionality of the Java Web Service Integrator, as well as the actions

required to be performed by the user to configure the client application so as to initiate

the Service Discovery Manager for dynamic integration.

After running the JWSI on the client site, the user must enter a username and password

to log into the JWSI as illustrated in figure 5.15.

152

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

Figure 5.15 The Java Web Service Integrator login screen - Client site

The login screen of the JWSI on the client site is the same as the login screen of the

JWSI on the server site. The only difference is that both the client and the server users

need to enter different usernames and passwords when using the JWSI in order to load

different tasks for their needs. For a description of the fields that need to be entered in

this screen, see section 5.3.1, figure 5.9.

After the user has successfully been granted access by the Java Database server, the

JWSI loads the main application window as shown in figure 5.16.

Figure 5.16 Main window o f the Java Web Service Integrator - Client site

153

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

On the right hand side of this user interface, a task navigator menu appears similar to

the one loaded on the server site of the JWSI as already discussed in section 5.3.1. This

menu corresponds to a list of tasks that the client user has been granted access by the

Java Database server. By selecting a task, for example, the “Manage Configuration”

task, the application shows a list of associated sub tasks just below the selected task. In

this case, there is only one sub task called “Client Configuration”. By selecting that sub

task, the client application shows a list of associated folders on the left hand side of the

application window. These folders help to divide the sub task into more distinct

categories. For this scenario, the folder “Configuration Wizard” appears. By selecting

this folder, a description of the business document appears in the middle of the main

application window and at the same time, a list of actions “Create Configuration,

Modify Configuration” associated with that business document appear at the bottom of

the application window.

By pressing the “Create Configuration” button located at the bottom of this window, a

new window is displayed requesting certain field names to be entered, as shown in

figure 5.17.

Figure 5.17 Configuration o f Client Application Wizard o f the JWSI

154

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

In this wizard, the user needs to follow certain steps before the configuration file is

created and saved on the local Java Database server. Some main parameters that have to

be specified in this configuration are

□ application name,

□ application description,

□ application keywords,

□ the domain area of the application,

□ available security and communication protocols, and finally,

□ the input and output parameters for the application.

The configuration process is essential, since the JWSI must know the inputs and outputs

of the local application to be integrated. This is important in order for the JWSI to know

which dynamic services are needed to be downloaded from the UDDI. This is

accomplished by comparing the parameters of the service on the UDDI and the

parameters of the configuration file of the local application. Not all Java Web Services

found on the UDDI are downloaded, since this is unnecessary and inefficient.

After these parameters have been specified, and after the user presses the “Save

Configuration ”, the Configuration file is created and stored in the local Java Database

server. Figure 5.18 illustrates the specification of the Configuration file that will be used

for dynamic discovery of Java Web Services on the UDDI, in XML format.

«?xml version-'l.O" ?>
<!— Create toy Christofi Stelios — >

- <JWSI_Message>
- <Java_Configuration_Message>

<Application_Filename>c:\programs\Evis.exe«/Application_Filename>
<Application_Description>This service provides passenger distribution simulations</Application_Description>
<Application_Keywords>Simulation,Hull,ship</Application_Keywords>
<Application_Domain_Area>Ship Sector</Application_Domain_Area>
<Security_Protocol>SSL 128 bitc/Security_Protocol>
<Communication_Protocol>SOAP</Communication_Protocol>

- <Application_Inputs>
- «Input Number=''l">

«Name>HullStructure.xml«/Name>
</Input>

</Application_Inputs>
- <Application_Outputs>

- «Output Number="l“>
<Name>Distribution.xml</Name>

«/Output>
«/Application_Outputs>

</Java_Configuration_Message>
</JWSI_Message>

Figure 5.18 XML specification o f the Configuration File

155

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

Similarly to the above task, the user may edit an existing Configuration for altering

some properties of the Application that needs to be integrated.

After the above steps have been completed, the integration process may commence. The

Discovery Service Manager is initiated after some time interval and starts searching the

UDDI for any new Java Web Services that closely match the specification of the pre-

configured client JWSI, from which the local application requested to be integrated.

The Discovery Service Manager uses an advanced search technique that has been

implemented specifically for this thesis, to intelligently identify and download the most

relevant Web Services from the UDDI. Besides the usual methods of comparing the

keywords and descriptions of the applications with the keywords and descriptions of the

services found on the UDDI, the search technique uses the inputs and outputs of each

application to more specifically pinpoint the Web Service.

This is accomplished by identifying the file format of each input and output of the

application and by comparing these, with the file format of the application that the Web

Service is linked. This ensures that only Web Services that match the exact specification

of the Client application will be used for integration. It will be ineffective to download a

Web Service for integration even if the service description matches the description of

the potential integrated application, in case the output file format of the service is

completely different or cannot be in any way mapped to the input file format of the

potential Client application.

By using this intelligent technique, efficiency of the whole integration process is

achieved and waste of communication bandwidth is kept to the minimum.

The above section demonstrated the steps required to be performed by the client using

the JWSI, to configure the client application and initiate the Service Discovery Manager

for dynamic integration. The following section describes in detail the steps involved

when the actual integration takes place between the client and the server application.

156

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

5.3.3 Client/Consumer to Peer Execution

Taking into consideration the scenario described in section 5.3, this section

demonstrates the steps involved during the integration process between the client and

the server application and more specifically the tasks that are performed on the client

site. As already stated in this thesis, the client or server application can act as peers in

this integration process. Since the process of integrating the two applications can be

very complicated, it has been decided to separate the whole integration process into two

smaller processes. The first one will be referred to as the “Client/Consumer to Peer

Integration” process and the second as the “Server/Producer to Peer Integration”

process. This section concentrates in describing the former process.

After the steps in section 5.3.2 have been successfully completed, the integration

process takes place. For the purpose of this scenario, it is assumed that a Web Service

matching the specification of the Client application that needs to be integrated, already

exists on the UDDI.

If a new service is dynamically discovered for the first time, then the schema of this

service is downloaded and it is listed under the newly found service window. This

window with the newly found Web Service is illustrated in Figure 5.19.

Figure 5.19 Newly found service window in JWSI
157

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

If the schema of the Java Web Service (JWS) indicates that the inputs of the Web

Service requires XML mappings, then the user has to click on the “Use Service” button

in order to create, for the first time only, an XSLT (extensible Stylesheet Language

Transformations) between the schema of the JWS and the schema of the local

application.

This is accomplished via the Java Web Service Integrator XML Mapper Tool

(JWSIMT), where the user maps the fields of the XML schema of the Java Web Service

with the fields of the schema of the local application. Figure 5.20 illustrates the XML

Mapper Tool.

Figure 5.20 XML Mapper Tool in JWSI

The outcome of this process is an XSLT, which corresponds to the mappings of the two

schemas.

If a new service is dynamically discovered and the XSLT for that Service already exists,

then control is given to the Communication Manager which attempts to invoke the Web

Service. In case the schema of the Java Web Service (JWS) indicates that the inputs of

158

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

the Web Service do not require XML mappings, then the JWSI bypasses the XSLT

creation process and proceeds directly to the invocation of the Web Service and the

interchange of data between the two peers. This happens only when the application on

the client site requires data from a Web Service on the server site that does not have to

be transformed in any way. When the Service is invoked, the IP of the destination is

resolved before any execution of the Service takes place on the server. If for any

unforeseen reasons, i.e. temporary server failure, unavailability of the destination server,

etc, the Communication Manager is re-scheduled to initiate a second handshake after a

predefined interval of time. If after 10 re-tries the server is still unavailable then the

Communication Manager marks the recent service as “Not Available” and returns

control back to the Discovery Service Manger to search for any new Web Services on

the UDDI.

If the server that hosts the Web Service is “Available” and therefore the Service is ready

to be used, the two JWSI peers enter into an active state for the purpose of initiating the

Dynamic Integration Process. This is done by attempting to negotiate the

communication as well as the security protocols that are available between each other,

in order to establish a secure and reliable connection. For this scenario, the available

communication protocols that are listed on the envelope of the service are:

□ HTTP,

□ HTTPS,

□ SMTP,

□ FTP. and

□ SOAP.

If all communication protocols are available, then the two peers need to decide which of

them is more appropriate for use. The following decision rules are applied in order to

select the appropriate communication protocol.

Rule # 1: Refers to the measurement of the communication bandwidth. This is

accomplished by having the two Peers send some “test data” of different sizes to each

other. By this way, the bandwidth and speed of the communication line is measured and

subsequently, the selection of the available protocol is based on these results. Below, is

a list of protocols and explanations of rules on where these protocols may be used for

each specific scenario.

159

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

□ Simple Mail Transfer Protocol

The Simple Mail Transfer Protocol (SMTP) is likely to be used in the shipping

context environment when some ship designers use the Dynamic Integration

Platform from a ship that uses a low bandwidth but expensive satellite link as a

means of communication. This kind of integration is applicable when the

integrated data is not so confidential and does not require immediate response

from the server.

□ File Transfer Protocol

The File Transfer Protocol (FTP) is used when the transfer of data is very large.

This is essential when large volumes of data are interchanged between the two

Peers in a timely manner.

□ Hyper Text Transfer Protocol or Simple Object Access Protocol

Hyper Text Transfer Protocol (HTTP) over Transmission Control

Protocol/Intemet Protocol (TCP/IP), in the shipping context environment, is

likely to be used when ships are near shore and can use dial-up connections

using Global System for Mobile Communication (GSM) or similar carrier.

Hyper Text Transfer Protocol Secure (HTTPS) may be used if confidential

information needs to be exchanged between the two legacy Peers. This is

because it adds a layer of complexity, which may reduce the transfer rate of the

data. In a general context environment, the SOAP protocol over the HTTP or the

HTTP alone is likely to be used for almost all transactions that take place

between the two peers. The SOAP protocol can be used together with Secure

Socket Tayer (SSL) to provide consistency and confidentiality of data.

After the most appropriate communication protocol is selected, based on the above

criteria, the Security Manager takes place to negotiate the level of security that needs to

be applied on the communication line. It is important to note that different security

techniques may be applied on different communication protocols. In this scenario, the

available security protocols are:

□ Encryption over SMTP with different encryption algorithms i.e.3DES. 3DES is

a cryptosystem which can encrypt and decrypt data using a single secret key.

160

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

□ Encryption over FTP and HTTP with 40bit or 128 bit key. The SSL protocol

provides data encryption, server authentication, message integrity, and optional

client authentication for a TCP/IP connection.

□ Digital Signatures. A digital signature is a 'message digest' (created by

processing the message contents using a special algorithm) encrypted using the

sender's private key. This is another security technology that can be use in order

to securely interchange data between the two Peers.

□ No Security. This is the default value of all Java Web Services and is used when

security is not an issue and the information that needs to be interchanged is not

confidential.

After the security protocol has been selected and before it is ready for use by the

communication protocol, a “validation check” is performed to identify if the selected

security protocol is compatible with the selected communication protocol. For example,

if the selected communication protocol is HTTP and the selected security protocol is the

“Encryption over SMTP” then the security protocol is discarded, since it cannot be

applied over the HTTP protocol. In such a case, the Security Manager continues to the

next available security protocol and the “validation checkf is performed once again. For

this scenario, the next available protocol is the “Encryption with 128 bit key”, which is

compatible with the HTTP protocol.

Once the communication protocol and the security protocols have been selected, the two

peers are now ready to interchange the relevant data for the purpose of integrating the

two applications. The operations that take place on the server site are detailed as

described in section 5.3.4.

After the Web Service has been invoked and the transmitted data have reached the client

site, the Communication Manager passes the data file to the XML Converter Manager.

In case the client application requires XML mappings, the XML Converter Manager

converts the incoming XML file to an XML file readable by the client application. This

161

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

is accomplished by the use of the XSLT Engine and the XSLT file that was created at

the beginning of this scenario. Unless the client application requires the input file to be

converted into a Comma Separated Values (CSV) file, the XML file is stored into a

specific folder on the Computer in order to be accessed at a later stage by the client

application. The conversion from an XML file to a CSV file is also handled by the

XML Converted Manager.

In case the client application does not requires XML mappings, the incoming data file is

directly saved into a pre-configured directory where it can be accessed by the client

application for further processing.

By following the above steps, the dynamic integration process between the two peers is

completed and the Communication Managers of both peers close the communication

line. The client JWSI application then enters into the same stage as before, that is to

monitor for new Java Web Services on the UDDI registry.

5.3.4 Server/Producer to Peer Execution

The above section demonstrated the procedure that takes place on the client site when

the client JWSI dynamically finds a Web Service for the purpose of dynamic

integration. This section describes the tasks that occur on the server site after the Web

Service has been invoked and how the data are transferred back to the client for further

processing.

Based on the scenario already described in section 5.3 and after the client JWSI found

dynamically a new Web Service, the integration process is ready to be initiated. After

the Web Service is invoked by the client Peer, the server Peer detected that a request is

pending for execution. The server Peer handles this request by retrieving the

specification schema of the requested Web Service. Inside the specification, a number

of parameters are included describing specific functionality of the Service.

162

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

The first parameters that need to be retrieved are the parameters for describing the

server application along with the appropriate input and output parameters of the

application. Once the parameters have been retrieved, the server application is executed

by the XML Converted Manager, for the purpose of producing the appropriate output.

The output of the application, which can either be an XML file, an error message

embedded into an XML file or any file type, is returned back to the XML Converter

Manager.

If the output file is an XML file and needs XML mappings, then the appropriate XSLT

file is loaded from the XSLT Repository so that it can be transformed to the destination

XML file as requested by the Web Service. If the file does not require XML mappings

or the file is not in XML format, the file is then passed to the Communication Manager

in order to be transferred to the client. Before the actual file is transferred to the client,

the two Peers need to decide the communication protocol for transferring the output file.

The last parameters that have been retrieved from the Web Service specification are the

parameters for describing the communication and security protocols.

After these parameters have been retrieved, the JWSI Peer starts the Communication

Manager component. This component is responsible for negotiating a suitable and

secure communication protocol before the server sends the requested data back to the

client. Details of this negotiation are described in section 5.3.3. After the negotiation is

agreed, the data are transferred securely to the client Peer so that they can be used by the

client application.

By completing the above steps, the dynamic peer-to-peer application integration is

achieved.

Due to the high capacity of the source code produced for the Java Web Service

Integrator only the list of Java Classes is provided in this report. This is included in

Appendix A.

163

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

5.4 IMPLEMENTATION SOFTWARE

The following section presents the implementation software that has been used, in order

to achieve the development of this proposed system. It also explains why this specific

software has been chosen for the implementation process and what the advantages of

using such software are.

5.4.1 JBuilder V9.0

Borland JBuilder V9.0 [40,80] now known as Inprise JBuilder is a proprietary

development tool marketed by Inprise Corporation, which enables the construction and

development of applications in the JAVA programming language. The Java Web

Service Integrator Adapter was developed using version 8.0 and 9.0 of this tool. Some

features of the JBuilder used in this thesis are:

□ Web Development and Version Tracking

Provides expanded XML support with built-in tools for creating and

manipulating XML files. Allows transfer of data between Java and HTML

seamlessly. Provides revision support in every edition. This includes automatic

backup copies of files.

□ User Interface

Provides a Graphical User Interface for fast form development. This includes the

automatic code generation wizard, which is one of the most advanced features of

this product.

□ Object Oriented

Provides an object Oriented environment to developers for creating robust and

reusable components. It provides tools for easy packaging and deployment of

applications.

164

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

□ Standards

Support for the latest Java standards including Java 2, Java 2 JFC/Swing, XML,

Java2D, Message Queue, Java collections, Accessibility API, Speech API and

more.

□ UML Support

UML class and package diagram representation of code: Limited Class,

Association Diagram, Reverse Class Association Diagram, Dependency

Diagram, Reverse Class Dependency Diagram, and the Class Inheritance

Diagram.

A screenshot of the Interface of the Borland JBuilder V8.0 is illustrated in figure 5.21.

