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Abstract

Photogrammetry is a non-contact measurement technique of obtaining 3D 
information in the object space by processing 2D information on the image planes. 
This thesis mainly concerns the data reduction methods used in close range 
multiple camera photogrammetry. The objective was to develop a fast method 
which could be used in real-time measurement systems. Traditional methods such 
as the bundle adjustment are investigated and the advantages and disadvantages are 
discussed. It was found that the bottle-neck which restricts the speed was the 
computation of matrices, especially the inverse of the coefficient matrix, in the 
simultaneous least squares estimation process.

In this thesis, an alternative method named the separate adjustment is developed 
and successfully used in close range photogrammetry. This method can give the 
same results as the traditional bundle adjustment, but with a significant saving of 
computation time and memory requirements. It was found that the computation 
time required by the separate adjustment is directly proportional to the numbers of 
the object points and cameras, and the memory required is independent of how 
many object points or cameras are involved. A thorough comparison between the 
two methods is given and some results from simulation and practical tests are 
presented.

The separate adjustment is a séparé least squares estimation process which 
estimates the unknown parameters separately in groups rather than simultaneously. 
In this way the sizes of the matrices in the least squares process are reduced. 
Therefore time and memory are reduced accordingly. Due to the special structures 
of the design matrix and the coefficient matrix in close range photogrammetry the 
separate adjustment method is very efficient and very easy to apply, especially 
when it is used in real-time applications.
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Chapter 1 Introduction

Chapter 1

Introduction

Photogrammetry is defined as (Karara, 1989)

“The art, science, and technology of obtaining reliable quantitative information about 

physical objects and the environment through the process of recording, measuring, and 

interpreting photographic images and patterns of radiant imagery derived from sensor 

systems”.

Since it was developed more than a hundred years ago, photogrammetry has been 

widely used in geology, forestry, agriculture, architecture, industry and medicine 

(Slama 1980; Karara 1989; Atkinson 1996) where spatial 3-dimensional (3D) 

coordinates are required. These 3D coordinates can be used to derive other useful 

information, such as position, size and shape of an object or relative positions between 

objects. Since it is a non-contact measurement technique by taking photographs/images 

with cameras, photogrammetry can be used to measure objects which are inaccessible or 

inconvenient to access when they are measured. Each image records a 2D perspective 

projection of the object to be measured in the 3D space. With two or more images taken 

from different positions, the 3D object can be reconstructed indirectly.

High accuracy is an important property of photogrammetric measurement. Like many 

other measurement techniques, redundant measurements are always needed in 

photogrammetry for high accuracy. This means that the number of measured elements 

(observations) is more than the minimum required to determine the unknown 

parameters. In close range photogrammetry, a measurement process with thousands of 

degrees of freedom is not unusual. In this case, least squares is useful to determine these 

parameters uniquely. By adjusting the observations so that the sum of the weighted 

squares of all the residuals fitting to the functional model is minimised, least squares 

estimation can give the maximum likelihood results (if the errors are normally
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Chapter 1 Introduction

distributed and independent). In close range photogrammetry, least squares estimation is 

used in data deduction such as intersection, resection, camera calibration and 

simultaneous bundle adjustment. It is almost inevitable in close range photogrammetry.

In this chapter photogrammetry and least squares methods are briefly reviewed. In 

particular the applications of least squares to photogrammetry is discussed. An 

alternative method of least squares, named separate least squares estimation, is 

introduced.

1.1 A brief review of photogrammetry

Photogrammetry has been increasingly used in areas where 3D information is required. 

One of the early application of photogrammetry is the compilation of topographic maps 

and surveys (Karara 1989). In 1851 the Frenchman Laussedat began to develop 

photogrammetric methods for mapping using terrestrial photographs. He constructed a 

city map based on geometric information deducted from the photographs taken from the 

roofs of Paris. This is believed to be the first application of topographic 

photogrammetry. Laussedat also published books on his methods and instrumentation 

for the compilation of topographic maps. The first application of non-topographic 

photogrammetry was due to a Prussian architect, Meydenbauer. In 1858 he used 

Laussedat’s technique to survey churches and historical monuments for reconstruction 

after damage and determination of deformation. In 1885 Meydenbauer established a 

state institute in Berlin to carry out architectural recording.

Since the invention of aeroplane early this century, aerial photogrammetry has played, 

and will continue to play, an important role in geological survey, topographic mapping, 

military operations and agriculture. Close range photogrammetry, which is widely used 

in architecture, industrial engineering, biomedical and bioengineering applications, has 

developed into a highly reliable and precise measurement technique and is rapidly 

expanding in many other areas. The digital era of photogrammetry has arrived in the 

1990s with the technology of video cameras, frame grabbers and computers. Real-time 

photogrammetry is becoming possible with powerful hardware and advanced software.
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Chapter 1 Introduction

The term ’ photogrammetry refers to the situation where object-to-camera

distances are not more than 300 metres. Unlike aerial photogrammetry where camera 

axes are normally parallel, in close range photogrammetry images are taken from 

camera positions all around the object pointing towards the middle of the object. So the 

measurement networks are highly convergent and the cameras are often stationary. 

Close range photogrammetric applications are becoming the dominant activity for the 

successful implementation of modern digital photogrammetry. High accuracy can be 

achieved in close range photogrammetry, and a relative accuracy of one part in a million 

has been reported (Fraser 1992).

In a close range photogrammetric measurement process, there are normally three major 

steps:

(i) 2D image data acquisition;

(ii) Image processing, target location and matching between different images; and

(iii) Least squares estimation to reconstruct the 3D coordinates of the interested 

points in the object space.

Image acquisition is a procedure which converts 3D information in the object space into 

2D information on the camera image planes. In close range photogrammetry targets are 

normally put on the object to be measured for high precision. Locations of the target 

image on the camera image plane are measured. These targets are then labelled and 

matched between different cameras. Based on the geometric perspective principle, a set 

of so called collinearity equations can be derived to establish the relationships between 

2D observations on the camera image planes and the 3D coordinates of object points. 

By solving the collinearity equations with least squares estimation the 3D coordinates 

of these points can be reconstructed in the object space.

In practice, some objects are difficult to measure by other means for reasons such as 

irregular shape, inaccessible, etc. However, if the objects can be imaged, they can be 

measured by close range photogrammetry. Figure 1-1 to 1-3 illustrate the close range 

photogrammetric measurement procedure.
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Figure 1-1 Image acquisition (From 3D to 2D)
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Figure 1-2 Image processing, target location and matching
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Figure 1-3 Object reconstruction (From 2D to 3D)

Figure 1-4 shows a marine propeller. The geometric shape makes it a difficult object to 

measure. With close range photogrammetry, the targeted marine propeller is imaged by 

multi-cameras from different view points all around it (Figure 1-5). The locations (2D 

coordinates) of the targets on the camera image planes are then calculated and matched 

between different images. By a least squares estimation process the 3D coordinates of 

the targets can be estimated and the marine propeller can be reconstructed in the object 

space (Figure 1-6).

Figure 1-4 A marine propeller
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Figure 1-5 Image acquisition

Figure 1-6 3D reconstruction of the marine propeller
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1.2 A brief review of least squares

Least squares estimation is a method of adjusting observations so that the sum of the 

weight squares of the residuals from the functional model is minimised. The method 

was developed independently by Gauss and Legendre about two hundred years ago. It 

has been widely used in surveying and photogrammetry to deal with redundant 

measurements (Kissam 1956; Mikhail 1976, 1981; Cross 1983; Anderson & Mikhail 

1985; Methley 1986; Cooper 1987).

It has been proven that no matter whether or not the observations are normally 

distributed, whether or not they are independent, the least squares estimate is a Best 

Linear Unbiased Estimate, which is often referred to as BLUE. If the observations are 

normally distributed and independent, the least squares estimate will give the maximum 

likelihood solution.

In surveying and photogrammetry, the observations are obtained to derive other 

unknown parameters. A general functional model, which establishes the relationship 

between the observations and the unknown parameters, can be described as

f ( x , l )  = 0 (1.1)

where .v = (x,, x2, ... xu) is a vector of u unknown parameters, / = (/,, l2, ..., /m) is a vector 

of m observations and/ is a vector of the c functions (/¡,/2, ...,/c).

For a given functional model, there is always a minimum number of independent 

observations (m0) to determine those unknown parameters uniquely. If the number of 

observations is not sufficient, say m < m0, the situation will obviously be deficient. 

However in practice m is usually much larger than m0. So redundancy is said to exist 

and adjustment of the observations is required to determine the unknown parameters 

uniquely. The number of redundancies or the degrees o f freedom r is given by

r = m -m 0 (1.2)
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In close range photogrammetry, r could be several hundreds or even more. Any 

sufficient subset of observations can be used to estimate the unknown parameters. 

However, due to the random errors of the observations, each minimum subset would 

give a different result. It is impossible to obtain a unique result from these redundant 

observations unless an additional criterion is introduced. Many criteria can be used for 

this purpose. However least squares estimation is the most popular method used in 

science and engineering. It is by far the predominant technique of data deduction 

method in photogrammetry and surveying.

In a data deduction process, the original set of observations /, which is inconsistent with

the functional model, is replaced by an adjusted set 1 which satisfies the model. The 

differences between the two set of observations, which are termed residuals, is given by

The least squares estimation is usually described as a process to minimise a specified 

target function <j>, i.e.,

where v = (vj, V2, .... vm) is a vector of residuals from Eq (1.3) and W, is the weight 

matrix of the observations. A simple case is when all the observations are independent 

and equally weighted so that the weight matrix is a scalar matrix. The target function to 

be minimised becomes

This is the oldest and most classical case from which the name Least Squares came.

In practice, the functional models are usually non-linear. Linearization is needed before 

least squares estimation can be applied. This procedure is often accomplished by

v = / - / (1.3)

$ = v‘W,v (1.4)

m

(1.5)
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Taylor’s expansion to the first order accuracy. The linearized functional model is then 

expressed as

AAx+ Bv = b (1.6)

where A = (d f/dxf, B = (d f/d lf , b = -f(x0, I), and Ax is a vector of corrections to the 

unknown parameters.

There are two special cases of the general linearized functional model which often occur 

in practice (Mikhail 1976, 1981). The most common case in photogrammetry is the 

observation equations. In this case each equation in the functional model (1.1) contains 

only one observation which is explicit and the number of the equations is equal to that 

of the observations (c = m). Suppose that /, appears in f  as -/„ so matrix B = -I. The 

linearized functional model becomes

A A x = b + v  (1.7)

In this case the unknown parameters can be determined by a least squares estimation, 

which gives (if A is of full rank)

Ax = (A ,WlA y ' A'Wtb (1.8)

It is followed by

x  = x° + Ax (1.9)

where x° is a vector of the starting values of the unknown parameters. Least squares 

estimation is an iterative process when the functional model is non-linear. After each 

iteration, .v is updated. The iterative process terminates when a stop criterion is met, 

corresponding to the first order approximation in Taylor expansion.

9
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The second special case of the linearized model occurs when the observations must 

satisfy the functional model while the unknown parameters do not appear in it. So 

matrix A  is a null matrix. Therefore the general linearized functional model becomes

Bv=b  (1.10)

These equations are called condition equations.

Most simple problems can be modelled by either observation equations or condition 

equations. But for more complicated problems, such as 3D coordinate transformation 

between two coordinate systems when the coordinates from both systems are considered 

as observations, the general case (1.6) is used.

An important property of the least squares estimation process in (1.8) is that at the same 

time as the unknown parameters are estimated, their covariance matrix is obtained. The 

covariance matrix can be used to analyse error propagation from the observations into 

the derived results through the measurement system. The reverse procedure (network 

design) can also be carried out, i.e., with a given covariance matrix it is possible to 

deduce how many observations should be measured and with what variances.

1.3 Applications of least squares estimation in close range photogrammetry

In close range photogrammetry, 2D coordinates of target images are measured on 

camera image planes as observations. These observations can be used to derive the 

unknown parameters, such as the 3D coordinates of the object points and the camera 

parameters. The relationships between the observations and the unknown parameters are 

established by the collinearity equations (Wolf 1983), which can generally be expressed 

as

f ( x , , x 2) = l ( 1.11)
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where the unknown parameters X ]  denotes the 3D coordinates of the object points, jc2 

denotes the camera parameters and / is the 2D coordinates (observations) on camera 

image planes. This is the typical case of observation equations. In each equation, there 

is only one observation (image coordinate of one object point, x or y) and it appears 

explicitly on one side of the equation. If m images are taken to measure n object points, 

the total number of the equations is 2mn and the total number of the unknown 

parameters is 3n+6m, assuming all the points are imaged on each image.

1.3.1 Least squares in intersection

If the camera parameters are known beforehand, the 3D coordinates of the object points 

can be determined by intersecting lines projected from their corresponding points on the 

camera image planes. This procedure is called intersection. It is the standard situation 

using metric cameras with fixed bases or when using photo-theodolites (Karara 1989). 

Intersection is also used to locate object points from two overlapping horizontal 

terrestrial photos or highly oblique photos (Wolf 1983). In close range photogrammetry 

intersection is often used to estimate the starting values of the object points using 

approximately estimated camera parameters. These starting values can be used in the 

subsequent bundle adjustment for better estimates.

Ideally, for each object point the m lines projected from the cameras should intersect at 

one point in the object space. However, due to the errors in the measurement process 

these lines will not intersect at the same point. Since x2 are considered as constants, the 

linearized observation equations can be expressed as

A j A x ^ b  ( 1.12)

For each object point, there are 2m equations and 3 unknown parameters. In this case 

least squares estimation can be used for the unique solution.

11
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1.3.2 Least squares in resection

Resection is a procedure of determining camera exterior parameters with known spatial 

control points (Thompson 1975; Slama 1980; Atkinson 1996). Theoretically, three 

control points, which will give six equations, can be used to determine the six camera 

exterior parameters uniquely. In practice, more control points are used for a more 

reliable solution. Since x, are considered as constants, the linearized observation 

equations can be expressed as

A2Ax 2 = b (1.13)

For each camera, there are 2n equations and 6 unknown parameters. When 2n > 6, least 

squares estimation can be used for the best solution.

1.3.3 Least squares in bundle adjustment

Bundle adjustment is a procedure in which both x, and x2 are treated as unknown 

parameters and adjusted simultaneously (Brown 1976; Granshaw 1980; Karara 1989; 

Fraser 1992; Atkinson 1996). This is the general case in close range photogrammetry 

where neither the 3D coordinates of the object points nor the camera parameters are 

known, except for their approximately estimated starting values. The linearized 

observation equations can be expressed by Eq (1.7), in which

A = [A, A,}

and

Ax =
Ax,
Ax 2

(1.14)

(1.15)

If all the object points appear on all of the cameras, there will be totally 2mn equations, 

and (3/7+6m) unknown parameters to be solved. The number of equations 2mn is usually

12
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much larger than the number of unknown parameters (3n+6m). So these unknown 

parameters can be solved by a simultaneous least squares estimation. The size of the 

matrix A lW/i in Eq (1.8) is (3n+6m)x(3n+6m). If 20 images are taken to measure 200 

object points, the size of A ‘W/l will be 720x720. Calculating the inverse of such a big 

matrix is very expensive in terms of both computation time and memory requirements.

The principles of simultaneous least squares estimation are well known (Mikhail 1976, 

1981; Cooper 1987). It is clear that this method provides the de facto standard for the 

output from an adjustment. However, the requirement for large matrix inversions places 

large demands on storage and computing power. To avoid this a sequential adjustment 

may be used as a means of providing fast updates for the parameters while not requiring 

a full matrix inversion (Shortis 1980; Cross 1983; Gruen 1985; Cooper 1987). For most 

true real-time applications the direct linear transform (DLT) (Abdel-Aziz & Karara 

1971) has been used but it does not provide the highest accuracy due to its modelling 

deficiencies and the reliance on accurately measured control points for camera 

parameter estimation (Marzan 1975; Karara 1980). For situations where interior and 

exterior camera parameters are known a direct spatial intersection may be used 

(Granshaw 1980; Shmutter 1974). Because each of these methods have deficiencies 

research is necessary to find an alternative fast, robust and flexible solution.

1.4 Separate adjustment of photogrammetric measurements

In this thesis, an alternative method, named the separate adjustment, is introduced. It 

can be shown that this method gives the same results as the simultaneous bundle 

adjustment but with a significant decrease in storage requirements and computational 

time.

The separate adjustment is a technique of division. The theoretical background is that in 

a least squares estimation process the unknown parameters can be estimated separately, 

one by one or group by group, and same results can be expected as that obtained by a 

simultaneous estimation. In close range photogrammetry, the unknown parameters are 

naturally divided into two parts, the 3D coordinates of the object points and the camera

13
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parameters. Instead of estimating the unknown parameters simultaneously, the unknown 

parameters can be estimated separately in two steps. In the first step, the 3D coordinates 

of the object points are estimated while the camera parameters are considered as 

constants. The computational complexity in terms of time is linear with respect to the 

number of the object points and the maximum size of the matrices to be inverted is 3x3. 

In the second step, the camera parameters are estimated while the 3D coordinates of the 

object points are considered as constants. The computational complexity in terms of 

time is linear with respect to the number of the images and the maximum size of the 

matrices to be inverted is 6x6.

After each circulation, the unknown parameters in the two parts are updated and another 

iteration is followed. The iterative process terminates when the maximum correction of 

the unknown parameters is less than a given significant value. Since same functional 

model and same target function of the least squares estimation are used in the separate 

adjustment and the bundle adjustment, the same results can be obtained from the two 

methods. But the speed of the separate adjustment is much faster than the bundle 

adjustment. Table 1-1 illustrates a comparison of speed between the two methods for a 

four camera close range photogrammetric measurement network (the test was conducted 

on a SUN Sparc Classic).

Table 1-1 A comparison of speed between the bundle 

adjustment and the separate adjustment

No. of points Bundle Adjustment 
(seconds)

Separate Adjustment 
(seconds)

100 45 0.86
200 389 1.72
300 1269 2.58
400 2967 3.44

In the early stage of photogrammetry, image acquisition and processing were time 

consuming works which could have taken a few days before the 2D coordinates on the 

photographs (observations) were ready for the 3D reconstruction. Therefore a few hours 

calculation by computer for the 3D coordinates was quite endurable. However as

14



Chapter 1 Introduction

photogrammetry enters the digital era, the scope of its applications has been extended. 

With digital cameras, powerful PC’s and DSP’s, the 2D coordinates on the image 

planes can be obtained in real-time. Hence real-time 3D measurement by 

photogrammetry becomes possible. The demand for real-time algorithm of 3D 

reconstruction becomes urgent. From this point of view, the separate adjustment method 

is developed and introduced in this thesis.

The words “adjustment” and “estimation” are commonly used terms in least square 

processes. When redundant measurements (observations) are used to estimate the 

unknown parameters, adjustments are required to the observations according to the least 

squares criterion, no matter whether the functional models are linear or non-linear. The 

result of these adjustments is a unique solution of the unknown parameters — a least 

squares estimate. The word “estimation” is more suitable for the least squares process 

and it has a proper statitical meaning whereas “adjustment” has not (Cooper 1987). 

Therefore the phrase “least squares estimation” (LSE) will be used in the thesis. 

However, considering the extensive use of the word “adjustment” in photogrammetry, 

such as “bundle adjustment” and “sequential adjustment”, the phrase “separate 

adjustment” is chosen for the method developed in the thesis. The background of the 

“separate adjustment” is a “separate least squares estimation” (SLSE).

1.5 Thesis Structure

The thesis is composed of nine chapters, two appendices and a bibliography.

Chapter 2 describes the basic concepts of observations and least squares estimation. 

Some conventional methods of least squares estimation, such as sequential adjustment, 

iterative adjustment and step-by-step method, are discussed.

Chapter 3 describes the basic theories of the photogrammetric measurement. The 

conventional bundle adjustment is discussed. Datum problems are addressed. A unified 

bundle adjustment is introduced.

15
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In Chapter 4, an alternative method of least squares estimation, the separate least 

squares estimation, is developed. Some numerical examples are given to verify the 

results of the method.

In Chapter 5, the separate adjustment method, which is based on the theory of the 

separate least squares estimation, is developed and used in close range 

photogrammetry. Issues such as datum definition, precision estimation, consistency 

with the bundle solution are discussed.

In Chapter 6, a linear coordinate transformation method is introduced. It can be used to 

transform the results of the separate least squares estimation from one coordinate 

system to another.

In Chapter 7, some results of simulation tests are presented to test the theories discussed 

in the previous chapters.

In Chapter 8, some results from a practical test are given.

Chapter 9 summaries the thesis and gives the conclusions.

Appendix I includes some partial derivatives required in the thesis and Appendix II 

gives some output data from the simulation tests.
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Chapter 2

Observations and Least Squares Estimation

In surveying and close range photogrammetry, measured elements are used to estimate 

other quantities (the unknown parameters). For instance, distances and zenith angles 

may be measured to estimate the positions of the ground stations in a geodetic 

positioning system. In close range photogrammetry images are taken to measure the 

spatial object points. The measured elements are the 2D coordinates on the image 

planes projected from the spatial object points. The unknown parameters to be 

estimated are the 3D coordinates of the object points. These measured elements are 

known as observations.

The relationship between the observations and the unknown parameters is established 

by the functional models and stochastic models. In close range photogrammetry the 

commonly used functional model is based on the well-known collinearity equations. 

The stochastic models are associated with the weights of the measured 2D coordinates 

on image planes. By solving for the unknown parameters in the functional model the 3D 

coordinates of the object points can be estimated.

In practice, the observations can never be measured perfectly due to limitations in the 

measuring instruments, hence observational errors will be introduced during the 

measurement process. In order to reduce the effect of the observational errors it has 

become a routine procedure to make redundant measurements (Mikhail 1976, 1981; 

Cooper 1987; Kuang 1996). So the unknown parameters become over-determined. 

Different results will be obtained from each subset of the observations because of the 

their inconsistencies unless an additional criterion is introduced. Many criteria can be 

used in practice. The principle of least squares is one of the most popular criterion used 

in surveying (Kissam 1956; Cross 1983; Anderson & Mikhail 1985; Cooper 1987) and 

close range photogrammetry (Slama 1980; Methley 1986; Karara 1989; Atkinson 1996) 

and has been proved to be an efficient method of dealing with redundant measurements.
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In this chapter the concepts of functional model and stochastic model are introduced. 

The least squares methods are reviewed. The methods of sequential adjustment, 

iterative adjustment and step-by-step adjustment are also discussed.

2.1 Functional model and linearization

The functional model establishes the mathematical relationship between the 

observations and the unknown parameters. If m observations are measured to estimate u 

unknown parameters, the functional model can generally be written as

F(x, l )  = 0 (2.1)

in which x  = (x,, x2,.. . ,  xu), is a vector of the unknown parameters to be estimated, 

/= (/,, l2,. . . ,  /m), is a vector of the observations, and 

F  denotes the c functions Fj ( i  = 1, 2, ... , c ).

It is often the case that each equation in the functional model (2.1) contains only one 

observation which is explicit and the number of the equations is then equal to that of the 

observations (c = m). So the functional model (2.1) can be expressed as

F(x, l ) -  f  (x )  -  1 -  0

i.e.

f ( x )  = l

(2.2)

(2.3)

Eq (2.3) are generally known as observation equations, which are mostly used in 

surveying and close range photogrammetry.

If the observation equations are linear, the least squares process can be applied directly. 

This is called a linear least squares estimation. Elowever in most cases the observation 

equations are non-linear. So linearization is often the first step needed for the 

subsequent least squares estimation. Taylor
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purpose. Expanding Eq (2.3) by Taylor’s series to the first order accuracy, the linearized 

observation equations become

f ( x ° )  + ( 2 - ) ° ( x - x ° )  = l (2.4)
OX

in which vector x° is the first-order approximation to x, and the partial differential 

coefficient is calculated at the approximate value x = x°. If symbol Ax is used for (x -

a:0), b for l -f(x°) and matrix A for (— f , Eq (2.4) can be written as

AAx = b (2.5)

in which

Ax = (Axv Ax 2, ... , Axu )', is a vector of corrections of the unknown parameters; 

b = (/, - f/x°), l2 - f2(x°), . . . , lm-fjx«))\  

x° = (xj°, x2 , ... , xu°y is a vector of the starting values; and 

A is the Jacobian matrix, i.e.,

8ft &t
3c, 3 c2 3C tt
df2
3c, 3 c2 3cu

3fm 8Tm 8fm
3c, 3 c2

All the partial derivatives in the Jacobian matrix A are calculated with the given value 

x° = (x,°, x2, ... , x„°). Eq (2.5) are generally called linearized observation equations.
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2.2 Stochastic model and error propagation

In a measurement process, the unknown parameters are estimated from the measured 

elements. It is important to know the quality of the estimated results, mainly the 

precision of the estimated unknown parameters. It is also important to know the 

influence of the quality of the measured elements on the estimated results.

Generally there are three types of errors which will influence the estimated results: 

systematic errors, gross errors and random errors. Systematic errors are related to the 

functional model. They can be reduced by systematic calibration and numerical 

correction to the measured elements before using the functional model or by including 

additional parameters. Gross errors are normally caused by the mistakes during the 

measurement process. These can be detected and eliminated by independent checks on 

the measured data or least squares. Random errors arise when repeated measurements of 

the same element are inconsistent. These errors are more complicated and can be 

described by a stochastic model.

2.2.1 Concept of weight, variance-covariance and cofactor matrices

Observations can be regarded as random variables subject to the laws of statistics. It is 

possible to analyse the precision of the estimated results by the stochastic model of the 

measured elements and its propagation through the functional model. In the functional 

model (2.3), each observation has a variance cr] which is related to the precision of the 

observation. The higher the precision, the lower the variance. Another evaluation of the 

precision of an observation is the weight w>f which is inversely proportional to the 

variance a ] , i.e.,

(2.7)

a 02 is referred as the reference variance or variance factor. The term reference variance 

is used in this thesis. The square root of the variance a, is known as the standard
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deviation which is used directly for the precision of the observations and the estimated 

results.

With multiple observations, their variances are expressed by an mxm matrix. It is a 

diagonal matrix for the uncorrelated measurements and is called the variance matrix. 

The variance matrix is expressed as

2
CT1 0 . . .  o

c  = 0 2
Cr2 . . .  o

(2.8)

0 0 2
••• <T„

Its corresponding weight matrix is expressed as

'w. 0 •• 0 '
0 w. •• 0

(2.9)w  = L

0 0

where tv, = ex//cr2 ( i = 1, 2, ... m ). Therefore

W = c r /C “/ (2 .10)

In case of the correlated measurements, C is expressed as

2

C T 1 ■ • •  C T l m

( X 2 i
2

C T 2 •

^ m l C r m 2

(2 . 11)
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The off-diagonal elements reflect the correlations between the measured elements. This 

is called the covariance matrix.

covariances of the observations. When the reference variance cr02 is unity, the cofactor 

matrix Q is identical to the variance matrix C. In this case, W is often called the inverse 

o f the cofactor matrix instead of the weight matrix since it is no longer a diagonal 

matrix. To simplify the terminology, the name weight matrix is extended to the general 

case in this thesis.

2.2.2 Error propagation through the functional model

If an element x  is measured to estimate an unknown parameter y, and the relationship 

between them is defined by an explicit function

The cofactor matrix Q ,which is defined as Q =cr0 2C = W represents the relative

y  =  f ( x ) (2 . 12)

then

So the standard deviation of y is given by

(Lx
(2.13)

in which <j x is the standard deviation of x. The variance ofy is then obtained from
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This equation gives the relationship of the variances between the observation and the 

unknown parameter. When more observations (independent) are involved in the 

functional model, e.g.,

y  = f ( x  i,x2," -,x ;iI) (2.15)

the variance of y  is estimated by

2 , (ty Wcr, = (----) <
âcxy ■ t A v .

' etc’
'+■

ac,„
(2.16)

More generally if m observations ( x,, x2, ... , xm ) are measured to estimate u unknown 

parameters ( y x, y2, ■■■ ,yu), and their functional relationships are expressed explicitly as

y, =f , (x, ,x 2,—,xm) 
y2 = / 2(x1,x2,---,x,„)<

y u = i X x  i,x2,---,xm)

(2.17)

with the covariance matrix of the observations given by Eq (2.11), the covariance 

matrix of the estimated unknown parameters will be given by

Cy = J yxC J yx‘ (2.18)

in which Jyx is a Jacobian matrix given by

f t f t ____ f t
¿3c, Sxm

q f2 f t 2
¿3c, 3Xm

f t Eu Eu
¿k2 âcm
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Therefore Cy is a uxu matrix and can be expressed as

2
a a G  ,yi y^i y>yu
<j

2
cr. cr

c  = yiy i yi yiyu
y

(7 a
2

a  „L y.y\ y^yi yu

(2.20)

The variances of the estimated parameters are obtained directly from the corresponding 

diagonal elements of Cy and a global precision estimation of the measured elements is 

generally given by the trace of Cy which is equal to the sum of these diagonal elements. 

The off-diagonal element a yy is connected with the correlation between the

parameters y t and yy The correlation coefficient designated by p is normally used to 

state the correlationship and

cr
P y,y i

y>yj
a yFy,

(2 .21)

Another commonly used error propagation formula is

Qy = Jy,QJyJ  (2-22)

in which <2v and Qy are the cofactor matrices of the observations and the unknown 

parameters respectively. Eq (2.18) and (2.22) are known as the general laws of 

propagation o f variances and covariances (Mikhail, 1981). Cy and Qy are two important 

matrices which are closely related to the quality of the estimated unknown parameters 

and the measurement system.

In the special case when the functional model is linear, i.e.,

y = Ax  + B (2.23)
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in which A  is a uxm coefficient matrix and B is constant vector, the covariance and the 

cofactor matrices of the unknown parameters will be given by

C, = ACxA ‘

and

Qy = a q xa ‘

2.3 The least squares method

In surveying and close range photogrammetry, redundant measurements are always 

necessary. This means that the number of observation is more than the minimum for a 

unique solution of the unknown parameters. The reasons for making redundant 

measurements are: first, the redundant measurements can provide a check on gross 

errors; second, they can give a more precise evaluation of the unknown parameters than 

would the minimum number of measurements (Cooper, 1987); and third, statistics are 

available with the redundant measurements.

Since errors are inevitable in the measurement process, residuals v are introduced in the 

observation equations to make up the differences. So Eq (2.5) becomes

A Ax = b + v (2.26)

where v = (v,, v2, . ,.vm)‘ is a vector of residuals for the observations. There are obviously 

many possible values for v,- . Many methods exist to give a minimum value using 

different combinations of residuals. Among them, the least squares method is the most 

popular one used in surveying and close range photogrammetry.

The general criterion of the least squares method states:

the sum of the weighted squares of the residuals must be a minimum, i.e.,

(2.24)

(2.25)
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<f> = wivi2 + W2V2 d----- b w„,vm2 = ^  w,v.2 = v'fTv —» min
<=i

(2.27)

in which vv„ w2, ... , wm are the weights of the corresponding observations. For the 

uncorrelated observations with equal precision, the criterion of the least squares method 

becomes

(f> = Vj2 + v22 + — b vm2 = ^  v(2 = v'v —» min (2.28)
/=i

From Eq (2.26), the residual vector can be derived as

v = AAx -  b (2.29)

So the sum of the weighted squares of residuals is

<f> = ( A A x - b ) ‘W (A A x -b )
= Ax'A'WAAx -  Ax'A'Wb -  b'WAAx + b'Wb

(2.30)

To minimise (j), its partial derivatives with respect to Ax are derived and equated to zero, 

i.e.,

■ ^ -  = 2&xtA tW A -2b ,WA = 0 (2.31)
dkx

So

Ax'A'WA = b'WA (2.32)

Transposing both sides of the equation gives

A'WAAx = A'Wb (2.33)
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or

NAx = A'Wb (2.34)

where N  = A'WA is a uxu coefficient matrix and A is the often called design matrix of 

the measurement network. If N  is of full rank, Ax can be solved as

Ax = N ^A 'W b  
= N -‘t

(2.35)

where t = A 'W b. By computing the inverse of the coefficient matrix N  and some 

products of matrices, all the corrections can be determined and the updated unknown 

parameters is obtained by

jc = x° + Ax (2.36)

Because the higher order terms are omitted in the linearization, the least squares 

solution requires an iterative procedure for the non-linear functional model. From the 

updated unknown parameters the design matrix A is reconstructed and new corrections 

are calculated again for the next adjustment. This procedure is repeated until a stop 

criterion is met. The starting values of the unknown parameters must be realistic and 

reasonably close (i.e. close enough for the assumption of linearity to be valid) to the 

final solution. Otherwise the iterative process may diverge.

For a linear functional model, the least squares estimates can be obtained directly, i.e.,

x  = N~' A'Wb (2.37)

As mentioned in section 2.2, the precision of the estimated unknown parameters is 

evaluated from their covariance matrix. By the general law of propagation of the 

covariance, from Eq (2.35) and Eq (2.36), the cofactor matrix of the unknown 

parameters is given by
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Qx =QAx= N IA ,WQb( N IA tw y (2.38)

Since b = l -f(x°) and x° are non-stochastic,

Q„ = Q, -  K ' (2.39)

Therefore

Qx = N -’A 'W W 'W , ^ - 1 (2.40)

So

Qx = N -1 = (A 'W 'A)-1 (2.41)

and

Cx = <t \Qx = cjKA'W 'A)-1 (2.42a)

If <70 is not known beforehand, the a posteriori reference variance can be calculated by

v‘Wva 0 = ------  (Mikhail 1976), in which r is the number of degrees of freedom. Therefore
r

Cx -  a]Qx = ¿¡(A 'W 'A)-' (2.42b)

It is generally accepted that Gauss was the first to use least squares at the end of 

eighteenth century. A historical background and justification can be found in Cross 

(1983). Two properties of the least squares adjustment are

(i) it is unbiased; and

(ii) it has a minimum trace of the covariance matrix of the parameters and a 

minimum variance of derived parameters.
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So the least squares estimate is known as the BLUE (Best Linear Unbiased Estimate). 

There are a number of reasons why least squares adjustment is widely used (Cross, 

1983):

(i) the method is extremely easy to apply because it yields a linear set of normal 

equations;

(ii) the solution is unique, i.e., there is only one solution to a given problem;

(iii) it is, generally speaking, “unobjectionable”: it is very difficult to form an 

argument against least squares in favour of some other procedure;

(iv) the method leads to an easy quantitative assessment of quality, e.g., via the 

covariance matrix; and

(v) it is a general method that can be applied to any problem.

As a result of these, the least squares estimation (LSE) has been applied increasingly in 

survey and close range photogrammetry. The method will continue to be used until an 

alternative procedure, more economical and more practical, is devised (Cooper 1987). 

Obviously, this alternative has not been found yet.

Traditionally in surveying and close range photogrammetry all the observations are 

used at the same time to estimate all the unknown parameters simultaneously. This 

simultaneous LSE has been proved to be effective and rigorous. Problems may arise 

when large number of unknown parameters need to be estimated by the simultaneous 

LSE if speed and memory are considered, since inverting large matrix is very expensive 

in terms of speed and memory. For instance, in close range photogrammetry, if 20 

images are used to measure 200 object points by the bundle adjustment, which is 

basically a simultaneous LSE process, there will be 600 unknown parameters for the 

object points and 120 unknown parameters for the cameras, so a total of 720 unknown 

parameters need to be estimated. The size of the coefficient matrix N  is 720x720. 

Inverting such a large matrix requires significant resources by computers. The 

computational complexities to computing the inverse of a matrix are: 0(u3) and 0(zf) 

for time and memory respectively (Bunch & Parley, 1971), where nxu is the size of A.
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In some applications where time and memory are critical, the conventional methods of 

least squares estimation need to be improved.

It may be helpful to divide the simultaneous least squares estimation into parts to reduce 

both time and memory. One strategy is to divide the observations and the other is to 

divided the unknown parameters. The former leads to sequential LSE and the latter 

leads to iterative LSE. A combination of both leads to step-by-step LSE or the Helmert- 

Wolf method.

2.4 Sequential LSE

Sequential LSE has been used in photogrammetry since the 1960’s (Brown 1960 & 

1964; Gruen 1978 & 1985; Shortis 1980; Gruen & Kersten 1992, Edmundson & Fraser 

1995). It is a technique of division which puts the observations in groups and uses them 

sequentially to estimate the unknown parameters. Sequential LSE is useful in the 

situations where more observations are added or removed to estimate the parameters 

which have been estimated from an initial set of observations. It is also named phased 

LSE. From each phase of the estimation the unknown parameters and their covariance 

matrix are kept for the next phase, while the observations can be discarded. This is 

particularly useful for the computers with limited memory storage. The results from the 

sequential LSE are identical to those that obtained from the simultaneous LSE where all 

the observations are involved at the same time.

if two sets of observations p  and q with the weight matrices Wp and Wq have been taken 

to estimate a same set of unknown parameters, the normal observation equations can be 

expressed as

(2.66)

From the first set of observations p, the unknown parameters are estimated as (if ̂ 4̂  is of 

full rank)
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Axp = (A p,WpAp)- 'A p,Wpbp

Qx = (A P'w pAPr '

When a second set of observations q is obtained, it can 

equation (2.67) to update the estimates of the parameters, 

equations become

1
Ax =

A
p+q

. K .

or

A'A xp+q = b'

The extended weight matrix for b ' is given by

Wb,=
N.

W

Therefore

Axp+q= ( A " W b,A')-‘A ' tWb,b' 

= ( N p + N q) - ' [ t p + tqJ

and

Qx = ( N p + N q)

(2.67)

(2.68)

be added to the resultant 

The extended observation

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)
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These results are identical with that obtained by the simultaneous solution from Eq 

(2.66). The major advantage of sequential LSE is that after each stage of the estimation 

the observations can be discarded, and the results (the parameters and their cofactor 

matrix) retained for the next stage. The number of the unknown parameters need not be 

constant during the sequential LSE process. Additional parameters can be included by a 

small extension (Shortis 1980, Cooper 1987).

It is noticed that Eq (2.72) and (2.73) have no advantages in computing time since the 

size of N„ is still uxu even if only a few observations are added. Therefore the size of 

the matrix to be inverted remains unchanged for each sequence. However this can be 

improved by using a special technique of matrix algebra (Cross 1983, Cooper 1987), 

i.e., if

P = U ± R ST

then

P ' = U 1+U 'R (S  1 ±TU lR) IT U 1 (2.74)

provided that P, U and S  are non-singular. Now rearrange Eq (2.72) as

(2.75)

applying Eq (2.74) gives

(2.76)

Let

So

(2.77)
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Since N p' has been obtained from the previous sequence, for the additional observations

only the inverse of the matrix (W~’ + AqN~,Aq) needs to be calculated and the size of

it is qxq, where q is the number of new observations. So the sequential method is very 

efficient when only a few observations are added during each sequence. However if the 

number of new observations approaches the number of parameters it is more efficient to 

carry out a new simultaneous LSE in the usual way (Cross, 1983).

The sequential LSE can also be used in the situations where observations are removed 

rather than added. This can be done by changing the corresponding signs in Eqs (2.74) 

to (2.77).

There is a restriction for the sequential LSE on the number of observations, i.e., the first 

sequence must have enough observations to determine the unknown parameters. 

Furthermore, the process of the first sequence is still a full simultaneous LSE. Therefore 

the calculation of the inverse of a large matrix (size of uxu ) is still inevitable.

Another problem with the sequential method is that the starting values of the unknown 

parameters must be very close to the final results. If iterations are required many of the 

advantages will be lost (Cross, 1983).

Sequential LSE may be useful in close range photogrammetry for camera calibration. 

