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Abstract 29 

When experimenters vary the timing between two intersensory events, and participants judge their 30 

simultaneity, an inverse-U-shaped psychometric function is obtained. Typically, this simultaneity 31 

function is first fitted with a model for each participant separately, before best-fitting parameters 32 

are utilised (for example compared across conditions) in the second stage of a two-step inferential 33 

procedure. Often, simultaneity-function width is interpreted as representing sensitivity to 34 

asynchrony, and/or ascribed theoretical equivalence to a window of multisensory temporal binding. 35 

Here, we instead fit a single (principled) multilevel model to data from the entire group and across 36 

several conditions at once. By asking 20 participants to sometimes be more conservative in their 37 

judgments, we demonstrate how the width of the simultaneity function is prone to strategic change 38 

and thus questionable as a measure of either sensitivity to asynchrony or multisensory binding. By 39 

repeating our analysis with three different models (two implying a decision based directly on 40 

subjective asynchrony, and a third deriving this decision from the correlation between filtered 41 

responses to sensory inputs) we find that the first model, which hypothesises, in particular, Gaussian 42 

latency noise and difficulty maintaining the stability of decision criteria across trials, is most plausible 43 

for these data.  44 

 45 

Keywords 46 

Time perception, timing, simultaneity, synchrony, intersensory, Bayesian, multilevel models.  47 

 48 

Public Significance 49 

Psychologists have made their competing theories about how humans are able to perceive the 50 

relative timing of events concrete by formulating mathematical models that attempt to describe 51 

behaviour in specific experimental tasks. Here, we focus on one such task and show that people’s 52 

reports about simultaneity are inherently subjective, as implied by several current models. We also 53 

find that the best-performing of these models explains inconsistencies when responding repeatedly 54 

to objectively identical pairs of events by positing inconsistencies in both the time it takes for neural 55 

messages to propagate through the brain, and how those messages are then interpreted to form a 56 

decision. 57 

  58 
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The best fitting of three contemporary observer models reveals how participants’ strategy 59 

influences the window of subjective synchrony 60 

The case has been made that the late eighteenth-century study of individual differences in 61 

the time at which two events appear simultaneous was actually the founding question for 62 

experimental psychology (Mollon & Perkins, 1996). Interest in this topic endures, and various tasks 63 

have been developed over the years to help probe the human sense of relative time. In one such 64 

task, known as the simultaneity judgment (SJ), participants are exposed to pairs of stimuli separated 65 

by a range of asynchronies, and must judge each such pair to be either simultaneous or not (e.g. 66 

Allan, 1975a). In the intermodal variant of this task, the two stimuli affect different senses, most 67 

typically vision and audition.  68 

This intermodal simultaneity-judgment task has proved popular with researchers for at least 69 

three reasons. Firstly, for those whose primary interest is in understanding the mechanisms by which 70 

we perceive relative time, the intersensory task seems to require the use of a specifically temporal 71 

system, rather than allowing participants to fall back on alternative intramodal cues that are 72 

processed by specialist systems, such as visual motion detectors (Cass & Van der Burg, 2014). 73 

Secondly, participants seem to find the simultaneity-judgment task less onerous to perform than the 74 

most popular alternative, the temporal order judgment (TOJ) task (Love et al., 2013). Thirdly, 75 

temporal coincidence provides a powerful cue that events originating from different sensory 76 

modalities have a common cause. Hence the determination of synchrony seems a necessary step 77 

towards achieving another important cognitive operation: Multisensory integration. Indeed, such 78 

integration is often found across a limited range of sub-second physical asynchronies, supporting the 79 

concept of a temporal binding window within which multisensory integration can occur (Diederich & 80 

Colonius, 2015; Holmes & Spence, 2005; Meredith et al., 1987). 81 

Despite its popularity, the simultaneity-judgment task presents some challenges. In 82 

particular, the data it produces are not amenable to treatment via standard models of the 83 
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psychometric function, which predict monotonic and S-shaped (sigmoidal) functions as responses 84 

shift from one category of binary judgment to another (e.g. Wichmann & Hill, 2001). By contrast, 85 

psychometric functions for simultaneity judgments (hereafter termed simultaneity functions) first 86 

rise, then fall, as asynchronies approach and then recede from zero (skip ahead to the results for 87 

multiple examples). Researchers have addressed this problem in various ways (García-Pérez & 88 

Alcalá-Quintana, 2012a; Lee & Noppeney, 2011; Schneider & Bavelier, 2003; Stone et al., 2002; van 89 

Eijk et al., 2008; Yarrow et al., 2011) including via the application of formal observer models. 90 

In this paper, we have two broad aims. The first is to make an initial determination regarding 91 

which current model of the simultaneity judgment shows most promise. This necessitates that we 92 

review several models. In so doing, we also provide groundwork for our second goal, which is to 93 

caution researchers against making uncritical interpretations regarding summary measures, 94 

particularly relating to the width of the simultaneity function. With these goals in mind, the 95 

remainder of the introduction will progress as follows. First, we outline recent practice with regard 96 

to the analysis of simultaneity judgments and highlight some interpretative issues. Next, we describe 97 

three models of the simultaneity judgment (García-Pérez & Alcalá-Quintana, 2012a; Parise & Ernst, 98 

2016; Yarrow et al., 2011). We then conclude the introduction by outlining an experiment that 99 

provides a suitable data set with which to both compare models and demonstrate the dependence 100 

of the simultaneity function on strategic decisions made by the participant.  101 

 102 

Recent treatments of simultaneity-judgment data 103 

As noted above, data from many psychophysical tasks are routinely summarised via models 104 

that predict sigmoidal psychometric functions. This prediction is premised on the assumption that 105 

each episode exposes the participant to some continuous quantity, hereafter referred to as a 106 

decision variable, which is a monotonic transform of the sensory input. For example, a single 107 

temporal order judgment trial might yield, as a decision variable, the stimulus-onset asynchrony 108 
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(SOA) between a flash and a beep. This quantity is then classified relative to a single criterion (for 109 

example above/below zero) to form a binary judgment. 110 

Common practice is to fit the judgments from each participant / condition with a single such 111 

sigmoidal psychometric function. The parameters of this function will then have meaning in relation 112 

to the underlying model that justifies their use – for example, the mean of a fitted cumulative 113 

Gaussian function describes the position of a hypothetical decision criterion. Parameters can be 114 

compared across conditions, or correlated with other variables, as a second (inferential) step. 115 

Alternatively, all participants and conditions can be fitted at the same time within a multilevel model 116 

(Goldstein & McDonald, 1988). Such models acknowledge the clustering of individual data points 117 

(here, responses within participants) and explicitly model random variation across clusters (here, 118 

differences between participants across the group; Moscatelli et al., 2012; Prins & Kingdom, 2018). 119 

In the case of the simultaneity judgment, properly formulated models of the psychometric 120 

function (e.g. Schneider & Bavelier, 2003) seem not to have been widely appreciated. Principled 121 

models do exist for simultaneity judgments, and relevant authors have sometimes made model-122 

fitting code available, at least for fits to a single participant/condition at a time (Alcalá-Quintana & 123 

García-Pérez, 2013; Yarrow et al., 2016; Yarrow, 2018). However, a tradition has emerged in which 124 

researchers (including ourselves) instead resort to fitting a descriptive function that has no basis as a 125 

model of participants’ actual behaviour (for example, Roseboom & Arnold, 2011).1 126 

Popular approaches for treating simultaneity-judgment data include fitting a Gaussian 127 

function (Stone et al., 2002), or the piecewise fitting of two sigmoids (van Eijk et al., 2008). While we 128 

acknowledge the appeal of recent precedent when making analytic decisions, it is difficult to 129 

recommend this tradition for future research. It is worth noting that in fitting a Gaussian to 130 

simultaneity-judgment data, researchers are not remaining agnostic about the underlying model 131 

                                                           
1 Regrettably, and presumably for reasons of simplicity, this is sometimes done by minimising squared error. 
This approach does not weight data points in proportion to their true likelihoods when producing parameter 
estimates for models predicting binary data. 
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that generated the data (as per non-parametric approaches like that of Lee and Noppeney, 2011). 132 

Rather, they are committing to a model, but one which is unlikely to be correct because it is not 133 

justified by any hypothesised process. Furthermore, the parameters that are derived (for example 134 

the width of a fitted Gaussian) have no relation to hypothetical cognitive operations, such as those 135 

that are laid out in principled observer models. This may encourage interpretations based on 136 

intuition and/or supposition.  137 

By way of example, in recent years it has become fashionable to measure “temporal binding 138 

windows” using just the simultaneity-judgment task, and interpret differences between groups or 139 

conditions as indicative of differences in the temporal sensitivity of integration processes (e.g. Chen 140 

et al., 2017; Foucher et al., 2007; Habets et al., 2017; Hillock et al., 2011; Lee & Noppeney, 2011; 141 

Marsicano et al., 2022; Navarra & Fernández-Prieto, 2020; Noel et al., 2017; Scarpina et al., 2016; 142 

Stevenson et al., 2014; Zampini et al., 2005). While of considerable interest, we believe that much of 143 

this work does not include sufficiently explicit caveats about the processes that might generate the 144 

window of simultaneity, potentially misrepresenting the underlying cause(s) of differences between 145 

conditions/groups. It seems to us that this summary measure has poor face validity to measure the 146 

conceptually distinct temporal-binding window. Hence one of our goals here is to advocate more 147 

explicit recognition of the fundamentally subjective nature of the window derived from simultaneity 148 

judgments.  149 

Some such subjective flexibility affecting the window of subjective simultaneity is 150 

predictable, as the simultaneity-judgment task is conceptually akin to a classic detection task, where 151 

observers must decide if a weak signal (for example, a very dim light or very quiet sound) is present 152 

or not. In the detection task, it is tempting to believe that signals can be detected only when they 153 

exceed some minimal value. Signals below this hard threshold would produce the categorical 154 

internal state – “I saw nothing”. However, an alternative idea, prominent since the middle of the 155 

twentieth century, is that internal states are continuous, but decision boundaries are applied to 156 
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them to generate categorical responses. This debate spawned signal detection theory, in which the 157 

tendency to declare a stimulus as present depends upon the placement of a decision criterion c, that 158 

is distinguishable from perceptual sensitivity limited by internal noise – d’  (Green & Swets, 1966; 159 

Macmillan & Creelman, 2005). It seems reasonable to assume, in line with this tradition, that the 160 

perceived extent of multisensory (a)synchrony is probably also derived from a continuous internal 161 

variable, and that categorising this internal variable to judge simultaneity is a decision process. We 162 

make this notion explicit next, by describing some plausible models of the simultaneity judgment.  163 

 164 

Observer models of the simultaneity-judgment task 165 

In the current work, we will consider three observer models of the simultaneity-judgment 166 

task, selected for the following reasons. Firstly, they have each seen recent use in the literature. 167 

Secondly, they each have a mechanism for explaining commonly obtained subtle asymmetries in the 168 

shape of the simultaneity function. Finally, they each include parameters that can vary in order to 169 

explain strategic changes in behaviour. To our knowledge, their goodnesses-of-fit have not 170 

previously been directly compared, allowing us to do so here for the first time. The models are 171 

schematised in Figure 1.  172 

 173 
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 174 

Figure 1. Schematic of models and predictions. (a-b) In both AT-A-GLANCE and ELA models a decision 175 

centre receives both visual and auditory signals, and hence their difference in arrival times. In an 176 

experiment, each stimulus onset asynchrony (SOA) value is presented many times, yielding a noisy 177 

distribution of internal responses (subjective SOAs). The resulting probability density function (PDF) is 178 
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shown for the example of a -50 ms SOA. Participants judge the trial as synchronous when the 179 

subjective SOA falls between two decision criteria (solid red region). For the AT-A-GLANCE model 180 

only, variable shading around the criteria indicates additional criterion noise; each criterion is most 181 

likely to be placed where the shading is darkest, but varies across trials. (c) The MCD model has 182 

sequential filtering operations on sensory inputs which lead to a signal that represents the temporal 183 

cross-correlation between inputs (MCDCorr). This signal is assumed to accrue Gaussian noise, and a 184 

single criterion is applied, such that trials yielding values of (noisy) MCDCorr above this criterion are 185 

judged simultaneous. (Note that the x-axis of the 3D inset differs from parts a and b – the 186 

relationship between objective SOA and MCDCorr, which is not shown, is roughly inverse-U shaped) (d-187 

f) Solid black lines show resulting simultaneity functions. In each case, the point calculated in parts a-188 

c is highlighted. Other points on the function are obtained in the same way. Dashed black lines show 189 

what happens if parameters describing decision criteria are changed to model more conservative 190 

behaviour. Dotted grey lines show predictions if criteria are assumed to reflect a hard threshold for 191 

the perception of synchrony, so cannot be changed, but participants still attempt to reduce their use 192 

of the synchronous response. (g) Replot of data from parts d-f illustrating how a hard-threshold 193 

account predicts a linear relationship between proportion judged simultaneous in Baseline and 194 

Conservative conditions (regardless of further modelling assumptions) whereas models in which 195 

decision criteria change generally predict non-linearity. See main text for further details. 196 

 197 

The first two models come from a family previously labelled “independent-channels” 198 

(Sternberg & Knoll, 1973) or “general-threshold” (Ulrich, 1987) models. The core idea is that 199 

modality-specific signals (for example a visual flash and an auditory beep) generate neural responses 200 

that must propagate through the brain toward a decision centre. As a result, a noisy and delayed 201 

version of each signal ultimately arrives at the decision centre. The difference in their subjective 202 

arrival times forms the decision variable which must be classified to form a response. For any given 203 
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experimentally presented asynchrony (objective SOA in Figure 1) it has a distribution whose shape 204 

depends on the nature of the latency noise. A “simultaneous” decision is made if the subjective 205 

asynchrony falls between two criteria (for example above -100 ms and below 100 ms). One of the 206 

central notions behind this family of model (that decision noise reflects latency noise) has recently 207 

received support via the recording of simultaneity judgments alongside concurrent 208 

electroencephalography (Yarrow et al., 2022). The two models from this family used here, which are 209 

outlined next, differ in terms of how they explain asymmetry in the simultaneity function.  210 

Approximation To A Gaussian Latency And Noisy Criteria Equation model of simultaneity  211 

The first model, which we term “AT-A-GLANCE” (Approximation To A Gaussian Latency And 212 

Noisy Criteria Equation; Yarrow et al., 2011) assumes that latency  noise – trial-by-trial changes in 213 

the time taken for the neural responses to propagate through the brain to the decision centre – is 214 

Gaussian in shape. On its own, this form of noise generates a symmetric simultaneity function. 215 

However, it is further assumed that decision criteria are not held perfectly stable, but rather vary 216 

from trial to trial (Ulrich, 1987), introducing a further source of noise that can differ for the two sides 217 

of the psychometric function. If criterion noise is greater for one side of the psychometric function 218 

(for example when discriminating simultaneous from sound-lags-light stimuli) than for the other (for 219 

example discriminating simultaneous from sound-leads-light stimuli) the slope of the function will be 220 

flatter on that side. 221 

In order to make it possible to identify the most likely set of model parameters, four sources 222 

of conceptual noise (latency noise for each of two stimuli and decision noise at each of two criteria) 223 

are combined/reduced into just two noise parameters. These each represent the sum of both 224 

sources of latency noise and one of the two sources of criterion noise. Hence this model typically 225 

uses a minimum of four parameters per participant/condition, two criterial parameters that 226 

determine its position and width and two noise parameters that determine ascending and 227 

descending slopes of the psychometric function. Additional parameters may be added for 228 
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consideration of attention lapses and/or keying errors by the participant. At the time of writing, the 229 

effect of changing model parameters can be examined via an interactive Shiny app at 230 

https://kielanyarrow.github.io/MyPage/Code.html (see methods for further details of code/data 231 

sharing). Previous applications of this model include investigating dissociations between judgments 232 

of causality and judgments of simultaneity (Bonnet et al., 2022). It has also helped to account for the 233 

phenomenon of temporal recalibration, whereby repeated exposure to a non-synchronous input 234 

biases judgments about subsequent stimuli, consistent with participants developing a new 235 

impression of what feels synchronous (Yarrow et al., 2013; Yarrow et al., 2015). 236 

