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ABSTRACT

In the developed world, acid rain attack, chloride contamination, and inadequate design 

of quality control during the construction stage, has contributed to the damage of 

reinforced concrete buildings and structures. The importance of non-destructive testing 

(NDT) of concrete is substantial, so that consistent and effective maintenance of the 

structures is implemented correctly. This requires assessment methods that can identify 

the initiation of defects so that appropriate actions may be taken to prevent large scale 

deterioration.

The impact echo test method is one of the most recent of the NDT used on concrete for 

the detection of damage, and has been applied in this research. However, the 

interpretation and analysis of the output requires subjective judgement. This research 

proposes to use an artificial neural network in impact echo data output analysis and 

interpretation. Neural networks comprise of numerical processing elements which are 

linked in a way that the network generally can learn by examples and store such 

experience for later use. They are trained using past data records from the output, so 

that an appropriate trained network is able to generalise when presented with inputs not 

appearing in the training data. The major feature of neural networks for this application 

is that it does not involve subjective judgement, and provides a fast and efficient 

method for analysis of large quantity of data.

In the research, the finite element method is used to build a simulation of the NDT 

method. A model of a wall with voids, for example, is built where a force or pressure is 

used to represent the impact, the response measured at a nearby point. As well as 

providing theoretical analysis, this numerical method allows creation of reliable data for 

use in neural networks training. However, due to the time limit, the author was not able 

to use finite element data in the neural network analysis.

XXI1



Chapter I

Chapter one

Introduction

1.1. Introduction

This chapter gives the background and scope of the research, which is the need for data 

interpretation in impact echo testing. It explains what is done to the data once it has 

been collected, an artificial neural network used to automate interpretation. Simulation 

of the impact echo system is also evaluated using the finite element method. The 

research objectives are presented with the scope of this investigation.

The two hypotheses for this research are:

• Hypothesis l : The interpretation of impact echo data can be reliably implemented 

through the use of a neural network.

• Hypothesis 2: Finite element models, particularly incorporating contact elements, 

can provide a reliable means of representing impact echo systems for such purposes 

as generating neural network training data.

1.2. Background

The decay of reinforced concrete in buildings and structures has become a very serious 

problem in the developed world. Acid rain attack, chloride contamination, poor design 

and lack of quality control during the construction phase are principle agencies in this. 

Considering reinforced concrete in the UK alone, there are estimated to be 4,500 tall 

buildings, 90,000 road bridges and 5,000 storage vessels, all needing routine inspection 

for maintenance. Because of the substantial shortfall in funds available for essential 

repair of these, it is imperative that dependable priorities can be set. The provision of 

productive, reliable and economic non-destructive testing (NDT) methods are crucial in 

this.

Achieving effective inspection capability, through integration of robots, with state-of- 

the-art access systems, is a 'construction automation' objective adopted by the 

Construction Robotics Centre. The 'CURIO T (City University Remote Inspection
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Operations) robot is a product of this approach (Chamberlain & Bleakley, 1994). This is 

particularly applicable to tall buildings, chimneys and structures, where suspended 

access systems are effective. In figure 1.1, it is shown undertaking NDT work on a 

reinforced concrete wall. Unlike typical factory robots, CURIO has a high payload to 

self-weight ratio. The tool manipulating capacity is currently rated at 20 kg, sufficient 

for most commonly employed NDT equipment (Chamberlain, 1994). However, with 

structural modifications and increased motor power, coring and similar heavy-duty 

operations could be performed. Furthermore, it is also interesting to note that the 

overall payload is sufficient to accommodate a tool/probe changing facility. A NDT 

method that has been adopted for delivery by the robot, sub-surface defect 

determination by impact echo response. Further to this, the use of ground penetrating 

radar systems is an attractive prospect. However, the combination of high costs, 

interpretation skill requirements and limited resolution remain barriers to wide usage.

Figure 1.1 CURIO 1 carrying out NDT inspection

1.3. Objectives

In the development and application of NDT methods by robot, it is important to 

recognise the advantages of precise position and motion control. Considering re-bar 

detection, for example, the waveform (position and value) derived by scanning a 

surface can be more informative than a set of isolated readings (Chamberlain, 1992). A 

further example is radar, where accuracy is improved through position and motion 

control of the antenna. In fact, to take full advantage of the robotic application, it is 

advantageous not to think of the robot as simply a means of replicating manual survey 

activity. Here, the ability to simulate NDT experiments is useful in designing and 

evaluating methods and procedures suitable for robotic application. Advancing impact 

echo system technology represents a contribution to this, through added intelligence.
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The objectives of this research are thus to:

1. conduct impact echo experiments to provide valid data for analysis.

2. establish a suitable artificial neural network for data analysis giving defect 

prediction.

3. use the impact echo data to train and verify the neural network approach.

4. optimise the neural network performance.

5. build a simulation of the impact echo system using finite element modelling as a 

means of achieving valid data sets.

6. Use a contact element to model a defect interface and understand its possible 

contribution towards model accuracy.

1.3.1. Impact echo method

Impact echo equipment comprises an impact device, a surface displacement transducer 

and an echo signal analyser. The transducer is located at close proximity to the impact 

device, as shown in figure 1.2. Chapter 2 discusses the typical arrangement of this 

equipment. With early forms of the equipment, the interpretation was based on the time 

of flight (tof) of the reflected P- stress wave (Lin & Sansalone, 1992).

Receiver

Impactor

Figure 1.2: Impact echo device

However, it is now invariably based on frequency analysis of the surface displacement 

wave form. Fortunately, for this, high frequency analogue to digital conversion can 

now be achieved using low cost personal computer compatible hardware. Of the NDT

3
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methods adopted for robotic delivery, it is the least established in general survey work, 

being often associated with insitu pile testing (Stain, 1982) and similar integrity 

investigations where low frequencies are more relevant. The equipment developed for 

these tasks is unsuitable for general survey, because the upper limit of the transducer 

frequency band is only 20 kHz-25 kHz. For the detection of shallow interface features, 

equipment offering significantly higher receiver frequencies needs to be used.

This is easily understood by considering a stress pulse which is propagated into a 

concrete component, reflected at an interface feature and then received by a nearby 

transducer. Figure 1.3 shows the problem investigated in this research. The corrosion of 

the reinforcing bars causes delamination. The depth of the defected area around the 

vicinity of the reinforcing bars are about 30 to 50 mm.

Assuming the stress wave speed ( Cp) to be 4000 m/s and the depth of the reflecting 

interface (d) to be 40 mm (typical reinforcement cover delamination), the 

corresponding tof is 20p secs. In this case, the surface wave form would include 50 

kHz components. For accurate analysis, a sampling rate of more than 250 kHz-500 

kHz is clearly indicated.

Impact
echo Surface 

of wall

Figure 1.3: Illustration of a defect in reinforced concrete

The force-time history of the contacted impact device approximates to a half sine 

curve, the duration of which directly influences the frequency spectrum of the input 

pulse. A short pulse favours the detection of shallow interface features rather than deep 

ones, however, the amplitude of each component frequency is lower.

4
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The impact echo device was not readily available during the early days of the study to 

detect this type of frequency. In despite of this, the author carried out some preliminary 

investigations using a hammer and a digital audio tape(DAT) recorder. The hammer 

was used as an impactor and the DAT recorder used with a microphone to record the 

sound generated from the hit on the concrete surface.

The experiment was carried out in a laboratory of the civil engineering department. An 

area of visible cracked surfaces, hollow and sound concrete were used. Figure 1.4 

shows an example of a surface tested. ' TaplO ' is the name given for 10th hit on the 

concrete surface.

The sampling rate for DAT was 44 kHz but the actual sampling rate used was 20 kHz 

since the maximum frequency of the microphone was 20 kHz. The raw and FFT data 

are shown in figures 1.5 and 1.6. It can be seen from figure 1.6 that the maximum 

frequency response seems to less than 10 kHz. As discussed previously, the sampling 

frequency needs to be about 250 kHz or a minimum of 100 kHz.

Other methods were considered, radar and ultrasonic whose sampling frequencies are in 

the M Hz range, however, these were not possible because they were too expensive to 

purchase. In fact, a sensitive transducer with a wide range of frequencies was not 

produced in the U.K. at the time, so to replicate the impact echo equipment was not an 

option, indeed the preliminary experiment described, proved this.

Tap 10

Defect: Hollow area 
Distance of impact 
and receiver : 7 cm

Figure 1.4: An example test on concrete
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Figure 1.5: Waveform of the response of hammer on concrete in time domain

Frequency (Hz)

Figure 1.6: Amplitude spectrum of the response of hammer on concrete in frequency
domain

6
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Also, a 'Voidscan', which consisted of an instrumented delaminated device meter and a 

multi-head impact hammer, was considered, which was capable of detecting voids, 

delaminations, cracks, honeycombing and duct systems (Hammond. 1992). 

Unfortunately, this equipment is no longer available in the U.K. Finally, the author 

travelled to the U.S.A to obtain a realistic set of impact echo results, using walls with 

manufactured defects, not specifically designed for impact echo investigations.

Once, the impact echo results were obtained, a suitable network had to be devised. This 

was done by examining a variety of neural networks, described in chapter 5. To achieve 

additional data for neural network training, it was decided to use finite element 

modelling. The model of the impact echo was not so simple as initially thought. 

Although this method was excellent for producing data at low cost, processing times 

were extremely long, up to seven days. The finite element software also consumes large 

amounts of hard disk space. This was easily solved by increasing the hard disk space, 

however, it still did not reduce the amount of time to solve a particular problem. A 500 

element model of 3D would take about 3 days to complete for example. In fact even 

when a 1/4 of a model was built, this had no effect on the time to solve. The author has 

looked into Supercomputers, but this meant having to use UNIX on the University 

computer, which meant competing with other students for computer use. Also, 

obtaining the results took a considerable amount of time after the solution was 

complete. So, greater efforts were made on simulating 2D models rather than 3D, 

because the 3D model requires longer time to process.

1.3.2. Echo analysis

The periodic nature of the reflected P-waves is exploited in the analysis of the echo 

signal. Fast Fourier transformation (FFT) is used to investigate its content in terms of 

frequencies and their corresponding amplitudes.

1.3.3. Finite element modelling

To support prediction and additional data requirements for a range of defect cases, a 

modelling tool is required. The finite element method has previously been used to 

model impact echo systems (Cheng & Sansalone, 1991). In the work undertaken by the 

author, 3 types of elements are used:

• 2D, 8 node quadrilateral

• 2D, 2 node contact element

• 3D, 20 node
7
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These are described in chapters 8, 9 and 10. The 2D quadrilateral and 3D elements are 

used to define the form, material composition and interface content of the material 

structure. Use of the interface elements allows a 'no-tension' regime, with contact forces 

developing on crack closure. In this research, the contact element is used to accurately 

represent a crack; the importance of this is described in chapter 9. However, due to the 

time limit, finite element data was not used in the neural network analysis.

1.3.4. Neural network interpretation

Use of a neural network was most suited to this application due to the use of large 

amounts of data. Its primary role is automating data that is complex and not amenable 

to conventional analysis. Considerable experience is required in interpreting impact 

echo data, unlike commonly employed NDT methods. The neural network is used as a 

tool in assisting with the understanding of the response obtained from such a system, 

ideally giving reliable information such as defect depth.

An artificial neural network is a system of inter-linked, basic data processors. These are 

not programmed in the usual serial way of relating data to decisions. Rather, using 

cases of inputs and outputs, the network is assigned the computational task of building 

an appropriate decision model. Of the many different types of networks, the back- 

propagation network (Caudill, 1990) is the most commonly used. Furthermore, it is 

ideally suited to classification problems like the problem in-hand. Chapter 7 shows the 

structure of the network, which comprises input nodes, hidden nodes and output nodes. 

The input nodes are the amplitudes at equidistant sampling points on the amplitude- 

frequency spectrum. On the output side, there is a single node holding the theoretical 

frequency of the defect interface. It is noted that equal spacing on the input 

frequencies (amplitudes) do not give equal spacing for the inverse of these, which relies 

more significantly to depth.

To train the network, it is necessary to present a sufficient number and range of input 

and output data sets to the network. These progressively tune the weights applied to the 

interconnecting nodes to give the solution algorithm. Convergence error indicators are 

used to follow the progress in this. Once trained, the network can be used to classify 

new input patterns with great efficiency.

8
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The back propagation network was concentrated on to analyse the impact echo data. 

Time did not allow further investigations of other neural networks, learning rules and 

transfer functions, which are described in chapter 5.

1.4. Structure of thesis

Figure 1.7: Structure of research

The thesis has three parts, which cover the following:

• Impact echo theory and application

• Neural network modelling studies

• Finite element simulation studies

Each part begins with the corresponding theory, followed by discussion of the 

application, description of experiment, and concluding with discussion of results. This is 

illustrated in figure 1.7, A, B and C indicating the order in which they are expressed.

Two parts of the thesis are related to each other in the following manner (i) the impact 

echo technique is modelled using neural networks, and (ii) the finite element method is 

applied to simulating impact echo cases. This relationship is shown in figure 1.8.

9
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Figure 1.8: Relationship between chapters

1.5. Overview of state-of-the-art

There have been numerous papers presented on the impact echo method used on 

concrete. For example, the impact echo equipment was applied in concrete slabs with 

and without overlays (Sansalone & Carino, 1989) to detect delaminations. It has been 

used to find voids in grouted ducts (Carino & Sansalone, 1992), the results found to be 

encouraging.

Simulation of impact echo data, using the finite element method has been presented, by 

researchers, where a 2D model (Sansalone, Carino, & Nelson, 1987; Sansalone & 

Carino, 1990; Lin, Sansalone & Carino 1990) with a 8 node plane strain element was 

built and tested. A 3D model has been created, this containing an 8 node solid element 

(Cheng & Sansalone, 1991). Also, a finite element investigation into the use of impact 

echo methods for the investigation of ducted post-tensioned bridge beams has been 

shown (Martin, Hardy, Usmani & Forde, 1995). The results from all these models were 

fairly accurate, when compared to practical results of the impact echo method. However, 

these numerical methods have not used the interface element to model a void. This is 

investigated in chapter 9 to see if contact elements can make a contribution to achieving 

better simulated data for impact echo and neural network analysis.

There has been a research on t he use of neural networks, using the back propagation 

network on impact echo data (Pratt & Sansalone, 1991). However, these researchers

10
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have used 150 input nodes with 200 training patterns. This means that the network has 

not been trained adequately to deliver significant results (Masters (1993:246-251)). This 

is discussed in chapter 7, under Neural Network Results. The neural network method has 

been applied in ground penetrating radar applications in pavement evaluation and 

assessment (Attoh-Okine, 1995). Also, the use of neural computing on impact damage 

detection in carbon fibre composites using acoustic emission has shown to be more 

effective (NCAF, 1999).

Following the structure of the thesis, detailed literature reviews are reported in table 1.1

Chapter Topic
2 Impact echo theory
5 Neural network theory and applications
6 Back propagation theory
8 Finite element theory
9 Contact element theory

Table 1.1: Literature reviews

1.6. Summary

The purpose of this research are:

1. To carry out impact echo tests to get a variety of data for neural network analysis.

2. Real specimens are expensive and a large number, and variety are necessary to give 

sufficient basis for neural network training and verification. Because of this, it was 

decided to investigate means of obtaining simulated data i.e. use of finite element 

modelling.

3. Pure, noise free signals, compared with real signals are achieved by finite element 

modelling. The predicted idea is that real signals show the influence of the contact 

transfer with crack closure. For this reason, contact element incorporation was 

investigated to determine if more realistic signals could be achieved. This represents 

a possible improvement over finite element models previously produced (Cheng & 

Sansalone, 1991).



Chapter two

Non-destructive testing and impact echo

Chapter 2

2.1. Introduction
As introduced in chapter one, the importance of non-destructive testing of concrete is 

considerable in order to achieve effective maintenance of the concrete structures. This 

requires assessment methods that can identify the initiation of defects so that corrective 

actions may be taken to prevent large-scale deterioration. This chapter reviews a variety 

of NDT methods, followed by a summary of these. It then focuses on the impact echo 

technique, for which the theory and application is presented. Finally, the two types of 

impact echo devices available are compared. This provides the backdrop for the 

following chapters, which take up the impact echo investigation.

2.2. Non-destructive techniques
In the following sections, the commonly employed NDT methods are briefly reviewed. 

A summary of this is given in table 2.1. The purpose is to convey a sense of the range 

of NDT equipment appropriate for broad defect detection. Delaminations, commonly 

associated with the expansive action of near to surface steel reinforcement, are the main 

target.

2.2.1. Pulse echo
This technique involves a hammer or heavy chain, which strikes the concrete surface. If 

a delaminated area is struck, a hollow sound is heard, which is different from the 

ringing sound produced by a solid area. Although this method has been widely used, it 

has been found to be time-consuming, and relies on subjective judgement of an operator 

to interpret the noise signal. Moreover, while this mechanical device gives a rapid test, 

soundings becomes less reliable as the depth of delamination increases or asphalt 

concrete overlays are present (Manning, 1985).

2.2.2. Infrared thermography

Infrared thermography detects delaminations by observing the variations in surface 

temperature with an infrared camera. A delamination introduces an air gap into a slab.
12
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This air gap acts as an insulator that restricts heat flow into and out of the slab. So, 

during conditions of heat flow, the surface temp is affected and local hot or cold spots 

are created above the delamination. For passive excitation, however, this depends on 

having a reliable heating cycle. In all cases, data interpretation can be complicated by 

local variations in surface properties (emissivity), which can be interpreted incorrectly 

as temperature differences (Kunz & Eales, 1985). Active excitation, using heat sources, 

would require considerable power and long heating cycles.

2.2.3. Radar
This method uses an antenna to introduce pulses of high frequency electromagnetic 

waves into the concrete. As a result, this pulse is reflected by interfaces between 

materials of different dielectric properties, the reflections measured by a receiving 

antenna. The received signals are then displayed as a function of time.

It is possible to detect the presence of interfaces as well as depth in concrete. However, 

because of reflections from many interfaces, the received signal can be complex and 

considerable experience required interpreting the radar data (Clemena, 1983). 

Calibration or knowledge of the dielectric properties is necessary, a problem 

encountered frequently for the application.

2.2.4. Ultrasonic pulse velocity
This is the measurement of the transit time of an ultrasonic pulse between a transmitter 

and receiver. The velocity of the pulse can be evaluated if the distance between the 

transmitter and the receiver is known.

When testing concrete, a coupling agent, petroleum jelly for example, is applied to 

achieve this. The velocity of sound waves through the concrete is minimised by the 

presence of voids or cracks (NCHRP, 1985). By utilising relationships between speed 

of sound and the strength of concrete, the time of flight data can be interpreted in terms 

of strength. Dimensions must be known, however, a problem in many situations.

2.2.5. Remote viewing inside a structure
Remote viewing (endoscope) can often be the only option to monitor areas of a 

structure where access is limited. The hardware used is fibre optics, video cameras and 

periscopes. The fibre optics technique uses a bundle of glass fibres that transmit light on 

the defect being viewed. The images are then transmitted back to a lens for viewing
13
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by eye or camera (Emmons, 1994). However, defect size must be of the order of several 

mm before insertion is possible.

2.2.6. Radiography

A beam of gamma rays is directed through the concrete towards a film held against the 

opposite face of the test member. This provides a photograph of the interior of a 

concrete member, showing variations in density, which relates to strength and 

durability. Voids can be located with this method (Bungey, 1992)). Equipment is 

expensive, heavy and must be operated by a qualified radiographer. Interpretation of 

images requires considerable skill.

M ethod Principal Applications
Pulse echo Thickness assessment and location of 

delamination or major voids in slabs. Pile 
integrity testing

Infrared Thermography Location of delamination, moisture, major 
ducts or voids in slabs or walls

Radar Location of voids, cracks, moisture, 
reinforcing bars within concrete elements 
and voids below ground slabs. Estimation 
of slab thickness

Ultrasonic pulse velocity Uniformity of concrete quality and 
strength, location of internal defects

Remote viewing inside a 
structure

Detection of voids, delaminations and 
location and conditions of embedded 
metals.

Radiography Location of internal poor compaction, 
voids and reinforcement

Impact echo Location of voids, cracks, delamination, 
reinforcing bars within concrete structure. 
Determination of slab thickness

Table 2.1 : Summary NDT methods and their principle applications

2.3. Impact echo method
The impact echo method is a non-destructive measuring method using stress waves. It 

was created by Cornell University and the National Institute of Standards and 

Technology in the United States (Sansalone & Carino, 1986). It can be used to detect 

hidden damage and determine the extent of this within a concrete section, delaminations 

for example.

Stress wave propagation has been applied in non-destructive testing of concrete. 

However, these attempts have not shown much success. Nonetheless, some progress
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has been made in measuring the thickness of plate elements and in integrity testing of 

rod like structures, piles for example (Stain, 1982). Progress has been hindered because 

of the heterogeneous nature of concrete, which strongly attenuates high frequency 

waves. So, traditional wave propagation methods employed for flaw detection in metals 

cannot be used for evaluation of concrete (Sansalone, Carino, & Nelson, 1987). 

Emmons (1994) has stated that detecting flaws under the surface of concrete has always 

been complicated, and the impact echo equipment has provided a reliable method for 

finding defects. Indeed, one of the advantages of the impact echo method is that it only 

requires access to one side of the test member, whereas, with the ultrasonic pulse 

velocity method, for example, access to both sides are needed.

Although the impact echo is a straightforward method to apply, successful 

interpretation of the displacement waveform needs understanding of the interaction of 

transient stress waves with internal defects, providing advances can be achieved in the 

interpretation intelligence, the purpose of this research. The method has clear advantage 

over other NDT methods. In the next section the theory of this impact echo technique is 

presented.

2.3.1. Comparison of two impact echo devices
The two impact echo devices commercially available, which are used most widely, are 

OLSON and DOCter (Defect Orientation Confirmation Tester). These devices are 

similar to one another and are capable of locating defects for a typical reinforced cover 

delamination, discussed in chapter 1. As shown in figure 2.1 and figure 2.2 both devices 

are easy to use, but the OLSON device is more comfortable to handle. It can be applied 

horizontally and vertically, whereas, the DOCter device has been designed to be held 

horizontally, indeed to test a vertical wall. A special case had to be made to adapt to the 

test structure (Carino & Sansalone, 1992), figure 2.3 shows the DOCter in use. 

However, the DOCter has been commercially available longer than the OLSON. A 

comparison between these apparatus is summarised on table 2.2.
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Figure 2.1: OLSON impact echo device

Figure 2.2: DOCter impact echo device
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Im pact echo device Im pact echo device

OLSON system DOCter system

Neural network software not used in 
the impact echo device.

Neural Networks software is 
integrated in the impact echo device

Rugged System 
Resist dirt, abuse etc.

Rugged System 
Resist dirt, abuse etc

Portable Portable
Very easy to use Very easy to use

Integrated Impactor/Receiver Unit Integrated Impactor/Receiver Unit
Cost: 22,000 U.S.A Dollars Cost: 150.300 DKK
Sampling Frequency used in 

experiments: 1MHz
Sampling Frequency used in 

experiments: 1M Hz
Source of impact: Instrumented 

hammer or impactor using solenoid of 
various size to generate particular 

frequency range

Source of impact: Impactor using ball 
bearings of various size to generate 

particular frequency range

Receiver:
Displacement Transducer used

Receiver:
Displacement Transducer used

Table 2.2: Comparison of DOCter and OLSON impact echo devices

Figure 2.3: DOCter system in use
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2.3.2. Theory
In this method, a stress pulse is introduced into an object by mechanical impact on its 

surface. This pulse travels into the solid as spherical compression (P) and shear (S) 

waves. Also, a Rayleigh (R) wave is generated, which propagates along the surface of 

the object. These wave characteristics are summarised in table 2.3. The P- and S- waves 

are reflected by the solid/air interface and by internal defects of sufficient size. For a 

plate, for example, multiple reflections (echoes) occur as the waves travel back and 

forth between the top and bottom of the object surfaces. This is indicated in figure 

2.4(A).

When a P- or S- wave hits a boundary at oblique incidence, a reflected P- and S- wave 

are created by mode conversion (Kolsky, 1963). Arrival of reflected waves at a surface 

where an impact was generated, produces displacement measured by a transducer 

placed in the vicinity. If the receiver (transducer) is located close to the impact point, 

the displacement caused by P-wave arrivals are detectable. This is because the normal 

displacement caused by the P-wave is larger than the displacement caused by the S- 

waves.

A

Air

Concrete
Air

^  Compression

▲
! Tension

Figure 2.4: Reflection of impact echo waves (Carino & Sansalone, 1986)
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Figure 2.4 (B) shows the normal displacement at a point on the top surface of an infinite 

plate, caused by an impact at a nearby point on the same surface. This response includes 

displacements caused by the arrival of the R-wave moving along the plate surface with 

the arrival of multiply reflected P- and S- Waves and mode converted waves. For 

simplicity S-wave and mode converted waves are not shown (PS, 3PS,....).

The R-wave response is denoted by a R, and P-wave arrivals are denoted by 2P, 4P and 

6P. 2P refers to a P-wave that has undergone a single reflection from the bottom of the 

plate, so it has travelled about the twice the plate thickness. The 4P denotes a P-wave 

that gone through two reflections from the bottom surface of the plate etc. (Carino, 

Sansalone & Hsu, 1986). If the wave speed Cp in the concrete is known, the distance T, 

to reflecting interfaces can be determined as (Sansalone & Street, 1998):

T= Cp 
2 fp

where fp is the detected corresponding frequency. 

Rearranging equation 2.1 in terms of frequency gives:

fp=
2 T

Equation 2.1

Equation 2.2

P-waves S-waves R-waves
Body wave Body wave Surface wave

Dilatational, this is a 
compression wave

Distortional, this is 
a shear wave

This is a Rayleigh 
wave

Particle motion is 
parallel to the 
direction of 
propagation

Its motion is 
perpendicular to 
the direction of 

propagation.

Wave travels along 
solid surfaces

P-wave spherical 
when stress waves are 
generated by a point 

source applied normal 
to the top surface of a 

plate

S-wave spherical 
when stress waves 
are generated by a 

point source 
applied normal to 

the top surface of a 
plate

R-wave cylindrical 
when stress waves 
are generated by a 

point source 
applied normal to 

the top surface of a 
plate

P-waves can propagate 
in all types of media

S-waves can 
propagate only in 
media with shear 

stiffness i.e. solids

In a solid/liquid 
interface R-waves 

can propagate 
along the interface.

Table 2.3: Comparison of P-, S- and R- waves
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2.3.3. Method of application

The impact echo equipment consist of three components:

• Impact source

• Displacement transducer

• Waveform analyser

A typical layout of the apparatus is shown in figure 2.5.

Reflection from Reflection from
slab/void interface bottom of slab

Figure 2.5: Impact echo test configuration

2.3.3.1. Impact source
The impactor provides a known or controlled input force to the structure. The duration 

of impact depends on what range of frequency is required for detection of defects. The 

force-time history of the contacted impact device approximates to a half sine curve. The 

duration of the impact is the contact time, which directly influences the frequency 

spectrum of the input pulse, shown in figure 2.6. A short pulse favours the detection of 

shallow interface features rather than deep ones. Analysis of the input spectrum with 

hardened steel ball impacts shows that contact times as short as 30p sec is achievable 

on dense concrete (Carino & Sansalone, 1992). From this, it is confirmed that a 

transducer with a frequency response of up to 50 kHz is appropriate.

The contact time of the impact depends on (Sansalone & Carino, 1989) the size and 

mass of the impactor as well as depending on the condition of the concrete surface. The 

contact time will be shorter on a smooth surface than on a rough surface for example.
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Figure 2.6: The force-time history of the impact pulse

3.3.3.2. Displacement transducer
The receiving transducer converts the mechanical motion of the structure into an 

electrical signal. This is capable of accurately measuring surface displacement, is very 

sensitive and able to respond to a wide range of frequencies.

3.3.3.3. Waveform analyser

A waveform analyser is used to capture the transient output of the displacement 

transducer. It stores the digitised waveform and performs signal analysis.

2.3.4. Signal analysis
The interpretation of the measured waveforms was performed in the time domain 

initially. This was done by calculating the time between the start of the impact and the 

arrival of the first P-wave response. Whilst it was adequate, it was extremely time 

consuming, and was overcome by interpreting the data in the frequency domain using 

Fast Fourier Transform (FFT) methods (Sansalone & Carino, 1986). This 

transformation breaks the waveform down into a series of basic sine functions, resulting 

in an amplitude spectrum, which is a graph of amplitude against frequency. Transient 

waves generated by a point source are composed of a range of frequencies, which have 

a number of different wavelengths. The peaks in the amplitude spectrum show the 

transient resonance caused by multiple reflections of waves between surfaces and 

internal defects.

2.3.5. Interpreting the impact response
Although the impact echo is a simple method, successful interpretation of the 

displacement waveform needs a basic understanding of the interaction of transient 

stress waves with internal defects. Figure 2.7 shows the typical transient response of
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sound concrete. It is important to remember that reflection from the bottom occurs at a 

lower frequency than that of a shallower slab or void.

Figure 2.7: Impact echo results on a sound concrete slab (Olson, 1995)

The dominant peak indicated in figure 2.7 has a low frequency of 6.2 kHz. Using 

equation 2.1. this corresponding to 11.3 inches. The slab thickness is 11 inches, thus, 

this confirms that the impact response has been accurately interpreted.

Similarly, figure 2.8 illustrate the result of a defect. In this example, a higher frequency 

is expected and there is a dominant frequency at about 11.2 kHz. This corresponds to a 

depth of 6.3 inches, which is the reflection from the crack surface.

Figure 2.8: Impact echo results on a cracked slab (Olson, 1995)
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2.3.6. Detectable defects

The impact echo test is carried out to monitor the conditions of slabs, beams, columns, 

walls, pavements, runways, tunnels and dams (Emmons, 1994). It is employed to detect 

voids, honeycomb, cracks, delamination and other damage in concrete, wood, stone and 

masonry materials. In this research, it is the detection of planner defects in concrete that 

is of interest.

2.4. Summary

A summary review of NDT methods has been given, which indicates the potential 

significance of the seldom-employed impact echo method. The governing theory of the 

impact echo and its application has been shown. Also, a typical response of an impact 

echo device on sound and delaminated concrete has been illustrated. A comparison of 

the two types of impact echo device has been discussed. In chapter 3, the experiments 

conducted with this apparatus are presented.
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Description of experiments

Chapter 3

3.1. Introduction
This chapter covers the application of the impact echo equipment to a series of concrete 

walls. The purpose of this is to obtain varied data for the subsequent investigation into 

neural network interpretation. Drawings are provided, illustrating the manufactured 

defects and the survey lines adopted for impact echo sampling. The experiment was 

conducted in the U.S.A, at the premises of Olson Engineering Inc. It includes 

photographs of the impact echo equipment discussed in chapter 2.

3.2. Description of concrete specimens

The experiment was carried out in a barn. There were four concrete wall specimens 

which are labelled A, B, C, D, all having a variety of built in defects. Styrofoam was 

used in building the voids present in walls A and D (Jalinoos, Olson & Aouad, 1993). 

The simulated defects are voids, honeycombs and partial delamination, involving use of 

a sun-screen material.

Walls A, D and C were tested. Wall A contained voids, wall D contained voids and 

honeycombs, and wall C contained sunscreen material.

The impact echo method was employed for testing the walls for the first time. 

Originally, the four walls were built for other NDT purposes (Olson, 1995). The 

nominal dimensions of the walls were 48x48x12 inches (122x122x30.5 cm).

The experimental equipment was set up as shown in figure 3.1. For each impact the 

result was displayed on the computer. The impact echo device was held normal to the 

wall as shown in figure 3.2. Wall A was tested on both sides (east and west), for wall D, 

the east side was tested, and for wall C, the west side was tested. The defected area in 

the concrete was clearly marked (represented by a cross), indicating where the impact 

echo equipment was applied. Two specimen walls are shown in figure 3.3. Figure 3.4 

illustrates the direction of the impact applied on test locations.
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Figure 3.1: Impact echo system

There were 15 hits on each marked cross, giving 15 sets of data. Each set had 1024 data 

points, which illustrate a result for a defect or non-defect. The raw data was FFT 

processed and saved to a file ready for other uses, namely neural network analysis. 

However, the FFT data could not be immediately converted into a readable form since 

it was in binary form. It was then decided to use Matlab (examples illustrated in 

Appendix F) to transform the data from time to frequency domain. In total there were 

15 locations which were tested, giving a total of 225 data sets (15 data sets x 15 

locations).

Figure 3.2: Impact echo testing on a specimen wall
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Figure 3.3: A photograph of two specimen walls

Figure 3.4: Illustration of the direction of impact

Table 3.1 list the test locations on the specimen walls. Figure 3.5 shows a 2D 

illustration of the tested specimen walls. It also gives the code names for the tested 

locations. When testing thickness, the impact echo equipment was placed in between 

two voids i.e. where there were no defects, for example, wacll and wacl2 are solid 

areas. Also, Wacll and Wacll a were tests for the effects of pressing the impactor soft 

and hard at the same point. There was not any significant discrepancy between the two, 

so Wacll was used in the neural network analysis. The impact areas on the walls are 

indicated in figure 3.5.
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Code
name

East
or

W est
W all

Survey line 
(lines o f the 

tested 
locations)

Wav le East A 1
Wav2e East A 1
Wav3e East A 3
Wav4e East A 3
Wavlw West A 1
Wav2w West A 1
Wav3w West A 3
Wav4w West A 3
Wacll West A 1
Waclla West A 1
Wacl2 West A 3
Wdv5e East D 2
Wdv6e East D 2
Wdv7e East D 4
Wdv8e East D 4
Wdcle East D 2

Wcsscw West C 2

Table 3.1 List of test locations on specimen walls

Wav4e

Wav3e

line 4 line 2 line 2

'  Wcsscw

key

I I void 

solid

Figure 3.5: Survey lines on walls A, D and C

3.3. Survey lines on wall specimens

The sizes and locations of the defects in walls A and D are illustrated in figure 3.6 

through to figure 3.15 respectively. In each figure, isometric, side, cross-section and 

plan views are indicated. These drawings are not to scale.
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3.3.1. Wall A(east and west)

Figure 3.6 shows voidl(wavle and wavlw) with dimensions of 6in x 6in x lin, which 

lies on the line 1.
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Figure 3.7: Void2
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Figures 3.7 shows void2 (Wav2e and Wav2w) with dimensions of 6in x 6in x 4in, 

which also lies on the line 1. On line 3, are the voids 3 and 4 (Wav3e,Wav3w,Wav4e 

and Wav4w), having dimensions of 6in x 6in x 3in and 6in x 6in x 2in. These are 

shown in figures 3.8 and 3.9 respectively.
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Figure 3.8 : Void3
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Figure 3.9: Void4
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3.3.1.1. Testing of sound areas

The testing locations for sound areas are indicated in figure 3.10, solid 1 (Wacll) and 

solid2 (Wacl2), the dimensions for them are 48in x 48in x 12in. The west side of the 

wall A was tested.