The camera interior parameters can be updated after each measurement and the 

knowledge accumulated for the next measurement. Theoretically, the more a camera is 

used, the better the estimation of its interior parameters provided the blunders are 

avoided and the camera is not changed physically.
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2.5 Iterative LSE

As it is used for solving linear algebraic equations, the iterative method can also be 

applied to LSE. Before iterative LSE is discussed, iterative solution for linear equations 

is briefly reviewed. References can be found in many numerical analysis text books 

(Traub 1964; Jacoby 1972; Hageman & Young 1981; Phillips & Cornelius 1986)

The basic principle of the iterative methods is described as follows. Suppose a set of 

linear equations

is to be solved. A is a uxu non-singular matrix with no zero diagonal elements. The 

matrix A can be written as

where D, L  and U are diagonal, lower triangular and upper triangular parts of A 

respectively. If^4 is expressed as

Ax =  b (2.78)

A = D + L + U (2.79)

(2.80)

Then

D =

a,, 0 ■■■ 0 
0 a22 ■■■ 0

0 0 - aUll
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0 a 12 Ulu

u  =
0 0 •• • a2u

0 0 • ■ 0

0 0 •• • o '

L = a21 0 ■•• 0

a„l au2 ■■ 0

Rearranging Eq (2.78) gives

Dx = b ~ (L  + U)x (2.81)

So

x ,k+Ii = D-, ( b - ( L  + U)xlkl) (2.82)

or

(2-83)
au hij*i

(i= 1, 2,..., k)

where the superscripts [A:] and [A+i] denote the Ath and (A+7)st iterations. This is called 

the Jacobi method. As usual with iterative methods, starting values of the unknown 

parameters are required. If no prior knowledge is available, it is conventional to start 

with x '0/ = 0 on the right hand side of Eq (2.83) to obtain x'J'.  The iterative process 

can then be repeated until all the corrections are less than a given tolerance.

In the Jacobi method, the corrected values of the unknown parameters are not used until 

all of the parameters are solved. It is better to use the corrected values for computing 

other parameters in the same iteration since the new values are better than the old in
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most cases. When this is done, the procedure is called the Gauss-Seidel method. It is 

accomplished by rearranging Eq (2.78) as

(D + L)x  = b -U x (2.84)

So the iteration becomes

x Ik+lI _ (D + L)-’(b -U x lkl ) (2.85)

or

(2 .86)

(/'= 1, 2,..., a)

Normally, the rate of convergence of the Gauss-Seidel method is faster than that of the 

Jacobi method. It can be proved that the iterations (both Jacobi method and Gauss- 

Seidel method) will converge for any starting values when the system is diagonally 

dominant, i.e., each diagonal element is larger in magnitude than the sum of the 

magnitudes of the off-diagonal elements in the row. Mathematically, it is expressed as

This convergence condition is a sufficient condition, which means, if the condition 

holds, the iteration always converges. However the iteration may converge even if the 

condition is violated. The greater the left hand side is compared with the right in Eq 

(2.87), the faster is the convergence.

n
(2.87)

i=ij*‘

(/= 1, 2, ..., u)
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The third iterative method is an extension of the Gauss-Seidel method. It is achieved by 

rearranging Eq (2.86), i.e.,
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x ik+"
i - l

= X + —  (b,
a.. I v T 'i=i

(2 .88)

0 = 1, 2,..., u)

The second term on the right hand side represents the correction made to x (kl in order 

to calculate x 1̂* '1. If the correction is multiplied by a factor co, the iteration becomes

x ik+1' x ' i k '  + — ( b i ~ Y J a iix T 11 -  X  a u x j k l )

i - l

j=I J=l
(2.89)

(/= 1, 2,..., u)

With the factor co, the iterative process is relaxed, and when a proper co is selected, the 

convergent rate of the iteration will be accelerated. The factor co is called relaxation 

factor. If co > 1 (over relaxation), then a larger than normal correction is taken. This is 

useful when the Gauss-Seidel method converges monotonically, i.e., the unknown 

parameters move in one direction towards the final solution. If co < 1 (under relaxation), 

then a smaller than normal correction is taken. This is useful when the Gauss-Seidel 

iterates oscillate, i.e., the unknown parameters fluctuate around the final results. In 

practice, co > 1 is mostly used. So the method is known as successive over-relaxation 

method or SOR method

It has been proved that a necessary condition for convergence is that the relaxation 

factor co should lie between 0 and 2, i.e.,

0 < co < 2 (2.90)
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If the coefficient matrix A is symmetric and positive definite, this condition becomes 

both necessary and sufficient.

Iterative methods have also been used in LSE process (Brown 1976; Kok 1984; Marel 

1988). This iteration is known as inner iteration. For the non-linear problem, outer 

iteration is required for LSE. The iterative LSE method was used by Brown (Brown 

1976) as the indirect method of Block Successive Over Relaxation (BSOR).

Since the coefficient matrix N  of the least squares estimation is or can be made to be 

symmetric and positive definite, the three iterative methods discussed will converge 

with any starting values for inner iteration. The corrections of the unknown parameters 

are normally around zero provided that the starting values of the outer iteration are 

reasonably close to the final results, so the inner iteration can start with Ax1"1 = 0 .

Iterative LSE has the advantage over the simultaneous solution that it avoids direct 

calculation of the inverse of the coefficient matrix N"' which is the major cost of the 

least squares estimation in terms of time and storage, especially when the number of the 

unknown parameters is very large and N  is sparse. With the iterative method there is no 

fill-in problem (Kok 1984). The coefficient matrix N  remains unchanged in the inner 

iterations when it is used repeatedly to compute improved solutions and residuals. For a 

non-linear problem, the outer iteration will change N, but not its structure which could 

be very sparse. By using inner iteration, the storage required is reduced significantly, 

whilst the speed may not always be fast. Actually, in many cases, the speed of the 

iterative LSE is slower than that of the simultaneous solution because too many 

iterations are needed for the inner iteration (Marel 1989). Another disadvantage of the 

iterative LSE is that full covariance matrix is not available (Brown 1976).

2.6 Step-by-step LSE

Step-by-step LSE is a technique of partitioning in which both unknown parameters and 

observations are divided into parts (Cross 1983, Cooper 1987). It is useful in the 

situations where parts of the parameters are not required for the purpose in hand but
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have to be included in the observation equations. For instance, in close range 

photogrammetry, the 3D coordinates of the spatial object points are required, whilst the 

values of the camera parameters may not be needed in some cases, but have to be 

treated as unknowns in the bundle adjustment. In this case, the observations can be 

divided into parts and the parameters can be adjusted in steps. The results obtained by 

the step-by-step method are the same as those obtained by the simultaneous solution. 

The advantage of the step-by-step method over the simultaneous method is that those 

parameters not required are not estimated. The size of the matrices to be inverted is 

reduced.

As with the sequential method, the step-by-step method also requires that the starting 

values of the unknown parameters are very close to their final results. Otherwise, the 

advantages of the method will be lost if iterations are needed (Cross, 1983).

2.7 Datum and constraints

In the foregoing discussion of the LSE it is assumed that the coefficient matrix N  

(=A‘Wf4) is of full rank or non-singular, so the Cayley inverse of it exists. Therefore the 

unknown parameters can be estimated by the normal least squares process. However it 

is often the case in surveying and close range photogrammetry that the unknown 

parameters are not estimable by the measured elements because the design matrix A 

suffers from column rank defects, therefore the coefficient matrix N  is singular, its 

Cayley inverse does not exist, and the normal LSE cannot be used. The reason for the 

column rank defects is that the measured elements do not include enough or any 

information to define a datum. This assumes that the row rank defects have been 

eliminated by proper design of the measurements.

2.7.1 Datum

A datum is a reference coordinate system, which is usually defined by a number of 

spatial control points. In surveying and close range photogrammetry, the Cartesian
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coordinate system which is a right-hand set of axes (X , Y, Z), is commonly used to 

describe the coordinate system for the measurement network. The datum problem arises 

when measured elements do not include enough datum information. For instance, in 

close range photogrammetry the only observations are often the 2D coordinates on the 

image planes, no observed spatial 3D information is involved in the functional model. 

Hence, the datum is undefined. The consequence is that the design matrix has column 

defects and the coefficient matrix N  is singular, so the 3D coordinates of the object 

points are not obtainable.

The rank defect of the coefficient matrix N  is equal to the number of datum elements 

undefined. Generally, four datum elements need to be defined for 2D positioning (one 

scale element, two position elements and one rotation element) and seven datum 

elements need to be defined for 3D spatial positioning (one scale element, three position 

elements and three rotation elements).

2.7.2 Constraints

The datum problem can be solved by including the spatial control points or applying 

constraints. In aerial photogrammetry the datum problem is always solved since the 

ground control points are in place (Karara, 1989). In surveying and close range 

photogrammetry constraints are sometimes applied in the least squares estimation to 

remove the datum defects. These constraints are described by a set of constraint 

equations. Together with the observation equations the unknown parameters can then be 

estimated. The constraint equations can generally be expressed as

g(x) = c (2.91)

with associated weight matrix Wg, The constraint equations are normally non-linear. 

After linearization they become

GAx = bg (2.92)
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in which

G = r— /3c
and bg = c - g(x°)

Therefore the augmented linearised observation equations are expressed as

A
G

Ax =

with associated weight matrix

W =

(2.93)

(2.94)

supposing that the observations and the constraints are independent of each other. Eq 

(2.93) can be solved by introducing a vector of Lagrangian multipliers (Cooper 1987), 

so the full set of normal equations for estimated parameters Ax and Lagrangian 

multipliers k become

~A'W,A G Ax A'W,b
G' 0 k

----1

__
1

(2.95)

The augmented coefficient matrix becomes non-singular with G' and G involved. So 

unknown parameters Av and Lagrangian multipliers k can be estimated by

Ax ’A ‘W,A G
-1

A ‘W,b
k G' 0 _ \

(2.96)

There are two disadvantages of this process. First the dimension of the matrix to be 

inverted is increased, and second the presence of zeros on the leading diagonal makes
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the use of algorithms for computing the inverse of a symmetric positive definite matrix 

invalid. To avoid these, an alternative process is considered.

If the constraint equations in Eq (2.94) are considered as the additional observation 

equations, Ax can be estimated by the LSE of the augmented observation equations, i.e.,

Ax = (
A
G

W
A
G r 1

A
G

W (2.97)

which gives

Ax = (A'W 'A + G‘WgG ) I(A tWlb + G'Wgbg) (2.98)

Let N g = (A'W,A  + G‘WgG) and Bg = (A ‘Wtb + G‘Wgbg) ,  therefore

Ax = N g1Bg (2.99)

The addition of G'WG to A'WA will remove its rank defects so that the unknown 

parameters can be estimated by the normal least squares adjustment. Since the size of 

the matrix Ng remains unchanged and it is still a symmetric positive-definite matrix, fast 

algorithms for computing the inverse of this kind of matrix can still be used.

There are various ways to apply constraints in order to solve the datum problem. For 

instance, constraints can be applied by fixing values of some coordinates of the object 

points. This is often the case in aerial photogrammetry where ground control points are 

involved in the LSE process. These control points can also be considered as the 

previously estimated results with their cofactor matrix. However, from the point of view 

of an optimal reference system for an optimum form of the cofactor matrix Qx (Fraser 

1984), these two constraints may not be ideal. LSE with inner constraints, which is a 

free-network adjustment, will yield an optimum mean object point precision and is 

widely used in surveying and close range photogrammetry. More descriptions on datum
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and inner constraints have been given by (Granshaw 1980; Fraser 1984; Caspary 1987; 

Cooper 1987; Dermanis 1994).

2.8 LSE with constraints

2.8.1 LSE with inner constraints

Inner constraints can be applied to position, rotation and scale by reference to the 

centroid of all the object points or a subset of them defined by their starting values 

(Cooper, 1987). For a 2D network, the constraint equations have the form

1 0 i 0 ... i 0
0 1 0 1 ... o i

T, - x 2 y„
*i y, x2 y2 >'n

Ax, '0~

AVi 0
A x 2 0
Ay2 = GAx = bg = 0

Ax„ 0

At „_ 0_

(2 .100)

The first two equations provide positional constraints, the third equation provides 

rotational constraint and the fourth equation provides scale constraint. For a 3D 

network, the constraint equations have the form

Ax, 0

At , 0
1 0 0 1 0 0 . . .  i 0 o  "

Az, 0
0 1 0 0 1 0 . . .  o l 0

1

Ax. 0
0 0 1 0 0 1 . . .  0 0 i

0 . . .  o
Ay2 0

0 Z1 ~ T i Z2 - y 2 z„ -y„ Az 2
- GAx =  bg =

0
0 x. 0 x2 ••• - z „ 0 Xn

- * 1 0 y2 -x , 0 y„ ~Xn 0
Ax„ 0

*1 Ti z\ x2 y2 z2 ■■■ x„ y„
a t ,, 0

_Az„_ 0

( 2 . 1 0 1 )
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The first three equations provide positional constraints, the next three equations provide 

rotational constraint and the last equation provides scale constraint.

Since bg = 0, from Eq (2.99) the corrections of the unknown parameters can be 

estimated by

Ax = N ~ ' A'W,b (2.102)

By the general law of propagation of the cofactor matrices, the cofactor matrix of the 

estimated parameters is given by

Qx = N g IA tWlQb( N ; 1A'Wiy  

= N ^ A 'W ^ N ^

in which

N g = (A ‘WlA + G,WgG)

In the above equation, Wg is the weight matrix which reflects the strength of the 

constraints. It is interesting to know that changing of Wg will not influence the 

estimated results due to the fact that b„ = 0. To simplify the computation, Wg is usually 

set to a unit matrix, i.e. Wg = I. Therefore the unknown parameters and the cofactor 

matrix are estimated by

N g = (A ‘WlA + G‘G) (2.105)

Ax = (A ‘W,A + G'G) 1 A'W,b (2.106)

Qx = (A'W,A+ G'G) ‘A ‘W,A(A,WlA + G 'G y1 (2.107)

It is important to point out that the structure of the coefficient matrix will change with 

the addition of G‘G. This may spoil the special structure of the coefficient matrix (e.g.

(2.103)

(2.104)
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the block diagonal matrix in close range photogrammetry), which could be made use of 

for optimisation in the LSE process.

The coordinates in the matrix G are initially starting values. These starting values are 

estimated approximately by other means. After each iteration G should be updated by 

the corrected coordinates. The results of the unknown parameters (the coordinates of the 

object points) are closely related to these starting values. Different starting values lead 

to different results but the geometric shape of the network will remain unchanged. So 

the datum of the results is actually arbitrary depending on choice of the starting values. 

However, the estimated coordinates and their cofactor matrix can always be 

transformed to a given reference datum whenever required.

The cofactor matrix gives a precision evaluation of the estimated parameters. However, 

in some cases the cofactor matrix may not be necessary for the intermediate parameters. 

When these intermediate parameters are used to estimate other parameters the inverse of 

the cofactor matrix (the weight matrix) is more useful. For instance, if these parameters 

(object point coordinates) are used as previously estimated coordinates to solve the 

datum problem, the weight matrix will be used. Fortunately the weight matrix of the 

estimated parameters can be obtained from the design matrix directly, i.e.,

Wx = Q;l = A ‘WlA (2.108)

Matrix A is datum related, so the cofactor matrix Qx and the weight matrix Wx are 

datum dependent. Change of datum will cause Qx and Wx to change. This will be 

discussed in Chapter 6. For the final results Eq (2.107) should be used to calculate the 

cofactor matrix Qx for the evaluation of the precision of the estimated coordinates.
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2.8.2 LSE with previously estimated coordinates

Constraints can also be applied by adding extra observation equations which describe 

the results of previously estimated coordinates (control points) with their cofactor 

matrix. The minimum number of the constraint equations required depends on the 

deficiency of the design matrix A. If no datum information is obtained from the 

observations, the number of rank defects of A is seven in the 3D case, therefore at least 

seven constraint equations need to be added. Suppose the first p coordinates (x„ x2, 

x ) have been estimated previously with the weight matrix Wg, the constraint equations 

have the form

' 1 0 ■• 0" *1 k l
0 1 • • 0 x 2

= x 2

_0 0 ■• 1_ _ -v x °p.

(2.109)

in which (x°j, x°, •••, x ° ) are previously estimated coordinates with associated weight 

matrix Wg . After Linearization Eq (2.109) become

■ 1 0 • • 0 “ Axx

1H1o _Xt__

0 1 • • 0 zlv2
=

JC° - x 2

0 0 • • 1_ x ° - xL /> p J

(2 .110)

“ 1 0 0 0 0 ••• 0 ‘

zbc,

Ax 2
x° -  X]

0 1 0 0 0 ••• 0 x 2 — x 2

AxP+1

0 0 ••• 1 0 0 ■■■ 0_ x° -  Xx p J

_ _
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So

0p x ( n - p ) (2.112)

and

(2.113)

From Eq (2.99), the corrections of the unknown parameters are estimated, in which

N g = A'WlA + G‘WgG 

= A ‘W,A+WJ

and

Bg = A'W,b + G‘Wgbg 

= A'W ,b + Wg'bg

where

\ w„  0 [ w l2 and W " = g
0 0

2
nxn 0

(2.114)

(2.115)

The addition of Wg to the top-left comer of the original coefficient matrix A'W /l will 

remove its rank defects and make the matrix Ng non-singular so that the estimates of the 

parameters are obtainable. The cofactor matrix can be obtained from

& =
= J V /A 'W 'Q W A N /1 + N g-, w ;’Qt fr;’N g-1

(2.116)

in which Qh = W,1 and Qg = Wg‘, so

47



 



Chapter 2 Observations and Least Squares Estimation

more dependent on the current observations, and less distortion could be expected but 

the global accuracy gets worse. If the elements of Wg are very big (high precision 

controls) more distortion will be introduced but the global accuracy will be better. The 

best situation for this type of constraint might be to fix the minimum number of 

coordinates (which will introduce no distortion) and get the best global precision. 

However, even under this situation the global precision is still worse than that of inner 

constraints.

If all the coordinates to be estimated are treated as observations (pseudo observations) 

and a unique weight (normally very small) is given to them, what will happen? This is 

actually equivalent to the situation where all the coordinates are free of constraints and 

these coordinates will be adjusted by the real observations only. Without any bias the 

same results as obtained by the LSE with inner constraints can be expected. This 

technique has been called The unified least square estimation (Mikhail, 1976). It could 

be very useful in close range photogrammetry.

2.9 The unified LSE

The basic assumption of the unified LSE is that all the unknown parameters in the 

functional model are treated as observations. A unique weight w is selected for these 

observations and two extreme cases are described as follows (Mikhail, 1976):

1. I f  an observation (in this case any variable in the model) is given an 

infinitely large variance, that is, its weight is w = 0, then it is allowed 

to vary freely in the adjustment and will therefore assume the role o f an 

unknown parameter in the classical sense.

2. I f  on the other hand the observation is given a zero variance, or a weight 

that approaches infinity, w—?q it is simply not allowed to change in the 

adjustment, with the consequence that its residual will be zero and it 

would assume the classical meaning of a constant.
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Between the above two extremes lies a large set of possibilities within which actual 

observations (in the classical sense) fit. Since practically the unknown parameters are 

not, or not always, observed beforehand, so these parameters can be treated as pseudo 

observations. The constraint equations can be expressed as

x  — x° (2.119)

where x n is a vector of the starting values of the unknown parameters. A unique weight 

is usually given to these pseudo observations, so the weight matrix is

Wg = gln*n (2.120)

where g is the weight factor which defines the strength of the constraints. After 

linearization the constraint equations become

A x= bg (2.121)

Together with the real observations equations, the augmented observation equations are 

expressed as

with associated weight matrix

W =

(2 .122)

(2.123)

The sum of the squares of the weight residuals of the observations is given by
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v'W ^ + v'ggVg (2.124)

The first term on the right hand side in above equation is the target function which 

needs to be minimised by the LSE. When g is very small, the second term can be 

ignored. So the LSE can be applied to the augmented observation equations and the 

unknown parameters are estimated by

Ax = (A ,WlA + gI)-'[A‘ I

= (A ,WlA + g i y x(A'Wlb + gb )

\A‘ i ]
b

L g l. A . (2.125)

When g is very small, gbg can be ignored, so 

Ax = (A'W lA + g I)-]A ‘Wlb (2.126)

Let A', -  A ‘W,A + gJ , therefore

Ax = N ],A tWlb (2.127)

With the addition of g l to A'W /i the coefficient matrix N, becomes non-singular. So 

the estimates of the unknown parameters are obtainable. Since g l is a diagonal matrix, 

the structure of A ‘W/1 is not influenced. The cofactor matrix of the parameters is given 

by

Qx = N J1A tW,AN? (2.128)

The magnitude of the weight factor g plays an important role in the unified LSE. If g is 

big, the unknown parameters will be bound more to the starting values which will slow 

down the adjustment process (more iterations are required). If g is too small the matrix 

N, will be very ill conditioned (g = 0 makes N, singular). Theoretically the smaller the
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weight factor g is, the smaller is the influence of the pseudo observations and the better 

results can be expected. But numerically g cannot be too small, otherwise the inverse of 

N, is unobtainable because of the limitation of the computers. When g approaches zero 

while the inverse of N, is still obtainable, the results of the unified LSE will approach 

that of the normal LSE with inner constraints. The following simple example verifies 

the fact.

If a distance is measured 100 units between two points x] and X2 along x  axis. The 

observation equation for this measurement may be expressed as

or

f  (x ) = x 2 -  x, = 100

= AAx = b = \0 0 - f ( x ° )

Due to datum deficiency, x, and are not estimable. Now suppose .v; = 0 and x2 = 102 

are chosen as the starting values and the normal LSE with inner constraints is applied. 

The corrections are obtained by

Ax = (A 'A  + G,G y I A'b

2 O' -1 ' - l '
0 2_ 1

1
-1

So the updated parameters are given by

x  = = jc° + Ax =
1

101

The cofactor matrix is obtained by
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Qi = (A* A  + G 'G y'A 'A fA 'A  + G 'G )'
0.5 O' ' 1 - f '0.5 O'
0 0.5_ 1 0 0.5
0.25 -0.25 
-0.25 0.25

With the unified LSE, the corrections are obtained by

Ax = (A ‘A + gI)~, A ,b

in which

and

(A ‘A + gI)-' = \ + g -1 
-1 1 + g

_1__
2g + g 2

1 + g
1

1

+ £.

A'b

Therefore

2

Ax = 2 + g
-2

_2 + g

The cofactor matrix is obtained by
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Q ^ f A 'A  + g iy 'A 'A fA 'A  + g l) -l

1
a  g + g 2) 2

i
g2(2 + gr

i+ g  i 
i i + g_

g2 - g 2 
- g 2 g2

7 1 -1~ i + g  i

rT
-

i__ i i + g

i
(2 + g)2

1 -1 
-1 1

When g approaches zero,

1 ' 1 -1
Ax =

-1
and Q i =  — 

x 4 -1 1

which are identical with that obtained from the normal LSE with inner constraints.

Simulation tests show that the value of g can be assigned in a very wide range. Hence 

instead of adding a rather complicated matrix G'G (from the inner constraints) to the 

original matrix A'W/l a small increment to its diagonal elements will remove its 

defects. When g is small enough the same results as obtained by the LSE with inner 

constraints can be expected.

It is very important to notice that the structure of the coefficient matrix will remain 

unchanged with the unified LSE. Advantages may be taken from this fact when 

calculating the inverse of the coefficient matrix if the structure of it is special (e.g. a 

diagonal matrix).
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2.10 Summary of the chapter

The least squares method is no doubt one of the most important mathematical means to 

deal with redundant measurement and has been well justified (Cross 1983; Cooper 

1987, 1988). Other methods such as the ¿;-norm method and the Danish method have 

also been used as robust estimation techniques (Kubik 1987; Schuh 1989). However 

none of them has such a reputation like the least squares method (Z,2 ~norm method). It 

is extremely easy to use and gives a unique unbiased solution. Another advantage of the 

least squares method is that the quality of the estimated results is assessable via the 

covariance matrix which is provided without any extra computations. The method can 

almost be used in any measurement problem where redundancy exists.

For the linear problems, solutions of the unknown parameters can be obtained directly 

by linear least squares estimation. For the non-linear problems, iterations are required to 

adjust the unknown parameters around their starting values. The starting values of the 

unknown parameters are important in the non-linear least squares estimation process. 

They must be realistic and reasonably close to the final solution. Otherwise the iterative 

process may diverge.

Least squares estimation process involves processing of matrices, in which calculating 

the inverse of the coefficient matrix is very expensive in term of speed and memory, 

Oil/) and 0(»“) for time and memory respectively (uxu is the size of the coefficient 

matrix). The conventional least squares estimation deals with the unknown parameters 

simultaneously. Therefore the size of the coefficient matrix may be very large. In some 

applications where time and memory are critical the conventional least squares method 

can be optimised significantly. However for some reason not enough efforts have been 

made in the algorithmic aspects to improve the conventional least squares method. It is 

still a bottle-neck in the real-time applications.

The sequential least squares method is a technique which divides the observations into 

parts. It is useful in situations where additional observations are available to readjust the 

parameters which have been estimated from an initial set of observations. In this case
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the unknown parameters and their covariance matrix are kept for the next estimation, 

while the observation can be discarded. Therefore the computer resources can be saved. 

But the first sequence is still a full simultaneous least squares estimation process in 

which enough observations are required. Another problem with the sequential method is 

that the starting values of the unknown parameters must be very close to the final result 

to avoid further iterations. Otherwise many of the advantages will be lost.

The iterative method for solving linear algebraic equations can be used in the least 

squares estimation. The iteration is applied to the linearized observation equations, 

therefore is called inner iteration. The unknown parameters are estimated one by one 

rather than simultaneously. It is obvious that the memory requirement is reduced 

significantly. But the convergent speed may not be fast since too many iterations are 

needed for the inner iteration. Furthermore, the full covariance matrix is not provided.

There are two reasons to apply constraints in the LSE process. One reason is to remove 

the column rank defects from the design matrix so that the unknown parameters can be 

estimated. Although the Moore-Penrose inverse can be used without constraints, it is 

very difficult to compute the rank and pseudo-inverse of A'WA practically (Cooper 

1980). The other reason is to define a datum. With inner constraints, the first problem is 

solved, but not the second. The same thing happens to the unified and the separate LSE. 

Only when controls are involved can the datum problem be solved properly. However, 

distortion may be introduced by these controls. The advantages of the unified LSE over 

the inner constrained LSE are: (i) the unified LSE is easy to apply; and (ii) the structure 

of the coefficient matrix does not change in the unified LSE process, but does change in 

the inner constrained LSE. If controls are not included in the least squares process 

(arbitrary datum), a coordinate transformation may be required to relate the results to a 

given coordinate system.
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Chapter 3

Least Squares Estimation of Photogrammetric Measurements 

—  The Traditional Methods

Photogrammetry is a technique of obtaining 3D information in the object space by 

processing 2D information on the camera image planes. In digital close range 

photogrammetry multiple CCD cameras are used to capture images of the targeted 

object points from different viewpoints. Based on the geometric perspective principle, a 

set of so called collinearity equations can be derived to establish the relationships 

between 2D observations on the camera image planes and 3D coordinates of object 

points. By solving the collinearity equations the 3D coordinates of these object points 

can be estimated.

Three major steps are normally needed in the photogrammetric measurement procedure: 

(i) 2D image data acquisition and target location; (ii) solving target correspondences 

between different images; and (iii) least squares estimation of the unknown parameters 

in the functional models. Using powerful processors or hardware, real-time target 

location can be realised. Various approaches to solve target correspondences are 

possible such as using epipolar lines and epipolar planes (2D and 3D matching). 

However, solving collinearity equations by least squares estimation is still a 

considerable time consuming procedure.

In this chapter the functional relationships between 2D observations on the camera 

image planes and 3D coordinates of the object points are discussed. Various methods of 

least squares estimation are investigated to solve the unknown parameters from the 

functional models.
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3.1 Functional models

In a photogrammetric 3D measurement system, the 2D coordinates on the image planes 

are measured and used to estimate the 3D coordinates of the object points. The 2D 

coordinates on the image planes are known as observations and 3D coordinates of the 

object points (together with the camera parameters) are the unknown parameters. To 

solve for these unknown parameters the functional relationships between the 

observations and the unknown parameters have to be established. The first step in 

establishing the functional models is to define the coordinate system3. The three- 

dimensional right-handed Cartesian coordinate system is normally used as the object 

space coordinate system. The image coordinate system is also a three-dimensional right 

handed Cartesian coordinate system, with the x  and y  axes being in the image plane and 

Z axis being toward the perspective centre of the camera. Figure 3-1 illustrates the object 

coordinate system XYZ and image coordinate system xyz.

Figure 3-1 The object coordinate system and the image coordinate system
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The coordinates of the perspective centre 0(XL, YL, ZL) of the camera are related to 

object space coordinate system XYZ  and the angular relationship between the image and 

the object coordinate systems can be described by a 3x3 orthogonal rotation matrix M. 

Nine elements are involved in the rotation matrix, but only three independent 

parameters are involved in the matrix M. They are co, <f> and k , the three sequential 

rotation angles around X, Y and Z axes respectively. The three rotation matrices are 

obtained as follows (Wolf, 1983)

K  =

m k =

1 0 0
0 cos co sin«
0 -s in « cos co

COS (j) 0 sin^

0 1 0
-s in ^ 0 COS (j)

COS AT sin a: 0
-s in  a: c o sa : 0

0 0 1

(3.1)

(3.2)

(3.3)

These matrices are multiplied together to give

in which

M =  MnM ,M h.CO <P K

mu mn "h 3
"hi "hi m23

W31 mi2 W33

mu -  cos ̂  cosk

m n = sin fusing cos a: + cos sin a: 
mn -  -  cos co sin 0 cos a* + sin co sin a: 

m2] = -c o s^ s in  k

\ mn  = -sin  cosmcj) sin at + cos c o c o s k  

m13 = cosiysin^cos/c + siniycos/c 
m3] = sin^ 
m32 = -  sin co cos cf) 
m33 = cos<y cos^

(3.5)

(3.4)
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3.1.1 Collinearity equations

If an object point A(Xa, Ya, Za) is imaged by a camera and located at point a(xa, ya) on 

the image plane, a straight line can be projected from the point A through the 

perspective centre 0(XL, YL, ZL) of the camera onto the point a on the image plane. 

Ideally the line segments AO  and aO should be on the same line, i.e., they are collinear. 

Based on this condition the well known collinearity equations are established as follows 

(Wolf, 1983)

c mu(x A- X l ) + mn (YA-Y l ) + ml3(ZA- Z I ) 
m i \ ( X a  — X  L) + m32(YA — Y,) + m33{Z A — ZL) 

c m2i(X A- X l ) + m22(YA-Y I ) + m23(ZA- Z l ) 
m3X{X A- X , )  + m32(YA-  YL ) + m33{ZA-  ZL)

More generally, if the /th object point is imaged on the yth camera, the collinearity 

equations can be expressed as

fjiy=y.ii+CJ

Mjn
3

Mjn
Mjn

(3.7)

in which

Mjn = mj\\(X ,~  X j l ) + mjx2 W  ~ Yj l ) + mj]3(Z, -  ZJL)
Mjn -  mn¿X , ~ X JL) + mJ22(Y, -  YJL) + mJ23(Z, -  ZjL) (3.8)

MH3 = -  X j l ) + mM Y, ~ Yj l ) + mj33(Z; -  ZjL)

The collinearity equations establish the relationship between the 2D image coordinates 

observed on the image planes and the 3D object point coordinates (together with the 

camera parameters) to be estimated. These collinearity equations are the most 

commonly used functional models in close range photogrammetry. They can be used in
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intersection (estimating the 3D coordinates of the object points with known camera 

parameters), resection (estimating the camera parameters with known 3D control points) 

and bundle adjustment (simultaneously estimating the 3D coordinates of the object 

points and the camera parameters with all of them treated as unknown parameters). 

Another useful functional model is the DLT model.

3.1.2 DLT model

The DLT (Direct Linear Transformation) model proposed by Abdel-Aziz and Karara 

(1971) is an alternate formulation of the normal functional model. The main advantages 

of using the DLT model compared with the collinearity equations (3.6) are, (i) it 

encompass some camera interior parameters such as the coordinates of the principal 

point (xp, yp) and the principal distances cx and cy; (ii) it simplifies the computation of 

the photogrammetric adjustment process.

With the principal point (xp, yp) and the principal distances cx and cy involved, the 

normal collinearity equations become

In general, the DLT model for the ith object point imaged on the yth camera can be 

expressed as

y - y P = - cy

OT„ ( A - A / ) +  »712( T - T / ) +  W|3( Z - Z J  

mM(X  - X L) + mn {Y-Y, ) + mi3(Z -  Z, ) 
m7\(X - X L) + m21 ( Y-  Yl ) + mn (Z  -  Z, ) 
m3]( X - X L) + m32(Y -Y L) + m33 { Z - Z , )

(3.9)

(3.10)
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in which

Dju = + Lj 2Y, + Lj 3Zi + Ljt

■ D ^ ^ L ^  + LjJ. + L j ^  + Lj, (3.11)

Dja = LjgXj + Lj j o Yj + LjUZj +1

where

L0 = -{mMX L + ni32 Yh + m33Z L)

A = ( V ”3i ~ c xmn) /  L0 
L2 = {xpmn -  cxmn ) / L0

A  = (Xpm33 ~ Cxm\l) I A
LA — xp + cx(muX L + w12A  ̂A

< L5 = ( y pm3l - c ym2]) / L 0

A  ~ (yPmn ~ cym22) / Z0 

A  = O V «33 -  S W23) / A

Li = y p + Cyim7\X L + ™22YL + m23Z/J  1 A

A  = mn / A  

Ao = W32  ̂A  

A 1 = W33 / A

The 11 DLT parameters L x to Z,n contain 10 camera physical parameters, of which six 

are exterior parameters (X/5 Fi? Z£, co, ()>, k ) and four are interior parameters (xp, >r/(, cr,

A)-

3.1.3 Camera interior parameters

3.1.3.1 Principal distance and principal point

The principal distance is the perpendicular distance from the perspective centre of the 

lens system to the image plane. At infinity focus, it is equal to the focal length. 

However in close range photogrammetry it is unusual to use a camera focused at 

infinity. So the principal distance is normally not the same as the focal length. The 

following equation expresses the relationship between them.

62



Chapter 3 Least squares estimation of photogrammetric measurements

c -  c0 + Ac (3.13)

where c denotes the principal distance, c0 denotes the focal length and Ac denotes the 

difference (offset). With a different focal setting, the value of Ac may change. When Ac 

is treated as a variable, the principal distance will be adjusted in the least square process 

and its value can be determined thereafter.

The principal point is defined as that point on the image plane which is at the base of 

the perpendicular from the ‘centre of the lens’, or more correctly, from the rear nodal 

point. Ideally the principal point would coincide with the fiducial origin, the origin of 

the plane coordinate system. The fiducial origin or centre is the intersection of 

imaginary lines drawn from opposite pairs of fiducial marks in the sides or corners of 

the image plane. With the digital camera, these fiducial marks may be considered to be 

on the half sensor size points. So the fiducial centre will be the centre of the sensor or 

the centre of the image plane. The relationship between the principal point and the 

fiducial origin can be expressed by

where (xP y )  refers to the principal point, (xg, y 0) refers to the fiducial origin and {AxP, 

Ayp) is called the principal point offset. The principal point (Xp, yp) can be determined 

when it is treated as variable and made adjustable in the least squares process.

3.1.3.2 Radial distortion and decentring distortion

Ideally a lens would have the property of collinear imaging geometry over its entire 

field of view and range of focus. However no real lens has this perfect behaviour and 

will always suffer from several types of aberration, one of which is described as lens 

distortion. Lens distortion is usually divided into two types, radial distortion and 

decentring distortion.

(3.14)
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If the image of an off-axis target is displaced radially from the principal point then it is 

radially distorted. Figure 3-2 shows an error map represents radial lens distortion.

Figure 3-2 An error map caused by radial lens distortion

Radial distortion is a symmetric effect and can normally be modelled by a polynomial 

series of odd powered terms, i.e.,

Ar -  A:,r3 + k2r5 + kyr1 +■ ■ ■ (3-15)

in which

r = ( ( x - x p)2+ ( y - y p)2)'/ i (3.16)

where Ar is the radial displacement of an image point, k„ k2, and k3 are the coefficients 

of the radial distortion corresponding to infinity focus, x  and y  are the coordinates of a 

image point. The displacement of the image point caused by the radial distortion is 

expressed as
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where p, and p2 are two coefficients depending on the lens setting, the other notations 

are the same as used in the radial distortion.

3.1.4 Modification of the collinearity equations

With above lens distortions considered, the modified collinearity equations become

/ , = ( * -  t o )  + to r + Axd + (c0 + Ac)— L

fy = ( y -  Ayp) + Ayr + Ayd + (c0 + Ac) 
y '  M-,

(3.19)

neglecting subscripts for simplicity. In general, the functional model in close range 

photogrammetry can be expressed as

/(x ,,x 2,x ') = / (3.20)

where x, = (X, Y, Z) denotes a vector of the 3D coordinates of the object points, x 2 = 

{XD Y0 X L, co, <f>, k ) denotes a vector of the camera exterior parameters, x'2 = (xp, yp, Ac, 

kv k2, k3, /?/, p2) denotes a vector of the camera interior parameters and / represents the 

observed image coordinates.

3.2 Intersection

Intersection is the procedure of determining the 3D coordinates of the object points by 

intersecting lines projected from their corresponding points on the camera image planes. 

In this process the camera parameters are required to be known. This is the standard 

situation using metric cameras with fixed bases or when using photo-theodolites 

(Karara, 1989). Intersection is also used to locate ground points from two overlapping 

horizontal terrestrial photos or highly oblique photos (Wolf, 1983). In close range 

photogrammetry intersection is often used to estimate the starting values of the object 

points with approximately estimated camera parameters. These starting values can be
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used in the subsequent bundle adjustment for better estimates. Figure 3-4 illustrates the 

geometry of the intersection.

Figure 3-4 The geometry of intersection

If an object point A(Xa, Ya, Za) is imaged by m cameras and located at the image points 

"/(*]> Ti)> fl2(-v2> T2X •••> am(xm>Tm) respectively, a straight line can be projected from each 

image point. Ideally these m lines should intersect at one point in the object space and 

that point should be A(XA, YA, ZA). However, errors are inevitable during the 

measurement procedures. These lines will not intersect at the same point and the 

coordinates of the point are overdetermined. Using the least squares method (based on 

the collinearity equations) the 3D coordinates of the object point can be estimated. 

During the intersection process since the camera parameters are known, (XiL, YiL, ZiV)  

and (/nm ... mj33) are constants, where i = 1, 2, ... , m. The only unknown parameters in 

the collinearity equations are (XA, YA, ZA), the 3D coordinates of each object point. To 

solve for the three unknown parameters, this object point must appears on at least two 

images, which will give four equations and the least squares method can be applied for 

the best solution.
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There are two possible ways to solve for the three unknowns (XA, YA, ZA) in the 

collinearity equations. One is a direct solution which rearranges the collinearity 

equations into a linear form, the other is an iterative solution which keeps the 

collinearity equations in the original non-linear form. The latter solution is more 

rigorous because it minimises the sum of the squares of the residuals on the image 

planes. However starting values are required for the 3D coordinates. The former 

solution has no physical meaning, but the unknown parameters can be solved directly 

without any prior knowledge. The choice of method to use depends on the purpose of 

the application.

3.2.1 Direct solution

The 3D coordinates (XA, YA, ZA) of the object point can be solved directly by 

rearranging the collinearity equations (3.6) as follows

\ xj mj  3I + cjmJU) X A + (Xjmj32 + Cjtnj n )YA + (x + cjmjn )ZA

= Xj(mJ3iX JL + mJ32YJL + mj33ZJL) + Cj{jnjnX JL + mjnYjL + mJX3ZJL)

(3.21)

( y jmj  31 + C j mj2 l)X A + ( y jmm + C j mj22)YA+ (y jmj3 3 + Cj mj23)Z A 

=  y S mn'.X H + mj32YJL + mm Z ji)  + CM j 2 \ X JL + mj22YjL + mj23Z JL)

(j = 1, 2,..., m )

or rearranging the DLT model (3.9) as follows

(
(3.22)

In matrix form, these equations can be expressed as
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’ « 1 1 « 1 2 « 1 3 'X A'
« 2 1 « 2 2 « 2 3 Ya

z À

- ^ 2

_ « 2 ml « 2///2 « 2 m3 .

