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SYNOPSIS

This thesis introduces and evaluates a new hybrid method for the searching for 

groups in data - a process referred to as cluster analysis. The Agglomerative - 

Partitional Clustering methodology (APC) proposed in this work is a novel solution 

to the clustering problem intended for use with large, noisy data sets and capable of 

recovering clusters of arbitrary shape.

Large sample size, noise and nonhyperellipsoidal cluster shapes can create 

difficulties for many clustering algorithms. Many commonly used clustering 

techniques are too inefficient to handle large data sets found in many data analysis 

problems or are limited by the fact that they implicitly or explicitly define clusters as 

being hyperellipsoidal (i.e. “globular” in shape) and can therefore fail to recover 

other types of cluster structure. Moreover, the presence of noise can also make 

detection of cluster structures problematic, particularly for clustering techniques that 

are explicitly designed to handle nonhyperellipsoidal cluster structures.

APC is able to circumvent these difficulties by hybridising a number of diverse 

approaches to clustering. Large data sets are dealt with by hybridising fast pattern 

partitioning techniques with hierarchical and density search methods. Arbitrary 

cluster shapes are handled by a unique linked line segment representation of cluster 

shape. In short, rather than representing clusters with their centroids, the clusters are 

represented via a piecewise linear approximation of the cluster structure. This 

enables APC to represent any cluster shape that is piecewise linearly approximatable.

The purpose of this thesis, therefore, is to introduce APC and to evaluate the ability 

of APC to recover cluster structure under the conditions described above. First, it is
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argued that there is a dearth of clustering techniques that can process large, noisy data 

sets where there exists arbitrarily shaped clusters. Next, the APC approach to 

clustering is described in detail. Here it is discussed how APC is able to handle 

voluminous and noisy data without being constrained to any particular cluster shapes. 

Moreover, as APC represents a hybridisation of clustering strategies and techniques, 

different ways of implementing APC are also evaluated.

The remainder of this thesis is concerned with the evaluation of APC. First, APC is 

empirically compared to other clustering methods via Monte Carlo simulation on a 

number of complex data sets. A wide variety of experimental conditions examining 

cluster shape, dispersion, noise and dimensionality are covered. The use of APC as a 

data reduction method is also examined. This final experiment also highlights the 

utility of the linked line segment representation of cluster shape proposed in this 

thesis.

Finally, the concluding chapter summarises the results and limitations of this thesis 

and discusses some future directions this research could take.

iii



List of Tables......................................................................................................................................... ix

Table of Abbreviations........................................................................................................................ xii

1. Introduction........................................................................................................................  1

1.1 Background: Cluster Analysis...........................................................................................  3

1.2 Motivation..........................................................................................................................................5

1.3 The APC Methodology..................................................................................................................... 8

1.4 Objectives.............................................................................................................................   13

1.5 Original Contributions................................................................................................................... 14

1.6 Scope o f Thesis................................................................................................................................ 15

1.7 Thesis Overview.............................................................................................................................. 17

2. APC and the Clustering Problem............................................................................................. 20

2.1 Introduction..................................................................................................................................... 20

2.2 Finding Clusters Requires Defining Clusters............................................................................. 21

2.3 What is a Cluster?...........................................................................................................................23
2.3.1 General Definitions of a Cluster......................................................................................... 23
2.3.2 Computational Contexts...................................................................................................... 24
2.3.3 Cohesion and Isolation........................................................................................................ 25
2.3.4 Chained and Compact Clusters...................................................................................   26
2.3.5 Natural Clusters....................................................................................................................27

2.4 Relative Density as a General Definition o f a Cluster................................................................28
2.4.1 Problems with Natural Clusters........................................................................................... 31
2.4.2 Clusters of Arbitrary Shape.................................................................................................31

2.5 The APC Definition o f a Cluster.....................................................................................................32

2.6 Summary..........................................................................................................................................33

3. Overview of Clustering Algorithms.......................................................................................... 35

3.1 Introduction..................................................................................................................................... 35

3.2 Comparing Clustering Algorithms................................................................................................36
3.2.1 Computational Efficiency....................................................................................................37
3.2.2 Cluster Shapes...................................................................................................................... 37
3.2.3 Noisy Data.............................................................................................................................37

3.3 Hierarchical Clustering Techniques.............................................................................................38
3.3.1 Single Linkage...................................................................................................................... 41
3.3.2 Complete Linkage.............................................................................................................. ..41
3.3.3 Average Linkage...................................................................................................................42
3.3.4 Centroid Linkage..................................................................................................................42
3.3.5 Median Linkage....................................................................................................................43
3.3.6 Ward’s M ethod..................................................................................................................... 43
3.3.7 A Generalised Formula for Hierarchical Clustering.........................................................44

List of Figures..............................................................................................................................................viii

IV



3.3.8 Minimum Spanning Tree..................................................................................................... 45
3.3.9 Density linkage..................................................................................................................... 47

3.3.9.1 Nearest neighbour method..............................................................................................47
3.3.9.2 Uniform kernel method...................................................................................................48

3.3.10 Other Approaches.................................................................................................................48
3.3.11 Criticisms of Hierarchical Techniques.................................................................................49

3.4 Pattern Partitioning Techniques................................................................................................... 52
3.4.1 Searching all possible partitions...........................................................................................53
3.4.2 K-means................................................................................................................................. 54
3.4.3 Moving Methods................................................................................................................... 57
3.4.4 Moment Preserving Methods...............................................................................................60
3.4.5 Chaudhuri et al (1992)..........................................................................................................64
3.4.6 Unsupervised Neural Networks.......................................................................................... 67
3.4.7 Other Approaches.................................................................................................................72

3.5 Hybrid Techniques.......................................................................................................................... 73
3.5.1 Two Stage Hybridisations.................................................................................................... 73
3.5.2 Contiguity Constrained Clustering...................................................................................... 74
3.5.3 Wong’s Hybrid M ethod....................................................................................................... 75
3.5.4 Two Stage Density Linkage.................................................................................................77
3.5.5 An MST Based Approach to Hybrid Clustering.................................................................77

3.6 Summary..........................................................................................................................................80

4. The APC Methodology...................................................................................................................82

4.1 Overview o f APC..............................................................................................................................83

4.2 The Pattern Partitioning Stage..................................................................................................... 86

4.3 Measuring Intercluster Distance....................................................................................................88
4.3.1 ADD...................................................................................................................................... 88
4.3.2 UDD...................................................................................................................................... 89
4.3.3 Estimating Intercluster Density........................................................................................... 91
4.3.4 Calculating a Histogram Based Intercluster Density Estimate.........................................94

4.4 The Agglomeration Process and the Representation o f Clusters.............................................. 98

4.5 The Computational Cost o f APC.................................................................................................103
4.5.1 Initial pattern partitioning.................................................................................................. 103
4.5.2 Measuring intercluster distance.........................................................................................103
4.5.3 Agglomeration.....................................................................................................................104
4.5.4 An Empirical Demonstration of the Computational Cost of A PC .................................. 104

4.6 Summary........................................................................................................................................106

5. Methods: Monte Carlo Evaluation..............................................................................................108

5.1 Monte Carlo Evaluation...............................................................................................................108

5.2 Problems with Using ‘Real World’ data to Evaluate Clustering Methods..............................109

5.3 The Advantages o f Monte Carlo Evaluation............................................................................... I l l

5.4 DataSets........................................................................................................................................112
5.4.1 Cluster Shapes Used in the Literature...............................................................................112
5.4.2 Cluster Shapes Used in this Thesis..................................................................................114

5.5 Summary o f Experiments.............................................................................................................115

6. A Monte Carlo Evaluation of Four Pattern Partitioning Techniques.................................... 117

6.1 Introduction................................................................................................................................... 118

V



6.2 Methods..........................................................................................................................................121
6.2.1 Data generation....................................................................................................................122

6.3 Results............................................................................................................................................ 125

6.4 Discussion......................................................................................................................................128

6.5 Conclusions....................................................................................................................................132

7. An Empirical Evaluation of APC and Other Hybrid Clustering Methods....................... 134

7.1 Introduction.................................................................................................................................. 134

7.2 Hybrid methods............................................................................................................................. 134

7.3 Experiment 1 ................................................................................................................................. 135
7.3.1 Results..................................................................................................................................136
7.3.2 Discussion............................................................................................................................ 140

7.4 Experiment 2 ................................................................................................................................. 143
7.4.1 Results..................................................................................................................................145

7.4.1.1 Concentric data.............................................................................................................. 146
7.4.1.2 Parallel data....................................................................................................................148
7.4.1.3 Interlocking data............................................................................................................ 150
7.4.1.4 Winding data...................................................................................................................152

7.4.2 Discussion............................................................................................................................ 154

7.5 Conclusions....................................................................................................................................156

8. The Use of Linked Line Segments for Cluster Representation and Data Reduction....... 158

8.1 Introduction.................................................................................................................................. 158

8.2 Cluster Representation with Line Segments...............................................................................161

8.3 Linked Line Segment Representation as a Data Reduction Technique...................................165

8.4 Methods..........................................................................................................................................165

8.5 Results and Discussion................................................................................................................. 166

8.6 Conclusions................................................................................................................................... 170

9. Thesis Conclusions and Summary......................................................................................... 172

9.1 Conclusions................................................................................................................................... 172

9.2 Limitations.....................................................................................................................................173

9.3 Related Work................................................................................................................................. 174

9.4 Future Work.................................................................................................................................. 176

Al: Seeding methods for k-means and the moving method..........................................................179

A l.l Indifference methods....................................................................................................................180

A1.2 Intelligent Guessing Methods...................................................................................................... 180

A 1.3 Comparison studies.......................................................................................................................181

A1.4 Conclusions................................................................................................................................... 183

A2: Alternative density estimation methods for use in APC........................................................184

A2.1 Density Estimation.......................................................................................................................184

vi



A2.2 The Naive Estimator.......................................................................................................................185

A2.3 The Kernel Estimator.................................................................................................................... 186

A2.4 The Nearest Neighbour Estimate...................................................................................   187

A2.5 The Nearest Neighbour Estimate................................................................................................. 187

A3: Sample Code............................................................................................................................... 189

A3.1: Introduction.................................................................................................................................189

References..........................................................................................................................................231

vii



List of Figures

Figure 1.1:.......................................................................................................................................................11
Figure 1.2:.....................................................................................................................................................  12
Figure 2.1:.......................................................................................................................................................25
Figure 2.2:.......................................................................................................................................................26
Figure 2.3:.......................................................................................................................................................27
Figure 2.4:.......................................................................................................................................................29
Figure 2.5:.......................................................................................................................................................32
Figure 3.1:.......................................................................................................................................................40
Figure 3.2:.......................................................................................................................................................61
Figure 3.3:.......................................................................................................................................................63
Figure 3.4:.......................................................................................................................................................65
Figure 3.5:.......................................................................................................................................................67
Figure 3.6:.......................................................................................................................................................68
Figure 4.1:.......................................................................................................................................................84
Figure 4.2:.......................................................................................................................................................87
Figure 4.3:.......................................................................................................................................................90
Figure 4.4:.......................................................................................................................................................93
Figure 4.5:.......................................................................................................................................................93
Figure 4.6:.......................................................................................................................................................95
Figure 4.7:.......................................................................................................................................................96
Figure 4.8:.......................................................................................................................................................99
Figure 4.9........................................................................................................................................................ 99
Figure 4.10:...................................................................................................................................................100
Figure 4.11:...................................................................................................................................................100
Figure 4.12:...................................................................................................................................................101
Figure 4.13:...................................................................................................................................................102
Figure 4.14:.................................................................................................................................................  107
Figure 5.1:.....................................................................................................................................................114
Figure 5.2:.....................................................................................................................................................115
Figure 6.1:.....................................................................................................................................................123
Figure 7.1:.....................................................................................................................................................144
Figure 8.1...................................................................................................................................................... 162
Figure 8.2:.....................................................................................................................................................163
Figure 8.3:.....................................................................................................................................................164
Figure 8.4...................................................................................................................................................... 168
Figure 8.5....................................................................................................................................................  169

viii



List of Tables

Table 3.1:........................................................................................................................................................44
Table 4.1:....................................................................................................................................................  105
Table 5.1:......................................................................................................................................................113
Table 6.1:....................................................................................................................................................  125
Table 6.2:......................................................................................................................................................126
Table 6.3:....................................................................................................................................................  127
Table 7.1:...........................................................................................................................................   136
Table 7.2:..............................................................................................................................................   137
Table 7.3:.......................................................................................................................................    138
Table 7.4:.........................................................................................................................................     146
Table 7.5:..........................................................................................................................................   147
Table 7.6:.......................................................................................................................................................148
Table 7.7:...........................................................................................................................................    149
Table 7.8:.................................................................................................................................................   150
Table 7.9:.......................................................................................................................................................151
Table 7.10:.............................................................................................................................................   152
Table 7.11:................................................................................................................................................... 153
Table 7.12:.................................................................................................................................   153
Table 7.13:..................................................................................................................................................  155

lx



Acknowledgements

I would like to thank all who have helped, encouraged and supported me throughout the development 
of this thesis. Particularly Dr. J. A. Long for his supervision, friendship and for giving me the freedom 
to explore my research interests without undue restraint. I  would also like to extend my gratitude to 
my colleagues at Searchspace and the Department o f Computer Science for their support and 
encouragement.

Most o f all /  would like to thank Veronica for her love, support and patient understanding without 
which none o f this would have been possible.

X



Declaration

I grant powers of discretion to the City University Librarian to allow this thesis to be 
copied in whole or in part without further reference to me. This permission covers 
only single copies made for study purposes, subject to normal conditions of 
acknowledgement.

xi



Table of Abbreviations

Term Definition

ADD Absolute Density Distance
ALINK Average Linkage
APC Agglomerative-Partitional Clustering
ARI Adjusted Rand Index
CLINK Centroid Linkage
KSONN Kohonen Self-Organising Neural Network
PCA Principal Component Analysis
SLINKS Single Linkage
SOM Self-Organizing Map
UDD Uniform Density Distance
WARD Ward’s Method
WHM Wong’s Hybrid Method
WTANN Winner Take All Neural Network

xii



1. Introduction

The first stage in analysing complex data sets is often the application of any number 

multivariate statistical techniques in order to gain an understanding of how the data is 

structured. This information can in turn be used for a variety of tasks such as data 

reduction, feature extraction and exploratory data analysis. A wide range of 

techniques exist (see Krzanowski (1993) for review) that can be utilised for 

accomplishing these tasks such as those that look for principal axes in the data (e.g. 

linear and non-linear principal components analysis) and data visualisation methods 

such as Andrew plots, glyphs and Chemoff plots. Other techniques concentrate on 

extracting homogenous groupings or clusterings within the data, an approach to data 

analysis referred to as cluster analysis. The purpose of this thesis is to introduce and 

evaluate a new method for performing cluster analysis on numerical data sets.

Although many of the clustering techniques in common use today were initially 

developed in the 1960’s and 1970’s there are still some aspects of the clustering 

problem worthy of continued research. For example, given the continuing 

development of cost effective methods of data storage, there is a need for clustering 

techniques that can analyse large quantities of data quickly and efficiently. Many of 

the clustering techniques developed in the last few decades are too inefficient to 

handle large data sets found in many data analysis problems.

1



Another difficult problem in cluster analysis is the detection and recovery of 

nonhyperellipsoidal cluster shapes. If arbitrarily shaped structures exist in a given 

data set, it is imperative that the clustering techniques being utilised to analyse the 

data are capable of extracting these structures or important information contained the 

data will be lost. Many commonly used clustering techniques are limited by the fact 

that they implicitly or explicitly define clusters as being hyperellipsoidal (i.e. 

“globular” in shape) and therefore can fail to recover other types of cluster structure.

The presence of noise can also make detection of cluster structures problematic, 

particularly for clustering techniques that are explicitly designed to handle 

nonhyperellipsoidal cluster structures. Noise can arise from a variety of sources such 

as measurement error, data corruption, missing attributes or poor cluster separation. 

Many techniques such as single linkage (McQuitty, 1957; Sneath, 1957) and Wong's 

hybrid method (Wong, 1982) that are capable of extracting arbitrarily shaped clusters 

do not perform well under noisy conditions1.

The Agglomerative - Partitional Clustering methodology (APC) proposed in this 

work is a novel solution to the clustering problem intended for use with large, noisy 

data sets and capable of detecting clusters of arbitrary shape. The primary purpose of 

this thesis, therefore, is to introduce APC and evaluate its ability to cluster data under 

the above conditions.

The remainder of this chapter is organised as follows: sections 1.1 and 1.2 give a 

brief overview of cluster analysis and discuss the motivation of this thesis - the 

problem of applying clustering methods to large, noisy data sets with arbitrarily 

shaped clusters. Section 1.3 provides a general outline of APC. Sections 1.4 - 1.6

iSee Arabie and Hubert (1996) for other unresolved problems in cluster analysis.
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discuss the objectives, original contributions and scope of this thesis followed by 

section 1.7 which provides an overview of the thesis organisation.

1.1 Background: Cluster Analysis

Cluster analysis refers to the placing of observations or patterns into groups or 

classes such that members within one class are more similar to one another in some 

way than they are to members of other classes (Everitt, 1981)2. Simply stated, cluster 

analysis is the grouping or classification of previously unclassified data. More 

formally, let X = {x,, x2, ..., x^} be a set of ̂ -dimensional data vectors and C = {C¡, 

C2, ... , Ck} be a set of groups or classifications. Clustering techniques attempt to 

classify each of the N  data vectors into at least one of the k groups. The classification 

of previously unclassified data is also sometimes referred to as the clustering 

problem.

Cluster analysis is also often referred to as unsupervised learning or unsupervised 

classification and should be differentiated from supervised learning or classification 

techniques. In cluster analysis the groupings within the data are unknown a priori. In 

other words, cluster analysis techniques are for the grouping or classification of 

previously unclassified data where there is no dependent variable to guide the 

construction of the classification model. In this sense cluster analysis can be viewed 

as a class of techniques for exploratory data analysis although it does have important 

uses in data reduction and feature extraction (see Hand, 1981).

Most clustering techniques, referred to as hard clustering, only allow mutually 

exclusive groupings where each pattern belongs to one and only one group or

2It should be made clear at this point that the terms observations and patterns are used synonymously throughout this thesis. 
An observation or pattern refers to an individual element or subject of a data set. For example, if the data consists of the height 
and weight of ten people, an observation or pattern is one subject’s height and weight.
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classification. Fuzzy clustering (e.g. Bezdeck, 1981) on the other hand allows 

individual patterns to have multiple group memberships. In this case individual 

observations have a degree of membership in each group rather than an absolute 

membership in one group as in hard clustering. As this thesis is primarily concerned 

with a new approach to the hard clustering of patterns, fuzzy clustering will not be 

treated any further.

Generally speaking, clustering techniques can be categorised as being hierarchical or 

pattern partitioning (Backer, 1995; Gordon, 1981; Everitt, 1981 )3. Hierarchical 

clustering methods themselves can be further subdivided into agglomerative and 

divisive techniques. Agglomerative hierarchical techniques begin by treating each 

observation as an individual cluster (see Everitt, (1993) for review). Each cluster 

(which can be an individual observation) is then agglomerated with its closest 

neighbouring cluster. The measure of "closeness" or distance between clusters is 

what often differentiates the various hierarchical clustering algorithms from each 

other (Lance and Williams, 1967a). Regardless of how intercluster distance is 

measured, the agglomeration process is repeated until the entire data set is grouped as 

a single cluster. The result is a complete hierarchical classification of the entire data 

set. Divisive hierarchical techniques (e.g. Wang et al, 1996; Lambert and Williams, 

1966; MacNaughton-Smith et al, 1964; Fielding, 1977) initially treat the entire data 

set as a single cluster which is then recursively divided up into smaller clusters until 

each pattern is treated as a single cluster in its own right.

Pattern partitioning techniques attempt to subdivide the entire data set into a fixed 

number of clusters and are characterised by the lack of hierarchical relationships

^The above taxonomic scheme is used primarily for explanatory convenience. Other taxonomies of clustering algorithms have 
been proposed. For example, some treat hierarchical, pattern partitioning, graph theoretical techniques, density searching 
methods and clumping techniques that allow overlapping clusters as all being distinct types of approaches to clustering. 
Moreover, these various methods are not necessarily mutually exclusive. For example, density seeking algorithms can be 
hierarchical as is the case with Wong’s hybrid method (Wong, 1982) or partitional as in the case of moment preserving (Liu 
and Tsai, 1989). See Backer (1995), Gordon (1986), Everitt (1980), Blashfield (1976) and Lorr (1983) for other taxonomies.
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between clusters being assumed or imposed. The partitioning of patterns into clusters 

is often accomplished via the optimisation of an objective function. A common 

procedure is to move patterns from one cluster to another in order find a k cluster 

partitioning that optimises the objective function. A wide variety of function 

optimisation techniques such as steepest descent, simulated annealing and 

evolutionary approaches can be applied to pattern partitioning (e.g. Srikanth et al, 

1995; Qiu et al, 1994; Babu and Murty, 1994, 1993; Zhang and Boyle, 1991; Selim 

and Alsultan, 1991; Forgy, 1965).

1.2 Motivation

Although there exists a wide range of clustering techniques, many methods only 

work well under certain conditions or are limited in some other respect. Sample size, 

cluster shape and level of noise present in the data can all have profound effects on 

the performance of many clustering methods (e.g. Tyree and Long, 1998, 1997, 1996; 

Mangiameli et al, 1996; Balakrishnan et al, 1994; Cowgill, 1993; Milligan, 1980, 

1981a; Bayne et al, 1980).

Large sample sizes can discourage the use of many clustering methods, particularly 

those that require the calculation of proximity matrices consisting of all 

interobservation distances. Given the decreasing costs of data storage there is a need 

for clustering techniques that can analyse large quantities of data quickly and 

efficiently. Large data sets can be easily dealt with by k-means (e.g. Forgy, 1965), 

moving methods (e.g. Ismail and Kamel, 1989) and Wong’s Hybrid Method (Wong, 

1982) all of which are reasonably fast clustering algorithms with low memory 

requirements. Many hierarchical clustering algorithms, however, require the 

calculation of a N(N - l)/2 element distance matrix which for large data sets is not 

practical. In addition, the necessity of calculating the distance between all
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observations and clusters can carry an unacceptably high computational cost in large 

data sets4. Even more recent implementations requiring 0(N'¿) CPU time and O(N) 

storage space or 0(N) CPU time with 0(N2) storage (see Murtagh, (1992, 1983) for 

reviews) can still be impractical for larger data sets.

Many clustering techniques also have difficulty dealing with nonhyperellipsoidal 

clusters. If other cluster structures exist in a given data set, it is imperative that the 

clustering techniques being utilised can model such relationships or important 

information contained the data will be lost. Arbitrarily shaped clusters can be 

modelled by single linkage, minimum spanning tree based methods (e.g. Zahn, 1971) 

and Wong’s Hybrid Method (WHM). However, many other commonly used 

clustering techniques are unable to adequately model arbitrary cluster shapes. For 

example, k-means, moving methods and other squared error optimisation techniques 

have a tendency to find hyperellipsoidal clusters (Cormack, 1971). Average linkage 

and most standard hierarchical methods (other than single linkage) have also been 

shown to have difficulties with chaining clusters (e.g. Tyree and Long, 1997, 1996; 

Lorr, 1983)

The presence of noise can also make detection of such structures problematic 

particularly for clustering techniques that can handle chaining structures (Backer, 

1995; Milligan and Cooper, 1987; Milligan, 1981a, 1980)5. Noise can arise from a 

variety of sources such as measurement error, data corruption, missing attributes and 

uncorrelated structure in the data arising from unattributable sources. Techniques 

such as single linkage, WHM and minimum spanning tree based methods (MST) that 

can handle arbitrary cluster shapes do not perform well under noisy conditions. This 

is because the "chaining" tendencies that allow them to model arbitrarily shaped

4The initial distance matrix between all patterns requires N(N - l)/2 distance calculations. A 5000 pattern data set would 
therefore require (5000 * 4999)/2 = 12,497,500 distance calculations.
-’Chaining clusters are defined in chapter 2.
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clusters can also cause these methods to falsely agglomerate distinct clusters under 

noisy conditions or when clusters are closely proximate.

Problems can become particularly acute when all three conditions: large sample size, 

nonhyperellipsoidal cluster shapes and high levels of noise are present in a given data 

set. As just mentioned, single linkage, MST and WHM which can model clusters of 

most any shape, perform poorly under noisy conditions or when clusters are poorly 

separated. Even worse, single linkage and most other standard hierarchical 

techniques are not applicable to large data sets. Although k-means is probably the 

fastest of all clustering techniques and has often found to be one of the best 

performing techniques in comparison studies (Balakrishnan et al, 1996, 1994; 

Milligan and Cooper, 1987; Milligan, 1981a; Bayne et al, 1980) it tends to find 

clusters of hyperellipsoidal shape and therefore may not adequately reflect the true 

structure of data if there are structures that are significantly nonhyperellipsoidal. 

What is needed are clustering methods that are reasonably fast computationally, can 

model clusters of arbitrary shape and are robust under noisy conditions.

The relevance of this research to modem data analysis can be illustrated through 

problems encountered in geodemographics and the banking industry. Openshaw 

(1995) gives a good discussion of the application of cluster analysis to UK census 

data. Openshaw outlines some technical problems particular to census data that can 

effect the performance of clustering techniques. Some of these problems include 

nonnormality, nonlinear relationships, variable size and homogeneity within 

geographical entities and high noise levels due to both measurement error and 

deliberate introduction by census takers to protect confidentiality. Bearing this in 

mind, Openshaw recommends that clustering techniques applied to census data 

should posses the following properties:
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• Ability to allow the data to "speak for it self' and not impose any particular 
cluster structures (shapes) on the data.

• Possess robust performance under noisy conditions.

• Have sufficient flexibility to uncover whatever structure actually exists in the 
data.

• Some innate capability to discover the appropriate number of clusters in the 
data.

To this one could also add the ability to efficiently process large quantities of data. 

For example, a 60 economic variable data set covering Scotland at the post code level 

translates into almost 100 megabytes of data. In cases such as this, computational 

efficiency is obviously an important factor.

Another example of the need for fast and robust clustering techniques can be found 

in retail banking. A large national bank may use data sets on the order of 10 million 

records for customer profiling purposes (Adriaans and Zantinge, 1996). Given that 

banking habits many not necessarily be modelled as simple, relatively noise free 

linear relationships, there is clearly a need for faster and more sophisticated tools for 

dealing with this type of information.

1.3 The APC Methodology

APC offers a simultaneous solution to dealing with large, noisy data sets with cluster 

structures of arbitrary shape. It is reasonably fast computationally, thus allowing it to 

handle large data sets, can both detect and represent clusters of arbitrary shape and is 

fairly robust under noisy conditions. To accomplish this, APC combines together a 

number of clustering strategies hybridising hierarchical, pattern partitioning and 

density seeking clustering techniques.

8



APC enables the modelling of clusters of arbitrary shape in the pattern space by 

generating a connected graph of the centroids of clusters found in an initial 

partitioning of the data set. The analyst is given a hierarchical clustering of the initial 

clusters where the distance between clusters in the hierarchy is based strictly on the 

relative density of the regions that separate the initial cluster centroids. The newly 

agglomerated clusters are then modelled as line segments within the ¿/-dimensional 

pattern space rather than as a list of centroids or as a new centroid corresponding to 

the agglomerated cluster. It will be argued that this representation allows more 

accurate measurement of the cluster membership individual members of 

nonhyperellipsoidal clusters have than centroids alone.

APC can be summarised as a four step process. First, an initial cluster analysis is run 

on the data using a pattern partitioning technique such as k-means, moving methods 

or unsupervised neural networks to partition the data into A' subsets (clusters). The 

purpose of this stage is to identify regions of high density in the pattern space as in 

Wong (1982). The second step is to calculate an estimate of the density of the regions 

between the centroids of the initial clusters to be used as a measure of intercluster 

distance. Unlike standard hierarchical methods that often incorporate correlation or 

Minkowsky based metrics6 in measuring intercluster distance, APC measures 

intercluster distance as being proportional to the density of patterns between clusters. 

The basic idea is that if two clusters found in an initial partitioning of the data coexist 

within a contiguous region of the pattern space that is of relatively high density, the 

two clusters should be agglomerated.

6Minkowsky metrics are defined as :

(/. > 0). Two common examples of Minkowsky metrics are Euclidean and City Block (absolute value) which correspond to X = 
2 and X = 1 respectively.
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Once all of the intercluster distances have been calculated, the third step involves 

using the resulting k(k - 1 )/2 element distance matrix to generate a connected graph 

of the initial clusters where the edge weights of the graph correspond to the distance 

between clusters. This graph can then be converted into a hierarchical tree 

(dendrogram) where the base consists of each of the initial clusters found in the 

initial pattern partitioning stage and the top of a single cluster grouping the entire 

data set. However, because APC limits agglomerations between initial clusters found 

in the pattern partitioning to neighbouring clusters, the reduction of the entire data set 

to a single agglomerated cluster cannot be guaranteed (see Chapter 4). In any case, by 

using a connected graph approach to cluster agglomeration, arbitrary cluster shapes 

can be modelled in a piecewise linear manner.

Finally, once a suitable cut-off point has been determined in the dendrogram, the 

agglomerated clusters consisting of the initial pattern partitioning stage clusters are 

represented by line segments joining the initial clusters together at the centroids. The 

membership of individual patterns to the cluster they belong to can then be measured 

as the distance between the pattern and the nearest line segment in the cluster 

belonging to the pattern. The APC methodology is outlined graphically in Figure 1.1.

The purpose of the linked line segment representation of cluster structure is to give a 

more faithful indication of the distance of individual patterns from a cluster. During 

subsequent analysis the agglomerated clusters are not represented with a new mean 

or centroid vector but with the linked line segments which can take into account 

irregular shapes. It will be argued that the use of centroids as representations of 

clusters that are highly nonglobular in shape leads to a loss of information regarding 

measurements of the cluster membership of individual patterns or observations. This 

information loss can have detrimental effects on subsequent analysis of individual
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observations - particularly when cluster analysis is used as a method of feature 

extraction or data reduction.

a. Original data
©

O
© ®

b. Intial clustering stage
©

• o ©@
r®  ®

©

c. Agglomeration stage with agglomerated 
clusters linked with line segments

O

Line segements joining the 
centroias of inital clusters 
that have been agglomerated

Figure 1.1: APC begins with an initial clustering of the data (a) using any standard pattern partitioning 
algorithm (b). The centroids of the resulting clusters (separated by dashed lines) are then presented to 
the agglomeration stage. The agglomeration stage (c) seeks to agglomerate initial clusters that are 
found in contiguous regions of high density as in the case of the elongated cluster at the bottom. Once 
agglomerated, the structure of the agglomerated clusters is represented by joining together with line 
segments the centroids of the initial clusters that are agglomerated into the new cluster.
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Figure 1.2: The use of the linked line segment representation (b and d) allows for more accurate 
measurements of how individual patterns reside within a cluster compared to using the centroid of the 
cluster (a and c).

For example, given a significantly nonhyperspherical cluster, representing the cluster 

structure with only its centroid can lead to inaccurate measurements of the relative 

degree of membership of individual patterns if relative membership is measured in 

terms of the distance of a pattern from a cluster. This is illustrated in Figure 1.2a and 

b which show an elongated cluster structure. If one were to use the distances of 

observations A and B from the cluster centroid to determine which object was closer 

to the cluster (and therefore implying that its degree of membership in that cluster is 

greater), observation B which is in a low density area would be considered as being 

more typical of the cluster even though observation A is in a higher density portion of 

the cluster.
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The linked line segment representation helps overcome this problem. In this 

representation of cluster structure, the distance of the observation from cluster is 

measured as the distance of the observation from the closest line segment in the 

cluster. Using this scheme, the relative membership of both A and B can be measured 

more accurately (Figure 1.26). The problem of using the centroids to measure cluster 

membership is further highlighted by Figure 1.2c and d. Here the cluster has a "U" 

like shape. The centroid of this cluster lies in the empty, low density, space partially 

surrounded by the cluster. Observations found in the inner part of the cluster will be 

treated as being closer to the cluster then patterns lying on the outer edge. Given that 

the inner and outer edges lie in equally dense portions of the cluster, this makes little 

sense. Using the linked line segment representation allows the inner and outer 

portions of the cluster to be treated equally.

1.4 Objectives

The objectives of this thesis centre on establishing the need for the APC clustering 

methodology in data analysis, discussion of its functionality and implementation, and 

the evaluation its performance.

The demonstration of the need for a clustering methodology like APC involves the 

evaluation of clustering algorithms in regards to their applicability to large data sets, 

ability to perform robustly under noisy conditions in addition to their ability to 

extract nonhyperellipsoidal cluster structures. It will be argued (Chapter 3) that few 

clustering methods exist that can be of practical use when all three of the above 

conditions exist together.

The second objective is to introduce the APC approach to data clustering. In Chapter 

4 the APC methodology is explained in detail while different strategies that could be
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taken in the implementation of each stage of the APC methodology are evaluated. 

For example, as APC relies on an initial clustering of the data, a number of different 

pattern partitioning methods for use in the in the initial clustering stage are examined 

and empirically compared (Chapter 6).

The final objective is to evaluate APC in terms of its ability to perform under noisy 

conditions and recover nonhyperellipsoidal clusters. This is accomplished over a 

wide range of data sets using Monte Carlo simulation in Chapter 7. A number of 

different factors are examined such as cluster shape, dispersion, noise, dimensionality 

and cluster proximity. The objective is to demonstrate that APC is able to perform 

well under these conditions relative to other hybrid approaches to clustering that 

could also be applied to large data sets. In addition, the linked line segment approach 

to cluster representation is evaluated in Chapter 8 using cluster structures that cause 

principal components analysis and centroid based representations to fail or over 

parameterise the relevant characteristics of the data. This is done through an 

empirical comparison of how well these methods recover salient structures known to 

exist in artificial data via series of data reduction exercises. The use of APC as a data 

reduction method on two real world data sets is also included.

1.5 Original Contributions

There are three primary original contributions of this thesis to the clustering 

literature. The first is the introduction and evaluation of an efficient, robust and 

flexible clustering methodology designed for exploring large and complex data sets. 

The two stage cluster recovery process of APC is essentially a modification of the 

hybrid clustering method (WHM) developed by Wong (1982) which also measures 

intercluster distance as being proportional to intercluster density. However, this thesis 

introduces two new density based distance metrics which enable APC to recover
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cluster structure more robustly under noisy conditions than WHM. Although this 

performance enhancement is paid for by a higher computational cost and some 

additional parameters, APC is still applicable to large data sets without too great of 

an additional computational effort. APC also differs from WHM in the manner in 

which clusters are agglomerated.

The second original contribution of this thesis is the use of connected line segments 

for representing cluster shape. The application of this technique to feature extraction 

and data reduction is also examined where it is demonstrated that it can give a more 

accurate representation of nonlinear feature shapes than k-means or principal 

components analysis when these features correspond to high density data clusters.

Finally, a number of clustering methods are evaluated in terms of their ability to 

recover nonhyperellipsoidal cluster shapes. As APC relies on an initial pattern 

partitioning, Monte Carlo simulations comparing k-means, moving methods and two 

unsupervised neural networks are examined using a wide variety of cluster structures. 

In general, previous comparisons of these pattern partitioning algorithms utilised 

mixtures of multivariate normal distributions. The experiments performed here give a 

much broader understanding of these algorithms’ relative performance and 

empirically demonstrates the effects of cluster shape on the relative performances of 

these clustering methods.

1.6 Scope of Thesis

Most clustering methods are heuristic approaches to data exploration. As APC has 

been developed in very much this same tradition, no attempt is made to place APC 

into a theoretical context. It is not derived from any preconceived model or theory 

regarding clustering analysis beyond the goal of developing a method that can
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perform under the conditions described above. Instead, it can be thought of as a 

collection of heuristic techniques for recovering cluster structure with flexibility and 

efficiency. The algorithmic components that make up the APC methodology are used 

because they are practical approaches to accomplishing the tasks particular to that 

stage of the methodology.

The main purpose of the literature review (Chapters 2 and 3) is to argue that there is a 

dearth of clustering techniques available that can be applied to large, noisy data sets 

with nonhyperellipsoidal cluster shapes. Given the vast scope that can be found in the 

clustering literature, this discussion is largely limited to examining commonly used 

approaches to clustering in addition to discussing a number of additional approaches 

that were influential to the development of, or share characteristics with, APC. Also, 

this thesis is concerned with the hard clustering of numerically coded data. Therefore, 

other areas of cluster analysis such as fuzzy clustering (e.g. Hathaway and Bezdek 

1995; Bezdek, 1981), conceptual clustering (e.g. Ralambondrainy, 1995) and image 

analysis (e.g. Jawahar et al, 1995; Brunelli, 1992) are not discussed.

The empirical sections evaluating APC are meant to illustrate APC’s applicability to 

noisy data sets with nonhyperellipsoidal clusters. However, the computational costs 

of Monte Carlo simulation limits the range of clustering algorithms that can be 

empirically evaluated along with APC. Comparisons of clustering ability (the ability 

to recover the correct, a priori known cluster structure) is restricted to other hybrid 

pattern partitioning/hierarchical clustering methods as they are amongst the more 

efficient clustering methods in use. Also, as APC is a modification of a well 

established hybrid approach to clustering, it is important that APC be evaluated in 

comparison to a range of these types of clustering methods even if this is at the 

expense of making comparisons with other clustering approaches. Nonetheless, even 

though the empirical comparisons have been limited to other similarly hybridised
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approaches to clustering, these experiments do demonstrate the ability of APC to 

perform under the conditions for which it is designed.

Finally, the demonstration of APC’s linked line segment approach to cluster 

representation is meant to be largely illustrative. Chapter 8 is meant to show the 

effectiveness of the use of this type of cluster representation in measuring the cluster 

membership of individual observations where there are highly nonhyperellipsoidal 

cluster structures corresponding to high density clusters in the data. This is 

accomplished through the use of APC in a data reduction exercise. However, this 

thesis is not intended to be an thorough examination of data reduction techniques.

1.7 Thesis Overview

The remainder of this thesis is structured as follows: Chapter 2 is a discussion of the 

definition of a cluster used by APC and other clustering methods. The purpose of this 

chapter is to make clear the definition of a cluster used in APC and in the empirical 

sections of this thesis. Chapter 3 is a brief review of the cluster analysis literature 

which discusses the relative advantages and pitfalls of a number of the more 

commonly used clustering techniques. This chapter also covers the various clustering 

algorithms used in the empirical portion of this work as well as a number of other 

methods related to or incorporated into the APC methodology. Chapter 4 is a detailed 

introduction to the APC methodology. Each of the different data processing stages of 

APC are examined and various implementation strategies are discussed.

Chapter 5 outlines the Monte Carlo methodology used to evaluate partitioning 

techniques in Chapter 6 and APC in Chapter 7. In addition, the types of data sets used 

for experiments in Chapters 6 - 8 are introduced. Chapter 6 takes a closer look at the 

first stage of APC - the extraction of an initial set of clusters prior to agglomeration.
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Four clustering techniques that could be used at this stage are examined: k-means, 

the moving method and two unsupervised neural networks. The purpose of the 

chapter is to determine the pros and cons of these pattern partitioning algorithms for 

use in the initial clustering stage of APC in addition to exploring how cluster shape 

can effect the relative performances of these clustering algorithms. The results 

indicate that "winner take all" unsupervised networks, k-means and the moving 

methods on average perform equally well in terms of cluster recovery under a variety 

of conditions. However, it is also shown that different algorithms perform better than 

others on different cluster shapes. Moreover, as the moving method is found to 

converge significantly faster than k-means and does not require the relatively large 

number of iterations through the data set needed by unsupervised neural networks, it 

is argued that the moving method is perhaps the best of the pattern partitioning 

methods examined for use with large data samples. The simulations in this chapter 

differ from previous comparison studies involving these algorithms in that a wide 

variety of cluster shapes were examined while most previous Monte-Carlo 

evaluations used mixtures of multivariate normal clusters (e.g. Mangiameli et al, 

1996; Balakrishnan et al, 1996, 1994; Chen et al, 1995; Cowgill, 1993; Milligan et 

al, 1983; Milligan, 1981b, 1980; Bayne et al, 1980; Milligan and Isaac, 1980; 

Blashfield, 1976; Kuiper and Fisher, 1975). In addition, all three of these methods 

have never been simultaneously evaluated on the same data sets.

Chapter 7 consists of a comparison study of APC and other hybrid clustering 

techniques. In short, an initial clustering of the data is found via the moving method. 

Using this initial clustering as input, APC is compared via Monte Carlo simulation to 

WHM and a number of other hybrid hierarchical techniques as a method of 

agglomerating the initial clusters to recover the known cluster structure of the data. A 

variety of cluster shape structures are used in addition to examining the effects of 

cluster dispersion, dimension, noise and initial number of partitions. The results
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demonstrate that on average (taken over all conditions), APC performs as well as or 

better than all other methods examined in terms of its ability to correctly recover the 

known cluster structure in the data.

In Chapter 8 the use of linked line segments for cluster representation is discussed. 

APC’s use of linked line segments as a data reduction method is compared to a 

centroid based representation of data features and principal component analysis. A 

number of real and simulated data sets are pre-processed using APC, principal 

component analysis and k-means and then used an input to a linear discriminant 

analysis model (LDA). The performance of the pre-processing techniques are then 

compared based on the error performance of the LDA using the transformed data. 

The results of this experiment show that the use of the linked line segment 

representation of cluster structure introduced here leads to an improved 

representation of data features over that of PCA or centroids on the data structures 

examined. Finally, Chapter 9 consist of some concluding remarks and suggested 

directions for future research.
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2. APC and the Clustering Problem

The purpose of this chapter is to define the term “cluster” and to discuss cluster 

analysis in terms of the types of cluster structure that can be extracted. The reason for 

beginning with this discussion is that before reviewing clustering techniques in 

general (Chap. 3) it is important to understand what is meant by the term "cluster". 

As different algorithms use different definitions of a cluster, one needs to know what 

types of cluster structure particular clustering techniques are capable of finding in the 

data. This chapter begins with a discussion of why it is important to understand the 

underlying definition of a cluster that individual clustering techniques operate on. 

Next, a survey of the various definitions given to the concept of a "cluster" is given. 

Finally, the chapter closes with a examination of the definition of a cluster 

underpinning the APC methodology.

