

City, University of London Institutional Repository

Citation: Worthy, P. J. (1998). Investigation of artificial neural networks for forecasting and

classification. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30986/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Investigation of Artificial Neural Networks

for Forecasting and Classification

Submitted for qualification as Doctor of Philosophy

by Paul James Worthy

City University

Northampton Square

London, EC1V OHB.

Department of Systems Science

March 1998

TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION 1

1.0 Background 1

1.1 Artificial Neural Networks 1

1.2 Research Hypothesis 4

1.3 Research Aim 5

1.4 Research Objectives 5

1.5 Application Areas 5

1.4 Thesis Structure 6

CHAPTER 2 - LITERATURE REVIEW 8

2.0 Introduction 8

2.1 The history of the theory of mind 12

2.2 Neural Networks, Parallelism, Connectionism...Some definitions 15

2.3 Critical Review 16
2.3.1 - Chronology of computational ANN research 17
2.3.2 ANN Reviews 19
2.3.3 - Prominent models 21

2.3.3.1 Feedforward Networks 24
Definition 25
Operating principles 25
Computational capability of feedforward networks 26
Capabilities of feedforward learning algorithms 30

2.3.3.2 The Hopfield Model 35
2.3.3.3 Recurrent Networks 38

Boltzmann machines 38
Recurrent Backpropagation 40

2.3.3.4 Learning Vector Quantization (LVQ) 41
2.3.3.5 Unsupervised Networks 43

2.4 Summary 45

CHAPTER 3 - ANALYTICAL AND EXPERIMENTAL METHOD 47

3.0 Introduction 47

3.1 Proposed Experimental Method 48
3.1.1 Model Selection Knowledge base - form and function 50
3.1.2 Data set characteristics - purpose and form 51

3.2 Example of method using synthetic data sets 52

3.3 Expected benefits and drawbacks of a structured method 54

CHAPTER 4 - FORECASTING 57

4.0 Introduction 57

4.1 The forecasting process 58
4.1.1 Data set characteristics 59
4.1.2 Forecasting performance metrics 61
4.1.3 Forecasting algorithm characteristics 62

4.2 Forecasting methods - A critical review 62
4.2.1 Established forecasting techniques 63

4.2.1.1 Linear time series models 63
4.2.1.2 Non-linear time series models 64

4.2.2 ANNs for forecasting 65

4.3 Benchmarking studies 66

4.4 The Forecasting problem 66
4.4.1 Foreign Exchange Markets 67

4.4.1.1 Exporters, importers and foreign investors 67
4.4.1.2 Speculators 67
4.4.1.3 The market mechanisms and driving forces 68
4.4.1.4 Potential for forecasting 71

4.5 ANN forecasting experiments 74
4.5.1 Daily time series: characteristics 74
4.5.2 Daily time series : experiments and results 77
4.5.3 Five-minute time series: characteristics 78
4.5.4 Five-minute time series: experiments and results 80

4.6 Discussion of results 81

CHAPTER 5 - CLASSIFICATION 84

5.0 Introduction 84
5.0.1 Hypothesis 85

5.1 The classification process 85
5.1.1 Data set characteristic measures 85
5.1.2 Classifier performance metrics 86

5.1.2.1 Data Sampling 86
5.1.2.2 Accuracy / Error measures 88

5.1.3 Classifier model characteristics 89

5.2 Methods of classification 89
5.2.1 Statistical Methods 90

Linear, Quadratic and Logistic Discriminant Functions 90
Bayes Rule (Non-Parametric) 91
Multivariate Density Estimation 93
k-Nearest Neighbour 94

5.2.2 Rule Structured Classifiers (Machine Learning) 95
Decision Trees 96
CART (Classification And Regression Tree) 96

5.2.3 Artificial Neural Networks 96

3.4 Summary 56

ii

Feedforward Network
Learning Vector Quantization (LVQ)

96
97

5.3 Benchmarking studies 97

5.4 The classification problem 99
5.4.1 Septicaemia 99
5.4.2 Data Set Features 100

5.5 Experiments 101
5.5.1 Septicaemia data set: characteristics 101
5.5.2 Algorithms selected for experiment 102
5.5.3 Feedforward Networks: experiment results 103
5.5.4 Learning Vector Quantization (LVQ): experiment results 103

5.6 Summary 106

CHAPTER 6 - DISCUSSION 108

6.0 Precepts 108

6.1 Research Objectives 109

6.2 Limits to ANN learning capabilities 111

6.3 Problem representation and reasoning 113

6.4 The utility of a meta-method 115

CHAPTER 7 - CONCLUSIONS 118

7.0 The objectives 118

7.1 Future work 120

APPENDIX A - CHARACTERISTIC MEASURES OF DATA SETS FOR
FORECASTING I

A.l Standard deviation (SD) - a i

A.2 Mean - x i

A.3 Stationarity i

A.4 Autocorrelation Function (ACF) ii

A.5 Histogram ii

A.6 Phase Diagram ii

A.7 Embedding Diagram iii

A.8 Synthetic data sets iii

APPENDIX B - ANALYSIS OF FORECASTING DATA IV

iii

B.l - The five minute closing price data iv

B.2 - The daily closing price data viii

B. 3 Prediction Results (five minute data) xi

APPENDIX C - CHARACTERISTIC MEASURES OF DATA SETS FOR
CLASSIFIERS XII

C. l Sample Size xii

C.2 Features xii

C.3 Binary Features xii

C.4 Ordinal Features xii

C.5 Classes xii

C.6 Entropy of a feature xii

C. 7 Joint Entropy of features and classes xiii

APPENDIX D - ANALYSIS OF CLASSIFICATION DATA XIV

Dl. Analysis of feature Entropy H(f) xiv

D2 Analysis of class-feature entropy H(c,f) xiv

D. 3 Entropy values for test classification data set xiv

APPENDIX E - SOFTWARE DEVELOPED TO SUPPORT RESEARCH XVII

E.l LVQ simulation xvii

E.2 Classification analysis xx

E.3 Time series analysis xxi

E. 4 Chaos identification and simulation xxiv

APPENDIX F - LVQ EXPERIMENTS XXVI

F. l Software xxvi

F.2 Data files xxvi

F.3 Results xxvii

F.4 Experimental Data xxviii

IV

List Of Figures

Chapter 1

Chapter 2

Chapter 3

Chapter 4

1.1 Schematic of a neuron with computational abstraction

2.1 Disciplines contributing to Computational ANN models

2.2 Breadth of models and academic disciplines for neural modelling

2.3 Simple & Two layer perceptron

2.4 Processing Element and example transfer functions

2.5 Weight space separation for perceptron logic functions

2.6 Weight space in Simple and Two Layer Perceptron

2.7 A small Hopfield network with four processing elements

2.8 Schematic of Hopfield Network State Space (Attractors labelled 1-5)

2.9 An arbitrarily connected Boltzmann model

2.10 Learning Vector Quantization classifier

2.11 A network entity relationship diagram.

3.1 Schematic of research activity and theory

3.2 Generic method for classification and forecasting applications

3.3 Simple characteristics-algorithms mapping

3.4 Complex characteristics-algorithms mapping

3.5 Time series data; dl (line) and d2 (sinusoid)

3.6 Mapping schematic of time series example

4.1 The forecasting process

4.2 Hypothetical time series and prediction

4.3 A simple currency exchange market model

4.4 Five currency exchange rates against the US dollar

4.5 Phase diagram of Italian Lira (x vs dx/dt)

4.6 Phase plot of Italian Lira (dx/dt vs. d2xldt1)

4.7 Histogram of daily Lira closing prices

4.8 ACF functions for synthetic time series

4.9 ACF functions for Daily Lira and first differential

List Of Figures (continued)

4.10 Three sample series with mean and a scaled SD (x5)

4.11 Summary of experimental method : forecasting

Chapter 5 5.1 The classification process

5.2 Synthetic 2-D data set

5.3 Class likelihood functions for classes A and B

5.4 Class A and Bposteriori probability density functions

5.5 1-Nearest Neighbour (1-NN) & 3-Nearest Neighbour (3-NN)

5.6 Variation in class classification accuracy for LVQ solutions.

Chapter 6 6.1 Forecasting problem representation

List Of Tables

Chapter 2

Chapter 4

Chapter 5

2.1 A sample of ANN survey texts (by discipline)

2.2 Table of ANN network models

2.3 Exponential computational requirement to explore weight space for

solutions

4.1 Data set characteristic measures and visual tools

5.1 Classification data set characteristic measures

5.2 Data sampling techniques

5.3 A true and false positive matrix

5.4 Characteristic measures for classification

5.5 Class and average accuracies for Best LVQ solution and 1-NN

5.6 True and False positives for 1-NN solution

Acknowledgements

The process of researching and writing a thesis proved more demanding in academic

and personal terms than I imagined. I would like to take this opportunity to thank my

academic mentors for their patient guidance and friends for their tolerance during the

difficult gestation and eventual birth of this thesis.

Ron Summers and Ewart Carson provided guidance and encouragement which was

especially welcomed in the latter stages. Andy Morrison helped in getting my many

computing related problems solved. Steve, Rouhi, Syed and Graham made the

academic side of life much more vibrant and I thank them for the frank contributions to

my research efforts. On the (rare) occasions that their opinions were useless they were

none the less endowed with wit. I would especially like to thank Richard Dybowski of

St. Thomas’ Hospital for his unstinting help and scholarly enthusiasm in developing

models and analysing the Septicaemia data.

Friends where particularly important in enabling this thesis to emerge. Kevin and

Kalok provided a roof over my head (for too long) and deserve special thanks. Tomoko

put up with much procrastination and I thank her for the patience. To my Parents,

who like all parents seem to believe in their offspring ill-deserved or not, I dedicate

this thesis.

Disclaimer

I grant powers of discretion to the University Librarian to allow this thesis to be copied

in whole or in part without further reference to me. This permission covers only single

copies made for study purposes, subject to normal conditions of acknowledgement.

CHAPTER 1 - INTRODUCTION

1.0 Background
This thesis describes research conducted at City University into the application of

Artificial Neural Networks (ANNs). ANNs have been evaluated as candidate solutions

to two common tasks: classification and forecasting. More specifically the ANN

models considered were those that could be implemented as computer algorithms

suitable for the application domains considered.

ANNs have emerged from a multi-disciplinary field of researchers attempting to

understand and model biologically inspired neural systems on both the small and large

scale. At the small end of the scale individual processing elements are studied in depth

whilst in the large scale, networks containing many interconnected elements are

simulated and behaviour analysed. The capabilities of the more mature ANN models

have been explored in depth, with several being applied to domains, competing with

established techniques such as machine learning, statistical methods and mathematical

modelling. The relatively new field of ANN research is characterised by recent

expansion in academic activity, rapid and widespread application of models and much

debate over the benefits and performance of such models (not without controversy).

The motivation behind this study was to evaluate objectively the potential of ANN

models in what can be termed ‘real world’ problems, as opposed to artificial tasks

based on synthetic data. Real, rather than artificial data were used in the applications

presented, since one of the perceived benefits of ANN models is the ability to cope

with the noisy, complex and often high dimensional data sets found in many ‘real

world’ problem domains.

1.1 Artificial Neural Networks
Artificial Neural Network research has grown exponentially since the mid 1980s and

now stands at a level of research activity measured by at least 10 Journals and over 200

1

abstracts per month (INSPEC, 1994). The origins of neural network research, however,

date back much further with anthologies frequently citing seminal texts such as

McCulloch and Pitts (1943) and Hebb (1949). A respected collection of edited papers

(Anderson & Rosenfeld , 1988) includes a landmark text dating back as far as the

nineteenth century (James, 1890).

The majority of ANN models are based around the functional building blocks found in

the nervous system (predominantly the brain) of animals; neurons (synonymously

neurones). A schematic of a generic neuron is given in Figure 1.1. Neurons vary in the

number of dendrites (incoming connections), range of their axons (outputs) and

number of axon to dendrite connections (synapses). The detail of neural systems

reveals far more complexity than that described here. The basic component described,

however, has been abstracted into the computational domain summarised here by the

title ‘Artificial Neural Networks’.

Figure 1.1 - Schematic of a neuron with computational abstraction

2

The recent expansion in ANN research activity is noteworthy. There are some primary

causes for the resurgence:

• The breakthrough of backpropagation for training multi-layered networks

Wide scientific interest in the field waned after the computational limitations of an

early ANN model, the ‘perceptron’ (Rosenblatt, 1958), were exposed by Minsky and

Papert (1969). Further development of models received little interest from the rest of

the Artificial Intelligence (AI) community. ANNs attracted huge interest again with the

popularisation of the ‘backpropagation’ learning algorithm (Rumelhart et al., 1986).

The algorithm enabled learning to take place in complex multi-layer models, which,

having increased computational capability, overcame the limitations highlighted by

Minsky and Papert.

• The widespread availability of low cost computing power

Most Artificial Neural Network models are computationally expensive requiring

powerful computers to facilitate experimentation and analysis. With the advent of the

Personal Computer, the 1980s saw the start of a huge and rapid rise in cheap

computational power giving more researchers the opportunity to simulate and

experiment with ANN models. Early research, limited by the dearth of such

computing power, was restricted to predominantly theoretical work. A good example

of this is Hebb’s (1949) explicit statement of the physiological learning rule. It was not

simulated on a computer until some 7 years later by Rochester et al. (1956).

• The ability of ANNs to learn input / output relationships

There is broad appeal for the use of automatic systems that are self learning and capable

of generalising the relationships between data inputs and outputs, often in domains

where a deterministic model of the system of interest does not exist. One of the

difficulties of the rule based Artificial Intelligence (AI) approaches is the problem of

generating rules from ‘real world’ raw data.

3

• Non-linear modelling capability of ANNs

Many real world modelling problems exhibit non-linear characteristics. The non-linear

modelling capability found in prominent ANN models can be successfully applied to

such systems.

The recent resurgence of research activity has seen more model propositions and

analyses from researchers having little or no biological background. The application

and modification of models for specific problem domains is a norm. Despite a

significant input from those with no biological interest, neural modelling is still a

driving force for many researchers. Rumelhart and the Parallel Distributed Processing

(PDP) group (Rumelhart, 1986) presented a collection of cognitive process models that

have served as a reference text for researchers in the field since its publication.

Edelman (1992) has developed an evolutionary biological theory linking

neurophysiology and the mind. Opponents and proponents of his views exist and this

area of ‘true’ neural network research (from the biological perspective) is where

academic debates rage, clouded by the long running philosophical arguments

surrounding the ‘mind-body’ problem. Penrose (1989) has added fuel to the fire

arguing that computer models of the human mind cannot come to fruition with current

limitations in scientific theory.

Current ANN models are of a very small scale when compared to the human brain

which contains of the order 1011 neurons connected by some 1014 interconnections

(Anderson and Rosenfeld, 1988). One of the aims of modelling biological systems is to

attempt to emulate desirable aspects of their behaviour such as learning. A paradox is

that as the artificial models become larger, they rapidly become as difficult to analyse

as their biological counterparts due to the high degree of interconnectedness.

1.2 Research Hypothesis
ANNs are self learning, potentially non-linear, data based models. They offer

potential where symbolic Artificial Intelligence (AI) techniques, statistical methods or

mathematical modelling have had little success. With the large (and growing) number

of ANN models and algorithms to choose from, this study set out to investigate which

4

models could be applied to real world problems and what performance they would

yield. The hypothesis was :

• Artificial Neural Network models can be applied to a problem domain and offer a

performance (by defined metrics) comparable to or better than established

techniques commonly applied in that domain.

1.3 Research Aim
The principle aim of this study was to investigate the hypothesis by carrying out

performance tests on ANNs in two very different problem domains. The performance

differences between ANNs and existing techniques needed to be quantifiable thereby

providing verifiable evidence either supporting or contradicting the hypothesis.

The performance of the ANNs combined with heuristic knowledge gained from

applying models would lead to the conclusions as to the appropriateness of applying

ANNs to the chosen problem domains. Given the range of ‘competing’ techniques it

was valid to question the use ANNs.

1.4 Research Objectives
The research centres on two modelling problems that have already been tackled, with

varying degrees of success, by a range of established techniques. The objective of the

research is to devise a framework for selecting, applying and evaluating the

performance of ANN models. The applicability of the framework will be demonstrated

by application to two problem domains; forecasting and classification.

1.5 Application Areas
The modelling tasks used in this study are based on data sets from two domains, the

first of which requires a classification solution, the second a forecasting solution.

The time series forecasting task uses foreign exchange data to evaluate the ability of a

self learning Artificial Neural Network algorithm to predict future prices. There are

immense volumes of data available in this domain, a factor making it appealing to the

application of ANN models. The inherent difficulty of forecasting in such a domain

places particular emphasis on a well defined metric of ‘successful’ forecasting.

5

The classification task is a complex problem based on a database of patient records

from a London teaching hospital. The database contains details of over 5000

septicaemic episodes recorded over several years by the Department of Microbiology at

St Thomas’ hospital, London (Gransden et ah, 1990). The task is to classify, using an

appropriate algorithm, the most likely infecting micro-organism of a previously unseen

patient using only past patient observations. The historical database is the only source

of information with which to construct the classifier. The classifier will therefore be

objective and data based as opposed to a subjective, knowledge based type.

1.4 Thesis Structure
Chapter 2 gives a broad critical review of the literature documenting Neural Network

research. The review gives some history and chronology to seminal papers but focuses

on the most recent computational models. A conceptual model of the research domain

is presented, facilitating an explanation of the variety of terminology in texts and

differing research themes.

In Chapter 3 a novel experimental and analytical method is proposed for the application

of ANNs to the two domains. The method defines the application process from data set

description and analysis, to proposing potentially successful model solutions,

experimentation and evaluation of the model solutions, and final application of the

successful solution to the domain.

The forecasting task is described in Chapter 4. A critical review of forecasting

methods is followed by a discussion of time series analysis techniques. These

techniques can be used to identify criteria for selecting potentially successful

forecasting methods. Studies where quantitative evaluation of forecasting algorithms

has been carried out are discussed before the application domain (set within the

currency exchange markets) is described in detail. Finally, the forecasting experiments

and their results are described and analysed.

The classification task based on the selected medical application domain is covered in

Chapter 5. The initial discussion details the classification process and reviews the

6

methods by which it can be achieved. A review of methods and benchmarking studies

forms a precursor to an overview of the diagnosis and treatment of septicaemia. The

data set, experimental results and analysis are presented at the close of the chapter.

A discussion exploring the utility of the experimental framework is presented in

Chapter 6. The forecasting and classification results are also discussed, pulling

together the strands of insight gained from the experimental process. Key issues

brought to light by the application of models to the domain data are explored.

Chapter 7 summarises the experimental work and draws final conclusions on the value

of ANN models in the context of classification and forecasting. Areas of further

research are highlighted.

7

CHAPTER 2 - LITERATURE REVIEW

2.0 Introduction
Starting from the late 1980s a significant research momentum built up in the field of

'neural networks'. Computational models, inspired by neural modelling and cognitive

research, caught the imagination of researchers from many domains (assisted in some

instances by considerable media hyperbole). Artificial Neural Networks (ANNs), it

was claimed, did not have to be programmed to perform an operation, they instead

learned by examples. From such a series of examples the networks could generalise

(developing relationships between inputs and outputs) hence coping with unseen

examples (new situations). Machine learning algorithms had been making some

headway in this direction but suffered from the limitations of their symbolic operators

(AND, OR, NOT etc.). Further, machine learning algorithms are often inadequate

when dealing with non-linear problems to which they are sometimes applied. It is in

the non-linear arena that neural networks and the parallel field of fuzzy logic showed

promise.

Currently the field of ANNs attracts contributions from many academic disciplines -

primarily those of neuroscience, physics, psychology, statistics, computer science

and mathematics. The broad, and historically long running philosophical debate of

‘Mind-Body’ (Figure 2.1) surrounds the more specialised contributions. Since the late

1980s a vast number of researchers have applied computational Artificial Neural

Networks to many problems and studied theoretical issues; consequently a vast number

of publications documenting the varying degrees of success have been generated.

Some researchers are highly critical of the general quality of this material, sometimes

forcefully put; “much is dross’’ (Ripley 1993; p.7).

The analysis within this chapter critically reviews the capabilities of ANNs using

theoretical and experimental papers from the literature. The experimental papers often

8

illustrate the practical problems encountered in trying to realise the theoretical

capabilities of ANN models.

The analysis presented here covers knowledge contributed from the varied disciplines

with an aim to providing a more structured method for selecting appropriate models for

applications. A key problem in drawing together knowledge is finding a common

language that can express concepts in each discipline. In a field where much

inspiration for work comes from biological systems a huge chasm exists between the

behaviour of systems on the micro (neuroscience) and the macro (cognitive) levels.

Indeed it is still questioned by some whether the two are directly related or indeed if it

is possible to relate them in a deterministic way (section 2.1). Mathematics, physics

and biology may be useful to model the ‘low level’ physiology of the brain but the

‘higher level’ cognitive properties of the brain are difficult to understand with these

deterministic models. The physiological models are very difficult to scale to the size

where higher level cognitive properties may manifest themselves.

Figure 2.1 - Disciplines contributing to and influencing computational ANN
models

The foundation of this thesis was research into ANNs and their potential for application

to two real world problems. The numerous ANN experiments found in the literature

are often problems where existing modelling techniques could also have been applied.

Many of the ANN models utilised in such problems have research origins based in

natural systems such as the human brain. It is this crossover in application that causes

some conflict in addressing the capabilities of such models. Since many ANN

applications compete with methods in the statistical / mathematical realm, analysis

9

using techniques from these disciplines is inevitable. Using models developed in one

discipline and exposing them to analytical techniques from another produces a more

robust theoretical base. This analytical approach has been used before to great effect in

the case of an early ANN model. Rosenblatt, originally a psychologist, introduced a

model named the ‘perceptron’ (Rosenblatt, 1958). The perceptron was greeted with

enthusiasm but it did not live up to early expectations. A rigorous mathematical

analysis by Minsky and Papert (1968) revealed limitations in the computational

capabilities of perceptrons. Their authoritative arguments were valid and the resulting

powerful negative influence was sufficient to cause funding and general interest in

ANN research to evaporate.

Now firmly re-established with a multi-disciplinary research base, the field of ANNs is

producing a wide number of models. The potential for ANN models to develop into

sophisticated computational machines capable of exhibiting the characteristics of the

human brain is still a subject of highly opinionated debate. Penrose (1989) has

addressed the subject; he argues against the possibility of computers modelling human

intelligence, qualifying his argument with a discourse including Turing machines,

relativity theory and quantum physics. Edelman (1992) has developed a theory of the

mind based on biological evolutionary principles - a so called ‘Neural Darwinism’. If

the theory proves to be correct it would be the first comprehensive theory explaining

and linking brain behaviour on the micro scale (neurological systems) and macro scale

(higher cognitive processes and consciousness). These arguments represent what can

be regarded as the higher aims of ANN research; to synthesise and understand

intelligent systems using many processing elements, or groups of elements. The

majority of research is, however, still concerned with the application and behaviour of

small scale networks (frequently less than 100 nodes in a feedforward network). Figure

2.2 shows a range of neural concepts at different resolutions ranging from atomic scale

up to the level of the human organ (brain). The scales to which ANN models

correspond to their biological counterparts are also shown. The primary disciplines

involved with the investigation of neural systems are represented with an

approximation of the scales at which they have a bearing. It shows that computational

10

ANN models are on the scale of individual to small groups of cells and currently have a

small scale correspondence with memory and cognition systems.

Neural
Resolution

Concepts

Computational
Models

___________________Increasing Scale______________________

Atomic Molecular Cell Cell Groups Brain

Learning
Memory

Cognition
The Mind ?

Neuro
Transmitters

Synapse
Axon

Dendrites

Hippocampus
Cortex

ANN Models

Influential
Disciplines

Neurophysiology & Neuroanatomy Philosophy

Neuropsychology

Biology

Physics

Figure 2.2 - Breadth of models and academic disciplines for neural modelling

The hope of linking small ANN models to cognitive processes is beyond the scope and

not the aim of the research presented in this thesis. Ultimately, it is hoped that an

ambitious theory such as Edelman’s ‘Theory of Neuronal Group Selection’ (TNGS)

will give insight (at least) into the dynamic neurological behaviour of the human brain

and link this to the behaviour of the human mind. This possibility is tempered by many

counter arguments like that of Penrose concluding that we cannot recreate human

consciousness in Turing machines.

Edelman also realises that to reduce ‘behaviour to a theory of molecular interactions is

simply silly’ (Edelman, 1992). This perspective is lucidly illustrated by Gleick when

discussing the complexity of models ;

“Only the most naive scientist believes that the perfect model is the one that perfectly

represents reality. Such a model would have the same drawbacks as a map as large

and detailed as the city it represents, a map depicting every park, every street, every

building, every tree, every pothole, every inhabitant, and every map

(Gleick, 1988; p.278)

11

This review is primarily concerned with small (relative to human neural networks)

computational ANN models. Large scale networks and the broad issue of the human

mind are discussed briefly in section 2.1. The rest of the chapter discusses the ANN

models available and notes their genesis and subsequent evolution (pointing out

research disciplines motivating changes in models e.g. biology, statistics etc.) and

including comparisons to competitive techniques (such as machine learning). Where

parallels exist attempts are made to draw upon them. It will therefore be an attempt to

bind some of the literature on network models and related techniques where currently

few links seem to exist.

2.1 The history of the theory of mind
A primary motivation for creating biologically plausible computational neural models

is that we would hope to recreate some of the learning, cognitive and intelligent

characteristics displayed by humans. This does however work on the premise that the

brain (and surrounding nervous system) is the organ responsible for such functions and

is the habitat of the human mind. It is an assumption widely taken for granted but has

been, and still is, an area of heated philosophical debate.

Gregory (1987; p.545) discusses the history of neuropsychology and illustrates the

increasingly informed viewpoints of great thinkers through the millennia starting with

the ancient Greeks. Hippocrates (fifth century BC) identified the brain as the organ of

intellect whereas Empedocles located mental processes in the heart. Galen also

favoured the brain as the source of intellect, arguably due his experience of dealing

with gladiators (in his capacity as a physician). Aristotle (400 BC) discussed mental

processes with great perception whilst mistakenly placing the mental function in the

heart (the brain serving merely as a cooling device!). It was with René Descartes 1 and

the beginnings of modem philosophy that the dualist position was proffered. Descartes

viewed the mind as a special substance separate from matter. What was termed the

‘Mind-Body’ problem has been a vibrant jousting arena for philosophers ever since and

now has three discernible groups of theorists (though other classifications are possible);

12

mentalist, materialist and dualist. The mentalist theories view the mind as more

definite than material objects whereas the materialists (or physicalists) view the mind as

a phenomenon of physical processes, typically expressed as behaviourism

(philosophical sense) or as the identity view. The dualist position holds that the mind

and body are separate entities with numerous theories under this banner such as

‘bundle’, ‘parallelist’, ‘interactionist’, ‘epiphenomalism’ (Hospers, 1988). A lively

picture of the current state of philosophical debate is painted by Cornwell (1994) who

describes the scene of ‘a dozen or so bitterly opposed factions, as well as some

marauding lone rangers’. His text delves into the perceived motivations of many of the

authors and puts forward the view that their work often carries a subtext. His

observation of the personality cult in this area of research is an important one and can

help explain (if not predict) the directions of research.

The present day debate includes participants from increasingly varied disciplines such

as neurobiology, physics, computer science and philosophy. Of direct implication for

the potential of computational ANN models and illustrative of the wider debate are the

positions of Edelman and Penrose^, both eminent scientists in their fields of

neurobiology and physics respectively. They stand opposed in many of their views on

the nature of the human mind. Edelman draws on his knowledge of biology and

neuroanatomy to promote an as yet unproved Theory of Neuronal Group Selection

(TNGS). This theory describes the activity of groups of neurons and links their

development and interconnections with other groups to consciousness. Penrose

wanders through intricate mathematical expositions of Turing machines, mathematical

philosophy, classical and quantum physics and the limitations of scientific knowledge.

The core argument is that a new theory (quantum gravity) to cope with the limits of

quantum theory (dimensions <10"33 cm) could explain consciousness. The relevance of

his arguments to understanding the brain are questionable on the grounds of appropriate

resolution of models (see Figure 2.2). Edelman recognises the scholarship of Penrose’s

discourse but dismisses his arguments;

French philosopher (1596-1650). Famous dictum ‘cogito, ergo sum’ (I think, therefore I am). His text
The Discourse on Method caused a new ‘doubting’ philosophy to permeate scientific investigation with
only the mind being trusted.

13

“Penrose’s account is a bit like that o f a schoolboy who, not knowing the formula of

sulfuric acid asked for on an exam, gives instead a beautiful account o f his dog Spot”.

(Edelman, 1992; p.217)

Numerous other positions are taken in the literature. A varied sample of the many

available are those of Crick (eminent biologist), Moravec (computer scientist) and

Dennett (philosopher). A ‘strong AI’ position is taken by Moravec (1988) who presents

the brain as being analogous to a digital computer (utterly at odds with Penrose). Crick

(1994) takes a reductionist approach and in course has questioned Edelman’s theory

(Crick, 1989). Dennett (1991), a modem philosopher, presents consciousness as an

illusion and draws as many critics as supporters.