48

All dimensions in inches

Figure 3.10: Testing of Solidl and Solid2 (west face)

Also, the east side of wall D was tested for a sound region, solid3 (Wdcle), this shown 

in figure 3.11. The dimensions are the same as previously indicated figure 3.10.

k -
48

■ X

All dimensions in inches

Figure 3.11: Solid 3 (east face)

3.3.2. Wall D (East)

The east side of wall D was tested for a further void, the dimensions are 3in x 6in x 4in, 

this is shown in figure 3.12.
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Figure 3.12: Void5

The dimensions for the next three voids are 4in x 4in x 4in, 4in x 4in x 4in and 3in x 6in 

x 4in, they are illustrated in the figures 3.13, 3.14 and 3.15.
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Figure 3.14: Void7(honeycomb)
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Figure 3.15: Void8 (honeycomb)
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3.4. Summary

The impact echo equipment and a series of drawings of the specimen walls have been 

presented, showing the geometry of the built-in defects. In the next chapter, the results 

of the impact echo method are discussed.
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Chapter four

Impact echo survey

4.1. Introduction

In the last chapter, the use of the impact echo device and the details of the series of test 

walls were presented. This chapter presents the impact echo results, which are studied 

analytically to observe the accuracy of the impact echo technique. The method of 

understanding the amplitude spectrum (FFT graphs) is explained. An example of 

impact echo data is given in the time and frequency domain to achieve understanding of 

the data in the amplitude spectrum

4.2. Prediction of the theoretical frequency

In order to interpret the amplitude spectrum graph, the theoretical frequency 

corresponding to the thickness or depth of defect needs to be predicted. The code names 

and geometrical drawings of the test cases are illustrated in chapter 3. Using equation 

2.2 from chapter 2.

Equation 2.2

Where Cp is the P-wave speed in the test object

fp is the frequency of P- wave reflections from the interface 

T is the depth, the distance to the interface of crack or bottom of test

The depths to the defect are known, which can be deduced from the geometrical 

drawings, and the velocity in concrete Cp is taken to be 3507.5 m/s, hence, the 

theoretical frequency fp can be calculated for all the test points. The fp values are shown 

under predicted frequency on table 4.1. In practice, the value of Cp is found by 

identifying the frequency associated with a known thickness for a sound concrete zone. 

This can be achieved using a core of the material under laboratory conditions.
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4.3. Void defect

Figure 4.1: Wavle in time domain

Figure 4.2: Wavle in frequency domain

Figure 4.1 and 4.2 shows results Wavle, which are used as an example to illustrate the 

impact echo test data in time and frequency domain. Although it is possible to 

understand time domain displacements, shown in figure 4.1, it is somewhat complicated 

and time consuming, especially when there are thousands of graphs to study. This is 

explained in chapter 2. The frequency domain shows the peaks in the spectrum which 

represent the transient resonance caused by multiple reflections of waves between 

surfaces and internal flaws. In this example, there is a dominant frequency around 18 

kHz which corresponds to the void depth. This is predicted to gain an idea of what
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frequency to expect, as discussed in section 4.2. In this example, the predicted 

frequency is deduced as 17.261 KHz with a corresponding depth of 0.1016m. hence, the 

amplitude spectrum is more efficient and easy to comprehend.

4.4. Variation of velocity in concrete

Although the Cp in concrete is taken to be 3705.5 m/s, in reality, the velocity in 

concrete will never be same from one concrete wall to another or over an individual 

specimen. There are factors which affect the Cp value, for example, the concrete may 

be more compacted in some parts than others. An estimated variation of ± 2% was used 

giving a corresponding range of Cp values of 3900 to 4050 m/s (Yiching & Sansalone, 

1992) used to gain an idea of the influence. The fp for this range has been computed, 

which is shown on table 4.1. Indeed, the 2% variation of concrete velocity is calculated 

as:
3507.5 ± 2% = 3507.5 ± 70.15 m/s

C o d e  N a m e CP
T h e o r e c t ic a l  

V e lo c i t y  (m /s )

T
K n o w n
D e p th

(m )

f P P r e d ic te d  
F r e q u e n c y  

( K H z )

F P
R e s u lt s  o f  

I m p a c t  
E c h o  

( K H z )

fp
P r e d ic te d  
f r e q u e n c y  
(K H z )  fo r  
C o n c r e t e  

V e lo c i t y  o f  
3 4 3 7 .3 5  m /s

fp
P r e d ic te d  
f r e q u e n c y  
( K H z )  fo r  
C o n c r e te  

V e lo c i t y  o f  
3 5 7 7 .6 5  

m /s

Wavle 3507.5 0.1016 17.261 18.23 16.916 17.607
Wav2e 3507.5 0.1016 17.261 16.68 16.916 17.607
Wav3e 3507.5 0.1016 17.261 8.92 16.916 17.607
Wav4e 3507.5 0.1016 17.261 16.87 16.916 17.607
Wavlw 3507.5 0.1778 9.864 9.99 9.666 10.061
Wav2w 3507.5 0.1016 17.261 15.22 16.916 17.607
Wav3w 3507.5 0.127 13.809 12.60 13.533 14.085
Wav4w 3507.5 0.1524 1 1.508 12.31 11.277 11.738
Wacll 3507.5 0.3048 5.754 3.68 5.639 5.869
Wacl2 3507.5 0.3048 5.754 3.68 5.639 5.869
Wdv5e 3507.5 0.1016 17.261 9.21 16.916 17.607
Wdv6e 3507.5 0.1016 17.261 9.21 16.916 17.607
Wdv7e 3507.5 0.1016 17.261 14.45 16.916 17.607
Wdv8e 3507.5 0.1016 17.261 16.29 16.916 17.607
Wdcle 3507.5 0.3048 5.754 5.91 5.639 5.869

Table 4.1: Calculation of the theoretical frequency

Using table 4.1, the predicted frequency is 17.261 kHz for Wavle, the impact echo 

results shows a dominant frequency around 18.23 kHz. The depth at this frequency is

0.1016 m. The predicted frequency for Wavlw is 9.864 kHz and impact echo results 

indicates a dominant frequency about 9.99 K Hz, and the equivalent depth 0.1778 m.
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The predicted frequency for Wav3w is 13.809 kHz, table 4.1 shows impact echo results 

of 12.60 kHz, and the depth for this void is 0.127 m. Wav4w has a predicted frequency 

of 11.508 kHz, table 4.1, suggests a frequency at about 12.31 kHz, the depth for this 

void is 0.1524 m. The theoretical frequency for Wdcle is 5.754 kHz, this is sound 

concrete, and the depth to the end of wall is 0.3048 m. The impact echo results suggest 

5.91 kHz.

Impactor 
& receiver

Impactor 
& receiver

Figure 4.3 : Impact echo testing

So far, these results are fairly accurate and fall within the +/- 2% variation of concrete 

velocity shown on the last two column of table 4.1, except for the data of Wavle, 

Wav4w, and Wdv8e but it is very close to the frequency range. However, the results for 

Wav3e, Wacll, Wacl2, Wdv5e to Wdv6e are not so promising. There are several 

factors that need to be considered. One important factor is that the specimen void or 

sound concrete was surrounded by boundaries and other built in defects, which can be 

seen in chapter 3 from the geometrical drawings. Whilst the impact echo response in 

concrete contains other frequencies including the harmonics of the test object, the 

response of the voids in the vicinity is added to the signal, where there should be a 

strong response for the specimen test point. In these circumstances the signal may be 

weaker than normal. Also, a signal may have to go round bends, which would result in 

a longer distance producing a lower frequency. This is illustrated in figure 4.3, which 

shows a realistic and ideal impact echo testing. The ideal testing would give a better 

signal response than the realistic testing which is embedded with other built in defects.
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However, the realistic illustration is true to life, because in a typical wall there would be 

voids, delaminations and other defects of various dimensions. The ideal case is 

obviously not practical to achieve.

Another factor to consider is the results for honeycomb defects, which are the Wdv5e to 

Wdv7e test points. The predicated frequency for Wdv5e is 17.261 kHz shown in table 

4.1, impact echo test indicates a frequency 9.21 kHz. This is even lower than the 

minimum velocity of 3437.35 m/s, which gives a frequency of 16.916 kHz. This is 

typical for a honeycomb defect, because when the impact generates a signal, the 

response takes longer to get back at the surface of the test object. It then appears to have 

a lower frequency. Equation 2.2 shows that if the distance is higher, then the frequency 

will be lower. Similarly, the results for Wacll and Wacl2 are misleading, the frequency 

of 3.68 kHz, indicating that the wall depth is deeper than the nominal depth of 0.3048 

m. If the concrete velocity is smaller, this would suggest that the actual signal would 

take longer to return which could be true in this case. As illustrated in chapter 3, these 

sound concrete tests were conducted between test points Wavlw, Wav2w and 

Wav3w,Wav4w, where the neighboring voids affect the signal.

4.5. Variation of amplitude graphs

Code
Name

Standard
deviation

too')

M ean
(xlO3)

No. o f  
bad 
data

Wav le 1.1716 17.388 1
Wav2e 0.5772449 16.339 1
Wav3e 1.3856 6.8333 0
Wav4e 0.6555874 16.607 1
Wavlw 2.2239 8.2143 1
Wav2w 0.2977728 15.413 1
Wav3w 2.9200 10.677 0
Wav4w 0.8816836 11.523 3
Wacll 0.7073698 3.7083 0
Wacl2 0.6255578 3.5625 0
Wdv5e 0.8692948 9.5833 0
Wdv6e 0.9309044 9.4167 0
Wdv7e 1.9073 13.281 0
Wdv8e 1.4580 15.740 0
Wdcle 0.2287266 5.625 0

Table 4.2: Error calculation of the impact echo test points
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It was found that the records for each test point indicated in chapter 3, were slightly 

different from each other, so for Wavle result for example, the 15 amplitude graphs 

varied, i.e. no graph was exactly the same. In fact, all 225 graphs were studied to 

observe its repeatability. The divisions on the graphs were calculated as :

For one division = 0.5/16 = 0.031 cm

The graphs were examined by using a ruler to deduce the frequency of interest, 

consequently the error for reading with a ruler is estimated as ± 0.016 cm. It was noted 

that although the frequencies for a particular defect was similar to the next record, there 

was a variation on the amplitudes of the important peaks. Also, there were about 8 bad 

graphs (which showed no dominant peaks in the transient response) out of the 225 

graphs this is indicated in table 4.2. For example code name Wav4w in table 4.2 has 3 

bad records, so 12 records were used for calculating the standard deviation. Bad data is 

principally caused by incorrect contact of the device with the specimen surface.

The author conducted FFT processing for all 225 records using Matlab as previously 

mentioned in chapter 3.

4.6. Summary

The impact echo results have been presented with an example of an impact echo data in 

raw and FFT forms. The velocity variation of concrete speed was assumed to be ± 2%, 

and in most cases, the impact echo results were within this range. The standard 

deviation for most test cases were less than one, this showed the repeatability of the 

impact echo device to be about 60% using good data. Also, the maximum standard 

deviation was about 3, which is still fairly low. In chapter five, neural networks is 

discussed, which are used to analyse the impact echo results.
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Neural networks

Chapter 5

5.1. Introduction

This chapter focuses on the application of artificial neural networks to data obtained 

from real and simulated impact echo testing. The gathering of the former is covered in 

chapter 7, these involving readings on a group of concrete walls having built-in defects. 

Simulation of data by finite element modelling is covered in chapter 10. This chapter 

presents the theory of neural networks. The history of neural network development is 

also presented. A detailed explanation of significant aspects of network architecture is 

given and the selection of the back propagation network against other neural networks 

presented.

Through selection of a suitable network type, its training and verification, it is hoped to 

achieve advancement in interpretation intelligence for the impact echo method.

5.2. Neural networks

A neural network has been used in this research, because the impact echo method 

involves large amounts of data that cannot be well described symbolically or 

mathematically. The rapidly growing number of fielded applications demonstrates the 

developing superiority of neural networks for many problems. They are significantly 

better at dealing with more complex or open systems, which may be inadequately 

perceived and which can not be sufficiently described by a set of rules or equations. 

Tasks requiring fault tolerance or coping with noise, or involving pattern detection or 

recognition, diagnosis, abstraction, and generalisation, are ideal for a neural network 

treatment (Maren, Harston & Pap (1990:220-221)).

Neural networks came into the forefront of computer technology for research and 

commercial development in the late 1980’s. However, this is not a new field, because 

its history goes beyond that of conventional computing. Its novelty is awareness with 

justified analysis, and a through understanding of the subject (Aleksander & Morton, 

1990).
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The range of conventional computer applications is dependent on a human to develop 

algorithms. This fact distinguishes information processing in conventional computers 

from human information processing. Namely, humans are capable of developing their 

behaviour through learning, whereas computers have to wait for some human to feed 

them the algorithms needed to perform the desired task.

Despite advances in computing, humans are still better at solving non-numeric 

challenges. The kinds of problems that humans excel at generally involve pattern 

recognition of either speech or images, or both. Scientists say this is because of the 

parallel architecture of the brain, which gives humans the ability to solve more easily 

problems with simultaneous constraints.

The main areas in which neural networks have been employed are (Shubnikov, 1997):

• Signal processing

• Pattern recognition (Glover, 1988)

• Automated control (Tolat & Widrow, 1988)

• Adaptive associative memory for expert systems

• Speech analysis (Waibel, 1988)

• The solution of high dimension mathematical problems

Human experiences are stored in a network of interconnected brain cells (neurons). The 

computing that these devices perform is different from the algorithmic, rule-base 

method. Accordingly, the objective for neural network researchers is to identify how it 

is that these networks are capable of storing and using experience and replicate them in 

computer models.

5.3. Development of artificial neural networks
The pioneers of neural networks were Warren McCulloch and Walter Pitts (McCulloch 

& Pitts, 1943). In 1943 they devised a basic model of variable resistors and summing 

amplifiers that represented the variable synaptic connections (weights) which connects 

neurons together and the operation of the neuron body (soma), respectively. This 

became the basis of most neural networks. Then, in 1949, Donald Hebb (Hebb, 1949) 

put forward a model of dynamic memory. He stated that a group of neurons could 

reverberate in different patterns, each of these patterns relating to the recall of different 

experience.
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Frank Rosenblatt designed the Perceptron in 1962 (Rosenblatt, 1958). This is a system, 

which recognised images using the McCulloch and Pitts model in conjunction with 

some non-learning feature extractors of an image. Bernard Widrow and Martian Hoff 

(Widrow & Hoff, 1960) devised one of the early perceptron training algorithms. This is 

called the Widrow-Hoff algorithm. This was followed by Marvin Minsky and Samuel 

Papert. who declared that the Perceptron, with its single layered network, was unable to 

solve anything except problems that were separable linearly (Caudill, 1993). Also, they 

stated another important difficulty, which was an analysis of the time it takes to train 

such networks, and how this increases with the number of input neurons. Unfortunately, 

the scaling of training times as the size of the input space increases, is still unsolved 

(Taylor, 1997). However, a number of the most persistent scientist have continued these 

studies. More complex and flexible architectures have been developed in the work of 

Anderson (Anderson, 1972) and Grossberg (Grossberg, 1987). The theoretical 

foundation of the field was slowly taking shape; Minsky and Papert’s estimates were 

shown to be solvable. Then in the 1980s, the growth of activity in the neural network 

field had an explosive reaction.

In 1982, John Hopfield (Hopfield, 1982) observed that stable reverberations were a 

good way of producing advanced computer memories. However, his findings did not 

solve the problems of hard learning, which is when in a three layer neural network, the 

middle layer called the hidden layer, seems to cause problems during training. The 

training information consisting only of bit patterns of inputs, and their corresponding 

outputs do not contain a specification of what should be fed to the teaching inputs of 

these hidden units. There is no hope of achieving the relevant connections between 

inputs and outputs if they are allowed to act at random. Also, the network could get 

stuck in the wrong reverberations. This was overcome by Hinton and Sejnowski 

(Hinton & Sejnowski, 1983) in 1983, who created the Boltzman machine, which was 

named after Ludwig Boltzman. who studied the effects of heat on the agitation of 

molecules. The similarity between systems of physical particles and neural network 

enabled these researchers to use the electronic equivalent of heat (electronic noise) to 

avoid false reverberations and deal with the hard learning phenomena.

In 1986, Rumelhart, Hinton and Williams (Rumelhart, Hinton & Williams, 1986) 

concluded that a feed forward network, which did not reverberate, needed researching.
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This served to take a pattern at the input of the net and feed it forward to the output, 

where it is translated into another pattern.

The appearance of multi-layer Perceptrons allowed expansion of the class of solvable 

problems. Three layer Perceptrons made it possible to mould a structure of functional 

space of many degree of complexity, limited only by the number of neurons on the 

network. Training of a multi-layer network is, however, extremely laborious. One such 

technique is the back propagation (Shubnikov, 1997).

The back propagation algorithm solved the problems of training hidden neurons. This 

was initially shown by Paul Werbos (Werbos, 1974) and independently discovered in 

1985 by Parker (Parker, 1985) and LeCun (LeCun, 1985). It was later publicised by 

Rumelhart, McClelland and et al (Rumelhart & McClelland, 1986) in 1986.

Another influential contributor to the development of neural computing techniques is 

Teuvo Kohonen (Kohonen, 1982). He used unsupervised learning, where the network 

discovers hidden patterns in the input data, which even the designer of the network may 

be unaware. However, these numerous researchers were applying neural network to 

simplified problems to examine their ideas instead of solving problems on a realistic 

scale. In 1984 and 1988 Kohonen’s study applied neural network to speech recognition, 

where phonemes were turned into recognised words (Kohonen, 1988).

The recognition of visual patterns is a major application of neural computing 

(Fukushima, Miyake & Ito, 1975; Fukushima, 1989). Kunihiko Fukushima in 1988 

devised and partially built a machine called the Neocognitron. It is able to identify 

sections of an image from features, for example, corners and straight lines.

Gorman and Sejnowski have applied the neural network method to the classification of 

sonar returns from two undersea targets, a metal cylinder and a similarly shaped rock in 

1988 (Gorman & Sejnowski, 1988). In 1989, third order neural networks were 

employed to distinguish between classes of geometric patterns regardless of their 

translational position, scale, and angular orientation. Researchers claimed that a 

significant feature of this network is that it is trained on only one view of each pattern, 

using a simple single-layer perceptron learning rule (Reid, Spirkovska & Ochoa, 1989). 

Apparently, when a higher-order neural network (HONN) was first created in the 1960s
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for performing non-linear discrimination, it was rejected as impractical because of the 

combinatoric explosion of higher-order terms (Reid, Spirkovska & Ochoa, 1989).

Figure 5.1 : Development of Neural Networks

Another important contributor to this field is Carver Mead and his colleagues, who in 

1989 designed analogue silicon chips for the processing of sensory information (Mead, 

1972). Yoh-Han Pao devised the functional link network in 1989. This became the most
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powerful function-mapping model known (Masters, 1993). The contributions of these 

major pioneers are summarised in figure 5.1.

Since 1989, there have many other researchers who have designed new neural networks 

and applied them to useful applications. In 1972 Meisel created a statistical algorithm, 

which Donald Specht revived in 1990, developing the probabilistic neural network 

(Masters, 1993). This uses a simple hardware processors, which is cheap and fast, 

allowing economical implementation.

In 1990, a neural network was used to find the optimum collision free path for mobile 

robots (Pourboghrat, 1990). In 1991, numerous developments occurred in the self- 

organising network approach (Ritter, Martinetz & Schulten, 1991).

An attempt to understand the nervous system of many species of animals has been 

investigated. Simplified versions of mechanisms are shown to be of great value in 

commercial applications, for example, in 1992, models of the eye or ear, and also areas 

of control, where reinforcement training has led to some very effective control systems 

(White & Sofge, 1992).

The introduction of an energy function, led to the spin glass approach, with the global 

ideas on phase transition and temperature entering the field of neural networks for the 

first time. A spin glass derivation was also given by Amit (Amit, 1989) of the capacity 

limit of 0.14N as the limit to the number of patterns which can usefully be stored in a 

network of N neurons.

In 1993, it became clear as to what was the source of the limit on the storage capacity of 

these networks, and how this might be increased by choosing suitable connectivity to 

achieve the full capacity N (Coombes & Taylor, 1993), where N is the number of 

neurons. Also, in that year, researchers used neural networks as part of a hybrid pattern 

classification system, which can recognise patterns even when they are deformed by 

transformation of rotation, scaling, and translation or a combination of these (Yuceer & 

Oflazer, 1993). Similarly, hierarchical artificial neural networks were designed to 

enhance edge measurement (Lu & Szeto, 1993).

In 1994, researchers used a neural structure called the dynamic neural processor (DNP), 

to control non-linear multivariable systems (Rao & Gupta, 1994). In 1995, a Hopfied
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design neural network has been used and shown to be very effective for path planning 

and obstacle avoidance. These researchers claim that this deterministic system can 

rapidly provide a proper path, from any arbitrary start position to any target position, 

avoiding both static and moving obstacles of arbitrary shape (Glasius, Komoda, & 

Gielen, 1995).

In 1996, neural network architecture was applied to the problem of texture 

segmentation in natural scenes (Goltsev, 1996), while in 1997, an efficient back 

propagation network learning, using dynamically optimal learning rate and momentum 

factor, was considered (Yu & Chen, 1997). Researchers proposed an unsupervised 

competitive learning algorithm called Centroid Neural Network (CNN), which 

estimates optimal centroids of the related cluster groups to each training data (Park, 

1997). Also, during that time, an established neural network model, adaptive resonance 

theory (ART) was introduced as a class of ART models for learning, recognition, and 

prediction with arbitrarily distributed code representation (Carpenter, 1997).

In 1997 most efforts by neural network researchers were targeting on designing a 

classifier with a large discrimination power and good generalisation ability which was 

stated by the IEEE (1997). Indeed in that year, some of the avenues being explored for 

neural networks were (Taylor, 1997):

• Developments in theoretical understanding - Convergence of training schedules and 

their speed-up is under investigation.

• Statistical mechanics is leading to significant new insights in problems of storage 

and response of neural networks.

• In the field of computational neuroscience, attempts have been made to build simple 

models of the neural systems, which are vital in controlling the response patterns of 

animals of a given species.

It has been stated that one of the drawbacks of the back propagation algorithm method 

is that the training patterns must be repeated hundreds of times, and the process of 

training can take several hours. There are two dangers in training:

• The possibility in which the network ceases to be trained and the process wanders 

randomly, this is called paralysis.

• The possibility of falling into a local minimum of the energy relief.
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Consequently, many heuristics are employed to eliminate paralysis. Because the 

method of gradient descent is used in training, the error surface has a complex shape; a 

network can fall into a local minimum and can be incorrectly trained. Statistical 

methods can be mixed with gradient descent to correct the problem. These are questions 

of current research (Shubnikov, 1997). Also, an improvement to the back propagation 

algorithm has been suggested (Liu & Meng, 1997), which is that the gain of the sigmoid 

should not be fixed to 1 but is made variable so that it reaches convergence faster.

In 1998, neural network researchers used artificial neural networks on the recognition 

of human head orientation (Rae & Ritter, 1998). This is a method based on three neural 

networks, which enable a computer to identify the head orientation of a user by learning 

from examples. One network is used for colour segmentation, a second for localisation 

of the face and the third for the final recognition of the head orientation.

A new system for real-time detection and classification of arbitrarily scattered surface- 

land mines from multi-spectral imagery data of minefield has been introduced. This 

involves a variety of neural network structures for feature extraction, detection, and 

classification of targets in six different optical bands ranging from near UV to near IR 

(Miao, Azimi-Sadjadi & et al, 1998).

A self-organising neural network architecture that transforms optic flow and eye 

position information into representations of heading, scene depth, and moving object 

locations has been shown to be effective (Cameron, Grossberg & Guenther, 1998). 

These representations are used to navigate reactively in simulations involving obstacle 

avoidance and pursuit of a moving target.

It can be concluded that the neural network field is founded on the efforts of a number 

of researchers who have continued to work on designing, modifying, and implementing 

different aspects of the artificial neural network. Consequently, due to their efforts, this 

subject has breadth and depth. It is now better understood by more people, to the extent 

that there are simplified user friendly software widely available for most applications, 

where no other solution can be found, or neural network is used part of a system 

enhancing to deliver an improved performance. Indeed, it is becoming more convenient 

that artificial neural networks can be used either on their own or in hybrid systems 

wherever and however is most appropriate.

47



Chapter 5

5.3.1. Summary of neural networks

Table 5.1 below shows a summary of the historical development of the main models of 

artificial neural networks, each of which reflects definite progress in approaching the 

principals of this field.
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Name of 
network

Inventors and 
developers

Years
Introduced

Primary Application Limitations Comments

Perceptron Frank Rosenblatt 1957 Typed character recognition Cannot recognise complex 
characters e.g. Chinese; 
sensitive to difference in 
scale, translation, distortion

The oldest neural network known; 
was built in hardware rarely used 
today

Madaline Bernard Widrow 1960-62 Adaptive nulling of radar 
jammers; adaptive modems; 
adaptive
equal isersfecho cancellersjin 
telephone lines

Assumes a linear 
relationship between input 
and output

Acronym stands for multiple 
adaptive linear elements; powerful 
learning law; In commercial use for 
than 20 years

Avalanche Stephen Grossberg 1967 Continuous speech recognition; 
teaching motor commands to 
robotics arms

Literal playback of motor 
sequences, no simple way 
to alter speed or interpolate 
movements

Class of networks, no single network 
can do all these tasks

Brain state in a box James
Anderson

1977 Extraction of knowledge from 
data base

One-shot decision making, 
no iterative reasoning

Similar to bi-directional associative 
memory in completing fragmented 
inputs

Self-organising map Teuvo Kohonen 1980 Maps one geometrical region e.g. 
rectangle grid, onto another e.g. 
aircraft

Requires extensive training More effective than many algorithm 
techniques for numeric aerodynamic 
flow calculation

Cerebellatron David Mar, James 
Albus, Andres 
Pellionez

1969-82 Controlling motor action of 
robotics arms

Requires complicated 
control input

Similar to avalanche network; can 
blend several command sequences 
with different weights to interpolate 
motions smoothly as required

Hopfield John Hopfield 1982 Retrieval of complete data or 
images from fragments

Does not learn, weights 
must be set in advance

Can be implemented on a large scale

Necognitron Kunihiko Fukushima 1978-84 Hand printed character 
recognition

Needs unusually large No. 
of processing elements and 
connections

Very complicated network; 
insensitive to differences in scale, 
translation, rotation; able to identify 
complex characters e.g. Chinese

Back Propagation Paul Werbos, David 
Parker,David Rumel- 
hart

1974-85 Speech synthesis from text; 
adaptive control of robotics arms; 
scoring of bank loan application

Supervised training only, 
correct input/output must 
be plentiful

The most widely used network, 
simple to learn
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Name of 
network

Inventors and 
developers

Years
introduced

Primary application Limitations Comments

Bi-directional
associative memory

Bart Kosko 1985 Content addressable associative 
memory

Low storage density; data 
must be properly coded

Easiest network to learn, good 
educational tool; associates 
fragmented pairs of objects with 
complete pairs

Adaptive Resonance 
Theory

Gail Carpentor & 
Stephen Grossberg

1978- 86 Pattern recognition, particularly 
when pattern is complicated or 
unfamiliar to humans (radar or 
sonar readouts, voiceprints)

Sensitive to translation, 
distortion, changes in scale

Very sophisticated
but not applied to many problems

Boltzmann & Cauchy 
Machines

Jeffrey Hinton, Terry 
Sejnowsky, Harold 
Szu

1985 - 6 Pattern recognition for images, 
sonar, radar

Boltzman machinedong 
training time. Cauchy 
machine:generating noise 
in proper statistic 
distribution

Simple networks in which noise 
function is used to find a global 
minimum

Counter-propagation Robert Heicht- 
Nielson

1986 Image compression; statistical 
analysis;loan scoring

Large No. of processing 
elements & connections 
required for high accuracy 
for any size problem

Functions as a self 
programming look up table;similar 
to back propagation only simpler, 
but less powerful

Functional Link 
Networks

Yoh-Han Pao 1989 A variable hybrid. Tolerant of 
chaotic noise contaminating the 
measured data.

Training time can slow if a 
large no. of functions is 
used blindly and if hidden 
layer is included

Training time can be faster if a good 
choice of functions allows it to avoid 
hidden layers.

Propabilistic Donald
Specht

1990 Intrinsically a classifier Needs a thoroughly 
representative training set, 
whole training set must be 
stored, as well as 
processed, each time an 
unknown case is classified, 
memory needs are large, 
and execution speed is 
poor

Requires little or no training time, 
confidence estimates for network 
decision is good.

Table 5.1: Famous neural networ cs
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5.4. Neural network architecture

The neurons in a network are connected to each other positively or negatively. The 

connection weights send different signals to neurons; allowing different and useful 

patterns of output in response to input stimuli (Maren, Harston & Pap (1990:48-51)).

A typical operation of a neural network is to receive an input pattern, operate on it, and 

produce an output pattern. Each layer of neurons in a network accesses and processes 

data simultaneously. Each operation by a layer of neurons is considered as a cycle of 

operation by the network. For example, a network with three layers would have three 

cycles of operation, accessing the input in the first layer, processing and passing the 

input to the second layer and processing and passing this pattern to the third layer. The 

result pattern in the third layer would be the output of the neural network.

The two primary elements that make up a neural network are:

• Processing elements.

• Interconnections

Processing elements (neurons) are simple devices that receive a number of input signals 

and, based on those inputs, either produce a single output signal (fire) or not. The 

output signal of an individual processing element is sent to many other processing 

elements (and possibly back to itself) as input signals via the interconnections between 

processing elements. In neural networks, learning is fundamental. Almost every neural 

network system has some kind of learning capability built in. It has three fundamental 

descriptors, which define the neural network itself. These include:

• The interconnection architecture between the processing elements.

• The rules that determine whether or not a processing element will fire (the transfer 

function).

• The rules governing changes in the relative importance of individual 

interconnections to a processing element’s input (training laws).

5.5. The basic neuron

Models of the brains and nerve cells (Dayhoff, 1990) motivated the inspiration for 

neural network architectures. There is limited knowledge of the brain, but the basic 

anatomy of an individual nerve cell (neuron) is known.
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In figure 5.2, a typical nerve cell of the human brain is illustrated. The output area of 

the neuron is a long, branching fibre called the axon. An impulse can be triggered by 

the cell, and sent along the axon branches to the ends of the fibre. The input area of the 

nerve cell is a set of branching fibre called dendrites. The connecting point between an 

axon and a dendrite is the synapse. When a series of impulses are received at the 

dendritic areas of a neuron, the result is usually an increased probability that the target 

neuron will fire an impulse down its axon.

One important and fundamental aspect of the function of a neuron is that the effect of 

the synapses is variable. It is this variability that gives the neuron its adaptability 

(Aleksander & Morton (1990:22-23)). McCulloch and Pitt first designed the basic 

model. This becomes the basis of neural network calculations in contemporary neural 

computing.

A McCulloch and Pitt neuron, shown in figure 5.3, is a device that has a number of 

input signals and a single output signal. The input signals are associated with a relative 

weight Wj . The result of the input to the neuron is the weighted total input:

Total input = Weight on line 1 x input on 1 + 

Weight on line 2 x input on 2 + 

Weight on line n x input on n

=  W] Xi +  W2 X2 +  . . . . W n Xn 

n
= X Wj Xj for all n input signals

i= i
Equation 5.1

This sum is compared to a threshold value, and if the:

Sum is greater than the threshold, then the value output = 1 

Sum is less than the threshold then the value output = 0

Or

The threshold value is subtracted from the weighted sum, and the resulting value 

compared to zero.

If the result is positive then the output = 1 

If the result is negative then the output = 0
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So
y = f h

n
S w , x , - 0

i = l Equation 5.2

Iffh(x )= l x > 0 

If fh (x) = 0 x<  0

" x / -
NEURON 1 NEURON 2

Figure 5.2: The basic feature of a biological neuron (Alexsander & Morton. 1990)

Alternatively, the threshold may be removed out of the body of the neuron and 

connected to an extra input value that is fixed to be on all the time. So the extra input 

+1 is multiplied by a weight equal to minus the threshold value, - 0 and added like all 

other inputs. This biases the neuron (Beale & Jackson, 1992) in:

y = fh
n

S  Wi Xj

i = 0
Equation 5.3
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5.6. Training

A neural network is trained in any of three ways:

• Supervised

• Reinforcement

• Unsupervised

5.6.1. Supervised

A supervised training is the most widely applied, where many samples are collected to 

serve as exemplars. Each sample in this training set completely specifies all inputs, 

along with the outputs that are desired when those inputs are presented.

5.6.1.1. Epoch
When a subset of the training set is selected, the samples are presented in that subset to 

the network sequentially. For each sample, the outputs obtained by the network are 

compared with the target output. When the whole subset of training samples has been 

processed, the weights are updated which link the neurons in the network. This 

updating is carried out in order to minimise a portion of the error in the network’s 

result.

One pass through the subset of training sample with the updating of the network’s 

weights is called an epoch. The number of samples in the subset is called the epoch 

size.
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5.6.2. Reinforcement

This training method uses a reward given to the network by the environment on its 

response to a given input. This reward may be used to work out modifications to the 

weights to achieve a maximum reward from the environment.

5.6.3. Unsupervised

An unsupervised training is another principal training method. For this type of training, 

the network is not provided with outputs for those samples. The assumption is made 

that each input arises from one of the several classes, and the network’s output is an 

identification of the class to which its input belongs.

The process of training the network consists of allowing it to determine salient features 

of the training set. These features are grouped into classes, which the network finds 

distinct.

5.7. Associative memory

A vital characteristic of neural computing is the way information is stored. Memory in 

neural computing is distributed. The connection weights are the memory units of a 

neural network. The values of the weights show the current state of knowledge of the 

network. For example, if an item of knowledge is representing by an input and desired 

output pair, the knowledge is distributed across many of the memory units in the 

network. In addition, it shares these memory units with other items of knowledge stored 

in the network.

Associative memory associates response to a particular input, so that an input is 

presented and required output is received (Dayhoff, 1990). Figure 5.4 illustrates the 

different type of associations, which are:

• Auto-associative: this associates a pattern by making the input and response patterns 

the same, so presentation of an incomplete pattern on the input will result in the 

recall of the complete pattern. The use of an auto-associative system for pattern 

completion is indicated in the bottom of figure 5.4.

• Hetero-associative: this associates the input pattern with a different output pattern.
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Figure 5.4: The different types of association: auto-association and hetro- 
association(Beale & Jackson, 1992)

5.8. Hierarchical structure of the neural network

The primary method used to complete different tasks using neural networks is to 

develop the appropriate structures (Maren, Flarston, & Pap(1990: 48-51)). Hence, in 

order to understand neural network structures, they need to be studied at different 

levels:

• Level one - This is the lowest level of network structure, which is the neural 

element itself.

• Level two - Neural network architecture

5.8.1. Transfer function - level one

A typical artificial neuron is a record in an array. The record stores the process of the 

neuron. This process is ranged between 0 and 1 or -1 and 1. Some neurons have only 

two possible states, which are the extreme or bounded values. Other neurons activation 

vary between the bounded limits.

At the first level, neurons are characterised by their transfer function, which operates on

the oncoming signals to produce a single output for the neuron. This output is weighted
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by the connection strengths to each of the individual connecting neurons. These neurons 

may each receive a different value, which may be positive, or negative, depending on 

the sign of the connection weight. Figure 5.5 shows the different types of transfer 

functions.

( i )
Threshold Logic

( ii )
Hard -Limit

( i i i)
Sigmoid

Figure 5.5: Neural network transfer functions (Maren, Flarston, & Pap, 1990)

5.8.1.1. Threshold logic nodes
Threshold logic nodes have binary state neurons (0 or 1). If the summed input is greater 

than or equal to the neuron’s threshold, the activation is 1; if less, the activation is 0.

5.8.1.2. Hard limit nodes
This transfer function has an upper and a lower bound, which is set on the summed 

input from other neurons, plus the threshold, called the total summed input. If this total 

summed input is less than the lower bound, the activation is defined to be 0 or -1. If the 

summed input is greater than or equal to the upper bound, the activation is 1. If the 

summed input is somewhere between the upper and lower bounds, then the activation is 

defined as a linear function of the summed input (Maren, Harston, & Pap(1990: 53- 

57)).
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5.8.1.3. Sigmoid nodes

The sigmoidal shape of this transfer function means that for most values of the total 

input, the value given by the transfer function is close to one of the asymptotic values. 

The higher value asymptote is 1, and the lower one is 0 or -1. This allows the output 

value of the transfer function to be classified into one of two classes: high or low.