2.1 Introduction

When utilising clustering techniques it is important to understand what types of 

cluster structure the clustering methods one wants to employ are capable of finding. 

Different clustering algorithms are generally designed to find either specific types of 

cluster structures or are in other ways limited in the scope of structure they can 

extract. Because specific clustering techniques will attempt to discover structures in 

the data that correspond to the underlying definition of a cluster that particular 

technique operates on, the analyst must choose carefully which clustering approaches 

to use in order to help ensure that no potentially useful perspectives on the data are
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overlooked (Balasubramaniam et al, 1990). For example, if one uses Ward’s method 

or k-means to analyse a data set, one may fail to detect cluster structures in the data 

that are nonhyperellipsoidal in structure as both of these methods implicitly define 

clusters as hyperellipsoids. Even if one has reason to believe that only 

hyperellipsoidal clusters occur in the data, it is still good practice to apply a number 

of different methods to help confirm the structures found using one method by 

applying another (Hand, 1981).

The primary purpose of this chapter is to give some discussion regarding what is 

meant by the term "cluster" and how different definitions of clusters are incorporated 

into APC and other clustering techniques. Various definitions of clusters that can be 

found in the cluster analysis literature are examined and the relationships between a 

number clustering algorithms and their underlying definitions of a cluster are 

discussed. In addition, this chapter is also intended to explain more thoroughly the 

definition of clusters as areas of relatively high density as used by APC. For the 

purposes of this work, an area of relatively high density is meant to be understood in 

the sense of natural clusters as described in Hartigan (1975). The advantage of the 

natural definition of a cluster is that there are no inherent shape constraints. The 

discussion of APC’s operating definition of a cluster is also intended to help give an 

understanding of where APC fits within the range of clustering techniques. It is the 

natural definition of a cluster that APC is designed to recover and it is with this 

definition of a cluster in mind that the performance of APC will be compared with 

other clustering algorithms.

2.2 Finding Clusters Requires Defining Clusters

The definition of a cluster is a fundamental question in cluster analysis which 

unfortunately has no clear cut answer in the general sense and can even pose
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difficulties when confined to specific problem areas (Everitt, 1981). On a practical 

level problems can arise when one notes that different clustering techniques are 

designed to extract different types of structure from the data. Because of this, the way 

one defines clusters determines how one searches for clusters and the way in which 

one searches for clusters determines what kinds of clusters one can find (Anderberg, 

1973; Gordon, 1981). The types of structure particular algorithms extract from data 

depends on the underlying definition of a cluster that the algorithm operates on. In 

fact, as suggested by Blashfield (1976) one can create a taxonomy of clustering 

algorithms based simply on how individual clustering algorithms define clusters.

The analyst must understand the relationship between clustering algorithms and their 

underlying assumptions about cluster structure or risk naively allowing the clustering 

algorithms define what a cluster is for them. Therefore, one must not only understand 

how individual clustering algorithms define clusters but also how this definition 

translates into their particular problem domain before one engages in cluster analysis. 

For example, if one suspects that the clusters in the data may have 

nonhyperellipsoidal cluster structures due to nonlinear relationships between 

variables, single linkage may be a good choice of clustering technique. Alternatively, 

if one is has reason to believe that whatever cluster structures exist in the data will be 

roughly hyperellipsoidal in structure, one could use k-means. However, although k- 

means has been shown to be one of the better methods of partitioning data (e.g. 

Balakrishnan et al, 1994, 1996; Bayne et al, 1980) it tends to find clusters of 

relatively spherical, compact shape (Blashfield, 1976; Dubes and Jain, 1976; Gordon, 

1981). This could lead to misrepresentations of the structures in the data if the 

structures in the data are not hyperellipsoidal in shape but rather more elongated or 

"chaining". If one is looking for particular types of structure in the data, one must be 

sure the clustering algorithms one is using is even capable of finding those structures. 

Most often however, cluster analysis is a data exploratory exercise where one has
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little or no a priori idea what the cluster structures are like. Because of this it is good 

practice to apply a number of methods that can extract different types of cluster 

structure.

Bearing this in mind it is important to make clear what types of cluster structure APC 

is intended to detect in data before going into too much detail about the APC 

methodology. Once this is understood, the role APC has to play in cluster analysis 

and its performance compared to other clustering techniques can be appreciated.

2.3 What is a Cluster?

A number of definitions of the term "cluster" will now be examined, initially 

following a discussion given by Everitt (1981). Following this, more detailed 

attention will be paid to the view of clusters as areas of relatively high density. As 

mentioned above, formally giving a definition to the concept of a cluster is difficult if 

not potentially misleading. In practice, the precise definition of a cluster depends on 

the nature of the particular problem at hand and perhaps can only have meaning 

within a particular context as different definitions of a cluster may have different 

degrees of relevance to particular problem domains (Bonner, 1964; Hand, 1981).

2.3.1 General Definitions of a Cluster

For a dictionary definition of a cluster one could turn to A Dictionary of Statistical 

Terms where a cluster is defined as

"A group of contiguous elements of a statistical population; for example,... a 

consecutive run of observations in an ordered series or a set of adjacent plots 

in one part of a field." (Kendall and Buckland, 1982).
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This is a fairly high level definition that amounts to stating that clusters are "groups" 

of data, events or observations. This is the type of general definition that intuitively 

comes to mind when asked what a cluster is: a cluster is set of observations that are 

in some way similar.

Wallace and Boulton (1968) also attempt a generalised definition of a cluster 

defining it as a subset of entities that can be treated as functionally equivalent within 

some specific context. This definition follows from Bonner (1964) and Hand (1981) 

who point out that a cluster can only have meaning within a contextual framework. 

Due to the difficulty in attempting to define what exactly is a cluster and the fact that 

what is a cluster in one context may not necessarily translate into another, the 

definition of a cluster may only really have meaning within a particular application.

2.3.2 Computational Contexts

Others have emphasised placing the definition of a cluster within a computational 

context from which one can construct algorithms to detect the clusters in data. 

Gengerelli (1963), for example, defined a cluster as an aggregate of observations 

where the distance between two observations within a cluster is less that the distance 

between any observation in the cluster and any observation outside the cluster. The 

single linkage clustering algorithm and related techniques are a direct manifestation 

of viewing clusters this way (Blashfield, 1976). Blashfield also points out how 

minimum variance methods such as Ward’s method, k-means and ISODATA (Ball 

and Hall, 1965) implicitly define clusters as groups of observations where the sum 

squared distance of the observations within the clusters to their corresponding 

centroids are minimised. Effectively, clusters are defined as compact groupings of 

observations.
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2.3.3 Cohesion and Isolation

Cormack (1971), Jardine and Sibson (1971) and Gordon (1981) refer to concepts of 

internal cohesion and external isolation when attempting to define what a cluster is. 

Internal cohesion refers to objects within a cluster sharing some degree of similarity 

while external isolation refers to the degree of "remoteness" a given grouping of 

observations has from the rest of the observations. Figure 2.1 gives some examples of 

clusters showing cohesion and isolation. Isolation means that these groupings of alike 

objects are away and apart from other groupings. All of the clusters in Figure 2.1 are 

isolated in this sense. Cohesion on the other hand refers to similar or "alike" 

observations are found together. In the case of the clusters in Figure 2.1 cohesion can 

be taken as meaning similar observations coexist in a similar portion of the pattern 

space. This definition however, can break down in situations as in Figure 2.2 

displaying a dumbbell shaped structure. As Gordon (1981) points out, the 

intermediate observations between isolated groupings of observations prevent the 

construction of truly isolated clusters unless the entire structure is treated as a single 

cluster.

a b

• •

•  • • •

c

Figure 2.1: Clusters exhibiting cohesion and isolation.
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Figure 2.2: Statements of cohesion and isolation are difficult to make when there are linking areas 
between clusters.

2.3.4 Chained and Compact Clusters

Rice and Lorr (1969) and Johnson (1967) make a distinction between chained and 

compact clusters. Chained clusters are clusters where each member of a given cluster 

is more similar to at least one other member of the cluster than it is similar to any 

member of any other cluster as in Gengerelli’s definition. In compact clusters all 

members of a given cluster are more like every other member of the cluster than they 

are to any other member of any other cluster. Complete linkage, where the distance 

between clusters is measured based on the distance between the furthest pair of 

objects, one from each cluster, is a clustering algorithm explicitly designed to find 

these types of compact clusters. Cattell and Coulter (1966) produce a similar 

dichotomy: segregates and homostats (Lorr, 1983). In Cattell and Coulter’s terms a 

segregate is a set of "entities continuously related through other entities in the cluster 

and isolated from others outside the cluster but not necessarily similar in position". In 

other words, the objects are similar on a continuous basis but objects at one the end
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of the continuum may not be very similar to objects at the other extreme. As Lorr 

(1983) points out, this can be viewed as a chained cluster. A homostat is a set of 

entities occupying a similar area of the pattern space - a compact cluster if you will.

2.3.5 Natural Clusters

Assuming a geometrical conception of entities or observations existing in d- 

dimensional space (e.g. Euclidean space) - clusters have been defined as areas of 

relatively high density surrounded by areas of relatively low density (Backer, 1995; 

Everitt, 1993,1981; Lorr, 1983; Hartigan, 1975). Hartigan (1975) refers to these as 

natural clusters and formally defines a natural cluster as follows: Let X = {x;, x_7, ..., 

, x„} a set of objects in a ¿/-dimensional space. f ( x j  is a value proportional to the 

density of points at a fixed volume centred at some given object, x„. A cluster is 

defined as a connected subset7, Ck, of X where each object in the subset has a value 

f ( x j  greater than or equal to some threshold f t. In other words, an area of relatively 

high density is a connected subset of patterns where f ( x j  > f  for all \ n e Ck.

Figure 2.3: A density contour tree created from this data set. With f t= 0, all of the clusters are treated 
as a single cluster. As f t  increases, the different clusters begin to separate. Initially, cluster A (the 
surrounding low density area) is separated from cluster B, the high density square. Increasing f t 
further, causes clusters C and D to be separated from cluster B. The density based relationships 
between clusters can be represented with the hierarchical tree (dendrogram - see Chapter 3) on the 
right.

7A connected set is a set Ck of observations where any two observations are linked by a cycle whose members are also in the 
set Ck. A cycle between two observations x(- and Xj is a sequence or path of p observations Xy, x^ , .... xp  where each 
observation xm is linked to xm + y and Xy = x(- and Xj = xp . See Hartigan (1975).
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Natural clusters can also be easily incorporated into a hierarchical clustering strategy. 

Hartigan (1975) shows that by varying the value of/, one can generate a hierarchical 

density contour tree of X. A if t = 0 the entire data set is modelled as a single cluster 

as every observation in the data set has a density greater than 0. Systematically 

increasing f t will cause the data to be divided into relatively high and low density 

areas. For example, after increasing f t the roughly square area in the centre of Figure

2.3 separates from the surrounding area as it is of higher density. Within this cluster 

there are also two other clusters of relative high density which would become 

separated at higher values of f t. Regardless of how one wants to treat the different 

levels of the hierarchy, each level defines a cluster partitioning based on that level’s 

corresponding^ value.

2.4 Relative Density as a General Definition of a Cluster

As suggested above, different definitions of a cluster can apply to the same structure. 

For example, a chained cluster can also be defined as an area of relatively high 

density. Figure 2.4 displays a chaining cluster that would certainly fit the description 

of a segregate or chaining cluster as the observations are related to each other on a 

continuous basis. Alternatively, one could also view Figure 2.4 as a cluster which fits 

the definition of being an area of relatively high density. Observations within the 

structure occur at a higher density than do observations in other parts of the pattern 

space. An algorithm using a density search approach could therefore also be applied 

to find this type of cluster.

The natural definition of a cluster can also be applied to the conceptual dichotomy of 

compact and chained clusters. Arguably, the distinction between compact and 

chained clusters is really no different from stating that there are two types of clusters: 

(1) compact, hyperellipsoidal clusters and (2 ) noncompact, nonhyperellipsoidal
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clusters. Defining a cluster as an area of relative high density encompasses both 

definitions as both definitions can be seen as corresponding to areas of relatively high 

density. The concepts of cohesion and isolation can also be applied to natural 

clusters. Highly dense areas of the pattern space are by definition cohesive while 

isolation in terms of natural clusters translates into stating that high density clusters 

are separated from other clusters by low density areas in the pattern space.

•  • • • •
•  . ' . U v * .

• • •

• • •

• y

•  •  •

• • • •

Figure 2.4: An example of a chaining cluster.

At this point, one could argue that clustering algorithms that use a chaining definition 

of a cluster can also extract hyperellipsoidal clusters as these structures are not 

inherently ruled out by the chaining definition of a cluster (the opposite cannot be 

said of algorithms using hyperellipsoidal definitions of clusters). However, defining 

clusters as continuously related observations or as areas of high density can have an 

important impact on the performance of algorithms designed to detect such 

structures. As will be discussed in later chapters, algorithms such as single linkage 

and MST that utilise cluster definitions based on continuous relationships between

29



observations with out reference to relative density tend to perform poorly under noisy 

conditions, particularly when clusters are not well separated. The reason for this is 

that transitive relationships between observations sought by these techniques can 

cause these methods to "get lost" amongst the noise and lose track of the underlying 

cluster structure. The "point density" approach to defining natural clusters taken in 

this work and incorporated into other density seeking methods helps overcome this 

problem by taking into account local density.

By basing a clustering method on the natural definition of a cluster one, theoretically 

at least, can get around some of the problems inherent in other clustering techniques. 

For example, k-means cannot extract chaining clusters because it implicitly defines 

clusters as being compact. Areas of relatively high density, on the other hand, are not 

inherently restricted to particular shapes clusters (Everitt, 1981). Although single 

linkage an extract both compact clusters and chaining clusters (i.e. arbitrarily shaped 

clusters), it tends to erroneously agglomerate clusters that are in close proximity or 

separated by noise due to its definition of clusters as being composed of objects 

continuously related to each other. Similar problems occur with MST based 

approaches that also use the chaining definition of a cluster. By building a clustering 

technique around a definition of a cluster as an area of relatively high density, one 

can both model compact and chaining clusters while reducing the likelihood of false 

agglomerations of clusters residing in close proximity or in noisy portions of the 

pattern space as the clusters should still be separated by low density areas.

As pointed out by Openshaw (1995), it is important for a clustering algorithm to not 

be too restricted in terms of the types of cluster structure they can extract. The 

advantage of a clustering algorithm designed around clusters defined as areas of high 

density is that there is less likelihood of structure being overlooked in the data as 

cluster shape is not implicit in the algorithm’s underlying definition of a cluster.
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2.4.1 Problems with Natural Clusters

Nonetheless, the natural definition of clusters can still lead to problems. For example, 

Figure 2.2 can be viewed as a single dumbbell shaped cluster or two or more clusters. 

Using Hartigan’s notion of natural cluster, which view one takes could be influenced 

by the value one gives to the radius, r, of the unit volume used to calculate f t. If r is 

relatively large, then this figure would be modelled as three clusters in a hierarchy. 

However, if r is relatively small, the whole figure would be classified as a single 

cluster because within the dumbbell shape, the patterns are distributed uniformly. 

Strictly speaking, as the dumbbell is a connected region of relatively high density, it 

should be treated as a single cluster. However, one must first calculate this density 

and whether or not Figure 2.2 is actually treated as one or three clusters depends on 

how one calculates this density estimate. This highlights an important point about 

using the natural definition of a cluster. Although defining clusters as natural clusters 

allows the possibility of modelling arbitrarily shaped clusters, it does not in itself 

guarantee that one will be able to find such clusters. Success or failure to recover 

particular cluster shapes in a data set depends in large part how one incorporates the 

natural definition of a cluster into the clustering algorithm.

2.4.2 Clusters of Arbitrary Shape

Before leaving the subject of defining the concept of a cluster, the term arbitrary 

shape in reference to cluster structure should be clarified. Clusters can come in any 

shape or form. Figure 2.5 is an attempt to convey the infinite and arbitrary shapes 

clusters can have. Clusters can be compact, elongated, have variable point densities, 

have hierarchical relationships between each other and so on. There are no limits to 

the forms or shapes clusters can take (see Osbourn and Martinez (1995), Backer
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(1995) and Fromm and Northouse (1976) for further discussions of cluster shape). 

What is important, though, is that a clustering algorithm applied to a given data set is 

capable of modelling clusters that might be present. In other words, clustering 

algorithms should have sufficient scope to handle a wide range of cluster shapes. If a 

given algorithm can only model clusters of compact shape, its use in data sets that 

contain clusters like many of those in Figure 2.5 could lead to a failure to detect 

important structures present in the data.

• •

* f  •

Compact Irregular shape Variable point density

•••*

%•

Chaining ^M Concentric Hierarchical

Figure 2.5: Various cluster shapes.

2.5 The APC Definition of a Cluster

This thesis can be viewed as the development and evaluation o f a clustering 

methodology intended to detect and model clusters defined as areas o f relatively high 

density. In short, the APC methodology can viewed a way of detecting and
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representing areas of relatively high density of arbitrary shape that are piecewise 

linear approximatable. In other words, cluster shapes that can be modelled or fit by a 

string of connected line segments. This includes not only identifying clusters in the 

pattern space, but also the capacity to take into account the shape of the cluster when 

assessing information about the cluster memberships of individual observations. The 

initial pattern partitioning and intercluster density search stages of APC together 

comprise the cluster detection and identification aspect of the APC approach to the 

clustering problem. The use of line segments to determine cluster membership of 

individual objects is an attempt incorporate cluster shape when taking measurements 

regarding where an object resides within a cluster.

The above discussion is intended as a justification for the natural definition of a 

cluster in APC and as a guide to where within the range of clustering techniques APC 

belongs. Because the natural definition places no restrictions on shape, clustering 

algorithms using this definition are more likely to be able to recover 

nonhyperellipsoidal cluster shapes. APC can therefore be thought of as a method of 

implementing the natural definition of a cluster into a clustering methodology 

intended for the recovery of arbitrarily shaped clusters.

2.6 Summary

As different clustering methods arise from different definitions of a cluster, results 

one obtains in any given situation depends in large part on the a priori definition of a 

cluster the particular clustering algorithm used. It is therefore important that the 

analyst understands the definition of a cluster that each clustering algorithm operates 

on.

The operating definition of a cluster for APC is an area of high density surrounded by 

an area of relatively lower density. This definition has the benefit of being intuitively
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appealing while not in itself restricting the types of cluster shape a clustering method 

based on this definition can recover. APC is an attempt to incorporate this definition 

of a cluster into a clustering methodology that preserves the generality and inherent 

flexibility of the natural definition of a cluster. As long as this definition is relevant 

to one’s problem domain, APC may be an appropriate clustering methodology to 

consider.
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3. Overview of Clustering Algorithms

While the previous chapter discussed the relationship between clustering algorithms 

and their underlying definition of a cluster, this chapter is primarily concerned with 

the clustering algorithms themselves. The purpose of this chapter is two fold. First, 

the need for a clustering methodology like APC is demonstrated by arguing that there 

is a dearth of clustering methods that can be applied to large, noisy data sets 

containing arbitrarily shaped clusters. A range of clustering methods are evaluated in 

term of their applicability to data sets possessing these attributes. The other objective 

of this chapter is to discuss approaches to clustering that can be incorporated into or 

that influenced the development of APC.

3.1 Introduction

The clustering techniques discussed in this chapter will be compared and contrasted 

in terms of computational efficiency, sensitivity to noise and flexibility in regards to 

the types of cluster structure they can extract. This survey is not meant to be 

exhaustive - the range of clustering algorithms is quite large (Backer, 1995) and so it 

is beyond the scope of this work to review everything that has been produced. Rather, 

this survey is primarily concerned with general approaches to hard clustering in order 

to demonstrate the lack of clustering algorithms that can adequately cope under the 

conditions APC is designed to operate. There is also an emphasis on clustering 

techniques that can be incorporated into the APC methodology at the initial pattern
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partitioning, intercluster density estimation or the agglomeration stages. Finally, 

some additional algorithms and approaches to clustering are also discussed because 

they represent techniques which influenced the development APC.

The remainder of this chapter is divided into four sections: comparing clustering 

methods, hierarchical clustering methods, partitional methods and hybrid methods. 

The first section discusses criteria that can be used to compare clustering techniques 

and establishes the perspective through which the various clustering methods 

discussed in this chapter are to be evaluated. The next two sections review a number 

of hierarchical and pattern partitioning clustering algorithms. Finally, a number of 

hybrid approaches will be examined that incorporate both hierarchical and partitional 

clustering. Like these other hybrid approaches, APC is an attempt to bring together 

many of the most appealing aspects of a number of clustering methods to recover 

clusters quickly, efficiently and with flexibility. Moreover, it is in comparison with 

these hybrid methods that the clustering abilities of APC will be empirically 

evaluated (Chapter 7).

3.2 Comparing Clustering Algorithms

As pointed out by Dubes and Jain (1976) it is difficult to make general statements 

regarding superiority of one clustering algorithm or another. In their comparison 

paper, they rely on two general approaches. The first is to compare the performance 

of different clustering methods on the same data sets to determine their relative 

abilities to recover known cluster structures. This approach is taken in Chapters 6 -7  

The second method is to compare clustering techniques based on a set of 

admissibility criteria (Fisher and Van Ness, 1971; Rubin, 1967). In short, an 

admissibility criterion is a property that should be possessed by any "reasonably" 

useful clustering technique. For example, Fisher and Van Ness discuss properties 

such as the ability to find well separated clusters and the robustness of the clustering
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solution when patterns have been duplicated. Given that this thesis is proposing a 

clustering method applicable to large, noisy data sets with arbitrarily cluster shapes, 

four admissibility criteria for determining "usefulness" under these conditions will be 

used in evaluating clustering methods in this chapter: (1) CPU costs, (2) memory 

costs, (3) flexibility in regards to the types of cluster shape clusters that can be 

recovered and (4) robustness under noisy conditions.

3.2.1 Computational Efficiency

Due to the decreasing costs of storing data it is important that clustering algorithms 

exists that are sufficiently computationally efficient to be practical for use on large 

data sets. Similarly, algorithms that are used to process these data sets must not 

impose additional large storage requirements in order to accomplish the analysis. For 

example, many implementations of hierarchical techniques require a matrix to be 

calculated and stored consisting of every interobservation distance. Obviously, this is 

not practical for very large data sets.

3.2.2 Cluster Shapes

As suggested by Openshaw (1995) clustering algorithms should not be too restricted 

in the types of cluster structure they can detect. Many situations exist that involve 

data sets that have no restrictions on the structure of clusters. For example, geospatial 

analysis may require the modelling of geographical areas with no inherent constraints 

on the shape of the areas of interest.

3.2.3 Noisy Data

Another important requirement is robust performance under noisy conditions. Real 

world data is often extremely noisy. Noise can arise form a variety of sources -
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measurement error, recording errors, missing data, sampling errors and the 

unavoidable inclusion of information in the data that has no relevance to the analysis 

at hand. It is important, therefore, that clustering techniques applied to data that may 

contain moderate to high levels of noise be able to cope with these conditions.

Whether a given data set will require all of these characteristics in a clustering 

technique depends on the problem domain on hand. For example, if the clusters in 

the data are all multivariate normal in nature, ability to model clusters of any other 

form is not necessary. If the size of the data set is small, computational efficiency and 

memory usage are not important issues. In any case, no algorithm exists that can 

perform under all conditions at a satisfactory level on any or all problems. Often 

good performance in one characteristic is bought at the cost of poor performance on 

another characteristic. For example, k-means is computationally fast but tends to only 

find clusters of roughly hyperspherical shape. Single linkage can extract arbitrary 

cluster shapes but is both computationally expensive and sensitive to noise in the 

data. When comparing the relative abilities of clustering algorithms one must 

recognise this fact, and perhaps only talk about various algorithms as being better at 

particular problems or under particular conditions.

3.3 Hierarchical Clustering Techniques

Hierarchical techniques are characterised by the way they generate nested, 

hierarchical relationships between clusters. The hierarchy is such that at the bottom 

all individual observations are treated as individual clusters. At the top of the 

hierarchy, the entire data set is treated as a single cluster. Hierarchical clustering 

techniques themselves can be categorised into agglomerative and divisive algorithms, 

depending on how the hierarchy is created. Agglomerative hierarchical clustering 

techniques begin by treating each observation as an individual cluster. The two 

closest observations or clusters are then found and agglomerated into a new cluster.
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This process is then repeated until the entire data set is agglomerated into a single 

cluster. Although agglomerative hierarchical clustering algorithms generally follow 

this same basic procedure, they differ primarily in how the distance between clusters 

is calculated. The general form of agglomerative hierarchical clustering algorithms is 

as follows:

Let X be a set of N, ¿/-dimensional observations in Euclidean space, X = {xy, x2, ..., 

xN}, where xiV= {xN1, xN2, ..., xNd } and let C be a set of k groups or clusters in the 

data, where C = {C;, C2, ..., Ck\.

1. Initially treat each observation as an individual cluster:

where d*(Cj,Cj) is the distance between clusters C, and C,.

3 Create a new cluster C‘g consisting of the agglomeration of the two closest clusters 
such that O  = {Ca u  Ch\ where C‘ is the cluster created at the tth agglomeration.

4. Increment t, and repeat steps 2 and 3 using C‘ in place of Ca and Ch until the entire 
data set has been agglomerated into a single cluster:

3.1

k = N

2. Find the two closest clusters, Ca and Ch such that

for all i and j ,  i j 3.2

3.3
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The resulting process of agglomeration is often represented as a dendrogram 

indicating which clusters are agglomerated when (Figure 3.1). The heights of the 

lines joining different levels of the hierarchy are often drawn proportional to the 

distance between the clusters agglomerated at that level. This gives the analyst a 

graphical representation of how the nested cluster structures fit together. As 

agglomerative hierarchical techniques generally differ in how intercluster distance is 

calculated (Lance and Williams 1967a), different measures of intercluster distance 

produce different models of the data.

/K

d(Ca,Cb)

Figure 3.1 : Dendrogram produced by hierarchical clustering.

Divisive hierarchical techniques begin by treating the entire data set as a single 

cluster and then recursively divide the data set up into smaller clusters until each 

individual observation is treated as a cluster in its own right. As APC agglomerates 

the initial clustering of the data, divisive methods are not discussed here. The 

interested reader is referred to Everitt (1993, 1981) or Anderberg (1973) for 

overviews of these methods.
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The following is a brief review of the most commonly used agglomerative 

hierarchical techniques. The purpose is to both introduce algorithms that will be 

incorporated into hybrid methods used as comparisons to APC later in this thesis and 

to highlight some of the advantages and disadvantages of using hierarchical 

clustering algorithms in general.

3.3.1 Single Linkage

Single Linkage (McQuitty, 1957; Sneath, 1957): The distance between two clusters is 

defined as being the distance between the two closest observations, one taken from 

each cluster:

c?*(c',cv)=miiiKx/’x»)]
/ = 1, 2 , ...., n, 
m= 1, 2 , ...,nj

3.4

where x*, Ck and nk is the number of observations in cluster Ck and d(x‘,xJ) is the 

distance (e.g. Euclidean, correlation, etc.) between observations x' and xf Single 

linkage often produces long chaining clusters which is something of a double edged 

sword. If a cluster does in fact have a long, chaining or irregular structure, single 

linkage will be able to extract the cluster quite well. On the other hand, if the clusters 

are poorly separated or exist in areas of high noise, single linkage will fail to 

distinguish between the cluster structures (Gordon, 1981).

3.3.2 Complete Linkage

In complete linkage (Horn, 1943), the distance between clusters is measured as the 

distance between the most distant or dissimilar pair of observations, one object taken 

from each cluster:
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4c,c>max[4;x)]
3.5

The use of eq. (3.5) in complete linkage counters the chaining properties of single 

linkage and so therefore it has a tendency to find relatively small compact cluster 

structures.

3.3.3 Average Linkage

Average linkage (Sokal and Michener, 1958) measures intercluster distance as the 

average distance between each pair wise set of observations between the two clusters:

The idea behind average linkage is that extreme values can be averaged out in 

measuring intercluster distances. It was also developed to compensate the tendency 

of complete linkage to produce small compact clusters (Lorr, 1983). Although still 

generally producing compact clusters, average linkage is capable of recovering 

clusters of unequal size.

3.3.4 Centroid Linkage

Intercluster distance in centroid linkage (Sokal and Michener, 1958) is based on the 

distances between each cluster’s centroid:

3.6

d * (c,,Cj)= dix/,xmJ )

3.7
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When two clusters are merged, its distance from the newly agglomerated cluster to 

other clusters is measured as the distance from the centroid of all the patterns 

comprising the new cluster to the centroids of the other clusters.

3.3.5 Median Linkage

Median linkage (Gower, 1967) was developed to counter a potential problem with 

centroid clustering. In centroid clustering, if two groups being agglomerated are of 

greatly different sizes, the new group centroid will be more similar to the larger 

group diluting the effects of the smaller group in the formation of the new cluster. Let 

cluster C„ be the fusion of clusters C, and C,. To overcome the excessive influence of 

the larger cluster, the distance of the centroid of a given cluster Ck to C;/ is the length 

of the median line of the triangle defined by the centroids of C ,, C; and Ck:

d*(Cij,Ck)= d(ck,mp\ci, cy.]) 3.8

where wp[c/,c/] is the midpoint between the centroids of clusters C; and Cy. By using 

the length of the median extending from cluster Ck to the opposite side of the triangle 

(defined by the line extending between Ci and Cy) rather than the centroid of C( u C y. 

to measure the distance of Ck from Cy, the clusters C, and Cy can be treated as being 

equal in size.

3.3.6 Ward’s Method

Ward’s method (Ward, 1963 ) differs from the above techniques in that it 

incorporates a cost function into the merging process. In short, Ward’s method 

agglomerates clusters that minimise the total within group error at each stage. The
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total within group error is used as a measure of information loss attributable to each 

agglomeration operation. At each agglomeration all possible pairs of clusters are 

examined for agglomeration. The pair of clusters whose agglomeration, Og, leads to 

the lowest increase in information loss are agglomerated. The distance between 

clusters (i.e. information loss) is defined as the mean sum of squares of the objects in 

the agglomerated cluster:

d*(c„Cj) 3.9

where Cg = {Ci u  Cj}. The smaller the value of eq. (3.9), the smaller the distance 

between clusters. Ward’s method is biased towards equally sized clusters (Blashfield, 

1976) and tends to find compact clusters as with complete linkage.

Parameter «I aj fi y
Single Linkage 0.5 0".5 0.0 -0.5
Complete
Linkage

0.5 0.5 0.0 0.5

Centroid linkage n/(n, + n,) n/(n, + n;) 0.0
Average linkage n,/(n, + n,) n/(n,. + n,.) 0.0 0.0
Median linkage 0.5 0.5 -0.25 0.0
Ward’s method (n k + n,)/

(n, + V  W)
K  + n,)/
(nf+n,.+ n*) -V (ni + n/ + 

J k l___________
0.0

Table 3.1: Values for the Lance and Williams (1967a) hierarchical clustering formula.

3.3.7 A Generalised Formula for Hierarchical Clustering

As the above hierarchical techniques all differ in how d*(CiyCj) is calculated, each 

can be expressed by the general formula:
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3.10
d » (c k,Ct )= a ,d * (C t ,C ,)+ ajd> (C k,C1)+

Pd *(c,,c()+ r\d *(c, d *(c, ,c, 1

where Cg is the agglomeration of C; and C, and Ck is any other cluster in the data 

(Lance and Williams, 1967a). By adjusting the values of ap fd and /  formulas for 

single linkage, complete linkage, centroid linkage, median linkage and Ward’s 

method can be obtained (Table 3.1). Formulating all these methods in this way is 

useful as it shows how a single algorithm can be used to implement all of these 

methods. However, using this formulation is not necessarily the best way to 

implement these clustering methods (Murtagh, 1983).

3.3.8 Minimum Spanning Tree

Graph theoretical methods are widely used in cluster analysis (Backer, 1995). Zahn 

(1971) initially explored the use of minimum spanning trees in cluster analysis. The 

Minimum Spanning Tree (MST) approach is introduced here as it is related to single 

likage. A graph is defined as a connected set, G, of points or nodes. Relationships 

between nodes are indicated by the connections between the nodes referred to as 

edges. Each edge has a corresponding weight which is a numeric value assigned to 

the edge. The weight assigned to an edge between two nodes is a quantification of the 

relationship between the nodes. For example, if the edge weights correspond to 

geometric distance, nodes connected via edges with small weights lie close together 

while nodes connected via edges with large weights are relatively far apart. A path is 

defined as the sequence of edges that connect two nodes via other nodes. A graph is 

said to be connected if a path exists between any two nodes and is said to be 

complete if an edge exists between every possible pair of nodes. A tree is a connected 

graph with no cycles (a cycle is a set of connected nodes V = {v,, v2, ... , v j where v, 

and vn are the same node). A spanning tree is a tree consisting of all of the nodes
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contained in G and the minimum spanning tree of G is the spanning tree in which the 

sum of the weights corresponding to the edges is minimal relative to all other 

possible spanning trees that could be constructed in G.

Given that removing any one edge from the spanning tree of a data set will result in 

the partitioning of the data, the basic procedure for finding clusters in data with a 

MST is as follows:

1. Set G = X and construct the MST for G where the edge weights correspond to 
the distance between patterns.

2. Find any inconsistent edges in the MST.

3. Remove the inconsistent edges to partition the data into clusters.

Zahn (1971) discusses a couple of algorithms for finding the MST in step one. One 

method by Kruskal (1956) is to place the edges of the tree in order from smallest to 

largest such that each successive edge does not generate a cycle with any previously 

chosen edge. Another method by Prim (1957) starts with an arbitrary node. The 

smallest edge connected to this node along with the other node connected to this edge 

are referred to as fragment tree T Fragment tree Tk is found by adding the node not 

in Tk_i with the smallest edge connected to Tk̂ . Repeat this process until all nodes 

have been agglomerated into the tree. Other approaches to constructing minimum 

spanning trees can be found in Murtagh (1983).

Inconsistent edges are defined as edges that have a significantly larger weight than 

edges on either side. Zahn recommends determining significance by either looking at 

how many standard deviations the inconsistent weight is from the average of the 

weights of either side or by simply looking at the ratio of the inconsistent weight to 

the average of the weights on either side.
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Hartigan (1975) discuss how single linkage clusters can be found via the MST 

approach to clustering. This can be accomplished by removing links in order of the 

size of the weights (largest to smallest). The resulting hierarchy is the single linkage 

clustering of the data. However, removing any one or subset of edges from the MST 

generates a partition of the data. Depending how one approaches the removal of 

edges to generate partitions (removing inconsistent edges using the above methods or 

by first generating a single linkage hierarchy) one can view the MST approach as 

either a partitioning or a hierarchical clustering method.

3.3.9 Density linkage

Density linkage refers to a class of hierarchical methods that use nonparametric 

density estimates to measure the distance between observations. Two such methods 

are the nearest neighbour method and the uniform kernel method (Wong and Lane, 

1983). A third method8 , called two stage density linkage (Sarle, 1989) is discussed in 

section 3.5. All three methods are essentially extensions of the single linkage method 

using density based distance metrics.

3.3.9.1 Nearest neighbour method

The nearest neighbour method (Wong and Lane, 1983), is identical to single linkage 

in overall structure:

d * (c,, C j )= min[i/(xj. x/„ )J

/  =  1, 2 , 

m =  1, 2, . . . , « ■ .

3.11

o
° Other examples of density linkage can be found in Carmichel et al (1968) and Wishart (1969a)).
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The difference is in how the distance between individual observations, d(xl,xJ) is 

calculated where

d * if d { \‘, x7) < max(rv (x') rs (x7))

otherwise
3.12

where rs(xk) is the distance from observation xk to its s nearest neighbour and f(xk) is 

the proportion of observations within a sphere of radius rs(xk) divided by the volume 

of the sphere. Effectively this is the single linkage method with the distance between 

two observations equal to the average of the point density at each of the observations.

3.3.9.2 Uniform kernel method

The uniform kernel method is similar to the nearest neighbour method except that is 

uses a uniform kernel density estimate (aka. naive density estimate - see Appendix 

A2):

d**(x ',x7) = —
f  \

1 1 +
/(*') /(v)J

if d(x‘ ,x7) < h

oo otherwise
3.13

where h refers to the radius of a sphere (i.e. bin size) specified by the user and f(xk) is 

the proportion of observations within the sphere divided by its volume.

3.3.10 Other Approaches

Other approaches to hierarchical clustering have included the application of statistical 

mechanics, simulated annealing and other iterative function optimisation approaches
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to hierarchical clustering (e.g. Frigui and Krishnapuram, 1997; Wong, 1993). In 

general, these methods are similar to Ward’s method in that the "optimal" clustering 

is found at each level of the hierarchy by optimising an objective function. Weighted 

sum of split and diameter clustering (Wang et al, 1996) uses an objective function 

approach to divisive hierarchical clustering and attempts to balance the effects of 

searching for both hyperellipsoidal and chaining clusters. A major problem with 

many function optimisation approaches to hierarchical clustering, however, is that 

they can be too computationally expensive for use in large data sets.

3.3.11 Criticisms of Hierarchical Techniques

Hierarchical techniques were originally developed for use in the biological sciences 

where researchers were interested in generating complete hierarchical classifications 

of their data. Quite often though, hierarchical techniques are applied to data where 

the appropriateness of applying a hierarchical classification is questionable. For 

example, if one were interested in classifying psychiatric patients into a number of 

mutually exclusive groups, generating a hierarchical classification makes little sense. 

When one is not interested in a complete hierarchical taxonomy of one’s data one 

must determine a suitable cut-off point in the hierarchical tree. The most common 

method is to look for a point in the dendrogram where the distance between clusters 

suddenly increases. However, one is not always so fortunate to easily find such a 

point. Evaluation of methods for determining cut-off points is beyond the scope of 

this thesis - see Mojena (1977) and Milligan and Cooper (1985) for discussions of 

other methods of determining cut-off points in the dendrogram. In any case, the use 

of dendrograms in hierarchical cluster analysis can be a convenient and graphically 

appealing method for helping to decide on the number of clusters in the data. 

However, the size and therefore the use of dendrograms becomes overwhelming 

when one has large numbers of observations.
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Another criticism of most of the more commonly used hierarchical methods is that 

they generally tend to perform best when the clusters are well separated and, with the 

notable exception of single linkage, relatively compact in shape (Lorr, 1983). 

Average linkage, complete linkage, Ward’s method and centroid linkage are often 

inadequate when modelling long chaining like cluster as they have a tendency to find 

hyperspherical shaped clusters. Single linkage is good at finding long, chaining 

clusters but if two clusters coexist in proximate and/or noisy regions of the pattern 

space it has a tendency to agglomerate the two clusters together without first 

identifying the two clusters as distinct (see Everitt (1993) for a simple example of 

this).

The main problem with hierarchical techniques is computational cost of the 

calculation of the proximity matrix consisting of the distances between all 

observations and its recalculation for every new cluster. The initial proximity matrix 

requires N(N- l)/2 distance calculations. This can impose prohibitive memory loads 

for large data sets. For example, a 10,000 observation data set would require a matrix 

with about 49 million elements. Alternatively one could calculate intercluster 

distance on the fly without storing the proximity matrix. For large data sets however, 

this would still place a very heavy computational load and is probably not practical 

for most applications of this type. For the density linkage techniques this cost is even 

higher as the distance calculations between individual observations are more 

elaborate. In addition, both the nearest neighbour and the uniform kernel methods 

involve a smoothing parameter (number of s nearest neighbours in the nearest 

neighbour method and the radius, h, of the sphere in the uniform kernel method) 

which may require repeated experimentation. In general, standard hierarchical 

techniques are not feasible for large data sets due to the high memory and/or 

computational overheads. Even more recent implementations of hierarchical
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techniques (see Murtagh, 1983, 1992) can still impose unacceptably high 

computational or memory storage costs for large data sets as they generally require 

either O(n^) CPU costs with 0(n) memory storage or O(n^) memory storage with 

0(n) CPU costs.

Technique Main Strengths Main Weaknesses
Single Linkage No cluster shape restrictions High CPU or memory 

costs,
sensitive to noise

Complete Linkage More robust under noisy 
conditions than single linkage

High CPU or memory 
costs, biased towards small 
compact clusters

Average Linkage Can extract unequally size 
clusters and is robust under 
noisy conditions

High CPU or memory 
costs, biased towards 
hyperellipsoidal cluster 
shapes

Centroid Linkage Moderately robust under 
noisy conditions, fastest of the 
hierarchical methods 
examined here

Relatively high CPU or 
memory costs, smaller 
clusters tend to be 
overshadowed by larger 
clusters when agglomerated

Median Linkage Moderately robust under 
noisy conditions, designed to 
counteract the tendency of 
larger clusters to overshadow 
smaller clusters found 
centroid linkage

High CPU or memory costs

Ward’s Method More robust under noisy 
conditions than most other 
clusters.

High CPU or memory 
costs, biased towards 
equally sized 
hyperellipsoidal clusters

Minimum Spanning Tree No cluster shape restrictions High CPU or memory costs
Density Linkage No cluster shape restrictions High CPU or memory costs

Table 3.2: Summary of the main strengths and weaknesses of hierarchical clustering methods.

Table 3.2 summarises the main strengths and weaknesses of the hierarchical methods 

examined in this chapter. In short, if one is faced with large, noisy data sets with 

nonglobular clusters, standard hierarchical techniques are probably not practical. 

Many techniques tend to impose hyperellipsoidal structures on the data. Although 

single linkage and MST can model long chaining clusters, they often do not perform 

well under noisy conditions. Cost considerations also preclude the use of hierarchical
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methods for large data sets. However, if the data set is first summarised via an initial 

pattern partitioning where the centroids of the initial clusters are used as input to the 

above hierarchical methods, hierarchical analysis of large data sets is practical. The 

next section reviews pattern partitioning methods and is followed by a discussion of 

hybridising pattern partitioning and hierarchical methods for analysing large data 

sets.

3.4 Pattern Partitioning Techniques

Pattern partitioning techniques are characterised by the process of dividing up the 

observations into k mutually exclusive groups. Often k will be prespecified (e.g. 