File Edit Search View Project Run Team Wizards Tools Window Help

□ l& ~ Z 3 * T* ^ 1 - f ÿ ► * fc* » E» -
f t ü 5P Jw... -

A Browser.java " 3
A Configuration.java
A Create_Service java
A CreateJavaWebServict
A CreateZip java
A DatabaseConnectjava
A DownloadFiles java
- è DragTree.java
A ErrorBoxjava
A ExitBoxjava
A FinishTool java
A FlnishTools.java
A FinishWindow.java
A FolderRecord java
¿ FTPConnection java
A Help.java
A ̂ ^ ^ ^ i r c e s java

3 _ _______ I
♦ J JWSIJavaCllent _

Ui
OS «null»

0 D |Panel4
19 «null»
t messages

0 QscrollPane2
0)Tree2

B □ MalnWIndox
iS «null»

@ jTablel
- HeaderBar

0 □ jPaneie
OS «null»
— jLabell
O Iabel4

0 □)Panel8
OS «null»
O mydate

0 □ jPanel2
i9 «null»
> Iabel2

0 □ jPanel3

I f 1

x A Actions I x A Cll I x A Configuration | x A Create_Servlce | x A CreateJavaWebSeivice | x A
X A Java I x A languages | X A loginscreen J x A OrganisationDetails | X A Receive_WorkFlow_Events

Swing I Swing Containers | MaExpress | dbSwtng | More dbSwng | cfcSwng Models 1 IntemetOeans | XM.) EJB 1 AWT | CORBA 1 JCtass) PVtorVs11 Other 1

O (OD B - C 3 B [T| 0 * 3 1=8^5^: on *5» I

DragTree | x A ExttBox
I x A WorkFlow_Service

35

name this
background □ 202, 214.23C
contentPane
cursor
defaultCloseO HIDE ON CLOS
enabled True
font
foreground ■ Black
iconlmage
JMenuBar
layout null
locale «default»
resizable False
state NORMAL
title Java Web Service

j Events I

c Designer!

Figure 5.21 Interface of the Borland JBuilder V7.0

165

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

5.4.2 Borland JDataStore V6.0

Borland JDataStore V6.0 [9], is an object relational database management system

written entirely in Java, that offers platform-independence, scalability and portability in

a fully integrated development environment.

Some features of the JDataStore used in this thesis are:

□ Embedded and application-specific uses

Ease of installation, nearly zero administration and economical pricing model,

makes JDataStore ideal for embedded and application uses.

□ Small and medium enterprise server applications

With its support for multiprocessor platforms and the high-end functionality that

is required for sophisticated J2EE and Enterprise Java Beans (EJB) servers, the

JDataStore database delivers the scalability required for mission-critical, multi-

user applications serving the small and medium enterprise.

□ Platform independence

. Functions as a portable storage system

• Platform-independent, highly scalable object relational database, written
entirely in Java

• Runs on any platform with Java Virtual Machine (JVM) installed

□ High-performance, scalable database engine

• Optimised for high transaction throughput

• Built for intelligent query optimisation strategies

• Designed to allow read-only transactions to operate at full speed without

needing to acquire locks

. Low-level locking for increased concurrency

166

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

• Includes separate local JDBC driver for high-speed in-process access

. Offers JDBC connection pooling with statement caching

. Provides high-speed crash recovery from system failures

□ JDataStore Visual Tools

• Supports import and export from other JDBC databases for interoperability

• Create/restructure tables and indexes for better flexibility

□ Development

• Integrated with Borland JBuilder, the leading Java development solution,

and Borland Enterprise Server, the leading enterprise platform for Web,

CORBA, and J2EE deployment, for quicker development and deployment

of applications.

• Unidirectional data replication for supporting a disconnected development

model

. Security features for user authentication and database encryption

□ Deployment

. Use a single jar file that can be used to deploy applications across all major

platforms

. Take advantage of the portable file format; use database file and log files on

any major platform

• Use read-only transactions for online backup for continuous database

availability

A screenshot of the Interface of the Borland JDataStore V6.0 is illustrated in figure

5.22.

167

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

Figure 5.22 Interface of the Borland JDataStore V6.0

Based on the above advanced features, it has been decided to use the JDataStore as the

Database server of this Platform. The next section describes the Implementation models

of the system.

168

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

5.5 IMPLEMENTATION MODELS

The implementation models are derived from the implementation view of the proposed

system. The implementation view focuses on architectural decisions such as the

organisation of the actual static software modules (source files, binaries and

executables) within the development environment. The view of the architecture takes

into account those requirements related to software management, ease of development,

ease of use and constraints imposed by programming languages and development tools.

The results derived from the implementation view are the Component and Deployment

Diagrams, which illustrate the dependencies between the subcomponents. Components

represent software files that are contained in a package (subcomponent) and show the

structure of the actual code. The classes identified in the logical view are components in

the implementation view.

5.5.1 COMPONENT DIAGRAM

Component diagrams (see figure 4.10) provide a physical view of the current model. A

component diagram shows the organisations and dependencies among software

components, including source code components, binary code components, and

executable components. These diagrams also show the externally visible behaviour of

the components by displaying the interfaces of the components. Calling dependencies

among components are shown as dependency relationships between components and

interfaces on other components. Note that the interfaces actually belong to the logical

view, but they can occur both in class diagrams and in component diagrams.

A component represents a piece of software code or file containing information (for

example the XML specification of the Java Web Service). A component can also be a

combination of other components, for example an application consisting of several

executables. The component should implement the corresponding design correctly and

fulfill the design specifications.

A high-level component diagram for the proposed architecture is illustrated in figure

5.23.

169

Dynamic Application Integration Using Peer io Peer Technology Chapter 5

XSLT Repository:
Client

[

Configuration
Wizard

n «A pplication»
Java Web Service

J Integrator: Client

Java Configuration
Database

J----- j Service Discovery
1 Manager

5
XML
Controller

i------------ ---- ------- :--------- 77
1------1— i Communication 1----------------1 universal uascnption

Manaqer Discovery & Integration
1----------------1

1________ _____________ — r z __________________________

-I-----1 «A pp lication»
Java Web Service

1-----1 Integrator Server

Publish Service
Manager

XSLT Repository:
Server

, Create Service
1 I Wizard

Java Service
Database

Figure 5.23 Component diagram o f the system

170

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

5.5.2 DEPLOYMENT DIAGRAM

A Deployment diagram (see figure 4.11) shows processors, devices and connections.

Each model contains a single deployment diagram, which shows the connections

between its processors, devices, and the allocation of its processes to processors.

Processor Specifications, Device Specifications, and Connection Specifications enable

modification of the respective properties. The information in a specification is presented

textually; some of this information can also be displayed inside the icons.

A Deployment diagram consists of a graph of nodes that are connected by

communication associations. The nodes may contain component instances and

components may contain objects. Components are connected through dashed-arrow

dependencies.

The deployment diagram of the System is presented in figure 5.24.

Java Web Service
Integrator : Client

|«Application>>
X I Java Web Service
Ç I Integrator

Universal Description
Discovery & Integration

Java Configuration
Database

XSLT Repository:
Server

Java Web Service
Integrator Server

3
<Application>>

'ava Web Service
Integrator

Java Service
Database

Figure 5.24 Deployment diagram o f the system

171

Dynamic Application Integration Using Peer to Peer Technology Chapter 5

5.6 CONCLUDING REMARKS

This chapter covered the various aspects of the system implemented according to

guidelines set in the design stage of this thesis. The system’s Web Service

implementation protocols were presented by providing sample source codes. The

functionality of the overall Peer-to-Peer platform, including the client/consumer and

server/producer parts, were then demonstrated with the aid of some scenarios, where the

implemented software was shown to perform the required tasks. Next, the

implementation software that has been used was presented and the Chapter ends with a

description of the component and the deployment diagram of the proposed platform.

172

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

Chapter 6

EVALUATION AND TESTING

6.1 INTRODUCTION

So far, the design and implementation phases of this thesis have been completed. In this

Chapter the correctness of the software system that has been developed is evaluated and

verified based on some criteria that will be discussed further in this Chapter.

Evaluation and testing is an important part of the system development process. It is

undertaken to determine that the system achieved the requirements. The evaluation

process will help to assess the strengths and limitations of this system. It is carried out

in order to determine whether the system has achieved its objectives and aims. Feedback

received from a group of users has also been evaluated and has provided guidance for

further system improvement.

The scope of this Chapter is to discuss how the initial requirements are met and test

whether the final system operates in accordance with the user needs.

173

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

6.2 EVALUATION

6.2.1 What is Evaluation?

“Evaluation is the assessment o f the achievement o f the stated aims. ” [72]

Software evaluation is a process including the definition of assessment criteria, the

specification of an evaluation plan, the collection of evaluation information and the

analysis of the results in order to make necessary decisions about the software. Software

evaluation can include any or a variety of different types of evaluation, such as for

needs assessments, accreditation, cost/benefit analysis, effectiveness, efficiency,

formative, summative, goal-based, process, outcomes, etc. The type of software

evaluation that is undertaken to improve the software depends on what can be learnt

about the software. The most important factor of software evaluation is to accurately

collect and understand the information that has been collected [10, 45].

There are many different ways to conduct evaluation. Evaluation requires careful

consideration of the questions that need to be answered, the type of software being

evaluated and the ways in which the information generated will be used. It should

provide valuable information about the system functionality that could contribute to

system enhancements. To make the evaluation process successful, some measures of

data gathering must be used. These measures are classified into two categories, which

are:

1. Quantitative: Quantitative evaluation is an assessment process that

answers the question, "How much did we do?"

□ Surveys and questionnaires

2. Qualitative: Qualitative evaluation is an assessment process that

answers the question, "How well did we do?"

□ Interviews

□ Focus groups

□ Meetings

174

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

Since this system is partially funded by the European Framework V, regular meetings

took place. Every three months, the members of the consortium met to discuss and

refine the requirements of the system, as it was developing. This enabled the above-

mentioned categories of data gathering to be implemented. The information collected

was examined and proposals for further system improvement were considered. This

included the identification of specific issues within the system including bugs,

functionality shortcomings and dependability concerns particularly related to usability,

security and performance.

Another evaluation technique that was used to evaluate the system according to the

initial requirement was to actually distribute the Java Peers (including the Java

Database) to different users and partners of the European project. This technique helped

dramatically to identify any technical errors that were found during the installing,

deployment as well as during the operation of the system. Moreover, a number of users

suggested different ways on how to improve the Graphical Interface of the system for

ease of use, as well as on ways to improve the whole dynamic integration process. All

the above data gathering and comments from the users are listed in Appendix B.

The results and comments from the users evaluating the system have been collected and

have helped to make the appropriate modifications and refinements in order to improve

the system and gain the acceptance of the users.

The evaluation process was of great benefit to the system development, since the system

was being continuously evaluated throughout its lifecycle. During the regular

evaluation meetings, the modifications and refinements needed were reduced to the

minimum, thus reducing difficulties to evaluate the whole system after the completion

of the implementation phase.

6.2.2 Benefits of the System

One of the most important factors for the success or failure of a software system is the

evaluation of the benefits of the system, whether the system has gained user acceptance

and how this system can be used in order to solve the problems already outlined in

Chapters 1 and 2.

175

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

The best evaluators of a system are the potential users of the system in their daily work.

For the system developed in this Thesis, feedback has been received from the

Consortium as these will be the end-users of the system.

The results and comments from the users evaluating the system have been collected and

have helped to make the appropriate modifications and refinements in order to improve

the system and gain the acceptance of the users. Appendix B presents the findings from

the different methods used to collect the necessary requirements for the development of

the system as well as collected significant data and comments received from the users of

the system. The feedback that has been received by the users indicated that the benefits

of designing and developing such a dynamic integration platform is of strategic

importance, as this platform has not only increased the efficiency of their work

dramatically, but has decreased the costs of integrating different ship design

applications together.

Furthermore, since one of the initial requirements of this system was the easy

integration of future software applications, more companies now can be easily

connected to the platform in order to form a knowledge network for the purpose of

sharing data and information related to the ship design process. This is of great

importance, since according to the Consortium of the project a lot of companies were

reluctant to spend time and money to make the necessary modifications on their

software applications, which are usually enormous and cost a great deal of money, in

order to communicate with other software applications.

In addition, the system helped dramatically in bringing companies together in a dynamic

knowledge network where their ship applications will be able to find the relevant

information on time, so as to accomplish specific tasks or processes.

Another importance benefit of the proposed solution is the cost of integration.

Enterprise Application Integration costs come in three components [84]:

□ architecture,

□ integrations, and

□ operations.

176

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

Architecture costs are costs related to the initial deployment such as integration

development, execution and operations environments. They include the license cost that

is negotiated with the vendor, the cost of new hardware required to develop, run and

monitor integrations and the cost to implement architectural software and hardware.

Roughly 80% of architecture costs are incurred within 6 months of implementation

while additional expenses may be incurred for hardware or licenses as usage spreads

[84], Architectural costs are driven by the complexity of the integration software and the

number of separate business entities to which it is deployed.

The advantage of the proposed solution is that it does not require any new hardware to

be purchased by the companies that need to integrate their applications. The JWSI

software of the dynamic integration platform can be installed in any machine easily

since it has been developed using the Java language. No central server or extra hardware

is required in order for the dynamic platform to function properly. Furthermore, it does

not require any additional software development to be done, since the integration is

achieved by following some easy-to-use integration wizards and no software code is

required to be written. As far as the license of the proposed solution is concerned, this

will be negotiated according to the Consortium of the project. Because of these reasons

it can be concluded that the architecture costs of the proposed solution are minimal

since no additional hardware or software implementation is required to achieve the

dynamic integration.

Integration development costs are separate from the architectural costs. Integration costs

are often related to the development of interfaces and collaborations between systems.

Integration costs are variable and are driven by the number of interfaces that are

developed. Integration costs with EAI are generally between 25% and 40% lower than

with custom integration [84], Development is less expensive because adapters come

pre-built with the EAI architecture and the architecture provides a graphical interface in

which to perform mapping as well as many pre-built functions.

The cost of the proposed solution in relation to the integration development costs is

almost zero, since it is not required to be developed interfaces between the two

applications. The JWSI peers will be responsible to send and receive the necessary data

without having to learn or develop any new interfaces to communicate with the user’s

application.

177

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

Operating costs are expenses and include on-going operations and maintenance of the

EAI system for architecture and integrations. Operating costs generally are driven by

the number of interfaces that need to be maintained and rise as more interfaces are put

into production. EAI generally provides a 50% to 80% reduction in application

maintenance cost by reducing the number of interfaces that need to be maintained and

offloading much of the costs of interface maintenance onto the EAI solution provider

[84].

As already mentioned in the previous paragraph there is no need to implement any new

interfaces and hence the cost of maintaining such interfaces is null.

To sum up regarding the total cost of the dynamic integration platform it can be

concluded that this approach can be substantially cheaper than other enterprise

integration packages. This is a huge advantage over other integration systems since the

cost of integration is one of the most importance factors that influence companies to

process or not to process with integration of their applications with other companies or

within the same organisation. An estimated graphical comparison regarding the cost of

integration between existing Integration systems and the proposed Integration system is

shown in Figure 6.1.

Cost of Integration

</>o
O
c
.— zu
2o><D
Ç 10

5o
Z 10o
©o>
c 5©ok-©
Ll_ VJ ,--

License Cost New Hardware
Cost

Cost to Cost of
implement development of

architectural interfaces
software and

hardware

Various CostTyp

Cost for On-going
collaborations operations

between Cost
systems

es

Maintenance
Cost

-* Existing Integration Systems Proposed Integration Solution

Figure 6.1 Estimated graphical comparison regarding cost o f Integration between
existing Integration systems and the proposed Integration system

178

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

As it can be seen from the Graph, the proposed solution is substantially cheaper in all

cost types of an Enterprise Integration System as already explained in this section.

Last but not least, the companies have expressed their gratitude, since now they can

expand into new areas of the shipping sector, which will lead them to the next level of

advanced ship design. The next level will be a collaborative knowledge dynamic

platform where a number of manufacturing companies may contribute to the design of

large ship design projects in order to construct and deliver ships to their customers in a

faster way.

To sum up, it can be deduced that the users that have evaluated the system were

extremely satisfied with the results of the system and as stated earlier; this system will

benefit not only the shipping industry but also other sectors that require application

integration in their business processes.