Exponential Latency Alone model of simultaneity 237 

Our second model also hails from the independent-channels family (García-Pérez & Alcalá-238 

Quintana, 2012a). We term it “ELA” (Exponential Latency Alone). Rather than assuming Gaussian 239 

latency noise, this model assumes that each signal’s propagation times through the brain can be 240 

better described using an exponential distribution.  A judgment is again formed at the hypothetical 241 

decision centre by placing bounding criteria on the resulting distribution of subjective differences in 242 

arrival times. However, unlike AT-A-GLANCE, these criteria are stable across trials. If each signal gives 243 

rise to a different exponential distribution of arrival times (for example the distribution is tighter for 244 

auditory than visual signals) this leads to asymmetry in the resulting psychometric function. Leaving 245 

aside lapses, this model also uses four parameters per participant: A rate parameter for each 246 

exponential distribution, which affect the slopes of the simultaneity function, and two parameters 247 

determining its position and width. When each participant completes both simultaneity and 248 

temporal order judgment tasks, a simultaneous fit of this model to all tasks at once has been shown 249 

to provide a viable account of behaviour (García-Pérez & Alcalá-Quintana, 2012a; García-Pérez & 250 

Alcalá-Quintana, 2015). The model has also been used to show how the inclusion of lapse and keying 251 

error parameters can allow independent-channels models to deal with findings from ternary tasks 252 

https://kielanyarrow.github.io/MyPage/Code.html
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(which have before/simultaneous/after response options) that initially appeared to contradict this 253 

general architecture (García-Pérez & Alcalá-Quintana, 2012b). 254 

Multisensory Correlation Detector model applied to simultaneity judgments 255 

The final model we implement here has a different background. This MCD (multisensory 256 

correlation detector) model (Parise & Ernst, 2016) is broadly analogous to popular accounts of 257 

motion detection in vision (Fujisaki & Nishida, 2007). It builds on earlier ideas that perceived 258 

simultaneity might be a function of the degree of overlap between the internal responses to two 259 

stimuli, which can be thought of as temporally low-pass filtered versions of the input (Burr et al., 260 

2009; Stelmach & Herdman, 1991). In the MCD model, each signal first passes through a modality-261 

specific filter. The output of one modality is then multiplied by an additionally filtered version of the 262 

other, and vice versa. Finally, the two resultant signals are multiplied together and then integrated 263 

over the interval of time immediately following presentation of the stimuli in order to provide a 264 

single quantity (MCDCorr) that represents perceived synchrony. To yield a categorical response, this 265 

quantity is compared to a single criterion, above which synchrony is reported. Noise for this 266 

judgment accrues from Gaussian variation in either the strength of MCDCorr (which is otherwise 267 

deterministic) or the placement of the criterion across trials (these two ideas yield identical 268 

predictions so cannot be discriminated). 269 

Leaving aside lapses, this model has five parameters (three filter time constants, a criterion, 270 

and a noise term). However, it has traditionally been fitted to simultaneity judgments by fixing the 271 

filter time constants based on additional data sets and utilising a two-parameter generalised linear 272 

model. Based on our explorations regarding the recoverability of model parameters, we opted to 273 

build upon a three-core-parameter (plus lapses) fit. We fixed both the second-stage filter time 274 

constant and the visual-filter time constant, but allowed the auditory-filter time constant to vary. 275 

Changing the ratio of time constants for the two unisensory filters generates asymmetry in the 276 

psychometric function (and also a correlated shift in its central tendency) while the noise term 277 
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affects slopes, and the criterion term affects width. The model can be explored via our 278 

aforementioned Shiny App. Example applications of this model include explaining data from a range 279 

of synchrony tasks with stimuli that employ both simple and complex temporal profiles (for example 280 

simultaneity judgments, temporal-order judgments, and various judgments about correlated and 281 

uncorrelated trains of stimuli). The model has also helped provide viable neural loci for the process 282 

of cross-correlating multisensory stimuli (Pesnot Lerousseau et al., 2022) and, with slight 283 

modification, helped explain the effect of visual luminance on simultaneity judgments and temporal-284 

order judgments (Horsfall et al., 2021). 285 

 286 

Testing whether strategy influences the simultaneity function  287 

Having summarised the candidate models, we can now move on to introduce an 288 

experimental manipulation. In previous sections we have alluded to the idea that categorical reports 289 

(for example “simultaneous”) might be generated by applying decision criteria to underlying 290 

perceptual representations that are continuous. The underlying representation could be an arrival-291 

time difference (as assumed in the AT-A-GLANCE and ELA models) or a cross-correlation of filtered 292 

inputs (as per the MCD model). Conscious experience could reflect these continuous quantities, but 293 

making binary decisions would require that the underlying representation is categorised using some 294 

rule. 295 

However, experience of simultaneity may be truly discrete, such that when stimuli are 296 

(intrapsychically) close enough in time, or lead to a strong enough simultaneity signal, perception 297 

becomes categorically “synchronous” without further nuance (e.g.  Venables, 1960). The mind would 298 

be like a teacher who, having recorded that a student scoring over 80 receives an A grade, then 299 

shreds the test, losing the exact score. To extend the analogy – the cut point for this decision (a 300 

score of 80) is not optional, but has been imposed by an exam board. We refer to this kind of 301 



14 
 

mechanism as a hard or structural threshold. Presumably, in the brain it would depend on 302 

thresholding mechanisms such as the synapse. 303 

It is straightforward to test whether the criteria applied to the simultaneity-judgment task 304 

when participants first walk into the laboratory are hard thresholds of this kind. We can do it, for 305 

example, by introducing a condition in which participants are asked to reduce their use of the 306 

simultaneous response option (Yarrow, 2018). The models that we have described include 307 

parameters which could be allowed to change in such a condition in order to represent a change of 308 

decision criteria. This is illustrated by the dashed black lines in Figure 1 parts d-f. 309 

But how would we know that decision criteria had really changed, rather than merely 310 

seeming to change as an artefact of fitting an inappropriate model to data? The answer involves 311 

predicting what would happen if thresholds obtained at baseline remained hard. With a “be 312 

conservative” instruction encouraging a limited number of synchronous responses over the many 313 

trials of the experiment, observers would sometimes need to report asynchrony despite perceiving 314 

synchrony. The result would be a proportional reduction of the predicted psychometric function 315 

(Figure 1 d-f, dotted grey lines). It is straightforward to embed such an account in an observer 316 

model, as an alternative parameter that can change in conservative conditions instead of decision 317 

criteria. 318 

One concern with such an approach would be that it involves comparing two variants of an 319 

observer model, and such models are mere approximations of reality. For this reason, we 320 

additionally consider a test of the hard-threshold account that does not depend on any particular 321 

observer model. To this end, we can reframe how we visualise the data. Rather than plotting 322 

proportion judged synchronous in both baseline and conservative conditions against SOA (as per 323 

Figure 1 panels d-f) we can consider proportion judged synchronous in the conservative condition as 324 

a function of proportion judged synchronous in the baseline condition (Figure 1g). If the thresholds 325 

obtained at baseline are structural, any proportional reduction in judgments of synchrony in the 326 
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conservative condition (occurring as a result of inferring a need to report asynchrony on a random 327 

subset of trials categorically perceived as synchronous) would then translate to predicting a function 328 

that is linear on these axes. It would have an intercept of zero and slope equal to the proportional 329 

reduction from baseline to conservative conditions.   330 

We now have all the background required to frame our current approach and predictions. In 331 

our experiment, participants will initially make simultaneity judgments with limited instruction. This 332 

condition evaluates typical/free behaviour when faced with the simultaneity-judgment task. Next, 333 

participants will be asked to “be conservative”. For good measure, we will include a final condition in 334 

which the instruction is revoked, so as to seek evidence that any changes really were a result of the 335 

conservative instruction, rather than, say, practice or fatigue. 336 

First, we will test for an anticipated violation of linearity in the function predicting 337 

proportion judged synchronous in the conservative condition from proportion judged synchronous 338 

in the baseline condition. Next, for each of the three simultaneity-judgment models we have 339 

outlined, we will fit two multilevel model variants to data from all participants and all conditions at 340 

once. In the first, parameters relating to decision criteria will be allowed to vary across conditions. In 341 

the second, a hard-threshold account will be implemented by instead introducing multiplicative 342 

change parameters. We anticipate better fits (when taking into account the number of model 343 

parameters) for the former model variants compared to the latter, which would further support the 344 

idea that simultaneity judgments are in part strategic. We will also compare goodness of fit across 345 

our three types of simultaneity-judgment model (AT-A-GLANCE, ELA, and MCD).  Few if any 346 

comparisons of this type exist, so we are interested to see which of these models provides a 347 

prediction that is closest to our data, and thus receives greatest support.  348 

  349 
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Method 350 

Participants  351 

This study comprises a secondary analysis of data published previously as a pre-print 352 

(Yarrow & Roseboom, 2017). An opportunity sample of twenty observers, all naïve to the 353 

experimental purpose, participated in early 2017. Written informed consent was acquired from all 354 

participants prior to the experiment, which was approved by the University of Sussex ethics 355 

committee. Participants received £5 per hour or course credit as compensation for their time. 356 

Demographics were not retained with the dataset, but the sample was recruited from the same 357 

predominantly undergraduate student panel, at around the same time, as that reported in 358 

Roseboom (2019), which contained 60% females with a mean age around 22 (SD 5) years. 359 

The current work addresses both the originally intended research question (the effect of 360 

strategy on simultaneity judgments), but via a more comprehensive analysis, and an additional 361 

research question (by comparing different models of the simultaneity judgment). To our knowledge, 362 

the most relevant prior observation regarding the effect of strategy came from a single-case study 363 

(subsequently described in Yarrow, 2018). This indicated an effect that was large in absolute terms 364 

but, with N = 1, could not be normed to a standardised measure of effect size. Hence the sample size 365 

was selected (prior to the initiation of data collection) based on prevailing norms for simultaneity-366 

judgment studies with similar designs. Data from one participant were not included in the final 367 

analysis (see data analysis, below). For a paired-samples t-test, the remaining N = 19 participants 368 

yield a-priori power of 91% to detect a large (Cohen’s d = 0.8) effect size (at two-tailed alpha = .05). 369 

With regard to our second research question, relating to model comparison, we provide data 370 

relevant to evaluating power in Appendix E, where 5/6 simulations (using our sample size) yielded a 371 

significant difference between the generative model and each of the non-generative models.  372 

 373 
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Apparatus and stimuli 374 

Participants sat in a quiet, bright room. Visual stimuli were displayed on either an Iiyama 375 

Vision Master Pro 203 or LaCie Electron 22 Blue II monitor, both with a resolution of 1024 x 768 376 

pixels and refresh rate of 100 Hz. The monitor was positioned at a viewing distance of approximately 377 

57 cm. Audio signals were presented binaurally through Sennheiser HDA 280 PRO headphones. 378 

Stimulus generation and presentation was controlled through Psychtoolbox 3 (Brainard, 1997) run in 379 

MatLab (Mathworks, USA) on a desktop PC. Participants responded using the computer keyboard.  380 

Visual events were luminance-modulated Gaussian blobs (σ = 1.5 degrees of visual angle 381 

(dva)) displayed against a grey background (approximately 38 cd/m2). Peak blob luminance was 382 

approximately 76 cd/m2. A fixation square (white, approximately 76 cd/m2, subtending 0.25 dva) 383 

was presented centrally. The Gaussian blob was centred 3 dva above the fixation square. The visual 384 

stimulus was presented for one frame approximating 10 ms in duration. Auditory signals were a 10 385 

ms amplitude pulse of 1500 Hz sine-wave carrier at approximately 55 db SPL.   386 

 387 

Design and procedures 388 

The experiment consisted of six sessions. Each took approximately seven minutes to 389 

complete. In each session, participants were presented with a sequence of 135 audio-visual 390 

presentations. Each presentation consisted of visual and auditory events presented with one of nine 391 

pseudo-randomly interleaved stimulus-onset asynchronies (SOAs; ∆𝑡 ∈392 

{−400 ms, −200 ms, −100 ms, −50 ms, 0, 50 ms, 100 ms, 200 ms, 400 ms}, where positive values 393 

indicate visual stimulus before audio). Each SOA was presented 15 times and preceded by a uniform-394 

random period between 500 ms and 1500 ms. Participants were required to provide an unspeeded 395 

response as to whether the auditory and visual events had occurred at the same time 396 

(synchronously; up cursor key) or not (asynchronously; down cursor key).  397 
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For the first two experimental sessions (270 trials), these were the only instructions given. 398 

Before the third and fourth experimental sessions, participants were told: “Be conservative in your 399 

responses. Only press the ‘synchrony’ key if you are certain”. No further guidance was given. 400 

Following these two sessions, participants completed two further experimental sessions without any 401 

limitations on their responses – the same as the first two sessions completed. 402 

 403 

Data analysis 404 

Modelling approach and software 405 

We opted to apply Bayesian multilevel models, which we consider the most principled way 406 

to treat these data and test our hypotheses. In recent years, multilevel models have seen 407 

widespread advocacy and adoption across diverse fields including neuroscience (Aarts et al., 2014) 408 

and psychology (Barr et al., 2013). This includes the active promotion of their use to analyse data 409 

from psychophysical tasks (e.g.  Moscatelli et al., 2012). For standard (sigmoidal) psychometric 410 

functions, packages such as the Palamedes toolbox (Prins & Kingdom, 2018) offer multilevel 411 

approaches “off the shelf”. However, we are not aware of any such option for those interested in 412 

modelling simultaneity judgments. We therefore fit Bayesian multilevel models using the Stan 413 

programming language interfaced from R (R Core Team, 2021) via the RStan package (Stan 414 

Development Team 2020; 2022). We share our commented code (see Transparency and Openness 415 

subsection, below) as a potential template for other researchers interested in developing bespoke 416 

multilevel analyses of their own data. Additional R packages including shinystan and LOO were used 417 

to diagnose and evaluate models. We fit models using four chains, each exploring the likelihood 418 

surface via the default Hamiltonian Monte-Carlo no U-turn sampling (HMC NUTS) algorithm, which 419 

retains samples in proportion to the height of the posterior distribution, and thus estimates it. All 420 

our reported model fits use 1000 warmup iterations followed by 10,000 post-warmup iterations per 421 

chain. 422 
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Initial data formatting 423 

Prior to further analysis, we excluded one participant because their adjustment to the 424 

instruction to “be conservative” was to significantly increase their use of the synchronous response 425 

(198/270 vs. 152/270, χ2[1] = 17.98, p <.001), suggesting they had misunderstood the instruction. 426 