Cheng and Milligan, 1996; Kohonen, 1995, 1982; Forgy, 1965) although there are 

approaches to pattern partitioning where this is not necessary {e.g. Fritzke, 1995, 

1991; Chaudhuri et al, 1992; Liu and Tsai, 1989; Ball and Hall, 1965). Often, the 

process of allocating observations to clusters is accomplished via an objective 

function whose maximisation or minimisation represents an optimal (though not 

necessarily globally optimal) solution to the clustering problem as in k-means (Forgy, 

1965) and moving methods (Ismail and Kamel, 1989). Other techniques attempt to 

systematically search the pattern space for areas of low or high density such as 

moment preserving methods {e.g. Liu and Tsai, 1989). However the partitioning is 

accomplished, the overriding characteristic of partitioning algorithms is that they are 

nonhierarchical: a given observation can only be classified into a single mutually 

exclusive cluster9. There are no hierarchical relationships between observations or 

clusters.

As the first stage of the APC methodology is an initial pattern partitioning cluster 

analysis of the data it is worthwhile discussing some of the various partitional

^Fuzzy clustering allows for multiple cluster membership. See Bezdek (1981).
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techniques as a good initial clustering of the data is essential for APC. Also, some 

aspects of APC draw their inspiration from methods used in partitional techniques 

that involve density searches of the pattern space.

3.4.1 Searching all possible partitions

An intuitively simple approach to pattern partitioning would be to search every 

possible partition in the data set to find the one that best optimises a given objective 

function or some other measure of cluster suitability. However, the number of 

possible partitions is impractically large even for small problems. The total number 

of partitions that would need to be searched, S, is:
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where N is the number of patterns and k is the number of clusters. (Anderberg, 1973). 

From equation 3.14 there are 1030 different allocations of 100 objects into 2 classes 

(Hand, 1981). This is obviously not practical for even small data sets although a 

number of techniques have been developed to lighten the computational load such as 

branch and bound methods (e.g. Massart et al, 1983).

Given the impracticalities of searching every possible partition, another approach is 

to start with a fixed number of k clusters and then find the k cluster partitioning that 

optimises an objective function such as the total within group error:

k 2

3.15
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where k is the number of clusters, nk is the number of patterns in cluster k and c* is 

the centroid of cluster k and xk is an observation belonging to cluster k. Alternatively 

one can search the pattern space for areas of high or low density and then use this 

information to identify clusters. These two approaches will now be discussed.

3.4.2 K-means

The k-means algorithm is one of the most commonly used pattern partitioning 

clustering techniques. Its popularity lies in its simplicity, speed and good clustering 

performance. A number of studies have found it to be the best performing 

nonhierarchical clustering algorithm in Monte Carlo simulations (Milligan and 

Cooper, 1987; Bayne et al, 1980; Cowgill, 1993). A variety of different variations of 

the basic k-means algorithm exist; for a more complete discussion of k-means see 

Anderberg (1973) or Jain and Dubes (1988). In its simplest incarnation k-means is 

run by specifying a priori k initial clusters to be searched for. The following outline 

is that devised by Forgy (1965) and is one of the most straight forward k-means 

algorithms:

1. Begin with a set of k initial cluster centroids. The initial centroids (i.e. seeds) 
can either be composed of randomly chosen data observations or can be 
found via some "educated guessing" (e.g. Cheng and Milligan, 1996; Babu 
and Murty, 1993; Shattuck et al, 1991)10.

2. Make a pass through the entire data set allocating each observation to its 
nearest centroid.

3. Once all observations have been allocated to their nearest centroid, 
recalculate each centroid as being the mean vector of all observations 
allocated to that cluster.

10A survey of seeding methods is given in Appendix I.
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4. Repeat steps 2 and 3 until a pass can be made throughout the entire data set 
where no observation changes its cluster membership.

Note that this process is the equivalent to minimising eq. (3.15) and implicitly 

defining a cluster as being a compact set of patterns. A shortcoming of k-means is 

that although it can be shown that it will converge (Anderberg, 1973; Pollard, 1981) 

there is no guarantee that it will converge at the optimal minima. In fact, as k-means 

will often converge sub-optimally, a common approach is to run k-means a large 

number of times with different initial seed values and then take the best solution 

(Backer, 1995).

Due the requirement in k-means that k be prespecified as well the lack of any 

guarantee that convergence will be global, a number of cluster splitting and merging 

algorithms have been proposed as modifications to the basic k-means algorithm. The 

simplest of these is to add an additional step to Forgy’s method (Wishart, 1969b). 

Wishart suggests initially running k-means with a large number of k. Once 

convergence has been reached, remove any clusters whose number of member 

observations is below some threshold. Repeat steps 2 and 3 again until convergence 

and, if necessary, repeat the entire process until all clusters have the minimum 

necessary number of observations.

ISODATA, developed by Ball and Hall (1965) extends Wishart’s approach even 

further. ISODATA begins as Forgy’s method:

1. Seed the k clusters using one of the methods discussed in Appendix A1.

2. Find the closest centroid to each observation.

3. Once a pass has been made through the data set, recalculate the cluster 
centroids as the mean vector of all observations that belong to that cluster.

4. Repeat steps 2 and 3 until convergence or until NPARTS iterations have been 
completed.
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5. Remove any clusters that contain fewer than THETAN observations. The 
observations contained in the removed clusters are treated as outliers and 
discarded for the remainder of the analysis.

6 . Decide whether to test for splitting or merging the remaining clusters:
a. Test for merging the clusters if the number of clusters is greater than twice 

some threshold (NWRDSD).
b. Test for splitting clusters if the number of clusters is one half NWRDSD.
c. Otherwise alternate between splitting and merging on different iterations.

7. Recompute centroids as in step 3.

8 . Repeat steps 5, 6 and 7 for a pre specified number of iterations (ITERMAX) 
or until convergence has been reached.

The merging of clusters is accomplished by calculating all pair wise distances 

between clusters. If any of the intercluster distances are less than some threshold 

(THETAC), the two centroids are merged. The new intercluster distances between the 

new centroid and all other centroids is then calculated and this process is repeated 

until either there are no new merges or until a pre specified number of merges have 

been completed.

Clusters are split if the within cluster standard deviation for any variable is greater 

than some threshold. This threshold, THATAE, is derived from the original standard 

deviation of the given variable on the entire data set. The two new clusters are 

created by dividing up the observations belong to the original variable along the 

mean value of the original variable. The two resulting centroids are computed and if 

the distance between the two centroids is greater than THETAAC, the split is 

maintained, otherwise the original cluster is kept.

The main difficulty with ISODATA is that it requires a lot of user interaction. There 

are also seven user defined parameters (summarised in Table 3.3) which could be a 

bit daunting for many data exploratory exercises.
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Parameter Definition
k Initial number of clusters.
THETAN Minimum number of patterns that must be in a cluster.
NWRDSD Threshold of the number of clusters used to determine whether 

splitting or merging of clusters is to be tested for.
THETAC Merge clusters if the intercluster distance is less than THETAC
THATAE Variable standard deviation threshold used for determining 

whether a cluster should be split.
NPARTS Max iterations for clusters to converge within a merging/splitting 

iteration.
ITERMAX Max iterations for the splitting/merging process.

Table 3.3: Summary of parameters used in ISODATA.

Another variation of k-means has been proposed by Cheng and Milligan (1996). 

Under the assumption that outliers can lead to k-means converging to sub-optimal 

minima, Cheng and Milligan proposed an influence detection routine to eliminate 

individual observations that significantly effect convergence. Once the outliers are 

removed, convergence to high density areas should be enhanced. The influence 

detection method is quite simple. First, k-means is run until convergence. Next, for 

each observation, remove the observation from the data set and re-run k-means. 

Using the Adjusted Rand Index (see Chap 5) measure the degree of agreement 

between the previous cluster solution and the new one with the object removed. If the 

clustering differs significantly, the given observation is an outlier and can be 

removed. The computational cost of running k-means once for every observation may 

be quire high (requiring at least 2N passes through the data set) so this approach may 

only be practical for small or moderately sized data sets.

3.4.3 Moving Methods

An approach to partitional clustering similar to k-means has been proposed by Duda 

and Hart (1973) and Ismail and Kamel (1989) called the moving method. A number 

of different variations of the moving method exist although Zhang and Boyle (1991) 

have conducted some empirical comparisons suggesting that all perform equally well.
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The basic idea behind the moving method is to begin with a fixed value of k and then 

pass through the data set and attempt to move each observation to another cluster. If 

this move results in the further minimisation of a cost function keep the move. The 

process of moving observations to more appropriate clusters is continued over a 

number of passes through the data set until convergence has been achieved. As with 

k-means, convergence is defined as the point at which no observation can be moved 

to any other cluster and improve the cost function. The various moving method 

algorithms differ in how a more optimal cluster is sought for each observation. The 

simplest is to keep the first move that reduces the cost function. Another is to test the 

move at each possible cluster and then keep the move leading to the greatest 

reduction in the cost function. As both of these techniques tend to follow different 

convergence paths, Ismail and Kamel recommend alternating between the two 

strategies on every observation. Zhang and Boyle however, found that all three 

strategies work equally well.

The cost function used in the moving method is the same as that for k-means (eq. 

3.15). When attempting to move observations to other clusters, the effects of the 

change on the cost function can be easily calculated.

Given the error due to cluster j:

moving a pattern x/ from cluster j  to cluster m and adjusting the cluster centroids 

accordingly, the change in the error due to cluster j , A ~Ej, will be:

3.17

3.18
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and the change in the error due to cluster m, A+Em, will be:

3.19

if A~Ej > A+Em the move decreases the total cost function.

Zhang and Boyle show that the convergence states of the moving method are also the 

convergence states of k-means, however not all convergence states of k-means are 

necessarily the convergence states of the moving method. For each pattern, x;, k- 

means checks to see if

m = 1, 2,

for m * j, m= 1, 2 , . . . ,  k

is true. Convergence is reached when 3.20 is true for all patterns. For the moving 

method, convergence is improved when

A~Ej > A+E,

if x, g Cj

m
3.21

and when convergence is reached, each pattern will satisfy

or 3.22

for m * j,m =  1, 2 , . . . ,  k

if x/ e Cj
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Any pattern that satisfies eq. (3.22) will also satisfy eq. (3.20). However, not all 

patterns that satisfy eq. (3.20) will hold for eq. (3.22). Therefore, although all the 

convergence states of k-means are those of the moving methods, not necessarily all 

moving method convergence states can be accessed by k-means. From this Zhang 

and Boyle suggest that if a more optimal convergence state of the moving method is 

not a convergence state of k-means, the moving method will perform better. 

However, it could also be the case that the extra convergence states correspond to 

local minima, which could increase the likelihood of the algorithm getting stuck 

before it reaches a more optimal state. Ismail and Kamel (1989) and Zhang and Boyle 

(1991) conducted empirical simulations suggesting that the moving method does 

converge better than k-means. However, as these experiments were limited to only a 

few very low dimensional data sets, a more comprehensive and controlled evaluation 

would be more informative of the relative clustering abilities of k-means and the 

moving method. This is examined further in Chapter 6 .

3.4.4 Moment Preserving Methods

An entirely different approach to partitional clustering is moment preserving 

clustering (Liu and Tsai, 1989). Moment preserving clustering is based on the 

projection method (PM) developed by Henrichen and Fu (1968). PM uses Karhunen- 

Loeve expansion (also known as principal component analysis) to find a set of 

orthogonal axes of the data set. The data is then projected onto these axes and the 

resulting marginal densities are examined. The local minima of the first axis is then 

used to partition the data into clusters. If no minima is found, the next orthogonal 

axis is used. This process is then repeated on each of the previously discovered 

partitions until all of marginal densities found by projecting on to the orthogonal axis 

are found to be unimodal.
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A problem with this technique, as pointed out by Liu and Tsai (1989) is that clusters 

that overlap on the projected axes can obscure their separability. Figure 3.2 shows an 

example. Extracting the two axis and then looking at the marginal densities of the 

projected data does not reveal the fact that two clusters are present in the data. Using 

the Henrichon and Fu approach, one would be led to conclude that the data set was 

unimodal.

A

Figure 3.2: Potential problem with moment preserving clustering.

Liu and Tsai attempt to circumvent this problem by searching the intercluster regions 

directly for areas of low density. Their algorithm can be summarised as follows:

STAGE 1:

step 1: Generate d orthogonal eigenvectors (u7, u2, ... urf) from the 

covariance matrix of the data.

step 2: Divide the pattem space up into subregions by segmenting the axis

corresponding to the largest eigenvector of the covariance matrix into 

kd subsections of length bd within the range of the data. A technique of 

determining , kd and bd is given in Liu and Tsai (1989).
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step 3: Search for sparsely populated subregions whose pattern density is 

below some threshold,^. If none can be found then either:

3.1 Try reducing the range of the data used along each axis.

3.2 Return to step 2 and use the next largest eigenvector.

3.3 If all eigenvectors have been used, go to STAGE 2.

step 4: For each consecutive set of subregions with densities below f  take the 

smallest (i.e. least dense) one or the one that is not one of the two end 

regions and bisect it with a hyperplane orthogonal to u(/ to partition 

the data.

STAGE 2: For each partition found, repeat STAGE 1 using the data contained in that 

partition.

STAGE 3: For each pair of single class partitions resulting from different executions 

of step 4, take the union of each pair and repeat stage 1 to ensure there 

are sparse regions in the union. If not, merge the two partitions 

together.

The key feature of Liu and Tai’s method is the reduction of the size of the subregions 

being searched in step 3, which, as can be seen in Figure 3.3 increases the likelihood 

of detecting overlapping clusters. Once a sparsely populated region is found, a 

hyperplane perpendicular to the eigenvector bisecting the sparse region is created to 

divide the patterns into separate groups. The whole search process is repeated 

recursively on each cluster discovered until no further clusterings are found. If in the 

process of separating clusters a cluster is bisected by a hyperplane, the merging step 

will reconstruct the cluster.
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Figure 3.3: The Liu and Tsai (1989) approach begins with searching subregions along the axis 
determined by the largest eigenvector, ul(a). If no sparsely populated subregion is found, the size of 
the subregions is reduced which increases the likelihood of finding sparse areas. This is shown in (b) 
where reducing the size of the subregions has led to three sparsely populated subregions near the 
intersection of ul and u2. The data is then partitioned along the line the bisects the subregions 
orthogonal to u l. This process is repeated on the two resulting partitions which generates the four 
clusters shown in (d). As no further division of these clusters is possible, each pair of clusters is tested 
for merging. This leads to clusters 1 and 3 and clusters 2 and 4 being merged as when these clusters 
are tested using the same process used in stage 1 no partition is found to exist (e). The final result is 
the data partitioned into the two original hyperellipsoidal clusters (f).
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The main shortcoming of Liu and Tsai’s approach is that it is unlikely to perform well 

unless the clusters are well separated and hyperellipsoidal in structure as it relies on a 

linear transformation of the data. The general concept of directly searching the 

intercluster regions for low density areas by dividing up the pattern space into 

discrete regions also forms the basis of APC. However, as will be seen in Chapter 4, 

APC uses a different approach than Liu and Tsai to determining which subregions 

are to be searched for areas of high/low density. APC also uses a different measure of 

density as well. Finally, APC generates a hierarchical clustering of the data, unlike 

the case of Liu and Tsai’s algorithm.

3.4.5 Chaudhuri e t  a l  (1992)

Chaudhuri et al (1992) introduced another splitting and merging method similar in 

approach as Liu and Tsai where the splitting and merging of clusters is based on 

destiny searches of the intercluster regions. Chaudhuri et al propose two basic 

approaches to partitioning the data: type-I splitting and type-II splitting.

Type-I splitting involves the search of strips in the pattern space in different 

directions around previously found clusters or, in the case of the initial application of 

their clustering algorithm to the data, the centroid of the data. The data is partitioned 

along strips of low density found in the data space. Given a ¿/-dimensional data set, 

strips along each of the 2d ~1 + d directions from the cluster centroid are searched. For 

example, in a two dimensional data set, 1 horizontal, 1 vertical and 2 diagonal strips 

are searched which correspond to the d axis and the diagonals (Figure 3.4).

The widths of the strips need also to be determined. If too large, the intercluster 

densities will be over estimated, too small and the density estimate will be become
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unreliable due to the small sample takenl 1. In any case, if the number of points in 

one of strips is less than a predetermined threshold, /,, the data is partitioned along 

that strip.

#  = data centroid

Figure 3.4: Type-I splitting involves searching strips of the pattern space for areas of low density. 4 
strips are constructed corresponding the 2^ '   ̂ + d  directions from the cluster centroid to be searched.

In Type - II splitting Forgy’s k-means with k = 2 is applied to the data. Let Cj and C2 

be the centroids of the newly created clusters C, and C2 after the application of k- 

means and let d ,2 = || cj - C2 || be the distance between the two centroids. Chaudhuri 

et al next define a set of points, A, called the almost equidistant point set which is the 

set of patterns where the difference, zn, between each pattern’s distance from cj and 

C2 is less than 10% of d1>2:

Zn ~ \ W  X„ - C l I | - | | X „ - C 2 III

i f  x n e  {Cy U  C 2 }

and

liThe reader is referred to Chaudhuri et al (1992) for further discussion of the strip width determination algorithm.
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A = { z ^ d J l O  } 3.23

If (ny\/n) x 100 < I2 3 .24

then C, and C2 are treated as two separate clusters where l2 is a predetermined 

threshold. If equation 3.15 is not satisfied, the two clusters, CI and C2 are considered 

for re-merging using a process that takes into account the degree to which the 

boundary points between clusters are equally distributed between clusters (see 

Chaudhuri et al (1992) for further details).

The Chaudhuri et al algorithm can be summarised as follows:

Let Kj be the number of clusters at iteration J  and initialise the algorithm with J  = 0 

and K = 1.

1. Apply type-I splitting to every cluster. If J  = 1, use the centroid of the data.

2. If a cluster is split, set J  -  J  + 1 and go to step 1.

3. Apply type-II splitting to each cluster. If any clusters are split, go to step 4, 
otherwise go to step 5.

4. Apply type-I splitting to each pair of clusters (one at a time) found in step 3.

4a. If neither are split further, test the pair for remerging using the
equidistant point set (A) found for those two clusters in step 3.

4b. If at least of the of the two clusters are split, check the merging 
restriction on the pair if A contains patterns from both 
clusters.

5. If Kj= Kj_, stop. Otherwise, set J = J + 1 and go to step 1.
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The main drawback to the Chaudhuri et al algorithm is scalability with the 

dimensionality of the data. Figure 3.5 plots the number of dimensions of the data 

with the corresponding number of strips that need to be searched. Type-I splitting 

requires (2d - 1 + d ) strips to be searched - one for each axis and one for each 

diagonal. For low dimensional data sets this is feasible as d = 2 or d = 3 only require 

4 and 7 strips each. However, for d = 20, there are 524,308 strips to be searched for 

each cluster. At d -  50, this figure is on the order of 1014. Therefore, the use of this 

algorithm on large data sets with significant numbers of variables is costly in terms of 

CPU expenditure.

Number of strips as a function of dimension

Figure 3.5: The number of search strips needed in the Chaudhuri et al (1992) algorithm as a function 
of dimensionality. Each cluster in the data requires the above number of strips to be searched. Note 
that the x axis is log scale.

3.4.6 Unsupervised Neural Networks

Self-organising neural networks are generally used for clustering, classification, data 

reduction and data visualisation. Although there exists a wide range of self- 

organising neural network architectures (e.g. GTM: Bishop, 1997; TS-SOM:
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Koikkalainen, 1994, 1995; growing grid networks: Fritzke, 1991, 1995; Fuzzy ART: 

Carpenter et al, 1991; ART2: Carpenter and Grossberg, 1987) only the more 

commonly used Kohonen Self-organising neural network (KSONN) and "winner 

take all" self-organising neural network (WTANN) architectures are discussed here 

as these represent the basic algorithms from which most other variations are built. 

Both of these networks consist of an input layer of d units that take on the values of 

the ¿/-dimensional data vector and a one, two or occasionally three dimensional 

output layer. Each output unit is fully connected to the input layer but there are no 

interoutput or interinput unit connections (Figure 3.6). For KSONNs the idea is to 

train the network such that similar clusterings in the data correspond to proximate 

units in the output layer so that the user is left with a graphical representation of the 

structure of the data. For this reason, the output layer of the KSONN is often referred 

to as a topological feature map as clusters with similar features will be represented in 

closer proximity to each other in the output layer than clusters with more dissimilar 

features. For WTANNs the proximity constraint is dropped and no relationship 

between clusters is implied by their proximal location in the output layer. The basic 

algorithm behind KSONNs and WTANNs will now be briefly outlined, for a more 

thorough discussion see Kohonen (1995, 1982), Haykin (1994), Hertz et al (1991) or 

Rumelhart and Zipser (1986).

Output units

Input units

Figure 3.6: Architecture of an unsupervised neural network.
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The training algorithm itself is fairly straight forward: each pattern is presented to the 

input layer and the distance between the pattern and the weights of each of the output 

units is calculated. The output unit with the closest weights to the input pattern has 

its weights updated such that they are fractionally closer (determined by the learning 

rate) to the input pattern than they were before. In order to achieve the topological 

feature map effect in the KSONN output layer, not only is the closest unit updated, 

but so are its nearest neighbours in the output unit grid. The size of the update 

neighbourhood usually starts out quite large (i.e. 2/3 or more of the output layer 

(Haykin, 1994), and is gradually reduced to 0 during training. The training algorithm 

is an iterative scheme that may require many passes through the entire training data 

set in order to provide a good mapping of the data. The number of passes made 

through the data (epochs) must also be pre set prior to training as the learning rate 

and neighbourhood function are generally calculated based on the current number of 

epochs.

More formally, let X be set of N, ¿/-dimensional training data patterns (X = [x7, x2, ... 

xN]),] , and W be the set of weights connecting the o output units to d input units 

where W = [w„ w2, ... w j)  and w0 = [w ol, wo2, ... w j .

1. Set t = 0, T = e*N where e is the number of epochs to be run and initialise W to 
small random values.

2. Randomly select an input pattern, \ n , and present it to the network.

3. Calculate the distance between the input pattern to the weight vector of each 
output unit where distance is calculated as:

d0(x„) = IK  - x j  3.25

where || || is the Euclidean distance.

4. Find the output unit , o*, whose weight vector is closest to the input vector such 
that:

||w0* - x j  < ||w„ - xjl for all o. 3.26
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5. Next, update the weight vectors :

wG(t+l) = w0 (t) + A(o,o*)r|[xn(t) - w0 (t)] 3.27

6 . If t - T  stop, otherwise increment t and go to step 2.

A(o,o*) is a neighbourhood function which determines how many neighbouring units 

along with the winning unit have their weights updated. Although A(o,o*) can take a 

variety of forms (see Nour and Madey (1996), Haykin (1994) and Balakrishnan et al, 

(1994) for discussion) for the purposes of this thesis it is defined as returning a value 

of 1 for o * and all units within a radius r of o *, and returning 0 for all other units as 

this is the procedure used in Chapter 6 . By gradually decreasing r over time, the 

topological proximity of the output units representing clusters is maintained. The 

learning rate 77, determines the degree of weight change with each pattern. Generally 

77 is initialised in the range of (0  < 77 < 1 ) and then gradually reduced so as to reach 0 

at the end of training (i.e. when t = T). The larger initial value of 77 allows the 

network to map the gross structure of the data in the output layer while the smaller 

values towards the end of training enables the network to "fine tune" the output unit 

weights.

If one is not particularly interested in a topological mapping, the neighbourhood 

function can be dispensed with so that only the winning unit’s weights are updated as 

in Rumelhart and Zipser (1986). Here the weight update rule is:

wo( '+ 0 =
w0(t) otherwise

3.28
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These networks, referred to as "winner take all" neural networks (WTANN) train 

significantly faster as there are fewer weight updates to be made. In addition, as one 

is not producing a topological feature map of the data, only a one dimensional output 

layer is used.

The main drawback to both KSONN and WTANN is that they require many passes 

through the data and are therefore computationally expensive to run compared to k- 

means or the moving methods. In fact, one can view KSONN and WTANN as 

variations of k-means and the moving method. K-means, the moving method, 

KSONN and WTANN all attempt to cluster the data by partitioning the observations 

into a fixed number of k, mutually exclusive clusters. They differ largely in how the 

partitioning is achieved. During each pass through the data set, k-means finds the 

closest cluster "prototype" to each observation. Once this has been found for each 

observation, the prototypes are recalculated as the mean vector of all observation 

closest to that prototype. The moving method is similar except that the prototypes 

(i.e. mean vectors) are recalculated with every pattern if that pattern is closer to a 

prototype vector other than the one corresponding to the cluster to which it already 

belongs. Both k-means and the moving method are said to have converged when a 

pass can be made through the data set with no observation changing its cluster 

membership. Both KSONN and WTANN also update the prototype vectors with each 

pattern except that rather than recalculating the prototypes as being the mean vectors 

of all observations that belong to that cluster, the prototype vector is updated so as to 

be fractionally closer to the observation being presented to the network as in eq. 

(3.27) for KSONN and eq. (3.28) for WTANN. The primary difference between 

KSONN and WTANN is that with KSONN both the closest prototype vector and its 

neighbours (in the output layer) as determined by A(o,o*) are updated.
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Technique Main Strengths Main Weaknesses
K-means Low CPU and memory costs Biased towards 

hyperellipsoidal cluster 
shapes

Moving methods Low CPU and memory costs Biased towards 
hyperellipsoidal cluster 
shapes

Moment Preserving Capable of distinguishing 
clusters that overlap on the 
principal axes of the data

Clusters must be well 
separated, biased towards 
hyperellipsoidal cluster 
shapes

Chaudhuri et al (1992) No cluster shape restrictions CPU costs increase 
exponentially with the 
dimensionality of the data

Unsupervised Neural 
Networks (KSONN and 
WTANN)

Low memory costs, 
topological map of KSONN 
provides an easy to use 
representation of 
relationships between 
clusters

High CPU costs

Table 3.4 Main strengths and weaknesses of the pattern partitioning methods discussed in this chapter.

3.4.7 Other Approaches

A summary of the main strengths and weaknesses of the pattern partitioning 

techniques discussed can be found in Table 3.4. Although on their own none of these 

methods is applicable to large, noisy data sets with non compactly shaped clusters, a 

number of them, particularly k-means and the moving method, could be utilised as 

the initial pattern partitioning component of APC. It should also be pointed out that a 

wide range of other partitioning methods exist - far too many to be surveyed in depth 

here (see Arabie and Hubert (1996) for review). Recent advances in pattern 

partitioning include mean-tracking (Sutanto et al, 1997) which uses a moving 

window over the data to directly search for modal areas, evolutionary computing 

based optimisation strategies (Babu and Murty, 1993,1994; Srikanth et al, 1995), 

simulated annealing (Klein and Dubes, 1989), tabu search (Al-Sultan, 1995) and 

various heuristic approaches (e.g. Kant et al, 1994; Messatfa, 1992; Gupta and
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Tammana, 1995). However, due to computational costs, none of these approaches are 

applicable to fast clustering of large data sets within the hybrid clustering context 

being explored in this work.

3.5 Hybrid Techniques

In order to deal with problems related to larger data sets hybridisations of standard 

clustering methods have been proposed. Hybrid methods are characterised by their 

use of multiple clustering techniques to solve the clustering problem. Beale (1969) 

and Wishart (1978) first proposed the use of hybrid or multistep methods to aid in the 

use of hierarchical techniques with large data sets. As mentioned earlier, hierarchical 

techniques themselves are too inefficient to be used with large data sets. Beale and 

Wishart suggested the use of k-means or other pattern partitioning methods to first 

divide up the data set. These sub clusters can then be clustered together using 

hierarchical methods. Murtagh (1995) has also done similar work with self 

organising neural networks. This section will briefly review hybrid methods of this 

type - the use of pattern partitioning techniques to generate an initial partition which 

is then agglomerated using hierarchical techniques.

3.5.1 Two Stage Hybridisations

The two stage process proposed by Beale and Wishart is fairly straight forward. First, 

a k cluster partition is generated using a fast partitioning method such as k-means. 

Once these clusters have been identified, the centroid, ck, of each cluster is calculated 

which acts as a "feature" or "prototype" of the observations within that cluster. The k 

cluster centroids can now be used as inputs to hierarchical methods that would not 

have originally been able to deal with the large size of the raw data set. As far as the 

author of this work is aware, no systematic empirical comparison of the use of
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different standard hierarchical algorithms in a hybrid context such as this have been 

published.

3.5.2 Contiguity Constrained Clustering

Contiguity constrained clustering (CCC) refers to the use of clustering techniques 

with the constraint that cluster agglomerations can only occur between clusters that 

are near or "contiguous" to each other (see Hartigan (1975) or Gordon (1981) for 

reviews). Murtagh (1995) applied CCC to the feature maps of KSONNs. Murtagh’s 

approach was to train a large (e.g. 50 x 50 unit output layer) KSONN and then 

generate a hierarchical clustering of the output units. As the feature map places 

similarly responding units together (i.e. similar clusters are placed in proximity to 

each other on the feature map) it seems natural to place a contiguity constraint on 

their agglomeration. Murtagh therefore constrained the agglomerations to 

neighbouring units (a given unit and its 8 neighbouring units assuming a two 

dimensional feature map or output layer). Intercluster distance between two output 

units, i and j  is measured based on the corresponding centroids c-, and c- of the 

patterns belonging to these units. Murtagh examined two distance measures one 

equivalent to centroid linkage:

Once two clusters are agglomerated, the centroid of the new cluster is calculated and 

treated as a single object. A potential problem with this approach however, is that on

d*(C„Q) = (x; -  xy)2 3.29

and another minimum variance measure:

3.30
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many problems KSONNs require a large number of passes through the data set and 

may therefore be too slow for large databases.

3.5.3 Wong’s Hybrid Method

Wong (1982) proposed another variation of the two step hybrid hierarchical / 

partitional method for data clustering. The first step of Wong’s Hybrid Method 

(WHM) consists of applying k-means to the data to generate an initial partition as 

with Beale (1969) and Wishart (1978). The second step consists of the agglomeration 

of the initial clusters with single linkage using an estimate of the density at the 

midpoint between clusters as a distance metric instead of the conventional Euclidean 

or correlational distance metrics used in standard hierarchical cluster analysis. The 

distance between two clusters, C, and C-, is defined as:

where W is the within cluster sum of squares of cluster k , nk is the number of 

observations is cluster k , ||c, - cy|| is the distance (e.g. Euclidean) between the two 

cluster centroids and d is the dimensionality of the data. Effectively, the distance 

between two clusters, d*(Cj,Cj), is inversely proportional to the density of 

observations at the midpoint between two neighbouring clusters. Two clusters, C, and 

Cj, are defined as being neighbours if the midpoint zip between the two cluster 

centroids is closer to either the centroid of C, or Cp than to any other cluster centroid 

(i.e. if they share a boundary in the k - cluster partitioning.) The distance between two 

non neighbouring clusters is defined as infinite. Therefore,

(Wj +  Wj + ( « .  +/7/) l[x |. -  x,.||2/4Y//2
3.31

d*(C(, Cp) = l//(zy) if C) and Cp are neighbours 3.32

= oo otherwise
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where J[ztJ) is the density at the midpoint, z(/, between cluster centroids. The single 

linkage step simply treats each of the k-means derived clusters as the objects in the 

population and agglomerates the clusters as one would normally with single linkage 

with the distance between objects inside clusters defined by eq. (3.32).

WHM is both sufficiently efficient for large data sets and capable of detecting 

nonhyperellipsoidal cluster structures. However, Wong’s intercluster distance metric 

based on the density at the midpoint is too insensitive to local densities of patterns 

between clusters. Empirical simulations in Chapter 7 indicate that WHM does not 

perform well under noisy conditions or when clusters lie in close proximity to each 

other.

APC is similar in overall structure to WHM in that it begins with an initial partition 

of the data that is agglomerated via single linkage using intercluster density as a 

distance metric. There are two significant difference between the two methods, 

however. First, APC uses a more direct estimate of the intercluster densities. 

Whereas WHM defines distance as being inversely proportional to the density at the 

midpoint between two clusters, APC defines distance as a function of the densities of 

patterns found at a number of discrete intervals between the two clusters. As will be 

seen, this enables APC to perform more robustly under noisy conditions. The reason 

for this is that in WHM, the initial k-means derived clusters are treated as a rough 

histogram estimation of the underlying density at each of the k clusters. This then 

forms the basis of density estimation at the midpoint between clusters which in turn 

is used as the distance metric to agglomerate the k-means derived clusters via single 

linkage. APC on the other hand makes a direct estimate of the intercluster density 

incorporating more local information in the density estimate. Although this requires 

more computational effort than WHM (see next chapter), the increase in the work 

required is compensated by the improved performance. Second, when clusters are
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agglomerated, APC allows agglomerations to continue to occur within previously 

agglomerated clusters thus producing a connected graph of the initial clusters. As is 

discussed below, this allows for more flexible recovery and representation of cluster 

shapes.

3.5.4 Two Stage Density Linkage

Two stage density linkage (Sarle, 1989) was developed as a strategy to overcome 

excessive chaining in single linkage. The basic strategy here is to generate modal 

clusters using single linkage with the restriction that two clusters are only 

agglomerated if at least one of them possesses m observations. The initial stage is 

stopped once all observations belong to a modal cluster. Next, the modal clusters are 

hierarchically agglomerated via single linkage as normal using eq. (3.4). Although 

less prone to false agglomerations as single linkage and more robust under noisy 

conditions, two stage density linkage is still at least as computationally expensive as 

single linkage. Moreover, empirical studies have shown that relative to other standard 

hierarchical clustering methods such as Ward’s method the cluster recovery abilities 

of two stage density linkage is severely compromised by noise and moderately 

dispersed cluster structures (see Chen et al, 1995; Mangiameli et al, 1996)

3.5.5 An MST Based Approach to Hybrid Clustering

Chaudhuri and Chaudhuri (1995, 1997) have proposed an MST based approach to 

two stage hybrid clustering. As with APC, the underlying strategy is to recover 

nonhyperellipsoidal clusters via the agglomeration of an initial partitioning of the 

data. In short, their approach uses a complex initial seed selection algorithm for 

initialising the pattern partitioning stage where the local density of each observation 

(via a nearest neighbour or kernel based method) is used to determine the number and 

location of each seed. Once the seeds have been found the standard k-means
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algorithm is applied. Next, the initial clusters are agglomerated via a MST joining the

clusters at the centroids. The distance between clusters (i.e. the edge weights in the

MST) are calculated as follows: let z;y be the midpoint between the centroids of 
clusters Cj and Cj, M  be the set of m nearest neighbours M  = jxj" , x { , ..., xj; |  of z,y

and P = {p7/?, p2p, ..., pmp ■ pmI, pm2, ..., pmp}, be the set of p  nearest neighbours in Cf 

u  Cj to each observation in M. Letting Ajj (C,) be the number observations in P

where x e Ck and pmp eC) the distance between clusters C; and Cj is calculated as:

d-(c„c,) N&C.) Ni(cj)
N f c )  A "(C )

When the clusters should be merged

3.33

N K Ci )

will be close to 1 as will

3.34

3.35

Therefore, the smaller the value of 3.33, the smaller the distance between clusters.

Once the MST is created using 3.33 to determine the edge weights, inconsistent 

edges can be removed to generate the final clustering of the data. Effectively, eq. 

(3.33) measures the degree of cluster overlap by measuring the extent to which 

patterns surrounding are representative of both Cj and Cj. The greater the 

separability, the more likely both xjj e Ck and pmp e Ck are true. Clusters with high

separability will lead to values of 1 for equations 3.34 and 3.35. The greater the 

degree of cluster overlap, the smaller the value of 3.33. If the two clusters overlap 

each other significantly, then the corresponding edge weight will be small and the
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two should be considered for merging. The main problem with this approach is its 

computational cost. Initial seed selection requires a nearest neighbour based density 

estimate of the region of the pattern space around each observation. On top of this 

one still needs to calculate the nearest neighbours of each observation in M  within the 

subset {Ci kj Cj.} for each possible agglomeration of clusters. For very large data 

sets, therefore, this approach may be a bit expensive although significantly more 

efficient than standard hierarchical methods.

The main strengths and weaknesses of the hybrid methods discussed in this chapter 

are summarised in Table 3.5. As can be seen Murtagh’s approach, the Chaudhuri et al 

MST based approach and two stage density linkage still involve heavy computational 

costs. However, WHM the two stage hybridizations using standard hierarchical 

methods are sufficiently efficient for use on large data sets. These models will be 

examined empirically in Chapter 7.

Technique Main Strengths Main Weaknesses
Two Stage Hybridizations Low CPU and Memory Costs Clusters must be well 

separated (see chapter 7)
Murtagh’s KSONN 
Contiguity Constrained 
Clustering

Low memory costs. High CPU costs

Wong’s Hybrid Method No cluster shape restrictions, 
low memory and CPU costs.

Clusters must be well 
separated (see chapter 7)

Two Stage Density Linkage No shape restrictions. High CPU or memory 
costs, sensitive to noise, 
poor recovery of disperse 
clusters

MST Based Hybrid 
Clustering

No cluster shape restrictions. High CPU costs

Table 3.5: Main strengths and weaknesses of the hybrid methods.
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3.6 Summary

The primary purpose of this chapter was to discuss and evaluate some commonly 

used clustering methods assuming one is faced with applications involving large and 

noisy data sets where clusters can take on any arbitrary shape. It is argued that 

standard hierarchical techniques are generally too inefficient for use under these 

conditions. Heavy memory requirements and the calculation of all interobservation 

distances are impractical for large data bases. Moreover, most hierarchical methods 

tend to find globular or hyperellipsoidally shaped clusters which could be 

problematic if long chaining clusters are present. Single linkage and MST approaches 

which can extract chaining clusters tend to perform poorly under noisy conditions. 

Pattern partitioning techniques such as k-means and moving methods are sufficiently 

fast although, as they utilise the squared error clustering criterion, they are biased 

towards hyperellipsoidal clusters. Nonetheless, they are ideal approaches for the 

initial pattern partitioning stage of APC due to their computational efficiency.

Hybridisations of pattern partitioning methods and hierarchical techniques enable one 

to overcome some of these problems. Initially clustering the data with a fast 

partitioning method such as k-means and then agglomerating the resulting clusters 

allows one to apply hierarchical methods to large data sets. Chapter 7 empirically 

compares the clustering abilities of a number of hybrid methods to APC.

This chapter also discussed some other techniques that employ approaches to the 

clustering problem that are incorporated into APC. APC searches strips 

(hypercylinders, actually) of the pattern space to measure the density of observations 

in areas between clusters as do Chaudhuri et al (1992) and Liu and Tsai (1989). APC 

is also a hybrid method along the lines of Wong (1982), and Chaudhuri (1995, 1997).
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As will be seen, in combining these approaches APC is able to both handle large, 

noisy data sets and detect clusters of arbitrary shape.

The next chapter will now discuss the APC methodology in detail. This will include 

a general overview of the proposed approach as well as in-depth discussion of the 

pattern partitioning stage, the measurement of intercluster density and the 

agglomeration stage.
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4. The APC Methodology

APC is essentially a four stage process consisting of (1) an initial partitioning of the 

data into k mutually exclusive clusters, (2) the creation of a k x k distance matrix 

whose elements are calculated via a density based measure of the distance between 

the centroids of the initial clusters (3) the agglomeration of the initial clusters and (4) 

the representation of the new clusters with linked line segments. The purpose of this 

chapter is to give a detailed discussion of the first three of these stages in the APC 

methodology. The first section will discuss the general structure of APC and provide 

a framework with which the pattern partitioning, intercluster density estimation and 

agglomeration stages can be further examined. Section 2 pays particular attention to 

the pattern partitioning stage and discusses various algorithms that could be used for 

generating an initial clustering of the data. Section 3 discusses different approaches 

for calculating intercluster distance. Intercluster distance is measured as a function of 

the density of patterns found between cluster centroids. Two measures of distance 

will be proposed. One measures intercluster distance based on the absolute level of 

density between clusters which follows from the definition of a cluster as an area of 

high density as defined by Hartigan (1975). A second measure based on the degree to 

which the observations are uniformly distributed between clusters will also be 

introduced. Section 4 describes the agglomeration process using some simple 

example problems followed by an evaluation of the computational costs of APC. 

Although only briefly discussed here, a more detailed examination of the use of 

linked line segments to represent cluster structure is given in Chapter 8.

82



4.1 Overview of APC

Let X = {x;, x2, xN} be a set of ¿/-dimensional data patterns where xn = {x, x2, 

xrf}. APC begins with an initial clustering of X. The goal at this point is to locate 

high density areas by partitioning the data into k mutually exclusive clusters. Pattern 

partitioning techniques such as k-means and the moving method are ideally suited for 

this stage as they are computationally fast, present low demands on memory and are 

generally good at finding high density regions in the data (Wong, 1982). Once the k 

clusters have been found, the centroid, c*, of each cluster is calculated as:

j=0,jeck
4.1

APC then proceeds to estimate the density of the areas between each of the cluster 

centroids to acquire a density based measure of the distance between the clusters 

found in the pattern partitioning stage. Using the resulting distance matrix D ,  the 

initial clusters are agglomerated via the generation of a connected graph of the 

centroids using a density based measure of the distance between centroids (edge 

weights). Note that the agglomeration always occurs between initial cluster centroids 

and not between previously agglomerated clusters as in single linkage or between 

subtrees in MST approaches. In addition, APC uses the same neighbourhood 

constraint used in WHM: the distance between nonneighbouring cluster is defined as 

infinite. The analyst can then construct a modified dendrogram (see below) based on 

the connected graph to decide on a cut-off point. Any groupings of the initial pattern 

partitioning clusters that have been agglomerated together below this cut-off point 

are now treated as single clusters as in the standard hierarchical clustering model.
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After the agglomeration process the newly merged clusters are modelled as the line 

segments connecting the centroids of the initial clusters composing the newly merged 

cluster. The distance of any observation from the cluster is defined as the distance 

{e.g. Euclidean) between a given observation and the closest line segment. If a 

particular cluster after the agglomeration process does not consist of an 

agglomeration of initial clusters, distance of an individual observation to the cluster 

is measured based on the cluster’s centroid. The purpose of using linked line 

segments in measuring cluster membership is to take into account the shape of the 

cluster when making such measurements. Using the linked line segment building 

blocks allows the cluster shape to be modelled in a piecewise linear manner.

0.9 t

0.1

0 -I--------------------- 1--------------------- 1--------------------- 1--------------------- 1--------------------- 1

0 0.2 0.4 0.6 0.8 1

Figure 4.1: The APC solution to a two cluster problem. The heavy dots represent the initial cluster 
centroids found via k-means while the lines indicate agglomerations. The circular shape is represented 
via a piecewise linear approximation using the linked line segments.
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Figure 4.1 is an example of an APC solution to a two cluster problem where one 

normally distributed cluster is completely enclosed by a circular chaining cluster. The 

heavy dots are the centroids of the clusters found in the pattern partitioning stage. 