6.2.3 Analysis of Evaluation

Based on the feedback obtained from various companies (see Appendix B), and the

results of section 6.2.2 , it can be concluded that the system not only has dramatically

increased the efficiency of the consortium work, but has also decreased the costs of

integrating different ship design applications together. The efficiency of their work has

been increased since they no longer have to manually transfer their ship models between

the shipping companies and with the new proposed system they know the current

progress of various ship models without having to manually communicate between each

other.

Furthermore, using the peer-to-peer technology, the proposed system is faster than their

existing systems and have helped enormously not only with the collaboration between

the shipping companies but also enabled the easy and faster integration of their existing

systems, which was very difficult to achieve using their existing manual methodologies.

In addition, the continuing evaluation of the system by the consortium has enabled the

proposed system to be adapted to their needs and as a result this has gained their

acceptance. The easy maintenance, easy installation and easy integration are some

additional factors of gaining user acceptance.

179

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

6.3 TESTING

6.3.1 Software Testing

“The software testing process is the means by which people, methods, measurements,

tools and equipment are integrated to test a software product.” [69]

Software verification and testing are essential to minimise the risks of using technology.

Verification and testing is best conducted well before the system is used for a “live”

event (both on its own and in conjunction with associated hardware and

communications). After successful testing, software systems will require appropriate

maintenance to ensure they will perform effectively when needed.

The level of importance of the technology will impact on the degree of difficulty

applied to verifying and testing software systems. For a peer to peer system, the degree

of difficulty is considered to be high since there are a number of factors that are

involved during various testing and verification scenarios.

6.3.2 Software verification

“ Verification, as defined by IEEE/ANSI, is the process o f evaluating a system or

components to determine whether the products o f a given development phase satisfy the

conditions imposed at the start o f that phase ” [69].

Software verification tests or otherwise known as qualification tests could include:

□ testing of software to ensure that appropriate standards are met and that the

software performs its intended functions, including audits of code

□ ensuring system documentation is adequate and complete

□ verifying that systems are capable of performing under expected normal

conditions and possible abnormal conditions

180

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

□ ensuring that security measures are in place and that they conform to appropriate

standards

□ ensuring that appropriate quality assurance measures are in place

After software has been verified, it needs to be thoroughly tested to ensure that every

component of the system is operating as it should, and that the system is performing

exactly in accordance with the specific local requirements.

For the purpose of this system, a structured system testing program was established to

ensure all aspects of a system are tested. Testing measures included the following:

□ developing a set of test criteria

□ applying functional tests to determine whether the test criteria have been met

□ applying qualitative assessments to determine whether the test criteria have been

met

□ conducting tests over an extended period of time, to ensure systems can perform

consistently

□ conducting 'load tests', simulating as close as possible a variety of 'real life'

conditions using or exceeding the amounts of data that could be expected in a

real situation

□ verifying that 'what goes in' is 'what comes out', by entering known data and

checking that the output agrees with the input

Verification was achieved by applying a number of verification techniques at the very

early stages of the system’s development cycle. Some of these techniques are:

□ requirements verification,

□ functional design verification,

□ internal design verification, and

□ code verification.

181

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

6.3.3 Validation Testing

“Validation, as defined by IEEE/ANSI, is the process o f evaluating a system or

component during or at the end o f the development process to determine whether it

satisfied specified requirements. ” [69]

Validation tests are tests that measure some aspect of an implementation’s behaviour

against an expectation and answer whether the software complies with the expectation.

For example, a test that measures the time required to perform a specific task is not a

validation test. A test that measures the time required to perform a specific task and

compares it to a benchmark is a validation test.

Validation tests provide assurance that the software as written meets requirements

and/or specifications. When validation testing becomes a fundamental part of the

software development process, software is more likely to be completed, more likely to

be fit for the intended purpose, is less expensive to build and maintain and takes less

time to complete.

A common practice is to associate each module of software with a set of automated

validation tests, often called ‘unit tests’. These tests are run on a frequent basis, usually

every night. Even if the code in the module has not changed, the module may depend on

other modules that may have changed, so it is necessary to run the tests at least as often

as code may change.

Validation normally involves executing the actual software or simulated prototype.

Validation is a ‘computer-based testing’ process. It actually exposes symptoms or

errors. Some validation techniques that have been used in this thesis are:

□ unit validation,

□ integration validation,

□ function validation, and

□ system validation.

Several tests should be designed, built and executed in order to verify that the developed

software system conforms to the initial requirements and specifications. These test

scenarios are presented in the following section. In total, six test scenarios will be

182

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

presented, which aim to provide a comprehensive test of the entire system and all its sub

systems.

6.3.4 Server/Producer Testing

The testing of the Java Web Service Integrator application on the Server site aims to

present the expected results as specified in the requirements phase of this thesis. It was

decided to use three test scenarios that demonstrate the functionality according to the

initial requirements of this system.

Scenario 1

Testing the JWSI authentication mechanism

The following scenario illustrates the testing of the authorisation mechanism used to

authenticate different users that will use the JWSI Server peer. As already discussed in

Chapter 5, section 5.3.2, the user has to enter a username and a password in order to run

the JWSI peer. Failure to enter a correct username and password would result in the

specified user being denied access to the JWSI server peer application.

After completing the login form of the JWSI peer, the user may click on the “OK”

button to initiate the login procedure and have access to the application. This validation

is accomplished by a component searching the user’s table in the JDataStore database,

for the user name.

In case a username or the password for that username is incorrect, then an error message

is passed from the JWSI peer to the user. For the purpose of testing, an invalid password

has been supplied to check the authorisation mechanism.

Figure 6.2 shows that the login screen of the JWSI server peer denies access to the user

by displaying in a pop-up window an error message and instructing the user to login

again.

183

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

Figure 6.2 Error message returned by login screen o f the Java Server Peer Client

The above scenario has also been tested by using an invalid username. The results were

successful and access to the particular user was denied.

The test results taken from the above scenario indicated that the authorisation

mechanism is functioning according to the expected results, by not allowing any

unauthorised users to access the server. This is of great importance since any

unauthorized login to the system by users may result in abuse and subsequently to the

compromisation of the entire platform.

Scenario 2

Automatic Java Web Service Creation

The following scenario illustrates the testing of the automatic creation of Java Web

services.

In this scenario, the user needs to follow certain steps before the service is created and

published on the UDDI registry. Some main parameters that have to be specified for this

service are:

□ service name,

□ service description,

□ service keywords,

□ the domain area of the service,

184

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

□ the application that corresponds to this service,

□ the IP address of the client running the application,

□ available security and communication protocols, and

□ finally the input and output parameters for the application.

For the purpose of this scenario, specific values have been inserted into the system (see

figure 6.2) in order to demonstrate that the Java Web service is correctly generated.

In case the user forgets to enter one parameter, the system prompts the user that all

parameters are required to be entered and an error message is displayed on screen as

illustrated in figure 6.3. In this example, the system returns the error message “7P

Address should not be empty”.

In order for the system to continue the client must enter a valid IP address.

Figure 6.3 Error message returned by the Create Java Web Service Wizard

185

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

After all these parameters have been specified, and after the user clicks on the “Save

Settings” button, the system component saves the Java Web Service specification in the

XML database before the service is published on the UDDI registry. The automatic

publishing of the Java Web Service is described in the following scenario.

By physically examining the XML database of the system, it can be seen that the correct

XML specification of the Java Web Service is generated as illustrated in figure 6.4.

<?xml version="1.0° ?>
- <JWSI_Message>

- <Java_W eb_Service_M essage>
<Service_Name>Hull G en e ra tio n v2</Service_Name>
<Service_Description>This s e rv ic e p ro v id e s Hull g e n e ra t io n m echanism s</Service_D escrip tion>
<Service_K eyw ords>H ull,generate,ship</Service_K eyw ords>
<Service_Domain_Area>Ship Sector</Service_Domain_Area>
<A pplication_Filenam e>C :\Program s\H ullv2.exe</A pplication_Filenam e>
<Application_IP_Address>213.12.12.45</Application_IP_Address>
<Security_Protocol>N one</Secunty_Protocol>
<Communication_Protocol>SOAP</Communication_Protocol>

- <Application_lnputs>
- c lnput Number="l“>

<N am e>Structure2.xm l</N am e>
</Input>

</Application_Inputs>
- <Application_Outputs>

- «O utput Number="l">
<N am e>H ullStructure2.xm l</N am e>

</Output>
</Application_Outputs>

</Java_W eb_Service_M essage>
</JW SI_M essage>

Figure 6.4 Testing the XML specification o f the Java Web Service

The test results taken from the above scenario indicate that the automatic Java Web

Service creation is functioning according to the expected results and according to the

design requirements of the platform.

The next scenario illustrates how the newly created Java Web service can be published

to the UDDI registry.

186

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

Scenario 3

Automatic Publishing o f Java Web Services

The following scenario illustrates the testing of the automatic publishing of Java Web

services to the UDDI registry.

After completing the creation of the XML specification of the Java Web Service and the

user presses the “Save Settings” button, as illustrated in figure 6.5, the service is

initially stored in the XML database and then it is published automatically on the UDDI.

Figure 6.5 Testing the publishing o f the Java Web Service

The test results taken from the above scenario indicate that the automatic publishing of

Java Web Services is functioning as expected.

By completing the above three scenario, it can be concluded that the JWSI server peer is

working according to the original requirements, design and implementation of the

platform as well as according to user’s feedback on the architecture of the platform. The

next section describes the testing of the JWSI on the client site.

187

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

6.3.5 Client/Consumer Testing

The testing of the Java Web Service Integrator application on the Client site aims to

present the expected results as they were specified in the requirements phase of this

thesis. It was decided that three test scenarios would be adequate to thoroughly test the

client part of this prototype.

Scenario 4

Testing the authorisation mechanism

The following scenario illustrates the testing of the authorisation mechanism used to

authenticate the user that is using the Java Peer on the client site. Failure to enter a

correct username or password would result in the specified user being denied access to

the system.

As already discussed in Chapter 5, section 5.3.2, the client needs to enter a correct

username and password. By entering a username or password, the Java Peer Client

connects to the Java database stored locally, requesting that particular username to be

validated against the database. This validation is accomplished by a component

searching the user’s table in the Java database, for the above username.

This process is of great importance since without this authorisation mechanism, any

user that installs the system on his/her personal computer, could have access to the

system and potentially misuse it. This process is a compulsory component of all

software systems nowadays. Of course the authorization mechanism is no so advanced.

An advanced version of the authorisation mechanism is discussed in Chapter 7 under

section 7.3, future work.

In case a username or the password for that username is incorrect, the Java Peer displays

a window indicating to the user that an incorrect username or password has been entered

as shown in figure 6.6.

188

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

Java Integrator Login Screen

Please enter your username and pasword

r Use a proxy server PortAddress 18080

Proxy Address | wwwproxy.com

Proxy Username I Proxy Password

Username:

Password:

vrships-client

....., T-a&k
J Ok Cancel

Error Message L Ü H
Invalid username or password.

Please try again or contact your administrator

OK

Figure 6.6 Invalid username returned by the Java Peer Client

By providing a correct username and password, the Java Peer grants access to the user.

The test results obtained from the above scenario indicated that the authorisation

mechanism is working according to the expected results, that is, any unauthorised users

are not allowed to access the Java Client Peer. The same authorization mechanism exists

for the Java Peer on the server site.

Scenario 5

Configuration File Generation.

The following scenario illustrates the testing of the creation of the configuration file.

The configuration process is essential since the JWSI must know the inputs and outputs

of the local application needed to be integrated.

This is important in order for the JWSI to know which dynamic services are needed to

be downloaded from the UDDI. This is accomplished by comparing the parameters of

the service on the UDDI and the parameters of the configuration file of the local

application. Not all Java Web Services found on the UDDI are downloaded since this is

189

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

unnecessary and inefficient. Figure 6.7 illustrates the testing of the creation of the

configuration file.

Figure 6.7 Testing the Configuration o f Client Application Wizard

For the purpose of this scenario, specific values have been entered in order to test that

the correct XML configuration file is generated. In case the user forgets to enter one of

the above parameters, the system will notify the user that the XML configuration cannot

be saved unless all the parameters have been entered. . In this example, the system

returns the error message “Keywords field should not be empty”. In order for the system

to continue, the client must enter some keywords that describe the application.

After all parameters have been specified, and after the user presses the “Save

Configuration” button, the Configuration file is created and stored in the local Java

Database server. By physically examining the XML Database, it can be seen that the

190

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

XML configuration has been created successfully and according to the specifications of

the platform. Figure 6.8 illustrates the specification of the Configuration file that will be

used for dynamic discovery of Java Web Services on the UDDI.

<?xml version=“1.0" ?>
- <JWSI_Message>

- <Java_Configuration_Message>
<Application_Filename>c:\Programs\Evis2.exe</Application_Filename>
<Application_Description>This service provides passenger distribution simulations</Application_Description>
<Application_Keywords>Passenger distribut ion,simulations</Application_Keywords>
<Application_Domain_Area>C:\Programs\Hullv2.exe</Application_Domain_Area>
<Security_Protocol>AII Security Protocols</Security_Protocol>
<Commumcation_Protocol>SOAP</Communication_Protocol>

- <Application_Inputs>
- <Input Number=‘l">

<Name>HullStructurev2.xml</Name>
</Input>

</Application_Inputs>
- <Application_Outputs>

- <Output Number="l">
<Nam e>Distributionv2.xm k/Nam e>

</Output>
</Application_Outputs>

</Java_Configuration_Message>
</JWSI_Message>

Figure 6.8 Testing the XML specification o f the Configuration File

The test results taken from the above scenario indicate that the creation of the

configuration file is functioning as expected.

By completing the above three scenarios, it can be concluded that the JWSI client peer

is working according to the original requirements, design and implementation of the

platform as well as according to user’s feedback on the architecture of the platform.

Scenario 6

Testins the XML mapping Tool

This section addresses the testing of the XML mapping tool for cases when the XML

transformation cannot be initiated and the user manual interaction is required. For the

purpose of testing the XML mapper, an invalid XSD document is loaded in this

component. The testing file has been deliberately tampered to contain invalid

parameters and tags in order to demonstrate that the file will not be accepted by the

191

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

component and an error message will be displayed to the user. Figure 6.9 shows the

loading of an invalid XSD document.

Figure 6.9 Error message -XML mapping Tool

As can be seen from the above figure, the XML mapping tool displays an error

indicating that an invalid XSD document is loaded into the tree window. The user has to

select another valid XSD document before the mapping takes place. This will guarantee

that the XSLT created will be valid and compatible according to the system’s

specifications.

The above six scenarios present a comprehensive testing of the main features of the Java

Peer component for both the client and the server site. All tests that have been

performed in this section were successful.

192

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

6.3.6 Simulation Testing

In order to better test the robustness of the platform, several tools have been used to

simulate a real environment where the two Java peers would have been communicating.

One of the main tools used is the “PureLoad”.

PureLoad is a load testing tool that simulates hundreds of users executing requests

against applications. PureLoad can be used to verify that an application will meet the

expected performance criteria. PureLoad reports quality and performance problems as

well as detailed statistics gathered during a load test. PureLoad also includes extensive

support for easy recording and testing of web based applications [89].

Some features of the PureLoad software are listed below:

□ Ease of use

PureLoad is designed to provide ease of use. A test session is managed using

the PureLoad Console which is the central point of control. Using the console

it is easy to define the virtual users, design the different simulations scenarios,

and execute and evaluate the results.

□ Web testing

“PureLoad” can be used to test a wide range of applications but offers

additional support to make it easier testing web applications.

The PureLoad Web Recorder captures all requests between a web browser

and the web application. These requests are then transformed into PureLoad

scenarios for use in a load test session.

The majority of web and application servers have been verified with

PureLoad, including BEA WebLogic, Apache, Oracle 8i IAS, i-Planet,

Microsoft IIS.

193

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

□ Extensive Reporting

PureLoad reports response time, failing requests, bytes transferred, and other

parameters, in chart or text format. The resulting information from several

load sessions can easily be visualised and compared in the PureLoad Result

Comparer.