The sigmoid function is the most widely used, and any other function that is smoothly 

defined over the interval from minus to positive infinity will work just as well, for 

example the arctangent function is also used.

5.8.1.4. Radial basis function

This function is useful when creating a neural network for continuos function mapping 

(Maren, Harston, & Pap (1990: 220-221)). The centres and the widths of these 

functions may be adapted. This makes it a more adaptive function than the sigmoid 

function. For example, mappings may require two hidden layers of sigmoid function 

units, whilst a single layer of neurons using radial basis functions can accomplish this.

5.8.2. Network structure-level two
This level concerns the physical organisation and arrangement of the neurons of a 

neural network. The neurons in a neural network may be organised in a number of 

different ways. A common neural network may have different layers of neurons, some 

which accept the input, others which process it and another layer to store the output. 

Some neural networks combine all these functions into one or two layers. Some 

networks can pass information forward from one layer to another, but not backward. 

Others allow backward connections. Some networks allow information to move 

vertically between layers, but not between neurons in the same layer. Other networks 

will have one layer with lateral connections between the neurons in that single layer. 

Some neural networks allow a neuron to send information back to itself. The 

architectural structure of the network affects its performance and also the applications 

for which it is stated (Maren, Harston, & Pap, 1990). The different types of neural 

network architectures are illustrated in figure 5.6 and discussed in the following 

sections.
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Figure 5.6: The six major types of neural network structures (Maren, 
Harston, & Pap, 1990)

5.8.2.1. Multi-layered feed-forward neural networks
In this network, all neural signals propagate in a forward direction through the network 

layers. For example, the back propagation is of this type. The feed-forward networks 

are suited for pattern classification applications. Some feed-forward networks can learn 

to generalise about distinguishing characteristics of their input patterns. Their ability to 

do this depends on the learning algorithm and specific architecture of the network. 

Feed-forward networks, or networks with more than two layers, are the optimal choice 

when generalisation as well as pattern recognition is desired (Maren, Harston, & Pap, 

1990).

5.8.2.2. Single layer, laterally connected networks
This is the second most widely used type of network architecture. It employs a single 

layer of laterally connected neurons. It can activate only one pattern at a time due to 

having one layer. The lateral connections cause different patterns to appear in the single
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layer, with each cycle of operation. Laterally connected networks are used for pattern 

autoassociation. Autoassociative networks can store many patterns. They are good for 

regenerating clean versions of patterns they have learned when they are given a noisy or 

incomplete pattern as a starting point. The Hopfield network and Anderson’s Brain - 

State - in - a - Box are examples of single layer, laterally connected autoassociative 

networks (Anderson, 1972).

5.8.2.3. Single layer, topographically ordered networks

This type of network does not have explicit connections. During learning, a measure of 

the vector distance between the different vector neurons is used to adjust their relative 

positions in vector space. An example of this network is the Learning vector 

Quantization (LVQ) and developed by Teuvo Kohonen (Kohonen, 1982).

5.8.2.4. Bilayered feed-forward and feed-back networks

This two-layer network passes information backward as well as forward during 

processing. This is done by having feedback connections and the feed-forward 

connections between the neural elements. This means that these networks have two 

sets of connection weights, one going from the first layer to the second, and the other 

connecting the second layer back to the first. This type of network structure is 

particularly good for associating a pattern in the first layer with another pattern in the 

second layer; this is called pattern heteroassociation. This network type can also be 

used for pattern classification.

The most recent networks of this type involve dynamic resonance. The patterns in the 

first and second layers repeatedly stimulate each other until the pattern in each layer 

settles to a stable state. These dynamics provide a way to get improved recall of 

patterns stored in each layer. An example of a feed-forward and feedback network is the 

Adaptive Resonance Theory and created by Carpenter and Grossberg (Caudill, (1993: 

73-80)).

5.8.2.5. Multi-layer co-operative and competitive networks

The lateral connections in this network architecture are specifically designed so that the 

co-operative (excitatory or positive) connections and the competitive (inhibitory or 

negative connections) balance each other in a certain way. The co-operative processes 

used in these networks are designed to explicitly mimic certain biological networks, 

which have inspired their design. Grossberg et al has developed a Boundary Contour
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System (Maren, Harston, & Pap(1990: 53-57)). This is a layered set of nets, which finds 

the boundary line segmentation in an image.

5.8.2.6. Hybrid networks

A hybrid network is a creation of two or more networks into a single new structure. 

This method makes it feasible to build systems of interacting networks, which can 

complete more challenging problems. There are an endless number of ways in which 

neural networks can be combined with each other and even combined with traditional 

statistical methods and expert systems.

The reason for designing a strongly coupled hybrid network is to build a network type, 

which highlights the strengths and minimises the weaknesses of the combined network 

systems

5.9. Key neural networks

In the following sections, key neural networks are reviewed:

5.9.1. Kohonen network

A Kohonen self-organising network consists of a single layer of nodes as shown in 

figure 5.7. These neurons are highly interconnected within the Kohonen layer as well as 

externally. The Kohonen layer neurons receive the entire input pattern into the network 

and numerous inputs from the other neurons within the layer.

It is important to know that there are two steps, which are vital to the success of this 

network (Caudill, (1990:25-30)).

• Weight vectors must be initialised

• It must use weight vectors and input vectors that have been normalised to a constant 

fixed length (usually unity).

If an input pattern is presented to the network, each neuron in the Kohonen layer 

receives the input pattern and computes the dot product of its weight vector and input 

vector. It is the neuron with the largest dot product, which is the declared winner in this 

competition. This is called competitive learning, and it is this neuron which is the only 

neuron that generates an output signal, others generate 0. In addition, this neuron and 

that physically closest (neighbour) are the only neurons allowed learning in this pattern
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presentation. So, only the winner is allowed to output, only the winner and its 

neighbours are permitted to adjust their weights.

5.9.1.1. Competition in learning

When each neuron in the layer outputs its activation, which acts as an inhibitory input 

to each of its fellows, these tend to reduce the activation of the other neurons, and so 

reduce their corresponding inhibitory inputs to themselves.

In most of these connections, the effect is mainly inhibitory, but in the neuron’s 

immediate neighbours, it is excitatory. This leads every neuron to attempt to fire itself 

and if not possible help its neighbours to fire by exciting them. If any of the neuron's 

neighbour wins, it will be allowed to change its weights, even though it cannot output a 

signal. As the competing outputs circulate within the layer, the neurons settle down so 

some small portion of the network that has the largest overall excitation produces an 

output, the remaining part of the layer stays dormant. When the winning neuron is 

selected, its weights have to be adjusted using the Kohonen learning rule (Caudill, 

(1990:25-30)):

W  neW =  W o ld  + a ( X - W old)

where W is the weight vector

X is the input pattern vector 

a  is the learning constant

Equation 5.4

Kohonen learning takes the difference between the input vector and the weight vector 

and adds some fraction of this difference to the original weight vector. The winner gets 

to adjust its weights and so does its neighbourhood. They change their weights using 

the same learning rule and apply it to their own weight vectors. The overall effect of 

this process is that the winning neuron outputs a +1 signal and the winning neuron and 

its neighbours move their weight vectors slightly closer to the input vector.

During training, the neighbourhood of the winning neuron is slowly a decreasing circle. 

This means that at the beginning of the training, the neighbourhood of the winner may 

be large so substantial portions of the network can learn on each pattern. When training 

starts, the size of the neighbourhood is gradually decreased, so less neurons learn on 

each iteration. Ultimately, the winner itself will change its weights
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Figure 5.7: A typical Kohonen layer (Caudill. 1990)

The network is ready for the next input pattern. Again, it is presented to every neuron in 

the layer, and the neurons start to compete again. A winning neuron is selected, it 

produces an output signal, and this neuron and its neighbour move their weight vectors 

slightly closer to this input vector. This process is then repeated many times until 

training is complete.

5.9.2. Hopfield network

The output of each processing element is coupled back to the inputs of every other 

processing element, except itself. The weights are symmetrical, so the connection 

weight wy between processing elements j to i is the same as the connection weight Wjj 

between processing elements i to j.

Figure 5.8: Hopfield network architecture (Neural Computing, 1991)

The output of each processing element is connected by weights back to the inputs. 

Positive weights represent excitatory connections between processing elements, 

negative weights represent inhibitory connections.
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The basic learning rule is:

Awjj = ( 2xj - 1 ) ( 2xj - 1 ) Equation 5.5

Also, symmetry dictates that:

Awjj = Awjj Equation 5.6

Where Xj and Xj have values 0 or 1,

Xj is the output of the current processing element, 

xj is the input to the processing element and

wy is The connection between the jth processing element and the ith one.

Connections are strengthened when the output of a processing element is the same as 

the input. Connections are weakened when the input differs from the output of the 

processing element. The structure of this network is shown in figure 5.8.

5.9.2.1. Energy functions

John Hopfield created a formulation of the dynamics of the network in terms of Ising 

rings (Neural Computing, 1991). This is the result of seeing the state of the network as 

an energy surface. This system is:

Where E is the energy of the system

The portion of E affected by the state Xj of a particular processing element is given by:

E = - 0.5 EE
i*i Equation 5.7

Equation 5.8

Where E j  is the energy system affected by Xj 

If Xi= 1,

Ej = - 0.5 S
Equation 5.9
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If Xj = 0,then E j  = 0, so the change in energy due to one of the processing elements 

changing states is:

Considering equation 5.10, if Xj is currently 0, it is because the weighted sum of the 

inputs is negative. For Xj to become 1 (Axj = 1), the weighted sum must become 

positive. The result is that the energy decreases, AEj in equation 5.10 is negative.

Similarly, if the weighted sum is positive, Xj will be positive. For Xj to become 0 (Ax; = 

-1), the weighted sum must be negative. So, the result is the energy of the system 

decreases. Thus, an element in the network will only change if and only if it will 

decrease the overall energy of the network. As a result, the network is guaranteed to 

converge. However, this logic is valid only if the neural sets change one at a time in 

some random order. Also, it is approximated by a low neural firing rate.

5.9.3. Counter-propagation

Hecht-Nielsen designed this network (Neural Computing, 1991). Counter-propagation 

selects from a set of exemplars by allowing them to compete amongst each other. 

Normalised inputs and competition between exemplars selects the nearest neighbour. 

This gives a technique of building an adaptive pattern classifier.

This network constructs a mapping from a set of input vectors X to a set of output 

vectors Y. This acts as a hetero-associative nearest-neighbour classifier. Figure 5.9 

below illustrates this form of network architecture.

As shown in figure 5.9, the input layer acts a buffer. The network process requires that 

every input vector has the same length, these input vectors are normalised.

So, to normalise to a value of 1 •

Equation 5.10

Equation 5.11
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Outputs

Inputs (Normalised)

Figure 5.9: Uni-flow counter-propagation network (Neural Computing, 1991)

When this requirement is met, the entire input vector X lies on a unit sphere, which is 

indicated in figure 5.10. The Kohonen layer acts as a nearest neighbour classifier. The 

processing elements in this layer compete. The one with the maximum output wins. 

Recalling the Kohonen learning rule:

W new = W old + a  ( X - W old)

Which in vector form is:

Equation 5.4

W new = W old + a  ( X - W old )
Equation 5.12

Considering the figure 5.10, the vectors W will tend to rotate around the unit sphere 

until they are at the centre of those input vectors X that create a maximum output. In 

vector form, the output I of the processing element (before competition) is:

This inner product is:

1 = W-X Equation 5.13

I ||W|| * ||X|| * cos (t) Equation 5.14

Since the length of both the weight vector W and the input vector X are 1, then equation 

5.14 reduces to:

I = cos (t) Equation 5.15

Where t is the smallest angle of the processing element with the closest weight vector
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The Kohonen layer measures the cosine of the angle between the input vector X and the 

weight vector W. The processing element with the closest weight vector (smallest angle 

t) has the highest output and wins. So, during learning, the processing elements in the 

competitive layer adjust their weight vectors to divide up the input space in 

approximate correspondence to the frequency with which the input occurs. The output 

layer uses a Grossberg Outstar (Neural Computing, 1991). This is a processing element, 

which learns to give a specific output when certain input is applied. Because the 

Kohonen layer delivers a signal output by competition, this layer provides a way of 

decoding that input to an output class.

Figure 5.10: Kohonen learning in vector form (Neural Computing, 1991)

5.9.4. Adaline and Madaline

Widrow (Neural Computing, 1991) developed the Adaline (ADAptive Linear Neuron). 

It is like the Perceptron, which is capable of classifying linearly separable patterns. 

However, specific multi-layer extensions to the adaline concept enhance a better 

method for separating the input space.
+ 1

Figure 5.11: Adaline processing element (Neural Computing, 1991)
67



Chapter 5

Figure 5.11 illustrates the basic adaline processing element, which contains a series of 

trainable weights. A bias weight is connected to a fixed input o f+1. The inputs are bi-

state (-1 and +1), where weights are signed both positive and negative. The weighted 

sum of the inputs and the bias are applied to a quantizer, which converts the output to -1 

or +1. A learning control mechanism samples the inputs, the output, and the desired 

output and uses these to adjust the weights. The weights must be set to random values 

initially.

Several types of the adaline learning algorithm exist. Pattern-Recognising Control 

System is one of them (Widrow & Smith, 1963). The systematic approach for this 

follows the sequence:

• Apply the selected input to the processing element and the desired output to the 

desired output.

• Compute the error - The difference between the weighted sum prior to the 

quantizer, the desired output.

• Adjust each of the weights so that they reduce the error 1/n (n = number of weights) 

of the error at the input to the quantizer. Because all of the inputs are either + or -  1, 

this adds or subtracts a fixed amount from each input, depending on its sign.

The Widrow -  Hoff Learning is the calculation of the error signal for each iteration and 

changing the weights to get rid of the error.

5.9.5. The back propagation network

A back propagating network is commonly used as a three layer network, this shown in 

figure 5.12. In this type of network, all information flows forward from the input 

neurons to the neurons in the hidden layer, and from there to the output neurons. No 

information is passed backward during actual running of the network; the back 

propagation refers simply to the learning stage.

This algorithm is a generalisation of the method of least squares (Widrow-Hoff ) for 

training a basic Perceptron, as applied to multi-layer Perceptrons.
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Output Patterns

Input Patterns

Figure 5.12: The architecture of the back propagation network

5.9.5.1. Network processes

The network is presented with pairs of patterns; an input pattern paired with target 

output. For each presentation, weights are adjusted to decrease the difference between 

the network’s output and the target output. A training set, which is a set of input and 

target pattern pairs, is used for training, presented to the network many times. After 

training is stopped, the performance of the network is tested.

The algorithm uses two steps; a forward propagating step followed by a back 

propagating step. Both the forward and back propagation steps are completed for each 

pattern presented during training.

5.9.5.1.1. Forward step

This step begins with the presentation of an input pattern to the input layer of the 

network, and continues as activation level calculations propagate forward through the 

hidden layers. In each successive layer, every processing unit sums its inputs and then 

applies a sigmoid or a similar transfer function to compute its output. The output layer 

of units then produces the output of the network.
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5.9.5.1.2. Backward step

The backward step begins with the comparisons of the network’s output pattern to the 

desired output, where the difference (error), is calculated. The backward propagation 

step then calculates error values for hidden units and changes for their incoming 

weights, starting with the output layer and moving backward through the hidden layer. 

In this back propagating step, the network corrects its weights in order to minimise the 

overall error.

A more detailed discussion of this particular network is covered in chapter 6.

5.10. Application of neural networks

Once there has been a decision to use a neural network approach, there are a variety of 

different types of neural networks to choose from. Every neural network serves a 

different type of purpose. Feed-forward networks are used for pattern classification, for 

example. Single layer laterally connected networks are suited for autoassociation. Feed-

forward feedback networks are good for heteroassociation. Multi-layer, co-operative 

and competitive networks are useful for sophisticated processes in which the 

interrelation of different types of information helps in making some sort of decision. 

Also, sometimes, no single network can solve a difficult problem, and a system of 

interacting networks must be created in order to resolve the task.

It is vital to consider a variety of neural network architecture for a specific task. Indeed, 

the choice of a neural network depends on the nature of the task application (Caudill, 

1992), such as:

• Mapping - This is a problem where an input pattern is linked with a particular 

output pattern. For example, the input pattern that contains a pixel image of a 

character could be mapped to the output pattern of that character’s ASCII code. 

Back propagation and counter propagation networks are very good at these 

problems

• Associate memory - This stores information by associating it with other 

information. Recall is completed by giving the association and having the network 

deliver the stored information. So, if the network is required to produce one of the 

output patterns it has been trained with, to recall it, this would be an associate 

memory problem. These problems can be accomplished by a variety of networks, 

which are back propagation, counter propagation and Kohonen .
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• Categorisation - This is when the inputs are to be clustered into categories. The 

network is given with an input pattern and it responds with the category to which 

the pattern belongs. Self-organising networks is the relevant choice, such as 

Kohonen and adaptive resonance networks.

• Temporal Mapping - The input data has a consideration of time, for example the 

input may be a time sequence of sensor readings that must map to an output pattern. 

Many process control patterns are temporal mapping problems. The most suited 

networks are avalances, back propagation and recurrent network.

• Image Processing - A high resolution image can contain typically 1,024 x 1,024 

pixels, or more than one million elements in the input vector, so because of the 

limited size of current neural networks, image processing problems need special 

pre-processing techniques and the size of input data must be reduced. A 

categorising or mapping network is suitable to use.

5.11. Selection of a model-the back propagation network

The most commonly used network for pattern recognition is a multi-layered feed-

forward network, namely the back propagation network (Maren, Harston & Pap, 

(1990:220-221)). As discussed, the network of this structure is most suited to the 

application of the impact echo data. Essentially, this application is a mapping problem, 

which makes it more, suited to this type of network.

The back propagation network is good at generalisation (Freeman, 1992), this means 

that given several different input vectors, all belonging to the same class, a back 

propagation network will learn to key off significant similarities in the input vectors. 

Irrelevant data will be ignored. This is most appropriate in the impact echo data, where 

there are two dominant frequencies (Cheng & Sansalone, 1991). Here, the transient 

waveform has two characteristics:

• A dominant frequency relating to reflection off the bottom surface of the test object.

• A dominant frequency corresponding to reflection off the defect surface within the 

test object.

The remaining data in the transient waveform is complex, having other frequencies 

such as rod and the test object’s natural frequencies. Noise is another factor in the 

transient waveform.
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It has been suggested in the Proff/II plus neural network software (Neural Computing, 

1991) that the most frequent cited classification networks are:

• Categorical Learning

• Counter-propagation

• Learning Vector Quatization (LVQ)

• Probabilistic Neural Networks

• Self-Organising-Map into Categorisation

The probabilistic network is a specialised classifier, which might be appropriate for use; 

other than it does not have the wide applicability of the back propagation network. 

Also, although few training samples are needed, as summarised in table 5.1, a training 

set needs to be in great detail. This is good practice for any neural network model, 

which benefits from having a comprehensive training set; though this network is more 

selective in its approach to training. Again, with the back propagation network, if only a 

few samples are available, with few hidden neurons, network can be trained, and it will 

probably do a good job at generalising far from known points. The unsupervised 

network types, categorical learning, counter-propagation, LVQ, self-organising-map 

into categorisation are not suited to this problem. These forms of the Kohonen network 

which is a weak classifier (Masters, 1993). It has no hidden layers and is mainly linear 

in its response. Also, most Kohonen networks have a very large number of output 

neurons, whereas, in this research there a few output nodes and many input nodes. It is 

concluded that a back propagation network is the best solution for this application.

5.12. Summary

The history of neural network including the major contributors has been presented. The 

basic theory of the neuron and a discussion of a variety of networks have been 

presented to enable the most appropriate neural network architecture to be selected for 

this research. The back propagation network has been selected for modelling the impact 

echo problem, which will be discussed in chapter 6. The principal reasons for its 

selection are:

• Good at generalisation

• Network architecture is most suited to the impact echo application

• Most widely used network

• Immediate availability to author

The next chapter develops further the operation of the back propagation network.
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The back propagation network

Chapter 6

6.1. Introduction

In the previous chapter, the general types of neural networks was reviewed, culminating 

in the selection of back propagation network. The back propagation network is thus the 

focal point in this chapter. In this chapter the significant aspects of this network are 

discussed in more detail. The back propagation network, which uses a sigmoid transfer 

function and the generalised delta rule as its learning law, is covered in both 

mathematical and non mathematical terms. The importance of the sigmoid transfer 

function and local minima is also presented.

6.2. Back propagation network

The back propagation network is an outcome of earlier work on Perceptrons, with the 

addition of a hidden layer and use of the generalised delta rule for learning. Indeed, it is 

a Perceptron with a different transfer function in the artificial neuron and a more robust 

and capable learning rule.

Networks of these type use supervised training. As can be seen from figure 6.1, the 

network has no reverse or lateral connections. The name of the network is associated 

with the search for various heuristics that allow it to find an approximate solution for 

the training problem in a limited time.

The back propagation error method is one of the best algorithms for training multi-layer 

Perceptrons (Shubnikov, 1997), and among the currently most widely used types of 

neural network systems. The algorithms represent a generalisation of the Widrow-Hoff 

rule (Widrow & Hoff, 1960) for training a simple Perceptron, as applied to multi-layer 

Perceptrons. The root mean square (rms) error between the actual and expected outputs 

is minimised, and the initial weights of the connections and the thresholds are random.
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The back propagation network has three layers as illustrated in figure 6.1. It comprises 

the following:

• Input Layer - this is where the input data is entered and is partially labelled

• Hidden Layer - this layer forms the internal representation of the training set which 

is not provided by the programmer

• Output Layer - at this level a final decision is made on the data

Output Patterns

Input Patterns

Figure 6.1: The architecture of the back propagation network

6.3. Characteristics of the back propagation network

The primary characteristic of the back propagation network is that it forms a mapping 

from a set of input nodes to a set of output nodes, using features extracted from the 

input pattern. This network can be designed and trained to deliver a whole range of 

mappings. It is possible to do this because the nodes in the hidden layer(s) of the 

network learn to respond to features found in the input. The advantages and 

disadvantages of using hidden nodes are (5th Annual Neural Networks Summer School, 

1995):

• Advantage: the hidden nodes can be used to extract more complex features from the 

input layer, permitting a more complicated task to be learned

• Disadvantage: learning becomes time consuming with the addition of hidden nodes
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This network typically requires long periods of training in order to learn pattern classes. 

The training set for this network has to be presented many times, about 100 -  10,000 

times or even more in certain circumstances, in order for the interconnection weights 

between the neurons to settle into a stable pattern that correctly classifies the input 

patterns (Maren, Harston,Pap (1990: 92-103)).

Whilst the back propagation delivers high performance when given patterns similar to 

those it has learned, it does not have the ability to recognise new categories of patterns, 

which is typical with supervised learning. If the network is to recognise and classify a 

new pattern, it needs to be given examples of the new pattern type along with the 

corresponding category identification. Furthermore, since training a new pattern 

involves changing already stabilised inter-neuron connection weights; the network must 

also be retrained on previously known categories. This enables the new connection 

weights to give correct decisions for all categories. The need for long training and 

retraining new categories is one of the major limitations of this type of network.

6.4. Activation functions

It is vital for a network to be trained to produce realistic activation levels, rather than 

extreme values that are difficult or impossible to achieve. For example, the majority of 

current models use a sigmoid (S-shaped) logistic activation function:

f(x )= ___1__
1 + e'x Equation 6.1

The sigmoidal shape of the transfer function implies that, for most values of x which is 

the sum of inputs, the value given by the transfer function is close to one at the 

asymptotic values. Generally, the higher valued asymptote is 1, and the lower one is 0, 

but these values can never be attained. The network is usually trained on moderate 

values, such as 0.1 for one decision and 0.9 for another decision.

The importance of this transfer function, or any similarly shaped function, is that its 

derivative is always positive, and close to 0 for either large positive or large negative 

values of x. When the derivative is at its maximum, x is 0. This is essential in order for 

the back propagation algorithm to work well. As can be seen below in the
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mathematical analysis of the algorithm and in figure 6.2, the changes made to the 

weights are proportional to the derivative of the activation. This means:

• If the derivative is near 0, then the changes are small. This is satisfactory, because 

the derivative is near 0 when the activation value is near 0 or 1 ,one of the two stable 

states.

• When the activation of the neuron is in the middle range, the neuron’s output 

requires to be changed greatly, forcing it to produce a value near one of the stable 

states.

• In the middle range, the derivative is largest. Here the change in the weights, which 

is proportional to the derivative, is large.

Hence, the sigmoid transfer function provides smooth and differentiable behaviour, 

allowing control of the learning law.

Figure 6.2 : Derivative of a sigmoidal curve

6.5. Local minima
Figure 6.3 shows the idea of converging to a local minimum in weight space, which is 

the Euclidean space of dimension equal to the total number of weights. Each point in 

this space represents a vector of weight values. Also, as shown in equation 6.7, the 

network computes an error or energy function, which represents the amount by which 

the output of the network differs from the required output. Because the output of the 

network is related to the weights between the layers and the input applied, the energy is 

a function of the weights and inputs to the network (Beale & Jackson, 1992). Figure 6.3 

is a graph illustrating the energy function showing how varying the weights affects the 

energy, for a fixed input pattern p. It is a multi dimensioned space in which each axis 

represents one specific weight, so one point in the space would represent one unique
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combination of possible weight values that the network could have. This is the weight 

space.

Figure 6.3: Cross-section of a hypothetical error surface in weight space (Freeman, 
1992), Zmin is the global minimum, and Z\, Z2 are other minima's.

The generalised delta rule aims to minimise the error function Ep by adjusting the 

weights in the network so that they correspond to those at which the energy surface is 

lowest. When the network stabilises on a minimum, whether it is local or global, 

learning comes to a halt. If a local minimum is achieved, the error at the network 

outputs may still be unacceptably high (Freeman( 1992:55-63)). However, in reality this 

problem does not cause much difficulty. If a network stops learning before reaching an 

unacceptable target, the number of hidden nodes or learning parameters can be adjusted 

to combat this. Alternatively, learning can be started all over again with a different set 

of initial weights. In fact, there is no guarantee that the network has reached the global 

minimum rather than a local one when the network has reached an acceptable solution.

6.6. Training steps

As discussed in the chapter 5, there are two training steps:

• First step - This is the forward stage, where the input is applied and allowed to 

propagate to the output. The error values of the output units are calculated and 

compared to the known target output.

• Second step - This is the backward phase, where the errors are propagated 

backwards and weight changes adjusted. This means when the output error has been
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calculated, the weight changes in the output layer can be made using equations 6.5 

and 6.4. These fixes the error values for the previous layer using equation 6.6, and 

the weight changes made using equation 6.4 in the first inner layer. This technique 

may be propagated backwards until the weights in the input layer are adjusted. 

Hence, these two training steps are repeated again and again. This procedure is 

summarised in figure 6.4:

= >

Updates
of

Units in 
Network

Results at the 
output layer

C>
Desired
result

Phase one: Forward step

COMPARE
RESULTS

<=

Use error to 
apply weight 
changes back 
through the 
network

Phase two: Backward step

Difference 
is the error

Figure 6.4: Stages of the forward and backward steps for training the back propagation
network (Dayhoff, 1990)

6.7. The generalised delta rule

This is learning algorithm for the multi-layer feed-forward network, which controls the 

training of the hidden unit by a process of propagation of measured errors from the 

output layer.

If the activation of the jth unit for the pth training pattern is:

a pj =  ^  (for all i) Wjj Opi +  Uj

where a Pj is the activation of the node j of pattern p 

i is the sum of all inputs at the ith unit 

Wji is weight from node i to j 

Uj is threshold at node j 

Opi is the actual output on node i

Equation 6.2
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To establish an output function expressed globally, so that the weights for the neural 

nodes can be altered:

°pj i  ( apj) Equation 6.3

where oPJ is the actual output on node j.

fj is the threshold function acting on the weighted sum, this is the output from each 

unitj.

This deals with a whole class of neuron models where the output can be specified in a 

general way. So, for a feed-forward net with input, output and hidden layers 

(Aleksander & Morton, 1990):

• For the pth presentation of an input/output pair for training, the change for the 

weight which joins the jth unit to its ith incoming connection ( A pWjj) is proportional 

to some computed error (Spj ) for this jth unit, therefore:

AP wji = a§pj opi

where

Spj is the computed error for the jth node 

a  is the constant which determines the rate of learning 

Ap wp is the change in weight

Equation 6.4

• For output units, the error is calculated on a knowledge of a desired target output for 

the jth unit, tPj, the error is expressed as :

Spj -  ( t p j " °p .i)  f  j ( a p j)

where

tPj is the target output for pattern p on node j . 

f'j (aPj ) is the rate of change of opj with respect to f,(apj )

Equation 6.5

Also, the term (tPj - op,) indicates that the error is proportional to the difference between 

the actual output oPj and the target output tpj.
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• For a hidden unit, and its output connected to k units, its error is defined as being 

proportional to the sum of the errors of all these k units as modified by the weights 

connecting these units:

5pj L (for all k) Spk W kj f  j ( a pj ) Equation 6.6

where §Pk is the computed error for the kth node 

Wk| is the weight from node j to k

The use of these equations have been discussed in section 6.6. Which can be used 

repeatedly until an acceptable level is achieved. Rumelhart et al (Rumelhart, Hinton & 

Williams, 1986) showed that overall output error can be expressed as half the sum of 

the squares of all the output errors:

Ep = 0.5Z (for ail j ) (tPj - opi )2 Equation 6.7

where Ep is the error function for pattern p

They suggested that an S shaped function illustrated in figure 6.5 is beneficial, which in 

this case becomes:

oPj = 1/(1 + e'apJ)

where:

Equation 6.8

a pj “ I (for all i) Wji Opj +  Uj

As discussed in section 6.4, the benefit of this function is that its derivative is easily 

found. Other sigmoid functions, such as hyperbolictangent and arctangent can also be 

used.

Since:

f  j ( a p j) ~  ^°p.i /  ^ a pj
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f 1 j ( a Pj )  =  o pj (1 - Op, ) Equation 6.10

for output nodes, equation 6.5 becomes:

S pj ( t pj -Op, ) Opj (1  - o Pj )

Equation 6.11

for hidden nodes equation 6.6 becomes:

Spj (for all k) 8 pk W kj °p j ( 1 - Opj ) Equation 6.12

Output

Figure 6.5: Characteristics s-shape of the sigmoid function (Aleksander & Morton,
1990)

6.8. Summary

The factors concerning the back propagation network have been discussed, including 

the sigmoid transfer function, which has been shown to be important in order to control 

the learning law. Mathematical and non-mathematical approaches have been defined to 

illustrate the generalised delta rule, and the important equations of this learning law 

have been presented. In the next chapter, the implementation and results of the back 

propagation are presented for the impact echo problem.
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Chapter seven 

Neural network implementation

7.1. Introduction

This chapter deals with the back propagation network application, for which the theory 

was presented, in chapter 6. The factors which affect a network performance are 

explained. Modelling of the impact echo for neural network usage is covered. Then, the 

method of optimising the number of hidden nodes, learning rate, momentum term is 

dealt with. The results of an investigation into how increasing the number of data sets 

can make a difference to the back propagation network is then presented.

7.2. Types of data

For all cases of neural network testing, there were 225 data sets from the 15 tested 

locations (see page 4, chapter 3) which were amplitude spectrum graphs defining a 

pattern for each defected case. This was taken from walls A and D (see chapter 3 for 

more details). There were three defect cases of investigation:

• Sound concrete

• Honeycomb concrete

• Voided concrete

7.3. Training a network

There are no specific rules for how best to train a network for an application. With 

many aspects of neural network systems, it seems that experience is the best teacher 

(Freeman, 1992). By using as many neural networks as possible, an appreciation for 

how to select and prepare training sets is achieved. Due to the time limit, this has 

proved to be not possible. However, selection and preparation of data has been given 

substantial consideration.

The back propagation network does not extrapolate well, so, if it is inadequately or 

insufficiently trained on a particular class of input vectors, then subsequent 

identification of members of that class may be unreliable. Thus, it has been stated that 

(Freeman, 1992) it is essential to:
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• Ensure that the training data covers the whole-expected input space.

• Choose training vector pairs randomly from the available set.

7.4. Validation

The competence of a neural network must be analysed before the trained network is 

placed into service. This process is called validation, and is achieved by separating data 

cases into two parts:

• Training set

• Validation set

Usually, a neural network software allows the user to validate the data before the main 

analysis, for example. This procedure operates by an adaptive method, where the 

program tries to find the appropriate set of the learning rate and momentum term for a 

particular application to achieve maximum results.

7.5. Momentum term

In neural network training, momentum is expressed as:

8pWji (t+1) = wji (t) + aSpj oPi + P( Wjj (t) - Wjj (t -1)) Equation 7.1

where Wjj (t) is the weight from node i to node j at time t (present time)

Wji (t+1) is the weight from node i to node j at time t+1 (future time)

Wji (t -1) is the weight from node I to node j at time t-1 (previous time)

P is the momentum factor 0 < P < 1  

8P = error term for pattern p

Momentum is a method for increasing the speed of convergence. When calculating the 

weight change value, a fraction of the previous weight value is added. This keeps the 

weight changes going in the same direction (momentum). This additional term is 

applied to the weight change equation on the output layer (see chapter5) and on the 

hidden layer. The momentum parameter is commonly set to a positive value less than 

one (Freeman, 1992). Use of the momentum term is optional.

7.6. Learning rate

The back propagation network is a hill descending procedure, which can become stuck 

in local minima, as was discussed in the chapter 6. This problem can be solved if the
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network is restarted for different initial weight values, so that the correct solution will 

appear as being dominant. As illustrated in figure 6.3 and mathematically expressed in 

equation 6.4, the learning rate a  is given by:

Ap Wjj -  a5Pj opj Equation 6.4

recalling that Ap Wp is the weight changes for the pattern p 

5pj is an error term for pattern p on node j 

oPi is the actual output at node i for pattern p

The figure 6.3 in chapter 6, has sloping ravines, and has an optimal point that is, a 

lowest point, which represents the best solution. The size of the steps to get to that point 

is referred to as the learning rate. The learning rate parameter a  affects the network 

performance.

If the rate at which the weights are changed is steadily decreased, the generalised delta 

rule is able to obtain a better solution. If the learning rate a  is made large initially, large 

steps are taken across the weight and energy space towards the solution. As the learning 

rate is decreased, the network weights settle into a minimum energy configuration 

without overshooting the stable position, as the gradient descent takes smaller downhill 

steps. This technique allows the network to bypass local minima at first, then locate, 

and settle into deeper minima without oscillating widely. However, the reduction in the 

learning term means the network will take longer to converge.

This term must be a small number of the order of 0.05 to 0.25, to ensure that the 

network will settle to a solution (Freeman, 1992). Hence, it is vital to select a learning 

parameter that delivers maximum rate learning, without the values oscillating wildly 

(Carling, 1992). The importance of the number of hidden nodes in a network, the 

learning rate, and time taken to train is illustrated in table 7.1.

Chapter 7

Number of 
hidden 

nodes used
Learning

Rate
Number of iteration

2 0.25 245
32 0.25 120
8 0.1 450
8 0.75 68

Table 7.1: A table showing the relationship between the number of hidden nodes, the 
learning rate and number of iterations (Carling, 1992)
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Considering table 7.1, it has been stated that adding more hidden nodes does not 

necessarily greatly reduce the time to learn, and, if the learning rate was greater than 

about 0.75, it is found to give unstable behaviour.

7.7. Weights

As illustrated in figure 6.1 of chapter 6, the interconnection between the nodes has an 

associated connection strength, the weights. These weights represent the influence of its 

inputs over its output value. Depending on the sign of the weight, an input may exite or 

inhibit the neuron.

It has been suggested that weights should be initialised to small, random values in the range 
+0.5 or-0.5 (Freeman, 1992).