Data from the remaining 19 participants were summarised as proportion judged simultaneous at 427 

each SOA and in each condition. We passed dummy codes for the conservative condition and the 428 

post-conservative (rebound) condition to our models, such that the initial uninstructed condition 429 

became the baseline for pairwise comparisons.  430 

Assessing group changes across conditions, comparing hypotheses, and considering individual 431 

participants 432 

In our model-based analyses, we utilised three classes of multilevel simultaneity-judgment 433 

model, each with two variants: A strategic variant which allows one or more parameters that 434 

represent participants’ decision criteria to change across experimental conditions, and a hard-435 

threshold variant which instead allows the psychometric function to show proportional reduction. 436 

This proportional reduction mimics an attempt to reduce use of the simultaneous response option 437 

when all stimuli judged simultaneous give rise to the exact same perceptual experience, as the only 438 

option for the participant would then be to reply “asynchronous” at random to some stimuli they 439 

perceived as synchronous. Full mathematical details of the models are provided in Appendix A.  440 

These models all incorporate parameters that are conceptually akin to regression 441 

coefficients as they quantify the effect of our experimental conditions. They are hence termed 𝛽. In 442 

assessing whether behaviour changes in the conservative and rebound conditions relative to 443 

baseline we are therefore essentially asking whether the group means of the relevant 𝛽 coefficients 444 

differ from either zero or 1.0 – the values that would imply no change from baseline for models of 445 

the strategic and hard-threshold accounts, respectively. In a multilevel model, the group mean of 446 

individual 𝛽 coefficients is already estimated as part of the model-fitting process. Hence, in the 447 
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Bayesian case, the comparison of this value against zero or 1.0 can be achieved by examining the 448 

posterior distribution for the group-level mean (𝜇β) coefficients. We provide statements of 449 

significance similar to frequentist null-hypothesis testing based on whether the 95% credible interval 450 

contains 0 or 1. 451 

We also incorporated posterior predictive checks (Lambert, 2018). The posterior predictive 452 

distribution of any one of our 𝛽 coefficients tells us what we can expect for future participants, and 453 

in combination with its standard error (which equals its SD √N⁄ ) it can provide an alternative means 454 

of evaluating differences from 0 or 1, via a single-sample t-test.2 We also used a posterior predictive 455 

check to evaluate the fit of individual participants by calculating a Bayesian P value (Lambert, 2018) 456 

representing the proportion of samples for which the likelihood of each participant’s actual data was 457 

lower than that for a random binomial draw conditioned on model parameters. If the model is 458 

correct for an individual, this Bayesian P value should be around .5, with higher values indicating 459 

overdispersion and therefore a potentially incomplete or erroneous model. This is conceptually 460 

similar to the frequentist approach of comparing deviance of model fit to a chi-square distribution. 461 

Finally, we wished to compare the two model variants (for each class of simultaneity-462 

judgment model) to one another in order to evaluate which of our hypotheses received greater 463 

support. We can estimate a model’s out-of-sample goodness of fit via leave-one-out cross validation, 464 

but this is very time consuming. Hence, we instead used an estimate of leave-one-out cross 465 

validation via Pareto smoothed importance sampling (Vehtari et al., 2017), known as PSIS-LOO. This 466 

measure is based on the log-likelihood of the model given the data, but utilises the full posterior 467 

distribution of parameter values in estimating goodness of fit, and corrects for the number of model 468 

parameters in a more nuanced fashion than better-known metrics such as the Akaike and deviance 469 

information criteria (AIC, DIC). 470 

                                                           
2 At least as long as a consideration of its shape and the sample size N suggests that the sampling distribution 
of its mean will likely be normal, via the central limit theorem. 
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PSIS-LOO was estimated and compared between model variants (and indeed between 471 

classes of model) using functions from the R package, LOO, and z tests (which are based on the 472 

difference between models in units of the standard error of this difference). Although PSIS-LOO can 473 

be multiplied by -2 to give an AIC-like value where low is best, we don’t bother to apply this 474 

transform, so report negative values, where higher is better. PSIS-LOO for the whole model is found 475 

by summing log likelihood estimates for each data point. The LOO package provides diagnostics and 476 

outputs which together indicate the number and positions of data points for which the PSIS-LOO 477 

estimate is potentially inaccurate. We therefore replaced a small number of data points considered 478 

“very bad” (Pareto k value > 1.0) via direct leave-one-out cross validation, and also report the 479 

number of estimates considered “bad” (Pareto k > 0.7), which we elected not to replace due to the 480 

heavy computational demands of doing so. 481 

Transparency and Openness 482 

We report how we determined our sample size, all data exclusions, all manipulations, and all 483 

measures in the study. This study’s design and its analysis were not pre-registered. All analysis code 484 

and data, including shiny apps, is permanently available at 485 

https://city.figshare.com/articles/software/Code_and_data_accompanying_The_best_fitting_of_thr486 

ee_contemporary_observer_models_reveals_how_participants_strategy_influences_the_window_o487 

f_subjective_synchrony_/20495652.  488 

  489 

https://city.figshare.com/articles/software/Code_and_data_accompanying_The_best_fitting_of_three_contemporary_observer_models_reveals_how_participants_strategy_influences_the_window_of_subjective_synchrony_/20495652
https://city.figshare.com/articles/software/Code_and_data_accompanying_The_best_fitting_of_three_contemporary_observer_models_reveals_how_participants_strategy_influences_the_window_of_subjective_synchrony_/20495652
https://city.figshare.com/articles/software/Code_and_data_accompanying_The_best_fitting_of_three_contemporary_observer_models_reveals_how_participants_strategy_influences_the_window_of_subjective_synchrony_/20495652
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Results 490 

Non model-based assessment of the hard-threshold account 491 

Figure 2 shows data from the first two conditions of the experiment averaged across 492 

participants in two different formats – firstly (panel a) with proportion judged synchronous plotted 493 

separately for the baseline and conservative conditions as a function of the time between the visual 494 

and auditory stimuli (SOA), and secondly (panel b) with proportion judged synchronous in the 495 

conservative condition plotted as a function of proportion judged synchronous in the baseline 496 

condition.  497 

 498 

Figure 2. Non SJ-model-based test of the hard-threshold account, focussing on data from the baseline 499 

and conservative conditions. (a) Error bars show ±2.1 standard errors around the group mean. (b) 500 

Size of data points reflects number of participants contributing to each. See main text for further 501 

details. 502 

 503 

From Figure 2 panel a, it appears that participants reduced their use of the synchronous 504 

response option when asked to “be conservative”, but not in a manner that was proportional across 505 

stimulus-onset asynchronies. This is confirmed in panel b, where open circles show the group-mean 506 
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data. It was produced based upon one x/y pair for each SOA and participant (so 19x9 data points in 507 

all) from which values with the same baseline proportion judged synchronous were first averaged 508 

for each participant, and then across the group. The dashed grey line shows the prediction if there is 509 

no reduction in use of the synchronous response. The solid grey line shows the linear prediction for a 510 

proportional reduction. This is expected if participants experienced categorical percepts based on an 511 

identical hard threshold in the two conditions, but “be conservative” instructions led them to 512 

respond “synchronous” on only a random subset of their synchronous percepts. 513 

A linear prediction equates to predicting a power function with an exponent of 1. We 514 

therefore sought evidence to reject this null hypothesis by fitting a multilevel model with a zero 515 

intercept, but fixed and random effects for both slope and, critically, the exponent of the power 516 

function. This specification allows variation in both slope and exponent for each participant.3 It 517 

yielded an estimated group-mean exponent of 1.58 (solid black line in Figure 2b) with a credible 518 

interval (1.33-1.85) that did not include 1. This result provides grounds to reject the hard-threshold 519 

account. We next moved to more fully characterise our data via three observer models of 520 

simultaneity-judgment behaviour, starting with AT-A-GLANCE. 521 

The AT-A-GLANCE model  522 

The AT-A-GLANCE model posits audio and visual signals propagating toward a decision hub, 523 

each having Gaussian latency noise. Their subjective difference in arrival times is then categorised 524 

using a pair of decision criteria that vary randomly from trial to trial. We fit a multilevel “criterial” 525 

variant of the AT-A-GLANCE model to behaviour in all three conditions at once. Multilevel models 526 

add a set of group-level parameters to a “heterogeneous” foundation (essentially, a single-level 527 

model fitted to each participant). In this case, the heterogeneous foundation specifies a binomial 528 

                                                           
3 We used a binomial data model, so very slightly corrected the prediction (to be, at the individual level, y = 
0.00001+0.99999*slope*xexponent) to ease likelihood calculations where the model would otherwise predict a 
be conservative p(“synchronous”) of zero. This multilevel model assumed Gaussian-distributed group-level 
parameters (with (improper) uniform hyperpriors for the group’s means and standard deviations). 
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distribution (with 30 trials) for the number of “simultaneous” responses (𝑆𝑋∆𝑡) from each participant 529 

in each condition (𝑋 = B, 𝑋 = C, and 𝑋 = R, for baseline, conservative, and rebound conditions, 530 

respectively) with each objective SOA (∆𝑡): 531 

(1) 𝑆𝑋∆𝑡~𝐵(30, 𝑙 + 𝑝𝑋∆𝑡 − 𝑙𝑝𝑋∆𝑡), 532 

where 𝑙 is a free parameter representing (half) the lapse rate with which a participant is distracted 533 

and therefore guesses a response and 534 

(2) 𝑝𝑋∆𝑡 = Φ [
∆𝑡−𝜏+𝛽𝜏𝑋𝐷𝑋−exp(𝛽𝛿𝑋𝐷𝑋)∆𝛿 2⁄

𝜎L
] − Φ [

∆𝑡−𝜏+𝛽𝜏𝑋𝐷𝑋+exp(𝛽𝛿𝑋𝐷𝑋)∆𝛿 2⁄

exp(𝑚)𝜎L
]. 535 

In Equation 2 exp is the exponential function, Φ is the standard normal cumulative 536 

distribution function, and 𝐷𝑋 is a “dummy” or indicator variable that equals 1 if and only if 𝑋 = C or 537 

𝑋 = R. The remaining 8 symbols (𝜏, ∆𝛿, 𝛽𝜏C, 𝛽𝜏R, 𝛽𝛿C, 𝛽𝛿R, 𝜎L, and 𝑚) are all free parameters 538 

described below. That makes 9 free parameters for each of 19 participants; a total of 171 for the 539 

group as a whole. 540 

In this model, the 𝜏 and ∆𝛿 parameters capture the midpoint and width (respectively) of 541 

each participant’s psychometric function. They provide an alternative (and mathematically 542 

equivalent) way of describing the positions of two decision criteria (because ∆𝛿 is the distance 543 

between these criteria, which are centred on 𝜏). Hence, our hypothesis that decision criteria vary 544 

with task instructions can be tested by allowing these two parameters to vary across conditions. For 545 

this purpose, four parameters, 𝛽τC, 𝛽τR, 𝛽δC and 𝛽δR, represent changes between conditions 546 

(compared to baseline) with the first subscript representing the parameter being adjusted and the 547 

second representing the Conservative and Rebound conditions. The 𝜎L and 𝑚 parameters describe 548 

noise affecting the left flank of the psychometric function, and the noisiness of the right flank 549 

relative to the left flank (𝑚 of 0 indicating an identical magnitude of noise), respectively. Like the 550 

lapse-rate parameter 𝑙, these final two parameters were assumed constant across experimental 551 

conditions.  552 
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For our second “hard-threshold” AT-A-GLANCE model variant, the four parameters 553 

permitting changes across conditions were replaced with just two (𝛽C and 𝛽R), each describing a 554 

proportional reduction in the number of trials judged synchronous for a given condition. 555 

For both variants, our multilevel models additionally estimated random variation across the 556 

group via group-level distributions from which the individual-level parameters were drawn. This 557 

required a further 17 (or 13) parameters (for criterial and hard-threshold variants, respectively). For 558 

example, we estimated, for the Gaussian group-level distribution of individual 𝜏 parameters, a group 559 

mean (𝜇𝜏) and standard deviation (𝜎𝜏). Similarly, for the group-level distribution of changes in 𝜏 from 560 

the baseline to the conservative condition, we estimated a further group mean (𝜇τC) and standard 561 

deviation (𝜎τC). Full details are provided in Appendix A (with group-level distributions visualised in 562 

Appendix C). 563 

We carried out a number of checks to verify that our modelling procedures were sensible. 564 

These indicated that AT-A-GLANCE’s posterior likelihood surface was recovered adequately 565 

(Appendix B). Furthermore, our design choices for priors and hyperpriors did not appear to exert 566 

untoward influence on our conclusions (Appendix C). Finally, we were able to successfully recover 567 

parameters for simulated data (Appendix D).   568 

Figure 3 presents the fit of the criterial AT-A-GLANCE multilevel model for all participants in 569 

all three conditions. Assessed by eye, the model appears to be capturing the data well, including 570 

trends across conditions in response to changes of instruction. 571 
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 572 

Figure 3. Predictions (based on means of posterior parameter distributions) for the AT-A-GLANCE 573 

(criterial-variant) model, alongside data, for all 19 participants in all three conditions of the 574 

experiment (Baseline, Conservative, and Rebound). Exclusively in the Baseline condition, red 575 

background shading has been added to represent 1000 samples from the full posterior (each plotted 576 

with high transparency) in order to illustrate uncertainty in the model prediction, and error bars 577 

(which represent 95% binomial confidence intervals) have been added to illustrate uncertainty in the 578 

data. 579 
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Table 1 summarises the two variants of each of our three models. Focussing on the first two 580 

rows, we can see that goodness of model fit, quantified by the PSIS-LOO metric, is better (i.e. PSIS-581 

LOO is higher) for the multilevel variant of AT-A-GLANCE that allows criteria to change across the 582 

three conditions (illustrated in Figure 2) than for the alternative hard-threshold variant, which 583 

assumes that the categorical boundaries demarcating judgments of synchrony from asynchrony 584 

cannot be changed at will. 585 

Table 1. Summary of models. 586 

Model <              Parameters               > <                 Goodness of fit              > 

 Total Group-level changes 
from baseline condition 

captured using: 

PSIS-
LOO 

% Pareto 
k 0.7-1 

N dispersion P 
> .95 

AT-A-GLANCE 
criterial 

188 
𝜇τC, 𝜎τC, 𝜇τR, 𝜎τR 
𝜇δC, 𝜎δC, 𝜇δR, 𝜎δR 

-1071.2 2.5 1 

AT-A-GLANCE 
hard threshold 

146 𝜑C, 𝜆C,𝜑R, 𝜆R -1129.1 1.2 6 

ELA criterial 188 
𝜇τC, 𝜎τC, 𝜇τR, 𝜎τR 
𝜇δC, 𝜎δC, 𝜇δR, 𝜎δR 

-1115.9 4.5 3 

ELA hard 
threshold 

146 𝜑C, 𝜆C,𝜑R, 𝜆R -1155.5 1.6 5 

MCD criterial 125 
𝜇CC, 𝜎CC, 𝜇CR, 𝜎CR 

 
-1156.7 1.6 6 

MCD hard 
threshold 

125 𝜑C, 𝜆C,𝜑R, 𝜆R -1152.5 1.8 4 

 587 

PSIS-LOO is similar to better-known metrics such as AIC in that it approximates a model’s 588 

out-of-sample predictive capability (specifically the log-likelihood that would be obtained via leave-589 

one-out cross validation). Like all such approximations, it depends on assumptions. For PSIS-LOO 590 

(unlike many alternatives) assumptions are conveniently tested alongside its calculation. They are 591 

violated when data points yield a high value of a metric called Pareto k. We therefore directly 592 

determined leave-one-out log likelihood for data points with very worrisome values of Pareto k 593 