The heavy lines are the links between the centroids of the initial clusters that have 

been agglomerated together (i.e. these are the linked line segment representations of 

the clusters). The distance of a given pattern from the central cluster is simply the 

distance between the pattern and the cluster centroid. For the circular cluster, distance 

is measured as the distance between the pattern and the nearest line segment. Note 

that by using a connected graph to represent an agglomerated cluster, the full circular 

shape of cluster in Figure 4.1 can be modelled. A spanning tree or standard 

hierarchical representation would have left a gap in the circle as these methods do not 

allow agglomerations to occur between objects that have already been agglomerated 

together into a cluster. For example, let A, B and C be initial clusters. If A has been 

agglomerated to B, and B has been agglomerated (linked) to C, MST and standard 

hierarchical methods will not allow A to be agglomerated (linked directly) to C. 

Allowing agglomerations to occur between initial clusters existing within the same 

agglomerated cluster (e.g. allowing A to be linked directly to C ) enables better 

representation of nonhyperspherical clusters as in Figure 4.1.

The APC methodology can be summarised as follows:

1. Divide the data set into a set of k mutually exclusive partitions C = {C;, C2, ..., 
Ck) .  This can be done via any number of clustering algorithms such as k- 
means, moving methods, unsupervised neural networks etc.

2. Calculate the intercluster distance between each neighbouring pair of the k 
initial clusters. The distance between any two clusters is proportional to the 
density of patterns between the cluster centroids:

d*(Ca,CtJ oc if Ca,Cb are neighbours
=  co otherwise.
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where f ( x a, x ¿) is a measure of the density between cluster centroids (see 
below).

3. Using the resulting distance matrix, generate a connected graph of the initial 
cluster centroids. The connected graph can then be converted into a 
hierarchical tree of all the agglomerated clusters. This dendrogram is similar to 
what one would obtain in standard hierarchical clustering methods except that 
multiple connections between centroids in the same previously agglomerated 
cluster are allowed (see below).

4. Decide on a cut-off point in the hierarchy and represent any agglomerated 
clusters as being the line segments connecting the centroids of the initial 
clusters composing the agglomerated cluster.

The remainder of the chapter will further examine each of the stages in APC. This 

will include a brief discussion of alternative techniques for the pattern partitioning 

stage and two measures of intercluster distance. Finally, the agglomeration process 

will be examined more thoroughly with some simple examples provided.

4.2 The Pattern Partitioning Stage

The use of an initial pattern partitioning stage in APC is the same as that used in 

WHM and other hybrid methods that use k-means to generate an initial clustering of 

the data from which a further hierarchical clustering can be constructed. Essentially, 

any clustering algorithm that partitions the data into a number of high density clusters 

would suffice. Assuming large samples however, this initial algorithm should be 

computationally efficient as with k-means or moving methods. However, for small to 

moderate problems other techniques such as self organising neural networks could 

also be used.

APC is also similar to WHM is that both use density based metrics of intercluster 

distance. However, the difference between APC and WHM with regards to the initial 

partitioning lies in role the initial clusters play in determining the intercluster
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distance in the agglomeration stage. WHM treats the initial partitions as a density 

estimate of the underlying data and then uses this information to calculate the density 

at the midpoint between cluster centroids. This estimate of the density at the 

midpoint serves as the intercluster distance metric. APC on the other hand, treats the 

centroids simply as indicators of regions of relatively high density. Measurements of 

the density of patterns between clusters is made by directly examining the patterns 

that lie between clusters rather than inferring the density at the midpoint based on the 

estimated density of the initial clusters themselves as in WHM.

a k = 2 b k = 4

c k = 6 d k = 8

Figure 4.2: Increasing k increases the likelihood of correctly spanning the cluster shape.

Note that the assumption is made in APC that the centroids of the clusters found in 

the initial partitioning stage actually correspond to modal points in the data. For 

example, the "U" shaped clusters such as Figure 4.2a could lead to problems as the 

centroids of each cluster (k = 2) are actually in the low density areas. To overcome
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potential problems such as this it is recommended that larger values of k be used in 

APC. Figure 4.2a - d shows the location of the centroids found via k-means for k = 2, 

4 ,6 and 8 . Increasing k, increases the probability that the centroids will span the data 

structures. The value of k is the equivalent of a smoothing parameter; small values of 

k produce a rougher, more smooth, density estimate of the pattern space (Wong, 

1982). Larger values of k give more resolution.

4.3 Measuring Intercluster Distance

The APC measure of intercluster distance is proportional to the density of the 

observations in the regions between neighbouring cluster centroids. The intercluster 

region is defined as the hypercylinder of radius sw extending between the two 

centroids. Let ca and cb be ¿/-dimensional vectors corresponding to the centroids of 

clusters Ca and Cb respectively. The intercluster density between the two cluster 

centroids ca and cb is a measure of the distribution of observations falling within the 

hypercylinder of radius sw extending between ca and cb. APC uses two different 

density based approaches to measure intercluster distance. The first method, which 

shall be referred to as the absolute density distance (ADD) measures intercluster 

distance based on the absolute level of pattern density per unit volume. The second 

method measures intercluster distance based on the degree of uniformity in the 

pattern density between centroids and shall be referred to as the uniform density 

distance (UDD).

4.3,1 ADD

ADD estimates the density of patterns at a discrete number, m, of connected 

intervals, G = {gj, g2, ... gm}, between two cluster centroids. The interval with the 

lowest density value is then taken as the basis of the distance measure. Intercluster
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distance between clusters Ca and Cb, d(Ca,Ctf  is therefore defined as being inversely 

proportional to mina h[f(gi)]:

ADD(Ca,Ci) = l/mina b[f(g)] i = 1, 2, ..., m if  mina b[f(g)] > 0 4.2

x  otherwise

where f(g j  is the density of the patterns in the interval gr This is simply a histogram 

based density estimate, as f(gj) is the number of patterns that fall within the interval, 

g.. The higher mina b[f(gj) ] , the lower the distance is between the two clusters. This 

measure is similar to that as used in WHM except that WHM only takes into account 

the estimated density at the midpoint between clusters. ADD takes into account more 

local information that can be used to prevent the false agglomerations of clusters that 

are separated by narrow, low density areas. The resulting dendrogram represents a 

density contour tree (Hartigan, 1975) reflecting an estimate of the underlying 

distribution of the data. Recall Hartigan’s definition of a cluster as a set of connected 

observations, xlk, x2k .... xnk where the density of a unit volume centred on each 

observation, f ix nk) is greater than some threshold, f t. ADD estimates the density of a 

set of connected sub regions, g,, g2 ... gm, extending between two centroids cfl and ch. 

minab[f(gj)] gives the lowest density found between ca and cb_ It can be easily seen 

that a density contour tree of the data can be constructed from a distance matrix 

where distance is measured as being inversely proportional to min[f(gj)].

4.3.2 UDD

The second measure of intercluster distance, UDD, is not intended reflect the 

absolute density of the intercluster region, but rather the degree of uniform density 

between cluster centroids. UDD is defined as being inversely proportional to 

mina b[ f {g)]/maxa b[ f (g) ] :
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U D E K C ^ C f) = 1 - m in ab[ f ( g ) ] /m a x a b[ f ( g ) ]  

i = 1, 2, ..., m i f  m oxa>b[ f ( g ) ]  >  0

= oc otherwise

4.3

If each of the m intervals has the same density the ratio mina h[f(gl)]/maxcl b[f(gi)] will 

be equal to 1. As the difference in density between the m intervals increases, the ratio 

will approach 0. As the higher the value of the ratio, the smaller the distance between 

clusters, the agglomerations between clusters are based on how uniform the point 

densities are between clusters. The resulting dendrogram reflects the degree to which 

objects reside in areas of contiguous and uniform density and is not a density contour 

tree such as that described by Hartigan. For example, if two clusters exist in region of 

low but uniform density, they will be agglomerated before two clusters in a higher 

but less uniform region. Figure 4.3 gives a graphic example of this. Figure 4.3a 

consists of two centroids separated by a low but fairly uniform density area. Figure 

4.3b has a lower point density between the two centroids but is less uniform. As 

UDD reflects the degree of low density convexity or "gulf1 separating the clusters, 

Figure 4.36 will be agglomerated before Figure 4.3a.

Figure 4.3: ADD and UDD will agglomerate the clusters in this figure in different orders as they 
measure intercluster density differently.

o c2C1
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The advantage of this approach is that well separated clusters with relatively low 

density may be of importance. Since ADD emphasises the absolute level of density, it 

may fail to agglomerate these clusters altogether as they will only be found towards 

the top to the dendrogram.

As UDD incorporates a rough measure of intercluster convexity into the 

agglomeration process, this measure of intercluster density can also help address the 

question of whether a multimodal cluster is a single cluster or multiple clusters, each 

corresponding to one of the modes. One way of making this decision is to examine 

the degree of convexity between modal points. The lower the convexity, the more 

likely one will want to treat the multimodal structure as a single cluster. As suggested 

above, there may be situations where one has uniform, low density but well isolated 

clusters that are of interest. An intercluster distance measure based solely on the 

degree of density between initial clusters will fail to agglomerate these clusters until 

relatively late into the agglomeration process. UDD can therefore be used either in 

conjunction with ADD to help determine cut-off points in the dendrogram, or simply 

on its own. In fact, as will be seen in Chapter 7, UDD seems to produce slightly 

better cluster recovery than ADD.

4.3.3 Estimating Intercluster Density

At this point it is perhaps instructive to give an example of how the density 

estimation stage of APC is accomplished. The simplest of the density estimation 

techniques is the use of histograms. Regardless of whether UDD or ADD is being 

used, the density of the intercluster regions is calculated by examining the density of 

observations found in the hypercylindrical region of radius sw extending between the 

cluster centroids. Again assuming a histogram based density estimate, the 

hypercylinder is divided up into a number of equally sized subcylinders of length sL.
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The number of observations falling within each of the subcylinders constitute the 

"bins" of the histogram (Figure 4.4 and Figure 4.5):

1. Provisionally connect the two cluster centroids with a line segment constituting 
the axis of the hypercylinder.

2. Divide the line segment into a number of sub segments (g„ g2, ... gm) of length sL.

3. Find all observations that fall within a distance of sw of the line segment 
connecting the two centroids.

4. Calculate the density (number of patterns) in each of hypercylindrical subregions, 
defined by sL and swbetween the centroids.

5. Find min[f(gj)] and/or maxtfig) /  to obtain the measure of intercluster distance.

sw should be a function of the sizes of the two clusters being examined. For example, 

sw could be calculated as being proportional to the standard deviation of the two 

clusters being agglomerated:

5.., = a
(Jy + a.

where

cr_ = r l h - D 2
, 1/2

V«-

4.4

4.5

and a  is some constant. The value of sL should be proportional to the number of 

patterns in the hypercylindrical region between centroids. Evans (1983) suggests a 

value on the order of

4.6
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where nab is the number of patterns in the hypercylinder between cluster centroids ca

and cb.

Figure 4.4: Intercluster density is estimated via a series blocks of spy x sy regions of the intercluster 
area. The heavy dots are the k-means derived centroids

Densities

ca cb

Figure 4.5: The number of patterns in each of the spy x sy blocks is totalled giving rise to a histogram 
based density estimate of the patterns between clusters.

The heights of the bars of the histogram (Figure 4.5) indicate the density in each of 

the subregions. Usually there will be some degree of variation in the number of 

observations falling within each subhypercylinder represented by the bins in the 

histogram. If one is interested in creating a density contour tree, ADD will give the 

density at the minima value (i.e. the smallest bin). It is this minima value that is used 

to measure intercluster distance. The greater the minima, the smaller the intercluster
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distance. Alternatively, one can look at both the minimum and maximum bins and 

obtain a measure of the distributional convexity of the patterns between the two 

cluster centroids. The smaller the difference between the maximum and minimum 

bins, the greater the degree of distributional uniformity.

It is not absolutely necessary that histograms be used in the estimation of the density 

of patterns between centroids. Other methods such as kernel estimators could also be 

implemented. Appendix A2 discusses and evaluates the use of a number of other 

nonparametric density estimation approaches that could be used in generating a 

density based measure of intercluster distance. The remainder of this section will 

discuss the use of the histogram approach in more detail.

4.3.4 Calculating a Histogram Based Intercluster Density Estimate

The version of APC evaluated in this thesis uses the simplest of density estimation 

techniques, histograms, to estimate the intercluster density. As discussed in Appendix 

A2 there are other approaches to density estimation that could be used at this stage. 

However, as the histogram method of estimating the intercluster density is easy to 

implement and computationally inexpensive, it is the only one used in this thesis. 

Appendix A2 discusses other density estimation methods that can be used in this 

stage of APC.

Given a univariate data set, a histogram density estimate of the underlying patterns 

can be found by dividing the data set into m equally sized intervals G = {g,, g2, ... g,}, 

and counting the number of data points falling within each interval as in Figure 4.6. 

More formally, let h = Imaxfx^] - min[x^]|/m be the size of the intervals, referred to 

as bins. The density at any given point (x v) is defined as:
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4.7/(%)= "g ,
A?

where is the number of observations in the same bin as x v. The choice of the size 

of the bin width can have profound effects on the resulting density estimate as can be 

seen in Figure 4.6. Figure 4.66 used a very small value for h while Figure 4.6c used a 

larger one. Increasing the size of the size of the bin width smoothes the density 

estimate. Decreasing the size of h makes the histogram more sensitive to local 

conditions. Choosing the appropriate size of the bin width and the resulting amount 

of smoothing is a difficult problem in density estimation. Regarding histograms, 

setting h to approximately the square root of the number of observations (eq. 4.6) is a 

commonly used rule of thumb (Openshaw, 1995).

Figure 4.6: Increasing the bin size smoothes the density estimate.

For multivariate data histograms can be problematic as one must choose both the 

origin of the histogram and the orientation of the bins (Silverman, 1986). This is not 

a problem in APC because the origin is defined by one of the two cluster centroids
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under examination while the bins are defined by "slicing" the hypercylinder 

extending between the two centroids (as in Figure 4.4 and Figure 4.5).

X
N

Figure 4.7: Points within the hypercylinder and the corresponding bin are found with the aid of the 
triangle formed by the two centroids and the observation.

Assuming one uses the rule of thumb given in eq. (4.6) for determining sL and using 

equations 4.4 and 4.5 for sw, using a histogram approach to measuring intercluster 

distance requires only one or two passes through the data set depending how one 

implements the histogram generating procedure. Regardless of the implementation 

three basic steps are required. For each observation, (1) determine if it falls within sw 

of the line segment connecting the two centroids c, and c2 - i.e. determine if the 

pattern falls within the hypercylinder. If so, (2) project the observation on the line 

segment and store its distance from one of the two centroids being used as a 

reference point. Given this distance, (3) calculate the bin in which the pattern belongs 

to. These steps can be accomplished as follows: referring to Figure 4.7, let c; be the
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centroid of cluster 1 and c2be the centroid of cluster 2 and x v be any observation in 

the data set. Let

A = d(c„ 4.8

B = d(c1,c 2) 4.9

C = d(c2,x N) 4.10

where d(w,y) is the distance (i.e. Euclidean) between objects x and y.

First, each observation in the data set must be tested to see if its projection onto the 

subsegment between c, and c2 is orthogonal to the line segment. This is true if the 

following relation is true:

A2- C 2 
B2

< 1.0 4.11

If eq. (4.11) is true, then the distance, from xn to the line segment can be calculated

as:

a = A2-
f  a 2+b 1- c 1^2

2 B

“ 11/2

if eq. (4.11) is true and

4.12

a<= sw 4.13
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is satisfied, the bin membership of xn can be calculated from its distance, b, from c,:

b = {A2 - a 2)112 4.14

and a counter for that bin is increased. Once all patterns that fall within the 

hypercylinder have been allocated a bin, ADD and/or UDD can be calculated by 

taking at the largest bin in the case of ADD or, in the case of UDD, both the largest 

and smallest bins.

4.4 The Agglomeration Process and the Representation of 
Clusters

The agglomeration process generates a connected graph of the centroids found in the 

initial pattern partitioning stage. Links between centroids (i.e. nodes of the graph) are 

added in order of the centroids’distance (UDD or ADD) from each other (smallest to 

largest). This process will be illustrated via Figure 4.8 which shows a clustering 

problem with the initial centroids of the pattern partitioning stage already calculated. 

Figure 4.9 displays the distance matrices using ADD and UDD and Figure 4.10 is the 

resulting dendrograms. ADD first agglomerated centroids in cluster A while UDD 

first agglomerates the centroids in cluster B. Cluster B is agglomerated first by UDD 

because its density is more uniform. Note that the agglomeration is based on the 

initial centroids. At no point is the distance calculated between a centroid and an 

agglomerated cluster or between two agglomerated clusters. In this sense it can be 

seen that APC generates a connect graph of the initial centroids. The resulting 

dendrograms show at what point individual centroids agglomerated together. Each 

level of the dendrogram is the equivalent of looking at what would happen if links in 

the graph whose distance or weight greater than the current size are removed. Also
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inf inf

ADD

\ /

UDD

\ k

Figure 4.11: A three cluster problem and the APC representation of cluster structure. The heavy dots 
are the centroids of the initial clusters found in the pattern partitioning stage and the heavy lines 
indicate agglomerations between initial clusters. Note that the agglomeration between clusters can 
occur at any time between any two clusters that have not already been agglomerated together even if 
the two particular initial clusters have already been agglomerated into the same cluster but not with 
each other.
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c6, c4

c6, c8

c6 c9 c8 c4 c7 c3 c1 c2 c5

ADD

Figure 4.12: Dendrogram generated for Figure 4.11 by ADD. Note the dashed lines indicating 
agglomerations between initial cluster centroid that have already been agglomerated into the same 
cluster.

The agglomeration process is continued until all centroids are linked and thus the 

entire data set is modelled as a single cluster or all the remaining distances have zero 

density regions between them (infinite distance). While this process is going on, links 

are allowed to be established between centroids that are already agglomerated. This 

allows the linked line segments to span areas of high density as in the circle in Figure

4.1 or in Figure 4.11 above. If this were not allowed, the circle in Figure 4.1 would 

have a discontinuity in it and fail to take into account the fact that the cluster is a 

circle. Because of this, some additional information is added to the dendrogram. 

Figure 4.12 is the dendrogram of the cluster structure in Figure 4.11. An extra sub 

dendrogram (indicated by dashed lines) is added that indicates additional links 

(agglomerations) between centroids that already exist in the same agglomerated 

cluster. When a cut-off point is finally decided on, these extra links are left in place. 

If the cut-off is above the level at which the centroids are agglomerated the resulting
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intracluster links are used for measuring the cluster memberships of individual 

patterns.

Figure 4.13: Plot of the ADD value at which clusters are agglomerated. The "elbow" at the 7th merger 
may be taken as a candidate point for stopping the agglomeration process and partitioning the data.

No "stopping rule" for finding the cut-off point specific to APC is being proposed in 

this thesis. However, a number of methods exist that are often used with other 

hierarchical clustering methods may be useful. For example, a simple and intuitive 

approach is to look at elbow plots of the distances at which clusters are merged. A 

sudden increase in the distances at which clusters agglomerate would be indicative of 

low density areas surrounding high density areas. Figure 4.13 shows a hypothetical 

elbow plot where at the 7th merger between clusters there is a sudden increase in the 

intercluster density as measured by ADD. Alternatively, along the lines of the MST 

approach to clustering discussed in Chapter 2, the succession of agglomerations can 

be treated as a connected graph and inconsistent edges that are some number of 

standard deviations greater than the edges in the subgraphs on either side can be used 

as cut-off points. The ratio of the size of the edge to the average on either side could 

also be used. In real world problems deciding on cut-off points will often not be strait 

forward or simple and so it may well be best to rely on a significant degree of domain
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knowledge if possible. Also, as mentioned earlier, it could be useful in this situation 

to generate two dendrograms one using ADD and the other using UDD and then 

referencing both dendrograms in deciding on a cut off point. A wide range of other 

stopping rules used in standard hierarchical methods are surveyed in Milligan and 

Cooper (1985). Wong (1982) has also proposed a stopping rule specific to WHM that 

could be used.

4.5 The Computational Cost of APC

The computational cost of APC can be broken down into three components: initial 

pattern partitioning, measuring intercluster distance and agglomeration.

4.5.1 Initial pattern partitioning

Assuming the use of k-means or the moving method, the computational cost of the 

pattern partitioning stage is O(kN) where k is the number of initial clusters and N  is 

the number of patterns in the data set. Note however that both k-means and the 

moving method are iterative algorithms each requiring a number of passes through 

the data set to converge taking 0(kN) time per pass.

4.5.2 Measuring intercluster distance

The first step in measuring intercluster distance is the determination of which clusters 

are neighbours. This process requires comparisons of the position of all k initial 

clusters which can be done in 0(k(k - l)/2) time. Next, assuming the histogram 

approach described above is used for the intercluster density estimation, each of the 

N  patterns must be tested to see if it falls within each hypercylinder. For each of the 

Hjj patterns that fall within the hypercylinder extending between clusters Q  and C), 

the bin in which it belongs in must be found. This can be done by projecting the
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pattern onto the hypercylinder axis and measuring the pattern’s distance from one of 

the end points. Given this distance, the bin membership can be calculated in nj time. 

As there will be (niJ)I/2 bins in the histogram (assuming eq. (4.6) for determining the 

number of bins) the computational cost of the histogram density estimate is O(N + 

n,j(nij) ,/2 ) per hypercylinder.

4.5.3 Agglomeration

Finally, the agglomeration stage requires the construction of a k x k  object matrix and 

at most k(k-l)/2 distance (density estimation) calculations. Note that the true figure 

will normally be less than k(k-l)/2 as the distance between centroids need only be 

calculated for neighbouring clusters. The total computational cost for APC is 

therefore at most O(kN) + [k(k - 1)/2]*[0(N + ni-*(nij)1/2)] + 0(k(k - 1))2. Again, it 

should be emphasised that this is most likely an overestimate as the intercluster 

distance (the [k(k - 1)/2]*[0(N + ni *(nij) 1/2)] component of the above figure) is only 

calculated between neighbouring clusters.

4.5.4 An Empirical Demonstration of the Computational Cost of APC

The actual CPU cost of APC will vary across different clustering problems as the 

number of neighbouring initial clusters and the number of patterns within each 

hypercylinder between neighbouring cluster depends on the nature of the structures in 

the data. In order to put the CPU cost of APC into perspective an empirical 

comparison study of the CPU time required for the moving method and the 

agglomeration stage of APC was run. The moving method is a good benchmark with 

which to judge the overall time cost of APC as it is one of the faster clustering 

algorithms (see Chapter 6). Therefore it provides a practical yardstick with which to 

measure the CPU cost of the density estimation and agglomeration stages of APC.
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In the simulation, APC using the moving method as an initial partitioning method 

was run on uniformly random data varying the number of patterns, number of initial 

clusters and the dimensionality. The 3 x 3  factorial experiment examined data sets of 

size 4,000, 8,000 and 16,000 patterns; 5, 10 and 20 initial clusters and 5, 10 and 20 

dimensions (variables). Each cell of the simulation was run 10 times and the average 

time for the pattern partitioning (moving method) stage and the combined density 

estimation and agglomeration stages were recorded12. The results are displayed in 

Table 4.1.

Moving method Agglomeration and 
density estimation

Total

Patterns time (in seconds) time (in seconds)
4000 18.3 9.2 27.5
8000 59.8 18.8 78.6
16000 187.2 38.2 225.4

Dimension
5 21.4 8.3 29.7
10 70.7 20.5 91.2
20 173.2 37.3 210.5

Partitions
5 31.8 3.3 35.1
10 79.0 13.4 92.4
20 154.5 49.5 204.0

Table 4.1: The CPU processing time of the moving method compared to the agglomeration stage of 
APC.

In short, the agglomeration and density estimation components of APC required less 

processing time than the moving method (an ANOVA test applied to the results 

found that all differences across rows in Table 4.1 were significantly different at p < 

0.01). This indicates that at least on the random data examined here the total CPU

' 2 This simulation was run on a 133 Mhz Pentium PC.
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time cost of APC (pattern partitioning, density estimation and agglomeration) is only 

fractionally greater than the moving method itself. However, it should be pointed out 

that for very large values of k, the CPU costs of the agglomeration stage may increase 

more rapidly than for the moving method. The degree of increase, though, will 

depend in large part on the geometric proximity of the initial clusters to each other. 

The greater the number of neighbouring clusters, the greater the increase in CPU 

cost.

4.6 Summary

The flow chart in Figure 4.14 summarises the APC methodology. The first step is to 

generate an initial k cluster partition of data using whatever clustering algorithm the 

analyst chooses. For large data sets k-means or moving methods are probably best 

due to their efficiency, but there is no theoretical restriction on what type of 

clustering technique is used so long as it can identify high density clusters. The 

second step is to construct a distance matrix using ADD and/or UDD. Histograms are 

recommended for use at this stage because of their simplicity and efficiency. Both 

measures, ADD and UDD can be used on their own or as complementary measures to 

determine which initial clusters are to be agglomerated. The resulting distance matrix 

can be either be treated as a connected graph where inconsistent links are removed or 

converted into a dendrogram and cut off at some point to determine the cluster 

agglomerations. The final step is to represent agglomerated clusters with line 

segments linking the original centroids together. The membership of an individual 

observation to its cluster is measured as the distance the observation is from the 

closest line segment in the cluster. This is discussed further in Chapter 8.

The next chapter discusses the experimental methodology with which the clustering 

ability APC will be compared to other hybrid methods. It includes a justification of
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the Monte Carlo evaluation method used as well as a discussion of the data sets used 

in the comparison.

The APC Methodology

Generate k - cluster partition Create dendrogram from 
the distance matrix and/or 
connected graph

\ l /

Calculate cluster centroids

\ k

\ l /
Decide which cut off point(s) 
or incossistent edge(s) are to 
be used to partition the data.

Calculate distance matrix Represent agglomerated 
clusters with linked line 
segments

Figure 4.14: Flow chart of the APC methodology.
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5. Methods: Monte Carlo Evaluation

Chapters 6 and 7 evaluate various clustering algorithms via Monte Carlo simulation. 

Chapter 6 compares a number of pattern partitioning algorithms for use in the initial 

clustering stage of APC while Chapter 7 compares the performance of APC to a 

number of other hybrid clustering methods. The purpose of this chapter is to give a 

general overview and justification of the experimental methods used. First, the Monte 

Carlo approach to assessing the relative clustering abilities of clustering algorithms is 

introduced. Next, the use of simulated as opposed to "real world" data in comparing 

the clustering performances of various clustering algorithms is justified. Section 5.3 

briefly examines the benefits of Monte Carlo evaluation over the use of real word 

data. Finally, Section 5.4 overviews the types of simulated data sets that will be used 

in the Monte Carlo evaluations.

5.1 Monte Carlo Evaluation

The application of Monte Carlo methods to evaluating clustering techniques can be 

summarised as a three step process: 1) For each combination of experimental factors 

(e.g. number and type of clusters, noise, sample size etc.) use a computer program to 

generate a data set with the relevant features. As the cluster structure of the data is 

known, 2) apply each clustering technique to the data and 3) measure the ability to 

each method to correctly recover the cluster structure (Milligan, 1996; Milligan and 

Cooper, 1987). The same data set can be generated repeatedly (with some random

108



variation) to produce as many samples of the same experimental conditions as 

desired by the experimenter.

A variety of methods exist for measuring the degree of correct cluster recovery by the 

clustering techniques (see Milligan and Copper (1986) for review). The Adjusted 

Rand Index (ARI) developed by Hubert and Arabie (1985) is widely accepted as one 

of the best measures of relative clustering ability when the actual clustering of the 

data is known as is the case with simulated data (Milligan, 1996), Milligan and 

Cooper, 1987) and is the one chosen for all comparative clustering experiments in 

this work. ARI measures the degree to which the classification of each pair of 

observations by the clustering algorithm is consistent with their known cluster 

membership. An ARI score of 1.0 indicates perfect correspondence and an ARI score 

near 0 indicates chance agreement. A more detailed description of the Adjusted Rand 

Index can be found in Hubert and Arabie (1985).

5.2 Problems with Using ‘Real World’ data to Evaluate 
Clustering Methods

Chapters 6 and 7 rely entirely on simulated data to compare clustering algorithms. 

The omission of "real world" data was deliberate, as there are strong arguments 

within the clustering literature cautioning against the use of real data in the 

evaluation of clustering methods. Discussions of the problems with using real data 

when comparing clustering methods and related issues can be found in Milligan 

(1996), Openshaw (1995), Milligan and Cooper (1987) and Dubes and Jain (1976). 

Salzburg (1999) also gives good recommendations on the use of real data relevant to 

the evaluation of both supervised and unsupervised classification methods.

The arguments against using real world data in comparison studies of clustering 

methods largely surround questions of how one measures the relative clustering
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abilities of clustering techniques on such data sets. Clustering methods are generally 

used as ad hoc data exploratory tools. The process of analysing and labelling the 

clusters resulting from the application of a clustering method to real world data is a 

subjective process that is at best problem dependent. Unlike supervised methods, 

there is no dependent variable which can be used to objectively assess the different 

methodologies. Given this, matching clusters across clustering methods on real world 

data is difficult to do empirically - if at all possible (Openshaw, 1995). Milligan 

(1996) and Milligan and Copper (1987) also point out that when this is attempted, the 

validity of the results can be questionable as one must have faith in the 

experimenter’s a priori grouping of the data and assume that the clusters found by a 

particular clustering method are in fact appropriate or "correct". Furthermore, if a 

given clustering method fails to find the a priori clusterings, it is difficult to know if 

this is due to the clustering method, problems with the experimenter’s a priori 

clusterings or due to there not actually being any structure in the data at all. The 

exception to this is when one is evaluating clustering techniques for use within a 

particular problem domain whose relevant cluster structure is well defined within a 

functional context. However, any comparisons between clustering methods may not 

generalise beyond that particular context.

One common approach to circumventing the subjectivity problem is to compare how 

well the clustering methods converge on the data. This approach is has been used to 

compare clustering methods that differ in how they optimise a given objective 

function (e.g. Choi and Park, 1994; Babu and Murty, 1993; Zhang and Boyle, 1991; 

Ismail and Kamel, 1989). For example, quality of convergence is often used in 

comparing variations of k-means which optimise the total within cluster squared 

error (WCSE). The problem with this is that a minimal WCSE does not necessarily 

lead to better clustering of the data even though minimising the WCSE is what these
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methods do (Openshaw, 1995; Nour and Madey, 1996). This is particularly likely to 

be the situation when clusters are not hyperspherical in shape.

Another approach is to use the clustering method as a classifier as one would a 

supervised method. However, unlike supervised classifiers, the clustering method is 

not given any information about the correct classifications of the objects during 

training. Once the data has been modelled by the clustering method, the 

"classification error" is measured based on the resulting clustering model’s ability to 

correctly classify the data using the previously unseen grouping variable (i.e. the 

dependent variable). This makes little sense as one would generally not use a 

clustering technique in this way. Unless one is using the clustering method as a 

feature extraction method (see Chapter 8) and then inputting the results of the 

clustering method through supervised techniques, this gives little information about 

the relative clustering abilities of the methods under investigation.

5.3 The Advantages of Monte Carlo Evaluation

The Monte Carlo approach to validating clustering methods has a number of 

advantages over the use of real world data (Milligan, 1996). First, as the data is 

computer generated the experimenter can control the cluster structure of the data. 

Therefore, the true clustering of the data is known and the degree to which various 

clustering methods recover that structure can be precisely measured. Second, the 

ability of different methods to recover cluster structure under different conditions can 

be systematically evaluated. For example, if one is interested in the performance of 

clustering methods under different types of noise this can be easily tested by adding 

the relevant types of noise to the data. Finally, Monte Carlo simulation overcomes 

the difficulties with small sample sizes which is sometimes a problem with real 

world data as the same cluster structure in the data can easily be replicated (with



random variation) and tested many times. For example, in this work each data set was 

recreated and tested 30 times.

It should be pointed out however, that the main disadvantage of Monte Carlo 

simulation is that the relative clustering abilities of the methods being examined may 

not generalise beyond the actual cluster structures or data characteristics examined 

(Milligan, 1996). In many natural data sets there may exist characteristics in the data 

that may not have been incorporated into the Monte Carlo simulation. Therefore, 

replication of simulations and the continued expansion of the types of cluster 

structure used to examine clustering techniques are important.

5.4 Data Sets

As APC is designed to recover both hyperellipsoidal and nonhyperellipsoidal cluster 

shapes, the experiments in Chapters 6 and 7 test the effects of cluster shape on the 

ability of various clustering algorithms to recover cluster structure. It should be 

emphasised at this point that what is really being examined is not the ability of these 

methods to recover specific cluster shapes, but rather how well they recover a few 

basic categories of cluster shape. In other words, cluster shape is being used as a 

general experimental design factor. As there are an infinite number of cluster shapes 

of which each can be infinitely varied, testing the recovery abilities on all types of 

cluster shape is obviously not feasible. The purpose of using cluster shape as an 

experimental design factor in this thesis is to demonstrate the greater flexibility of 

APC regarding the recovery of nonhyperellipsoidal cluster shapes relative to other 

hybrid clustering methods.

5.4.1 Cluster Shapes Used in the Literature

In any case, the use of cluster shape as a design factor in Monte Carlo evaluations of
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clustering methods has not received much attention. This is probably due to the fact 

that most Monte Carlo studies come from the social sciences literature (particularly 

behavioural sciences) where assumptions of multivariate normality in data are 

common place (Balakrishnan et al, 1994). Table 5.1 displays a sample survey of 

cluster shapes that have been used in Monte Carlo studies. Most of these studies were 

comparing the relative performances of clustering methods although some were 

examining other issues related to cluster analysis such as stopping or cut-off rules as 

well as various performance measures. 19 of the 24 studies examined only 

investigated multivariate normal or truncated multivariate normal mixtures. More 

importantly, of the 24, only Helmstadter (1957) measured cluster recovery while 

systematically varying the types of cluster shape. As will be shown in the next 

chapter, cluster shape can significantly effect the relative performances of clustering 

algorithms.

Unconstra ined M u ltiva ria te  

N orm al C lusters

T ru nca ted  M u ltiva ria te  Norm al 

C lusters

M iscellaneous C lu s te r Types

C e le u x  a n d  G o v a e r t  ( 1 9 9 5 ) B a la k r is h n a n  et. a l. ( 1 9 9 6 ) B la s h f ie ld  a n d  M o r e y  ( 1 9 8 0 )  

A r t i f ic ia l  p s y c h ia t r ic  d a ta

O v e ra l l  a n d  M a g e e  (1 9 9 2 ) M a n g ia m e li  e t  a l  ( 1 9 9 6 ) M il l ig a n  a n d  I s a a c  (1 9 8 0 )  

U ltr a m e tr ic

W h a r to n  (1 9 8 4 ) C h e n  et. a l. ( 1 9 9 5 ) M o je n a  (1 9 7 7 )  

M u l t iv a r ia te  G a m m a

E d e lb ro c k  ( 1 9 7 9 ) B a la k r is h n a n  e t. a l. ( 1 9 9 4 ) M e z z ic h  (1 9 7 8 )  

a r t i f ic ia l  p s y c h ia t r ic  d a ta

B a y n e  e t  a l  ( 1 9 8 0 )  (B iv a r ia te ) M il l ig a n  a n d  C o o p e r  ( 1 9 8 6 ) H e lm s ta d te r  ( 1 9 5 7 )  

G e o m e tr ic  S h a p e s

B la s h f ie ld  ( 1 9 7 6 ) S c h e ib le r  a n d  S c h n ie d e r  ( 19 8 5 )

K u ip e r  a n d  F is h e r  (1 9 7 5 )  

m u l t iv a r ia te  n o rm a l  a n d  

b iv a r ia te

M il l ig a n  a n d  C o o p e r  ( 1 9 8 5 )

G r o s s  (1 9 7 2 ) M il l ig a n  e t  a l  ( 1 9 8 3 )

R a n d  ( 1 9 7 1 ) M il l ig a n  (1 9 8 1 b )

M il l ig a n  ( 1 9 8 0 )

Table 5.1: Sample survey of Monte Carlo evaluations in the clustering literature.
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5.4.2 Cluster Shapes Used in this Thesis

This thesis limits itself to 4 basic categories of cluster shapes: multivariate normal 

hyperellipsoids, chaining clusters, chaining clusters with variable point density 

(cones) and a mixed condition where all three cluster shapes are present (Figure 5.1). 

In addition, other experiments test the effects of placing chaining and 

hyperellipsoidal clusters in close proximity to each other (Figure 5.2). Other 

experimental factors investigated along with cluster shape in later chapters include 

level and type of noise, dispersion of the clusters, number of clusters and 

dimensionality of the data. Details of how the cluster shapes were generated as well 

as how the other experimental factors were incorporated into the data sets can be 

found in the "methods" sections of the relevant chapters and in Appendix A3 which 

contains sample code of the data generation routines used in this thesis.

Figure 5.1: Cluster shapes: hyperellipsoid, arc and cone used in this evaluation (Chapters 6 and 7).
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Figure 5.2: Close proximity chaining and hyperellipsoidal clusters used (Chapters 7 and 8).

5.5 Summary of Experiments

Chapter 6 demonstrates how cluster shape can effect the relative performances of 

different clustering algorithms. In this chapter, k-means, the moving method and two 

self-organising neural networks are evaluated via a Monte Carlo simulation using the 

cluster shapes in Figure 5.1. In addition to demonstrating the effects of cluster shape, 

this chapter empirically demonstrates that the moving method consistently converges 

faster that k-means over a wide variety of conditions and argues that this method is 

superior to k-means , WTANN and KSONN as an initial partitioning algorithm in 

APC.

Chapter 7 presents the actual comparisons between APC and six other hybrid 

clustering methods. Monte Carlo evaluations are run on both sets of clusters shapes 

(Figure 5.1 and Figure 5.2). The effects of noise, dimensionality, cluster dispersion,
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number of initial partitions are examined. In addition, varying the number of known 

clusters in the data is also investigated using the Figure 5.1 data.

Finally, Chapter 8 empirically demonstrates the benefits of using linked line 

segments over centroids and principal component scores to model cluster shape. 

APC, k-means and principal component analysis (PCA) are applied to three of the 

data sets in Figure 5.2 (winding, concentric and interlocking). The cluster shapes are 

intrinsically two dimensional but in this experiment they were imbedded in 10 

dimensional space. The above three data reduction approaches were then used to try 

and reduce the dimensionality of the data while faithfully maintaining the distinction 

between the clusters in each data set. This was tested by taking the reduced data as 

produced by APC, k-means and PCA and presenting it to a linear discriminant model 

to see how well it could use the reduced data to distinguish between the data 

structures.
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6. A Monte Carlo Evaluation of Four 
Pattern Partitioning Techniques

The main objectives of this chapter is to 1) evaluate k-means, the moving method and 

two types of self-organised neural networks (SONN’s) as methods for generating the 

initial pattern partitioning in APC and 2) demonstrate that cluster shape can effect the 

relative performances of clustering algorithms. Interest in the comparative clustering 

abilities of k-means, moving methods and self-organising neural networks has been 

increasing in recent years. However, most comparative studies have either been 

restricted to specific problem areas or have been conducted under other limitations 

that do not provide a more general evaluation of the relative abilities of these 

methods under a wide variety of conditions. This chapter provides a systematic 

empirical evaluation of the clustering abilities of k-means, moving methods and the 

two types of self organising neural networks discussed in Chapter 3 (WTANN and 

KSONN). The effects of cluster shape, dimensionality, noise, dispersion and number 

of clusters in the data is used to evaluate the above methods via Monte Carlo 

simulation. Results indicate that under most conditions k-means, the moving method 

and WTANN perform equally well in terms of clustering ability. However, as the 

moving method consistently converges faster than k-means, it may well represent a 

more appropriate benchmark for future comparisons between pattern partitioning 

methods. Moreover, the results also demonstrate that cluster shape can effect the 

relative performances of different clustering algorithms.
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6.1 Introduction

In recent years there has been an increasing amount of attention paid to the use of 

Kohonen self-organising neural networks and related "winner take all" self- 

organising networks in cluster analysis. A number of studies have examined the 

similarities between Kohonen self-organising neural networks (KSONN), winner 

take all self-organising neural networks (WTANN) and the k-means algorithm (e.g. 

Chinrungrueng and Sequin, 1995; Chen and Titteringdon, 1994; Ripley, 1992) and 

some have included empirical comparisons (e.g. Balakrishnan et al, 1996, 1994; 

Openshaw, 1995; Murtagh and Hemandez-Pajares, 1992). In general, the empirical 

results seem to indicate that although k-means often performs slightly better, these 

methods are roughly comparable. However, most of these studies were either 

confined to specific problem domain areas or were not very exhaustive in terms of 

the types of cluster shapes examined.

Although k-means seems to be the accepted benchmark in comparing pattern 

partitioning methods such as KSONN and WTANN (e.g. Balakrishnan et al, 1996, 

1994), work by Ismail and Kamel (1989) and Zhang and Boyle (1991) have 

suggested the moving method (Duda and Hart (1973), Ismail and Kamel (1989)) 

often outperforms k-means both in terms of speed and quality of convergence 

without additional computational cost. However, both of these studies were 

conducted using a small number of two dimensional empirical data sets. Given the 

limited range of data that k-means and the moving method were evaluated over, a 

more systematic investigation of the relative performances of the two partitioning 

methods is needed.

The objective of this chapter, therefore, is to expand on a number of the above 

comparison studies investigating the relative clustering abilities of k-means, the
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moving method, WTANN and KSONN. Unlike previous comparisons, this 

evaluation covers a range of cluster structures as well as investigating the effects of 

noise, dimensionality, cluster dispersion and the number of clusters present in the 

data. The first two studies of interest are Ismail and Kamel (1989) and Zhang and 

Boyle (1991) who compared the performance of k-means and the moving method. 