The debate will undoubtedly continue, but Edelman’s theory at least attempts to

provide a framework linking neurophysiology to neuropsychology. More importantly

the theorem’s validity can be investigated by scientific enquiry. Electronic discussion

groups such as that moderated by Wilken (1994) continue to oversee debate about the

philosophical issues but inevitably it will be an increase in neurophysiological

knowledge and simulation that will yield scientific answers to the debate. From

Aristotle, Hippocrates, Empedocles to Descartes and through to modem philosophers

such as Dennett the argument over mind and matter has been primarily influenced by

increasing scientific knowledge in physiology, biology, neuroscience and psychology.

It is hoped that a broad theory, by necessity crossing the boundaries of these

disciplines, will allow the testing of scientifically verifiable hypotheses on the links

between matter and mind . Edelman has developed such a theory (TNGS) and has

invited for it to be tested in such a scientific way (Edelman, 1992; p.97). It would

appear a laudable step.

It is interesting to note that the current ANN debate still suffers from lack of access to

knowledge from participating protagonists. Anderson and Rosenfeld (1988; p.43)

noted that early researchers such as McCulloch and Hebb ‘really knew their

neuroscience’. With the increasing spread of contributing disciplines it requires some

2Edelman received the Nobel Prize for Physiology or Medicine in 1972. Penrose shared with Stephen
Hawking the Wolf Prize for physics for contributions to the understanding of the universe.

14

degree of scholarship to understand the material available and a particularly clear

exposition of new ideas to reach the widest possible audience. Edelman for example

shows an impressive degree of scholarship in his work but his hypotheses have been

criticised for lacking clarity.

2.2 Neural Networks, Parallelism, Connectionism...Some definitions
The thesis title defines the models of interest to be 'Artificial Neural Networks'.

Frequently models in the surveyed literature will appear under the inaccurate synonym

'Neural Networks'. The term artificial is used as a prefix to make clear that the models

investigated are not biological neural models but computational abstractions that often

draw inspiration from biological systems. They are, therefore, very much artificial.

Initial surveys of the literature uncovers evidence of an infant area of research lacking

in clear definitions. There are still many terms that are used synonymously; 'Artificial

Neural Networks', 'Neural Networks', 'Connectionist Paradigms', 'Parallel Distributed

Processing'. A primary reason for this lack of definition is the number of established

disciplines that are contributing research material, often written from their own

perspective and in their own terminology (e.g. psychology, neuroscience, mathematics

and physics).

Rumelhart et al. establish a general framework for their 'Parallel Distributed Processing'

(PDP) models. They identify eight major assumptions that can be made about the

components of a PDP model;

• “A set o f processing units

• A state o f activation

• An output function for each unit

• A pattern of connectivity among units

• A propagation rule for propagating patterns o f activities through the

network o f connectivities

15

• An activation rule for combining the inputs impinging on a unit with the

current state o f that unit to produce a new level o f activation for the unit.

• A learning rule whereby patterns o f connectivity are modified by

experience.

• An environment within which the system must operate ”

(Rumelhart et al., 1986; p.44-45)

Another definition from Hecht-Nielsen can be considered:

“A neural network is a parallel, distributed information processing

structure consisting o f processing elements (which can possess a local

memory and carry out localised information processing operations)

interconnected together with unidirectional signal channels called

connections. Each processing element has a single output connection

which branches (fans out) into as many collateral connections as desired

(each carrying the same signal - the processing element output signal). The

processing element output signal can be o f any mathematical type desired.

All o f the processing that goes on within each processing element must be

completely local: i.e. must depend only upon the current values o f the input

signals arriving at the processing element via impinging connections and

upon values stored in the processing elements local memory. ’

Hecht-Nielsen (1989)

The Hecht-Nielsen definition does not give any insight to the learning characteristics of

an ANN, merely how a network should operate. The definition from Rumelhart et al. is

more appealing due to its broader scope and less specificity and is therefore the

working definition of ANNs adopted for this study. It should be noted that some

models widely published in ANN literature (such as LVQ) do not satisfy even this

broader definition of an ANN. The definition will be used, therefore, to highlight

models that do not fully fit the (biologically plausible) criteria rather than to exclude.

2.3 Critical Review
Structuring a critical review of the field of Artificial Neural Networks with a

meaningful chronology is difficult. The field itself has only become a widely

recognised within the past decade. For example, the first conference on Neural

16

Information Processing Systems was held in 1988. Anthologies will, however,

commonly trace the field back to McCulloch and Pitts (1943). Some go back further

still to William James (1890). It can be argued that the starting point is somewhat

meaningless when compared to the developments in the past decade.

This review is divided into three parts. The first part is focused on the history of ANN

research, widely referred to as ‘Neural Networks’. It is a brief chronological account of

the important research milestones and major issues. The second part discusses useful

papers that have also analysed ANN models from a similar broad perspective to that

presented here. Invariably the texts are written in a language or with a focus that

reflects the academic discipline of the authors. There are a few notable anthologies and

critical reviews and to repeat the information that can found within them would be

unproductive. It is more meaningful to summarise such texts in terms of the content

and audience to which they are addressed. Those familiar with the field will recognise

the difficulty of wading through the plethora of texts available offering an interpretation

of ANN models in the academic language of the authors. Scholarship in the ANN field

is especially important (and difficult) due to the wide ranging contributing disciplines

and the numerous publications available in which to present work. The third part

presents important ANN models in current use and constitutes the bulk of the review

2.3.1 - Chronology of computational ANN research
From a computational perspective , the first explicit model is universally documented

to be that of McCulloch and Pitts (1943). Their model neuron is an “all-or-none”

binary device. This facilitated an analysis of its computational capability using

mathematical logic. The result was a proof that any finite logical expression could be

implemented using McCulloch-Pitts neurons. Although the “all-or-none” physiological

assumption is incorrect the paper was a positive first step towards biologically plausible

computational models.

Donald Hebb provided a description of a learning rule for the modification of synapses;

“When an axion o f cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic

17

change takes place in one or both cells such that A ’s efficiency, as one o f

the cells firing B, is increased’. Donald Hebb (1949)

Although not a computational model it provided an explicit statement of how learning

could take place in neural systems. Some simulation of this learning system was

carried out by Rochester et al.(1956) but it was not until Rosenblatt’s ‘perceptron’

(1958) that a model generated wide scale interest. The model was well defined, open

to analysis and simulation, and it could respond to unseen patterns that were similar to

previous patterns, thereby displaying generalization. The perceptron caused

excitement as the possibilities of an adaptive, learning machine appeared to have great

potential. Other models emerged in the period following this publication, notably that

of Widrow and Hoff (1960); the ‘ADALINE’. This ‘adaptive switching circuit’

model was similar to a perceptron but had a simple learning rule that modified the gains

(analogous to weights) continuously so as to minimise the output error.

These early models did not live up to the early expectations and it was the now

infamous analysis performed by Minsky and Papert (1969) that precipitated the rapid

demise in the research and application of such models. The text proved the limitations

of the simple perceptron to solving defined logic tasks and the newer symbolic AI

approaches became the focus of research.

Some researchers persevered with ANN models and Grossberg (1976) proposed several

architectures with non-linear dynamics based on biological and psychological evidence.

His mathematical approach was difficult to follow and broader interest in ANNs was

not stimulated again until Hopfield (1982, 1984). Hopfield’s academic weight led to

some credibility being bestowed on ANN research and his network model (a specific

type of a more general Grossberg model) rekindled wider academic interest.

The PDP group later published their seminal text containing numerous models

(Rumelhart et al., 1986) one of which being the now ubiquitous ‘backpropagation’

algorithm. The algorithm was a generalization of the Widrow-Hoff learning rule and

allowed learning in multi-layered perceptrons to solve the famous X-OR problem

18

highlighted by Minsky and Papert (1969). The field was once again in a strong position

with high expectations.

Notably, relating ANN models to theorems in physics and statistics (e.g. the Hopfield

ANN model being isomorphic with the Ising model) had led to more rigorous analysis

and insight. The methods of statistics and physics can be useful tools for analysing

complex systems with many components - ANNs would seem to lend themselves

naturally open to this type of analysis. With such analyses the field has achieved some

degree of (academic) credibility in the eyes of these established disciplines. With such

methods, however, the already limited biological plausibility of models can easily be

lost or forgotten. The issues of model purpose, methods for analysis and development

direction are important and are reflected in the current diverse strands of research

pulling existing models in numerous biased scholastic directions.

2.3.2 ANN Reviews
The interdisciplinary nature of the field has lead to a range of texts each with a

particular bias reflecting the author’s academic discipline. The most broad ranging

anthology is that of Anderson and Rosenfeld (1988). The text is an edited collection of

43 original papers from diverse sources. This popular collection was followed by a

second; Anderson et al. (1990) containing 41 articles with the unifying theme being

‘research directions’, the aim being to map out the important directions that various

researchers were taking ANN research (in 1990). The texts provide, therefore, a view

back and a view forward of ANN research.

An example of a discipline specific review of the field can be found in Ripley (1991)

who gives a very critical comparative assessment of some ANN models and statistical

techniques. The paper is written from a statistical perspective and tackles an area of

application where ANN models have been used extensively - classification. Geman et

al.(1992) present a review of the learning capabilities of neural networks from a

statistical view and the paper has important implications for the limitations of ANN

models. Hertz et al.(1991) tackle the field from a theoretical angle and their exposition

19

draws on their background as physicists. Not surprisingly, perhaps, the first network

that they discuss is the Hopfield model (Hopfield being an eminent physicist).

A cognitive viewpoint can be found in the texts of Rumelhart et al.(1986) and

McClelland et al.(1986) who can be credited with publicising the field and initiating the

current resurgence in interest with the backpropagation algorithm. The books

document the interdisciplinary work of the PDP group with cognitive psychologists

mixing with researchers trained in physics, mathematics, neuroscience, molecular

biology, and computing. The authors’ aim was that the text would ‘present PDP

models to the community o f cognitive psychologists as alternatives to the models that

have dominated cognitive psychology for the past decade or so ’.

Numerous reviews of varying depth exist in addition to those already mentioned. An

engineering perspective is taken in the review of ANN models given by Hush and

Horne (1993). Another review with an engineering orientation is that of Hunt et

al.(1992) which analyses the ANN models using notation familiar to control engineers.

Only a minority of texts present ANN’s from an interdiscplinary viewpoint. A sample

of survey texts and their intended audience is given below in table 2.1.

Text Author Approach /
Audience

Notes

Anderson & Rosenfeld
(1988)

Various / General 43 Seminal Papers

Ripley (1993) Statistics / General Comparative Review [175
refs.]

Michie et al.(1994) Statistics & Machine
Learning

/ Statistics & AI

Comprehensive
comparative exercise;3
year group project. [>

260 refs.]
Hertz et al.(1991) Physics & Statistical

Mechanics / General
Very comprehensive with

abundant mathematical
content. [431 refs.]

Rumelhart et al.(l 986) Various / Cognitive
Psychology

Multi-disciplinary
Vol.l[193 refs], Vol.2[460

refs]
Hunt et al.(1992) Control Systems / Control An attempt to unify

ANN’s with existing
control models[187 Refs]

20

Text Author Approach /
Audience

Notes

Flush and Flome (1993) Engineering(Signal
Processing) / Engineering

(General)

Summary of main models,
[152 refs.]

Table 2.1 - A sample of AISN Survey texts

2.3.3 - Prominent models
This section details the ANN models developed and used most commonly in

applications today. The total number of models in existence is difficult to quantify as

there have been numerous new developments and variations of established models

published in recent years. The ANN models presented here are widely accepted as

significant developments. They are presented in their simplest form with references to

later developments and advances. A discussion of each model’s computational

capability, advantages, disadvantages and typical application (if applicable) is also

given.

Table 2.2 is a chronological list of important ANN developments. The list contains key

models and algorithms, primarily those that have widely accessible software

implementations. Classifications are given, drawing together many found in the

literature along with other less common, but useful distinctions

For each development a distinction is made as to its form; a model and/or learning

algorithm. For example, much recent ANN research has been the development of

algorithms for feedforward networks.

A classification of network type is given which includes the operating mode of the

network; static or dynamic. A static network achieves an output from a given set of

inputs by a single algorithmic pass, in the sense that there is no feedback of values in

the processing. A dynamic network has some element of feedback during processing.

The common distinction of supervised/unsupervised is given for each development.

Supervised networks require examples of expected output during the training phase

whereas unsupervised networks create an output representation without examples.

21

The ‘processing’ category indicates how values are processed internally by a network.

The values are considered to be either binary or continuous valued. The ability to

process continuous values may be important for some applications (such as

forecasting).

The uncommon ‘Biological’ distinction is given to indicate any biological basis for a

development. This has been added to make apparent how many of the later

developments have little biological basis.

A final distinction is made between fixed and dynamic network topologies. Most

ANNs require a fixed network topology which is determined before training. There are

however, dynamically configured ANNs the topology of which changes during

training. Topology, as will be discussed later in this chapter, is an important factor in

the computational and learning capability of an ANN.

An important issue often omitted from many discussions of ANN models is the

availability of reliable, portable and easy to use software implementations of ANN

models. Easy availability of such software facilitates reliable experimentation and

widespread use.

A good example of such software are those of Kohonen who has made public domain

implementations of the Learning Vector Quantization (LVQ) and Self Organising Map

(SOM) algorithms. This has resulted in widespread experimentation and use of the

algorithms and the database of published texts relating to these models (also publicly

available) contains in excess of 1200 references. A strong impression remains that

many proposed variations of algorithms and indeed new algorithms suffer from lack of

supporting software. In a field that is based on computer simulation and investigation it

seems to be a major oversight of many authors. An important tenant of scientific

research in all fields is that theoretical results should be reproducible. In the context of

computational models this is greatly facilitated by access to documented and validated

software.

22

Name

Introduced

M
odel

A
lgorithm Network Type (Operation)

Supervised

Processing

Biological

Topology Notes References
MCL UHOcli & Pitts TV4T Y processing tsiement r Bin r nxea Neural Model ivicvuiiocn & P lt tS (1 V4j)
Perceptron 1958 Y Y Feedforward,(Static) Y T5irT Y Fixed Neural Model,Classifier Rosenblatt (1958)
Widrow-Hoff ADALINE W Y"Feedforward,(Static) Y Bin Fixed Classifier Widrow & Hot! (1960)
Backpropagation T W Y Feedforward,(Static) Y Con Y Fixed General Learning Algorithm Rumelhart et al (1986)
Quickprop Y Feedforward,(Static) Y Con Fixed Quicker Version of BP
Simulated Annealing W Y“Feedforward,(Static) Y Con Fixed Physics analogy of cooling Makram-Fbeid et al (1989)
Probabilistic Neural Network T W Y Y~ Feedforward,(Static) Y Con Fixed Specht (1988)
Tiling Algorithm W Y Y Feedforward,(Static) Y Con Dyn. Mezard & Nadal (1989)
Upstart Algorithm T9 90 Y Y~ Feedforward,(Static) Y Con Dyn. Frean (1990)
Cascade Correlation T W Y~ Y Feedforward,(Static) Y Con Dyn. Fahlman & Lebiere (1990)
Hoptield T W YT Hoptield,(Dynamic) Y Bin Y Fixed Hopfield (1982)
Hoptield T W Y Hopfield, (Dynamic) Y Con Y Fixed Hopfield (1984)
ARTT 1987 Y~Y ART,(Dynamic) N "BirT Y Fixed Carpenter & Grossberg (1987a)
AKTT 1987 Y Y ART,(Dynamic) N Con Y Fixed Carpenter & Grossberg (1987b)
LVQ 1,2,3 &OLVQ1 T W Y~ Vector Matching,(Static) Y Con Y Fixed Classification Algorithms Kohonen (1990)
SOFM 1989 Y~Y~ Feature Mapping N Con Y Fixed Visualisation ot high dim. data Kohonen (1989)
Boltzmann T W Y~Y Recurrent Network, (Dynamic) Y Bin Fixed Hinton & Sejnowski (1983)
Peterson & Anderson 1987 Y Recurrent Network, (Dynamic) Y Con Fixed 10-30 x taster than Boltz. Peterson & Anderson (1987)
Recurrent Backpropagation T W Y~ Recurrent Network, (Dynamic) Y Con Fixed Pineda (1987), Almeida (1987)
Counterpropagation T W Y^Y “ Feature Mapping,(Hybrid) Both Con Fixed Hecht-Nielsen (1987)

Table 2.2 - Table of ANN network models
(i) The operation of a network is distinct from the training phase. A dynamic network in operation will normally achieve a stable output
state (after some period of time) according to the dynamics of the network. A static network will generate the output in a predetermined
algorithmic ‘single pass’.
(ii) The term ‘biological’ refers to networks that have a strong biological basis.
(iii) ‘Model’ and ‘Algorithm’ denote that the object is a model and /or a learning algorithm.
(iv) ‘Supervised’ networks require presentation of the expected network output with training samples.
(v) Processing denotes the data types supported (Binary or Continuous)
(vi) The network topology can be fixed or changed dynamically by the algorithm.

23

2.3.3.1 Feedforward Networks
Feedforward network applications dominate the literature. They are still the most

widely used ‘family’ of networks today. The origins of these networks can be traced

back to the ‘perceptron’ introduced by Rosenblatt (1958). The simple perceptron

shown in Figure 2.3 was the first network to be precisely defined in such a way that it

could be studied mathematically and by computer simulation.

0 Input or Output

Processing Element

Figure 2.3 - Simple & Two Layer^ Perceptron.

The models proposed by Rosenblatt use binary threshold processing elements.

Subsequent developments yielded changes to allow continuous valued outputs and non-

linear transformations of the signal. To facilitate the analysis of feedforward networks

it is instructive to consider them as containing a generic processing element of the form

shown in Figure 2.4.

Figure 2.4 - Processing Element and example transfer functions

3Only layers containing processing elements are counted as layers. Many texts in the literature include
non-processing input and output layers but the convention adopted here is becoming more widespread
(Hertz et al, 1991; p.90).

24

The key stages in processing are; (i) inputs are scaled by the weights and summed; (ii)

the scaled and summed value is then passed via some form of transfer function to the

output. The example transfer functions shown are a threshold/step function, non-linear

sigmoidal function, non-linear gaussian function and a linear function.

Sigmoid or logistic transfer function : / (x) =
\ + e

1
-(*+0,)/*„ (2. 1)

The sigmoid function gives a smooth and differentiable response {-l<=f(x)<= +1) for

the full input range oo<x< oo. The property of continuous valued response over the full

input range has led to wide spread use of the sigmoid transfer function in applications.

Gaussian activation function (an example of radial basis):

exp[(^-jUj)2 /2a]\
gj(£) =

Z*exp[(£-^)2/2a2*]
(2 .2)

In this example taken from Hertz et al.(1991; p.248) £is the input vector and each unit j

gives a maximum response to input vectors close to py with size proportional to ay. By

giving a maximum response at a given point in the input range, guassians give the

processing element a localised response which can be a useful characteristic in certain

applications.

Definition
A feedforward network contains one or more layers of processing elements that are

interconnected via forward connections only (no feedback or intra-layer connections).

This definition applies to the operating mode of the network rather than training where

popular algorithms such as backpropagation feedback error values through the network.

Operating principles
The simple and multi-layer perceptron (MLP) shown in Figure 2.3 are excellent

vehicles for illustrating the general operating principles of feedforward models.

Feedforward models have two modes of operation: I)

I) The feedforward mode, where input signals are fed forward through the network to

the output. The final output signal will be a function of the input signals which have

25

been scaled (weights), summed and transformed (transfer functions) in many

combinations. The complexity of the mapping of the output(s) to the inputs increases

with the number of processing elements and number of layers.

ii) The learning mode, where the weights of the network are adjusted in some fashion

so that the output of the network provides the desired range of output values. The

weights are usually adjusted by what is termed a learning algorithm.

An ANN model with a feedforward architecture can be defined in the following terms.

The ANN model will have a fixed^ topology with inputs and outputs connected by

processing elements with weighted interconnections. The topology of an ANN is the

arrangement of processing elements and the connections between them. Each

processing element will have a defined transfer function. The only ANN parameters

that are free to change are the weights. They are adjusted by a suitable learning

algorithm that adjusts the weights to minimise a defined error function.

The number of terms italicised in the above summary is indicative of the number of

parameters that a feedforward ANN model solution can contain. Although, with most

learning algorithms, the only free parameters in the learning mode are network

weights, the fixed topology requires the experimenter to determine the number of

processing elements, layers, type of transfer functions, error function and learning

algorithm. This somewhat bewildering array of properties leads conveniently into a

discussion of the capabilities of feedforward networks.

Computational capability of feedforward networks
As with other techniques from machine learning to statistics, a knowledge of the

limitations and capabilities is essential for appropriate use. It is not surprising to find

that the aims of some of the research and development of feedforward networks can be

categorised into two investigative directions:

i) Investigation of what feedforward ANNs can theoretically compute ?

26

ii) Given the theoretical computational ability of a given ANN to compute a problem,

investigation of the topology, network properties and learning algorithm needed to

reliably learn a solution for that problem.

Rosenblatt’s (1958) ‘perceptron’ introduced the first well defined computational ANN

model. His analysis of its computational and learning capabilities was ‘sketchy’

(Anderson & Rosenfeld, 1988:91). It took another decade before a rigorous

investigation documented the computational limits of these devices. Indeed it was

Minsky and Papert’s (1969) text 'Perceptrons' drawing attention to the theoretical

limitations of the simple perceptron and the now infamous ‘eXclusive-OR problem’

(the simplest case of the more general parity problem) that caused hopes (and funding)

to be dashed. It was realised at the time that the multi-layer perceptron was capable of

computing complex functions but a proven learning algorithm was not available. This

led to great disappointment and minimal research activity for nearly 20 years.

The simple perceptron, having a threshold output and binary inputs, is a very basic

model which facilitates analysis. The simple perceptron can separate input space with a

hyper plane and can therefore only solve problems that are linearly separable. It can

compute many logic functions quite successfully as Figure 2.5 demonstrates. The

diagram shows the 16 (24) binary logic combinations possible for a 2 input, 1 output

perceptron. Two of the logic functions are, however, not linearly separable; the X-

OR function and its complement (both denoted by ‘?’ in Figure 2.5). The multi-layer

perceptron can, however, compute this function since its division of weight space does

not have to be linear. A solution to the X-OR problem is shown for a MLP with weight

values set ‘by hand’ (Figure 2.6).

From the simple threshold function found in the perceptron, a range of non-linear,

continuous transfer functions have been investigated. Several learning algorithms for

networks of these types have also been proposed.

4This is not strictly the case. There are constructive ANN methods such as cascade correlation and the
tiling algorithm which dynamically create a network topology in the learning mode. The result of the
learning mode will, however, yield a fixed network topology.

27

Figure 2.5 - Weight space separation for (arbitrary) solutions to perceptron logic

functions

Since the developments of the mid-1980s there have been further extensions of the

theoretical knowledge relating to the computational capabilities of networks (some

drawn from existing theorems). A popular theorem from Kolmogorov (1957) proved

that any continuous function g from [0,1]n— can be represented exactly by a three-

layer network with inputs n connected to each of 2n+\ elements in the hidden layer.

Unfortunately due to the unusual form of the summation and non-linear functions it

would appear to be inapplicable to the current feedforward networks. Indeed Girosi &

Poggio's (1989) paper draws attention to this forcefully. An applicable proof is that of

Cybenko (1989) who uses the sigmoidal function to obtain results on the approximation

28

of continuous multivariate functions. It was found that any continuous function can be

approximated with a network containing one layer of processing elements. Cybenko

(1988) also gives a proof that a set of functions that can be approximated with at most

two layers of processing elements. Hecht-Nielsen (1989) also defined that for any

square integrable function there is a two layer network that approximates it to within

the mean square error. The activation function is not general, but selected for a given

problem.

The proofs discussed do not specify the minimum size of a network (they use

approximation error tending to zero as the number of hidden units tends to infinity).

This means that theoretically we know that all continuous functions can be represented

by a two layer network but the size of the network and the ability of the available

learning algorithms to find a solution set of weights remains unknown. Indeed it may

be possible to use fewer nodes in a solution by using more layers, but this remains

indeterminate due to a lack of theory. It is interesting to note that the constructive

methods used by Frean(1990), Fahlmann & Lebiere (1990) and Refenes (1992) are a

practical approach attempting to overcome the selection of an appropriate network size

for a given problem. Their algorithms construct the topology dynamically during

learning, starting with a minimal network architecture and appending nodes iteratively

to minimise the output error until a limit is achieved. The opposite to this approach is

pruning (Sietsma and Dow, 1988) where processing elements are removed if they are

judged to be ineffectual. Pruning has a drawback in that the network topology has to be

defined before learning and is then pruned according to given criteria. Learning speed

is obviously reduced if an extremely large network is specified.

The trade off between accuracy and number of network nodes is strongly related to the

issues of generalization and overfitting. The concepts of generalization and overfitting

are well known in statistics (Ripley, 1993; p.42) and are discussed in the ANN context

by Hertz et al.(l991; p. 147-155). Generalization is a desirable feature in most ANN

applications where there is noise in the data set; a trained network that can produce an

appropriate output for a previously unseen (but similar) input is said to be able to

generalise. If a network has a capability to learn all of its input-output associations

29

exactly, it may well show a poor ability to generalise when presented with previously

unseen input patterns. This is analogous to overfitting a curve from a noisy data set by

using to high a degree polynomial fit.

The theory related to generalization and overfitting is limited. A theoretical framework

described by Hertz et al.(1991; based on work by Schwartz et al., 1990) provides some

interesting results. The average generalisation ability of a network is derived by

projecting all possible ANN solutions to a given input-output mapping function into

weight space. The weight space can be partitioned into volumes of weight values that

yield solutions (within a defined error value) to different input-output problems. The

concept of generalisation is that as the number of training samples increases, the

volume of possible solutions will reduce. This allows an analysis of generalisation in

terms of the probability of finding the correct volume of solutions in weight space. The

framework is however, impractical for all but trivial problems as it requires the

calculation of volumes mathematically. There is also an assumption made in the

framework that as more training cases are included the volume of possible network

weight solutions decreases. This assumption may not be valid with real data which is

invariably noisy (which increases the variance). The issue of variance is discussed by

Geman et al.(1992) in some depth.

Capabilities of feedforward learning algorithms
Rumelhart et al.(1986) led the resurgence of interest in feedforward ANNs with the

backpropagation algorithm. It has been widely acknowledged that other researchers

discovered this algorithm independently at various times (Bryson and Ho (1969),

Werbos (1974) and Parker (1985)) but credit can be given to Rumelhart et al. for

popularising this approach. Backpropagation, through iterative weight modification

can adapt the weights of the multi-layer perceptron to yield a solution to the X-OR

problem. It is important to note, however, that the backpropagation algorithm is not a

general algorithm that can be applied to all learning tasks. Much of the existing

research is aimed at discovering limitations to the algorithm and extensions that can

overcome such limitations.

30

As an illustration of the non-trivial problem of learning in feedforward networks it is

instructive to consider the crude search technique shown below.

Simple Perceptron Two Layer Perceptron

1 Processing Element

2 Connection Weights

3 Processing Elements
6 Connection Weights

Six Dimensional Weight Space

Figure 2.6 - Weight Space in Simple and Two Layer Perceptron.

Figure 2.6 demonstrates the increase in weight space dimensionality when moving from

a simple two input perceptron to a two layer two input multi-layer perceptron (MLP).

An output error function and test data set are defined for the network and the optimum

solution set of weights is deemed to be the set yielding the lowest error for the test set.

The search of weight space for a combination of weights yielding the minimum error

rapidly becomes computationally expensive as a network increases in size. This

computational effort is illustrated below using a crude search technique.

The search explores the possible combination of weights in the bounded weight space -

10<WX<+10 (where x ranges from 1 to the number of connection weights) using a step

size of 0.1. To search and calculate the error for all values of an individual weight

would therefore require 200 iterations ((10—10)/0.1). This very crude search uses only

a small amount of the total weight space (-co<Wx<+co) and has a fixed step size. Table

2.3 illustrates how computational effort to explore weight space is exponentially related

to the number of weights in a network.

31

Connection Weights Combinations Iterations required for a
complete, bounded search

2 2002 40,000
3 200^ 8,000,000
4 2004 1,600,000,000
5 2005 320,000,000,000
6 200b 64,000,000,000,000
Table 2.3 - Exponential computational requirement to explore weight space for

solutions

The efficiency of algorithms searching the weight space of networks for the

combination of weights yielding minimum error is a critical limiting factor in the

successful application of feedforward ANNs to problems. A range of algorithms, with

numerous extensions and variations, exist. Early ANN models such as the perceptron

(Rosenblatt, 1958) and the AD ALINE (Widrow & Hoff, 1960) were accompanied by

relatively simple learning algorithms compared to modem examples. The simple

learning rule used for the perceptron and the variation of, due to Widrow and Hoff

(1960), are guaranteed to learn for all cases that the perceptron is capable of computing

(Block, 1962). The limitations of the architecture pointed out by Minsky and Papert

(1969) forced the researchers to seek a similar general purpose learning rule for the

more complex and computationally more versatile architectures containing hidden

units.

The threshold transfer function used in the perceptron is a discontinuous function that

cannot be differentiated (zero at all places except an infinite value at the threshold

point). If we now consider network processing elements with differentiable transfer

functions, the possibility of using more sophisticated learning algorithms is opened up.

The linear transfer function is differentiable but a multi-layer feedforward network

using such functions is exactly equivalent in computational capability to a one layer

network (Hertz et a l., 1991:108). Rumelhart et al. (1986:318-362) considered the use

of semi-linear functions of the sigmoid type that introduce non-linearities yet are

continuous and differentiable. The use of non-linear, differentiable transfer functions

in feedforward networks has been the basis of the backpropagation and other

32

sophisticated learning algorithms developed to overcome the limitations of the

perceptron.