7.8. Number of iterations

The number of iterations refers to the number of training examples presented to the 

network when it is learning. For example 50,000 iterations have been chosen in the 

training of the back propagation network. There is an optimal amount of training for a 

network; achieved by training a network until there is no further significant 

improvement in its performance, indeed this has been noticed with the 50,000 

iterations, which was the optimum.

7.9. Hidden layers and nodes

It has been suggested to use as few hidden nodes as possible, because each unit adds to 

the load on the central processing unit. For networks of hundreds or thousands of 

inputs, the hidden layer needs to be a small fraction of the size of the input layer 

(Freeman, 1992). If the network fails to converge to a solution, it may be that more 

hidden nodes are required. If it does converge, the number of hidden nodes may be 

reduced so that the network can settle on a size on the basis of overall system 

performance.

Also, it is possible to remove hidden units that are superfluous. If the weights values on 

the hidden nodes are examined periodically as the network trains, it may be possible to 

see that weights on certain nodes change very little from their starting values. These 

nodes may not be participating in the learning process, and fewer hidden nodes will 

then suffice.
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7.9.1. Calculation of the number of hidden layers

The pyramid shape used by Masters (1993) has been used as a guide to calculate the 

number of hidden layers and nodes in this research; this is called the geometric pyramid 

rule, which is shown in figure 7.1. This author has shown not to use more than 2 hidden 

layers. Indeed, for many practical problems it has been stated not to use more than one 

hidden layer.

7.9.2. Calculation of the number of hidden nodes

Figure 7.1 : A typical three-layer network

The number of hidden nodes was calculated by using the equation below:

Hidden Nodes = (MN)1/2 Equation 7.1

Where M is the number of output nodes and N is the number of input nodes. Also, it 

has been stated that the number of hidden nodes in a back propagation network must be 

very small compared to the number of training cases (Neural Computing, 1993). The 

training set size and hidden layer sizes are thus linked together. When they are 

unbalanced in one direction, the network is unable to learn as well as it should. 

Similarly, when unbalanced in the other way, the network learns too much and learns 

spurious relationships. It will learn irrelevant aspects of the training set, hence 

generalises poorly, so there must be a balance.

It is essential to use the bare minimum number of hidden neurones required to obtain an 

acceptable performance. Increasing the number beyond the minimum will cause 

deterioration in generalisation ability.
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The factors discussed in section 7.3 to 7.9 have all been taken in consideration in 

producing the neural network model and results.

7.10. Modelling impact echo by neural network

Data was trained using the back propagation network. This was collected using an 

impact echo device, as described in chapter 3. The method of application and wall 

specimen geometry are given in chapters 2 and 3.

The input nodes of the network take amplitude values, which were achieved, from FFT 

processing of the signal data. There is one output node, which contains the theoretical 

frequency for a given defect, which is predicted using the following equations 

reproduced here (presented in chapter two):

T = Cp * At/2 if At = 1/f, then Equation 2.1

fp= cp
2 T Equation 2.2

Where Cp is the wave speed in concrete.

T is the distance to reflecting interface of the defect

At is the round trip travel from the start of the pulse to the arrival of the first P- 

wave. (See chapter 2 on impact echo theory)

Frequency to 
reflecting interface
(fp) = Cp/2*T

Figure 7.2: Impact echo arrangement (not drawn to scale)

This arrangement can be seen in figure 7.2. For example, when the theoretical velocity 

is 3507.5 m/s and known depth is 0.1016 m, then using the equation 2.2, the theoretical 

frequency is 17.261 kHz.

Figure 7.3 is given to assist understanding the FFT graph for impact echo. In figure 7.3, 

there is a dominant peak at about 18 kHz. In this case, this would be the main feature of

Top surface of slab and 
point of impact

1
T

k

l 1

Void

Bottom of wall
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the graph. The design of the input file for the neural network is illustrated in the figure

7.4.

Frequency (Hz)

Figure 7. 3: An example of a FFT graph

Figure 7.4: The design of the back propagation network used for the analysis of impact

echo data

Considering figure 7.4, the input node represent the amplitude values obtained from 

pre-processing, which includes FFT processing, interpolation and filtering. If there are 

75 pre-processed values then there will 75 input nodes. As discussed, the calculated 

theoretical frequency will be the output node. Examples of a training file and testing file
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are given in appendix A. This method of interpretation of an FFT graph has been 

applied to the testing of data correlation, optimisation, and the effect of increasing the 

number of data sets in testing.

7.10.1. Method of data correlation and network optimisation

Optimisation is an important aspect of the neural network testing, experimentation with 

various network designs has been studied in order to obtain optimum performance. A 

parametric study for optimisation is undertaken, one factor changed to see the effect of 

the results it had on the results, while the other factors were kept constant. The 

objective was to examine the number of iteration and the effect of increasing or 

decreasing hidden nodes.

For neural network analysis, the raw data obtained from the impact echo testing had to 

be pre-processed. This was completed to improve the learning of the network, hence 

producing a better result. The process of this procedure is shown in figure 7.5.

Figure 7.5: An overall procedure of pre-processing, testing and post-processing for
neural network analysis

At stage A: For each of the sample points indicated in figure 3.5 of chapter 3, the 

impact hammer was applied about ten times. For each hit, the output was a transient 

wave.

Stage B: Using Excel, the data consisted of a column of 15 sets of data, each data set 

had 1024 data points, which were 15 responses for a given test point, produced by the 

impact echo device. The data was then split into files with the 1024 points.

Stage C: Using Matlab, these text files were converted into Matlab file format as .m 

files. Then, for each file, FFT was performed and results plotted and saved to a new 

file.
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Stage D: Using Labview, the data is now reduced to 512, since the remaining 512 are 

only a reflection (FFT theory). It is further reduced to 256. This was done by a program 

in Labview, which takes the first two data points in an array and finds the average, and 

then moves on to the next two data points from the one dimensional array, and so on. 

This procedure was repeated 225 times for the 256 data points, each time the Labview 

program accumulated the data to file. So, it finished with 225 data sets, each set having 

256 data points.

Stage E: The file created at stage C is added with the calculated theoretical frequency 

using equation 2.2, and then split into two files, one for training the neural network and 

the other for testing (see appendix A for the structure of an input file). The training file 

contains more data examples than the testing file.

Stage F: The learning and testing file is included in the neural network learning. The 

network is tested and a result file produced.

Stage G: The output of the neural network is observed and the equivalent depths, error, 

error percentage and other information processed and saved as Excel files.

7.10.1.1. Method of data evaluation

Actual
Frequency

(Hz)

Detected
Frequency

(Hz)

Actual
Depth
(mm)

Detected
Apparent
Depth(mm)

Error
(mm)

Error
(% )

17261 16982.9 101.6 103.3 -1.7 -1.6
17261 17788.0 101.6 98.6 3.0 3.0
17261 17418.9 101.6 100.7 0.9 0.9
9864 11628.2 177.8 150.8 27.0 15.2
17261 17217.6 101.6 101.9 -0.3 -0.3
17261 16069.2 101.6 109.1 -7.5 -7.4

13809 14325.8 127.0 122.4 4.6 3.6
11508 14809.5 152.4 118.4 34.0 22.3
17261 16692.4 101.6 105.0 -3.5 -3.4

17261 13638.7 101.6 128.6 -27.0 -26.6

17261 17115.9 101.6 102.5 -0.9 -0.8
17261 9446.9 101.6 185.6 -84.0 -82.7
5754 6928.4 304.8 253.1 51.7 17.0
5754 8574.2 304.8 204.5 100.3 32.9
5754 10878.9 304.8 161.2 143.6 47.1

Table 7.2: Results of 50,000 iterations, 3 hidden nodes

In order to simplify the impact echo data, a data correlation method was used. This was 

done by studying plots of the 256 points. It was discovered that some graphs were
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similar to one another, so if there were 4 graphs, which looked identical, then one graph 

from that class would be used to represent that group of defect or non-defect. About 50 

training examples were presented to the network, and 15 examples were used to test the 

network.

Actual
Frequency

(Hz)

Detected
Frequency

(Hz)

Actual
Depth
(mm)

Detected
Apparent

Depth(mm)

Error
(mm)

Error
(% )

17261 15549.0 101.6 112.8 -11.2 -11.0
17261 17486.8 101.6 100.3 1.3 1.3
17261 16731.1 101.6 104.8 -3.2 -3.2
9864 1 1767.8 177.8 149.0 28.8 16.2
17261 16534.1 101.6 106.1 -4.7 -4.4
17261 15675.7 101.6 111.9 -10.3 -10.1
13809 11074.4 127.0 158.4 -31.4 -24.7
11508 14844.3 152.4 118.1 34.3 22.5
17261 16300.8 101.6 107.6 -6.0 -5.9
17261 11687.6 101.6 150.1 -48.6 -47.7
17261 17244.9 101.6 101.7 -0.1 -0.1
17261 13114.1 101.6 133.7 -32.1 -31.6
5754 9640.0 304.8 181.9 122.7 40.3

5754 11895.0 304.8 147.4 157.4 51.6
5754 11086.0 304.8 158.2 146.6 48.1

Table 7.3: Results of 1,000 iterations, 3 hidden nodes

Actual
Frequency

(Hz)

Detected
Frequency

(Hz)

Actual
Depth
(mm)

Detected
Apparent

Depth(mm)

Error
(mm)

Error(%)

17261 17069.0 101.6 102.7 -1.1 -l.l
17261 17817.9 101.6 98.4 3.2 3.1
17261 17451.4 101.6 100.5 1.1 1.1
9864 11621.2 177.8 150.9 26.9 15.1
17261 17230.4 101.6 101.8 -0.2 -0.2
17261 16073.0 101.6 109.1 -7.5 -7.4
13809 14395.2 127.0 121.8 5.2 4.1
11508 14887.5 152.4 117,8 34.6 22.7
17261 16710.1 101.6 105.0 -3.3 -3.3
17261 13665.8 101.6 128.3 -26.7 -26.3
17261 17113.5 101.6 102.5 -0.9 -0.9
17261 9719.1 101.6 180.4 -78.8 -77.6
5754 6974.7 304.8 251.4 53.3 17.5
5754 8621.5 304.8 203.4 101.3 33.3
5754 11269.6 304.8 155.6 149.2 48.9

Table 7.4: Results of 100,000 iterations, 3 hidden nodes

To find the optimum number of investigation, it was noted that after 50,000 the result 

did not change considerably indicated in table 7.4. Indeed, table 7.2 and 7.3 shows the 

improvement from 1,000 iteration to 50,000 to be about 70%.
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Actual
Frequency

(Hz)

Detected
Frequency

(Hz)

Actual
Depth
(mm)

Detected
Apparent

Depth(mm)

Error
(mm)

Error(%)

17261 17400.0 101.6 100.8 0.8 0.8
17261 17994 101.6 97.5 4.1 4.1
17261 17810.4 101.6 98.5 3.1 3.1
9864 12039.8 177.8 145.7 32.1 18.1
17261 17640.1 101.6 99.4 2.18 2.2
17261 16871 101.6 104.0 -2.3 -2.3
13809 14220.3 127.0 123.3 3.7 2.9
11508 15743.6 152.4 111.4 41.0 26.9
17261 17005.0 101.6 103.1 -1.5 -1.5
17261 13838.9 101.6 126.7 -25.1 -24.7
17261 17748.2 101.6 98.8 2.8 2.7
17261 10667.1 101.6 164.4 -62.8 -61.8
5754 8286.1 304.8 211.6 93.1 30.6
5754 9416.4 304.8 186.2 118.5 38.9
5754 10334.2 304.8 169.7 135.1 44.3

Table 7.5: Results of 8,000 iterations, 4 hidden nodes

Actual
Frequency

(Hz)

Detected
Frequency

(Hz)

Actual
Depth
(mm)

Detected
Apparent

Depth(mm)

Error
(mm)

Error(%)

17261 17050.4 101.6 102.9 -1.3 -1.2
17261 17682.9 101.6 99.2 2.4 2.4

17261 17526.2 101.6 100.1 1.5 1.5
9864 11216.6 177.8 156,4 21.4 12.1
17261 17488.8 101.6 100.3 1.3 1,3
17261 16409.9 101.6 106.9 -5.3 -5.2
13809 14416.9 127.0 121.6 5.4 4.2
11508 14813.6 152.4 118.4 34.0 22.3
17261 17050.7 101.6 102.9 -1.2 -1.2
17261 13615.1 101.6 128.8 -27.2 -26.8
17261 17375.6 101.6 100.9 0.7 0.7
17261 10259.7 101.6 170.9 -69.3 -68.2
5754 8274.9 304.8 211.9 92.9 30.5
5754 9362.6 304.8 187.3 117.5 38.5
5754 11160.8 304.8 157.1 147.7 48.4

Figure 7.6: Results 8,000 iterations, 10 hidden nodes

The results of table 7.5 and table 7.6 show a overall improvement of about 60% from 

increasing the nodes from 4 to 10, however, observing each result from table 7.5 and

7.6, it is noted that there is slight increase which is not substantial. Indeed, it was 

decided at this stage to consider other ways to have a significant effect on the 

optimisation of impact echo data. Also, the approach taken to deliver these results were 

in doubt. The next section describes the improvement on the impact echo data.
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7.10.2. Method Increasing the number of data sets

It has been stated that due to their large number of parameters, neural networks are very 

sensitive to overfitting when compared to statistical methods. For example, if a three 

layer network had 25 inputs and 10 hidden nodes, there will be 260 free parameters, 

this is calculated by using (Masters, 1993):

Weights = ( n + 1 ) * m
Equation 7.2

Where n is the number of inputs and m is the number of hidden nodes

Previously, in neural network testing, 256 inputs have been used. Current impact data 

has now been reduced to 75 inputs, the minimum used so far, yet it is still a large 

amount of input neurons according to Masters (1993). If there are only two input inputs, 

about six training samples will mostly represent every possible error pattern. With the 

75 input patterns, the chance of some pattern being repeated many times in the training 

set is much higher. The only way to prevent the network from learning unique 

characteristics of the training set, to the detriment of learning universal characteristics, 

is to provide it with plenty of examples, so that it cannot possibly learn all of their 

idiosyncrasies. As a guideline, it has been suggested:

• Compute the number of weights in the network using equation 7.2.

• Double it to get the minimum number of training samples required.

• Double it again to get a better sample size

It has been worked out that for this particular application, using 75 inputs and then 

using equation 7.2 gives 1824 free parameters. If this is doubled, then to obtain a 

minimum number of training samples is about 3600.

It was then necessary to increase the data of 225, to accomplish this task, and to verify 

this theory. However, it was impossible to repeat the experiment since it was conducted 

in the U.S.A. The best option was to add noise to create a new set. The following 

sections describe the procedures taken to produce the extra data and other processes to 

prepare data for the neural network analysis.
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7.10.2.1. Data preparation

The preparation to increase the data for the above section is similar to the method 

described in section 7.10.1. Again, all the 225 data was used, in the following order:

• Editing the raw data

• Adding noise

• FFT processing

• Reduction of data (Interpolation )

• Filtering

• Preparation for neural network analysis

Once this was completed for the first set of 225 data, the above method was repeated 

with a different set of noise added to the original data. The whole technique was 

repeated until data set of 3600 were created. These procedures are discussed further in 

the following section.

7.10.2.1.1. Formatting raw data

The raw data collected from the impact echo came in one column which consisted of a 

set of 15, each set having 1024 data points, which represented one impact result (also 

discussed in chapter 3). This had to be separated into separate files e.g. 15 files, which 

means that for one test point, there was 15 different transients waveform. This had been 

completed for other neural network analysis including data correlation testing.

7.10.2.1.2. Data created by adding noise

A requirement in creating more data, by adding noise, was that the noise should not 

alter the original data significantly, whilst providing the necessary additional data. In 

order to accomplish this, a variety of standard deviation values of the noise were 

experimented with. The values tested were 0.5, 0.03, 0.025, 0.02, 0.015, 0.01, and 0.00.

The standard deviation controls the noise addition so for each level of standard 

deviation, noise was added to the original data and amplitude spectrum performed. The 

FFT processing made it easier to see any difference as can be seen from figures 7.6 to 

7.12 and so it was used to compare with graphs having no noise added. The conclusion 

was that, the standard deviation of 0.5 was too much as it changed the original data 

completely.

Chapter 7
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Figure 7.6: Original data without noise
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Figure 7.7: Addition of noise, standard deviation = 0.5
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Frequency (Hz)

Figure 7.8: Amplitude spectrum, standard deviation = 0.5

Figure 7.9: Addition of noise, standard deviation = 0.01
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Figure 7.10: Amplitude spectrum, standard deviation = 0.01

Figure 7.11 :Addition of noise, standard deviation = 0.025
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Figure 7.12: Amplitude spectrum, standard deviation = 0.025

However, the standard deviation of 0.01 was too small and made no difference to real 

data. It was found that the standard deviation of 0.02 was ideal. However, as the data 

set was increasing, when the number of data set was 795, the neural network result 

showed no substantial performance, so it was decided to increase the standard deviation 

slightly, hence the standard deviation of 0.025 was used.

Labview was used to generate the noise, the program and examples are included in 

Appendix F. The program which produces the noise had to be run 225 times, for a new 

set of 225 data to be obtained. The calculation for the number of data sets for neural 

network analysis shown in section 7.10.2 indicates that a data set of about 3600 is 

required. This means the Labview program would have to be repeated 16 times 

(3600/225) for each set of 225 data.

7.10.2.1.3. FFT Processing

Once the noise was added, each set of 225 data needed FFT processing. This had two 

advantages; one was that it was much clearer and easier to understand the data in 

frequency terms rather than in time domain, the other was that it reduced the data from 

1024 points to 512 (FFT theory). This was a help because the reduction of data is the 

primary objective in this type of neural network analysis. This is considered further in 

the next section. The FFT method using Matlab is shown in the Appendix C.
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7.10.2.1.4. Interpolating data

The 512 data need further reduction. The function of the interpolation was that, whilst it 

minimised the data, it also had the additional benefits of smoothing the graph, so more 

dominant peaks showed, and smaller peaks disappeared. But at this stage, it was not 

known how many points to settle on. This needed investigation. A range of frequency 

increment used is given in table 7.7.

Chapter 7

Frequency Increment
_______ m _______

The Equivalent Points

97.65625 512
195.3125 256

292.96875 170
390.625 128

488.28125 102
585.9375 85

250 200

Table 7.7: Illustration of the frequency increment

Figure 7.13: Amplitude spectrum with 170 points
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Figure 7.14: Amplitude spectrum with 85 points

The frequency increment was calculated using the following:

Record Length = N x Sp Equation 7.3

Where N is the number of sampling points 

Sp is the Sampling frequency

So, since the number of sampling points was 1024 points (see appendix C for further 

FFT theory and application), and the sampling period was 10 ps (period = 1/frequency 

= 1/ Sp), then:

Record Length = 1024 x 10 x 10"6 = 0.01024 s 

The frequency increment for this record length is:

Frequency increment = 1/ 0.01024 = 97.65625 Liz

The frequency increment of 97.65625Hz was then multiplied by two, giving 195.3125 

Hz. This new figure was used to calculate the number of sampling points, using 

equation 7.3. This delivered 256 points. N.B, the record length used was 50 kHz 

because with FFT theory the other half of the signal can be ignored. Also it is important
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to point out that the frequency increment is used to interpolate the equivalent amplitude 

value. This procedure was repeated by multiples of 3, 4 and 5.

Using Matlab, the interpolation was completed. The graphs with this variety of 

frequency increments were plotted and studied to see which gave better results. The aim 

was to find a graph, which gave the most useful information about a particular defect or 

non-defect, and also used the minimum number of points. As shown in figures 7.13 to

7.14, it was found that the frequency increment of 292.96875 Hz (170 points) met this 

requirement. However, the frequency increment of 250 Hz was used to verify if it 

would give better results than this. It did not, so the 292.96875 Hz increment were used. 

The Matlab program for interpolation and graphs of these increments can be found in 

Appendix F.

7.10.2.1.5. Data filtering

Once the impact echo data was reduced to 170 points, there were still parts of the graph, 

which could be discarded. For example the depth of the wall specimen is of 12 inches 

(304.8 mm) gives an equivalent frequency of 5.74 kHz. This means any frequency 

below this can be discarded, because it has no use and also, it reduces the data, which is 

vital for neural network, making it easier to train, the ultimate goal.

Figure 7.15: Filtering unwanted data

Also, higher frequency was of no interest because these correspond to very shallow 

defects, which were not present. The maximum void frequency was 17.261 Khz 

(theoretical). In practice, the graphs gave about 19kHz, so anything above 20Khz could 

be eliminated. This observation is indicated in Figure 7.15. However, the x-axis shows 

the number of data not frequency, but idea is the same.
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When the data was filtered, it was appended to a file. Again, this would be repeated 225 

times, so each file would have 225 data sets. Now, the file needed editing for the neural 

network format. This procedure was completed by using Labview. The program is 

given in Appendix F.

7.10.2.1.6. Accumulating the data

Each time a set of 225 was created for neural network use it needed to be in a format 

that the network can use to train and test. Proff 11/Plus was the neural network software 

used in this research. Method and examples of this technique can be found in Appendix 

A.

The 225 data examples were trained and tested, and results noted. Then the next set of 

225 data were added with noise, FFT processed, interpolated, filtered, edited, and added 

to the original file for neural network training. This was repeated until the data set 

increased to about 3833. This data is given in Appendix D. Table 7.8 shows all the data 

sets used in the neural network training with the number of hidden nodes for each data 

set. As shown, the minimum data set used was 194 training data, 12 test data, the 

maximum used is 3833 training data, with 163 test data. It is important to note however, 

that due to some error not all of the 225 data records were used in each processing 

instead 223 data records were used in most cases.

Data Sets Test sets Hidden nodes
194 12 14
396 34 20
577 77 24
795 81 28
1015 86 32
1232 91 35
1453 94 38
1671 100 41
1892 104 43
2111 110 46
2330 116 48
2548 121 50
2765 127 53
2983 134 55
3201 141 57
3420 147 58
3615 156 60
3833 163 62

Table 7.8: Calculation of hidden nodes for each set of training and testing file
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7.11. Further improvements

Originally, this application was considered to be a function approximation problem 

shown in figure 7.16, that is, a graph represented a pattern and a function had to be 

fitted in order to find a solution. The back propagation was thought to be the best 

option. The results for the increase of the number data sets shows a slight improvement. 

Figures 7. 19 and 7.20 show the original data with 194 data sets which has no noise 

added and the addition of noise with 2765 data sets. In these figures, ‘actual’ represents 

the desired results set by the author, and the ‘neural network’ is the results the network 

has managed to achieve.

Chapter 7

Figure 7.16: Function approximation problem

Learning
Parameter
(hidden)

(a)

Learning
Parameter
(output)

(a)

Momentum
(P)

Hidden
Nodes

Transfer
function
(input)

T ransfer 
function 
(hidden)

Transfer
function
(output)

0.3 0.15 0.4 61 Linear Sigmoid Sigmoid
0.3 0.15 0.5 61 Linear Sigmoid Sigmoid

0.25 0.15 0.6 61 Linear Sigmoid Sigmoid
0.25 0.15 0.7 61 Linear Sigmoid Sigmoid
0.25 0.15 0.8 61 Linear Sigmoid Sigmoid
0.25 0.15 0.9 61 Linear Sigmoid Sigmoid
0.25 0.15 1.0 61 Linear Sigmoid Sigmoid
0.25 0.15 0.85 61 Linear Sigmoid Sigmoid
0.25 0.15 0.86 61 Linear Sigmoid Sigmoid
0.25 0.15 0.87 61 Linear Sigmoid Sigmoid
0.25 0.15 0.88 61 Linear Sigmoid Sigmoid
0.25 0.15 0.89 61 Linear Sigmoid Sigmoid
0.25 0.05 0.89 61 Linear Sigmoid Sigmoid
0.25 0.1 0.89 61 Linear Sigmoid Sigmoid
0.25 0.11 0.89 61 Linear Sigmoid Sigmoid
0.25 0.2 0.89 61 Linear Sigmoid Sigmoid
0.3 0.15 0.89 61 Linear Sigmoid Sigmoid

0.35 0.15 0.89 61 Linear Sigmoid Sigmoid
0.4 0.15 0.89 61 Linear Sigmoid Sigmoid
0.5 0.15 0.89 61 Linear Sigmoid Sigmoid
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Learning
Parameter
(hidden)

(a)

Learning
Parameter
(output)

____ («.)____

Momentum
(P )

Hidden
Nodes

Transfer
function
(input)

Transfer
function
(hidden)

Transfer
function
(output)

0.4 0.15 0.89 62 Linear Sigmoid Sigmoid
0.4 0.15 0.89 60 Linear Sigmoid Sigmoid
0.4 0.15 0.89 59 Linear Sigmoid Sigmoid
0.4 0.15 0.89 63 Linear Sigmoid Sigmoid
0.4 0.15 0.89 61 Sigmoid Sigmoid Linear
0.4 0.15 0.89 61 Linear Sigmoid TanH
0.4 0.15 0.89 61 Linear Sigmoid Linear

0.25 0.15 0.89 61 Linear Sigmoid Linear
0.25 0.15 0.89 62 Linear Sigmoid Linear
0.25 0.15 0.89 59 Linear Sigmoid Linear

Table 7.9: Cases of learning rate, momentum and hidden nodes used to find the
optimum parameters

There was still room for improvement. So far, the learning parameter and momentum 

term were used as the default values provided by the neural network software. 

Adjusting these values would make some improvement, so the next objective is to find 

the optimum pair that would give the best result. Indeed, the parameters investigated 

were:

• Momentum p

• Learning rate a  for hidden and output layer

• Hidden nodes

• Transfer function

7.11.1. Re-organising the data

The first stage in improving the results was recognising that the 3833 data sets 

contained some bad data which could be misleading for the network. These data sets 

were eliminated. This procedure was repeated with the testing file as well. The learning 

and testing file was reduced to 3698 and 160 data sets. A selection of data from this 

new learning file was chosen to create a smaller file, because it was difficult to see how 

well the network was trained with the 3698 data sets file because it was too large. 

Usually, about 2 to 3 data patterns was taken from each of the data sets shown on table

7.8.

7.11.2. Testing neural network on trained data

The aim was to test the network on the same training data it had learned from, because 

this was a very good starting point to see how well the network is trained before testing
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the network on data that it has not seen before. The results are shown on figure 7.17. It 

can be seen that there are large discrepancies. This suggests that the network has not 

learnt the data well, ideally there should be negligible differences between the actual 

and neural network data. To minimise this difference, as discussed in section 7.11, the 

four parameters need to be adjusted to find the optimum results.

7.11.3. Investigation of optimum parameters

The next step was to find the optimum pair of learning rate, a  and momentum, p, a 

selection of these values were taken. The data for different values of these two 

parameters are included in the Appendix D. Figure 7.17 and 7.18 show the default and 

the optimum parameters for a  an p.

Once the optimum a  and P was found, the next task was to find the optimum number of 

hidden nodes. Indeed, it was decided to have a higher learning rate in the hidden layer 

than the output layer, because having a larger learning coefficient at the hidden layer 

than for the output layer allows the hidden layer to form feature detectors during the 

early stages of training, so that these feature detectors can then be combined to form 

more complex detectors at the output layer (Using Neural Networks, 1993). Moreover, 

having different learning parameters for the subsequent layers reduces the learning 

time. The range of hidden nodes was investigated; the data is enclosed in the Appendix 

D.

By altering the transfer function for each layer in the network could further improve the 

results, so this was examined. The transfer function for the output layer was changed 

from sigmoid to Linear and TanH and network was trained again to observe any 

improvements. The Linear transfer function should slight improvement and a  and P 

were changed to 0.25 and 0.15 to observe any improvement, also, the hidden nodes 

were altered to 62 and 59. The data for all these are included in the Appendix D.

When the optimum parameters were found which is discussed in the next section, the 

network was finally trained again and tested on unknown data. The results shown in 

figures 7.21 and 7.22 indicate about 10% improvement when compared to the original 

data with 3833 data sets.
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Figure 7.18: Momentum = 0.89, learning rate (hidden) = 0.4, learning rate (output) = 0.15
107



Fr
eq

ue
nc

y(
Hz

)

Chapter 7

Test Cases

Figure 7.19: Original data without any noise
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Test Case •Actual
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Figure 7.21: Results with default parameters (3833 training data, 163 test data, 62 hidden nodes used)
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Test Case

Figure 7.22: Results with optimum parameters (3698 training data, 160 test data, 61 hidden nodes used)
ill
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7.12. Neural network results

During the investigation of trying to find the optimum parameters, the neural network 

results started to show improvement when the momentum value was between 0.85 to

0.9. An increment of 0.01 was added to the momentum value of 0.85, the results were 

observed. This was repeated until momentum was 1. As mentioned in section 7.5, the 

momentum factor should be in the order of 0 to 1. When the network was trained with a 

momentum value of 1, the results were the worst results the author had seen in the 

neural network analysis. The error was very large. Hence, momentum value of 0.89 was 

selected. Also, Section 7.6 stated to use a range of learning rate values of 0.05 to 0.25. 

The maximum value of 0.25 did deliver good results, but was found to do better at 0.4.

This proved that the apparent optimum results is achieved with:

• a  = 0.4 (hidden)

• a  = 0.15 (output)

• P = 0.89

• Hidden nodes = 61

• Transfer function (input) = Linear

• Transfer function (hidden) = Sigmoid

• Transfer function (output) = Sigmoid

• Iteration = 50,000

Chapter 7

Table 7.10 shows results of neural network with the predicated frequency and impact 

echo. The neural network was produced from data relating to each location, which was 

illustrated in chapter 3. The data for each location was put together and the average was 

computed. As can be seen from table 7.10, the neural network results for defects are 

generally 80% accurate. However, the results for sound areas are not so encouraging, as 

discussed in chapter 4, the sound areas tested were surrounded by other defects which 

consequently would weaken the signal for a solid. This effect is obvious in this case.

However, the results could still be improved, namely, this application may be purely a 

classification problem, although it was assumed to be a mapping, classification and 

function approximation problem. It seems that certain areas of an amplitude spectrum
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can be ‘classified’ as defect or non-defect, in which case a LVQ or Radial Basis 

Network is most suited. Also, when the network was tested on the same data, as shown 

in figure 7.18, there is still a considerable amount of difference, realistically, the actual 

and neural network response should be an exact fit. The impact echo application does 

not have precise data, as discussed the data varies from one record to another record. 

The 15 records for one test point had some data which were fairly lower than the 

predicted frequency. For example, for a predicted frequency of 17.261 kHz, one record 

may suggest about 16 kHz, another may indicated about 10 kHz.

Code
Name

fp
Predicted
Frequency
(kHz)

fp
Im pact
Echo
(kHz)

Neural
Network

Wavle 17.261 18.23 17.11
Wav2e 17.261 16.68 14.55
Wav3e 17.261 8.92 15.81
Wav4e 17.261 16.87 15.78
Wavl w 9.864 9.99 9.20
Wav2w 17.261 15.22 16.64
Wav3w 13.809 12.60 13.30
Wav4w 11.508 12.31 11.47
Wacll 5.754 3.68 11.45
Wacl2 5.754 3.68 7.24
Wdv5e 17.261 9.21 17.00
Wdv6e 17.261 9.21 17.10
Wdv7e 17.261 14.45 15.64
Wdv8e 17.261 16.29 14.99
Wdcle 5.754 5.91 10.81

Table 7.10: Comparison of results

7.13. Summary

The important factors concerning a neural network was discussed which are, validation, 

momentum, learning rate, weights, iteration, and hidden nodes. The method for 

preparing data for training a neural network was presented, with an explanation of how 

the impact echo was modelled using the neural network technique. It was shown how 

neural network data was improved by adjusting the parameters discussed earlier in the 

chapter. It can be concluded that to achieve the optimum results with the experiment 

conducted with the impact echo device, the parameters setting given in section 7.12 

must be adopted.
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Chapter eight

Finite element theory

8.1. Introduction

This chapter covers the theory of the finite element method which has been applied to 

the simulation of impact echo system in order to achieve more data sets.

The impact echo system is a typical practical, physical problem whose solution by 

conventional analytical methods is either too difficult or impossible. In order to 

evaluate the precise response of the body by the impact force, a ‘closed form’ solution 

of the equations which govern its deformation need to be determined. However, 

because practical problems tend to have complex geometrical configurations, it is 

exceedingly difficult to obtain such solutions. For the analyst, such problems require a 

numerical technique. The finite element has been adopted in this research as a method 

for obtaining a wide range of impact echo data sets.

8.2. Theory of finite elements

The finite element method is a general numerical technique for obtaining approximate 

solutions to the partial differential equations that arise from boundary value problems. 

The method approximates a structure in two distinct ways:

• The division of smaller parts is called finite elements. The process of dividing up a 

structure is called discretisation. Each element is usually a bar, beam, plate or solid, 

which has an equation of equilibrium that can be solved or approximated. Element 

have nodes that connect it to the adjacent elements, and these points on the structure 

represent the equilibrium of the entire structure. The nodes are also used to capture 

the global motion of the structure as it vibrates. A finite element mesh is the 

collection of nodes and finite elements.

• For each individual finite element, the equation of dynamic equilibrium is 

calculated and solved. The solutions of the element equations are approximated by a 

linear combination of low order polynomials. The solutions for each polynomial is 

made compatible with adjacent solution, which are the continuity conditions at 

nodes common to two elements. The solutions are accumulated, resulting in global

mass and stiffness matrices, that describe the dynamics of the structure as a whole.
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8.2.1. Formulation of the stiffness matrix

In this research, as previously discussed in chapter 1, three types of element were 

employed. The first was an eight node 2D element, the second was a contact element, 

(two different types of contact element are discussed further in chapters 9 and 10). The 

third was a twenty node 3D element. This section concentrates on the theory of the 2D 

element. It presents the formulation of the stiffness matrix. Indeed, in each finite 

element software, this is processed by using an appropriate algorithm.

The procedure begins by converting the displacements of the element into the form of 

nodal displacement using suitable polynomial equations. Then, strains are evaluated 

from these nodal displacements, which can be used to deduce stresses by the use of 

Hook's law. Finally, the unknown parameters in these polynomial equations are solved 

by applying the principle of minimum potential energy.

8.2.1.1. Nodal displacements

Chapter 8

------------►
X

Figure 8.1: Eight-node rectangular element

The 2D element with eight nodes with two degrees of freedom at each node, is shown 

in figure 8.1. These are displacement in the x and y co-ordinate axis which can be 

referred to as displacements u and v (Zienkiewicz, 1971).

The element shown in figure 8.1 has a total of 8 nodes, so there are a total of 16 degrees 

of freedom (DOF) for each element. The displacement function at each node is given 

by:

U = a i  +  0C2X +  0.3 y + OC4X2 + a 5xy + a 6y2 + a 7x2y + agxy2 Equation 8.1
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V = ai + a 2x + a 3y + a 4x2+ a 5xy + a 6y2 + a 7x2y + a 8xy 2 Equation 8.2

where cq i = 1 to 8 are constants to be evaluated.

By substituting in the appropriate x and y co-ordinates for each of the eight nodes, a set 

of eight simultaneous equations are created. These equations can then be solved to find 

the unknown coefficients. These can be substituted back into equation 8.1. giving:

U= _1__ [ - ( x - a )( y - b )( y + b/a x + b)/2b (ui)
2ab ( x + a Xy - b X y - b/a x + b) / 2b (U2)

( x + a )(y + b )( y + b/a x - b) / 2b (U3)
- ( x - a X y + b X y - b/a x - b) / 2b (u4) Equation 8.3
( x + a X x - a X y - b) / a (u5)

. ( x + a )( y + b)( y - b) / b (w)
-( x + a )( x -  a )( y + b) / a (u7)
( x - a X y + b X y - b) / b (u8) ]

This can be expressed as:

U = [ N, N2 N3 N4 N5 N6 N7 N8 ]
u2
u3
u4
U5

U6
U7
U8

Equation 8.4

Where Ni to N8 are the shape functions. This process is repeated for v, resulting in:

Equation 8.5

n

V(x,y) = 2  H  (x,y)vi

n

U (x,y) = X Nj (x,y) u,
i=l

Equation 8.6
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If a local co-ordinate system (£, ,r)) is chosen for convenience as illustrated in figure 8.2.