L A _

P in , .

(3.23)

or simply

Ya
Z A

= B (3.24)

The unknown parameters (XA, YA, ZA) can be solved directly by a linear least squares 

estimation, i.e.,

X A

Ya

ZA_

(A 'A y W B (3.25)

3.2.2 Iterative solution

The 3D object point coordinates (XA, YA, ZA) can also be solved with iterative least 

squares estimation by keeping the collinearity equations in the original non-linear form. 

In this case, the collinearity equations or the DLT model are ’s

expansion and the starting values of the 3D coordinates (X°, Y°, Z°) are required. 

Linearizing the collinearity equations (3.7) by Taylor’s expansion to the first order 

accuracy with the coordinates of the object points (X, Y, Z) as the variables gives

(f ) , / + ( ^ - ) " t e ,= o  

( f j + ( ' $ L/ A x ,= 0ax,

(3.26)

(./= 1, 2, ..., m )
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or simply

where

A,Ax, = b (3.27)

AXj =
A - X 0'
Y -Y °
Z -Z °

(3.28)

_
dx, _dX dY dZ

dx, dX dY dZ

(3.29)

(3.30)

A, = 3c, J
,%jy 

dx, '

and b =

2 mx3
- ( h ) - 2»»xl

The partial derivatives with respect to the object point coordinates (X , Y, Z) are derived 

and given in Appendix I. So the corrections of the unknown parameters (the 3D 

coordinates of the object points) can then be estimated by least squares, i.e.,

Ax, = (A\ W,A,)-’ A ‘W,b (3.31)

where W, is the weight matrix of the observations. The 3D coordinates of the object 

points are adjusted by
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~xl x°
x , =  Y =  Y° + A x

z z°
(3.32)

The cofactor matrix of the estimated 3D coordinates is given by

Qx, =  (a '.w .a ,) -1 (3.33)

and the covariance matrix is

(3.34)

where cr20 is the a posteriori reference variance of the observations.

3.2.3 Discussion

Which intersection method to use will depend upon whether speed or statistical rigour is 

more important (Atkinson, 1996). It is noticed that, due to the rearrangement of the 

collinearity equations, the minimisation of the least squares for the direct solution is no 

longer the sum of squares of residuals of the observations. The right hand side terms in 

equation (3.21) and (3.22) do not have a physical meaning. The iterative solution 

minimises the sum of squares of residuals of the observations on the image plane. So 

the iterative solution is statistically rigorous, but starting values are required. The 

starting values can be obtained by some other non-photogrammetric methods (e.g. 

surveying) or by the direct solution mentioned above.

If m images are used for the intersection purpose, the number of observations is 2m and 

the degrees of freedom are (2m-3). These numbers are much smaller than those in the 

bundle adjustment where a few thousand observations and several hundred unknown 

parameters are usual. So the results from the intersection are of low reliability compared
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with the simultaneous bundle adjustment. Since the camera parameters are known and 

fixed, the spatial object points can be solved individually. Each time only three 

unknown parameters need to be solved. This is very efficient in terms of speed and 

memory.

3.3 Resection

Resection is a procedure of determining camera exterior parameters (XL, YL, ZL, to, (j), k ) 

with known spatial control points (Thompson 1975; Slama 1980; Atkinson 1996). 

Figure 3-5 illustrates the geometry of resection.

Figure 3-5 The geometry of the resection

Again the collinearity equations can be used for the camera resection purpose. A spatial 

point P fXh Yh Zj) with its image coordinates p,{xh j,) measured on a camera will give 

rise to two collinearity equations. If three non-collinear object points are recorded on a 

camera and the 3D coordinates of these object points are known, the camera parameters 

can be determined uniquely by the corresponding collinearity equations. With more 

than three object points least squares methods are used for the best solution. These 

spatial object points are referred as spatial control points and their coordinates can be 

measured by some other non-photogrammetric methods. If enough spatial control points
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are available and well distributed in the object space, the camera interior parameters 

(together with the camera exterior parameters) can also be estimated. As with 

intersection, two basic procedures can be used in camera resection, i.e., iterative 

solution and direct solution.

3.3.1 Iterative solution

The collinearity equations provide the basic functional model for space resection. 

Linearizing equations (3.7) by Taylor’s expansion to the first order accuracy with the 

camera exterior parameters (XL, Y,, ZL, co, <j), k ) as the variables gives

< ck2

ck,

■)°Ax2 =0 

■)°Ax 2 = 0
(3.35)

( i  = 1 ,2 ,...,« )

or

A2Ax 2 = b (3.36)

where

* l

o 
 ̂1

yl - n
ZL - A
CO- 0 °

<t>

o-O-1

K -K*0

(3.37)

8 f u  =  & ix  ¿ fix  & bc & lx  & lx  < fix

dx2 dX, âYj oZ, dm d<j> 3k
(3.38)
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3c,
<¥iy C fiy t f i y  S fiy  iy f r y

a X ,  c ¥ l  d Z L d co  o<f> 3 k
(3.39)

A  =

,& i x  )0

dx2

3C,

and b =
~ ( f j
~ ( f j - 2/jxl

2wx6

The partial derivatives with respect to the camera exterior parameters (XL, YL, ZL, a), <f>, 

k ) are derived and given in Appendix I. The corrections of the camera parameters can 

then be estimated by least squares, i.e.,

Ax 2 = (A;W,A2)-' A'W'b (3.40)

where W, is the weight matrix of the 2D observations. The adjusted camera exterior 

parameters are then obtained by

101

Yl Yl
ZL
CO co°

,0

K _k \

+ Ax, (3.41)

The full cofactor matrix of the estimated camera exterior parameters is given by

QXl= (A ‘2WlA2)~1 (3.42)

The iterative process requires starting values of the camera exterior parameters. 

Approximate values for the coordinates (XL, YL, ZL) are relatively easy to obtain but not 

for the rotation angles (co, <(>, k ). That makes the space resection method by the iterative 

process from the standard collinearity equations difficult to use without knowing the
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starting values of the camera exterior parameters. Many efforts have been made to 

obtain the camera exterior parameters by the control points directly without any prior 

knowledge of the camera. Such approaches are termed closed solutions.

3.3.2 Closed solution (Direct solution)

Space resection by DLT is one of the well known direct methods which transforms the 

collinearity equations into the linear form to avoid the requirement for the starting 

values. The standard DLT equations include 11 parameters which are related to the six 

camera exterior parameters (XL, Yt , ZL, co, <j), k ). The interior parameters can normally 

be ignored in the resection process. The standard DLT equations are:

LxX  + L2Y + L,Z + La 
L9X  + Ll0Y + LUZ  +1 
L}X  + L6Y + LnZ + L& 
L9X  + LxoY+ LuZ + \

(3.43)

Since there are 11 DLT parameters for each camera, a minimum of six control points 

are needed on the image to give 12 equations for the solution. Eq (3.43) can be 

transformed into linear form, i.e.,

| XLx + YL2 + ZL2 + L4 -  xXLg -  xYLX0 -  xZLx, = x 
\ x L5 + YLb + ZL-! + Lg -  yXLg -  yYL]0 -  yZLx, = y

(3.44)

These equations can be solved directly by linear least squares estimation. One of the 

problems with the standard DLT method is that certain conditions are required for the 

spatial control points (Karara 1989). If they are in plane, the traditional DLT method 

will fail. Another disadvantage is that at least six spatial control points are required. 

This may not be convenient in some situations. To avoid these deficiencies, a two 

dimensional DLT method can be used (Shih 1988). Only four control targets are 

required this time and they are required to be in the same plane. This is a good 

complement to the traditional DLT method. If more than six spatial control points are
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available and they have sufficient depth difference, the traditional DLT method can be 

used. Otherwise, the 2D DLT method will still give a satisfactory solution. This method 

is discussed here.

In the space resection process, if the control points are supposed to be in the same plane, 

their Z coordinates can be considered as zero. The terms including Z in Eq (3.11) will 

disappear. Only X and Y coordinates are required for these control points. The 11 DLT 

parameters will be reduced to 8, from which camera exterior parameters can still be 

derived. The improved 2D DLT equations are expressed as

L X + L .Y + L  
X ~ C L1X  + L J +  1

l 4x  + l 5y + l 6y = c—-------- 2------ -
L.X  + L J +  1

(3.45)

in which Z, =
L ^ m 'Z i

(3.46a,b)

j -~ (m uX L+ mnYL + mnZLy (3.46c)

S
ii (3.46d,e)

¿6 =

L i= ”h/ L L*= mn/ L (3.46g,h)

L = -{mMX , + mn Y, + ml2Z ,) (3,46i)

The 8 DLT parameters can be solved directly by transforming Eq (3.45) into the linear 

form as

{m2]X , + m22YL + m22ZL). (3.46f)

i AT, + YL2 + L3 -  xXL-j -  xTZg = x 
[XL4+YL5 + L6-yX L ] -yYLs =y

(3.47)
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To solve for the 8 DLT parameters in above equations, a minimum of four control 

points are needed to give at least eight linear equations. If more than four control points 

are available, the linear least square estimation is used for the best solution.

Since the 9 rotation parameters m,, to m33 compose a orthogonal matrix, the following 

conditions hold,

2 , 2 , 2 ,m] i  +m2̂ +mM = 1

mn +  m22 + mi2 =  1

2 2 2m13 + m23 + w33 =1

So L can be solved as

L = ±

or

L = ±

(3.48)

(3.49)

(3.50)

Camera rotation parameters (co, (p, k ) can then be determined by

$ = arcsin(ZZ7)

■<» = -arcsm

v  = -arcsin(i i j / s<))

and camera positions (XL, YL, ZL) can be determined by

(3.51)

w,. m\2 mu -i ' l l ;
Y, = ~ m2\ ™72 m23 l l 6 (3.52)

ZL. m3l m32 w33_ L
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In the procedure of space resection by direct solution accuracy is not the main 

consideration and camera interior parameters can be ignored (such as the principal point 

offset Axp, Ayj) or fixed (such as principal distance c) at this stage.

3.3.3 Discussion

The two different methods used in the resection will give different results. The 

difference may not be significant. But theoretically the iterative method is a rigorous 

least squares process since the sum of squares of residuals is minimised on the camera 

image plane (observations), while the direct solution does not achieve this. However the 

direct solution does not need starting values which the iterative solution requires. A 

good combination could be using direct solution first to obtain the starting values the 

camera exterior parameters and then further adjusted with the iterative process.

If both the camera parameters and the 3D coordinates of the object points are unknown, 

they can be treated as variables at the same time in the collinearity equations and solved 

simultaneously provided that enough observations are available. That leads to the well 

known bundle adjustment.

3.4 The bundle adjustment

The bundle adjustment, developed by D.C. Brown in the 1960’s has been widely used 

in the aerotrianglation and self-calibration of the systematic errors which led to 

substantial improvements in accuracies of aerotrianglation and mapping (Brown 1976). 

It has also been widely used in the close range industrial photogrammetry (Granshaw 

1980; Karara 1989; Fraser 1992; Atkinson 1996) and has been found to be a powerful 

tool in the high accuracy 3D measurement. Figure 3-6 illustrates the geometric network 

of the bundle adjustment.
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Figure 3-6 The geometric network of the bundle adjustment

Supposing m cameras are used to measure n object points. If all of these object points 

appear on all of the cameras, there will be totally 2mn equations and (3n+6m) unknown 

parameters to be solved (provided that the camera interior parameters are fixed). The 

number of equations 2mn is usually much larger than the number of unknown 

parameters (3n+6m). So these unknown parameters can be solved simultaneously. The 

collinearity equations (3.7) can generally be expressed as

f  ( x , ,x 2,l)  = 0 (3.53)

in which

X, = (X 1,Y1,Z i ,X 2,Y2,Z2,---,X„,Y/i ,Zii)

is a vector of the 3D coordinates of the object points, 

x 2 = ia > ̂ /,i > Z ,\, co | , <f>\,k  i, X I2, Yn , ZL2, co 2, </)2 ,k 2 ,• • •, X  lm, YIm, ZIm ,com, (/>,„ ,Km) 

is a vector of the camera exterior parameters, and

 ̂=  (*11 ; Y \  1)' ‘' 5 X ln X ] ),•>..... 5 X m] ’ y m \ ’ "  ‘ ; X mn ’ Ym n  )

is a vector of the measured image coordinates (2D observations).

The linearized functional model may be written as
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Because of the spécial structure of the design matrix A, the structures of the matrices 

A n and A n  are very spécial. Figure 3-7 illustrâtes the structures of the matrices A, A,, 

and A 22.

A ]  A 2

(b) (c)

Figure 3-7

(a) The structure of the design matrix A (A, and A 2)

(b) The structure of A n

(c) The structure of A22
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The small blocks in A, are 2x3 matrices and the big blocks in A2 are 2nx6 matrices. 

Both A ,, and A 22 are block diagonal matrices. The size of the blocks in A t, is 3x3 and 

The size of the blocks in A 22 is 6x6.

The submatrices in A n  are formed by the products of the transposes of the small blocks 

(size of 2x3) in A, and their corresponding blocks (size of 2x6) ix \ A 2. If an object point 

does not appear on a particular image, the corresponding submatrix (size of 3x6) in A u 

is null. This is the usual case in aerial photogrammetry which makes A I2 regular and 

advantages can be taken from this fact (Brown 1976). But in close range 

photogrammetry, most of the object points appear on all the images. Matrices A ,2 and 

A 21 are almost full. Not much can be done about this.

The least squares adjustment of the unknown parameters requires a series of matrix 

processes. The most difficult work in terms of speed and memory is to derive the 

inverse of the coefficient matrix TV. The size of TV could easily be hundreds or even 

thousands in close range photogrammetry. It is very expensive for a computer to 

calculate the inverse of such a big matrix. However, because of its special structure 

advantage can be taken when calculating the inverse of the matrix TV. One of the 

methods is inversion by partitioning (Frank Ayres 1962, Brown 1976, Granshaw 1980), 

which gives

TV"7 1̂1 Aj2
A2, A22 ̂

B 11 B 12

B  21 B  22

(3.60)

in which

B„ = A~j + a ;Ia 12k ~'a 21a ;; 

B 12 = - K a 12k -'

b ,2 = K
B:n = K '

(3.61)
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and

K — A22 A2iAu  Al2 (3.62)

Since A u is a block diagonal matrix, its inverse can be computed by inverting n 3x3 

small matrices, which provides a big saving of time and memory. Matrix K  is generally 

full with a size of 6mx6m. Therefore the inverse of K becomes the main cost of 

processing the matrices.

An alternative to calculating the inverse of TV is to calculate the B matrices by

This time the inverse of A 22 can easily be obtained by computing the inverse of a series 

of 6x6 small matrices. However the size of K is 3nx3n and the matrix is generally full,

larger than 6m in close range photogrammetry (e.g. when 5 images are taken to measure 

100 object points). But it could be possible that 6m is larger than 3n in some special 

cases such as when hundreds of images are taken to measure only a few object points. 

In this case Eq (3.63) and (3.64) are more suitable for calculating the inverse of TV.

In real 3D measurement applications, the coordinates of the object points x, are more 

important than the camera parameters x2. The corrections of x, can be obtained by

(3.63)

and

K = A „ - A 12A2’A¡12̂ 22 **21 (3.64)

hence the inverse of K could be very expensive to calculate since 3n is normally much

(3.65)
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and the cofactor matrix of the estimated coordinates is given by

Qx, = (B„A‘ + Bi2A ,2)W,Qb((BI1A tI + B ^ W , ) '

= ( B j jAj + B j.A ^W ^A j B,, + A2B2I) (3.66)
= B j jAj jB jj + BnA12B2I + BI2A2lBn + BI2A22B2I

The computational complexity of the last three terms is directly proportional to 

6mx(3n)2 provided that the right order is applied when products of matrices are 

calculated. The computational complexity of the first term is directly proportional 

to(3n)3 if the products of the matrices are calculated directly. This is normally too 

expensive. The complexity can be reduced to 6mx(3n)2 when B,, is replaced by Eq 

(3.61) and the right order is considered.

The full cofactor (covariance) matrix is necessary during the network design stage 

which gives not only the standard deviations of the estimated parameters but also the 

correlations between them. However, in many cases only the standard deviations of the 

estimated parameters are of interest. These are obtained from the diagonal elements of 

the covariance matrix which can be approximately estimated by the inverse of A,, and 

are easy to calculate since A,, is a block diagonal matrix. Simulation tests show that this 

approximation is good enough for a strong network.

3.5 Bundle adjustment with constraints

The foregoing discussion of the bundle adjustment is based on the assumption that the 

coefficient matrix TV is non-singular. However, photogrammetric observations are 

obtained from images which do not include any information in the object space to 

define a datum. If control points are involved in the bundle adjustment the datum 

problem may be solved. Otherwise constraints must be applied to remove the rank 

defects of TV and make it possible to estimate the unknown parameters. Inner constraints 

are often used for the unbiased free network adjustment. Inner constraints can be 

applied to the object points or to the camera exterior parameters, or to both.
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C h a p t e r 3 L e a s t s q u a r e s e s ti m a ti o n o f  p h o t o g r a m m e t ri c m e a s u r e m e n t s

3. 5. 1 I n n e r c o nst r ai ns o n t h e o bj e ct p oi nts

W h e n i n n er c o nstr ai nts ar e a p pli e d t o t h e 3 D c o or di n at es of all t h e o bj e ct p oi nts a n d 

tr e at e d as a d diti o n al o bs er v ati o ns, t h e e xt e n d e d o bs er v ati o n e q u ati o ns c a n b e writt e n as
--

-1 > a ; A xj

'*C>
1__

1 Ci i 1<N

__
1

<=s'

( 3. 6 7)

or

At  A  = K  ( 3-6 8)

w h er e G,  is a 7 x 3 « m atri x w hi c h h as b e e n gi v e n i n s e cti o n 2. 8. 1. B y a p pl yi n g i n n er 

c o nstr ai nts t h e u n k n o w n p ar a m et ers c a n t h e n b e esti m at e d. N oti n g t h at t h e l ast s e v e n 

e q u ati o ns m u st b e s atisfi e d e x a ctl y, i. e., t h e r esi d u als ar e z er o, t h e u n k n o w n p ar a m et ers 

ar e esti m at e d b y n or m al l e ast s q u ar e a dj ust m e nt, i. e.,

A x = ( A lg Ws A gi) - 1 A [ W s b
Si  Si  S i

( 3. 6 9)

i n w hi c h

W„ = (3. 7 0)

T h er ef or e

' A'j W' A, +  G \ G,  a ;w , A 2 ~
- 1 1

__
__

__
__

i

b

a ‘2 w ,a , a \w 1a 2

------------1

________1 1 VI 1_
__

__
__

0
(3. 7 1)
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A,, + G\G, V -1
'A ‘W, G\ b

a „ a 22_ a ‘2w , 0 0

'4 , > K> __
1 -1

a ; '

A > a 22_

—
i

X__
1

= N;'A'W ,b

With G\G, added to A n, N  becomes non-singular. The same procedures can then be 

carried out as discussed in section 3.4 to obtain the adjusted 3D coordinates of the 

object points and the cofactor matrix. But this time the computing of the inverse of A], 

is more difficult since the special structure of A,, (a block diagonal matrix) is spoiled 

due to the addition of G',G,.

3.5.2 Inner constraints on the camera exterior parameters

Inner constraints can also be applied to the positions (XL, YL, ZL) of all the cameras and 

treated as additional observations. The extended observation equations may be written 

as

1
>

1---«N

I1__ 1---<51__

1

----1 1<N
__

1

----1
__

1

A Ax = hSi

where G2 is a 1x6m matrix and is given by

(3.72)

(3.73)
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1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

0 Z lx - Y u  07X3 0 *12 — Yi 2 0 7x3 - 0 Z  Lm ~ Y Lm

- Z lx 0 *11 — Z L2 0 X  L2 ~ Z/.m 0 x Lm
Yia - * lx 0 Yl2 X  L2 0 YLm - X Lm 0

^ u Yu * u x L2 YL2 *£2 x Lm YLm * Lm

(3.74)

The Os in G2 are submatrices with a size of 7x3, which means the corresponding 

elements concerning camera rotational parameters are zero. By applying inner 

constraints to the positions of the cameras the unknown parameters can now be 

estimated. Again the last seven equations must be satisfied exactly, i.e., the residuals are 

zero, the unknown parameters are estimated by normal least squares adjustment, i.e.,

(3.75)

in which Wg has the same format as W given by (3.70). So

~ A\Wl A, A ‘W,A2
-1 1

Jîx __
1

> / b
A 2w ,A  a ‘2w 1a 2 + g 2g 2_ A 0

(3.76)

A„ Al2
-1

"A\Wt, 0~ ~b
A2I a 22 + g  2g 2 A W, G2. 0

*N

i__ -1
' 4

A :  A 'n_ i«n
__

i

= N g'A'W,b

The addition of G2G2 to A 22 removes the rank defects of N  and makes it non-singular. 

The adjusted 3D coordinates of the object points can then be obtained. Since the 

structure of A,, remains unchanged, it is still a block diagonal matrix, the inverse of 

N  can be calculated by partitioning via Eq (3.61) and (3.62).
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3.5.3 Discussion

Inner constraints can be applied in the bundle adjustment to remove the rank defects of 

the design matrix, so the unknown parameters can be estimated. The datum is defined 

by the starting values. Because the starting values are arbitrary, the estimated results are 

in an arbitrary datum. Different starting values lead to different results. But they are 

equivalent in the sense of least squares and the shape of the object remains unchanged.

With the additional seven constraint equations, the total number of equations used for 

the (3n+6m) parameters is (2mn+l). The following conditions must be satisfied to 

enable the bundle adjustment to work, i.e.,

2mn +7 > 3n + 6m

which gives

n> 3 +
2 m -  3

and

m > 1.5 +
n -  3

(3.77)

(3.78a)

(3.78b)

This means that minimum of four object points are required generally (when m>3) and 

minimum of five object points are needed if only two photographs are used, and 

minimum of two cameras are required generally (when ri>5) and minimum of three 

cameras are needed if only four object points are involved. Figure 3-8 illustrates the 

feasible area (in which the unknown parameters can be solved) of the bundle 

adjustment.
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n
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5 .. 
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bundle adiustment
4.— 4 — 

4----4.....
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Figure 3-8 Feasible area of the bundle adjustment 

when applying inner constraints

But actually three object points are enough to determine the camera parameters (exterior 

parameters) provided that they all appear on the camera image plane and two images are 

adequate to solve the 3D coordinates of the object points. That implies enough 

information has been given to determine the unknown parameters with three object 

points and two cameras. But why can not these parameters be solved simultaneously by 

the bundle adjustment with inner constraints? Perhaps seven constraints are not enough.

When inner constraints are applied, the special structure of A,, or A 22 is spoiled. This 

may make the computation of the inverse of the coefficient matrix N  more complicated. 

An alternative method is to treat the coordinates of all object points as weighted 

observations which will keep A,, and A22 their special structure and take the advantages 

of the inverse by partitioning. This technique is termed the unified bundle adjustment.

3.6 The unified bundle adjustment

As mentioned in Chapter 2, in the unified least squares adjustment all the unknown 

parameters are treated as weighted observations. In the photogrammetric bundle 

adjustment these parameters are divided into two parts, the coordinates of the object 

points x, and the camera parameters x2. The weighted observations can be applied to the

89



Chapter 3 Least squares estimation of photogrammetric measurements

object points or to the camera parameters. They can also be applied to object points and 

the camera parameters at the same time. But this is normally not necessary.

If the coordinates of the object points are treated as the observations, the additional 

observation equations are

x,=x°, (3.79)

with associated weight matrix Wg. Since the coordinates of the object points are not 

measured beforehand they are treated as pseudo-observations. x°, will be the starting 

values and a unique weight g will be assigned to them. So the weight matrix is gl, 

where /  is a 3nx3n unit matrix. After linearization Eq (3.79) becomes

A y , -  bg (3.80)

Therefore the extended observation equations are expressed as

A / Ax, ' b
/ 0 A x 2 1 »0 1__

(3.81)

or

A „ A y  = b,

The unknown parameters are estimated by

AX = (A!lWBA J - 'A uWNbu

where

W„ =
W,

(3.82)

(3.83)

(3.84)
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So

A [W ,A + gI a \w ,a 2~
-i

a ; i b '
A[W,AX A ‘2W,A2_ A ‘ 0 gl_

----1
<5__

1
A11 + S i A\2 

A j \ A i  _

1-1
a ;
A'

W,b

= N~]A ‘Wlb

(3.85)

The addition of g l to A,, removes the column rank defects of TV and makes TV„ non-

singular. Since g l is a diagonal matrix, the structure of A n remains unchanged. The 

inverse of TV,, can easily be calculated by partitioning from Eq (3.61). The cofactor 

matrix of x, is obtained by Eq (3.66).

In the unified bundle adjustment, the weight factor g plays an important role. If g is 

assigned a big value, the parameters will be tied on their starting values, more iterations 

are required during the adjustment process and the results will be affected by these 

pseudo-observations, which is obviously not expected in the unified bundle adjustment. 

When g approaches infinity, the parameters will not be allowed to be adjusted at all. On 

the other hand if g is very small and approaches zero, which means the pseudo-

observations are given a very large variance, the parameters are allowed to be adjusted 

freely by the real observations. It then becomes a free network adjustment. This is what 

is expected. But g cannot be zero. Otherwise TV,, will be singular. Theoretically the 

smaller g is the better. But practically g cannot be too small to make TV„ ill-conditioned 

otherwise the inverse of TV„ is unobtainable numerically due to the limitation of the 

computers.

Simulation tests show when an appropriate g (it is available in a very large range) is 

assigned the unified bundle adjustment will give numerically the same results as that 

obtained from the traditional bundle adjustment with inner constraints. However, the 

computational procedures are simplified and the speed is increased significantly.

With the unified bundle adjustment rank defects of the design matrix are removed. The 

datum is defined by the starting values of coordinates of the object points as in the
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bundle adjustment with inner constraints. With additional 3n pseudo-observations, the 

total number of the observation equations is 2mn+3n, the inequality (3.77) becomes

2mn + 3n> 3n + 6m (3.86)

which gives

n > 3  and m > 1 (3.87)

This means that three is the minimum number of object points required for the unified 

bundle adjustment no matter how many cameras are used. This reflects the real situation 

of the simultaneous bundle adjustment. Figure 3-9 illustrates the feasible area of the 

unified bundle adjustment.
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Figure 3-9 Feasible area of the unified bundle adjustment
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3.7 Summary of the chapter

Close range photogrammetric 3D measurements are based upon image observations. 

The purpose is to obtain 3D coordinates of object points. The collinearity equations 

provide the basic functional model in close range photogrammetry which establish the 

relationship between the 2D image observations and the 3D coordinates to be estimated. 

The DLT is a modified model from the collinearity equations which encompasses some 

camera interior parameters in the 11 DLT parameters without additional consideration.

Once a functional model is defined, the least squares method can be used to estimate the 

unknown parameters from the known observations. Spatial control points may be 

required to define a datum and initialise camera exterior parameters. Resection is 

normally the first step to obtain the camera exterior parameters. It is usually followed 

by intersection to compute the 3D coordinates of the object points. This procedure 

provides the easiest method of 3D measurement, especially when the DLT model is 

used. However the results provided by this method are not likely to be precise. The 

precision of the estimated results is influenced not only by the 2D image observations 

but also by the control points. Furthermore when the unknown parameters are estimated 

by direct solution, rather than iterative solution, the least squares process is not applied 

to the sum of the squares of the residuals on the image planes (observations) and the 

precision of the estimated results cannot be evaluated. Therefore this method is not 

considered to be rigorous. The results may be used as the starting values of the bundle 

adjustment, a rigorous least squares estimation process.

In the bundle adjustment, the 3D coordinates of the object points and the camera 

parameters are all treated as unknowns. Least squares adjustment will adjust these 

unknown parameters according to the image observations. Constraints are required in 

the bundle adjustment to remove the rank defects of the design matrix; otherwise the 

unknown parameters are not estimable. Inner constraints are usually applied in the 

bundle adjustment for the free network solution. It is normal to apply inner constraints 

on the object points. In this case the full matrix A'n (originally a block diagonal matrix) 

makes the computation process very expensive. However, the full covariance of the 3D
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coordinates is available. Constraints can also be applied to the camera exterior 

parameters (positions only). It is useful when 6m is less than 3n, which is usual in close 

range photogrammetry, to save computation time. But the full covariance matrix of the 

3D coordinates may not be available. The results from the inner constrained bundle 

adjustment are in an arbitrary coordinate system. A coordinate transformation may be 

required to relate the results to a given coordinate system. With spatial control points 

involved in the bundle adjustment, a datum can be defined properly and the results will 

be related to the controls. But the precision of the estimated results will be influenced 

by the controls. It is possible to include high precision controls to enhance the bundle 

adjustment results. However, it is often the case in close range photogrammetry that the 

precision of the controls may not be as good as that of the image observations. 

Therefore the results may be biased by the controls.

The structure of the coefficient matrix in the photogrammetric bundle adjustment is 

very special. Advantages can be taken by partitioning when calculating the inverse of 

the coefficient matrix. However with the inner constrained bundle adjustment the 

special structures of the matrices A,, and A22 are changed. The unified bundle 

adjustment is a method which can solve the problem. In the unified bundle adjustment, 

the 3D coordinates are treated as pseudo-observations with a small weight. In this way 

the datum is defined by the starting values of the 3D coordinates and the structure of the 

matrices A,, and A 22 remain unchanged. When the weight of the pseudo-observations is 

small enough, its influence can be ignored. Therefore it is a free network adjustment 

process. The unified bundle adjustment method will give numerically the same results 

as the normal bundle adjustment with inner constraints, but with a significant saving of 

computation time.

The bundle adjustment is a simultaneous least squares process which is very expensive 

in terms of time and memory. But it is rigorous and the full covariance matrix is 

provided at the same time. If time and memory are not a concern, the bundle adjustment 

will provide satisfactory results. However, in the era of digital photogrammetry, when 

real-time 3D measurement is considered, more efficient methods have to be developed.
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Chapter 4

Separate Least Squares Estimation

In Chapter 2, several methods of least squares were discussed. These methods have 

been widely used in surveying and photogrammetry for different purposes. However as 

far as speed is concern none of them are capable of dealing with real-time applications 

in close range photogrammetry. In this chapter an alternative method of least square 

estimation — separate least squares estimation — is introduced.

4.1 Introduction

To introduce the method of the separate least squares estimation, let us first consider a 

set of linear equations with two variables

The equations can be solved simultaneously by computing the inverse of the coefficient 

matrix (if it exists). Alternatively, the equations can be solved iteratively using the 

Jacobi method or the Gauss-Seidel method. Both methods are conditionally convergent

equation is used each time and one variable is solved (the other variable is considered as

(4.1)

as discussed in Chapter 2. In the Jacobi method and the Gauss-Seidel method, only one

constant). Table 4-1 lists the iterative solution of x and y by the Gauss-Seidel method 

with (.v,.y) = (0, 0) as the starting values.
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Table 4-1 The iterative solution by 

the Gauss-Seidel method

Iteration No. a : y
0 0 0
1 1.5000 1.1667
2 0.9167 0.9722
3 1.0139 1.0046
4 0.9977 0.9992
5 1.0004 1.0001
6 0.9999 1.0000
7 1.0000 1.0000

Now consider another strategy. Instead of using one equation, both equations are used 

at the same time for each variable. Obviously this variable will be over-determined. 

This reminds us the redundant measurement. Another criterion is required for a unique 

solution. This criterion is least squares.

Firstly, suppose y  is known (from a starting value). The terms with_y are moved to the 

right hand sides of the equations. So E q (4.1) becomes

|2x  = 3 - y  
\x  = -2  + 3_y

(4.2)

or

Axx  =bx (4.3)

where

A

The unknown parameter is over-determined from above equations since y  is known. 

Now least squares can be used to determine a* uniquely, i.e.,

and 3 -T  ' 
-2 + 3 y
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x  = (ÄxAxy xA,xbx

= ¥ y + 4)
(4.4)

This suggests the iteration

x [ * + i ] 4 ( y * ' + 4) (4.5)

After obtaining x, it is considered as known to determine y. So y  can also be solved 

uniquely by least squares from Eq (4.1) after moving the terms with x  to the right hand 

sides of the equations, i.e.,

y = (A'yA r'A 'yby

= — (x + 9)
10

(4.6)

This suggests the iteration

y*+i>
10

(x[i+1] + 9) (4.7)

With Eq (4.5) and (4.7) the variables x and j are solved separately. Table 4-2 lists the 

separate solution by least squares with the starting values (x!ol,_y[o]) = (0, 0).

Table 4-2 The separate solution 

by least squares

Iteration No. X y
0 0 0
1 0.8000 0.9800
2 0.9960 0.9996
3 0.9999 1.0000
4 1.0000 1.0000
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Now consider a general case

faux + any = b,
\ " 12 1 (4.8)
[a2\X + «22  ̂= h2

Again solve x  and y  separately by least squares. The separate equations are given by

x " " '= (A[A,)-'A',(b -  A ,y '1') (4.9)

/**" = (A'yAr)- ‘A'r(b -  ) (4.10)

in which

au a n
, A v = and b =

_a2\_
5 y ß  22 . P2_

Eq (4.9) and (4.10) can further be rearranged as

x[Mi = Cy[k] + D 

y*+,] = Ex [M] + F

in which

'C = - ( ^ A X)-1A^A,

D = ( 4 A x)-14 b  
' E  = - ( A ,yAy)-1A ‘Ax 

F  = (A ‘Ay)-1A ‘b

(4.11)

(4.12)

(4.13)

It is noticed that C, D, E  and F  are all 1 xl matrices and they will remain unchanged 

during the separate process. After each iteration, x  and_y are re-estimated. So Eq (4.11) 

and (4.12) can be used successively to refine x and y  until a convergent requirement is 

met.
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If we further substitute x[k+11 in Eq (4.12) from Eq (4.11), we have 

y 'k+,l =CEy,kl +DE + F (4.14)

For convergence ofy, the necessary and sufficient condition is (Jacques & Judd, 1987)

CE< 1 (4.15)

i.e.,

(A ‘Ay)(A ‘Ax) < (A[Ax)(A\Ay) (4.16)

Similarly, for convergence of x, the necessary and sufficient condition can also be 

obtained and it is found to be the same as given by the inequality (4.16). This condition 

can also be expressed as

(ai 1̂12 ^21̂ 22) ^ (flll a2lXfl12 ^22) (4-17)

By expanding and eliminating the identical terms from both sides, the convergence 

condition becomes

(awa22~a21̂ 12 )2 > 0 (4.18)

which is equivalent to

(let A 0 (4.19)

It means that this separate least squares process will always converge with any starting 

values provided that the coefficient matrix of the linear system is non-singular. 

Although the conclusion is derived from a 2x2 linear system, it should be possible to 

prove that it holds for any linear system. One thousand simulated linear system have
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been tested. It is found that the solutions from the separate least squares estimation 

always converge to the right results even with ridiculous starting values. The method 

can also be used to solve non-linear equations.

This separate process is based on least squares and the unknown parameters are 

estimated separately. So this method is refereed to as the separate least squares 

estimation. The term separate LSE is used afterwards.

If the functional model itself needs to be solved by least squares, the separate LSE 

method can be used directly.

4.2 Separate LSE

The separate LSE method is similar to the sequential LSE method since it is also a 

technique of division. However, instead of dividing the observations, the unknown 

parameters are divided into groups and estimated separately. When estimating one 

group of the unknown parameters, other parameters are considered as constants. These 

constants could either be the starting values or estimated results from the last iteration. 

The updated parameters are then used as constants in the functional model to estimate 

other unknown parameters. Each time only a part of the unknown parameters are 

estimated. So the size of the coefficient matrix is reduced.

Consider a measurement system with 1000 unknown parameters to be estimated by the 

least square estimation. With the simultaneous solution the computational complexities 

are:

10003 = 109 (time) 

and 10002 = 106 (memory)

Using the separate LSE, if the unknown parameters are divided into 100 groups with 10 

parameters in each group, the computational complexities for one iteration are:
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lOOxlO3 = 105 (time)

and 102 (memory)

The separate LSE is an iterative process which estimates the unknown parameters 

iteratively and separately. But the iterations used here are different from the iterations 

used in the simultaneous LSE which are caused by the non-linear functional model. 

Even with a linear functional model iterations are still required by the separate LSE but 

not by the simultaneous method. The number of iterations required for the separate LSE 

is normally more than the simultaneous solution. But it is so quick for each iteration 

that the separate LSE is much faster, especially in close range photogrammetry.

4.2.1 Linear case

For a linear system, the functional model may be expressed as

Ax = b (4.20)

in which

x  = (x,, x2, ..., xu)' is a vector of the unknown parameters,

A is a mxu coefficient matrix (m>u), and 

b is a mx 1 vector of the measured elements (observations).

To estimate the unknown parameters separately, x may be divided into K groups, i.e., .v 

= (X,, X 2, ..., XK) and A into A = (Au A 2, ..., Ay) accordingly. Therefore Eq (4.20) 

becomes

AxX x + A2X 2 + • • • +  Ak X k =b  (4.21)

Suppose there are q parameters in X h so A t will be an mxq matrix. When estimating X h 

other parameters are considered as constants and the corresponding terms are moved to 

the right hand side of Eq (4.21), i.e.,
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AX]k+]] = b, (4.22)

in which

bj = b -  A j X j  (4.23)

and

A jX1 = Y A,x V  (« 4 a )
7=1j*i

or

A jX , = Y AlX T "  + Y AiX T  ( « 4b)
7 = 1 7=>'+l

The former is like the Jacobi iteration and the later is like the Gauss-seidel iteration in

the sense of treating updated parameters. The superscripts [k] and [k+1] denotes the Ath 

and (A:+l)st iterations.

Since A jX j  is non-stochastic, so Wb =Wb. By the linear least square estimation is 

solved as

or

*;**" = A\wtb,

=(A;ir,Alr lA ; w ,( / , - Y A lx ‘“)
7=1j*i

(4.25a)

X \k+i] = (.A‘WbAiy 'A ,iWb( b - Y JAJX)k+i] -  Y ,AjX [k]) (4.25b)
7=1 7 = 1+1

The size of A ‘iWhAi is qxq, much smaller than that of A'WbA , which is mxm for the 

simultaneous LSE. This is why time and memory are saved. After X i is solved, it is 

considered as constant to solve other parameters. Since the constants assigned to the 

unknown parameters are starting values or the least squares estimates from previous 

iterations, based on these constants the least squares estimation of the current iteration
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may not be the final results unless several iterations have been applied. The iterative 

process stops when the corrections for all the parameters are less than a given 

significant value.

By the general law of propagation of covariance, the cofactor matrix of the estimated 

parameters X-t is obtained by

Qx, = (AltWbAtr 'A i‘WtQbiWkA,(A,,WbA ,r ' (4.26)

When estimating X-p other parameters are considered as non-stochastic constants. But 

their stochastic models are introduced after the first iteration since their results can be 

estimated by the least squares process. From Eq(4.23) we have

Qt, =Qb +AJQJAJ‘ {A.21)

in which

A J = [A 1 A 2 ’ ‘ ’ A k ]  without Ai (4.28)

and

Ö, withoutQx-

(4.29)

Replacing Qbi in Eq (4.26) from Eq (4.27) and expressing (A/Wf/i))'1 by A) gives

QXi= N i + N iA ‘AJQjAJ‘AiN i (4.30)
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After each iteration the estimated results (the solution and the cofactor matrix) for all 

the unknown parameters will be updated. The results will finally converge to the same 

solutions obtained from the simultaneous LSE.