□ Fully distributed and platform independent

All components in PureLoad are platform independent and the runtime

architecture is fully distributed. This powerful combination enables the use of

single and multi CPU machines all mixed in a distributed environment using

different OS systems.

Using the above simulation software it can be concluded that the system has been tested

extensively and behaved as expected and according to simulation scenarios.

6.3.7 Additional Testing

Both JWSI applications on the server and client site were tested for load balancing and

performance. These two factors are essential as they may compromise the integrity and

robustness of the overall system. They are difficult to be performed since there are

currently no standard methods that would guarantee the integrity and robustness of any

system. For the purpose of testing the above two factors, different techniques have been

used.

A number of JWSI client applications have been executed simultaneously, both on the

same and on different Computers. This is done to simulate an environment of a number

of users (i.e. 20) concurrently logged into the JWSI application. Then, an attempt was

made by each JWSI client application to send different file types to the JWSI on the

server site for the purpose of dynamic integration.

194

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

The results taken from this test scenario were successful since the JWSI on the server

site was able to handle all these transactions simultaneously without compromising the

integrity of the platform. The robustness of the system was verified by ensuring that no

errors were received from both peer applications. This indicated that the JWSI peers

could handle all transactions even at high volumes of data being sent via the

communication lines.

In addition, the JDataStore database has also been tested. This has been achieved by

checking the records that were inserted into the database every time a new service was

dynamically discovered. Moreover, the robustness of the database has been tested by

monitoring, via the JDataStore Server tool, the incoming and outgoing events. This is

illustrated in figure 6.10.

Figure 6.10 Events under the JDataStore Server Tool

To sum up, it can be seen that by completing the test in section 6.3.7, the testing process

was completed and the system was working according to expected results.

195

Dynamic Application Integration Using Peer to Peer Technology Chapter 6

6.4 CONCLUDING REMARKS

In this Chapter, the various methodologies used for the evaluation and testing phase of

the prototype system have been discussed. It can be concluded that the evaluation and

testing phase was successful with a significant amount of information collected as

feedback, which subsequently enabled relevant modifications to the system.

Taking into account the complexity and the size of this prototype, it has been decided

that the test scenarios discussed in this Chapter, for both JWSI peer sites, were adequate

to determine the quality of the system produced.

196

Dynamic Application Integration Using Peer to Peer Technology Chapter 7

Chapter 7

CONCLUSIONS AND FURTHER WORK

7.1 THESIS SUMMARY

The research presented in the preceding Chapters has basically covered all aspects

needed to be taken into consideration in order to develop an innovative and universal

system architecture. The system architecture was used for the development of an open

technology platform, which supports through the latest Peer-to-Peer and Java Web

Services technology dynamic application integration. The primary accomplishments and

contributions of the research are discussed in the current Chapter.

7.2 RESEARCH CONTRIBUTIONS

i. Dynamic Creation of Java Web Services

A novel Java Component has been developed, which is one of the most important

contributions of this Thesis. This innovative component is capable of creating a

definition for Java Web Services (JWS) and it is able to dynamically publish it on

the Internet in order to be discovered by other applications. Other software

packages need to develop software code in order to produce web services for

integration. In this Thesis, the creation of a Java web service can be done by

anybody using an easy-to-use wizard and does not require any technical

knowledge or software code to be written. This has been achieved using the latest

state-of-the-art Internet technologies and protocols to give a new meaning to the

application integration problem.

197

Dynamic Application Integration Using Peer to Peer Technology Chapter 7

ii. Dynamic Discovery and Publishing of Java Web Services

Another equally important contribution of this Thesis is the dynamic discovery

and publishing of Java Web Services, since the proposed system, in order to

provide a P2P architecture, should be able to dynamically discover and publish

JWS using the Universal Description, Discovery and Integration (UDDI) registry.

This is important because in order for a P2P system to function properly, it

requires a global registry where all Java Web Services will be registered so as to

be discovered dynamically by Java peers. The innovation of this architecture is the

publishing and subsequently, the discovery of Java Web Services, based on

specific criteria and techniques as explained in Chapter 3. Only the JWS that fully

comply with the parameters of the requested application are downloaded by Java

peers, in order to be executed and used during the integration process. This has

been implemented so as to avoid redundant Web Services to be downloaded on

the client site that are not compatible with the application requesting to be

integrated.

iii. Dynamic Application Integration

Another contribution of the Thesis is the achievement of dynamic application

integration. In the context of this Thesis, dynamic means that any application may

be integrated and thus interchange data with another application on the Network

or Internet, dynamically, without prior knowledge of the underlying infrastructure

or data structure of the other application. This is accomplished with the help of the

innovative Java Web Service Integrator (JWSI) peer (agent) that has been

specifically developed for this Thesis. The JWSI generates Java Web Services on

the fly, that is dynamically, while the potential applications to be integrated are

running. To establish a communication link between the two dynamic integrated

applications, peers are required to act as agents on the client’s and server’s

machine, to send and receive requests from both locations. These peers are

universal enough and can be installed in different machines under different

operating systems because they are developed using the universality accepted

platform independent Java language.

198

Dynamic Application Integration Using Peer to Peer Technology Chapter 7

iv. Provide Peer to Peer Technology

This is also one of the most important contributions of this Thesis, since the

architecture of the platform that was developed is based on the peer-to-peer

technology. Using the platform derived from this Thesis, a P2P enabled

application is capable of locating other peers in the network. Once an application

is able to locate other peers, it can communicate with them using messages. Once

the communication is established with other peers, the application can receive and

provide information that was extracted, either from the database or the application

itself. The advantage of using a P2P architecture is the fact that the two

applications requesting to be integrated are linked with each other directly without

any intermediate Integration servers like the “hub-and-spoke’’ architecture, as

illustrated in figure 1.1, Chapter 1.

v. Provide dynamic XSLT transformation

Another contribution of this Thesis is the dynamic XSLT transformation

mechanism. Occasionally, the web services are not capable of handling all the

relevant information needed to be exchanged between two peers. In such a case, a

mechanism is required to dynamically convert the data structure from the source

peer to the data structure of the destination peer. This is achieved via the use of

the XSLT language. This language creates the mappings of two different data

structures by describing a template that needs to be applied to the given data

structure. The user of each application usually creates these mappings manually.

The innovation and contribution of this Thesis is to dynamically generate these

mappings using the XML Mapper tool and hence dynamically apply them to

transform the given data format to the destination.

In addition, no mechanisms currently exist for agreeing on message formats. More

importantly, there are no Java Web Services in place that supply application-

independent functionality, such as supporting security, transactions, authentication

or message transformation. Such issues have also been addressed in this Thesis.

199

Dynamic Application Integration Using Peer to Peer Technology Chapter 7

vi. Dynamic Database Integration

Another contribution of this Thesis is the dynamic database integration.

Frequently, applications may use databases to store their information and

subsequently, these data must be exported in a format that is readable by the

requested peer. This has been also achieved using the XSLT generator, which

transforms the data stored into the database to XML and vice-versa.

Moreover, a web service may be connected directly to a database engine without

an intermediate application, for the purpose of retrieving some information. By

this way, the dynamic database integration is achieved, since different database

sources can be synchronised easily.

vii. Provide SOAP and WSDL specification compatibilities

Another contribution of this Thesis is the ability to generate dynamic Java Web

Services, which comply with the Simple Object Access Protocol (SOAP) and the

Web Services Description Language (WSDL) specification. This contribution is

significant in cases where new or external systems may wish to discover and use

the already published Java Web Services produced by the system. This makes the

system extremely flexible and adaptable to future collaboration with other

systems, which are already compatible with these standard specifications. A well-

designed dynamic integration platform should have this functionality since newly

developed systems have the need to integrate with other systems to provide a total

solution to the client.

viii. Provide transfer and security protocols mechanisms

Another important contribution of this Thesis is the dynamic selection and

negotiation of different transfer and security protocols between the two peers.

Firstly, this is accomplished by having the two peers negotiate the appropriate

transfer protocol based on the bandwidth availability of the communication

between them. Secondly, based on some parameters found on each Java Web

Service, the security protocol is dynamically selected, in case the information sent

is confidential, and based on the availability of that protocol between the peers.

Sometimes, the information sent is not so confidential and the two peers may

200

Dynamic Application Integration Using Peer to Peer Technology Chapter 7

decide not to use any security protocols for that session. This is important as it

saves bandwidth, since sometimes the communication link, for example a satellite

link between the ships and the shore offices, is very expensive especially for large

data transfers.

From the above achievements and contributions it can be concluded that the developed

proposed system fulfils all the initial requirements that have been identified during the

analysis phase of this Thesis. Some minor issues, related to the implementation

restrictions of each programming language have been identified. These issues were

corrected by combining the advantages of more than one software technology and/or

programming language together, to give a new meaning to the software development

process and yet at the same time to accomplish the development of an innovative

approach for dynamic application integration that will benefit the entire software

industry.

However, in order for the full potential of the developed system to be realised in real

life applications and to become accepted by all industries, some enhancements may be

considered for future work. These recommendations are discussed in detail in section 7.

7.3 RECOMMENDATIONS AND FURTHER WORK

A number of feasible enhancements and extensions may be considered as candidates for

extending the system developed by the reported research. These are discussed below:

□ An advanced authentication technique

Currently, the authentication technique that was specifically developed for this

Thesis is not so advanced and secure. This is because the author wanted to prove

a concept and not to concentrate on the authentication process. The user of the

JWSI is authenticated based on a username and password that exists in the Java

database.

201

Dynamic Application Integration Using Peer to Peer Technology Chapter 7

If in case an unauthorised user attempts to manipulate the system, can easily

extract with the aid of some technical knowledge of the Java database engine,

the username and password from the Java database, then the system's security is

compromised. This component can be improved significantly by the following

recommendations:

• Firstly, the username and password can be stored in the Java database as

encrypted text and only the system will be able to decrypt these

confidential values based on an encryption algorithm. Currently, the

username and password are stored as plain text.

• Secondly, it would be preferable for the system to be activated after it is

installed on the client’s machine. This can be achieved by providing an

activation code based on the hardware of the installation machine. This

will ensure that the system will not be copied to any machine without the

prior notification of the platform’s supplier.

□ Database connectivity

Currently, the system supports only one database driver, the SQL driver. Some

companies may have information and data in other database engines. The system

can be extended so that more database drivers are connected to the system. The

ability to connect to a wider range of database vendors will enable more

companies to use the proposed architecture since the system will be able to read

information from databases that are currently being used by companies that wish

to use the dynamic integration platform. As long as drivers exist for each

database vendor, then each driver can be easily integrated to the dynamic

platform.

□ Ontology based discovery of web services

Currently, the platform has been designed in such a way so as to discover new

Java web services from the UDDI, the system should perform a comparison

between the configuration file of the local application with the description of the

Java web service that is registered on the UDDI. However, this kind of

comparison is no that advanced, since many people may use different words to

describe similar web services. In such a case, the mechanism for discovering the

web services will not be in a position to find the correct web service for the

202

Dynamic Application Integration Using Peer to Peer Technology Chapter 7

purpose of dynamic integration. This design limitation is due to the fact that the

author wanted to prove the dynamic discovering concept and not to implement

an advanced technique for precise web service discovery, as this was out of the

scope of this Thesis.

However, to improve this limitation, the architecture may be extended to support

dynamic discovery with the help of Ontologies. Ontology is an explicit

conceptualisation that describes the semantics of the data. Ontologies provide a

shared and common understating of a domain that can be communicated across

people and application systems. Hence, Ontologies may play an important role

in discovering new Web Services which have similar functionality in the same

domain area [47].

□ Enhanced XSLT transformations

Currently, the XSLT transformations can handle only the top level of XML data.

That is, if more nested levels of XML tags exist in an XML document, then

these cannot be transformed properly and as a result, the whole dynamic

integration process may collapse. This also applies when the information is

retrieved from the database and the corresponding XML files are created. A

more complicated XSLT transformation mechanism could be developed to

accommodate an unlimited number of data levels. This can be achieved by

storing temporarily the “/eve/” position of each XML tag, so that it can be used

during the dynamic generation of the XSLT. By developing this functionality,

the dynamic integration platform could handle any type and any level of XML

tags.

In conclusion, the overall aim of this thesis was achieved to the maximum by

developing successfully a system that will allow the dynamic integration of different

software applications and information sources, including legacy systems, using the

latest state of the art Internet technology called “Peer-to-Peer”.

203

Dynamic Application Integration Using Peer to Peer Technology Appendix A

Appendix A

Java Classes

To describe all elements of the source code that was written for the purpose of

developing the peer-to-peer platform described in this Thesis, is neither practical nor

useful, so it has been decided that only the abstract classes would be included in this

section.

The following classes have been used to implement the Java Web Service Integrator.

Class LoginScreen

This class is responsible for validating users based on their account on the Java

Database Engine as well as to retrieve the appropriate tasks and actions for each user.

package JWSI;

/*

* Title: Java Web Service Integrator

* Description; Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author Christofi Stelios

*/

// Imports

import ja va. a wt.*;

import javax.swing.*;

i mport j a va. a wt. e vent. * ;

import javax.swing.border.*;

import javax.swing.tree.*;

204

Dynamic Application Integration Using Peer to Peer Technology Appendix A

import java.io.*;

importjava.net.*;

import java.beans.*;

import java.net.URLEncoder;

import com. borland. datastore .j dbc. * ;

import java.sql.*;

public class loginscreen extends JFrame {

// Constructors

public loginscreenQ { }

// Methods

protected void processWindowEvent(WindowEvent e) { }

public static void main(String[] args) { }

private void jblnit() throws Exception { }

void button_cancel_actionPerformed(ActionEvent e) { }

void username textValueChanged(TextEvent e) { }

void button_ok_actionPerformed(ActionEvent e) { }

void Check Password() { }

void Check_Usemame() { }

void Load Roles(int intUserlD) { }

void Load Tasks() { }

void usemame_keyPressed(KeyEvent e) { }

void password keyPressed(KeyEvent e) { }

void this keyPressed(KeyEvent e) { }

void password keyReleased(KeyEvent e) { }

void proxy itemStateChangedOtemEvent e) { }

} // End of class loginscreen

Dynamic Application Integration Using Peer to Peer Technology Appendix A

Class Javalntegrator

This class is responsible for loading the main window of the Java Web Services

Integrator and allows the user to navigate through the various business documents using

the different tasks.

package JWSI;

/*

* Title; Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author Christofi Stelios

*/

// Imports

import com.borland.datastore.jdbc.*;

import java.awt.*;

import javax.swing. *;

import javax.swing.tree.*;

import javax.swing.border.*;

import java.awt.event.*;

import javax.swing.event. *;

importjava.net.*;

import java.text.DateFormat;

import java.util.*;

import java.io.*;

import org.w3c.dom.*;

import org.w3c.dom.Document;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.Statement;

import java.sql.ResultSet;

import javax.swing.table.*;

import javax.swing.table.DefaultTableCellRenderer;

import javax.swing.table. JTableHeader;

206

Dynamic Application Integration Using Peer to Peer Technology Appendix A

import javax.swing.table.TableCellRenderer;

import javax.xml.parsers.*;

import org.xml.sax.SAXException;

import org.xml.sax.*;

import com.borland.dx.dataset.*;

import com.borland.dbswing.*;

import com.borland.dx.sql.dataset.*;

import com.borland.intemetbeans.*;

public class Javalntegrator extends JFrame{

// Constructors

public Javalntegrator() { }

// Methods

protected void processWindowEvent(WindowEvent e) { }

private void jblnit() throws Exception {

protected static void visible(boolean value) { }

void loadcurrentrolesQ { }

void jTreel_mousePressed(MouseEvent e) { }

void showmainwindow(String selectedfolder) { }

void showactions() { }

void folderl mousePressed(MouseEvent e) { }

void folder2_mousePressed(MouseEvent e) { }

void folder3 mousePressed(MouseEvent e) { }

void folderd mousePressed(MouseEvent e) { }

void folder5 mousePressed(MouseEvent e) { }

void folder6_mousePressed(MouseEvent e) { }

void button l_actionPerformed(ActionEvent e) { }

void action 1 mousePressed(MouseEvent e) { }

void action2_mousePressed(MouseEvent e) { }

void action3_mousePressed(MouseEvent e) { }

void action4_mousePressed(MouseEvent e) { }

void performaction(String BusDoc,String selection) { }

void view label mousePressed(MouseEvent e) { }

void jPanel3_mouseEntered(MouseEvent e) { }

void action4 mouseEntered(MouseEvent e) { }

207

Dynamic Application Integration Using Peer to Peer Technology Appendix A

void action3 mouseEntered(MouseEvent e) { }

void action2_mouseEntered(MouseEvent e) { }

void action 1 mouseEntered(MouseEvent e) { }

void view_label_mouseEntered(MouseEvent e) { }

void view label mouseExited(MouseEvent e) { }

void about label mousePressed(MouseEvent e) { }

void about label mouseEntered(MouseEvent e) { }

void about label mouseExited(MouseEvent e) { }

void ExistingService^Main Window) String title) { }

void Business Document(String Title,String)] FieldNames,String)] DisplayNames,int