Investigation of the advances made in learning algorithms for the more complex

architectures is necessarily preceded by a definition of the network error (or cost)

function, E[w], That is, the metric by which we judge how well a network is

producing the correct output for given inputs. As the measure is of output error, the

objective of any learning algorithm is to determine the set of weights yielding the

minimum value of the function for a set of input/output examples (the training set).

The error function for all possible network weights is often described in the literature as

the error surface, having a dimension of n+1, where n is the number of weights in the

network.

An obvious, and widely chosen error function, is the square of the difference between

the actual output and desired output. This returns a positive error value tending towards

zero as the weights yield a more accurate solution. Using the notation of Rumelhart et

al. (1986:323) the error function for a network output with input/output pattern p can be

defined as:

where there tpj is the target output value of the /th unit and Opj the output. The total

error E=LEp. The gradient descent method can be employed to minimise the value of

E[w] by changing the values of the weights in the network. We therefore need to

rewrite error formula (2.3) in a functional form using weight values and by implication,

including the transfer functions of processing elements. First we define the output of

element j as :

where the output of a processing element is defined by the differentiable and non-

decreasing function:

EP=E£jtp r 0Pi)2
j

(2.3)

(2.4)

°pj =f j (netPj) (2.5)

33

The error function from (2.3) can be differentiated with respect the weights wjj by using

the chain rule as follows:

Æ p Æp âietpj
â w ji d ie t pj dw jj

(2 .6)

Following the computation of derivatives and using substitution, a formulation of the

error for individual processing elements can be arrived at with (2.7) being the error for

an output unit and (2.8) for hidden units. These modify the weights after being scaled

by a learning rate value, r\. The general form being (2.9).

S Pi=(tp r ° n j) f i (netrj)

5P)=f'Metpf)Yj5p̂ *>
k

ApWji=ïiôpjOpi

(2.7)

(2 .8)

(2.9)

Equation (2.8) is of interest since it describes the error fed to a processing element that

is not directly connected to the output of the network (e.g. hidden). The error is a

summation of the error values fed to the nodes in the layer closer to the output scaled

by the connection weights to that layer. A more mathematically rigorous derivation of

the generalised delta rule has been made by Hecht-Nielsen (1989).

A momentum term is normally used in addition to the basic equation (2.9) to reduce

possible oscillations during training when using high learning rates. This is shown

formally in equation (2.10) where the momentum term, a, scales the previous weight

change.

A p wji {n+\)=rjSpj opi +aAwji («) (2.10)

The setting of the learning and momentum parameters (p,a) is open to experimentation

but a heuristic given by Rumelhart et al. (1986:328) is r|<0.25. The generalised delta

rule is a gradient descent technique and can be prone to local minima as was noted by

Rumelhart et al. (1986:331). Local minima are a critical issue in the backpropagation

algorithm as they can cause network learning to stop with a less than optimal error

value.

34

Other algorithms have been proposed to overcome some of the difficulties experienced

with the gradient descent approach (such as long descent time and local minima). A

noise term can be added to the delta rule which is analogous to the annealing of solids

in physics terms. The motivation for the approach is that by adding random noise, a

descent that has become stuck in a local minima may be ‘nudged out’ by the noise.

There are obvious problems of how large the noise should be and also if it should be a

constant value. An entirely different approach is that of using Genetic Algorithm (GA)

techniques to search the weight space for the minimum error value. The GA techniques

are a method for searching the whole of weight space but are computationally

expensive. The key advantage of Genetic Algorithms is that they should not suffer

from local minima problems.

2.3.3.2 The Hopfield Model
In the respected collection of seminal papers edited by Anderson and Rosenfeld (1988)

they comment on the impact of the Hopfield (1982) paper;

‘As far as public visibility goes, the modern era in neural networks dates from the

publication o f this paper.... John Hopfield is a distinguished physicist. When he talks

people listen. Neural Networks became instantly legitimate, whereas before, most

developments in networks had been the province o f somewhat suspect psychologists

and neurobiologists, or by those removed from the hot centres o f scientific activity. ’

Anderson and Rosenfeld (1988:457)

The model was conceived by the physicist, inspired by neuroanatomy. The purpose of

the model was to explore the emergent properties of a system of simple interacting

neurons. The Hopfield network is a dynamic network in the sense that during its

operating phase it oscillates through a series of states until it becomes stable. The

network is single layered and fully interconnected (see Figure 2.7). It can operate in

continuous or discrete time, allowing implementation in hardware or software. The

update of processing elements is asynchronous and takes place randomly in time with

each element having the same update attempt rate.

35

Figure 2.7 - A small Hopfield network with four processing elements

The processing elements are joined by connections with strength T\j indicating a

connection from element j to i. // is the input to a processing element from external (to

the network) inputs. For each processing element i there is a fixed threshold U\. The

processing element updates its output according to the rule:

Vi =1 if Y/ijVj+Ii>Ui and (2.11)
j* i

Vi=0 <u, (2.12)
j* i

Hopfield also defined an energy term

<2-13)
j* i

which results in any algorithm altering the output of the network nodes, AVj (such as

the stochastic update of nodes), decreasing the overall energy, E.

A£ - - - A V ^ V j (2.14)
j* i

The equations above relate to the threshold network first proposed by Hopfield (1982).

He extended this to the continuous valued output network not long after this (Hopfield,

1984) which he considered to be more biologically plausible. The so called ‘graded

response’ elements of this second type of network use a sigmoid transfer function:

36

f \
where 0<F/<1 and f(x) is a sigmoid type function. (2.15)Vi= f

\j*i

A very instructive state space schematic found in Hertz et al.(1991; p. 13) is abridged

below for a network with five stored patterns which form attractors (labelled 1-5). In

operation, with the input values ‘clamped’, the network state will move in state space,

attracted to one of the five stable states and eventually settle in one. The final stable

state can then be taken as the output.

Figure 2.8 - Schematic of Hopfield Network State Space (Attractors labelled 1-5)

An important proof given the dynamic nature of the Hopfield model is that of stability.

With the potentially large range of states and inputs in a Hopfield model it is necessary

to ensure that a stable state will occur for a range of possible inputs. The proof of

stability is derived for the network where the processing element connections are

symmetric and the energy term is based on a summation of output values scaled by

weights. The energy function monotonically decreases with time as modification of

the weights takes place during learning. The system is isomorphic with the Ising model

(spin glass) in physics. This similarity enables the weight of theory associated with the

Ising model to be applied.

37

The learning algorithm for the Hopfield network is relatively simple in concept and

consists of a Hebb (1949) type rule whereby the weights are adjusted for the patterns to

be stored according to

ATUr, (0 ^ (0] (2.16)
J L J J average

The maximum number of patterns, pmax> that can be stored in a Hopfield network is

related to the number of elements in the network N, by p max=0.138N. A detailed

exposition of this result can be found in Hertz et al.(1991; p.17-20).

The Hopfield network is not as widespread in application as the feedforward network.

A probable reason for this is its mathematical complexity and demand for

computational power. Hopfield specifically addressed methods of implementing his

network in hardware (Hopfield, 1982) and this theme was rapidly taken up by engineers

leading to the development of custom Integrated Circuits (ICs). A primary application

of such networks is in image recognition and, by using an autoassociative approach,

image reconstruction.

In summary, the Hopfield network benefits from the wealth of statistical mechanics

theory that has been applied to it. In contrast to many other ANN models there are

mature theorems detailing the capacity and stability of Hopfield models.

2.3.3.3 Recurrent Networks
Recurrent networks refers here to a class of networks with connections permitted in

both directions between processing elements and even self connections (to a processing

element). They are not necessarily symmetric and hence the special (Ising model)

proof of stability used for the Hopfield network cannot be applied in all cases. Two

important models are discussed in this section; the Boltzmann machine which can be

treated as an extension of the Hopfield network and recurrent backpropagation which is

an extension to the popular backpropagation algorithm.

Boltzmann machines
The term ‘Boltzmann’ is applied to a class of networks capable of using the learning

rule defined by Ackley et al.(l 985). The probability of the system states is defined by a

38

Boltzmann distribution (from statistical mechanics), hence the name. One of the

criteria for such a network is that it must have symmetric connections between

processing elements. It is therefore similar to the Hopfield network but hidden units are

permitted, as shown schematically in Figure 2.9.

Figure 2.9 - An arbitrarily connected Boltzmann model

The network has an associated energy function which consists of a quadratic expression

based on state values, weights and a threshold term:

E=-'ZaWlJSlSJ+Zj0tSi
i<j i

(2.17)

where w is the connection strength in the direction indicated. ,v is 1 if the processing

element is in the on state and 0 is a threshold. It is by the minimization of this global

energy function (with input values clamped) that the network finds a stable, lower

energy state. The output values of the processing elements in the stable state are the

response to the initial input.

The model performs in a very similar way to the Hopfield model but with the inclusion

of a probabilistic term to simulate annealing. Annealing is an analogy drawn from

physical systems whereby a substance has its temperature raised (the error function is

regarded as the temperature in these models) and the subsequent slow cooling should

result in a minimum energy configuration (overcoming local minima). In operation the

temperature value is reduced gradually until it becomes 0 and the network has the same

39

dynamics as a Hopfield type network. The Boltzmann network stochastic processing

elements (PEs) are binary with output values o f+1 and -1 with a probability of

PE0Ut= +1 being — and (2.18)
1+e T

PE0Ut= -l being 1---- (2.19)
1+e 7

where h is the sum of the inputs to the processing element and T is the temperature.

A motivation for using the Boltzmann machine is that the simulated annealing process

should yield an optimum solution for a given network with time. The problem is that

this is computationally expensive on serial computers. Peterson and Anderson (1987)

proposed a process of ‘mean field annealing’ which yields a speed increase of 10 - 30

times. This is discussed in greater detail by Hertz et al.(1991; p. 171-172).

Recurrent Backpropagation
Extending the popular backpropagation learning algorithm to a broader range of

network architectures (where feedback and self connections are permitted) led to the

development of what is termed recurrent backpropagation. Pineda (1987) explained

how backpropagation could be applied to recurrent network architectures provided that

learning converged to a stable state.

The learning algorithm is relatively simple (matrix inversion is not required) since it

can be shown that an error propagation network of the same topology as the network

can be used to update the weights. Pineda (1989) further shows that the calculation is

much more efficient than matrix inversion methods for N fully connected units since

calculation time is proportional to N^ rather than for matrix inversion.

The advantage of recurrent backpropagation is that it allows greater flexibility in

creating the architecture of an ANNs (nodes can be arbitrarily connected). Almeida

(1987) demonstrated improvements in performance compared to normal feedforward

networks in a selection of cases.

40

2.3.3.4 Learning Vector Quantization (LVQ)
Kohonen introduced Learning Vector Quantization in 1986 (Kohonen, 1986). More

accessible accounts and extensions to the algorithm followed (Kohonen, 1988a, 1988b,

1988c, 1990). The algorithm performs a classification of input data and has been

applied most notably in the area of speech recognition (Kohonen, 1990). The basic

algorithm, LVQ1, has variants and complementary algorithms named LVQ2, LVQ2.1,

LVQ3 and OLVQ1 which have evolved to enhance the original algorithm or overcome

instability problems in training. The three principle phases in the application of LVQ

are:

a) Selection of ‘codebook’ vectors to represent each class

b) Training of ‘codebook’ vectors using the LVQ algorithms so that the decision

boundaries separating the classes are optimal (also dependent on the number of

codebook vectors per class).

c) Classification uses the 1-Nearest Neighbour algorithm to find the nearest class

representative ‘codebook’ vector to the input vector awaiting classification.

The algorithms are fully documented in Kohonen et al.(1992). During training, the

codebook vectors are moved in feature space according to the following set of

optimised-learning-rate-LVQl rules (OLVQ1):

mc represents a codebook vector of class c.

ac is the learning rate of the codebook vector.

x(t) is the training vector.

Rule 1: If x(t) is classified correctly move the codebook vector closer using

mc (t+\)=mc {t)+ac{t)[x{t)-mc (/)] (2.20)

Rule 2:If x(t) is classified incorrectly move the codebook vector away using

mc (t+\)=mc (t) - a c (t)[x(t)-mc (/)] (2.21)

Rule 3: If i*c then do not modify the codebook vector

rrij (i+l)=w/ (/) (2.22)

The learning rate changes with time according to the following formula:

aA0=- ac(t~ 1) (2.23)
l+i(i)«6(i-l)

where s(t)=+l for correct classification and -1 for when the vector is misclassified.

41

The training and classification phases are illustrated in a computer generated simulation

(Figure 2.10) with the (synthetic) training data set shown for reference. The two feature

training set contains three classes of vector denoted by data points labelled A, B and C

with each class having 10 cases in each. Before training the class representative (or

‘codebook’) vectors (labelled 1,2 and 3) are placed randomly in feature space. The

OLVQ1 algorithm then adjusts the codebook vectors until a set number of training

iterations is reached.

The classification phase requires selection of the nearest codebook vector (by the

Euclidean metric) with the class it represents being the output decision. This example

illustrates how the less complex decision surface formed by the class representative

vectors is a reasonable generalisation of the decision surface formed by the original data

points.

42

Proof that the codebook vectors will converge to stable positions in feature space is

important with the LVQ family of algorithms. The convergence of vectors trained by

the basic LVQ1 algorithm is proved by Baras and LaVigna (1990). They note,

however, that the algorithm can lead to divergence of the codebook vectors if, upon

initialisation, they do not lie close to a locally asymptotic stable equilibrium. The

initialisation of vectors is therefore important as convergence can only be guaranteed

with vectors that lie close to the stable equilibrium points.

LVQ is included in the ‘Neural Network’ literature but it does not comply with the

working definition of an ANN used in this thesis. It fails in that it is not a connectionist

model having no set of processing units. The algorithm does appear to have great

potential and is included in this review of notable algorithms due to its wide application

in classification problems.

2.3.3.5 Unsupervised Networks
The discussion so far has centred on supervised learning networks. Another group of

networks exists where the output of the network for a given set of inputs is not

specified. The network is free to make its own representations. It is therefore not

supervised in the response it makes to input data.

The problem domains presented in this thesis require known outputs for given inputs

and are, therefore, supervised learning problems. Unsupervised learning is mentioned

here, however, since it can be incorporated into a supervised learning model as a sub

component or pre-processing of data.

A network that is permitted to generate outputs for various input patterns with no

indication given to it as to the validity of those outputs would, at first sight, appear to

be of little use. Indeed as Hertz et al.(l 991:198) emphasize, ‘unsupervised learning

can only do anything useful when there is redundancy in the input data ’. This is more

common in high dimensional problems (many inputs) where some unsupervised

learning algorithms offer the possibility of reducing the redundancy by mapping the

43

input space onto another representation (usually of a lower dimension). Given that they

may aid in reducing redundancy and/or identifying features, to be of practical use they

still need to be incorporated into a supervised learning architecture.

Since the networks make their own representations of the inputs, they are either used as

an input pre-processing layer for a hybrid supervised network or as a separate pre-

processing of the data before presenting to a supervised network. The number of

layers, connectivity and learning rules in unsupervised networks are varied.

Simple one layer feedforward networks having N inputs and P outputs (P<N) with a

modified Hebbian learning rule can be implemented to detect the P principle

components of the inputs (Oja, 1989). Knowing the principle components of the data

set allows a potentially successful reduction its dimension from N to P . The reduced

dimension data set is then presented to a P input supervised network. It is important to

note that although the network is unsupervised, its learning rule in this case means that

it will attempt to learn the principle components of the data set presented to it.

Feature detection is another important use of unsupervised networks. In this instance,

it is also possible to use unsupervised learning networks to effect clustering or feature

mapping.

Notable models of this type are; Adaptive Resonance Theory (ART), Self Organising

Feature Maps (SOFM), Willshaw and von der Marlsberg’s Model and counter

propagation.

Unsupervised models are not discussed in further detail as they are not to used in any

experiments presented in thesis. The possible improvement of results by using

unsupervised learning as part of a hybrid model or in pre-processing of data remains

untested but is recognised as a potential enhancement to ANN experiments.

44

2.4 Summary
Artificial Neural Networks have been shown to be the result of interdisciplinary

research, the vast majority of which has taken place in the past ten years. The models

offer an alternative approach to classical AI methods in that they are objective, self-

learning data based systems rather than subjective and knowledge based. They also

offer the theoretical capability of universal computation although the trade off is all too

often the interpretability of the resulting model. There are strong links between ANN

models and existing methods, particularly in statistics and mathematics.

It has been shown that the current range of Artificial Neural Networks have potentially

powerful computational capabilities. Feedforward ANNs in particular have well

documented capabilities. It has also been shown that the theoretical computational

capabilities can be difficult to achieve in practice due to the non-trivial problems of

learning the correct weights and difficulties in setting model learning parameters and

training issues (local minima, overfitting/generalization, speed of training). There are

therefore two key issues pertinent to current ANN models and their application to

problems; their theoretical computational capabilities and their practical learning

capabilities. The latter issue is nebulous and far from well defined for most models.

Using the feedforward ANN as an example model, Figure 2.11 illustrates the number

of parameters that have to be defined for a solution to any given problem. These

parameters are both architectural and algorithmic (parameters are shown in darker

shading boxes). Hybrid networks introduce yet more parameters and algorithms into a

single ANN model.

45

Object Hiererachy for a Feedforward ANN model

Figure 2.11 - Hierarchy of objects in a feedforward ANN model

An observation of algorithm and architecture development is that many of the

parameters are becoming either better defined or set by algorithms automatically. A

good example are the constructive learning algorithms such as cascade correlation.

This algorithm removes the need to specify the number of nodes in a hidden layer by

automatically adding nodes until the desired accuracy is reached (if possible). This

should make the algorithm more consistent in application and easier to apply (given

that such an algorithm has the theoretical capability to reach an optimum solution).

Other ANN models such as Kohonen’s LVQ offer more transparent solutions with

fewer parameters. The piecewise linear decision boundaries created by such models

may yield solutions that are similar in accuracy to non-linear feedforward networks,

but such comparative studies are difficult to find. The feedforward network remains the

most broadly applicable type of model.

The knowledge of theoretical computational capabilities and learning capabilities will

be applied to the problem domains of septicaemia and time series forecasting. The

framework for analysis and experimentation in these domains is presented in chapter 3.

46

CHAPTER 3 - ANALYTICAL AND EXPERIMENTAL METHOD

3.0 Introduction

The novel analytical and experimental method developed for the research is discussed

in this chapter. The method is generic and was applied to both domains of interest;

classification and forecasting. The need for such a method arose from the findings of

the literature review in chapter 2. The review drew a broad picture of the information

and empirical evidence available; there were numerous texts that could be of use for

any given application domain or model. The literature was characterised by:

• Large number of texts from a variety of academic disciplines

• A growing number of ANN models

• A wide variety of application oriented texts with associated results

In chapter 2 the prominent ANN models were presented alongside some of their

associated theoretical capabilities. To select an appropriate model for a specific

application and develop it successfully requires further empirical information about the

model’s performance. As was discussed in chapter 2, the theoretical results relating to

ANNs give little indication of how well a model will perform in practice. The method

presented in this chapter encompasses the whole application procedure and is structured

to facilitate an objective, data based approach to model selection and performance

evaluation.

The premise is that objective evaluation of the potential of ANNs requires measurement

of performance using established metrics. Further to this, algorithms should be

selected that are appropriate for a given task using objective metrics to aid the decision

making wherever possible. It is therefore very important that the experimental process

uses well defined metrics so that results can then be used to provide benchmarking that

builds upon or facilitates comparison with that available in the literature.

47

The method is structured around the following process:

• The data set and model are characterised and performance metrics defined.

• The most appropriate ANN models are selected for the given task. Appropriate

established algorithms are selected for comparison. Selection of all algorithms

should be data based and objective where data and knowledge base information

allows.

• The algorithms are applied to the domain data and the experimental results recorded.

• The performance of the ANN and established algorithms are measured using defined

metrics.

• The performance results are assessed and if satisfactory the model can be applied to

the domain problem.

The process is discussed in detail in the following sections.

3.1 Proposed Experimental Method

Figure 3.1 shows a conceptual model of an ‘ideal’ ANN model selection process in

which inputs are taken from an ANN theory database, the problem domain and

information on established techniques used in the domain.

Figure 3.1 - Schematic of research activity and theory

The schema shows contributions from the varying research disciplines to the

knowledge bases. The ANN knowledge base is structured to facilitate appropriate

48

model selection for a given problem domain; forecasting or classification in this thesis.

The established techniques (e.g. statistics, machine learning) knowledge base is also

shown in the schema to illustrate how, together with knowledge of the problem

domain, models are selected based on structured information.

Given that nearly all the published information on ANN’s does not fit into an ideal

framework pictured in Figure 3.1, a practical framework had to be proposed.

Figure 3.2 - Generic method for classification and forecasting applications

Figure 3.2 illustrates the novel structured method for ANN application development

using a graphical representation of the experiment process. The prerequisite

information required for the method are data set characteristics, model characteristics

and performance metrics. These information are derived from the problem domain and

are used in conjunction with the knowledge base to select suitable models for

experiment. Models are tested and their performance measured using the metrics

specified before the experiments begin.

Performance metrics are selected in the first stage to ensure that all models

subsequently selected can be assessed using the specified metrics (a model would not

be selected if its performance could not be evaluated against the metric(s)). If, after

testing, the most successful model is satisfactory it can be applied to the domain. If no

model is successful the process can be re-iterated with the performance of the tested

models adding to the knowledge base.

49

In the period (‘91-’93) when experiments were conducted for this research no texts

were discovered that followed a comparative framework generating a knowledge base

like that proposed above.

Since then Michie et al.(1994) published the results of large scale experiments which

had been conducted in the classification domain using various algorithms with a range

of ‘real’ data sets (with measured characteristics). With these data they were able to

construct a basic rule based system for predicting the best classifier algorithms for a

new data set using only the data set characteristics in a similar way to that proposed

here.

The Statlog library data sets and algorithm results have not grown since the end of the

research programme in 1994. Of the few papers trying to extend the concepts of such

benchmarking, Ripley (1995) presented a set of statistical measures for selecting ANN

models. Prechelt (1996), however, carried out a quantitative survey of some 400 ANN

journal articles and concluded that research practice still exhibited poor benchmarking

of solutions.

A more recent (and growing) benchmark collection has been introduced by the DELVE

development group Rasmussen et al (1996). The group maintains an archive of data

sets (including separate sets for developing and subsequent testing of algorithms) and

software for statistically analysing the performance of algorithms. Importantly there is

also a procedure for collecting benchmarking results from new learning methods to

create a growing database of performance results.

3.1.1 Model Selection Knowledge base - form and function

The quality and breadth of the knowledge base information will dictate to what extent

an objective selection of potentially successful models can be made. Knowledge bases

for the experiments had to be built from the heuristic and quantitative results that could

be gleaned from the literature. Where possible simple rules would be constructed from

information available in the literature.

50

3.1.2 Data set characteristics - purpose and form

The distinction between ‘real’ and ‘synthetic’ data sets is important. Real data is

defined to be that which is collected from monitored variables of a system whereas the

term synthetic refers to simulated or computer generated data. The data sets used in

this thesis are, therefore, real as the variables are from actual systems (medical and

financial). Creating synthetic data sets enables the experimenter to test and define what

characteristics data sets have (e.g. clustered, normally distributed, linear etc.). With a

library of synthetic data sets each having differing characteristics it is possible to

evaluate the performance of algorithms against these control data sets. By using the

information gathered from the control experiments, a ‘real’ data set can be

characterised and an algorithm selected which is known to perform well with data sets

of similar character.

There will inevitably be complexity when attempting to characterise a real world data

set. It would be surprising to see real world data readily exhibit, for example, a

perfectly normal distribution. Typically, one would expect the data set to exhibit a

degree of a given characteristic. The task is therefore to select characteristic measures

that maximise the discrimination between data sets. The method can be viewed as a

mapping process relating sets of data sets to sets of suitable algorithms. Two possible

mapping schemes are illustrated in Figures 3.3 and 3.4.

Figure 3.3 - Simple characteristics-algorithms mapping

51

In both examples there are seven data sets (dl ,.d7) which are characterised by five

measures (Cl ..C5). The data sets are subsets of the set of all possible data sets. There

are seven algorithms available (al..a7) in this example, each mapped to a data set by

either one or several combinations of characteristics.

Figure 3.3 shows a simple mapping for each characteristic measure to the best

algorithm for this measure. This may prove acceptable for a limited range of

algorithms where the characteristic measures readily discriminate between data sets. A

more sophisticated approach is illustrated in Figure 3.4 where all of the characteristic

measures are used to provide a mapping. Figure 3.4 is a more likely scenario for real

data where it is expected that data sets will exhibit varying degrees of most

characteristics. This allows many more mappings for the same number of characteristic

measures using an appropriate degree of complexity in combining the characteristic

measures. Michie et al.(1994), for example, use a rules based approach for the

combination of characteristics.

3.2 Example of method using synthetic data sets

To illustrate the use of the method, a simple example with models to fit time series

data is described. Two synthetic, one dimensional data sets, dl (a line) and d2 (a

sinusoid), are shown in Figure 3.5. Only one data set characteristic measure, Cl, is

used in the example. Cl is a mean absolute deviation from the mean of the first

derivative;

52

(3.1)— X \

where x; are the differentials of the n+1 points in the data series with mean difference

x . This result is easily interpreted since, for a straight line C1=0 and for any non-

linear series C1>0. The characteristic measure is therefore a simple discriminant

between the two data series. The results for the time series shown below are C ldl=0

and C ld2=0.057. In both series n=31.

Figure 3.5 Time series data; dl (line) and d2 (sinusoid)

In this example two algorithms are available; al being linear regression and a2 Box

Jenkins. Model al is appropriate to linear data sets (capable of fitting a line without

error) and a2 is widely used to model cyclical time series. A crude mapping rule can be

constructed to relate the characteristic measure Cl to the algorithms al and a2. This is

shown in Figure3.6.

The mapping rule is indeed crude since only an exact line will generate a characteristic

measure of C 1=0. If a third data set, d3, is introduced (Figure 3.7 - a line with added

53

noise) we can see that the characteristic measure is now greater than 0 (Cl=0.036), and

the decision rule will select, in this case, an inappropriate algorithm (the Box Jenkins

algorithm being suited to cyclical data).

Figure 3.7 Time series d3 - (line with noise)

In this instance there are two options; modify the decision rule or introduce a new

characteristic measure that is a better discriminant. By modifying the rule to ‘I f

C1<0.04 then select al else select a2 ’, the rule will function correctly for the control

data sets.

3.3 Expected benefits and drawbacks of a structured method

There are some foreseeable problems as well as benefits to be gained by using a

structured, objective analytical and experimental method. This section briefly

discusses the issues which will be re-addressed in chapter 6 in light of the experimental

results.

[1] Selection and maintenance of data set characteristic measures - The characteristic

measures must be sufficiently discriminating between data sets to enable model

selection for new data sets to be accurate. As new data sets and algorithms are added it

may be necessary to add further measures and/or modify existing mapping rules.

[2] Number of data sets - As the number of discemibly different (by characteristic

measures) data sets tested against all the models increases, the greater the applicability

of the approach. If only a few data sets have been used, the amount of empirical

evidence for selecting an appropriate algorithm may be insufficient to make a selection

54

decision with any degree of confidence. For some models, theoretical results may be

applicable and can be translated directly into mapping rules.

[3] Computational overhead - Some data set measures may prove to be more

computationally expensive than many of the ANN algorithms. This would lead to a

situation where it would take less time to run the experiments than to calculate the

characteristic measures used to determine the most likely experiment to succeed. For

example, the calculation of joint entropy values for variables that have a wide range of

vales can be computationally expensive (see appendix C for formulae). Joint entropy

values have in this instance been reserved for calculations with binary variables only.

[4] Experimental Data - Each algorithm will have to be evaluated against each data set

for a given performance metric. As new data sets or algorithms are added to the

database, the mapping rules must be re-evaluated.

The expected benefits of this approach are :

[1] Appropriate algorithm selection - New problem data sets can be characterised and

the most appropriate algorithms selected for experimentation. This utilises previous

(quantitative) experimental results with algorithms that are most likely to succeed being

selected.

[2] Improved algorithm selection rules - As experimental data increases the model

selection rules can be refined.

[3] Objective comparison of algorithms - New algorithms can be tested over the range

of data sets to evaluate performance in comparison to existing algorithms.

[4] Redundancy or significant overlap between algorithms can be identified - In the

review by Michie et al. (1994) one algorithm consistently performed poorly compared

to similar methods over a variety of data sets.

55

3.4 Summary

An analytical and experimental method has been presented that will support the

research objective and test the hypotheses. The method is intended to avoid making

subjective decisions wherever there is sufficient data to make an objective decision.

Performance, data set and model characteristics are defined before a model is selected

and are used to evaluate the experimental results. As the number of experiments and

results sets increase it is expected that the utility of the algorithm selection process will

increase.

56

CHAPTER 4 - FORECASTING

Forecasting is like driving down a winding mountain road, blindfold, with

someone looking out o f the rear window giving directions - Unattributed

4.0 Introduction
Forecasting events is a frequent human activity. Forecasting the behaviour of one or

several variables is a common function carried out by everybody whether it be applied

to a business problem, the weather, or judging the best time to beat the rush hour

traffic. The ability to forecast is usually based on knowledge of the history of the

variable(s) of interest and related factors.