It is noticed that the full cofactor (covariance) matrix is not available with separate LSE. 

The cofactor matrix of the estimated parameters is given by

ÔA,

(4.31)

The correlation between the parameters, which are not in the same group, is not 

obtained.

If the separate LSE is compared with the iterative LSE it is found that the solution given 

by the separate LSE Eq (4.25) is identical to that given by LSE with block Jacobi 

iteration Eq (2.83) or block Gauss-Seidel iteration Eq (2.86) (Harley 1997). To show the 

equivalence of the two solutions, the least squares estimation of Eq (4.20) may be 

written as

i.e.,

where

(A'W„A)x = A ‘Wbb 

Nx = d

(4.32)

(4.33)

TV = A ‘WhA and d = A ‘Wbb .

In this case the solution of Eq (4.20) will be a least squares estimation. Dividing v: into 

K groups as in Eq (4.21) and Eq (4.22), TV and d become
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and

TV =

d =

A[WbA, A[WbA2 ■-  A[WbAk

a [ w „a x a [ w „a 2 ■"  A[WbAk

A[WbA, A[WbA2 ■”  < W bAk

A[W„b
A ‘W„b

A[Wbb

(4.34a)

(4.34b)

so that N tJ = A\WbAj and di = A ‘Wbb .

If a Jacobi iteration Eq (2.83) is used, the solution of the linear equations (4.33) will be 

given by

= {A\WbA>r\A\Wbb -  Y^A'JVhA.'X^) (4.35a)
i=i 
j* ‘

This solution is identical to that given by Eq (4.25a). With the Gauss-seidel iteration of 

Eq (2.86), the solution will be

X]k+" = (A‘WbAiy \ A ‘Wbb - f j4 W bAjX [; +'] -  j^A 'W h A jX ^)  (4.35b)
7 = 1 j=i + \

This solution is identical to that given by Eq (4.25b).

Since matrix (A'WA) is symmetric and positive definite, this iterative process will 

always converge (Phillips & Cornelius 1986).
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4.2.2 Non-linear case

For the non-linear functional models, the general observation equations can be 

expressed as

f ( x )  = l (4.36)

To estimate the unknown parameters separately, x  is divided into k groups, i.e., x  = (X,, 

X 2, ... , X k ). When estimating Xn other parameters will be considered as constants. The 

linearized observation equations for estimating A) become

AiAXi = b, (4.37)

in which

4  = (-%r)o and bi = l - f ( x ° )

LSE can then be applied, i.e.,

AXl = (Al,W,Al)-, AlWlbl (4.38)

and

X i = (X i)0 + AXi (4.39)

After A) is adjusted, it is considered as constant to adjust other parameters. The iterative 

process terminates when the given stop criteria are met.

Unlike the iterative LSE discussed in section 2.5, which is applied to the inner 

iterations, the separate LSE combines the inner iteration and the outer iteration into one 

iteration. Instead of using one equation for each parameter all the equations are used. 

The separate LSE has the same advantage as the iterative LSE of saving memory. The 

size of A'i WlAi is qxq, much smaller than that of A'WBA , which is mxm for the
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(from simple surveying to complicated close range photogrammetry) are given in the 

thesis to verify this.

As with the linear case, the full cofactor (covariance) matrix is not available with 

separate LSE. The cofactor matrix of the parameters is given by

Qx = (4.45)

The correlations between the parameters which are not in the same group are not 

obtainable.

For a strong measurement network (which is normal in close range photogrammetry), 

the value of the second term in Eq (4.44) is much smaller than that of the first term. No 

significant difference is made by ignoring the second term in Eq (4.44). Based on this 

approximation, the block diagonal elements in the cofactor matrix can be adequately 

estimated by

(4.46)

With the iterative LSE, two iterative loops are required as mentioned in 2.5. One is the 

outer iteration for linearization; the other is the inner iteration (Jacobi method or Gauss- 

Seidel method) which is used to solve the linearized equations. Therefore there are two 

convergence criteria, one for each iterative loop. The two criteria are checked during 

execution and the solution is reached when the convergence criterion of the outer 

iteration is met. With the separate LSE there is only one iterative loop, which is outer 

iteration, and one convergence criterion for the outer iteration. The inner iteration is 

merged with the outer iterative loop, since only one iteration is applied in the inner 

iteration. Therefore the separate LSE is a special case of the iterative LSE when it is 

used to solve non-linear equations.
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4.3 Discussion

The separate LSE is a technique of division. Since the unknown parameters are divided 

into many groups and each time only some of the parameters are estimated, the size of 

the matrix to be inverted reduces, so the time and the memory required for each 

iteration is reduced. Normally more iterations are required for the separate LSE 

compared with the simultaneous LSE. However, the overall speed of convergence is 

much faster when the separate LSE is used in close range photogrammetry.

In the case of solving collinearity equations in close range photogrammetry, the 

unknown parameters can be divided into two groups, the coordinates of the object 

points and the camera parameters. Because of the block diagonal structure of the 

coefficient matrices, their inverses can be obtained by processing a series of small 

blocks with the size of 3x3 and 6x6. The speed will be increased dramatically and the 

memory requirements reduced greatly.

The full covariance matrix is not available directly from the separate LSE. The cofactor 

matrix of the parameters Qx is a block diagonal matrix given by Eq (4.44). The 

correlations between those parameters which are adjusted in the different groups are not 

provided. But those correlations may not be necessary in many cases. If they are 

required, the corresponding parameters need to be adjusted in the same group. The 

diagonal elements of the cofactor matrix are always available, which are enough to 

estimate the precision of the parameters. In close range photogrammetry, if the 

unknown parameters are divided into two groups as mentioned before, a full 3x3 

cofactor matrix for each object point is still available which is adequate to calculate the 

point error ellipsoid and a full 6x6 cofactor matrix is also available for the camera 

parameters.

Correlations between the object points and the camera parameters may not be 

important. However if the full cofactor matrix is required, all the unknown parameters 

must be adjusted in one group, which leads to the traditional simultaneous LSE. In the 

situation of real-time, where fast 3D coordinates of the object points are required, the
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cofactor matrix Qx may not be necessary at all during the measurement process. It may 

be obtained by simulation. So the precision of the measurement system is actually 

known before the real measurement is carried out. In this case the separate LSE may 

well become a very useful method.

4.4 A numerical example

The following example illustrates the use of the separate LSE for plane positioning of 

point P by measured distances to the base stations. Figure 4-1 illustrates the plane 

positioning measurement network.

Figure 4-1 Plane positioning by measured distances to base stations

If m distances from m base stations are measured, the relationship between the 

measured elements / =( / , ,  /2 Zm ) and the unknown parameters jc and y  is defined by

/,(*,*) = ( ( * - * ,  )2 + O' -  )2 (4-47)

( i = 1,2, ... , m)

where x  and y, the coordinates of the plane point P, are two unknown parameters to be 

estimated; x t and_y; ( i = 1, 2, ... , m) are coordinates of base stations whose values are 

known and assumed to be error-free. (/,, Z2, .., Zm) are measured distances (observations 

from the point P to the base stations).
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A minimum of two measured distances from base stations will give a unique solution 

for x  and y. However for accurate positioning, more measured distances from base 

stations may be used. The LSE method is used to estimate the best solution. Since the 

functional model (4.47) is non-linear, linearization is needed for the subsequent LSE. 

Linearizing Eq (4.47) by Taylor series expansion to the first order accuracy gives the 

linearized observation equation

(4.48)

where

A =

ck dy 

ck dy and

Òfm
ck dy

h - f i(x ° ,y ° )
/2- / 2( x V )

in which

df, _ 2(x- x,)
^  ((x-x,.)2+ (y -y ,)2)^

and df, 2 (y -y j)
dy ((x_ Xiy + (y _ y f / 2

(4.50)

The unknown parameters jc and y  and their cofactor matrix can then be estimated by the 

simultaneous LSE or the separate LSE method.

A simulated numerical example is given as follows. Six distances are measured from 

base stations whose positions are known. The measured data are listed in Table 4-3.
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Table 4-3 The measured distances from base stations

Base
Station

x (m) T(m) Measured 
Distance (m)

1 799.4763 506.4013 199.5157
2 690.2819 649.0531 174.9510
3 504.9906 656.4831 184.5358
4 395.6187 505.3631 204.2132
5 514.2650 357.4463 167.1308
6 694.8844 352.0206 176.2120

The a priori standard deviation of each measured distance is given by

tr, = 0.0001/,

in which /, is the measured distance. The reference variance a 20 is taken for l0 = 100 (m), 

i.e.,

a 02 = (0.0001 x 100)2 = 0.0001(m2)

In this simulation test, ( x >y ) = ( 600.0, 500.0 ) is the true position of the point P. 

Starting values of x and y  can be obtained from any two measured distances. To 

simplify our discussion, (x, >') = (601.0, 499.0) is selected as the starting point for the 

LSE.

4.4.1 Simultaneous solution

The simultaneous solution uses all six measurements to estimate x and y  at the same 

time. From Eq (2.37) and (2.41) x and_p are estimated. The results after each iteration 

are listed in Table 4-4.
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Table 4-4 Estimated x  and y  by the simultaneous solution

Iteration No. x  (m) T(m) <fF=VW,v (m2)
0 601.000000 499.000000 2.513360
1 599.9649 500.3181 0.035075
2 599.9650 500.3173 0.035074
3 599.9650 500.3173 0.035074

The cofactor matrix of the estimated parameters x and y  is

Q Xy
1.1763 -0.0354

-0.0354 1.0566

So the covariance matrix of x and y is

C = a 20  = 10“4 xxy 0 zZ-’Xy
1.1763 -0.0354

-0.0354 1.0566
(m)

4.4.2 Separate solution

The separate LSE uses six measurements all together, but adjusts x and y  separately. 

The observation equations x  and y  are expressed as

and

AxAx = b (4.51)

AyAy = b (4.52)

in which
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r< r,l
dx ày
df,
dx and A = Sy

_ dx _ dy

are two column vectors of the design matrix A. The cofactor matrices of the estimated 

parameters are given by

Qx = N x+ N xAx‘AyQyAy'AxN x

and

(4.53)

Qy = N y + N yAytAxQxAxtAyN y (4.54)

in which Nx = (A ‘XJV,AX)~1 and Ny = ( A ^ W ^ y 1. So

1 
1 

oT
di_____

i
iiO) (4.55)

The results after each iteration are listed in Table 4-5.

Table 4-5 Estimated results by the separate LSE

Iteration No. * (m) k(m) < yvw tv (m2) Qx Qy
0 601.0000 499.0000 2.513360 0.0000 0.0000
1 600.0096 500.3163 0.036763 1.1748 1.0568
2 599.9650 500.3173 0.035074 1.1763 1.0566
3 599.9650 500.3173 0.035074 1.1763 1.0566

Comparing Table 4-4 and 4-5, it can be seen that the results for the unknown parameters 

x  and y  from simultaneous solution and separate solution are identical. Both of these 

methods need three iterations to obtain* andy with their corrections less than 10'4. The
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full cofactor matrix is not available with the separate solution, only the diagonal 

elements are obtained, i.e.,

1.1763
1.0566

The diagonal elements are identical with those obtained from simultaneous solution, 

and they are adequate to calculate the standard deviation of the estimated parameters x  

and y,

cjx = V1 O'4 x 1.1763 = 0.01085 (m) 

a y = a/ 10”4 x 1.0566 = 0.01028(m)

Since this is a strong convergent measurement network, the diagonal elements of the 

cofactor matrix can be estimated approximately by

QX= (AX'W,AX)-1 (4.56)

and

Qy = (A ytWlAy)~l (4.57)

The results obtained from above equations after three iterations are 

e v =1.1751 and Qy = 1.0555

which gives

cr, = VlO-4 x 1.1751 = 0.01084(m)

<jv = Vl0~4 X 1.0555 = 0.01027(m)

It can be seen that the approximately estimated standard deviations of x  and y  are very 

close to their full estimation for this strong convergent network.
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4.5 Datum problem of the separate LSE

As mentioned in Chapter 2 constraints are required for the simultaneous LSE if datum 

is not defined. Otherwise it is not possible for the unknown parameters to be estimated. 

However the separate LSE does not always need additional constraints even if a datum 

is not defined. Since each time only a group of the unknown parameters are adjusted 

while all the observation equations are used. The column rank defects disappear 

provided that there are enough fixed parameters in other groups to define a datum. So 

the separate LSE is a real constraint free process.

Suppose the parameters are divided into two groups, the linearized observation 

equations can be expressed as

AAx = A, Ax, + A2Ax 2 = b (4.58)

in which the design matrix A is not of full rank if a datum is not defined. However the 

partitioned matrices A, and A 2 could be full rank if both x, and x2 include enough 

information to define a datum. This is the case in close range photogrammetry where x, 

refers to the 3D coordinate of the object points and x2 refers to the camera exterior 

parameters.

For the example given in section 2.9, A,= [-1] and A 2=[ 1], therefore x, and x2 can be 

adjusted separately

Ax, =(A‘lA ,y , A ,lb,
= (1)(—1)(—2)
= 2
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= (A2A2)~'Al2b2
= (1)(1)(0)
=  0

so

x 2 =  x 2 +  A x 2 = 1 0 2

These results are equivalent to that obtained in section 2.9

In close range photogrammetry, the unknown parameters can be divided into two 

groups, the 3D coordinates of the object points and the camera parameters. Both ,4; and 

A 2 are full of rank. Therefore x, and x2 can be estimated separately. When estimating the 

3D coordinates of the object points datum will be held by the camera parameters. And 

When estimating the camera parameters datum will be held by of the object points.

Since all the parameters are equally treated with no bias, no distortion will be 

introduced. The estimated results by the separate LSE are equivalent to that obtained by 

the simultaneous LSE with inner constraints, but with a significant reduction of time 

and memory. Similar to the simultaneous LSE with inner constraints and the unified 

LSE, the datum of the separate LSE is defined by the starting values of the unknown 

parameters. The datum is actually arbitrary. The results can be transformed to a given 

coordinate system whenever necessary.

4.6 Separate LSE with constraints

The purpose of including constraints in the separate LSE is not to remove the column 

defects from the design matrix but to relate the results to a given coordinate system so 

the subsequent coordinate transformation may be avoided. In close range 

photogrammetry, these constraints could be some fixed control points, control points 

with standard errors or scales (measured distances between control points).
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where G and bg were given by Eq (2.112) and (2.113) respectively. With the separate 

LSE, the unknown parameters are estimated in two groups, xp and x q. When estimating 

xq, Eq (4.60) is used. When estimating xp, Eq (4.63) becomes

fAAx„I p  p  

1  G A x p

= b + v
= bn

(4.64)

xp can be solved by the simultaneous LSE as discussed in section 4.2. It can also be 

solved by the separate LSE on a point by point basis. So the maximum size of matrices 

to be inverted is still 3x3.

4.7 An application in surveying

The problem arises from a practical application when the plane positions of four control 

points are required for the camera resection purpose. Six distances between four control 

points in a plane are measured with given standard errors. The measured data are

l, = 428.0 ± 0.2mm l2 = 430.6 ± 0.2mm l3 = 429.8 ± 0.2mm 
l4 -  427.3 ± 0.2mm l5 = 609.2 ± 0.3mm l6 = 603.5 ± 0.3mm

Figure 4-2 illustrates the measurement network.

Figure 4-2 Plane positioning by measured distances
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The functional model can be written as

((x2~ x ,)2 + (y2 - y , ) 2) ^2 = h 

((x3 -  x:)2 + (y3 -  y = h 

((x4 -  x3)2 + (y4 - y3) 2) ^ 2 = l3<
(T  ̂-  x4) 2 + (y, - y 4) 2)~^2 = l4 

((x3 -  x ,)2 + (y} -  y ,)2) ^  = l5 

,((x4 ~ x2) 2 + (y4 -  y2) 2)'^2 = l6

or simply

f ( x )  = l

in which / = (/,, l2, l6) is a vector of the measured elements and x  = (x,, x2, y2, x3,

y3, x4, >'4) is a vector of the unknown parameters to be estimated. The linearized 

observation equations are expressed as

AAx = b + v (4.67)

The weight matrix W, (let a 0= 1) of the observations is

W, = diag(25.025.025.025.0 11.111.1)

Suppose the starting values of the unknown parameters are estimated as

xi° = Omni x2 = Omm x3° - 430.6mm x4° -  427.3mm

yj" -  Omm y2 = 428.0mm y3 = 429.8mm y 4° = Omm

The design matrix A is

(4.65)

(4.66)
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0.000 - 1.000 0.000 1.000 0.000 0.000 0.000 0.000 
0.000 0.000 -1.000 -0.004 1.000 0.004 0.000 0.000 
0.000 0.000 0.000 0.000 0.008 1.000 -0.008 -1.000 

- 1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 
-0.708 -0.706 0.000 0.000 0.708 0.706 0.000 0.000 
0.000 0.000 -0.707 0.708 0.0000.000 0.707 -0.708

Since the measured elements do not include sufficient information to define the datum 

for the coordinates to be estimated in the functional model, A is column rank defecient. 

The scale of the datum is defined by the measured distances. But the position (two 

elements) and rotation (one element) of the datum are undefined. The column rank 

deficiency is three. Matrix (A'fVA) is singular, the inverse of the matrix does not exist. 

The unknown parameters cannot be estimated by the simultaneous LSE unless the 

datum problem is solved.

With inner constraints (considering that the scale of the datum has been defined), the 

constraint equations can be expressed as

1 0 l 0 1 0 1 0

0 l 0 i 0 1 0 1

y i y 2 - x 2 W ~ X3 W - x .

Ax, ~0~
Ay, 0
Ax, 0
Ay2 0

= GAx — b„ =
Ax, g 0

0

Ax 4 0
_Ay4_ _0_

The parameters can then be estimated by Eq (2.107) and (2.108). Table 4-6 lists the 

estimated results after each iteration.

Table 4-6 The estimated results by the simultaneous LSE with inner constraints

Iteration

No.
xi

(m m )
) ’ ]

(m m )
x2

(m m )
J2

(m m )
x3

(m m )
T3

(m m )

x4
(m m )

y4
(m m )

v'Wv
(m m 2)

1 -0.3448 -0.3449 0.3989 427.6043 430.9416 430.1359 426.9043 0.4047 0.8280

2 -0.3447 -0.3448 0.3992 427.6040 430.9415 430.1357 426.9040 0.4051 0.8280
o -0.3447 -0.3448 0.3992 427.6040 430.9415 430.1357 426.9040 0.4051 0.8280
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After three iterations the adjusted coordinates are stable to four decimal places. The 

cofactor matrix is

0 ,=

0.0148 0.0048 -0.0064 0.0064 -0.0048-0.0049-0.0036 
0.0048 -0.0064-0.0036-0.0049-0.0048 0.0064 

0.0149 -0.0049 -0.0036 0.0065 -0.0049 
0.0149 -0.0063 -0.0063 0.0048 

0.0148 0.0048 -0.0064 
0.0147 -0.0063

symmetric 0.0149

-0.0064
-0.0065
0.0048

-0.0049
0.0065

-0.0036
-0.0049
0.0150

(mm2 )

The trace of Qx is 0.1188 (mm2).

With the unified LSE, an 8x8 diagonal matrix is added to the coefficient matrix A'W /i, 

the diagonal elements of A'W/i are incremented by a value of g. This will remove the 

rank defects of A'W /i and make it non-singular. The unknown parameters can then be 

estimated. Table 4-7 shows the results of the unified LSE after each iteration, where g = 

0.01 (mm'2) is chosen (which means the variances of the pseudo-observations are 100 

mm2).

Table 4-7 The estimated results by the unified LSE

Iteration
No.

X1
(mm)

yi
(mm)

x2
(mm)

L2
(mm)

x3
(mm)

y3
(mm)

X/f

(mm)
y4

(mm)
vlWv

(m m 2)

1 -0.3447 -0.3447 0.3987 427.6045 430.9415 430.1357 426.9045 0.4046 0.8280

2 -0.3447 -0.3448 0.3992 427.6040 430.9415 430.1357 426.9040 0.4051 0.8280

3 -0.3447 -0.3448 0.3992 427.6040 430.9415 430.1357 426.9040 0.4051 0.8280

These results are identical (to four decimal places) with that obtained from the LSE with 

inner constraints.

From Eq (2.128) the cofactor matrix Ox is calculated, i.e.,
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Qx =

0.0148 0.0048 -0.0064 0.0064 -0.0048-0.0049-0.0036 
0.0048 -0.0064-0.0036-0.0049-0.0048 0.0064 

0.0149 -0.0049 -0.0036 0.0065 -0.0049 
0.0149 -0.0063 -0.0063 0.0048 

0.0148 0.0048 -0.0064 
0.0147 -0.0063

symmetric 0.0149

-0.0064 
-0.0065 
0.0048 

-0.0049 
0.0065 

-0.0036 
-0.0049 
0.0150

(mm2 )

It is also identical (to four decimal places) with that obtained from the LSE with inner 

constraints. The trace of Qx is 0.1188 (mm2).

As mentioned before, for the intermediate parameters the cofactor matrix may not be 

necessary while the inverse of the cofactor matrix (the weight matrix) is more 

convenient to use. The weight matrix of the estimated parameters is gives as

Wx = A'W,A
30.5659 5.6429 0.0001 -0.0435 -5.5659

30.5452 -0.0435-24.9999 -5.5555 
30.5457 -5.3651 -24.9991 

30.5654 -0.1470 
30.5673

symmetric

-5.5555-24.9999 -0.0439 
-5.5452 -0.0439 0.0001
-0.1470 -5.5465 5.5555 
-0.0009 5.5555 -5.5646 
5.9374 -0.0022 -0.2349 

30.5438 -0.2349 -24.9978 
30.5487 -5.2768 

30.5625

(mm 2 )

The trace of Wx is 244.4444 (mm"2).

With the separate LSE the unknown parameters can by divided into two groups (two 

points in each group) or four groups (one point in each group). They can even be 

divided into eight groups (one coordinate in each group), but it not recommended in this 

example since too many iterations are required.
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If the two group situation is considered, four points are divided into two groups with 

four coordinates in each group, i.e.,

X, = (x,,y,,x2,y2)

x2 = (x3>y3>x3>yJ

The design matrix is divided into two parts A, andA2 accordingly.

' 0.000 -1.000 0.000 1.000 " -0.000 0.000 0.000 0.000 ‘
0.000 0.000 -1.000 -0.004 1.000 0.004 0.000 0.000
0.000 0.000 0.000 0.000

and A, =
0.008 1.000 -0.008 -1.000

-1.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000
-0.708 -0.706 0.000 0.000 0.708 0.706 0.000 0.000

_ 0.000 0.000 -0.707 0.708 _ 0.000 0.000 0.707 -0.708_

Observation equations are then constructed like Eq (4.37), X, and X 2 can be estimated 

separately. No constraints are required since A, and A 2 do not suffer the problem of 

column rank defects because both X 2 and X2 include enough information to define the 

datum. In each iteration, instead of calculating the inverse of a 8x8 matrix (simultaneous 

adjustment) the inverses of two 4x4 matrices (A/W /i,) and (A2'fV/l2) are calculated. 

Three iterations are required before the parameters are stable to the fourth decimal 

point. Table 4-3 shows the results of the separate LSE.

Table 4-8 The estimated results by the separate LSE

Iteration

No.

X ]

(m m )
yi

(m m )
x 2

(m m ) (m m )
x3

(m m )
y 3

(m m )

% 4

(m m )
y4

(m m )

v * W v

(m m ^)

1 -0.0022 0.0248 -0.0021 427.9746 430.5355 431.2523 427.2449 1.5197 0.8976

2 -0.0022 0.0250 -0.0022 427.9744 430.5350 431.2545 427.2445 1.5175 0.8280

3 -0.0022 0.0250 -0.0022 427.9744 430.5350 431.2545 427.2445 1.5175 0.8280

These results are not identical with those obtained from the simultaneous adjustment 

since the datum is different, but they are equivalent. The shapes of the quadrilateral are 

same which can be verified by a coordinate transformation. The same v'Wv also implies
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transformation may be required to related the results to a given coordinate system. 

Alternatively, control points can be included in the separate LSE process to avoid 

coordinate transformation.

The full covariance matrix is not provided in the separate LSE, only the block diagonal 

elements are given. The correlations between those parameters which are not estimated 

in the same group are not available.

Since the same functional model of measurements and the same target function of least 

squares minimisation are used in the separate least squares estimation as in the 

simultaneous least squares estimation, therefore their results must be the same. It is not 

easy to prove this theoretically. However many simulation and practical tests, both 

linear and non-linear, have been done to verify the fact. More results of the comparison 

of the two methods in close range photogrammetry will be given in Chapter 7.
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this. The production of the full cofactor matrix is not possible because the unknown 

parameters are not solved simultaneously, but the weight matrix Wx can be calculated

by

WX = Ä W A
30.5463 5.6429 0.0000 -0.0000 -5.5466 -5.5555-24.9997

30.5648 -0.0000-25.000 -5.5555 -5.5645 -0.0873 
30.5644 -5.3651 -24.9985 -0.1905 -5.5658 

30.5467 -0.1905 -0.0015 5.5555 
30.5466 5.9374 -0.0015 

30.5645 -0.1914
symmetric 30.5670

-0.0873
0.0003
5.5555

-5.5453
-0.1914
-24.9985
-5.2768
30.5441

(mm 2 )

The trace of Wx is 244.4444 (mm'2). The difference of Wx from that obtained from the 

unified LSE is due to the change in datum. They are equivalent with respect to their 

datum. The same trace of Wx implies this. The difference will disappear after datum 

transformation. This will be verified in Chapter 6.

4.8 Summary' of the chapter

In this chapter, the method of the separate least squares estimation has been discussed. 

It divides the unknown parameters into groups and estimates them separately. Unlike 

the iterative LSE in which only one equation is used for each parameter in the inner 

iterations, the separate LSE uses all the equations for each group of the parameters and 

the inner iterations are combined with the outer iterations. Even with linear functional 

model iterations are still required and starting values of the unknown parameters are 

always needed.

Constraints are not always required in the separate LSE even if the column rank defects 

of the design matrix exists since the divided design matrices are normally of full rank 

provided that the datum can be defined by each group of the parameters. In this case, 

the datum will be defined by the starting values of the parameters. A coordinate
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Chapter 5

Separate Adjustment of Photogrammetric Measurements

As discussed in the Chapter 4 the separate least squares estimation is a technique of 

division, which divides the unknown parameters into groups. In photogrammetry, the 

unknown parameters are naturally divided into two groups, the coordinates of the object 

points and the camera parameters. The coordinates of the object points are required 

eventually, while the camera parameters may not be necessary but have to be included 

as unknown parameters in the observation equations.

The term separate adjustment (or SA) can be used to describe the photogrammetric use 

of the separate LSE method (e.g. as the bundle adjustment is commonly used instead of 

the simultaneous LSE and the sequencial adjustment instead of the sequencial LSE).

5.1 Free network separate adjustment

A free network adjustment means no constraints are involved in the adjustment process. 

The precision of the estimated results will be determined by the image observations 

only. The constraints are not necessary with the separate adjustment, but are normally 

required by the simultaneous bundle adjustment.

The separate adjustment is based on the same functional model used by the bundle 

adjustment, the collinearity equations. The linearized form is expressed as

A j Ax j  + A2Ax 2 = b (5.1)

where x, denotes the coordinates of the object points and x 2 the camera parameters. A j 

and A j  are design matrices and have the same formats as described in Chapter 3.
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The principle of the separate adjustment is to treat the unknown parameters x, and x2 

separately. The theory has been given in Chapter 4. In the separate adjustment process, 

only a part (group) of the parameters is adjusted in each step, either x, or x 2. The 

adjustment iterates between the two steps and the results will be the same as those given 

by the simultaneous bundle adjustment. Figure 5-1 illustrates the procedure of the 

separate adjustment process.

Input data

Output results

Figure 5-1 Separate adjustment process

5.1.1 Adjusting the object points

When adjusting the object points, the camera parameters are considered as constants. So 

Ax 2 = 0. Therefore the observation equations for estimating the coordinates of the object 

points become

A, Ax, = b (5-2)

By least squares, the corrections of the 3D coordinates are estimated by

Ax, = (a ;w,a ,)^ A;w,b
= Ai',A',W,b

I

(5.3)
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Since A,, is a block diagonal matrix, the inverse of A,, can be calculated by inverting a 

series of 3x3 matrices. The matrices A, and/4;/ can be stored compactly as illustrated in 

Figure 5-2 and the products of the matrices are simplified. Each small block in A, is a 

2x3 submatrix and each small block in A,, is a 3x3 submatrix (n is the number of the 

object points and m is the number of the cameras).

in

(3nx3n) (3nx3)

Fig 5-2 The structures of the matrices A, anàAn

Since the object points are independent of each other when the camera parameters are 

treated as constants, they can be adjusted separately. So the memory required can be 

reduced further. For the /th object point, the size of A u is 2mx3 and the size of A w is 

3x3. The corrections of the 3D coordinates for the /th object point are given by
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Axn = A jir fM b ,  (5.4)

Matrix A Ui can be calculated by a further partitioning according to the cameras, i.e.,

A m = A M A »
m

= (5-5)
J=1
m

= jL A 1Uj
j= i

where A UJ is a 2x3 matrix and WUJ is a 2x2 matrix, which are contributed by the ith point 

on the jth  camera. Similarly, A ‘uWubi can also be calculated by partitioning, i.e.,

= (5-6) 
j=i

where btJ is a 2x1 matrix attributed to the ith point on the jth. camera. In this case, the 

maximum size of the matrix required to obtain the corrections for the 3D coordinates of 

the object point is 3x3.

It is obvious that the computational time is directly proportional to the number of the 

object points. The minimum number of the cameras required is two.

5.1.2 Adjusting the cameras

When adjusting the camera parameters, the coordinates of the object points are 

considered as constants. So Ax, = 0. Therefore the observation equations for estimating 

the camera parameters become

A2Ax2 = b (5.7)

By least squares, the corrections of the camera parameters are estimated by
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Ax2 =(A'2WlA2)- , A ,2W.b
2 ' 2 ' 2/ 2 1  (5.8)

= A22 A2 W, b

where A 22 is a block diagonal matrix, the inverse of A22 is calculated by inverting a 

series of 6x6 matrices. Because of their special structures, the matrices A 2 and A 22 can 

be stored compactly as illustrated in Figure 5-3 and the products of the matrices are 

simplified. Each small blocks inA 2 is a 2nx6 submatrix and each small blocks inA 22 is a 

6x6 submatrix.

(2 mnx6m) (2mnx6)

(6mx6m) (6mx6)

Figure 5-3 The structures of the matrices A 2 and A 22
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Since the cameras are independent of each other, when the object points are fixed, the 

parameter of each individual camera can be adjusted separately. So the memory 

required can be reduced further. For the yth camera, the size of A 2j is 2nx6 and the size 

of A 22j is 6x6. The corrections of the parameters for theyth camera are given by

Ax2j = A-2I2jA ‘2jWljbj (5.9)

Matrix A 22J can be calculated by a further partitioning according to the object points, 

i.e.,

A„, = A ^ A , ,

= t A» W„,AJtl (5.10)
i=l

= zL ^22 ji
i=l

where A 2ji is a 2x6 matrix and Wtji is a 2x2 matrix, which are contributed by the /th point 

on theyth camera. Similarly, A^Wybj can also be calculated by partitioning, i.e.,

' L A ‘» W t h t  (511)
i=l

where by, is a 2x1 matrix attributed to the /th point on the yth camera. So the maximum 

size of the matrix required to obtain the corrections of the camera parameters is 6x6.

The computational time is directly proportional to the number of cameras. The 

minimum number of object points required is three.

5.1.3 Iteration between the two steps

The separate adjustment is an iterative process which is carried out between the two 

steps described above. After each iteration, the 3D coordinates and the camera
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parameters are refined. The iterative process terminates when the stop criterion (e.g. the 

maximum adjustment of the 3D coordinates is less than a given value) is met.

5.1.4 Datum definition

A datum must be defined in the simultaneous bundle adjustment to remove the column 

rank defects of the design matrix so the unknown parameters can be estimated. 

However the pre-definition of the datum is generally not necessary in the separate 

adjustment. No constraints are required to make the unknown parameters estimable 

when the separate adjustment is applied. The datum is held either by the camera exterior 

parameters when the coordinates of the object points are adjusted or by the object points 

when the camera parameters are adjusted. Since both the coordinates of the object 

points and the camera exterior parameters are related to the same coordinate system, the 

datum is actually determined by the starting values of the parameters. If the coordinates 

of the object points are adjusted first, the datum will be determined by the starting 

values of the camera parameters, otherwise it will be determined by the starting values 

of the object points.

Because of the uncertainty of the starting values, the results from the separate 

adjustment are in an arbitrary coordinate system if spatial controls are not applied. The 

results from the separate adjustment may not be numerically identical with that obtained 

from the traditional bundle adjustment due to the different datum definition. However 

the shapes of the measured object are the same from both methods. So their results are 

equivalent. This can be verified by a rigid coordinate transformation of the object.

5.1.5 Precision estimation

The covariance (cofactor) matrix is a by-product which is normally produced directly 

by the simultaneous bundle adjustment at the same time when the unknown parameters 

are estimated. The square roots of the diagonal elements of the covariance matrix give 

the standard deviations to the corresponding parameters which are used to evaluate the 

precision of the measurement system. However, the full covariance matrix is not
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available directly from the separate adjustment. It can be calculated when it is required 

from the design matrix and the computation is very expensive in terms of time and 

memory. In many cases the full covariance matrix is not necessary for the purpose of 

the standard deviations of the estimated parameters.

From the separate adjustment, the cofactor matrix of the coordinates of the object points 

is given approximately by

QXi= ( A \W lAI) - I = A tI n (5.12)

For each object point a 3x3 cofactor matrix is given by

I w (5.13)

and the covariance matrix the 3D coordinates is

(5.14)

The cofactor matrix of the camera parameters is given approximately by

Qx, = (A 'M A 2) - 1 = a £ (5.15)

For each camera a 6x6 cofactor matrix is given by

(5.16)

and the covariance matrix of the camera parameters is

(5.17)
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For each object point the 3x3 covariance matrix C is adequate to evaluate the 

precision of the estimated 3D coordinates and the error ellipsoid for each object point. 

And for each camera the covariance matrix Cx2j is also available to analyse the 

precision and the correlations between the camera parameters.

The approximations are caused by the neglect of the variances of the camera parameters 

and the 3D coordinates of the object points when calculating C and i r -

respectively. These approximations can be compensated for by including the variances 

into the iterative process as described in Chapter 4, however with more computational 

effort.

Simulation tests showed that the approximations were quite acceptable for a multi-

camera strong network especially in close range photogrammetry. The differences 

caused by the approximations were normally less than one percent.

5.1.6 Number of iterations

The number of iterations required for the separate adjustment process depends on the 

closeness of the starting values to their final results. However, more iterations are 

generally required for the separate adjustment than for the bundle adjustment. Normally 

four iterations are enough to give satisfactory results for the bundle adjustment with 

reasonable starting values, while for the separate adjustment ten or a few tens are 

required. Table 5-1 shows the maximum adjustment of the coordinates and the sum of 

squares of the residuals (<f> = v{Wv) after each iteration for a close range 

photogrammetric measurement network with 100 object points and 4 cameras.
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Table 5-1 The adjusted results by the bundle adjustment and 

the separate adjustment

Bundle adjustment Separate adjustment
No. of Max. adjustment •fa

- il 1 Max. adjustment >II

iteration (mm) (mm2) (mm) (mm2)
1 19.7646 0.80576482 13.8760 1.24956487
2 0.3381 0.00375875 1.0679 0.12538475
3 0.0128 0.00011768 0.2812 0.02086453
4 0.0001 0.00011342 0.0778 0.00484658
5 0.0259 0.00103845
6 0.0125 0.00026584
7 0.0071 0.00011747
8 0.0042 0.00011375
9 0.0025 0.00011347
10 0.0014 0.00011344
11 0.0008 0.00011342
12 0.0005 0.00011342
13 0.0003 0.00011342
14 0.0001 0.00011342

5.1.7 Consistency with the bundle solution

The separate adjustment is based on the same functional model as the bundle 

adjustment. The target functions of the least squares from the two methods are also 

same, which are the sums of the weighted squares of residuals on the image planes. 

Simulation tests and practical tests show that the two methods always arrive at the same 

minimisation. Each individual residual for all the observations has also been checked 

and found to be the same for both methods. This means that their results are equivalent. 

The coordinates of their solution may not be numerically identical because of different 

datum definitions, but the shapes of the measured object from the two methods are 

always same. This has been verified by the rigid coordinate transformation and by 

including control points in the adjustment process. Some simulation test results will be 

given in Chapter 7.

136



Chapter 5 Separate adjustment of photogrammetric measurements

5.1.8 Computational complexity

Least squares adjustment is an expensive computational process. Inverting the 

coefficient matrix A'WA is the main cost in terms of speed and memory. In the 

simultaneous bundle adjustment, A'WA is a symmetric positive definite matrix. Fast 

algorithms (for example, Cholesky) can be used to compute the inverse of A'WA. 

However even then the computational complexity is still high. If the size of A'WA is 

uxu, the time required for computing the inverse of A'WA is directly proportional to zz3 

and the memory needed is directly proportional to u2.

Suppose m images are used to measure n object points in a close range photogrammetric 

measurement system. If the bundle adjustment with inner constraints on the object 

points is used, the size of the coefficient matrix A'WA is (3n+6m)x(3n+6tn). So the 

computational complexity for one iteration is

T(B) oz(3n+6mf 

and M(B) cc(3n+6mf

With the separate adjustment, the computational complexity of time for one iteration is

T(S) ccm- n

and the maximum memory required is a 6x6 unit no matter how many object points and 

cameras are involved. The time required for the separate adjustment can be expressed as

ts = Cs ■ m- n - I

where m is the number of the cameras, n is the number of the object points and /  is the 

number of iterations. Cs is a coefficient which may vary according to the computers. It 

is found to be 215 ps for a SUN Spark Classic and 42 ps for a 120 MHz Pentium.
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For the example given in section 4.7 (100 object points and 4 cameras). The time 

required by the separate adjustment (fourteen iterations) is about 1.4 seconds. For 

bundle adjustment for one iterations is 17 seconds. In total 68 seconds are needed for 

the whole adjustment process (four iterations). The simulation was conducted on SUN 

Sparc Classic. More tests were conducted and the results are given in Chapter 8.

5.1.9 Feasible area of the separate adjustment

In the separate adjustment process, the minimum numbers required for the object points 

and the camera are three and two respectively. Figure 5-4 illustrates the feasible area of 

the separate adjustment.

Figure 5-4 Feasible area of the separate adjustment

5.2 Continuous adjustment

The separate adjustment can produce the 3D coordinates much faster than the traditional 

bundle adjustment. Because of its high speed, it can be used in the measurement of 

moving object. It is often the case that the object points may move regularly while the 

cameras may be relatively stable. If the measurement process operates fast enough the 

object points could be tracked successfully. So the orientation of the object body can be 

measured in real-time.
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To test the separate adjustment in a continuous measurement process a close range 

photogrammetric measurement network was simulated. Twelve sets of 3D data were 

created with a 2 mm linear movement between each set. These 3D data were imaged on 

four stationary cameras to get the 2D data. Random noise was added to these 2D data. 

The results from a measurement were used as the starting values for the next 

measurement. The results of twelve sets of ten iterations of the separate adjustment are 

illustrated in Figure 5-5 and Figure 5-6 for the maximum adjustment of the 3D 

coordinates and the standard deviation of the 3D coordinates respectively.