Zhang and Boyle showed that although the moving method possesses all of the 

convergence states of k-means, not all moving method convergence states are 

accessible to k-means. If any of these additional convergence states represent better 

clusterings of the data, this could lead to better performance with the moving method 

(see Chapter 3). However, the opposite could also be true - the additional 

convergence states could possibly increase the likelihood of the moving method to 

get stuck in local minima. Both Ismail and Kamel and Zhang and Boyle ran empirical 

comparisons of the two techniques and found that the moving method often does 

converge to better optima than k-means, and in the case of Zhang and Boyle, with 

significantly fewer iterations through the data set. However, between these two 

studies the comparisons were conducted over only 5, two dimensional data sets. A 

more systematic and controlled comparison of the two techniques under a wider 

variety of conditions is needed.

Also, their empirical comparison measured the relative clustering abilities based on 

the sum of the within cluster error:

£ = Z Z I h “ x'll 6A
7=1 's C ,

where
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C : = - 22

J is C  i 6.2

and rij is the number of observations in cluster C, and || || is the Euclidean norm, as 

opposed to a more direct metric of classification performance such as the Adjusted 

Rand Index. Although comparing performance on eq. (6.1) is logical in the sense that 

both methods explicitly minimise eq. (6.1) and that both studies relied primarily on 

"real world" empirical data where the actual clusterings may not have been known, 

the optimisation of eq. (6.1) does not necessarily coincide with optimal recovery of 

cluster structure (Nour and Madey, 1996; Openshaw, 1995). Alternatively, the 

Adjusted Rand Index (ARI) gives a more direct and clear indication of cluster 

recovery. In addition, it is widely accepted as the best measure of relative clustering 

ability when the actual clustering of the data is known as is the case with simulated 

data (Milligan, 1996; Milligan and Cooper, 1987).

The third study to be examined here is Balakrishnan et al (1994) who systematically 

compared k-means, KSONN and WTANN in a Monte Carlo evaluation. The 

conclusion of their work was that k-means generally outperforms both KSONN and 

WTANN. However, they pointed out that as their research was intended for the 

behavioural sciences, this led to a couple limitations worthy of future research. First, 

they only examined data sets with 50 observations on the grounds that sample sizes 

on this order are quite common in the behavioural sciences. They suggest that this 

may have biased the results towards k-means as both KSONN and WTANN may 

perform better when there is ample data to allow "fine tuning" of the clusters (Kangas 

et al, 1990). On larger data sets, the relative abilities of the two methods might be 

different. Second, they only examined truncated hyperellipsoidal cluster structures 

following a data generation method developed by Milligan (1985). Again, they felt 

that this was appropriate for the behavioural sciences where this type of structure is
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common. However, they suggest that the use of hyperellipsoidal clusters may have 

also biased the study in favour of k-means and that more comparative studies 

involving other cluster structures is needed.

Building on Balakrishnan et al (1996, 1994), Zhang and Boyle (1991) and Ismail and 

Kamel (1989) this chapter will evaluate the above clustering methods using a large 

sample of data as well as using other cluster structures in addition to hyperellipsoids. 

In short, this chapter evaluates k-means, the moving method, KSONN and WTANN 

via Monte Carlo simulation under a variety of conditions including cluster shape, 

dimensionality, cluster dispersion, noise and number of clusters. As simulated data is 

used, cluster recovery can be measured directly via ARI. A relatively large sample 

size of 1500 data patterns per data set is used to reduce any sample size bias in favour 

of k-means and the moving method. In addition, the convergence speed of both k- 

means and the moving method are evaluated over all conditions and data sets.

The remainder of this chapter is divided into five sections. Section 6.2 outlines the 

Monte Carlo methodology used in the evaluation and discusses how the test data was 

generated. The next two sections present the results of the Monte Carlo simulation 

which are analysed both in terms of relative clustering ability and speed of 

convergence. Finally, section 6.5 provides some concluding remarks and some 

suggestions for future work.

6.2 Methods

The k-means method used is the Forgy algorithm described in Chapter 3. For the 

moving method, all potential cluster movements were tested for each pattern to find 

the best possible move (i.e. that which produces the greatest reduction in eq (6.1)). 

Both k-means and the moving method were seeded using random patterns. Both 

KSONN and WTANN were run with one dimensional output layers with the number

121



of units in the output layer were set equal to the number of known clusters in the data 

set. For the KSONN the neighbourhood function was initialised with r -  2/3 of the 

number of units in the output layer and reduced linearly during training. For both 

networks the learning rate (rj) was initialised at 0.2 and also reduced linearly during 

training. Both networks were trained for 1000 epochs where one epoch is a complete 

pass through the entire data set.

6.2.1 Data generation

The majority of previous Monte Carlo studies have concentrated on the comparison 

of clustering methods using multivariate normal clusters (see Chapter 5). In this 

study cluster shapes in addition to multivariate normal hyperellipsoids were 

evaluated. These additional shapes were arcs and cones. The purpose of the 

additional cluster shapes was to evaluate the performance of the four clustering 

methods on non "globular" or hyperellipsoidal cluster structures. The arc cluster 

shape was intended to test the performance of the various methods on the ability to 

handle chaining structures. The third condition involved the use of cones whose point 

density was varied along the axis. This was meant to examine the ability of the 

methods ability to cluster chaining clusters with varying point densities. Finally, a 

fourth condition was added that included all of the cluster shapes in the data set 

simultaneously.

The data sets were generated to comply with the concepts of internal cohesion and 

external isolation (Cormack, 1971). Internal cohesion refers to similar patterns 

occupying the same area of the pattern space. External isolation means that 

individual clusters are isolated from other clusters. The hyperellipsoid clusters were 

generated by placing normally distributed points with variance = o  and mean = gd in 

each dimension, d, around a fixed point in space, g = {g,, g2, ... , gd}. No truncation
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was used as in many other Monte Carlo studies (see Milligan and Cooper, 1987) as it 

was felt that a multivariate normal distribution of patterns is more natural. The conic 

clusters were created by generating a straight line (axis) of length / = 0.28 with 

midpoint specified by g. Although somewhat arbitrary, the value 0.28 was chosen so 

that the conic clusters would have an overall "elongated" structure but short enough 

to reduce the probability of the clusters intersecting. The direction of the uniformly 

distributed density gradient was randomly chosen to begin at one of the ends of the 

axis. The points at the beginning end were placed within a radius of 12.5% of the 

dispersion, cr, (see below) from the axis which was increased linearly towards the 

other end of the line whose radius was set to 50% of cr. The arcs were created by 

generating a 120° arc in one, randomly chosen dimension of radius 0.2 from a 

specified centre g. For each additional dimension, a uniform distribution of points 

within a radius of 50% of cr from the arc was placed to create a 2 dimensional arc in 

(/-dimensional Euclidean space. A diagram of the cluster shapes used can be seen in 

Figure 6.1.

Figure 6.1: Cluster shapes: hyperellipsoid, arc and cone used in this evaluation.

In order to help ensure a degree of cluster separation, the following procedure was 

used in determining the "centre" g, from which each of the clusters was constructed. 

Let k be the number of clusters. For each dimension, d , the axis in the range of 0 to 1 

was divided into k + 1 parts to determine the k most separated points. The k centres 

were then assigned one of these points for each dimension. However, for each
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dimension, it was ensured that the order of in which the k points was assigned to each 

of the g’s was changed. For example, for two cluster centres, g, and g 2 in two 

dimensions, the resulting centres would be: g ,  = gkI, gk2 and g2 = gk2, gkI where ki is 

the closest of k points to the origin of axis d and k2 is the second closest. The 

orientations of the cones and arcs were chosen randomly. In the mixed condition, 

cluster shapes were also randomly chosen. A more detailed discussion of the data 

generation along with sample code can be found in Appendix A3.

In addition to cluster shape, four other factors were incorporated into the Monte 

Carlo simulation. The number of clusters was varied from 3, 5 and 7. Cluster 

dispersion was varied from a  = 0.025, 0.05 and 0.075. This range was chosen to be 

large enough to effect the size of the clusters without obliterating the cluster shapes 

or causing an excessive degree of cluster overlap. 5 types of noise were also 

examined. Level 0 was no noise present in the data. Levels 1 and 2 had a and 2a 

Gaussian noise added to 50% of the patterns. The Gaussian noise is the same as that 

recommended by Milligan (1985) and is effectively a simulation of measurement 

error. Level 3 noise was 25% of the patterns replaced with uniform noise in the range 

of the data set. Level 4 noise had 50% of the patterns replaced with uniform noise. 

This type of noise simulates uncorrelated structure in the data as was used following 

the example of Cowgill (1993). The dimensionality of the data was also varied from 

4, 7 and 10 dimensions.

In total, the Monte Carlo simulation was a 4 (cluster shape) x 5 (noise) x 3 

(dispersion) x 3 (dimension) x 3 (number of clusters) factorial model. The number of 

data patterns (AO was fixed at 1500. For each of the 540 cells, 30 replications were 

run for a total of 16,200 data sets generated. The relatively large number of 

replications was intended to help average out any unusually good or bad
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performances due to the seeding procedure used. Clustering performance was 

measured using ARI.

6.3 Results

The results were analysed via a series of analyses of variance using the ANOVA 

procedure of SAS13. In addition to comparing the overall performance of the four 

clustering algorithms, the effects of each factor on each clustering algorithm as well 

as the relative performance across clustering models on each level of each design 

factor was examined.

Table 6.1 displays the mean ARI score for each clustering method and the mean 

number of iterations for k-means and the moving method. K-means, moving method 

and WTANN performed equally well (ARI = .582, .583 and .583 respectively) with 

no significant difference at the 0.01 level between ARI scores. Only KSONN 

recovered significantly less cluster structure than the others (ARI = .516).

KM MV WTANN KSONN

Mean ARI .582* .583* .583* .516

Mean Iterations 11.03 7.18 (1000) (1000)

Table 6.1: Mean Adjusted Rand (ARI) scores for the four clustering methods. indicates no 
significant difference at the 0.01 level. Also shown are the mean number of iterations for k-means and 
the moving method (both KSONN and WTANN were run for a fixed 1000 iterations) The difference 
in mean iterations between k-means and the moving method is significant at the 0.01 level.

The left hand sides of Table 6.2 and Table 6.3 display the mean ARI for each 

clustering method over each level of all factors. Table 6.2 displays the effect of each 

factor on each model (under each model, scores within the same factor with the same 

letter are not significantly different at the 0.01 level). All performed best on the

' 3 Release 6.09.
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hyperellipsoid clusters followed by the mixed, arc and cone. Increasing the number of 

clusters decreased cluster recovery for all methods although for k-means and the 

moving method there was no significant difference between 5 and 7 clusters and no 

significant difference between 3 and 5 clusters for WTANN. Increasing the 

dispersion significantly deceased performance for all methods except KSONN where 

it led to a significant increase in cluster recovery. Increasing the dimensionality 

significantly improved performance of all methods except KSONN while all methods 

showed roughly similar performances under the noise conditions.

KM MM WTANN KSONN KM MM %
ARI ARI ARI ARI Iterat’ns Iterat’ns Differ’ce

SET
HyEllip .665 .669 .742 .593 9.77 6.45 a 34%
Cone .488 .488 .451 .415 13.10 8.39 36%
Arc .574 .573 .486 .487 10.30 6.62 a 36%
Mixed .601 .602 .654 .569 10.97 7.24 34%

CLUSTS
3 .626 .628 ,599 a .625 8.19 5.13 37%
5 .557 a ,558 a ,596 a .502 12.02 7.89 34%
7 .563 a .563 a .555 .421 12.90 8.51 34%

VARS
4 .552 .553 .563 .521 a 11.25 a 7.15 a 36%
7 .576 .578 .577 .509 11.31 a 7.35a b 35%
10 .618 .619 .610 ,519a 10.55 7.02 b 34%

NOISE
None .795 .793 .796 .640 7.11 4.53 36%
Gauss 1 .763 .768 .772 ,659 a 8.15 5.23 36%
Gauss 2 .728 .728 .731 ,664 a 9.69 6.18 36%
U 25% .436 .438 .430 .430 12.53 8.19 35%
U 50% .187 .188 .189 .187 17.69 11.75 34%

DISP
0.025 .604 .607 .602 .499 10.02 6.55 35%
0.05 .576 .579 .586 .523 a 11.29 7.33 35%
0.075 .566 .563 .562 ,526 a 11.79 7.65 35%

Table 6.2: Mean ARI score and iterations by cluster shape, error, dispersion, dimension and number of 
clusters. ARI scores under the same model within a factor with the same letter (e.g. "a" or "b" are not 
significantly different at the 0.01 level.
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Table 6.3 gives the relative performance of each model for each level of each factor. 

ARI scores in the same row with the same letter are not significantly different at the 

0.01 level. The results in Table 6.3 indicate that there were no significant differences 

between the cluster recovery abilities of k-means or the moving methods under any 

level of any factor. Under the cluster shape condition, k-means and the moving 

method performed best with cone and arcs, relative to the neural networks while 

WTANN produced the best recovery under the hyperellipsoids and mixed conditions. 

KSONN produced the worst performance under hyperellipsoids, cones and mixed 

clusters and was not significantly better than WTANN under the arcs.

KM MM WTANN KSONN KM MM %
ARI ARI ARI ARI Iterat’ns Iterat’ns Differ’ce

SET
HyEllip .665 A .669 A .742 .593 9.77 6.45 34%
Cone .488 A .488 A .451 .415 13.10 8.39 36%
Arc .574 A .573 A .486 B .487 B 10.30 6.62 36%
Mixed .601 A .602 A .654 .569 10.97 7.24 34%

CLUSTS
3 .626 A .628 A .599 .625 A 8.19 5.13 37%
5 .557 A .558 A .596 .502 12.02 7.89 34%
7 .563 A .563 A .555 .421 12.90 8.51 34%

VARS
4 .552 A .553 A .563 .521 11.25 7.15 36%
7 .576 A .578 A .577 A .509 11.31 7.35 35%
10 .618 A .619 A .610 A .519 10.55 7.02 34%

NOISE
None .795 A .793 A .796 A .640 7.11 4.53 36%
Gauss 1 .763 A .768 A .772 A .659 8.15 5.23 36%
Gauss 2 .728 A .728 A .731 A .664 9.69 6.18 36%
U 25% .436AB .438 A .430 B .430 B 12.53 8.19 35%
U 50% .187 A .188 A .189 A .187 A 17.69 11.75 34%

DISP
0.025 .604 A .607 A .602 A .499 10.02 6.55 35%
0.05 .576 B .579AB .586 A .523 11.29 7.33 35%
0.075 .566 A .563 A .562 A .526 11.79 7.65 35%

Table 6.3: Mean ARI score and iterations across clustering model by cluster shape, error, dispersion, 
dimension and number of clusters. ARI scores across models under the same factor level with the same 
letter (e.g. "A" or "B") are not significantly different at the 0.01 level.
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Under the number of clusters, dimension, noise and dispersion conditions, both k- 

means and the moving method were among the best performing group of clustering 

algorithms except 5 clusters, 4 variables and 0.05 dispersion. WTANN performed 

equally well as either k-means or the moving method under all levels of these factors 

except 7 and 3 clusters while under 5 clusters and 4 variables it significantly 

outperformed both methods. KSONN performed significantly worse than the other 

three clustering techniques under all conditions except 3 clusters and uniform noise. 

Under the arc cluster shape its performance equalled WTANN.

Looking at the mean number of iterations through the data sets, (bottom row of Table

6.1 and right hand side of Table 6.2 and Table 6.3) the moving method converged an 

average of about 4 iterations faster than k-means (7.18 and 11.03 respectively), about 

35% faster. The left hand side of Table 6.2 and Table 6.3 gives the mean number of 

iterations for k-means and the moving method for each level of each condition. First, 

it is immediately apparent that an -35% faster convergence is significant and 

consistent across all levels of all conditions only ranging between 34% and 37%.

Table 6.2 and Table 6.3 also indicate the effects of each condition on the 

convergence rate of the two methods is similar. Both methods converged fastest on 

the hyperellipsoid data, followed by the arc, mixed and cone. Increasing the number 

of clusters increased the number of iterations required. Increasing the dispersion and 

to some extent the dimensionality also increased the converge rate.. The convergence 

speed of both methods were also similarly effected by the noise conditions.

6.4 Discussion

Glancing at Table 6.3, the most vivid result is that k-means and the moving method 

recover cluster structure equally well under all conditions examined here. Given
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4+3+3+5+3 = 18 possible comparisons between clustering techniques, k-means and 

the moving method were both in the best performing group 13 times (72.2%), as was 

WTANN. KSONN was only in the best performing group twice (11%). Given this 

and the results in Table 6.1, on average k-means, the moving method and WTANN 

seem to perform equally well. The use of a neighbourhood function, however, does 

seem to impair the clustering ability of KSONN. This may well be due to the added 

constraint in this technique that similar clusters be placed in proximity in the output 

layer. It should also be pointed out, however, that KSONN is designed primarily for 

generating topological maps of the data as opposed to the type of clustering 

application explored here (Kangas et al, 1990).

Regarding cluster shape, the relative performance of all the methods was the same. 

All performed best on the hyperellipsoid clusters, next best in the mixed condition 

followed by the arc and cone. However, within each shape condition there was some 

variability suggesting that cluster shape can effect relative performance for both 

networks. K-means and the moving method produced nearly identical ARI scores on 

each cluster shape. Varying the shape of the cluster, at least those examined here, did 

not produce a bias for one of these two methods over another. However, the same is 

not true for the networks. WTANN recovered significantly more cluster structure in 

the hyperellipsoid and mixed conditions than any other method. This suggests the 

superior k-means performance found in Balakrishnan et al (1994) was probably due 

to sample size and not the hyperellipsoidal cluster structure used in their study. 

Although WTANN performed significantly better on the hyperellipsoids and the 

mixed condition, the cone and arc conditions gave it some difficulty as it performed 

much worse than k-means and the moving method. In fact, its performance on these 

conditions was more similar to that of KSONN.
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Increasing the number of clusters decreased the clustering abilities of all methods. 

This effect was strongest for KSONN. WTANN was less effected by this than either 

k-means or the moving method. Increasing the number of clusters from 3 to 7 led to a 

33% drop in KSONN performance. For k-means and moving method the drop was 

10%. WTANN was only decreased by 7%. These results are similar to that in 

Balakrishnan et al (1994) who found that use of a neighbourhood function led to a 

larger increase in error rate with the increase in the number of clusters than with k- 

means or WTANN.

Increasing the dimensionality improved performance of all the methods except 

KSONN. This is probably due to the larger amount of redundant information in 

higher dimensions. K-means, moving methods and WTANN produced very similar 

ARI scores for each level suggesting they are similarly effected by dimensionality. 

The effect of increasing the number of variables from 4 to 7 initially deceased the 

KSONN performance however the increase from 7 to 10 improved it. In absolute 

terms though, the performance of KSONN was much less effected by changes in 

dimensionality than the other three methods.

Noise effected k-means, moving method and WTANN nearly identically. All 

performed at roughly the same level for each type of noise. Again KSONN is the 

exception: adding Gaussian noise actually improved cluster recovery. This is 

interesting as the addition of Gaussian noise increases the degree of cluster overlap. 

Increasing the dispersion (and cluster overlap) also improved the performance of 

KSONN while decreasing the performance of the other methods.

Given that increasing the dispersion and the Gaussian noise increase cluster overlap, 

this result suggests an interaction between overlap and the neighbourhood function. It 

could be that less well separated clusters make it easier for individual output units to
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change their cluster membership as the neighbourhood function approaches 0. When 

there are fewer patterns between clusters however, it is difficult for a given unit to 

establish itself in a well separated cluster away from neighbouring units because 

there are no intervening patterns to drag it away. In other words, it can get "stuck" in 

its neighbour’s cluster. A similar result involving well separated clusters was found 

by Balakrishnan et al (1994) and in Mangiameli et al (1996) with networks using a 

neighbourhood function. One of the rationales of using a neighbourhood function is 

to help prevent individual units in the output layer from consistently "losing out" 

during the training process and not responding to any input patterns (Hertz et al, 

1991). Perhaps the cost of using this approach is that the likelihood of output units 

responding to the same clusters within the data is increased.

Finally, although there is no difference in terms of cluster recovery between k-means 

and the moving method under any of the conditions investigated here, moving 

methods have been shown to consistently converge faster. A mean 35% increase in 

convergence speed was seen across all conditions. It seems that the possession of 

additional convergence states by the moving method improves converge speed as 

opposed to cluster recovery under the types of conditions examined here. This 

conflicts with the results of Ismail and Kamel (1989) and Zhang and Boyle (1991) 

who found that the moving method converged to lower minima than k-means. In fact, 

a post hoc analysis examining the mean value of eq. (6.1) at convergence for the two 

algorithms indicated that they still perform nearly identically with means of 1.98 for 

k-means and 1.99 for the moving method. Therefore, the failure to find a 

significantly better clustering ability for the moving method in this study is not due to 

the use of a different measure of clustering performance. Nonetheless, because of its 

faster convergence, moving methods might be considered a more appropriate 

benchmark in comparison studies where computational efficiency is a prime factor.
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6.5 Conclusions

Although the moving method possesses more convergence states than k-means, at 

least under the conditions studied here, this translates into faster convergence and not 

improved cluster recovery as measured by both the Adjusted Rand Index and the 

within cluster error. Nonetheless, when applying APC to large data sets, the faster 

convergence is an advantageous property. Because of its faster convergence speed 

and good clustering ability compared to the other methods examined it is argued that 

the moving method is the preferable initial partitioning algorithm for use in APC.

In addition to convergence speed, significant effects for cluster shape and sample size 

were also found. Cluster shape can effect the relative performances of the methods 

examined. This study only evaluated three shapes and a mixed condition. Other data 

structures should be investigated in future work. Small data sets can bias 

performance towards k-means and possibly the moving method as well. This study 

demonstrated that the better performance of k-means relative to WTANN on the 

Balakrishnan et al (1994) paper was probably due to this factor and not 

hyperellipsoidal cluster shapes.

An interesting interaction between the neighbourhood function used in KSONN and 

cluster overlap was also suggested by the results. Increasing the dispersion and 

Gaussian noise, which increases cluster overlap, improved the performance of this 

network. However, increasing the number of clusters which also increases the 

likelihood of cluster overlap did not improve the performance of KSONN. Future 

work looking at the effects of increasing the learning parameter after the 

neighbourhood has reached 0 or seeding k-means or the moving method with the 

centroids found at this point might shed some light of this effect.
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It should also be noted that the two neural networks examined are not necessarily 

representative of all unsupervised neural network architectures available. This 

chapter is not intended to be a comparative survey of all the major unsupervised 

neural network architectures available. For example more recent models such as 

GTM: (Bishop et al, 1997); TS-SOM: (Koikkalainen, 1994,1995); Growing Grid: 

(Fritzke, 1995,1991; ART2: (Carpenter and Grossberg, 1987) and FUZZY ART: 

(Carpenter et al, 1991) are not examined. Rather, the contributions of this chapter to 

the clustering and unsupervised learning research are as follows: first, a 

demonstration of how the relative performances of various clustering methods can be 

dependent on cluster shape. Secondly, to argue that the moving method should be 

used instead of k-means as a benchmark method as it has been demonstrated 

empirically that it consistently converges faster. Therefore, future benchmark work 

involving clustering methods in situations where convergence speed is an important 

factor (e.g. very large data sets) should include the moving method. Finally, as both 

KSONN and WTANN are often used as benchmarks themselves in comparing both 

new self-organising neural network methods as well as variations on WTANN and 

KSONN it is important to understand how KSONN and WTANN perform under a 

variety of conditions such as cluster shape so that these factors can be taken into 

account in future benchmarking studies.

133



7. An Empirical Evaluation of APC and 
Other Hybrid Clustering Methods

7.1 Introduction

This chapter evaluates the clustering abilities of APC and a number of other two 

stage hybrid methods that use an initial partitioning of the data as inputs to a 

hierarchical technique to recover cluster structure. The clustering abilities of APC, 

WHM and other hybrid strategies are evaluated via two Monte Carlo simulations. 

The first experiment examines the relative clustering abilities of these methods on the 

same set of clusters shapes used in the previous chapter. The second experiment 

examines a different set of cluster shapes testing the abilities of the clustering 

methods to extract clusters that are positioned close together in the pattern space.

7.2 Hybrid methods

The relative clustering abilities of APC, WHM and the two stage hybrid method 

proposed by Beale (1969) and Wishart (1978) are evaluated. For all of the clustering 

techniques, the moving method was used to derive k initial cluster centroids as it has 

been shown to converge faster and to minima as good or better than k-means. 

Unsupervised neural networks were not considered because of the high CPU burden. 

Once the centroids of the initial clusters were been found they were then 

agglomerated using the following hierarchical techniques: Ward’s method (WARD), 

average linkage (ALINK), centroid linkage, (CLINK) and single linkage (SLINK). 

For all these methods, intercluster distance was measured using Euclidean distance.
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ALINK, CLINK and WARD were chosen as they are commonly used and have been 

shown to be very effective agglomeration techniques (Lorr, 1983; Milligan, 1981a). 

WHM and SLINK were included because they are capable of finding chaining 

clusters. WHM was also included because like APC, it uses a density based metric of 

cluster distance. Regarding APC, both the ADD and UDD distance measures were 

evaluated.

7.3 Experiment 1

In this experiment the same cluster structures and data generation as in the previous 

chapter was used. It is hypothesised that ALINK, WARD and CLINK will not 

perform as well as the others on the "chaining" and mixed conditions as they tend to 

perform best on compact cluster structures. WHM, APC and SLINK should give the 

best recoveries of these structures.

In addition to cluster shape, four other factors were incorporated into the Monte 

Carlo simulation. The number of clusters was varied from 3, 5 and 7. Cluster 

dispersion was varied from a  = 0.025, 0.05 and 0.075. 5 types of noise were also 

examined. Level 0 was no noise present in the data. Levels 1 and 2 had a  and 2a  

Gaussian noise added to 50% of the patterns. This condition was the same as that 

recommended by Milligan (1985) and is effectively a simulation of measurement 

error. Level 3 noise was 25% of the patterns replaced with uniform noise in the range 

of the data set. Level 4 noise had 50% of the patterns replaced with uniform noise. 

This type of noise simulates uncorrelated structure in the data as was used following 

the example of Cowgill (1993). The dimensionality of the data was also varied from 

4, 7 and 10 dimensions.

In all the Monte Carlo simulation was a 4 (cluster structure) x 5 (noise) x 3 

(dispersion) x 3 (dimension) x 3 (number of clusters) factorial model. The number of
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data patterns (N) was fixed at 1500 and the number of initial partitions, k, was set to 

10 = TV0 3. The value of k around N03 was suggested by Wong (1982) as a general rule 

of thumb. For each of the 520 cells, 30 replications were made to try and average out 

the effects of any unusually poor initial partitions for a total of 15,600 data sets 

generated.

In order to prevent small and insignificant initial clusters being incorporated into the 

agglomeration process, any of the initial k clusters found to contain less than 2% of 

the data were discarded. The moving method was then run again, using the existing 

cluster centroids as starting seeds and resetting k to k - 1. This process was repeated 

until all clusters contained at least 2% of the patterns14. Therefore, although k was set 

to 10 initially, not all agglomerations were done with 10 initial cluster centroids, 

however, agglomerations made with less than 10 initial partitions are well in the 

minority.

7.3.1 Results

Table 7.1 displays the overall mean Adjusted Rand Index (ARI) scores of each of the 

7 hybrid clustering algorithms over all conditions. The ARI scores were significantly 

different at p < 0.01 for all hybrid methods except UDD and WARD which represent 

the best performing algorithms at ARI = .653 and .654 respectively. ADD, ALINK 

and CLINK produced the next best scores with .648, .643 and .637 respectively. 

SLINK and WHM performed worse with scores of .621 and .564.

UDD ADD WARD ALINK CLINK SLINK WHM

.653 A .648 .654 A .643 .637 .621 .564

Table 7.1: Overall mean ARI scores for each clustering algorithm. A ’ indicates scores not significantly 
different at 0.01 level.

14 As in the Wishart (1969b) variation of k-means.
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UDD ADD WARD ALINK CLINK WHM SLINK

DATA SET
Hyperellipsoid .717 .716 .727 .719 .715 .637 .702
Cone .589 .578 .567 .550 .539 .470 .516
Arc .636 .630 .645 .639 .639 .570 .622
Mixed .672 .668 .677 .665 .657 .580 .643

CLUSTERS
3 .682 .681 .703 .687 .681 .585 .656
5 .653 .648 .643 .630 .623 .535 .601 a
7 .625 .617 .615 .612 .609 .573 .605 a

DIMENSION
4 .642 .634 .642 .629 .622 .544 .597
7 ,662 a .658 .662 a .651 a .645 a .569 .633 a
10 .657 a .652 ,658 a ,650 a ,646 a .580 .632 a

NOISE TYPE
No noise .910 .904 .891 a ,886 a ,884 a .873 a ,880 a
Gauss ct .900 .889 .893 a ,887 a .885 a ,867 a ,876 a
Gauss 2a .819 .807 .864 .858 .857 .816 .849
25% Uniform .439 .438 .434 .409 .400 .203 .353
50% Uniform .200 .203 .187 .176 .163 .063 .145

DISPERSION
0.025 .673 .670 ,660 a ,650 a ,644 a .579 ,629 a
0.05 .659 .653 .658 a .648 a ,642 a .572 .625 a
0.075 .629 .622 .643 .632 .626 .542 .608

Table 7.2: Mean ARI scores for each algorithm on the first test suite taken over each condition. Scores 
in the same column under the same condition with the same letter are not significantly different at the 
0.01 level.

Table 7.2 and Table 7.3 give the mean ARI score of each hybrid algorithm over each 

condition. An ANOVA (analysis of variance) was run to examine the effect of each 

level on the various algorithms and to compare their relative performances at each 

level of each condition. Table 7.2 shows the effects of the level of each condition on 

each clustering algorithm. Mean ARI scores for the same algorithm under the same 

condition with the same letter are not significantly different at the 0.01 level. Table 

7.3 indicates relative differences in cluster recovery performance between clustering
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algorithms across each level of each condition. Algorithms with mean ARI scores 

with the same letter in each row are not significantly different. For the cluster shape 

condition, all of the hybrid clustering algorithms performed similarly in that all 

performed best on the Gaussian shapes, next best on the mixed condition, next best 

on the arc and worst on the cones (Table 7.2).

UDD ADD WARD ALINK CLINK WHM SLINK

DATA SET
Hyperellipsoid .717 A .716 A .727 A .719 A .715 A .637 .702 A
Cone .589 A .578 A .567 AB .550 BC .539 CD .470 .516 D
Arc .636 A .630 A .645 A .639 A .639 A .570 .622 A
Mixed .672 A .668 AB .677 A .665 AB .657 AB .580 .643 B

CLUSTERS
3 .682 A .681 AB .703 A .687 AB .681 A .585 .656 B
5 .653 A .648 AB .643ABC .630 BC .623 CD .535 .601 D
7 .625 A .617 A .615 A .612 A .609 A .573 .605 A

DIMENSION
4 .642 A .634 A .642 A .629 A .622 A .544 .597
7 .662 A .658 A .662 A .651 AB .645 AB .569 .633 B
10 .657 A .652 AB .658 A .650 AB .646 AB .580 .632 B

NOISE TYPE
No noise .910 A .904 A .891 B .886 BC .884 BC .873 C .880 BC
Gauss ct .900 A .889ABC .893 AB .887ABC .885 BC .867 D .876 CD
Gauss 2 a .819 B .807 B .864 A .858 A .857 A .816 B .849 A
25% Uniform .439 A .438 A .434 A .409 B .400 B .203 .353
50% Uniform .200 A .203 A .187 .176 .163 .063 .145

DISPERSION
0.025 .673 A .670 A .660 AB .650ABC .644 BC .579 .629 C
0.05 .659 A .653 A .658 A .648 AB .642 AB .572 .625 B
0.075 .629

AB
.622 AB .643 A .632 A .626 AB .542 .608 B

Table 7.3: Mean ARI scores for each algorithm on the first test suite tested for significance across the 
same level of each condition. Scores in the same row with the same letter are not significantly different 
at the 0.01 level.
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Interestingly, WHM did not outperform CLINK, ALINK or WARD on any of the 

shape conditions including the cones and arcs (Table 7.3) and was the worst 

performing algorithm for all shape conditions. SLINK generally performed as well as 

CLINK and ALINK except under the cone shaped clusters. UDD, ADD and WARD 

were the best performing algorithms under all shape conditions. It is also interesting 

to point out that under the hyperellipsoids, there were no significant differences in 

performance between any methods except WHM. However, under other shape 

conditions, significant differences in performance begin to show up. Again, this 

highlights the effect cluster shape can have on the abilities of clustering algorithms to 

recover cluster structure.

The number of clusters also effected each of the algorithms similarly with 

performance falling with the increase in the number of clusters although for SLINK 

there was no significant difference between 5 and 7 clusters. This result is similar to 

that found by Cowgill (1993) and Balakrishnan et al (1994) with k-means and self- 

organising neural networks and Chen et al (1995) and Milligan et al (1983) with 

hierarchical methods. Relative performances across clustering algorithms followed 

similar patterns as before with ADD, UDD and WARD always appearing in the best 

performing group and WHM always performing the worst.

The effects of dimension across algorithms was also similar. In general, increasing 

the number of dimensions significantly improved performance. This would be 

expected as increasing the dimensionality increases the amount of information 

available about the cluster structures. All methods except WHM and SLINK 

performed best with no significant differences in cluster recovery.
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Under the noise conditions, all methods performed best under no noise. Increasing 

the level of noise under both types of noise, similarly decreased the cluster recovery 

rate for all clustering methods.

Increasing the dispersion also reduced the cluster recovery of each algorithm. This 

effect was fairly constant across algorithms. Note, however, that this decrease in 

performance was not statistically significant between the 0.025 and 0.05 levels for 

ALINK, CLINK, WARD and SLINK. Even where statistically significant effects of 

dispersion were found, the absolute differences in performance means were not large 

(i.e. 2% - 3%). The relative performances across algorithms followed similar patterns 

as before.

Under the noise conditions UDD and ADD were effected by all changes in level of 

noise. The other clustering methods were also significantly effected by all changes in 

noise level except between the no noise and Gauss a  levels. Regarding relative 

performances across algorithms, UDD and ADD were in the best performing group 

under all conditions except Gauss 2a. Here all of the Euclidean based methods 

performed best while ADD, UDD and WHM all performed at the same level but 

worse than the Euclidean methods.

7.3.2 Discussion

UDD, ADD, WARD, ALINK, CLINK and arguably SLINK all performed relatively 

equally well. The difference in overall mean performance between UDD and SLINK 

is only 3%. The difference in performance between the others (except WHM) is even 

less so. Although the differences in overall mean ARI score are statistically 

significant (except WARD and UDD) the lack of clear cut differences in 

performances of the above methods makes it difficult to make statements regarding 

the superiority of one method over another. If one looks across Table 7.3 along the
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rows, ADD, UDD and WARD produce higher mean ARI scores over the other 

methods fairly consistently. However, these differences are often small and not 

always statistically significant (the largest differences in performance become 

apparent under the noise conditions). It is the consistency as opposed to magnitude of 

performance of the group comprising ADD, UDD and WARD over the group 

consisting of ALINK, CLINK and SLINK that highlights the first groups possible 

superiority under these test conditions. Only WHM consistently under performed the 

other methods by a large magnitude (5% - 10%).

The relatively equal performances of the hybrid methods was probably due to the 

high degree of cluster separation in the data. A lack of interaction effects involving 

dispersion and the number of clusters found in an ANOVA model run on the results 

(not shown) seems to support this. One would expect an interaction between these 

two factors as increasing the dispersion and the number of clusters would increase 

the degree of cluster overlap. This in turn would decrease cluster recovery. In any 

case, the results of experiment 1 suggest that when clusters are well separated, one 

only needs Euclidean distance information between clusters to make accurate 

classifications when using the two stage type of hybrid method explored in this work.

Only WHM performed at sufficiently poor levels to allow one to doubt its 

effectiveness in this type of clustering problem. The mean ARI score of WHM was 

over 5% below that of SLINK and about 10% worse than UDD or ADD. This 

suggests that the use of more local information in estimating the intercluster densities 

can significantly improve the performance of WHM’s method. In other words, the 

relatively poor performance of WHM indicates that estimating the intercluster 

density at only the midpoint between cluster centroids can be inadequate in some 

situations. WARD, ALINK, CLINK and SLINK probably performed better than 

WHM because the high degree of cluster separation meant that intercluster distance
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was proportional to the intercluster density. Therefore one only needed to look at the 

distances between the centroids of the initial moving method derived clusters to 

determine which centroids belonged together. The fact that the Euclidean distance 

based methods outperformed WHM further highlights the ineffectiveness of the 

density based metric used by WHM.

Regarding the low cluster recovery on all methods in the uniform noise conditions, it 

should be taken into account the relatively low scores in the uniform noise conditions 

reflect the fact that the maximum possible ARI scores would be on the order of .750 

and .500 for the 25% and 50% levels. This is due to the patterns being randomly 

scattered around the pattern space. Scores of about .400 and .200 are similar to those 

found by Cowgill (1993) whose use of uniform noise was followed here. 

Nonetheless, this does show that all of the hybrid methods are severely effected by 

uniform noise. This may be due in large part to the pattern partitioning stage. The 

presence of uniform noise may be leading to large numbers of cluster centroids being 

placed in regions between clusters causing all of the methods to chain clusters 

together.

Finally, the number of initial partitions k was not varied in this experiment. Although 

Wong (1982) suggested that k = N0 3 is a good guideline, Wong also demonstrates 

empirically that in some cases a much larger value is needed to detect finer cluster 

structures. In fact, the decrease in performance with the increase in the number of 

clusters may be related to the fixed value of k. Increasing the number of clusters 

increases the overall complexity of the pattern space the hybrid algorithms must 

operate in. As the conditions with larger numbers of clusters require the hybrid 

methods to model a more complex space, a larger value of k is probably needed. In 

other words, k = 10 may have been too small for the 5 and 7 cluster conditions and 

therefore led to an over smoothing of the cluster structures.
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7.4 Experiment 2

A second experiment was run to try and obtain a better idea of the relative clustering 

abilities of the hybrid methods. In this experiment, long chaining clusters are placed 

in close proximity to other clusters. Whereas before the clusters in the Monte Carlo 

simulation exhibited properties of cohesion and isolation, the cluster structures in this 

experiment only exhibited cohesion. The clusters were intentionally placed in close 

proximity (i. e. without isolation) to test the ability of the various hybrid techniques to 

discriminate between closely placed clusters. The relative proximity of the clusters is 

also effected by the dispersion parameter.

It is hypothesised that by placing chaining clusters close together, CLINK, ALINK 

and WARD will fail because the distances between the initial pattern partitioning 

derived cluster centroids will no longer reflect the cluster structure. In addition, it is 

expected that SLINK will outperform CLINK, ALINK and WARD as the chaining 

properties of this method should now operate in its favour. WHM should outperform 

SLINK as SLINK does not take intercluster density into account in the agglomeration 

process. Also, SLINK may start to chain clusters together in the presence of noise 

and when cluster dispersion is relatively high. Finally, it is expected that APC (ADD 

and UDD) will produce better cluster recovery than WHM or SLINK as APC’s 

measure of intercluster density is more accurate than that used in WHM and because 

it is not as likely to chain clusters together than SLINK.

Unlike experiment 1 the number of initial partitions, k, will also be varied. As 1500 

patterns will be used as before, k will be set to 10, 15 and 20 representing values of 

1.0, 1.5 and 2.0 times the recommended value of N03. Note that k operates as a 

smoothing factor. Smaller values of k will have the tendency to smooth out local 

structures. Too small a value will lead to important cluster structured being ignored.
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High values of k make the model sensitive to local information although too high a 

value can result in spurious local structures being overemphasised.

The new data sets to be used are displayed in Figure 7.1. They are (a) concentric 

clusters, (b) three parallel linearly separable chaining clusters, (c) two interlocking, 

nonlinearly separable chaining clusters and (d) a winding chaining cluster bordered 

by two Gaussian clusters. These cluster structures were inspired by an informal 

comparative study in Backer (1995). Unlike experiment 1 the performance of the 

clustering methods will be evaluated on each data set individually.

These cluster shapes were constructed similarly as in the previous experiment. The 

“ring” in the concentric clusters was generated by extending the “arc” cluster shape 

to 360 degrees. The winding and interlocking clusters were constructed using 240 

degree arcs although the winding cluster shape required two arcs to be linked 

together. The Gaussian clusters were generated identically as before. Appendix A3 

contains the code used to generate the data.

a. Concentric
b. Parallel

c. Interlocking
d. Winding

Figure 7.1: Cluster structures used in Experiment 2.
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For each of these data sets k was varied from 10, 15, 20; dispersion 0.025. 0.05 

0.075; dimension 4, 7, 10 and noise type as before. In all a 3 x 3 x 3 x 5 factorial 

Monte Carlo simulation was run on each data set. As before, each of the 135 cells 

was repeated 30 times to average out the effects of any poor final convergence states 

in the initial pattern partitioning for a total of 4050 x 4 data sets in experiment 2.

As with the previous experiment, any initial clusters with less than 2% of the data 

patterns were discarded. Therefore, the 10, 15, 20 values of k only refer to the initial 

number of run on the data. Generally, the number of clusters that were actually used 

in the agglomeration stage were equal to or at least proportional to the value of k that 

was begun with.

7.4.1 Results

Table 7.4 gives the mean ARI scores for each algorithm on each data set. On the 

concentric data set UDD performed best (ARI = .591) followed by ADD (ARI = 

.539). Given that an ARI score near 0 indicates chance agreement, WARD (ARI = - 

.034), ALINK (ARI = -.039), CLINK (ARI = -.049) and WHM (ARI = .012) 

generally failed to model the cluster structures. SLINK (ARI = 0.112) was able to 

recover slightly more cluster structure than chance. On the Parallel set UDD and 

ADD perform the best at ARI = 0.673 and 0.670 with no significant difference 

between them. SLINK (.590) and WHM (.535) showed better cluster recovery than 

WARD (.504), ALINK (.474) or CLINK (.484). UDD and ADD performed best on 

the Interlocking data with ARI scores of 0.458 and 0.444. WARD, ALINK and 

CLINK performed next best with no significant difference in their scores at 0.155, 

0.164 and 0.156. SLINK and WHM produced scores of 0.114 and 0.115. Only UDD 

and ADD were able to perform at significantly above chance levels on the Winding 

data set with ARI scores of .460 and .427 respectively. WARD, ALINK, CLINK, 

WHM and SLINK are at or near chance levels. The ARI scores of 0.460 and 0.427
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for UDD and ADD show that although these methods could recover some of the 

cluster structure, they too had great difficulty with this cluster configuration.

