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Abstract

The long-term aim of this research is the development of a robust and appropriate
method of high efferent bandwidth gestural human-machine interaction (HMI) that
enhances and extends the multimodal expressive abilities of people with severe speech
and motor impairment due to cerebral palsy (SSMICP). A human-factors driven
approach was adopted to generate and identify candidate behaviour for gestural HMI.
Neural methods were applied to investigate the automatic recognition of human move-
ment with a high noise component using spastic-athetoid cerebral palsy arm movement
data.

Human-machine interaction was considered as an emergent property leading to the
development of a methodology based on human-human interaction to elicit a wide range
of spontaneous or near spontaneous gestures. Twelve subjects with SSMICP aged five to
18 years took part in a gestural ability pilot study. From 30 to 141 concepts presented
verbally were used to elicit a wide range of spontaneous or near spontaneous gestural
responses. Subjects were encouraged to express each concept in any way they wished.
Frequently gestural ability was beyond that anticipated by therapists, educators, parents
and physicians. Therapeutic, educational, and medical records did not predict gestural
ability observed in the study. Analysis of video-taped sessions indicated that gestures
were frequently articulated using multiple parts of the body. Nine out of ten subjects used
either the right or left arm more frequently that any other body part.

Instrumented gestural data comprising a subset of 27 gestures from a 17 years old subject
with spastic-athetoid quadriplegia was used to investigate automatic gesture recognition.
Co-articulated dynamic arm gestures were elicited in random order and gestural data
recorded at 100 samples/second using a six-degree-of-freedom magnetic tracker attached
distally to one forearm. The gestural data stream was examined using a simple body

model developed using MATLAB *and animated on a Silicon Graphics Workstation. In
the absence of suitable features to automatically segment the gestural data stream, ges-
tures were manually segmented.

Low-pass filtering was used to remove “jerkiness” and data reduction was achieved
through re-sampling. The use of time-delay feedforward neural networks was investi-
gated using features extracted over a fixed time interval as input. Neural network classifi-
ers outperformed two k-nearest neighbour methods. Time windows of 160ms to 1120 ms
were compared. A span of 640ms comprising four time samples yielded the optimum
rate of recognition. Feature sets containing measures of position, forearm orientation,
scalar and vector velocity, curvature and plane of motion were compared. A feature set
comprising four time intervals of X,y,z position gave highest recognition rate. 12 gestures
were recognised at or above 80% with an average recognition rate of 90%. Maximum
results for all 26 gestures was 55%. Results suggest that the fixed time window approach
coupled with low pass filtering may be a feasible method for the computer recognition of
noisy gestural movement. Conversely, the results show that is possible for people classed
as having no functional use of upper extremities by traditional assessment techniques to
produce a repertoire of dynamic arm gestures with sufficient consistency to be recogn-
ised by machine.

IMATLAB is a trademark of The M ath Works Inc.
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Chapter 1

Introduction

1.1 Background and Rationale

“We are now witnessing the appearance and rapid development o fportable, wear-
able, and environmental computer technologies. If current developments continue,
we may ultimately see a computer and network interface in every effective object in
our environment. We will transact more and more ofour economic and emotional
business through technology. The obvious question is what the effect and affect of
such technology be?”

Myron Kruger, 1993 “The Experience Society”, Presence vol. 2, no. 2, pp.162-168.

The range of activities that are computer mediated is rapidly expanding. Increasingly our
everyday interactions are computer mediated. This phenomenon has been described as
“ubiquitous computing” (Buxton & Card, 1994). However, existing human-machine

interfaces” only harness a fraction of human expressive and manipulative ability. As the
computing power available for purely interface related activities has grown, the afferent
bandwidth of human-machine interaction (HMI) has increased substantially e.g.
multimedia computing, graphical user interfaces (Shneiderman, 1992, Maybury, 1993).
There has not yet been a corresponding increase in the efferent bandwidth. Even in the
emerging field of virtual reality, the vast majority of research papers relate to physical
affect more than effect at the interface.

The work presented in this thesis is concerned with addressing this issue, particularly in

1 The terms “human-machine interface” and “human-machine interaction” are used in
preference to “human-computer interface” and “human-computer interaction” in anticipation
of all machines incorporating computer technology. In addition, the envisaged applications of
gestural human-machine interaction extend far beyond the traditional concept of a computer
system.



1.1 Background and Rationale

relation to the needs of disabled people. It is proposed that as computer technology
advances any human behaviour will become a candidatefor human-machine interaction.

This poses the questions: which behaviours should be used and how? The investigation
of this research question involves both human factors and technological issues equally.
Central to the approach adopted in this thesis is the notion that machines are more likely
to closely fulfil the needs of people if, on balance, human factors issues drive and shape
technological development (Shneiderman, 1992, Ehn et al.,, 1993, Newell & Cairns,
1993, Kyng et al., 1995, Greenbaum & Kyng, 1995).

A number of candidate HMI behaviours are readily identifiable e.g. speech, handwriting,
sign-language, manipulation of objects in virtual environments, speech with gestures.
Each of these examples is derived from behaviour that developed independently of the
computer. Each exists independently of the computer.

However, before music or typewriter keyboards existed it would have been hard to
anticipate that it was possible to play Bach or that the average person could master touch-
typing or that this type of behaviour could be useful and as prevalent as it is today. This is
an example of how technology can facilitate the emergence of new behaviours that are
not readily observed in everyday life.

Thus, the set ofbehaviours usefulfor human-machine interaction is greater than the set
ofbehaviours readily observed in everyday life.

It is proposed that humans possess many latent abilities that may emerge through
interaction with machines. In other words, Auman-machine interaction can be considered
to be emergent behaviour. Thus, human factors research into gestural human-machine
interfaces does not need to restrict itself to harnessing “natural” modalities of expression.

In the case of the people with severe speech and motor impairment due to cerebral palsy
(SSMICP), “natural” expressive ability is constrained by neurological impairment
although cognitive function may be intact. Interaction with other people and the
environment can be limited and frustrating with a high rate of failure. In this case,
computer recognition of such behaviour would be of limited benefit.

The field of augmentative and alternative communication (AAC) has developed to
supplement “natural” modalities and to offer more effective “alternate and augmented”
modalities of communicative expression. An early example of AAC would be a simple
board containing words or picture symbols that were selected through pointing
(Feallock, 1958, Goldberg & Fenton, 1960, Sayre, 1963). The advent of computer
technology and affordable speech synthesis led to the development of the voice output
communication aid (VOCA). A typical configuration would require the targeting of one
or more electromechanical switches to select graphic symbols in combinations that are
translated to words and phrases output using a speech synthesizer. An historical
perspective is given by Zangari et al. (1994).

However, as with non-physically impaired populations, AAC users frequently
communicate multimodally. Typically, they use combinations of dysarthric speech,
vocalisation, eyegaze, facial expression and gesture. Unlike unimpaired populations, this
population finds precise targeting particularly challenging, the very behaviour afforded
by the low-technology pointing board or high-technology switches of AAC devices. For
many people with severe speech and motor impairment due to cerebral palsy targeting
switches is difficult or impossible.



1.1 Background and Rationale

It is hypothesised that:

there are other behaviours that can be recognized by technology, in particular gesture;
these can be developed into new methods ofHM  in general and AAC in particular,
these methods will offer advantages over conventional switch based human machine
interaction.

For the purposes of this thesis, gesture is liberally defined as:
any movement ofthe body that can be usedfor the purposes ofcommunication.

The gestures performed by subjects in this research project were not prescribed, instead
they were generated from the subjects’ knowledge of the world. It is recognised that
gesture can be classified using a number of taxonomies (Efron, 1941, Birdwhistle, 1970,
Kendon, 1980, McNeill, 1992) however, detailed categorisation of the subjects’ gestures
lies outside the scope of this thesis and is left as an area for future work.

Gestural human-machine interaction involves the transduction of human movement into
streams of data orders of magnitude larger than conventional switch-based HMI. The
transduction of movement can be provided by body instrumentation or video camera.
The body instrumentation approach was adopted for this study as there are many
fundamental problems of computer vision (e.g occlusion, object invariance) that have yet
to be adequately solved before reliable body position data can be extracted and processed
(Bichel, 1995). The use of body instrumentation allows the investigation of the computer
recognition of human movement based on the assumption that high fidelity body position
data is available.

However, even when accurate body position data is available, our knowledge of how to
automatically recognise communicative and expressive movement such as gesture or
sign language is still in its infancy. As reflected in the literature review presented in this
chapter, a number of techniques have been applied to this problem, ranging from hidden
dynamic time warping, hidden Markov models, dynamic programming, feedforward and
recurrent neural networks, knowledge based methods. Various means have been devised
to extract features from the gestural data stream; however, there is still an insufficient
body of evidence to offer clear guidance as to which scheme to adopt for a particular set
of gestures. One of the key issues is that of automatic segmentation. The most common
approach is to look for the boundaries between a) one gesture and another and b) gestural
and non-gestural movements. However, the literature on transcription, manual coding,
and segmentation of communicative and expressive movement (i.e. verbal and non-
verbal elements of language) also reveals the difficulties associated with this process
(Bloom & Lahey, 1978, van Balkom & Heim, 1991). It is proposed that the task of
segmentation is as complex as the task of recognition. This implies that approaches that
involve determining the beginning and end of gestures based on simple features (e.g.
movement thresholds) are likely to be useful only in very limited situations. The
approach favoured in this thesis is one of segmentation by recognition, a strategy that
intuitively seems close to the method used in manual segmentation.