Iteration number (10 iterations per epoch)

Figure 5-5 Graph of maximum adjustments for the 12 sets plotted 

for each iteration (note Log y axis)

0.10
N  /—N
>  E 0.08 ~ £
<4- </> 0.06o
è  .1 0.04 
D ’S
-d ? 0.02
t/5 o

0.00
0 10 20 30 40 50 60 70 80 90 100 110 120

Iteration number (10 iterations per epoch)

Figure 5-6 Graph of the standard deviation of the X, Y, Z 

coordinates for each iteration
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Figure 5-5 illustrates that for each epoch after the first iteration which required a 2 mm 

adjustment, the maximum adjustment of the 3D coordinates rapidly approaches zero. 

Figure 5-6 illustrates that the a posteriori standard deviations of the 3D coordinates 

improve little after first iteration of each epoch. Therefore in the continuous 

measurement process, the separate adjustment will give satisfactory results with only a 

few iterations (two or three).

£
£  1000.4<D
.1 1000.2 -o
? 1000.0 o
>< 999.8

g 999.6 cC3
0 10 20 30 40 50 60 70 80 90 100 110 120

Iteration number (10 iterations per epoch)

(a)

Iteration number (10 iterations per epoch)

(b)

Figure 5-7 Stability of the Camera parameters
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Iteration number (10 iterations per epoch)

(C )

Iteration number (10 iterations per epoch)

(d )

Iteration number (10 iterations per epoch)

(e)
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(f)

Figure 5-7 Stability of the Camera parameters

Figure 5-7 illustrates the stability of the camera parameters during the continuous 

measurement process by the separate adjustment. It can be seen that the camera 

parameters are not much influenced by the movement of the 3D coordinates of the 

object points.

In the real-time applications, the movement of an object is limited in 1/25 of a second, 

which means the starting values are not far away from the final solutions. In this case a 

satisfactory result can normally be obtained in a few iterations (two or three) by the 

separate adjustment. It is also possible to move and rotate the cameras to track the 

moving object. In this case a common datum becomes important to relate the 

measurement results to the same coordinate system.

5.3 Separate adjustment with controls

As mentioned in section 5.1.4, the coordinate datum will not cause problems in the 

separate adjustment. The purpose of including controls in the separate adjustment is to
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relate the results to a given coordinate system so the coordinate transformation may be 

avoided.

Since controls are normally applied to the object points, the camera parameters are 

adjusted as usual, while the object points are divided into two parts: control points and 

normal points.

5.3.1 With fixed control points

It is often the case that some fixed ground control points are used to define a datum so 

that the measured results (the 3D coordinates of the object points) are related to the 

given coordinate system. In this case, the coordinates of the spatial points can be 

expressed as

*i = (5.18)

where x\ is a vector of the coordinates of the control points and x"  is a vector of the 

coordinates of the normal object points. The normal object points will be adjusted as 

usual, while the control points will not be adjusted. The camera parameters will be 

adjusted as usual and all the spatial points (the control points and the normal object 

points) are used in this step. It has been verified that, with the same control points, the 

results from both simultaneous bundle adjustment and separate adjustment are 

numerically identical.

5.3.2 With weighted control points

If the control points are treated as weighted observations, they will be adjusted not only 

by the image observations but also by the survey observations. The survey observations 

of the control points can be expressed as

GiAx'n = ci (5.19)
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with associated weight matrix Wg, . So the combined observation equations for a control 

point become

Therefore the corrections of the 3D coordinates of the control points are given by

Normal object points and the camera parameters are adjusted the same way as discussed 

before.

5.3.3 With scale

Scale is normally defined by the measured distances between control points. In this 

case, control point coordinates will be adjusted not only by the image observations but 

also by the measured distances between those control points. If the distance between the 

control points /;, and ps is measured as dtj with the standard deviation cr  ̂ the additional 

observation equation is given by

with an associated weight c r j . After linearization the observation equation becomes

(5.20)

(5.22)

(5.23)

in which
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x- -  x°j y-  -  y°j z° -  z°j x ) -  x° y )  -  y°  z)  -  z-
i0

dij *1 d-j lU
dij

i0
dij

AXij =  [Ax, Ay, Az, Axj Ayj Azj]  ,

and

d-j = ((A  -  x°j)2 + ( A  -  y ])2 + (z° -  z])1

Because of the additional relationship between the control points x,- and Xj, they need to 

be adjusted together. Therefore the size of the matrices computed increases from 3x3 to 

6x6. Alternatively, all the control points can be adjusted together. So the maximum size 

of the matrix will be 3ncx3nc, where nc is the number of the control points.

5.3.4 Number of iterations

It has been seen from the above discussion that in the separate adjustment controls will 

not add too much computation in each iteration. However, simulation tests and practical 

tests show that with these additional constraints more iterations are required for the 

separate adjustment, especially when fixed controls are applied. This may influence the 

speed of the measurement process. To avoid this, an alternative method is a free 

network adjustment followed by a coordinate transformation.

5.4 Separate adjustment with DLT model

As mentioned in Chapter 3, the DTT model can be used to calculate the camera 

parameters directly with given control points in the object space. This is called 

resection. With the camera parameters as knowns the 3D coordinates of the object 

points can be calculated directly. This is called intersection. In this way the 3D 

coordinates of the object points and the camera parameters are estimated directly. No
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starting values for the unknown parameters are required and no iterations are needed 

since the functional model appears to be linear after the rearrangements.

This measurement process (resection followed by intersection with DLT model) could 

be the easiest and fastest method for multi-camera photogrammetric 3D measurement. 

However, the precision from this measurement process is normally poorer than that 

from the simultaneous bundle adjustment or separate adjustment. The reasons are (i) the 

precision of the camera parameters are limited by a small number of control points, (ii) 

the degrees of freedom of the least squares from this measurement process are fewer 

than that of the simultaneous bundle adjustment and (iii) due to the rearrangements of 

the functional model the minimisations of the least squares are no longer the sums of 

the squares of the residuals on the image planes. The first two problems can be 

overcome by a series of separate adjustments with all the cameras and the object points 

involved in both steps and the third can be overcome by maintaining the non-linear 

functional model and applying the rigorous least squares adjustment in both steps to 

minimise the sums of the squares of the residuals on the image planes.

The collinearity equations after DLT have been given in Chapter 3. They are rewritten 

here and the subscripts are neglected for simplicity.

(5.24)

where

Dj = LjX  + L2Y + f  ¡ Z  + Lj
D2 = LSX  + L6Y + L7Z  + Ls 
jD, = LgX + L jqY + LUZ  +1

(5.25)

In general the functional model is expressed as
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f ( x j , x 2,l )  = 0 (5.26)

where x, is a vector of the 3D coordinates of the object points (X , Y, Z) and x2 is a 

vector of the DLT parameters (Z,„ L2, L u) which involve six camera exterior 

parameters (XL, YL, ZL, a>, (j), k ) and four camera interior parameters (xp, yp, cx, cy). The 

linearized functional model is expressed as

A jAXj + A2Ax 2 = b

where

and

A _ dX dY dZ 
1

_dX dY dZ

a 2 =

M
dL3 dL2 

cLj dL2

dL„

3Ln

(5.27)

(5.28)

(5.29)

The partial differentials in ./l, are calculated as

^¡D 3 l 9d , L 2D3 L ioD, _ L 3D} L 1ID1

dX D 23 dY Di dZ DÌ

V , l 5 d 3 — l 9d 2 LóD3 -  l I0d 2 _ l 7d 3 -  l „ d 2

dX DÌ dY DÌ dZ DÌ

and the partial differentials in^42are calculated as

147



Chapter 5 Separate adjustment of photogrammetric measurements

<r, _ X C  Y 9 X . Z Sfx 1
dL3 D3 cJL2 D3 dLj D3 dL4 d 3

C  ._ <r* _ t f x _ # x = 0
dLs dL6 aL? oLs

8fx . D',x  # x D,Y D,Z
dL9 D3 dLi0 d 3 oLu d 23

. 3fy -  0
3Lt dL2

i

u.
i

■u.

. X 3fy Y ^  _ Z 1
cLs d 3 dL6 D3 dL2 D3 D3

. L'2X D2Y d 2z

dL9 D] oL,0 d 23 oLl 1 D2

The separate adjustment process can then be applied to the DLT model. In the step of 

adjusting 3D coordinates of the object points, the calculation process is similar as the 

usual case (collinearity equation based separate adjustment). The matrix A,, has the 

same structure as usual. The maximum size of the matrices processed is 3x3 and the 

time required is directly proportional to the number of the object points. In the step of 

adjusting camera parameters, the number of unknowns for each camera is 11 rather than 

6 this time. So the matrix A 22 is a 1 lxl 1 block diagonal matrix. This may increase the 

computation time slightly. However it is compensated by the simplified calculation of 

the linearization based on the DLT model.

The number of iterations of the separate adjustment with DLT model is usually fewer 

than the normal separate adjustment. Simulation tests show that the overall time 

required is roughly the same for the separate adjustment with DLT model and the 

normal collinearity equation model.

During the separate adjustment process, evaluation of the camera physical parameters is 

not necessary. They can be computed from the 11 DLT parameters at the end of 

adjustment process if they are required.

148



Chapter 5 Separate adjustment of photogrammetric measurements

The precision of the results from the DLT model is better than that from the normal 

collinearity equation model. This is attributed to the inclusion of the camera interior 

parameters (xp, yp, cx, cy) by the DLT model. However, the normal 11 parameter DLT 

model is not capable of dealing with other important camera interior parameters such as 

lens distortions.

For the same example given in section 5.1.6, a separate adjustment with DLT model is 

applied. After each iteration the maximum adjustment of the coordinates and the sum of 

squares of the residuals ((/> = v^Wv) are calculated and listed in Table 5-2.

Table 5-2 The adjusted results by the separate 

adjustment with DLT model

No. of 
iteration

Max. adjustment 
(mm)

(j) = vlWv 
(mm2)

1 14.2325 1.13764872
2 1.0834 0.10237643
3 0.2046 0.01287485
4 0.0428 0.00387291
5 0.0103 0.00086748
6 0.0028 0.00022353
7 0.0006 0.00010948
8 0.0003 0.00010872
9 0.0001 0.00010872

It can be seen that the sum of the weighted squares of the residuals (j) from the DLT 

model is smaller than that from the normal collinearity equation model. More tests have 

been conducted and will be discussed in Chapter 7.

5.5 Self-calibration separate adjustment

In the foregoing discussion of photogrammetric measurement, systematic errors have 

not been considered (except for the DLT model). However, in close range digital 

photogrammetry, especially when non-metric CCD cameras are used, systematic errors 

are so significant that they cannot be neglected. These errors are mainly due to the
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defects of the camera system and can be described by various of camera interior 

parameters. There are normally two ways of dealing with the systematic errors. One is 

to calibrate the cameras beforehand and correct the 2D coordinates on image planes 

accordingly. Another way is to treat the camera interior parameters as variables 

(unknown parameters or observations) and estimate them in the least squares 

adjustment. Therefore the camera interior parameters can be estimated together with 

other unknown parameters (3D coordinates of the object points and the camera exterior 

parameters). This method is called self-calibration separate adjustment.

In this section the separate adjustment will be used in place of the bundle adjustment. It 

is important to realise that the self-calibration technique does not require any object 

space control for the technique to be effective as a means of camera calibration 

(Atkinson 1996). Hence the benefits from the separate adjustment are more obvious.

For the modified functional model

f ( x , , x 2, x ’2) = l (5.30)

the linearized observation equations can be expressed as

A, Ax, + A2Ax 2 + A'2Ax '2 = b (5.31)

where x, = (X, Y, Z) denotes a vector of the 3D coordinates of the object points, x 2 = 

(XL, Yl, Zv  co, tj), k ) denotes a vector of the camera exterior parameters, x 2 = (c, xP, yv 

/q, k2, k3, p ]t p2) denotes a vector of the camera interior parameters, and

A , A2 =
of
dx'2

The derivation of A, and A2 has been discussed in Chapter 3. The derivation ofHj is 

given in Appendix 1.
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5.5.1 Three step separate adjustment

When the camera interior parameters are considered, the unknown parameters may be 

divided into three groups as indicated in Eq (5.31). With the separate adjustment each 

group of unknown parameters is adjusted individually. When adjusting any group of 

parameters the other two groups are treated as constants. So the separate adjustment 

procedure could be:

Step I : Adjusting 3D coordinates of the object points

Ax, = (A\ WfA, ) ”1 A\ W, b (5.32)

Step II : Adjusting camera exterior parameters

Ax 2 = (A^W'A;)-1 A ‘2W,b (5.33)

Step III : Adjusting camera interior parameters

Ax '2 =(A'2,WlA'2)- ,A'2,Wlb (5.34)

Steps I and II are the same as discussed in section 4.7. In Step III the matrix A2 has a 

structure shown in Figure 5-8 (a). Hence the coefficient matrix A'2 W,A'2 is a block 

diagonal matrix (Figure 5-8 (b)), Each sub-block is a 8x8 matrix. So the inverse of 

A '^ W ^ is  calculated by inverting m 8x8 matrices, which will save both computation 

time and memory. If several images are taken by only one camera in the measurement 

process, which is usual in close range photogrammetry for camera calibration, there is

only one set of camera interior parameters. So A'2 W,A '2 will be a 8x8 matrix.
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A '2

A ’/W 'A ^

(a) (b)

Figure 5-8 (a) Structure of A\

(b) Structure ofA'2<WlA ,2

With the separate adjustment discussed above, the maximum sizes of the matrices need 

to be inverted in each step are 3x3, 6x6 and 8x8 respectively. The correlations between 

the camera exterior and interior parameters are not available.

5.5.2 Two step separate adjustment

Another possible way of using separate adjustment is to put the camera interior and 

exterior parameters in the same group. So the iterations are between two groups. One 

group is the 3D coordinates of the object points and the other group is the camera 

parameters. For each camera there will be 14 parameters, 6 exterior parameters and 8 

interior parameters. The size of the matrices to be inverted is 14x14. In this case the 

correlations between the camera exterior and interior parameters are available.
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5.5.3 A simulation test

To test the self-calibration separate adjustment, a simulation network of close range 

photogrammetric measurement is constructed. Eight images are taken from four stations 

(with a 90° axial camera rotation) by one camera to measure 100 object points. Camera 

interior parameters are generated and listed in Table 5-3. Random noise with a standard 

deviation of a 0= 0.0004 mm is added to the 2D image coordinates.

Table 5-3 Generated camera interior parameters

Axp(mm) Ayp(mm) Ac(mm) k,(mm'2) k2(mm'4) k3(mm'6) Pi (mm'1) P2(mm'1)

1.0 0 e-2 1.0 0e-2 3.52e-2 5.36e-3 -1.33e-4 7.35e-6 5.00e-4 5.00-4

The separate adjustment with camera interior parameters considered is applied. The 

resulting a posteriori standard deviation of the observations was cr0= 0.000397 mm, 

which is very close to the a priori value. This means that systematic errors are well 

compensated and the measured results are mainly influenced by random errors. Figure 

5-10 shows an error map from one image. No significant systematic error can be seen. 

However, if camera interior parameters are not considered in the adjustment process, 

the resulting a posteriori standard deviation will be a 0— 0.001670 mm. Significant 

systematic errors can be observed in the error map shown in Figure 5-11. More tests 

were conducted and the results are given in Chapter 7.
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Figure 5-9 An error map with systematic errors compensated

Figure 5-10 An error map with systematic errors uncompensated
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5.6 Summary of the chapter

In this chapter, the method of the separate adjustment of the photogrammetric 

measurement is discussed. It is based upon the theory of the separate least squares 

adjustment discussed in Chapter 4. In the separate adjustment process, the 3D 

coordinates of the object points and the camera parameters are adjusted separately and 

iteratively. Since the datum can always be determined in both adjustment steps, 

constraints may not be necessary in the separate adjustment. A free network adjustment 

without any constraints becomes feasible and can be easily applied. Because the same 

functional model and the same target function of the least squares are used, the same 

results can be expected from the separate adjustment as from the simultaneous bundle 

adjustment.

The adjusted 3D coordinates of the object points from the free network separate 

adjustment are in an arbitrary coordinate system. A coordinate transformation is 

necessary if these 3D coordinates are required in a given coordinate system. It is also 

possible to include controls in the separate adjustment process to relate the estimated 

results to a given datum. In this case, the coordinate transformation can be avoided. But 

it is found that with controls involved in the separate adjustment process the convergent 

speed is slowed down significantly. Therefore for the fast 3D measurement it is better to 

use free network separate adjustment followed by a coordinate transformation. A fast 

coordinate transformation method (linear transformation), which is especially suitable 

for the results from the free network separate adjustment, will be discussed in Chapter 

6 .

The number of iterations required for the separate adjustment may be more than that for 

the bundle adjustment. However, due to the simple computation and the linear 

computational complexity, the speed of convergence of the separate adjustment is much 

faster than that of the bundle adjustment, especially for large data sets. The maximum 

memory required by the separate adjustment is limited to a 6 x6 unit(or 14x14 when 

camera interior parameters are considered) no matter how many cameras and object
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points are involved. Because of the high speed and low memory requirements, the 

separate adjustment can be used in real-time measurement to track moving objects.

The separate adjustment can also be applied to the self-calibration adjustment or for 

camera calibration. A three step separate adjustment (with camera interior and exterior 

parameters divided) or a two step separate adjustment (with camera interior and exterior 

parameters integrated) can be used.

The disadvantage of the separate adjustment is that the full covariance matrix of the 

estimated results is not provided directly. To evaluate the precision of the 3D 

coordinates a 3x3 covariance matrix for each object point and a 6 x6 (or 14x14) 

covariance matrix for each camera are given. These may be adequate in most cases. A 

full weight matrix of the estimated results is always available from the design matrix, 

from which the full covariance matrix can be derived whenever it is required.
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Chapter 6

Coordinate Transformation

In surveying and photogrammetric measurement it is sometimes necessary to transform 

estimated coordinates from one coordinate system to another. The former could be an 

arbitrary coordinate system (e.g. the results from the simultaneous LSE with inner 

constraints or from the separate LSE with no specific constraints). The latter could be a 

specific pre-defined coordinate system. The transformation parameters can be obtained 

by knowing some coordinates (a minimum of four for 2D transformation and seven for 

3D transformation) of common points in both systems. This transformation is named as 

conformal transformation or similarity transformation since no deformation of 

geometric shape is introduced by this transformation. The only change that may happen 

is a uniform scaling. After obtaining the transformation parameters all the coordinates 

of the object points (together with their cofactor matrix) in one coordinate system can 

be transformed to the other system.

6.1 Two dimensional transformation

The relationship between the two sets of coordinates (jc, y) and (x' , y ' ) for a common 

point i can generally be described as

for a 2D similarity transformation. In this transformation, (x„ y,) could be the 

coordinates obtained from the simultaneous LSE with inner constraints or from the 

separate LSE with no specific constraints. So the datum defined by the starting values is 

arbitrary. ( jc(' , y \ ) could be the pre-measured coordinates of some control points. To 

fulfil the coordinate transformation, the first step is to estimate the four transformation 

parameters a , b, c and cl from the given coordinates of the common points in both 

coordinate systems. The second step is to transform the coordinates of all other points

(6 . 1)
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Chapter 6 Coordinate transformation

observations with the weight matrix Wx; and (iv) both (x, >>) and ( x ' , y ' )  are 

observations with the weight matrices Wx and Wx respectively. For different cases the 

transformation parameters t may be estimated differently.

Case I

The transformation parameters are obtained directly by linear least squares estimation, 

i.e.,

t = (A ‘A ) , A 'E  (6.4)

Case II

The transformation parameters can also be obtained directly by linear least squares 

estimation, but taking the weight of the observations into account. So the cofactor 

matrix and the weight matrix of the transformation parameters are also available.

t = (A ,W ’A)~IA ,W;E (6.5)

The cofactor matrix and weight matrix of the transformation parameters are estimated 

by

q , = (a ‘w ;a )-’

and

Wt = (A ‘WXA)

(6 .6)

(6.7)

Case III

Eq (6.1) can be rearranged as
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a b -l — c

_yt_ -b  a y'i - d

ax] -  by] + (bd -  ac) 
bx] + ay] +(-bc -  ad)

t  , a b , bd -  ac , ,,Let a = —— rv , b - —— — , c = —— — ana d
a + b a + b a + o

-be -  ad 
a ' + b2

So Eq (6.1) becomes

or

xj = a'x] -  b'y] + c' 
y .  = b'x] + a'y] + d'

(6.8)

A 't' = E' (6.9)

where

A' =

x] —y] 1 0
y] x] o i
x'2 - y ’2 1 0
y'2 x'2 o i

K -y'„ i o 
y'„ K o i

v

a ' 
b' 
c' 

d '

and E' =

yi
x2

y2

Xn
y„

The parameters a ' , b' , c' and d' are obtained directly by linear squares estimation, i.e.,

t' = (A"W XA' )-' A '‘WXE' (6 .10)

Qt,= (A " W xA ')- , (6 .11)

W, = (A "W XA ') (6 .12)
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Least squares estimates for the original parameters a, b, c and d can then be obtained by

a' , b' a 'c '-b 'd ' , , a 'd '-b 'c 'a = — — — , b = — — -7 7 , c = — -— —  and d =
a '2 + b'1 a + b' a' + b' a '2 + b'<

The cofactor matrix of t is obtained by

Q, = J Q , J ‘ (6.13)

in which J  is given by

da da da da '
da! db’ de' od'
cb db db da
da’ db' de' dd'
dc dc de de
da' db' de' dd'
dd dd dd dd

_da' db' de’ d i ' .

The weight matrix of t can be obtained by

Wt =Qt 1 (6.14)

= ( J Q r J 'r '

= J r 'w tJ  '

Case IV

In this general case, both (x, j )  and ( x ' , y ' )  are observations with weight matrix Wx 

and Wx' respectively. The functional model (6.1) is no longer linear since both (x, y) 

and t ( = (a, b, c, d)x) are variables.
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Let / = (x, y t x2 y 2 ••• x„ y„ x[ y[ x'2 y'2 x'n y'n) ' , the linearized

functional model becomes

AAt + Bv = C (6.15)

in which At = (Aa Ab Ac Ad)' is a vector of corrections to the parameters, v is a vector 

of residuals of the observations, the cofactor matrix of the observations is given by

assuming that (x, y) and (x ' ,  y ' )  are uncorrelated. In Eq (6.15)

x, y, i o x\ -  ax, -  by, -  c
y, -x , o l y\ + bx, -  ay, -  d
x2 y2 10 x ’2 -  ax2 -  by2 -  c
y2 —x2 0 1 C = - ( f ) ,  = y2 + bx2 -  ay2 -  d

Xn y„ 10 K -  axn -  by„ ~ c

1--- V 1 o 1 2/2x4

ii-C5+

* - r § ; oa

a b 0 0 ■ • ■ 0 0 -1  0 0 0 ■■■ 0 0
-b a  0 0 ■■■ 0 0 0 -1 0 0 ••• 0 0
0 0 a 0 0 0 0 -1 0 ••• 0 0
0 0 - b a ••• 0 0 0 0 0 -!■■■ 0 0

0 0 0 0 a b 0 0 0 0 •••-/ 0 
0 0 0 0 ----b a  0 0 0 0 ■■■ 0 -1

~ [B 1 Bl\2n*4

where
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results from separate LSE), the weight matrices (which are easily obtained) can be used 

in Eq (6.19d) to calculate (B Q Therefore the transformation parameters can be 

estimated without knowing the cofactor matrices of the coordinates which are difficult 

to obtain by separate LSE.

The parameters a, b, c and d in B  and C are initially given as starting values. After each 

iteration B and C should be updated and another iteration applied. The iterative 

procedure terminates when the given stop criteria are met.

The estimates for the third special case (Case III) can also be derived from the estimates 

of the general case (Case IV). In Case III, the coordinates ( x ' , y ' ) are fixed, so

Wx —> oo or Q'x —» 0

Therefore

( BQ,B‘ )~' = ( BXQXB[)t i-i

a + b a + b 
= (a2 +b2)-2(B xWxB{)

(6 .20)

The transformation parameters are estimated by

At -  ( A ' t B Q ' B ' y ' A y ' A ' f B Q ' B ' r ' C

= (a2 + b2) 2 (A 1 B{WXB[A) X A ‘ (a2 + b2)~2 B,WXB[C (6.21) 
= ( A' B]WxB']A)~l A' B]JVxB ‘iC

Q, = ( A ‘ ( BQ,B‘ )~] A ) '
= (a2 +b2) 2 (A ' BXWXB[ A)~'

(6 .22)
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= (a2 +b2)~2 (A 1 B{WXB[ A)
(6.23)

s -  -Ja2 +b2 is the scale factor of the transformation. If the scale is to remain constant 

after transformation, i.e., 5 = 1, the cofactor matrix and the weight matrix are then 

obtained by

Q, = (A ,B1WXB ,1A)~I

and

Wt = A ‘B1WxB ,IA

(6.24)

(6.25)

Another special case is that all the (x , >>) coordinates are uncorrelated and have the same 

weight w„ and all the (x ' , y ' )  coordinates are uncorrelated and have the same weight 

w2. Under these assumptions, the weight matrices of the coordinates become

Wx =diag(w,,wl,---,wl)2ny2n 
W; = diag(w2>w2,---,w2)2nx2n

So

(BW ,B) ] = W  ̂-  WJB,(WX + B/W JBJ 'B/WJ

= W2I 2,rx2n ~ + &)(W, + + 6 > , ) ' ' / 2„x2„

.... w22(a2+b2) ir
“  ( W 2 , 2  , 2  \ ) ^ 2 n x 2 nWj + (W + b )w2

Ul.-W-

Wj + (a2 + b2 )w2 2 / i x 2  n

Considering that the cofactor matrices are also diagonal matrices and the diagonal 

elements q = lAv, so
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1

<BW,B)-' = - ---- !&■----- r I M ,
—  + (a2+b2) —
q, q2

- ____ L_____ 7
q2+(a2+b2)q, 2"x2"

This is the same result as given in Mikhail (1981) where only this special case was 

discussed.

The transformation parameters can then be estimated by Eq (6.21) to (6.23). If the shape 

of the object remains unchanged in both coordinate systems, the transformation 

parameters can be estimated perfectly, i.e., the cofactor matrix of the transformation 

parameters will be null (Qt = 0) and the weight matrix approaches infinity {Wt —> oo). 

The transformation parameters can simply be estimated by Eq (6.4).

6.1.2 Estimation of transformed coordinates

With the estimated transformation parameters all the coordinates can then be 

transformed from one coordinate system to another coordinate system by Eq (6.1). The 

coordinates transformed from (x, y) system to (x ', y ')  system can easily be obtained. 

However the cofactor matrix or weight matrix also need to be estimated. For this 

purpose Eq (6.1) is expressed as

x ' = f ( x , t )  (6.26)

If m points are transformed, then
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* r x /

y\
a

X'
b

y ’2 X  = t  =
c

d

K, Xm
_y’m. y,„_

By the general law of propagation of the cofactor matrices

Qx =  J Q J ‘ (6.27)

in which

and

*  = J,]=
§_ §_
3c 3

(6.28)

(6.29)

where

a b 0 0 - ■ 0 0
-b a 0 0 - ■ 0 0
0 0 a b - ■ 0 0
0 0 -b a ■ ■■ 0 0

0 0 0 0 - ■ a b
0 0 0 0-- ■-b a

(6.30)
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X, y, 10
y, -x, o i
*2 y2 10
y2 ~x2 ° 1

x„ yn 10
y„ ~Xn 0 1-  2nx4

So the cofactor matrix of the transformed coordinates is obtained by

e ;  = h ,  ■>,]

= j .q a + w ,

1----

d i
__

i

i
d__

i i--
--

i__

and the weight matrix is obtained by

w; = e r

Lett/ = J XQXJ X, therefore

w’ = u~' -  u Ij,(wt + Jlu-'J,)-' j \u -1

u~l =  ( J XQXJ ‘X)  '

= (a2+b2r 2( j xwxr x)

In the special case when Q, = 0, Eq (6.34) becomes

wx = tr1
= (a2+b2)-2(J xWxJ[)

(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)
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For the example discussed in section 4.7, the results (the coordinates of four plane 

points and their weight matrix) estimated from the inner constrained LSE (or the unified 

LSE) and the separate LSE can be compared after a coordinate transformation. The 

eight coordinates from the separate LSE, expressed as x, are

X1
(mm)

y i
(mm)

x2
(mm)

T2
(mm)

x3
(mm)

y3
(mm)

x4
(mm)

34
(mm)

-0.0022 0.0250 -0.0022 427.9744 430.5350 431.2545 427.2445 1.5175

and the weight matrix is

W, =
30.5463 5.6429 0.0000 -0.0000 -5.5466 -5.5555-24.9997

30.5648 -0.0000-25.000 -5.5555 -5.5645 -0.0873 
30.5644 -5.3651 -24.9985-0.1905 -5.5658 

30.5467 -0.1905 -0.0015 5.5555 
30.5466 5.9374 -0.0015 

30.5645 -0.1914
symmetric 30.5670

-0.0873
0.0003
5.5555

-5.5453
-0.1914
-24.9985
-5.2768
30.5441

(mm 2)

The eight coordinates from the inner constrained LSE (or the unified LSE), expressed as 

x ',  are

xl '
(mm)

y i '
(mm)

x2 ' 
(mm) (mm)

*3'
(mm)

33'
(mm)

x4 '
(mm)

34 ' 
(mm)

-0.3447 -0.3448 0.3992 427.6040 430.9415 430.1357 426.9040 0.4051

With any two points (e.g. the first two points) in x and x '  the transformation parameters 

t (fromx to x ' ) are estimated, they are

a = 1.0000, b = 0.0017, c = -0.3425, d = -0.3698

The other points can then be transformed from x to x ' .  It was found that the 

transformed coordinates perfectly agreed with the coordinates from the inner
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k ) ,  and T  is a vector with three translations (x0, j 0, z0). The seven transformation 

parameters are expressed by u = [s a> (/> k  x0 y0 z0] . The functional model for one point 

with coordinates in both systems is

/ .  = sRxi + T -  x} = 0 (6.38)

and the linearized functional model for one point is

A, Au + BjVj — Cj (6.39)

where A t is a Jacobian matrix

A, = ( % - ) ,
CM(3x7)

Rxi sRmX' sR Xi /
( 3 x 1 ) ( 3 x 1 ) ( 3 x 1 ) ( 3 x 1 ) ( 3 x 3 )

in which

CO OCÙ

*

0 0 0

0 0 1

0 - 1 0

0 sinw cosw 0 0 -  cosk
-sinw 0 0 = 0 0 sink
cosw 0 0 cosk -sink 0

R oR
3 k

0 1 0

- 1 0  0 

0 0 0

R

R

B: is also a Jacobian matrix

R - f& L ) - 
(3x6) <3 A

R - I
x 3 ) (3x3)

171



Chapter 6 Coordinate transformation

For n points the linearized functional model becomes 

AAu + Bv = C (6.40)

where

A 0 ■• 0

A = A and B =
0 b 2 ••• 0

A _ 0 0 • Bn_

Conventionally, the seven transformation parameters can be estimated by least squares 

using Eq (6.40). The coordinates before and after transformation are treated as 

observations and the sum of weighted squares of the residuals at the control points is 

minimised. The seven parameters are estimated by

Au = (A' ( BQ,B‘) '  A) 1 A 1 ( BQ,B‘) '  C (6.41)

This is a general case of least squares process which requires sophisticated 

computation. After obtaining the transformation parameters, all the coordinates of the 

object points in one coordinate system can be transformed to the other system. The 

cofactor matrix of the transformed coordinates can be calculated by the S- 

transformation (Strang van Hees 1982). This conventional method of coordinate 

transformation is rigorous, but very complicated. It has been well understood and will 

not be discussed in detail here.

In this section a method of linear coordinate transformation is discussed. The 

computation of the transformation parameters is significantly simplified and it is 

especially suitable for the 3D coordinates obtained by separate least squares adjustment 

with no constraints. The full covariance matrix of the 3D coordinates is not necessary in 

this case, whilst the inverse of the covariance matrix (the weight matrix) which is 

available from the design matrix can be used instead.
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6.2.2 Linear coordinate transformation

6.2.2.1 Estimation of the transformation parameters

If n common points are known in both coordinates system, the transformation equations 

can be expressed in a linear form with twelve transformation parameters, i.e.,

At = b (6.42)

where

x1 )>i z, 0 0 0 0 0 0 1 0 0
0 0 0 x, y, z, 0 0 0 0 1 0
0 0 0 0 0 0 x, yI zI 0 0 1
x, y2 z2 0 0 0 0 0 0 1 0 0
0 0 0 x2 y2z2 0 0 0 0 1 0 
0 0 0 0 0 0 x2 y2z2 0 0 1 ’

x„ y„ z„ o o o o o o i o o
0 0 0 xn yn zn 0 0 0 0 1 0
0 0 0 0 0 0 xn yn zn 0 0 1 _

t =

h i

and b =

y\
A
X 2

y'3

K
y'„

173



Chapter 6 Coordinate transformation

A minimum of four common points in both system will determine the twelve 

transformation parameters uniquely. However if more points are given, least squares 

estimation is used for the best solution. Four situations are considered, and they are

(i) both ( x, y, z ) and ( x ' , y ' , z '  ) are fixed;

(ii) ( x ,y ,z )  are fixed while ( x ' ,  y ',  z ' ) are the observations with weight matrix Wx' ;

(iii) ( x ',  y ',  z ' ) are fixed while ( x ,y ,z )  are the observations with weight matrix Wx;

(iv) both ( x ,y ,z )  and ( x ' ,  y ' ,  z ' ) are observations with weight matrix Wx and Wx' 

respectively.

The twelve transformation parameters can be obtained directly by linear least squares 

estimation, i.e.,

The twelve transformation parameters can also be obtained directly by linear least 

squares estimation, but with the weight of the observations taking into account. So the 

cofactor matrix and the weight matrix of the transformation parameters are also 

available.

Case I

t = (A ‘A )-1A ‘b (6.43)

Case II

t = (A 'w ;A y 'A ‘w;b (6.44)

The cofactor matrix and weight matrix of the parameters are estimated by

Q, = (A 'w ^A)-1 (6.45)

and

Wt = (A ‘W;A) (6.46)
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Case III and IV

Considered the general case (case IV) first and then treat case III as a special case. In 

case IV, both ( x, y, z ) and ( x ' , y ' , z ' ) are observations with weight matrix Wx and 

W /  respectively. The functional model is no longer linear. Rearranging Eq (6.42) to 

give

f x = tiXi +t2yi +t3zi +tl 0-x ;  = 0 
- f y = t4x, + t5y, + t6z, + /„ - * ;  = 0 (6.47)
f z = t1xi +tsyi +t9zi +tn -x'i =0

Let t = [t{ t2 ■■■ tn ]*and / = [/; l2]‘, where

l, = (x, y x z, x2 y 2 z2

12 = ( X! y\ Zi X2 T 2 Z2

The linearized functional model becomes

AAt + Bv = C (6.48)

in which At = [ At, At2 .. .Atn ]' is a vector of the corrections of the parameters, v is a 

vector of the residuals of the observations. The weight matrix and cofactor matrix of the 

observations are given by

Xn y„ Zn)
X' V' Z')n y  n H  J

W,
r wx \ Q,X and Q, =

Q'x_

considering that (x, y, z) and (x' ,  y ' ,  z ')  are generally uncorrelated. In Eq (6.48)
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A = ( * ) °  
ct

x, y, z, 0 0 0 0 0 0 1 00
0 0 0 x, y, z, 0 0 0 0 1 0
0 0 0 0 0 0 xt y, z, 0 0 1
x2 y2 z2 0 0 0 0 0 0 1 0 0
0 0 0 x2 y2 z2 0 0 0 0 1 0 
0 0 0 0 0 0 x2 y2z2 0 0 1

x„y„zn 0 0 0 0 0 0 1 00  
0 0 0 xn yn zn 0 0 0 0 10 
0 0 0 0 0 0 xnyn zn 0 01

b  = [b , b ! ]

B,= (§ > -

t, h t3

14 0 0 0

^7 h U
t, h h

0 h 15 h 0 0

t7 tH t9

0 0 0

t, h t.
0 0 0 h h t,

t-

" Z  —  '  -5 )  ~  * 3 n x 3 nd.

3nxl2

3/ix3/i
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results from the separate LSE) the weight matrices, which are always available from the 

design matrix, can be used in Eq (6.53) to calculate {BQfi’) '. Therefore the 

transformation parameters can be estimated without the cofactor matrices of the 

coordinates which are difficult to obtain by the LSE.

The parameters /, to tn in B and C are starting values initially. After each iteration B 

and C should be updated and another iteration applied. The iterative procedure 

terminates when the required precision is obtained.

62.2.2 Estimation of the transformed coordinates

With the estimated transformation parameters ti to tn, all the coordinates can then be 

transformed from one coordinate system to another coordinate system. The 

transformation equations can be expressed as

x', = t,x, + t2y, + t3z, + 1,0

' y \  =  t 4X i + U T/ + t6z > + 111 (6 -54)
z,' = Ux, + t„y, + t9z, + tn

The coordinates transformed from (x, y, z) to ( x ' , y ' , z ')  can easily be obtained from 

above equations. To estimate the cofactor matrix and the weight matrix of the 

transformed coordinates, Eq (6.54) are expressed as

x ’ = f ( x , t )  (6.55)

If m points are transformed, then
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x 'l

y'i y t
z 'i z i
X2 X2
y'2

X  =
y2

Z2 Z2

K, Xm
y'm y„,

_Z’n,_ _ V

t,

t 12

By the general law of propagation of the cofactor matrices

Qx = JQxtJ ‘

in which

and

Q ,
Q,

J  = [J X J , h 3c 3t

where

h h h 
h (5 t6 
t7 tH t9

J  = cr
3c

0

li tj t3

t-i h h
t- tH t9

h h h 
h h u

(6.59)

t- tH t9- 3mx3m

(6.56)

(6.57)

(6.58)
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and

x, y t zi 0 0 0 0 0 0 100
0 0 0 X1 yj zi 0 0 0 0 10
0 0 0 0 0 0 x , y, z, 00  1

X2 y2 Z2 0 0 0 0 0 0 100
0 0 0 X 2 y 2 Z2 0 0 0 0 10

' a 0 0 0 0 0 0 X2 y2 z2 00 1

X m y,„ Z m 0 0 0 0 0 0 100
0 0 0 Xn, ymz,„ 0 0 0 0 10
0 0 0 0 0 0 x« y,nZ,n 0 0 1-  3wxl2

(6.60)

So the cofactor matrix and the weight matrix of the transformed coordinates are 

obtained by

Qx A
Q,_

and

Qx =  [Jx J , ]

= j xq xj ‘ + j 'Q , j ;

w , = Q-J
= ( j xQxj ix + j,Q tj ; r '

(6.61)

(6.62)

Let U = J XQXJ ‘X, therefore

W ’ = U~' -  U~’J t(Wt + JÌU ’J J ^ J Ì U - 1 (6.63)

and

u = ( J & X r 1

J* a -‘j ; 1
(6.64)
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Since Jx is an orthogonal matrix (when the scale factor s is extracted), J  1 = J ' , 

therefore

U~' = J XWXJ ‘X (6.65)

In the special case when Q, = 0, Eq (6.63) becomes

W' = U-1

(J XWXJ[)
(6.66)

For the estimated 3D coordinates from the bundle adjustment and the separate 

adjustment, the weight matrix Wx is a block diagonal matrix in which each block is a 

3x3 square matrix. If the 3D coordinates are required to transform into another 

coordinate system a:’, a block diagonal matrix Jx can be constructed from Eq (6.59) and 

the weight matrix Wx (after transformation) can be calculated by Eq (6 .6 6 ). Because of 

the special structures of the matrices Wx and Jx, the products of the matrices are 

calculated between 3x3 squares matrices. Time and memory are saved significantly.