(above 1), and also report the percentage of somewhat worrisome data points (Pareto k 0.7-1) as a 594 
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guide to possible error in the PSIS-LOO approximation. Table 1 indicates that any such error was 595 

small.4 596 

We can therefore reasonably compare PSIS-LOO values between the two model variants 597 

that formalise different theories regarding how participants respond to instructions across our three 598 

experimental conditions. The difference in PSIS-LOO of 57.9, with a standard error of 19.9, implies 599 

that the criterial AT-A-GLANCE model fits the data considerably better (frequentist two-tailed z test, 600 

z = 2.91, p = .004). This gives us confidence to assert the following: If AT-A-GLANCE is a reasonable 601 

approximation of the processes underlying synchrony judgments, participants generally seem able 602 

to make adjustments to a pair of internal criteria for simultaneity in order to moderate their use of 603 

the synchronous response. 604 

Some evidence that criterial AT-A-GLANCE is in fact a plausible account of these data (in an 605 

absolute sense) comes from considering our Bayesian P values. These quantify, for each participant, 606 

the degree of overdispersion (meaning residual errors greater than implied by the format of the 607 

data, so here, higher than a binomial distribution would be expected to yield).5 As indicated in Table 608 

1, for the criterial model, only one out of 19 participants had a Bayesian P value above .95, which is 609 

around the chance expectation if the model is correct. However, for the hard-threshold model, 6 610 

participants showed overdispersion of this magnitude. 611 

In Figure 4, we plot results from a subset of four participants – those showing the lowest and 612 

highest overdispersion, so effectively the best and worst fits, for each of the two different variants of 613 

the AT-A-GLANCE multilevel model. The hard-threshold model cannot capture a common pattern in 614 

                                                           
4 The AT-A-GLANCE criterial model’s estimate of leave-one-out log likelihood may be slightly off (with 2.5% of 
data points showing Pareto ks of 0.7-1), but when we directly determined leave-one-out log likelihood for 
values of Pareto k above 1, the maximum error we observed (compared to the PSIS-LOO approximation) across 
all such data points and all of our models was only around 18%. Data points with Pareto k values of 0.7-1 
should, if anything, be better estimated than this, suggesting a misestimation of less than 18% occurring for 
2.5% of the overall estimate, implying a fairly small error. For the AT-A-GLANCE hard-threshold model, the 
error should be even lower. 
5 Technically, our Bayesian P values are the proportion of posterior samples for which the data are more 
dispersed than a random draw based on the model. 
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which the psychometric function contracts inwards from one or both sides (participants 10, 19, and 615 

several others not shown in Figure 4). The criterial model struggles only with a rarely observed 616 

pattern in which the psychometric function shrinks downwards (participant 15). 617 

 618 

Figure 4. Predictions (based on means of posterior parameter distributions) for both variants of the 619 

AT-A-GLANCE model, alongside data, for four illustrative participants in all three conditions. Green 620 

text denotes the best-fitting participant for a given model, while red text denotes the worst-fitting 621 

participant. Exclusively in the Baseline condition, red background shading has been added to 622 
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represent 1000 samples from the full posterior (each plotted with high transparency) in order to 623 

illustrate uncertainty in the model prediction, and error bars (which represent 95% binomial 624 

confidence intervals) have been added to illustrate uncertainty in the data. 625 

We can also consider exactly how the parameters of the significantly more successful 626 

criterial variant of the AT-A-GLANCE model have changed across the three experimental conditions. 627 

Two parameters were allowed to change. The first, 𝜏, describes the point midway between decision 628 

criteria, and is comparable with the commonly reported “point of subjective simultaneity”. In the 629 

baseline condition, the mean of its group-level distribution (𝜇τ) was 32 ms (95% credible interval 10 630 

to 55). This implies a group-average bias to report simultaneity more when sound lags light than vice 631 

versa (individual values for all participants can be seen in Appendix C Figure C1a). However, this bias 632 

was reduced in the conservative condition (relative to baseline). The mean of the distribution 633 

describing changes in psychometric function central tendency (𝜇τC) was -23 ms (95% credible 634 

interval -35 to -12). This implies a statistically compelling leftward shift of the psychometric function, 635 

and highlights how estimates of the point of subjective simultaneity can be affected by participant 636 

response strategy. Importantly, we also observed that the mean of the distribution describing 637 

changes in psychometric function width (𝜇δC) was -0.65 (credible interval -0.80 to -0.50; see also 638 

Appendix C Figure C1f). This implies a horizontal contraction of participants’ psychometric functions 639 

from baseline to conservative conditions which was statistically compelling. For the 𝜇δC coefficient, 640 

exponentiation provides more meaningful units: The distance between decision criteria has changed 641 

(shrunk) by an average factor of 0.52. This means that participants are making simultaneous 642 

responses for a reduced range of audio-visual timings.6  643 

Changes in position and width can also be re-expressed in terms of the individual positions 644 

of each of two decision criteria, which determine which subjective SOAs will be categorised as 645 

                                                           
6 Posterior predictive checks provide near-identical estimates for the mean shift and contraction, and also 
offer a route to a frequentist test of statistical significance (one-sample t-tests vs. 0; t = 6.72 and t = 8.55 
respectively, df = 18, both p < .001).For these and the equivalent t-tests reported subsequently, effect sizes 
can be easily determined if required as Cohen’s d = t/√19. 
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simultaneous. Both have moved inwards in the conservative condition, but this change is less 646 

pronounced for the low criterion. It showed an average shift of +70 ms, but with a credible interval 647 

from -11 ms to 326 ms that hence includes zero. The high criterion showed an average shift of -115 648 

ms (credible interval -373 ms to -33 ms). Regardless of how the criteria have been parameterized, 649 

their shifts suggest that participants appropriately adjusted their decision-making strategies in 650 

accordance with the instructions to be more conservative. More specifically, participants made more 651 

of an adjustment regarding how light-leading stimuli should be classified compared to how sound-652 

leading stimuli should be classified. 653 

In the rebound condition, relative to baseline, a less pronounced version of the same pattern 654 

emerged. The psychometric function shifts left (𝜇τR = -9 ms, credible interval -20 to 2 ms) and 655 

contracts (𝜇δR = -0.17, credible interval -0.09 to -0.26) by a factor of 0.84.7 This is equivalent to mean 656 

changes to the low and high criteria of 23 ms (credible interval -29 to 98 ms) and -43 ms (credible 657 

interval -116 to 20 ms) respectively. As these changes are relative to baseline, this suggests that 658 

participants did not completely revert back to their original lax decision criteria. 659 

The ELA and MCD models  660 

In addition to the above-described results for the AT-A-GLANCE model, we tested two 661 

further models of the synchrony judgment: ELA, which is similar to AT-A-GLANCE but assumes 662 

exponential latency noise and stable decision criteria, and MCD, which infers simultaneity from 663 

overlap in neural responses, rather than arrival times at a neurocognitive hub. Mathematical details 664 

appear in Appendix A. Returning to Table 1, it is apparent that the AT-A-GLANCE criterial-model 665 

variant shows substantially better goodness-of-fit metrics compared to all other models. A statistical 666 

comparison suggests that these differences are meaningful. We focus on the generally better-667 

performing criterial variants of each class of model. A difference in PSIS-LOO of 44.7 (with a standard 668 

                                                           
7 Posterior predictive tests yielded one-sample t = 2.25, df = 18, p = .037, and t = 4.76, p < .001, for 𝜇τR and 𝜇δR 
respectively. 
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error of 14.6) implies that the criterial AT-A-GLANCE model fits the data considerably better than the 669 

criterial ELA model (frequentist two-tailed z test, z = 3.06, p = .002). The difference was even more 670 

striking for criterial AT-A-GLANCE versus criterial MCD (PSIS-LOO difference = 85.5, SE 20.5, z = 4.17, 671 

p < .001). Criterial MCD also performing somewhat badly relative to criterial ELA (PSIS-LOO 672 

difference = 40.8, SE 21.9, z = 1.86, p = .062).8 As a methodological check (and test of model 673 

mimicry), we investigated, via simulation, the extent to which the PSIS-LOO metric would have 674 

favoured any of our three models in the case where that model was the true data-generating model 675 

(Appendix E). AT-A-GLANCE seemed better able to mimic ELA than vice versa, but yielded 676 

significantly better PSIS-LOO only when it was the true model, and was on average worse when it 677 

was not. The MCD model was beaten convincingly by both AT-A-GLANCE and ELA when they were 678 

generative and it was not, but also significantly outperformed them when it was the generative 679 

model. These findings imply that the correction for model complexity built into PSIS-LOO worked as 680 

intended in the current context. 681 

Because both ELA and MCD provided significantly less compelling descriptions of the data 682 

relative to AT-A-GLANCE, we will spend less time describing their detailed results. However, Figure 5 683 

provides some insights into why these models performed less well. The figure plots fits from all 684 

three classes of model (specifically their criterial variants) for the subset of participants for whom 685 

any model particularly struggled (those with overdispersion Bayesian P values >.95, cf. Table 1).  686 

                                                           
8 Given that the MCD model’s hard-threshold variant had a higher PSIS-LOO than its criterial variant, it may be 
fairer to compare against this value. Here, the difference compared to criterial variants of AT-A-GLANCE and 
ELA was significant (p = .001) and non-significant (p = .204) respectively. 
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 687 

Figure 5. Predictions (based on means of posterior parameter distributions) for the criterial variant of 688 

the AT-A-GLANCE, ELA and MCD models, alongside data, for seven illustrative participants in all three 689 

conditions. Red text denotes that data were overdispersed (Bayesian P > .95) for that 690 

participant/model. Exclusively in the Baseline condition, red background shading has been added to 691 

represent 1000 samples from the full posterior (each plotted with high transparency) in order to 692 
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illustrate uncertainty in the model prediction, and error bars (which represent 95% binomial 693 

confidence intervals) have been added to illustrate uncertainty in the data. 694 

Figure 5 illustrates that, in general, the MCD model had a difficult time accounting for those 695 

participants whose conservative adjustment was more notable for sound-lagging than for sound-696 

leading stimuli (for example participant 10). Problems with ELA are trickier to characterise, but seem 697 

to reflect constraints on the exact shape of the psychometric function, particularly relating to some 698 

participants’ poor performance at sound-lags-light SOAs (for example participant 18).  699 

For the ELA class of model, like AT-A-GLANCE, the criterial variant showed better goodness 700 

of fit compared to the hard-threshold variant. However, the difference in PSIS-LOO (39.6, with a 701 

standard error of 26.9) was not statistically compelling (z = 1.47, frequentist two-tailed p = .141). For 702 

the MCD model, the trend actually reversed (with the hard-threshold variant outperforming the 703 

criterial variant) although the magnitude of the difference was very small in relation to estimation 704 

error (PSIS-LOO difference 4.2, SE 25.3, z = 0.17, p = .868). However, because AT-A-GLANCE provided 705 

a significantly better overall account of the data, and agreed with our non-model-based test (see 706 

section Non model-based assessment of the hard-threshold account), we give priority to that model 707 

when interpreting differences between model variants in relation to our experimental hypothesis. 708 

  709 
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Discussion 710 

In this paper, we have presented data from an experiment requiring judgments about the 711 

simultaneity of audio-visual pairs. Participants made these judgments under conditions that either 712 

let them freely decide how to behave, or encouraged them to be conservative in their use of the 713 

simultaneous response option. Data were then fitted with two variants of each of three multilevel 714 

observer models of simultaneity judgments. The two variants of each model represented different 715 

hypotheses about how participants would attempt to address the experimental instruction. If 716 

flexible criteria exist and determine which subjective stimulus patterns are classified as 717 

simultaneous, participants would be expected to adjust those criteria when asked to be 718 

conservative. If no such criteria were being applied in the first place, consistent with truly binary 719 

perceptual experiences arising from some hard neurocognitive thresholding mechanism, participants 720 

would have two choices. They might either fail to adjust their behaviour at all, or sometimes respond 721 

“non-simultaneous” even to perceptually compelling experiences of simultaneity in order to meet 722 

experimental demands. 723 

Our first observation is that of the three classes of model that we tested, AT-A-GLANCE 724 

(Approximation to a Gaussian Latency Independent Noisy Criteria Equation; Yarrow et al., 2011), a 725 

variant of the general-threshold family of models (Ulrich, 1987) provided the best account of the 726 

data. This is, to our knowledge, the first time a direct comparison between two or more of these 727 

models has been attempted. Given AT-A-GLANCE’s success (in both relative and absolute terms) we 728 

prioritised this model for the evaluation of our experimental hypothesis regarding the existence of 729 

decision criteria. Of AT-A-GLANCE’s two variants, the criterial variant, corresponding with the 730 

hypothesis that participants were applying flexible internal decision criteria in order to categorise 731 

stimuli as simultaneous or not, significantly outperformed the hard-threshold variant. This was in 732 

accord with our non-model-based test, which also provided grounds for rejecting the hard-threshold 733 

account. Differences between the baseline condition and the “be conservative” condition (and, to a 734 
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lesser extent, a subsequent rebound condition) were well accounted for by a shrinking-inwards of 735 

two decision criteria applied to the subjective difference in arrival times between auditory and visual 736 

signals. The movement of the high criterion (that distinguishes simultaneous from sound-lags-light 737 

stimuli) was more pronounced than that of the low criterion (distinguishing simultaneous from 738 

sound-leads-light stimuli). 739 

 740 

AT-A-GLANCE performed better than ELA, but the wider family of models bears further 741 

examination 742 

The most successful of our models, AT-A-GLANCE, has much in common with the second 743 

most successful, ELA (García-Pérez & Alcalá-Quintana, 2012a). Both posit signals propagating 744 

through the brain toward a decision centre and accumulating latency noise in the process, an idea 745 

that has received recent support based on an analysis of simultaneity judgments alongside 746 

recordings of EEG (Yarrow et al., 2022). Furthermore, both posit that judgments of simultaneity arise 747 

when the subjective difference in arrival times at this decision centre falls within a limited window. 748 

The models differ in terms of the forms of latency noise that are envisaged, and whether 749 

simultaneity criteria are viewed as being constant or variable from trial to trial.9 750 

AT-A-GLANCE’s particular combination (Gaussian latency noise and variable criteria) was 751 

more successful than ELA’s (exponential latency noise with fixed criteria) as a description of the 752 

shape of psychometric functions implied by the current data. However, the decision to use 753 

exponential latency noise in ELA appears to have been largely a matter of mathematical convenience 754 

                                                           
9 It is perhaps worth noting at this point that while we have talked rather loosely in terms of decision criteria 
for both AT-A-GLANCE and ELA, on our reading, García-Pérez and Alcalá-Quintana have a philosophical 
preference for the existence of a true hard threshold (which enforces guesses for tasks such as the TOJ). 
However, nothing about the mathematics of their SJ model imposes this interpretation. They have often 
allowed their parameter 𝛿 (which represents half the distance between decision bounds and appears as Δ𝛿 2⁄  
in our notation) to vary in joint fits (for example allowing it to differ between TOJ and SJ tasks). This suggests 
that they may consider at least some judgments of simultaneity to have occurred when a strict (structural) 
hard threshold beneath which perception becomes categorical has not yet been reached. 
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(and gives rise to both a computationally efficient model prediction and a posterior likelihood 755 

surface that is highly amenable to search and characterisation). Meanwhile, AT-A-GLANCE’s use of 756 

Gaussian noise must be strictly incorrect to the extent that it permits propagation times to be 757 

negative. Something in between the two (for example some shifted gamma distribution aside from 758 

the exponential), probably with additional criterion noise, therefore holds conceptual appeal. It 759 

would be plausible when considering the nature of neuronal transmission, and offer the possibility 760 

of separately characterising the noise associated with each stimulus. However, there are practical 761 

issues to consider that make this avenue of research challenging. Model parameters would likely 762 

become more degenerate (meaning it would be more difficult to recover a unique value for each). 763 