Figure 8.2: A local co-ordinate system for the 2D element

8.2.1.2. Equations of strain

There are three strain components in small deflection two dimensional stress analysis:

A 5u "
5x

Ey 5v
§y

Yxy , 5u 8v 
,5x Sy,

Equation 8.7 

Equation 8.8 

Equation 8.9

In terms of nodal displacement and shape functions, the strains can be written in matrix 
form:

re a ^5N 0
8x

£y = 0 SN
5y

8N 5N
^ 5y 8x ^

Equation 8.10

In summary form, equation 8.10 becomes:

{£} = [B] {8}
Equation 8.11
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To change to a local co-ordinate system, as illustrated in figure 8.2, and using the rules 

of partial differentiation:

5N = 5N5x + 6N 5y 
8^ 5x S  ̂ 8y 8E,

SN = SN 8x_+8N_5y 
5r| 8x 8r| 8y Sq

In matrix form becomes:

"s n "
r

5x
r

SN
5^ 8^ 8^ Sx

8N 8x 8y 8N
Sri 8p 8p^ 8yc. J J

Equation 8.12

Equation 8.13

Equation 8.14

The inverse of this can be found by using the Jacobian matrix [J]:

8N ^
r

8N
8x

= [J]'1
8^ Equation 8.15

SN 8N
Sy 8p

j v  J

The derivatives thus have a mapping from local to x, y system.

8.2.1.3. Stress-strain equations

By using Hook's law, the strains can expressed in terms of stress:

sx -J_ (ax - u ay ) Equation 8.16
E

sy 2L( °y ■ u ax ) Equation 8.17
E

Yxy 2  ( 1 + 0  ) TXy

E
Equation 8.18
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Thus, the complete stress-strain relationship is:

CJx C ~'s' 1 u 0 Sx
a y = E o 1 0 sy
x̂y 1 - o2 0 0 (1-u )/2

Equation 8.19

This is written in the summary form:

M  = [D] {a } Equation 8.20

8.2.1.4. Minimum potential energy formulation

The stiffness matrix of the structure can be derived by equating the external and internal 

work.

The work done by the nodal forces is the external work which is

External work = 1/2 { 5e }T { Pe } Equation 8.21

The strain energy in the structure is the internal energy which is:

Internal work = 1/2 J { s }T { Pe } Equation 8.22

Substituting equations 8.11 and 8.20 into equation 8.22 the internal work becomes:

Internal work =1/2 {§ e} [ i [ B ] T[D]  [B]d(volume)]  {§ e} Equation 8.23

Equating equations 8.21 and 8.23 gives:

{ Pe} = 1 [ B ]T [ D ] [ B ] d ( volume) {5 e} Equation 8.24

In the local co-ordinate system, the limits of integration needs to be changed:

{ Pe} = .! J .! J [ B ]T [ D ] [ B ] [ J ] {§ e} d§ dq Equation 8.25
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Since K =P8, the stiffness matrix is:

8.2.2. Finite element solution

Figure 8.3 summarises the significant steps in the finite element solution (Rocky et al, 

1995). Each stage is discussed in the following sub-sections.

{ K } = j  , i  [ B ]T [ D ] [ B ] [ J ] dri Equation 8.26

Figure 8.3: Finite element procedures in computer programming

1 2 0



8.2.2.1. Input data

The first stage of any F.E program is to read and check the data. This data file will

contain the information required to define the model. Indeed, the data required to define

the model for an analysis is:

• Nodes - The nodes are defined by their co-ordinates and each node is allocated a

number.

• Elements - The elements are each allocated a number and are defined by the list of 

nodes which make up the element. The order of the node numbers is very important 

in the element definition, Appendix B shows an example element with the order in 

which the nodes should be specified. Each element also requires a physical and 

material property. These tables are listed in separate tables. The element data, 

therefore, also contains two pointers to the relevant entries in physical and material 

property tables (Gordon, 1993).

• Physical Properties - The physical properties of the element will vary for each 

element type. These properties may vary from element to element in which case a 

table is required. Each set of properties in the table are allocated a number. This 

number will then be specified in the element data.

• Material Properties - The material properties are listed in a similar manner to the 

physical properties. The properties are generally obtained from tables. An example 

is illustrated on table 8.1.

• Restraints (boundary conditions) - The boundary conditions are specified by a node 

number, a degree of freedom and a value. Generally, the node will be restrained and 

the value entered will be for a zero displacement.

• Loading - The load data is entered in a similar manner to the restraint data. The data 

may consist of a node number, a direction number and a value. The value entered 

will be the magnitude of the load and the sign will indicate the sense of the load. 

Alternatively, if a distributed load is applied, the data will be an element number, 

and edge number and the value of the pressure (The impact of a hammer is 

simulated by applying pressure on one or two elements).

• Specification of Results Required -The user generally specifies the result to be 

calculated and displayed in the output file. Some of the results obtained are the 

displacements, reactions, strains, stresses, etc. To obtain results from the completed 

solution, node number, type of results e.g. displacement, axis direction in which the 

results are to be obtained need to defined.

Chapter 8
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Young’s Modulus 
(Pa)

Density
(kg/m3)

Poisson’s Ratio

33100x10b 2300 0.2

Table 8.1: Material properties

50m 50m

Figure 8.4: Example of 2D model using triangular elements

Considering the 2D model example in figure 8.4, there 6 nodes and 4 elements. At each 

node there are 2 DOF(degrees of freedom) which are displacements, Vn is vertical and 

Un is horizontal, n refers to the number of each node.

For the example, the nodes are stated as:

N, 1,0,0 
N,2,0,50 
N,3.50,0 
N, 4,50,50 
N,5,100,0 
N,6,100,50

The elements become:

EN,1,1,3,2
EN,2,2,3,4
EN,3,3,5,4
EN,4,4,5,6

8.2.2.2. Assembly of the overall stiffness matrix

When the calculation of the stiffness matrix for each element is completed. As 

described in section 8.2.1, the overall stiffness matrix has to be assembled. Using the 

2D example in figure 8.4, the example has 2 DOF at each nodes, giving a 12 x 12 

overall stiffness matrix. For each element, the stiffness matrix is 6 x 6 because there are
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3 nodes defining an element. For element 2 the 6 x 6 element stiffness matrix has 

included into the global matrix. This is shown below in figure 8.5. Once all the stiffness 

matrixes for all 4 elements have been included into the global matrix, then it is 

complete.

f Fx'^l
Fy.

Fx2 

Fy2 

Fx3

Fy3 

F X4 

Fy4

f x5

Fy5

Fx6

V* J

Figure 8. 5: Stiffness matrix of element 2 in the global matrix

8.2.2.3. Application of boundary conditions

In most cases, the finite element model will be constrained at certain nodes, in order to 

prevent the model accelerating under the action of applied forces. This allows the 

appropriate rows and columns to be eliminated. This is done by several methods 

employed to carry out this inspection. One method is to multiply the diagonal of the 

overall stiffness matrix by a large number. This is demonstrated in equations 8.27, 8.28 

and 8.29:

kn k,2 ki3 ku ki6

k2i k22 2̂3 k24 2̂5 k26

k3i k32 3̂3 k34 3̂5 k36

k4| k42 k43 k44 k45 k46

5̂1 k32 ki3 k54 k-55 k56

k6i K2 k63 k&4 k65 k66

f  Ui \

V,

U2 

V2

u3

V3

u4

V4 

U5 

V5 

U6

vv*y

F „  =  K „  U , +  K , , V  1 +  K i3 U 2 +  . . .  +  K i i U i . . . +  K in V „ Equation 8.27

F xj -  KnUi + Kj2Vl + Kj3U2 + ... + (1025) KiiUj...+ KjnVn Equation 8.28

Uj = Fxi - ( KiiUi + Kl2Vl + Ki3U2 ... + KjnVn )
(1025) KjjUi

Equation 8.29
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8.2.2.4. Solution for displacements

Many algorithms are available to solve the stiffness equations. Gaussian elimination is 

one such method, but the disadvantage is that it requires long periods to solve a 

particular problem. Hence, it is vital to minimize the matrix by labeling the nodes and 

elements appropriately. A review of the many efficient alternatives is beyond the scope 

of this research.

8.2.3. Loading

When forces acting on an elastic body varies with time, it is essentially a dynamic 

problem. The stress waves initiated by the exciting forces, propagate within the body 

which deforms as a result in a time dependant fashion. So, the analysis of these 

problems involves a study of the manifestations of wave motion within the body.

The finite element can be used to analyse dynamic problems. This requires solution of 

three matrices:

• Stiffness matrix-This is the relation of an element’s extremity forces to its extremity 

displacement, global stiffness is the assembled stiffness matrix of all the elements.

• Mass matrix-the inertia of body represents its internal resistance to vibration, in the 

discretized form, the total inertia of the body is represented by global mass matrix.

• Damping matrix-In damped vibration, the resistance is also provided by the internal 

friction of the body which results in energy dissipation. The total damping is 

represented by its global damping matrix.

The resulting system of equation is:

F(t) = [M] {d2u/dt2} + [C] {du/dt} + [K] {u} Equation 8.30

F(t) is the forcing function ('/2 sine wave) -  the transient dynamic analyses are used to 

solve for the response of a structure to a time-history forcing function i.e. the Vi sine 

wave which is described in chapter 10. When the 'A sine wave impact is applied, the 

forcing function is then set to zero, allowing results to be produced for specified times 

after the impulse.
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[M] is the structural mass matrix- this is defined by :

NE

[M] = E [Me,]
i= l

where [Mej ] is the individual element matrices

[C] is the structural damping matrix- this is represented by:

Chapter 8

Equation 8.31

NMAT NEL

[C] = a  [M] + (3[K] + E Bj[kj] + [QJ + E [Ck] Equation 8.32
j=l k=l

where a  [M] is the mass damping,

NMAT

P[K] +  E P j [ k j ]  is the structural damping, [ k j ]  is the portion of the stiffness matrix
i=i

based on material j, NMAT is number of materials in the model.

[C J  is the constant damping,

NEL

E  [ C k ]  is the element damping, [ C k ]  is the individual element damping matrix, N E L  is
k=l
the number of damping elements

[K]is the overall structural stiffness matrix-this is defined by:

NE

[ K ]  = E [ K e i ] Equation 8 . 3 3

i=l

where NE is the number of elements,

[ K e j ] is the individual element stiffness matrices

{u} = Nodal displacement vector 

{du/dt} = Nodal velocity vector 

{d-u/dt2} = Nodal acceleration vector

The dynamic analysis is applicable to any and all non-linearities, and uses a direct time 

integration scheme to solve for the unknown displacements at a given time point for
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transient analysis (ANSYS). The Newmark integration method is employed in the

finite element method , which consider the following :

1. The displacement vector (un) is a function of previous and current displacements, 

velocities and accelerations.

2. The solution of a linear system will never diverge, no matter how large the 

integration time step (At) is. At is defined as the difference between successive time- 

points, i.e. ,

At — tn - tn_i

Chapter 8

Using the equation of motion from equation 8.30 :

F{t} = [M] {d2u/dt2} + [C] {du/dt} + [K] {u}

For non-linearities, the Newmark equation can be solved iteratively at a single time 
point, so to provide any number of equilibrum iterations:

(ao [M] + a,[C] + [K,']{ Autl+I} = {Ft} - {Ft nr i}

+ [M] (ao({ut_At} - {ut'}) + a2{du/dtt.At} + a3{du2/dtt. At}) + [C](a, ({ut .At} - {W})

+ a4 {du/dtt. At} + a5 {du2 /dtt. At})

Where ao and a5 are functions of the time step size and Newmark integration 
parameters.

8.3. Summary

The finite element theory was presented, using a 2D element to describe the stages 

needed to deduce the stiffness matrix by a general approach. A simple diagram was 

used to illustrate the computer programming of the finite element method. In the next 

chapter, the theory of the interface element is covered.
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Chapter nine

Theory of contact elements

9.1. Introduction

In the previous chapter, the theory of finite element was presented. This chapter 

discusses, the use of the contact element in finite element modelling of interfaces of the 

type arising with crack type defects. In the research, use of contact elements is 

investigated as a means of achieving more realistic simulations for cases with planner 

defects. The theory that governs this element is presented and its application. Two types 

of contact elements are reported.

9.2. Theory

Use of the interface elements allows a 'no-tension' regime with compression-shear 

contact forces developing on crack closure. The contact element shown in figure 9.1 is 

used as an example to show this characteristic. Figure 9.2 illustrates the contact force 

components fn  ̂ the normal force across the gap and fs the sticking force across the 

gap. In the force-displacement graphs, kn and ks are the normal and sticking stiffness,

respectively. In the analysis, the stiffness contribution of the interface element in the 

closed-friction state is given by equation 9.1. The numbers 1 to 6 in equation 9.1 and

9.2. refer to the degrees of freedom illustrated in figure 9.3.

Q

Ó

Figure 9.1: Contact element
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Normal Tangential (sliding)

Figure 9.2: Force-deflection relationship for a contact element

Equation 9.1

For the closed-sliding state, however, its contribution is reduced to:

Equation 9.2
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4

▼ l

Figure 9.3: Degrees of freedom for the interface element

9.3. Application of contact elements

Figure 9.4: Gap behaviour with and without use of contact element

Where planer cracks and delaminations occur in concrete, these give rise to a hollow 

sound, which is caused by the two surfaces hitting together. In finite element modelling, 

this situation needs to be modelled effectively. The contact element can be used to 

achieve this effect. It does this by acting as a secondary vibration, the interface element 

rebounding the stress waves. Without the use of this element in the analysis, the two 

surfaces can pass through each other, not a transmitting stress wave.
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The modeling of impact echo by finite element has been successfully implemented 

(Sansalone, Carino & Nelson, 1987; Sansalone & Carino, 1990; Lin, Sansalone & 

Carino, 1990; Cheng & Sansalone, 1991), however, these researchers have not 

considered the effect of a contact element. In reality, a crack can be a fraction of a mm 

in width. Use of the contact element is advantageous in this case, because such 

dimension can be modeled. More importantly, additional frequency features should be 

apparent for simulated defects in the finite element model of the impact echo system.

The contact element was employed to allow simulation of the two surface of a crack 

colliding. This is shown in figure 9.4. The interface shows two surfaces which can 

break physical contact. As discussed in the following sections, the contact element 

gives the possibility for compression in the direction normal to the surfaces, this makes 

it possible to model a delamination.

9.3.1. Calculation of stiffness

The calculation of the stiffness of the contact element is based on the stiffness of the 

surrounding solid material, which has been removed and replaced by the contact 

element. The stiffness is deduced by:

Stiffness = AE/L Equation 9.3

Where A is the surface area associated with a contact node,

E is the Young's modulus for the test solid,

L is the length of the contact element

When the contact element gap is closed, the element behaves like a solid material and, 

when the gap opens, the stiffness is reduced to represent the loss of stiffness.

The next sections describe two type of contact elements, which have been studied to 

observe the performances of their capabilities and any differences between them.

9.4. Contacl 2 element

Contacl2 is a 2D point to point contact element. It represents two surfaces which may 

break physical contact and may slide relative to each other. The element can support 

only compression in the direction normal to the surfaces and shear in the tangential 

direction. It has two degrees of freedom at each node which is translation in the x and y 

directions.
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J «

Figure 9.5 : Contacl2

As shown in figure 9.5, the element is presented by two nodes, an angle to define the 

interface, two stiffness (kn and ks), an initial displacement interference (gap).With the 

use of this interface element, the impact point is known which can be seen in figure 9.5.

9.5. Contac48 element

This element can be used to represent contact and sliding between two surfaces in two 

directions. It has two degrees of freedom at each node which are translations in x and y 

directions. Contact is apparent when the contact node penetrates the target line which 

acts like a billiard ball where the impact points is not know. This is the major difference 

between Contact 48 and Contactl2.

Figure 9.6 shows the geometry and node locations. The element geometry is a triangle 

with the base as a line connected by two nodes on one of the surfaces (target line). On 

the opposite surface, lies a node (contact surface). The line on the target surface is a 

target line, and the nodes at the ends of the target line are target nodes. The node on the 

contact surface is a contact node.
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It was decided to use Contact2 because it was quicker to run. Modeling of defects in 

the shear direction was not of interest to the author, which is the case with the Contac48 

element.

9.6. Summary

The theory and application of the contact element has been presented. They enable 

interface problems to be more correctly represented in impact echo systems having 

related defects. The two contact elements, Contacl2 and Contac48 have been presented, 

impact is pre-determined with the first element, whereas impact is not pre-determined 

with the other.

In the next chapter, the results of finite element cases, including the contribution of 

Contacl2, is presented.

Chapter 9
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Chapter ten

Modeling of impact echo systems

Chapter 10

10.1. Introduction

Chapters 8 and 9 give the theory of finite elements and the interface element 

respectively. This chapter illustrates the solution method for the transient impact 

response of bounded structures containing defects, and discusses the way this numerical 

method has been used to simulate the impact echo system. The modelling of the impact 

is shown, and the calculation of the size of element and Integration Time Step (ITS) 

explained. Finally, the results of the test cases are presented.

10.2. Modelling of impact echo systems

Figure 10.1: Simulation of the impact echo system using finite elements

Figure 10.1 shows the basic model of the impact echo system. The impact is generated 

by applying a pressure loading with a force-time history of a half-cycle sine curve over 

an element. Here, force can be used instead of pressure.

The waveform produced by the impact is a simulation of the impact echo response 

measured by a surface displacement transducer.
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10.2.1. Impact pulse

As discussed in chapter 2, the contact time or the duration of the impact in concrete is 

an important variable in impact echo testing (Pratt & Sansalone, 1991). This is because 

the contact time influences the frequency content of the stress pulse. Impacts with short 

contact time contain higher frequency (shorter wavelength) components which are 

needed when testing thin objects and detecting shallow flaws i.e. demanding high 

resolution.

As discussed, the impact of a spherical mass was simulated by applying a uniform 

pressure over an elements at the centre of the plate or a force at a specified node. The 

time history of the applied pressure was half a sin curve, made up of small individual 

pulses, as illustrated in figure 10.2. In fact, the more points used to define the Vi sine 

wave, the smoother the output response. Hence, an accurate result is obtained.

Figure 10.2: Simulating the impact time

The impact is represented by 30-25 points for the 1/2 sine wave. To enable the 

response to be examined after the end of the pulse, it is necessary to run the pulse on 

with zero force for a longer period of time. For example, if the total duration is 10240 

ps, 10215 ps is allowed to respond to this impact force, this is shown in figure 10.3. As 

output is provided at each load step, the number of the load steps corresponding to the 

'number of sampling points' from the force against time graph in figure 10.2. Equal time 

steps are used with the output, fed directly to the FFT analyser as discussed in chapters 

3 and 4.
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Response Time

Figure 10.3: Total impact of the finite element simulation

10.2.2. Determining element size

Node

(6.096 x I0'3m)

Element

n

0.25 Inches 
(6.096 x 10‘3m)

Figure 10.4: Size of element

For 0.25m to 0.5m thick plates subjected to a force-time function (simulated impact by 

steel sphere and contact time = 25-31 microseconds), rectangular elements with 

dimensions of the order of 0.02 times the plate thickness, give best results (Sansalone, 

Carino, Nelson, 1987). Thus:

Where:
Es = Element size

Es = 0.02 x d

d = Plate thickness

Equation 10.1
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To calculate element size for the model shown in figure 10.1 :

If d = Plate thickness = 0.3048m

Then Es = 0.02 x d  = 0.02 x 0.3048 = 6.096 x 1 O'3 m

The element size indicated above is the ideal dimension to use, which is shown in 

figure 10.4. However, to achieve an accurate result, requires thousands of elements. 

This is difficult to achieve with the computer resources available. As explained in 

chapter 1, processing time is subsequently very slow.

10.2.3. Solution time step solution

The accuracy of the solution is dependant on the time interval for the cycles of solution. 

This is referred to as the ITS, which is a function of problem dimension, element size, 

mass density and wave propagation characteristics (ANSYS, 1993). This is used in the 

finite element model, so that a smooth transient response representation of the impact is 

achieved. Hence, the ITS governs the accuracy of a transient solution. The smaller the 

ITS, the better the accuracy, but the larger the ITS, the faster the computer will finish 

the solution. It is vital to select an optimum ITS.

Methods have been proposed for estimating suitable ITS values (Sansalone, Carino, & 

Nelson, 1987; ANSYS, 1993). Calculation by two different methods is given in the 

following sections.

10.2.3.1. Method1(ITSm1)

Where the effects of the elastic wave at the micro level are to be analysed, the ITS must 

be small enough to resolve this wave. More elements along the direction of the wave 

will be necessary for the wave shape to be adequately represented. The ITS is estimated 

as (ANSYS, 1993):

Where :
ITSmi < Ax/3C Equation 10.2

Ax is the element size less than or equal to L/20

L is the structure dimension along direction of wave or wavelength of the 

excitation which ever is less
1 /9C is the elastic wave speed which is (E/p)

E is the elastic modulus

p is the mass density
136



Chapter 10

For the wall specimen in figure 10.1:

L = 12 x 25.4 x 10’ m (To convert from inches to metres)

Therefore : Ax = L/20=(12 x 25.4 x 10'3) / 20 = 0.01524m

E = 33100 x 106N/m2 
p = 2300 kg/m3

Therefore : (E/p)1/2 = (33100 x 106/2300)1/2 = 3793.587266 ms'1

Therefore : ITSm, = (0.01524/(3 x 3793.587266)) = 1.339 x 10'6 s

10.2.3.2. Method2(ITSm2)

The time step required for numerical stability, wave propagation applications require 

the use of very small time steps to obtain an accurate solution. Numerical stability 

requires that the time step ITS, meet the following criterion (Sansalone, Carino, & 

Nelson, 1987):

ITSm2 < ITSmax = L/Cp Equation 10.3

Where:

L is the Shortest dimension of element (m),

Cp is the P wave speed in material 

So it was advisable to use:

ITSm2 = 0.67ITSmax i.e ITSm2 < 0.67 L/Cp Equation 10.4 

To check the ITSmi value with this method:

So far in the analysis the dimensions of an element was 0.25 by 0.25 inches , so 

if L = Shortest dimension of element (m) = 0.25 x 25.4 x 10'3 = 6.35 x 10"Jm

Cp=P wave speed in material (m/s) = 11500ft/s = 11500x0.305=3507.5m/s

therefore

ITSmax = L/Cp =6.35 x 10'3/ 3507.5 = 1.810 x 10'6s 

ITSm2 = 0.67ITSmax = 0.67 x 1.810 x 10'6 = 1.213 x 10'6s
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Comparing this value with the calculated ITSmi value calculated in 10.2.3.1: 

ITSm2 = 0.67ITSmax = 1.213 x 10'6s

and

ITSmi = 1.339 x 10~6 s from previous section

hence these values satisfy both recommendations embodied in equations 10.2 and 10.4.

The ITS used in the finite element modelling was 1.34 x 10'6 s because of time 

limitations, smaller the ITS, the longer the model took to run.

10.2.4. Finite element mesh

When nodes are numbered and defined by their co-ordinates, elements need to be 

generated, this is called meshing, an example of the problem model based on figure 

10.1, is shown in figure 10.5. It shows the number of elements needed if the size of an 

element was 6.096 x 10'm, which was calculated from equation 10.1, this gives a total 

of 10,000 elements.

There are two types of modelling, one is done manually, this is shown in figure 10.5. 

The other is automatic, this shown in figures 10.9 and 10.15. These methods are 

discussed further in Appendix B.

200 ELEMENTS (1.2192m) 
A B

Fig 10.5 : Illustration of problem model (not drawn to Scale), point A is the impact
point and point B is the receiver point
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10.3. Test cases

The types of defects/non defects in concrete modelled were:

• 2D solid (Verifying Lin, Sansalone & Carino,1990)

• Voids using contact elements in 2D

• Voids without using contact element in 2D

• Multiple voids in 3D (a simulation of wall A of the Olson specimen wall, discussed 

in chapter 3 and 4).

The following sections describe the method of modelling each test case and presents the 

results, accordingly.

10.3.1. Axisymmetric model of impact echo system

The objective of Lin, Sansalone & Carino (1990) was to investigate the possibility of 

using the impact echo method for detecting voids in plates containing thin layers. These 

authors have modelled several finite element cases of plastics ducts with and without 

voids.

The author developed a finite element model to verify Lin et al results. Also, this served 

as a starting point to actually model a real life situation, hence gaining some useful 

experience. The plate is 0.3 m thick and 1.8 m in diameter, in the finite element model 

half of the plate diameter was used. A representation of a solid, defect free, model is 

shown in figure 10.6.

Figure 10.6: Axisymmetric model(no defects)
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In the analyses, a 2D, axisymmetric element was used. The impact of a spherical mass 

was simulated by applying a uniform pressure over one element (including the mid-

nodes of Plane82), Lin et al have used two elements. The response was measured five 

elements from the impact point. The advantage of using the element Plane82 with its 8 

nodes, means for every 1 element used by the researchers, Plane82 uses 4 elements, the 

other differences are shown on table 10.2. The impact was applied at the centre of the 

plate. The typical dimension of the quadrilateral elements used in the investigation was 

0.0075 m in both directions. This confirms equation 10.4 (size of element =0.02 x 

0.3=0.006), which can be used as an estimation of the dimension to use.

The generated strains are very low in impact echo testing (Pratt & Sansalone, 1991), the 

elastic properties shown in table 10.1 represent these values at low strain levels.

Material Density
(kg/m3)

Youngs
Modulus

(Pa)

Poisson’s
Ratio

Concrete 2300 33100 0.2

Table 10.1: Material properties for the axisymmetric model

Lin et al Authors
No constraints used Constraints used on the centre 

line
40 elements through the plate 

thickness, 120 elements 
through half of the plate 

diameter used, total elements = 
4800

21 elements through the plate 
thickness, 60 elements through 
half of the plate diameter used, 

total elements = 1260

Table 10.2: Comparing results

10.3.1.1. Results of axisymmetric model

The results for the defect free solid, model is illustrated below. It shows the authors 
results against Lin et al. The waveform is shown in time and frequency domain.
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Author Lin, Sansalone, & Carino, 1990

Figure 10.7: Waveform of defect free, solid in time domain

x 10'S

Author Lin, Sansalone, & Carino, 1990

Figures 10.8: Amplitude spectrum of defect free, solid in frequency domain
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Figure 10.7 shows the surface displacement waveform at a point located 0.0375 m from 

the impact point. As discussed in chapter 2, the waveform contains an initial large 

downward displacement produced by the arrival of the R-wave and displacement 

caused by the arrival of P waves which multiply between the top and bottom surface of 

the plate, as well as from the perimeter of the plate. Figure 10.8 illustrates the amplitude 

spectrum. It shows the three flexural modes labelled 1,2 and 3. The frequency peaks 

labelled 4 and 5 are the rod mode and P-wave thickness mode. These frequencies are 

compared against the corresponding depths for the author’s work and that of Tin et al.

The results of the author's verification of Tin et al result is presented in table 10.3. The 

results are over 90% in agreement, satisfactory, particularly considering that the author 

did not use as many elements as the Lin et al group did. Use of less elements would 

tend to make the author’s model stiffer, thus achieving slightly high frequencies, as 

found.

Lin et al 
Frequency

Lin et al 
Depth

Author
Frequency

Author
Depth

1= 2.8kHz 1=0.71m l=3.1kHz 1=0.65m
Solid 2=11.2kHz 2=0.18m 2=11.5kHz 2=0.17m
plate 3=19.5kHz 3=0.10m 3=21.5kHz 3=0.09m

4=8.4kHz 4=0.24m 4=9.2kHz 4=0.22m
5=6.7kHz 5=0.30m 5=6.2kHz 5=0.32m

Table 10.3: Comparison of Lin et al and author’s result for the defect free, solid

10.3.2. 2D defect model with contact element

Figure 10.9 shows the automatic mesh of the defect model which incorporates contact 

elements. Figure 10.10 shows a schematic illustration of the model developed to study 

the effect of using contact elements. As described in chapter 9, the defect modelled by 

the contact element is planer, with an initial gap of 0.1 mm. It has two nodes with 

stiffness’, in the normal and shear direction (kn and ks) relative to the gap direction. The 

area where the contact element was implemented is shown in figure 10.10. The material 

properties used for both elements, are given in tables 10.4 and 10.5. The details of the 

model are:

• Total number of elements = 250

• Total number of contact elements = 8

• Element type = Plane 82

• Interface element used =Contacl2
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• Force used to generate the impact

• Impact time = 30 |is

• Total duration = 10240 ps

• Distance of impact and receiver = 0.01852 m

The model was run with the contact element, with results presented in time-frequency 

domain, as shown in figures 10.11 and 10.12. It was run again, without the contact 

element, to the same dimensions described in figure 10.10. The results are presented in 

the time and frequency domain, as shown in figures 10.13 and 10.14.

lmm

Figure 10.9: Mesh of the model with contact element

0.3 m

1.0 m

0.3 m

8 contact elements applied here

0.15 m 

0.15 m

Figure 10.10: Modelling with the contact element

Material Density
(t/m3)

Young’s
Modulus

kN/m2

Poisson’s
Ratio

Concrete 2.3 3.31xl07 0.2
Table 10.4: Material properties for Plane 82

Kn (kN/m) Ks (kN/m) g(m )
t (initial 

status 
open 

crack)

Mu
(coulomb
friction)

8.275 x 10h 8.275 x 105 0.0001 3 0.1
Table 10.5: Material properties for Contacl2
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10.3.2.1. Results of 2D model with & without contact element

The results of with and without contact element is presented below.

x 1 0 '3

0 . 0 0 0 1 m  

(Initial gap)

Figure 10.11: Waveform of model with contact element in time domain

Figure 10.12: Amplitude spectrum of model with contact element in frequency domain
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x 10 '°

Figure 10.13: Waveform of model without contact element in time domain

Frequency (Hz)

Figure 10.14: Amplitude spectrum of model without contact element in frequency
domain
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The results for with and without contact element, shown in figures 10.11 to 10.14 are 

similar, but the difference is that results of figure 10.11 and 10.12 show two cantilevers 

hitting each other occasionally, while the result of figure 10.13 and 10.14 show two 

cantilevers passing through each other.

The defect with 0.15m depth gives a predicted frequency of 13.33 kHz. This is 

indicated in both graphs where it is 13.23 kHz. However, for a depth of 0.3m, the 

predicted thickness frequency is 6.67 kHz, the amplitude graph with the contact 

element shows a dominate peak of about 5.89 kHz. This suggest, that the signal has 

actually passed through the contact element to reach the bottom of the plate, and return 

back to the top surface. So the two surfaces of the defect were in contact during the 

compression force. The amplitude graph without the contact element does not clearly 

show a peak in that region, this suggest the opposite i.e. the two surfaces of the defect 

were not in contact during compression force, confirming the effect achieved without 

contact elements discussed in section 9.3 of Chapter 9.

In fact, the model with the interface element is more realistic as expected. Indeed, the 

response with the contact element is more complex with additional peaks compared 

with the model without contact element. These are shown in figures 10.11 and 10.13. It 

can be seen that after the ‘gap’ of 0.0001 m, there are peaks. These additional peaks 

could be due to the effects of the surfaces of the defect colliding, the peaks between 

± 0.001m maybe the displacements of each surface of the defect after collision. Also, it 

is nosier than the model without the contact element.

The amplitude graph of figure 10.12 show pronounced peaks before the 5 kHz, which 

suggest perhaps a beat phenomena where the collision of the two sides of the defect 

have a pronounced lower frequency feature. However, the amplitude spectrum of the 

model without contact elements does not show many peaks before the 5 kHz.

10.3.3. 3D model of Wall A (Olson specimen wall)

The 3D model is the simulation of wall A of the Olson specimen wall, which has been 

described in chapter 3. A finite element mesh of the wall and a systematic drawing is 

shown in figures 10.15 and 10.16.
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Figure 10.15: Mesh of 3D model

Figure 10.16: 3D model with nominal dimension (not drawn to scale)
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The material properties used in the modelling are presented on table 10.6. The details 

for this model are:

• Number of elements = 610

• Impact time = 25 ps

• Total impact time = 10240 ps

• Force use as impact

• Distance of impact and receiver = 0.0875 m

Material Poisson’s
Ratio

Density
(kN/m3)

Young’s
Modulus
(kN/m2)

Concrete 0.18000 2.3000 0.26000 x 10s

Table 10.6: Material properties 3D model

10.3.3.1. Results of 3D model of Wall A

The results for the 3D model of wall A is shown in figures 10.17 and 10.18 along with 

the practical results. They are presented in time and frequency domain.

The main difference between the finite element and physical results is noise. This, and 

effects of other voids in the vicinity, has made the impact echo response of the physical 

test more complicated. The finite element results show lower frequencies and a 

maximum frequency of about 15 kHz. This means the mesh of the model needs to be 

even finer, but as discussed in chapter one, the processing time is extremely slow. Also, 

with the 3D model, the processing time will be even longer than a week to run and 

obtain a solution. As explained in sections 10.2.3 and 10.2.4, the size of the element is 

significant, the more elements used the greater the accuracy.

For a defect of 0.1016m depth, the frequency of interest is 17.261 kHz and for a depth 

plane of 0.3048 m, the thickness frequency is 5.754 kHz. In figure 10.18, the finite 

element result shows a peak about 11 kHz but does not show a dominant peak for the 

thickness frequency. In this finite element modelling, contact elements have not been 

used. Use of the contact elements demonstrated in section 10.3.2.1, would improve the 

accuracy of the thickness and defect frequency of the finite element model to the 

experimental results. Considering time and resource limitations, the detailed modelling 

of 3D impact echo systems is beyond the scope of this research. For this reason, 2D 

models have formed the main basis of the author’s work as stated in section 1.3.1.

148



A
m

pl
it

ud
e

Chapter 10

Figure 10.17: Waveform of 3D model in time domain

Figure 10.18: Amplitude spectrum of 3D model in frequency domain
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10.4. Summary

The significance of the ITS, impact time, size of element and meshing have been dealt 

with.

Finite element simulation to verify Lin et al results, has been presented and shown to be 

in agreement. Modelling with and without contact element has been shown. Although 

the results appeared to be similar, the result with contact element was shown to be more 

realistic. The modelling of wall A of Olson specimen wall has been illustrated, the 

results are most encouraging, however, the resources needed for worthwhile 3D 

modelling are beyond the scope of this research.

Whilst the finite element approach leads inevitably to idealisation of material 

components and their defects, its is clearly a rapid and low cost way of obtaining a 

broad range of training data. The absence of noise is the main difference between this 

theoretical data and that derived from physical test on concrete. Use of the contact 

element causes such noise, the two sides of a defect then able to interact, rather than 

unrealistically pass through each other.
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Chapter eleven

Conclusions

11.1. Introduction

In this chapter, achievement against the objectives stated in chapter 1 is discussed with 

recommendations for future work. For convenience, the individual objectives are 

repeated here, prefacing the corresponding conclusions.

11.2. Discussion

Conduct impact echo experiments to provide valid data for analysis.

This objective has been successfully achieved. The author was able to use the impact 

echo device, tested on 15 locations of experimental walls, and obtain valid data for the 

neural network study. For each location there were 15 sets of raw data, which were 

gathered in the time domain. Although it was possible to interpret the response of the 

impact in this form, it was convenient to understand the graph in the frequency domain, 

as discussed in section 2.3.4 of chapter 2. Hence, the FFT processing was carried out on 

all the raw data to achieve this, giving a total of 225 FFT graphs.