If the history of a variable (time series) or the history of related factors is analysed we

may find patterns, trends, cycles or other recognisable features. In the London rush

hour traffic, for example, one would expect to see predictable peaks in the morning

and evening when people arrive and depart from work. If such patterns are evident then

it is possible to forecast with some confidence based on the history of the variable

alone.

Some systems may not be so readily forecastable. Accurate prediction of weather

behaviour requires radar, satellite and weather station information which are input to

complex models requiring mainframe computing power. Despite the use of such

sophisticated technology, prediction can still be dramatically erroneous as the violent

storms that hit the south of England ‘without warning’ in October 1987 demonstrated.

A key factor in forecasting is that of unforeseen changes to the system of interest which

seriously affect the forecastability of the variable. Rush hour traffic, for example, will

be severely affected by a major traffic accident. In forecasting terms this is known as a

shock factor. Such shock factors are often seen in financial markets and medicine.

Weigend and Gershenfeld (1993; p.2) describe three aspects of time series analysis;

forecasting, modelling and characterisation. If a time series is modelled accurately then

57

its behaviour can be described and predicted in the long term. Forecasting in contrast

attempts to provide accurate descriptions of the short term behaviour. Characterisation

of the time series yields properties such as degrees of freedom or randomness. An

important distinction can be made:

“forecasting and modelling are not necessarily identical: finding governing

equations with proper long-term properties may not be the most reliable

way to determine parameters for good short-term forecasts and a model

that is useful for short-term forecasts may have incorrect long-term

properties

(Weigend and Gershenfeld, 1993)

The analysis carried out in this chapter is concerned with time series forecasting;

specifically discrete time series of fixed time intervals. ANN models are an attractive

paradigm for forecasting since they offer good function approximation properties (see

chapter 2) which appear suitable for time series modelling.

The forecasting process is described below, followed by methods for characterising

time series data sets. A critical review of forecasting methods and ANNs for

forecasting then follows. Benchmarking studies are introduced to enable some

performance comparisons of the various techniques. Finally the application domain

and data set are outlined and experimental results given.

4.1 The forecasting process
The generic experimental and analytical method outlined in chapter 3 is applied here for

the forecasting process. Before any models are selected for evaluation, the data set,

performance metrics and potential algorithms are characterised or defined. The process

is shown below in Figure 4.1 and can be compared to Figure 3.2; a simple application

specific (forecasting) overlay of terms has been employed.

58

Figure 4.1 - The forecasting process

To facilitate the discussion within this chapter it is useful to define an artificial time

series data set and associated notation that can be used for exposition. Figure 4.2 shows

a synthetic discrete time series with points in a chronological series xpjg to xp A

hypothetical prediction and the actual time series are shown as pt+1 to pt+5 and xp+1

to X/+J respectively. This notation will be used throughout the remainder of this

chapter.

time

Figure 4.2 - Hypothetical time series and prediction

4.1.1 Data set characteristics
An elementary technique for characterising a time series data set is by visual inspection.

Trends and cycles, for example, are often easy to identify simply by looking at the

series. Quantitative and visual methods for describing and inspecting data exist, and a

summary of those of potential use is presented in table 4.1 below. The measures and

investigative techniques described here are appropriate for discrete data sets. The

measures may be appropriate for model selection, analysis or both and are indicated as

59

such in table 4.1 by the following notation: [A] - Analysis, [S] - model Selection, [A/S]

- both Analysis and model Selection.

Measure/T echnique Symbol Description
Standard Deviation
[S]

a A measure of the spread of values around the
mean of a time series.

Mean [S] X Average of time series values.

Stationarity [S] x and a 2
over t

If the mean and variance of a time series do not
change with time the underling process is said to
be stationary.

Autocorrelation
Function [A/S]

ACF({xtxt_
,})

A measure of how correlated a time series is with
its past. For example it may be found that the
autocorrelation value is high when t is small but
decays rapidly as t increases.

Histogram [A/S] Visual Tool Shows the distribution and frequency of data
values.

Phase diagram [A/S
]

Plot
(x,dx/dt)
Visual Tool

A transformation of the time series into a phase
space where recognisable features may emerge

Embedding diagram
[A/S]

Plot (xt, xt
x)

Visual Tool

A transformation of the time series into a lagged
two dimensional plot.

Table 4.1 - Data set characteristic measures and visual tools

The measures and visual tools described above can be used as indicators of data set

characteristics only when combined with other results (e.g. standard deviation and

variance used together to investigate stationarity). There are no quantitative tools

presented here that can be used unilaterally to characterise a data set and confidently

select an appropriate prediction algorithm. An investigation using all available

techniques gives some ‘feel’ for the underlying dynamics of a system and hence

possibilities of selecting appropriate models for prediction. Some of the techniques are

computationally intensive.

The visual tools described above offer insights into the time series by transforming the

data into another state space. Phase diagrams and embedding diagrams are visual tools

associated with the investigation of dynamical systems. They can be useful for

detecting the existence of chaos in what, at first inspection, may appear to be a random

series. The histogram is a simple yet useful visual tool for ascertaining the distribution

60

of the time series variable. The autocorrelation function can be displayed graphically

by plotting its value for a series of time lags.

The interpretation of a solitary visual tool is inadvisable but using several may give

sufficient insight into a system to allow the selection of potentially successful models.

In addition, functions such as autocorrelation and embedding diagrams may indicate the

number of tapped delay line inputs that will be potentially useful in a forecasting

model. A detailed account of the measures and visual tools described above is given in

Appendix A.

4.1.2 Forecasting performance metrics
Performance metrics can be very varied. One of the simplest metrics is to evaluate how

accurately a model will predict a time series {x(} for n time intervals into the future

from a point t in time. The accuracy of predictions can then be measured according to

an error function operating on the set {xf,pt} where {piJ is the predicted series. A cost

function may be added to the error term (e.g. to penalise low forecasts more than high

or to emphasise the accurate forecasting of turning points). Common error metrics and

associated methods are detailed below. The error measure for a prediction can be

defined as:

V (x , - p ,) 2
E=—=1=---------where the notation is taken from Figure 4.2.

2 > >
(4.1)

The error measure, E, takes values 0 < E with optimal prediction as E—»0. E will be

used as the standard error measurement.

A useful reference error measure for forecasting can be made if the series is assumed to

have the random walk property. With such a series the best prediction that can be made

is the last observation. The forecast provided by a model can be compared to this

measure by using a ratio such as that defined below (Weigend and Gershenfeld, 1993;

P-40):

Random Walk Ratio= X /a _a)2
5 > , - * m)2

(4.2)

61

If the predictor under evaluation is more accurate than predicting no change (random

walk), the ratio will yield a value less than 1.0. Values greater than this indicate that

the predictor is worse than predicting no change. The measure is easily calculated and

offers a simple way of gauging the prediction adequacy of a model under test.

A final, and for financial applications, very important measure is what will be termed

here the ‘Direction Correct’ (DC) value. The value indicates the percentage of

predictions that correctly gave the direction of movement (irrespective of magnitude).

Formally the metric is defined as follows:
n

^ IIF(SIGN(p, -x ,)=SIGN(x, - x M),1,0)

Direction Correct = —--xlOO (4.3)
n

Optimum prediction is reached when DC = 100 and a prediction rate that is the same as

chance would be DC=50.

4.1.3 Forecasting algorithm characteristics
For any given application domain there may be constraints on the type of solution that

is acceptable. Such constraints can be the speed of operation of the forecasting method,

the degree of explanation provided by an algorithm or implementation issues such as

the memory requirements. Such qualitative constraints are grouped under the algorithm

characteristics.

4.2 Forecasting methods - A critical review
Since forecasting is so widely applied (in domains such as business, finance, medicine

etc.) there are numerous computational methods in existence. The techniques discussed

here are restricted to the case of univariate forecasting and are split between what are

termed here ‘established techniques’ and ‘ANN models’.

Time series problems frequently use a representation technique known in engineering

terms as a ‘tapped delay line’ (Weigend et al., 1992; p.397). It is simply a way of

sampling the time series at set points which can then be used by a model to predict a

future value. Using the notation associated with Figure 4.2, a tapped delay line of five

consecutive points from xj.j would be the set Xf.2...X(.j}. This technique is also

62

known as ‘state space reconstruction’ in physics and, ‘embedding’ in the dynamical

systems literature. It is also possible to ‘compress’ the previous values of the time

series using averaging techniques or to differentiate the time series to remove trends.

Some of these methods will be discussed in this section.

4.2.1 Established forecasting techniques
The techniques discussed here are split into linear and non-linear forms. The term

linear refers to the linear combination of parameters in which there are no second or

higher order terms within the models. The non-linear models can be regarded as

pseudo linear or piece-wise linear. They yield non-linear solutions by combining

multiple local linear models.

4.2.1.1 Linear time series models
The two main families of linear time series models are moving average (MA) and auto

regressive (AR) models. In moving average models a sample of the previous N points

from a time series (a tapped delay line) are scaled linearly and combined to predict the

next point in time. The model is therefore appropriate for trending a time series. Finite

Impulse Response (FIR) filter is the term often attached to this model since an impulse

in a time series is guaranteed to decay to zero after N time steps. Tapped delay line

approaches require that the time series is stationary (Weigend et al., 1992; p.398).

Formally using the notation given in example 4.2 we have for a MA(N) model:

;=o

MA(N) models are widely used in currency markets. Pairs of MA(N) models (short

and long lag) are used as buy and sell indicators. As the trend changes the shorter lag

MA (with smaller N) will change direction more quickly, resulting in a crossing of the

two functions which signals a buy/sell situation dependent on the direction of the

movement.

N

(3)

63

Auto Regressive models use the previous predictions of the model to predict the next

point. Another additive term is included to allow the input of data. Again, using the

notation associated with Figure 4.2 we obtain:
N

p,+i=YjaiP>-i+x' (4)
/=1

This model will not necessarily decay to a zero output after an impulse input (e.g.

setting term xf= 1 for one iteration). The model is therefore often referred to as an

infinite impulse response (HR) filter. This model has internal memory whereas the

moving average model has external memory in the form of the N tapped delay line

points.

Fitting a linear model to a given time series requires the appropriate evaluation of the

model parameters (a/ coefficients in each of the models described above). Box and

Jenkins (1976) describe methods for calculating the coefficients of MA and AR models.

Implementations of the algorithms are widely available in statistical packages such as

MINITAB.

4.2.1.2 Non-linear time series models
Non-linear time series models described in texts are frequently composed of numerous

localised linear models, thereby giving a global non-linear behaviour. The text by

Weigend and Gershenfeld (1993) presents the best1 modelling solutions to a range of

time series problems and discusses the approaches available. The discussion of non-

linear models is restricted to only those using multiple localised linear models such as

the threshold autoregressive model (TAR) suggested by Tong and Lim (1980).

The Multivariate Adaptive Regression Splines (MARS) model introduced by Friedman

(1991), can be adapted for univariate time series modelling and has strong links to the

Classification and Regression Tree (CART) technique used in classification problems.

It reflects a representation of the forecasting problem as a classification problem. The

univariate time series with a tapped delay line of n points and a predictor value of p can *

‘The best models emerged from an open competition where competitors were given six data sets and the
freedom to apply the forecasting approach of their choice.

64

be formulated as an n dimensional feature space in which values of p can be categorised

by thresholding. The CART system would yield discontinuities which may be

unacceptable in forecasting and these issues are addressed by the MARS methodology

which allows overlapping of regions. The ASTAR models use the MARS approach for

a univariate series with a tapped delay line (Lewis and Stevens, 1991) and have in one

study offered a performance comparable to an ANN approach (Weigend et al., 1992).

Non-linear systems theory and specifically ‘chaos’ (Gleick, 1987) have recently

exerted much influence on forecasting. Currently the paradigm offers insights into non-

linear systems using tools such as phase diagrams, embedding diagrams and fractal

dimension measures. Constructing non-linear, deterministic models of real world

systems is , however, notoriously difficult and invariably impractical for systems where

the degrees of freedom are large (e.g. greater than 3 can be regarded as a pragmatic

limit in finance, Economist, 1993; p.17).

4.2.2 ANNs for forecasting
There are numerous papers documenting the application of ANN models to a wide

variety of predictive tasks using time series data. White (1988) outlines a stock price

predictor of time series which was found to be better than linear regression but no better

than chance on everything but the training set. Friesleben (1992) describes stock

market prediction (the German FAZ-Index) using variants of the backpropagation

model with multivariate data.

The tapped delay line approach is widely used but it is not the only technique available

for building a memory capability into a network. Two notable approaches are

exponential trace memory and gamma memory described by Mozer (Weigend and

Gershenfeld, 1993).

The most widely applied model is the feedforward network using a tapped delay line

approach. It has been used by White (1988) to attempt to predict share prices and has

been proposed in a variety of forecasting applications before and since(e.g. Kimoto et

al., 1990; Freisleben, 1992). The recurrent neural network model has emerged in recent

65

years as an alternative approach to embedding time series memory into a network. The

recurrent form can be represented by a large feedforward model (Pineda, 1987). Mozer

(Weigend and Gershenfeld, 1993:256) draws attention to research indicating that the

standard recurrent architecture is inadequate for some relatively simple temporal

processing and forecasting tasks.

A constructive learning approach has been proposed by Refenes (1991) which yields a

feedforward network solution by starting with a minimal configuration and increasing

the number of processing elements until a specified output accuracy is achieved.

4.3 Benchmarking studies
The literature is littered with papers describing the performance of old, modified and

novel algorithms on various data sets. There are however few studies that utilise a

structured comparative method advocated in chapter 3; contrasting the performance of

forecasting methods across a range of data sets.

Weigend and Gershenfeld (1993) describe the results of a forecasting competition based

around six time series data sets. In each of the six cases, the algorithm performing best

of those submitted is described. A breakdown of solutions is offered, investigating

prediction and characterisation of the data sets. The competition was open to all and

was carried out blind (the continuation of the time series were released after the

competition closed). All but one of the data sets were ‘real world’, taken from finance,

medicine, physics, astronomy and music. The most successful technique for predicting

the currency exchange data set was a neural network model, although its ‘success’ was

modest.

4.4 The Forecasting problem
The forecasting problem used in this study is taken from the domain of financial

markets; specifically the currency exchange markets. The foreign exchange market

trades money in huge quantities (frequently referred to as ‘volume’). A central bank

survey in 1989 estimated that the daily net turnover was $650 billion. A more recent

66

estimate valued daily foreign exchange turnover (including derivatives) at about $900

billion (Economist, 1992a) which at the time was a mere $50 billion short of the total

reserves of all IMF members. The quantity traded daily is now so large that the central

banks, even working in unison, do not have the reserves to maintain a currency value

against prevailing market forces. This was dramatically illustrated during a recent

exchange rate crisis when European banks attempted to maintain the British pound at a

value against market forces. One (in)famous speculator (George Soros) is estimated to

have made $1 billion from the attempt by central banks to prevent the slide of the

pound.

4.4.1 Foreign Exchange Markets
A vast number of time series are generated from currency markets and many

forecasting studies have been made. The markets and their participants, the

motivations for forecasting and the data available are discussed in this section. There

are three readily identifiable groups that buy and sell currencies; exporters/importers,

foreign investors and speculators (Copeland, 1989; p.10).

4.4.1.1 Exporters, importers and foreign investors
Individuals or companies wishing to buy or sell goods in a foreign country will

invariably require foreign currency for the transaction. Similarly foreign investment

also normally requires foreign currency. Currency for these transactions will normally

be purchased from a bank. Some of the larger international companies have found it

viable to operate their own foreign exchange dealing operation (e.g. British Petroleum,

Allied Lyons). The time scale and quantity of currency conversions vary, with a range

of currency exchange instruments existing to support business needs. It is possible, for

example, to hedge exchange risk by purchasing options to buy a currency at a future

date at an agreed price.

4.4.1.2 Speculators
Speculators are by far the largest group of traders in foreign currency and they attempt

to make money from the process of buying and selling foreign currencies. Included in

this definition of speculative trading is the capital movement by such entities as

67

pension-funds. Estimates vary as to the speculative percentage of the total foreign

exchange volume traded, but all estimates are consistently over 90% (Economist,

1992a). The speculative aspect of trading and its financial reward often draws criticism

but is widely considered a necessary feature to ensure that the markets are as ‘efficient’

and ‘fluid’ as possible. It is the speculative group of traders that is of interest in this

thesis.

4.4.1.3 The market mechanisms and driving forces
The motivation for forecasting foreign exchange is enormous. For speculative traders

successful prediction of currency movements will allow profitable ‘positions’ to be

taken. A position is taken when a dealer buys or sells enough currency so that his net

balance will be positive or negative, respectively, in a given currency. If a dealer

starts in a position of holding no Yen, for example, buying ten million US dollars

worth of Yen would be taking a ‘long’ position in Yen. Similarly selling ten million

dollars worth of Yen would be termed a ‘short’ position. Dealers taking such positions

are relying on their predictions of a future upward or downward currency movement

(relative to another currency) to make a profit in the price difference. It is possible to

consider exchanges between multiple currencies but this study is restricted to currency

pairs.

The operating principles of the traders described above apply to the relatively simple

‘spot’ currency market where the transaction is effectively completed at the time of the

trade. More complex derivative financial instruments such as ‘options’ and ‘futures’

are available which allow the transaction time to be spread or delayed and therefore

require more complex pricing strategies and analysis. There are numerous other

exchanges that deal in a myriad of instruments but the underlying principle of all is that

participants exchange objects for other objects in some ratio. The objects can be can

be, for example, currency, coffee, gold or pork belly, and the ratio is usually called a

price. The economic concepts determining pricing in these markets is ‘supply and

demand’ (Begg et al., 1984; p.44). The variation in the supply of, and demand for,

objects causes a change in the equilibrium ratio (price) for which they are exchanged.

Another concept from economics, the efficient markets hypothesis (EMH) (Begg et al.,

1984;p.313) also has important implications for the prediction of prices in these

68

markets. If the market is efficient, the hypothesis states that the price of objects will

reflect all ‘currently available’ information. Only unforeseen information will yield a

change in the price. If this theory holds, then the market price should follow a ‘random

walk’; tomorrow’s price change cannot be predicted by today’s (or previous day’s)

price. The basic hypothesis comes in further forms known as the ‘weak’, ‘semi-strong’

and ‘strong’ hypotheses, which attempt to categorise the degree to which information

is available to participants in a market contrasting with the simplistic assumption of the

basic hypothesis that information is open to all. Empirical evidence alluding to the

nature of currency markets is conflicting (Economist, 1993;p.6). If a market is assumed

to be efficient, the hypothesis can be used to provide a simple measure of accuracy of

any forecast by using the random walk prediction as a base line measure (see

performance metrics - 4.1.2).

One factor that all forms of the EMH ignore is the time taken for information

dissemination to market participants. In a heavily traded spot currency pair such as the

dollar-deutshemark, price updates can frequently be received at 8 times per second. A

reasonable hypothesis is that some market participants will have fast and efficient

mechanisms to receive information and act upon it more quickly than others.

Increasing speed of information processing and decision making therefore remains a

way in which to ‘beat’ the market. The investment in computer networks, real time

news feeds and analysis/charting software made by treasury dealing rooms is evidence

to support this assertion.

Currently three routes exist that enable currency dealers to ‘spot’ exchange; direct

transactions, electronic exchanges and broking services (Figure 4.3). Direct dealing is

common between large merchant banks, where one dealer contacts a counterpart

directly by telephone. The predominant electronic exchange system used in the London

market is operated by Reuters (‘Dealing 2000/2’). Numerous broking houses also offer

a currency exchange facility (along with additional services). It is difficult to estimate

the quantity of direct interbank trading but it is believed to be larger than the other

mechanisms. Of the other two mechanisms, at present larger volumes are traded via

broking services but the quantities traded electronically are increasing. Brokers and

69

electronic exchange providers earn money for each currency transaction they make

whereas speculative dealers earn (or lose) money by taking many currency positions

(over time) in a market with a moving exchange rate. A ‘flat’ market (little or no

change in exchange rates) lacks money making opportunities for speculative traders

whereas fluctuating market conditions bring opportunities for taking speculative

positions.

The currency flow through the market is shown in Figure 4.3. The diagram shows the

core market participants who are required to make the exchange of currency possible

with the dealers who ‘drive’ the currency movements. A currency exchange between

two dealers takes place, facilitated by the market. The market is the nebulous grouping

of mechanisms that allow the transactions to take place and is constantly evolving,

driven by technology and business needs. The pricing mechanism, which is of prime

importance is discussed next.

Figure 4.3 - A Simple Currency Exchange Market Model

The mechanics for pricing currencies is also based on the mechanism for transactions,

but is slightly more complicated. There are several data feeds that provide price

information but only the transaction records between the trader/broker or

trader/exchange provide a history of the actual price that currencies are exchanged at.

There are, however, indicative values of currency price available which are those

supplied by news providers such as Reuters or Telerate. The time series values

70

obtained from these systems are in turn obtained from frequent sampling of dealers in

the market. The indicative rates are a method by which the dealers can advertise their

prices but the actual price at which a trade is completed will be arranged by telephone

and known only to the participants. The indicative rates will, therefore, lag the market

slightly. It is important to note that it is the time series of indicative rates that are

recorded and are available for forecasting, not the actual transaction rates.

4.4.1.4 Potential for forecasting
The currency markets are often described as ‘efficient’. The economic theory of

efficient markets states that in such markets the price will reflect all the information

available. As was discussed earlier, however, the speed of information flow and

volume of data in the currency spot markets means that the necessary prompt analysis

of information is heavily reliant on the use of information technology. It therefore

seems reasonable to attempt to forecast in the very short term where the information

‘overload’ may yield unused information. As the time available to traders for analysis

increases, it is more likely that market participants will spot patterns and trends. In the

spot market, traders have very short investment horizons, conduct many trades, and

hence have little time for complex or detailed analysis. A survey conducted by Taylor

and Allen (1992) looked at the use of technical analysis and fundamental approaches to

forecasting over varied time frames in the foreign exchange markets. They concluded

that there was a skew in reliance on technical analysis tools for shorter investment

horizons, adding that many respondents viewed them as ‘self-fulfilling’. This suggests

that market participants view technical tools as potentially worthwhile in the short term

and given the wide belief of self-fulfilment, potential may well exists for an adaptive

ANN approach to identify patterns.

The success of technical or computer based trading tools remains an unanswered

question. As Lequarre (Weigend and Gershenfeld, 1993; p.137) points out,

successful algorithms in the financial environment are kept secret, making research

frustrating especially for ‘the ones who come from academia Claims have been made

about computer forecasting systems yielding impressive returns on capital (Economist

71

1993 ;p. 19; Economist, 1992b ; Refenes, 1991) but without independent analysis and

verification, that is how they remain - claims.

The data sets shown in Figure 4.4 are five daily closing prices for currencies quoted

against the US dollar. The time series cover a four year period and illustrate the very

different characteristics of currencies. The two European currencies exhibit roughly

similar behaviour. The Italian Lira was within the European exchange rate mechanism

(ERM) for some of this period and the Finnish markka was outside. This mechanism

attempted to fix member country exchange rates to within a well defined bandwidth.

The Japanese Yen exhibits very different characteristics. The three currencies

discussed so far exhibit very small, incremental changes in exchange rate, whereas the

less fluid Chinese and Argentinean rates show pronounced, larger movements.

The scale of currency movements and the long term behaviour of currency pairs are

typically very different if the exchange rates are free floating. If the exchange rates are

fixed or floating within limits then the currencies will be correlated to a higher degree.

72

ARGENTINA

CHINA

9 ..

7 -

3 £

Figure 4.4 Five currency exchange rates against the US dollar between 6/90 and
6/94 with 1307 data points in each series2.

2The price shown (y axis) is the quantity of the currency that can be purchased for one US dollar. Time
(x axis) is not shown for clarity but has the same range (6/90—>6/94) and interval (1 day) for each series.

73

4.5 ANN forecasting experiments
Two foreign exchange time series of different sampling frequencies were used for the

forecasting experiments; the Lira daily closing price (1307 prices) and the Lira five-

minute closing price series (2223 prices). Both time series are of the Lira - US dollar

exchange rate.

Pursuing the analytical framework established in chapter 3 and using some of the

analytical techniques described earlier in section 4.2, the information described in the

following section was collected as a precursor to experimentation. In addition, three

artificial time series were generated to help with the interpretation of the visual and

quantitative analytic techniques used to characterise the data sets (appendices A and B

contain function details and graphs of the data).

The discussion covers the daily and five minute time series in turn. For each series, an

analysis of the characteristics is presented before consideration of the ANN algorithm

and architecture selected for evaluation.

4.5.1 Daily time series: characteristics
Dynamics

The time series did not appear to have any discernible structure in the underlying

dynamics (evidenced by investigation of phase and embedding plots) and appears to be

non-linear as evidenced by the complex phase diagrams (Figures 4.5 and 4.6).

Figure 4.5 - Phase diagram of Italian Lira (x vs dv/dt)

74

80

60

40

? 20

| 0
t j -20

-40

-60

| -80
-60 -40 -20 0 20 40 60 80

fc - dx/dt

Figure 4.6 - Phase plot of Italian Lira (dx/dt vs. d^/df2)

Stationarity

The series is non-stationary (mean and variance vary with time) as can be seen from the

time series plot (trends) and from the autocorrelation functions showing a linear

decrease with time.

Distribution

The time series does not have a normal distribution, (evidenced by the histogram plot;

Figure 4.7).

Italian Llra-US$ (x=Daily Close Price)

Figure 4.7 - Histogram of daily Lira closing prices.

Autocorrelation

The autocorrelation functions (ACFs) for the three artificial time and Lira series are

shown in Figures 4.8 and 4.9. Calculations were made in the MINITAB statistical

75

package with each ACF series covering 150 time lags. The Lira has a very similar ACF

to the artificial generated ’line’ time series, indicating that there is a strong trend

component in the data. If an ACF of the Lira’s first differential is taken, however, then

a very different series is evident (Figure 4.9). This indicates that the price movement

(the variable of interest) is very similar to the random time series. Using the differential

‘uncovers’ the day to day dynamics, which in the case of the Lira, are dwarfed by the

absolute price value. An absolute price value used as an input to an ANN would vary

very little (0-5%) therefore providing minimal chance for the learning algorithm to

associate changes in input with output. The differential value has a full value range (0-

100%) thereby increasing the chances of learning through weight modification.

Figure 4.8 ACF functions for synthetic time series

__________ _ __________________ ________________ _____
Figure 4.9 ACF functions for Daily Lira and first differential

76

The ANN and learning algorithm selected for forecasting the daily time series are the

feedforward architecture and backpropagation rule. The problem is presented to the

ANN as a tapped delay line with the difference between successive prices as inputs and

a price difference as the forecast value. The interpolative properties of the feedforward

network architecture would seem appropriate to the form of prediction required.

The (absolute) daily price time series and the first differential are both non-stationary in

character. The series therefore offer little chance of successful forecasting using

ARMA methods. ARMA requires that the time series to be modelled has a constant

mean and deviation. To verify this conclusion, an attempt to predict was made using

the Box-Jenkins ARMA model implemented in MINITAB but all models failed to fit,

as expected.

To investigate the performance of the ANN model two error measures are taken. As

the data set is difficult to characterise and appears to offer little hope for accurate

forecasting, the random walk ratio is adopted as the primary measure of success. If

models yield a performance error ratio lower than 1.0 it would indicate that the model

under evaluation offers a prediction better than chance. A measure of the correct

prediction of price movement (e.g. up, down or none) is also given. From a trading

perspective this is probably the most significant measure of performance.

A computational model to predict daily prices is not constrained by the operational

performance requirements needed for minute by minute prediction. It is likely,

however, that there will be retraining of the model on a regular basis (perhaps daily).

There is therefore an emphasis on training time being as short as possible. It would be

useful for a model to provide an explanation of prediction or some form of reasoning,

but this is not necessary since its utility will be measured by its accuracy alone. If the

system were to be implemented it would be in an ‘advisory’ role leaving traders with

the option to act upon its predictions.

4.5.2 Daily time series : experiments and results
The experimental data is drawn from two data series of 1307 closing prices for each

currency (Lira and Yen). The Yen series was readily available and is included for

77

comparison purposes only. Tapped delay lines are used to provide a six dimensional

state space problem representation to the ANN for each currency. The selection of six

values is somewhat arbitrary as no indication of the underlying dimension of the series

could be ascertained from the embedding or phase diagrams (see Figures 4.5 & 4.6).

Training is carried out with 1,200 data samples from the available 1307, leaving 100 or

99 cases for testing, depending on the representation made to the ANN. In instances

where price differences are used, the 6 input tapped delay line uses the 7 previous data

points. In all experiments the random walk ratio is used to test that the performance of

the ANN forecasting model is better than chance.

Currency Configuration Format Training Testing Error Function
Lira Price,Price,n=6 6,1 N=1200 2 O o Rnd. Wlk. Ratio
Lira Diff,Price,n=6 7,1 N=1200 N=99 Rnd. Wlk. Ratio
Lira Diff,Diff,n=6 6,1 N=1200 N=99 Rnd. Wlk. Ratio
Yen Price,Price,n=6 6,1 N=1200 N=100 Rnd. Wlk. Ratio
Yen Diff,Price,n=6 7,1 N=1200 N=99 Rnd. Wlk. Ratio
Yen Diff,Diff,n=6 6,1 N=1200 N=99 Rnd. Wlk. Ratio
Table 4.2 Configurations for Lira and Yen (dlaily) experiments

Three different data presentations were attempted for each currency; (i) previous prices

input and next price output (ii) previous price differences with last price as input with

next price output and (iii) previous price differences input and next price difference as

output.