The movement of people with SSMICP is considerably different in nature to that of
people without motor impairment in many respects e.g. range, quality, timing, effort, and
controllability. Compared to neurologically unimpaired movement, the ratio of “signal”
to “noise” in cerebral palsy movement is low. However, the nature of the noise and the
relationship to the signal is not well understood. As movement characteristics and
abilities vary considerably between individuals with SSMICP, the nature of the
movement signal is likely to be idiosyncratic. Thus, from a technological perspective, the
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problem can be described as the computer recognition of gestures with a high noise
component where the movement signal is likely to vary considerably between
individuals.

Thus, the problem of automatic recognition of gestures of people with SSMICP is
different from the recognition of gestures from people without impairment. Therefore, it
is a large assumption that a system that is designed to perform optimally on the gestures
of people without motor impairment with perform optimally with people with SSMICP.
The validity of this argument is supported by the results of Cairns (1993). He found that
although recognition rates using two classification methods were similar for people
without motor impairment, they differed significantly when the recognition algorithms
were presented with data from disabled people. Consistent with this perspective, research
reported in this thesis was concerned only with the automatic recognition of the gestures
from people with SSMICP.

1.2 Aims and Objectives

The ultimate purpose of the research effort is to acquire the knowledge to develop a
viable and robust method of gestural human-machine interaction for people with
SSMICP that maximally enhances and extends the user’s expressive abilities. Potential
applications of this technology include: AAC device, computer/internet access,
interaction in virtual environments, wheelchair/robotic control, smart house control.

As previously stated, a human factors led approach has been adopted. It is recognised
that human-factors and technological research and development are closely linked. In
some respects the two areas can be treated independently, in other respects they are
highly dependent on each other.

The programme of research focuses on both areas:

» The gestural abilities of people with severe speech and motor impairment due to
cerebral palsy.

» The automatic recognition of the gestures of people with cerebral palsy.

More specifically the research attempted to:

* Develop appropriate cognitive frameworks suitable for exploring and developing ges-
tural repertoires that are candidate behaviours for human-machine interaction.

* Develop and document the gestural repertoires of people with SSMICP.

* Collect gestural data using body instrumentation from people with SSMICP.

» Develop and compare gesture recognition algorithms based on neural networks using
data from people with SSMICP.

* Make recommendations for further research in this area.

1.3 Previous and Related Work

1.3.1 Use of Gesture and Sign in severely speech and motor
impaired Populations

Gesture is recognised as an integral part of human expression and communication
(Wundt, 1921, Efron, 1941, Cherry, 1957, Leroi-Gourhan, 1964, Ekman and Friesen,
1969, Birdwhistle, 1970). Like language, gesture conveys information, often adding to
the information content of speech. It develops alongside language, and like speech, it
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increases in sophistication as a child develops (Vygotsky, 1937, Werner & Kaplan, 1963,
Riseborough, 1982, McNeill, 1992). McNeill asserts that a linkage between gesture and
speech exists from an early stage forming part of a developing language-gesture system.
This system takes ten or so years to mature into a system that approaches that of an adult.
A current review of research into language and gesture can be found in Emmorey and
Reilly (1995).

In the case of children with severe speech and motor impairment, this developmental
process is disrupted. There have been various attempts to understand the communicative
processes of such children (Lloyd et al., 1990, van Balkom, 1991, Kraat, 1991, Gerber &
Kraat, 1992, Soto & Olmstead, 1993, Heim, 1994, Helmquist, 1994, Letto et ah, 1994).
Although adequate developmental models have yet to be devised (Levelt, 1994, von
Tetzchner et ah, in press), experience shows these populations can acquire language and
frequently use gesture and other non-verbal methods of communication.

Light et ah (1985) analysed the communicative interaction patterns of eight congenitally
physically disabled children (between the ages of four and six) and their primary care-
givers. They found that the children used multiple modes to communicate. 81.8% oftheir
communicative turns were conveyed by means other than their AAC language board, e.g.
vocalization, gesture, eye-gaze used alone or in combination. Only 18.2% of turns
involved use of their communication board. Another important observation was that their
preferred modalities of expression showed marked variations between subjects. Across
subjects, no overall modality preference could be determined.

Idiosyncratic systems of non-spoken communication often develop without formal
intervention between children with SSMICP and their familiar communication partners,
particularly their parents. However, Houghton et ah (1987) and Rowland (1990) showed
that spontaneous attempts at communication that are subtle and idiosyncratic may be
ignored or misinterpreted. A recent AAC user survey conducted by Murphy et ah,
Stirling University (1995) found that 22.2% of users did not use their AAC systems at all
for “informal” use e.g at home or with friends.

The formalisation of development of an idiosyncratic gestural system (e.g. the creation
of a gesture dictionary for each individual) has been suggested as good practice in a
number of texts on AAC (Musselwhite & St. Louis, 1982, Siegel-Causey & Guess,
1989), but in practice this seldom happens. The negative aspect of individualised gestural
repertoires is that typically they exhibit limited transparency and have to be learnt before
they can be used by unfamiliar people (although documentation of their gesture
dictionary carried by the user can help in this respect).

Instances of documented development of formal systems include Hamre-Nietupski et ah
(1977). They identified around 160 “natural” gestures. They remark that the advantages
ofusing their system included ease of production through “gross motor” movements, and
a high level of transparency through iconicity. They provide a detailed guide for use
within a functional curriculum.

Many communicative gestures and sign language lexemes involve substantial use of
hand shape and hand movement. People with SSMICP often have limited hand control
and a high degree of spasticity potentially severely limiting their expression in these
modalities.

A comprehensive review of gestural and sign based AAC is presented in Musselwhite
and St. Louis (1982). Duffy (1977 reported in Musselwhite & St. Louis, 1982) developed
a system of 471 signs formed by combinations of “gross” gestures, some accompanied
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by vocalisation. The system was initially developed for four subjects with quadriplegic
athetoid cerebral palsy aged seven to 15. Wherever possible signs were iconic.e.g.
crossing the legs for PANTS (trousers) or pantomiming pulling ups trousers. A general
sign for time would precede time category signs e.g. one o’clock = TIME + 1, days of the
week (Sunday = DAY +1), months were indicated by the sign for time plus the first letter
of the month and another letter (December = TIME + D + “eeee”). Questions were
indicated by making the sign QUESTION followed by the appropriate sign (WHO,
WHAT, WHERE). Facial movements and whole body movements were used in
expressing feelings. Other categories included people, places, adjectives, prepositions
and pronouns.

Similarly Skelly et al. (1979 reported in Beukelman & Mirenda, 1992) developed Amer-
ind Gestural Code based on American Indian Hand Talk. The repertoire includes 250
concepts labels e.g.: QUIET, made by holding the index finger of the hand to the lips.
This sign may have many referents e.g. silent, calm, dormant hush, low (noise), mute,
noiseless, serene, silence, silent, still, tranquil. The intended meaning is determined
through context. This feature enables the expansion of the repertoire to a vocabulary
equivalent to 2500 words. The initial limited repertoire is expanded through
“agglutination”, the principle that allows for the invention of new ways to express
concepts e.g insane = BRAIN + FLY + DISTANT. 80% of the repertoire can be executed
using one hand and requires moderate motor control.They report that 80%-88% of the
hand signals could be recognised by untrained observers. However more recent work by
Doherty et al. (1985) suggested only 50-60% of the hand signals are recognisable by
non-disabled adults when presented without reference to their conceptual categories.

An example of a system developed by an AAC user taking into account physical abilities
and limitations is the White’s Gestural System for the Lower Extremities created by
Cathy White who has a severe hearing loss and cerebral palsy with severe upper
extremity involvement. The system, developed together with her mother, comprised 125
“leg signs”, using foot, toe, heel, knee, ankle, calf and thigh touch points to convey
messages in a variety of linguistic categories such as people, actions, or objects. (Huer,
1987 reported in Beukelman and Mirenda, 1992).

Musselwhite and St. Louis (1982:124) discuss and review pantomime used in language
therapy for severely communicatively impaired populations. They suggest that
pantomime is accessible as both an input and output system due to its high iconicity,
although they remark that “pantomime would probably not be selected as the primary
long-term approach due to its relative inefficiency and limited scope”.

The “movement based” approach to language development originally developed for
deaf-blind children by Van Dijk (1966) has been adapted for use by people with severe
speech and motor impairment by Siegel-Causey & Guess (1989). Based on the principle
of learning through doing, the adapted technique comprised six levels: nurturance,
development of a warm positive relationship conducive to communicative interaction;
resonance, thythmic movements involving direct physical contact with the aim of
shifting attention from self to the external world; co-active movement, extension of
resonance to develop sequence and anticipation; non-representational, teaching
relationship between world and graphic representation; deferred imitation, teaching
imitation of facilitator movement; natural gestures, facilitating communicative gestures
that are “self-developed”.

The advantage of prescribed gesture and sign systems is that once learnt they form a
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common system of communication. However, given the significant variation in physical
ability found in cerebral palsy (CP) populations, the disadvantage is that many
individuals will only be able to access a subset of the gesture or sign lexicon. On the
other hand, a system developed to match the idiosyncratic range of abilities of an
individual, e.g. Whites Gestural System, has the advantage that it can be tailored to
utilise the unique range of abilities of an individual. This is likely to result in a
substantially larger lexicon. The disadvantage is that communication partners have to
learn a system that applies to only one individual.