There would also be increasingly subtle differences between the psychometric functions that 764 

different blended models would predict.  765 

 766 

AT-A-GLANCE performed better than MCD because of core MCD features that may not be 767 

amenable to a quick fix 768 

The multisensory correlation detector (MCD) model (Parise & Ernst, 2016) is a highly 769 

attractive one. It offers both a lower level of abstraction relative to both AT-A-GLANCE and ELA, and 770 

the promise of immediate application to a wider range of experimental tasks, such as those involving 771 

complex trains of stimuli. However, MCD was markedly less successful in describing our data set. 772 

This might in part be because it does not offer independent mechanisms to affect the central 773 

tendency of the simultaneity function and the relative slopes of its two flanks. However, the more 774 

fundamental problem seems to have been that under the multisensory correlation detector model 775 

the derived decision variable (MCDCorr) effectively throws away information about the sign of the 776 

SOA. Hence any change in the (single) decision criterion that is applied to this signal has similar 777 

effects at both sides of the simultaneity function. In contrast to this, some participants seem to 778 

selectively adjust decisions more for sound-lagging compared to sound-leading stimuli. 779 
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It is difficult to envisage a simple change that might resolve this problem, because it arises 780 

from a core feature of the MCD architecture. Hence, at this point we conclude that an MCDCorr-like 781 

signal cannot be the only source of information determining how participants judge simultaneity in 782 

the simultaneity-judgment task (although it might contribute). In saying this we do however 783 

acknowledge that there could be systemic differences between how timing decisions are made 784 

between different individuals or groups. A focus on group-level summary measures comparing 785 

distinct models might obscure any such differences. 786 

 787 

Interpretations based on simultaneity judgments should bear in mind the task’s criterion-788 

dependent nature 789 

Broadly, there are two mechanisms which might be envisaged as a limit on an observer’s 790 

precision (or on their sensitivity or acuity, which are synonymous terms). The first is internal noise. 791 

The second is an inflexible (hard) thresholding mechanism which irretrievably reduces a continuous 792 

representation regarding a perceptual dimension (for example the timing between two events) to a 793 

categorical one. A key finding from our experiment is that both a non-model-based test and the best 794 

supported model (AT-A-GLANCE) provide converging evidence regarding whether a hard threshold 795 

should be inferred from SJ data. Both favour the alternative idea that judgments of simultaneity are 796 

formed by classifying a continuous underlying signal according to decisional criteria. The fact that 797 

these decisional criteria reverted only partially in the rebound condition suggests that, for many 798 

participants, at least three criterial settings were attainable. It might also imply that the settings 799 

adopted initially had no special/default status. 800 

Such flexibility implies that the width of the simultaneity function tells us mostly about how 801 

conservative or liberal participants are in the application of their decisional criteria regarding the 802 

category “simultaneous”. This account is consonant with a number of findings. For example, a wider 803 

simultaneity function is found when judging synchrony between a sound and a bouncing visual 804 
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display compared to a streaming visual display (Vroomen & Keetels, 2020). Simultaneity function 805 

width is also greater for pairs of stimuli previously encountered as co-occurring compared to pairs 806 

that are novel (Habets et al., 2017). Both the percept of bouncing/causality, and semantic or 807 

probabilistic knowledge about co-occurrence, likely encourage the use of more liberal criteria for 808 

judging simultaneity (see also Roseboom et al., 2009, for increased conservatism caused by temporal 809 

clutter). 810 

It is worth clarifying that our arguments here against a hard-threshold account relate 811 

specifically to the determinants of typical simultaneity-judgment behaviour. They do not rule against 812 

the existence of such a structural threshold within (or above, in the case of the multisensory 813 

correlation detector model) the criterial range that is naturally obtained. The current methodology 814 

might be extended to address this kind of question, or at least to place a limit on the magnitude of 815 

any structural threshold, by forcing ever-more conservative behaviour through stricter rationing of 816 

the simultaneous response option. Ideally, this would be done with highly motivated participants 817 

and closely spaced SOAs.  Such an approach would complement previous attempts to test hard-818 

threshold accounts for relative time. For example, Baron (1971) offered a first and second guess 819 

about which of two synchronous and one preceding stimulus came first, and assessed the degree to 820 

which second guesses (following an initial failure) yielded above-chance performance. That 821 

approach, which focussed specifically on triads of intramodal (visual) stimuli, ruled out certain kinds 822 

of hard-threshold account (Allan, 1975b). These include accounts in which noise in performance 823 

comes relative to a background sampling process (for example the moving moment model of Stroud, 824 

1956). However, it also provided evidence against independent-channels models without any 825 

thresholds. With the addition of appropriate model comparison, it might be used to formally assess 826 

remaining alternatives, such as models with hard (“low”) thresholds accompanied by sensory noise 827 

(Swets et al., 1961). Our results here indicate that if, in the audio-visual case, a hard threshold does 828 

exist alongside sensory noise, the request to simply judge simultaneity (without further constraint) 829 
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does not lead participants to judge synchrony only when that threshold is breached. Hence this 830 

combination of instruction and task does not reveal what that threshold might be. 831 

These findings regarding the important role that decision criteria play stand in contrast to 832 

the widespread interpretation of simultaneity-function width as an unambiguous measure of the 833 

precision of multisensory integration (e.g. Chen et al., 2017; Foucher et al., 2007; Habets et al., 2017; 834 

Hillock et al., 2011; Lee & Noppeney, 2011; Marsicano et al., 2022; Navarra & Fernández-Prieto, 835 

2020; Noel et al., 2017; Scarpina et al., 2016; Stevenson et al., 2014; Zampini et al., 2005). We have 836 

already indicated how our results show that simultaneity-function width in uninstructed baseline 837 

conditions is not a measure of a hard sensory threshold, if indeed one exists. That leaves the 838 

question of whether it is a measure of internal noise. It is plausible, and even predicted by some 839 

accounts of what an optimal observer is trying to do, that there might be a correlation between the 840 

spacing of decision criteria and the noise underlying perception. Sensitivity should often inform 841 

strategy, potentially linking these conceptually distinct measures (Magnotti et al., 2013). However, 842 

researchers should be mindful that any difference between the widths of simultaneity functions 843 

would then only be indirectly driven by differences in, for example, the consistency of arrival times 844 

at a central comparator. We note that the naïve expectation that wider windows of perceived 845 

simultaneity should predict less or worse multisensory integration has received somewhat mixed 846 

support (for example Stevenson et al., 2018). Viewing the width of the simultaneity function from 847 

our model-based perspective might help explain why.  848 

The fact that perceptual precision and simultaneity-function width can dissociate leads us to 849 

argue that there should be wider discussion of this issue. Several groups have demonstrated that the 850 

widths of simultaneity functions differ between clinical or special-interest groups and controls (for 851 

example those experiencing early visual deprivation: Chen et al., 2017; schizophrenics: Foucher et 852 

al., 2007; musicians: Lee & Noppeney, 2011). These remain interesting observations, regardless of 853 

why they differ. However, we believe researchers should point out that these changes do not 854 
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necessarily reflect perceptual limitations. Moreover, given that there are easily derived model 855 

parameters that have a better claim to represent internal noise in multisensory perception (for 856 

example those affecting the slope of the simultaneity function, such as 𝜎 parameters for AT-A-857 

GLANCE and MCD, and 𝜆 parameters for ELA) we suggest that these measures should more often 858 

take the limelight. 859 

If the key interest is not noise in multisensory timing, but instead the range of times across 860 

which multisensory signals are integrated/bound, the best approach might be to use a task that 861 

measures the researcher’s definition of integration/binding, rather than the participant’s definition 862 

of simultaneity. For example, consider the redundant-signals effect. This is a reaction-time 863 

advantage obtained over and above a statistical facilitation when responding to audio-visual pairs 864 

rather than their individual components (e.g. Colonius & Diederich, 2004; Diederich & Colonius, 865 

2015; Hershenson, 1962; Miller, 1982; Raab, 1962; Schwarz, 2006). It is measurable when the audio-866 

visual pair is near synchronous. The redundant-signals effect implies multisensory integration has 867 

occurred: The two signals have interacted in a way that modifies behaviour relative to the sum of 868 

their individual effects. Furthermore, the timing between component signals is an important 869 

determinant. It would, in our opinion, be a reasonable task with which to quantify the dependency 870 

of multisensory integration upon the timing between signals. By contrast, at least at face value, the 871 

range of audio-visual timing relationships over which I declare two signals to be simultaneous has 872 

little claim to measure the range of values at which my brain integrates/binds them in order to 873 

generate a multisensory advantage. We would argue that the near-ubiquitous (but extremely 874 

leading) term “temporal binding window” should be replaced with something more neutral, like 875 

“window of subjective simultaneity” when summarising the results of simultaneity-judgment 876 

studies. 877 

 878 
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Bayesian multilevel modelling is a complex but powerful approach to analysing simultaneity 879 

judgment experiments 880 

We could have fitted our models using the common two-step approach of first fitting a 881 

model to each individual, and then assessing group differences using a procedure such as the t-test. 882 

Multilevel models have advantages over such a two-stage analysis. Perhaps most importantly, by 883 

fitting all participants at once, multilevel models can generate “shrinkage”, whereby well-estimated 884 

participants help constrain parameter estimates for less well-estimated participants (Lambert, 885 

2018). The result can be more powerful, robust and reliable estimation that generally performs 886 

better in out-of-sample prediction (Aarts et al., 2014; Lambert, 2018; Moscatelli et al., 2012). 887 

Shrinkage may also have practical value in a field where it is common to reject participants on the 888 

basis that their data are inadequate to generate reliable parameter estimates (and in which pre-889 

registration of exclusion criteria is not yet the norm). If there are ways to reduce the number of 890 

participants who have to be excluded, we should probably adopt them. 891 

Bayesian models additionally encourage the explicit specification of sensible priors, or rather 892 

hyper-priors in the case of multilevel models. When used judiciously, these should further enhance 893 

the reliability of recovered parameters. They also make use of the full distribution of plausible 894 

parameter values from the posterior when assessing the goodness of a model’s fit, rather than 895 

relying exclusively on the mode of the posterior, as per maximum likelihood estimation. Compared 896 

to popular metrics like the Akaike information criterion (AIC), Bayesian metrics (for example 897 

estimation of leave-one-out cross validation via Pareto smoothed importance sampling; Vehtari et 898 

al., 2017) are likely to provide a better estimate of a model’s out-of-sample predictive accuracy, and 899 

thus a fairer means of comparing models with different architectures (Lambert, 2018). Here, we 900 

have demonstrated how such Bayesian multilevel modelling can be used to evaluate whether model 901 

parameters change across conditions, and to test more complex hypotheses via the instantiation of 902 

these hypotheses as competing models. 903 
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We hope that the code accompanying this paper, in concert with Appendix A, can act as a 904 

template for other researchers interested in using similar approaches. Although we have focussed 905 

on the popular simultaneity-judgment task, there is a range of tasks that generate non-sigmoidal 906 

psychometric functions that might benefit from bespoke multilevel modelling along these lines. In 907 

the realm of time perception, these include judgments about which of two intervals contained a 908 

more synchronous signal (Yarrow et al., 2016) or whether the duration of a test stimulus matched 909 

that of a pre-learnt standard, often referred to as temporal generalization (Bausenhart et al., 2018; 910 

García-Pérez, 2014). There are also analogous tasks in other fields (e.g. García-Pérez & Peli, 2014; 911 

Morgan et al., 2013). Nonetheless, we must acknowledge that because of the need for bespoke 912 

coding, the time investment for this type of analysis exceeds that associated with the application of 913 

simpler tests (such as t-tests) as a second-stage inferential step. For example, we have only 914 

illustrated a test of whether/how parameters change across a single experimental factor, via dummy 915 

coding. Implementing factorial designs would require technical knowledge regarding how to 916 

implement the equivalent of ANOVA models within a multilevel model framework, for example the 917 

proper use of effects coding. However, we doubt this is beyond the abilities of the average 918 

quantitively minded researcher.  919 

We are additionally mindful that the benefits of shrinkage that accrue from the multilevel 920 

approach are premised on the correctness of modelling assumptions regarding group-level 921 

distributions. For example, in the AT-A-GLANCE and ELA models we assumed a normal distribution 922 

for the group when modelling the 𝜏 parameter. This describes the central tendency of individual 923 

simultaneity-judgment functions, so is the parameter most conceptually akin to the commonly 924 

reported “point of subjective simultaneity”. But what if the population actually consists of a number 925 

of distinct sub-groups, perhaps reflecting very different task strategies or neurological types? Then, 926 

the implied uniformity, in terms of the computational processes underlying timing decisions, would 927 

be incorrect, and shrinkage toward the group mean could be inappropriate. This would be most 928 

pernicious if differences that lead to poor parameter estimation (and thus maximise the reliance on 929 
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group-level priors) are more likely for members of distinct minority groups (to whom those priors 930 

may not apply). In theory, one might address this with something like a mixture distribution for the 931 

prior, but this would be challenging in practice. However, if groups are a priori identifiable (for 932 

example via a diagnosis), it would be straightforward to implement a between-participants design 933 

factor via discrete group-level distributions. 934 

 935 

Further caveats, limitations, and constraints on generality 936 

There are several reasons to be cautious regarding our conclusions here, which are derived 937 

from work with a necessarily limited scope. Firstly, our study lacked a fundamental feature of well-938 

designed repeated-measures experiments – the counterbalancing of the order of experimental 939 

conditions to remove practice and fatigue effects. This was justified by our desire to capture 940 

instinctive behaviour in the simultaneity-judgment task before meddling with people’s strategies, 941 

but it implies that differences between conditions might be contaminated by learning effects. We 942 

acknowledge this problem, but note that the inclusion of the rebound condition provides some 943 

reassurance that the main driver of differences between conditions was the instruction we provided. 944 

Secondly, with the exception of our non-model-based test of the hard-threshold account, 945 

our conclusions follow from the exact choices we made when implementing simultaneity-judgment 946 

models, and strictly cannot be generalised beyond that context. For example, we used a single lapse-947 

rate parameter 𝑙, but might reasonably have used two such parameters to capture a bias towards 948 

one or other response when guessing, as has been implemented by the authors of ELA (García-Pérez 949 

& Alcalá-Quintana, 2012b). We gave all three models identical flexibility in this regard, but it is 950 

possible that their relative statuses would have changed had we made different choices. The same 951 

follows for other decisions, including our choice of hyperpriors (but see Appendix C) and the 952 

parameters that were allowed to change across conditions. Allowing only criteria to vary was largely 953 

dictated by the logic of the experiment, but a case could be made for also allowing changes in 954 
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precision due to learning (although note that we did not provide any feedback). In fact, one 955 

consequence of bespoke multilevel modelling is that it discourages the testing of a large number of 956 

such variant ideas, because each one must be somewhat laboriously coded. Researchers will 957 

probably have differing opinions about whether this is a good or a bad thing. 958 