To understand the graphs, the predicted frequency was deduced for each defect depth, 

and depth of wall, using T = Cp / 2 fp, where T is the depth, Cp is the stress wave 

velocity in concrete, and fp is the frequency corresponding to the stress wave velocity. 

The theory is discussed in section 2.3.2 of Chapter 2. Defect depth information was 

provided by Olson Engineering, who produced the test walls. This was used to predict 

the significant frequency for each FFT graph. The repeatability of the impact echo 

device was examined and discussed in 4.5 of chapter 4. The FFT graphs for each 

location was found to be different from one graph to the next. The variation in these 

graphs was investigated, and the standard deviation was calculated for each location. It 

was found that generally the standard deviation was less than one, this is shown in table 

4.2 of Chapter 4. Another factor considered was the stress wave velocity variation. 

Because the stress wave velocity in concrete will tend to vary over an individual wall. It 

was assumed that there would be ± 2% fluctuation of this velocity. However, it was 

found the range of frequencies interpreted from the FFT graphs were close to
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frequencies with the ± 2% stress wave velocity variation. So this variation did not affect 

the impact echo data. The frequencies interpreted from the impact echo experiment is 

shown, against the frequencies with the variation of stress wave velocity on table 4.1 of 

Chapter 4. The main findings is that the impact echo data is deemed to be sufficiently 

reliable for the purposes on training a neural network.

Establish a suitable artificial neural network for data analysis giving defect prediction. 

A suitable neural network for the data analysis was established, following consideration 

of the neural networks, algorithms and transfer functions. The author studied the main 

neural networks and concluded that the back propagation network was appropriate to 

use. This is the most widely used and well established neural network. As discussed in 

chapter 5, the back propagation network architecture is suitable for the impact echo 

application and is good at generalisation. So, if several different input vectors are 

presented to the network, which corresponds to the same class, the back propagation 

network will learn to key off significant similarities in the input pattern, unwanted data 

will be ignored. This is most appropriate in the impact echo application, where there are 

two important frequencies present in the transient waveform of the impact echo data. 

These significant features are:

• A dominant frequency relating to the reflection off the bottom surface of the test 

object (thickness frequency).

• A dominant frequency corresponding to the reflection off the defect surface within 

the test object.

A typical FFT graph shown in Chapter 4, shows other frequencies which are of no 

interest, by using the back propagation network, these unwanted frequencies are 

neglected and the two significant features are known to the neural network.

Use the impact echo data to train and verify the neural network approach.

This objective was accomplished, with impact echo data used to train the back 

propagation network, but not so straight forward as expected. It was found that the 

available total data of 225 sets was in fact not enough to train the network. With 75 

inputs to the neural network, an estimated 3600 data sets was needed in order to avoid 

over-fitting. Indeed, the network is more likely to repeat patterns that it has learnt if 

adequate data sets is not presented. This meant that more data had to be created to 

supplement the experimental data obtained from Olson Engineering in the U.S.A.
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It was decided to create additional data from the existing data, by adding noise to it. 

This had been tried by other authors whom were successful in their objectives. There 

were two possibilities for achieving this, to write a simple C program to generate data, 

or review available software. Labview, which provides icon based programming, was 

used.

A study was made to decide on a level of standard deviation with added noise, so as not 

to alter the actual data too much, whilst still serving its purpose. This study is illustrated 

in section 7.10.2.1.2 of Chapter 7. Creating this data for use with the neural network 

was a long process, in which involved first adding noise to each set of data. Then the 

FFT processing was done.

The remaining data was interpolated, which consequently reduced the data. The 

function of the interpolation was that dominant peaks showed and smaller peaks 

diminished. However, to find the optimum number of data points to use, needed 

investigation. This is discussed in section 7.10.2.1.4 of Chapter 7.

It was observed, that there were some unwanted frequencies which could be eliminated, 

this would also reduce the data again, so these unwanted frequencies were filtered out.

Finally, the remaining data was accumulated. For each stage, processing was repeated 

225 times. The accumulated data for neural network had to be edited into a format that 

the neural network could understand, this is discussed in Appendix A. Each data set 

was labelled so that the author knew the origin of its test case. The equivalent predicted 

frequency related to its depth of interest was taken as the output, the accumulated data 

was taken as the input, and the number of hidden nodes to use for the neural network 

analysis, was calculated based on the input and output nodes, this is discussed in 

Chapter 7. This processing had to be repeated many times until the author was satisfied 

with the number of data sets for the training of the neural network. The statistics of 

training and testing data are shown on table 11.1.

Table 11.1 shows the original statistics data set for the training and testing(out of the 

225 data sets, 19 sets were lost due to author’s error). The statistics of the total number 

of data sets after adding noise is shown in the next column. The were some "bad’ data 

in the sets which were of no use. This was pointed out by Olson Engineering when the
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responses of the impact echo device was examined. This is where the FFT graphs show 

no significant peaks, so these were taken out.
Original 

Data set

Total number of 

data sets after 

addition of noise

Total number of data 

sets after eliminating 

‘bad’ data

Training data set 194 3833 3698

Testing data set 12 163 160

Table 11.1: Statistics of neural network training and testing data sets

Optimise the neural netw’orkperformance.

This objective to optimise the neural network performance was met. The results of the 

neural network, after addition of more data was observed. It showed that in some cases, 

particularly for void defects, the result delivered by the neural network after testing 

were better than 90% accurate, but in other cases, the neural network produced about 

50% accuracy. Figure 7.21 of Chapter 7 shows the neural network results. It was then 

decided to investigate whether it was possible to improve the results.

A selection of data from the original training data was taken, because the original 

training data file was too large to use. The neural network was trained and tested on the 

training data. The author expected to observe about 1% error difference between the 

predicted frequency given to the neural network to learn from and the frequency given 

by the neural network after testing. This would mean that the network had learnt well. 

Unfortunately, this was not the case, and there was a considerable amount of difference, 

this is shown in figure 7.19 of Chapter 7. The most apparent factors to change, were the 

learning parameters(a), momentum(p), transfer function type, and the number of hidden 

nodes. An investigation to find the optimum parameters was carried out. It can be 

concluded that to achieve the optimum results with the impact echo experimental data, 

the parameters presented in table 11.2 must be adopted for neural network analysis. The 

results with these parameters are shown in figure 7.22 of Chapter 7.
Learning 
Parameter 
for hidden
nodes(a)

Learning 
parameter 
for output
nodes(a)

Momentum
ß

Number
of

hidden
nodes

Transfer 
function 
type for 

input 
nodes

Transfer 
function 
type for 
hidden 
nodes

Transfer 
function 
type for 
output 
nodes

Number
of

Iteration

0.4 0.15 0.89 61 Linear Sigmoid Sigmoid 50,000

Table 11.2: Optimum parameters for neural network training
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The importance of the learning rate, momentum, and the number of hidden nodes is 

discussed in chapter 7. When the optimum of these values were found, as shown in 

table 11.2, the transfer function for the hidden, and output layer was changed from the 

default values set by the neural network software to various transfer functions. This was 

done to see if, further improvements could be made. It was vital to address this, because 

when a summation value( the sum of the inputs x the weights) coming into a processing 

element is beyond the processing element’s function range, then that processing 

element becomes ‘saturated’. When this happens, the saturated processing element 

produces an error 0 i.e. no learning can occur. The different transfer function, with its 

function range, is discussed in chapter 5. As explained in chapter 7, the transfer 

functions TanH, Sigmoid and Linear were investigated to see which would deliver an 

improvement, the optimum values presented in table 11.2. Results with these transfer 

functions are presented in Appendix D.

Another important factor investigated is the number of iterations employed during 

neural network training. It was found that the optimum number of iteration was 50,000 

for the impact echo application. This was indicated by the root mean error (RMS), this 

shows a measure of the performance of a neural network training. It showed that after 

this number of iteration, the RMS stayed constant. The method of neural network 

training is explained in Appendix A.

Build a simulation o f the impact echo system using finite element modelling as a means 

o f achieving valid data sets.

Simulation of the impact echo system, using finite element modelling, was used 

successfully as a means of achieving additional valid data sets. A 2D, defect free, finite 

element model of the impact echo system was built and tested to verify work of Lin, 

Sansalone & Carino, 1990. The results are presented in table 10.3 of Chapter 10. This 

was over 90% in agreement.

A 3D finite element model based on wall A of the Olson specimens, was created and 

results obtained. The FFT graph from the impact echo experiment was about 18 kHz, 

which is close to the predicted frequency of 17.261 kHz. Results of the finite element 

model gave a frequency of 11 kHz. The reason for this difference is that the model 

needs to be meshed with more elements. As discussed in chapter 10, the calculated size 

of an element, based on wall A’s dimension, should be 6.096 x 10 'm by 6.096 x 10 'm,
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leading to a mesh with 10,000 elements. However, to run a model with this number of 

elements would be very slow. The size of element used to verify Lin, Sansalone, & 

Carino, 1990 study of the 2D model was 7.5 x 10"3m by 7.5 x 10'3m, which gave a 

mesh with 4800 elements(half of the plate was modelled). For this model, the author 

used an 8 noded element, which served as four elements to a one element from the 4 

noded element, giving a total of 1260 elements. This took about 2 Vi days to run and 

obtain a solution. The 3D model contained 610 elements, this took 3 Vi days to process.

Also, The distance between the impactor and receiver was large for the 3D model. A 

typical distance of the impactor, and receiver of the impact echo equipment is in the 

range of 50.8 to 76.2 x 10'm (2 to 3 inches). The distance for the verification of Lin, 

Sansalone, & Carino, 1990, was 37.5 x 10 'm, The distance between the impact and 

receiver for the 3D model was 87.5 x 10" m. This is a considerable difference. 

However, to decrease this distance means creating more elements, as discussed, using 

more elements would take longer to process. Another reason for the weak signal 

produced by the finite element model, is that the impact was applied near the boundary 

of the wall, giving the risk of unwanted boundary reflection. This is illustrated in 

Chapter 10.

Achieving this objective meant trying to find the right model which delivered a 

satisfactory result. Initially, the author built small models in order to understand the 

process. Subsequently, the models were built bigger, taking longer to run. For detailed 

3D models, the time implications were unacceptable for this study. Also, due to the 

time limit, finite element data was not used in the neural network training.

Use a contact element to model a defect interface and understand its possible 

contribution towards model accuracy.

This objective was achieved, using a contact element to model a planner separation of 

0.0001 m. A study was undertaken with and without this contact element in order to 

understand its contribution towards model accuracy. A model of 250 elements was 

designed and built with 8 contact elements. The results were noted, and the same model 

run again without the contact elements. The results of both of these models was 

compared, and it was observed that they were similar. However, the model with the 

contact element produced a nosier response, showing more peaks in the raw signal time 

domain than the model without contact elements. Figure 10.11 of chapter 10, shows
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that after the initial gap of 0.0001m there were peaks. This is the evidence that the two 

surfaces of the defect were in occasional contact, hitting and rebounding.

The displacement of this finite element case with the contact element, are in the range 

of ± 0.001m, which could be the effect of the collision of each surface of the defect. In 

the frequency domain, frequencies under 5 kHz indicate a beat phenomena where the 

collision of the two sides of defect have produced a lower frequency, this is shown 

figure 10.12 in Chapter 10. The thickness frequency is indicated by a dominant peak, 

proving that the defect interfaces have made contact, in order for the signal produced by 

the impact force to pass through it to reach the bottom and travel back to the top 

surface. However, this thickness frequency is not indicated in the finite element model 

without the contact element shown in figure 10.14. For realistic finite element models 

of impact echo system, contact elements should be used where adjacent surfaces are 

likely to meet during the impact echo process.

11.3. Hypothesis

Hypothesis 1: The interpretation o f impact echo data can be reliably implemented 

through the use o f a neural network.

Considering hypothesis 1: The impact echo method is a tool for helping the engineer in 

deciding to make appropriate decisions for an optimum repair strategy, as discussed in 

chapters 1 and 2. Henriksen, 1995, states that limitations in both the method of impact 

echo and user’s experience needs to considered for reliability. The application of the 

neural network to assist in interpretation is the intention of this research, and to 

provided analysis of large amounts of data in a fast and efficient way. By using neural 

network, the subjective judgement is eliminated, an important contribution. Table 11.3 

show the results of neural network analysis for the impact echo data.

Using the 3698 data set, stated in table 11.1, all data related for each test case(discussed 

further in chapter 3) were put together and the averages of the frequencies was 

computed. This is shown in table 11.3 under the neural network frequency column.

Considering these results, the neural network performance is generally over 80% 

accurate in most cases, when compared to the predicted frequency and depth under 

column 2 and 3. The test cases Wacll and Wdcle has the maximum error of 5.696 and
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5.056. This is because the impact echo test was conducted between two voids, which 

could have resulted in weak response. Hence hypothesis 1 has been successfully 

fulfilled.

( 1)
C a s e s

(2 )
P r e d ic te d

F r e q u e n c y
(k H z )

(b )

(3 )
D e p th  

o f  w a ll  
(m )

(4 )
f P I m p a c t  

E c h o
F r e q u e n c y

(k H z )

(5 )
D e p th  

c o r r e s p o n -
d in g  to  fP 

(m )

(6 )
N e u r a l

N e tw o r k
F r e q u e n c y

(k H z )

(7)
D e p th  

c o r r e s p o n -
d in g  to  
N e u r a l  

N e tw o r k  
f r e q u e n c y  

(m )

(8 )
D if fe r e n c e  

b e tw e e n  
p r e d ic te d  

a n d  n e u r a l  
n e tw o r k  

f r e q u e n c y  
(k H z )

Wav le 17.261 0.1016 18.23 0.0962 17.11 0.1025 0.151
Wav2e 17.261 0.1016 16.68 0.1051 14.55 0.1205 2.711
Wav3e 17.261 0.1016 8.92 0.1966 15.81 0.1109 1.451
Wav4e 17.261 0.1016 16.87 0.1040 15.78 0.1111 1.481
Wavl w 9.864 0.1778 9.99 0.1756 9.20 0.1906 0.664
Wav2w 17.261 0.1016 15.22 0.1152 16.64 0.1054 0.621
Wav3w 13.809 0.127 12.60 0.1392 13.30 0.1319 0.509
Wav4w 11.508 0.1524 12.31 0.1425 11.47 0.1529 0.038
Wacll 5.754 0.3048 3.68 0.4766 11.45 0.1532 5.696
Wacl2 5.754 0.3048 3.68 0.4766 7.24 0.2422 1.486
Wdv5e 17.261 0.1016 9.21 0.1904 17.00 0.1032 0.261
Wdv6e 17.261 0.1016 9.21 0.1904 17.10 0.1026 0.161
Wdv7e 17.261 0.1016 14.45 0.1214 15.64 0.1121 1.621
Wdv8e 17.261 0.1016 16.29 0.1077 14.99 0.1170 2.271
Wdcle 5.754 0.3048 5.91 0.2967 10.81 0.1622 5.056

Table 11.3: Averages of neural network analysis on impact echo data

The columns labelled 1 to 8 in Table 11.3 are:

1. test cases investigated.

2. predicted frequencies.

3. the actual depth of defects and non-defects corresponding to the predicted 

frequencies.

4. frequencies obtained with the impact echo experiment for defects and non-defects.

5. the corresponding depths to frequencies with the impact echo experiment.

6. neural network frequencies after training and testing the network

7. the corresponding depths to the neural network frequencies.

8. difference between the predicted frequency and neural network frequency.

Use of neural network analysis is appropriate for automatic interpretation of impact 

echo data, most usefully as user support, rather than a decision system.

Hypothesis 2: Finite element models, particularly incorporating contact elements, can 

provide a reliable means o f representing impact echo systems for such purposes as 

neural network training.

It has been shown in chapter 10, that, by implementing a contact element, a realistic 

representation of the impact echo system is possible. The results with the contact
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element, indicate that the two surfaces of the defect interface are colliding with each 

other during an impact force, which is the true characteristic of a real narrow crack type 

defect. The calculated predicted frequency based on the depth of the defect, was 13.33 

kHz, and the amplitude graph of the finite element model with the contact element has 

shown a frequency of 13.23 kHz. Also, the predicted thickness frequency was 6.67 

kHz, the finite element case with the contact element gave a frequency of 5.89 kHz. 

These results are over 85 % accurate.

The 3D finite element model representing a specimen wall tested by the impact echo 

equipment, discussed in Chapter 10 is about 60% accurate considering that the model 

had only 610 elements. As discussed previously, to improve this accuracy, more 

elements needs to created. Also, by implementing contact elements in the 3D finite 

element model will further enhance its accuracy. However, the time cost of such 

models, given current computing power, is likely to be prohibitive. Results of the finite 

element model with contact element are similar to the predicted results. The 3D finite 

element model(did not have contact elements) results has proved to be encouraging, so 

to conclude, hypothesis 2 has been proven.

11.4. Recommendations

Future improvements recommended:

1. Undertake experiment with other neural networks to improve results, for example, 

Kohonen or Radial Basis Function network.

The impact echo application so far has been considered to be a function 

approximation problem, so a back propagation was selected to train and test the 

network. Further improvements need to be investigated, that is, re-consider the 

application and test Kohonen and Radial Basis Function neural networks.

2. Investigate use o f the Struttgart Neural Network software. This has the validation 

process incorporated, allowing determination o f the correct combination o f network 

parameters to obtain optimum results.

This neural network software was designed by researchers at Struttgart University. 

Efforts were made to use this neural network software, the main obstacle was that it 

only ran under UNIX, which was not convenient for the author. Also, the Fifth 

Annual Neural Networks Summer School, 1995 has recommended to use the neural 

network software by Struttgart University.
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3. Use super computers or a well equipped computer to run finite element models with 

fine element meshes to improve accuracy, and create more data for neural network 

training.

As shown, the ideal size of element would be 6.096 x 10" m by 6.096 x 10" m for 

wall A. This requires 10,000 elements to build a finite element model. If this 

number of elements is difficult to achieve, then a % of the wall is suggested to build 

and test. This would take less longer to process, but attention to the size of element 

and distance between the impact and receiver must be considered.

4. Investigate a range o f defect model with the impact echo system to improve the 

neural network performance

To take advantage of the reliability of the neural network analysis, a variety of 

impact echo data would deliver a comprehensive training data set. Indeed, the more 

varied data presented to the network, the better the training and performance. This is 

the only way to prevent the network from learning unique characteristics of the 

training set, by providing it with plenty of different examples, so it cannot possibly 

learn all their idiosyncrasies.

5. Adopt larger physical test specimens with single defects for impact echo 

investigations

In the impact echo testing, the response of a defect has shown to be weak, with 

other voids and boundaries affecting the signal returning to the surface. A 

recommendation to build larger specimens with single defects and thus achieve 

more distinct signals is suggested.

6. Adopt irregular void models that represent more realistically real defects

Planner voids have been modelled in this research. A realistic void, in terms of 

dimension and angle needs to be considered. In reality, no void will be a perfectly 

square or circular, for example. It will be irregular and positioned in a complicated 

way. A similar approach should be taken when building specimens for experimental 

use with the impact echo equipment.
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Neural network method

Appendix A

A.1. Introduction

This appendix illustrates the technique of the neural network method on the data 

obtained by the impact echo (see appendix C). An example of neural network analysis 

using the back propagation network is presented.

A.2. Neural network professional ll/plus

Artificial neural networks have been recognised as powerful and economical tools for 

solving a large variety of problems in a number of engineering disciplines. There are a 

number of commercial software and hardware available. The software employed for 

this research is the DOS version of NeuralWorks Professional Il/PLUS created by 

Neural Ware.

A2.1. Format of input data/output data

The input data can be presented from the following way :

•  Keyboard

• An ASCII or binary file

• User-written program

A2.1.1. ASCII file format
For this research, data was presented from an ASCII file format. An ASCII input data 

files contain data in row and column format. Each row contains the inputs and desired 

outputs (optional) for one example. So, if there were 4 inputs, and 3 possible outputs, 

then, there would be 7 numbers for each logical row. Each number would be separated 

from the others with at least one space or a comma.

A logical row can have many physical rows. The continuation character is the 

ampersand (&) and must begin in column l of the continuation line. Also, ASCII data 

files can have comments. A comment line starts with an exclamation mark (!). This can
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be added at the end of a line as well at the beginning. An example of this is shown 

below in figure A1 below.

! This is an example of a comment line

0.4 0.3 0.5 0.4 ¡This is a comment for a 4 field record

0.7 0.1 0.9 ¡This is part of an input with a comment

&0.8 land here is the continuation line

Figure Al : An example of an ASCII data file

A2.1.2. Files
The important files with the following extensions which are most frequently used are :

• ASCII input data files have an extension .nna

• The .nnd extension is assumed for all network types (this is saved as in binary form 

as this takes least amount of room, and contain all the information required to 

recreate a network)

• Result files have an .nnr extension

A.3. Example program

An example of flower classification has been used to demonstrate the use of the neural 

network software. The objective is to classify iris species into three categories which 

are:

• Setosa

• Versicolor

• Virginica

These are the three possible desired outputs for the network, which would be 

represented by 0 or 1. If the iris is a Versicolor, the desired outputs presented to the 

network would be 0 1 0, for example. The criteria the network uses for classifying the 

species are based on the length and width of the sepals and petals. These are the four 

inputs to the network and they will appear as four analogue numbers.

The data for the flower classification back propagation network has been divided into a 

training data set, which will be used for learning, and a test set which will be used to

test the data to see how well it has learnt the data.
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The neural network software is started by being in nw2v504 working directory e.g. 

c:\nw2v504, and then typing nw2x from MS-DOS, or it can be entered from windows.

A.4. Building the back propagation network

The back propagation network is created by selecting :

• InstaNet menu

• The Back Propgation command 

This is shown in figure A2

Next appears the Back Propagation dialogue box shown in figure below, this gives a 

complete tool kit for building back propagation networks. For the following values for 

the number of processing elements in each layer in the relevant text entry boxes must be 

filled for example :

Figure A2: Selection of a network

4 Input

Hid3

0 Hid

0 Hid3

3 Output
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Also, select the following :

• Delta rule

• Sigmoid transfer function

• File for learning and testing which is Iris tra.nna and Iristes.nna

• Deselect the Bipolar inputs

• Leave all other values as default

• This is shown in figure A3

Once this has been completed, the instrument menu for the back propagation command 

will appear as shown in figure A4.

This instrument plots the RMS error of the output layer. It is the root mean square error 

which adds up the squares of the errors for each processing element in the output layer, 

divides by the number of processing element in the output layer to get an average, the 

square root of that average is taken.
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The RMS is very useful and gives an indication of the performance of a network 

during training. As learning progresses , the graph for this network usually converges to 

an error near zero. NeuralWorks builds a back propagation network which will look as 

below in figure A5. Considering the figure in A5, the input layer is at the bottom of the 

screen, the output layer is at the top, and the hidden layer is between the input and 

output layers. The layers named along the right hand side of the network.

Each box in a layer is a processing element. Its colour, size and fill of the processing 

element show their output values. These can be set through the Utilities/Display Style 

command. Also, the dotted line and solid lines between processing elements are the 

connections. The line whether it is solid, dotted, and the colour is an indication of a 

connection’s strength.

A.5. Input and output parameters
The Parameters dialogue box contains all the parameters that affect the input files. This 

can be seen in the figure A6, which is found through the I/O menu. The parameters can 

be viewed by selecting the Parameters command in the I/O menu. Under the Team 

Source (labelled Lrn), in the upper left hand corner of the dialogue box, the File Rand, 

radio button is selected.
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NeuralWare claim that by selecting File Rand, option which tells NeuralWorks that the 

examples will be presented to the network in a random way, random presentation of 

training data helps the network to prevent local minimum. The binary Load to RAM 

check box for Lrn must be deselected (this is the option that converts the input fde to a 

binary file). Also, under the Rcl/Test heading, in the upper left of the dialogue box, the 

File seq. radio button must be selected.

Selection of the training file must appear under the Learn heading on the right side of 

the dialogue box. The default extension is nna. Also, the selected test file must appear 

under Rcl/Test heading on the right side of the dialogue box. The default extension is 

again nna.

The radio buttons Input and Desired O/P under the heading Result File is selected. This 

ensures that the result file will have the desired values in the input file along with the 

new values obtained by the network. This makes it easier to compare and see the error 

differences. Also, when using an ASCII recall file, the network output will be written to 

an ASCII results file with the same name as the Rcl/test file, but with an extension of 

nnr.

These selections are recorded by selecting OK on the Record dialogue box.

Figure A6: Input and output parameters

A5.1. Min/max tables

Raw values can not be presented to the network, the back propagation network uses 

sigmoid or hyperbolic transfer functions which respond in a linear fashion to 

summation between about -2 to +2 . If a user presents a back propagation network with 

input values such as 10,000, even with small weights in the network, the summation 

will be huge and the sigmoid will become saturated.
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When this happens, the derivative of the sigmoid or hyperbolic tangent is close to zero 

at large (positive or negative) summation values, and because the derivative is a 

multiplier in the weight update equation, learning stops for processing elements with 

big summation values.

Figure A7: Selecting the layer/LRS tool

This problem is overcome by the NeuralWorks software by using a pre-processing 

facility which computes the lows and highs of each data field for all the input data files 

to be used with a given network. These lows and highs are stored in a table called a 

MinMax table.

When the MinMax table check box was selected along with the Delta rule for this 

particular problem shown in figure A3, NeuralWorks automatically created a minmax 

table from the data files set the network input and output ranges accordingly, for 

example in figure A3. The Network Ranges is shown in this figure, according to the 

NeuralWorks, the selection of Network Ranges is directly connected :

• The number of inputs

• The type of transfer function in operation

• The initial weight values in the network

Indeed, the basic idea is to find a range that gives summation which will not initially 

saturate the transfer function. The pre-processing facility can be found without the Back 

Propagation command through two dialogue boxes :

• The I/O/Parameters dialogue box to set network ranges.

• The I/O/MinMax tables dialogue box to build and edit MinMax tables.

A.6. Changing learning parameters and momentum

It is important to remember that different learning coefficients for each layer in a multi-

layer network can improve the learning time considerably. So far the default values 

have been taken along with the learning rates and momentum terms for each of the 

layers.
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This is done by using the tool palette to build new schedules assigned to the output and 

hidden layers. To create a schedule for the output layer the object palette on the left is 

clicked and held. This is shown in figure A7

From this menu, the TRS tool is selected. A message will prompt the user to click on 

the layer that will be linked with the L/R Schedule. Changes can be made to the L/R 

Schedule dialogue by clicking on any processing element in the output. This is shown 

in figure A8.

From figure A8, out is the name assigned to this schedule. In column one the learn 

count is 10000, this means that the Coefficients in column one will be valid until the 

Learn Count increases beyond 10000. Column 2 shows that it is 30000, this means that 

when the learn count is greater than the value specified in column one, but not greater 

than the count in column two, the coefficients in column two will be used. This 

technique also applies to the changes to Momentum and Learning Rate.

out
Learn Count

ggl temperature 
Learn i ng Rate

CLEAR
: ;; , ,

E r r , T o 3 nee
3kief#îeîëïit 4

On Disk:
adal me
backprop
boltzman

10006 
0.00000 
0.15000 

.40000 

.10000 
0.00000 
0.00000 
St00000 
0.00000 
0.00000 
0.00000

30000 
0.00000 
0.07500 
0.20000 
0.10000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.0K; M

70000 
0.00000 
0.01875 
0.05000 
0.18000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000

150000
0.00000
0.00117
0.00312
0.10000
0.00000
0.00000
0.00000
0.00000
0.00000
8.00000

310000 
0.000001 
0.000081 
0.000011 
0.100001 
0.000001 
0.000001 
0,080001 
0.00000J 
0 . 00000) 
0.000001

Figure A8: The LRS tool dialogue box

A.7. Training the network

To start the training Learn is selected from the Run menu. For from the radio button is 

highlighted, then a figure of 50,000 is selected for iteration. This informs NeuralWorks 

to present 50,000 training examples to the network in the Learn mode. The training can 

be interrupted with the escape key. Figure A10 below, shows the network after it has 

been trained. A counter in the message box indicates the number of examples that have 

presented to the network.
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A.8. Testing the network

Figure Al 1 : Testing the network
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Now that the neural network is trained, it is ready to be tested , this is done by selecting 

the Test command from the Run menu, then clicking One Pass/All in the dialogue box. 

This is shown in figure A10. The software will now read the whole test file and present 

all the examples to the trained network. The number of examples given will be 

periodically shown in the message box. The desired outputs and the actual network 

results will be written to the result file.

A.9. Saving the network

The network can be saved in two ways :

• Save - This is used to save as to update a network file which is previously saved.

• Save as - This is used to initially save a network, or save the current version of the 
network to a new file.

The network is saved in binary format because it takes the least amount of room, and 

contains all the information needed to recreate that particular network. To save the 

network, the Save as is selected from the File menu as shown in figure A12.

Figure A12: Saving the network

A.10. Results

The results of this example is shown in table A.2, the first three columns are the actual 

data set by the user, and the last three columns are the results the neural network has 

achieved.

Actual Neural Network

l 0 0 0.971079 0.041252 -0.0119

0 1 0 -0.00839 0.988939 0.014991

0 0 1 0.000101 0.02864 0.968763

] 0 0 0.989782 0.013271 -0.00397

0 1 0 -0.01141 0.942758 0.06781

0 0 1 -0.00164 0.084684 0.914046

A10



Actual Neural Network

1 0 0 0.994701 -0.00281 0.005613
0 1 0 -0.00086 0.939724 0.057019
0 0 1 0.001091 -0.05469 1.051583
I 0 0 0.998421 -0.00149 0.001513
0 1 0 0.092834 1.032084 -0.10466
0 0 1 -0.00437 0.075363 0.926866
1 0 0 0.9891 0.016078 -0.00575
0 1 0 0 016086 0.882588 0.09395
0 0 1 0.006952 -0.0908 1.082713
1 0 0 1.002406 -0.00728 0.003309
0 1 0 -0.00083 0.930663 0.065463
0 0 1 -0.00366 0.067931 0.933707
1 0 0 1.01212 -0.0132 0.000556
0 1 0 -0.00998 0.900726 0.106769
0 0 1 -0.00028 -0.02864 1.027182
1 0 0 1.021731 -0.03966 0.016712
0 1 0 -0.01448 1.079745 -0.07141
0 0 1 0.004884 -0.05476 1.047802
1 0 0 0.996783 -0.00086 0.002282
0 1 0 0.018485 1.101882 -0.11756
0 0 1 0.004626 -0.03198 1.024319
1 0 0 1.012904 -0.02478 0.01025
0 1 0 0.008313 1,083525 -0.09231
0 0 1 -0.01612 0.360357 0.662949
1 0 0 0.997804 -0.00524 0.005241
0 1 0 -0.00463 1.078111 -0.07748
0 0 1 0.003321 -0.00238 0.996487
1 0 0 0.920628 0.099936 -0.01883
0 1 0 -0.01048 1.026066 -0.01958
0 0 1 -0.00758 0.252475 0.754813
1 0 0 0.952528 0.065964 -0.01685
0 1 0 -0.01564 1.062202 -0.05214
0 0 1 -0.00524 0.213682 0.789001
1 0 0 0.998639 -0.0026 0.00228
0 1 0 -0.01256 0.5951 19 0.419053
0 0 1 -0.00687 0.721476 0.282874
1 0 0 0.990862 0.010255 -0.00234
0 1 0 0.043362 1.104204 -0.13524
0 0 1 -0.01385 0.516514 0.500303
1 0 0 0.950913 0.060219 -0.01158
0 1 0 0.020975 1.100225 -0.11702
0 0 1 -0.0026 0.196634 0.801442
1 0 0 1.029562 -0.04778 0.017766
0 1 0 -0.00751 0.353696 0.653711
0 0 1 -0.01303 0.639155 0.376103
1 0 0 0.993882 0.007982 -0.00285
0 I 0 0.005414 0.864837 0.122388
0 0 1 0.001422 -0.0597 1.056324
1 0 0 1.022295 -0.03395 0.010786
0 1 0 -0.02774 0.998931 0.028656
0 0 1 -0.00219 0.180579 0.818028
1 0 0 0.994787 0.003461 0.000204
0 1 0 -0.00251 0.9711 0.028416
0 0 1 -0.00079 0.055089 0.942444
1 0 0 0.871473 0.196253 -0.04758
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0 1 0 -0.00697 0.944916 0.058266
0 0 1 0.001238 -0.00338 0.999227
1 0 0 0.945115 0.063573 -0.00989
0 1 0 0.063685 1.061741 -0.11044
0 0 1 0.004827 -0.07783 1.071469
] 0 0 0.962232 0.051651 -0.01327
0 1 0 0.024773 1.046638 -0.0711
0 0 1 0.00223 -0.04171 1.037213
1 0 0 1.001637 -0.00364 0.000798
0 1 0 -0.00742 1.062809 -0.05992
0 0 1 -0.00125 0.083794 0.914247
1 0 0 0.994474 0.005333 -0.00111
0 1 0 0.005749 1.017628 -0.02673
0 0 1 0.000509 0.171585 0.823581

Table A.2: Neural network results

A.11. Summary

The use of the Proff 11/Plus neural network software was demonstrated by a flower 

classification problem. Building a back propagation network with min/max tables has 

been shown. Learning and testing a network has been presented.
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Appendix B

FINITE ELEMENT ANALYSIS USING ANSYS

Preparation of data and Interpretation of results

B.1. Introduction

The purpose of this appendix is to illustrate the preparation of input for finite element 

analysis and illustrate the processing of the results following finite element analysis. In 

the former we have to consider the preparation of the mesh, and the means of 

representing the impact pulse. The purpose of the latter is to obtain a spectrum analysis 

of the reflected signal, the time-displacement response of the receiver node.

B.2. Finite element software

Figure Bl: Structure of ANSYS

In the finite element modelling, ANSYS was the software package used. The general 

structure of ANSYS is shown in figure Bl. The three main stages are the pre-

processing, the solution, and the post-processing stage. In the next section a simple 

example is used to illustrate the finite element package.
Bl
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82.1. Data input 

There are two ways to import the data and commands which are to either to use the 

interactive mode or the batch mode. Both methods must be entered at one stage. This is 

done by clicking on the 'Run Interactive Now' from the ANSYS menu in windows. 

Once the program has been entered, the layout is shown in figure B2. 

Figure B2: Layout of ANSYS 5.4 

The layout contains five main parts which are: 

• ANSYS/Mechanical Utility Menu 

• Input 

• Main menu 

• Graphics 

• Toolbox 

B2 
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B2.1.1. Interactive mode

The commands in the interactive mode are written in the ANSYS program by use of the 

mouse, or keyboard to go from one command in the menu bars to another. Each 

command entered is written to a default file(file.log), which can be specified.

B2.1.2. Batch mode

In the batch mode, a file in the format of the file.log is written in note pad or MS-DOS 

editor. The complete file can be resumed into the ANSYS program.

B.3. Example

Figure B3: Example model

O

K

7(0,0,0) 

4(0,0,1)

8(1,0,0) 9(2,0,0)
o ------------------------ 1

5 ( 1 , 0 , 1 ) .

H ---------------------<>

„ 6 ( 2 , 0 , 1 ) ^
I  f------------------------ *

I I  _______________ 1

w-------------------------i )

1________________ 1 1

Bottom layer

1 (0,0,2) 2( 1,0,2) 3(2,0,2)

16(0,1,0)

13(0,1,1)

17(1,1,0) 18(2,1,0)
1)-------------- i

, k 14(1,1,1).

>---------------o

„ 15(2,1,1)^

l = 3

w-------------- i l

1---------------II

Top layer

10(0, 1,2) 11( 1, 1,2) 12(2, 1,2)

Figure B4: Layers
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An example model of 2m x lm x lm shown in figure B3 (A). There are 4 elements, 

each having 8 nodes, as shown in figure B3 (B). These nodes must be defined in the 

order of I, J, K, L, M, N, O, and P. At each node there are 3 DOF, the translations Ux, 

Uy and Uz.