All of the experiments (for both currencies) proved unsuccessful with the

backpropagation learning algorithm using the NeuralWorks Professional II package

running on a SUN Sparc 2 workstation. There were no indications of convergence

(reduction in output error), despite training runs in excess of one million iterations and

using numerous variations of the algorithm parameters and network topologies.

Learning parameter settings were varied for different run lengths and momentum terms

were included in an attempt to attain convergence. It was concluded that

backpropagation could not be trained for these daily data sets.

4.5.3 Five-minute time series: characteristics
Dynamics

Due to the non-contiguous nature of the data sets, selected examples from the 26

continuous time series are viewed using phase and embedding diagrams. The plots

78

have no discernible structure evidencing no identifiable low order in the underlying

dynamics. In the absence of any indication of dynamic order, the selection and number

of tapped delay line points remains open to experiment.

Stationarity

As with the daily lira prices, the time series are non-stationary as can be seen from the

trends in the time series and standard deviation plots (Figure 4.10). The lack of

stationarity indicates that an ARMA model would be unsuccessful in predicting in this

instance.

Distribution

The time series selected for example have exhibited reasonably normal distributions.

The overall time series resulting from joining the contiguous data sets is, however, not

normally distributed.

Autocorrelation

Autocorrelations were calculated for selected series and found to be similar to the

random series (e.g. serially uncorrelated). This indicates that there is little evidence of

periodicity in the data.

79

4.5.4 Five-minute time series: experiments and results
The eventual database of cases for training and testing, following the processing

described in appendix B, contained 2223 records. All experiments adopted the train-

and-test method of data sampling. The first two experiments used training and test

samples that were contiguous. Experiments 3 through to 6 used interspersed training

and test samples. Test data sets contained no cases that were used to train the networks.

The experimental results are presented in tabular form in Table 4.3.

Feedforward ANNs with varying numbers of hidden layers were applied. The ‘model’

column in table 4.3 indicates how many inputs (6 in all cases), hidden nodes & layers

(varied) and outputs (1 in all cases) were used in each experiment. The networks were

all trained using the backpropagation learning algorithm encoded in the Neural Works

Professional II software package and running on a SPARC 2 workstation.

80

Exp. Random
Walk Ratio

Direction
Correct (%)

Model Training
Iterations

Training Set /
Test Set

El 0.92 55.6 (±0.21) 6,10,6,1 121,307 1779/444
E2 0.91 57.0 (±0.21) 6,10,6,1 304,544 1779/444
E3 0.91 55.6 (±0.24) 6,10,1 100,907 1803 /420
E4 0.89 58.6 (±0.24) 6,10,1 102,245 1803 /420
E5 0.89 59.3 (±0.24) 6,10,1 140,592 1803 /420
E6 0.89 59.5 (±0.24) 6,10,1 1,029,285 1803 /420
Table 4.3 - Experimental results for 5 minute lira data.

Note: The Random Walk Ratio (equation 4.2) is calculated using the difference time

series and not the actual price time series. This yields a more sensitive error measure

compared to a calculation based on absolute price.

4.6 Discussion of results
The experimental method developed in chapter 3 is used as a template to summarise the

experimental work presented in this chapter.

C h a r a c t e r i s t i c M e a s u r e s

Cl=Number of Cases (examples)
C2=Mean
C3=Standard Deviation
C4=Histogram Distribution
C5=ACF Distribution
C6=Phase Diagram Interpretation
C7=Embedding Diagram Interpretation
C8=Contiguous series

M o d e l C h a r a c t e r i s t i c s P e r f o r m a n c e M e t r i c s
Ml=Forecasting Speed Pl=Direction Correct
M2=Training Time P2=Random Walk ratio
M3=Reasoning Capability

M o d e l s / A l g o r i t h m s

al=Linear Regression
a2=ARMA
a3=Artificial Neural Network (ANN)

D a t a S e t s

dl=DailyLira (dx/dt)
d2=5-minute Lira (dx/dt)
d3=Random
d4=Line
d5=Sine Wave

Figure 4.11 - Summary of experimental method : forecasting

The mapping rules and heuristics for algorithm selection were gained from relevant

published proofs and texts documenting algorithm performance. The mapping rules are

an important component to the experimental method. As is evident from the algorithm

review presented in this chapter, no rules were evident that applied to the data set

81

characteristics. For the methodology to be of value, development of mapping rules is

necessary. For the heuristic rules used to be of value, they will need to be validated by

larger quantities of empirical evidence.

The time scale of prediction is a very important consideration in the modelling process.

ARMA models appear to offer a longer term prediction capability than is required for

the experiments discussed here. The parametric methods (al, a2) do not perform as

well in this short term prediction study (1 time step ahead) as the ANN (a3) method.

The selection of an appropriate tapped delay line length for optimum model

performance was difficult to judge. Models al, a2 and a3 all require a definition of

such inputs for the problem representation adopted in this study. The number and

spacing of delay line ‘taps’ was set heuristically. Since the currency time series (dl

and d2) showed no underlying order in the phase and embedding plots and had ACF’s

similar to a random series, characteristic measures Cl to C8 shed no light on the

problem of selecting delay line length. An instructive characteristic measure indicating

potentially successful configurations would be of great benefit to the modelling process.

Refenes et al.(l 992) discusses the use of such windows but at the time of writing there

are no clear guidelines or rules to select appropriate sizes.

The number of cases in the data sets (Daily, 1307; 5-minute, 2223) are sufficiently large

for all the models considered in this evaluation. For a generally applicable method,

however, rules would have to be developed for specifying minimum (and possibly

maximum) data set sizes for each of the models under consideration. Such rules may

well be dependent on other factors such as number of delay line taps, variance of the

data etc.

The selection of data sets for training/testing may have a strong influence on the

accuracy of model prediction. In the latter 5-minute data experiments (Table 4.3; E3 to

E6) it was noted that the prediction performance improved as the sample and test data

became interspersed. It would be instructive to use a cross validation technique to

investigate the bias of forecasts due to different sampling sets.

82

This study is restricted to univariate time series forecasting. A logical extension to the

method is to include other variables of interest; the multivariate case. For daily data it

is likely that additional factors such as interest rates would assist in forecasting. The

very short term 5 minute data is, however, characterised more by short term ‘market

behaviour’ and is more suited to the univariate case.

The results for the ANN prediction of 5-minute data are encouraging when considered

in terms of the metrics chosen. In particular the higher DC values obtained (59%) are

better than chance. Caution is required, however, since a true evaluation of the

forecasting capability in this particular case would require the application of a trading

strategy which included the cost of transactions. The ultimate outcome would be the

system’s ability to be consistently profitable over time. An appropriate cost function

would have to be developed to simulate trading rules and discount the cost of

transactions.

The analytical method has proved of value in the analysis of forecasting by defining the

process as a series of identifiable components. Many issues have been raised and some

have been discussed in this section. The potential for producing a focused (considering

only univariate time series with tapped delay line sampling) forecasting method based

on empirical analysis is the natural progression for this systematic approach. The

framework supports the expansion of characteristic measures and new algorithms which

are evaluated using a range of data sets to yield refined or extended algorithm selection

rules. A natural habitat for an evolving system of inter linked measures, rules and

models is computer software. To facilitate the research, numerous programs were

developed, primarily to integrate the various characteristic measures. A frustrating

observation is that, to perform many of the measures requires the use of various

software packages. Application and research will benefit from more focused

algorithms (e.g. for short term, univariate forecasting) that integrate the stages involved

applying rule based selection (or advice) for selecting algorithms.

83

CHAPTER 5 - CLASSIFICATION

5.0 Introduction
Classification is a process carried out in many domains from finance to medicine.

Whether it be a human physiological system or a currency market, attempts are made to

classify based upon observations. An expert such as a doctor in medicine or market

maker in financial markets is adept at making such classifications. They do this based

on either rules, experience or a combination of both. The rules based approach is

appropriate if the observed variables can be readily analysed to form a rules base. In

reality few ‘real world’ systems are so readily deterministic and we therefore have a

seemingly complex classification process. Further complexity is added to the situation

by the often large number (increasingly so) of variables open to observation. It is

within this context of data rich environments that this chapter explores the potential of

data based approaches to classification. This is in contrast to the knowledge based

approach.

There already exist a number of machine learning and statistical algorithms to tackle

data based classification problems. Artificial Neural Networks have recently joined the

ranks of such algorithms.

In this chapter the classification procedure ‘will be applied to a continuing sequence of

cases, in which each new case must be assigned to one of a set of pre-defined classes

on the basis of observed attributes or features'. (Michie et al., 1994; p.l). The term

‘feature space’ is used to denote the ‘input’ or ‘sample’ space found in other texts. The

dimension of feature space will be n with the feature vector A having components

[xi,x2,...xj.

A generic outline of the classification process is presented first. This is followed by a

critical review of the literature covering established techniques and Artificial Neural

Networks (ANNs). Studies that have attempted to compare classifier performance are

then reviewed before the data set is introduced.

84

5.0.1 Hypothesis
Artificial Neural Network models are capable of solving data based classification

problems with comparable performance (by defined metrics) to established statistical

techniques.

5.1 The classification process
The analytical and experimental method described in chapter 3 is applied here.

Appropriate performance metrics, data set characteristic measures and classifier

models are discussed and defined in this section.

Figure 5.1 - The classification process

5.1.1 Data set characteristic measures
Perhaps the most important component of any classification task is the data set. It is

proposed in the method presented here that by analysing the data before any attempts

are made to classify can lead to a better solution. Performing characteristic measures

has an added benefit in the classification domain; it can lead to data set reduction.

High dimensionality is a problem in classification (Hand, 1981) and it is beneficial to

reduce the number of features if the resulting information loss is minimal. It is a

measure of the information contained in feature variables and more specifically their

discriminating ability between classes that is of particular value in the initial analysis of

data sets.

The second purpose of the measures is to facilitate the selection of an appropriate

algorithm for classification. The criteria for selecting measures here is more difficult to

define. The table below describe the measures reviewed and their purpose (A-Analysis

of data, S-Selection of algorithms).

85

Measure Symbol Description

Sample Size - [S/A] n Total Sample size

Features - [S/A] f The total number of features in the feature vector

Binary Features -
[S/A]

fb The number of binary features in the feature vector

Ordinal Features -
[S/A]

fo Ranked Features in the feature vector

Classes - [S/A] c The number of classes

Entropy - [A] m b) For binary features a measure of the information
content

Joint Entropy - [A] H(fb, c) Joint information measure for binary features and
classes

Av. J. Entropy - [S] H (f b ’C) Average of joint entropy across all classes and
binary features

Table 5.1 - Classification data set characteristic measures.

A detailed description of the measures in table 5.1, covering formulae, ranges and

qualitative meaning of the measure values can be found in Appendix C.

5.1.2 Classifier performance metrics
To measure the performance of a classifier it is necessary to define the accuracy or error

metric and how the data available can be sampled to compute such a metric. Potential

metrics and data sampling are described in the following text.

5.1.2.1 Data Sampling
Three readily identifiable methods are available for the sampling of data to enable

training and testing of classifiers; cross validation, train-and-test and bootstrapping.

The three techniques are discussed below and summarised in table 5.2.

Cross validation is a widely used technique where the data available is divided into n

samples and each sample is tested against the classifier created (trained) with the

remaining n-1 samples. At its extreme (rc=sample size) it becomes the leave-out-one

method which is only practically possible with small data sets. The method is

computationally intensive as each cycle requires retraining of the classifier. The

method is therefore suited to classifier algorithms where training time is short.

86

The train-and-test technique selects two random samples from the database of available

cases. One sample is used to construct a classifier and the other is used to test its

performance. This is suited only to large test sets where leaving out training samples

will not yield too small a training set.

The Bootstrap procedure is more involved than the two techniques detailed above. In

bootstrapping, the database of cases is replicated many times by random sampling

with replication. The generated sample is used as a training set and cases not selected

from the database are used as the test set.

Technique Data set size Advantages/Disadvantages

«-fold Cross validation Medium, Large Requires n training cycles (-)

Reduces biasing in samples (+)

Train-and-test Large Only one training cycle (+)

Requires large data sets (-)

May yield biased samples (-)

Bootstrap Small Technique least likely to be biased (+)

Computationally intensive (-)

Table 5.2 - Data sampling techniques

A more detailed and referenced discussion of these methods can be found in Michie et

al. (1994, p.108).

87

5.1.2.2 Accuracy / Error measures
To evaluate or compare the performance of classifiers it is necessary to define

appropriate metrics to measure the accuracy or error rate in testing. Potential functions

are discussed below.

One of the simplest measures of accuracy is what will be termed here the true positive

(TP) function which can be calculated for each class and can be averaged to provide a

measure of classification accuracy over all classes. The formula for this measure is:

^ Correctly Classifed ;

y Class x
y 100 where the summation is made over all cases. (5.1)

The measure described above indicates the number of correct classifications. It does

not indicate, however, the cases that are incorrectly classified as Class x. A measure

providing this information is known as the false positive (FP) function. In a two class

problem (x,y) one measure can be simply calculated from the other (FPx-y=100-TPx). In

problems with more than two categories they must be calculated explicitly. The false

positive function is defined as:

FPx y

y Class x incorrectly classified y

y Class x
y.100 (5.2)

These functions can be broken down for categories and displayed in matrix form. The

matrix for a four class problem is shown in table 5.3. It is instructive to view the

accuracy in this way as it helps identify classes which the classifier has difficulty in

separating.

Class A B C D

A TPa f p ab FPac FPad

B FPba TPb FPbc FPbd

C FPCa FPcb TPC FPcd

D FPda FPdb f p dc TPd

Table 5.3 - A true and1 false positive matrix

88

5.1.3 Classifier model characteristics
There are some characteristics of classifier solutions that are not entirely quantitative

but need to be included in the selection process. These are discussed below.

The speed of solutions can often be a critical limiting factor. Some classification

algorithms require much computation. The computational demand of algorithms can be

subdivided into two types; training (or learning) demand and operational demand.

Backpropagation ANN models, for example, frequently demand intensive computing

power in the training phase but are relatively simple and therefore less demanding in

operation. In a continuous operating environment such a on-line patient monitoring in

medicine, or feedback control in engineering the operation time of a model will have a

limit whereas training time is not critical.

The model may be required to attain a certain accuracy (average) in operation. This

value can be used with the accuracy metrics (section 5.1.1) to establish a minimum

performance level by which any proposed model can be judged to be adequate.

An analysable model or evidence o f ‘reasoning is in many situations a desirable if not

necessary aspect of any solution. In medical diagnostic systems and safety critical

control systems there are obvious legal implications for users of model. A significant

drawback of ANN models is that they are frequently difficult to analyse.

Henery (in Michie et al., 1994; p.7) defines four considerations in the evaluation of

classifier performance; accuracy, speed of classification, comprehensibility of

classifier and the leaming/training time of the classifier. These issues can in turn,

however, be subdivided; accuracy requires the use of some metric and there are many

parameters involved from the selection of data for learning and testing to the error

measure function. The scope of the comparisons possible in this thesis must be

therefore limited to that which supports the hypothesis. Informative texts that expose

more detail are referenced where appropriate.

5.2 Methods of classification
It is difficult due to the overlap of techniques to create useful subdivisions of the

number of classification algorithms available. The groupings used here are nominal

and may differ to other texts. The groups are :

• Statistical Methods

89

• Rule Structured Classifiers (a branch of Machine Learning)

• Artificial Neural Network Models

This section discusses the prominent classification algorithms available. It is against

such algorithms that the Artificial Neural Network models must stand for comparison.

To facilitate the description and comparison of these techniques a simple (synthetic)

classification problem is used. The diagram below shows the two category data

distributed in its two dimensional feature space. The feature variables are continuous

with upper and lower bounds.

Figure 5.2 - Synthetic 2-D data set

5.2.1 Statistical Methods

Linear, Quadratic and Logistic Discriminant Functions
The Linear Discriminant Function (LDF) developed by Fisher (1936) is cited by Hand

(1982) as the first method to be developed and most widely used in practice for

discriminant analysis. The parametric technique results in a hyperplanar surface (a line

in a 2 dimensional feature space) that separates the classes optimally according to an

error metric (a function of estimated class means and covariance matrices). This

method is effectively maximising the F-test value.

90

Fisher attempts to maximise the ratio of the difference between the means to the

standard deviations of the two classes (Iris species) with a linear combination function

of the form:

n
f(X)= Y jr t where X; are the coefficients of the n dimensional feature vector

7=1

components x j ,.xn. A limitation of this parametric approach is that the division of

feature space will always be linear and with many problems this may prove to be

unrealistic. A non-linear approach is to use the quadratic discriminant function which

has a curved quadratic surface to partition feature space. Logistic regression separates

the classes with a hyperplane (of the same type as the linear) but the error measure is of

a different form. Fishers quadratic cost function is replaced with the maximisation of a

conditional likelihood.

All three methods are analogous to regression analysis. Ripley (1992) gives a formal

exposition of this link.

Bayes Rule (Non-Parametric)
A probabilistic approach can be taken using Bayesian methods. This requires that the

Probability Density functions for the classes are known. For class probability density

functions (pdf s)that can be defined by a continuous mathematical function a so called

‘Bayes optimal ‘ classifier can predict the theoretical limit to optimal classification

accuracies. This approach was used by Kohonen et al. (1988) for a benchmarking

study of different classifiers. An advantage of Bayesian approaches is that a priori

probabilities and cost functions can be included.

With ‘real world’ data sets it is often impractical to obtain mathematically precise

functions for pdf s and some method of estimation is required. Techniques for such

estimation are covered in the following section on Density Estimation.

The components included in a bayesian classifier are class likelihood functions, the a

priori probability of the classes and the cost of misclassifying a class. For a two class

problem Specht (1989) clearly shows the simplicity of the classification process

provided that the above components are known.

Class A is selected if hA lA fA (X) > \ 4 Ib (^0

91

Class B is selected if ^ lA f (X) < ^ fB (X)

where h is the class prior probability, l is the cost of misclassification and / (Jf) is the

class likelihood function. X is the feature vector of the case to be classified.

Using a simple line graph (Figure 5.2) it is easy to demonstrate the classification

process in one dimensional feature space. The class probability density functions are

both normally distributed with xA =6, 3% =14 and uA =<t b =3. The decision surface is

where the two curves intersect (x=10).

Figure 5.3 Class likelihood functions for classes A and B

A shift in the decision surface (a point) can be seen when class probabilities of h^=0.2

and /7£=0.8 are included, modifying the probability distributions (Figure 5.4). The cost

functions for both classes are equal () • As can be seen the decision surface is now

at approx. x=8.5.

92

Figure 5.4 - Class A and B posteriori probability density functions

A Bayesian rules classifier is optimal, theoretically giving the lowest error rate. In

practice it is usually impossible to obtain such a classifier without using synthetic data

sets. The problem is that the probability density functions seen in Figure 5.2 require

complete knowledge about the data distributions. With real world data sets, accurately

obtaining these distributions in «-dimensional feature space for each class would be

computationally impractical if not impossible. The alternative is therefore to estimate

the density functions.

Multivariate Density Estimation
There are many algorithms that are associated with density estimation. An informative

breakdown however, is to split the approaches into local density estimates and global

density estimates. Roughly translated a local density estimator will use only points in

feature space that are close to the new feature vector to be classified. Kernel and

nearest neighbour methods are of this type. A global density estimator will use all the

data points to classify the unknown vector. Hand (1982) presents an authoritative and

well referenced account of kernel estimators. The earliest kernel methods traced by

Hand; Fix and Hodges (1951), Rosenblatt (1956) and Parzen (1962) are recent due to

‘their fundamental intractability compared to the parametric forms’. The ever rising

computational power of modem computers has eroded this problem.

93

Many analogous problems encountered in ANN experiments such as convergence and

choice of activation function have been studied in detail by statisticians working on

kernel estimation. Hand also covers the concepts of bias and variance that are used in

the argument put forward by Geman et al. (1992) that small bias and variance are the

key to good classifier solutions. They argue that this in turn is a function of the data set

and for practical artificially intelligent systems the data sets do not contain enough

examples to learn the complexity within them. This must be ‘hard wired’.

Multivariate Density Estimation allows construction of pdfs required for Bayesian

classification. The kernel based approach allows construction of the overall pdf from

multiple kernel functions in feature space. Parzen (1962) demonstrates a univariate

approach to density estimation building up from kernel functions such as gaussians.

His work was further extended by Coucallous (1966) to the multivariate case and his

extension is used by Specht (1989) in a ‘Probabilistic Neural Network’ which

approximates the Bayes optimal decision boundaries.

Kernel estimators require the selection of a kernel and a smoothing parameter. It is

claimed that the smoothing parameter is more important than the actual kernel (Michie

et al., 1994; p.31) and this is discussed in more detail by Specht (1990). Hand (1982)

provides a detailed account and discusses the choice of kernel with respect to

continuous and categorical variables in the feature vector.

k-Nearest Neighbour
The ^-nearest neighbour (&-NN) algorithm is a simple yet often highly accurate

classifier method (see performance comparisons in Michie et al. (1994), Ripley (1992)).

Indeed the k-NN technique outperformed all statistical, machine learning and Artificial

Neural Network techniques for satellite image classification in the comprehensive

review described by Michie et al. (1994, p.143-45). The parameter k denotes the

closest number of vectors from the data set that are used to classify the unknown vector

(case) of interest. In the simplest case, where A=T, the class of the nearest vector to the

unknown vector is the output of the classifier. The nearest neighbour decision rule has

been examined in detail by Cover and Hart (1967). A review linking nearest neighbour

techniques with other classifiers is given by Hand (1981).

94

The decision regions for 1 and 3 Nearest Neighbour algorithms using the synthetic data

set example is shown in Figure 5.4. The software simulation uses a 150x150 resolution

plot of the class regions and is sufficient to demonstrate the decision surface which is

highly non-linear. The decision surface can be constructed from Voronoi tessellations

and is piecewise linear. The nearest neighbour method can also be viewed as a kernel

density estimation method with the smoothing parameter tending to zero. Specht

(1990) discusses this and illustrates it graphically with different smoothing parameter

values.

Figure 5.5 1-Nearest Neighbour (1-NN) & 3-Nearest Neighbour (3-NN)

5.2.2 Rule Structured Classifiers (Machine Learning)
The learning systems discussed here are symbolic learning systems. The solutions

found by the algorithms are logical combinations of features. In the example below

two dimensional feature space of age and work category is partitioned according to the

following propositions:

class 1 if age>25 and work e { clerical, operator }

class 2 if age>25 and work = manual

class 3 if age<25

The partitioning defined by these propositions is rectangular and in stark contrast to

(non-linear) decision boundaries generated by the nearest neighbour algorithm for

example. The benefit is that they can be read.

95

Decision Trees
Decision trees partition feature space recursively into smaller and smaller rectangles

with the desired outcome that the rectangle contains only cases from one class. A

criticism is that they can be difficult to interpret as they become ‘bushy’. They are,

however, usually very fast in operation.

CART (Classification And Regression Tree)
CART (Breiman et al., 1984) is a binary decision tree algorithm which always yields

two branches at each internal node. CART has an interesting index for evaluating the

best way of partitioning the data at a node. The GINI index which defines a metric for

the impurity of the subgroups chosen by a potential split (the ratio of correct

classifications to incorrect). All possible splits are evaluated and the one of lowest

impurity selected.

Following the construction of the tree CART performs a sophisticated pruning process

which balances the two issues of obtaining the right size tree and getting accurate

estimates of the probabilities of misclassification.

5.2.3 Artificial Neural Networks
A broad range of ANN models have been discussed in the literature review (Chapter 2)

and selected models are expanded here in the context of classification only. The

feedforward class of ANNs has been widely applied to classification problems,

however, the less commonly applied LVQ class of models are also capable of

performing well on classification tasks. Feedforward and LVQ models have been

selected as they are very different in architecture yet have had documented success in

tackling classification problems.

Feedforward Network
The Multi-Layer Perceptron (MLP) has been a widely used ANN model in

classification tasks (Gorman & Sejnowski, 1988; Shu et al., 1991; Le Cun et al.,

1990). The computational capabilities of the feedforward class of ANNs have been

well documented (see chapter 2). In the context of classification problems is known

that a feedforward ANN of appropriate size and architecture can theoretically compute

complex decision surfaces to the desired accuracy. A key problem with implementing

96

the Feedforward architecture remains the selection of an appropriate network topology

and setting of learning rule parameters. Some learning algorithms have attempted to

overcome these problems, notably in the setting of the network topology dynamically

during learning. The successful application of models is, however, very dependent on

skill of the experimentor.

Learning Vector Quantization (LVQ)
The LVQ algorithm introduced in Chapter 2 is a relatively simple ANN model. It has,

however, had proven success in the field of classification (Kohonen 1988c). In a

broader comparative study of classification algorithms (Michie et al., 1994) it was

found that LVQ performed strongly on data sets containing large numbers of cases with

a high proportion of binary attributes.

5.3 Benchmarking studies
This benchmarking review attempts to address the problem of classifier performance

and in particular a means for quantitatively assessing the capabilities of a range of

classifiers on deterministically different data sets. It was Minsky and Papert (1969)

using a methodological approach that led to the infamous ‘x-or problem’. The literature

review therefore centres around texts that applied various classifier techniques to data

set problems and distinguishes between synthetic and real life problems.

A structured experimental approach is that taken by Thrun et al.(1991) in comparing the

accuracy of 25 classifier algorithms on three synthetic data sets (the third data set being

a noisy data set). Advocates of each technique were asked to apply their chosen

algorithm on the data sets; further increasing the chance of obtaining a credible

comparison of techniques. The classifiers were the AQ learning algorithms

(constructive induction), Assistant Professional (Inductive learning of decision tree),

mFOIL (inductive logic program generator), ID5R,IDL,ID5R-hat & TDIDT (Decision

Tree algorithms), ID3, ID5R,AQR,CN2 & CLASSWEB 0.1-0.20 (Inductive Learning

Programs), Prism (Inductive Learning Algorithm), ECOBWEB (Unsupervised

clustering algorithm), Backpropagation & Cascade Correlation (Artificial Neural

Network technique). A problem with the design of the experiment from an application

perspective is that the data sets are too artificial to be useful examples outside of the

academic exercise.

97

The data sets themselves were six parameter logic problems with the following number

of categories per parameter xj ..xg : [3,3,2,3,4,2] yielding 432 possible combinations.

The test sets were created with one of the disjunctive normal form supposedly easily

learnable by all symbolic learning algorithms’’ (Thrun et ah, 1991 :p2) and the second a

parity type problem. From a connectionists viewpoint the results are particularly

encouraging in that both the ANN techniques achieved 100% accuracy on all but the

noisy data set (97.2%). A strong point for many of the alternative techniques is that

they produce comprehensible rules for classification from the data. The ANN

techniques do not generate any interpretable rules.

Ripley (1991) also compares a variety of techniques and performs a similar survey of

the literature as to that conducted here. His experimental data is based upon tsetse fly

distributions and is therefore a ‘real life’ data set rather than synthetic. The data set has

14 parameters that can be used to classify the presence or absence of tsetse flies. This

does however yield the problem that the comparison of techniques cannot be evaluated

from known rules or distributions (although canonical variate plots were used to view

the data for discriminating clusters). Ripley uses a simple two variable plot for the

well known iris problem to show how the structure of the data allows a simple classifier

to perform well. This is exactly the kind of insight that is lost in higher dimensional

problems where visualisation is impossible. The point of analysing data before applying

algorithms is quite pertinently made.

Michie et al. (1994) document the most comprehensive comparative study found in the

literature. The text is a summary of 3 years work from the ‘StatLog’ project funded

under the EC ESPRIT programme. The study uses 21 data sets grouped under the

headings ‘Images’, ‘Datasets with costs’, and ‘other datasets’ and evaluates the

performance of a similarly large number of classifiers (22) under the groupings of

‘Statistical Techniques’, ‘Machine Learning Rules and Trees’ and ‘Neural Networks’.

In addition to the comprehensive range of techniques and data sets there are well

defined metrics for evaluating the performance of the algorithms. The comparative

trials are carried out using Cross-Validation and Train-and-Test.

98

1

An important aspect of this work is the analysis of the relationship between dataset

types and algorithm performance. If this relationship can be established then it should

be possible to develop selection criteria and predict the optimal algorithm.

5.4 The classification problem
The data set used in the classification experiments is taken from a large database of

Septicaemia episodes that has been compiled by the Department of Microbiology, St.

Thomas Hospital, London. The database contains in excess of 5000 episodes spanning

over 50 categories of infecting micro-organism (Gransden et al., 1990). Each episode

(case) contains information on the patient (observed features) and the clinically

detected micro-organism(s) (classes) causing the infection. The source database for

experimental work detailed here contained only cases of single organism infection.

5.4.1 Septicaemia
Septicaemia (‘sepsis of the blood') is the clinically significant occurrence of micro-

organisms in the blood stream. The patient shows characteristic evidence of the sepsis

which include fever, rigors, mental confusion, tachycardia and hypotension. The

disease is severe with considerable morbidity and mortality. There are two forms of

Septicaemia as defined in Sleigh and Timbury (1990, p.267), with the second form

being more common:

‘a) A basic feature o f some generalised or ‘septicaemic ’ infectious disease, e.g.

brucellosis, enteric fever.

b) A complication o f more localised infections, e.g. pneumonia. The organisms spread

from the focus o f the infection into the blood stream. ’

Prompt treatment of septicaemia is vital. Patients evidencing septicaemia require the

administration of an appropriate antibiotic therapy immediately. The chances of

survival depend on the age of the patient, the underlying condition and the treatment

given. The overall mortality rate for septicaemia varies between 15 and 35 %.