6.2.3 Estimation of seven parameters from twelve parameters

It is necessary sometimes to know the seven transformation parameters (s , a, P, y, x0, y0, 

z0) instead of the twelve parameters (t,, t2, ..., t]2). In this case the pre-estimated twelve 

parameters t (together with their weight matrix) are treated as observations and the 

seven parameters need to be estimated. The relationships between these parameters are 

expressed as
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¿(cos/? cosy)
¿(sin «sin/? cosy + cos«siny) = t2
¿(- cos «  sin /? cos y + sin « sin y ) h
¿(-cos/? sin y) = u
¿(- sin «sin /?sin y + cos« cosy) ~ h
¿(cos «  sin ¡3 sin y + sin « cos y ) ~ h
¿(sin /?) = 7̂
s(~ sin «  cos/?) = 8̂
¿(cos «cos/?) = tg
x0 = ho
To = h,
zo = i l

(6.67)

These equations are typical observation equations with twelve measured elements and 

seven unknown parameters to be estimated. The seven parameters can be estimated by 

least squares, i.e.,

Ax = (A 'W tA )-’A'Wlb (6 .6 8 )

x  = (x )0 + Ax (6.69)

Wx = A'WtA (6.70)

QX = (A ,WIA )-’ (6.71)

in which

# # \ # # # #<. #
ds da dj3 dy dc0 py0 ^ 0

Pf2 Pf2 #2. PP PP #2,
ds da #3 dy dc0 Py0 &0

#12 #12 #\2 Pfn Pin Pin Pfn
ds da dP dy dc0 #  0 dzQ
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As 
A a
A/?

Ax = A y and b

/l2 (-A2 )0

The elements in A are derived in Appendix I.

6.3 Applications

6.3.1 Datum transformation

It is sometimes necessary to transform a set of coordinates from one coordinate system 

to another coordinate system especially when results in an arbitrary datum are obtained 

from a bundle adjustment without control or from the separate adjustment in close range 

photogrammetry.

With the conventional coordinate transformation method, based on Eq (6.37), the seven 

transformation parameters can be estimated by Eq (6.42) with control points in both 

systems. After this, other coordinates can be transformed. This is followed by a S- 

transformation to calculate the cofactor matrix of the transformed coordinates. The full 

cofactor matrix of the original coordinates is required and the computation is very 

complicated.

With a linear transformation, the twelve transformation parameters can be estimated by 

Eqs (6.49) to (6.53) using control points before and after transformation. The 

coordinates (after transformation) of other points together with their cofactor matrix and 

weight matrix are calculated by Eqs (6.54) and (6 .6 6 ). In this case, the full cofactor
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matrix of the coordinates is not necessary. The inverse of the cofactor matrix, which is 

always available from the design matrix, can be used instead. The computation process 

is much simplified.

6.3.2 Relative positioning of a moving object

In industrial environments, it is sometimes required to monitor the position of a moving 

object relative to a given coordinate system, which is usually defined by the ground 

control points. Using close range photogrammetry, the coordinates of the targeted 

points on the object and the control points can be measured in a common coordinate 

system. In the case of free network adjustment (bundle adjustment or separate 

adjustment) the whole system, the object points and the control points (treated as 

normal object points in the adjustment process), may shift in the object space. Under 

this situation, the estimated 3D coordinates need to be transformed into the pre-defined 

coordinate system (defined by the control points). Firstly, the control points are used to 

estimate the transformation parameters. Then the other object points can be transformed 

into the pre-defined coordinate system. After each movement of the object, its relative 

position to the pre-defined coordinate system can be estimated via coordinate 

transformations. A numerical example will be given in Chapter 7.

6.3.3 Relative positioning of two rigid objects

It is sometimes required to monitor the relative position of two rigid objects. Using 

close range photogrammetry, the coordinates of the targeted points on the objects can be 

measured in a common coordinate system S0. In this case the coordinates of the targeted 

points on both objects need to be measured in their local coordinate systems S, and S2, 

the relative position of the two objects can be determined by a series of coordinate 

transformations. Figure 6-1 illustrates the configuration.
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Figure 6-1 Relative position of two objects

The coordinates of the targeted points on the two objects S0Cx„ y u z,) and S0(x2, y 2, z2) 

are measured by close range photogrammetry in a common coordinate system S0 which 

is defined by the control points. These points are also measured in the two local 

coordinate systems at S,(X], y t, z,) and S2(x2, y2, z2). The transformation parameters T] 

are determined from all points on object I in system S0 and S,, and the transformation 

parameters T2 are determined from all points on object II in system S0 and S2. After that, 

the relative position of the two objects 7j2 can be determined from 7j and T2. In this 

application of coordinate transformation, the position of the ground control points are 

not required, the distances between them may be needed to define the scale.
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6.4 Summary of the chapter

Photogrammetric methods provide estimations of the 3D coordinates of the spatial 

points on objects. It is often necessary to relate these points to a given coordinate 

system. In another situation, the relative position of the two objects may be required. 

This chapter describes a linear coordinate transformation to solve these problems. 

Compared with the conventional coordinate transformation methods, the method of 

linear transformation is simple and easy to apply. The size of the matrix to be inverted 

is 12x12 rather than 3nx3n (for the conventional method) when the transformation 

parameters are estimated. This is a significant saving in terms of time and memory. 

Using the twelve transformation parameters all the coordinates can be transformed from 

one coordinate system to another system together with their cofactor matrix and the 

weight matrix. The computational process is very simple. Hence the computationally 

expensive S-transformation can be avoided. The linear coordinate transformation is 

especially suitable for the 3D coordinates obtained by the separate least squares 

adjustment with no constraints, since the full cofactor matrix of the 3D coordinates is 

not required in this case. The inverse of the cofactor matrix (the weight matrix) which is 

always available from the design matrix can be used instead. The coordinate 

transformation is also useful for relative position of a moving object and between two 

objects.
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Chapter 7

Simulation tests

In this chapter the results of some simulation tests are given which were conducted to 

test the theories discussed in the previous chapters. A simulation network is constructed 

and its configuration is illustrated in Figure 7-1. The object points are uniformly 

distributed in a 400x400x200 mm box, with one control point on each of the eight 

comers. These control points are used to initialise the camera parameters and define the 

coordinate system. The cameras are uniformly located on a circle at a distance of about 

1500 mm from the centre of the box. The principal distance of the cameras is 8.5 mm.

Figure 7-1 The simulation test network 

7.1 Test of resection with the 2D DLT model

To test the 2D DLT resection method a simulated test field with four control points on 

the corners of a square was constructed in object space as shown in Figure 7-2. The four 

control points are supposed to be in the same plane and their coordinates are shown in 

the Table 7-1.
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Figure 7-2 Four control points in a same plane

Table 7-1 Coordinates of the four control points

control pts X  (mm) F (mm) Z  (mm)
1 -200.0 -200 .0 0.0
2 -200.0 200.0 0.0
3 200 .0 200.0 0.0
4 200.0 -200 .0 0.0

7.1.1 Test for camera positions

A simulation test program was written to test the 2D DLT method for space resection. 

Cameras to be resected were randomly distributed in the object space above the control 

point plane aiming to the centre of the four control points. Table 7-2 shows the camera 

parameters for six positions (focal length /  = 8.5 mm). The four control points were 

projected onto the image planes of the cameras and the 2D coordinates are listed in 

Table 7-3.
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Table 7-2 Camera parameters of six examples

Camera XL (mm) Yl  (mm) ZL(mm) ® (deg) cp (deg) k (deg)
1 -45.4 1062.6 1011.3 -48.4170 -1.7727 -12.2935
2 -1468.7 1075.7 2301.0 -25.0557 -30.0036 97.4457
3 17.2 1229.8 274.9 -77.3997 0.7820 39.3152
4 730.0 432.4 3222.5 -7.6424 12.6542 -12.5978
5 -870.5 -479.9 2513.7 10.8085 -18.7862 -99.8043
6 -1058.2 1140.6 2049.5 -29.0971 -24.2830 68.0109

Table 7-3 2D coordinates of the control points

Camera Control pts jt (mm) y  (mm)
1 1 -0.901427 -0.943204
1 2 -1.422228 0.601111
1 3 1.089468 1.139969
1 4 1.156880 -0.488956
2 1 -0.443716 0.693742
2 2 0.605550 0.327285
2 3 0.435713 -0.681255
2 4 -0.537972 -0.290767
3 1 -1.051026 0.531994
3 2 -1.027941 1.290710
3 3 1.442593 -0.730187
3 4 0.755609 -0.948755
4 1 -0.353593 -0.586493
4 2 -0.607309 0.379611
4 3 0.368714 0.611579
4 4 0.613853 -0.383699
5 1 0.730657 -0.461137
5 2 -0.506284 -0.737210
5 3 -0.678564 0.428257
5 4 0.495576 0.721608
6 1 -0.823921 0.435122
6 2 0.360228 0.711443
6 O3 0.828037 -0.437286
6 4 -0.315354 -0.622818

With the 3D coordinates of the control points and their 2D coordinates on the image 

planes as known parameters the 2D DLT method was used and the eight DLT 

parameters Lj to L8 were computed directly. The eight DLT parameters for the six 

cameras are listed in Table 7-4.
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Table 7-4 The eight DLT parameters for the six cameras

Camera L, L2 l 3 l 4 l 5 l 6 l 7 Ls
1 -8.65e-4 8.51e-5 1.45e-7 -1.45e-4 -4.62e-4 -3.30e-7 2.10e-5 -4.93e-4
2 3.83e-5 -2.97e-4 5.66e-7 2.92e-4 l.lle-4 8.91e-7 1.70e-4 -1.25e-4

3 -8.14e-4 -1.Ole-4 -3.00e-7 5.02e-4 -1.40e-4 -1.24e-7 -1.08e-5 -7.74e-5
4 -2.86e-4 7.34e-5 1,20e-7 -8.38e-5 -2.88e-4 -1.89e-7 -8.57e-5 -3.89e-5

5 5.96e-5 3.54e-4 -2.Ole-7 -3.45e-4 8.38e-5 2.77e-7 1.19e-4 8.56e-5
6 -1.44e-4 -3.41e-4 -2.53e-7 3.23e-4 -8.70e-5 -4.31e-7 1.59e-4 -1.72e-4

The camera physical parameters (XL, VL, ZL, to, cp, k ) were calculated from the eight 

DLT parameters. Since no errors were introduced in either 3D or 2D coordinates, the 

reconstructed camera parameters were identical with the generated data. Table 7-5 

shows the results.

Table 7-5 The recovered camera parameters

Camera XL(mm) YL(mm) ZL(mm) co (deg) cp(deg) K(deg)
1 -45.40 1062.60 1011.3 -48.4170 -1.7727 -12.2935
2 -1468.70 1075.70 2301.0 -25.0557 -30.0036 97.4457
n 17.20 1229.80 274.9 -77.3997 0.7820 39.3152
4 730.00 432.40 3222.5 -7.6424 12.6542 -12.5978
5 -870.50 -479.90 2513.7 10.8085 -18.7862 -99.8043
6 -1058.20 1140.60 2049.5 -29.0971 -24.2830 68.0109

If the 2D or 3D coordinates have no errors, there will be no error for the reconstructed 

camera parameters. Five hundred tests with cameras randomly distributed in the object 

space above the control point plane were performed by simulation. The resulting camera 

parameters were always the same as the generated data. However, random errors are 

inevitable in practice. The following tests investigated the influence of 3D and 2D 

errors on the results of the camera parameters.
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7.1.2 Error propagation from 3D to cameras

To test the influence of the 3D observation errors on the camera parameters, random 

errors (normally distributed) were added to the 3D coordinates of the control points. 

With these control points, camera parameters were calculated and statistically analysed. 

One thousand sets of control points were tested. Table 7-6 lists an example of the 

generated camera parameters and reconstructed camera parameters. Figure 7-3 and 7-4 

illustrates the influence of the 3D errors on the camera position parameters and rotation 

parameters.

Table 7-6 An example of the generated camera parameters and reconstructed 

camera parameters with errors on the control points

XL (mm) Yl  (mm) ZL(mm) w (deg) ^(deg) K(deg)
generated 707.0 0.0 707.0 0.0 45.0 -67.2385

reconstructed 704.059 5.6787 702.666 -0.1826 44.0238 -68.0924

14

S t a n d a r d  e r r o r  o f  c o n t r o l  p o i n t s  ( m m )

Figure 7-3 The influence of 3D errors on camera position parameters
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Figure 7-4 The influence of 3D errors on camera rotation parameters

It was found that the 3D errors on the control points show a linear influence on the 

camera parameters. The camera parameters are very sensitive to the 3D errors of the 

control points. A one millimetre standard error on the control points could cause a ten 

millimetre error on the camera position parameters and one degree error on the camera 

rotation parameters. However, with this accuracy the camera parameters are likely to be 

good enough to be used as the starting values in the bundle adjustment or the separate 

adjustment.

7.1.3 Error propagation from 2D to cameras

To test the influence of 2D observation errors on the camera parameters, random errors 

(normally distributed) were added to the 2D coordinates on the image plane. With these 

2D image data, the camera parameters were calculated and statistically analysed. One 

thousand tests were performed with error added 2D data. Table 7-7 shows an example 

of the generated camera parameters and reconstructed camera parameters. Figure 7-5 

and 7-6 illustrates the influence of the 3D errors on the camera position parameters and 

rotation parameters.
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Table 7-7 An example of the generated camera parameters and reconstructed 

camera parameters with errors on the 2D coordinates

XL (mm) YL(mm) ZL(mm) co (deg) <t> (deg) k (deg)
generated 707.0 0.0 707.0 0.0 45.0 128.488

reconstructed 708.958 0.7788 707.074 -0.0614 44.996 128.505

Figure 7-5 The influence of 2D errors on camera position parameters

Figure 7-6 The influence of 2D errors on camera rotation parameters
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7.2 Test of resection followed by intersection with the DLT model

In this simulation test four cameras were used and uniformly distributed on a circle with 

a 90 degree interval between each camera. Their true position and rotation parameters 

are shown in Table 7-8.

Table 7-8 The parameters of four cameras on a circle

Camera XL (mm) Yl  (mm) ZL(mm) co (deg) cp (deg) k (deg)
1 1000.0 0.0 1000.0 0.0 45.0 -7.54
2 0.0 1000.0 1000.0 -45.0 0.0 92.18
3 -1000.0 0.0 1000.0 0.0 -45.0 52.98
4 0.0 -1000.0 1000.0 45.0 0.0 -13.64

Eight control points were computed in the object space with a standard deviation of 1 

mm. The true positions of these control points are given in Table 7-9.

Table 7-9 Eight Control points

control pts X (mm) Y (mm) Z (mm)
1 200.0 200.0 100.0
2 -200 .0 200.0 100.0
3 -200.0 -200.0 100.0
4 200.0 -200.0 100.0
5 200.0 200.0 -100.0
6 -200.0 200.0 -100.0
7 -200.0 -200.0 -100.0
8 200.0 -200.0 -100.0

The 2D coordinates of the control points on the camera image planes were computed. 

Errors with a standard deviation of 0.0004 mm were added to the 2D data. Using these 

known 2D coordinates of the control points on the camera image planes and their 3D 

coordinates (errors added), the camera parameters were estimated using the DLT model 

and the results are given in Table 7-10.
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Table 7-10 Estimated camera parameters using DLT model

Camera XL (mm) Yl  (mm) ZL(mm) co (deg) (p (deg) k (deg)
1 997.24 -3.69 1001.40 0.91 44.72 -8.53
2 -2.68 998.14 998.26 -44.96 -0.87 91.47
3 -998.97 2.04 1002.27 -0.53 -44.72 52.00
4 2.14 -1003.42 997.41 45.53 0.73 -14.20

With these approximately estimated camera parameters the coordinates of the object 

points were located directly by spatial intersection. In this simulation test, 100 object 

points were randomly distributed in the volume of the box. Their 2D coordinates on 

camera image planes were computed. Normally distributed errors (ct0 = 0.0004 mm) 

were added to these 2D coordinates deliberately. The space intersection method was 

then used to estimated the 3D coordinates of these object points. Table 7-11 shows the 

root mean square (RMS) of the standard deviations of the estimated 3D coordinates of 

the object points.

Table 7-11 The RMS standard deviations of the estimated 

3D coordinates from the method of resection 

followed by intersection with DLT model

o'* (mm) ay (mm) <x (mm) oiyz (mm)

0.0773 0.0812 0.1739 0.1195

The relative precision of the estimated 3D coordinates from this measurement process 

was found to be 1:5,023.

More tests were conducted with different 3D and 2D errors. Figure 7-7 and 7-8 show 

the influence of 3D and 2D errors on the precision of the estimated 3D coordinates.
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Figure 7-7 The influence of the precision of control observations 

on the precision of the 3D coordinates of interested points

Figure 7-8 The influence of image coordinate error on the precision 

of the 3D coordinates of interested points

It was found, as expected, that the precisions of the estimated 3D coordinates were 

linearly affected by the 3D errors on control points and 2D errors on the image 

observations. The influence of the 2D errors is inevitable. But the influence of the 3D 

errors on control points should be avoided.
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7.3 Test of the bundle adjustment

With the 3D coordinates of the object points and the camera parameters obtained above 

as the starting values, a photogrammetric bundle adjustment with inner constraints was 

applied to adjust these known parameters. After each iteration, the sum of the squares of 

the residuals on the observations (<|> = vlWv) and the maximum adjustment of the 3D 

coordinates were calculated. Table 7-12 shows the results after each iteration. The 

iterative process terminated when the maximum adjustment on the 3D coordinates was 

less than 0.0001  mm.

Table 7-12 The bundle adjustment process

Iteration (j) = v{Wv (mm2) max. adjustment (mm)
1 0.0000736237 0.25996
2 0.0000734231 0 .00112
3 0.0000734190 0.00001

From the covariance matrix provided by the bundle adjustment the root mean squares 

(RMS) of the standard deviations of the estimated 3D coordinates were obtained. Table 

7-13 shows the results from the bundle adjustment.

Table 7-13 The RMS standard deviations of the estimated 

3D coordinates from the bundle adjustment

crv (mm) cr(, (mm) o, (mm) °xyz (mm)

0.0370 0.0370 0.0458 0.0402

The relative precision of the estimated 3D coordinates from this measurement process 

was found to be 1:14,945.

More tests were conducted with different 2D errors. Figure 7-9 shows the influence of 

2D errors on the precision of the estimated 3D coordinates.
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Figure 7-9 The influence of 2D error on the precision of 3D coordinates

7.4 Tests of the separate adjustment

7.4.1 Free network adjustment

With same starting values as used in the bundle adjustment, the separate adjustment was 

applied. Firstly perfect observations (2D coordinates on image plane without errors) 

were used in the separate least squares adjustment. After each iteration, the 3D 

coordinates of the object points and the camera parameters were adjusted. The sum of 

the squares of the residuals on the observations = vl Wv) and the maximum 

adjustment of the 3D coordinates were calculated. Table 7-14 shows the results after 

each iteration. The iterative process terminated when the maximum adjustment was less 

than 0.0001 mm.

It is not surprising to observe that <j) can be reduced to zero. Without observation errors, 

the object points can be reconstructed perfectly in the 3D space. The whole body of the 

object points may move in the 3D space. But after the coordinate transformation they 

perfectly agree with their true values.
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Table 7-14 The separate adjustment process 

without observation errors

Iteration ij> = v^v(mm2) max. adjustment
1 0.0000003212 0.12124
2 0.0000000881 0.00866
3 0.0000000307 0.00354
4 0 . 0000000116 0.00161
5 0.0000000045 0.00095
6 0.0000000018 0.00075
7 0.0000000007 0.00035
8 0.0000000003 0.00021
9 0 .0 0 0 0 0 0 0 0 0 1 0.00013
10 0 .0 0 0 0 0 0 0 0 0 0 0.00008

The second test used errors added to image coordinates (ct0 = 0.0004 mm) in the 

separate adjustment process. Again after each iteration, the sum of the squares of the 

residuals on the observations (<j> = v{Wv) and the maximum adjustment of the 3D 

coordinates were calculated. Table 7-15 shows the results after each iteration. The 

iterative process terminated when the maximum adjustment was less than 0.0001 mm.

Table 7-15 The separate adjustment process 

with observation errors

Iteration (j) = vlWv (mm2) max. adjustment (mm)
1 0.0000737445 0.12101
2 0.0000735089 0.00867
3 0.0000734504 0.00354
4 0.0000734309 0.00162
5 0.0000734236 0.00096
6 0.0000734208 0.00058
7 0.0000734197 0.00035
8 0.0000734192 0.00021
9 0.0000734191 0.00013
10 0.0000734190 0.00008

The separate adjustment process terminated after 10 iterations. Comparing the sum of 

the squares of the residuals on the image planes (tf> = v'Wv) from both the bundle
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adjustment and the separate adjustment it can be seen that they both converge to the 

same minimum. This implies that the estimated results from the two methods are 

equivalent. The resulting 3D coordinates of the object points are compared with those 

obtained from the simultaneous bundle adjustment. They agree perfectly after the 

coordinate transformation.

From the sum of squares of the residuals on the observations the a posteriori reference 

variance o 0 was calculated, i.e.,

0.000393(mm)

This is very close to the a priori reference variance ct0 = 0.0004 mm. From the 3x3 

covariance matrices of each object point, the RMS values of the standard deviations of 

the estimated 3D coordinates were calculated. Table 7-16 shows the results from the 

separate adjustment.

Table 7-16 The standard deviations of the estimated

3D coordinates from the separate adjustment

Pi (mm) cr, (mm) az (mm) °xyz (mm)

0.0373 0.0373 0.0461 0.0404

The relative precision of the estimated 3D coordinates from this measurement process is 

found to be 1:14,834. It should be pointed out that the standard deviations of the 3D 

coordinates were estimated approximately from the 3x3 covariance matrices of each 

object points. That is why the results shown in Table 7-16 are slightly different from 

that shown in Table 7-13. For this strong convergent network the approximation is 

quite acceptable.
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7.4.2 With control points

To verify the results from the separate adjustment, further tests were conducted for the 

bundle adjustment and the separate adjustment with eight fixed control points. It was 

found that their resulting 3D coordinates and the camera parameters were identical even 

with different starting values.

7.5 Speed of the separate adjustment

To test the speed of the separate adjustment process object points were generated and 

their 2D locations calculated. Errors were added to the 2D image coordinates. The 

starting values of the 3D coordinates of the object points and the camera parameters 

were estimated by resection followed by intersection with eight control points. The 

computation time of the separate adjustment was found, as expected, to be directly 

proportional to the numbers of object points, cameras and iterations. The coefficient Cs 

was found to be 215 ps for a SUN Sparc Classic and 42 ps for a 120 MHz Pentium. A 

comparison with a simultaneous bundle adjustment (GAP 1992) developed at City 

University is performed for a four camera network and the results are listed in Table 7- 

17.

Table 7-17 Comparison of speed between the bundle 

adjustment and the separate adjustment for 

a four camera network

Number of pts BA(seconds) SA(seconds)
50 8 0.43
100 45 0.86

150 152 1.29
200 389 1.72
250 748 2.15
300 1269 2.58
350 2116 3.01
400 2967 3.44

1000 Not measured 8.60
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7.6 More comparisons between BA and SA

The minimisation of the sum of squares of the residuals (v*Wv) on the image planes is 

the objective of the least squares process. Table 7-18 shows some simulation test results 

of the bundle adjustment and the separate adjustment for a four camera network. The 

values of v'Wv calculated from both methods are always same (the small differences in 

the eighth decimal place is caused by the round off of input data), and each individual 

residual on the image planes is also the same for the two methods. A further check was 

made by comparing the difference between 3D coordinates of the object points obtained 

from both methods after a 3D transformation. The results indicated no differences to the 

level of precision used.

Table 7-18 Comparison of the sum of the squares of residuals 

on image planes between the bundle adjustment and 

the separate adjustment for a four camera network

Number of 
points

BA
v(Wv (mm2)

SA
v(Wv (mm2)

50 0.00024738 0.00024739
100 0.00047313 0.00047313
150 0.00079095 0.00079093
200 0.00094817 0.00094816
250 0.00119077 0.00119079
300 0.00150056 0.00150054
350 0.00168301 0.00168300
400 0.00192340 0.00192340

The accuracy of the 3D coordinates of the object points estimated by the two methods is 

the same since their results are same. In the separate adjustment method, the full 

covariance matrix is not calculated, the accuracy of the 3D coordinates of the object 

points estimated can be evaluated approximately by the method discussed in Chapter 5. 

Table 7-19 shows these approximate values and the values calculated from the full 

covariance matrix with a six camera network. It can be seen that the results are very
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close especially when the number of targets increases. So the approximately evaluated 

standard deviations of the 3D coordinates appear to be acceptable.

Table 7-19 Comparison between the standard deviations of the 

3D coordinates estimated from the full covariance 

matrix and the approximations

Number of 
targets

a x (mm) a y (mm) a z (mm)
BA SA BA SA BA SA

50 0.04653 0.04677 0.04644 0.04678 0.05614 0.05738
100 0.04678 0.04689 0.04677 0.04689 0.05696 0.05763
150 0.04685 0.04693 0.04685 0.04693 0.05724 0.05770
200 0.04680 0.04685 0.04680 0.04686 0.05716 0.05752

7.7 More tests with separate adjustment

It is well known that increasing the number of images at each camera station will 

increase the accuracy of 3D coordinates of the object points measured in 

photogrammetry. Table 7-20 illustrates the results of the simulation test with six camera 

stations and 200 targets. When the number of images increases, the standard deviations 

of the 3D coordinates decreases and they are inversely proportional to the square root of 

the number of images as reported by Fraser (1992).

Table 7-20 The effects of increasing the number of images

Number of 
images

a x (mm) ay (mm) a z (mm)

1 0.04686 0.04686 0.05752
2 0.03313 0.03313 0.04067
4 0.02343 0.02343 0.02876
6 0.01913 0.01913 0.02348
8 0.01657 0.01657 0.02034
A 0.04686kAa 0.04686A'1/2 0.05752A'-|/2
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Changing the network geometry gives a different accuracy for the estimated 3D 

coordinates. Table 7-21 and Figure 7-10 illustrates the influence of the network 

geometry on the accuracy of 3D coordinates by changing the convergence angle a. A 

large angle will cause the accuracy to worsen in x  and y, and get better in z. It can be 

seen that theoretically a convergent angle of about 110° will give the best accuracy for 

axyz (RMS value) and angles between 100° and 120 ° are reasonable. Theg-value is equal 

to 0.5 in this situation as reported by Fraser (1984).

Table 7-21 The effects of changing network geometry

Convergent 
angle (deg)

g x (mm) (mm) G, (mm) Gw (mm)

60 0.04351 0.04351 0.08145 0.05893
80 0.04558 0.04559 0.06330 0.05217
100 0.04826 0.04827 0.05307 0.04992
108 0.04943 0.04944 0.05023 0.04970
110 0.04973 0.04974 0.04960 0.04969
112 0.05004 0.05005 0.04901 0.04970
120 0.05127 0.05128 0.04690 0.04986
140 0.05420 0.05421 0.04317 0.05080
160 0.05642 0.05643 0.04117 0.05184

Figure 7-10 3D precision of different network geometry
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7.8 Tests of separate adjustment with DLT models

A separate adjustment program based on the DLT model was written and tested. The 

same input data as used for the bundle adjustment and the separate adjustment were 

used again. After each iteration, the sum of the squares of the residuals on the 

observations (<j> = vllVv) and the maximum adjustment of the 3D coordinates were 

calculated. Table 7-22 lists the results after each iteration. The iterative process 

terminated when the maximum adjustment was less than 0.0001  mm.

Table 7-22 The separate adjustment process with 

the DLT model

Iteration (j) = vtWv (mm2) max. adjustment (mm)
1 0.0000920333 0.22662
2 0.0000727032 0.02924
3 0.0000722330 0.00529
4 0.0000722170 0.00115
5 0.0000722162 0.00032
6 0.0000722161 0.00011
7 0.0000722161 0.00004

The separate adjustment process terminated after 7 iterations. Comparing the sum of the 

squares of the residuals on the image planes (<f> = v'Wv) from the normal separate 

adjustment it can be seen that the results are slightly improved. This is because that 

DLT model encompasses some camera interior parameters which the normal 

collinearity equations do not. However, since these interior parameters are highly 

correlated with the camera exterior parameters, the improvement is not significant.

From the sum of squares of the residuals on the observations the a posteriori reference 

variance a 20 was calculated, i.e.,

C7 0 0.0003 89(t?7w )
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From the 3x3 covariance matrices of each object points, the RMS values of the standard 

deviations of the estimated 3D coordinates were calculated. Table 7-23 shows the 

results from the separate adjustment with the DLT model.

Table 7-23 The standard deviations of the

estimated 3D coordinates from the 

separate adjustment with DLT model

W(mm) cr/mm) erz(mm) M mm)
0.0369 0.0369 0.0456 0.0400

The relative precision of the estimated 3D coordinates from this measurement process 

was found to be 1:15,000.

7.9 Tests of self calibration adjustment

In these simulation tests the camera interior parameters were generated. These 

parameters are: principal point shift (Axp, Ay,), principal distance shift Ac, radial lens 

distortion parameters k,, k2, k3, and decentring lens distortion parameters p, and p2. 100 

object points were used. Eight images were taken by the same camera from four stations 

with a 90 degree axial rotation. 2D image coordinates were calculated taking into 

account those camera interior parameters. Realistic camera interior parameters were 

used and are listed in Table 7-24.

Table 7-24 Generated camera interior parameters

Ay, (mm) Ayp (mm) Ac (mm) k, (mm'2) k2 (mm'4) k, (mm'6) p, (mm"1) p2 (mm'1)

1.0 0e-2 1.00e-2 3.52e-2 5.36e-3 -1.33e-4 7.35e-6 5.00e-4 5.00-4

A separate adjustment process was conducted and it is found that without random noise 

involved on the 2D observations the camera interior parameters could be recovered 

perfectly. With random noise (g 0 = 0.0001 mm) added the camera interior parameters
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were estimated and listed in Table 7-25 (the second row lists the standard deviations of 

the estimates).

Table 7-25 Recovered camera interior parameters from 

simulated 2D observation errors

4 VP Ac */ k2 Pi P 2

(mm) (mm) (mm) (mm'2) (mm4) (mm'6) (mm'1) (mm-1)

Value 1 .0 2e-2 1.05e-2 3.52e-2 5.33e-3 -1.55e-4 1.43e-5 4.99e-4 5.01-4

STDV 1.13e-3 1.14e-3 5.55e-4 4.97e-5 3.25e-5 8.14e-6 2.09e-6 2.08e-6

More tests were conducted with different 2D observation errors g 0. The results from ten 

test sets were plotted for the recovered camera interior parameters from Figure 7-11 to 

7-18. The true values of the camera parameters were listed in Table 7-24. From Figure 

7-11 and 7-12 it can be seen that the principal point offset xp and yp are very sensitive to 

the 2D observation errors. The principal distance offset Ac is relatively stable and can 

be recovered reasonably well (this can be seen from Figure 7-13). The recovered radial 

lens distortion parameters k,, k2 and k3 are shown in Figures 7-14, 7-15 and 7-16 

respectively. It can be seen that k, can be recovered well, but k2 and k3 are sensitive to 

the 2D observation errors. The high correlations between the radial lens distortion 

parameters can be seen clearly from the plotted curves. The recovered parameters k„ k2 

and k3 could be very different, but their contributions to the radial lens distortion were 

almost the same. This can be seen from the lens distortion curves illustrated in Figure 7- 

19. The ten curves were plotted using the different sets of parameters. The reason that 

these curves differ when the radius is over 2 mm is that most of the 2D observations on 

the image planes are in the range the 2 mm radius. Therefore the radial distortion out of 

this range can not be recovered properly. The decentring lens distortion parameters p, 

and p2 are the most stable parameters in the self calibration procedure and can be 

recovered very well. This can be seen in Figure 7-17 and 7-18.
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Figure 7-11 The recovered principal point offset xp

Figure 7-12 The recovered principal point offset^

Figure 7-13 The recovered principal distance offset Ac
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Figure 7-14 The recovered radial lens distortion parameter k,

Figure 7-15 The recovered radial lens distortion parameter k2

Figure 7-16 The recovered radial lens distortion parameter k}
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Figure 7-17 The recovered decentring lens distortion parameter p ,

Figure 7-18 The recovered decentring lens distortion parameter p2

Figure 7-19 The radial lens distortion with different set of parameters
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When the camera interior parameters were taken into account in the separate adjustment 

process, the a posteriori a g calculated from the sum of the squares of the residuals on 

image planes was very close to the a priori <j0• This implies that the precisions of the 

estimated results are mainly influenced by the random errors of the observations and the 

systematic errors are well compensated. Table 7-26 shows some results from the 

separate adjustment process.

Table 7-26 The a posteriori cr0 and the standard deviations of 

the estimated 3D coordinates with and without 

calibration of the camera interior parameters

with self-calibration without calibration
<To axzj>

0.000010 0.000010 0.000075 0.001530 0.11180
0.000100 0.000101 0.000746 0.001534 0.11181
0.000200 0.000202 0.001492 0.001540 0.11224
0.000300 0.000302 0.002239 0.001552 0.11313
0.000400 0.000403 0.002985 0.001571 0.11448

To visualise the effect of self-calibration, image residuals from one of the image planes 

were plotted from the results of the separate adjustment with and without self-

calibration respectively. Random errors with a standard deviation of Oo= 0.0004 mm 

were added to the 2D image observations. It can be seen from Figure 7-20 that the 

influence of the principal point offset xp and yp is not significant even without self-

calibration. This is because that the principal point offset xp and y  are highly correlated 

with the camera exterior parameters (Clarke 1996), and therefore can be compensated. 

The principal distance offset Ac is also correlated with the camera exterior parameters, 

but not as highly as the principal point offset. Systematic errors may not be clearly seen 

in Figure 7-21 without self-calibration. But from the resultant ¿-„and RMS cjxv it can 

be seen that the 3D precision is about ten percent worse than it would be when self- 

calibration is used. Radial lens distortion and decentring lens distortion may have 

significant effects on the 3D precision if they are not modelled. Significant systematic 

errors can be seen in Figure 7-22 and 7-23 without self-calibration. The 3D precision
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can be many times worse than it would be when self-calibration is used. The a 

posteriori a 0 from the self-calibration adjustment is very close to the a priori cr0. This 

implies that systematic errors are well compensated and the precision of the 

measurement results is mainly influenced by the random errors on the 2D observations.

10 nm 10 jim1____ l '

1

' ' \ ' . * 

. /

(a) without calibration (b) with self-calibration

b 0 = 0.000405 mm cr0 = 0.000395 mm

axyz = 0.029547 mm crxyz = 0.029398 mm

Figure 7-20 Image residuals (.xp = 0.01 m m jp = 0.01 mm, cr<?= 0.0004 mm)

10 um 10 jam

;

t *

r . t 

/

(a) without calibration (b) with self-calibration

a 0 = 0.000436 mm cr0 = 0.000395 mm

a xvz = 0.031764 mmA y/.
a xyz = 0.029277 mm

Figure 7-21 Image residuals (Ac -  0.0352 mm, <r<?= 0.0004 mm)
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axyz = 0.090809 mm a xyz = 0.029647 mm

Figure 7-22 Image residuals (k, = 5.36e-3 mm"2, k2= -1.33e-4 mm'4, k3= 7.35e-6 mm"6)
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(a) without calibration (b) with self-calibration

a 0 = 0.000941 mm a 0 = 0.000395 mm

a xyz = 0.068514 mm g XV2= 0.029374 mm

Figure 7-23 Image residuals (p, = 5.0e-4 mm"1, p2= 5.0e-4 mm"1, cr<? = 0.0004 mm)
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a xyz = 0.115607 mm a xyz = 0.029506 mm

Figure 7-24 Image residuals (xp = 0.01 mm, yp = 0.01 mm, Ac = 0.0352 mm, 

k,= 5.36e-3 mm"2, k2= -1.33e-4 mm'4, k3= 7.35e-6 mm"6, 

p,= 5.0e-4 mm'1, p2= 5.0e-4 mm"1, cxo- 0.0004 mm)

7.10 Test of continuous measurement of a moving object

In this simulation test a rigid object (a cube) was created and moved continuously in the 

object space with rotations and translations with respect to a given datum. The purpose 

of the test was to measure the movement of the object by multi-camera close range 

photogrammetry and coordinate transformation discussed in previous chapters. Figure 

7-26 illustrates the measurement network.

The datum was defined by sixteen control points. The 3D coordinates of the control 

points are listed in Table 7-27, numbered from 1000 to 1015. Forty two targets were put 

on the six faces of the cube. The 3D coordinates of these object points on the cube (the 

initial position) are also listed in Table 7-27, numbered from 1016 to 1057.
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Cameras

/

Figure 7-26 The measurement network

Table 7-27 The 3D coordinates of the control 

points and the object points

Point No. X  (mm) Y (mm) Z  (mm)
1000 0.0 500.0 0.0
1001 250.0 500.0 100.0
1002 500.0 500.0 0.0
1003 500.0 250.0 100.0
1004 500.0 0.0 0.0
1005 500.0 -250.0 100.0
1006 500.0 -500.0 0.0
1007 250.0 -500.0 100.0
1008 0.0 -500.0 0.0
1009 -250.0 -500.0 100.0
1010 -500.0 -500.0 0.0
1011 -500.0 -250.0 100.0
1012 -500.0 0.0 0.0
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1013 -500.0 250.0 100.0
1014 -500.0 500.0 0.0
1015 -250.0 500.0 100.0
1016 100.0 100.0 100.0
1017 100.0 -100.0 100.0
1018 -100.0 -100.0 100.0
1019 -100.0 100.0 100.0
1020 100.0 100.0 0.0
1021 100.0 -100.0 0.0
1022 -100.0 -100.0 0.0
1023 -100.0 100.0 0.0
1024 100.0 100.0 -100.0
1025 100.0 -100.0 -100.0
1026 -100.0 -100.0 -100.0
1027 -100.0 100.0 -100.0
1028 0.0 0.0 100.0
1029 50.0 50.0 100.0
1030 50.0 -50.0 100.0
1031 -50.0 -50.0 100.0
1032 -50.0 50.0 100.0
1033 0.0 0.0 -100.0
1034 50.0 50.0 -100.0
1035 50.0 -50.0 -100.0
1036 -50.0 -50.0 -100.0
1037 -50.0 50.0 -100.0
1038 100.0 0.0 0.0
1039 100.0 50.0 50.0
1040 100.0 50.0 -50.0
1041 100.0 -50.0 -50.0
1042 100.0 -50.0 50.0
1043 -100.0 0.0 0.0
1044 -100.0 50.0 50.0
1045 -100.0 50.0 -50.0
1046 -100.0 -50.0 -50.0
1047 -100.0 -50.0 50.0
1048 0.0 100.0 0.0
1049 50.0 100.0 50.0
1050 50.0 100.0 -50.0
1051 -50.0 100.0 -50.0
1052 -50.0 100.0 50.0
1053 0.0 -100.0 0.0
1054 50.0 -100.0 50.0
1055 50.0 -100.0 -50.0
1056 -50.0 -100.0 -50.0
1057 -50.0 -100.0 50.0
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The cube was moved fifty small steps with translations and rotations. The translation 

and rotation parameters with respect to the datum are listed in Table 7-28.