FieldNumber,String sql) { }

void New_JavaWebService_MainWindow(String title) { }

public InputStream GetResource(String filename) { }

void readffomXMLfileToTree(String filename 1){ }

void checksettingschild(Node child 1) { }

void exit labell mouseClicked(MouseEvent e) { }

void exit labell mouseEntered(MouseEvent e) { }

void exitlabel 1 mouseExited(MouseEvent e) { }

void exit label 1 _mousePressed(MouseEvent e) { }

void map labeI_mouseClicked(MouseEvent e) { }

void map_label_mousePressed(MouseEvent e) { }

void map label mouseReleased(MouseEvent e) { }

void map label mouseEntered(MouseEvent e) { }

void map label_mouseExited(MouseEvent e) { }

void RoleList_itemStateChanged(ItemEvent e) { }

void jTree2 mouseMoved(MouseEvent e) { }

void jTree2 mousePressed(MouseEvent e) { }

public class CustomTableCellRenderer extends DefaultTableCellRenderer { }

class JComponentCellRenderer implements TableCellRenderer {}

} // End of class Javaintegrator

208

Dynamic Application Integration Using Peer to Peer Technology Appendix A

Class Actions

This class is responsible for executing the relevant actions that are selected by each

user.

package JWSI;

/*

* Title: Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author Christofi Stelios

*/

// Imports

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

importjava.net.*;

import java.util. Date;

import java.text.DateFormat;

import java. lang.Long;

public class Actions extends JDialog implements ActionListener

{

// Constructors

public Actions () { }

// Methods

protected void processWindowEvent(WindowEvent e) { }

public void addNotiiy () { }

public void actionPerformed (ActionEvent event) { }

private void jblnit() throws Exception { }

void upload_ok_actionPerformed(ActionEvent e) { }

void execute(String BusDoc.String action,String settingfile,JTree jTreel) { }

209

Dynamic Application Integration Using Peer to Peer Technology Appendix A

void viewschema() { }

void viewsettings(String setfile,JTree jTreel) { }

void startuploads(String setfile,JTree jTreel) { }

String onlyfile(String tempi) { }

void startdownloads(String setfile.JTree jTreel) { }

void createservice() { }

void addrules() { }

void viewservice() { }

void uploadimages(String setfde,JTreejTreel) { }

void databasewizard(String action) { }

void WorkFlowService(String action) { }

void KBosWorkFlowService(String action) { }

void ClientConfiguration(String action) { }

void CreateJavaWebService(String action) { }

void CreateOrganisationDetails(String action) { }

void CreateNewServices(String action) { }

} // End of class Actions

Class DownloadFiles

This class is responsible for downloading any files from the server peer to the client

peer in order to be used by the requesting application to be integrated.

package JWSI;

/*

* Title: Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author Christofl Stelios

*/

210

Dynamic Application Integration Using Peer to Peer Technology Appendix A

// Imports

import java.awt.*;

import java.awt.event. *;

import javax.swing. *;

import java.io.*;

importjava.net.*;

import java.util.Date;

import java.text.DateFormat;

import java. lang. Long;

public class DownloadFiles extends JDialog implements ActionListener

{

// Constructors

public DownloadFiles () { }

// Methods

protected void processWindowEvent(WindowEvent e) { }

public void addNotify () { }

public void actionPerformed (ActionEvent event) { }

private void jblnit() throws Exception { }

void upload ok_actionPerformed(ActionEvent e) { }

void stop_button_actionPerformed(ActionEvent e) { }

void start button actionPerformed(ActionEvent e) { }

//Class that implements the downloading of xml fde

public class downloadXML extends Thread

{

public void run() { }

public downloadXML() { }

} //end of downloadXML

void downloadxmlfile(String save file,String filename) { }

} // End of class DownloadFiles

211

Dynamic Application Integration Using Peer to Peer Technology Appendix A

Class MapTool

This class is responsible for the XML mappings between the client peer and the server

peer. The output of this class is an XSLT file.

package JWSI;

/*

* Title: Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author Christofi Stelios

*/

// Imports

import com.borland.datastore.jdbc.*;

import java.sql.*;

import javax.xml.transform.Templates;

import javax.xml.transform.Transformer;

import javax.xml.transform.stream.StreamSource;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.OutputKeys;

import org.xml.sax.SAXException;

import org.xml.sax.*;

import javax.xml.parsers.*;

import org.w3c.dom.Document;

import org.w3c.dom.*;

import java.awt.*;

import java.awt.event.*;

i m port j a vax. swing.*;

import java, io.*;

import java.awt.datatransfer. *;

import java.awt.dnd.*;

import java.awt.dnd.peer.*;

// JDOM classes used for document representation

import java.util.Iterator;

import java.util.List;

import java.net.URL;

212

Dynamic Application Integration Using Peer to Peer Technology Appendix A

import javax.swing.tree. *;

import java.io.*;

importjava.util.zip.*;

public class maptool extends JDialog implements ActionListener

{

// Constructors

public maptool () { }

// Methods

protected void processWindowEvent(WindowEvent e) { }

public void addNotify () { }

public void actionPerformed (ActionEvent event) { }

private void jblnit() throws Exception { }

void create_XSLT(String XSLTfile) { }

void buttonl_actionPerformed(ActionEvent e) { }

void jTreel l_mouseMoved(MouseEvent e) { }

void jTree21_mouseMoved(MouseEvent e) { }

void jTreel 1 mousePressed(MouseEvent e) {}

void jTree21_mousePressed(MouseEvent e) { }

void loadschemasource(String source) { }

void loadschemadestination(String destination) { }

protected static void execute map button)) { }

void map button actionPerformed)ActionEvent e) { }

void parseschema(DefaultMutableTreeNode tempmainRoot,String txt schema) { }

void import button actionPerformed)ActionEvent e) { }

void import_buttonl_actionPerformed(ActionEvent e) { }

void button2_actionPerformed(ActionEvent e) { }

void Remove mapping actionPerformed(ActionEvent e) { }

void create_XML_actionPerformed(ActionEvent e) { }

void exportToTxt(String xmlfile) { }

int checkchildfNode child 1,String temparray)]) { }

void exportToXML(String txt schema) { }

void transformxml(String sourcexml,String xslt file,String outfile) { }

void Help button actionPerformed)ActionEvent e) { }

void create ZIP actionPerformed)ActionEvent e) { }

void create ZIPI actionPerformed)ActionEvent e) { }

} // End of class maptool

213

Dynamic Application Integration Using Peer to Peer Technology Appendix A

Class CreateJavaWebService

This class is responsible for creating and publishing the Java Web Service.

package JWSI;

/*

* Title: Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author

*/

Christofi Stelios

// Imports

import java.awt.*;

import java.awt.event.*;

import javax. swing. *;

import java.io.*;

importjava.net.*;

import java.util.Date;

import java.text.DateFormat;

import java.lang.Long;

public class CreateJavaWebService extends JDialog implements Action Listener

{

// Constructors

public CreateJavaWebService () { }

// Methods

protected void processWindowEvent(WindowEvent e) { }

public void addNotify () { }
public void publish(){ }

public void actionPerformed (ActionEvent event) { }

private void jblnitQ throws Exception { }

void upload ok actionPerformed(ActionEvent e) { }

void CreateService_ok_actionPerformed(ActionEvent e) { }

void browse button 1 action Performed! ActionEvent e) 1 }

} // End of class CreateJavaWebService

214

Dynamic Application Integration Using Peer to Peer Technology Appendix A

Class OrganisationDetails

This class is responsible for saving the organization details to be published along with

the Java Web Service.

package JWSI;

/*

* Title: Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author Christofi Stelios

*/

// Imports

import java.awt.*;

import java.awt.event.* ;

import javax.swing.*;

import java.io.*;

importjava.net.*;

import java.util.Date;

import java.text.DateFormat;

import java.lang.Long;

public class OrganisationDetails extends JDialog implements ActionListener

{

// Constructors

public OrganisationDetails () { }

// Methods

protected void processWindowEvent(WindowEvent e) { }

public void addNotify () { }

public void actionPerformed (ActionEvent event) { }

private void jblnit() throws Exception { }

void Save ok actionPerformed(ActionEvent e) { }

void upload_ok_actionPerformed(ActionEvent e) { }

} // End of class OrganisationDetails

215

Dynamic Application Integration Using Peer to Peer Technology Appendix A

Class SOAPClient

This class is responsible for initiating the Java Web Service via the SOAP protocol once

it has been discovered.

package JWS1;

/*

* Title: Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author Christofi Stelios

*/

// Imports

import javax.wsdl. Definition;

import javax.wsdl.Port;

import javax.wsdl. WSDLException;

import javax.wsdl.extensions.ExtensibilityElement;

import javax.wsdl.extensions.soap.SOAPAddress;

import javax.wsdl.factory. WSDLFactory;

import javax.wsdl.xml. WSDLReader;

import javax.xml.namespace.QName;

import javax.xml.rpc.ServiceException;

import java.net.MalformedURLException;*/

importjava.net.*;

import java.io.*;

import java.rmi.RemoteException;

import java.util.*;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.*;

public class SOAPClient {

// Methods

public byte[] PopMessagemarshall() { }

public byte[] AcknowledgeReceiptmarshall(String reflD) { }

216

Dynamic Application Integration Using Peer to Peer Technology Appendix A

public byte[] NotifyForProcessingCompletionmarshall(String reflD) { }

public String postPopMessage(String FunctionName) { }

public String postAcknowledgeReceipt(String FunctionName,String reflD) { }

public String posfNotifyForProcessingCompletion(String FunctionName,String reflD) { }

public void ParseXml(String xmldata) { }

public String PopMessage() { }

public void discover (){ }

public String AcknowledgeReceipt(String ReflD) { }

public String NotifyForProcessingCompletion(String Message) { }

} //End of class SOAPClient

Class Configuration

This class is responsible for the configuration of the application that needs to be

integrated.

package JWSI;

/*

* Title: Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author Christofi Stelios

*/

// Imports

import java.awt.*;

import java.awt.event.*;

import javax. swing.*;

import java.io.*;

importjava.net.*;

import java.util.Date;

import java.text.DateFormat;

import java.lang. Long;

public class Configuration extends JDialog implements ActionListener

{

217

Dynamic Application Integration Using Peer to Peer Technology Appendix A

// Constructors

public Configuration () { }

// Methods

protected void processWindowEvent(WindowEvent e) { }

public void addNotify () { }

public void actionPerformed (ActionEvent event) { }

private void jblnit() throws Exception { }

void CreateConfiguration ok actionPerformed(ActionEvent e) { }

void browse button_actionPerformed(ActionEvent e) { }

void Save_ok_actionPerformed(ActionEvent e) { }

} // End of class Configuration

Class UploadFiles

This class is responsible for uploading any files from the client peer to the server peer

for integration process to take place.

package JWSI;

/*
* Title:

* Description:

* Copyright:

* @author

*/

Java Web Service Integrator

Java Web Service Integrator

Copyright (c) 2003

Christofi Stelios

// Imports
import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.io.*;

importjava.net.*;

import java.util.Date;

import java.text.DateFormat;

import java.lang.Long;

218

Dynamic Application Integration Using Peer to Peer Technology Appendix A

public class UploadFiles extends JDlalog implements ActionListener

{

// Constructors

public UploadFiles () { }

// Methods

protected void processWindowEvent(WindowEvent e) { }

public void addNotify () { }

public void actionPerformed (ActionEvent event) { }

private void jblnit() throws Exception { }

void upload_ok_actionPerformed(ActionEvent e) { }

void stop_button_actionPerformed(ActionEvent e) { }

void start button_actionPerformed(ActionEvent e) { }

public class checkfolder extends Thread

{

public void run() { }

public checkfolderQ { }

public void checkcommand() { }

} //end of checkfolder

//Class that implements the sending of xml file

public class sendxml extends Thread

!

public void run() { }

public sendxml() { }

} //end of sendxml

void sendxmlfile(String filename) { }

} // End of class UploadFiles

219

Dynamic Application Integration Using Peer to Peer Technology Appendix A

Class DatabaseConnect

This class is responsible for connecting to different database vendors and extract

information that will be sent to any application requesting to be integrated.

package JWS1;

/*

* Title: Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author

*/

Christofi Stelios

// Imports

import java.awt.*;

import java.awt.e vent. *;

import javax.swing.*;

import java.io.*;

import com.borland.datastore.*;

import java.text.DateFormat;

import java.util.Date;

import java.sql.*;

import javax.sql.*;

import sun.jdbc.rowset.CachedRowSet;

i mport javax. swing.border. *;

import oracle.xml.sql.query.OracleXMLQuery;

import oracle.xml.sql.query.*;

import oracle.jdbc.driver.*;

import java.lang.*;

import org.w3c.dom.*;

public class DatabaseConnect extends JDialog implements ActionListener

{

// Constructors

public DatabaseConnect (String action) { }

220

Dynamic Application Integration Using Peer to Peer Technology Appendix A

11 Methods

protected void processWindowEvent(WindowEvent e) { }

public void addNotify () { }

public void actionPerformed (ActionEvent event) { }

private void jblnit() throws Exception { }

void button 1 actionPerformed(ActionEvent e) { }

void CheckAction() { }

void checkmappings() { }

void help button actionPerformed(ActionEvent e) { }

class Connect {

public Connect() {}

public void run() { }

} // End of connect class

void Start button actionPerformed(ActionEvent e) { }

void exportToText() { }

void exportToXML() { }

void Connectdb_actionPerformed(ActionEvent e) { }

void SelectTables() { }

void Select Tables actionPerformed(ActionEvent e) { }

void fieldnames_itemStateChanged(ItemEvent e) { }

void LoadSchemaValues() { }

void LoadValues() { }

void DeleteDatabase Connection(int Action)

void Update Database_Connection() { }

void SaveDatabase Connection)) { }

void exporttype itemStateChanged(ItemEvent e) { }

void exporttypel_itemStateChanged(ItemEvent e) { }

void Select Mappings actionPerformed)ActionEvent e) { }

void save button actionPerformed(ActionEvent e) { }

void this_focusGained(FocusEvent e) { }

void this_windowActivated(WindowEvent e) { }

} // End of class DatabaseConnect

221

Dynamic Application Integration Using Peer to Peer Technology Appendix A

Class Map Database

This class is responsible for creating the mappings between the database and the XML

file. Then, these mappings will be converted to a format readable by the requesting

application in order to achieve dynamic integration.

package JWSI;

/*

* Title: Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author Christofi Stelios

*/

// Imports

import com.borland.datastore.jdbc. *;

import org.apache.xalan.processor.TransformerFactorylmpl;

import java.sql.*;

import javax.sql.*;

import javax.xml.transform.*;

import javax.xml.transform. Templates;

import javax. xml. transform. Transformer;

import javax. xml. transform. stream.StreamSource;

import javax.xml.transform.stream.StreamResult;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.OutputKeys;

import org.xml.sax.SAXException;

import org.xml.sax.*;

import javax.xml.parsers.*;

import org.w3c.dom.Document;

import org.w3c.dom.*;

import java.awt.*;

import java.awt.event. *;

import javax.swing.*;

import java.io.*;

222

Dynamic Application Integration Using Peer to Peer Technology Appendix A

import j a va. avvt. datatran s fer. *;

import java.awt.dnd.*;

import java.awt.dnd.peer.*;