SET UDD ADD WARD ALINK CLINK SLINK WHM

Concentric .591 .539 -.034 A -.039 AB -.049 B .112 .012
Parallel .673 A .670 A .504 .474 .484 .590 .535
Int. Lock .458 .444 .155 A .164 A .156 A .114 B .115 B
Winding .460 .427 .100 0.068 .048 -.041 -.058

Overall Mean .552 .520 .181 .167 .160 .194 .151

Overall Mean: 
Noise = 0

.882 .871 .256 .239 .233 .321 .275

Table 7.4: Mean Adjusted Rand scores of each hybrid method on each data set along with the overall 
means and the mean performances under no noise condition (see discussion).

Table 7.5 - Table 7.12 give the relative performances of the hybrid methods on each 

of the 4 data sets individually. Unlike experiment 1, the effects of dispersion, number 

of partitions, noise and dimensionality on the clustering methods is examined over 

each of the data set separately.

7.4.1.1 Concentric data

On the concentric data set (Table 7.5 and Table 7.6) WARD, ALINK, CLINK and 

WHM are performing at or near chance levels under almost all levels of all 

conditions. WHM and SLINK performed only slightly better. UDD and ADD 

performed reasonably well under all conditions except under the 25% uniform noise.

Increasing the number of partitions generally decreased the performance of UDD and 

ADD while the opposite occurred for SLINK. SLINK performed at chance levels at 

10 partitions (ARI = -.035) and significantly increased its performance at k -  15 (ARI 

= 0.120) and 20 (ARI = .252). Increasing the dimensionality from 4 to 10 actually
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decreased the performance of UDD and ADD by up to 10%. SLINK was only able to 

extract better than chance levels of structure at dimension = 4 (ARI = .116 and .288).

UDD ADD WARD ALINK CLINK SLINK WHM

PARTITION
10 ,600 a .568 -.042 -.042 a -.054 -.035 -.046
15 ,602 a .541 -.027 -.038 b -.047 a .120 -.002
20 .571 .509 -.034 -.038 a b -.045 a .252 .083

DIMENSION
4 .653 .597 -.023 -029 -.038 .288 .116
7 .583 .532 -.039 a -042 -.053 a .072 -.034 a
10 .537 .489 -.041 a -.047 -.054 a -.023 -.047 a

NOISE TYPE
No noise .954 .907 -,025a b -.031 a -.036 a .246 .070
Gauss a .900 .800 -.023 a -.028 a -.036 a ,206 a .048
Gauss 2a .775 .665 -.028 b -.032 a -.038 a ,170a -.004
25% Uniform .092 .086 -.047 c -.054 b -.070 -.027 b -.027 a
50% Uniform .233 .239 -.047 c -.051 b -.062 -.033 b -.028 a

DISPERSION
0.025 .675 .676 -.035 a -.039 a -.050 a .165 .060
0.05 .643 .629 -.034 a -.039 a -.408 a .114 .007
0.075 .454 .313 -.033 a -.039 a -.049 a .058 -.031

Table 7.5: Concentric data set results - effects of each experimental factor on each clustering 
algorithm.

SLINK was able to extract some structure under the no noise and Gaussian noise 

conditions but failed completely under the uniform noise conditions. Both ADD and 

UDD performed similarly: the best performance was under the no noise condition 

while sdding and increasing Gaussian noise decreased performance of both methods. 

Under the uniform noise conditions, both methods performed better under 50% noise 

(ARI = .233 and .239 respectively) than they did under 25% noise (.092 and .086 

respectively) where they performed at chance levels. Increasing the dispersion 

decreased the performance of ADD, UDD and SLINK.
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UDD ADD WARD ALINK CLINK SLINK WHM

PARTITION
10 .600 A .568 A -.042 -.042 -.054 -.035 -.046
15 .602 .541 -.027 AB -.038 AB -.047 B .120 -.002 A
20 .571 .509 -.034 -.038 A -.045 A .252 .083

DIMENSION
4 .653 .597 -.023 A -029 A -.038 A .288 .116
7 .583 .532 -.039 A -042 A -.053 A .072 -.034 A
10 .537 .489 -.041 A -.047A -.054 A -.023 A -.047 A

NOISE TYPE
No noise .954 .907 -.025 A -.031 A -.036 A .246 .070
Gauss a .900 .800 -.023 A -.028 A -.036 A .206 .048
Gauss 2 ct .775 .665 -.028 A -.032 A -.038 A .170 -.004 A
25% Uniform .092 A .086 A -.047 BC -.054 C -.070 C -.027 B -.027 B
50% Uniform .233 A .239 A -.047 BC -.051 BC -.062 C -.033 B -.028 B

DISPERSION
0.025 .675 A .676 A -.035 B -.039 B -.050 B .165 .060
0.05 .643 A .629 A -.034 B -.039 B -.408 B .114 .007
0.075 .454 .313 -.033 A -.039 A -.049 A .058 -.031 A

Table 7.6: Concentric data set - relative performance of each clustering algorithm on each level of 
each experimental factor.

7.4.1.2 Parallel data

Under the parallel data (Table 7.7 and Table 7.8) increasing the number of initial 

cluster partitions improved the performance of all clustering methods except CLINK 

and ALINK. Increasing the dimensionality also led to improvements in performance 

although to varying degrees depending on the clustering method. For ADD and UDD 

this effect was very marginal. WHM and SLINK improved their performances by 

13% and 25% respectively while ALINK, WARD and CLINK all saw improvement 

of over 100% between 4 and 10 dimensions.

Adding Gaussian noise had similar effects across all methods. Adding 25% Gaussian 

noise had no significant effects and adding 50% only decreased performance by
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about 10%. 25% uniform noise led to similar recovery levels for all methods, 50% 

uniform noise gave all the methods serious difficulties with all methods producing 

ARI scores at or near chance levels. Increasing the dispersion also caused all of the 

methods to produce lower ARI scores although none experienced greater than 10% 

drops in performance between dispersions of 0.025 to 0.075.

UDD ADD WARD ALINK CLINK SLINK WHM

PARTITION
10 .660 .657 ,493 a ,478 a .485 a .509 .548
15 ,676 a .671 a .505 a b .465 a .481 a .616 .567
20 .683 a ,676 a .513 b ,478 a .485 a .646 .581

DIMENSION
4 .661 .648 .322 .283 .300 .475 .470
7 .678 a ,676 a .486 .464 .432 .570 .537
10 ,680 a ,680 a .702 .675 .719 .726 .598

NOISE TYPE
No noise ,997 a ,997 a .708 a .681 a .681 a ,892 a ,910 a
Gauss a ,990 a .981 a .701 a ,664 a .675 a .895 a ,917 a
Gauss 2o .922 .901 .657 .614 .644 .846 .834
25% Uniform .308 .308 .324 .298 .317 .268 .013 b
50% Uniform .147 .152 .128 .112 .101 .050 ,000 b

DISPERSION
0.025 ,690 a .691 .510a .491 .495 .601 a .553 a
0.05 .682 a .679 .508 a .473 .484 ,599 a ,547 a
0.075 .648 .634 .492 .457 .472 .571 .504

Table 7.7: Parallel data set - effects of each experimental factor on each clustering algorithm.

The relative performances of the hybrid algorithms was fairly constant with this data. 

ADD and UDD generally performed best with no significant differences between 

their performances under any conditions. SLINK was nearly always produced the 

second best recovery. The same was true of WHM although it did recover 

significantly less cluster structure than SLINK for 10 partitions and the two highest 

levels of dispersion. The other methods generally performed worse than SLINK,
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WHM and APC however their relative performance did seem to improve with 

increasing the dimensionally of the data.

UDD ADD WARD ALINK CLINK SLINK WHM

PARTITION
10 .660 A .657 A .493 BC .478 BC .485 BC .509 B .548 C
15 .676 A .671 A .505 C .465 C .481 C .616 B .567 B
20 .683 A .676 A .513 C .478 C .485 C .646 A .581 B

DIMENSION
4 .661 A .648 A .322 C .283 C .300 C .475 B .470 B
7 .678 A .676 A .486 C .464 CD .432 D .570 B .537 B
10 .680 A .680 A .702 A .675 A .719 A .726 A .598

NOISE TYPE
No noise .997 A .997 A .708 C .681 C .681 C .892 B .910 B
Gauss a .990 A .981 A .701 C .664 D .675 CD .895 B .917 B
Gauss 2a .922 A .901 A .657 C .614 D .644 CB .846 B .834 B
25% Uniform .308 AB .308

AB
.324 A .298 B .317 AB .268 .013

50% Uniform .147 A .152 A .128 .112 .101 .050 .000

DISPERSION
0.025 .690 A .691 A .510 CD .491 D .495 D .601 B .553 BC
0.05 .682 A .679 A .508 BC .473 C .484 C .599 .547 C
0.075 .648 A .634 A .492 B .457 B .472 B .571 .504 B

Table 7.8: Parallel data set - relative performance of each clustering algorithm on each level of each 
experimental factor.

7.4.1.3 Interlocking data

In the interlocking set (Table 7.9 and Table 7.10) all methods other than UDD and 

ADD generally performed poorly. Increasing the number of partitions significantly 

improved the performance of all the clustering methods although SLINK and WHM 

operated near chance for all levels. Interestingly, increasing the dimensionality 

decreased the ARI scores of all the methods, particularly UDD, ADD, SLINK and 

WHM. In fact, both WHM and SLINK only perform at above chance levels on 4 

dimensions.
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UDD ADD WARD ALINK CLINK SLINK WHM

PARTITION
10 .316 .308 .143 .158 a .149 ,079 a .079
15 .500 .484 .166 .169 b ,160a ,092 a .098
20 .559 .540 .155 .165 ab ,159a .170 .067

DIMENSION
4 .614 .590 .174 .194 . 166 a .225 .239
7 .430 .423 .143 a ,148 a .138 .065 a ,058 a
10 .331 .319 ,147 a .151 a .164 a .051 a ,046 a

NOISE TYPE
No noise .813 a .812 ,206 a ,219a .205 a .195 a ,196a
Gauss o .785 a .763 ,200 a ,214 a .201 a .185 a ,198a
Gauss 2a .561 .508 ,196 a ,212 a ,200 a .177 a ,178a
25% Uniform .106 .107 .119 .123 .122 .003 b ,000 b
50% Uniform .026 .030 .053 .053 .052 .008 b ,000 b

DISPERSION
0.025 .525 .523 .155 a ,169 a .159 a ,124 a .121 a
0.05 .469 .448 .157a .165 a b .158 a b .112 a b ,117a
0.075 .382 .362 ,152a .158 b .151 b .104 b .105 a

Table 7.9: Interlocking data set - effects of each experimental factor on each clustering algorithm.

The addition of Gaussian nose only effected ADD and UDD although none of the 

other methods were performing very well at the no noise level anyway. Uniform 

noise seriously disrupted the performance of all methods with none of the methods 

performing much better than chance at either the 25% or 50% levels. Increasing the 

level of dispersion significantly decreased the performance of all of the clustering 

methods except WARD and WHM. Overall, increasing the dispersion had a greater 

effect on ADD and UDD although none of the other methods performed well on any 

of the dispersion levels.

Relative to the other hybrid methods APC (UDD and ADD) outperformed all others 

under all levels of all conditions except 50% uniform noise. The relative 

performances of the other methods was less systematic although in general it was 

more likely for the WARD, ALINK, CLINK group to perform as well or better than 

SLINK and WHM.
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UDD ADD WARD ALINK CLINK SLINK WHM

PARTITION
10 .316 A .308 A .143 B .158 B .149 B .079 C .079 C
15 .500 A .484 A .166 B .169 B .160 B .092 C .098 C
20 .559 A .540 A .155 B .165 B .159 B .170 B .067 B

DIMENSION
4 .614 A .590 A .174 D .194CD .166 D .225 BC .239 B
7 .430 A .423 A .143 B .148 B .138 B .065 C .058 C
10 .331 A .319 A .147 B .151 B .164 B .051 C .046 C

NOISE TYPE
No noise .813 A .812 A .206 B .219 B .205 B .195 B .196 AB
Gauss a .785 A .763 A .200 B .214 B .201 B .185 B .198 B
Gauss 2a .561 A .508 B .196 C .212 C .200 C .177 C .178 C
25% Uniform .106 A .107 A .119 A .123 A .122 A .003 B .000 B
50% Uniform .026 B .030 B .053 A .053 A .052 A .008 C .000 D

DISPERSION
0.025 .525 A .523 A .155 B .169 B .159 B .124 C .121 C
0.05 .469 A .448 A .157 B .165 B .158 B .112 C .117 C
0.075 .382 A .362 A .152 B .158 B .151 B .104 C .105 C

Table 7.10: Interlocking data set - relative performance of each clustering algorithm on each level of 
each experimental factor.

7.4.1.4 Winding data

Finally, Table 7.11 and Table 7.12 display the performances on the winding set. 

Again, all methods other than UDD and ADD are performing at or near chance 

levels. Increasing the number of initial partitions increased the performance of both 

ADD and UDD. Increasing the dimensionality again greatly decreased ADD and 

UDD performances. Both UDD and ADD were also significantly effected by both 

types of noise and completely unable to recover cluster structure in the 50% uniform 

noise condition. As with all other data sets, increasing the dispersion, decreased the 

performance of ADD and UDD.
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UDD ADD WARD ALINK CLINK SLINK WHM

PARTITION
10 .260 .246 .101 a .071 a ,049 a -.047 -.057
15 .540 .498 ,098 a .065 a ,054 a -.061 -.073
20 .580 .538 .101 a ,069 a .041 -.014 -.044

DIMENSION
4 .612 .568 .096 .078 .082 a .018 -.037
7 .420 .389 ,102 a .070 .078 a -.065 a -.066 a
10 .350 .325 .103 a .057 -.016 -.074 a -.072 a

NOISE TYPE
No noise .765 .766 .133 a ,087 a .071 a -.049 a -.077 a
Gauss c .697 .650 ,130a TOO .067 a b -.060 a -.085 a
Gauss 2c .570 .473 .121 .078 a .059 b -.064 a -.102
25% Uniform .187 .182 .087 .050 ,024 c -.020 b -,016 b
50% Uniform .079 .065 .030 .025 .018 c -,010 b -,010 b

DISPERSION
0.025 .530 .528 .105 ,070 a .051 a -.037 a -.058 a b
0.05 .497 .469 ,100 a ,069 a .048 a -.040 a -.063 b
0.075 .353 .284 ,096 a ,066 a .045 a -.045 a -.054 a

Table 7.11: Winding data set - effects of each experimental factor on each clustering algorithm.

UDD ADD WARD ALINK CLINK SLINK WHM

PARTITION
10 .260 A .246 A .101 .071 B .049 B -.047 C -.057 C
15 .540 .498 .098 .065 A .054 A -.061 B -.073 B
20 .580 .538 .101 .069 A .041 A -.014 B -.044 B

DIMENSION
4 .612 .568 .096 A .078 A .082 A .018 -.037
7 .420 .389 .102 B .070 BC .078 C -.065 D -.066 D
10 .350 A .325 .103 .057 -.016 -.074 A -.072 A

NOISE TYPE
No noise .765 A .766 A .133 B .087 C .071 C -.049 D -.077 D
Gauss c .697 .650 .130 AB TOO A .067 B -.060 C -.085 C
Gauss 2c .570 .473 .121 C .078 A .059 A -.064 -.102
25% Uniform .187 A .182 A .087 B .050 C .024 C -.020 D -.016 D
50% Uniform .079 A .065 A .030 B .025 B .018 B -.010 C -.010 C

DISPERSION
0.025 .530 A .528 A .105 .070 D .051 -.037 D -.058 D
0.05 .497 A .469 A .lOOB .069 BC .048 C -.040 D -.063 D
0.075 .353 .284 .096 .066 A .045 A -.045 B -.054 B

Table 7.12: Winding data set - relative performance of each clustering algorithm on each level of each 
experimental factor.
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7.4.2 Discussion

Table 7.4 gives the overall mean ARI scores for the hybrid clustering methods taken 

over all 4 data sets in experiment 2. Clearly ADD and UDD produced far superior 

cluster recovery than any of the other methods which seemed to perform rather 

poorly. Table 7.4 also gives the mean performance of the hybrid algorithms over the 

0 noise level condition. This gives an indication of to what degree the cluster 

structures irrespective of noise are responsible for the difference in performance. 

Again ADD and UDD are overwhelmingly outperforming the other methods. The 

poor performances of ALINK, WARD, CLINK and perhaps SLINK can be explained 

as being due to the fact that the distances between the initial centroids are no longer 

indicative of cluster structure under these conditions. Therefore these methods were 

unable to correctly recover the cluster structures. WHM performed surprisingly 

poorly. It was expected that it would be able to recover cluster structure significantly 

better than CLINK, ALINK and WARD. However, the clustering ability of WHM 

only seem to be marginally better than these methods. Again, this is probably due to 

the unreliability of basing the intercluster density estimate solely on an estimate of 

the density at the midpoint between clusters. In fact, SLINK, which is nearly identical 

to WHM except that no density information is used, recovered cluster structure better 

than WHM.

Given the results of this experiment and the pervious, it would seem that WHM is a 

rather poor method of hybridising clustering techniques for large data bases. The 

relatively superior performances of ADD and UDD indicate that much more local 

information must be taken into account in situations where chaining clusters lie in 

close proximity to other clusters. As UDD and ADD perform well even when this is 

not the case, the versatility of ADD and UDD may well be worth the extra 

computational costs relative to the other hybrid methods studied here.
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A lgorithm UDD ADD WARD ALIN!K CL1INK SLINK WHM
D ata set C P I w C P I w C p / W C p I W C p I w C P / w C p I W

P artitions - + + + - + + + c + + * c * + c c * + c + + + c c + c c
D im ension - + - - - + - - c + - + c + - c c + 4= c - + - c - + - c
D ispersion - - - - - - - - c - * - c - - c c - - c - - - c c - * c

Table 7.13: Summary of the effects of the number of partitions, dimension and dispersion on each of 
the hybrid methods over each data set ( C = concentric, P = parallel, I = interlocking and W = 
winding). A "+" indicates increasing the factor significantly increased the ARI score, led to a 
decrease, "*" indicates no significant effect and "c" indicates performance was at or near chance (ARI 
< .100) at all levels15.

Table 7.13 summarises the effects dispersion, number of initial partitions and 

dimensionality had on each hybrid algorithm on each data set. Both UDD and ADD 

seem to be very sensitive the number of initial partitions. Increasing k significantly 

improved performance on the Parallel, Interlocking and Winding data sets. However 

increasing k marginally decreased the performance on the Concentric set. In all sets 

other than the Parallel, increasing the dimensionality adversely effected the their 

performance of ADD and UDD, particularly on the last two data sets. This conflicts 

with the results in the first test suite where increasing the dimensionality improved 

performance. It is an interesting result as one would expect the greater mount of 

redundant information in higher dimensions to improve, not hinder performance as 

all of the data sets in experiment 2 were intrinsically two dimensional. In all 

simulations, increasing the dispersion increased the error rate. This is to be expected 

as larger dispersion values increase the degree of cluster overlap.

It should also be noted that UDD often recovered more cluster structure than ADD in 

both experiment 1 and experiment 2 . This may be partly due to the fact that uniform 

distributions were predominately used to create the various cluster shapes. On the 

hyperellipsoidal clusters in experiment 1, both methods performed almost equally

15 On the interlocking data set CLINK was not significantly different between 4 and 10 dimensions while 7 was significantly 
less.
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well. However, on the Concentric data set which was a hyperellipsoidal cluster 

surrounded by a circular cluster generated with normally distributed patterns, UDD 

still recovered more structure than ADD by a healthy margin. To a certain extent this 

was also the case with the winding data set. In any case, the good clustering abilities 

of APC seems to have more to do with the incorporation of local information in the 

estimate of the intercluster densities, than how this estimate is converted into a 

distance metric.

Regarding the other hybrid methods examined, their performances were often so poor 

it is difficult to assess the impact of the experimental design factors on their ability to 

recover cluster structure. The only data set they all performed reasonably well on was 

the Parallel set. Based on this they do seem to benefit from larger numbers of initial 

partitions and dimensionality as did ADD and UDD on this set. On the other data sets 

performance is too poor to make any further substantive judgements. Again the 

reason for this is that WARD, CLINK and ALINK all suffer from the problem of 

tending to find globular or equally sized clusters. When other types structure are 

present in the data, these methods will fail. In addition, when clusters lie in close 

proximity, the Euclidean distance between initial cluster centroids may not 

adequately reflect the true cluster structure.

7.5 Conclusions

The purpose of this chapter was to compare APC’s clustering abilities to that of a 

number of similarly structured techniques. It was found that when clusters are well 

separated both APC and the use of Ward’s method in the hierarchical agglomeration 

stage perform equally well. However, when clusters are not well separated APC 

almost always produced superior results to that of any of the other hybrid techniques 

examined here.
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APC can be viewed as a modification of Wong’s hybrid method. The reason for 

APC’s (UDD and ADD) superior clustering ability over WHM is probably due to 

APC’s incorporation of more local information is determining the density based 

measure of intercluster distance. In WHM an estimate of the density only at the 

midpoint between clusters is estimated. APC on the other hand makes a more direct 

estimate of the intercluster density incorporating more local information in the 

density estimate. Although this requires more computational effort than WHM, the 

greater overhead required is compensated by the significantly improved performance.

As APC can detect both globular and chaining cluster structures, it is less likely to 

impose structure on the data than the ALINK, CLINK and WARD hybridisations 

examined here. In addition, it was shown to outperform both the SLINK 

hybridisation and WHM that can model chaining structures. APC was also shown to 

be fairly robust under the Gaussian additive noise corresponding to measurement 

error. However, the uniform noise (uncorrelated structure) did severely effect its 

performance.
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8. The Use of Linked Line Segments for 
Cluster Representation and Data 
Reduction

The purpose of this chapter is to evaluate the use of linked line segments for the 

representation of cluster structure. As it is argued that this representation enables more 

accurate assessment of the cluster membership of individual observations than centroids, 

the use of APC and k-means as data reduction methods are compared. These two 

approaches along with principal component analysis (for benchmarking purposes) are 

applied to three simulated and two real world data sets and examined in their ability to 

provide useful features with lower dimensionality than the original data. The results 

empirically demonstrate that the linked line segment approach can produce more a 

salient representation of cluster structure than centroids alone.

8.1 Introduction

Regardless of how one searches for clusters in data, the resulting cluster structures are 

often modelled as their respective centroids. However, the use of centroids in this 

manner implies the clusters are largely hyperspherical in shape. If the cluster shape is 

significantly nonhyperspherical, using the distance between individual observations and 

the centroid as a metric of an observation’s cluster membership can be misleading. 

However, little work has been done on the representation of cluster structures once they 

have been extracted from the data set. In other words, once the clusters in the data have 

been identified one often needs some method to represent or model these structures for

*
158



use in further analysis16. This chapter evaluates the use of the linked line segment based 

model of cluster structure, which is not biased towards any particular cluster shape. The 

effectiveness of the linked line segment approach is demonstrated in a data reduction 

exercise using simulated data.

On common technique is to represent each cluster with its centroid. Based on this one 

can measure the degree to which a given observation is "typical" of the cluster it belongs 

to by measuring the observation’s distance from the centroid. This can be particularly 

useful when using cluster analysis as a method of feature extraction or data reduction. 

For example, one might use cluster analysis to expand the dimensionality of the data to 

remove nonlinearities or to reduce the number of variables to a more manageable size. 

To do this, the general procedure is to find k clusters or groups in the data from which 

the transformed data is generated by calculating the distance of each observation from 

the centroid of each cluster. Let X = {x„ x2, .... x^} be a set of ¿/-dimensional 

observations where \ n = {x;, x2, ... x^}. After an initial partitioning of X into k, mutually 

exclusive clusters G = {g/5 g2, ... , gA.} the set Y = {y,, y2, .... y^}of ¿'-dimensional 

transformed observations is generated such that yN = {y, y2, ... yk},

yk = 8.1

where ck is the centroid of cluster gk,

j = 0 J z g k

8.2

*6The term "cluster representation" here is meant to refer to the representation of the cluster used to measure the relative cluster 
memberships of individual patterns. It is not referring the visualisation of cluster structure in two or three dimensions. See Everitt 
(1993) for a review of data visualisation methods that could be applied to visualising multivariate cluster structures.
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and || || is the Euclidean distance.

The use of the centroid in this manner, however, can lead to problems if the cluster is not 

roughly hyperspherical or "globular" in shape. Using the centroid implies that 

observations equally distant from the centroid are equally typical. If one’s operating 

definition of a cluster is a region of relatively high density and the cluster is not 

hypersherical, the distance from the centroid may not adequately measure cluster 

membership as the value of equation (8.1) does not necessarily reflect the underlying 

density of the cluster under these conditions.

Another approach would be to measure the membership of an observation by examining 

its local density. This can be done by defining a hyperspherical region of radius r around 

each observation and counting the number of observations that fall within this region. 

The higher the number of observations in the region the more typical the given 

observation is of the cluster. Other density methods based on the distance of an 

observation’s k-nearest neighbours can also be used. For very large data sets, however, 

density based methods such as these can be computationally expensive.

This chapter evaluates the use of linked line segments to represent cluster structures. The 

basic idea is to initially cluster the data into a relatively large number of clusters. Next, 

these initial clusters are agglomerated into larger clusters when they coexist in areas of 

relatively high density. The newly merged clusters are then modelled as line segments 

linking up the centroids of the initial smaller clusters. In this way nonhyperspherical 

cluster shapes can be modelled and the membership of an observation to a given cluster 

can be calculated without excessive computational cost.
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The remainder of this chapter is divided into four sections. Section 8.2 argues for the use 

of linked line segments when the cluster structures are nonhyperspherical in shape. 

Section 8.3 outlines using APC and the linked line segment representation as a data 

reduction technique. Next, in Sections 8.4 and 8.5 the use of the linked line segment 

cluster representation as a feature extraction / data reduction method is demonstrated on 

three simulated data sets. Finally, section 8.6 discusses some shortcomings of this 

method as well some other concluding remarks.

8.2 Cluster Representation with Line Segments

Regardless of what clustering method is utilised, the resulting clusters are often 

ultimately modelled as being the centroid of the observations comprising the clusters. 

However, using the centroid of the cluster as a basis for deriving additional information 

about a cluster or its members can be problematic as using the centroid implies that the 

cluster is roughly hyperspherical in shape. Assuming one is interested in clusters defined 

as natural clusters or areas of relatively high density (see Everitt, 1993; Hartigan, 1975) 

the distance of an observation from the centroid should correspond to the underlying 

density. If the cluster is roughly hyperspherical in shape this will indeed be true. 

However, if a given cluster is elongated, or has a long, chaining structure this is no 

longer the case. Subsequent analysis of how individual observations relate to their given 

cluster may be distorted. To avoid this problem one could use a splitting technique to 

find a number of subclusters within the cluster whose centroids span the high density 

area. However, in this case one has now overestimated the number of clusters in the data.

Figure 8.1a and b display the k-means clustering of a two cluster problem with k = 5 and 

k -  2. One cluster is roughly spherical or compact in shape, while the other has an
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elongated structure. While the k = 5 solution has adequately found the areas of high

in fact a single cluster. The number of clusters in the data have been overestimated. The 

k = 2 solution appropriately treats the lower cluster as a single cluster, but subsequent 

analysis will give misleading information regarding the relationship between individual 

observations and the cluster. This is illustrated in Figure 8.2. Given observations a and b, 

the analyst wants to know which observation is more typical of the cluster. If they were 

to use the distance of the observations to the cluster centroid to make this decision, 

observation b would be judged as being more typical than observation a as it is closer to 

the centroid. This is a misleading result as observation a is situated in a much more 

dense portion of the cluster - assuming that the operating definition of a cluster is a 

region of relative high density. The k = 5 solution in Figure 8.1 b would have correctly 

differentiated between the relative memberships of the two observations, however, in 

this case the number of clusters in the data set have been overestimated.

density, there is nothing in the 4 cluster centroids to indicate that the lower 4 clusters are

a b

0

Figure 8.1. Centroids can be inadequate representations of cluster structure.
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Distance to Centroid

Obs. b

/

Obs. a

Centroid

Figure 8.2: Using centroids to measure cluster membership can be misleading.

This trade-off between over estimation of the number of clusters and adequate modelling 

of cluster structure is a direct result of modelling clusters as centroids. Unless all the 

clusters in the data set are roughly hyperspherical is shape this dilemma will exist, 

regardless of what clustering method was used to find the cluster structures. There is a 

need, therefore, to re-represent the clusters with some other structure that can 

accommodate nonhyperspherical cluster shapes. The linked line segment representation 

proposed in this thesis attempts to solve this problem by joining together the centroids of 

previously agglomerated clusters with line segments when they coexist in contiguous 

areas of relatively high density. This not only allows the modelling any cluster structure 

that is piece-wise linear approximatable, but also allows more accurate modelling how 

individual observations fit into the overall cluster structure of the data.
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Line segements 
joining initial centroids

a

b

Figure 8.3: Using the linked line segment representation, an outlying pattern’s membership is correctly 
measured without over specifying the number of clusters in the data.

For example, the linked line segment representation of the above two clustering problem 

is displayed in Figure 8.3. The original k = 5 solution has been agglomerated with line 

segments joining the original centroids. The elongated cluster is now correctly modelled 

as being a continuous area of high density. Moreover, if the distance of an individual 

observation from the cluster is taken as being the distance between it and the nearest line 

segment in the cluster, the relative memberships of observations a and b are correctly 

specified.
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8.3 Linked Line Segment Representation as a Data Reduction 
Technique

In addition to extracting groupings in unknown data sets, cluster analysis can also be 

used a data reduction or feature extraction method as discussed above. By setting k to 

less than the number of variables in the data set, one could reduce the dimensionality of 

the data set to a more manageable size. Alternatively, the goal may be to transform the 

data into a space that makes the problem easier to solve. Radial Basis Networks, for 

example, take this later approach (e.g. Moody and Darken, 1989).

If one is interested in this approach to feature extraction or data reduction, the problem 

again arises of how to measure a given pattern’s membership or distance from each 

cluster. As argued above, if the clusters in the data are nonhyperspherical, using the 

distance of each observation from each cluster’s centroid to create the transformed data 

can be misleading. The use of linked line segments may help alleviate this problem by 

giving a more faithful representation of the cluster structure to base the transformation 

on.

8.4 Methods

Example applications of the use of the linked line segments as a data reduction method 

is given below on three simulated and two real world data sets. The primary purpose of 

this is to empirically demonstrate that the linked line segment representation of cluster 

structure can be useful in modelling nonhyperspherical cluster structure. The simulated 

data sets consisted of intrinsically two dimensional nonlinearly separable clusters 

embedded in 10 dimensional space. The data sets were the winding, concentric and 

interlocking clusters used in the previous chapter (Figure 7.1). Three feature extraction
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methods were applied to extract from 1 to 9 features to generate 9 reduced versions of 

each data set. These feature sets were then presented to a linear discriminant analysis 

model (LDA) to test its ability to discriminate between the clusters using the transformed 

variables. Three feature extraction methods were applied: APC (i.e. linked line 

segments), k-means and Principal Component Analysis (PCA). For k-means, the original 

data was reduced by initially running k-means with k set to the number of desired 

transformed variables. Once converged, the transformed data was created by taking the 

distance of each pattern from each cluster centroid. In the APC method, for all number 

of features, k-means was run with k initially set to 20. The resulting 20 initial clusters 

were then agglomerated using the APC methodology described above. Agglomeration 

was continued until the desired number of features was found. The transformed variables 

were then created by finding the distance between each observation to the closest line 

segment in each cluster.

The three data reduction approaches where also applied to the “ionosphere" and 

“Landsat satellite” data sets available via the UCI Machine Learning Repository (Merz 

and Murphy (1998)). The Ionosphere and Satellite data consisted of 351 patterns with 34 

variables and 6435 patterns and 36 variables respectively. The three data reduction 

methods were applied to generate reduced versions of both data sets with 30, 25, 20, 15, 

10, and 5 features. Regarding APC, k was set to 34 for the ionosphere data and 60 for the 

satellite data.

8.5 Results and Discussion

The results of using the reduced simulated and real data sets as input to a LDA model are 

given in Figure 8.4 and Figure 8.5. Figure 8.4 displays the performance of the LDA
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model using the 1-9 features derived from each of the data reduction methods on the 

simulated data. In addition, the performance of LDA on the 10 original variables is also 

given as a benchmark below each chart title.

On the winding and interlocking data the APC features were able to capture much more 

of the data structure than k-means. Again, this is due to the linked line segments 

providing a better "fit" to the cluster structures than is possible with centroids alone. On 

the concentric data set up until 3 features both k-means and APC perform relatively 

equally well. At two features APC has captured both the circle and the Gaussian cluster 

sufficiently well to enable LDA to discriminate between them. The k-means 

performance at this point is quite poor. However, at one feature the k-means feature 

leads to only a 7% error rate as opposed to 45% for APC. This is because the circular 

cluster and the circle can be discriminated with only a single feature as one only needs 

the distance of each observation from the centroid of the Gaussian cluster. This 

highlights a limitation of the linked line segment approach in that not all problems are 

necessarily best modelled is this way. Nonetheless, APC was able to produce 100% 

accuracy at two features.

PCA generally failed to produce much better results than LDA running on the original 

10 variables. This is not surprising, as the data is highly nonlinear. Nonetheless, the PCA 

derived features did provide better performance than the k-means features on the 

interlocking data. PCA did not outperform APC on any of the data sets except in the case 

of only a single feature being used (in the winding and interlocking data). At this point 

however, both the PCA and APC reduced versions of the data set was no longer 

outperforming the original 10 variables.
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LDA error = 0.09

Figure 8.4 The relative performances of the three feature extraction methods on simulated data. The 
performance of LDA on the 10 original variables is given below the chart titles.

168



Ionosphere Data
LDA error = 0.17
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Figure 8.5 The relative performances of the three feature extraction methods on the ionosphere and 
satellite data.

Figure 8.5 shows the same three methods applied to the ionosphere and satellite data. 

Both APC and k-means were able to outperform the original 34 variables input to LDA 

at all number of features tested on the ionosphere data. Similarly, the APC derived 

features consistently produced lower error scores than k-means and PCA. On the satellite
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data, the k-means derived features produced lower error scores than the original 36 

variables at 30, 25 and 20 features. APC on the other hand produced lower error scores 

than the original 36 variables and k-means at 30, 25, 20 and 15 features. PCA produced 

higher error scores than k-means and APC at all feature numbers except 5. However, 

again at this point all three data reduction methods were producing more errors than the 

original 36 variables.

8.6 Conclusions

The purpose of this chapter has been to propose the use of linked line segments as an 

alternative to centroids in the representation of cluster structures. It was argued that 

when the cluster structure is nonhyperspherical, the use of centroids to measure the 

cluster membership of individual observations can be misleading. This was empirically 

demonstrated in the context of a data reduction problem on several simulated data sets 

where the cluster structures were significantly nonhyperspherical. On all three simulated 

data sets the linked line segment approach produced superior transformed variables 

enabling all three nonlinear data sets to be correctly classified by a linear model with 

only two or three variables. Even on the concentric data set where the centroid based k- 

means approach was able to model the data with a single feature, it still produced an 

error rate of 7%, significantly higher than the two variable error rate of 0% by APC. The 

use of the linked line segment representation was also evaluated on two high 

dimensional real world data sets. Again, it was shown that the linked line segment 

representation of cluster structure can be useful in a data reduction context.

A shortcoming of the linked line segment approach however, is that for problems where 

clusters are well separated and roughly globular in shape, APC will model the clusters
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with a degree of unnecessary complexity. Also, APC assumes that a problem can broken 

up into features that correspond to relatively high density clusters. Testing for these 

conditions, however, can be difficult and costly. Nonetheless, APC is sufficiently 

efficient that its use as a clustering method or application via the above data reduction 

paradigm as a data exploratory technique can be justified, particularly on large data 

samples. For example, as in the case of the ionosphere and satellite data one can 

compare the relative performances of APC, k-means and PCA in a data reduction 

context and obtain a general indication of the degree to which the shape of the clusters in 

the data need be taken account of.

In summary, APC is primarily an unsupervised clustering methodology. The above 

simulations are meant to highlight the difficulty in modelling nonlinear cluster structures 

and to show that the use of linked line segments can be useful in this context. In this 

sense APC should be viewed as a data exploratory method. However, as it can model 

nonlinear cluster structure it can be useful as a data reduction technique as well. 

Compared to a number of other approaches to data reduction, APC does have some 

advantages. For example, APC is computationally efficient - requiring only fractionally 

more CPU cost than k-means. A number of other methods often used in data reduction 

contexts such as unsupervised neural networks (e.g. Kohonen (1995, 1982), Rumelhart 

and Zipser (1986)) and nonlinear PCA {e.g. Dong and McAvoy (1996)) require many 

costly iterations through the data. Moreover, because APC can model nonlinear structure 

is has advantages over linear methods such as PCA and factor analysis as well as 

centroid based methods such as k-means and unsupervised neural networks. In short, the 

modelling of nonhyperspherical cluster structures can be problematic. APC with the 

linked line segment representation of cluster structure can provide an efficient solution 

to this problem for use in both data clustering and data reduction.
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9. Thesis Conclusions and Summary

9.1 Conclusions

As argued in Chapter 3, there is a dearth of clustering algorithms that can simultaneously 

be applied to large data samples, perform well under noisy conditions and model clusters 

of arbitrary shape. APC has been proposed as a solution to this problem. As its 

computational costs are relatively low, it can be feasibly applied to large data samples. 

By initially clustering the data via fast pattern partitioning methods and then 

agglomerating these clusters using an efficient method for estimating the intercluster 

densities, APC has been shown to be an effective data exploratory method for use in 

situations where most other clustering techniques would be overwhelmed by the 

computational load. Under a variety of conditions such as noise and nonhyperellipsoidal 

cluster shapes, the ADD and UDD measures of intercluster density generally lead to 

more accurate cluster recovery than any of the other hybrid clustering methods 

examined. This holds particularly true for WHM which also agglomerates clusters using 

intercluster density. The reason for APC’s superior cluster recovery performance relative 

to WHM is due to the way APC incorporates more local information when estimating 

the intercluster densities. However, although the relative ability of APC to handle noise 

in data was to a degree superior to other hybrid methods, under the uniform noise 

conditions, its performance was disappointingly poor compared to that under Gaussian 

noise.
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This thesis also introduced the concept of using linked line segments to represent cluster 

structure. This representational scheme allows the representation of any cluster shape 

that is piecewise linearly approximatable. Chapter 8 demonstrated that on a number of 

feature extraction problems involving nonlinear data features corresponding to high 

density clusters, APC with the linked line segment representation was better able to 

extract these features with fewer parameters than cluster centroids or PCA.

The comparative studies in Chapters 6 and 7 also highlighted the importance of 

clustering algorithms being able to recover cluster structure as flexibly as possible. 

Chapters 6 and 7 demonstrated that cluster shape can significantly effect the relative 

clustering abilities of the clustering techniques examined. The results of the simulations 

in Chapter 6 also indicated that the moving method consistently converges faster than k- 

means, suggesting that it may represent not only a more suitable initial pattern 

partitioning algorithm than k-means for use in APC, but also a more appropriate 

benchmark for use in evaluating the computational cost of pattern partitioning 

algorithms in general.

9.2 Limitations

APC was only tested under very high noise conditions and although it generally 

performed as well or better than other methods, it often failed under the uniform noise 

conditions which simulate the presence of uncorrelated structure in the data. It could be 

that the levels of noise were too high and therefore presented too difficult a problem for 

any clustering algorithm. The use of a more mild level of uniform noise might have 

given a better picture of how well APC can perform under these conditions. Under the
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Gaussian noise, however, APC’s performance was much better both in absolute terms 

and relative to other hybrid methods.

The fact that the empirical comparisons were restricted to other hybrid methods can also 

be seen as a limiting factor. The reason for this was largely economical - Monte Carlo 

simulation is a computationally expensive process. Large numbers of simulations had to 

be done to account for the stochastic nature of the moving method and k-means. Hybrid 

methods were given priority in the comparative simulations evaluating APC as these are 

the methods most closely related to APC and because they are the type of clustering 

approach APC represents an improvement upon. The hybrid methods were also favoured 

because, at least to the best knowledge of the author, they have never before been 

empirically compared in a published paper.

Another limitation of this thesis is that alternative approaches to density estimation that 

could be used in APC instead of histograms (see Appendix A2) were not empirically 

evaluated. Again, this was because of the computational costs of evaluating additional 

variations of APC. Additional experimentation could also have been done with a wider 

range of data and cluster shapes. For example, other types of cluster shape could have 

been used to gain further understanding of the relative effects cluster shape has on 

different clustering algorithms. However, as there are an infinite number of possible 

cluster shapes, any additional experimentation would necessarily be limited by this 

factor.

9.3 Related Work

The initial stages of APC are similar to Wong’s hybrid method. WHM agglomerates an
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initial set of clusters found via k-means. These initial clusters are then hierarchically 

clustered via a density based distance metric that is proportional to the density of the 

observations at the midpoint between clusters. Cluster agglomeration is accomplished 

using the single linkage method except with agglomerations restricted to neighbouring 

clusters (see Chapter 3).

APC differs from WHM in how intercluster distance is calculated and in the way clusters 

are agglomerated. The intercluster distance between two clusters, C, and Cp d*(Ci,,Cj,), 

in APC employs a histogram based estimation of the density of observations falling 

within a hypercylindrical region extending between the centroids of clusters found in the 

initial pattern partitioning stage. Once the density has been estimated at a number of 

discrete intervals, G -  {g,, g2, .... gm}, within this hypercylindrical region, intercluster 

distance is calculated based on the highest and/or lowest densities found within each of 

the subcylindrical regions. WHM on the other hand calculates d*(Ct, Cp) as being 

proportional to density at the midpoint between the two cluster centroids. APC and 

WHM also differ in how the initial clusters are agglomerated. WHM uses the single 

linkage algorithm while APC generates a connected graph. The connected graph 

approach has the advantage of allowing agglomerations to occur between initial clusters 

that exists within the same previously agglomerated cluster but have not yet been linked 

together with a line segment. This enables APC to more faithfully model noncompact 

cluster shapes.

The two stage process of generating an initial clustering via a pattern partitioning 

methods followed by the systematic agglomeration of neighbouring clusters based on 

their centroids has also been previously proposed. Murtagh (1995) has also suggested a 

hybrid clustering approach where neighbouring outputs of a Kohonen network are
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hierarchically agglomerated based on their proximity in the output layer (feature map). 