Computer recognition offers the possibility of the gestural HMI being used as a
translation system. In this case, the gestural HMI could be trained to recognise an
individual’s idiosyncratic gestural repertoire. The machine could perform a translation
into a commonly understood form e.g. gesture to speech. In this way, the lexicon size
could be maximised while still being understood by all communication partners.

Gesture and sign based AAC systems have probably become less frequently promoted by
speech and language therapists with the advent of switch-input electronic
communication devices. However, the gesture and sign systems reported in this section,
suggest that gestural HMI comprising small lexicons can be developed into a viable
communication system.

1.3.2 Gestural Human Machine Interaction for People with
Motor Impairment

Harwin (1990) at Cambridge University, pioneered research into the computer
recognition of head gestures of people with severe speech and motor impairment due to
cerebral palsy. He worked with a 23 year old non-vocal cerebral palsy quadriplegic
subject who had developed a relatively unusual mode of communication involving
tracing the shapes of letters of the alphabet with head and eye movements. A “Polhemus
Isotrak” magnetic tracker was attached to the head to capture head movement. A simple
head model, together with the concept of an imaginary head-stick cutting a plane was
used to transform the six-degree of freedom magnetic tracker data to two-dimensions.
This reduced the recognition task to one of recognising two dimensional movement. The
recognition algorithms employed hidden Markov models, a syntactic-statistical pattern
recognition method to classify head gestures.

The gestural data stream was automatically segmented by thresholding movement
variance in the x and y direction over 10 samples. Six planar features were extracted
from each sample and assigned a symbol. The symbol was determined by finding the
nearest cluster centre. Cluster centres were determined using a k-means clustering
algorithm using a set of training data. After feature extraction and clustering, each
gesture was represented by a sequence of symbols. These data were input to a set of
hidden Markov models previously derived from training data to classify the gestures.
Recognition rate of 83% for two head gestures (yes, nodding) and (no, shaking). In the
second application using five head gestures (“yes”, “no”, “C”, “L”, “W”) rates of 51 %
were achieved. The results showed that recognition of head gestures from people with
SSMICP is feasible, but the recognition rate needs to be increased. A number of
improvements were suggested for future work aimed at increasing the recognition rate.
These included: improved feature extraction/gesture coding, and employing larger
models trained using a larger set of training data. This work highlighted the difficulty
encountered in attempting to automatically segment head gestures from movement data



1.3 Previous and Related W ork

containing a significant athetoid component.

Perricos (1993, 1994) continued the work on head gestures recognition at Cambridge
University. He constructed a real-time recognition system based on principle coefficient
analysis and dynamic time warping. As with Harwin’s system, the gestures have to be
segmented before they can be classified. This was achieved using a “tremor filter” which
determined a “still threshold” and a “movement threshold”. The gestures used were six
directional gestures: “yes”, “no”, “up”, “down”, “no”, “left”, “right”, and up to nine
“complex” gestures e.g. “T”, “O”. In an early report (1993) he outlines preliminary
results recognition rates of 54.6% for a subject with quadriplegic cerebral palsy and
limited head control, and 92.5% for a subject with paraplegic athetoid cerebral palsy and
relatively good head control. In a more recent publication he reports results for six
subjects: “five subjects with varying levels of athetoid cerebral palsy” and one with
Friedrichs ataxia. Real-time recognition results ranged between 44.2% and 98.8%. This

was an average of 6.3% below human recognition rates.

Cairns (1993) at the MicroCentre, University of Dundee looked at the computer
recognition of dynamic arm gestures from people with and without motor impairment.
Disabled subjects had motor impairment due to cerebral palsy and were between the ages
of 9 and 55. The subjects were “asked to provide examples of gestures they found easy
and natural to make. No definition of the form the gesture should comprise was given.
No meaning was attached to what the gesture should mean”. The size of each subject’s
gestural repertoire was from two to five gestures. The gestural repertoires of only two of
the nine disabled subjects appear to have had any symbolic referent either iconic or
linguistic. The other gestures were described in terms of their component movements
e.g. “raise arm from rest position to almost horizontal”, “small oscillation almost at rest
position”, “up and down in the z-plane, arm from rest to head”, “movement in the z-plane
in front of the body”, “hand moved up to mouth (food sign)”, “hand moved up to hair
(brush) sign”. Cairns reports substantial difficulty in automatically segmenting the
gestures despite asking the subjects to pause between gestures. The gestural data were
semi-automatically segmented and 15 feature sets derived from this data. Feature sets
contained three-dimensional movement information including measures of position,
velocity, acceleration, and power spectral density. Early pilot work examined the use of
linear discriminant analysis (LDA), feedforward neural networks (FFNN) trained using
backpropagation, and recurrent neural networks (RNN) using a more limited range of
feature sets prepared from people without motor impairments. Relatively low average
recognition rates were obtained: LDA 51%, ANN 63%, and RNN 42.9%.

Subsequent work focused on the comparison of dynamic programming (DP) and hidden
Markov models (HMM). He compared the performance of these algorithms using the
various feature sets as input (15 for DP and 10 for HMM). Three training methods were
compared: training using data only from the first data collection session and testing on
data from all subsequent sessions; training and testing using data from a single data
collection session; and dynamically adapting reference templates/models. A recognition
rate increase of a few per cent was achieved by training at the beginning of each data
collection session rather than training once on data from the first session. In general the
adaptive methods resulted in poorer performance. For disabled subjects dynamic
programming consistently outperformed hidden Markov models resulting in best
recognition rates of 76.8% and 70.2% respectively. Interestingly, the relative
performance of feature sets varied between disabled subjects. The feature set comprising
relative x,y,z performed consistently well. Future work will include implementation in
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real-time and addressing the segmentation issue.

Harrington et al. (1995) at University of Oxford and the Oxford Orthopaedic
Engineering Centre reported using six single axis accelerometers attached to the forearm
to transduce arm gesture data from two subjects with athetoid cerebral palsy. The
acceleration signals were pre-processed by a moving horizon estimator. The output of the
estimator provided the input to a classification algorithm based upon dynamic
programming. The gestural repertoire comprised five to eight gestures. These were

“swim”, “hammer”, “wave”, “run”, “wind-up”, “shake”, “pluck” and “paint”.
Preliminary computer recognition rates ranged from 52% to 63%.

Rogers et al. (1992) from the Wright-Patterson Airforce Base, Ohio, USA in the second
part of their paper on the application of artificial neural networks for the processing of
raw pixel data for segmentation, tracking and identification include an application to
recognise the facial expressions of a young girl with cerebral palsy. They report the use
of the Karhunen-Loeve transform (KLT) feature extraction and normalized k-nearest
neighbour classification for the recognition of three facial expressions: mouth closed,
mouth open, and tongue out. Using from two to nine KLT coefficients, recognition rates
ranged from 82% to 94% respectively. They state that their current efforts are to
eliminate false alarms caused by scale rotations of the child’s head with respect to the
prototype (Goble et al., 1993).

1.3.3 Gestural Human-Machine Interaction for Other Popula-
tions

Pen/Mouse-Based Gestures

One category of research into gestural HMI strongly linked to handwriting recognition
focuses on pen-based gestures. Using pen and paper simulation, proof reading type
gestures for text editing were shown to have efficiency advantages over keyboard input
(Wolf & Morrel-Samuels, 1987). This was implemented by Kim(1988). Four subjects
each produced gestures from a repertoire of 32 gesture classes. 73% were correctly
recognised, 14% were mis-recognised and 13% were not recognised. The recogniser
used a feature called “direction change”. Directions were quantised into one of 12
directions (as in the 12 directions of a clock-face). After smoothing the input, each
gesture was segmented into a sequence of strokes and then quantised. It was suggested
that this method was relatively insensitive to natural variations that appear in gestures
such as non-linear scaling, mirror images, rotation and production with reverse
directions. The gesture recogniser was further refined by Lipscomb (1991).

Kurtenbach’s “VirtualStudio”, a graphical interface used mouse gestures control
connections among audio devices (1988 reported in Kurtenbach & Hulteen, 1990).
“Paper and pen” types of gestures were used to move, copy, delete, connect, and
encapsulate icons and arcs.

Rubine (1991) developed GRANDMA gesture based drawing program. He examined
both single path and multiple path gestures produced with a mouse or stylus. A
vocabulary of 30 single stroke gestures were recognised at 97% using a gesture
recognition algorithm based on linear discriminant analysis. In this system, the start and
finish of gestures had to be specified (e.g. mouse button press, stylus contact). Of
particular interest was the proposed “eager” recognition strategy: Once the gesture starts,
the recogniser continually tries to recognise it. As soon as the system has had enough of
the gesture and is confident which gesture is being produced, the command is issued
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rather than wait for the whole gesture to be completed.

All the above research projects involved movement across a planar surface, either
directly with the tip of the finger or using an artifact e.g pen or mouse. Without
modification, the applicability of these interfaces to people with SSMICP is
questionable. The effort required to maintain contact with a plane is likely to be high for
many individuals with SSMICP. An exception would be the case of hypotonicity (low
muscle tone), where a planar surface such as table or wheelchair lap-tray may perform an
assistive role in countering gravity. Freedom to move in any plane or any number of
planes is more likely to achieve the objective of maximally utilising motor ability. This
requires automatic sensing and recognition of unconstrained movement in three
dimensions. Much less is known about the recognition of three dimensional movement.
Obviously, the problem is more complex due to the increase in dimension. Also, unlike
pen-gesture recognition, gesture cannot be segmented by removal of the pen from a
tablet.