// JDOM classes used for document representation

import java.util.Iterator;

import java.util. List;

import java.net. URL;

import javax.swing.tree.*;

import java.io.*;

importjava.util.zip.*;

public class Map Database extends JDialog implements ActionListener

{

// Constructors

public Map Database () { }

// Methods

protected void processWindowEvent(WindowEvent e) { }

public void addNotify () { }

public void action Performed (ActionEvent event) { }

private void jblnit() throws Exception { }

void ClearjTrees() { }

protected static void create _XSLT(String XSLT file) { }

void jTreel 1 mouseMoved(MouseEvent e) { }

void jTree21_mouseMoved(MouseEvent e) { }

void jTreel 1 mousePressed(MouseEvent e) {}

void jTree21_mousePressed(MouseE vent e) { }

void loadschemasource(String source) { }

void loadschemadestination(String destination) { }

void loadselectedfieldnames() { }

void loaddestinationfieldnames(int xmlSchemalD) { }

void LoadMappings(int DatabaselD) { }

void checkmappings() { }

void execute map button)) { }

void map button act ion Performed) ActionE vent e) { }

223

Dynamic Application Integration Using Peer to Peer Technology Appendix A

void parseschema(DefaultMutableTreeNode tempmainRoot,String txtschema) { }

void import button_actionPerformed(ActionEvent e) { }

void import New_Apply_Button_actionPerformed(ActionEvent e) { }

void button2_actionPerformed(ActionEvent e) { }

void Remove mapping actionPerformed(ActionEvent e) { }

void Apply button actionPerformedfActionEvent e) { }

public void createXMLfilefromservice() { }

public void createXMLfile() { }

void exportToTxt(String xml file) { }

int checkchildfNode child 1,String temparray[]) { }

void exportTxtToXML(String txt schema) { }

protected static void transformxml(String sourcexml,String xslt file,String outfile) { }

void Help button actionPerformedfActionEvent e) { }

void create ZIP actionPerformedfActionEvent e) { }

public class Create XML extends Thread

{

public void run() { }

public void execute() { }

public void processxmlf) { }

public Create XMLf) {}

} // End of Create XML

public void exportDatabaseToXML(String filename,int writer) { }

void thisfocusGainedfFocusEvent e) { }

void New Apply Button actionPerformedfActionEvent e) { }

void buUonapplyactionlA'rformedf Action Event e) { }

} // End of class Map Database

224

Dynamic Application Integration Using Peer to Peer Technology Appendix A

Class MessageBox

This class is responsible for creating popup windows and displays any messages to the

user of the JWSI.

package JWSI;

/*

* Title: Java Web Service Integrator

* Description: Java Web Service Integrator

* Copyright: Copyright (c) 2003

* @author

*/

Christofi Stelios

// Imports

import java.awt.*;

import java.awt.event. *;

import javax.swing.*;

public class MessageBox extends JDialog implements ActionListener

{

// Constructors

public MessageBox (Frame parent) { }

// Methods

public void setVisible (boolean b) { }

public void addNotify () { }

public void actionPerformed (ActionEvent event) { }

public void setText (String sMessage) { }

private void jblnitQ throws Exception { }

} // End of class MessageBox

Dynamic Application Integration Using Peer to Peer Technology Appendix B

Appendix B

Data Gathering

The following methods have been used in order to collect the necessary requirements

for the development of the system as well as significant data and comments have been

received from the users of the system in order to evaluate and hence improve the system

so that it can meet their needs.

Questionnaires

The following section lists some of the questionnaires that have been received from

various users of the Consortium before, during and after the development of the system.

During Requirement Capturing

Company Name: NAPA Oy__
Country: FINLAND__
Tool Name: NAPA___
Tool Description:
NAPA, the Naval Architectural PAckage, is a CAE system for initial and basic ship
design, comprising, among other things, hull surface definition, production-level
fairing, definition of the ship's compartmentation and naval architectural
calculations. Geometry definitions are based on a product model created by the
system. NAPA can be used both for preliminary design and for the production of
final delivery documents. It covers all applications needed in ordinary naval
architectural design and can handle floating structures of any kind.

Features
-3D modeling of the entire ship.
- Standard naval architectural calculations.
- Hydrodynamic calculations.
- Report generator and drawing functions.
- Communication with other design systems through numerous links and interfaces.
Operating System Supported: Windows (2000, NT, XP), Unix, Sun and H-P
platforms___
Number of Input Files: 1__
Number of Output Files: 1___
Actual Filename: Napa.exe__
Comments: None

226

Dynamic Application Integration Using Peer to Peer Technology Appendix B

Company Name: SU-SSRC/ University of Strathclyde_______________________
Country: UNITED KINGDOM__
Tool Name: ev e/ EVI__
Tool Description:
EVE is a passenger evacuation software which takes as input 3D modeling designs
of a ship and distribute the passengers in order to find any discrepancies of the ship
design.

Features
- Passenger evacuation simulation software.
- Uses General Arrangement data.

Operating System Supported: Windows (2000, NT, XP)

Number of Input Files: 1 or 2______________________
Number of Output Files: 1________________________
Actual Filename: Eve.exe or Evi.exe________________
Comments: None

Company Name: TBS / TRIBON Solutions AB
Country: SWEEDEN
Tool Name: TRIBON
Tool Description:
The Tribon Product Information Model (PIM) holds information and documentation
about the ship design and about the manufacturing of the ship. Tribon M2 Data
Management is an embedded and adapted data management functionality fully
integrated with the Tribon PIM. Tribon M2 Data Management focuses on:

• Control of bject status in the Tribon PIM
. Revision handling for drawings
. Access control of data and functions

Features
- Commercial software covering initial, basic and detailed design as well as
production engineering and production.

Operating System Supported: Windows (2000, NT, XP)

Number of Input Files: 1
Number of Output Files: 1
Actual Filename: Tribon.exe
Comments: None

227

Dynamic Application Integration Using Peer to Peer Technology Appendix B

During System Development - Prototype

Company Name: SU-SSRC/ University of Strathclyde

Country: UNITED KINGDOM

Please put a tick ^ where applicable.

Usability of the system: Poor Good S Very Good Excellent

Interface of the system: Poor Good Very Good V Excellent

Functionality of the system: Poor Good Very Good S Excellent

Robustness of the system: Poor Good S Very Good Excellent

Please cross where NOT applicable.

Did you have any problems during the installation of the system: Yes / No If
Yes please specify

Does the system satisfy your needs: Yes / -No If No please specify why

Do you need extra functionality: Yes / No If Yes please specify

Is it compatible with your Operating System: Yes /-No- If No please specify
the operating system you are using

Have you noticed any bugs of the system: Yes / No- If Yes please specify
The system is slow when it is run on a computer with 128Mbytes Memory

Please enter any other comments that you have regarding the system:
None

228

Dynamic Application Integration Using Peer to Peer Technology Appendix B

Company Name: NAPA Oy

Country: FINLAND

Please put a tick V where applicable.

Usability of the system: Poor S Good Very Good Excellent

Interface of the system: Poor Good Very Good Y Excellent

Functionality of the system: Poor Good Very Good Y Excellent

Robustness of the system: Poor Good S Very Good Excellent

Please cross where NOT applicable.

Did you have any problems during the installation of the system: Ŷ es-/ No If
Yes please specify

Does the system satisfy your needs: Yes /No If No please specify why

Do you need extra functionality: Yes /-No If Yes please specify
To be able to specify multiple input and multiple output files for a specify Design
Tool.

Is it compatible with your Operating System: Yes /-No- If No please specify
the operating system you are using

Have you noticed any bugs of the system: Yes- / No If Yes please specify

Please enter any other comments that you have regarding the system:
The overall functionality of the system is very good.

229

Dynamic Application Integration Using Peer to Peer Technology Appendix B

Company Name: Ship Design and Research Centre

Country: POLAND

Please put a tick S where applicable.

Usability of the system: Poor Good ^ Very Good Excellent

Interface of the system: Poor Good Very Good Y Excellent

Functionality of the system: Poor Good Very Good S Excellent

Robustness of the system: Poor Good Very Good S Excellent

Please cross where NOT applicable.

Did you have any problems during the installation of the system: Yes-/ No If
Yes please specify

Does the system satisfy your needs: Yes /-No If No please specify why

Do you need extra functionality: Yes /-No If Yes please specify
To be able to accept connections from various Design Tools at the same time. This
connection may be over Secure Socket Layer (SSL)

Is it compatible with your Operating System: Yes /-No- If No please specify
the operating system you are using

Have you noticed any bugs of the system: Yes-/ No If Yes please specify

Please enter any other comments that you have regarding the system:
None

230

Dynamic Application Integration Using Peer to Peer Technology Appendix B

After System Development - During real life testing

Company Name: SU-SSR C/ University of Strathclyde

Country: UNITED KINGDOM

Please put a tick • / where applicable.

Usability of the system: Poor Good S Very Good Excellent

Interface of the system: Poor Good Very Good S Excellent

Functionality of the system: Poor Good Very Good S Excellent

Robustness of the system: Poor Good S Very Good Excellent

Easy integration with tools: Poor Good Very Good S Excellent

Please cross where NOT applicable.

Does the transfer of files done correctly? Yes / Ne
the error messages:

— If No please specify

Does the system satisfy the initial requirements of the project: Yes /-Ne If No
please specify why:

Does the system satisfy your needs: Yes /-Ne If No please specify why

Do you need extra functionality: Yes / No If Yes please specify

Is it compatible with your Operating System: Yes /Ne- If No please specify
the operating system you are using

Have you noticed any bugs of the system: Yes-/ No If Yes please specify

Please enter any other comments that you have regarding the system:
None

231

Dynamic Application Integration Using Peer to Peer Technology Appendix B

Company Name: NAPA Oy

Country: FINLAND

Please put a tick S where applicable.

Usability of the system: Poor Good S Very Good Excellent

Interface of the system: Poor Good Very Good S Excellent

Functionality of the system: Poor Good Very Good S Excellent

Robustness of the system: Poor Good Very Good S Excellent

Easy integration with tools: Poor Good Very Good S Excellent

Please cross where NOT applicable.

Does the transfer of files done correctly? Yes / No- If No please specify
the error messages:

Does the system satisfy the initial requirements of the project: Yes / No- If No
please specify why:

Does the system satisfy your needs: Yes /No- If No please specify why

Do you need extra functionality: ¥«s / No If Yes please specify

Is it compatible with your Operating System: Yes /No- If No please specify
the operating system you are using

Have you noticed any bugs of the system: Yes-/ No If Yes please specify

Please enter any other comments that you have regarding the system:
This version of the system is much better than the previous one in terms of
robustness and functionality.

232

Dynamic Application Integration Using Peer to Peer Technology Appendix B

Company Name: TBS / TRIBON Solutions AB

Country: SWEEN

Please put a tick S where applicable.

Usability of the system: Poor Good S Very Good Excellent

Interface of the system: Poor Good ^ Very Good Excellent

Functionality of the system: Poor Good Very Good ^ Excellent

Robustness of the system: Poor Good Very Good S Excellent

Easy integration with tools: Poor Good Very Good S Excellent

Please cross where NOT applicable.

Does the transfer of files done correctly? Yes / Ne- If No please specify
the error messages:

Does the system satisfy the initial requirements of the project: Yes / No- If No
please specify why:

Does the system satisfy your needs: Yes /-No- If No please specify why

Do you need extra functionality: Yes / No If Yes please specify

Is it compatible with your Operating System: Yes /-No- If No please specify
the operating system you are using

Have you noticed any bugs of the system: Yes-/ No If Yes please specify

Please enter any other comments that you have regarding the system:
The robustness of the system is outstanding.

Dynamic Application Integration Using Peer to Peer Technology Appendix B

Consortium Meetings

Below is a list of all tools that has been agreed by the consortium to be used for the

Integration System during the various Consortium meeting of the project lifecycle.

Tool Nam e Partner Description

NAPA Napa Oy

- 3D modeling of the entire ship.
- Standard naval architectural calculations.
- Hydrodynamic calculations.
- Report generator and drawing functions.
- Communication with other design systems
through numerous links and interfaces.

SDL (Surface
Design Library) NTUA-SDL - B-Spline Bezier curve/surface modeler.

- Can communicate with CATIA, TRIBON and NAPA.

AVPRO Principia

-This tool executes a design loop in the conceptual or
initial phase of the design.
- Define the main particulars.
- Define the hull form (in a crude preliminary but
simple -definition).
- Check hydrostatics.
- Check stability.
- Check scantlings.
- Define propulsion arrangement.
- Define a preliminary GA.
- Check weights and CG.
- Estimate performance.

LBR5 Principia

- LBR5 carries out structural analysis, and scantling
optimisation.
- Especially dedicated to ship structure assessment,
but can address any kind of stiffened structure.

MECHANICAL
DESKTOP UNEW

- Uses the AutoCAD core technology.
- Developed for mechanical designers who
prefer to create 3D designs in native AutoCAD
software environment.

EVE / EVI SU-SSRC - Passenger evacuation simulation software.
- Uses General Arrangement data.

POLYCAD SU-SSRC - PolyCAD is a geometry-editing tool developed with
a lean towards Naval Architecture and Ship Design.

PROTEUS SU-SSRC - Damage Survivability Simulation

PARALLAX SU-SSRC - Damage Survivability Visualisation (from
PROTEUS)

234

Dynamic Application Integration Using Peer to Peer Technology Appendix B

CFAST SU-SSRC

- CFAST is a zone model that predicts the effect of a
specified fire on temperatures, various gas
concentrations and smoke layer heights in a multi­
compartment structure.

MOCKUP-2002Î2 UNIPATRAS
- A VR software platform based on CAD engineering
to support the development of customised
applications through its Development Toolkit.

BAL.DIS
Catalogue BALANCE - Supply Chain e-Catalog system.

WITNESS (suite) IZAR

- MATFLOW - Material flow planning system.
- WITNESS - Simulation software.
- WITNESS OPTIMIZER.
- WITNESS VR - Virtual Reality Software.
- Ability to construct a computer model of virtually
any existing or proposed process, simulate its
functions, and analyse its functions.
- Virtual Prototyping.

DENEB / QUEST IZAR

- Digital Manufacturing environment for
modelling, analysing, validating and visualizing
facility layout and process flow.
- Analyse and optimise the throughput of the line,
factory or even the extended production
environment, including the suppliers

TRIBON TBS

- Commercial software covering initial, basic and
detailed design as well as production engineering
and production.

Furthermore, during the consortium meetings several comments and suggestions have

been received regarding the functionality and usability of the system in order to adjust it

according to the user needs.

235

Dynamic Application Integration Using Peer to Peer Technology Appendix B

MSN Meetings

MSN meetings have been setup several times in order to check the robustness and

usability of the system in real time from 4 different countries: United Kingdom, Athens,

Germany and France. The following section lists some of the comments that have been

received during these meetings.

Meeting # 1
Partner Comments

NAPA Oy 1) The system can not start. It returns an error saying that the
password is incorrect.

2) Now the system is working. I have put an invalid
password.

SU-SSRC 1) My screen resolution is 640x480 and I can not see the
whole application.

2) Now 1 can see the application since I have increase my
screen resolution to 800x600.

TBS 1) The system is working and it says that is ready to receive
and send new files.

Ship Design and
Research Centre

1) I have problems finding the application.
2) I found the applications, before I was login as a different

user.

Meeting # 2
Partner Comments
SU-SSRC 1) The system can not send files. It says “Socket Error”.

2) Now the system can send files. Before my Internet
connection with the ISP was cut out.

TBS 1) I have received a message on my screen that the file has
been send correctly and is listening for incoming events.

2) The system behaves as expected with not errors.

NAPA Oy 1) The system has send and received three files without
crashing.

2) If the system was running as a Windows service it would
be fantastic.

236

Dynamic Application Integration Using Peer to Peer Technology Appendix B

Meeting # 3
Partner Comments

NAPA Oy 1) The system is running as a Windows service and is much
better since when the Operating System starts I do not
forget to initiate the integration system.

2) The system helps dramatically our integration processes
and we save a lot of time in comparison with the manual
integration.