In terms of scope, we have tested only a limited range of models, and used only the audio-959 

visual simultaneity-judgment task with austere stimuli. As noted above, a variety of blended or 960 

modified models could be entertained. Furthermore, there is at least one recently advocated class of 961 

model relevant to simultaneity judgments that we have ignored: Population-code (sometimes called 962 

labelled-line) models (Roach et al., 2011; Roseboom et al., 2015; Yarrow et al., 2015). However, 963 

there were reasons for leaving this class of model out. In the absence of some manipulation based 964 

on sensory adaptation, its basic simultaneity-judgment prediction is very similar to AT-A-GLANCE, 965 

but without the noisy criteria aspect. However, to deal with established differences in slope for the 966 

two sides of the simultaneity function, one would need to add something like noisy criteria. This 967 

remains entirely within the spirit of a population-code model, as the population of neurones simply 968 

supplies an estimate of the represented quantity, in this case subjective SOA, and is agnostic with 969 

regard to further steps to formulate a binary decision. Indeed, population-code accounts of the 970 

simultaneity judgment are perhaps best viewed as a more fleshed-out representational stage within 971 

an independent channels / general-threshold framework (Yarrow & Arnold, 2016). To this extent, 972 

the current result can be viewed as supportive of a population code (plus noisy criteria) as much as 973 

of AT-A-GLANCE. 974 

We have also focussed here exclusively on modelling the simultaneity-judgment task. Of 975 

course, more general models are typically preferable to models which explain only one particular 976 

phenomenon. It is possible to extend models like those we test here to simultaneously account for 977 

data from multiple tasks. One example is Diederich and Colonius’ (2015) simultaneous account of 978 

temporal order judgments and the redundant-signal effects data via an extension of the ELA model. 979 
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However, such efforts have thus far focussed on applying a single model to several tasks. Comparing 980 

such extended variants across several models, like those we describe here, via simultaneous fits, 981 

represents an interesting avenue for future research. 982 

Regarding the degree to which results here can be generalised to all people – we are limited 983 

in what we can say about our sample, beyond stating that it was certainly not random, and likely 984 

primarily both young and WEIRD (Western, Educated, Industrialised, Rich and Democratic). We 985 

suspect that the way in which humans make decisions about the simultaneity of flashes and beeps is 986 

fairly universal (or at least universally idiosyncratic) but this is ultimately an empirical question for 987 

future research. 988 

Conclusion 989 

Here, we have demonstrated how to investigate experimental questions addressed using the 990 

simultaneity-judgment task by fitting Bayesian multilevel models, illustrating this approach with 991 

three recently advocated observer models. While the ELA and MCD models have some attractive 992 

features, for now we recommend researchers interested in this kind of approach consider using a 993 

model akin to AT-A-GLANCE, because the ultimate arbitrator between theories should probably be 994 

how well they predict out of sample data, and AT-A-GLANCE performed best in this regard. We have 995 

also shown that performance on the simultaneity-judgment task reflects an interpretation by the 996 

participant based on malleable decision criteria. It is these criteria that determine the width of the 997 

simultaneity function, and hence the window of subjective simultaneity. Thus, because of its 998 

strategic nature, this window casts only a thin light on multisensory temporal integration/binding 999 

processes, and should be interpreted with caution. Although no universal remedy, changes in 1000 

measures that directly assess internal noise seem more pertinent when drawing conclusions about 1001 

the causes underlying perceptual differences between clinical and other groups. 1002 

  1003 
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Appendix A: Multilevel model specifications 1198 

AT-A-GLANCE model implementation 1199 

Single-level AT-A-GLANCE 1200 

Our first multilevel model built upon the AT-A-GLANCE four-parameter single-level observer 1201 

model (Yarrow et al., 2011). Our description of that model here is more complete than in any of our 1202 

previous papers and thus supersedes them. Under this account, the observer judges two stimuli 1203 

simultaneous when the internal signals they generate arrive at a decision centre with a subjective 1204 

SOA that is both above a (noisy) low criterion and below a (noisy) high criterion. Hence AT-A-GLANCE 1205 

implies three normally distributed random variables: Two decision criteria (𝑐L and 𝑐H) used to 1206 

demarcate successive judgments from simultaneous judgments, and the subjective SOA, 𝑠. These 1207 

three random variables can be expressed as a single, trivariate normal random variable, with mean 1208 

and variance: 1209 

(A1) 𝝁 = (

𝜇L

𝜇S

𝜇H

), 𝚺 = (

𝜎L
2 𝜌LS𝜎L𝜎S 𝜌LH𝜎L𝜎H

𝜌LS𝜎L𝜎S 𝜎S
2 𝜌SH𝜎S𝜎H

𝜌LH𝜎L𝜎H 𝜌SH𝜎S𝜎H 𝜎H
2

) 1210 

Let 𝑓(𝑐L, 𝑠, 𝑐H) denote its density. Then: 1211 

(A2) 𝑃(𝐶L < 𝑆 < 𝐶H) = ∫ 𝑑𝑐H
∞

−∞ ∫ 𝑑𝑠
𝑐H

−∞ ∫ 𝑑𝑐L 𝑓(𝑐L, 𝑠, 𝑐H)
𝑠

−∞
 1212 

Unfortunately, expressed in this way the (single-level) model has a hefty eight parameters 1213 

(excluding 𝜇S, which equals the experimental SOA). We can easily take a view regarding the 𝜌 1214 

parameters, for example fix them to 0 for fully uncorrelated sources of noise, but Equation A1 is still 1215 

slow to evaluate (we are not aware of a closed-form solution) and likely degenerate with regard to 1216 

the three 𝜎 parameters (meaning they can trade off against each other to give near identical 1217 

predictions). However, if we assume 𝜌LH = 1 and 𝜌LS = 𝜌SH = 0, implying correlated noise in the two 1218 

criteria, a closed-form approximation is available: 1219 
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(A3) 𝑃(𝑆|∆𝑡) ≈ Φ (
Δ𝑡−𝑐L

𝜎L
) −  Φ (

Δ𝑡−𝑐H

𝜎H
) 1220 

where 𝑆 denotes the event that the observer responds “simultaneous”, ∆𝑡 is the SOA, and Φ 1221 

is the standard normal cumulative distribution function. The σ values quantify (inversely) the slope 1222 

on each side of the psychometric function. These are composite noise variables, used because they 1223 

are formally identifiable in a model fit (meaning that they do not trade off perfectly) whereas the 1224 

various psychological constructs that feed into them are not. Each 𝜎, when squared, represents the 1225 

sum of two sources of variance. The first, the variance of subjective SOAs (𝜎S
2 from Equation A1) is 1226 

itself derived from the (Gaussian) latency variance associated with each stimulus (if we assume 1227 

uncorrelated sensory channels, it is their sum). This source contributes to the slope on both sides of 1228 

the psychometric function (low and high). The second, the trial-by-trial (Gaussian) variance in a 1229 

decision criterion (𝜎L
2 or 𝜎H

2 from Equation A1) has a unique magnitude on each side of the function, 1230 

thus allowing the slopes to vary. Because Equation A3 is an approximation, we used a slower-to-1231 

evaluate method when the approximation breaks down – this can be seen in our code as an 1232 

“override” function.10 1233 

To this model, we first added a lapse parameter, 𝑙, such that participants are assumed to make 1234 

an (unbiased) guess on a proportion of trials equalling 2𝑙. This effectively forms upper and lower limits 1235 

on the psychometric function at 𝑙 and 1- 𝑙. We also opted to reparametrize 𝑐L and 𝑐H in terms of their 1236 

midpoint and the distance between them. 11  We call these 𝜏  and ∆𝛿  respectively, to make the 1237 

terminology comparable with near-equivalent parameters from a second observer model, ELA, 1238 

                                                           
10 Equation A3 breaks down when the difference between 𝜎L  and 𝜎H is large relative to the distance between 
𝑐H and 𝑐L. Our override function is essentially a simulation, rather than a numerical implementation of 
Equation A2. However, because Stan requires deterministic predictions, and to reduce computation time, in 
place of random sampling for each source of noise, we divided the probability space from .01 to .99 in 50 steps 
of .02, and applied an inverse Gaussian function to these values to recover pseudo-simulated noise scores. This 
process can distort model predictions slightly relative to a true Monte Carlo simulation, but informal 
explorations suggested this distortion was negligible. 
11 Reparameterization is often helpful in Stan programming to make the posterior likelihood surface more 
amenable to sampling, in part by allowing us to make better use of sensible hard constraints (and soft priors) 
on the values that (sampled) parameters can take. However, if needed or desired, the original (often more 
intuitive) parameters can easily be calculated using a ”transformed parameters” code block, something we 
included in our code and analysis here. 
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described later. We also reparametrized 𝜎H by instead sampling the posterior based on 𝑚, the natural 1239 

log of a quantity applied as a multiplier to 𝜎L in order to determine 𝜎H: 1240 

(A4) 𝜎H = exp(𝑚)𝜎L 1241 

Hence the reparametrized single-level model incorporating lapsing becomes: 1242 

(A5) 𝑃(𝑆|∆𝑡) ≈ 𝑙 + (1 − 𝑙) [Φ (
Δ𝑡− 𝜏+∆𝛿 2⁄

σL
) − Φ (

Δ𝑡−𝜏−∆𝛿 2⁄  

exp[𝑚]𝜎L
)] 1243 

For completeness, we next implemented priors (and provide accompanying code) for a single-1244 

level Bayesian implementation of this model, but here move straight to describing the multilevel case, 1245 

which estimates the abovementioned five parameters for each of our 19 participants at once. 1246 

Multilevel AT-A-GLANCE, one condition. 1247 

Moving to a multilevel model requires moving from a scalar to a vector of parameters for each 1248 

of the participant-level parameters already described. However, on its own this only gives us a 1249 

“heterogeneous” model. A full “hierarchical” or multilevel model also requires the addition of group-1250 

level parameters (to capture random variation in participant-level parameters across the group) and, 1251 

in the case of Bayesian models, “hyperpriors” (meaning expectations regarding sensible values for the 1252 

group-level parameters based on what is known before the current data are collected). 1253 

To the 95 participant-level parameters (coded as five vectors/arrays) we therefore added a 1254 

set of group-level parameters. Multilevel models require that we specify a distribution (for example 1255 

normal) which describes the way each participant-level parameter varies across the group. The 1256 

parameters of these distributions are then estimated alongside the individual-level parameters: In 1257 

effect, when determining the likelihood of a set of parameters for a particular participant, we consider 1258 

both the likelihood of their data given their participant-level parameters, and the likelihood of those 1259 

participant-level parameters given the group-level distribution from which they are presumed to be 1260 

being drawn. 1261 



60 
 

For the AT-A-GLANCE model, we specified a normal group-level distribution for parameter 𝜏, 1262 

the midpoint of the two criteria for judging a stimulus simultaneous. The normal distribution is a 1263 

good default choice for unbounded continuous parameters, and conforms to what would be 1264 

assumed by a second-stage procedure such as applying a t-test to individual parameter estimates (a 1265 

choice that is generally well justified by the central limit theorem). We included both the mean (𝜇τ) 1266 

and the standard deviation (𝜎τ) of this distribution as parameters for estimation within the model.12 1267 

For each group-level distribution parameter, Bayesian modelling encourages us to also 1268 

specify a (hyper)prior distribution, based on our subject-specific knowledge. This is a somewhat 1269 

uncomfortable step for those with a frequentist background, but hyperpriors can be made as 1270 

uninformative/diffuse as the modeller desires (at least when considering just the untransformed 1271 

parameter). Furthermore, the alternative perspective is quite hard to defend. It implies that any and 1272 

all values for a group-level summary statistic such as the mean midpoint of perceptual synchrony are 1273 

equally likely before we see our particular set of data. However, using 𝜇τ as an example, even in a 1274 

case study of a patient with a specific relative-timing related pathological deficit, the reported point 1275 

of subjective simultaneity was only +210 ms (Freeman et al., 2013). Hundreds of group averages of 1276 

similar measures have been reported in the literature, and although we have not reviewed them all, 1277 

we are confident that all are much closer to zero than to, say, ±1000 ms. 1278 

Here, we utilised an (extremely diffuse) Cauchy hyperprior on 𝜇τ, with location of 0 and 1279 

scale of 800 ms. Our code defaults to setting the former to the (unweighted) mean SOA in the data 1280 

set and the latter to the range of asynchronies used, but the user can override these and several 1281 

other hyperprior choices via parameters passed to Stan from R as part of the data set. For the 1282 

hyperprior on 𝜎τ, which should be zero-bounded, we used a lognormal distribution with µ of 5.59 1283 

                                                           
12 In moving to a multilevel model, we applied what is known as a “non-centred” parameterisation to some 
group-level parameters in order to try and reduce correlations between group-level and participant-level 
parameters (see the Stan manuals for further details). This approach was applied for 𝜏 and also the 𝛽 
coefficients representing changes across conditions (described later). Essentially, we modelled variation across 
the group using a standard normal distribution, then derived scaled values of τ for each participant by 
multiplying this standardised variation by the group 𝜎 before adding the group 𝜇. 
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and σ of 1. The code defaults µ to the natural log of one-third the range of asynchronies in the data, 1284 

which, along with an σ of 1, for our data gives a right-skewed distribution with a mode of ≈ 100 ms. 1285 

Note that the µ parameter of a lognormal distribution is not in fact its mean, which is instead 1286 

obtained as exp (𝜇 +
𝜎2

2
). Hence applying this transformation is sensible when subsequently 1287 

interpreting parameters of this kind. In sum – we expected 𝜏 to be normally distributed across the 1288 

group, with a group mean vaguely near zero ms and a group SD vaguely near 100 ms. 1289 

For ∆𝛿, the distance between the two judgment criteria, which is zero-bounded, we 1290 

specified a lognormal group-level distribution and had the model estimate both parameters (𝜇δ and 1291 

𝜎𝛿). For hyperpriors on 𝜇δ and 𝜎𝛿, we used normal and lognormal distributions respectively, the 1292 

former with a µ of 5.59 and σ of 1.4 and the latter with µ of 1.1 and σ of 1 (the code again defaults to 1293 

basing some of these on the range of asynchronies found in the data). This translates to expecting 1294 

∆𝛿 to vary across the group according to heavily right-skewed distribution with a mode vaguely near 1295 

90 ms, but with hyperpriors giving plenty of scope for very different central tendencies and shapes 1296 

to emerge. 1297 

For σL, the inverse slope of the left side of the psychometric function, we specified a 1298 

lognormal group-level distribution (and hyperpriors on its two parameters, 𝜇σ and 𝜎σ) in exactly the 1299 

same way as outlined above for ∆𝛿. 1300 

For 𝑚, a parameter which is used to create σH by multiplicatively modifying σL (see 1301 

Equation A4), we specified a normal group-level distribution and estimated both the mean (𝜇m) and 1302 

the standard deviation (𝜎m). Because of the exponentiation in Equation A4, values of 𝑚 below zero 1303 

lead to σH < σL, and vice versa for values above 0. Hence, we placed a normal hyperprior on 𝜇m with 1304 

a mean of zero. We sought to prevent the fit from favouring extreme differences in slope on the two 1305 

sides of the function, as this is against the spirit of the model, which posits a substantial source of 1306 

shared noise affecting both sides. Any difference comes from criterial noise that, if too extreme, 1307 

would imply regular illogical positioning (CL > CH) on individual trials. Hence, we gave this hyperprior 1308 
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an SD of 0.5 (which has the effect of making identical slopes around 11 times as likely, a priori, as 1309 

slopes that differ by a factor of 3). For 𝜎m we used a lognormal hyperprior with µ of -0.69 and σ of 1 1310 

(equating to an expectation of group SD vaguely near 0.2). 1311 

Finally, for 𝑙, the parameter capturing lapses of attention, we specified a beta group-level 1312 

distribution, as these deal well with parameters that are 0-1 bounded such as proportions. Beta 1313 

distributions are defined by two parameters, but we wanted to keep our model simple and also 1314 

place strong expectations for a lapse rate near zero. We therefore fixed the second parameter, 𝛽l, to 1315 