Coverbal Gestures

The early work of Schmandt and Hulteen (1982) as part of Richard Bolt’s group within
the Architecture Machine Group, Massachusetts Institute of Technology (MIT), USA,
(Bolt, 1980) involved combining the automatic recognition of speech and deictic gesture
to allow phrases accompanied by pointing such as “put that there” to be interpreted by
identifying the associated screen objects. Conceptually they took the approach that “all
functions [of the computer]| should be controllable by all modes of input”.

More recently, this work has been extended by Bolt’s Advanced Human Interface Group
(AHIG) at the Media Lab, MIT. The AHIG team have extended the concept to include a
range of gestures that naturally accompany speech (Bolt & Herranz, 1992, Sparrow,
1993). This work was inspired by research into the integrated nature of gesture and
speech production (Rime & Schiaratura, 1991). They recognised that there was not a
clear one to one mapping between speech and gesture. The interpretation of the gestural
data relies on the semantic content of speech and the temporal relationship between the
gestures and speech. In order to solve this problem, they are taking a feature-based
approach to gesture analysis and recognition (Wexelblat, 1994). The work represents one
approach to solving the problem of connected gesture recognition where the user can
create continuous unrestricted motion. In his thesis, Wexelblat describes a scheme for
mapping raw movement data from two Cybergloves and magnetic trackers from various
parts of the body to a data stream of a higher level of abstraction, independent of any
particular set of biosensors. The demonstrator system called ICONIC is described by
Koons (1994). Continuous speech is converted into LISP-like “semantic frames”. An
“interpreter module” parses buffers of speech semantics and gestural features. An object-
base module manages a set of objects and their appearance on a large-format display and
supplies the interpreter with information. The instruction “move the chair like this”, plus
an appropriate gesture moves a graphical image of a chair as depicted by the gesture. The
action in gesture-space is mapped to the chair in graphics space and is used to construct a
corresponding object-base manipulation command.

Although the speech component of this interface is not accessible to people with
SSMICP, it is conceivable that their gestures could be translated from raw movement
data to higher level representations before gesture interpretation or gesture recognition.
The advantage would be the ease with which it can be combined with contextual
information. However, it is not yet known how such a system would perform when
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presented with “noisy” gestures.

Finger Spelling/Sign Language

Kramer & Leifer (1989) at Stanford University, USA, developed a system that is now
marketed as commercial software available to accompany Virtual Technologies’
CyberGlove®. The original system was designed as part of a communication aid to allow
people who are non-vocal deaf and deaf-blind to communicate with hearing people who
can’t sign. It involved the use of a glove instrumented using strain gauges to monitor
finger and thumb joint angles. A neural network was used to recognise the American
finger spelling alphabet.

In the GloveTalk I pilot study, Fels and Hinton at the University of Toronto, Canada
(1990) used the VPL DataGlove® and a Polhemus Isotrak® magnetic tracker connected
to a DECtalk® speech synthesiser via five neural networks trained using
backpropagation. Using a 203 item gestures-to-word vocabulary, they report that the
wrong word was chosen less that 1% of the time, and no word was produced 7% of the
time. Each network was ascribed a separate task. Dedicated networks determined: Root-
word from hand-shape, word-ending from hand-direction, word-rate from hand-speed,
and word-stress from hand-displacement. The gesture was segmented using a fifth
network referred to as the “strobe network” which continuously monitored scalar
velocity and acceleration from the magnetic tracker. A set of handshapes was devised
loosely based on those of American finger spelling. Each handshape was mapped to a
word. The interface was novel in that it used motion in five directions (up, down,
forward, back, left, right) to control word endings and to indicate that a handshape was
ready for detection.

Maurakami and Taguchi (1991) at the Human Interface Laboratory, Fujitzu Laboratories,
Japan, investigated the application of feedforward and recurrent neural networks to
Japanese sign language recognition. They investigated the computer recognition of 42
Japanese finger alphabet as static signs and the recognition of ten dynamic signs using an
instrumented glove and magnetic tracker. The first experiment used feedforward neural
networks trained by backpropagation of errors. Ten finger angles plus yaw, pitch and roll
were normalised and used as input to the network. The system was instructed when the
handshape had been made. Using 206 training exemplars, they reported an initial
recognition rate of 98% for signs from the user who supplied the training data and 77%
when used by other signers. Using training data from six users reportedly yielded
recognition rates of 94.3% for the group involved in training the network and 92.9% for
other users. In the second experiment, they looked at the computer recognition of ten
signs from Japanese sign language. The signs were segmented by recognition. The
feedforward network was used from the first experiment to determine when a sign had
been produced. This was signalled by the activation level at an output node reaching a
threshold value. This technique also separated sign movement from non-sign movement.
Sign data including x,y,z position was then input to an Elman recurrent neural network to
classify the sign. The ten signs represented a range of sign-types selected from Japanese
Sign Language: “skilled/unskilled” - differing only in the direction of movement;
“father/mother” - similar for the first movement, but differing in the second; “memorise/
forget” - same movement but in opposite directions; “brother/sister”, and “like/hate” -
same movement and similar hand postures. Recognition rates of 96% were reported.

Ohki et al. (1994) at the Central Research Laboratory, Hitachi, Japan, report using
dynamic programming to recognise 17 signs from Japanese Sign Language produced
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continuously. It was reported that this system can translate simple sentences e.g. “I have
a stomach ache”. They also report that another system can recognise 100 signs but
ignores sentence structure.

Kurokawa (1992) addressed the problem of gesture coding and the creation of a gesture
dictionary for gestural and sign language HMI. A generalised gesture interface
architecture was proposed that recognises signs, indication, illustration and manipulation
with corresponding synthesis in the form of a “gesture display”. He suggests that pattern
recognition techniques such as neural network and template matching that simply map a
gesture pattern to meaning are unlikely to scale up. His solution is to map predefined
units of gesture to “symbols similar to alphabets in an early stage of processing”. In this
respect the approach is similar to that of the AHIG at MIT. Kurokawa suggests “gestures
have four kinds of representation in the interface: quantified, code, meaning and graphics
representations”. A “gesture dictionary” is presented that can be used to convert one
form into another. The coding scheme is based on Stokoe (1960) for handshape and
Shibata et al. (1984) and Hirsbrunner et al. (1987) for body-shape.

1.4 Overview of Thesis

Chapter 2: Systems Approach to Human Machine Interaction

The first half of this chapter examines the proposition that human-machine interaction
can be conceptualised as an emergent property. The relevance to people with severe
speech and motor impairment is discussed particularly in relation to the possibility of
eliciting new behaviour potentially useful for HMI. This argument is related to the
methodology developed for the gestural ability pilot study (detailed in chapter 4).

The second half of the chapter examines the machine perception of human behaviour in
the context of gestural HMI for people with SSMICP. A number of key issues relating to
the problem are detailed and related to the studies presented in the thesis. A system
architecture design is presented and related to the system components investigated in the
computer recognition study detailed in chapters 6 to 8.

Chapter 3: Human Factors

This chapter begins with detailing the profile of the users of the proposed interface and
the nature of their communicative interactions. The problems that this group have
accessing technology are described. Technology currently used for augmentative and
alternative interaction is detailed. Implications for user requirements and design issues
for gestural HMI are discussed.

Chapter 4: Gestural Ability Pilot Study

Twelve subjects aged Syrs 9m to 18yrs Im with severe speech and motor impairment
took part in this study to explore emergent gestural ability. Existing methods of
augmentative and alternative communication were documented. Therapeutic,
educational and medical records were examined for documentation of gestural ability.
Results are presented.

Ten subjects were video-taped while performing gestures elicited using human-human
interaction in the form of a student-centred “charades-like” game. Video-tapes of the
interactions were analysed to determine the range of body parts involved in gesture
production. Results indicated that multiple body parts and multiple modalities were
involved in the gestural responses. The most frequently used body part was either the
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1.4 Overview of Thesis

right or left arm for nine out of ten subjects. Transcription of gestural repertoires for each
subject are presented in appendix A.

Chapter 5: Gestural Data Collection for Pattern Analysis

A subset of 27 gestural classes was chosen from the gestural repertoires elicited during
the gestural ability pilot study for one subject with spastic-athetoid cerebral palsy classed
as having no functional use of upper extremities. The gestures involved one arm as a
principal component. A six-degree-of-freedom magnetic tracker was attached distally to
one forearm. Dynamic arm gestural data were recorded at 100 samples per second in 10
minute blocks. 720 gestures were elicited in random order at a rate comfortable for the
subject. The gestural sequences were co-articulated i.e. there were no pauses between
gestures and the transition from one gesture to the next could follow a wide range of
paths. The average rate of production is determined.

Chapter 6: Examination and Processing of Gestural Data Stream

Gestural data was animated on a Silicon Graphics Workstation. A body model was

developed using MATLAB scripts and animated on a Silicon Graphics Workstation. An
animation tool was developed and used to play-back the gestures at different speeds and
view the movement from different angles. Gestures were examined qualitatively using
the computer graphics animation. A strategy for gesture recognition is developed. Key
factors relating to the recognition problem are identified. A fixed-time window scheme
using feedforward neural networks in a time-delay scheme is proposed. The advantages
and disadvantages of such an approach are discussed. Gestures were manually
segmented using the animation tool. The scheme adopted for signal conditioning and
data reduction involving the use of a low-pass filter is detailed and discussed.