Table 7-28 Movement of the cube

Translations Rotations
Step No. Xt (mm) Yt (mm) Z, (mm) a  (deg) P (deg) Y (deg)

1 1.50 0.50 0.80 0.20 0.10 0.30
2 3.00 1.00 1.60 0.40 0.20 0.60
3 4.50 1.50 2.40 0.60 0.30 0.90
4 6.00 2.00 3.20 0.80 0.40 1.20

5 7.50 2.50 4.00 1.00 0.50 1.50
6 9.00 3.00 4.80 1.20 0.60 1.80
7 10.50 3.50 5.60 1.40 0.70 2 .10

8 12.00 4.00 6.40 1.60 0.80 2.40
9 13.50 4.50 7.20 1.80 0.90 2.70
10 15.00 5.00 8.00 2 .00 1.00 3.00
11 16.50 5.50 8.80 2 .20 1.10 3.30
12 18.00 6.00 9.60 2.40 1.20 3.60
13 19.50 6.50 10.40 2.60 1.30 3.90
14 21 .00 7.00 11.20 2.80 1.40 4.20
15 22.50 7.50 12.00 3.00 1.50 4.50
16 24.00 8.00 12.80 3.20 1.60 4.80
17 25.50 8.50 13.60 3.40 1.70 5.10
18 27.00 9.00 14.40 3.60 1.80 5.40
19 28.50 9.50 15.20 3.80 1.90 5.70
20 30.00 10.00 16.00 4.00 2.00 6.00
21 31.50 10.50 16.80 4.20 2 .10 6.30
22 33.00 11.00 17.60 4.40 2 .20 6.60
23 34.50 11.50 18.40 4.60 2.30 6.90
24 36.00 12.00 19.20 4.80 2.40 7.20
25 37.50 12.50 20.00 5.00 2.50 7.50
26 39.00 13.00 20.80 5.20 2.60 7.80
27 40.50 13.50 21.60 5.40 2.70 8.10
28 42.00 14.00 22.40 5.60 2.80 8.40
29 43.50 14.50 23.20 5.80 2.90 8.70
30 45.00 15.00 24.00 6.00 3.00 9.00
31 46.50 15.50 24.80 6.20 3.10 9.30
32 48.00 16.00 25.60 6.40 3.20 9.60
J J> 49.50 16.50 26.40 6.60 3.30 9.90
34 51.00 17.00 27.20 6.80 3.40 10.20
35 52.50 17.50 28.00 7.00 3.50 10.50
36 54.00 18.00 28.80 7.20 3.60 10.80
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37 55.50 18.50 29.60 7.40 3.70 11.10

38 57.00 19.00 30.40 7.60 3.80 11.40
39 58.50 19.50 31.20 7.80 3.90 11.70
40 60.00 20.00 32.00 8.00 4.00 12.00

41 61.50 20.50 32.80 8.20 4.10 12.30
42 63.00 21.00 33.60 8.40 4.20 12.60
43 64.50 21.50 34.40 8.60 4.30 12.90
44 66.00 22.00 35.20 8.80 4.40 13.20
45 67.50 22.50 36.00 9.00 4.50 13.50
46 69.00 23.00 36.80 9.20 4.60 13.80
47 70.50 23.50 37.60 9.40 4.70 14.10
48 72.00 24.00 38.40 9.60 4.80 14.40
49 73.50 24.50 39.20 9.80 4.90 14.70
50 75.00 25.00 40.00 10.00 5.00 15.00

In this measurement network, four cameras were used with a convergence angle of 90 

degrees. The starting values of the camera parameters were estimated by space resection 

using the ground control points. After each movement of the cube, images were taken 

by the four cameras and the 2D coordinates were computed (it was assumed that all the 

object points could be seen by all the cameras). A separate adjustment (free network) 

process was then applied with results of the last measurement as the starting values of 

the 3D coordinates. Since no constraints were using in the separate adjustment process, 

the resulting 3D coordinates of the object points were in an arbitrary datum. A linear 

coordinate transformation was then used to bring these object points back to the pre-

defined datum. The theory of the linear coordinate transformation was discussed in 

chapter seven. Firstly, the 3D coordinates of the sixteen controls in both datums (pre-

defined and arbitrary) were used to compute the twelve transformation parameters. With 

these transformation parameters all the object points on the cube were then transformed 

into the pre-defined datum. The movement of the cube, the translation and rotation 

parameters, was estimated with the 3D coordinates of the object points on the cube 

before and after movement.

It was found, as expected, that without 2D observation errors the estimated movement 

of the cube was exactly the same as it moved. When errors with a standard deviation of 

0.0004 mm were added to the 2D observations, the translation and rotation parameters
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(together with their full covariance matrix) were estimated. The estimated translation 

and rotation parameters of the cube are listed in Table 7-29.

Table 7-29 The estimated translation and rotation 

parameters of the moving cube

Translations Rotations
Step No. X, (mm) Yt (mm) Z, (mm) a  (deg) P (deg) Y (deg)

1 1.5162 0.4770 0.806 0.1878 0.0833 0.3072
2 2.9698 1.0207 1.629 0.3755 0.1979 0.6041
3 4.5029 1.4991 2.4082 0.5956 0.3071 0.8964
4 5.9852 1.9756 3.2383 0.8040 0.3981 1.2003
5 7.5100 2.5362 4.0008 0.9915 0.4837 1.5057
6 8.9949 2.9793 4.8255 1.1778 0.5989 1.8081
7 10.5015 3.4896 5.6248 1.3901 0.6981 2.1073
8 11.9675 3.9896 6.4109 1.6128 0.7922 2.4136
9 13.5173 4.4871 7.2037 1.7776 0.8967 2.7117
10 15.0419 5.0440 7.9794 1.9736 0.9945 3.0007
11 16.5049 5.5319 8.8562 2.1847 1.0976 3.3083
12 17.9710 5.9747 9.6256 2.3927 1.1928 3.6065
13 19.5130 6.5295 10.3956 2.5688 1.2860 3.9066
14 20.9834 7.0031 11.1739 2.7882 1.3912 4.2019
15 22.4844 7.5083 12.0084 2.9882 1.4838 4.5031
16 23.9867 7.9967 12.8223 3.1944 1.5963 4.8090
17 25.4926 8.5307 13.6292 3.3830 1.7137 5.1090
18 26.9900 9.0116 14.4382 3.5790 1.7879 5.4045
19 28.4600 9.5188 15.2511 3.7830 1.8806 5.7015
20 29.9781 9.9995 15.9625 4.0011 1.9969 6.0039
21 31.5158 10.5111 16.8136 4.1896 2.0825 6.3080
22 32.9740 11.0093 17.6085 4.3880 2.1872 6.6008
23 34.4839 11.4646 18.4158 4.6078 2.2949 6.9046
24 35.9964 11.9840 19.1736 4.7966 2.3898 7.2120
25 37.4699 12.5247 19.9989 4.9903 2.4993 7.5077
26 38.9934 13.0136 20.8158 5.1906 2.5991 7.8164
27 40.4836 13.4951 21.6106 5.3979 2.6954 8.1057
28 42.0273 14.0220 22.4509 5.5861 2.8159 8.4010
29 43.4935 14.5041 23.1944 5.7914 2.9076 8.7052
30 44.9749 14.9671 24.0223 5.9985 3.0064 8.9956
31 46.5040 15.5272 24.7670 6.1960 3.1065 9.3145
32 48.0123 16.0097 25.5920 6.3810 3.1923 9.5986
33 49.5175 16.4897 26.3878 6.6027 3.3032 9.9020
34 51.0017 16.9709 27.1802 6.7953 3.3944 10.2164
35 52.4960 17.4530 28.0303 6.9884 3.5065 10.5008
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36 54.0086 17.9806 28.8098 7.2084 3.5989 10.8038
37 55.4999 18.4888 29.6044 7.3904 3.6966 11.1023
38 56.9912 19.0036 30.4179 7.6015 3.7915 11.4015
39 58.4902 19.5170 31.1810 7.7770 3.8896 11.7034
40 59.9809 20.0282 31.9538 7.9850 4.0014 12.0046
41 61.4707 20.5002 32.8067 8.1809 4.0713 12.3089
42 62.9786 20.9721 33.6195 8.3814 4.1923 12.6008
43 64.5143 21.4809 34.3861 8.5836 4.3029 12.9063
44 65.9811 22.0148 35.2135 8.7816 4.3841 13.2038
45 67.4843 22.5027 36.0118 9.0028 4.4731 13.5136
46 68.9862 22.9836 36.8123 9.1914 4.5744 13.8016
47 70.4639 23.5049 37.6221 9.3955 4.6940 14.1002
48 72.0170 24.0058 38.3717 9.5938 4.7741 14.3996
49 73.5023 24.4943 39.2151 9.7774 4.8957 14.7035
50 74.9755 24.9864 39.9771 9.9986 5.0001 15.0028

Error propagation from the 2D observations to the movement parameters of the cube

was estimated as follows:

(i) The 3x3 weight matrices of the estimated 3D coordinates of each object point 

(control points and the points on the cube) were obtained from the design 

matrix in the separate adjustment process.

(ii) The weight matrix of the twelve linear transformation parameters was computed 

from the sixteen pairs of control points in the two datums by Eq (6-51) and (6 - 

53).

(iii) After datum transformation the weight matrix of the 3D coordinates of the 

object points on the cube was computed by Eq (6-63).

(iv) The weight matrix of the twelve transformation parameters of the cube was 

computed from the forty two pairs of object points on the cube by Eq (6-51) and 

(6-53).

(v) The full covariance matrix of the six movement parameters (three translation 

and three rotations) was computed from the twelve linear transformation 

parameters and the weight matrix by Eq (6-71).
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The standard deviations of the six movement parameters were computed from their 

covariance. The mean standard deviations was computed and they are listed in Table 7- 

30.

Table 7-30 The mean standard deviation of the six 

movement parameters

ax (mm) <jy (mm) (T, (mm) O a (° ) <rp(°) <*y(°)

0.0185 0.0196 0.0236 0.0121 0.0114 0.0086
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Chapter 8

A Practical Test

In this chapter, a close range photogrammetric measurement process o f a test field is 

discussed. Ninety targets (retro-reflected material) were put on the test field. The 

measurement was conducted in a laboratory environment. Figure 8-1 illustrates the test 

field.

Figure 8-1 The test field

A close range photogrammetric 3D measurement network was constructed. Eight 

images were taken from four stations, two images at each station with a 90 degree 

(approximately) axial rotation. The eight images (negative images numbered 1001 to 

1008, size of 744x568 pixels) are illustrated in Figure 8-2 to 8-9.
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Figure 8-2 Image No. 1001

Figure 8-3 Image No. 1002
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Figure 8-4 Image No. 1003

Figure 8-5 Image No. 1004
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Figure 8-6 Image No. 1005

Figure 8-7 Image No. 1006
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Figure 8-8 Image No. 10007

Figure 8-9 Image No. 1008
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8.1 Measurement of the control points in the object space

The four points on the corners of the board were used as the control points. They were 

assumed to be in the same plane (the XY plane) for resection purposes. Figure 8-10 

illustrates the configuration of the control points.

Figure 8-10 The configuration of the control points

The distances between the control points were measured with a steel tape. They are 

listed as follows:

D, = 600.5 ± 0.2 mm 
D2 = 395.2 ± 0.2 mm 
D3 = 595.8 ± 0.2 mm 
D4 = 397.7 ±0.2 mm 
D5 = 712.2 ±0.3 mm 
D6 = 723.1 ± 0.3 mm

A separate least squares adjustment was used to estimated the positions of the control 

points. The theory was discussed in chapter 4. Realistic starting values were used, i.e., 

Pi(x, y) = (0, 0), P2(x, y) = (0, 600.5), P3(x, y) = (395.2, 600.5) and P4(x, y) = (397.7, 

0). The estimated coordinates of the control points after least squares adjustment are 

listed in Table 8-1.
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Table 8-1 The estimated coordinates 
of the control points

Control pts X (mm) Y (mm) Z (mm)
1 1.303 1.982 0.0

2 -1.288 602.494 0.0

3 393.873 596.160 0.0
4 399.012 0.364 0.0

8.2 Initialisation of the camera exterior parameters

Starting values of the camera exterior parameters were estimated by space resection 

using the 2D DLT model. The theory was discussed in Chapter 3. From the eight 

images the control points were recognised and their 2D coordinates were computed. 

Table 8-2 lists the 2D coordinates of the control points on the image planes.

Table 8-2 The 2D coordinates of the control 
points on the image planes

Image No. Control pts .v (mm) y  (mm)
1001 101 0.82634 1.66025
1001 102 0.80221 -1.40195
1001 103 -1.24096 -1.47524
1001 104 -1.60159 1.54994
1002 101 -1.74148 1.31663
1002 102 1.35723 0.99625
1002 103 1.18834 -1.05476
1002 104 -1.88283 -1.10697
1003 101 0.82933 1.58837
1003 102 0.80469 -1.61559
1003 103 -1.22282 -1.76566
1003 104 -1.22624 1.76176
1004 101 1.51860 -0.91649
1004 102 -1.67440 -0.90893
1004 103 -1.81908 1.10539
1004 104 1.71778 1.11054
1005 101 -1.18269 -1.33647
1005 102 -1.18817 1.71453
1005 103 1.21717 1.53035
1005 104 0.86415 -1.48188
1006 101 1.61229 -0.82419
1006 102 -1.45340 -1.00621
1006 103 -1.40823 1.39274
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1006 104 1.66687 1.24815
1007 101 -1.15198 -1.75338
1007 102 -1.27826 1.83438
1007 103 0.82907 1.72391
1007 104 0.92524 -1.50587
1008 101 -1.91209 1.17528
1008 102 1.69382 1.25529
1008 103 1.52801 -0.82070
1008 104 -1.68980 -0.89740

With the 2D coordinates of the control points on image planes and their 3D coordinates 

in the object space as knowns, space resection with 2D DLT model was used to estimate 

the camera exterior parameters. The estimated camera exterior parameters are listed in 

Table 8-3.

Table 8-3 The starting values of the camera exterior parameters

Image No. XL (mm) Yl  (mm) ZL (mm) co (deg) <l> (deg) k (deg)
1001 250.711 -441.797 1370.251 28.325 3.092 179.334
1002 194.103 -394.432 1382.789 25.569 -2.140 90.862
1003 882.860 224.905 1386.405 3.128 25.187 177.543
1004 910.320 263.011 1375.768 0.501 28.345 -92.091
1005 165.233 1057.872 1367.458 -28.780 -1.349 1.943
1006 206.090 1026.756 1381.629 -27.610 0.594 -89.558
1007 -501.022 297.184 1386.155 -0.270 -27.385 0.893
1008 -532.936 257.120 1370.779 2.853 -27.904 90.235

8.3 Starting values of the 3D coordinates

With camera exterior parameters as knowns, an intersection method was used to 

estimate the 3D coordinates of the object points. The theory of intersection method was 

discussed in Chapter 3. The estimated 3D coordinates are listed in Table 8-4.
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Table 8-4 Starting values of the 3D coordinates 
obtained from intersection

Point No. X  (mm) Y (mm) Z (mm)
100 45.2920 555.3751 149.4480
101 148.7276 554.6239 90.4114
102 223.7562 599.7040 -0.8328
103 306.0528 597.4143 -1.7467
104 -0.4722 601.4213 1.6679
105 394.8677 594.0176 -2.3364
106 98.2244 599.1891 0.2669
107 352.7524 554.3839 48.7721
108 249.5625 554.2962 52.4732
109 307.1642 551.1034 -1.5278
110 146.7505 451.6116 120.5256
111 178.2786 527.4297 -0.7159
112 72.8184 522.6147 -0.1436
113 395.5496 501.4948 -1.7760
114 353.9312 503.8002 -1.6520
115 213.3062 504.6696 -0.9304
116 301.6727 501.6118 -1.4086
117 106.6698 499.1602 -0.3311
118 44.6350 453.3604 60.2282
119 352.3077 452.1226 50.8464
120 249.2901 453.2312 50.5767
121 -0.7234 484.9015 -0.3375
122 305.6685 462.8434 -1.2598
123 146.5401 350.1362 140.6307
124 114.5765 423.2506 -0.6927
125 213.3829 418.7704 -0.8726
126 350.8387 351.1256 99.7065
127 249.0462 350.7768 103.8980
128 45.6016 349.7703 110.5176
129 307.5134 410.4782 -1.2630
130 397.0967 403.1283 -1.2361
131 -0.7644 409.2594 -0.3365
132 62.0242 407.2622 -0.5804
133 337.5034 391.7127 -1.0860
134 91.4455 396.4933 -0.6673
135 279.9158 385.4562 -1.1800
136 216.3162 383.3759 -0.9704
137 178.9848 380.2455 -0.9140
138 47.4614 247.7378 155.1124
139 221.8266 315.6481 -0.8941
140 146.3861 246.3285 125.4436
141 181.5239 314.0301 -0.8689
142 351.5115 250.0266 102.5540
143 249.9056 246.2324 106.2096
144 396.9248 298.0049 -0.8175
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145 334.6599 299.1238 -0.8420
146 210.1080 301.7747 -0.9229
147 -2.8141 301.8348 -1.0605
148 300.9423 296.8985 -0.8720
149 98.3000 297.5441 -0.9683
150 222.2644 282.2129 -0.8633
151 176.9941 273.3545 -0.8423
152 327.2278 220.0722 -0.5534
153 282.6603 220.4782 -0.6525
154 217.9764 218.5412 -0.7940
155 176.4666 217.0136 -0.8680
156 -2.5094 219.4215 -1.2140
157 164.5436 194.2223 -1.0570
158 299.8894 189.9130 -0.5499
159 116.7984 189.9184 -1.1110
160 351.5999 145.7826 80.2202
161 198.7079 185.7239 -0.8748
162 397.4640 181.1312 0.0118
163 250.2405 143.7181 70.0433
164 94.8377 171.9393 -1.1804
165 191.2782 163.9894 -0.7891
166 147.3929 145.2415 39.9365
167 44.0464 145.9598 19.0627
168 5.4585 152.7537 -1.3937
169 281.4705 117.7617 -0.2449
170 66.5630 1 19.8839 -1.3316
171 113.2695 1 16.6570 -1.1640
172 302.3937 95.7736 -0.0520
173 187.8699 97.5664 -0.6181
174 396.0863 93.6868 0.4454
175 216.5906 92.9009 -0.5535
176 0.3141 95.3946 -1.4462
177 249.4709 45.8347 85.4522
178 352.0740 44.6833 75.5404
179 173.3537 69.2177 -0.6657
180 116.2640 69.7485 -1.0345
181 45.5316 43.4593 48.4497
182 146.8900 43.4262 29.4848
183 189.8113 42.4347 -0.4304
184 -0.4146 21.1817 -1.5000
185 398.5203 -2.5089 1.5888
186 0.6110 0.4923 -1.7157
187 298.3324 -2.3076 0.7376
188 193.2333 -2.9955 -0.2054
189 93.7947 -1.9388 -1.0564
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8.4 Self-calibration separate adjustment

With the camera exterior parameters and the 3D coordinates of the object points 

obtained in section 8.2 and 8.3 as starting values, a self-calibration separate adjustment 

was used to estimated the locations of the object points. The distances measured 

between the control points were used as scales in the adjustment process. Camera 

interior parameters were also obtained. The theory was discussed in chapter 6 . Table 8-5 

lists the estimated 3D coordinates and the standard deviations of the object points.

Table 8-5 The 3D coordinates and the standard deviations of the object 
points estimated from the self-calibration separate adjustment

Points
No.

X  (mm) Y (mm) Z (mm) °X  (mm) ay  (mm) °Z (mm)

100 44.8946 555.6872 151.0539 0.0205 0.0209 0.0379
101 148.6848 554.4676 91.1520 0 .0212 0.0217 0.0408
102 223.8240 600.0465 -0.3790 0.0222 0.0229 0.0455
103 306.3379 598.0050 -1.3492 0.0223 0.0229 0.0456
104 -1.4062 602.6913 2.1822 0.0223 0.0227 0.0454
105 395.7798 595.2234 -2.0436 0.0224 0.0228 0.0457
106 98.0234 599.7151 0.7572 0.0222 0.0228 0.0454
107 352.9746 554.6835 49.3644 0.0218 0.0222 0.0430
108 249.5333 554.1406 52.9998 0.0217 0.0221 0.0428
109 307.2372 551.0950 -1.2168 0.0223 0.0228 0.0456
110 146.8569 450.9985 120.4294 0 .0210 0.0212 0.0394
111 178.3312 526.9614 -0.4061 0.0223 0.0227 0.0455
112 72.8831 522.3692 0.1966 0.0223 0.0227 0.0455
113 395.7461 501.5642 -1.5539 0.0224 0.0226 0.0457
114 353.9188 503.6385 -1.4261 0.0224 0.0227 0.0456
115 213.2977 504.0751 -0.6806 0.0223 0.0227 0.0455
116 301.5502 501.2016 -1.1832 0.0224 0.0227 0.0456
117 106.8521 498.6520 -0.0493 0.0223 0.0226 0.0455
118 44.8763 452.9060 60.5159 0.0217 0.0218 0.0424
119 352.0476 451.7644 51.0145 0.0218 0.0220 0.0429
120 249.1130 452.5782 50.5780 0.0218 0.0220 0.0429
121 -0.7848 484.7853 -0.0097 0.0224 0.0225 0.0455
122 305.4253 462.3108 -1.0953 0.0224 0.0226 0.0456
123 146.7450 349.7460 139.8805 0.0208 0.0209 0.0385
124 114.9334 422.6088 -0.5464 0.0224 0.0225 0.0455
125 213.3476 418.0833 -0.7822 0.0224 0.0226 0.0456
126 350.3700 350.8733 99.5324 0.0213 0.0213 0.0406
127 248.8092 350.4055 103.2887 0.0212 0.0213 0.0403
128 46.0422 349.4074 110.3981 0.0211 0.0211 0.0399
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129 307.1404 409.9481 -1.1656 0.0224 0.0225 0.0456
130 396.8226 402.8768 -1.0747 0.0225 0.0225 0.0457
131 -0.4706 408.9297 -0.0956 0.0224 0.0224 0.0455
132 62.4878 406.7493 -0.4095 0.0224 0.0225 0.0455
133 337.0626 391.2911 -0.9852 0.0224 0.0225 0.0457
134 91.9071 395.9421 -0.5382 0.0224 0.0225 0.0456
135 279.5755 384.9374 -1.1222 0.0224 0.0225 0.0456
136 216.2616 382.8013 -0.9290 0.0224 0.0225 0.0456
137 179.1271 379.6765 -0.8677 0.0224 0.0225 0.0456
138 47.8490 247.6683 154.8793 0.0206 0.0206 0.0378
139 221.7397 315.4320 -0.9041 0.0224 0.0225 0.0456
140 146.6586 246.4118 124.7264 0.0209 0.0210 0.0393
141 181.6744 313.8145 -0.8771 0.0224 0.0224 0.0456
142 351.0560 250.1250 102.4006 0.0212 0 .0212 0.0405
143 249.7045 246.3770 105.5867 0.0212 0.0212 0.0403
144 396.4600 297.9454 -0.6559 0.0225 0.0224 0.0457
145 334.1186 299.0403 -0.7667 0.0224 0.0224 0.0457
146 210.0914 301.6405 -0.9370 0.0224 0.0224 0.0456
147 -2.3237 301.6767 -0.8885 0.0225 0.0223 0.0456
148 300.4765 296.8164 -0.8345 0.0224 0.0224 0.0457
149 98.8465 297.4129 -0.9246 0.0224 0.0224 0.0456
150 222.1794 282.2018 -0.8747 0.0224 0.0224 0.0457
151 177.1762 273.3865 -0.8524 0.0224 0.0224 0.0456
152 326.7610 220.3284 -0.4365 0.0224 0.0224 0.0457
153 282.3088 220.7820 -0.5853 0.0224 0.0224 0.0457
154 217.9326 218.8797 -0.7666 0.0224 0.0224 0.0457
155 176.6455 217.3463 -0.8451 0.0224 0.0224 0.0457
156 -2.1182 219.4382 -1.0586 0.0225 0.0223 0.0457
157 164.7716 194.6335 -1.0086 0.0224 0.0224 0.0457
158 299.5278 190.2975 -0.4287 0.0224 0.0224 0.0457
159 117.2056 190.2769 -1.0452 0.0224 0.0224 0.0457
160 351.3597 146.0402 80.4711 0.0214 0.0214 0.0416
161 198.7691 186.1828 -0.8137 0.0223 0.0224 0.0457
162 397.1978 181.2893 0.2611 0.0224 0.0223 0.0458
163 250.1245 144.1750 69.9915 0.0215 0.0215 0.0421
164 95.2592 172.2827 -1.0871 0.0224 0.0224 0.0457
165 191.3715 164.4934 -0.6995 0.0223 0.0224 0.0457
166 147.6395 145.6821 39.9216 0.0219 0.0219 0.0436
167 44.3653 146.1190 19.2028 0.0222 0.0221 0.0447
168 5.6520 152.7706 -1.2322 0.0224 0.0223 0.0457
169 281.2962 118.1947 -0.0261 0.0223 0.0224 0.0458
170 66.8250 120.083C -1.1761 0.0224 0.0224 0.0457
171 113.5296 117.0106 -1.0105 0.0223 0.0224 0.0458
172 302.2562 96.0795 0.2215 0.0223 0.0223 0.0458
173 187.9485 98.0006 -0.4174 0.0223 0.0224 0.0458
174 396.2172 93.5735 0.7945 0.0223 0.0223 0.0458
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175 216.5970 93.3262 -0.3300 0.0223 0.0224 0.0458
176 0.1580 95.1233 -1.2553 0.0224 0.0223 0.0458
177 249.5056 45.8654 86.0432 0.0212 0.0214 0.0414
178 352.2663 44.3899 76.3574 0.0214 0.0214 0.0419
179 173.4362 69.4893 -0.4187 0.0223 0.0224 0.0458
180 116.3840 69.8854 -0.8104 0.0223 0.0224 0.0458
181 45.3520 42.9867 48.9643 0.0217 0.0218 0.0432
182 146.9538 43.4247 29.8495 0.0219 0.0220 0.0442
183 189.8510 42.5122 -0.1243 0 .0222 0.0224 0.0458
184 -1.1520 20.0908 -1.2690 0.0223 0.0224 0.0458
185 399.3724 -3.8043 2.0273 0.0222 0.0223 0.0459
186 -0.3139 -0.9414 -1.4774 0.0223 0.0224 0.0459
187 298.5322 -2.9347 1.1824 0.0222 0.0224 0.0458
188 193.2391 -3.4633 0.1906 0 .0222 0.0224 0.0458
189 93.5616 -2.7026 -0.7306 0 .0222 0.0224 0.0458

The mean standard deviations of the 3D coordinates were found to be

crx =0.0221mm a Y = 0.0222mm cr7 =0.0445mm

which gave a relative precision of 1:25,462. The resulting 3D coordinates of the object 

points on the test field were in an arbitrary datum, which was defined by the starting 

values of the control points. However, the relative positions of the object points or the 

shape of the test field were not related to the datum.

Camera interior parameters were also obtained with the separate adjustment process. 

They are listed in Table 8-6 (the second row lists the standard deviations of the 

parameters).

Table 8-6  Camera interior parameters and their standard deviations

Axp (mm) Ayp (mm) Ac (mm) k, (mm'2) k2 (mm'4) A'j (mm-6) Pi (mm'1) p2 (mm-1)
2.21 e- 1 3.52e-3 1.53e-2 3.76e-3 -3.19e-4 3.74e-5 2.79e-4 -1.88e-4
8.83e-3 8.71e-3 7.42e-4 2.80e-4 1.22e-4 1.59e-5 2.34e-5 2.36e-5

Figure 8-11 illustrates the image residuals plotted for one of the images (image No. 
1001), and Figure 8-12 illustrates the reconstructed 3D test field.
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Figure 8-11 Image residuals on image No. 1001

Figure 8-12 Reconstructed test field
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To verify that the results from the separate adjustment are the same as that from the 

bundle adjustment, a self-calibrated bundle adjustment (CUBA 1996) was applied with 

the same starting values. It was found that same minimisation o f the sum o f the squares 

o f  the residuals on image planes was obtained and the resulting camera interior 

param eters were identical. This is because that the sum o f the squares o f  the residuals 

on image planes and the camera interior parameters are datum independent. Therefore 

the calibrated camera interior parameters can be used for the subsequent measurement 

purpose provided that the physical configuration o f the camera remains unchanged. 3D 

coordinates o f the object points (after coordinate transformation) were also checked and 

found to be identical with that obtained from the separate adjustment.
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Chapter 9

Conclusions

Photogrammetry has been widely used in the areas where 3D coordinates are required. 

Least squares estimation methods have been successfully used to deal with redundant 

measurements. Conventionally, all the unknown parameters were estimated 

simultaneously in the least squares process. This leads to the bundle adjustment in close 

range photogrammetry, which is very expensive in terms of computation time and 

memory requirements. Methods such as sequential adjustment, unified bundle 

adjustment and Block Successive Over Relaxation (BSOR) can be use in some cases to 

improve the conventional bundle adjustment. But none of them have the capability to 

deal with real-time measurement.

In this thesis, an alternative method of least squares estimation, named separate least 

squares estimation, is introduced. It divides the unknown parameters into groups and 

estimates them separately. The separate least squares estimation uses all the equations 

for each group of the parameters and the inner iterations are merged in the outer 

iterations. Even with linear functional model iterations are still required and starting 

values of the unknown parameters are always needed. Constraints are not always 

required in the separate least squares estimation even when column rank defects of the 

design matrix exist since the divided design matrices are normally of full rank provided 

that datum can be defined by each group of the parameters. In this case, the datum will 

be defined by the starting values of the parameters. A coordinate transformation may be 

required to relate the results to a given coordinate system. Alternatively, control points 

can be included in the separate least squares estimation process to avoid coordinate 

transformation. The separate least squares estimation will give the same results as the 

simultaneous least squares estimation, but with a significant saving in time and 

memory.

Based on the theory of the separate least squares estimation, an alternative method, 

named separate adjustment, was developed and successfully used in close range
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photogrammetry to replace the conventional bundle adjustment. In the separate 

adjustment process, the 3D coordinates of the object points and the camera parameters 

are adjusted separately and iteratively. Since the datum can always be determined in 

both adjustment steps, constraints may not be necessary in the separate adjustment. Free 

network adjustment without any constraints becomes feasible and can be easily applied. 

Because the same functional model and the same target function of the least squares are 

used, the same results can be expected from the separate adjustment as from the 

simultaneous bundle adjustment. Several simulation tests and practical tests verified 

this.

The number of iterations required for the separate adjustment may be more than that for 

the bundle adjustment. However, due to the simple computation and the linear 

computational complexity, the speed of convergence of the separate adjustment is much 

faster than that of the bundle adjustment, especially for large data sets. The maximum 

memory required by the separate adjustment is limited to a 6 x6 (or 14x14 when camera 

interior parameters are considered) unit no matter how many cameras and object points 

are involved. Because of the high speed and low memory requirements, the separate 

adjustment can be used in the real-time measurement to track moving objects.

The separate adjustment can also be applied to the self-calibration adjustment. A three 

step separate adjustment (divide camera interior and exterior parameters) or a two step 

separate adjustment (integrate camera interior and exterior parameters) can be used.

The disadvantage of the separate adjustment is that the full covariance matrix of the 

estimated results is not provided directly. To evaluate the precision of the 3D 

coordinates a 3x3 covariance matrix for each object point and a 6 x6 (or 14x14) 

covariance matrix for each camera are given. These may be adequate in most cases. A 

full weight matrix (block diagonal matrix) of the estimated results is always available 

from the design matrix, from which the full covariance matrix can be derived whenever 

it is required.
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For the intermediate parameters the full covariance matrix may not be necessary, whilst 

the weight matrix (the inverse o f  the cofactor matrix), which is easy to obtain from the 

design matrix, is more convenient to use. When coordinate transformation is required, 

the weight matrix can be transformed easily.
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Derivations of some partial derivatives

To derive the partial derivatives in Chapter 3 and Chapter 5, the collinearity equations 
are rewritten as follows

in which

= x  + c

= y  +  c

m 3
M i
M 3

(A 1.1)

M, = m J X  - X , )  + m u ( Y  -  Y \ )  + m13(Z  -  Z L)
< M 2 = m2I( X  -  X ,  ) + mn (Y  - Y l )+ m23(Z  -  Z , ) (A1.2)

M 3 = m3I( X  -  X L) + m32(Y  -  YL) + m33(Z  -  Z L)

mn =  cos <fr cos k

m12 = sin co sin (p cos k  + cos co sin k  

m13 = -  cos co sin (f> cos k  + sin co sin k  

m21 -  -  cos (j> sin k

{ m22 ~ ~ s‘n 00 sin $ sin K + cos 03 cos K
m23 =  cos co sin <j> cos k  +  sin co cos k
m3l =  sin (j)
m32 = -  sin co cos (f>
m u =  cos co cos cf)

The subscripts i and j  are neglected for simplicity. 

Linearized functional model is expressed as

(A1.3)

A, Ax, + A2Ax 2 = b (A1.4)

in which x,  = (X , Y, Z) is a vector of the 3D coordinates of the object points and = 
(XL, Yl , Zl , co, (j), k ) is a vector of the camera exterior parameters.

A l.l Derivation of A, (partial derivatives with respect to 3D coordinates)

ML
cX dY dZ
M l Ml Ml
.ax dY cZ

(A1.5)
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in which

(A 1.6 a)

% = c(mn - m , 2M , / M , ) / M , 
dY

(A 1 .6b)

Z Z  = C(m ,3 -  m33M, /  M3) /  M 3 
dZ

(A 1.6c)

-  C( m 21 -  m 31M 2 /  M3) /  M 3 (A1.6d)

~ d = C( m 22 -  ™32M 2 /  M i )  /  M 3dY
(A1.6e)

= C(m 23 -  m33M2 / M 3) / M s 
dZ

(A1.6f)

A1.2 Derivation of A2 (partial derivatives with respect to camera exterior 
parameters)

C

¿Xl dm d(j) ¿5k7

ax. ¿5h> a<j) ¿5k-

in which

(A1.7)

- & -  = - c ( m „ - m 3. M , / M 3) / M 3 = - ^ -  (A1.8a)
ax,■ 11 ax

J f -  =  -c (m „  -  m „ M ,  /  M j )  /  M 3 = -  — ■ (A1.8b)

A -  = -c(m„-  m „M , = -
dZ, dZ

(A1.8c)

ofx _ cMj cM3
= c(

dco dco dm
M , / M 3) / M 3 (A1.8d)
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in which

df ,cMj (M }
J£  = c(~ i d : ~ ^ r M i /  M*} /  M}d f  d f  o<p

dfx ¿M, cM 3 . ,= c(— ±- -  — 1 M, /  M3) /  M }
5K OK OK

-C(rn2, -  m3IM 2 /  M 3) /  M 3 = - ~ ~
dX

J L

' '  = - c ( m 22 -  m „M , / M , ) / M , = - ^9 ,

S*L

-  -c(m „  -  m12M2 / M , ) / M 2 = - %
dZ 3Z

dfy ,(M 2 cM 3= c (— A L M 2 /  M 3) /  M 3
0(0 0(0 0(0

9,  . M ,  a / ,
dff) d f  d f

M2 / M 3) / M 3

dfy ,dM 2 dM3-JL = c(— ± - — ^ M 2 / M3) / M 3
dK dK OK

(A1.8e) 

(A1.8f) 

(A 1.9a)

(A 1.9b) 

(A1.9c) 

(A1.9d) 

(A1.9e) 

(A1.9f)

= _ mn(Y  -  yL) + mu ( Z  -  Z , ) (Al.lOa)
0(0

cM,
df

-  sin f  cos k ( X  -  X L ) +  sin co cos f  cos k (Y  -

-  cos co cos f  cos k (Z  -  Z L )

Yl ) (Al.lOb)

— L  -  m ,

dK

f f  = - m 2, ( y - Y L) + m22( Z - Z , )
dto

= sin (j) si , tK (X  -  X L ) -  sin co cos f  sinK(Y -  Y, )
df

+ cos co cos f  sin k (Z  -  Z L)

(Al.lOc)

(A l.lla)

(A l.llb)
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m 2
dx

= - M , (A l.llc)

m 3
dco

= - m 33( Y - Y L) + m32( Z - Z L) (A1.12a)

cM 3
d<j)

= cos </>(X  -  X L) + sinco sin <j>(Y -  Y, )
(A1.12b)

-  cos co sin <f>(Z -  Z L)

cM 3 = 0 (A1.12c)
dK

A1.3 Derivation of A'2 (partial derivatives with respect to camera interior 
parameters)

The modified functional model when camera interior parameters are considered are 
expressed as

where

fx = ( X - X p )  + Axr + Axd + c } 

f y = ( y - y „ )  + ^ r  + Avil +C,

M jL
m 3

M,

(A1.12)

ZLxr = ( x - x p)Ar/r

= ( x - x  ) (k ,r2 + k2r4 +k3r6)
(A1.13)

4 >’r = ( y - y „ ) A r / r

= ( y -  y P) ( k , r2 + k2r4 + k3r6)
(A 1.14)

Axd = p , ( r2 + 2 ( x - x p) 2) + 2p2( x - x p) ( y - y p) 

= 2 ( x -  x  ) ( p , ( x  -  x p) + p2(y  -  y p)) + p ,r2
(A1.15)

Ay„ =  P i f r 2 +  2( y -  y P) 2) +  2P i ( x ~ x P) ( y -  y P) 

=  2( y -  y P) (Pi (x ~ xP) + p2( y ~  y P)) + Pi1"
(A1.16)

in which
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r2 = ( x - x p) 2 + ( y - y p) 2 (A 1.17)

Replacing Axr, Ayr, Axd, Ayd in (A 1.12) from (A 1.13) to (A 1.16) gives

fx ~ (x ~ XP) H  + p ,r2 + cx

f y = ( y - y P)H+ p 2r 2 +cy

M
M 3

Ms

(A1.18)

in which

H  -  1 + k ,r2 + k2r4 + k /  + 2 p , ( x -  x p) + 2 p 2( y - y p) 

The elements o f A2 are given by

¿2 =

C  C  C  ¿fx C  c  c  c
¿t* 4>p ^  4?; 4>2
o/< o r o r  o r  o r  o r  o r  o r  o r

% y  ( J y  c f y  % y  f l y  % y  % y  % y  & y

dcx dcy 3cp dyp ok, fo 2 ok3 cp, t y 2

(A1.19)

(A1.20)

where

<v>

II (A1.21a)

(A1.21b)

: = H  + (x  x ) (  2p,)
ckp 3cp

(A1.21c)

dfx ,  , cH
* r ( x ~ x , ) * ,  - 2pi<y- y ’ >

(A1.21d)

^  = ( x - x r)r! 
ok,

(A1.21e)

>Ska,
X1IIw (A1.2 If)

ck3
(A1.21g)
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in which

““  — 2 ( x -  x ) 2 + r2
$>i

(A1.21h)

f *  = 2 ( x  x ) ( y  y p)
dp2

(A1.21 i)

(A 1.22a)

tfy _ M 2 
dcy M}

(A 1.22b)

df, ,  , c H  .  ,  .
J  ~ ( y  y P) A 2p ?(x  x p)ckp 3cp

(A 1.22c)

dfy „  ,  u dH /  -  H + (y  y )(  2p2) (A1.22d)

%y ,  j 2
/ L = ( y - y P)rok,

(A1.22e)

dfy , J 4
/  = ( y  y P) r¿k 2

(A1.22f)

%y ,  >6
J  = ( y  y P) rok3

(A1.22g)

r-r = 2 ( x - x p) ( y - y p) 
Q>i

(A1.22h)

^ -  = 2 ( y - y r ) ! + r’ 
Q?2

(A1.22i)

^  = 2(x xp) (k ,+ 2k 2r2 + 3 k / ) - 2 p ,  
^ p

(A1.23)

= - 2 ( y  -  y p)(k, + 2 k /  + 3 k / )  -  2p2 (A1.24)

245



Appendix I

A1.4 Derivation of partial derivatives when estimatimg seven transformation 
parameters from the twelve

The relationship between the seven parameters (5 , a , /?, y, x g, y 0, z0) and the twelve 
parameters (t„ t2, tI2) is expressed as

s(cos f t  cos y  ) ~ P
s(sin a  sin ft cos y  +  cos a  sin y ) = t2
s ( -  cos a  sin P cos y  +  sin a  sin y ) ~  h

s ( -  cos p  sin y ) = t4
s ( -  sin a  sin p  sin y  +  cos a  cos y ) = *s

s(cos a  sin P  sin y  +  sin a  cos y ) =  *6

sp in  p ) =  ^7

s ( -  sin a  cos p ) =  *8

s(cos a  cos p )

x0 =  110
y 0 =  t „

= t I2

W ith a : = (s, a, /?, y, x 0, y 0, z0) as the unknown parameters and t = (th t2, t,2) as the
observations, the functional model can be expressed as

f ( x , t )  = 0

The Jacobian matrix is obtained by

A - (  i > ,
O X

/“y* /v /v’ -aa’
Sfi dfi 01 01 01
ck da  dp ¿}y dxn dy0 dz0

a w * /T / '

Pf2 %2 %2 02 02 02 02
os da  ofi dy dx0 dy0 dz0

/Y *  A /*  A /»  A A  A A  A A

<</72 12 12 jJ _  12 0 1 2  0 1 2  ¡2

da  dp dy 3c0 dy0 dz0 12x7
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tHjj 8fi <h_ 00011 da dp dy

m,2 000
da dp dy

mu #9. #9 000
J J da dp dy
0 0 0 0 100
0 0 0 0 010
0 0 0 0 001

in which

—  = 0, = s ( -  sin B cos y ), —  = s ( -  cos p  sin y )
da dp dy

= s(cos a  sin p  cosy -  sinasiny),—  = spina cos P cosy J ,—  = s ( -  sin a  sin p  siny + cos a cosy)
da dp dy

= spin a  sin P cosy + cos a siny = s (-  cos a  cos p  cosy = s(cos a  sin P siny + sin a cosy)
da dp dy

-  Q = sp in p  sin y ), = s( -  cos P cos y )
da dp dy

— L = s ( -  cos a  sin P siny -  s i n a c o s y = s( -  sin a cos p  siny )J ^ ~  = s(— sin a sin p  cosy -  cos a  siny )
da dp dy

—-  = s ( -  sin a  sin Psin y + cos a cos y = s(cos a cos psin y = s(cos a sin P cos y -  sin a sin y )
da dp dy

f t  = « , & .  s ( a , s P ) , ^ - .0
da dp dy

= s(-  cos a  cos P = spin a sin P ) , ^ -  = 0
da dp dy

= s(-  sin a  cos p = s ( -  cos a sin p ) ,— ■ = 0 
da dp dy
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Some Results From The Simulation Tests

A2.1 The 3D coordinates of 100 generated object points
(the first 8 are control points)

Point No.