With the software, there are two types of modelling, solid and direct. Solid modelling is 

automatic generation, where the shape to be modelled is defined, the software building 

the model. The second method needs the user to build the model. In this example, direct 

modelling is used. For this method, it is ideal to plot the nodes and elements on paper 

making it clearer to visualise. Figure B4 shows the top and bottom layer with their 

nodes and co-ordinates.

B.4. Pre-processing

The pre-processing stage is called Prep7. At this stage of the program, the model is 

constructed. This begins with defining the element to be used in the modelling. Figure 

B5 shows solid 45, a 3D brick element selected from the library elements. Element type 

for this example is 1, which identifies the element type. Next, the material properties for 

concrete is chosen which is shown in figure B6. Once this is completed, the nodes need 

to be defined, referring to figure B4, node 7 is the first node defined with co-ordinates 

(0,0,0). This is shown in figure B7.

Figure B5: Defining the type of element
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Figure B6: Selection of the material properties

Figure B7: Defining nodes

This is repeated for node 9, then node 8 is created using the FILL command shown in 

figure B8.
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Figure B8: Filling between nodes

Figure B9: Picking nodes to copy

The three nodes can copied to create the bottom layer, this is done by ‘picking’ these 

nodes, shown in figure B9. Once the nodes are selected for copy, the NGEN command 

appears, this is shown in figure BIO. The bottom layer is now generated, this can be 

seen in figure B11.

Figure BIO: Copying nodes 
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Figure B11 : Building of bottom layer

To check that the nodes have been plotted with the correct co-ordinates, it is best to list 

all the nodes, this is accomplished by selecting NODE from the LIST menu under the 

mechanical utility menu. The list of these nodes are shown in figure B12.

L I S T  ALL SELECTED NODES.  DSYS= 0 
SORT TABLE ON NODE NODE NODE

NODE X V z THXV THVZ THZX
1 . 0 0 0 0 0 . 0 0 0 0 0 2 . 0 0 0 0 . 00 . 00 . 00
2 1 . 0 0 0 0 . 0 0 0 0 0 2 . 0 0 0 0 . 00 . 0 0 . 00
3 2 . 0 0 0 0 . 0 0 0 0 0 2 . 0 0 0 0 . 00 . 0 0 . 00

. 0 0 0 0 0 . 0 0 0 0 0 1 . 0 0 0 0 . 00 . 00 . 0 0
S 1 . 0 0 0 0 . 0 0 0 0 0 1 . 0 0 0 0 . 0 0 . 00 . 00
6 2 . 0 0 0 0 . 0 0 0 0 0 1 . 0 0 0 0 . 0 0 . 00 . 00
7 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 . 00 . 00
8 1 . 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 . 0 0 . 00
9 2 . 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 00 . 0 0 . 00

Figure B12: List of nodes created

The view in the graphics window can be changed by the PAN, ZOOM, ROTATE 

command under the PLOTCTRLS in the MECHANICAL UTILITY MENU. This is 

shown in figure B13.

Once the bottom layer is established, this can be copied again using the NGEN 

command. Then the elements can be created. The method for building nodes exactly the 

same, so to create the first elements, the nodes attached to this element need to defined. 

Referring to figure B3 and B4, the nodes for the first element is 4, 5, 8, 7, 13, 14, 17, 

and 16. The nodes need to ‘picked’ which is shown in figure B13. Once the nodes has 

been selected for the element specified, the element is created, this is shown in figure 

B14.

B7



Appendix B

Figure B13: Changing view and picking the elements

Figure B14: Creating an element

The element created can be copied to create the next element in it’s row using the 

EGEN command. This is shown in figure B15. The result of this is shown in figure 
B16.

B8
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Figure B15 : Copying elements

This can then be copied again by ‘picking’ the elements to be copied, and using the 

EGEN command. It is important to define the same material number under MINC 

which in this case is 0. This is the default value which would refer to the material 

number stated earlier under material properties. The final model is now built, this is 

shown in figure B17. Using the PAN, ZOOM, ROTATE command, the view of the 

model can be altered in several direction to see that the model is accurately produced.

Figure B16: Copy of 2nd element
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Figure B17: Copy of Remaining elements

Boundary conditions now need to be applied. The four nodes at the comers of the top 

and bottom of the model is selected by ‘pick’. The displacement in the x, y, and z is set 

to 0 from the menu shown in figure B18. Once this is selected, the constraints on the 

model are shown in figure B19.

Figure B18: Adding the constraints
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Figure B19: Model with constraints

The model is now complete, by selecting FINISH allows the user to return to the 

ANSYS MAIN MENU. Now the next stage need to be entered which is SOLUTION.

B.5. Solution

This stage defines the loading on the model and the type of analysis. The analysis is 

chosen to be transient which is appropriate for this case. Selection of this is shown in 

Figure B20.

Figure B20: Selection of transient analysis
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Figure B21: Selection of full transient analysis

There are several types of transient analysis available, in this example, a full transient 

analysis is selected. This is shown in figure B21.

The program is halted at this stage the procedures are all saved and program is exited. 

The file.log is open which has recorded all the commands entered. The commands of 

ANSYS 5.0 is added to the file and saved as a new file. This new file is then entered 

into ANSYS through the READ command from the MECHANICAL UTILITY 

MENU. This method is simpler and quicker, since the commands, TIME, FORCE, and 

LSWRITE have to be repeated 110 times. The program is now complete and ready to 

be solved, the force applied to the model is shown in figure B22.
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To solve the program, the SOLVE command is selected, and the LSWRITE files are 

selected from 1 to 110. This shown in figure B23. This will take about 30 minutes to 

complete. Then the results are ready to be examined. The results for node 15 will be 

investigated.

Figure B23: Selection of the files 

B.6. Post-processing

The post-processing stage consist of two options. The first part is called POST1 which 

allows the user to examine the results at a specified time, this is useful for static 

analysis. The second option is the POST26, which allows a time history of the results to 

be investigated. This option is most appropriate in this example.

Although, it is possible to plot results for the node specified, the displacement for node 

15 are not given at a constant time interval. So, a program is written in Fortran to 

provide this. This program is entered into ANSYS when the model is solved. A fresh 

start to ANSYS is made, the relevant data base file called file.db of the model is 

RESUMED. This file contains all the information about the nodes and elements only 

however. This is shown in figure B24

Figure B24 : Resuming the database file
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Next, the file to convert data at constant time interval is entered, this is done by using 

the READ command.

Once this is completed, the results for node 15 is given in a form which can be requires 

editing. A typical output file produced by ANSYS is shown below:

*** These column contains 1024 points of time increments of 10 microseconds ***
LOCATI ON VALUE

1 1 1  1 . 0 0 0 0 0 0 0 0 0 E - 0 5

2 1 1  2 . 0 0 0 0 0 0 0 0 0 E - 0 5

3 1 1  3 . 0 0 0 0 0 0 0 0 0 E - 0 5

4 1 1  4 . 0 0 0 0 0 0 0 0 0 E - 0 5

5 1 1  5 . 0 0 0 0 0 0 0 0 0 E - 0 5

1005  1

1006  1

1007 1

1008 1

to
1 1 . 0 0 5 0 0 0 0 0 0 E - 0 2

1 1 . 0 0 6 0 0 0 0 0 0 E - 0 2

1 1 . 0 0 7 0 0 0 0 0 0 E - 0 2

1 1 . 0 0 8 0 0 0 0 0 0 E - 0 2

*** These column contains 1024 displacement values for the corresponding time** *
1 2 1 5 . 8 6 5 0 7 0 2 8 6 E - 1 3

2 2 1 3 . 9 4 2 1 1 9 5 0 2 E - 1 2

3 2 1 9 . 9 8 7  9 6 722 9 E -12

to
1021 2 1 - 1 . 3 3 7 6 5 8 8 8 9 E - 1 1

1022 2 1 - 2 . 0 7 2 7 3 6 9 1 4 E - 1 1

1023 2 1 - 2 . 7 3 5 3 2 8 5 7 4 E - 1 1

1024 2 1 - 3 . 3 1 4 1 1 4 1 0 2 E - 1 1

The last column on the right are the time, displacement. This is edited using excel, so 

that single columns of time and displacement is obtained. The results are plotted which 

is shown in figure B25.

The displacement column is copied to a separate file and saved as a text file, so that 

FFT is processed in Matlab. The amplitude spectrum of this example is shown in the 

figure B26 below.
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Figure B25: Displacement vs Time

Frequency (Hz)

Figure B26: Amplitude vs Frequency
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B.7. Summary

An example of a 3D model has been used to show the operation of the ANSYS finite 

element program. At the pre-processing stage, nodes and elements are defined with the 

material properties for concrete. The boundary conditions, constraints and force are 

applied at the solution phase, and finally once the model is solved, the results are view 

under the post-processing stage.

There are two stages of data input in ANSYS, one is the interactive mode, the other the 

batch mode, where a program which has been created beforehand can be ‘read’ into the 

software. Both of these examples have been demonstrated in this appendix.
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FFT Method

Appendix C

C.1. Introduction

This appendix explains the process of FFT. It is a mathematical process which 

transform data from time domain to frequency domain. The FFT as discussed, has been 

used on the data received from the impact echo data and results from the impact echo 

simulation. A simple example to illustrate the method is shown below.

C.2. Theory

The method used to change an analogue signal x(t) into frequency domain is the fourier 

transform which is defined by :

F(t)) = 3o/2 + I
oo

( ancosncoT + bnsinncoT )
n = l

Where coj is 27t/T

ao =  2 /T 0 J F (t) dt

Equation C1

Equation C2

an = 2/T0 JF(t) dt cosncoj dt

where n = 1, 2,3, ....

bn = 2/T0 {F(t) dt sinncor dt

where n = 1, 2,3,....

Equation C3

Equation C4

A periodic time signal of period T can be represented by Fourier series in time of the 

form given by equation Cl with Fourier coefficients defined by equations C2 to C4. The 

Fourier coefficients represent frequency domain information about a given signal. Also, 

the Fourier coefficients an and bn given in equations C3 and C4 illustrate the connection 

between Fourier analysis and vibration experiments. The analogue output signals of a

Cl



Appendix C

transducer, x(t), are the inputs to the analyser (signal processor). The analyser calculates 

the spectral coefficients of these signals. The analogue to digital (A/D) converter 

processes the following :

• The analyser converts the analogue signals into digital records.

• It samples the signal x(t) at many different equally spaced values and a version of 

the signal in the form of a set of numbers (x(tk)}, where k = 1,2, ....N. N = Number 

of samples, and N = Discrete value of the time.

When the digital record of the signal is ready, the discrete version of the Fourier 

transform is processed. The digital Fourier transform is defined by :
N/2

Xk = x(tk) = ao/2 + (a; cos 2mtk / T + bj sin 2mtk / T ) 

where k=l,2,....N

Equation C5

The digital spectral coefficients which are the digital versions of equations C2, C3 and 

C4:

N

a o =  1/n X  Xk
k= 1

Equation C6

N

^  = 1/N X  Xk cos 2mk / N
k= 1

Equation C7

N

b, = 1 /N 2  Xk sin 27iik / N
k= 1 Equation C8

The function of the analyser is to calculate ao, a; and bj given the digital record x(tk) for 

the measured signals. The number of samples, N, is usually a set for a given analyser 

and is the power of two, such common sizes are 512 and 1024.

For each sample, writing out equations C6 to C8 results in N linear equations in the N

Fourier coefficients ( a o , ...... , a>j/2, b o , ....... , b N/2) which can be written in the form of

matrix equations. In matrix form they are:

x = C a Equation C9
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where x is the vector of samples with elements

a is the vector of Fourier coefficients (ao,aj and bft

C is the elements containing the coefficients cos and sin (27fit|/T)

It can be noted that x represents the digital version, the Fourier coefficients a represent 

the frequency content of the input signal. The solution of equation C9 for the Fourier 

coefficients is given by :

a = C 'x Equation CIO

The analyser is employed to compute the matrix C 1 and hence and coefficient a. The 

FFT is the most widely used method of computing the inverse of this matrix C. It was 

developed by Cooley & Tukey (1965).

C.3. Example of an amplitude spectrum

A waveform can be represented as a sum of sin and cos curves, each with an individual 

amplitude, frequency, and phase shift. This transformation is carried out using FFT. 

One important advantage of Fast Fourier series is that it can represent a function 

containing discontinuities, whereas other methods such as Maclaurin’s and Taylor’s 

series require the function to be continuous.

The FFT is a collective term for a number of efficient algorithms developed to compute 

the discrete fourier transform (DFT) and the inverse discrete fourier transform(IDFT) 

(Lockhart & Cheetham, 1989). The FFT technique can be used for spectral analysis, 

applied mechanics, acoustics, medical imaging, numerical analysis, instrumentation and 

telecommunications.

It has been shown that with the impact echo technique, interpretation of the recorded 

waveforms in the time domain, while being feasible was time consuming (Sansalone & 

Carino, 1986). This involved calculating the time between the start of the impact and 

the arrival of the first P wave reflection (refer to Chapter 3). It can be illustrated that 

data interpretation is much simpler in the frequency domain than in the time domain. If 

a digital time domain waveform function is :

g (t) = sin 27t(20)t + 2*sin 27i(40)t + 3*sin 27i(60)t Equation Cl 1

Where t is time in seconds
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It can be seen that this function is composed of three sin curves of different amplitudes 

with frequencies 20, 40, and 60 Hz. This function can be seen in figure C l.

(A)

Figure C l: Data in time domain

The function g(t) is composed of three sin curves of different amplitudes having 

frequencies of 20, 40, and 60 Hz. This can be seen in figure C2 of the frequency 

spectrum. The peaks occur at these particular frequencies and corresponds to one of the 

component sin curves in equation Cl 1. This spectrum was obtained from the digital 

time domain waveform using the FFT technique from Microsoft Excel. The FFT 

program for Matlab is included in Appendix F.

The graph of figure C1 has :

• Sampling points, Sp = 256

• Time interval between points or sampling period, T = 0.001 seconds

• Sampling frequency or sampling rate, Fs = 1 / T = 1/ 0.001 = 1000 Hz

(B)

Fre q ue ncy (Hz)

Figure C2: Data in frequency spectrum
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The frequency spectrum was calculated by the FFT technique. Hence the graph of figure 

C2 has :

• Maximum frequency in graph (B), Fmax(since frequency spectrum from FFT method 

contains half as many points as the time domain waveform) = 1/2 * Fs = 1/2 * 1000 

= 500 Hz

• Frequency interval = Fmax / 1/2* Sp (No. of points in the spectrum i.e 128) = 500 / 

128 = 3.9 Hz

C.4. Selecting a sampling rate

It is clear that the frequency interval is inversely proportional to the sampling rate, this 

means that a slower sampling rate enhances resolution in the frequency domain. 

However to avoid errors in frequency analysis:

To sample a signal properly, the sampling 
frequency must be at least twice as high as the 
highest frequency component in the signal

For example, if the sample rate is less than twice the highest frequency, this results in an 

inaccurate representation of the input. So, new frequencies are generated and added to 

the sampled signal. This phenomenon is called aliasing.

Aliasing can be avoided in signals containing many frequencies by providing anti-

aliasing filter. This only allows low frequencies through, and cuts off frequencies higher 

than about half the maximum frequency (nyquist frequency).

There is an important relationship between the sample rate and the frequency content. 

To illustrate this point we sample a signal that contains a single frequency.

Figure C3: Sampled frequency
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From figure C3 , the signal is very regular, it has a crest and trough. So, it is necessary 

to sample a sine wave twice during each cycle to capture the whole signal.

Another problem encountered in FFT analysis, is leakage. To ensure FFT analysis 

feasible, the periodic signal must be sampled over a finite time i.e. N must be finite. If 

the signal is to be finite, the signal could be cut off at any integral multiple of its period. 

Unfortunately, there is no simple solution to this because complicated signals 

containing many different frequencies. So the signal may be cut off at midpoint, this is 

leakage. This means erroneous frequencies appear in the FFT illustration, the digital 

fourier transform of the finite length signal assumes that the signal is periodic within the 

sample record length. Hence, the actual frequency will leak into a number of fictitious 

frequencies.

Leakage can be corrected more or less by the use of a window function. This involves 

multiplying the original analogue signal by a weighting function which alters the signal 

to zero outside the sampling period. Hamming window is a widely used function.

C.5. Summary

The theory of the FFT has been presented and an example of this method used 

demonstrated. The importance of sampling at the correct frequency and windowing 

effects have been explained.
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Neural Network Data

Appendix D

The neural network data with effect of adding noise is illustrated in the following 
section, the first few graphs show the data with a standard deviation of 0.02, then the 
remaining graphs show data with a standard deviation 0.025.

The investigations to find the optimum parameters discussed in Chapter 7 is included in 
this appendix.
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Figure D1: 1st set of noise added, training patterns = 396, test patterns = 34, hidden nodes = 20, standard deviation = 0.02

T G S t O d S G S  _ _ _ _ _  -Actual

-------------Neural Network
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------------ Neural Network

Figure D2: 2nd set of noise added, training patterns = 577, test patterns = 77, hidden nodes = 24, standard deviation = 0.02
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Figure D3: 3rd set of noise added, training patterns = 795, test patterns = 81, hidden nodes = 28, standard deviation = 0.025
D4

"Neural Network



Fr
eq

ue
nc

y 
(H

z)

Appendix D

....— ....... Neural Network

Figure D4: 4th set of noise added, training patterns =1015, test patterns = 86, hidden nodes = 32, standard deviation = 0.025
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Test Cases ........... Actual
............ ...- Neural Network

Figure D5: 5th set of noise added, training examples =1232, testing examples =91, hidden nodes = 35, standard deviation = 0.025
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------------ Neural Network

Figure D6: 6th set of noise added, training examples = 1453, testing examples = 94, hidden nodes = 38, standard deviation = 0.025
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Figure D7: 7th set of noise, training examples =1671, testing examples = 100, hidden nodes = 41, standard deviation =0.025
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Test Cases ......... .Actual
---------------Neural Network

Figure D8: 8th noise set of noise added, training examples =1892, testing examples = 104, hidden nodes = 43, standard deviation = 0.025
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Test Cases •Actual
-Neural Network

Figure D9: 9th set of noise added, training examples = 2111, testing examples =110, hidden nodes = 46, standard deviation = 0.025
DIO
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Test Cases

Figure Dll :  11th set of noise added, training examples = 2548, testing examples =121, hidden nodes = 50, standard deviation = 0.025

Actual
Neural Network
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Figure D12: 13th set of noise added, training patterns =2983, test patterns =134, hidden nodes =55, standard deviation = 0.025
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Test Cases :------ - -Actual
— ----- Neural Network

Figure D13 : 14th set of noise added, training patterns =3201, test patterns =141, hidden nodes =57, standard deviation = 0.025
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T G St Cases - - - - -  -Actual
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Figure D14: 15th set of noise added, training patterns = 3420, test patterns = 147, hidden nodes = 58, standard deviation = 0.025
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Test Cases - - - - - "Actual

---------------Neural Network

Figure D15: 16th set of noise added, training patterns = 3615, test patterns =156, hidden nodes =60, standard deviation = 0.025
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Figure D16: Momentum = 0.5, learning rate(hidden)=0.3, learning rate(output) = 0.15
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Neural Network

Figure D17: Momentum = 0.6, learning rate(hidden) = 0.25, learning rate(output) = 0.15
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Figure D18: Momentum = 0.7, learning rate(hidden) = 0.25, learning rate(output) = 0.15
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Figure D19: Momentum = 0.8, learning rate(hidden) = 0.25, learning rate(output) = 0.15
D20



Fr
eq

ue
nc

y(
H

z)

Appendix D
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Figure D20: Momentum = 0.9, learning rate(hidden) = 0.25, learning rate(output) = 0.15
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Figure 21: Momentum = 1.0, learning rate(hidden) = 0.25, learning rate(output) = 0.15
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Figure D22: Momentum = 0.85, learning rate(hidden) = 0.25, learning rate(output) = 0.15
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Figure D23: Momentum = 0.86, learning rate(hidden) = 0.25, learning rate(output) = 0.15
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Figure D24: Momentum = 0.87, learning rate(hidden) = 0.25, learning rate(output) = 0.15
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Figure D25: Momentum = 0.88, learning rate(hidden) = 0.25, learning rate(output) = 0.15
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Figure D27: Momentum = 0.89, learning rate = 0.25, learning rate(output) = 0.05
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Figure D28: Momentum = 0.89, learning rate(hidden) = 0.25, learning rate(output) = 0.1
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Figure D29: Momentum = 0.89, learning rate(hidden) = 0.25, learning rate(output) = 0.11
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Figure D30: Momentum = 0.89, learning rate(hidden) = 0.25, learning rate(output) = 0.2
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Figure D31: Momentum = 0.89, learning rate(hidden) = 0.3, learning rate(output) = 0.15
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Figure D32: Momentum = 0.89, learning rate(hidden) =0.35, learning rate(output) = 0.15
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Figure D33: Momentum = 0.89, learning rate(hidden) = 0.5, learning rate(output) = 0.15
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Neural Network

Figure D34: Momentum = 0.89, learning rate(hidden) = 0.4, learning rate(output) = 0.15, hidden nodes = 62
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Figure D35: Momentum = 0.89, learning rate(hidden) = 0.4, learning rate(output) = 0.15, hidden nodes = 60
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Neural Network

Figure D36: Momentum = 0.89, learning rate(hidden) = 0.4, learning rate(output) = 0.15, hidden nodes = 59
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Figure D37: Momentum = 0.89, learning rate(hidden) = 0.4, learning rate(output) = 0.15, hidden nodes = 63
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Figure D38: Momentum = 0.89, learning rate(hidden) = 0.4, learning rate(output) = 0.15, hidden nodes = 61, transfer function (output) = linear, transfer
function(hidden) = sigmoid, transfer function(input) = sigmoid
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Neural Network

Figure D39: Momentum = 0.89, learning rate(hidden) = 0.4, learning rate(output) = 0.15, transfer function (output) = tanH, transfer function(hidden) = sigmoid,
transfer function(input) = linear
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Figure D40: Momentum = 0.89, learning rate(hidden) = 0.4, learning rate(output) = 0.15, transfer function (output) = linear, transfer function(hidden) = sigmoid,
transfer function(input) = linear
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Neural Network

Figure D41 : Momentum = 0.89, learning rate(hidden) = 0.4, learning rate(output) = 0.25, transfer function (output) = linear, transfer function(hidden) = sigmoid,
transfer function(input) = linear
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Neural Network

Figure D42: Momentum = 0.89, learning rate(hidden) = 0.4, learning rate(output) = 0.25, transfer function (output) = linear, transfer function(hidden) = sigmoid,
transfer function(input) = linear, hidden nodes = 62
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Neural Network

Figure D43: Momentum = 0.89, learning rate(hidden) = 0.4, learning rate(output) = 0.25, transfer function(output) = linear, transfer function(hidden) = sigmoid,
transfer function(input) = linear, hidden nodes = 59
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Finite element programs used in ANSYS

Input file for axisymmetric model (defect free solid)

ET, l,plane82,„l 
MP,EX,l,33100e6
MP,NUXY, 1,0.2 
MP.DENS, 1,2300 
N, 1,0,0 
N, 61,0.9,0
FILL, 1,61,59,2,0.015
NPLOT.l
N,62,0,0.015
N,122,0.9,0.015
FILL,62,122,59,63,0.015
N,123,0,0.03
N, 183,0.9,0.03
FILL,123,183,59,124,0.015
N, 184,0,0.045
N,244,0.9,0.045
FILL, 184,244,59,185,0.015
N,245,0,0.06
N,305,0.9,0.06
FILL,245,305,59,246,0.015
N,306,0,0.075
N,366,0.9,0.075
FILL,306,366,59,307,0.015
N,367,0,0.09
N,427,0.9,0.09
FILL,367,427,59,368,0.015
N,428,0,0.105
N,488,0.9,0.105
FILL,428,488,59,429,0.015
N,489,0,0.12
N,549,0.9,0.12
FILL,489,549,59,490,0.015
N,550,0,0.135
N,610,0.9,0.135
FILL,550,610,59,551,0.015
N, 611,0,0.15
N,671,0.9,0.15
FILL,611,671,59,612,0.015
14.672.0. 0.165
14.732.0. 9.0.165
FILL,672,732,59,673,0.015 
N,733,0,0.18
14.793.0. 9.0.18
FILL,733,793,59,734,0.015
N,794,0,0.195
N,854,0.9,0.195
FILL,794,854,59,795,0.015
N,855,0,0.21
N,915,0.9,0.21
FILL,855,915,59,856,0.015
N,916,0,0.225
N,976,0.9,0.225
FILL,9 16,976,59,917,0.015
N,977,0,0.24
N, 1037,0.9,0.24
FILL,977,1037,59,978,0.015
N, 1038,0,0.255
N,1098,0.9,0.255
FILL, 103 8,1098,59,1039,0.015
14.1099.0. 0.27 
N, 1159,0.9,0.27
FILL, 1099, I I59,59,1100,0.015 
N, 1160,0,0.285

El
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N, 1220,0.9,0.285 
FILLJ 160,1220,59.1161,0.015 
N, 1221,0,0.3 
N, 1281,0.9,0.3
FILL, 1221,1281,59,1222,0.015 
EN, 1,1,2,63,62 
ENGEN, 1,60,1,1,1,0 
EN,61,62,63,124,123 
ENGEN, 1,60,1,61,61.1 
EN,121,123,124,185,184 
ENGEN,1,60,1,121,121,2 
EN, 181,184,185,246,245 
ENGEN,1,60,1,181,181,3 
EN,241,245,246,307,306 
ENGEN, 1,60,1,241,241,4 
EN,301,306,307,368,367 
ENGEN,1,60,1,301,301,5 
EN.361,367,368,429,428 
ENGEN,1,60,1,361,361,6 
EN,421,428,429,490,489 
ENGEN, 1,60,1,421,421,7 
EN,481,489,490,551,550 
ENGEN, 1,60,1,481,481,8 
EN,541,550,551,612,611 
ENGEN,1,60,1,541,541,9 
EN,601,611,612,673,672 
ENGEN, 1,60,1,601,601,10 
EN,661,672,673,734,733 
ENGEN, 1,60,1,661,661,11 
EN,721,733,734,795,794 
ENGEN, 1,60,1,721,721,12 
EN,781,794,795,856,855 
ENGEN,1,60,1,781,781,13 
EN,841,855,856,917,916 
ENGEN, 1,60,1,841,841,14 
EN,901,916,917,978,977 
ENGEN,1,60,1,901,901,15 
EN,961,977,978,1039,1038 
ENGEN,1,60,1,961,961,16 
EN, 1021,1038,1039,1100,1099 
ENGEN,1,60,1,1021,1021,17 
EN,1081,1099,1100,1161,1160 
ENGEN, 1,60,1,1081,1081,18 
EN,1141,1160,1161,1222,1221 
ENGEN, 1,60,1,1141,1141,19 
EMID,0 
EPLOT 
FINISH 
/SOLU
ANTYPE,TRAN,NEW
TRNOPT,FULL
ITS=0.00000064
DELTIME.ITS
KBC.l
OUTRES,NSOL,ALL
D,P50X,UX,0
1
D,P50X,UX,0
62
D,P50X,UX,0
123
D,P50X,UX,0
184
D,P50X,UX,0
245
D,P50X,UX,0
306
D,P50X,UX,0
367
D,P50X,UX,0
428
D,P50X,UX,0
489
D,P50X,UX,0
550
D,P50X,UX,0
611
D,P50X,UX,0
672
D,P50X,UX,0
733
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D,P50X,UX,0
794
D,P50X,UX,0
855
D,P50X,UX,0
916
D,P50X.UX,0
977
D,P50X,UX,0
1038
D,P50X,UX,0
1099
D,P50X,UX,0 
1160
D,P50X,UX,0
1221
D,P50X,ALL,0
61
D,P50X,ALL,0
122
D,P50X,ALL,0
183
D,P50X,ALL,0
244
D,P50X,ALL,0
305
D,P50X,ALL,0
366
D.P50X,ALL,0
427
D,P50X,ALL,0
488
D,P50X,ALL,0
549
D,P50X,ALL,0
610
D,P50X,ALL,0
671
D,P50X,ALL,0
732
D,P50X.ALL,0
793
D,P50X,ALL,0
854
D,P50X,ALL,0
915
D,P50X,ALL,0
976
D,P50X,ALL,0
1037
D,P50X,ALL,0
1098
D,P50X,ALL,0 
1159
D,P50X,ALL,0
1220
D,P50X,ALL,0
1281
TIME,le-6
F,1221,FY,-1417
LS WRITE, 1
TIME,2e-6
F,1221,FY,-2819
LS WRITE,2
TIME,3e-6
F,1221,FY,-4190
LSWRITE,3
TIME,4e-6
F,1221,FY,-5515
LSWRITE.4
TlME,5e-6
F,1221,FY,-6780
LSWRITE.5
TIME,6e-6
F,1221,FY,-7970
LSWRITE.6
TIME,7e-6
F,1221,FY,-9073
LSWRITE,7
TIME,8e-6
F,1221,FY,-10077
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LSWRITE,8
TIME,9e-6
F, 1221,FY,-10970
LS WRITE,9
TIME,10e-6
F, 1221,FY,-11743
LSWRITE,10
TIME.l le-6
F,1221,FY,-12388
LSWRITE.ll
TIME,12e-6
F,1221,FY,-12896
LSWRITE,12
TIME,13e-6
F,1221,FY,-13264
LSWRITE.13
TIME,14e-6
F, 1221,FY,-13486
LS WRITE, 14
TIME,15e-6
F,1221,FY,-13560
LSWRITE,15
TIME,16e-6
F, 1221,FY,-13486
LSWRITE,16
TIME,17e-6
F, 1221,FY,-13264
LSWRITE.17
TIME,18e-6
F, 1221,FY,-12896
LSWRITE.18
TIME,19e-6
F,1221,FY,-12388
LSWRITE,19
TIME,20e-6
F, 1221,FY,-11743
LSWRITE,20
TIME,2 le-6
F, 1221,FY,-10970
LSWRITE,21
TIME,22e-6
F,1221,FY,-10077
LSWRITE.22
TIME,23e-6
F,1221,FY,-9073
LS WRITE,23
TIME,24e-6
F,1221,FY,-7970
LSWRITE,24
TIME,25e-6
F, 1221,FY,-6780
LSWRITE,25
TIME,26e-6
F,1221,FY,-5515
LSWRITE,26
TlME,27e-6
F,1221,FY,-4190
LSWRITE,27
TIME,28e-6
F,1221,FY,-2819
LSWRITE,28
TlME,29e-6
F,1221,FY,-1417
LS WRITE,29
TIME,30e-6
F, 1221,FY,-0.00000001
LS WRITE,30
**This is repeated to loadstep 100** 
TIME,1140e-6 
F,1221,FY,-0.00000001 
LSWRITE.100

Input file for defect model with contact element
/BATCH
! /COM,ANSYS RELEASE 5.4 UP19970828 15:02:22 07/06/1999
/input,start,ans ,C:\ANSYS54\docu\„„„„„„„„l
/NOPR
/PMETH,OFF
KEYW,PR_SET, 1
KEYW.PR STRUC.l
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KEYW,PR_THERM,0
KEYW.PRFLUID.O
KEYW,PR MULTI,0
/GO
/PREP7
ET,1,PLANE82 
ET,2,CONTAC12 
KEYOPT,l,3,2 
KEYOPT, 1,5,0 
KE YOPT, 1,6,0 
KEYOPT,2,1,0 
KEYOPT,2,2,0 
KEYOPT,2,4,0 
KEYOPT,2,7,0
R,2,180,8275000,-0.0001,3,827500, 
UIMP,1, EX, ,,33100000,
U1MP.1,DENS, ,,2.3, 
U1MP,1,ALPX,, , ,
UIMP, 1,REFT,, , ,
U1MP,1,NUXY,, , ,
U1MP,1,PRXY,, ,0.2, 
UIMP,1,GXY,, , ,
U1MP,1,MU,, , ,
U1MP,1,DAMP,, , ,
UIMP,1,KXX,, , ,
UIMP,1,C,, , ,
UIMP.LENTH,,, ,
U1MP,1,HF,, , ,
UIMP,1,EMIS, , ,,
UIMP, 1 ,QRATE,, , ,  
UIMP,1,RSVX,, , ,
UIMP,1,PERX,, , ,
UIMP, 1, VISC,, , ,
UIMP,l,SONC,, , ,
UIMP,2,EX,, , ,
UIMP,2,DENS,, , ,
UIMP,2,ALPX,, , ,
UIMP,2,REFT,, , ,
UIMP,2,NUXY,, , ,
UIMP,2,PRXY,, . ,
UIMP,2,GXY,, , ,
UIMP,2,MU, ,,0.1,
UIMP,2,DAMP,, , ,
UIMP,2,KXX,, , ,
UIMP,2,C ,, , ,
UIMP,2,ENTH,, , ,
UIMP,2,H F,, , ,
UIMP,2,EMIS,, , ,  
UIMP,2,QRATE,, , ,  
UIMP.2.RSVX,, , ,
UIMP,2,PERX,, , ,
UIMP.2.VISC,, , ,
UIMP,2,SONC,, , ,
K,l„„
K,2,l,„
K,3,l,.3„
K,4,0,0.3„
K,4,0,0.3„
K,5,.7,.15/2„
K,6,1,.15/2,,
K,7,1,.15,,
K,8,.7,0.15,,
K,8,0.7,0.15,,

Appendix E

LSTR, 4, 1
LSTR, 1, 2
LSTR. 2, 3
LSTR, 3, 4
LSTR. 8, 5
LSTR, 5, 6
LSTR, 7, 8
FLST,2,4,4
FITEM,2,1
FITEM.2,2
FITEM,2,4
FITEM.2,3
AL.P51X
FLST,2,4,4
FITEM,2,5
FITEM,2,6
FITEM,2,7
FITEM,2,3
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AL,P51X 
LS TR, 6, 7
FLST, 2,4,4 
FITEM,2,5 
FITEM,2,6 
FITEM,2,7 
FITEM,2,8 
AL,P51X
ASBA, 1, 2
TYPE.]
MAT.l
REAL, 1
ESYS.O
TSHAP.LINE
MSHAPE,0,2D
MSHKEY.O
CM,_Y,AREA
ASEL,, , ,  3
CM,_Y1,AREA
CHKMSH.'AREA'
CMSEL,S,_Y
AMESH.JYl
CMDEL,_Y
CMDEL,_Y1
CMDEL,_Y2
ACLEAR, 3
ESIZE,. 15/4,0,
CM,_Y,AREA 
ASEL., , ,  3
CM,_Y1,AREA 
CHKMSH.'AREA'
CMSEL,S,„Y
AMESH,_Y1
CMDEL.Y
CMDEL._Y1
CMDEL,_Y2
/UI.MESH.OFF
N,766,.7000,. 11250,,,,,
N,767,1.00.. 1500,,,,. 
N,768,.9625,0.15,„„ 
N,768,0.9625,0.15,„„
! NLIST.ALL,, ,  ,NODE,NODE,NODE 
N,769,.92500,0.15,„„
! NLIST.ALL,, ,  ,NODE,NODE,NODE 
N,770,.88750,0.15,„„
N, 771, .8500,0.15,,,,,
N,772,.8125,0.15,,,,,
N,773,.7750,0.15,,,,,
! NLIST.ALL, , ,  .NODE.NODE.NODE 
N.774,.7375,0.15,,,,,
N,775,0.7375,0.1125,,,,,
N,776,0.7375+0.0375,0.1125,,,,,
N,777,0.7375+2*0.0375,0.1125,.,,, 
N.778,0.7375+3*0.0375,0.1125,,,,,
N,779,0.7375+4*0.0375,0.1125,,,,,
N,780,0.7375+5*0.0375,0.1125,,,,,
N,781,0.7375+6*0.0375,0.1 125,,,,,
N.782,0.7375+7*0.0375,0.1125,,,,,
N,782,0.7375+7*0.0375,0.1125,,,,,
NDELE, 766
TYPE.l.
MAT.L 
REAL, 1,
ESYS.O,
FLST.2,4,1 
FITEM,2,94 
FITEM,2,775 
FITEM,2,774 
FITEM,2,92
E.P51X 
FLST,2,4,1 
FITEM.2,775 
FITEM,2,776 
FITEM,2,773 
FITEM,2,774
E.P51X 
FLST,2,4,1 
FITEM,2,776 
FITEM,2,777 
FITEM,2,772 
FITEM,2,773