Chapter 7: Gesture Classification using Neural Networks

The ability of time-delay feedforward neural networks to classify the gestural data was
investigated. Neural networks were coded using MATLAB and the MATLAB Neural
Network Toolbox. The neural networks were trained using backpropagation of errors
with momentum and adaptive learning rate. The optimum number of hidden neurons for
the problem was determined experimentally. Neuronal activation functions are
compared. Neural network classification is compared with two types of k-nearest
neighbour methods. Results are summarised and discussed.

Chapter 8: Feature Set Comparison using Neural Networks

First, the recognition results of seven feature sets comprising gesture segments of xyz
data varying in duration from 160ms to 1120ms (four to seven time samples re-sampled
every 160ms) were compared. Optimum recognition rates were obtained with a gesture
segment length (time window) of 640ms.

Twenty additional feature sets extracted within this time window were examined
involving features that encoded forearm orientation (8), scalar and vector velocity (7),
curvature and plane of motion (5). Results indicated that a number of feature sets gave
similar results. Four time samples of x,y,z position gave the highest recognition rates.

Silicon Graphics is a trademark of Silicon Graphics Incorporated.

"MATLAB and M ATLAB Neural Network Toolbox are trademarks of The M athWorks Inc.
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1.4 Overview of Thesis

Chapter 9: Conclusions

The main results are summarised and discussed in relation to the aims and objectives of
the thesis. Ways in which the research has contribution to the field are proposed.
Recommendations for future work are detailed.

Appendix A: Gesture Elicitation Sessions: Transcripts

Transcriptions of the gestural ability pilot study are presented for 10 subjects.

Appendix B: Neural Network Training Algorithm

The backpropagation of errors training algorithm and weight initialisation methods are
described.

Appendix C: Confusion Matrices

The gesture recognition results for all experiments are documented in the form of
confusion matrices that relate the actual gesture class to the decision of the pattern
classifier. Results are presents for training and test data.

Appendix D: Hinton Diagrams of W1 and W2

Hinton diagrams are a graphical representation of the neural network weights and bias
magnitudes. They are documented for each feature set.



Chapter 2

Systems Approach to Human
Machine Interaction

2.1 Introduction

The systems approach to modelling traditionally highlights the need for adequately
considering both the part and the whole (Thome, 1993:15). More recently, this approach
has been further underpinned by the developing area of complexity theory that has found
wide application in describing phenomena in the real world from thermodynamics to
economics (Nicolis & Prigogine, 1989, Waldrop, 1992). This paradigm is applied to the
field of human-machine interaction and used as a framework for describing the problem
domain of this thesis. Within this framework, the arguments are made for adopting a
human-factors driven approach and the development of the methodology involving
human-human interaction used in the gestural ability pilot study.

In the second half of the chapter, issues relating to the machine perception of human
behaviour are discussed. A basic system architecture is proposed. The system
components and associated research issues investigated in this thesis are described in
relation to that architecture.

2.2 Human-Machine Interaction as Emergent
Behaviour

Human-machine interaction is a complex process. A number of theories and principles
have been applied to the analysis of HMI (Foley & Wallace, 1974, Card et al. 1980,
Shneiderman, 1980, Kieras & Poison, 1985, and Norman, 1988 reviewed in
Shneiderman, 1992 and Eberts, 1994). Newell’s critique of the application of the goals,
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2.2 Human-Machine Interaction as Emergent Behaviour

operators, methods, selection rules (GOMS) technique to HMI involving AAC users

highlights the some of the problems encountered when attempting to apply methods of

formal analysis to people for who are severely speech and language impaired (1992).

Olson and Olson (1990:223 reported in Newell, 1992) conclude “the GOMS model fails

to capture the user’s fatigue, individual differences, or mental workload”. Newell argues:
“There is very little quantified knowledge of the ways disabled people use technol-
0gy, but clinicians are well aware that different users adopt a wide range ofstrategies
to cope with the individual nature oftheir disabilities. It is thus unlikely that a single
model can be used to characterize any non-trivial task” (1992:89).

In other words, we know that disabled people adapt to their environments but we cannot
adequately model such behaviour, at least at this present time.

Figure 2.1 Proposed conceptualisation of human-machine interaction. Human, machine,
and environment are considered as a system of dynamically interacting non-linear sub-sys-
tems. Such systems are known to exhibit emergent properties.

In light of'this state of affairs, an alternative approach is proposed. A conceptualisation of

HMI is proposed in figure 2.1 which anticipates limits of predictability of human-
machine interaction. Human, machine, and environment are considered as interacting
dynamic non-linear complex sub-systems. Information flows back and forth between
components changing the state of each component. The human component is self-
organising and self-adaptive i.e. a system that can modify itself and adapt to its
environment. As machines become more “intelligent”, they can be expected to become
increasingly self-organising and self-adaptive. The immediate environment is
represented by an open circle denoting that it is comprised of components from the
environment at large that enter and exit the sub-system.

A numbers of important propositions are consistent with this representation:

»  Human-machine interaction can be considered as an emergent propertyl ofthe
system.

“Emergent property” is used in the conventional broad sense that stems from the difficulty in
predicting system behaviour from examination of its constituent parts. To what degree this
infers irreducibility as in Churchland’s definition (1989:51) is difficult to ascertain as we know

so little about the neuropsychological and cognitive processes of people with SSMICP.
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2.2 Human-M achine Interaction as Emergent Behaviour

from this follows:
*  NEW human expressive behaviour may emerge as a result ofthe interaction.

In other words the environment and the machine have the potential for facilitating new
.9
emergent behaviour .

This is particularly important in the context of HMI for people with severe expressive
impairment. The objective of developing a gestural human-machine interface is to
enhance and augment “natural” communication. To merely harness observed expressive
ability would not be very useful. In addition, it is generally acknowledged that there is a
tendency for people with severe expressive impairment to be rather passive in their
patterns of social interaction (Selgman, 1975, von Tetchner, 1988, reported in Basil,
1992, Kraat, 1985). Typically, they initiate communicative acts much less frequently than
their communicatively unimpaired communication partners. This may at least in part be

due to “learned futility” . That is they tend to be passive and seldom initiate interaction
because they have learned that their efforts have a high probability of failure and are
likely to lead to frustration. If this is the case for the subjects participating in the study,
conclusions pertaining to gestural ability based purely on observations of subjects
communicating in everyday settings is likely to be an unreliable indicator of potential.

However, it is proposed that human behaviour harnessed for human-machine interaction
need not be constrained to that which has been observed. From a human-factors
perspective, the objective of developing gestural HMI for people with SSMICP can be
interpreted as developing a system that gives rise to the emergence of latent expressive
ability.

In addition:

»  Expressive human behaviour can be critically dependent on the environment and
components within that environment, particularly ifphysical impairment restricts
self-adaptive ability.

People with SSMICP have an impaired ability to adapt to the machine and the

environment. The usual remedial course of action commonly adopted in rehabilitation

engineering is to adapt or augment the environment and/or machine to compensate.

However, people with SSMICP have highly varied profiles of physical and cognitive

ability (see chapter 3). For a single machine to meet the needs of a large constituency, it

has to have the capacity to be tailored to suit the individual characteristics, needs and
preferences of the user. This potentially increases operational and design complexity.

Increasing the “intelligence” or self-adaptive ability (maintaining user control) of the

HMI, while a challenging goal itself, offers a promising method of dealing with

increasing complexity at the interface.¥

A good example is the keyboard. Before music or typewriter keyboards existed it would have
been hard to imagine that it was possible to perform such rapid ballistic movements of the fin-
gers to perform Bach or type 100 words per minute with little conscious effort for considerable
periods of time.

31 am indebted to Dr. Michael Alexander, Director of Rehabilitation Medicine, A. I. duPont Insti-
tute for the suggestion that “learned futility” was more appropriate than the more common

terms “learned helplessness” (Seligman, 1975) or “learned dependency” (von Tetzchner,
1988).



2.2 Human-Machine Interaction as Emergent Behaviour

Figure 2.2 Venn Diagram of Human Behaviour. Only a subset
of behaviours can be identified by observation. Further behav-
iours can be elicited through control of the environment. The aim
is to eventually harness these for HMI.

Research aims of this thesis can be further conceptualised using the Venn diagram in

figure 2.2. The three overlapping circles represent sub-sets of human behaviour that are
categorised “observed”, “elicitable”, and/or “useful for HMI”. In the context of HMI for
people with SSMICP, “observed” refers to behaviour at any time, past or present, in any
setting e.g. during school lessons, therapy sessions, play, sports, clinical examination/
assessment, and at home. “Elicitable” refers to behaviour that could notionally be
emergent due to exposure to new environments, people and/or machines. “Useful for
HMI” refers to the set of behaviours that can be currently harnessed using computer
technology.

The aim of the human-factors section of this research project is to increase the
intersection between “observed” and “elicitable” by eliciting new behaviour. All
observed behaviour is potentially useful for HMI.