50, and estimated only the group’s modal guess rate (𝜃l) which determined the first beta-1316 

distribution parameter, 𝛼l, according to: 1317 

(A6) 𝛼l =
2𝜃l−𝜃l𝛽l−1

𝜃l−1
 1318 

We used a beta hyperprior on 𝜃l with α of 1.49 and 𝛽 of 50. This equates to strongly 1319 

expecting a group modal lapse rate around 1%. 1320 

Multilevel AT-A-GLANCE, differences across conditions. 1321 

Up to this point we have described a multilevel AT-A-GLANCE model with 104 parameters, 1322 

capable of describing simultaneity-judgment data from 19 participants in a single experimental 1323 

condition. We include accompanying code for this model so readers can see the additions required 1324 

to go from 1) single-level, to 2) single-condition multilevel, to 3) multi-condition multilevel model, 1325 

which is our final destination. To get to this final model, we still need to specify additional 1326 

parameters describing how one or more of our participant-level parameters can vary across 1327 

conditions of the experiment. We also need to update our model predictions to incorporate the 1328 

effects of these parameters. As noted in the main text methods, this last set of parameters are 1329 

conceptually akin to regression coefficients, affecting the model prediction contingent on the value 1330 

of the conservative and rebound dummy codes. Dummy codes are 0 or 1 values denoting 1331 

membership of a particular condition, included as columns within long-form data, where the 1332 
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dependent variable appears in a single column and other columns carry information about 1333 

participant, condition and so forth. 1334 

The AT-A-GLANCE model envisages participants utilising two criteria to interpret a subjective 1335 

difference in arrival times as simultaneous or not. Hence, instructions to be more conservative can 1336 

be dealt with by allowing these two criteria to move. However, as previously described, we 1337 

reparametrized the criteria as 𝜏, their midpoint, and ∆𝛿, their difference, so it is these parameters 1338 

that should be allowed to vary. Each participant therefore required a set of coefficients, 𝛽τC, 𝛽τR, 1339 

𝛽δC, and 𝛽δR, to represent change (compared to baseline). The first subscript represents the 1340 

parameter being adjusted and the second represents the Conservative and Rebound conditions. 1341 

However, we were mindful that while τ is unbounded, ∆𝛿 has a zero lower bound. Hence we allowed 1342 

straightforward additive changes to 𝜏, but only positive multiplicative ones to ∆𝛿, with the latter 1343 

implemented by exponentiating the relevant coefficient such that positive/negative values translate 1344 

to multiplication by greater than or less than 1 respectively. This yields the heterogenous model of 1345 

Eqns. 1 and 2 (see main text). 1346 

All that now remains to be done for this model is to describe the estimation of group-level 1347 

distributions for the experimental effects (the four 𝛽 coefficients), along with the associated 1348 

hyperpriors. For each of these coefficients we specified a normal group-level distribution and 1349 

estimated both mean (𝜇…) and standard deviation (𝜎…) parameters (implying eight further group-1350 

level parameters). The parameters of these group-level distributions essentially mirror the terms 1351 

commonly described as “fixed” and “random” effects (respectively) within a frequentist 1352 

general(ised) linear multilevel model framework: The former describe the group-mean effects, the 1353 

latter the variation in these effects across participants. We constrain their values with normal 1354 

hyperpriors (which due to zero bounding are effectively half-normal for 𝜎… parameters) with µs of 0 1355 

and σs of either 80 (for 𝜇τ… and 𝜎τ… hyperpriors) or 1 (for 𝜇δ… and 𝜎δ… hyperpriors). To summarise – 1356 

we expected zero-size mean effects with zero SD across the group, but modest and even fairly large 1357 
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effects (and associated variation in effects) would not be unexpected. The final model has 188 1358 

parameters (five core plus four 𝛽 parameters for each of 19 participants, plus nine parameters 1359 

describing group variation in core parameters and eight parameters describing group variation in 𝛽 1360 

parameters). These were estimated based on 513 data points (19 participants x 3 conditions x 9 1361 

SOAs). 1362 

Multilevel AT-A-GLANCE’s alternative account for conservative behaviour  1363 

The model described so far can fit simultaneity-judgment data from multiple participants at 1364 

once and capture changes across conditions in terms of an adjustment of parameters quantifying 1365 

decision criteria. This model essentially represents the hypothesis that simultaneity judgments are 1366 

subject to strategic alteration based on these decision criteria. We also created an alternative hard-1367 

threshold model variant, in which participants are assumed to maintain their threshold from the pre-1368 

test but, in the “be conservative” condition, respond “synchronous” on a random subset of trials in 1369 

which they actually perceive synchrony. This model essentially represents the hypothesis that what 1370 

participants initially report in a simultaneity-judgment task is determined by a structural 1371 

thresholding mechanism that does not yield to their subsequent strategic imperatives. This might be 1372 

the same gating mechanism underlying multisensory binding/integration if that type of process is 1373 

also viewed as all-or-none from a temporal perspective. 1374 

The hard-threshold multilevel AT-A-GLANCE model we applied is identical to the multilevel 1375 

AT-A-GLANCE model described so far, except in relation to the set of 𝛽 coefficients used to permit 1376 

changes across conditions. Instead of allowing changes to two criteria (in each of two conditions, 1377 

relative to the baseline), we now utilise just one change per condition – a proportional reduction in 1378 

the number of trials judged synchronous. This can be represented by a pair of coefficients, 𝛽C and 1379 

𝛽R, and yields a heterogenous foundation with a binomially distributed number of “simultaneous” 1380 

responses: 1381 

(A7) 𝑆𝑋∆𝑡~𝐵(30, 𝛽𝑋[𝑙 + 𝑝𝐵∆𝑡 − 𝑙𝑝𝐵∆𝑡]), 1382 
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where 𝑋 ∈ {𝐵, 𝐶, 𝑅} and 𝑝𝐵∆𝑡 is defined in Equation 2 (main text, Results).  1383 

For the 𝛽C and 𝛽R parameters, we modelled variation at the group level as a beta 1384 

distribution, but parameterised in terms of a mean parameter: 1385 

(A8) 𝜑... =
𝛼

𝛼+𝛽
 1386 

And a total count parameter: 1387 

(A9) 𝜆... = 𝛼 + 𝛽 1388 

We followed recommendations in the Stan documentation by specifying hyperpriors that 1389 

were beta (α = 1, 𝛽 = 1, implying uniform) and pareto (ymin = 0.1, α = 0.5) for 𝜑... and 𝜆... respectively. 1390 

 1391 

ELA model implementation 1392 

Single-level ELA 1393 

Our second class of multilevel model built on the four-parameter ELA model (García-Pérez & 1394 

Alcalá-Quintana, 2012) which predicts reports of simultaneity as the integral (between two decision 1395 

boundaries) of a difference of exponential distributions. This prediction is described by: 1396 

(A10) 𝑃(𝑆|∆𝑡) = 𝐹(∆𝛿 2⁄ ; ∆𝑡) − 𝐹(− ∆𝛿 2⁄ ; ∆𝑡), 1397 

where function 𝐹 is given by: 1398 

(A11) 𝐹(𝑑; ∆𝑡) = {

𝜆a

𝜆a+𝜆v
exp[−𝜆𝑣(∆𝑡 − 𝜏 + 𝑑)] if 𝑑 ≤ ∆𝑡 − 𝜏

1 −
𝜆v

𝜆a+𝜆v
exp[𝜆𝑎(∆𝑡 − 𝜏 + 𝑑)] if 𝑑 > ∆𝑡 − 𝜏

. 1399 

Under this model, 𝜆a and 𝜆v are the rate parameters of (shifted) exponential distributions of 1400 

arrival times (at the decision centre) for the auditory and visual signals respectively. We have reversed 1401 

the sign of García-Pérez and Alcalá-Quintana's 𝜏 parameter, making it directly comparable to AT-A-1402 
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GLANCE’s midpoint between two judgment criteria used to categorise subjective asynchronies as 1403 

simultaneous. Otherwise, our Equation A11 is identical to their Eqn. 3.  1404 

For even further ease of comparison with AT-A-GLANCE, we consider the inverse of the 𝜆a 1405 

parameter (𝜆a
−1), whose values have a scale and meaning similar to those of AT-A-GLANCE’s two noise 1406 

parameters. Hence higher values equate to a higher level of internal noise and reduced precision. 1407 

Furthermore, in place of 𝜆v we sampled for 𝑚, the natural log of a quantity applied as a multiplier to 1408 

𝜆a
−1 in order to determine the inverse of 𝜆v, in a manner analogous to that described in Equation A4 1409 

above for AT-A-GLANCE’s second noise parameter. Finally, we also included the same lapse parameter 1410 

used in our implementation of AT-A-GLANCE, 𝑙 , such that participants were assumed to make an 1411 

(unbiased) guess on a proportion of trials equalling 2𝑙. This leads to the following prediction: 1412 

(A12) 𝑃(𝑆|∆𝑡) = 𝑙 + (1 − 𝑙)[𝐹(∆𝛿 2⁄ ; ∆𝑡) − 𝐹(− ∆𝛿 2⁄ ; ∆𝑡)], 1413 

where function 𝐹 is given by: 1414 

(A13) 𝐹(𝑑; ∆𝑡) = {

exp[𝑚−(∆𝑡−𝜏−𝑑) (𝑒𝑚𝜆𝑎
−1)⁄ ]

exp(𝑚)+1
if 𝑑 ≤ ∆𝑡 − 𝜏

1 −
exp[𝑚+(∆𝑡−𝜏−𝑑) 𝜆𝑎

−1⁄ ]

exp(2𝑚)+exp(𝑚)
 if 𝑑 > ∆𝑡 − 𝜏

. 1415 

Multilevel ELA 1416 

With both AT-A-GLANCE and ELA utilising a set of largely analogous single-level parameters, 1417 

we were able to develop multilevel models of ELA in a very similar way to that outlined above for 1418 

AT-A-GLANCE. Hence, we added 𝜇τ and 𝜎τ parameters to describe the normal group-level 1419 

distribution of 𝜏, with Cauchy and lognormal hyperpriors respectively. Similarly, for the lognormal 1420 

group-level distribution of ∆𝛿, we introduced 𝜇δ and 𝜎δ, with normal and lognormal hyperpriors 1421 

respectively, as per the same parameter’s treatment in AT-A-GLANCE. The (lognormal) group-level 1422 

𝜆a
−1 in ELA was dealt with just like the group-level σL from AT-A-GLANCE, by including 𝜇λa and 𝜎λa 1423 

parameters with normal and lognormal hyperpriors respectively. Similarly, we included 𝜇m and 𝜎m 1424 

to describe the normal group-level distribution of 𝑚, with normal and lognormal hyperpriors 1425 
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respectively, while for 𝑙, we added 𝜃l to define the mode of a beta group-level distribution (with a 1426 

beta hyperprior). Finally, we added eight parameters to model the means and SDs of the normal 1427 

group-level distributions for the four 𝛽 coefficients which describe changes to 𝜏 and 𝛿 across 1428 

experimental conditions (for example 𝜇τC and 𝜎τC for the participant-level parameter 𝛽τC adjusting 𝜏 1429 

in the conservative condition). These were specified with normal hyperpriors. We also constructed 1430 

an alternative model describing the hard-threshold account, with group-level beta distributions of 1431 

the function multiplier coefficients 𝛽C and 𝛽R, each described by mean and total count parameters 1432 

with beta and pareto hyperpriors respectively, in place of changes to 𝜏 and ∆𝛿. In all but a handful of 1433 

cases, hyperpriors had parameters exactly as specified for the analogous case in AT-A-GLANCE. The 1434 

key exceptions were 𝜇δ and 𝜇λa, relating to the distance between criteria and noise for the auditory 1435 

stimulus respectively, for which we specified a slightly lower expectation (via setting µ = 5.08, with 1436 

this default based on 1/5th of the range of SOAs). In the case of 𝜇δ, this followed from a 1437 

programming choice – we sampled for values of Δ𝛿/2 rather than Δ𝛿, and hence 𝜇δ should be 1438 

around half as large of the equivalent parameter from AT-A-GLANCE. In the case of 𝜇λa, estimates 1439 

for this parameter from past research tend to be lower than those obtained for 𝜇σ.  1440 

MCD model implementation 1441 

Single-level MCD 1442 

Our final class of model was built upon a three-parameter SJ-only implementation of Parise 1443 

and Ernst’s (2016) MCD model. This model describes how time-varying visual and auditory signals 1444 

(𝑆v(𝑡), 𝑆a(𝑡)) are transformed into a time-varying synchrony signal which can then be averaged over 1445 

the period following stimulus presentation to yield perceived synchrony for that trial (MCDCorr). This 1446 

process requires three kinds of filter, two applied in an early stage and one at a later stage, but all of 1447 

the following form: 1448 

(A14) 𝑓mod = 𝑡 exp(−𝑡 𝜏mod⁄ ) 1449 
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Where 𝑓mod is an early modality-dependent filter (𝑓a and 𝑓v) or a late multisensory filter 1450 

(𝑓av), and 𝜏mod is the corresponding filter time constant. The final synchrony estimate is essentially 1451 

the time-averaged output formed by multiplying together signals from two units. Each unit 1452 

multiplies a single (early) filtered version of one modality with a double (early+late) filtered version 1453 

of the other. The final synchrony estimate is then: 1454 

(A15) 1455 

𝑀𝐶𝐷Corr =
1

𝑡2 − 𝑡1
∫ ([𝑆v(𝑡) ∗ 𝑓v(𝑡)] ∙ {[𝑆a(𝑡) ∗ 𝑓a(𝑡)] ∗ 𝑓av(𝑡)})

𝑡2

𝑡1

1456 

∙ ([𝑆a(𝑡) ∗ 𝑓a(𝑡)] ∙ {[𝑆v(𝑡) ∗ 𝑓v(𝑡)] ∗ 𝑓av(𝑡)}) 𝑑𝑡, 1457 

where * denotes convolution and ∙ denotes pointwise multiplication. Finally, 𝑀𝐶𝐷Corr is 1458 

used to form binary judgments about synchrony by setting a criterion, with either 𝑀𝐶𝐷Corr itself or 1459 

the position of the criterion assumed to be affected by Gaussian trial-by-trial noise, yielding the 1460 

prediction: 1461 

(A16) 𝑃(𝑆|∆𝑡) = Φ (
𝑀𝐶𝐷Corr−𝐶

𝜎
) 1462 

For our fits, we fixed 𝜏av to 786 ms and 𝜏v to 87 ms based on fits to other data sets (Parise & 1463 

Ernst, 2016) and allowed 𝜏a, 𝜎 and 𝐶 to vary for each observer. We calculated 𝑀𝐶𝐷Corr across a 14 1464 

second window centred on the arrival time of the first stimulus (and set to zero except for 10 ms on-1465 

off pulses for each signal). We also normalised it by dividing it by the unnormalised 𝑀𝐶𝐷Corr for a 1466 

synchronous input (𝑀𝐶𝐷CorrS). This normalisation meant that 𝐶 could be expected to lie in a range 1467 

bounded by 0 and just over 1, and σ should be interpretable on a similar scale. Because Stan does 1468 

not currently offer built-in functions for convolution or fast Fourier transformation, we first 1469 

determined 𝑀𝐶𝐷Corr for values of τa from 1 to 200 ms in R, then passed them to Stan as a lookup 1470 

table. Within the Stan code, 𝑀𝐶𝐷Corr values from this table were made continuous (and hence 1471 

differentiable) via quadratic interpolation. We also added a lapse parameter, 𝑙, consistent with that 1472 

applied in our other models: 1473 
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(A17) 𝑃(𝑆|∆𝑡) = 𝑙 + (1 − 𝑙)Φ [
(