SU-SSRC 1) The system is robust enough to handle any file size and is
not limited to the number of concurrent connections from
various Tools vendors.

TBS 1) The system is working fine with not bugs.

Ship Design and
Research Centre

1) The system is communicating with the various design tools
with no problems.

2) Since the system is running now as a Windows service it
helps a lot the whole integration process.

The above comments and suggestions have helped dramatically to improve the overall

system in order to satisfy the user needs.

237

Dynamic Application Integration Using Peer to Peer Technology References

References

[1] Adler, S., “Extensible Stylesheet Language (XSL) Version 1.0”, W3C, 2001.
Available at: http://www.w3.org/TR/xsl/ (accessed on 05.11.2001).

[2] Alhir, S. S., "'llML in a nutshell: a desktop quick reference”, Beijing, Cambridge
: O'Reilly. 1998.

13] Allen, D. W., “Establishing an EAI Architecture'’', EAI Journal, June 2001.

[4] ASC X12, “EDI Standards”, ASC X12, 2002, Available at: http://www.xl2.org
(accessed on 20.07.2002).

[5] Atkinson, B., Della-Libera, G., Hada, S., Hondo, et ah, “Web Services Security
(WS-Security) Version 1.0”, IBM, Microsoft and VeriSign, April 2002.
Available at: ftp://www.software.ibm.com/software/developer/library/ws-
secure.pdf (accessed on 05.04.2003).

[6] Baien, H., “Deconstructing Babel: XML and application integration”, ADT
,December 2000.

[7] Baum, D., Dessaux, C., Talukdar, N., “e-Business Integration", Oracle
Corporation, 2001. Available at: http://www.oracle.com/oramag/oracle/ 00-
sep/o50cov.html (accessed on 10.12.2001).

|8] Bernd, O., “Developing software with UML", Addison-Wesley, 1999.

[9] Borland Software Corporation, “Borland JDataStore”, Borland Software
Corporation, 2003. Available at: http://www.borland.com/jdatastore/previous
/index.html (accessed on 03.04.2003).

[10] Bourne, K. C., “Testing client/server systems”, New York; London : McGraw-
Hill, 1997.

[11] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., et al, “Simple Object Access
Protocol (SOAP) l .P \ W3C Note, May 2000. Available at:
http://www.w3.org/TR/SOAP/ (accessed on 14.06.2002).

[12] Bpmi.org, “Business Process Modeling Language (BPML) ”, Bpmi.org, 2002.
Available at: www.bpmi.org/specifications.esp (accessed on 20.06.2002).

[13] Bradley, N., “The XSL companion: styling XML documents'”, London/New
York: Addison-Wesley/Pearson Education, May 2000.

[14] Bray, T., et al, “Extensible Markup Language (XML) 1.0 (Second Edition)”,
W3C, 2000. Available at: http://www.w3.Org/TR/REC-xml#dt-doctype
(accessed on 17.12.2000).

238

http://www.w3.org/TR/xsl/
http://www.xl2.org
ftp://www.software.ibm.com/software/developer/library/ws-
http://www.oracle.com/oramag/oracle/
http://www.borland.com/jdatastore/previous
http://www.w3.org/TR/SOAP/
http://www.bpmi.org/specifications.esp
http://www.w3.Org/TR/REC-xml%23dt-doctype

Dynamic Application Integration Using Peer to Peer Technology References

[15] Bussler, C., ''P2P in B2BI”, Proceedings of the 35th Hawaii International
Conference on System Sciences, 2002.

[16] Bussler, C., “Semantic B2B Integration Server Technology as Infrastructure for
Electronic Hubs”, Proceedings of First International Workshop on Electronic
Business Hubs: XML, Metadata, Ontologies, and Business Knowledge on the
Web (WEBH2001), Munich, Germany, September 2001.

[17] Cagle, K., UXSD Schema Tricks and Tips”, Wrox conferences, 2001. Available
at: http://www.vbxml.com/xml/articles/xsd/ (accessed on 17.12.2000).

[18] Casati, F., et al., “eFlow: A platform for developing and managing composite
web services” in Proc. AIWoRC’00, Buffalo NY, April 27-29, 2000, IEEE
Comp. Society.

[19] Chang, R., “Application Integration”, TechTarget, July 2001. Available at
http:///www.searchWebServices.com (accessed on 20.10.2002).

[20] Chester, M., “Middleware Cross-Platform Integration with XML and SOAP”, IT
Professional, September 2001.

[21] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., "Web Services
Description Language (WSDL) 7.7”, W3C Note, March 2001. Available at:
http://www.w3.org/TR/2001/NOTE-wsdl-20010315 (accessed on 15.06.2002).

[22] Christofi, S., "A Reference System Architecture and Technology Platform for the
Shipping Sector”, M. Phil Thesis, UMIST, Manchester, November 2001.

[23] Christofi, S., Karakostas, B., et al, "XML based Architecture for Shipping
Application Integration”, IEEE proceedings conference, Toronto, Canada, May
2001.

[24] Christofi, S., Karakostas, B., Turega, M., "An XML and Java Based Approach to
Application Integration in Shipping”, Proc. of the Third International
Conference on Information Integration and Web-based Applications & Services
(IIWAS 2001), Voi. 150, Vienna, OCG, pp.
119-125,2001.

[25] Clark, D., "Face to Face with Peer to Peer Networking”, Computer, January
2001.

[26] Clark, J„ "XSL Transformations (XSLT) Version 1.0”, W3C, 2001. Available at:
http://www.w3.org/TR/xslt (accessed on 12.04.2001).

[27] Coad, P., "Java modeling in colour with UML : enterprise components and
process”, Upper Saddle River, N.J.; London : Prentice Hall, 1999.

[28] Compaq, "Enterprise Application Integration: Compaq NonStop™ Solutions
Integrator”, Compaq Computer Corporation, 1999. Available at:
http://himalaya.compaq.com/view.asp?IOID=76#17 (accessed on 11.11.2000).

239

http://www.vbxml.com/xml/articles/xsd/
http:///www.searchWebServices.com
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/xslt
http://himalaya.compaq.com/view.asp?IOID=76%2317

Dynamic Application Integration Using Peer to Peer Technology References

[29] Connolly, D., “Extensible Markup Language (XML) ”, W3C, 2001. Available at:
http://www.w3.org/XML/ (accessed on 17.12.2000).

[30] Connolly, D., Henry, Thompson., ‘XML Schema”, W3C, April 2000, Available
at: http://www.w3.org/XML/Schema (accessed on 17.12.2000).

[31] Cover, R., “I’he XML Cover Pages, Extensible Markup Language (XML)”,
Oasis, July 2001. Available at: http://www.oasis-open.org/cover/
xml.html#overview (accessed on 17.12.2000).

[32] Curran, T., “E-P2P: the new middleware?”, Groove Networks, Inc., from
Volume 15, Report 1, February 2001.

[33] Draluk, V., “Discovering Web Services: An Overview”, In Proceedings of the
27th International Conference on Very Large Data Bases, Rome, Italy,
September, 2001.

[34] Duchame, B., “XSLTComments and Processing Instructions”, O'Reilly &
Associates, September 2000. Available at: http://www.xml.eom/pub/a/2000
/09/13/ xslt/index.html (accessed on 15.02.2001).

[35] ebXML, uebXML SPECS”, ebXML, 2002. Available at: http://www.ebxml.org
/specs/index.htm#white_papers (accessed on 08.05.2002).

[36] Emmerich, W., Ellmer, E., Fieglein, H., “TIGRA - an architectural style for
enterprise application integration", Proceedings of the 23rd international
conference on Software engineering, Canada, May 2001.

[37] Farley, J., Loukides, M., “Java Distributed Computing”, O'Reilly Java, January
1998.

[38] Fattah, H., "'How Peer-To-Peer Technology Is Revolutionizing the Way We Do
Business”, Dearborn Trade, January, 2002.

[39] Fauvet, D., Paik, Y., “Peer-to-peer traced execution o f composite services” in
Proceedings of TES 2001, Rome, Italy, 2001, pp. 103-117.

[40] Flanagan, D., uJava Enterprise in a nutshell: a desktop quick reference”,
O'Reilly, 1999.

[41] Fowler, M., “UML distilled: applying the standard object modeling language",
Harlow, Addison-Wesley, 1997.

[42] Fremantle, P., “Applying the Web Services Invocation Framework - Calling
Services Independent o f Protocols", IBM Developer Works, June 2002.
Available at: http://www.ibm.com/developerworks/webservices/library/ws-
appwsif.html (accessed on 10.06.2002).

240

http://www.w3.org/XML/
http://www.w3.org/XML/Schema
http://www.oasis-open.org/cover/
http://www.xml.eom/pub/a/2000
http://www.ebxml.org
http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html
http://www.ibm.com/developerworks/webservices/library/ws-appwsif.html

Dynamic Application Integration Using Peer to Peer Technology References

[43] Gisolfi, D., “Web Services Architect Part 1: An Introduction to Dynamic e-
Business”, IBM, April 2001. Available at: ftp://www.software.ibm.com
/software/developer/library/ws-arcl .pdf (accessed on 10.5.2002).

[44] Gnutella.com, “Gnutella”, Gnutella.com, 2002. Available at:
http://www.gnutella.com (accessed on 20.07.2003).

[45] Goglia, P. A., “Testing client/server applications” / Patricia A. Goglia.. -
Boston; London: QED, 1993.

[46] Gonsalves, A., “IBM, Extricity Integrate B-to-B Products”, TechWeb News,
2000. Available at: http://www.techweb.com/wire/story/ TWB20000912S0018
(accessed on 08.01.2002).

[47] Gruber R., “What is an Ontology”, Stanford University, 1993. Available at:
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html (accessed on
30.07.2003) .

[48] Herring, C., Milosevic, Z., “Implementing B2B Constructs using BizTalk”,
Hawaii, IEEE Computer Society, January 2001.

[49] Homayounfar, H., Wang, F., Areibi, S., “Advanced P2P Architecture Using
Autonomous Agents’’’, CAINE, San Diego California, pp: 115-118, November,
2002 .

[50] Hondo, M., Nagaratnam, N., Nadalin, A., “Securing Weh Services”, IBM
Systems, Journal, Voi. 41, No. 2, 2002. Available at:
http://www.research.ibrn.com/ioumal/si/412/hondo.pdf (accessed on
06.02.2003) .

[51] Hu, J., Grefen, P., “Component Based System Framework for Dynamic B2B
Interaction”, 26th Annual International Computer Software and Applications
Conference, p557, Oxford, England, August 2002.

[52] IBM, “WebSphere Application Server”, IBM, 2000. Available at: http://www-
4.ibm.com/software/webservers/appserv (accessed on 10.12.2001).

[53] IBM, “WebSphere B2B Integrator”, IBM, 2000. Available at: http://www-
4.ibm.com/software/webservers/btobintegrator (accessed on 11.12.2001).

[54] IBM, “WebSphere Host Integration Solution”, IBM, 2000. Available at:
http://www-4.ibm.com/software/webservers/hostintegration (accessed on
09.12.2001).

[55] IBM, “Web Services”, IBM, 2003. Available at: http://www-
3.ibm.com/software/solutions/webservices/uddi/ (accessed on 10.06.2002).

[56] IBM, “Web Services Demos: Learn by Example - GUI, Code and
Documentation”, IBM DeveloperWorks. Available at: http://www.ibm.com
/developerworks/offers /wsdemos.html (accessed on 10.7.2002).

241

ftp://www.software.ibm.com
http://www.gnutella.com
http://www.techweb.com/wire/story/
http://www-ksl.stanford.edu/kst/what-is-an-ontology.html
http://www.research.ibrn.com/ioumal/si/412/hondo.pdf
http://www-4.ibm.com/software/webservers/appserv
http://www-4.ibm.com/software/webservers/appserv
http://www-4.ibm.com/software/webservers/btobintegrator
http://www-4.ibm.com/software/webservers/btobintegrator
http://www-4.ibm.com/software/webservers/hostintegration
http://www-
http://www.ibm.com

Dynamic Application Integration Using Peer to Peer Technology References

[57] IONA Technologies, “End to Anywhere is everything1’, IONA Technologies,
2002. Available at http://www.iona.com/ info/aboutus/strategy.htm (accessed on
15.10.2002).

[58] IONA Technologies. “IONA E2A Web Services Integration Platform”, IONA
Technologies, Product Brief, January 2002.

[59] IONA Technologies, “Orbix E2A Web Services Integration Platform”, IONA
Technologies, 2002. Available at http://www.iona.com products/webserv.htm
(accessed on 15.10.2002).

[60] IONA Technologies. “White Paper, IONA Orbix E2A CORBA Technology”,
IONA Technologies, Appril 2002.

[611 Jacobson, I., Grady, B. J., “The unified software development process’’', Harlow :
Addison-Wesley, 1999.

[62] Jewell, T., Chappell, D.,” Java Web Services”, O’Reilly, March, 2002.

163] Kao, J., “Best Practices. Web Services - Technical Overviews”, Sun
Microsystems, August 2001. Available at http://dcb.sun.com/practices/
webservices/overviews/overview_wsdl.jsp (accessed on 15.12.2002).

[64] Karakostas, B., Christofi, S., Dahanayake, A., Gerhardt, W., "An Approach to
Web-Based Application Integration Using Java Adapters and XML, In Web-
Enabled Systems Integration: Practices and Challenges”, Idea Group
Publishing, 2003.

[65] Kato, D., “GISP: Global Information Sharing Protocol - a distributed index for
peer-to-peer systems”, Computer Science Department, Stanford University,
Proceedings of the Second International Conference on Peer-to-Peer Computing,
2002 .

[66] Ken, R., “Creating Value from Business to Business Integration”, Extricity
Software, Inc. (2000). Available at: http://www.ascet.com
/authors.asp?a_id=129 (accessed on 12/11/2002).

[67] Khriss, I., Brassard, M., Pitman, N., "GAIL: The Gen-It (r) Abstract Integration
Layer for B2B Application Integration Solutions”, 39th International Conference
and Exhibition on Technology of Object-Oriented Languages and Systems
(TOOLS39), p 073, Santa Barbara, California, August 2001.

[68] Kim, S., Graupner, S., “A Secure Platform for Peer-to-Peer Computing in the
Internet”, 35th Annual Hawaii International Conference on System Sciences
(HICSS'02)-Volume 9, p. 304, Hawaii, January 2002.

]69] Kit, E., “Software testing in the real world: improving the process”, Wokingham
: Addison-Wesley, 1995.

242

http://www.iona.com/
http://www.iona.com
http://dcb.sun.com/practices/
http://www.ascet.com

Dynamic Application Integration Using Peer to Peer Technology References

[70| Knutson, J., Kreger, H., “Web Services for J2EE, Version 1.0”, IBM, April 2002.
Available at: http://www.ibm.com/software/solutions/webservices/pdf/ websvcs-
0_3-pd.pdf (accessed on 11.08.2002).

[71] Kobielus, J. G., “BizTalk : implementing business-to-business e-commerce”,
Upper Saddle River, N.J.; London : Prentice Hall PTR, 2000.

[72] Krawczyk, H., “Analysis and testing o f distributed software applications”,
Baldock : Research Studies Press, 1998.

[73] Lander, R., “Deriving DTDs and Data from Schemas with XSLT\ Microsoft
Corp., January 2001. Available at: http://msdn.microsoft.com/library/
default.asp?URL=/library/techart/transschema.htm (accessed on 14.02.2001).

[74] Lange, B., Oshima, M., “Programming and Deploying Agents with Java",
Addison Wesley, Reading, MA, 1998.

[75] Linthicum, D., “Making EAI Scale”, CMP Media LLC, April 2001. Available
at: http://www.intelligenteai.com/feature/010416/linthicum.shtml (accessed on
25.10.2002).

[76] Madron, T., “Peer-to-peer LANs: networking two to ten PCs”, Wiley,
Chichester, 1993.

[77] Mandava, R., “Java Web Services Developer Pack Part 1: Registration and the
JAXR APT, Sun Microsystems Inc, February 2002. Available at
http://developer.java.sun.com/developer/technicalArticles/WebServices/WSPack
/#uddidesc (accessed on 14.11.2002).