The aim in the machine perception section of the project is to work towards increasing
the intersection between behaviour “useful for HMI” and “observable” behaviour. At the
moment this intersection is small. Only simple behaviours are used in human-computer
interaction (HCI) e.g. targeting actions needed to operate a keyboard or planar arm
movements needed to operate a mouse. The expansion of the set “useful for HMI” will
be a continuing objective for many years to come.

This diagram can be used to contrast other approaches to intelligent HMI development.
Approaches that propose that computers should be more like people often infer that HMI
should be closer to human-human communication. For example, Negroponte states “the
best metaphor for I can conceive of for a human-computer interface is that of a well-
trained English butler” (1995:150). This goal would be similar to increasing the
intersection between “observed” and “useful for HMI”. While this may be a viable goal
for HMI, in itself, this approach would not result in maximally harnessing human
behaviour as it ignores the emergent behaviour between human and machine which
notionally may be as sophisticated and as complex as human-human interaction, but not
necessarily the same. This emergent behaviour may well be more appropriate for many
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2.3 Eliciting and Identifying Candidate Behaviours for HM1

computer mediated tasks. In the context of HMI for people with SSMICP, as previously
stated, the goal of AAC is to go beyond artifact-free “natural” human-human
communication and evolve technology mediated enhanced interaction. Thus, the goal of
this research is to develop HMI where the human and computer interact to produce
behaviour that enhances and extends human ability. As such, it seems reasonable to think
of the computer more like an automobile, as an “extension of self’. This is similar to the
approach advocated by Shneiderman (1992:546). Inspired by Lewis Mumford (1934), he
suggests that preoccupation with anthropomorphic HMI is likely to restrict HMI
development as anthropomorphism restricted the development of the aeroplane.

2.3 Eliciting and Identifying Candidate Behaviours for
HMI

In the process of attempting to design radically new ways for people to interact with
machines there is a “chicken and egg” type of dilemma. How does the designer of a
machine that does not yet exist design for emergent behaviour that is unpredictable?

High bandwidth efferent HMI of any sophistication is technologically challenging. As a
result lead-time on prototyping is high. However, the resulting computer system
hardware and software is likely to be highly dependent on the human behaviour that it
harnesses. Information about the user and the way they may be able to use the system is
needed at an early stage. In order to address this dilemma, an approach is suggested that
involves the parallel investigation of human-factors and technological issues.

In order to develop technology that addresses people’s needs efficiently it is useful to

adopt a human-factors driven approach where human-factors and technological issues

are considered equally from the onset of the project. The research reported in this thesis

is conducted within a methodological framework where issues relating to the human

drive the technological development. In respect to this and future work in the area of high

bandwidth efferent HMI, it is proposed that this human-factors driven approach:

» is most likely to lead to an HMI design that closely meets the needs of its users;

» assists in establishing clear initial goals for the HMI design;

» establishes a base-line interaction against which prototype HMIs can be compared;

* enables human-factors and technological issues and their inter-relationship to be
determined at an early stage;

» facilitates the concurrent development of human-factors and technological
components.

Probably the most common methodology for addressing the “chicken and egg” dilemma
is the “Wizard of Oz” technique where humans are used to simulate part of a machine.
For example, Newell et al. (1990) used a human to simulate computer speech recognition
in order to investigate the human-factors issues of speech driven human computer
interaction (HCI) before the availability of reliable speech recognition, and thereby
evaluate the feasibility and set goals for usable speech recognition. In the Newell study,
some sessions involved leading subjects to believe that they were talking to a computer.
In other sessions, the subjects were informed that speech recognition was simulated by a
human.

In this thesis, the goal was to identify behaviour potentially useful for HMI in a
generative manner. In this context, the assumptions built into a “Wizard of Oz” design
may have constrained emergent behaviour. It was more appropriate to employ human-
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2.3 Eliciting and Identifying Candidate Behaviours for HM1

human interaction (HHI). A methodology was developed that involved using human-
human interaction in carefully managed environments to elicit behaviour that was a
candidate for human-machine interaction. Interpersonal interaction was thought to be the
most effective method of engaging the subject cognitively. However, an important
distinction should be drawn between using HHI to elicit behaviour that then can be used
as the basis for HMI and attempting to imitate HHI. As previously discussed, this
research was not concerned with imitating human-human communication within HMI
(Ebert, 1994:454-467). The objective was to be generative with a view to enhancing and
extending existing modalities through the application of technology.

A methodology was developed for the gestural ability pilot study that drew upon
techniques from the performance arts. Drama and mime were employed to create a
cognitive framework drawing upon mental imagery that facilitated the exploration of a
wide range of candidate behaviours from children and adolescents with severe expressive
impairment and a range of cognitive ability. This process is presented in systems diagram
in figure 2.1.

It was proposed that these techniques could be used to minimise the masking effects of
“learned futility” and facilitate the exploration of a subject’s potential. A protocol for
human-human interaction was developed that was designed to:

» engage the imagination and encourage creative responses;

» defocus from the subject’s disability;

» defocus from any negative and constraining concepts of self.

A facilitator with experience of working with severely disabled children interacted with
each subject in a way that attempted to sustain motivation while minimising fatigue
through management of the interaction.

This methodology was used to explore and document emergent gestural behaviour in the

gestural ability pilot study (detailed in chapter 4).

Figure 2.3 Systems model of human-human interaction used to elicit candidate behaviour
for HMI. Drama and mime were used to minimise the effects of “learned futility” and to create a
cognitive framework that encourage the production of a wide range of behaviours.
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2.4 Machine Perception of Human Behaviour

2.4 Machine Perception of Human Behaviour
2.4.1 High Bandwidth Efferent Human Machine Interaction

Increasing the physical bandwidth of interaction requires the use of a method of

transducing physiological parameters into streams of digital data. Notionally these

parameters could be any signal or combination of signals that contain information

relating to the user’s intention. Categories include:

* Neuro-muscular action leading to movement e.g. of the hand, arm, torso, legs, head,
facial expression, eye-gaze, eye-blink.

* Neuro-muscular action with minimal movement e.g. isometric muscular contraction,
muscular force applied to a fixed object.

» Signals directly from central nervous system e.g. electroencephalography. A number
of studies have looked at this possibility (Hiraiwa et al., 1990, Granger, 1993).

* Signals from the vocal apparatus: Vocalisations, speech, tongue movement, breath.

For future HMI to maximise the bandwidth of expression for people with SSMICP it will
be necessary to harness multiple signals and their corresponding expressive modalities.

An important consideration in the fusion of sensor data is the parallel nature of
multimodal expression. The problem is not as simple as simultaneous occurrence.
Vocalisation, facial expression, arm gesture, and head gesture are likely to be related in
time. Relative timing and phase can be salient. Also, although multimodal expressive
acts may combine to form a single entity, the onset and finish of each component is not
necessarily coincident e.g. in the case of coverbal gestures from unimpaired people,
gestures are often produced ahead of the corresponding speech act. The investigation of
this area was outside the scope of the research project, although it is revisited in the
concluding chapter.

2.4.2 System Architecture for Gestural HMI

Although the creation of a real-time demonstrator system is beyond the scope of this
study, it is useful to consider the system architecture required for gestural HMI. One

possible architecture is presented in figure 2.4. One or more sensors monitor physical
parameters from the body and convert the signals to digital data streams. These data
streams are first pre-processed to extract feature vectors that are presented as inputs to a
pattern classifier e.g. an artificial neural network (ANN). In this example, sensor data
fusion takes place at the pre-processing stage (note: fusion could take place at subsequent
stages if this were more appropriate for a particular combination of physiological
signals). The extracted features are then continuously sent in a stream to the classifier
which has previously been trained by example gestural patterns. These may be whole
gestures or gesture segments.
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Feedback

Figure 2.4 Example architecture for gesture recognition system

Each classifier output node corresponds to a possible gesture or gesture segment class.
The classifier outputs form a data stream that is interpreted by a gesture parser. The
output of the gesture parser provides input to the application. The application may be a
communication aid with synthesized speech output, desktop computer, electric
wheelchair, environmental, or robot controller. Feedback could take many forms but
needs to be adequate to facilitate appropriate gestural behaviour and indicate the state of
the system. The whole operation is monitored and controlled by a supervising module
which will apply contextual knowledge ofthe state of the application to determine which
inputs are expected at any one time. In this way it will be possible to maximise the
recognition rate by only attempting to recognise the set of appropriate gestural actions
given the state of the application. The supervisor will also control the training of the
neural network and will periodically retrain the neural network using recent gestural
data. In this way it should be possible to make the system adaptive so that it can
automatically improve and maintain its recognition performance. The potential also
exists for it to keep and report summary statistics on performance. This could be used as
a monitoring and assessment tool for the user, therapist, educator, and clinician.

Only the gesture recognition engine subsystem contained within the dashed rectangle is
investigated in this study.

2.4.3 Automatic Gesture Recognition Study Objectives

The gestural ability pilot study (chapter 4) involved eliciting diverse expressive
behaviour involving multiple parts of the body. The purpose of the study was to indicate
the range of behaviour that could potentially be harnessed by technology. To create a task
achievable within the resources of the research project, the problem was constrained to
the investigation of automatic gesture recognition using data collected from one body
site using a single magnetic tracker (chapters 5 to 8). The purpose of the automatic
gesture recognition study was to show that some of the expressive behaviour elicited in
the gestural ability pilot study is automatically recognisable and to explore the
application of artificial neural networks to gesture recognition.