E,P51X
FLST,2,4.1
FITEM.2,777
FITEM.2,778
FITEM.2,771
FITEM,2,772
E.P51X
FLST.2,4,1
FITEM,2,778
FITEM,2,779
FITEM,2,770
FITEM.2,771
E.P51X
FLST,2,4,1
FITEM,2,779
FITEM,2,780
FITEM,2,769
FITEM.2,770
E.P51X
FLST,2,4,1
FITEM.2,780
FITEM,2,781
FITEM,2,768
FITEM.2,769
E.P51X
FLST,2,4,1
FITEM,2,781
FITEM,2,782
FITEM,2,767
FITEM.2,768
E.P51X
FLST.2,4,1
FITEM,2,76
FITEM,2,78
FITEM,2,775
FITEM,2,94
E.P51X
FLST.2,4,1
FITEM.2,78
FITEM.2,80
FITEM,2,776
FITEM,2,775
E.P51X
FLST,2.4,1
FITEM,2,80
FITEM.2,82
FITEM.2,777
FITEM.2,776
E.P51X
FLST.2,4,1
FITEM,2,82
FITEM,2,84
FITEM.2,778
FITEM.2,777
E.P51X
FLST.2,4,1
FITEM,2,84
FITEM,2,86
FITEM.2,779
FITEM.2,778
E.P51X
FLST.2,4,1
FITEM,2,86
FITEM,2,88
FITEM.2,780
FITEM,2,779
E.P51X
FLST.2,4,1
FITEM,2.88
FITEM.2,90
FITEM,2,781
FITEM.2,780
E.P51X
FLST,2,4,1
FITEM.2,90
FITEM.2,72
FITEM,2,782
FITEM.2,781
E.P51X
TYPE,2,
MAT.2,
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REAL,2,
ESYS,0,
EINTF.0.0001,
FINISH
/SOLU
FLST,2,55,l.ORDE,3
FITEM,2,2
FITEM,2,18
FITEM,2,-71
D,1,ALL
D,2,ALL
D.3,ALL
D,4,ALL
D,5,ALL
D,6,ALL
D.7.ALL
D.8.ALL
D,9,ALL
D, 10, ALL
D. 11, ALL
D, 12, ALL
D, 13,ALL
D, 14, ALL
D, 15,ALL
D, 16,ALL
D,17,ALL
FINISH
/SOLU
ANTYPE.TRAN.NEW 
TRNOPT,FULL 
ITS=0.00000134 
DELTIMEJTS 
KBC,1
OUTRES,NSOL,ALL 
TIME,le-6 
F,126,FY,-1417 
LS WRITE,!
TIME,2e-6
F,126,FY,-2819
LS WRITE,2
TIME,3e-6
F,126,FY,-4190
LSWRITE.3
TIME,4e-6
F,126,FY,-5515
LS WRITE,4
TIME,5e-6
F, 126,FY,-6780
LSWRITE.5
TIME,6e-6
F,126,FY,-7970
LSWRITE.6
TIME,7e-6
F, 126,FY,-9073
LSWRITEJ
TIME,8e-6
F,126,FY.-10077
LSWRITE,8
TIME,9e-6
F, 126,FY,-10970
LSWRITE,9
TIME,10e-6
F, 126,FY,-11743
LSWRITE,10
TIME.l le-6
F,126,FY,-12388
LS WRITE, 11
TIME,12e-6
F,126,FY,-12894
LSWRITE,12
TIME,13e-6
F,126,FY,-13244
LSWRITEJ3
TIME,14e-6
F,126,FY,-13484
LSWRITE.14
TIME,15e-6
F,126,FY,-13540
LSWRITE.15
TIME,16e-6
F.126.FY.-13484
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LSWRITE,16
TIME,17e-6
F,126,FY,-13244
LSWRITE,17
TIME,18e-6
F,126,FY,-12894
LSWRITE,18
TIME,19e-6
F,126,FY,-12388
LSWR1TE,19
TlME,20e-6
F,126,FY,-11743
LS WRITE,20
TIME,21e-6
F,126,FY,-10970
LS WRITE,21
TIME,22e-6
F,126,FY,-10077
LSWRITE.22
TIME,23e-6
F,126,FY,-9073
LS WRITE,23
TIME,24e-6
F,126,FY,-7970
LSWRITE,24
TIME,25e-6
F,l26,FY,-6780
LS WRITE,25
TIME,26e-6
F.126.FY.-5515
LS WRITE,26
TlME,27e-6
F,126,FY,-4190
LS WRITE,27
TIME,28e-6
F,126,FY,-2819
LS WRITE,28
TIME,29e-6
F,126,FY,-1417
LSWRITE,29
TIME,30e-6
F,126,FY,0
LSWRITE,30
**This is repeated to loadstep 110**
TIME,10240e-6
F,126,FY,0
LSWRITE,! 10

Input file for 2D defect model without contact element
/BATCH
! /COM,ANSYS RELEASE 5.4 UP19970828 15:02:22 07/06/1999
/input,start,ans ,C:\ANS YS54\docu\„„„„„„„„l
/NOPR
/PMETH,OFF
KEYW.PR_SET,1
KEYW.PR_STRUC,1
KEYW,PR_THERM,0
KEYW,PR_FLUID,0
KEYW,PR_MULTI,0
/GO
/PREP7
ET,1,PLANE82 
KEYOPT, 1,3,2 
KEYOPT, 1,5,0 
KEYOPT, 1,6,0 
KEYOPT,2,1,0 
KEYOPT.2,2,0 
KEYOPT,2,4,0 
KEYOPT,2,7,0 
UIMP,1, EX, ,,33100000,
UIMP.l,DENS, ,,2.3,
UIMP,1,ALPX,, , ,
UIMP, 1,REFT,, , ,
UIMP,1,NUXY,, , ,
UIMP, 1,PRX Y ,, ,0.2,
UIMP,1,GXY,, , ,
UIMP,1,M U ,,,,
UIMP, 1,DAMP,, , ,
UIMP,1,KXX,, , ,
UIMP,1,C,, , ,

E9



Appendix E

UIMP,1,ENTH,, , ,  
UIMP, 1,HF,, , ,  
UIMP, I,EMIS,, , ,  
UIMP,1,QRATE,, , ,  
UIMP,1,RSVX,, ,. 
U1MP.1.PERX,, , ,  
UIMP, 1,'VISC,, , ,  
UIMP,I,SONC,, , ,  
K,l„„
K,2,l„,
K,3,l,.3„
K,4,0,0.3,,
K,4,0,0.3„
K,5,.7,.15/2,,
K, 6,1, .15/2,,
K,7,1,.15,,
K,8,.7,0.15,,
K,8,0.7,0.15,,
LSTR, 4, 1
LSTR, 1. 2
LSTR, 2, 3
LSTR, 3, 4
LSTR, 8, 5
LSTR, 5, 6
LSTR, 7, 8
FLST.2,4,4
FITEM,2,1
FITEM,2,2
FITEM,2,4
FITEM,2,3
AL,P51X
FLST,2,4,4
FITEM.2,5
FITEM,2,6
FITEM,2,7
FITEM,2,3
AL.P51X
LSTR, 6, 7
FLST,2,4,4
FITEM,2,5
FITEM,2,6
FITEM,2,7
FITEM,2,8
AL,P51X
ASBA, 1, 2
TYPE,1
MAT, 1
REAL, 1
ESYS,0
TSHAP,LINE
MSHAPE,0,2D
MSHKEY.O
CM, _Y, AREA
ASEL,, , ,  3
CM,_Y1,AREA
CHKMSH/AREA’
CMSEL,S,_Y
AMESH,_Y1
CMDEL,_Y
CMDEL.Yl
CMDEL,_Y2
ACLEAR, 3
ESIZE,. 15/4,0,
CM, _Y, AREA
ASEL,, , ,  3
CM,_Y1,AREA
CHKMSH.'AREA'
CMSEL,S,_Y
AMESH,_Y1
CMDEL,_Y
CMDEL,_Y1
CMDEL,_Y2
AJI,MESH,OFF
N,766..7000,. 11250,,,,,
N.767,1.00,.1500,,,,,
N,768,.9625,0.15,„„
N,768,0.9625,0.15,„„ 
N,769,.92500,0.15,„„ 
N,770,.88750,0.15,,,,, 
N,771,.8500,0.15,,,,,
N,772,.8125,0.15,,,,,
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N,773,.7750,0.15,,,,, 
N,774,.7375,0.15,„„
N,775,0.7375,0.1125,„„
N,776,0.7375+0.0375,0.1 125,,,,, 
N,777,0.7375+2*0.0375,0.1125, 
N,778,0.7375+3*0.0375,0.1 125, 
N,779,0.7375+4*0.0375,0.1125, 
N,780,0.7375+5*0.0375,0.1125, 
N,781,0.7375+6*0.0375,0.1125, 
N.782,0.7375+7*0.0375,0.1 125, 
N,782,0.7375+7*0.0375,0.1 125, 
NDELE, 766 
TYPE, 1,
MAT, 1,
REAL,1,
ESYS,0,
FLST,2,4,1 
FITEM,2,94 
FITEM,2,775 
FITEM,2,774 
FITEM,2,92 
E,P51X 
FLST,2,4.1 
FITEM,2,775 
FITEM,2,776 
FITEM.2.773 
FITEM,2,774 
E,P51X 
FLST,2,4,1 
FITEM,2,776 
FITEM,2,777 
FITEM,2,772 
FITEM,2,773 
E.P51X 
FLST,2,4,1 
FITEM,2,777 
FITEM,2,778 
FITEM,2,771 
FITEM,2,772 
E.P51X 
FLST,2,4,1 
FITEM.2,778 
FITEM,2,779 
FITEM,2,770 
FITEM,2,771 
E,P51X 
FLST,2,4.1 
FITEM.2,779 
FITEM,2,780 
FITEM.2,769 
FITEM.2,770 
E.P51X 
FLST,2,4,1 
FITEM.2,780 
FITEM,2,781 
FITEM,2,768 
FITEM,2,769 
E,P51X 
FLST,2,4,1 
FITEM,2,781 
FITEM,2,782 
FITEM,2,767 
FITEM.2,768 
E,P5IX 
FLST,2,4,1 
FITEM.2,76 
FITEM,2,78 
FITEM,2,775 
FITEM,2,94 
E.P51X 
FLST,2,4.1 
FITEM,2,78 
FITEM.2,80 
FITEM,2,776 
FITEM,2,775 
E.P51X 
FLST,2.4.1 
FITEM.2,80 
FITEM.2,82 
FITEM,2,777 
FITEM.2,776
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E,P51X 
FLST,2,4,1 
FITEM,2,82 
FITEM,2,84 
FITEM,2,778 
FITEM,2,777 
E,P51X 
FLST,2,4,1 
FITEM,2,84 
FITEM.2,86 
FITEM.2,779 
FITEM.2,778 
E,P5IX 
FLST,2,4,1 
FITEM.2,86 
FITEM,2,88 
FITEM,2,780 
FITEM,2,779 
E.P51X 
FLST,2,4,1 
FITEM.2,88 
FITEM,2,90 
FITEM,2,781 
FITEM,2,780 
E.P51X 
FLST,2,4,1 
FITEM,2,90 
FITEM,2,72 
FITEM,2,782 
FITEM,2,781 
E.P51X 
FINISH
**The remaining part of the input file is identical to the input file for 2D defect model using contact element**

Input file for 3D model of Wall A
/BATCH
! /COM,ANSYS RELEASE 5.3 UP071096 13:06:42 05/26/1997
/input,start,ans ,C:\ANSYS53\docu\„„„„„„„„l
/FILNAM.mai
KEYW,PR_SET,1
KEYW.PRSTRUC.l
KEYW,PR_THERM,0
KEYW,PR_ELMAG,0
KEYW,PR_FLUID,0
KEYW,PR_MULTI,0
KEYW,PR_CFD,0
KEYW,LSDYNA,0
/PMETH.OFF
/TITLE,wall with avoids
/PREP7
ET.1.SOLID95
KEYOPT, 1,5,0
KEYOPT, 1,6,0
UIMP, 1,EX,, ,3.3 le7,
UIMP.l,DENS, ,,2.3,
UIMP,1,ALPX,, , ,
UIMP, 1,REFT,, , ,
UIMP,LNUXY,, , ,
UIMP.l.PRXY, ,,.2,
UIMP,1,GXY,, ,12961538,
UIMP, 1,M U,, , ,
UIMP, 1, DAMP,, , ,
U1MP,1,KXX,, , ,
UIMP,1,C,, , ,
UIMP, l.ENTH,, , ,
UIMP.l,HF,, , ,
UIMP.l,EMIS,, , ,
UIMP,1,QRATE,, , ,
UIMP.l.MURX,, , ,
UIMP,1,MGXX,, , ,
UIMP,1,RSVX,, , ,
UIMP,1,PERX,, , ,
UIMP, 1, VISC,, , ,
UIMP,l,SONC,, , ,
FLST,2,8,4,ORDE,2 
FITEM.2,73 
FITEM,2,-80 
LDELE.P51X, ,,1 
FLST,2,4,4,ORDE,3 
FITEM,2,89

E12



Appendix E

FITEM,2,92 
FITEM,2,-94 
LDELE,P5IX,, ,1 
LDELE, 91,,,1 
FLST,2,10,4,ORDE,7 
FITEM,2,81 
FITEM,2,-85 
FITEM,2,87 
FITEM,2,-88 
FITEM,2,90 
FITEM,2,95 
FITEM,2,-96 
LDELE,P5IX,, ,1 
LDELE, 86, ,,1 
/PREP7
VDELE, 3 ,, ,
FLST,2,4,3,ORDE,4 
FITEM,2,18 
FITEM,2,27 
FITEM,2,36 
FITEM,2,55 
KDELE.P51X 
/PREP7
BLOCK.0,1.219,0,1.219,0,.3048, 
K,l„„
K,15„„
K.15„„
/DEVICE,VECTOR,0
/DEVICE,DITHER, 1
VDELE, 1,, ,1
! KPLOT
KDELE, 15
CSYS,0
WPAVE,0,0,0
CSYS,0
CSYS,0
WPA VE,0,0,0
CSYS,0
BLOCK,0,1.219,0,1.219,0,0.3048, 
K,9,.254,.254,.1016,
KWPAVE, 9
BLC4,0,0,. 1524,. 1524,. 1016
VSBV, 1, 2
K,18,.9652,0.254,0.1016,
KWPAVE, 18
BLC4,0,0,.1524,.1524,.0254
VDELE, 1,,,1
KDELE, 18
CSYS,0
WPAVE,0,0,0
CSYS,0
K.18,0.8128,0.254,0.1016. 
KWPAVE, 18 
BLC4,0,0,.1524,.1524,.0254 
VSBV, 3, 1
K,27,.254,.8128,.127,
VDELE, 2 
FLST,2,18,5,ORDE,2 
FITEM,2,1 
FITEM,2,-18 
ADELE,P51X,,,1 
CSYS.O 
WPA VE,0,0,0 
CSYS.O
FLST,2,2,3,ORDE,2 
FITEM,2,18 
FITEM,2,27 
KDELE,P5IX 
BLC4,0,0,1.219,1.219..3048 
KWPAVE, 9 
BLC4,0,0,.1524,.l 524,. 1016 
VSBV, 1, 2
K,18, .8128, .254, .1778,
KWPAVE, 18 
BLC4,0,0..1524,.1524,.0254 
VSBV, 3, 1
K,27,.254,.8128,.127,
KWPAVE, 27 
BLC4,0,0,.1524,.1524,.0762 
VSBV, 2, 1
K.36..8128,0.8128,. 1524.
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KWPAVE, 36 
BLC4,0,0,. 1524,. 1524,.0508 
VSBV, 3, 1
FINISH 
/PREP7
K,45,.5334,.4572,.127,
KWPAVE, 45 
BLC4,0,0,. 1524, .3048, .0762 
VSBV, 2, 1
TYPE, 1,
MAT, 1,
REAL.l,
ESYS,0,
ESHAPE,1,0
SMRTSIZE.6
MOPT,TETEXPND,0.8,
FLST,2,10,4,ORDE,4 
FITEM,2,5 
FITEM,2,-6 
FITEM,2,25 
FITEM,2,-32 
LESIZE,P51X,.05,, ,1, 
CM,_Y,VOLU 
VSEL,, , ,  3
CM,_Y1,V0LU 
CHKMSH,'VOLU'
CMSEL,S,_Y
VMESH,_YI
CMDEL,_Y
CMDEL,_Y1
CMDEL,_Y2
FLST,2,2662,2,ORDE,2
FITEM,2,1
FITEM,2,-2662
EDELE,P51X
VCLEAR, 3
ESIZE,0,4,
FLST,2,10,4,ORDE,4 
FITEM,2,5 
FITEM,2,-6 
FITEM,2,25 
FITEM,2,-32 
LESIZE,P51X,, ,  ,1, 
FLST,2,72,4,ORDE,2 
FITEM,2,1 
FITEM,2,-72 
LCLEAR,P51X 
FLST,2,72,4,ORDE,2 
FITEM,2,1 
FITEM,2,-72 
LCLEAR.P51X 
SMRTSIZE,6 
ESIZE,0,4,
ESHAPE,1,0
SMRTSIZE,6
ESIZE,0,0,
CM,_Y,VOLU 
VSEL,, , ,  3
CM,_Y1,V0LU 
CHKMSH.'VOLU'
CMSEL,S,_Y
VMESH,_Y 1
CMDEL,_Y
CMDEL,_Y1
CMDEL,_Y2
VCLEAR, 3
FLST,2,2,4,ORDE,2
FITEM,2,5
FITEM,2,-6
LCLEAR.P51X
FLST,2,14,4,ORDE,4
FITEM,2,4
FITEM,2,6
FITEM,2,25
FITEM,2,-36
LCLEAR.P5IX
ESHAPE,1,0
SMRTSIZE.6
SMRTSIZE, ,1,1,2,15,30,1.5,1,1,4 
ESIZE,0,0,
FLST,2,2,4,ORDE,2



FITEM,2,5 
FITEM,2,-6 
LESIZE,P51X,2, ,0,0, 
FLST,2,2,4,ORDE,2 
FITEM,2,5 
FITEM,2,-6 
LESIZE,P5IX,.I, ,0,0, 
FLST,2,2,4,ORDE,2 
FITEM,2,5 
FITEM,2,-6
LESIZE,P51X,0.13, ,0,0, 
FLST,2,B,4,ORDE,2 
FITEM,2,25 
FITEM,2,-32 
LESIZE,P51X,0.5, ,0,0, 
FLST,2,8,4,ORDE,2 
FITEM,2,25 
FlTEM.2,-32 
LESIZE,P51 X.0.05, ,0,0, 
FLST,2,8,4,ORDE,2 
FITEM,2,25 
FITEM,2,-32 
LES1ZE,P51X,0.06, ,0,0, 
FLST,2,2,4,ORDE,2 
FITEM,2,3 
FITEM,2,-4
LESIZE,P51X,0.13, ,0,0,
CM,_Y,VOLU
VSEL,, , ,  3
CM,_Y1,V0LU
CHKMSH.'VOLU'
CMSEL,S,_Y
VMESH,_Y1
CMDEL,_Y
CMDEL,_Y1
CMDEL,_Y2
VCLEAR, 3
SMRTSIZE,7
CM,_Y,VOLU
VSEL,, , ,  3
CM,_Yl,VOLU
CHKMSH,'VOLU'
CMSEL,S,_Y
VMESH,_Y1
CMDEL.Y
CMDEL, _Y1
CMDEL,_Y2
VCLEAR, 3
K,54,0.6095,0,0.3048,
K,55,0.6095,0,0,
K.56,1.219,1.219,0, 
KDELE, 56 
K,56,1.219,.6095,0, 
K,57,l .219,0.6095,.3048,
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LSTR. 54, 55
LSTR, 57, 56
LSBL. 5, 73
LSBL, 4, 4
! LPLOT
LSBL, 6, 74
LSTR, 57, 21
LDELE, 6, , ,1
K,58.1.219,0.6095,0,
K,59,1.219/2,0,0,
LSTR. 54, 59
LSTR, 57, 58
LSBL, 4, 6
LSBL, 3, 74
SMRTS1ZE,8
LDELE, 5, , ,1
SMRTSIZE.8 
FLST,2,5,4,ORDE,5 
FITEM.2,5 
FITEM,2,-6 
FITEM,2,10 
FITEM,2,76 
FITEM,2,78
LESIZE,P51 X,0.13, ,0,0, 
CM,_Y,VOLU 
VSEL,, , ,  3
CM,_Yl,VOLU
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CHKMSH/VOLU’
CMSEL,S,_Y
VMESH,_Y1
CMDEL.Y
CMDEL.Y 1
CMDEL,_Y2
VCLEAR, 3
SMRTSIZE.8
ESIZE,0,0,
FLST,2,5,4,ORDE,5
F1TEM,2,5
FITEM,2,-6
F1TEM,2,10
FITEM,2,76
FITEM,2,78
LESIZE,P51X,0.10, ,0,0,
CM,_Y,VOLU
VSEL,, , ,  3
CM,_Yl,VOLU
CHKMSH,'VOLU'
CMSEL,S,_Y
VMESH,_Y1
CMDEL,_Y
CMDEL.Yl
CMDEL,_Y2
NSEL,S,LOC,Z,.3048
VSEL,ALL
ASEL,ALL
LSEL,ALL
KSEL,ALL
ESEL,ALL
NSEL.ALL
FLST,2,8,4,ORDE,2
FITEM,2,49
FITEM,2,-56
LESIZE.P51X,0.07, ,0,0.
FLST,2,5,4,ORDE,5
FITEM,2,5
FITEM,2,-6
FITEM,2,10
FITEM,2,76
FITEM.2,78
LESIZE,P51X,0.06, ,0,0,
CM,_Y,VOLU
VSEL,, , ,  3
CM,_Yl,VOLU
CHKMSH.'VOLU'
CMSEL,S,_Y
VMESH,_Y1
CMDEL,_Y
CMDEL,_Y1
CMDEL,_Y2
NSEL,S,LOC,Z,.3048
VSEL,ALL
ASEL,ALL
LSEL.ALL
KSEL.ALL
ESEL,ALL
NSEL.ALL
NSEL,S,LOC,X,0
FINISH
/SOLU
FLST,2.4,1 ,ORDE,4 
FITEM,2,1 
FITEM,2,-2 
FITEM,2,9 
FITEM,2,-10 
D.P51X, ,0 ,,, ,ALL 
FLST,2,39,1 ,ORDE, 12 
FITEM,2,1 
FITEM,2,-2 
FITEM.2,9 
FITEM,2,-10 
FITEM,2,53 
FITEM,2,-63 
FITEM.2,95 
FITEM,2,-105 
FITEM.2,635 
FITEM.2,732 
FITEM,2,744 
FlTEM.2,-754
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D,P51X, ,0,,,,UX,UZ
v s e l .a l l
ASEL,ALL
LSEL,ALL
KSEL.ALL
ESEL,ALL
NSEL,ALL
FINISH
/PREP7
VCLEAR, 3 
SMRTSIZE,8 
ESIZE,0,0, 
FLST,2,5,4,ORDE,5 
FITEM,2,5 
FITEM,2,-6 
FITEM,2,10 
FITEM,2,76 
FITEM,2,78 
LESIZE,P51X,.06,, ,1, 
FLST,2,5,4,ORDE,5 
FITEM,2,5 
FITEM,2,-6 
FITEM,2,10 
FITEM,2,76 
FITEM,2,78 
LESIZE,P51X,0.1,.,L 
FLST,2,8,4,ORDE,2 
FITEM,2,25 
FITEM,2,-32 
LESIZE,P51X,0.08,, ,1, 
CM,_Y,VOLU 
VSEL,, , ,  3
CM,_Yl,VOLU 
CHKMSH,'VOLU' 
CMSEL,S,_Y 
VMESH,_Y1 
CMDEL.Y 
CMDEL.Yl 
CMDEL,_Y2 
VCLEAR, 3 
FLST,2,8,4,ORDE,2 
FITEM,2,49 
FITEM,2,-56 
LESIZE,P51X,0.15,, ,1, 
FLST.2,16,4,ORDE,4 
FITEM,2,13 
FITEM,2,-20 
FITEM,2,37 
FITEM,2,-44 
LESIZE,P51X,0.I5,, ,1, 
CM,_Y,VOLL)
VSEL,, , ,  3
CM,_Yl,VOLU
CHKMSH.'VOLU'
CMSEL,S,_Y
VMESH.Yl
CMDEL,_Y
CMDEL,_Y1
CMDEL,_Y2
NSEL,S,LOC,X.O
FINISH
/SOLU
FLST,2,4,1 ,ORDE,4 
FITEM,2,1 
FITEM,2,-2 
FITEM,2,9 
FITEM,2,-10 
D,P51X, ,0 ,,. .ALL 
FLST,2,39,1 ,ORDE, 12 
FITEM,2,1 
FITEM,2,-2 
FITEM,2,9 
FITEM.2,-10 
FITEM,2,53 
FITEM.2,-63 
FITEM,2,93 
FITEM,2,-103 
FITEM,2,423 
FITEM,2,468 
FITEM.2,480 
FITEM,2,-490
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D,P51X, ,0, , ,,UX,UZ
FINISH
/SOLU
o u t r e s ,n s o l ,l a s t ,
/PREP7
VCLEAR, 3 
TYPE, 1,
MATH,
REAL.l,
ESYS.O,
SMRTSIZE,8
ESIZE,0,0,
FLST,2,1,4,ORDE, 1 
FITEM,2,11 
LESIZE.P51X, ,,4,1, 
FLST,2,1,4,ORDE,l 
FITEM,2,11 
LESIZE,P51X,, ,2,1, 
FLST,2,8,4,0RDE,2 
FITEM,2,13 
FITEM,2,-20 
LESIZE,P51X, ,,1,1, 
FLST,2,8,4,ORDE,2 
FITEM,2,37 
FITEM,2,-44 
LESIZE,P51X,, .1,1, 
FLST,2,8.4,ORDE,2 
FITEM,2,6I 
FITEM,2,-68 
LESIZE.P51X.2, ,1,1, 
FLST,2,8,4,ORDE,2 
FITEM,2,49 
FITEM,2,-56 
LESIZE.P51X, 1,, 1,1, 
CM,_Y,VOLU 
VSEL,, , ,  3
CM,_Yl,VOLU 
CHKMSH.'VOLU' 
CMSEL,S,_Y 
VMESH,_Y1 
CMDEL,_Y 
CMDEL,_Y1 
CMDEL.Y2 
NSEL,S,LOC,Z,.3048 
VSEL,ALL 
ASEL,ALL 
LSEL.ALL 
KSEL.ALL 
ESEL,ALL 
NSEL.ALL 
FINISH 
/SOLU
FLST,2,4.1 ,ORDE,4 
FITEM,2,1 
FITEM,2,-2 
FITEM,2,9 
FITEM.2,-10 
D.P51X, ,0, ,,,ALL 
FLST,2,33,1 ,ORDE, 12 
FITEM,2,1 
FITEM,2,-2 
FITEM.2,9 
FITEM,2,-10 
FITEM,2,53 
FITEM,2,-61 
FITEM,2,87 
FITEM.2,-95 
FITEM.2,363 
FITEM.2,410 
FITEM,2,421 
FITEM.2,-429 
D,P51X, ,0, ,,,UX,UZ 
ANTYPE,TRAN,NEW 
TRNOPT.FULL 
ITS=0.00000134 
DELTIMEJTS 
KBC.l
OUTRES.ALL.NONE
OUTRES,NSOL,ALL
TIME,le-6
F,276,FZ,-1253.3
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LS WRITE, 1 
TIME,2e-6 
F,276,FZ,-2486.9 
LS WRITE,2 
TIME,3e-6 
F,276,FZ,-3681.2 
LS WRITE,3 
TIME,4e-6 
F,276,FZ,-4817.5 
LS WRITE,4 
TIME,5e-6 
F,276,FZ,-5877.9 
LS WRITE, 5 
TIME,6e-6 
F,276,FZ,-6845.5 

LSWRITE,6 
TIME,7e-6 
F,276,FZ,-7705.1 

LSWRITE,7 
TIME,8e-6 
F.276,FZ,-8443.3 
LSWRITE,8 
TIME,9e-6 
F.276.FZ,-9048.3 
LSWRITE.9 
TIME,10e-6 
F,276,FZ,-9510.6 
LS WRITE, 10 
TIME.l le-6 
F,276,FZ,-9822.9 
LSWRITE.il 
TIME,12e-6 
F,276,FZ,-9980.3 
LSWRITE.12 
TIME,13e-6 
F,276,FZ,-9980.3 
LS WRITE.13 
TIME,14e-6 
F,276,FZ,-9822.9 
LS WRITE, 14 
TIME,15e-6 
F,276,FZ,-9510.6 
LSWRITE.15 
TIME, 16e-6 
F,276,FZ,-9048.3 
LSWRITE,16 
TIME,17e-6 
F,276,FZ,-8443.3 
LSWRITE,17 
TIME,18e-6 
F,276,FZ,-7705.1 
LS WRITE, 18 
TIME,19e-6 
F,276,FZ,-6845.5 
LSWRITE,19 
TIME,20e-6 
F,276,FZ,-5877.8 
LSWRITE,20 
TIME,2 le-6 
F,276,FZ,-4817.5 
LS WRITE,21 
TlME,22e-6 
F,276,FZ,-3681.2 
LSWRITE,22 
TIME,23e-6 
F,276, FZ, -2486.9 

LS WRITE,23 
TIME,24e-6 
F,276,FZ,-1253.3 

LSWRITE,24 
TIME,25e-6 
F,276,FZ,0 
LSWRITE,25
**This is repeated to loadstep 110*
TlME,10240e-6
F,276,FZ,0
LSWRITE, 110
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Graphs and programs using Matlab 4.0

Selection of impact echo data with waveform and FFT processed graphs

As discussed in chapter 3, there were a total of 225 impact echo data, however, only a 

selection of the best graphs for each test point are illustrated here. Also, for each 

location, the raw and FFT processed are shown. The code names referring to these 

locations given in chapter 3 are indicated for each graphs. The essential statistics for the 

impact echo testing are as follows:

• Sampling period (time interval between points) = 10 ps

• Sampling points for FFT spectrum — 1024

• Total duration (time span) = 10240 ps

• Impact duration (contact time of the impact on the surface) = 25 ps

Figure FI: Waveform of Wavle
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Figure F2: Amplitude spectrum of Wav le

Figure F3: Waveform of Wav2e
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Figure F5: Waveform of Wav3e
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Figure F6: Amplitude spectrum of Wav3e

Figure F7: Waveform of Wav4e
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Figure F8: Amplitude spectrum of Wav4e

Figure F9: Waveform of Wavlw
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Figure FIO: Amplitude spectrum of Wavlw

Figure FI 1: Waveform of Wav2w
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Figure FI2: Amplitude spectrum of Wav2w

Figure F I3: Waveform of Wav3w
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Figure F14: Amplitude spectrum of Wav3w

Figure FI5: Waveform of Wav4w
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Figure FI6: Amplitude spectrum of Wav4w

Figure F I7: Waveform of Wdv5e
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Figure F I8: Amplitude spectrum of Wdv5e

Figure FI9: Waveform of Wdv6e
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Figure F20: Amplitude spectrum of wdvóe

Figure F21: Waveform of Wdv7e
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Figure F22: Amplitude of Wdv7e

Figure F23: Waveform of Wdv8e
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Figure F25: Waveform of Wacll
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Figure F26: Amplitude of Wacll

Figure F27: Waveform of Wacl2
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Figure F28: Amplitude spectrum of Wacl2

Figure F29: Waveform of Wdcle
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Figure F30: Amplitude spectrum of Wdcle

Program to determine FFT and plot a 2D graph

Load idata.txt **** load text file idata **** 
idata **** idata is displayed ****
t=l Oe-6:1 Oe-6:10240e-6; *** defining time increment of 10e-6 
plot(t,idata) *** plot waveform *** 
xlabel('Time (s)') *** labelling the xaxis *** 
ylabel('Displacemenf) *** labelling the yaxis ***
Y=fft(idata, 1024); **** do fft on the idata which is a one dimensional array of 1024 points ****
N=1024; *** sampling points defined ***
f=(0:511 )* 100000/N; *** calculation of actual frequency ***
plot(f,abs(Y(l :512))), title('Amplitude Spectrum') *** plotting the amplitude graph *** 
xlabel('Frequency (H z)') *** labelling the xaxis *** 
ylabel('Amplitude') *** labelling the yaxis ***
Amp=abs(Y(l:512)); *** defining the new array of fft values * * *  

fprintf('mori.txf ,'%f\n',Amp) *** printing the fft values to a file * * *

Addition of noise to the original data

The following graphs illustrate the effect of noise with various standard deviation 

discussed in chapter 7. Record 8 of Wavle has been used to show the addition of noise.
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Figure F31: Addition of noise, standard deviation = 0.03

Figure F32: Amplitude spectrum , standard deviation = 0.03
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Figure F33: Addition of noise, standard deviation = 0.02

Figure F34: Amplitude spectrum, standard deviation = 0.02
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Figure F35: Addition of noise, standard deviation = 0.015

Figure F36: Amplitude spectrum, standard deviation = 0.015
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Figure F39: Diagram panel

Figure F39 illustrates many 'icons' which are called VI, these VI perform certain 

functions, figure F38 shows the VI which creates a level of noise depending on the size 

of samples and standard deviation for example.

In figure F39, a file is open, the data is plotted, then addition of noise is added to the 

original data, with the selected value of standard deviation. Now, this new data is 

plotted (shown in figure F37) and written to a new file.
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Interpolation of graphs

As discussed in chapter 7, the variety of sampling points are shown in figure F50 to 
F56.

Figure F40: Amplitude graph with 512 points (97.65625 Hz frequency increment)

Figure F41: Amplitude spectrum with 256 points (195.3125 Hz frequency increment)
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Figure F42: Amplitude spectrum with 128 points (390.625 Hz frequency increment)

Figure F43: Amplitude spectrum with 102 points (488.28125 Hz frequency increment)
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Figure F44: Amplitude spectrum with 200 points (250 Hz frequency increment)

Program for interpolation

load procl .txt ***load the file***
prod ***Type in the name of file as shown***
procl =

5.6214
8.3275
4.6177
6.2319
5.7764
etc....

fl =97.65625:97.65625:50000; ***This is the original increment*** 
f2=292.96875:292.96875:50000; ***This is the new increment****
Y=interpl(fl,procl,f2,'spline'); ***Find the new amplitude value for the new frequency 
incement as shown above using cubic spline interpolation(lD interpolation)***
fprintf('pol 1 .txt\'%f\n',Y) ***print this to a file*** 
plot(f2,Y) *** plot the new interpolated data*** 
xlabel('Frequency (Hz)') *** label x axis *** 
ylabel('Amplitude') *** label y axis ***
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Labview program to filter out unwanted frequencies

Figure F45: Front panel

Figure F45 shows the interpolated FFT graph with 170 points and the removal of 

unwanted frequencies. The diagram in figure F46 shows a selected file opened and 

plotted, then the first five points are removed from the graph, this is then displayed in 

the next graph. Also, the last 80 points are removed. This is then written to a new file 

called 'Rosel.xls', this will have 75 points of FFT data.
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