[78] Mayank, B., Cooper, B., Arturo Crespo, et al, “Peer-to-peer research at
Stanford”, ACM Press , August 2003, USA .

[79] M. Bawa, Garcia-Molina, G., Motwani, R., “Estimating aggregates on a peer-
to-peer netM>orE\ Technical report, Computer Science Dept., Stanford
University, 2003.

[80] Mannion, M., “Rapid Development for the Web: Exloiting Java, XML and
XSLT\ 101 Communications, Java Report, pp. 24-30, LLC, USA, 2000.

[81] Markatos, E., “Tracing a Large-Scale Peer to Peer System: An Hour in the Life
o f Gnutella”, 2nd IEEE/ACM International Symposium on Cluster Computing
and the Grid (CCGRID'02), p.65, Germany , May 2002.

[82] McCall, K., “BizTalk Server 2000 - Business Process Orchestration Server”,
Microsoft Corp., 2000. Available at: http://www.microsoft.com
/Seminar/Includes/Seminar.asp?Url=/Seminar/1033/20000926BizServerKMl/Po
rtal.xml (accessed on 20.12.2000).

243

http://www.ibm.com/software/solutions/webservices/pdf/
http://msdn.microsoft.com/library/
http://www.intelligenteai.com/feature/010416/linthicum.shtml
http://developer.java.sun.com/developer/technicalArticles/WebServices/WSPack
http://www.microsoft.com

Dynamic Application Integration Using Peer to Peer Technology References

[83] Metis Technologies Inc, “The Metis Collaboration Platform (MCP)”, Metis
Technologies Ine, June 2002. Available at http://www.metistech.com (accessed
on 30.09.2002)

[84] Michael, L. J., Bass, C., “A Case for Enterprise Application Integration”,
EarthWeb, November 2001. Available at: http://intranetjoumal.com
/articles/20011 l/eai_l l_28_01a.html (accessed on 12.06.2003).

[85] Microsoft Corporation, “Microsoft BizTalk Server”, Microsoft Corporation,
2001. Available at: http://www.microsoft.com/biztalk (accessed on 12.02.2001).

[86] Microsoft Corporation, “Microsoft BizTalk Server: System Requirements”,
Microsoft Corporation, 2001. Available at: http://www.microsoft.com
/biztalk/evaluation/sysreqs/default.asp (accessed on 15.07.2001).

[87] Mills, A., “BizTalk and the Architecture o f Tomorrow”, Microsoft Corporation,
2000. Available at: http://www.microsoft.com/Seminar/1033/
19990916TEComm3 / Seminar.htm (accessed on 19.12.2000).

[88] Minds, H., “Peer to Peer Application Development: Cracking the Code”,
Dreamtech Software, November 2001.

[89] Minq Software AB fPureload, Java Load Stress Testing Tool”, Minq Software
AB, 2003. Available at http://www.codework.com/pureload/ (accessed on
20.07.2003).

[90] Mohan, C., “Dynamic e-Business: Trends in Web Services”, 3rd VLDB
Workshop on Technologies for E- Services (TES'02), Hong Kong, China,
August 2002.

[91] Moore, D., Hebeler, J., “Peer-To-Peer : Building Secure, Scalable, and
Manageable Networks”, McGraw-Hill Osborne Media, November 2001.

[92] Morrison, M., Brownell, D., Boumphrey, F., “XML Unleashed”, SAMS,
December 1999.

[93] Napster.com, “Napster”, Napster.com, 2002. Available at:
http://www.napster.com (accessed on 19.07.2002).

[94] Open Applications Group, “OAGIS Browser for OAGIS 8.0”, Open Applications
Group, 2002. Available at: http://www.openapplications.org/ (.09.07.2002).

[95] Oracle, “Creating the Integrated E-Business with Oracle Integration Server”,
An Oracle Technical White Paper, November 1999. Available at:
http://www.oracle.com/ebusiness/integration/integrationl4.pdf (accessed on
15.12.2000).

[96] Oracle, “Overview o f Oracle Integration Server”, Oracle, 2000. Available at:
http://technet.orade.eom/docs/products/oracle8i/doc_library/817_doc/ois.817/a8
3729/adois03.htm#998274 (accessed on 17.12.2000).

244

http://www.metistech.com
http://intranetjoumal.com
http://www.microsoft.com/biztalk
http://www.microsoft.com
http://www.microsoft.com/Seminar/1033/
http://www.codework.com/pureload/
http://www.napster.com
http://www.openapplications.org/
http://www.oracle.com/ebusiness/integration/integrationl4.pdf
http://technet.orade.eom/docs/products/oracle8i/doc_library/817_doc/ois.817/a8

Dynamic Application Integration Using Peer to Peer Technology References

[971 Oram, A., “Peer-to-peer: harnessing the benefits o f a disruptive technology' ',
O'Reilly, Cambridge, 2001.

[98] O'Reilly & Associates, Inc, “Agents as Peers", O'Reilly & Associates, Inc, 2003.
Available at: http://www.openp2p.eom/pub/t/69 (accessed on 22.05.2002).

[99] O'Reilly & Associates Inc, “Web Services Tutorials", O'Reilly & Associates,
xml.com.Available at: http://www.xml.com/pub/rg/ WebServicesTutorials
(accessed on 12.07.2002).

[100] Ózalp, B., Meling, H., Montresor, A., “Anthill: A Framework for the
Development o f Agent-Based Peer-to-Peer Systems o f Agent-Based Peer-to-Peer
Systems", 22nd International Conference on Distributed Computing Systems
(ICDCS'02) pp. 15, Institute of Electrical and Electronics Engineers, Austria,
July 2002.

[101] Pankaj, K., Elsueh-Ieng, P., “Perspectives o f XML in E-Commerce", IRTORG,
December 2000. Available at: http://tech.irt.org/articles/
js215/#xml_ec advantages (accessed on 17.12.2000).

[102] Vishnu S. Pendyala, Simon S.Y. Shim, Jerry Z. Gao , “An XML Based
Framework for Enterprise Application Integration", IEEE International
Conference on E-Commerce, p.128, Newport Beach, California, June 2003.

[103] Philippe, Le H., “Document Object Model (DOM)”, W3C DOM Working
Group, 2003. Available at: http://www.w3.org/DOM/ (accessed on 15.02.2003).

[104] Pooley, R. J., “Using UML : software engineering with objects and
components", Harlow : Addison-Wesley, 1999.

[105] Project JXTA, “Project JXTA Technology Overview", Sun Microsystems Inc.,
Available at: http://www.jxta.org/docs/jxta_overview_2003.pdf (accessed on
20.05.2002).

[106] Qiming, C., Parvathi, C., Umeshwar, D., Meichun, H., “Dynamic-Agents for
Dynamic Service Provisioning", Third International Conference of Cooperative
Information Systems, p 95, New York, August 1998.

[107] Rational Software Corporation, “The Unified Modeling Language (UML)",
Rational Software Corporation, 2001. Available at: http://www.rational.com
/uml/gstart/faq.jsp (accessed on 22.01.2002).

[108] Roger, C., “Privacy Implications o f Digital Signatures", The Australian National
University, March 1997. Available at: http://www.anu.edu.au /people/Roger.
Clarke/DV/DigSig.html (accessed on 20.10.2002).

[109] RosettaNet, "RoseltaNet Implementation Framework", RosettaNet, 2002.
Available at: http://www.rosettanet.org/mif (accessed on 14.05.2002).

245

http://www.openp2p.eom/pub/t/69
http://www.xml.com/pub/rg/
http://tech.irt.org/articles/
http://www.w3.org/DOM/
http://www.jxta.org/docs/jxta_overview_2003.pdf
http://www.rational.com
http://www.anu.edu.au
http://www.rosettanet.org/mif

Dynamic Application Integration Using Peer to Peer Technology References

[110] Rowstron, A., Druschel, P., “Pastry: Scalable, de-centralized object location
and routing for large-scale peer-to-peer systems”, In Proceedings IFIP/ACM
Inter-national Conference on Distributed Systems Platforms (Middleware),
Heidelberg, Germany, November, 2001.

[111] Samtani, G., Sadhwani, D., “525/ and Web Services. An Intimidating Task?’’,
Web Services Architect, 2002. Available at: http://www.webservicesarchitect.
com/content/articles/samtani02.asp (accessed on 10.10.2002).

[112] Samtani, G., Sadhwani, D., “EAI and Web Services. Easier Enterprise
Application I n t e g r a t i o n Web Services Architect, 2002. Available at
http://www.webservicesarchitect.com /content/articles/samtaniOl .asp (accessed
on 11.12.2002).

[113] Samtani, G., Sadhwani, D., uWeb Services and Peer-to-Peer C o m p u tin g Web
Services Architect, 2002. Available at http://www.webservicesarchitect.com
/content/articles/samtani05.asp (accessed on 11.10.2002).

[114] Schlosser, M., Sintek, M., Decker, S., Nejdl, W., “A scalable and ontology-
based P2P infrastructure for semantic web services'”, In Proceedings of the 2nd
International IEEE Conference on P2P Computing, Linköping, Sweden,
September 2002.

[115] Seltzsam, S., Borzsonyi, S., Kemper, A., “Security for distributed web service
composition’’ in Proceedings of TES 2001,pp. 147-162,Rome,Italy,2001.

[116] Sharon, A., et al, “Extensible Stylesheet Language (XSL)
Version 1.0”, W3C, 2001 Available at: http://www.w3.org/TR/xsl (accessed on
11.03.2003).

[117] Shohoud, Y., “Introduction to WSDL”, LeamXmlWS, October, 2002. Available
at http://www.vbws.com/tutors/wsdl/wsdl.aspx. (accessed on 22.10.2002).

[118] Siu, L., Sai, K., “Interoperability o f peer-to-peer file sharing protocols”, ACM
SIGecom Exchanges, Volume 3, Issue 3, p25-33, ACM Press, USA, June 2002,

[119] Snell, J., “Securing Web Services”, IBM, May 2002. Available at:
http://www.ibm.com/software/solutions/webservices/pdf/wp_securingws.pdf
(accessed on 12.07.2002).

[120] Stephansen, S., “The Benefits o f a Peer-to-Peer Architecture”, ITQuadrant, Inc.,
2001. Available at http://e-serv.ebizq.net/p2p/ stephansen_l.html (accessed on
15.09.2002).

[121] Stoica, I., Morris, R., Karger, D., Kaashoek F.M., Balakrishnan, H., “Chord: A
scalable peer-to-peer lookup service for internet applications”, In Proceedings
ACM SIG-COMM, San Diego, California, Aug. 2001.

[122] Sun Microsystems Inc, “Enterprise Java Beans TM Specification, Version 2.7”,
Sun Microsystems, California, August 2002.

246

http://www.webservicesarchitect
http://www.webservicesarchitect.com
http://www.webservicesarchitect.com
http://www.w3.org/TR/xsl
http://www.vbws.com/tutors/wsdl/wsdl.aspx
http://www.ibm.com/software/solutions/webservices/pdf/wp_securingws.pdf
http://e-serv.ebizq.net/p2p/

Dynamic Application Integration Using Peer to Peer Technology References

[123] Sun Microsystems, Inc, “./ava API for XML Registries (J A X R Sun
Microsystems, Inc, May 2003. Available at: http://java.sun.com/xml/jaxr/
(accessed on 23.7.2003).

[124] Sun Microsystems Inc., “Java Servlet Technology “, Sun Microsystems Inc,
2003. Available at: http://java.sun.com/products/servlet/ (accessed on
29.03.2003) .

[125] Sun Microsystems Inc, “Sun[tm] ONE Integration Server, EAI Edition”, Sun
Microsystems, 2002. Available at http://wwws.sun.com/software/products/
integration srvr eai/home int eai.html (accessed on 24.10.2002).

[126] Sun Microsystems Inc, “The Java language, an overview”, Sun Microsystems,
October 2000. Available at: http://java.sun.com/docs/overviews/java/java-
overview-l.html (accessed on 17.12.2001).

[127] Sutherland, J., Heuvel, W., “Developing and integrating enterprise components
and services: Enterprise application integration and complex adaptive systems”,
Communications of the ACM , ACM Press, USA, October 2002.

[128] SWIFT, “SWIFTNet Migration”,SWIFT, 2003. Available at:
http://www.swift.com/index.cfni7itern id=7506 (accessed on 25.09.2002).

[129] Thatte, S., " XLANG Web Services for Business Process Design", Microsoft
Corporation, 2001. Available at: http://www.gotdotnet.com/team/
xml_wsspecs/xlang-c/default.htm (accessed on 10.12.2001).

[130] Themistocleous, M., Irani, Z., O’Keefe, R., Paul, R., “ERP and Application
Integration Issues: An Empirical Survey”, Hawaii IEEE Computer Society,
January 2001.

[131] Tibco Software Inc., “TIBCO ActiveEnterprise™\ Tibco Software Inc., 2002.
Avalaible at: http://www.tibco.com/solutions/products/default.jsp (accessed on
10.06.2002).

[132] Truelove, K., Shirky, C., Gonze, L., Domfest, R., “P2P Networking Overview.
The Emergent P2P Platform o f Presence, Identity, and Edge Resources”,
O'Reilly, October 2001.

[133] Tsalgatidou, A., “An Overview of Standards and Related Technology in Web
Services”, University of Athens, Department of Informatics &
Telecommunications, 2003, Available at: http://cgi.di.uoa.gr/~afrodite
/PADP2002.pdf (accessed on 14.02.2003).

[134] Uddi.org, “UDDI Executive White Paper “, uddi.org, November 2001. Available
at: http://www.uddi.org/pubs/UDDI_Executive_White Paper.pdf (accessed on
01.04.2003) .

247

http://java.sun.com/xml/jaxr/
http://java.sun.com/products/servlet/
http://wwws.sun.com/software/products/
http://java.sun.com/docs/overviews/java/java-overview-l.html
http://java.sun.com/docs/overviews/java/java-overview-l.html
http://www.swift.com/index.cfni7itern
http://www.gotdotnet.com/team/
http://www.tibco.com/solutions/products/default.jsp
http://cgi.di.uoa.gr/~afrodite
http://www.uddi.org/pubs/UDDI_Executive_White

Dynamic Application Integration Using Peer io Peer Technology References

[135] Uddi.org, “UDDI Technical White Paper”, Uddi.org, November 2001. Available
at: http://www.uddi.org/pubs/UDDI_Technical_White_Paper.pdf (accessed on
01.04.2003).

[136] Vinoski, S., “ White Paper, IONA and CORBA”, IONA Technologies, July 2002.

[137] Versata Inc., “Versata™\ Versata Inc., 2003. Available at:
http://www.versata.com (accessed on 17.01.2003).

[138] W3C, “Extensible Markup Language (XML)”, W3C, 2003. Available at
http://www.w3.org/XML/ (accessed on 14.02.2003).

[139] W3C, “Web Services Description Language (WSDL) 1.1”, W3C, March 2001.
Available at http://www.w3.org/TR7wsdl. (accessed on 12.11.2002).

[140] WebV2 Inc, “The WebV2 PeerBeans Solution: A Conceptual Overview, A
WebV2 Whitepaper”, WebV2 Inc , San Francisco, May 2002.

[141] WebV2, Inc , “WebV2 Solutions”, WebV2, Inc, 2002. Available at:
http://www.webv2.com/solutions.html (accessed on 10.09.2002).

[142] Wilkes, L., “Application Integration”, Butler Direct Limited, June 1999.

[143] Williams, J., “Keys to Enterprise Application Integration”, The Proceedings of
the: Technology of Object-Oriented Languages and Systems, p399, IEEE, USA,
2000 .

[144] Yugyung L., Changgyu O., Eun P., “XML schemas: integration and translation:
Intelligent knowledge discovery in peer-to-peer file sharing”, Proceedings of the
eleventh international conference on Information and knowledge management,
Pages: 308 - 315 , ACM Press, USA, November 2002.

248

http://www.uddi.org/pubs/UDDI_Technical_White_Paper.pdf
http://www.versata.com
http://www.w3.org/XML/
http://www.w3.org/TR7wsdl
http://www.webv2.com/solutions.html