𝑀𝐶𝐷Corr
𝑀𝐶𝐷CorrS  ⁄ )−𝐶

𝜎
] 1474 

Multi-level MCD 1475 

To upgrade to a multilevel MCD model we dealt with parameter 𝑙 as per our previous 1476 

models, by adding 𝜃l to define the mode of a group-level beta distribution, and specifying a beta 1477 

hyperprior on it. For filter time constant 𝜏a, we specified a lognormal group-level distribution and 1478 

estimated its two parameters, 𝜇τa and 𝜎τa. For 𝜇𝜏𝑎 we specified a normal hyperprior, with μ = 4.34 1479 

and σ = 1.09, while the hyperprior for 𝜎τa was lognormal with μ = -1.39 and σ = 0.25. Together these 1480 

correspond to a modal expectation for 𝜏a of around 73 ms. This is comparable to the value of 68 ms 1481 

obtained by Parise and Ernst (2016). For criterion 𝐶, we specified a normal group-level distribution 1482 

and estimated its two parameters, 𝜇C and 𝜎C. We gave 𝜇C a normal hyperprior, with μ and σ both 1483 

set at 0.5, and 𝜎C a lognormal hyperprior with μ = 0.41 and σ = 1, together implying that 𝐶 should 1484 

have a group mean around 0.5 and SD around 0.55. We then specified a lognormal group-level 1485 

distribution for internal-noise parameter 𝜎 and estimated both of this distribution’s parameters, 𝜇σ 1486 

and 𝜎σ. We gave 𝜇σ a normal hyperprior, with μ and σ set at -0.69 and 1 respectively, and 𝜎σ a 1487 

lognormal hyperprior with μ = 3 and σ = 1, together implying that 𝜎 was a priori expected to have a 1488 

group mode around 0.18, but with larger values remaining plausible. Finally, to allow behaviour to 1489 

change across conditions, we allowed criterion 𝐶 to vary via the introduction of two participant-level 1490 

𝛽 coefficients, 𝛽CC and 𝛽CR, with multiplicative adjustments to 𝐶 determined using their exponents. 1491 

Each had an associated normal group-level distribution for which we estimated both mean (𝜇C…) and 1492 

standard deviation (𝜎C…) parameters (implying four further group-level parameters). Hyperpriors on 1493 

these parameters were normal (effectively half-normal for the zero-bounded 𝜎C… parameters) with 1494 

μ = 0 and σ = 1. As for our other models, an alternative hard-threshold account was also tested, in 1495 

which 𝛽CC and 𝛽CR were replaced with the function multiplier coefficients 𝛽C and 𝛽R, each described 1496 

by mean and total count parameters with beta and pareto hyperpriors respectively. 1497 
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Appendix B: Adequacy of likelihood surface recovery 1499 

Before we can consider whether a model is a good description of reality, we need to 1500 

determine whether we have successfully explored/characterised the posterior likelihood of the 1501 

model and its parameters given the data. A model may in principle be perfectly correct, but in 1502 

practice be impossible to evaluate because of issues such as degeneracy, where parameters trade 1503 

off so that several different combinations can provide a similarly good fit. Table B1 summarises, for 1504 

the two variants of each of our three models, a set of posterior exploration diagnostics showing how 1505 

successfully the HMC NUTS algorithm was able to characterise the posterior in each case. 1506 

 1507 

Table B1. Posterior exploration diagnostics. 1508 

Model <                                  Posterior exploration diagnostics                              > 

 % Divergent iterations Max R̂ Minimum bESS Minimum tESS 

AT-A-GLANCE 
criterial  

0.017 1.045 154 425 

AT-A-GLANCE 
hard threshold 

0.013 1.002 2324 4322 

ELA criterial 0.013 1.002 5161 6740 

ELA hard 
threshold 

0.010 1.002 3883 5874 

MCD criterial 0 1.001 6794 11927 

MCD hard 
threshold 

0 1.002 5177 2098 

 1509 

For the AT-A-GLANCE model variant that allowed changes in criteria across conditions, 1510 

diagnostics did not completely meet recommendations (Vehtari et al., 2021) despite a relatively long 1511 

fit time (around 24 hours per run). In particular, alongside a very small percentage of divergent 1512 

iterations, not all parameters reached the ideal level of mixing between chains (R̂ < 1.01) or the 1513 

suggested bulk and tail effective sample sizes (bESS and tESS >400). However, the vast majority of 1514 

parameters did meet these recommendations. Furthermore, for the worst offending parameter (𝜇𝜏), 1515 
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despite a bESS of only 154 the resulting Monte-Carlo standard error (a measure of the precision of 1516 

parameter estimation) was just 0.95 (in the context of a mean value of 32.4 ms). The model 1517 

predictions also mapped well onto the data (see main text Results). We therefore believe that from 1518 

a practical point of view, this model was characterised adequately to allow us to make sensible 1519 

comments regarding how well it described the data compared to other models explored here. 1520 

For the second, hard-threshold, variant of the AT-A-GLANCE model, exploration diagnostics 1521 

met all recommendations with the exception of a very small percentage of divergent iterations. The 1522 

posterior exploration diagnostics from Table 1 also indicate that both variants of both ELA and MCD 1523 

models met recommendations in terms of chain mixing and bulk and tail effective sample sizes, with 1524 

only a very small percentage of divergent iterations (<=0.013%). This suggests that the HMC NUTS 1525 

sampling algorithm was able to properly characterise the posterior in each case. The ELA model’s 1526 

posterior proved particularly easy to characterise, with fits returning in under 30 minutes for these 1527 

data. Parameter recovery was assessed separately (via simulation) – see Appendix D. 1528 

  1529 
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Appendix C: Assessment of Bayesian design choices 1530 

In implementing Bayesian multilevel models, we had to make various decisions, including 1531 

specifying the distributions with which we expected participant-level parameters to vary across the 1532 

group. We also had to set prior expectations for the parameters of these group-level distributions, 1533 

known as hyperpriors. In Figure C1, we consider these choices for the AT-A-GLANCE model variant 1534 

permitting changes in decision criteria across conditions. The smaller graphs within Figure C1 1535 

illustrate the posterior distributions obtained. They focus on the subset of group-level parameters 1536 

relating to behaviour in the baseline condition (parts a-e). We also illustrate two of the remaining 1537 

eight group-level parameters that relate to changes in behaviour in the conservative condition 1538 

(specifically changes in the width of the simultaneity function; part f). Hyperpriors (plotted only 1539 

across the limited range required to characterise the posteriors) are shown for comparison (dashed 1540 

lines). Posteriors are markedly less diffuse than hyperpriors, rarely coincide with their modes, and 1541 

don’t appear to have been constrained by their edges. It is thus clear that posteriors were not 1542 

unduly influenced by our choices regarding hyperpriors, and must have been very largely 1543 

determined by the data. The figure also illustrates how these group-level estimates in turn 1544 

parameterise group-distributions (shown as black against red lines in larger graphs). These describe 1545 

how participant-level parameters vary across the group. They can be compared with the model’s 1546 

participant-level estimates for each individual (shown as circles) and a kernel-density plot derived 1547 

from them (shown opposite parametric predictions). In general, the choices of distributions seem 1548 

reasonable, although the participant-level estimates will have been constrained by these choices 1549 

such that we are in part assessing a self-fulfilling prediction. 1550 
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 1551 

Figure C1. Summary of selected AT-A-GLANCE (criterial-variant) model parameter estimates. In each 1552 

panel, smaller graphs on the left illustrate hyperpriors (dashed grey) and kernel-density estimates of 1553 

posteriors (solid black) for group-level parameters. Values from these posteriors parameterise 1554 

distributions predicting variation in participant-level parameters across the population (right-hand 1555 

hourglass plots, left lobes; black line derived from mean of posteriors, red shading derived from 1556 

entire posterior to illustrate uncertainty). Within these hourglass plots, individual estimates of 1557 
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participant-level parameters are shown as black circles, their mean as a solid horizontal line, and a 1558 

kernel-density estimate based on these estimates completes the hourglass plot as the right-hand 1559 

lobe. (a) Group-level parameters 𝜇τ and 𝜎τ which describe the (normal) distribution of the 1560 

participant-level parameter 𝜏. This in turn describes the central tendency of the simultaneity function. 1561 

(b) Group-level parameters 𝜇δ and 𝜎δ which describe the (lognormal) distribution of the participant-1562 

level parameter Δ𝛿. This in turn describes the width of the simultaneity function. (c) Group-level 1563 

parameters 𝜇σ and 𝜎σ which describe the (lognormal) distribution of the participant-level parameter 1564 

𝜎L. This in turn describes the (inverse) slope of the simultaneity function’s left flank. (d) Group-level 1565 

parameters 𝜇m and 𝜎m which describe the (normal) distribution of the participant-level parameter 1566 

𝑚. The exponent of 𝑚 is multiplied by 𝜎L in order to yield the (inverse) slope of the simultaneity 1567 

function’s right flank. Hence the group-mean value illustrated here implies 𝜎H was typically around 1568 

1.3 times as large as 𝜎L. (e) Group-level parameter 𝜗l which fixes the mode of the (beta) distribution 1569 

of the participant-level parameter 𝑙. This in turn describes the (half) lapse rate defining lower/upper 1570 

bounds on the simultaneity function. (f) Group-level parameters 𝜇δC and 𝜎δC which describe the 1571 

(normal) distribution of the participant-level coefficient 𝛽𝛿𝐶. This is in turn exponentiated to form a 1572 

multiplier quantifying how ∆𝛿 changes in the “be conservative” condition of the experiment (see 1573 

main text Results section for further details relating to interpreting this coefficient). 1574 

  1575 
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Appendix D: Parameter recovery simulations 1576 

To check that our methods were capable of adequately recovering model parameters, we 1577 

simulated our experiment. We drew binomial-distributed random responses based on model-1578 

predicted “proportion judged synchronous” values for 19 participants in three conditions each with 1579 

9 SOAs and 30 trials per SOA. This was done based on known parameter values for each of our three 1580 

(criterial-variant) models. We drew these parameter values at random from distributions that 1581 

approximated those we had estimated for the population when fitting the models to our actual data. 1582 

For example, when assessing parameter recovery for the AT-A-GLANCE model, the τ parameter for 1583 

each simulated participant was drawn from a distribution similar to that shown as black against a red 1584 

background in the hourglass plot of Appendix C Figure C1a, and so on for other parameters. 1585 

Simulated data were then fit using the model that had generated them via a slightly truncated 1586 

version of the same procedure that we applied to real data for our main analyses (with 5000 rather 1587 

than 10000 post warmup samples per chain, to reduce computation time). 1588 

Figures D1 to D3 show actual vs. recovered parameter values (alongside the ideal lines of 1589 

equality) for the criterial AT-A-GLANCE, ELA, and MCD models respectively. Parameters are in 1590 

general recovered fairly well based on the numbers of trials and fitting procedures used in our 1591 

experiment. 1592 
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 1593 

Figure D1. Parameter recovery simulation with criterial AT-A-GLANCE as the generating model. 1594 

Dashed black line indicates equality for generative and recovered parameters; r = Pearson correlation 1595 

coefficient. (a-e) Model parameters describing baseline performance. These affect the psychometric 1596 

function’s midpoint, width, left-hand (inverse) slope, change in right-hand relative to left-hand 1597 

(inverse) slope, and (half) lapse rate, respectively. (f-i) 𝛽 Model parameters describing changes in 1598 

position (𝜏) and width (∆𝛿) of the psychometric function in the Conservative and Rebound conditions.  1599 

 1600 
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 1601 

Figure D2. Parameter recovery simulation with criterial ELA as the generative model. Dashed black 1602 

line indicates equality for generative and recovered parameters; r = Pearson correlation coefficient. 1603 

(a-e) Model parameters describing baseline performance. These affect the psychometric function’s 1604 

midpoint (𝜏), width (∆𝛿), shape (𝜆a
−1 and 𝑚), and (half) lapse rate (𝑙). (f-i) 𝛽 Model parameters 1605 

describing changes in position (𝜏) and width (∆𝛿) of the psychometric function in the Conservative 1606 

and Rebound conditions. 1607 

 1608 
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 1609 

Figure D3. Parameter recovery simulation with criterial MCD as the generative model. Dashed black 1610 

line indicates equality for generative and recovered parameters; r = Pearson correlation coefficient. 1611 

(a-d) Model parameters describing baseline performance. These affect the psychometric function via 1612 

the model’s auditory-filter time constant (𝜏a), decision criterion (𝐶), noise (𝜎), and (half) lapse rate 1613 

(𝑙). (e-f) 𝛽 Model parameters describing changes in the decision criterion (𝐶) affecting the 1614 

psychometric function in the Conservative and Rebound conditions respectively. 1615 

  1616 
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Appendix E: Ability of PSIS-LOO metric to compensate model complexity and discriminate true 1617 

from false models 1618 

Appendix D, above, describes how we used each of our three (criterial-variant) models to 1619 

create a simulated data set and fit that data set with the generative (i.e. true) model in order to 1620 

assess parameter recovery. Further to this, we additionally recorded PSIS-LOO as a measure of 1621 

goodness of fit (as per our main data analysis, but without additional leave-one-out substitution for 1622 

Pareto ks > 1.0 to reduce computation time; hence a somewhat noisier approach to goodness-of-fit 1623 

estimation). We then fit both of the alternative (i.e. false) models to that same simulated data and 1624 

recorded PSIS-LOO for them in the same way. Finally, we repeated the whole procedure for a second 1625 

run. 1626 

The resulting PSIS-LOO values are shown in Table E1. AT-A-GLANCE and ELA have identical 1627 

numbers of free parameters. AT-A-GLANCE yields higher values of PSIS-LOO compared to ELA when 1628 

it is the generative model (as expected). PSIS-LOO is more similar between these models when ELA is 1629 

generative, although ELA wins (significantly) on one of the two runs. These results suggest that AT-A-1630 

GLANCE may be better able to mimic ELA than vice versa, at least with our procedures. The MCD 1631 

model has less free parameters than both AT-A-GLANCE and ELA. As PSIS-LOO is intended to 1632 

estimate goodness of fit while taking appropriate account of model complexity, MCD should 1633 

nonetheless outperform the other two models when it is generative. It indeed scores significantly 1634 

better, suggesting that the PSIS-LOO metric is working as intended in the current context and 1635 

favouring a parametrically simpler generative model over more complex (but false) alternatives. 1636 

 1637 

Table E1. Comparison of PSIS-LOO values between generative and non-generative models (two 1638 

simulated experiments per model). Standard errors are shown in brackets. The asterisk (*) denotes a 1639 

significant difference (z test p<.05) between a false model and the generative model for that 1640 

simulated data set. 1641 
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Data-generating model Model fitted to data 

 AT-A-GLANCE ELA MCD 

AT-A-GLANCE 
-1059.0 (23.6) 

-1003.3 (22.2) 

-1110.1 (24.6)* 

-1050.6 (24.6)* 

-1175.9 (31.4)* 

-1200.0 (38.2)* 

ELA 
-1070.4 (20.0) 

-1078.6 (19.7)* 

-1072.9 (19.9) 

-1061.8 (18.9) 

-1160.7 (26.8)* 

-1150.9 (24.9)* 

MCD 
-1015.2 (23.1)* 

-1053.1 (23.0)* 

-1024.0 (23.6)* 

-1086.6 (24.4)* 

-968.5 (22.1) 

-992.8 (18.9) 
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