However, Murtagh’s technique is more similar to other approaches of using standard 

hierarchical techniques to cluster pre-pattern partitioned data (via k-means) as developed 

by Wishart (1978) and Beale (1969). APC differs from these methods by using a density 

based metric of intercluster distance as in WHM and in the way APC agglomerates via a 

connected graph. APC also differs in this respect from Chaudhuri and Chaudhuri (1997, 

1995) in that they use a MST based approach to cluster agglomeration. Moreover, their 

measure of intercluster distance is based on measuring cluster overlap as opposed to 

density.

The direct searching of discrete regions of the pattern space between clusters in APC to 

determine the intercluster density is similar in spirit to that of Chaudhuri et al (1992) and 

Liu and Tsai (1989). The difference here being that Chaudhuri et al search a number of 

strips in a finite number of directions from the cluster centroid. Liu and Tsai 

systematically search linear projections of the data onto orthogonal axis for localised 

areas of low pattern density. APC on the other hand restricts the search to the spaces 

between other cluster centroids. Moreover, neither Chaudhuri et al (1992) nor Liu and 

Tsai (1989) use their methods to generate hierarchical agglomerations.

9.4 Future Work

Additional research to extend the findings of this thesis follow from the limitations noted 

above. Regarding APC, a more detailed examination of the merits of a wide range of 

intercluster density estimation methods needs to be examined. For example, it would be 

interesting to test the relative clustering abilities of different versions of APC using
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nearest neighbour, naive estimates and kernel based methods. Although these method are 

computationally expensive, it is possible they could provide better performance.

As noted above, APC could to be examined under a wider range of experimental 

conditions. This could include the use of categorical, binary and mixed data. However, 

the use of these data types may require modification of the interpattem distance measure 

and density estimation approach taken here. It would also be particularly interesting to 

apply APC to specific problem areas where complex data shapes are known to exist. For 

example, image analysis data often contains highly irregular cluster shapes. As this type 

of data is often noisy and quite voluminous, APC could provide an effective technique 

for segmenting image data.

Different implementations of the linked line segment representation could also be 

explored. APC represents cluster structure with linear approximation of the cluster 

shape. Other line fitting methods could also be used. For example, once the piecewise 

linear approximation of the cluster shape has been established, a nonlinear line fitting 

method could be incorporated to try and get a better fit of the portion of the data 

identified as a cluster.

Finally, the determination of how one decides on when to stop the agglomeration process 

was only briefly touched on. Part of the reason for this is that no particular cut-off 

method particular to APC was proposed in this thesis. However, an evaluation of a wide 

variety of stopping rules could be examined for use in APC. In fact, what systematic 

evaluation of stopping rules that have been made (e.g. Atlas and Overall, 1994; Milligan 

and Cooper, 1985; Milligan, 1981b; Mojena, 1977) have not looked at the effects of 

cluster shape. Given that many of the stopping rules that have been proposed assume
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multivariate normal clusters, it would be interesting to see how cluster shape interacts 

with these methods both in APC and in other clustering methods.
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Al: Seeding methods for k-means and 
the moving method

Both k-means and the moving method require an initial partition of the data (referred to 

as a set of seed points or vectors) to initialise the cluster formation process. As neither 

method is guaranteed to converge to an optimal minima, it is generally recommended 

that these methods be run repeatedly with different seed values in order to increase the 

likelihood of obtaining good convergence (Backer, 1995). The choice of initial seeds is 

therefore important as it its the initial seed values can determine the quality of 

convergence state k-means or the moving methods will settle to.

The following is a brief survey of techniques for seeding these methods. Seeding 

techniques can be divided into two categories based on the underlying strategy of how 

the seeding should be done (Anderberg, 1973). One approach is to try and ensure 

"indifference" in regards to how the initial seed points are selected (Doyle, 1966). The 

idea here is to select seeds in such a way that will not introduce any bias towards one 

clustering solution or another in the initial configuration. Indifference in this respect can 

be attempted by either using some degree of random selection in choosing initial seeds 

or by trying to ensure that the initial seeds are well separated and span the data set. The 

other approach to finding initial seeds involves some "intelligent" guessing in trying to 

find initial seed values. These methods generally involve partially solving the clustering 

problem and then choosing seeds that are likely to fall near where the centroids of the 

optimal clusters lie.
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A l.l Indifference methods

Indifference methods generally involve choosing patterns from the data set to serve as 

seed points. Various ways of doing this have been proposed such as choosing the first k 

patterns (MacQueen, 1967), every (n/k)th pattern (Anderberg, 1973) and randomly 

selected patterns (McRae, 1971). Random pattern selection has the advantage of being 

quick, simple and ideally suited for running multiple clusterings to help overcome 

convergence to local minima.

Anderberg (1973) also discusses number of other indifference methods for seeding k- 

means which involve finding a set of seed patterns that span the data set. Anderberg 

suggests accomplishing this by synthetically creating a set of seed points that span the 

data set. Another method is to randomly choose patterns from the data set but only using 

those seeds that are well separated from each other. To do this Astrahan (1970) suggests 

first calculating the local density around each pattern. Use the highest density point as 

the initial seed. Find the next highest density point and use it as the next seed if its 

distance from the all other seeds is greater than some threshold, d. Continue this process 

until one has the desired number of initial seeds. Ball and Hall (1967) propose a similar 

method except the initial seed is chosen as the mean vector of the data set. Subsequent 

seeds are chosen from the remaining data patterns that are of at least d distance away 

from all other seeds.

A1.2 Intelligent Guessing Methods

A number of schemes have been proposed involving the use of an initial clustering 

method to generate a crude partition of the data whose centroids can then be used as seed
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values. Lance and Williams (1967b) and Wolfe (1970) explored using hierarchical 

clustering methods to find the initial clusters. Running on a small random sample of the 

data (i.e. n < 300) may make this approach feasible. Tou and Gonzalez (1974) 

recommend that the sampling be done with the constraint that sample patterns are at 

least d distant form each other, d in this case generally does not have to be as large as 

that used when finding the seed points directly as with Ball and Hall (1967). Shattuck et 

al (1991) suggest that the choice of d when sampling is not crucial when creating an 

initial sample set.

Evolutionary computing strategies have also been applied to seed selection. Babu and 

Murty (1993) used a genetic algorithm (GA) based method. Effectively, this approach is 

equivalent to running multiple runs of k-means via the GA to find improved seed values. 

The initial seed values are found by dividing up the patterns space into a 

multidimensional hyperrectangular grid. Seed values are taken from the grid vertices. 

The GA essentially provides a guided random search of different possible seed values 

which attempts to ensure good seeds are preserved while bad seeds are discarded.

A1.3 Comparison studies

A number of studies have examined the effects of different seeding methods. Most of 

these have compared the random pattern approach to the use of hierarchical methods to 

find initial seeds. Blashfield (1977) found better clustering with random pattern seeding 

than with using Ward’s method to find the initial seeds. Milligan (1980) however found 

that using average linkage to find initial seeds outperformed the random pattern 

approach. Results in Scheibler and Schnieder (1985) also indicated that seeding with

181



clusters found by Ward’s method performed better than random patterns. Cowgill (1993) 

also compared using Ward’s methods to random seeding. Cowgill found that when 

clusters were well separated, Ward based seeding performed best. However, when the 

clusters were of different sizes or allowed to overlap, results were generally mixed. In 

the case of small numbers of well separated clusters, the likelihood of choosing random 

seeds that exclude one of the clusters is relatively high. In this case, Ward’s method may 

be a better approach. However, as Ward’s method is biased towards equally sized, 

hyperellipsoidal clusters, under other conditions it may not perform as well.

Finally, Shattuck et al (1991) examined seven seeding methods on three data sets 

involving the categorisation of clay minerals and aerosol particles. The first method 

called the "merge" method was similar to the Ball and Hall (1967) and Astrahan (1970) 

methods described above. Here, the two closest patterns were found with the second of 

the pair rejected as a possible seed. The process is repeated with the remaining patterns 

and the rest of the data set until the desired number of seeds is left in the pool of possible 

seeds. The second method examined was the "refine" approach found on the 

FASTCLUST procedure in the SAS statistics package. The refine method is similar to 

selecting random patterns as seeds except that temporary clusters are generated by 

assigning each pattern to its closest, randomly selected seed. The centroids of these 

clusters are then used as the seeds of the k-means procedure. The other five methods 

were the use of centroid linkage, single linkage, complete linkage, average linkage and 

Ward’s method run on a sample of the data to find an initial clustering whose centroids 

were used as initial seeds. Shattuck et al concluded that the refine, merge and single 

linkage seeding methods were best for finding fine cluster structure. The centroid 

linkage, Ward’s and average linkage were best for finding the overall course structure of 

the data. Ultimately, they argue that it is best to apply both groups of seeding methods in
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order to ensure a good, comprehensive view of the data, as at least in their application, 

no single seeding method seemed to perform optimally.

A1.4 Conclusions

Given that many of the comparison studies other than Shattuck et al relied on MVN 

simulated data, it is not surprising that Ward’s method of seeding often performed best in 

previous studies. This is further illustrated by the results of CowgilTs study where Ward’s 

approach performed best on well separated MVN clusters while not as well on 

overlapping or variably sized clusters. In short, Shattuck et aVs conclusions seem to be 

the most appropriate. There probably is no overall superior seeding method. What works 

best and when is essentially problem dependant. However, using a number of methods, 

particularly alternating between one biased towards course structure with one biased 

towards fine grained structures could help reduce the probability that potentially useful 

cluster structures are overlooked.
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A2: Alternative density estimation 
methods for use in APC

This appendix gives a brief discussion of a number of commonly used density estimation 

techniques and examines how they can be incorporated into the intercluster density 

estimation stage of APC. The various advantages and disadvantages of utilising these 

different techniques in the context of APC is also explored. However, as the histogram 

approach is the most efficient computationally and the easiest to implement, it is the only 

density estimation method used in the empirical sections of this thesis.

A2.1 Density Estimation

Density estimation is a branch of statistics that attempts to estimate the density function 

of observed data. Density estimation techniques can be divided into two types: 

parametric and nonparametric. Parametric density estimation begins with the assumption 

that the distribution of the data belongs to some known family of probability 

distributions. If one’s assumptions are correct, one only then needs to estimate the 

parameters of that distribution to fit the model to the data. For example, if the data is 

known or assumed to be normally distributed, the density estimate of the data can be 

calculated by simply estimating the mean and variance of the data.

Nonparametric density estimation does not assume the data are distributed under some 

particular family of distributions. Rather, they are bottom up techniques that allow the 

data to determine the model as opposed to top down parametric techniques that attempt
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to fit a model to the data. Obviously if one had sound reason to believe that the data 

between the centroids is distributed in some particular fashion along the lines of a known 

family of distributions than the use of parametric techniques would be appropriate in 

APC. However, cluster analysis is primarily used in data exploration where little is 

known about the data. Therefore, in most situations nonparametric techniques are 

appropriate and will be only ones discussed here. The range of nonparametric density 

estimation techniques is far to large to give a complete survey. This discussion will 

concentrate on naive estimators, kernel estimators and nearest neighbour methods. A 

discussion of the use of histograms has already been given in Chapter 4. For a survey of 

the other methods as well as a more thorough treatment of density estimation in general, 

see Silverman (1986).

A2.2 The Naive Estimator

The naive estimate is similar to the histogram approach except that rather than dividing 

the axis up into successive bins, each bin of width h is centred on each data point. The 

density as each \ n is defined as

The naive estimate has the advantage of not biasing the estimate with the positions of the 

bins however it is slightly more computationally expensive. First, it would require all 

patterns within a distance of h to the hypercylinder to be found as well in order to 

prevent the density along the edges of the hypercylinder from being underestimated. This 

will also require an additional step to test the distance of patterns from the centroids at 

the ends of the cylinders. On top of this, the number of bins increases by a factor of m.
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A2.3 The Kernel Estimator

The kernel estimator can be thought of as a generalisation if the naive estimate. If one 

were to set h such that it included all of the observations in the sample and weight the 

contribution of each pattern to the density estimate at x based on its distance from x, one 

has the kernel estimate of f(\). A wide variety of weighting functions can be used. The 

Gaussian is a common example:

1
V2ÏÏ

a2.2

where <r is a smoothing parameter which operates in much the same way as the number 

of bins in histograms and the naive estimate. Too large a value of a  will smooth out even 

local effects while too small a value will enable small and perhaps trivial local 

conditions to significantly influence the density estimate at that point.

The kernel estimate has the drawback of requiring calculation of the distance between 

each of the patterns in the data set significantly increasing the computational cost. 

Although theoretically the entire data set should be used when used the kernel estimator 

for each hypercylinder, only a subset is needed that are found near the edges. These can 

be found by only including those observations whose distance to the edge of the 

hypercylinder is small enough to effect the output of eq. (a2.2). This would help reduce 

the computational load to some degree. However, once this subset of patterns has been 

found, the weighted interpattem distance of all patterns in the subset would still have to 

be calculated.
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A2.4 The Nearest Neighbour Estimate

In the nearest neighbour estimate (NNE) that density at x is measured as a function of 

the distance of the g?/?-nearest neighbour to x. is defined as:

f(V  = (g - l)/(2mdg(\)) a2.3

where dk(\) is the distance from x to its kth nearest neighbour.

In highly dense areas dg(\) will be smaller, while in low density areas dg(\) will be 

larger. Therefore the density at x is proportional the distance between x and its gth 

nearest neighbour. Ultimately, the overall degree of smoothing is dependant on g, but the 

method does allow some adjustment to the smoothing to be determined by the local 

density. The main computational cost of this approach is that for each hypercylinder, the 

calculation of each pattern’s g-nearest neighbours is required which for large data sets 

may be costly.

A2.5 Summary

The naive, NNE and kernel estimators are significantly more expensive than the 

histogram estimator. Moreover, the above discussion of the computational costs of both 

the NN and kernel estimators does not include the determination of the size of 

smoothing parameter (a for the kernel estimator and g for the NN). The histogram 

approach is more than adequate for the task, translates easily into the UDD and ADD 

distance measures, is computationally efficient a relatively simple to implement.
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However, note that although the other three estimators have larger computational 

overheads, they directly calculate the destiny of each observation in the intercluster area, 

which is more parsimonious with Hartigan’s definition of a naturalcluster than 

histograms. However, because of the higher complexity and CPU costs, the histogram 

method is the only density estimation technique empirically examined in this thesis.
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A3: Sample Code

This appendix contains the C code used to evaluate the hybrid clustering methods. It also 
includes sample code for the partitioning algorithms used in chapter 6. The following is 
a summary of key functions included the code listings below:

Data generation:
set_centres( ) 
create_data( ) 
add_noise( ) 
gauss() 
conic ( ) 
third_ring( ) 
t__third_ring( ) 
ring( ) 
line( )

Sets cluster centres (Chapter 6).
Data set creation driver.
Adds noise to data.
Gaussian cluster structure.
Conic shaped cluster generator.
Generates a 120 degree arc shaped cluster. 
Generated a 240 degree arc shaped cluster. 
Generates a ring shaped cluster.
Generates a linear shaped cluster.

APC:
apc( ) 
get_sd( ) 
check_density( ) 
near_line_seg( ) 
adj()

Main APC driver.
Returns standard deviation of clusters.
Returns intercluster density
Returns distance of observation from hypercylinder axis. 
Determines neighbouring clusters.

Other clustering algorithms:
k_means( ) K-means.
moving( ) The moving method
kohonen() WTANN and KSONN.
slink( ) Single linkage.
alink( ) Average linkage.
clink( ) Centroid linkage.
ward( ) Ward’s method.
wong( ) Wong’s hybrid method
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Monte Carlo simulator for hybrid clustering algorithms 
Copyright Eric W. Tyree“
City University 
Northampton Square 
London, EC1VOHB 
United Kingdom

xx - gasdev(), ranl() and ran_int() random number routines were adapted from: 
Press, W. EL, Teukolsky, S. A., Vetterling, W. T., and Flannery B. P. (1995) 
Numerical Recipes in C, Second Ed., Cambridge University Press, Cambridge

HH_MC.C

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <time.h> 
#include <dos.h>

#define RUNS 30 /* number of runs */
#define MAXPATS 1500 /* max number of patterns */
#define MAXVARS 2 
#define MAXNOISE 4 
#defme MAXCLUSTERS 20 
#defme EPOCHS 100 
#defme L_RATE 0.2 
#defme MAXSEGMENTS 100 
#defme MIN_SEED 0.0 
#defme MINWINS 38 
#defme DEBUG 0 
#defme PIE 3.14159265359

/* max number of variables */
/* max noise type */
/* max clusters */
/* SONN learning epochs */
/* SONN learing rate */
/* max number of bins in int.clust. histogram */ 

/*(double)vars/40.0*/
/* minumum patterns needed in each PP cluster */ 
/* 1 = print debug statements */

/**** #defs for random number generators see Press et al (1995) ****/ 
#defmeIA 16807 
#defineIM 2147483647 
#define AM (1.0/IM)
#defme IQ 127773
#defme IR 2836
#defme NTAB 32
#define NDIV (1+(IM-1)/NTAB)
#define EPS 1.2e-7 
#defme RNMX (1.0-EPS)

double SEG_WIDTH =1.0; 
int SD_TYPE = 0;

190



int ADD = 1 ;

void re_set(int init_parts, int dimension, int num_pats); 
void shuffle_data(int pats);

/*data set creation routines */ 
/* randomizes order of data*/

int smooth(int num_pats, int num_clusts);
double ranl(void);
double noise(double off_set);
int ran_int(int num);
double gasdev(void);

/* returns remainder of num_clusts/num_pats */
/* returns a uniform random num. from 0.0 to 1.0 */ 
/* same as above but from 0.0 to off_set */
/* returns a random number from 0 to num*/
/* returns Gaussian deviate of m = 0, sd = 1 */

/* data creation driver*/
void create_data(int num_pats,int dimension,int data_type,int num_clusts, double disp, double **mean); 

/* sets cluster centres */
void set_centres(int num_clusts, int vars, double **mean);

/* adds noise to data */
void add_noise(int num_pats,int dimension,int noise_type, double disp);

/* replaces vars variables with random uniform noise in the range of min to max */ 
void uniform(int vars, int samples, int start, double max, double min);

/* simulated data cluster shape creation routines */
void guass(long clust_num,double off_set,int vars, samples, int start, double *mean, double *variance);

void conic(int samples, int clust_num, double off_set,int start, vars,double *centre, double disp); 
void third_ring(int samples, int clust_num,double off_set,int start, vars, double r.double width,double 

♦centre);
void t_third_ring(int samples, int clust_num,double off_set,int start, vars, double r,double width,double 

♦centre, double start_sec);
void ring(int samples, int clust_num,double off_set,int start,int vars, double r.double width.double 

♦centre);
void line(int samples, int clust_num,double off_set,int start,int vars,double *centre, double disp, double

/* partitioning clustering algorithms */
int k_means(int pats, int vars, int clusters, int converge);
int moving(int pats, int vars, int clusters, int converge);
void kohonen(int num_clusts,int vars, int pats, int epochs, double l_rate, int nbs,int top); 
int gct_partition(int pats,int vars,int num_clusts);

double get_sd(double wc,double wg);
double check_density(int clust2,int clustl.int vars, int pats, double width); 
double near_line_seg(double B, int pat,int clustl, int clust2,int vars,double width); 
int adj(int pats, int vars, int stop, int k)

/* hierarchical clustering algorithms */ 
void slink(int pats, int vars, int stop, int k); /* single linkage */
void alink(int pats, int vars, int stop, int k); /* average linkage */
void clink(int pats, int vars, int stop, int k); /* centroid linkage */
void ward(int pats, int vars, int stop, int k); /* Ward’s technique */
int wong(int pats, int vars, int stop, int k); /* Wong’s hybrid method

yint);

/* APC */

191



returns 0 if "stop" clusters 
cannot be found */

double get_adj_rand(int num_clusts, int pats /* get rand statistic */
double get_mem(int num_clusts, int vars, int pats); /* get cluster memberships

of each pattern */
/* Global variables */

double centroids[MAXCLUSTERS][MAXVARS]; /* cluster centroids */ 
double d_matrix[MAXCLUSTERS][MAXCLUSTERS]; /* distance matrix */

double **data; /* data vectors */
int *cat; /* actual cluster membership */
int *mem; /* clstr. memersips of observations found via clustering algorithms */

double **mean; /* holds cluster centres */
int orient[MAXCLUSTERS],seedx[MAXCLUSTERS],seedy[MAXCLUSTERS]; 
double y_int[MAXCLUSTERS];
int c_mem[MAXCLUSTERS]; /* holds cluster membership of each pattern */ 
long *idum;
double temp_cents[MAXCLUSTERS] [MAX VARS];

/* these hold various stats
0 = k-means, 1 = moving, 2 = kohonen, 3 = unsupervised */

double r[5][RUNS]; /* holds adjusted rand results */
double r_mean[4],r_var[4];
double con[4][RUNS]; /* holds convergence error results */
double con_mean[4],con_var[4]; 
int iter[2] [RUNS];
double iter_m[2],iter_v[2]; /* holds number of iterations */
FILE *fp,*sas;

void main(void)
{

char file[50]; 
int run; 
int dimension 
num_pats = MAXPATS, 

noise_type, 
data_set, 
num_clusts; 
double disp; 
int c,m,p,v,w; 
int init_parts,parts; 
int d,set,noise,clust,var;

/* number of variables */
/* data set size */
/* type of noise condition */
/* data set index */
/* number of clusters */
/* disperison */

/* counters for output to sas */

data = (double **)malloc(MAXPATS*sizeof(double *)); 
for(c = 0; c < MAXPATS;c++)

data[c] = (double *)malloc(MAXVARS*sizeof(double)); 
mem = (int *)malloc(MAXPATS*sizeof(int)); 
cat = (int *)malloc(MAXPATS*sizeof(int)); 
mean = (double **)malloc(MAXCLUSTERS*sizeof(double*));
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for(m = 0; m < MAXCLUSTERS; m++)
mean[m] = (double *)malloc(MAXVARS*sizeof(double));

printfC'ENTER SAS OUTPUT FILE\n"); 
gets(file);

if((sas = fopen(file,"w")) == NULL)
{

printf("COULD NOT OPEN %s\n",file); 
exit(0);

for(data_set = 4; data_set <= 4; data_set++) 
for(dimension = 4;dimension <= 10; dimension += 3) 
for(num_clusts = 2; num_clusts <= 2; num_clusts += 2)
{

set_centres(num_clusts,dimension,mean); 
for(noise_type = 0; noise_type <= 4; noise_type++) /* noise */ 
for(disp = 0.025; disp <= 0.0755; disp += 0.025) /* set dispersion */
for(parts =15; parts <=15; parts += 5) /* initial number of clusters */
{

for(run = 0; run < RUNS; run++) /* repeat */
{

/* re-run same dataset RUNS times */

create_data(num_pats,dimension,data_set,num_clusts, disp, mean); 
shuffle_data(num_pats);
add_noise(num_pats, dimension, noise_type, disp); 
shuffle_data(num_pats);

init_parts = get_partition(num_pats, dimension, init_parts); 
for(c = 0; c < init_parts; C++)

for(v = 0; v < dimension; v++)
temp_cents[c][v] = centroids[c][v];

ADD = 0; /* RUN APC WITH UDD */

re_set(init_parts, dimension, num_pats); 
apc(init_parts, dimension, num_pats, num_clusts); 
r[0][run] = get_adj_rand(init_parts,num_pats); 
fprintf(sas,"apc_u %.41f %d %d %d %d %.31f

%d\n",r[0][run],data_set,num_clusts,dimension,noise_type,disp,parts);

ADD = 1; /* RUN APC WITH ADD */

re_set(init_parts, dimension, num_pats); 
apc(init_parts, dimension, num_pats, num_clusts); 
r[0][run] = get_adj_rand(init_parts,num_pats); 
fprintf(sas,"apc_a %.41f %d %d %d %d %.31f

%d\n",r[0][run],data_set,num_clusts,dimension,noise_type,disp,parts);

/* RUN WONGS HYBRID METHOD */

/* data set */
/* variables */
/* number of clusters */

/* hold cluster centres constant */
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re_set(init_parts,dimension,num_pats); 
wong(num_pats,dimension,num_clusts,init__parts); 
r[0][run] = get_adj_rand(init_parts,num_pats); 
fprintf(sas,"wong %.41f %d %d %d %d %.31f

%d\n",r[0][run],data_set,num_clusts,dimension,noise_type,disp,parts);

/* RUN SINGLE LINKAGE */

re_set(init_parts, dimension, num_pats); 
slink(num_pats,dimension,num_clusts,init_parts); 
r[0][run] = get_adj_rand(init_parts,num_pats); 
fprintf(sas,"slink %.41f %d %d %d %d %.31f

%d\n",r[0][run],data_set,num_elusts,dimension,noise_type,disp,parts);

/* RUN CENTROID LINKAGE */

re_set(init_parts,dimension,num_pats); 
clink(num_j)ats,dimension,num_clusts,init__parts); 
r[0][run] = get_adj_rand( init_parts,num_pats); 
fprintf(sas,"clink %.41f %d %d %d %d %.31f

%d\n",r[0][run],data_set,num_elusts,dimension,noise_type,disp,parts);

/* RUN AVERAGE LINKAGE */

re_set(init_parts, dimension, numjpats); 
alink(num_pats,dimension,num_clusts,init_parts); 
r[0][run] = get_adj_rand(init_parts,num_pats); 
fprintf(sas,"alink %.41f %d %d %d %d %.31f

%d\n",r[0][run],data_set,num_clusts,dimension,noise_type,disp,parts);

/* RUN WARDS METHOD */

re_set(init_parts, dimension, num_pats); 
ward(num_j)ats,dimension,num_clusts,initj)arts); 
r[0][run] = get_adj_rand(init_parts,num_pats); 
fprintf(sas,"ward %.41f %d %d %d %d %.31f

%d\n",r[0][runj,data_set,num_clusts,dimension,noise_type,disp,parts);

} /* end RUNS loop */
} /* end dispersion loop */

} /* end num_clusts loop */
free(mem);
free(cat);

for(c = 0; c < MAXPATS;c++) 
free(data[c]);

/* fclose(fp); */
for(m = 0; m < MAXCLUSTERS; m++)
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free(mean[m]);
free(mean);

}/* END MAIN ROUTINE */

void re_set(int init_parts, int dimension, int num_pats)
{

int c,v;
for(c = 0; c < init_parts; C++)

for(v = 0; v < dimension; v++)
centroids[c][v] = temp_cents[c][v]; 

get_mem(init_j)arts,dimension,numjats);
}

void set_centres(int num_clusts, int vars, double **mean)
{

int c,m,y;
int used[MAXCLUSTERS]; 
long temp; 
double delta;

temp = 0 - (long)time(NULL); /* seed random number generator */ 
idum = &temp;

/* randomly assign means on each dimension for each cluster to
ensure maximum separation of means on each dimension*/

delta = 1.0/(num_clusts + 1); 
for(m = 0; m < vars; m++)
{

for(c = 0; c < num_clusts; C++) 
used[c] = c+1;

for(c = 0; c < num_clusts; C++)
{

do{
y = ran_int(num_clusts);

}while(!used[y]); 
mean[c][m] = used[y]*delta; 
used[y] = 0;

}
for(c = 0; c < num_clusts; c++)
{

seedx[c] = ran_int(vars); /* randomly set orientation */ 
do{

seedy[c] = ran_int(vars);
}while(seedy[c] == seedx[c]);

/* randomly choose orientation of density gradient - 
this is used in the conic clusters */ 

if(ranl() >= 0.5)
orient[c] = 1; 

else
orient[c] = 0;
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}
}

double get_mem(int num_clusts, int vars, int pats)
{

int c,v,p;
double dist,min_dist,error;

/* get the cluster memberships of individual patterns as determined by the
partitioning algorithm. A pattern is a member of the cluster who’s centroid 
it is closest to */

y_int[c] = ran 1();

error = 0.0;
for(p = 0; p < pats; p++)

min_dist = 99999999.0; 
for(c = 0; c < num_clusts; c++)
{

dist = 0.0;
for(v = 0; v < vars; v++)

dist += (data[p][v] - centroids[c][v])*(data[p][v] - centroids[c][v]); 
if(dist < min_dist)
{

mem[p] = c; 
min_dist = dist;

}
error += min_dist;

} /* end cluster loop */
} /* end pattern loop */ 
return) error/(double)pats);

double get_adj_rand(int num_clusts, int pats)
{

/* calculates adusted RAND coefficient */ 

int i,j,p;
double crand,ni2,nj2,nij2,n2;

/* stats for adjusted RAND */
double nij [MAXCLUSTERS] [MAXCLUSTERS] ;
double ni[MAXCLUSTERS];
double nj [MAXCLUSTERS];

n2 = (double)pats*((double)pats - 1.0)/2.0;

for(i = 0; i < num_clusts; i++)
{

nj[i] = 0.0; 
ni[i] = 0.0;
for(j = 0; j < num_clusts; j++)

nij[i][j] = 0.0;
}
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for(p = 0; p < pats; p++)
nij[ mem[p] ][ cat[p] ] += 1.0; 
for(i = 0; i < num_clusts; i++)

for(j = 0; j < num_clusts; j++)

ni[i] += nij[i][j]; 
nj[j] += nij[i][j];

}

ni2 = 0.0; 
nj2 = 0.0; 
nij2 = 0.0;
for(i = 0; i < num_clusts; i++)
{

if(ni[i] > 1.0)
ni2 += ni[i]*(ni[i] - 1.0)/2.0; 
if(nj[i] > 1.0)

nj2 += nj[i]*(nj[i] - 1.0)/2.0; 
for(j = 0; j < num clusts; j++)
{

if(nij[i][j]>1.0)
nij2 += nij[i][j]*(nij[i]D]-1.0)/2.0;

crand = (nij2 - (ni2*nj2/n2))/((ni2/2.0) + (nj2/2.0) - ((ni2*nj2)/n2)); 
retum(crand);

}

int k_means(int pats, int vars, int clusters, int converge)
{

/* This procedure implements Forgy’s k-means algorithm */

int c,v,closest,iteration,pt;
int p,num_change;
int membership[MAXPATS];
double new_centroids[MAXCLUSTERS][MAXVARS]; 
int num_members[MAXCLUSTERS]; 
long temp;
double dist, min_dist,*dtemp; 
int pl,p2,tempp,g,ctemp,mtemp; 
long temp;

for(p = 0; p < pats;p++)
membership [p] = -1;

/* seed centroids and initialize */
temp = 0 - (long)time(NULL); /* seed random number generator */ 
idum = &temp;

/* initialize*/
for(c = 0; c < clusters; C++)

{
for(v = 0;v < vars; v++)

new_centroids[c][v] = 0.0;
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}
num_change = converge + 1; 
iteration = 0;

while(num_change > converge)
{

num_change = 0;
/****** data shuffle *******¡1=/
temp = 0 - (long)time(NULL); /* seed random number generator */ 
idum = &temp;

for(p = 0; p < pats;p++)
{

g = ran_int(pats); 
dtemp = data[p]; 
ctemp -  cat[p]; 
mtemp = membershipfp]; 
data[p] = data[g]; 
cat[p] = cat[g];
membership [p] = membership [g]; 
data[g] = dtemp; 
catfg] = ctemp; 
membership[g] -  mtemp;

}

num_members[c] = 0;

for(p = 0; p < pats; p++)
{

min_dist= 1000000.0; 
closest = 0;
for(c = 0; c < clusters;c++) /* find cluster centroid closest to pattern */
{

dist = 0.0;
for(v = 0; v < vars; v++)

dist += (centraids[c][v] - data[p][v])*( centroids[c][v] - 
data[p][v]);

if(dist < min_dist)
{

min_dist = dist; 
closest = c;

}
num_members[closest]++; 
for(v = 0; v < vars; v++)

new_centroids[closest][v] += data[p][v]; 
if(closest != membershipfp]) 

num_change++; 
membershipfp] = closest;

} /* end pattern loop*/
for(c = 0; c < clusters; C++) /* reclaculate cluster centroids */
{

for(v = 0;v < vars; v++)
{
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if(num_members[c] == 0); 
else

centro ids[c][v] =

new_centroids[c][v]/(double)num_members[c];
new_centroids[c][v] = 0.0;

}
num_members[c] = 0;

}
iteration++;

} /* end iteration loop */ 
re tum(iteration);

int seed(int pats, int clusters, int vars)
{

int c,cs,v,reject,g; 
double dist;

/* this procedure randomly select patterns to serve as seeds. The only constraint is 
that they be MIN_DIST distant from each other. */ 

g = ran_int(pats); /* randomly allocate a pattern as the first seed */ 
for(v = 0; v < vars; v++)

centroids[0][v] = data[g][v];

for(cs = 1; cs < clusters;cs++) /* do the same for rest of seeds */
{

reject = 0; 
do{

g = ran_int(pats);
for(c = 0; c < cs; C++) /* make sure seed is MIN_SEED dist from all others */

{
dist = 0.0;
for(v = 0; v < vars; v++)

dist += (data[g][vj - centroids[c][v])*(data[g][v] - c 
centroids[c][v]); 

if(sqrt(dist) < MIN_SEED)

printf("REJECT\n"); 
reject = 1;

}while(reject);
for(v = 0; v < vars; v++)

centroids[cs][v] = data[g][v];

retum(l);
}

int moving(int pats, int vars, int clusters, int converge)
{

/* This procedure implements the moving method. Only the best possible 
move is kept */
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int c,v, closest, iteration,pt; 
int p,num_change,min_index; 
int membership[MAXPATS];
double new_centroids[MAXCLUSTERS][MAXVARS];
int num_members[MAXCLUSTERS];
double dist, min_dist, error, test_error,*dtemp;
int order[MAXPATS];
int p 1 ,p2,tempp,g,ctemp,mtemp;
long temp;

temp = 0 - (long)time(NULL); /* seed random number generator */ 
idum = &temp;

for(c = 0; c < clusters; C++) /* initialize*/
{

num_members[c] = 0; 
for(v = 0; v < vars; v++)

new_centroids[c][v] = 0.0;
}

/* initialize initial clusters */ 
for(p = 0; p < pats; p++)
{

min_dist= 10000000.0;
m injndex = 0;
for(c = 0; c < clusters; C++)
{

dist = 0.0;
for(v = 0; v < vars; v++)

dist += (data[p][v] - centroids[c][v])*(data[p][v] - centroids[c][v]); 
if(dist < min_dist)
{

min_dist = dist; 
min_index = c;

}
}
membership [p] = min_index; 
num_members[min_index]++; 
for(v = 0; v < vars; v++)

new_centroids[min_index][v] += data[p][v];
}
for(c = 0; c < clusters; C++)
{

for(v = 0; v <vars; v++)
{

if(num_members[c] == 0); 
else

centroids[c][v] = new_centroids[c][v]/num_members[c];
}

}
num_change = converge + 1; 
iteration = 0;
while(num_change > converge)
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num_change -  0;
/****** data shuffle ********/
temp = 0 - (long)time(NULL); /* seed random number generator */ 
idum = &temp;

for(p = 0; p < pats;p++)
{

g = ran_int(pats); 
dtemp = data[p]; 
ctemp = cat[p]; 
mtemp = membership [p]; 
data[p] = data[g]; 
cat[p] = cat[g];
membership [p] = membership [g]; 
data[g] = dtemp; 
cat[g] = ctemp; 
membership [g] = mtemp;

}
for(p = 0; p < pats; p++)
{

test_error = 0.0;
/* calculate the cost of removing pat from its current cluster */ 

if(num_members[membership[p]] == 1); 
else
{

for(v = 0; v < vars; v++)
test_error += (centroids[membership[p]][v] - data[p][v])*

(centroids[membership[p]][v] - data[p][v]); 
test_error = (num_members[membership[p]]*test_error)/ 

(num_members[membership[p]] - 1);
}
min_index = membership [p];

/* calculate the cost of adding pat to each of the remaining clusters - find best */ 
for(c = 0; c < clusters; C++)

if(c != membership[p])
{

error = 0.0;
for(v = 0; v < vars; v++)

error += (centroids[c][v] - data[p][v])*
(centroids[c][v] - data[p][v]); 

error = (num_members[c]*error)/(num_members[c] + 1);

if(error < test_error) /**** find best move ****/
{

test_error = error; 
min_index = c;

if(min_index != membership[p])
{/* move pattern and adjust centoids, membership array etc. */
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for(v = 0; v < vars; v++)

centroids[membership[p]][v] =
((num_members [membership [p] ] *

centroids[membership[p]][v])

data[p][v])/(num_members[membership[p]] - 1);
centroids[min_index][v] =

((num_members[min_index] *
centroids[min_index][v]) +

data[p][v])/(num_members[min_index] + 1);
}
num_members [membership [p] ]- ; 
num_members [min__index]++; 
membership[p] = min_index; 
num_change++;

}
}/*** end pattern loop ***/ 
iteration++;

} /** end iteration ***/ 
retum(iteration);
} /*** END MOVING METHOD ***/

void kohonen(int num_clusts,int vars, int pats, int epochs, double l_rate, int nbs,int top)
{

/* This procedure implements both a Kohonen and standard unsupervised networks 
top = 1 (Kohonen), top = 0 (standard unsupervised) */

int p,e,pattem,pt; 
long temp;
int v,c,closest,start, finish;
double Oneans,init_Jeam,dist, c_dist,init_nbs;

init_nbs = floor(0.66*(double)num_clusts); 
nbs = (int)floor(0.66*(double)num_clusts); 
init_leam = l_rate;
means = (double *)malloc(vars*sizeof(double));

/**** randomize initial weights ****/

for(v = 0; v < vars; v++)
means[v] = 0.0; /*** first calc, means ***/

for(p = 0; p < pats; p++)
for(v = 0; v < vars;v++)

means[v] += data[p][v]; 
for(v = 0; v < vars; v++)

means[v] /= (double)pats;

temp = 0 - (long)time(NULL); /* seed random number generator */ 
idum = &temp;
for(c = 0; c < num_clusts; C++)
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for(v = 0; v < vars; v++)
centroids[c][v] = meansfv] + ((0. l*(double)ran_int(32000)/

(double)32000) - 0.05);
free(means);

/*printf(" epochs %ld\n",epochs); */ 
/********** network

for(e = epochs; e > 0; e—)
{

shuffle_data(pats); 
for(p = 0; p < pats; p++)
{

pattern = ran_int((int)pats); /* randomly choose a pattern */ 
c_dist = 999999999999.0; 
closest = 0;
for(c = 0; c < num_clusts;c++) /* find closest cluster */
{

dist = 0.0;
for(v = 0; v < vars; v++)

dist += fabs(data[pattern] [v] - centroids[c][v]); 
if(dist < c_dist)
{

c_dist = dist; 
closest = c;

}
/**** update weights of closest cluster (unit) ****/ 
if(top) /* use Kohonen’s topological update rule */
{

if(closest - nbs < 0) 
start = 0; 

else
start = closest - nbs; 

if(closest + nbs > num_clusts - 1) 
finish = num_clusts - 1;

else
finish = closest - nbs; 

for(c = start; c <= finish; C++)
for(v = 0; v < vars; v++)

centroids[c][v] += l_rate*(data[pattem][v] -
centroids[c][v]);

}
else /* update only the winning cluster (unit) */ 

for(v = 0; v < vars; v++)
centroids[closest][v] +=l_rate*(data[pattern][v] - centroids[closest][v]); 

} /*** end pattern loop ***/ 
l_rate = l_rate - init_leam/(double)epochs; 
nbs = (int)floor(init_nbs*(double)e/(double)epochs);

void create_data(int num_pats,int dimension,int data_type, int num_clusts, 
double disp, double **mean)
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double off_set = 0.001; 
double *variance; 
int m,pats,extra,c,shape,p; 
long temp;

/* This procedure drives the procedures that generate the simulated 
data. */

variance = (double *)malloc(dimension*sizeof(double));
temp = 0 - (long)time(NULL); /* seed random number generator */
idum = &temp;

/* calculate the number of patterns in each cluster,
save any remainder in extra variable. Last cluster to be produced
will have pats/num_clusts + extra patterns in it */
pats = smooth(num_pats,num_clusts);
xtra = num_pats%num_clusts;

for(m = 0; m < dimension; m++) /* set dispersion */ 
variance[m] = disp;

if(data_type == 0) /* Gaussian clusters */
{

/* generate all but last cluster */ 
for(c = 0; c < num_clusts - 1 ; c++)
guass(/*clust_num,off_set,vars,samples,start,*mean,*variance*/ 

c,off_set,dimension,pats,c*pats,mean[c], variance);

/* generate last cluster to include patterns that are left over 
from the the division of num_pats/num_clusts */ 

if(DEBUG) printf("cnum %d, dim %d samps %d start %d \n",num_clusts - 1, 
dimension,pats + extra,pats*(num_clusts - 1)); 

guass(/*clust_num,off_set,vars, samples, start, *mean,* variance*/ 
num_clusts - 1 ,off_set,dimension,pats + extra, 
pats*(num_clusts - l),mean[num_clusts-l],variance);

else if(data_type == 1) /* third of ring shaped clusters*/
{

/* set centres as with Gaussian using mean to hold centre coordinates */
/* generate all but last cluster */

for(c = 0; c <  num_clusts - 1; C + + )

third_ring(/*samples,clust_num,off_set,start,vars,r,width*/ 
pats,c,off_set,pats*c,dimension,0.2,disp,mean[c]);

/* create remaining cluster */

third_ring(/*samples,clust_num,off_set,start,vars,r,disp, centre*/
pats+extra,num_clusts - l,off_set,pats*(num_clusts - l),dimension, 
0.1,disp,mean[num_clusts - 1]);
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}
else if(data_type == 2) /* conic shaped clusters*/
{

for(c = 0; c < num_clusts - 1 ;c++)
conic(/*samples, clust_num, off_set,start, vars,mean,disp*/ 

pats,c,off_set,pats*c,dimension,mean[c],disp);

conic(/*samples, clust_num, off_set, start, vars,mean,disp*/
pats+extra,num_clusts - 1 ,off_set,pats*(num_clusts - 1), 
dimension,mean[num_clusts - l],disp);