Extracting movement patterns from streams of data remains a considerable challenge.
There are a number of problems that are common to many pattern recognition problems
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(Tou and Gonzalez, 1974) e.g.:
Feature Extraction/Data Reduction

It is important to be able to extract the information that is needed and reject the rest, so
some form of data reduction/feature extraction is generally required. Ideally a
combination of features needs to be found that possesses the minimum variance between
exemplars of the same class while showing good class separation in feature space,
(chapter 8).

Segmentation/Pattern Spotting

Another problem is the classic pattern recognition problem of recognising patterns in
time series data: segmentation - how do you determine the start and finish of each
gesture? and pattern spotting - how do you spot gestural movement from a stream of
gestural and non-gestural data? Research into the computer recognition of gestures
(Harwin, 1991, Cairns, 1993) illustrated the difficulty in finding reliable features for
gesture segmentation in the movement of people with CR A similar difficulty is
encountered in connected speech recognition (Lippman, 1989, Grayden & Scordilis,
1993).

Pattern Classification

There are many pattern classification techniques that could be applied to this problem.
As the gestural repertoires and gestural forms are likely to be idiosyncratic, it is
necessary for the gesture recognition algorithm to be able to learn the individual gestures
of each individual. Theoretically, supervised learning (“learning with a teacher”) and
unsupervised learning (“learning without a teacher”) are both applicable to this problem.
In practice, it is much more difficult to built a machine that does the latter and is not
considered further in this thesis.

This study focused on investigating the use of time-delay feedforward neural network
classifiers. These were compared with k-nearest neighbour methods (chapter 7).

In the study reported in this thesis, a fixed time window approach was investigated with a
view to segmentation by recognition. After low pass filtering and re-sampling, features
were extracted from the data stream using a relatively small amount of data over a fixed
time period. The effect of the size of the time window/number of time samples was
investigated. A variety of feature vectors were compared (chapter 8).

Assuming gestures can be reliably detected and classified from the raw data stream, then
the gesture sequences themselves need to be processed and interpreted and mapped to
input to applications. Detailed consideration of this aspect, while a key component in any
gestural HMI was not investigated.
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Chapter 3

Human Factors

3.1 Introduction

Human factors issues are always important when designing human-machine interaction
(Shneiderman, 1992). In the case of technological design for people with severe speech
and motor impairment it is all too easy to make bad design decisions based on false
assumptions (Newell, 1993). This makes it all the more vital to acquire adequate
knowledge relating to the user group, their needs, and their environment.

This chapter documents the user profile, describes the nature of cerebral palsy, and
considers communicative interaction for people with severe speech and motor
impairment. A review of human-machine interfaces used in electronic assistive
technology is presented. In particular, assistive technology for communication is
described. The implications for gestural human-machine interaction design are
discussed.

3.2 User Profile
3.2.1 Definition of Target Population of Primary Users

The primary user for the purposes of this study is defined as having severe speech and

motor impairment due to cerebral palsy (SSMICP). This typically means:

» Speech is severely dysarthric or absent, precluding the use of automatic isolated word
speech recognition (e.g. using the Dragon Dictate® system). Although familiar com-
munication partners may be able to understand dysarthric speech relatively well,
unfamiliar individuals are likely to have considerable difficulty.

* Impaired fine motor control makes activities of daily living (ADLs) difficult, or
impossible without a high degree of personal assistance.
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* Motor impairment precludes efficient access to traditional human-machine inter-
faces. In the computer domain examples include keyboards and mice. In the general
domain of machines, examples include buttons, levers, dials, wheels, and knobs.

* A powered wheelchair is required for independent mobility.

3.2.2 Specifying the Secondary Users of the HMI

A child with a developmental disability is likely to follow an early intervention program.
Often, a number of health care professionals are involved in this intervention program.
Each of these people are potential “users” of assistive technology. For example, in the
case of a voice output communication aid (VOCA), the primary user is clearly the person
with a disability, but a host of secondary users can be identified including: parents,
personal care assistants, friends, peers, paediatrician, neurologist, teachers, occupational
therapist, physical therapist, social worker, vendor, maintenance engineer, other
members of the general public.

Key secondary users can also be identified as people who require operational knowledge
of the assistive device (although not necessarily the same knowledge): therapist or
special educator providing VOCA training, using the device as part of language therapy,
or within an educational program; clinicians conducting assessments; parents and care
assistants who need to set up the system each day and be able to trouble-shoot when
something stops working.

As aresult, the failure of the interface to accommodate the characteristics or needs of any
one of the users or the failure to integrate into the resulting social and physical
environment can lead to major operational problems resulting in “technological
abandonment” (Phillips, 1993).

3.2.3 Cerebral Palsy: Nature of the Condition

Definition

Cerebral - [L. cerebrum, brain]. Pertaining to the cerebrum

Palsy - [ME palsie, from L. for paralysis]

Few simple definitions of cerebral palsy are adequate without qualification due to the
complexity of the problem (Cruikshank, 1976). Cerebral palsy can be viewed as a broad
term used to describe a variety of conditions (Gersh, 1991, Levitt, 1995) where the
aetiologies and underlying neural mechanisms are only partially understood.

A reasonably comprehensive definition inspired by several sources would be:

Cerebral palsy is a broad term used to describe a variety of conditions caused by damage to
the developing brain, usually occurring before, during or shortly after birth. The damage is
such that it affects neuromotor development resulting in a continuum of characteristic motor
disorders affecting a child’s movement, speech, and posture. The condition can be mild to
severe. Although it is considered to be non-progressive, i.e. the initial brain lesions or abnor-
malities do not get worse, the degree or type of exhibited motor dysfunction can change as a
child’s nervous system develops. It is considered permanently disabling although therapeutic
intervention is thought to have a beneficial effect on a child’s motor abilities.
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Incidence and Prevalence

Studies in a number of countries indicate that the incidence of cerebral palsy is in the
region of 2 to 2.5 per 1000 births. Prevalence in the USA is 400, 000 children, 700,000
including adults in the USA. In the UK it is reported that one in 400 children have
cerebral palsy (Scope, 1995). Interestingly, these figures do not seem to exhibit much
variation either temporally or geographically. The incidence of CP seems to have varied
little over the years even though the incidence of common causes of the past, e.g. rubella,
has been drastically reduced. It is thought that this is because any potential incidence
reduction has been offset by a corresponding decrease in infant mortality, particularly the
mortality of premature infants.

Causes of Cerebral Palsy

The causes fall into two categories:
1. Developmental brain malformation. Failure of the brain to develop properly in the areas of
the brain that are concerned with voluntary motor activity. This includes genetic disorders
and faulty blood supply to the fetal brain.
2. Neurological damage to the developing brain. Often associated with premature births, dif-
ficult deliveries, neonatal medical complications, and trauma to the brain.

Typical problems that can lead to brain injury include:
1. Lack of oxygen before, during or after birth.
. Haemorrhaging in the brain.
. Toxic injuries, or poisoning, from alcohol or drugs used by the mother during pregnancy.
. Head trauma resulting from a birth injury, fall, car accident, or other cause.
. Severe jaundice, very low glucose levels, or other metabolic disorders.

S BN A W N

. Infections of the nervous system such as encephalitis and meningitis.

It should be noted that in around 40% of all cases of CP the aetiology has not been
determined.

Diagnosis

Diagnosis of CP is seldom instant or straight forward. CP is a developmental disability,
and as such, the developmental indicators may not emerge until a considerable time after
birth or the time of trauma. Often, a body of evidence gradually grows until finally there
is little doubt.

Initially there are risk factors, events that occur or are observed during pregnancy, during
birth, or neonatally that indicate that a child has increased risk of CP (and often a host of
other conditions). Then, as the child develops, other indicators emerge, developmental
milestones are delayed, unusual motor patterns develop, and/or primitive reflexes persist.
Early diagnosis can be hard due to the high variance in the patterns of normal
development at this age.

Once CP has been diagnosed, appropriate early intervention services can be prescribed.
This often does not happen until the later part of the first or even the second year. At this
stage, the severity of the various aspects of the condition are still hard to predict. The

way the condition manifests itself and the associated problems are likely to change as the
child develops. One type of CP may be evident at an early age, then some years later the
motor dysfunction may appear to fall into a different category. However, sometimes the
initial label sticks, resulting in a need to be cautious when extracting data from medical,
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therapeutic, and educational records (Cauley et al., 1989).

Classification of CP

Understanding the different manifestations of CP is important from an HMI perspective
as the movement disorders are quite distinct in nature. Although the movement disorder
classifications are distinct it should be noted that individual cases are classified in terms
of the predominant condition exhibited at the diagnosis. There is increasing recognition
that in many cases multiple categories exist to a greater or lesser extent. One type may be
predominant in certain parts of the body while other body parts exhibit different
characteristics.

There are a number of classification systems that vary mainly in the number of sub-
categories (Phelps, 1950, Cruikshank, 1976, Hardy, 1983, Levitt, 1995). There is some
disagreement as to whether certain sub-categories are really one of the same class. This
highlights the difficulty that exists in attempting precise classification.

Classification usually consists of two components a) muscle and movement behaviour
correlated with site of brain lesion and b) location and extent of dysfunction.

The following categorisations have been extracted from McDonald (1987) in Beukelman
and Mirenda (1992: 241) and Gersh (1991).