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010 
1011 
1012
1013
1014
1015
1016
1017
1018
1019
1020 
1021 
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

X  (mm)

200.0000
- 200.0000
- 200.0000
200.0000
200.0000

- 200.0000
- 200.0000
200.0000
10.4750
18.9375
87.6250

-148.9250
-86.4500
19.2875
114.2125

-137.7750
-57.9125
-35.6875
181.5500
76.2750
-40.5750
138.7000
201.0625
192.5750
119.5251

-188.5000
-100.4750
191.5875
-19.0125
-151.3250

3.1000
-33.6750
-53.2750
-134.2250
-160.2375
-99.7250
-78.0000

Y (mm)

200.0000
200.0000

- 200.0000
- 200.0000
200.0000
200.0000

- 200.0000
- 200.0000
-128.0250
188.1375

-107.2625
-165.6375
-49.2500
113.6125
119.5750 
56.1875 
175.6750 
48.5250 
156.3125 
110.6375 
-54.3375 
-29.6500 
-148.2125
102.0625
110.4250
-69.4500
41.4750
-69.2875
174.7875
33.3750

-103.0375
157.5750 
-43.5500 
13.9500 

-35.8250 
-59.5875 
-75.2625

Z  (mm)

100.0000
100.0000
100.0000
100.0000

- 100.0000
- 100.0000
- 100.0000
- 100.0000
-36.7937
-64.8313

1.3249
-20.2063
101.4062
32.3937 
68.5376 
-35.5562
6.4437
60.8500
77.4625
19.1688

-58.9937
-5.0750
-56.4562
-16.2312
95.9562
55.0188

-91.1125
-87.8437
17.1937

-48.3812
-2.3187
-12.5625
-91.1626
42.6561
58.3937 
-52.8999 
81.6937
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1037 -184.9875 66.7000 -18.3687
1038 77.0000 100.0625 92.0562
1039 -104.4500 143.4375 98.0813
1040 118.9250 -23.2626 38.0500
1041 131.5125 -134.9750 -42.6811
1042 -144.5750 153.9625 53.6375
1043 -114.8125 -142.6750 -39.6688
1044 128.8250 -110.3250 15.3188
1045 93.1000 -119.0875 102.7125
1046 -97.5875 -23.6250 54.6750
1047 152.6250 166.5000 100.3062
1048 -38.0500 -22.9750 -73.9625
1049 -12.5374 -102.5875 101.9375
1050 67.3875 47.4875 -50.4625
1051 -13.6875 123.5625 -83.8625
1052 -4.8750 -137.5000 -49.6750
1053 187.0625 51.5000 102.3750
1054 -4.5125 127.5500 52.4062
1055 -44.0625 -3.4375 7.9061
1056 -159.8250 43.3875 -28.9000
1057 -141.2875 119.2875 45.6062
1058 -17.2625 88.5876 -80.4813
1059 194.3625 25.8125 51.5999
1060 37.1625 61.2625 60.0812
1061 -123.0375 -76.2625 -42.0812
1062 80.1625 -80.0250 15.7875
1063 -28.6124 -74.4250 -8.9625
1064 31.7000 -0.1500 24.2375
1065 -29.6750 -146.5875 -47.5813
1066 -185.3625 200.2125 -76.5500
1067 -45.1500 64.8875 -28.2312
1068 26.5250 -53.2000 15.8000
1069 -5.1875 -132.9625 25.9937
1070 -129.4875 27.2000 -40.1562
1071 157.2250 142.0375 73.0312
1072 166.8000 43.6125 10.7062
1073 -131.1125 68.2625 41.4125
1074 -91.9375 -156.3000 66.8937
1075 -121.6250 -26.6250 -27.9438
1076 143.7375 -143.7500 -46.2063
1077 -127.4000 -3.4375 -22.1438
1078 6.7750 5.9250 -27.9313
1079 15.2750 -150.6000 6.4000
1080 48.6750 100.1875 14.0436
1081 -59.0500 128.4750 21.0312
1082 -90.6750 74.7000 13.0750
1083 123.1375 163.6000 82.2687
1084 -172.1125 127.9125 85.8250
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1085 63.8250 -132.3625 -38.2875
1086 -131.9000 -83.2000 72.4313
1087 19.6750 -185.1125 -57.5687
1088 -191.3125 -53.3125 27.2750
1089 13.0000 23.6500 -68.5311
1090 137.2375 -186.3500 -94.6875
1091 -45.1250 52.4375 -95.8249
1092 56.6375 174.8625 -23.2437
1093 98.7750 -37.8750 101.1625
1094 44.6375 -154.0000 -54.6188
1095 127.3375 156.6125 51.1875
1096 -194.4250 102.9125 -14.3250
1097 -51.7125 -116.4875 -62.4938
1098 -168.7625 -152.6750 -67.4124
1099 122.8625 -183.4750 61.9188

A2.2 The starting values of the 3D coordinates obtained by 
resection followed by intersection

Point No.

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010 
1011 
1012
1013
1014
1015
1016
1017
1018
1019
1020 
1021 
1022
1023
1024

X  (mm)

204.0991
-195.7463
-202.9014
197.5738
204.4320
-195.6471
-202.9323
197.5523
9.1848

23.0507
86.7006

-151.1659
-86.6341
22.0725
116.9780

-135.9672
-54.0473
-34.0673
184.9936
78.9944
-40.7581
139.1070
199.4811
195.1809
122.1336

Y (mm)

202.8445
203.5645
-195.9590
-196.3199
203.5470
204.0223
-195.2381
-195.5598
-123.7341
191.8472

-103.2835
-161.2033
-45.4829
117.1718
122.8961
60.3426
179.2963
52.2298
159.3657
114.1775
-50.0964
-25.8114
-144.0395
105.5788
113.7038

Z  (mm)

101.3254
99.9212
98.8392
99.2827
-98.5635
-99.9517
-101.1813
-100.7851
-37.4500
-64.0883
0.8933

-21.1604
100.9858
32.7698
69.1767
-35.7355

6.8963
60.8905
78.4042
19.6713

-59.5420
-5.0922

-56.9108
-15.4445
96.5812
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1025 -189.0345 -65.4361 54.3002
1026 -98.9030 45.6426 -91.2261
1027 191.4048 -65.1115 -87.9582
1028 -15.1373 178.4032 17.6566
1029 -150.0284 37.6018 -48.7510
1030 2.2491 -98.8895 -2.9133
1031 -30.1314 161.3032 -12.1605
1032 -53.2355 -39.1467 -91.6071
1033 -133.2600 17.9095 42.2754
1034 -160.1532 -31.8207 57.8318
1035 -100.0333 -55.3068 -53.4316
1036 -78.5861 -71.4218 81.0678
1037 -183.0650 70.7337 -18.7715
1038 79.5207 103.4122 92.5740
1039 -101.2999 146.9601 98.1934
1040 119.2849 -19.4927 38.0660
1041 130.2073 -130.7629 -43.1879
1042 -141.1327 157.6737 53.6692
1043 -116.6439 -138.3284 -40.5037
1044 127.8069 -106.3662 14.9202
1045 91.9169 -115.3536 102.1905
1046 -97.2928 -19.6783 54.3050
1047 156.1353 169.5352 101.3288
1048 -37.6008 -18.7076 -74.2632
1049 -13.4860 -98.7774 101.3472
1050 69.1171 51.4240 -50.2576
1051 -10.6293 127.5928 -83.4706
1052 -6.5004 -133.1850 -50.3109
1053 188.7227 54.7205 102.8860
1054 -1.5293 131.1244 52.8481
1055 -43.3448 0.6142 7.6273
1056 -158.3547 47.4860 -29.2725
1057 -138.4731 122.9991 45.5005
1058 -14.8599 92.7303 -80.1959
1059 195.6350 29.3054 51.9998
1060 39.0271 64.8707 60.2775
1061 -123.5790 -71.9439 -42.7579
1062 79.6424 -76.0927 15.4543
1063 -29.0845 -70.2796 -9.5397
1064 32.5031 3.7743 24.1942
1065 -31.3923 -142.1206 -48.3227
1066 -180.9713 204.1812 -76.5208
1067 -43.2086 68.8875 -28.2871
1068 26.4420 -49.2169 15.4569
1069 -6.7417 -128.8931 25.3292
1070 -128.2456 31.3839 -40.4642
1071 160.4604 145.2030 73.8742
1072 168.4512 47.2022 11.1524
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1073 -129.1818 72.1484 41.2768
1074 -93.9119 -152.1794 66.0531
1075 -121.3916 -22.4589 -28.3744
1076 142.2212 -139.5319 -46.7230
1077 -126.6849 0.6171 -22.4969
1078 7.7315 10.0180 -28.0473
1079 13.4950 -146.3886 5.5994
1080 51.1645 103.8358 14.3794
1081 -56.0214 132.1354 21.3050
1082 -88.6195 78.6205 13.0258
1083 126.6481 166.7444 83.0630
1084 -169.1147 131.5787 85.7104
1085 62.3477 -128.1883 -38.8876
1086 -132.5914 -79.2530 71.8099
1087 17.3698 -180.6644 -58.4102
1088 -191.5632 -49.2211 26.6195
1089 14.3013 27.8147 -68.6050
1090 134.9642 -181.9145 -95.4153
1091 -43.2937 56.7168 -95.7609
1092 60.4460 178.4791 -22.4585
1093 98.9605 -34.2996 101.0677
1094 42.8543 -149.5887 -55.3675
1095 130.8430 159.8594 52.0430
1096 -191.8785 106.8421 -14.5530
1097 -52.8993 -111.9516 -63.2272
1098 -170.7538 -148.1710 -68.3220
1099 120.6113 -179.6011 61.1751

A2.3 Adjusted 3D coordinates by the bundle adjustment (inner constraints)

Point No. X  (mm) Y (mm) Z  (mm) crv (mm) .o-y (mm) cr. (mm)

1000 202.4055 201.5421 100.8341 0.0389 0.0390 0.0459
1001 -197.3337 205.2520 100.2438 0.0390 0.0390 0.0459
1002 -200.9916 -194.5849 98.7392 0.0389 0.0390 0.0459
1003 198.7972 -198.1705 99.3667 0.0390 0.0389 0.0459
1004 202.6618 202.2861 -99.0185 0.0418 0.0419 0.0562
1005 -197.0859 205.8989 -99.5467 0.0418 0.0418 0.0562
1006 -200.7506 -193.7900 -101.0548 0.0418 0.0418 0.0562
1007 198.9787 -197.4314 -100.6247 0.0419 0.0418 0.0562
1008 10.2574 -124.0462 -37.3909 0.0419 0.0418 0.0528
1009 21.5219 191.9196 -64.2142 0.0420 0.0419 0.0543
1010 87.4639 -104.1980 0.8996 0.0413 0.0413 0.0509
1011 -149.5059 -160.2092 -21.0940 0.0411 0.0411 0.0520
1012 -86.1997 -44.9795 100.9795 0.0400 0.0400 0.0459
1013 21.1204 117.0609 32.6602 0.0410 0.0409 0.0493
1014 115.9128 122.0631 68.9149 0.0402 0.0402 0.0475
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1015 -136.2578 61.4642 -35.5631 0.0417 0.0418 0.0528
1016 -55.4418 179.8977 6.9086 0.0410 0.0409 0.0506
1017 -34.4648 52.4449 60.8668 0.0407 0.0407 0.0479
1018 183.6135 158.1090 77.9987 0.0396 0.0397 0.0470
1019 78.0276 113.6335 19.4843 0.0411 0.0411 0.0500
1020 -40.2001 -49.9039 -59.4728 0.0424 0.0424 0.0540
1021 139.2028 -27.0283 -5.1892 0.0413 0.0414 0.0512
1022 200.4717 -145.8612 -56.8412 0.0414 0.0415 0.0539
1023 194.1898 104.1619 -15.7677 0.0410 0.0412 0.0518
1024 121.1320 112.8056 96.3161 0.0398 0.0399 0.0462
1025 -188.2247 -64.0429 54.3715 0.0402 0.0403 0.0482
1026 -99.0660 46.4647 -91.0792 0.0427 0.0427 0.0557
1027 191.8019 -66.7726 -87.9920 0.0421 0.0423 0.0555
1028 -16.5461 178.6942 17.5886 0.0409 0.0408 0.0501
1029 -150.0872 38.8214 -48.5576 0.0419 0.0420 0.0535
1030 3.0965 -99.1275 -2.8856 0.0415 0.0415 0.0511
1031 -31.3889 161.6996 -12.1845 0.0414 0.0413 0.0516
1032 -52.7229 -38.8236 -91.5100 0.0428 0.0428 0.0557
1033 -133.2515 18.9099 42.3730 0.0407 0.0408 0.0488
1034 -159.6894 -30.6505 57.9109 0.0403 0.0404 0.0480
1035 -99.3444 -54.6259 -53.3238 0.0421 0.0422 0.0537
1036 -77.9300 -71.0027 81.0660 0.0403 0.0403 0.0469
1037 -183.4067 72.2588 -18.5240 0.0412 0.0413 0.0519
1038 78.6248 102.8129 92.3754 0.0401 0.0401 0.0464
1039 -102.4450 147.8174 98.2694 0.0398 0.0397 0.0461
1040 119.3271 -20.5623 37.9567 0.0408 0.0409 0.0490
1041 131.1698 -132.0393 -43.1398 0.0417 0.0417 0.0532
1042 -142.3261 158.9014 53.8452 0.0402 0.0402 0.0482
1043 -115.2259 -137.6045 -40.4138 0.0417 0.0416 0.0530
1044 128.5323 -107.6042 14.9140 0.0409 0.0410 0.0502
1045 92.6701 -116.3499 102.1602 0.0398 0.0398 0.0458
1046 -97.0171 -19.0319 54.3437 0.0407 0.0407 0.0482
1047 154.7071 168.4982 100.9550 0.0394 0.0394 0.0459
1048 -37.3024 -18.4934 -74.1948 0.0426 0.0426 0.0548
1049 -12.7231 -98.9312 101.3182 0.0400 0.0400 0.0459
1050 68.6848 50.8777 -50.3533 0.0422 0.0422 0.0536
1051 -11.5999 127.8197 -83.4893 0.0426 0.0425 0.0553
1052 -5.3131 -133.3783 -50.2365 0.0420 0.0420 0.0535
1053 188.1106 53.2317 102.6054 0.0395 0.0396 0.0458
1054 -2.5809 131.2065 52.7621 0.0406 0.0406 0.0483
1055 -43.2678 0.8634 7.6477 0.0415 0.0415 0.0506
1056 -158.5093 48.7772 -29.0752 0.0415 0.0416 0.0524
1057 -139.3704 124.1669 45.6596 0.0404 0.0404 0.0486
1058 -15.5343 92.9290 -80.1922 0.0426 0.0426 0.0551
1059 195.2238 27.7361 51.7638 0.0402 0.0403 0.0483
1060 38.4675 64.5314 60.1641 0.0407 0.0407 0.0479
1061 -122.7163 -71.0850 -42.6452 0.0418 0.0419 0.0531
1062 80.1879 -76.9242 15.4311 0.0412 0.0412 0.0501
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1063 -28.4198 -70.2275 -9.5049 0.0416 0.0416 0.0514
1064 32.4583 3.4124 24.1367 0.0413 0.0413 0.0497
1065 -30.0906 -142.1187 -48.2411 0.0420 0.0419 0.0534
1066 -182.4443 205.9153 -76.1691 0.0416 0.0416 0.0549
1067 -43.6823 69.2497 -28.2590 0.0419 0.0419 0.0524
1068 26.8382 -49.5969 15.4392 0.0413 0.0413 0.0502
1069 -5.6707 -129.1028 25.3562 0.0410 0.0409 0.0496
1070 -128.2867 32.4056 -40.3116 0.0419 0.0419 0.0530
1071 159.1998 144.0951 73.5253 0.0399 0.0399 0.0473
1072 167.9364 45.8733 10.9321 0.0409 0.0410 0.0504
1073 -129.6463 73.1785 41.3972 0.0407 0.0407 0.0489
1074 -92.5530 -151.7066 66.0530 0.0402 0.0401 0.0476
1075 -120.9806 -21.5687 -28.2576 0.0417 0.0418 0.0524
1076 143.2394 -140.9113 -46.6633 0.0416 0.0416 0.0533
1077 -126.4746 1.5777 -22.3701 0.0416 0.0417 0.0521
1078 7.6960 9.8841 -28.0601 0.0420 0.0420 0.0524
1079 14.6952 -146.7734 5.6447 0.0412 0.0411 0.0506
1080 50.3021 103.4875 14.2408 0.0412 0.0412 0.0502
1081 -57.0369 132.6660 21.3225 0.0410 0.0410 0.0499
1082 -89.1575 79.3412 13.1014 0.0412 0.0412 0.0503
1083 125.2538 165.9202 82.7440 0.0398 0.0398 0.0468
1084 -170.0934 132.9806 85.9174 0.0397 0.0397 0.0466
1085 63.3769 -128.9327 -38.8352 0.0418 0.0418 0.0529
1086 -131.7758 -78.3778 71.8313 0.0402 0.0402 0.0473
1087 18.9074 -181.1013 -58.3059 0.0420 0.0418 0.0539
1088 -190.8613 -47.7763 26.7343 0.0405 0.0407 0.0496
1089 14.1350 27.6716 -68.6137 0.0425 0.0425 0.0545
1090 136.3669 -183.2866 -95.2841 0.0422 0.0421 0.0559
1091 -43.6195 57.0971 -95.6939 0.0429 0.0429 0.0559
1092 58.9949 178.2157 -22.6554 0.0415 0.0414 0.0521
1093 99.0970 -35.2552 100.9605 0.0400 0.0400 0.0459
1094 44.1009 -150.1985 -55.2872 0.0420 0.0419 0.0538
1095 129.4918 159.0032 51.7273 0.0403 0.0403 0.0484
1096 -192.5376 108.4820 -14.2639 0.0410 0.0411 0.0517
1097 -51.7935 -111.7318 -63.1372 0.0422 0.0422 0.0542
1098 -169.1027 -146.9727 -68.2012 0.0418 0.0418 0.0544
1099 121.8458 -180.8656 61.2308 0.0400 0.0399 0.0478

a posteriori : crfl = 0.000433 (mm)
RMS standard deviations: crv= 0.0411 (mm)

a y = 0.0411 (mm) 
a _ = 0.0509 (mm)
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A2.4 Adjusted camera parameters by the bundle adjustment

Camera No. XL (mm) XL (mm) XL (mm) co (deg) <t> (deg) k (deg)

1001 999.0877 -8.9771 1000.3989 0.7355 44.9328 -8.2762
1002 8.7136 999.5503 1002.8703 -44.7895 0.3194 91.7613
1003 -999.8688 9.0991 998.0143 -0.3007 -45.0727 52.2496
1004 -9.6634 -999.2358 995.4040 45.2165 -0.4251 -13.9555

A2.5 Adjusted 3D coordinates by the separate adjustment (free network)

Point No. X  (mm) Y (mm) Z  (mm) ct x (mm) <jy (mm) o'* (mm)

1000 202.4422 201.5940 100.7536 0.0390 0.0390 0.0459
1001 -197.3347 205.2795 100.2830 0.0390 0.0390 0.0459
1002 -200.9693 -194.5951 98.8504 0.0390 0.0390 0.0459
1003 198.8572 -198.1563 99.3579 0.0390 0.0390 0.0459
1004 202.6382 202.3026 -99.1179 0.0418 0.0419 0.0562
1005 -197.1473 205.8911 -99.5263 0.0419 0.0418 0.0562
1006 -200.7885 -193.8356 -100.9624 0.0418 0.0419 0.0562
1007 198.9784 -197.4526 -100.6523 0.0419 0.0418 0.0562
1008 10.2541 -124.0610 -37.3686 0.0419 0.0418 0.0529
1009 21.4925 191.9302 -64.2538 0.0420 0.0419 0.0543
1010 87.4782 -104.1994 0.8986 0.0413 0.0413 0.0509
1011 -149.5170 -160.2343 -21.0156 0.0411 0.0411 0.0520
1012 -86.1751 -44.9684 101.0297 0.0400 0.0400 0.0459
1013 21.1247 117.0816 32.6429 0.0410 0.0409 0.0493
1014 115.9366 122.0966 68.8716 0.0402 0.0402 0.0475
1015 -136.2854 61.4580 -35.5294 0.0417 0.0418 0.0528
1016 -55.4562 179.9151 6.9009 0.0410 0.0409 0.0506
1017 -34.4533 52.4613 60.8804 0.0407 0.0407 0.0479
1018 183.6442 158.1517 77.9294 0.0396 0.0397 0.0470
1019 78.0334 113.6552 19.4492 0.0411 0.0411 0.0500
1020 -40.2193 -49.9188 -59.4506 0.0424 0.0424 0.0540
1021 139.2154 -27.0204 -5.2200 0.0413 0.0414 0.0512
1022 200.4816 -145.8698 -56.8743 0.0414 0.0415 0.0539
1023 194.1964 104.1835 -15.8393 0.0410 0.0412 0.0518
1024 121.1651 112.8435 96.2754 0.0398 0.0399 0.0462
1025 -188.2224 -64.0481 54.4516 0.0402 0.0403 0.0482
1026 -99.1060 46.4496 -91.0592 0.0427 0.0427 0.0557
1027 191.7968 -66.7798 -88.0394 0.0421 0.0423 0.0556
1028 -16.5536 178.7157 17.5704 0.0409 0.0408 0.0501
1029 -150.1186 38.8100 -48.5170 0.0419 0.0420 0.0535
1030 3.1014 -99.1343 -2.8624 0.0415 0.0415 0.0511
1031 -31.4057 161.7133 -12.1980 0.0414 0.0413 0.0516
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1032 -52.7535 -38.8439 -91.4889 0.0428 0.0428 0.0557
1033 -133.2527 18.9138 42.4206 0.0407 0.0408 0.0488
1034 -159.6855 -30.6502 57.9767 0.0403 0.0404 0.0480
1035 -99.3669 -54.6438 -53.2823 0.0421 0.0422 0.0537
1036 -77.9090 -70.9969 81.1164 0.0403 0.0403 0.0469
1037 -183.4342 72.2538 -18.4764 0.0412 0.0413 0.0519
1038 78.6533 102.8465 92.3489 0.0401 0.0401 0.0464
1039 -102.4343 147.8450 98.2900 0.0398 0.0397 0.0461
1040 119.3505 -20.5473 37.9348 0.0408 0.0409 0.0490
1041 131.1766 -132.0484 -43.1531 0.0417 0.0417 0.0532
1042 -142.3332 158.9198 53.8717 0.0402 0.0402 0.0482
1043 -115.2410 -137.6288 -40.3516 0.0417 0.0416 0.0530
1044 128.5549 -107.6009 14.9026 0.0409 0.0410 0.0502
1045 92.7161 -116.3341 102.1692 0.0398 0.0398 0.0458
1046 -97.0091 -19.0272 54.3882 0.0407 0.0407 0.0482
1047 154.7413 168.5441 100.8947 0.0394 0.0394 0.0459
1048 -37.3276 -18.5078 -74.1803 0.0426 0.0426 0.0548
1049 -12.6882 -98.9205 101.3558 0.0400 0.0400 0.0459
1050 68.6725 50.8805 -50.3809 0.0422 0.0422 0.0536
1051 -11.6343 127.8189 -83.5095 0.0426 0.0425 0.0553
1052 -5.3211 ■-133.3972 -50.2091 0.0420 0.0420 0.0535
1053 188.1554 53.2692 102.5557 0.0395 0.0396 0.0458
1054 -2.5737 131.2307 52.7514 0.0406 0.0406 0.0483
1055 -43.2700 0.8649 7.6681 0.0415 0.0415 0.0506
1056 -158.5363 48.7696 -29.0319 0.0415 0.0416 0.0524
1057 -139.3776 124.1808 45.6907 0.0404 0.0404 0.0486
1058 -15.5660 92.9253 -80.2046 0.0426 0.0426 0.0551
1059 195.2555 27.7627 51.7116 0.0402 0.0403 0.0484
1060 38.4848 64.5532 60.1535 0.0407 0.0407 0.0479
1061 -122.7367 -71.1040 -42.5928 0.0419 0.0419 0.0531
1062 80.2042 -76.9209 15.4289 0.0412 0.0412 0.0502
1063 -28.4215 -70.2347 -9.4779 0.0416 0.0416 0.0514
1064 32.4680 3.4218 24.1354 0.0413 0.0413 0.0497
1065 -30.0998 -142.1396 -48.2045 0.0420 0.0419 0.0534
1066 -182.4972 205.9126 -76.1509 0.0416 0.0416 0.0549
1067 -43.6996 69.2512 -28.2540 0.0419 0.0419 0.0524
1068 26.8479 -49.5943 15.4482 0.0413 0.0413 0.0502
1069 -5.6563 -129.1079 25.3900 0.0410 0.0409 0.0496
1070 -128.3132 32.3963 -40.2756 0.0419 0.0419 0.0530
1071 159.2277 144.1342 73.4655 0.0399 0.0399 0.0473
1072 167.9521 45.8926 10.8812 0.0409 0.0410 0.0504
1073 -129.6508 73.1874 41.4340 0.0407 0.0407 0.0489
1074 -92.5331 -151.7120 66.1208 0.0402 0.0401 0.0476
1075 -120.9996 -21.5804 -28.2131 0.0417 0.0418 0.0524
1076 143.2468 -140.9212 -46.6790 0.0416 0.0416 0.0533
1077 -126.4937 1.5689 -22.3275 0.0416 0.0417 0.0521
1078 7.6872 9.8833 ■-28.0600 0.0420 0.0420 0.0524
1079 14.7067 -146.7824 5.6736 0.0412 0.0411 0.0506
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1080 50.3043 103.5056 14.2154 0.0412 0.0412 0.0502
1081 -57.0443 132.6814 21.3250 0.0410 0.0410 0.0499
1082 -89.1671 79.3482 13.1223 0.0412 0.0412 0.0503
1083 125.2799 165.9609 82.6913 0.0398 0.0398 0.0468
1084 -170.0919 133.0005 85.9599 0.0397 0.0397 0.0466
1085 63.3785 -128.9449 -38.8283 0.0418 0.0418 0.0529
1086 -131.7622 -78.3777 71.8984 0.0402 0.0402 0.0473
1087 18.9020 -181.1246 -58.2781 0.0420 0.0418 0.0539
1088 -190.8686 -47.7849 26.8096 0.0405 0.0407 0.0496
1089 14.1135 27.6656 -68.6224 0.0426 0.0426 0.0545
1090 136.3615 -183.3095 -95.2948 0.0422 0.0421 0.0559
1091 -43.6564 57.0856 -95.6930 0.0429 0.0429 0.0560
1092 58.9824 178.2347 -22.7001 0.0415 0.0414 0.0522
1093 99.1383 -35.2317 100.9531 0.0400 0.0400 0.0459
1094 44.0970 -150.2168 -55.2722 0.0420 0.0419 0.0538
1095 129.5094 159.0379 51.6717 0.0403 0.0403 0.0484
1096 -192.5669 108.4805 -14.2196 0.0410 0.0411 0.0517
1097 -51.8111 -111.7538 -63.1008 0.0423 0.0422 0.0542
1098 -169.1306 -147.0061 -68.1237 0.0418 0.0418 0.0545
1099 121.8861 -180.8613 61.2387 0.0400 0.0399 0.0478

a posteriori : a 0 = 0.000433 (mm)
RMS standard deviations: crv= 0.0411 (mm)

cr y = 0.0411 (mm) 
<rz = 0.0509 (mm)

A2.6 Adjusted camera parameters by the separate adjustment

Camera Nci. XL (mm) XL (mm) XL (mm) co (deg) $ (deg) k (deg)

1001 999.4827 -8.7356 1000.1991 0.7220 44.9501 -8.2715
1002 8.9565 999.8248 1002.7908 -44.7998 0.3293 91.7760
1003 -•999.6622 9.2176 998.4140 -0.3072 -45.0554 52.2547
1004 -9.3049 -999.1503 995.6839 45.2063 -0.4105 -13.9653

A2.7 Transformation parameters from the 3D coordinates of BA to SA

¿1 *2 ¡3 110 ' 0 .9 9 9 9  0 .0001 -0 .0 0 0 3  0 .0 0 0 5  '

C  C  6, C / = -0 .0 0 0 1  0 .9 9 9 9  -0 .0 0 0 2  - 0 .0 0 2 8

ty tg t 9 tj2^ 0 .0 0 0 3  0 .0002  0 .9 9 9 9  - 0 .0 0 6 8
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A2.8 Comparison between the 3D coordinates of BA and SA 
after transformation

ax(mm) Gy(mm) az(mm)

0.0000 0.0000 0.0000

A2.8 Adjusted 3D coordinates by BA and SA with 8 control points fixed

Point No . X  (mm) Y (mm) Z  (mm) crv (mm) i<Jy (mm) <j z (mm)

1000 2 0 0 .0 0 0 0 200 .0000 100.0000 0.0000 0.0000 0 .0 0 0 0
1001 -2 0 0 .0 0 0 0 200 .0000 100.0000 0.0000 0.0000 0 .0000
1002 -2 0 0 .0 0 0 0 -200 .0000 100.0000 0.0000 0.0000 0 .0000
1003 2 0 0 .0 0 0 0 -200 .0000 100.0000 0.0000 0.0000 0 .0000
1004 2 0 0 .0 0 0 0 200 .0000 -100.0000 0.0000 0.0000 0 .0 0 0 0
1005 -2 0 0 .0 0 0 0 200 .0000 -100.0000 0.0000 0.0000 0 .0000
1006 -2 0 0 .0 0 0 0 -200 .0000 -100.0000 0.0000 0.0000 0 .0000
1007 20 0 .0 0 0 0 -200 .0000 -100.0000 0.0000 0 .0000 0 .0000
1008 10.5453 -128.0458 -36.8120 0.0425 0.0425 0.0536
1009 18.8964 188.0949 -64.8515 0.0427 0.0425 0.0551
1010 87.6633 -107.3393 1.3223 0.0419 0.0419 0.0516
1011 -148.9540 -165.6238 -20.1528 0.0418 0.0417 0.0528
1012 -86.5052 -49.2960 101.4765 0.0406 0.0406 0.0466
1013 19.3047 113.5548 32.3628 0.0416 0.0415 0.0501
1014 114.1512 119.5601 68.4918 0.0408 0.0408 0.0482
1015 -137.7415 56.2367 -35.4793 0.0424 0.0424 0.0536
1016 -57.9069 175.6312 6.4643 0.0416 0.0415 0.0514
1017 -35.6841 48.5026 60.9043 0.0413 0.0413 0.0486
1018 181.5723 156.2773 77.3539 0.0402 0.0402 0.0477
1019 76.2574 110.5951 19.1143 0.0417 0.0417 0.0507
1020 -40.6457 -54.4061 -59.1167 0.0430 0.0430 0.0548
1021 138.7184 -29.6786 -5.1298 0.0420 0.0420 0.0520
1022 201.0385 -148.2119 -56.4508 0.0420 0.0421 0.0547
1023 192.5246 102.0453 -16.2815 0.0417 0.0418 0.0526
1024 119.4935 110.4479 95.9372 0.0404 0.0405 0.0469
1025 -188.4727 -69.4748 55.0505 0.0408 0.0409 0.0489
1026 -100.4651 41.3599 -91.0235 0.0433 0.0434 0.0565
1027 191.6013 -69.2758 -87.9055 0.0428 0.0429 0.0564
1028 -18.9650 174.8218 17.1024 0.0415 0.0414 0.0508
1029 -151.3887 33.4067 -48.3781 0.0425 0.0426 0.0543
1030 3.1982 -103.0493 -2.3696 0.0421 0.0421 0.0518
1031 -33.6996 157.5709 -12.6048 0.0420 0.0420 0.0524
1032 -53.3184 -43.5542 -91.1979 0.0434 0.0434 0.0565
1033 -134.2428 13.9793 42.6593 0.0413 0.0414 0.0495
1034 -160.2222 -35.7909 58.4282 0.0409 0.0410 0.0487
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1035 -99.7712 -59.6468 -52.8659 0.0428 0.0428 0.0545
1036 -78.0195 -75.3326 81.6373 0.0409 0.0409 0.0476
1037 -184.9923 66.6713 -18.4063 0.0418 0.0419 0.0527
1038 77.0489 100.0473 92.0893 0.0407 0.0407 0.0471
1039 -104.5234 143.4475 98.0645 0.0403 0.0403 0.0467
1040 118.8290 -23.2284 38.0450 0.0414 0.0415 0.0498
1041 131.5899 -134.9627 -42.6987 0.0423 0.0423 0.0539
1042 -144.5857 154.0073 53.6262 0.0408 0.0408 0.0490
1043 -114.8870 -142.7668 -39.6155 0.0423 0.0423 0.0538
1044 128.8038 -110.3204 15.3022 0.0416 0.0416 0.0509
1045 93.1156 -119.0702 102.6826 0.0404 0.0404 0.0465
1046 -97.6265 -23.6079 54.7302 0.0413 0.0413 0.0489
1047 152.5848 166.4946 100.3244 0.0400 0.0400 0.0466
1048 -38.0524 -23.0073 -73.9693 0.0432 0.0432 0.0556
1049 -12.4954 -102.6059 101.9179 0.0406 0.0406 0.0466
1050 67.3911 47.4576 -50.5176 0.0428 0.0428 0.0544
1051 -13.6837 123.5854 -83.8530 0.0432 0.0431 0.0562
1052 -4.9653 •-137.5732 -49.6093 0.0427 0.0426 0.0543
1053 187.0613 51.4756 102.3626 0.0401 0.0402 0.0465
1054 -4.5125 127.5675 52.4562 0.0412 0.0412 0.0490
1055 -44.0906 -3.3871 7.8583 0.0421 0.0421 0.0513
1056 -159.8808 43.3642 -28.9097 0.0422 0.0423 0.0532
1057 -141.3219 119.2500 45.5618 0.0410 0.0411 0.0494
1058 -17.2974 88.6521 -80.4177 0.0433 0.0432 0.0560
1059 194.3448 25.8402 51.5761 0.0408 0.0409 0.0491
1060 37.1769 61.2579 60.0567 0.0413 0.0413 0.0487
1061 -122.9916 -76.2879 -42.0874 0.0425 0.0425 0.0539
1062 80.1533 -80.0624 15.7703 0.0418 0.0418 0.0509
1063 -28.6079 -74.4457 -9.0584 0.0423 0.0422 0.0522
1064 31.6754 -0.0844 24.2448 0.0419 0.0419 0.0505
1065 -29.6740 -146.5367 -47.5463 0.0426 0.0425 0.0542
1066 -185.3255 200.1932 -76.5884 0.0422 0.0422 0.0558
1067 -45.1768 64.8980 -28.3259 0.0425 0.0425 0.0532
1068 26.5247 -53.2064 15.7484 0.0420 0.0419 0.0509
1069 -5.2632 -133.0148 26.0136 0.0416 0.0416 0.0504
1070 -129.5069 27.2171 -40.1326 0.0425 0.0426 0.0538
1071 157.2671 142.0162 72.9635 0.0405 0.0405 0.0480
1072 166.8235 43.5854 10.6888 0.0416 0.0417 0.0512
1073 -131.1325 68.3065 41.4746 0.0413 0.0413 0.0496
1074 -91.9334 -156.2700 66.9376 0.0408 0.0407 0.0483
1075 -121.6882 -26.6747 -27.8790 0.0424 0.0424 0.0532
1076 143.7425 -143.7428 -46.2075 0.0423 0.0423 0.0541
1077 -127.3888 -3.5437 -22.0672 0.0423 0.0423 0.0529
1078 6.7721 5.9692 --27.9743 0.0426 0.0426 0.0532
1079 15.2494 -150.5833 6.3287 0.0418 0.0417 0.0514
1080 48.6024 100.1710 13.9435 0.0418 0.0418 0.0510
1081 -59.0528 128.4132 21.0661 0.0416 0.0416 0.0506
1082 -90.7149 74.7356 13.0836 0.0418 0.0418 0.0510
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1083 123.1150 163.5783 82.1521 0.0404 0.0404 0.0475
1084 -172.0894 127.9394 85.8527 0.0403 0.0403 0.0473
1085 63.7368 -132.4561 -38.3111 0.0425 0.0424 0.0537
1086 -131.8394 -83.2373 72.4978 0.0408 0.0408 0.0480
1087 19.6935 -185.1317 -57.5375 0.0426 0.0424 0.0548
1088 -191.2956 -53.3272 27.3392 0.0412 0.0413 0.0503
1089 12.9992 23.6729 -68.6279 0.0432 0.0432 0.0553
1090 137.1894 -186.3864 -94.6896 0.0428 0.0427 0.0567
1091 -45.0913 52.4863 -95.7563 0.0435 0.0435 0.0568
1092 56.5696 174.8810 -23.2671 0.0421 0.0420 0.0529
1093 98.8041 -37.8773 101.1694 0.0406 0.0406 0.0466
1094 44.6227 -153.9711 -54.6671 0.0427 0.0426 0.0546
1095 127.3780 156.5798 51.1368 0.0409 0.0408 0.0491
1096 -194.4534 102.8469 -14.2668 0.0416 0.0417 0.0525
1097 -51.6858 -116.3871 -62.5358 0.0429 0.0428 0.0550
1098 -168.7442 -152.7357 -67.3115 0.0424 0.0424 0.0553
1099 122.8429 -183.5088 61.9308 0.0406 0.0406 0.0485

a posteriori: a 0 -  0.000440 (mm)
RMS standard deviations: a x = 0.0418 (mm)

a y -  0.0418 (mm) 
cfz = 0.0516 (mm)
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