}
else if(data_type == 3) /* random mixture of shapes */
{

for(c = 0; c < num_clusts - 1 ;c++)
{

shape = ran_int(3); 
if( shape == 0)

guass(/*clust_num,off_set,vars,samples,start,*mean,*variance*/ 
c,off_set,dimension,pats,c*pats,mean[c],variance); 

else if(shape == 1)
third_ring(/*samples,clust_num,off_set,start, vars,r,width*/ 

pats,c,offLset,pats*c,dimension,0.15,disp,mean[c]); 
else if(shape == 2)

conic(/*samples, clust_num, off_set,start, vars,mean,disp*/ 
pats,c,off_set,pats*c,dimension,mean[c],disp);

else
{

printf("SHAPE INDEX ERROR\n"); 
exit(O);

}
}

shape = ran_int(2); 
if(shape -- 0)

guass(/*clust_num,off_set,vars, samples, start, *mean,*variance*/ 
num_clusts - 1 ,off_set,dimension,pats + extra, 
pats*(num_clusts - l),mean[num_clusts-l],variance);

else if(shape == 1)
third_ring(/*samples,clust_num,off_set,start,vars,r,disp, centre*/ 

pats+extra,num_clusts - 1 ,off_set,pats*(num_clusts - 
1),dimension,0.1,disp,mean[num_clusts - 1]); 

else if(shape == 2)
conic(/*samples, clust_num, off_set,start, vars,mean,disp*/

pats+extra,num_clusts - 1 ,off_set,pats*(num_clusts - 1), 
dimension,mean[num_clusts - l],disp);

else
{

printf(" SHAPE INDEX ERROR\n"); 
exit(O);

}
}
else if(data_type == 4) /* Concentric clusters (ring around a Gaussian blob) */
{

num_clusts -  4;
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pats = smooth(num_pats,num_clusts); 
extra = num_pats%num_clusts; 
for(c = 0; c < dimension;c++)

mean[0][c] = 0.5;
ring(/*samples,clust_num,off_set,start, vars,r,width*/

3 *pats,0,offset,0, dimension, 0.35, disp,mean[0]); 
printf("GOT RING\n");
guass(/*clust_num,off_set,vars, samples, start, *mean,* variance*/

1 ,off_set,dimension,pats + extra,pats*3,mean[0], variance); 
printf("GOT GAUSS\n");

}
else if(data_type == 5) /* three parallel lines */
{

num_clusts = 3;
pats = smooth(num_pats,num_clusts); 
extra = num_pats%num_clusts; 
for(c = 0; c < 2;c++)

mean[0][c] = 0.3; 
mean[l][c] = 0.5; 
mean[2][c] = 0.7;

}
for(c = 2; c < dimension;c++)
{

mean[0][c] = 0.0; 
mean[l][c] = 0.0; 
mean[2][c] = 0.0;

}
line(/*samples, clust_num, off_set,start, vars,mean,disp,yint*/ 

pats,0,off_set,0,dimension,mean[0],disp,0.3);

line(/*samples, clust_num, off_set,start, vars,mean,disp,yint*/ 
pats,l,off_set,pats,dimension,mean[l],disp,0.5);

ine(/*samples, clust_num, off_set,start, vars,mean,disp,yint*/
pats+extra,2,off_set,pats*2,dimension,mean[2],disp,0.7);

}
else if(data_type == 6) /* EXIT - THIS ONE IS NO LONGER USED */
{

printf("No cluster type 6 - exiting ... "); 
exit(2);

}
else if(data_type == 7) /* Interlocking clusters */
{

num_clusts = 2;
pats = smooth)num_pats,num_c lusts); 
extra = num_pats%num_clusts;

mean[0][0] = 0.4; 
mean[0][l] = 0.5; 
mean[l][0] = 0.8; 
mean[l][l] = 0.5;
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for(c = 2; c < dimension;c++)
{

mean[0][c] = 0.0; 
mean[l][c] = 0.0;

}
t_third_ring(/*samples,clust_num,off_set,start,vars,r,width,centre,start_sec*/ 

pats, 0,off_set,0, dimension, 0.4, disp,mean[0], 0.0);

printf("Got SECNd RING\n");*/
t_third_ring(/*samples,clust_num,off_set,start,vars,r,width,centre,start_sec*/ 

pats+extra, 1 ,off_set,pats,dimension,0.4,disp,mean[ 1 ], 1.0);
}
else if(data_type == 8) /* Winding cluster with two Gaussians */
{

num_clusts = 6;
pats = smooth(num_pats,num_clusts);
extra = num_pats%num_clusts;
mean[0][0] = 0.5;
mean[0][l] = 0.5;
mean[ 1][0] = 1.2;
m ean[l][l] = 0.5;

for(c = 2; c < dimension; C++)
{

mean[0][c] = 0.0; 
mean[ l][c] = 0.0;

}
/*clust_num vars pats start disp*/
t_third_ring(/*samples,clust_num,off_set,start, vars,r,width,centre,start_sec*/ 

2*pats,0,off_set,0, dimension, 0.35, disp,mean[0],0.0);

t_third_ring(/*samples,clust_num,off_set,start,vars,r,width,centre,start_sec*/ 
2*pats,0,off_set,2*pats,dimension,0.35,disp,meanfl], 1.0);

guass(/*clust_num,off_set,vars,samples,start,*mean,*variance*/ 
l,off_set,dimension,pats,4*pats,mean[0],variance);

guass(/*clust_num,ofiLset, vars,samples,start,*mean,*variance*/
2,off_set,dimension,pats+extra,5 *pats,mean[ 1],variance);

}

{
printf("data_type: %d unrecognized\n",data_type); 
exit(l);

free) variance);
} /*END DATA GENERATION */

void add_noise(int num_pats,int dimension,int noise_type, double disp)
{

int p,g,m; 
long temp;
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double gd;
double minfMAXVARS]; 
double max[MAXVARS];

/* This procedure adds noise to the generated data */

temp = 0 - (long)time(NULL); /* seed random number generator */ 
idum = &temp;
if(noise__type > 2) /* find range on each dimension for uniform noise */
{

for(m = 0; m < dimension; m++)
{

min[m] = 0.0; /* produce noise in range of 0 - 1 unless a dimesnion */ 
max[m] = 1.0; /* has a greater range. In this case set range to range of data */

}

/* find max and mins on each variable */

for(p = 0; p < num pats; p++)
for(m = 0; m < dimension; m++)
{

if(data[p][m] > max[m])
max[m] = data[p][m]; 

if(data[p][m] < min[m])
min[m] = data[p][m];

}
/* noise_type = 0: no noise */

if(noise_type -  0) 
return;

/* noise_type = 1 - 2 :  randomly perturb 50% of interpoint distances */ 
else if(noise_type == 1)

for(p = 0; p <= (int)((double)num_pats*0.5); p++) 
for(m = 0; m < dimension; m++)

data[p][m] += NLOW*disp*gasdev();

else if(noise_type == 2)
for(p = 0; p <= (int)((double)num_pats*0.5); p++) 

for(m = 0; m < dimension; m++)
data[p][m] += NHIGH*disp*gasdev();

else if(noise_type == 3) /* replace 25% of data with uniform noise */ 
for(p = 0; p <= (int)((double)num_pats*ULOW); p++) 

for(m = 0; m < dimension; m++)
data[p][m] = (ranl()*(max[m] - min[m])) + min[m];

else if(noise_type == 4) /* replace 50% of data with uniform noise*/ 
for(p = 0; p <= (int)((double)num_pats*UHIGH); p++) 

for(m = 0; m < dimension; m++)
data[p][m] = (ranl()*(max[m] - min[m])) + min[m];

else
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printf("NOISE TYPE %d NOT RECOGNIZED\n",noise_type); 
exit(l);

return;
}

void shuffle_data(int pats) /* randomly shuffle the order of the data patterns */
{

int p,ctemp,g; 
double *dtemp; 
long temp;

temp = 0 - (long)time(NULL); /* seed random number generator */
idum = &temp;
for(p = 0; p < pats;p++)
{

g = ran_int(pats); 
dtemp = data[p]; 
ctemp = cat[p]; 
data[p] = data[g]; 
cat[p] = cat[g]; 
data[g] = dtemp; 
cat[g] = ctemp;

}
}

double rani (void)
{/* return uniform random deviate in range of 0.0 and 1.0 */

int j; 
long k;
static long iy = 0; 
static long ivfNTAB]; 
double temp;

if(*idum <= 0 || !iy) /* intialize */
{

if(-(*idum) < 1) /* prevent idum = 0; */
*idum = 1;

else
*idum = -(*idum);

for(j = NTAB+7;j >= 0 ; j--) /* load shuffle table after 8 warm ups */
{

k = (*idum)/IQ;
*idum = IA*(*idum - k*IQ) - IR*k; 
if(*idum < 0)

*idum += IM; 
if(j < NTAB)

iv[j] = *idum;
}

}
k = (*idum)/IQ;
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*idum = IA*(*idum - k*IQ) - IR*k; 
if(*idum < 0)

*idum += IM; 
j = iy/NDIV; 
iy = iv[j]; 
iv[j] = *idum;
if((temp = AM*iy) > RNMX) 

retum(RNMX);
else

retum(temp);
} /*** END RANI ***/

double noise(double off_set)
{

retum((0.0 - off_set/2.0) + off_set*ranl());
}

void guass(long clust_num,double off_set,int vars,
int samples, int start, double *mean, double *variance)

{
int m,s; /* returns a normally distibuted number */

for(s = start; s < start+samples;s++)

for(m = 0; m < vars; m++)
data[s][m] = ((gasdev() * variance [m]) + mean[m]) + noise(off_set); 

cat[s] = clust_num;

double gasdev(void)
{

static int iset = 0; 
static double gset; 
double fac,rsq,vl,v2;

if(iset == 0)
{

do{
vl = 2.0*ranl() - 1.0; 
v2 = 2.0*ranl() - 1.0; 
rsq = vl*vl+v2*v2; 

}while(rsq >= 1.0 || rsq == 0.0); 
fac = sqrt(-2.0*log(rsq)/rsq); 
gset = vl*fac; 
iset = 1; 
retum(v2*fac);

}
else
{

iset -  0; 
retum(gset);

}
} /**** END GSDEV ****/
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void uniform(int vars, int samples, int start, double max, double min)
{/* replaces vars variables with random uniform noise in the range of min to max */

int m,s;

for(s = start; s < samples+start;s++) 
for(m = 0; m < vars;m++)

data[s][m] = (max - min)*ranl() + min;

} /*** END UNIFORM ***/

void conic(int samples, int clust_num,double off_set,int start, 
int vars,double *centre, double disp)

{
/* genrates a conic section by taking a line whose midpoint 

is defined by the centre array of lenth 0.3 
and increasing the dispersion from one end to the other */

int tot,v,y,plane;
double x,output,slope,end 1 ,end2, width;

/* randomly choose a plane to put line on */
/* plane = ran_int(vars); 
do{

y = ran_int(vars);
} while(y == plane); */

plane = seedx[clust_num]; 
y = seedy[clust_num];

endl = centre[plane] - 0.14; 
end2 = centre[plane] + 0.14;
/* randomly choose a slope in range of 0.0 -1 .0 * /

slope = 0.0; 
tot = start;
while(tot < start+samples)
{

/* choose a point on the line */ 
x = (ranl()*(end2 - endl)) + endl; 
output = slope*x + y_int[clust_num];
/♦calculate "width" of line at the point*/ 
if(orient)

width = (disp/4.0)+(((x - endl)/0.28)*disp);
else

width = (disp/4.0)+(((end2 - x)/0.28)*disp); 
data[tot] [plane] = x; 
data[tot][y] = output + (ran IQ* width);

/* create tubular region around the line with radius = width*/ 
for(v = 0; v < vars; v++)

if((v != plane) && (v != y))
data[tot][v] = output + (ranl()*width);
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catftot] = clust_num; 
tot++;

/* end while samples */

void line(int samples, int clust_num,double off_set,int start, 
int vars,double *centre, double disp, double yint)

{
/* genrates a line whose midpoint 

is defined by the centre */

int tot,v,y,plane;
double x,output,slope,endl,end2,width;

/* randomly choose a plane to put line on */
/♦plane = ran_int(vars); 
do{

y = ran_int(vars);
}while(y == plane);*/ 
plane = 0;
y= i;
endl = centre[plane] - 0.5; 
end2 = centre[plane] + 0.5; 
slope = 0.0; 
width = disp; 
tot = start;
while(tot < start+samples)
{

/* choose a point on the line */ 
x = (ranl()*(end2 - endl)) + endl; 
output = slope*x + yint; /* set y intercept*/ 
data[tot] [plane] = x;
data[tot][y] = output + ranl()*width + (0.0 - (width/2.0));

/* create tubular region around the line with radius = width/2*/ 
for(v = 0; v < vars; v++) 
if((v != plane) && (v != y))

data[tot][v] = output + ranl()*width + (0.0 - (width/2.0)); 
cat[tot] = clust_num; 
tot++;

} /* end while samples */
}

void third_ring(int samples, int clust_num,double off_set,int start, 
int vars, double r.double width,double *centre)

{
/* produces one third of a ring of distance r from centre */ 
int tot,v,seedl,seed2;
double x,y,output,angle,start_sec,sec_range;

seedl = seedx[clust_num]; 
seed2 = seedy [clust_num];
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/* randomly choose one third of the unit circle */ 
start_sec = 1.3333333333*ranl(); 
sec_range = 0.66666666666;

tot = start;
while(tot < start+samples)
{

/* choose a point on the unit circle between 
start_sec and start_sec + 0.666666666*/ 
angle = ((ranl()*sec_range) + start_sec)*PIE;

/* scale in range of radius (r), place witin ring
and then shift orgin to coordinated given in centre array*/ 

x = r*cos(angle) + /*width*gasdev()*/ ranl()*width + (0.0 - (width/2.0)) + 
centre[seedl];

y = r*sin(angle) + /*width*gasdev()*/ ranl()*width + (0.0 - (width/2.0)) + 
centre[seed2];

data[tot][seedl] = x; 
data[tot][seed2] = y; 
for(v = 0; v < vars; v++)

if((v != seedl) && (v != seed2))
data[tot][v] = r*sin(angle) + /*width*gasdev()*/ ranl()*width + (0.0 -

(width/2.0)) + centre[seed2];
cat[tot] = clust_num; 
tot++;

} /* end while samples */
} /*** end third_ring ***/

void t_third_ring(int samples, int clust_num,double off_set,int start,
int vars, double r,double width,double *centre, double start_sec)

{
/* produces 2/3 of a ring of distance r from centre */
int tot,v,seedl,seed2;
double x,y,output,angle,sec_range;

/* randomly choose one third of the unit circle */ 
seedl = 0; /*seedx[clust_num]; */ 
seed2 = 1; /*seedy[clust_num]; */ 
sec_range = 1.333333333; 
tot = start;
while(tot < start+samples)
{

/* choose a point on the unit circle between 
start_sec and start_sec + 0.666666666*/ 
angle = ((ranl()*sec_range) + start_sec)*PIE;

/* scale in range of radius (r), place witin ring
and then shift orgin to coordinated given in centre array*/ 

x = r*cos(angle) + /*width*gasdev()*/ ranl()*width + (0.0 - (width/2.0)) + 
centre[seedl];

y = r*sin(angle) + /*width*gasdev()*/ ranl()*width + (0.0 - (width/2.0)) + 
centre[seed2]; 

data [tot] [seedl] = x;
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data[tot][seed2] = y; 
for(v = 0; v < vars; v++)

if((v != seedl) && (v != seed2))
data[tot][v] = r*sin(angle) + /*width*gasdev()*/ ranl()*width + (0.0 - 

(width/2.0))/* + centre[seed2]*/;
/* y + ranl()*width + (0.0 - (width/2.0));*/
cat[tot] = clust_num;
tot++;

} /* end while samples */
} /*** end t__third_ring ***/

void ring(int samples, int clust_num,double off_set,int start, 
int vars, double r,double width,double *centre)

{
/* produces one third of a ring of distance r from centre */ 
int tot,v,seedl ,seed2;
double x,y,output,angle,start_sec,sec_range;

seedl = seedx[clust_num]; 
seed2 = seedy [clust_num]; 
tot = start;
while(tot < start+samples)
{

/* choose a point on the unit circle */

angle = ranl()*2.0*PIE;

/* scale in range of radius (r), place witin ring 
and then shift orgin to coordinated given in centre array*/ 
x = r*cos(angle) + width*gasdev() /* ranl()*width + (0.0 - (width/2.0))*/ + 

centre[seedl];
y = r*sin(angle) + width*gasdev() /* ranl()*width + (0.0 - (width/2.0))*/ + 

centre[seed2]; 
data[tot] [seedl] = x; 
data[tot][seed2] = y; 
for(v = 0; v < vars; v++)

if((v != seedl) && (v != seed2))
data[tot][v] = r*sin(angle) + width*gasdev() /* ranl()*width + (0.0 - 

(width/2.0)) */ + centre[seed2];
/* y + ranl()*width + (0.0 - (width/2.0));*/

cat[tot] = clust_num; 
tot++;

} /* end while samples */
} /*** end ring ***/

int ran_int(int num)
{/* return uniform random deviate in range of 0 to num */

int j; 
long k;
static long iy = 0; 
static long iv[NTAB]; 
double temp;
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if(*idum <= 0 || !iy) /* intialize */

if(-(*idum) < 1) /* prevent idum = 0; */
*idum = 1; 

else
*idum = -(*idum);

for(j = NTAB+7;j >= 0 ; j —) /* load shuffle table after 8 warm ups */

k = (*idum)/IQ;
*idum = IA*(*idum - k*IQ) - IR*k; 
if(*idum < 0)

*idum += IM;
if(j < NTAB)

iv[j] = *idum;

k = (*idum)/IQ;
*idum = IA*(*idum - k*IQ) - IR*k; 
if(*idum < 0)
*idum += IM; 
j = iy/NDIV; 
iy = iv[j]; 
iv[j] = *idum;
if((temp = AM*iy) > RNMX)

retum((int)(RNMX*num));
else

retum( (int)(temp *num));
} /*** END RAN_INT ***/

int smooth! int num__pats, int num__clusts)
/* ensures rounding errors do not prevent correct number of 
patterns being produced */

int extra;

if(num_pats%num_clusts == 0)
return!num_pats/num_clusts); 

else
{

extra = num_pats%num_clusts; 
retum((num_pats - extra)/num_clusts);

}
}

void dist_matrix(int pats, int vars, int k)
{

int p,c,v;

for(p = 0; p < k - 1; p++) 
for(c = p + 1; c < k; C++)

d_matrix[p][c] = 0.0; 
for(v = 0; v < vars; v++)
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d_matrix[p][c] += (centraids[p][v] - centroids[c][v])* 
(centroids[p][v] - centraids[c][v]); 

d_matrix[p][c] = d_matrix[p][c]; 
d_matrix[c][p] = d_matrix[p][c];

}
}

reset_pat_mems(int pats)
{

int p;
for(p = 0; p < pats;p++)

mem[p] = c_mem[mem[p]];

void slink(int pats, int vars, int stop, int k)
{

/* This procedure implements the single linkage clustering algorithm */

int p,c,g,v,closest 1 ,closest2,pc,pg,dusts; 
double min_dist,dist;

for(c = 0;c < k; C++)
c_mem[c] = c; 

if(DEBUG)
printf("SLINK init dusts %d vars %d stop %d\n",k,vars,stop); 

dusts = k;

/* calculate distance matrix */ 
dist_matrix(pats, vars,k);
while(clusts > stop) /* agglomerate until "stop" number of */
{/* clusters have been found */ 

min_dist= 1000000.0; 
closest 1 = 0; 
closest2 = 0;
for(c = 0; c < dusts - 1; C++)
{

for(g = c + 1; g < dusts; g++) /* find two closest clusters */
{

/* for each two clusters, compare distance from all 
c_members in one cluster, to all members of the other */ 
for(pc = 0; pc < k; pc++)

for(pg = 0; pg < k; pg++) /* find two closest obs.*/ 
if((c_mem[pc] == c) && (c_mem[pg] == g)) 
/* between dusts c and g */
{

dist = d_matrix[pc][pg]; 
if(dist < min_dist)

closestl = pc; 
closest2 = pg; 
min_dist = dist;
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} /* end g loop of find two closest clusters */
} /* end find two closest clusters routine */ 
c = c_mem[closestl]; 
g -  c_mem[closest2];
for(p = 0; p < k; p++) /* re-index cluster memberships */

}

if(c_mem[p] == g)
c_mem[p] = c; 

if(c_mem[p] > g )
c_mem[p]-;

}
dusts—;
if(DEBUG)
{

for(c = 0; c < k; C++)
printf("%d ",c_mem[c]); 

printf(" ::: dusts %d: closest are %d
%d\n",dusts,closest l,closest2);

}
} /* end main agglomeration routine */
/* update pattern memberships */ 
for(p = 0; p < pats; p++)

mem[p] = c_mem[mem[p]]; 
if(DEBUG)

printf(" SLINK DONE\n");
} /* END SLINK */

void clink(int pats, int vars, int stop, int k)
{

/* This procdure implements centroid linkage */

int p,c,g,v, closest l,dosest2, pc, pg, dusts, f; 
double min_dist,dist;
int wins[MAXCLUSTERS],wf,wg,wfwg,skip[MAXCLUSTERS];

for(c = 0; c < k; C++)

wins[c] = 0; 
skip[c] = 0;

}
for(p = 0; p < pats; p++)

wins) mem[p] ]++;
for(c = 0;c < k; C++)

c_mem[c] = c;

if(DEBUG)
printf("CLINK pats %d vars %d stop %d\n",pats,vars,stop);
dusts = k;
while(clusts > stop) /* agglomerate until "stop" number of*/
{ /* clusters have been found */

min_dist= 1000000.0; 
closestl = c; 
closest2 = g;
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for(c = 0; c < k - 1; C++)
for(g = c + 1; g < k; g++) /* find two closest clusters */
{

/* for each two clusters, compare distance between centroids */ 
if(!skip[c] && !skip[g])

dist = 0.0;
for(v = 0;v < vars;v++)

dist += (centroids[c][v] - centroids[g][v])* 
(centroids[c][v] - centraids[g][v]); 

if(dist < min_dist)
{

min_dist = dist; 
closestl = c; 
closest2 = g;

}
}

} /* end find two closest clusters routine */ 
g = closestl; 
f  = closest2; 
wg = wins[g]; 
wf = wins[f); 
if(wg == 0)

wg= 1; 
if(wf== 0)

wf= 1;
wfwg = wins[f] + wins[g]; 
if(wfwg —  0)

wfwg = 1;
/♦update centroids */ 
for(v = 0; v < vars; v++)

centroids[g][v] = ((double)wg*centroids[g][v] +
(double)wf|ccentroids[f][v])/((double)(wfwg));

wins[g] += wins[f]; 
skip[closest2] = 1; 
if(DEBUG)
{

for(c = 0; c < k; C++)
printf("%d ",c_mem[c]);
printf(" ::: dusts %d: closest are %d

%d\n",clusts,c_mem[closestl],c_mem[closest2]);
}
for(p = 0; p < k; p++) /* re-index cluster memberships */
{

if(c_mem[p] - -  closest2)
c_mem[p] = closestl;

}
dusts—;

} /* end main agglomeration routine */
/* update pattern memberships */ 
for(p = 0; p < pats; p++)

mem[p] = c_mem[mem[p]]; 
if(DEBUG)

printf("CLINK DONE\n");
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void alink(int pats, int vars, int stop, int k)
{ /* Average linkage */

int p,c,g, v, closest 1 ,closest2,pc,pg,clusts;
double min_dist,dist,a_dist,pairs,skip[MAXCLUSTERS];

} /* END CLINK */

for(c = 0;c < k; C++)
{

skip[c] = 0; 
c_mem[c] = c;

}
if(DEBUG)

printf("AVERAGE pats %d vars %d stop %d\n",pats,vars,stop); 
dusts = k;
/* calculate distance matrix */ 
dist_matrix(pats,vars,k);
while(clusts > stop) /* agglomerate until "stop" number of*/
{ /* clusters have been found */

min_dist= 1000000.0; 
closest 1 = 0; 
closest2 = 0; 
for(c = 0; c < k - 1; C++)

for(g = c + 1; g < k; g++) /* find two closest clusters */
{

/* for each two clusters, compare distance from all 
members in one cluster, to all members of the other */ 
if(!skip[c] && !skip[g])
{

a_dist = 0.0; 
pairs = 0.0;
for(pc = 0; pc < k - 1; pc++) 
for(pg = pc + 1; pg < k; pg++)

if((c_mem[pc] — c) && (c_mem[pg] g))

a_dist += d_matrix[pc][pg]; 
pairs += 1.0;

}
a_dist = a_dist/pairs; 
if(a_dist < min_dist)

min_dist = a_dist; 
closestl = c; 
closest2 = g;

}
}

} /* end find two closest clusters routine */ 
skip[closest2] = 1;
for(p = 0; p < k; p++) /* re-index cluster memberships */
{

if(c_mem[p] == closest2)
c_mem[p] = closestl;

}
dusts—;
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if(DEBUG)
{

for(c = 0; c < k; C++)
printf("%d ",c_mem[c]);

printf(" ::: dusts %d: closest are %d %d\n",dusts,closestl,closest2);
}

} /* end main agglomeration routine */
/* update pattern memberships */ 
for(p = 0; p < pats; p++) 
mem[p] = c_mem[mem[p]]; 
if(DEBUG)

printf("ALINK DONE\n");
} /* END ALINK */

void ward(int pats, int vars, int stop, int k)
{

/* Ward’s method */

int p,c,g,v,closestl ,closest2,pc,pg,dusts;
double min_dist,dist,*sum,winsc,winsg,sumg[MAXVARS];
int wins [MAXCLUSTERS],wcwg, skip [MAXCLUSTERS];

for(c = 0; c < k; C++)
{

winsfc] = 0; 
skip[c] = 0;

}
for(p = 0; p < pats; p++)

wins[ mem[p] ]++; 
for(c = 0;c < k; C++) 
c_mem[c] = c;
sum = (double*)malloc(vars*sizeof(double)); 
if(DEBUG)
printf("WARD pats %d vars %d stop %d\n",pats,vars,stop); 
dusts = k;
while(clusts > stop) /* agglomerate until "stop" number of */ 
{ /* clusters have been found */

min_dist = 10000000.0; 
closestl = 0; 
closest2 = 0; 
for(c = 0; c < k - 1; C++)

for(g = c + 1; g < k; g++)
{
if(!skip[c] && !skip[g])
{

for(v = 0; v < vars; v++) 
sum[v] = sumg[v] = 0.0; 
winsc = winsg = 0.0; 
for(p = 0; p < k;p++)

if(c_mem[p] == c)

for(v = 0; v < vars; v++) 
sumfv] += centroids[p][v];

{
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winsc += 1.0;

if(c_mem[p] == g)
{

for(v = 0; v < vars; v++) 
sumg[v] += centroids[p][v]; 
winsg += 1.0;

}
}
for(v = 0; v < vars;v++)
{

sum[v] /= winsc; 
sumg[v] /= winsg;

}
dist = 0.0;
for(v = 0; v < vars;v++)

dist += (sum[v] - sumg[v])*(sum[v] - sumg[v]); 
dist = dist/((1.0/winsc) + (1.0/winsg)); 
if(dist < min_dist)
{

min_dist = dist; 
closestl = c; 
closest2 = g;

}
}

} /* end find two closest clusters routine ( C & G LOOP )*/ 
skip[closest2] = 1;
for(p = 0; p < k; p++) /* re-index cluster memberships */ 

if(c_mem[p] == closest2)
c_mem[p] = closestl; 

wins[closestl] += wins[closest2]; 
clusts-; 
if(DEBUG)
{

for(c = 0; c < k; C++)
printf("%d ",c_mem[c]);

printf(" ::: clusts %d: closest are %d %d\n",clusts,closest l,closest2);
}

} /* end main agglomeration routine */
/* update pattern memberships */ 
for(p = 0; p < pats; p++) 
mem[p] = c_mem[mem[p]]; 
if(DEBUG)

printf("WARD DONE\n"); 
free(sum);

} /* END ward */

int wong(int pats, int vars, int stop, int k)
{

/* Wong’s hybrid method */

double wss[MAXCLUSTERS];
double midpt[MAXVARS];
double d_g,d_c,dist,min_dist,numer,denom;

}
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int p,c,v,g,flagg,flagc,x,dusts,closest 1 ,closest2,pc,pg; 
int wins[MAXCLUSTERS],no_more_flag;

/* get wins and wss */ 
for(c = 0; c < k; c++)

wins[c] -  0; 
wss[c] = 0.0; 
c_mem[c] -  c; 
for(g = 0; g < k;g++) 
d_matrix[c][g] = 0.0;

for(p = 0; p < pats; p++)

wins[mem[p]]++; 
for(v = 0;v < vars; v++)
wss[mem[p]] += (centroids[mem[p]][v] - data[p][v])* 

(centroids[mem[p]][v] - data[p][v]);
}
/* find adjacent clusters */ 
for(c = 0; c < k; c++)

for(g = 0; g < k; g++)

if(g == c)
{

d_matrix[c][g] = -9.0; 
continue;

}
/* calc midpoint */ 
for(v = 0; v < vars;v++)

midpt[v] = (centroids[c][v] + centroids[g][v])/2.0;
/* find dist of midpoint to all other clusters */ 
for(v = 0,d__g = 0.0,d_c = 0.0; v < vars;v++)
{

d_g += (midpt[v] - centroids[g][v])*(midpt[v] - centroids[g][v]); 
d_c += (midpt[v] - centroids[c][v])*(midpt[v] - centroids[c][v]);

}
d_g = sqrt(d_g); 
d_c = sqrt(d_c); 
flagg = 1; 
flagc = 1;
for(x = 0; x < k;x++)
{

if((x != c) && (x != g))
{

dist = 0.0;
for(v = 0; v < vars; v++)

dist += (midptfv] - centroids[x][v])*(midpt[v] - 
centroids[x][v]);

dist = sqrt(dist); 
if(dist < d_g)

flagg = 0; 
if(dist < d_c)
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}
flagc = 0;

/* if mid point is closer to g or c than any other*/
/* calculate wong distance (density at midpoint of c and g */

}

if(flagg || flagc)
{

for(v = 0,dist = 0.0;v < vars;v++)
dist += (centraids[g][v] - centroids[c][v])*(centroids[g][v] - 

centroids[c][v]);
numer = pow((wss[g] + wss[c]) + 0.25*dist*((double)(wins[c] + 

wins[g])),(double)vars/2.0);
denom = pow((double)(wins[c] + wins[g]),1.0 + (double)vars/2.0); 
d__matrix[c][g] = (numer/denom)* 100000.0;

d_matrix[c][g] = -9.0;

/* using the density based distance matrix, run single linkage */ 
dusts = k;
while(clusts > stop) /* agglomerate until "stop" number of */
{ /* clusters have been found */

min_dist= 1000000.0; 
closestl = 0; 
closest2 = 0; 
no_more_flag = 0; 
for(c = 0; c < dusts - 1; C++)
{

for(g = c + 1; g < dusts; g++) /* find two closest clusters */
{

/* for each two clusters, compare distance from all 
c_members in one cluster, to all members of the other */ 
for(pc = 0; pc < k; pc++)

for(pg = 0; pg < k; pg++) /* find two closest obs.*/
if((c_mem[pc] == c) && (c_mem[pg] == g) &&

(d_matrix[pc][pg] > -1.0)) /*
between dusts c and g */

no_more_flag = 1; 
dist = d_matrix[pc][pg]; 
if(dist < min dist)

closestl = pc; 
closest2 = pg; 
min_dist = dist;

}
}

} /* end g loop of find two closest clusters */ 
} /* end find two closest clusters routine */ 
if(! no_more_flag) 

return) 0);
c = c_mem[closestl]; 
g = c_mem[closest2];
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for(p = 0; p < k; p++) /* re-index cluster memberships */
{

if(c_mem[p] == g)
c_mem[p] = c; 

if(c_mem[p] > g)
c_mem[p]—;

clusts—;
/* printf("WONG %d\n",clusts);*/ 
if(DEBUG)
{

for(c = 0; c < k; C++)
printf("%d ",c_mem[c]);

printf("::: %d %d %lf\n",closestl,closest2,d_matrix[closestl][closest2]);
}

} /* end main agglomeration routine */
/* update pattern memberships */ 
for(p = 0; p < pats; p++)

mem[p] = c_mem[mem[p]]; 
if(DEBUG)
printf("WONG DONE\n"); 
retum(l);

} /* END WONG */

int get_partition(int pats,int vars,int num_clusts)
{

int c,g,p,maxc,mine,v,largest,flag.q;
int wins[MAXCLUSTERS],change,acts[MAXCLUSTERS][MAXCLUSTERS]; 
double dmax,dmin,min_cent[MAXVARS] ,max_cent[MAXVARS] ,dist; 
double sd[MAXVARS];

/* This procedure is the pattern partitioning stage of both APC and WONG’S method.
Basically, it drives the moving method. If a cluster is found with less than 
MINWINS patterns, the cluster is deleted and the moving method is rerun with 
the remaining centroids as intial seeds and the number of clusters decremeted by 1. The 
final number of clusters is returned. */

seed(pats,num_clusts,vars); 
flag = 1;
while(flag) /* remove spurious clusters */

flag = 0;
moving(pats,vars,num_clusts,0);/* run pattern partitioning algo */
get_mem(num_clusts,vars,pats);
f o r ( c  = 0; c  < n u m _ c l u s t s ;  C + + )

wins[c] = 0; /* get number of wins per cluster */
for(p = 0; p < pats; p++)

wins[ mem[p] ]++;
for(c = 0; c < num_clusts;c++) /* remove spurioius clusters */
{

if(wins[c] <= MINWINS)

for(q = c;q < num_clusts - 1 ;q++)
{

{
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wins[q] -  wins[q + 1]; 
for(v = 0; v < vars; v++)

centroids[q][v] = centroids[q + l][v];

num_clusts—; 
flag = 1;

}
} /* end remove spurious clusters */

}
retum(num_clusts);

}/* end partitions */

/***** A p e  *******/

int apc(int k, int vars, int pats, int stop)
{

int c, dusts, g,p,v,closest l,closest2,pg, pc; 
double sd,dist,min_dist,last,*widths; 
int wins[MAXCLUSTERS]; 
int c_mem[MAXCLUSTERS];

widths = (double *)malloc(MAXCLUSTERS*sizeof(double)); 
for(c = 0; c < k;c++)

c_mem[c] = c; 
widths[c] = 0.0; 
wins[c] -  0;

}
/* get cluster widths */ 
for(p = 0; p < pats;p++)
{

for(v = 0; v < vars;v++)
widths[mem[p]] += (centroids[mem[p]][v] - data[p][v])* 

(centroids[mem[p]][v] - data[p][v]);
wins[mem[p]]++;

}
for(c = 0; c < k;c++)
{

if(wins[c] < 1)
wins[c] = 1;

widthsfc] = sqrt(widths[c]/(double)wins[c]);

for(c = 0; c < k; C++)
for(g = 0;g < k;g++)

d_matrix[c][g] = 1.0; 
adj(pats, vars, stop, k); 
if(DEBUG)printf("GOT WIDTHS\n");
for(c = 0; c < k - 1; C++) /*for each cluster find intercluster density between*/ 

for(g = c + 1 ;g < k;g++)
{

if(d_matrix[c][g] > -1.0)

if(DEBUG)printf("Evaluating dust: %d and dust: %d\n",c,k); 
sd = get_sd(widths[c],widths[g]);

{
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d_matrix[c][g] = check_density(g.c\vars,pats,SEG_WIDTH*sd);
}

}
dusts = k; 
last = 9999999.0;
while(clusts > stop) /* agglomerate until stop clusters are found */

min_dist = -99999999.0; 
dosestl = -1; 
closest2 = -1; 
for(c = 0; c < k  -  1; C + + )

for(g = c + 1; g < k; g++)
{

dist = d__matrix[c][g];
if((dist > -1.0) && (dist > min_dist)&& (c_mem[c] != c_mem[g]))
{

min_dist = dist; 
dosestl = c; 
closest2 = g;

}
}/* end find closest clusters */

if((min_dist < 0.0) || (closestl == -1)) /* no more distances > 0, */ 
break /* nothing else can be agglomerated */

c = c_mem[closestl]; 
g = c_mem[closest2];
for(p = 0; p < k; p++) /* re-index cluster memberships */ 
if(c_mem[p] == g)

c_mem[p] = c;
d_matrix[closestl][closest2] = -1.0; 
d_matrix[closest2] [closestl] = -1.0; 
dusts—;

}/* end cluster agglomeration */
/* update pattern memberships */ 
for(p = 0; p < pats; p++)

mem[p] = c_mem[mem[p]]; 
if(DEBUG) printf("\n\nAPC DONEVn"); 
free( widths);

} /* END APC */

double check_density(int clust2,int clustl,int vars,int pats, double width)
{
/* this procedure returns the density based distance between cluster centroids in APC */

double B,bin_size,dist,d;
int densities[MAXSEGMENTS];
int p,c;
int v,num_bms,q,max_den,min_den;
int num_pats; 
double volume;

if(DEBUG)printf("Checking density between %d and %d\n",clustl, clust2); 
B = 0.0; /* get lenght of potential line segemnt */ 
for(v = 0; v < vars; v++)

B += (centroids[clustl][v] - centroids[clust2][v])*
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B = sqrt(B);
num_pats = 0;
for(p = 0;p < pats; p++)
{ /* count number of patterns between centroids */

/* this is used for calculating the bin size */
dist = near_line_seg(B*B,p,clustl,clust2,vars,width);
if(dist >= 0.0)

num_pats++;
}
if(num_pats < 10)

bin_size = B/3.0;
else

bin_size = (B/floor(sqrt((double)num_pats))); 
num_bins = 0;
for(d = 0,q = 0; d <= B; d += bin_size,q++)
{

num_bins++; 
densities[q] = 0;

}
/* find all points within 1 sd of the connnecting line */

for(p = 0;p < pats; p++)
{

dist = near_line_seg(B*B,p,clustl,clust2,vars,width); 
if(dist >= 0.0)
{

for(d = 0.0,q = 0; d <= B - bin_size; d += bin_size,q++) 
if((dist > d) && (dist <= d + bin_size)) 

densities[q]++;
}

}
max_den = 0; 
min_den = 32000;
for(d = 0.0,q = 0; d <= B - bin_size;d += bin_size,q++)

(centroids[clustl][v] - centroids[clust2][v]);

if(densities[q] > max den)
max_den = densities[q]; 

if(densities[q] < min den)
min_den = densities [q];

}
if(max_den == 0)

retum(O.O); 
if(ADD== 1)

retum((double)min_den); 
else if(ADD == 0)

retum((((double)min_den)/((double)max_den)));
else
{

volume = PIE*width*width*bin_size; 
retum(((double)min_den)/volume);

}
} /* END CHECK_DENSITY */
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double near_line_seg(double B, int pat.int clustl, int clust2,int vars, 
double width)

{
/* procedure determines if a pattern is inside the hypercylinder

determioned by the centrods of clustl and clust2. If the pattern is indise (or on) the
hypercyllinder, the distnce of the pattern to the axis of the hypercykener is 

returned. Ohterwise, -1 is returned */

int v;
double dist; 
double A,C,Z;

A = C = 0.0;
for(v = 0; v < vars; v++)
{

A += (centroids[clustl][v] - data[pat][v])*
(centroids[clustl][v] - data[pat][v]); 

C += (centroids[clust2][v] - data[pat][v])*
(centroids[clust2][v] - data[pat][v]);

if(A == 0.0)
retum(O.O); /* pattern and centroid are the same */ 

if(C == 0.0)
retum(sqrt(B));

if((B > 0.0)&&(fabs((A - C)/B) <= 1.0))
{

Z = ((A + B - C)*(A + B - C))/(4.0*B); 
dist = A-Z; 
if(dist < 0.0)
{

printf("DIST IS GREATER THAN A, aA2 - distA2 = %lf\n",(A) - (Z)); 
printf("A %f, B %f, C %f Z %f dist %f\n",A,B,C,Z,dist); 
dist = 0.0;
printf("c 1 c2 pat\n"); 
for(v = 0; v < vars;v++)

printf("%.41f %.41f %.41f\n",centroids[clustl][v], 
centroids[clust2][v],data [pat] [v]);

getchar();
}
if(sqrt(dist) <= width)

retum(sqrt(A - dist));
}

retum(-l.O);
}/ * END NEAR_LINE_SEG */

double get_sd(double wc,double wg)
{

if(SD_TYPE == 0) /* return smallest of the two sd’s */
{

if(wc < wg)
retum(wc);

else
retum(wg);

}

228



else if(SD_TYPE == 1) /* retrun largest of the two sd’s */
{

if(wc > wg)
retum(wc);

else
retum(wg);

}
else /* return average of the two sd’d */ 

retum((wc + wg)/2.0);

int adj(int pats, int vars, int stop, int k)
{

/* this procedure finds adjacent cluster centroids. Non-adjacent centroids have -2.0 entered into 
the corresponding elements of the distance matrix */

double wss[MAXCLUSTERS];
double midpt[MAXVARS];
double d_g,d_c,dist,min_dist;
int p,c,v,g,flagg,flagc,x, dusts, closest 1 ,closest2,pc,pg;
int wins[MAXCLUSTERS],no_more_flag;

/* find adjacent clusters */ 
for(c = 0; c < k - 1; C++)

for(g = c +  1; g < k; g++)

/* calc midpoint */ 
for(v = 0; v < vars;v++)

midpt[v] = (centroids[c][v] + centroids[g][v])/2.0;
/* find dist of midpoint from both clusters */ 
for(v = 0,d_g = 0.0,d_c = 0.0; v < vars;v++)
{

d_g += (midpt[v] - centroids[g][v])*(midpt[v] - centroids[g][v]); 
d_c += (midpt[v] - centroids[c][v])*(midpt[v] - centroids[c][v]);

}
d_g = sqrt(d_g); 
d_c = sqrt(d_c); 
flagg = 1; 
flagc = 1;
for(x = 0; x < k;x++)
{

if((x != c) && (x != g)>
{

dist = 0.0;
for(v = 0; v < vars; v++)

dist += (midpt[v] - centroids[x][v])*(midpt[v] - 
centroids[x][v]);

dist = sqrt(dist);
ifldist < d_g)

flagg = 0; 
if(dist < d_c)

flagc = 0;
}

}
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/* if mid point is closer to g or c than any other*/
/* calculate wong distance (density at midpoint of c and g */ 
if(!flagg && Iflagc)
{

d_matrix[c][g] = -2.0; 
d_matrix[g][c] = d_matrix[c][g];

retum(l);
}
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