(Shanson, 1989). To plan and administer an appropriate therapy the following

information is required:

99

a) Identification of infecting organism(s).

b) The antibiotic susceptibility of the micro-organism(s)

c) The focus of the localised infection that has lead to septicaemia.

With this information the clinician and microbiologist can design an appropriate

therapy for the patient. All of this information is not available, however, in the critical

first 24 hours after the clinician has identified the condition of Septicaemia and

requested blood and other relevant cultures. It will take 18 hours incubation time

(typically) in the laboratory for detection of bacteria in the blood sample. In this period

the clinician must ‘best guess’ at an appropriate therapy. This can mean using a

‘blanket cover’ of antibiotics which increases cost and the chances of toxicity (the

antibiotics can have strong side effects). In 94-95% of cases of septicaemia the

infection is caused by a single organism (Sleigh and Timbury, 1990; Shanson, 1989).

It can take a further 24 hours from the initial bacterial detection before comprehensive

results on antimicrobial sensitivities are available and a final therapy chosen.

The purpose of using a data based classifier is to improve the ‘best guess’ made by the

clinician. The objective, data based approach is in contrast to the subjective, rules

based approach that has been tried in MYCIN (Shortliffe, 1976). Any increase in the

prediction accuracy of micro-organism in this critical time period will be beneficial to

the patient outcome (death or survival).

5.4.2 Data Set Features
The training and test data sets each contained 1664 cases randomly sampled from the

database. There are 51 features for each case as follows:

• Year of the episode (Interval Scale, Continuous)

• Age of the patient (Interval Scale, Continuous)

• Sex of the patient (Binary)

• Whether the infection was acquired in the hospital (Binary)

100

With binary encoded variables as follows

• e) Whether the patient is already on antibiotics (Binary)

• f) Medical speciality of the ward (Binary)

• g) The underlying diseases (if any) (Binary)

• h) The anatomical site of the infection (Binary)

5.5 Experiments
The experiments followed the classifier selection process detailed in section 5.2.

Analysis of the data set follows:

5.5.1 Septicaemia data set: characteristics
The data set was investigated using the measures detailed in appendix C. Detailed

calculations on which these findings are based can be found in appendix D.

Measure Value Description
Sample Size - [S/A] 1664 Total Sample size
Features - [S/A] 51 The total number of features in the feature vector
Binary Features -
[S/A]

49 The number of binary features in the feature vector

Ordinal Features -
[S/A]

2 Ranked Features in the feature vector

Classes - [S/A] 4 The number of classes
Entropy - [A] App.

D
For binary features a measure of the information
content

Joint Entropy - [A] App.
D

Joint information measure for binary features and
classes

Av. J. Entropy - [S] App.
D

Average of joint entropy across all classes and binary
features

Table 5.4 - Characterisl:ic measures for classification

The number of micro-organism classes in the data set were deemed to be too numerous

for experimentation and analysis purposes. To reduce the number of classes the

database was pre-processed to yield four categories from the over fifty available; (i)

Escherichia coli, (ii) Staphylococcus aureus, (iii) Streptococcus pneumoniae and (iv)

the remaining cases grouped as ‘Other’ micro-organisms. There are, therefore, four

categories to be classified.

Only data records with complete feature vectors were selected (no missing values). The

feature vectors contained 51 variables; two being continuous interval valued and the

101

rest binary. The number of cases for the training and test sets was 1664, both being

randomly selected from the database.

A range of measures were taken to characterise the data and are presented below in

table 5.2. From these measurements it is possible make a more informed selection of

potentially successfully algorithms.

Since the domain is that of medical decision making, the system should offer as much

insight to the classification process as possible. This issue has been raised by Hart and

Wyatt (1990) where they conclude that ‘black box systems appear more likely to attract

strict product liability, which would be applied no matter how much care was taken in

development and testing...Onepossible role, therefore, for such systems is as indicators

o f the maximum attainable classification accuracy, to encourage those developing more

transparent systems ’. Lipscombe (1989) surveyed the small number of AI systems that

have actually progressed to the point of clinical usage and proffered that the way

forward is for ‘human-directed “decision support” systems'.

5.5.2 Algorithms selected for experiment

The literature review uncovered the following two potentially successful ANN

classifiers: Learning Vector Quantization (LVQ) and Feedforward Networks. The k-

nearest neighbour (&-NN) algorithm has proved to be successful in many classification

tests and is selected here as a representative statistical technique for comparison.

Several characteristics of the septicaemia problem are included in the algorithm

selection process; the large data set (N=1664), the high dimensionality of feature space

(f=51), a fast classification speed required and some comprehensibility of the

classification process.

The train-and-test data sampling method is adopted for training and evaluation of

resulting classifiers.

102

5.5.3 Feedforward Networks: experiment results
Experiments with the feedforward architectures prove unsuccessful. There is no

evidence of weight values within the networks converging to useful values despite

using several training algorithms (backpropagation and variants) and numerous

topologies. It may be possible to uncover successful feedforward architectures using a

more exhaustive search of the available parameters (network topology etc.). A viable

method for achieving this would be to use Genetic Algorithms to generate the

architectural variations.

5.5.4 Learning Vector Quantization (LVQ): experiment results
Details of the LVQ experiments can be found in Appendix F and a summary of the

experiments comparing LVQ to k-NN can be found in Worthy et al. (1993). It was

found that the accuracy of LVQ solutions varied for classes and the optimum solution

yielded a balanced accuracy rate for all classes. It was particularly easy to obtain an

unbalanced solution with the largest class having 100% accuracy and other classes with

0%. Figure 5.6 illustrates some of the better LVQ solutions and the ‘trade off between

class accuracies. The twenty experiments are presented with class accuracies shown

relative to the 1-NN accuracy rates (i.e. solutions showing better performance than the

1-NN algorithm have all four class accuracies greater than 0 on the vertical axis). The

accuracy rates are calculated for the test data set..

LVQ 1 True Positive Accuracy vs 1-NN

Class
accuracy
relative
to 1-NN

Figure 5.6 -Variation in class classification accuracy for LVQ solutions

103

Class Others Escherichia
Coli

Streptococcus
Pneumoniae

Staphylococcus
Aureus

Std. Avg.

1-NN 66.90 55.87 44.77 73.30 62.20 60.21
Best
LVQ

73.45 85.92 66.19 46.03 69.53 67.90

Table 5.5 Class and average accuracies for Best LVQ solution and 1-NN.

Class Others Escherichia
Coli

Streptococcus
Pneumoniae

Staphylococcus
Aureus

Others 582 141 114 45
Escherichia Coli 142 195 10 3
Streptococcus
Pneumoniae

100 11 107 7

Staphylococcus
Aureus

46 2 8 151

Table 5.6 True and False positives for 1-N> solution.

The best result for LVQ yields an accuracy over 7% higher than 1-NN (Table 5.5). In

some experiments it is found that certain classes can be around 30% higher than the 1-

NN accuracy although there is always a ‘trade-off in this result by a reduction in the

remaining class accuracies. This highlights the need to achieve a balanced result where

the overall accuracy is achieved with no low individual class accuracies.

Table 5.6 shows the True/False positive matrix that was obtained for the 1-NN solution.

The data to generate such a matrix was not obtained from the software implementation

of the LVQ algorithm used in the experiments.

In classification mode the trained LVQ codebook vectors are used in exactly the same

way as the 1-NN algorithm. The LVQ codebook vectors used for classification

represent a data set reduction of 99.76% (1664 data set cases to 4 representative

vectors) thereby drastically reducing computation and storage requirements of the

classifier.

Repeatability of experimental results is difficult due to the numerous algorithm

parameters and the stochastic methods used in training and codebook initialisation. It is

104

possible to achieve different accuracy rates from the same initial conditions. Successful

application of the algorithm therefore requires a degree of experimentation.

105

5.6 Summary
The classification experiments are represented in Figure 5.7 using the framework

introduced in Chapter 3.

C l a s s i f i c a t i o n C h a r a c t e r i s t i c M e a s u r e s D a t a S e ts M o d e l s / A l g o r i t h m s

D a t a set
Cl=Sample Size
C2=Number of Features
C3=% Binary Features
C4=% Ordinal Features
C5=Number of Classes
C5=Entropy
C6=Joint Entropy

M o d e l
Ml=Fast operation speed
M2=Descriptive as possible/Reasoning
M3=Training Time as low as possible

P e r f o r m a n c e M e t r i c s
Pl=Balanced class accuracies
P2=High Accuracy

dl=Septicaemia al=k-Nearest Neighbour
a2=LVQ
a3=FeedForward ANN

Figure 5.7 Summary of experimental method: Classification

In contrast to the forecasting experiments in chapter 5 there is only one data set used in

the septicaemia experiments. As a result no conclusions can be drawn as to the

effectiveness of the data set characteristic measures in distinguishing between data sets.

The feedforward model failed to converge when presented with both a full featured and

reduced featured data set. A range of topologies and learning parameters were used

with no satisfactory evidence of learning in any case. This may be due to a limitation in

the backpropagation algorithm on this particular data set or insufficient skill in applying

the feedforward model.

The successful LVQ approach was found to be very sensitive to training parameters and

could rapidly lead to an unbalanced solution where some classes were predicted with

zero accuracy and others with 100%. The sensitivity of this technique makes the

repeatability of results dependent on comprehensive knowledge of the technique. It

was observed following the extensive series of experiments performed using LVQ that

it can achieve impressive accuracy rates but the method cannot be applied without

careful experimentation to achieve a balanced and accurate result.

106

ANN solutions would face significant ethical problems in being applied to automate

medical decision making. There would, however, be a role for it as an advisory or

decision support tool. Lipscombe (1989) asserts that there is a fundamental difference

between expert systems (using a strong AI approach) and the application of formal

knowledge by humans. The human possesses what he terms “interpretative skills ”

which modify the way in which knowledge is applied. The role of assistant is probably

the best a machine can hope for in the medical environment where it is usually deprived

of some of the factors and much of the complex knowledge required to make accurate

diagnoses.

107

CHAPTER 6 - DISCUSSION

6.0 Precepts

In this chapter, the utility of the experimental and analytical method (chapter 3) is

explored in light of the experimental results detailed in Chapters 4 and 5. The

analytical method presented in chapter 3 provides a framework for conducting

experiments and, importantly, comparing the performance of ANNs with established

techniques. The experimental process has been defined as a sequence of stages with

requisite attributes and methods in each. For example, the selection of the algorithm

for experiment is one such component in the experimental process which requires

characteristic measures of the data set and defined performance metrics before a

selection can be made.

The choice of ANN algorithm used for experiment is based upon three sets of criteria;

algorithm performance metrics, model characteristics and data set characteristics.

Theoretical and heuristic knowledge are needed to select the most appropriate

algorithm based on the defined criteria. The outcome of the experiment, however, is

dependent on the following; (i) the quality of model selection criteria, (ii) the quality of

knowledge base and (iii) the experimenters skill in applying the chosen model(s).

Since these factors are dependent upon many variables it rapidly becomes apparent that

reasons for the success or failure of an experiment can be difficult to identify and may

well result from a combination of multiple variables, rather than a single, readily

identifiable case. It can occur when applying ANNs, for example, that the

experimenter will not see any convergence of weight values during training. The

experimenter may conclude that the ANN is incapable of learning in this instance, but

in reality his choice of learning parameters or initialisation of the network weights may

be inappropriate. The application of the ANN has failed due to the lack of skill (or

knowledge) of the experimentor with the particular algorithm.

Many documented ANN experiments choose not to justify the seemingly widely

adopted premise “ANNs are the most appropriate class o f models for a given problem”.

108

Although ANN techniques have purposefully been applied to the forecasting and

classification domains in this thesis, a selection procedure and comparison to existing

techniques are always performed to verify the appropriateness of algorithms chosen for

experiment. The generic framework for applying learning algorithms to forecasting and

classification tasks is based upon a meta-method. An algorithm is not selected until an

analysis of the data set has been performed. The rules for selecting an algorithm will

often be heuristic but the approach provides the structure for rules to incorporate

quantitative measures. Quantitative selection of an algorithm is an objective data based

approach as opposed to a subjective heuristic approach. An advantage of an objective

approach is that decisions are based on data from previous experimental results. As the

database of cases becomes more substantial through experiment, it should support a

richer set of selection rules based on a growing number of measures.

6.1 Research Objectives

The driving force for this thesis is to test the hypothesis presented in Chapter 1 (section

1.2). Two research objectives emerged from the hypothesis. The results from the

forecasting experiments presented in Chapter 4 meet the first research objective put

forward in Chapter 1;

‘To evaluate... the performance o f ANN Models compared to other potentially

successful techniques in a forecasting problem '.

Foreign exchange data was used to investigate the learning ability of forecasting

algorithms. The ANN selected for foreign exchange forecasting was a feedforward

network trained by the classic backpropagation algorithm, which has been used so

widely in the past decade. A better than chance forecast was achieved when the data

was presented to the ANN using a differential rather than absolute price value. The

most successful ANN solution gave a correct indication of the next price movement in

over 59% of cases. The statistical techniques tested for comparison (ARMA &

regression) could not model the data and the random walk model had to be used for

comparison of performance. The forecasting problem is a notoriously difficult one

109

since the foreign exchange markets have been noted as being one of the most efficient

of the financial markets (and therefore practically impossible to predict).

The second research objective;

‘To evaluate... the performance o f ANN models compared to other potentially

successful techniques in a classification problem ’

is met by the classification experiment results presented in Chapter 5.

The septicaemia classification problem was of a high dimensional, predominantly

binary character. The high dimensionality of the data set proved to be too demanding

for most ANN techniques, resulting in only one algorithm, LVQ, performing

adequately. The prominent, established technique chosen for comparison was the

statistical k-NN algorithm. The best performing LVQ solution yielded a 7% greater

accuracy than k-NN with the added advantage of faster operational performance from a

99% reduction in data set size and computational requirements. Although the best

LVQ result offers an improvement over the k-NN performance it did require a

significant number of experiments to achieve this result.

The results from both tasks evolved from a series of experiments following initial

analysis of the data sets (pursuing the method described in chapter 3). This gives

credence to those who claim that successful application of ANNs (and other methods)

follows from careful analysis of the data before any experiments are carried out

(Ripley, 1993).

The method of experimentation requires that the performance of any solutions attained

be measured and compared to those of existing techniques. The method provides a

framework which facilitates additional experimental data to improve the knowledge

base. Further forecasting or classification problems can be tackled using the improved

knowledge.

The performance of ANNs in the forecasting and classification experiments compares

favourably with the performance of the established methods considered. The

110

conclusion reached from this research is that ANNs are flexible self learning models

that may be appropriate for a range of forecasting and classification tasks. A caveat

remains, however, that well defined metrics and solution requirements should be

specified before any pathway to a solution is explored.

The meta-method for algorithm selection is a crucial component to successfully

applying any model to a given problem. The method described in chapter 3 is

structured which, in the context of applying ANN models, could be criticised for being

excessively rigid. ANNs have been lauded as powerful tools for discovering the hidden

relationships in complex data, hence the structured method for selecting algorithms

would appear to contradict the claimed ability of these techniques.

However, if ANNs are simply applied to a problem with no comparison to previous

results or with no characterisation of the problem data set, it becomes apparent from

the number of factors involved, that the reasons for the success or failure of the

algorithm will be difficult to evaluate. It is very important that the performance of

ANNs is compared to that of existing techniques in the chosen application domain. The

success of any technique is relative.

6.2 Limits to ANN learning capabilities

Cullen Schaffer (1994) clearly and succinctly expounded the theoretical limitations of

learning algorithms. Schaffer’s Law states that there is no universal learning method

capable of learning any concept. The tests performed in the process of researching this

thesis (considering only ANN models) support the premise that there is no generic

model applicable to all types of problem. This conclusion is further evidenced by the

numerous studies comparing algorithm performance on differing problem types where a

range of algorithms have shown superior performance. Considering a broader range of

learning methods, evidence from large comparative studies such as those described in

Michie et al.(1994) and Thrun et al.(1991) also provide evidence to support Schaffers

Law. In these studies, some algorithms showed performance advantages with certain

data sets or problem types but there was no algorithm that performed better than all

111

over the whole range of problems. The ANN results presented in Michie et al. clearly

indicate that ANNs have merit for some problems.

In the light of these findings it would seem appropriate that an experimental method,

such as that adopted in this thesis, facilitates model selection for a given problem using

defined metrics and performance measures enabling comparison to existing techniques.

The knowledge used in model selection is derived from theoretical and experimental

results which can be used objectively with data from the model selection metrics.

In tasks such as forecasting and classification, where a range of tools are available, it

requires a meta-method to select a tool most appropriate to the task.

Assuming that the non-trivial task of model selection has been completed, a range of

issues related to ANN learning remain. The limits to an ANNs learning capability can

be viewed as a function of a) the architecture of the model and b) the learning

algorithm. It is has been found in the experiments conducted for this thesis that it is

rare to isolate either factor as the one limiting a successful solution.

The forecasting experiments in chapter 4 found the feedforward ANN model capable of

learning some relationship between previous currency movements and the next. The

representation of the problem, in this instance, was the most important factor affecting

performance (see section 6.3). With the problem representation defined, however, it

was found that by introducing an architecture constraint (limiting the size and layers in

the ANN), improved prediction accuracy was obtained.

In chapter 5, the classification experiments resulted in a completely different ANN

architecture being selected. In a parallel fashion, LVQ, performance was also found to

be optimal when a restriction was made on the architecture. Namely, the number of

class representative vectors was limited to one per class. With increasing numbers of

class representative vectors the complexity of the decision surfaces separating

categories can grow. The generalisation of the network is, therefore, at its highest

with low numbers of class representative nodes.

112

Geman and Bienenstock (1992) explored the related issues of bias1 and variance and

concluded that “the fundamental challenges in neural modelling are about

representation rather than learning per s e They argue that the more bias put into a

solution, the better the performance at the expense of generalisation. Conversely, the

more variance, the better the generalisation. The bias, they argue, is introduced by

using data representation and architecture constraints. Le Cun (1989) focused on

feedforward networks and found that by constraining the network architecture,

significantly better performance was achieved on an image recognition task. Bias was

introduced into the design of the network by building feature extraction layers. As Le

Cun notes, the ability to add bias into designs for a given problem “is more easily said

than done

Some ANN models have been described as being “non-parametric” (Geman et al.,

1992) in the sense that they do not require the user to specify an order of fit as would be

required in a polynomial curve fitting solution, for example. In practical terms,

however, the absence of parameters in the same sense of those required for curve

fitting does not mean that the implementation of an ANN is parameter free.

Returning to the feedforward network for illustration, before a training run can be

started the experimenter must select a host of attributes for both the network and the

learning algorithm. The network must have the number of layers, nodes, transfer

functions and initial weights selected. Even a basic learning algorithm will require the

selection of parameters such as learning coefficient and momentum terms. All of these

attributes and parameters can have an effect on performance as they change the learning

capability of the network.

6.3 Problem representation and reasoning
It was observed whilst experimenting with two different types of problems, forecasting

and classification, that in some instances the problems presented are very similar, if

113

not interchangeable. Taking the foreign exchange forecasting problem as an example,

the forecast required is that of a price or alternatively a direction of price movement. If

a discrete rather than continuous valued range is used for the output, the problem can

be represented as a classification task. Figure 6.1 illustrates the change in problem

representation where a continuous valued range is converted to a discrete range having

only three values; “up”, “down” and “no change”. More resolution can be introduced

by breaking down the ranges still further. An example would be to subdivide the “up”

range into “small up” and “large up”. Value ranges can now be interpreted as discrete

categories. The change in representation opens up a broader range of problem solving

methods than would have been available if considering only forecasting algorithms.

There is therefore, the issue of problem representation to be considered. Taking the

forecasting example given, there will be other issues to consider such as the minimum

resolution of the forecast variable. A trader may require a more informative indication

of forecast value than a simple “up”, “down” or “no move”. If that is the case then a

greater number of subcategories will be needed to increase the resolution.

Price movement Price movement

Up

No
movement

Down

Figure 6.1 - Forecasting problem representation

Appropriate problem representation is noted as the key in achieving a good solution

when using conventional Artificial Intelligence (AI) approaches (Winston, 1992).

Representation is a factor not investigated in depth in the research work for this thesis, 1

1 ‘Bias’ is not to be confused with the term used in control theory. Geman and Bienenstock use the term
in the context of the ‘bias \ variance dilemma’ in model based or non-model based estimators. The
dilemma is faced, for example, when attempting to fit polynomial functions to a curve with added noise.

114

but is likely to be of significant effect when applying ANN (or other) models to a given

problem.

The ANN models developed and discussed in this thesis can be classified as sub-

symbolic. The ANNs, in operation, do not provide any symbolic explanation of how

they generate results. Analysis of the models does not yield any meaningful set of

rules or relationships between output and inputs. This places ANNs at a definite

disadvantage when compared to the deductive and explanatory capabilities of classic

rules based AI systems.

The need to understand the internal representations of ANNs creates a paradox. Most

ANNs are comprehensible only on the small scale when they have few layers and

processing elements. Their computational capability is essentially proportional to their

size. Increasingly complex computational tasks having a reasonable numbers of inputs

and outputs will require networks that rapidly become analytically opaque. Symbolic

processing systems are more scaleable from an understanding viewpoint in that they

can provide an interpretable explanation of their ‘reasoning’.

6.4 The utility of a meta-method
The process of applying ANNs in this thesis can be viewed as a framework or meta-

method. The application of an ANN model is encompassed by the meta-method which

provides mechanisms for algorithm selection and performance evaluation. This is

analogous to the use of meta-languages which are used to discuss other languages or

systems.

The benefit of a meta-method is that it adds understanding to the application of ANNs

by allowing the problem data set, choice of ANN model and the eventual performance

of the chosen ANN, to be described in terms of the metrics. As the number of

experiments increases, sufficient quantitative and theoretical results can be amassed to

create application rules based around the metrics.

115

The concept is illustrated below for a classification problem using a small set of

metrics, algorithms and rules. In AI the meta-method would be termed a Frame Based

(Winston, 1992:180) approach to gathering knowledge about the problem.

Metrics Algorithms Available

[Al:k-NN]

[A2:LVQ]

[A3:Feedforward network using BP learning algorithm]

[Cl:No. classes]=4

[C2:No. cases]=1000

[C3:No. Features]=10

[C4:% Binary Features]=25

[Ml :Fast Training Time Necessary]=True

Rules

Each of the rules have either a heuristic (Hn) or theoretical (Tn) basis.

[HI] If ([No. cases] / [No. classes] > 10) and ([No. cases] / [No. Features] >10) then

sample size is large enough to train and test an ANN.

Use [Al], [A2] or [A3]

[H2] If [Fast Training Time Necessary] and [N. classes]*[No. Features]>15 then do not

use Feedforward model.

Do not use [A3]

[H3] If [% Binary Features]>80% then use LVQ or k-NN (It was found by Michie et al.

(1994) that these two algorithms performed better than feedforward nets on data sets

containing predominantly binary feature data).

Use [Al] and [A2] in preference to [A3]

A further useful extension to rules would be to include those that apply to specific ANN

models. Again the rules would be a mix of heuristic and theoretical which is often not

made explicit in the ANN literature. Typically, successful experiments are dependent

upon the skill and knowledge of the experimenter.

It becomes obvious that some rules may require modification or further metrics as the

number of algorithms is considered. Using rule H2 as an example, “Fast training time”

has meaning in the context of the limited number of models available as it has been

found that the feedforward model takes much longer during training than LVQ. If the

116

number of models is increased a better rule would be to use a more meaningful metric.

In this instance it would be more appropriate to use a maximum number of

mathematical calculations allowed (measured in a unit such as FLOPs2) rather than the

somewhat imprecise “Fast training time”.

A principal drawback of a meta-method is that it adds another layer of complexity to

what may already be a complex problem. For knowledgeable researchers this may be

regarded as unnecessary and in certain cases a hindrance. This research set out to

review ANNs from an applied perspective where the emphasis was to explore the

capability of ANNs compared to other methods and on real data. The utility of the

meta-method in this context lies in a) the capacity to add previous experimental and

theoretical knowledge into the process in a structured way and b) the capability of

selecting ANNs and assessing the performance in a more objective way.

2FLoating point Operations (FLOPs) is a measure of the number of floating point calculations required
by an algorithm on a serial computer. The power of serial computers is often described by the number of
FLOPs they can process in a second. Typically the unit is the Mega-FLOP (MFLOP). The measure
would be inappropriate if the algorithm is implemented on a parallel computing machine.

117

CHAPTER 7 - CONCLUSIONS

7.0 The objectives
A research objective was put forward in the introduction derived from the

hypothesis and research aims. This last chapter draws conclusions on the

objective, what contribution to knowledge has been made and areas of further

work.

The objective was to devise a framework for selecting, applying and evaluating the

performance of ANN models. The applicability of the framework was to be tested

by applying it to two problem domains. The experiments followed the meta-

method put forward in Chapter 3 which provided an objective framework for

selecting and evaluating the performance of models on a given data set. As

discussed in Chapter 6 the framework enabled the performance results of the ANN

models in both problem domains to be compared objectively with established

techniques. The framework also facilitated objective selection of algorithms for

experiment as the development of rules from results demonstrated.

It can be concluded that the framework provides an objective meta-method for

experiments and resulting performance results show that for the problem domains

chosen, ANN models were indeed appropriate solutions. Further to this, given

that established techniques were outperformed (on the chosen metrics) by the ANN

models it can be concluded that ANN models in these cases were the best solution

from the algorithms selected.

The hypothesis put forward at the start of this thesis is supported by the

experimental results. There are, however, a number of issues that have been

discussed in Chapter 6 that prevent firm conclusions being drawn;

(i) The clear definition of metrics before selecting models is key to evaluating the

performance of ANNs applied to a given problem domain. In the absence of such

118

metrics it is very difficult to consider the performance of an ANN (or other

technique) objectively. Different performance metrics might yield different results

and conclusions.

(ii) As important, characterisation of the domain data set enhances the evaluation

of performance by giving insight into the properties of the data set which may

make some models more disposed to successful application than others. A model

can be selected where it’s bias is suited to the data set.

(iii) The choice of the problem representation was found to significantly affect the

results in one of the problem domains. Careful consideration of the solution

requirements and how they and the data set can be represented will affect the

overall choice and performance of algorithms. The meta-method used in this thesis

has utility in comparing models applied using a similar problem representation,

but does not provide any insight into how an optimum problem representation

should appear.

The research illuminated important issues relevant to ANNs considered for general

application to problem domains;

(i) The lack of transparency in ANN solutions compared to other classes of models

(e.g. fuzzy systems and rules based systems) can be a problem in some domains.

The financial application did not require explanation of the predictions made by a

model which is in contrast to the ethical \ legal implications of using such a model

in the medical domain.

(ii) Skill is required to apply the models successfully. Although only two types of

ANN model were eventually applied to the problem domains, it was found that

numerous learning and architecture parameters had to be set. None of the models

used were self configuring and the knowledge needed to set parameters is achieved

through experience.

119

Further research is required to confidently choose the most appropriate ANN (or

other class) model for a given application.

This thesis makes a contribution to the application process in its provision of a

generic meta-method for applying models to problem domains. Emphasis is on

performance measures which facilitate objective comparison of models across

classes. The work of Michie et al.(l994) was the only text that came to light at the

end of the research where a similar method had been employed for classification

algorithms.

7.1 Future work
Pursuing the benefits of the meta-method put forward in Chapter 3 and discussed

in Chapter 6, future research could improve its utility. For each domain

(classification and forecasting) in which the framework has been used as the

knowledge building method;

(i) The number of models and classes of model applied to the data sets need to be

increased and new performances figures calculated with the data already gathered.

(ii) The number of data sets should similarly be increased. The range of possible

data sets an algorithm could be applied to is infinite but a wide range of library

data sets will enable new data sets to be characterised and appropriate algorithms

selected with increasing confidence.

(iii) Refine and develop the characteristic measures so that the meta-method has

suitably rich and distinguishing terms with which to construct rules.

(iv) Where data or theory provides evidence, develop and extend the heuristic and

theoretically based rules using the characteristic measures as inputs to those rules.

120

(v) The role of data manipulation prior to experiment (pre-processing) should be

explicitly defined in the framework. This is closely related to the issue of problem

representation discussed earlier and the use of data set characteristic metrics.

Outside of the scope of the framework, developments discussed in Chapter 6 that

have an impact on the application of ANN models in real world problems should

be explored in more detail;

(i) The creation of models with hybrid architectures. This can be pursued in both a

modular (distinct functional components) and integrated fashion (merged models).

The modular approach has already made an appearance on the commercial scene

with products such as “Clementine”1, a data mining tool. Clementine allows

developers to analyse large databases by mixing machine learning and ANN

modules for processing the data. Modular hybrid architectures use the most

appropriate components for given functions within the architecture.

The integration approach has been pursued both within the ANN paradigm and in

combining ANNs with other classes of models such as fuzzy systems and genetic

algorithms. The strategy behind this design method is that the characteristics of

different models can sometimes be combined if their architectures are merged into

one functional unit. The result of the process is a new form of model.

A key advantage of fuzzy logic approaches compared to ANNs is the

interpretability of the rules that determine the relationship between inputs and

output(s) in the system of interest. ANNs, however, have an advantage over

fuzzy systems as their learning algorithms enable them to develop a model of the

system of interest through data based training as opposed to rules derived by a

(human) expert.

1 Clementine a data mining tool with ANN and rule induction components. It is produced by
Integral Solutions Limited, Basingstoke, UK.

121

If ANN learning algorithms can be applied to architectures containing fuzzy

representations then more comprehensible models may evolve. Attempts have

been made to this end, producing fuzzy rule sets that provide a degree of reasoning

(Kosko, 1991). The relative performance of such models compared to ANN

models needs to be explored further.

(ii) AI or fuzzy rules to provide more complex reasoning than the simple rules

constructed so far in the meta-method. This will require a larger database of model

performance results on characteristically different data sets.

(iii) The development of reliable, modular code for models to facilitate easier

experimentation. A frustration arising from the variety of ways in which

algorithms are implemented is that much of the available code is stand-alone and

difficult to integrate. The adoption of C as the de facto language in academic

circles has helped but there is still some way to go before new models can be tested

reliably in a simple ‘modular’ fashion. If this undoubtedly useful technology is to

penetrate the world outside of academia then this will be a particularly important

factor. The development of an application framework into which algorithm

modules can be assembled would be of enormous benefit to experimenters. The

situation is analogous to computer construction where integrated circuits (ICs)

from different manufacturers can be combined to create solutions of choice. This

capability is a direct result of IC manufacturers exposing the often complex

functionality of their devices in standard component form. Although research into

hybrid architectures where the functionality of differing models is combined would

not benefit from this approach, it would be very productive for experimenters and

application developers who build, test and evaluate the performance of ANN

models.

122

APPENDIX A - Characteristic measures of data sets for
forecasting

The characteristic measures for forecasting are defined in chapter 4, Table 4.1. This

appendix details the equations, algorithms and implementation for these measures.

Following the detailed definitions the results for the data sets investigated are

displayed.

A.1 Standard deviation (SD) - a
The standard deviation is calculated for a moving window along the time series. The

result is a series of values which may be graphed. The graph allows analysis of the

change in SD of the time series with time. The SD calculation and graphing are

automated in a software utility developed and implemented in Visual Basic. The SD is

calculated for a window size of l+INT(0.1*(Time Series Length)). The SD graph

therefore lags the time series plot by this number of time steps. Formally, SD is

calculated as:

where n is the window size. (1)

A.2 Mean - x
The means for a time series is calculated using the same recursive procedure outlined

for the standard deviation. Formally, the mean is calculated as:

1 "M ean=~y\, where
¿=1

n is the window size. (2)

A.3 Stationarity
Stationarity is an important characteristic of that is necessary for many time series

models. A series is said to be stationary if its mean and standard deviation remain

constant with time. The graphs of these measures are therefore used to judge the

degree of stationarity.

A.4 Autocorrelation Function (ACF)
The autocorrelation function measures how correlated a time series is with itself

through time. This is calculated by lagging the time series (t-r) and performing a

standard correlation against the unlagged series (/). By using a series of lag values a

graph can be plotted of the autocorrelation. The ACFs in this study are calculated by

the MINITAB statistical package. Formally, the ACF is calculated as:

ACF=Cov(x;, X (-T) / [Var(x/)*Var(x _̂r)]1/2

where Var() is the square of the standard deviation defined above and Cov() is the

covariance which formally is calculated as:

1 "
Co\(X(, Xf^t) ^ \ x , +i —xt)(xl+i_T —Xl+i_T)

n M

A.5 Histogram
The histogram is a very simple analysis tool but gives invaluable insight into the

frequency distribution of the data. It will for example show if the data is normally

distributed which is an assumption made for many statistical measures (such as

correlation coefficients).

A.6 Phase Diagram
The phase diagram is a graphical representation of the phase space of the time series

under investigation. The series can be regarded as the output of a dynamical system

where the amplitude of the signal X(and subsequent differentials of the amplitude

(velocity, acceleration and so on) represent the dynamics.

The two dimensional graph consists of a series of points where the co-ordinates are

defined by X(and Axf (e.g. the amplitude and velocity). This tool has been used to

great effect in the investigation of chaotic systems (Gleick, 1988; p. 134; Feigenbaum,

1983; p.34; Denton et al., 1990) and is a useful tool for investigating underlying order

11

in seemingly random systems. The plots in this thesis are created using spreadsheet

software.

A.7 Embedding Diagram
The embedding diagrams are two dimensional Cartesian plots of the delay space of a

time series. A purpose designed software tool is used to display plots of Xf against Xf.T

where t>0, and is the delay in units of time steps.

A.8 Synthetic data sets
Three synthetic data sets were generated for assisting time series analysis; a line, a sine

wave and a series of random numbers. All three series contain 1306 data points so that

they match the daily price currency data sets in length. The series are shown

graphically below in Figure Al.

Figure Al- Sinusoidal, linear and random time series

iii

The sine wave series is generated from a function with a period of 100 time steps. The

linear time series is of the form y=t where 1 < t < 1306. The random series was

generated by a computer based random number function.

IV

Appendix B - Analysis of forecasting data
Two data bases of time series samples were selected for analysis and experimentation;

the Lira closing price every five minutes (intra-day) and the Lira closing price at the

end of daily trading (inter-day). The analysis and transformation of these data bases

uses the tools described in appendices A and E.

B.1 - The five minute closing price data
The complete data set of closing prices for the lira (five minute data) is shown in Figure

B1. The series is not a time series as there are some discontinuities in sampling where

no trading takes place (such as overnight and weekends). The representation is useful

however for inspection purposes. The variance and mean are also displayed, although

they will be affected by the discontinuities.

Figure B1 - Lira five minute closing price database (not a time series)

This data set is too discontinuous for both analysis and training purposes. The data is

therefore split into multiple distinct series containing the consecutive trades found

during trading days. The time series resulting from this breakdown are shown in Figure

B2.

IV

With the database split into shorter series of continuous data, it is possible to attempt

an analysis of the data for forecasting. The first transformation performed was to use

the first differential of the series rather than the price values. The transformation yields

the series shown in Figure B3.

The series are now distributed around means that are close to zero and the differentials

(i.e. the movements between successive prices) are now the large feature of the series.

Investigations of three of the longer series are given in Figures B4.

6.35
LR3 DI FF

'v /v« A te

-5.25

3.15

-3.65

4.2 LR11DIF

,yV -^Vv-

-6.17

figure B4 - Three sample series with mean and a scaled SD (x5)

The plots show that the nature of the standard deviations of the series can vary with

time (varying volatility) with the mean now reasonably constant. The differentiation

has, to a great extent, de-trended the time series. The series are still non-stationary.

The histograms for the three series shown in Figure B.4 are displayed below in Figures

B.5, B.6 and B.7.

-4.4767-3.7033-2.93 ' -2.1567-1.3833-.61 ' .1633 .9367 1.71 ' 2.4833 3.2567 4.03 ’ 4.8033 5.5767 6.35

Figure B.5 - Histogram for series LR3_DIFF.

vi

20 T

Figure B.6 - Histogram for series LR5 DIFF.

30 -

Figure B.7 Histogram for series LR11_DIF

vii

B.2 - The daily closing price data
The daily closing price time series for the Lira is shown in Figure B8. The graph also

shows the windowed mean (moving average) and an offset and scaled standard

deviation (SD). The results of these basic measures can be compared to those for the

artificial series shown in Figure B9.

Figure B.9 - Time series, mean and SD plots (win=131, SD scaling x20)

The lira time series clearly shows that the data is highly non-stationary having large

variations in the SD and mean with time. The data set was transformed to use the

difference between successive values (the first differential). The time series plot for

this transformation is shown in Figure B.10 with the phase plane plots in Figures B.l 1

and B.12.

Lira-USS (x=Daily Closing Price)
80.00

60 00

40.00

20.00

0.00

- 20.00

-40.00

-60.00 J..................... _ _J
1 110 219 328 437 546 655 764 873 982 1091 1200

Figure B.10 - Differential of Italian Lira daily closing prices

Figure B .ll - Phase diagram of Italian Lira (.x vs dx/df)

dx/dt

1800

IX

60

40

80

CM

t s-20

-40

-60

-80
-60 -40 -20 SP** 0 20 ***: 40 60 80~ . . ' dx/dt

Figure B.12 - Phase plot of Italian Lira (dx/dt vs. dlxr/dt2)

~ ■ v s i i ì i p t t t py* j jp
Italian Lira-US$ (x=Daily C lose Price)

150 T

1107.9B 152.6B197.34242.05286.75331.46376.1 P420.8746 5 .585 1 0.295 5 4.9 95 99.7 1 644.4116 8 9.1173 3.82

Figure B.13 - Histogram of daily Lira closing prices.

The distribution of prices for the Lira (Figure B.10) is clearly not a normal distribution.

B.3 Prediction Results (five minute data)
The following graphs show the prediction of two time series models on test data

following training. The first graph is for experiment 1 and the second graph experiment

5 where improved prediction results were obtained (by both performance metrics;

‘random walk ratio’ and ‘direction correct’).

Figure B.14 Experiment 1 prediction (RWR=0.92, DC=55.63%)

Figure B.15 Experiment 5 prediction (RWR=0.89,1)C=59.29%)

xi

APPENDIX C - Characteristic measures of data sets for classifiers

Table 5.1 lists the characteristic measures used for classification experiments. This

appendix details the calculations necessary to arrive at these measures and the related

Appendix D details the characteristic values of the experimental data.

C.1 Sample Size
The sample size, n, is the integer number of data samples without missing values that

are available for experiment. Many evaluations will split the n available cases into two

or more groups so that some examples are used for training and some are retained for

testing the performance of algorithms.

C.2 Features
Features, f is an integer measure of the number of features in each case of the sample

data set of n cases. The sample set therefore contains n.f data elements.

C.3 Binary Features
The integer value, fjj, is a measure of the number of binary features there are, from the

total number of features f. There will be nfb binary data elements in the data set.

C.4 Ordinal Features
The integer value, f 0, is a measure of the number of ordinal features, from the total

number of features f.

C.5 Classes
The number of classes, c, is an integer measure of the total number of classifications

that exist in the data set. A data set for human gender classification, for example,

would have two classes (male and female).

C.6 Entropy of a feature
Entropy is a measure normally applied to physical systems. It is used here in the

information theoretic sense, where it provides a measure of the probability of a value

occurring for a given feature. Formally the calculation of entropy for a feature is

//(/>=-;>> >og2 a (c .i)

xii

for the range of values, i, that the feature takes.

For binary features, the entropy value is easier to calculate (than continuous valued

features) since it only requires totalling the occurrences of 0 and 1 (to and 17

respectively) in the data set of n values, and using the formula:

H(fb)=-—\log2f — 1log2f — | (C.2)
n \ n J n \ n J

A binary feature with little information content will have a low (close to zero) entropy

value. If the feature has a continuous value of 1 or 0 then the entropy value will be 0.

The highest entropy value is obtained when there is equal probability of 1 or 0

occurring, yielding:

WequeaD = 0.5log2(0.5)+0.5 log2(0.5)=1.0

The entropy value of a feature does not give much insight as to how useful the feature

may be in aiding prediction of given class. To do this requires the calculation of joint

‘feature-class’ entropy values.

C.7 Joint Entropy of features and classes
Joint entropy provides a measure of the information content in combinations of features

and classes. If the joint entropy of a combination of a feature and a class are high, it is

an indicator that the feature may prove to be useful in a classifier. The calculation of

joint entropy follows logically from the univariate case;

H(fh, c) = - Y p , M Pll (C.3)
ij

where probability py is for the occurrence of the z-th value of feature/in class Cj.

High joint Entropy values will again occur when the distribution of probabilities of

feature and class combinations is equal. Taking a combination of one class and one

feature, both having binary values and with equal probability of all four combinations

occurring yields the following entropy value:

H(fcequal)=-0.25log2(0.25)-0.25log2(0.25)-0.25log2(0.25)-0.25log2(0.25)

H(fc equal) ~2- 0

xiii

APPENDIX D - Analysis of classification data

The tables below show the entropy values and rankings of features and classes for the
classification data.

D1. Analysis of feature Entropy H(f)
The analysis of feature entropies (Table D2) exposes which features contain high levels
of information. Any features that are low in value are likely to be poor in aiding
classifier methods to distinguish between classes. The following features are high in
entropy;
Sex
Ha
Onab
Spec4
Uldl5
Focus 14

D2 Analysis of class-feature entropy H(c,f)
The analysis of joint class-feature entropies reveals which combinations are high in
information and therefore potentially useful in classifiers. The following table lists the
features that score highly for each class.
ClassF Class2 Class3 Clas|4
SEX FOCUS 14 HA FOCUS 10
HA HA SEX SPEC4
ONAB SEX FOCUS6 SEX
ULD15 SPEC4 SPEC4 ULD4
SPEC4 ONAB ULD15 ULD2
FOCUS 14 ULD15 SPEC3 ULD15
SPEC14 ULD6 ONAB SPEC3
SPEC3 ULD5 FOCUS 13 HA
Table D1 - Features with highest joint entropy ranked by class and magnitude

D.3 Entropy values for test classification data set
Field Name Lo

w

Hig

h

Bin. Entrop

y m

Joint Entropy H(c,j)

1 YR 69 89 0 - Not calculated

2 AGE 0 99 0 - Not calculated

3 SEX 0 1 1 0.9919 0.9507 0.5553 0.4799 0.4271

4 HA 0 1 1 0.9946 0.9599 0.5681 0.4915 0.3877

5 ONAB 0 1 1 0.8455 0.8397 0.5336 0.4495 0.3836

6 SPEC1 0 1 1 0.1603 0.5592 0.4722 0.4229 0.0000

XIV

7 SPEC2 0 1 1 0.2730 0.5861 0.4877 0.4262 0.3786

8 SPEC3 0 1 1 0.5968 0.6936 0.4962 0.4503 0.3911

9 SPEC4 0 1 1 0.9535 0.8177 0.5553 0.4550 0.4320

10 SPEC5 0 1 1 0.0782 0.5093 0.4807 0.4175 0.0000

11 SPEC6 0 1 1 0.2182 0.5481 0.4924 0.4192 0.3824

12 SPEC7 0 1 1 0.0345 0.5011 0.4734 0.4175 0.0000

13 SPEC8 0 1 1 0.1302 0.5423 0.4746 0.4175 0.3806

14 SPEC9 0 1 1 0.2935 0.5627 0.4932 0.4355 0.3778

15 SPEC10 0 1 1 0.1505 0.5609 0.4746 0.4175 0.3778

16 SPECI1 0 1 1 0.1232 0.5191 0.4722 0.4287 0.0000

17 SPEC12 0 1 1 0.1916 0.5537 0.4746 0.4208 0.3857

18 SPEC 13 0 1 1 0.0345 0.5093 0.4722 0.0000 0.0000

19 SPEC14 0 1 1 0.5519 0.7077 0.5104 0.4311 0.3786

20 SPEC15 0 1 1 0.4429 0.6548 0.5078 0.4249 0.3786

21 SPEC16 0 1 1 0.0190 0.5039 0.0000 0.0000 0.0000

22 ULD1 0 1 1 0.1946 0.5384 0.4976 0.4175 0.0000

23 ULD2 0 1 1 0.3254 0.5764 0.4860 0.4243 0.3950

24 ULD3 0 1 1 0.3603 0.5861 0.4969 0.4396 0.3786

25 ULD4 0 1 1 0.2884 0.5555 0.4788 0.4184 0.4003

26 ULD5 0 1 1 0.5469 0.6598 0.5116 0.4430 0.3867

27 ULD6 0 1 1 0.4166 0.5986 0.5153 0.4305 0.3830

28 ULD7 0 1 1 0.0939 0.5167 0.0000 0.4236 0.3786

29 ULD8 0 1 1 0.3134 0.5893 0.4877 0.4256 0.3872

30 ULD9 0 1 1 0.0244 0.5011 0.4722 0.0000 0.3778

31 ULD10 0 1 1 0.5124 0.6858 0.5110 0.4275 0.3799

32 ULD11 0 1 1 0.1916 0.5384 0.4852 0.4281 0.0000

33 ULD12 0 1 1 0.0782 0.5039 0.4788 0.4166 0.3806

34 ULD13 0 1 1 0.0244 0.4979 0.0000 0.4184 0.0000

35 ULD14 0 1 1 0.1405 0.5403 0.4807 0.4200 0.0000

36 ULD15 0 1 1 0.8404 0.8286 0.5283 0.4516 0.3911

37 FOCUS 1 0 1 1 0.2544 0.5696 0.5018 0.0000 0.0000

XV

38 FOCUS2 0 1 1 0.2239 0.5258 0.4778 0.4416 0.0000

39 FOCUS3 0 1 1 0.0295 0.5093 0.0000 0.0000 0.0000

40 FOCUS4 0 1 1 0.1916 0.5797 0.4768 0.4175 0.3778

41 FOCUS5 0 1 1 0.3847 0.6523 0.0000 0.4350 0.3799

42 FOCUS6 0 1 1 0.5368 0.6846 0.0000 0.4602 0.0000

43 FOCUS7 0 1 1 0.3955 0.6671 0.4947 0.0000 0.0000

44 FOCUS8 0 1 1 0.2095 0.5696 0.4768 0.0000 0.3862

45 FOCUS9 0 0 1 0.0000 0.0000 0.0000 0.0000 0.0000

46 FOCUS 10 0 1 1 0.6223 0.6204 0.4746 0.4229 0.4388

47 FOCUS 11 0 1 1 0.1052 0.5363 0.0000 0.0000 0.3812

48 FOCUS12 0 1 1 0.2677 0.5955 0.4722 0.4311 0.3786

49 FOCUS 13 0 1 1 0.3847 0.6162 0.4825 0.4445 0.3778

50 FOCUS 14 0 1 1 0.8480 0.7623 0.5966 0.4256 0.0000

51 FOCUS 15 0 1 1 0.1161 0.5280 0.4757 0.4208 0.3793

52 ECOLIONLY 0 1 1 0.7364 0.0000 0.6233 0.0000 0.0000

53 STREPAONLY 0 1 1 0.6194 0.0000 0.0000 0.5107 0.0000

54 STREPBONLY 0 1 1 0.5469 0.0000 0.0000 0.0000 0.4459

55 OTHERCLASS 0 1 1 0.9995 1.0066 0.0000 0.0000 0.0000

Table)2 - Entropy values for :eatures and classes

XVI

APPENDIX E - Software developed to support research

Software was developed to investigate data sets and simulate algorithms. The programs

developed are discussed in this appendix. All of the software was developed using

Microsoft Visual Basic 3.0 (Professional). Visual Basic facilitates rapid development

of Windows compatible programs having highly graphical output. Most of the software

developed and described here was for visualisation of data or algorithm behaviour,

hence an important requirement was for a good graphical interface.

E.1 LVQ simulation
The LVQ family of algorithms (used in Chapter 5 for classification problems) was

investigated using a software simulation program. The software is flexible in that it

allows user defined data sets to be configured (having two features) with up to 5

categories. Vectors (and data points) can then be initialised for each category and can

be repositioned using the cursor. This is an important feature since it has been found

that the initial positioning of the class representative vectors strongly affects the results

of training. The vectors are trained with LVQ or OLVQ1 (algorithms written into the

software) using the equations presented in chapter 2 (section 2.3.3.4). During training

the vectors can be monitored as they move in the 2D feature space and a trace of their

paths is drawn. An example is shown is Figure E3.

The software also has the capability to generate 1-Nearest Neighbour or 3-Nearest

Neighbour decision surfaces for the original data set and the class representative

vectors. This capability is very useful as it shows how well a set of class representative

vectors will model the original decision surface.

XVII

'

C
B

c c c
C 3 D ° D

B
B D

A 1 2 B D
A

A
A B 4

A

Figure E2

Figure E3 Figure E4

Figures El- E4 Screen displays from LVQ simulation software. (El) Synthetic
four class data set with 1-NN class boundaries (E2) Data set with initial class
representative vector positions (E3) vector movement during training with
OLVQ1 with alpha=0.01 (E4) 1-NN class boundaries for trained vectors.

The stability of the OLVQ1 and LVQ algorithms is dependent on the initial placement

of the class representative vectors. As Figure E3 illustrates, the vectors rapidly migrate

to suitable positions in feature space if they are initially placed in a region majority

populated by data points of the vectors class.

Figure E5 and E6 illustrate what happens when a vector is initially placed in a region

populated mostly by data points of another class. As can be seen, the class B

representative vector (labelled 2) is pushed away from the region by data point from the

closest dominant class (which is class C). Similarly, the class C representative node is

xviii

initially forced away but comes sufficiently close to the class C again so that it migrates

towards a suitable position in feature space.

Figure E5 Figure E6

E.2 Classification analysis
Following the method proposed in chapter 3, data sets for classification problems

require characteristic measures to be taken so that appropriate algorithms can be

selected. A software program was developed to calculate the data characteristics

described in Chapter 5 (the Septicaemia problem).

Figure E7 - Software to calculate entropy values of classification data

The software calculates, for each feature, the highest and lowest value, whether the

feature is binary, and for cases where the feature is binary; its entropy and joint class

entropy with each class. The equations used for entropy calculations are those given in

appendix C, sections C.6 and C.7.

XX

E.3 Time series analysis
Chapter 4 describes a series of time series characteristics that help in identifying

appropriate forecasting algorithms. A further piece of software was developed to help

analyse time series data sets and calculate or display some of these characteristics.

Figure E8 - Software to calculate time series characteristics

The software shown in Figure E8 calculates for each data series;

(1) The highest and lowest value

(2) Time series plot shown alongside the mean and variance (to investigate

stationarity)

(3) Histogram (to investigate data distribution)

The mean and variance are calculated using a variable time window of length /;

l=l+0.1*n

where n is the number of data points in the data series. The time window the mean and

variance to be calculated and charted along the data series thereby showing any change

XXI

with time. A condition of stationarity is that the mean and variance of a time series do

not alter with time.

A histogram can also be displayed for a given series. An example is shown in Figure

E9 below.

400 T

Figure E9 - Histogram of 5 minute lira time series

The time series range is divided into a sequence of 30 equal width ‘bins’ for which

totals are generated and the histogram generated. The shape of the distribution is far

from normal.

Figure E10 - Embedding plots of lira time series (5 minute sample)

An embedding diagram plots the relationship between lagged time points. The two

plots in Figure E l0 are from the same time series (Italian Lira 5 minute samples) each

plot having X(along the x axis and X[+n along the y axis (where n=l and 5

XXII

respectively). Embedding plots can be useful in identifying how many points are

needed for a tapped delay line.

xxiii

E.4 Chaos identification and simulation
Some useful concepts from chaos work have been incorporated into a software program

to identify and compare the characteristics of chaotic and predictable systems. Screen

shots of the software are shown below to illustrate its functionality.

The software will display the following for a given time series;

(1) A time series plot of data points and a linearly interpolated plot

(2) A phase diagram or phase portrait

A phase plane plot is a representation of the state space of a system. Commonly, the x-

axis will be the value of the variable (amplitude) and the y axis will be the first

differential of the variable (velocity). Formally for a variable vf,

* axis t

_dv
yaxis~~di

In systems that have cycles there will be repeating trajectories or orbits. In chaotic

systems, the orbit will typically show trajectories close together at one point and

further apart at others (Denton, 1990:1429;) with some form of attractor present.

xxiv

The phase plane plot can be extended to any number of dimensions (more than 3 are

hard to visualise) with each dimension allowing one more degree of freedom of the

system being investigated to be plotted. Gleick discusses phase plane plots in two

dimensions (Gleick, 1988:50).

XXV

APPENDIX F - LVQ Experiments

F.1 Software
This appendix documents the LVQ classification experiments. Two pieces of software
were used:

1) Neural Works Professional (LVQ algorithm), version 4.03.
This is a commercial package offering a range of neural network paradigms with a
Graphical User Interface to assist in creation of models. Graphical tools are available to
monitor training in real time. The experiments conducted ran the software on a UNIX
platform (Sun Sparc 2).

2) The 'Learning Vector Quantization Program Package', version 2.1 (LVQ team).
This software is freely available by anonymous ftp from the LVQ research team in
Helsinki. The experiments conducted ran the software on a IBM PC platform (486DX
processor running at 33MHz).

F.2 Data files
The training and test data files each have a random (mutually exclusive) population
sample of 1664 episodes from the larger database of over 5000 episodes. Each episode
has a normalised feature vector of 51 elements (mostly binary) to represent the
following :

Variable Type
Year Discrete
Age Discrete
Sex Binary(l) M/F
Whether the infection was acquired in hospital Binary(l) Y/N
Whether the patient is already on antibiotics Binary(l) Y/N
Medical speciality of the ward Binary()
Underlying Disease (If any) Binary()
Anatomical Site of infection BinaryQ

Within the database there are episodes with approximately 55 different types of micro-
organism causing the septecaemic condition. To reduce the complexity of the
classification, the data set has been reduced to three common (statistically)
microorganisms with the other microorganisms being grouped as a large category
named 'others'. The test file population sizes of these categories is given below:

TEST FILE microorganism population sizes:
Micro-organism (Episodes)
B - Escherichia coli (349)
C - Streptococcus Pneumoniae (239)
D - Staphylococcus Aureus (206)
A - OTHERS (870)

XXVI

Filenames
TRAINING FILE : 'norm.csv'
TEST FILE : 'normtest.csv'

F.3 Results
The results are presented using the metrics chosen (average and standard error) for
ranking. The results are compared to the nearest neighbour technique.

Results Summary for 1 CODEBOOK VECTOR PER CLASS :

CODEBOOK A B C D Standard Average
lvq_vect.cod 71.84 64.76 36.82 83.58 66.78 64.25
normr.cod 93.22 0.00 12.55 84.47 61.00 47.56
Hybrid 1.cod 57.93 64.18 11.72 82.53 55.65 54.09
Hybrid2.cod 48.74 77.94 52.30 82.04 59.50 65.26
Hybrid2a.cod 92.64 0.00 17.15 83.98 61.30 48.44
Hybrid2b.cod 90.00 43.55 9.21 78.16 67.18 55.23
Hybrid2c.cod 94.25 27.79 0.84 78.64 64.96 50.38
Hybrid3.cod 0.69 84.81 89.54 0.00 31.01 43.76
Hybrid3a.cod 88.62 53.87 5.02 76.70 67.85 56.05
Hybrid3b.cod 80.46 62.18 25.94 76.21 68.27 61.20
Hybrid3c.cod 5.86 89.40 87.87 4.85 35.04 47.00
Hybrid3d.cod 81.38 59.03 16.32 83.01 67.55 59.94
Hybrid3e.cod 78.74 61.32 30.54 77.67 68.03 62.07
Hybrid3f.cod 86.67 51.00 13.39 79.13 67.73 57.55
Hybrid3g.cod 82.76 55.30 27.62 76.21 68.27 60.47
Hybrid3h.cod 80.00 61.03 34.73 78.00 69.29 63.48
Hybrid3i.cod 75.40 84.95 64.18 45.61 69.95 67.54
Hybrid3j.cod 79.08 65.62 33.89 81.07 70.01 64.92
hybrid3k.cod 78.28 79.13 65.62 40.17 70.25 65.80
hybrid31.cod 73.45 85.92 66.19 46.03 69.53 67.90

1-NN 66.90 55.87 44.77 73.30 62.20 60.21
3-NN 66.81 66.07
5-NN 68.12 67.02

Results summary for VARYING CODEBOOK VECTORS PER CLASS

LVQ 1/Class 69.53 67.90 hybrid31.cod
LVQ 2/Class(even) 70.73 66.22 2c_e6.cod
LVQ 2/Class(proportional) 71.27 67.54 2c_p8.cod
LVQ 3/Class(even) 71.21 67.85 3c_el0.cod
LVQ 3/Class(proportional) 70.43 67.36 3c_p3.cod
LVQ 4/Class(even) 70.19 67.04 4c_e5.cod
LVQ 4/Class(proportional) 69.77 67.53 4c_p5.cod

XXV11

F.4 Experimental Data

• Experiment 1

Description
This network uses the 51 input vector and was trained on the Neural Ware software.
For validation the generated code book vectors were transferred across to the Kohonen
Software and the classification run again. The slight discrepancy in % classification
rates (equivalent to 1 episode) is probably due to rounding errors during code book
transfer (file was limited to 2 decimal places). The confusion matrix was generated
using the Neural Ware test output file and a routine written in FOXPROW.

Software Commands
TRAINING FILE : 'norm.csv', TEST FILE : 'normtest.csv'
Command L in e» accuracy -din normtest.csv -cin lvq_vect.cod

Results

Confusion matrix :
B C D A

B 226 8 0 131
C 7 87 1 62
D 1 6 172 53
A 115 138 33 624

Classification accuracy:
Accuracy A^ Accuracy B^

B 64.76% 64.76%
C 36.82% 36.83%
D 83.58% 83.49%
A 71.84% 71.72%

Overall 66.78% 66.72% (Standard)
Overall 64.25% 64.20% (Average)

CODE BOOK FILE GENERATED : Ivq veci, cod

• Experiment 2

Description
LVQ-1 codebook per class Network generated by the Kohonen software. Again it uses
the 51 input vector with 4 classifications. The code book vectors were generated using

'Classification accuracy A is calculated from the codebook vectors using the Kohonen software
'accuracy.exe' with the file 'lvq_vect.cod' as the vector file and the test set 'normtest.csv'.

"Accuracy B is from the Neural Ware output file, from which the confusion matrix was also generated.

xxviii

the Kohonen 'eveninit.exe' utility. Training took place with ’olvql.exe' using the
following parameters :
-rlen 30000, -ein norm.cod (generated by 'eveninit.exe'), -din norm.csv -cout normr.csv

Software Commands
TRAINING FILE : 'norm.csv', TEST FILE : 'normtest.csv'
Command lin e » accuracy -din norm.csv -ein normr.cod

Results
A (870) 93.22%
D (206) 84.47%
B (349) 0.00%
C (239) 12.55%
Overall 61.00% (Standard calculation)

GENERATED CODEBOOK FILE : 'normr.cod'

•Experiment 3

Description
This codebook vector file is the result of merging vectors A,C & D from 'normr.cod'
and B from 'lvq_vect.cod'.

Software Commands
TRAINING FILE : N/A , TEST FILE : 'normtest.csv'
No training

Results
A (870) 57.93%
D (206) 82.53%
B (349) 64.18%
C (239) 11.72%

GENERATED CODEBOOK FILE : hybridl.cod

•Experiment 4

Description
This codebook vector file is the result of merging vectors A & D from 'normr.cod' and
B & C from 'lvq_vect.cod'.

TRAINING FILE : N/A , TEST FILE : ’normtest.csv'

Results
A (870) 48.74%
D (206) 82.04%
B (349) 77.94%
C (239) 52.30%

XXIX

Overall 59.50% (Standard)
65.26% (Average)

GENERATED CODEBOOK FILE : Hybrid2.cod

•Experiment 5

Description
This vector file was generated by using olvql on the hybrid2.cod file from experiment
4. The command line detailing parameters is given below :

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE 'normtest.csv'
Command Line >olvql -cin hybrid2.cod -cout hybrid2a.cod -din norm.csv -rlen 1664

Results
A (870) 92.64%
D (206) 83.98%
B (349) 0.00%
C (239) 17.15%
Overall 61.30% (Standard)

48.44% (Average)

GENERATED CODEBOOK FILE : Hybrid2a.cod

•Experiment 6

Description
This solution was generated from the 'hybrid2.cod' file being further adapted by the
lvq2 algorithm.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE 'normtest.csv'
>lvq2 -din norm.csv -rlen 1664 -cin hybrid2.cod -cout hybrid2b.cod -alpha 0.05 -win
0.3

Results
A (870) 90.00%
D (206) 78.16%
B (349) 43.55%
C (239) 9.21%
Overall 67.19% (Standard)

55.23% (Average)

GENERATED CODEBOOK FILE : hybrid2b.cod

•Experiment 7

xxx

Description
This solution again uses lvq2 but for another 1664 iterations.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE 'normtest.csv'
>lvq2 -din norm.csv -rlen 1664 -ein hybrid2b.cod -cout hybrid2c.cod -alpha 0.05 -
win0.3

Results
A (870) 94.25%
D (206) 78.64%
B (349) 27.79%
C (239) 0.84%
Overall (Standard)

50.38% (Average)

GENERATED CODEBOOK FILE : hybrid2c.cod

•Experiment 8

Description
This solution is from combination of vectors A & D from 'hybrid2b.cod'
and B & C from 'hybrid2.cod'.

TRAINING FILE : N/A , TEST FILE : 'normtest.csv'

Results
A (870) 0.69%
D (206) 0.00%
B (349) 84.81%
C (239) 89.54%
Overall 31.01%

43.76%
(Standard)
(Average)

GENERATED CODEBOOK FILE : hybrid3.cod

•Experiment 9

Description
This solution uses 'hybrid3.cod' with lvq2 for 500 iterations.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 250 -cin hybrid3.cod -cout hybrid3b.cod -alpha 0.05 -win0.3

Results

XXXI

A (870) 88.62%
D (206) 76.70%
B (349) 53.87%
C (239) 5.02%
Overall 67.85% (Standard)

56.05% (Average)

GENERATED CODEBOOK FILE : hybricBa.cod

•Experiment 10

Description
This solution uses 'hybrid3.cod' with lvq2 for 250 iterations.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 150 -ein hybrid3.cod -cout hybrid3b.cod -alpha 0.05 -win 0.3

Results
A (870) 80.46%
D (206) 76.21%
B (349) 62.18%
C (239) 25.94%
Overall 68.27% (Standard)

61.20% (Average)

GENERATED CODEBOOK FILE : hybrid3b.cod

•Experiment 11

Description
This solution is based on 'hybrid3.cod' for 50 iterations of lvq2.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 50 -ein hybrid3.cod -cout hybrid3c.cod -alpha 0.05 -win 0.3

Results
A (870) 5.86%
D (206) 4.85%
B (349) 89.40%
C (239) 87.87%
Overall 35.04% (Standard)

47.00% (Average)

GENERATED CODEBOOK FILE : hybrid3c.cod

•Experiment 12

XXXll

Description
This solution is based on 'hybrid3.cod' for 1000 iterations of LVQ2 and
a smaller window value.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv’
>lvq2 -din norm.csv -rlen 1000 -cin hybrid3.cod -cout hybrid3d.cod -alpha 0.05 -win
0.2

Results
A (870) 81.38%
D (206) 83.01%
B (349) 59.03%
C (239) 16.32%
Overall 67.55% (Standard)

59.94% (Average)

GENERATED CODEBOOK FILE : hybrid3d.cod

•Experiment 13

Description
This code book vector set is based on ’hybrid3.cod' with training using
lvq2 (2000 iter.) and small window size.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 2000 -cin hybrid3.cod -cout hybrid3e.cod -alpha 0.05 -win
0.2

Results
A (870) 78.74%
D (206) 77.67%
B (349) 61.32%
C (239) 30.54%
Overall 68.03% (Standard)

62.07% (Average)

GENERATED CODEBOOK FILE : hybrid3e.cod

• PHASE 2 EXPERIMENTS

•Experiment 14

xxxiii

Description
This code book vector set is based on the hybrid3.cod set and trained with
the lvq2 for 3000 iterations.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 3000 -cin hybrid3.cod -cout hybrid3f.cod -alpha 0.05 -win
0.2

Results
A (870) 86.67%
D (206) 79.13%
B (349) 51.00%
C (239) 13.39%
Overall 67.73% (Standard)

57.55% (Average)

GENERATED CODEBOOK FILE : hybrid3f.cod

•Experiment 15

Description
This code book vector set is based on the hybrid3e.cod set and trained with
the lvq2 for 1000 iterations with a much smaller 'window' of w=0.1.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 1000 -cin hybrid3e.cod -cout hybrid3g.cod -alpha 0.05 -win
0.1

Results
A (870) 82.76%
D (206) 76.21%
B (349) 55.30%
C (239) 27.62%
Overall 68.27%

60.47%

GENERATED CODEBOOK FILE : hybrid3g.cod

(Standard)
(Average)

•Experiment 16

Description
This code book vector set is based on the hybridb.cod set and trained with
the lvq2 for 100 iterations with w=0.1

Software Commands

XXXIV

TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 100 -ein hybrid3b.cod -cout hybrid3h.cod -alpha 0.05 -win
0.1

Results
A (870) 80.00%
D (206) 78.00%
B (349) 61.03%
C (239) 34.73%
Overall 69.29% (Standard)

63.48% (Average)

GENERATED CODEBOOK FILE : hybrid3h.cod

•Experiment 17

Description
This code book vector set is based on the hybrid3b.cod set and trained with
the lvq2 for 30000 iterations with a very low w=0.02.

Software Commands
TRAINING FILE : ’norm.csv’ , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 30000 -cin hybrid3b.cod -cout hybrid3i.cod -alpha 0.05 -win
0.02

Results
A (870) 75.40%
D (206) 84.95%
B (349) 64.18%
C (239) 45.61%
Overall 69.95% (Standard)

67.54% (Average)

GENERATED CODEBOOK FILE : hybrid3i.cod

•Experiment 18

Description
This code book vector set is based on the hybrid3b.cod set and trained with
the lvq2 for 30000 iterations with a very low w=0.02 and alpha=0.04.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv’
>lvq2 -din norm.csv -rlen 30000 -cin hybrid3b.cod -cout hybrid3j.cod -alpha 0.04 -win
0.02

Results
A (870) 79.08%

XXXV

D (206) 81.07%
B (349) 65.62%
C (239) 33.89%
Overall 70.01% (Standard)

64.92% (Average)

GENERATED CODEBOOK FILE : hybrid3j.cod

•Experiment 19

Description
This code book vector set is based on the hybrid3b.cod set and trained with
the lvq2 for 30000 iterations with a low w=0.03 and w=0.02.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv'
>lvq2 -din norm.csv -rlen 30000 -cin hybrid3b.cod -cout hybrid3k.cod -alpha 0.03 -win
0.02

Results
A (870) 78.28%
D (206) 79.13%
B (349) 65.62%
C (239) 40.17%
Overall 70.25% (Standard)

65.80% (Average)

GENERATED CODEBOOK FILE : hybrid3k.cod

•Experiment 20

Description
This code book vector set is based on the hybrid3b.cod set and trained with
the lvq2 for 300 iterations with a very low alpha=0.01 and w=0.02.

Software Commands
TRAINING FILE : 'norm.csv' , TEST FILE : 'normtest.csv’
>lvq2 -din norm.csv -rlen 30000 -cin hybrid3i.cod -cout hybrid31.cod -alpha 0.01 -win
0.02

Results
A (870) 73.45%
D (206) 85.92%
B (349) 66.19%
C (239) 46.03%
Overall 69.53% (Standard)

67.90% (Average)

xxxvi

GENERATED CODEBOOK FILE : hybrid31.cod

•Experiment 21

The training set was used as the derivation set for the 1 -NN algorithm using software
written for the purpose (written in CLIPPER - a database language). The software
generated a confusion matrix of the classification categories by iterating through the
test set. (There are therefore 2,768,896 (1664-2) euclidean distance measurements to be
made). This algorithm is computationally expensive.

CONFUSION MATRIX

A B C D
A 582 141 114 45
B 142 195 10 3
C 100 11 107 7
D 46 2 8 151

Results
A (870) 66.90%
D (206) 73.30%
B (349) 55.87%
C (239) 44.77%
Overall 60.21%

62.20%
(Average)
(Standard)

XXXVll

REFERENCES

[1.] Ackley D H, Hinton G E and Sejnowski T (1985). A learning algorithm for

Boltzmann machines, Cognitive Science, 9, pp. 147-169.

[2.] Almeida L B (1987). A learning rule for Asynchronous Perceptrons with Feedback

in a Combinatorial Environment. IEEE First International Conference on Neural

Networks (San Diego 1987), eds M.Caudill and C.Butler, Voi 2, pp.609-618. New

York. IEEE.

[3.] Anderson J A and Rosenfeld E (1988). Neurocomputing: Foundations o f research,

MIT Press, 1988, Cambridge MA.

[4.] Anderson J A, Pellionisz A & Rosenfeld E (1990). Neuro computing 2: Directions

for Research, MIT Press, 1990, Cambridge, MA.

[5.] Aristotle (ca. 400 BC). “De memoria et reminiscentia”, Aristotle on Memory,

Richard Sorabji (translated), Providence, RI. Brown University Press, 1972. This

excerpt is reprinted in Anderson et al (1990).

[6.] Baras J S and LaVigna A (1990). Convergence of the Vectors in Kohonen’s

learning Vector Quantization. Proceedings IEEE International Neural Network

Conference, Paris, July 9-13, 1990, Vol 2, pp.1028-1031.

[7.] Barlow H B (1988). Neuroscience:A New Era ?, Nature, 331, (February 1988):571

[8.] Begg D, Fischer S and Dombush R (1984). Economics .British Edition. London.

McGraw Hill Book Company (UK) Ltd.

[9.] Box G E P and Jenkins F M (1976). Time Series Analysis: Forecasting and

Control. 2nd Edition. Oakland, CA. Holden Day.

[10.] Brieman L, Friedman J H, Olshen R A & Stone C J (1984). Classification and

Regression Trees, Monterey, CA. Wadsworth and Brooks.

[11.] Bryson A E and Ho Y C (1969). Applied Optimal Control. New York: Blaisdell.

[12.] Cacoullos T (1966). Estimation of a multivariate density. Annals o f the Institute

o f Statistical Mathematics, Tokyo, Vol.l8(2), pp.179-189.

[13.] Copeland L S (1989). Exchange Rates and International Finance. Wokingham,

England. Addison Wesley Publishers Ltd.

[14.] Cornwell J (1994). Is mind merely matter ? : The Culture Essay. The Sunday

Times, 15 May 1994, Section 10, pp.4-6.

[15.] Cover TM & Hart P E (1967). Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, IT-13, pp.21-27.

[16.] Comp.ai.neural-nets.faq. Frequently Asked Questions file, Posted 29th August

1994.

[17.] Crick F (1989). Neural Edelmanism. Trends in Neurosciences, 12, (July 1989),

pp.240-48.

[18.] Crick F (1994). The Astonishing Hypothesis: the scientific search for the soul.

London. Simon & Schuster.

[19.] Cybenko G (1988). Continuous Valued Neural Networks with Two Hidden

Layers Are Sufficient. Technical Report, Department of Computer Science, Tufts

University, Medford. MA.

ii

[20.] Cybenko G (1989). Aproximation by Superpositions of a Sigmoidal Function.

Mathematics o f Control, Signals, and Systems. 2. pp.303-314

[21.] Dennett D (1991). Conciousness Explained. London. Allen Lane: the Penguin

Press, Originally published in the USA by Little, Brown and Company.

[22.] Denton T A, Diamond G A, Helfant R H, Khan S and Karagueuzian H (1990).

Fascinating rythm: A primer on chaos theory and its application to cardiology.

American Heart Journal, Vol.120, pp.1419-1435.

[23.] The Economist, (1992a). August 15th 1992. Finance Section, ‘The last of the

good times ?’. pp.65.

[24.] The Economist, (1992b). August 15th 1992. Finance Section, ‘Technical

Analysis:Tilting at chaos’, pp.70.

[25.] The Economist, (1993). October 9th. Frontiers of Finance: A survey.

[26.] Edelman G (1994). Bright Air, Brilliant Fire : On the matter o f the mind.

London, England. Penguin Books.

[27.] Fahlmann S E and Lebiere C (1990). The cascade-correlation learning

architecture. In Advances in Neural Information Processing Systems 2 (Denver, 1989),

ed D.S.Touretzky, Morgan Kaufmann, pp.788-793.

[28.] Feigenbaum M J (1983). Universal Behaviour In Nonlinear Systems. Physica,

7D. pp. 16-39. North Holland Publishing Company.

[29.] Fisher R A (1936). The use of multiple measurements in taxonomic problems.

Annals o f Eugenics, 7, pp.179-188.

iii

[30.] Fix E & Hodges J (1951). Discriminatory analysis, nonparametric

discrimination: consistency properties. Report no. 4, project no. 21-49-004, USAF

School of Aviation Medicine. Texas. Randolph Field.

[31.] Frean M (1990). The upstart algorithm : a method for constructing and training

feedforward neural networks. Neural Computation 2, pp. 198-209. Cambridge,

Massachusetts. MIT Press.

[32.] Friedman J H (1991). Multivariate Adaptive Regression Splines, Annals o f

Statistics, 19, pp.1-142.

[33.] Friesleben B (1992). Stock Market Prediction with Backpropagation Networks.

5 th International Conference o f Industrial and Engineering Applications o f Artificial

Intelligence and Expert Systems, pp.451-460. Paderbom, Germany, June 1992. Springer

Verlag.

[34.] Geman S, Bienenstock E & Doursat R (1992). Neural Networks and the

Bias/Variance Dilemma. Neural Computation, 4, pp.1-58. Cambridge, Massachusetts.

MIT Press.

[35.] Gleick J (1988). Chaos. London, England. Abacus (a division of Little, Brown

and Company Ltd).

[36.] Gorman R P and Sejnowski T J (1988). Analysis of Hidden Units in a Layered

Network to Classify Sonar Targets. Neural Networks 1, pp.75-89.

[37.] Gransden W R , Eykyn S J and Philips I (1990). The computerized documentation

of septicaemia, Journal o f Antimicrobial Chemotherapy, Supplement C, 25, pp.31-39.

[38.] Gregory R L (1987). The Oxford Companion to The Mind. Oxford, England.

Oxford University Press.

IV

[39.] Grossberg S (1976). Adaptive pattern classification and universal recoding: I.

Parallel development and coding of neural feature detectors. Biological Cybernetics,

23, pp.121-134. Reprinted in Anderson and Rosenfeld (1988).

[40.] Hand D J (1981). Discrimination and Classification. Chichester. Wiley.

[4L] Hand D J (1982). Kernel Discriminant Analysis. Letchworth, Herts, England.

Research Studies Press.

[42.] Hart A & Wyatt J (1990). Evaluating black-boxes as medical decision aids:issues

arising from a study of neural networks, Medical Informatics, 15, pp.229-236.

[43.] Hebb D O (1949). The Organization o f Behaviour (Extracts : pp.xi-xix & pp.60-

78.) New York. Wiley. Reprinted in Anderson and Rosenfeld (1988).

[44.] Hertz J, Krough A & Palmer R G (1991). Introduction to the theory o f Neural

Computation. New York. Addision Wesley.

[45.] Hopfield J J (1982). Neural networks and physical systems with emergent

collective computational abilities, Proceedings o f the National Academy o f Sciences,

79, pp.2554-2558. Reprinted in Anderson & Rosenfeld (1988).

[46.] Hopfield J J (1984). Neurons with graded response have collective computational

properties like those of two state neurons, Proceedings o f the National Academy of

Sciences, 81, pp.3088-3092. Reprinted in Anderson & Rosenfeld (1988).

[47.] Hospers J (1988). An Introduction to Philosophical Analysis, 3rd Edition,

London. Routledge.

[48.] Hunt K J, Sbarbaro D, Zbikowski R & Gawthrop P J (1992). Neural Networks for

Control Systems - A Survey, Automatica, Vol.28, No.6, pp. 1083-1112. International

Federation of Automatic Control (IFAC). UK. Pergamon Press Ltd.

[49.] Hush D R & Home W G (1993). Progress in Supervised Neural Networks:

What’s new since Lippmann, IEEE Signal Processing Magazine, Jan.

[50.] Hecht-Nielsen (1989). Theory of the Backpropagation Neural Network.

Proceedings 1989 IEEE International Joint Conference on Neural Networks, Vol.l

pp.593-605. Piscataway, NJ. IEEE Press.

[51.] INSPEC (1994). Key Abstracts: Neural Networks. Published for the IEE/IEEE.

[52.] Kimoto T, Asakawa K, Yoda M & Takeoka M (1990). Stock Market Prediction

System with Modular Neural Networks, IEEE Neural Networks Conference

Proceedings 1990. Piscataway, NJ. IEEE Press.

[53.] Kohonen T (1986). Learning Vector Quantization for Pattern Recognition,

Helsinki University of Technology, Department of Technical Physics, Laboratory of

Computer and Information Science, Report TKK-F-A601, 1986.

[54.] Kohonen T (1988a). An Introduction to Neural Computing, Neural Networks,

Vol.l, pp.3-16.

[55.] Kohonen T (1988b). Learning Vector Quantization, Neural Networks, Supplement

1, pp.303.

[56.] Kohonen T, Bama G and Chrisley R (1988c). Statistical Pattern Recognition with

Neural Networks: Benchmarking Studies, Proceedings IEEE International Conference

on Neural Networks, San Diego, CA, USA, July 24-27, 1988, Vol 1, pp.61-68.

Reprinted in Anderson et al (1990).

VI

[57.] Kohonen T (1990). Statistical Pattern Recognition Revisited, Advanced Neural

Computers, R.Eckmiller (Editor), Elsevier Science Publishers B.V. (North Holland).

[58.] Kohonen T, Kangas J and Laaksonen J (1992). SOM PAK: The Self-Organising

Map Program Package, Version 1.2 (Novermber (sic) 2, 1992). Helsinki University

of Technology, Laboratory of Computer and Information Science, Rakentajanaukio 2

C, SF-02150 Espoo Finland.

[59.] Kosko B (1991). Neural Networks and Fuzzy Systems. Prentice Hall.

[60.] Le Cun Y (1989). Generalization and Network Design Strategies. Technical

Report CRG-TR-89-4, Department of Computer Science, University of Toronto.

Toronto Canada.

[61.]LeCunY, Bozer D, Denker J S, Henderson D, Howard R E, Hubbard W &

Jäckel L D (1990). Backpropagation applied to handwritten zip code recognition.

Neural Computation 1: 541-551. Cambridge, Massachusetts. MIT Press. Reprinted in

Anderson et al (1990).

[62.] Lewis PA W and Stevens J G (1991). Nonlinear Modeling of Time Series Using

Multivariate Adaptive Regression Splines (MARS)’. Journal o f the American Statistics

Association, 87,pp. 864-877.

[63.] Lipscombe B (1989). Expert Systems and Computer-Controlled Decision Making

in Medicine, AI & Society, 3, pp. 184-197, Springer Verlag.

[64.] McCulloch W S & Pitts W (1943). A logical calculus of the ideas immanent in

nervous activity, Bulletin o f Mathematical Biophysics, 5, pp.155-133. Reprinted in

Anderson & Rosenfeld (1988).

vu

[65.] Michie D, Spiegelhalter D J & Taylor CC (1994). Machine Learning, Neural

and Statistical Classification. Chichester, West Sussex, England. Ellis Horwood.

[66.] Minsky M & Papert S (1969). Perceptrons. Cambridge, MA. MIT Press. Parts

reprinted in Anderson & Rosenfeld (1988).

[67.] Montana D J and Davis L (1989). Training Feedforward Networks Using Genetic

Algorithms. Eleventh International Joint Conference on Artificial Intelligence,

Detroit, 1989. Editor SridharanN S. pp.762-767. San Mateo. Morgan Kaufmann.

[68.] Moravec H (1988). The Mind Children: the future o f robot and Human

Intelligence. Cambridge, MA. Harvard University Press.

[69.] Oja E (1989). Neural Networks. Principal Components, and Subspaces.

International Journal o f Neural Systems, 1, pp.61-68.

[70.] Parker D B (1985). Learning Logic. Technical Report TR-47, Center for

Computational Research in Economics and Management Science. Cambridge, MA.

Massachusetts Institute of Technology.

[71.] Parzen E (1962). On Estimation of a probability density function and mode,

Annals o f Mathematical Statistics, 33, pp. 1065-1076.

[72.] Penrose R (1989). The Emporer's New Mind: concerning computers, minds, and

the laws o f physics. London. Oxford University Press. ISBN 0-09-977170-5.

[73.] Peterson C and Anderson J R (1987). A Mean Field Theory Learning Algorithm

for Neural Networks. Complex Systems, 1, pp. 995-1019.

viii

[74.] Pineda F J (1987). Generalization of Back-Propagation to Recurrent Neural

Networks. Physical Review Letters, 59, pp.2229-2232.

[75.] Prechelt L (1996). A Quantitative Study of Experimental Evaluations of Neural

Network Learning Algorithms: Current Research Practice. Neural Networks, 9(3),

pp.457-462.

[76.] Rasmussen C E, Neal R M, Hinton G E, van Camp D, Revow M, Ghahramani

Z, Kustra R & Tibshirani R (1996). The DELVE Manual, Version 1.1:

http://www.cs.utoronto.ca/~delve/

[77.] Refenes A N (1991). Constructive Learning and its Application to Currency

Exhange Rate Forecasting. Chapter 27 in Turban E and Trippi R (Editors), Neural

Network Applications in Investment and Finance Services. USA. Probus Publishing.

[78.] Refenes A N, Azema-Barac M and Treleaven P C (1992). Financial Modeling

using Neural Networks. Technical Report UCL-CS, RN-92-94, Department of

Computer Science, University College London.

[79.] Ripley B D (1993). Statistical aspects of neural networks, Published in Networks

and Chaos - Statistical and Probabilistic Aspects, pp.40-123, Edited by Barndorff-

Nielsen O E, Jensen J L & Kendall W S. London. Chapman and Hall.

[80.] Ripley B D (1996). Statistical ideas for selecting network architectures. Published

in Neural Networks: Artificial Intelligence and Industrial Applications, pp.l 83-190,

Edited by Kappen B & Gielen. Holland. Springer Verlag.

[81.] Refenes A N (1991). Constructive Learning and its Application to Currency

Exchange Rate Forecasting. Appearing in Turban E and Trippi R (Editors): Neural

Network Applications in Investment and Finance Services, Chapter 27. USA:Probus

Publishing.

IX

http://www.cs.utoronto.ca/~delve/

[82.] Rochester N, Holland J H, Haibt L H, Duda W L (1956). Tests on a cell

assembly theory of the action of the brain, using a large digital computer. IRE

Transactions on Information Theory, IT-2, pp.80-93.

[83.] Rosenblatt M, (1956). Remarks on some non-parametric estimates of a denisty

function, Annals o f Mathematical Statistics, Vol 27, pp.832-37.

[84.] Rosenblatt F (1958). The perceptron: a probabalistic model for information

storage and organization in the brain, Psychological Review, 65, pp.386-408. Reprinted

in Anderson & Rosenfeld (1988).

[85.] Rumelhart D E, McClelland J L and the PDP Research Group (1986). Parallel

Distributed Processing: Explorations in the Micro structure o f Cognition, Volume

1:Foundations. Cambridge, MA: MIT Press.

[86.] Schaffer C (1994). A Conservation Law for Generalization Performance.

Machine Learning International Conference Proceedings; 11th Edition. Cohen W W

& Hirsh H. Sanfrancisco, CA. Morgan Kaufman.

[87.] Shanson D C (1989). Microbiology in Clinical Practice. Chapter 5, pp. 138-150.

London. Wright. 2nd Edition.

[88.] Shortliffe E H (1976). Computer Based medical consultations: MYCIN. New

York. Elsevier.

[89.] Shu S D, Bliven S E & Belina J C (1991). Training Of Feedforward Neural

Network Architectures For Feature Recognition of Abnormal ECG Waveforms.

Annual International Conference o f the IEEE Engineering in Medicine and Biology

Society, Vol.13, pp.1395-1396. IEEE, New York.

[90.] Sietsma J and Dow R JF (1988). Neural Net Pruning - Why and How. IEEE

International Conference on Neural Networks (San Diego), Vol.l, pp.325-333. IEEE,

New York.

[91.] Sleigh J D & Timbury M C (1990). Medical bacteriology, Churchill Livingstone

London. (Medical Division of Longman Group UK Ltd). Third Edition.

[92.] Specht D F (1988). Probabalistic Neural Networks for Classification, Mapping or

Associative Memory, Proceedings International Conference Neural Networks 1988

(1CNN-88).

[93.] Specht D F (1990). Probabalistic Neural Networks, Neural Networks, pp.109-

118, Vol.3. Pergamon Press.

[94.] Tang Z, Almeida C & Fishwick P (1991). Time series forecasting using neural

networks vs. Box-Jenkins methodology. Simulation, November.

[95.] Taylor M P & Allen H (1992). The use of technical analysis in the foreign

exchange market. Journal o f International Money and Finance, 1992, 11, pp.304-314.

Butterworth-Heinemann Ltd.

[96.] Thrun S B, Bala J, Bloedorn E, Bratko I, Cestnik B, Cheng J, De Jong K,

Dzeroski S, Fahlman S E, Fisher D, Hamann R, Kaufman K, Keller S, Kononenko I,

Kreuziger J, Michalski R S, Mitchell T, Pachowicz P, Reich Y, Vafaie H, Van de

Weide W, Wenzel W, Wnek J and Zhang J (1991). The MONK’S Problems : A

Performance Comparison o f Different Learning Algorithms, December, Carnegie

Mellon University, Technical Report CMU-CS-91-197.

XI

[97.] Tong H and Lim K S (1980). Threshold Autoregression, Limit Cycles and

Cyclical Data. Journal o f the Royal Statistical Society. B 42, pp.245-292.

[98.] Widrow B and Hoff M E (1960). Adaptive switching circuits, 1960 IRE

WESCON Convention Record, New York: IRE, pp.96-104.

[99.] Wilken P (1994). Psyche-D Usenet Discussion Forum. <PSYCHE-

D%NKI.BITNET@uga.cc.uga.edu>.

[100.] Werbos P (1974). Beyond Regression: New Tools for Prediction and Analysis in

the Behavioural Sciences. Ph.D. Thesis, Harvard University.

[101.] Weigend A S, HubermanBA and Rumelhart D E (1992). Predicting Sunspots

and Exchange Rates with Connectionist Networks. Appearing in Casdagli M and

Eubank S (Editors) Nonlinear modeling and forecasting, SFI Studies in the sciences of

complexity. Reading, MA:Addison Wesley Publishing.

[102.] Weigend A S and Gershenfeld N A (1993). Time Series Prediction: Forecasting

the Future and Understanding the Past. Reading, MA:Addison Wesley.

[103.] White H (1988). Economic Prediction using neural networks: the case of IBM

daily stock returns, Proceedings o f the IEEE International Conference on Neural

Networks, San Diego, 1988, Vol.2, pp.451-459. Reprinted in Anderson et al. (1990).

[104.] Winston P H (1992). Artificial Intelligence. Third Edition. Reading, MA.

Addision Wesley.

[105.] Worthy P J, Dybowski R, Gransden W R & Summers R (1993). ‘Comparison of

Learning Vector Quantization and k-Nearest Neighbour For Prediction of

Microorganisms Associated With Septicaemia’, pp.273-274, Proceedings o f the 15^

xii

mailto:NKI.BITNET@uga.cc.uga.edu

Annual international Conference o f the IEEE Engineering in Medicine and Biology

Society, Vol.15, San Diego California, October 28-31.

xiii