Predominant movement dvsfunction/site of brain lesion:

Spastic (50%)

Hypertonic muscle tone, exaggerated stretch reflex, myoclonus, Babinski reflex present
after six months, tendency to develop contractures, persistent primitive reflex, lack of
inhibition of antagonist muscles. It is attributed to damage to the pyramidal system.
Athetoid1 (10%)

Uncontrollable and involuntary movement. It is attributed to damage to the
extrapyramidal system, in particular the basal ganglia (or more accurately, basal nuclei).

Ataxic (5%)

Difficulty in maintaining balance, clumsy or uncoordinated voluntary movement. It is
attributed to damage to the cerebellum.

Mixed (25%)

Combinations of two or more of the basic types.

Rarer types include:

Tremor (<1%)

Repetitive involuntary actions.

Atonia (1%)

No or reduced muscle tone.

1Many references to athetosis will describe “slow writhing purposeless movements”. In relation
to the numerous individuals that the author has observed, this is an inadequate description
steeped in historic attitudes. For instance, how do you determine that a movement is “purpose-
less”? Athetoid movement often results from attempts to communicate, to interact with the
environment and to express emotion. In this respect, the movement may well be distinctly

expressive.
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Location and extent:

Monoplegia

Only one limb on one side of the body is affected. Movement impairment is usually mild
and often disappears over time. It is very rare.

Diplegia

The lower extremities are mainly affected causing the individual to stand on their toes
and to scissor their legs due to muscle spasticity. There may be mild movement
dysfunction of the upper body, but there is adequate control over the trunk, arms, and
head for most daily activities.

Hemiplegia

One side of the body is affected. The arm is often more affected than the legs, trunk, or
face. Typically the arm is held in flexion.

Quadriplegia

The whole body is affected. Usually the lower extremities are most affected. The extent
of the motor impairment is likely to affect breath control and orofacial muscles used in
feeding and speaking.

Double Hemiplegia

Similar to quadriplegia, in that the whole body is severely affected. The difference is that
the arms are more affected than the lower extremities.

Associated Disorders;

Associated disorders are common in people with CP. These include:

* Cognitive impairments, learning difficulties (60%-70%)

* Mental Retardation: 25% (3% general population)

* Vision problems (40%), e.g. Strabismus (crossed eyes), refractive errors (near or far
sightedness), amblyopia (lazy-eye), cortical blindness.

» Attention Deficit Hyperactivity Disorder (20%)

* Hearing impairments (20%)

* Seizure activity (35%-45%)

* Speech Impairment - oral-motor movements ofjaw, lips, tongue and facial muscles
used for speaking. Trunk muscle control affecting breath control.

* Dyspraxia.

* Sensory impairments e.g. agnosia, impaired proprioception or vestibular system.

» Tactile hypersensitivity (tactile defensiveness).

» Tactile hyposensitivity.

Changing nature of CP

Improved medical provision is thought to be responsible for a change in the relative
incidence of the types of CP. In the Northern Hemisphere, incidence of pure athetoid CP
has decreased and incidence of mixed types of CP has increased due to advancements in
medical care. Also, there has been an increase in the number of children with multiple
disorders including CP (Hagberg et al., 1975). It is worth noting however, that there is
probably also an increased propensity on the part of clinicians to recognize and to
classify cases that fall into multiple categories (Hardy, 1983).
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3.2.4 Communicative Interaction of People with SSMICP

Severe speech and motor impairment due to cerebral palsy is likely to have a profound
effect on the development of expressive communication and greatly limit the ability to
interact and explore the environment. This often affects receptive and expressive
language acquisition (Cauley et al., 1989, van Balkom, 1991, Heim, 1994). It is common
for people with SSMICP to initiate communicative acts infrequently, often limiting
themselves to answering or responding to the requirements of their speaking
communication partners (Yoder, 1984, Kraat, 1985, Light, 1988, van Balkom, 1991).
Voice output communication aids (VOCAs) are often used as a last resort, giving way to
other methods such as eye gaze, gestures, facial expression and/or vocalisation (Murphy
et al., 1995). A comprehensive understanding of the reasons for this phenomena has yet
to be ascertained. Plausible contributing factors may include that the users acquire
“learned helplessness” or “learned dependency” where a passive outlook is encouraged
by their environment (Basil 1992), interaction styles of communication partners
(Rowland, 1987, van Balkom & Heim, 1990), issues of technology abandonment
particularly due to the mismatch between user requirements and available technology
(Phillips, 1993, Scherer, 1993).

3.3 Human-Machine Interfaces used by People with
SSMICP

3.3.1 Electronic Assistive Technology

People with SSMICP find it difficult or impossible to access regular HMIs due to their
limited motor control. This has inspired many ingenious adaptations or assistive
technology specifically designed for this population (Vanderheiden, 1978).

One of the simplest adaptations is the keyguard which is a plate that fits over a computer
keyboard, with holes drilled over each key. This prevents more that one key from being
pressed simultaneously and also allows the hand to rest on the guard while the user
focuses on fine motor control.

If the user’s motor control is insufficient to use a conventional keyboard in this manner,
extended keyboards are available. These are keyboards with larger than normal sized
keys that replace the conventional keyboard. A number of designs use membrane
switches that allow the area corresponding to each key to be tailored to the needs and

ability of the individual user (figure 2.5).

If motor control is insufficient to reliably target such keyboards (often referred to as
“direct selection”), then attempts are made to find parts of the body that can reliably
target single switches. A variety of designs of switches are available for this purpose
(figure 2.6).

If the applications require anything more than a simple on or off control, some form of
“indirect selection” strategy (e.g. scanning, coding) is employed to map the presses of a
few switches to a much larger number of actions. A common method is to arrange each
item available for selection in a matrix on a rectangular board, each with a corresponding
light-emitting diode (LED). All the LEDs in successive columns are illuminated in
sequence. The user presses a switch when she/he sees that the column containing the
desired item is illuminated. The system, knowing which column has been selected, then
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proceeds to sequentially illuminate the individual LEDs in the selected column. The user
presses the switch when the desired item is illuminated. The system then returns to
scanning columns and is ready for the next selection. In this way, one switch can be used

to access a large number of items (figure 2.7). The limiting factors are the increased
scanning time for each item and the greater cognitive load as the number of items grows.
Typically the maximum rate of selection achievable using this type of selection method is
between five and ten words per minute (Foulds, 1985). There are variations on this
scheme e.g. initially scanning rows rather than columns, step scanning for two or more
switches and directed scanning for five switches. An extensive review of AAC
techniques and technology can be found in Beukelman & Mirenda (1992).

Figure 2.5 Intellikeys® expanded membrane keyboard.

Figure 2.6 Two examples of proprietary switches used to
harness movement from people with SSMICP.
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3.3 Human-Machine Interfaces used by People with SSMICP

Figure 2.7 An example of a VOCA using indirect selection
using single switch scanning of up to 128 items.

3.3.2 Assistive Technology for Communication

Assistive technology for augmentative and alternative communication (AAC) is one of
the most challenging areas for a gestural human-machine interface. Electronic
communication aids, particularly the voice output communication aid (VOCA) which
outputs synthetic speech have made a substantial difference to the lives of many people
with SSMICP. Electronic communication aids have offered the opportunity to express
thoughts with much greater precision and depth (Nolan, 1981, Murphy, 1994). However,
as mentioned previously, many people with SSMICP tend to use their electronic aids to
initiate a communicative act infrequently. In addition, the use of such technology does
not integrate easily with natural expressive modalities. In the case of indirect selection
using scanning, the user has to constantly look at the scanning matrix, disrupting
sustained eye contact with any communication partner.

There is still considerable debate as to the relative effectiveness of various AAC options:
a summary is given in Beukelman and Mirenda (1992:66-67) taken from a number of
sources. Typically, rates for non-speakers using existing AAC options are 2-10 words per
minute compared with that of unimpeded speech that proceeds at 150-200 words per
minute, a significant order of magnitude of difference (Aim et al. 1992). Many schemes
of varying sophistication have been developed to enhance the communication rate. A
selection of examples are illustrated.

AAC device developers and researchers have attempted to associate more meaning to
each bit of information transferred from user to machine. Scanned word lists, word
prediction, coding schemes, semantic compaction techniques have all shared this goal.
Semantic mapping schemes such as Minspeak® attempt to associate short sequences of a
small number of familiar symbols to a much larger number of words and phrases (Baker,
1982). The cognitive association is based largely on mnemonic principles. This can also
increase the cognitive load of the user unless the necessary semantic associations can be
easily recalled from memory. Although potentially this gives efficient access to a large
vocabulary (Baker & Nyberg, 1990), many users only manage to memorise a small
number of sequences (Levelt, 1994). Strategies such as these may increase the rate of
communication and give access to more sophisticated linguistic constructs, however it
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can also make the system hard to learn if the user has to learn mappings that are arbitrary
and abstract. An example of this is the early BlissApple communication software which
required a four digit number to be entered for each of the 2000 or so Bliss symbols.

Researchers at the University of Dundee MicroCentre have taken a very different
approach. They have developed AAC software which capitalises on the fact that much of
human discourse is repetitive and stereotyped in nature (Aim et al., 1992). Through the
application of conversational analysis and dialogue design, a model of conversational
patterns was developed to predict conversational moves. The system was implemented
using augmented transition networks. The aim is to provide the user with “conversational
momentum, that is, a small effort can initiate relatively long conversational moves”.
Features of the system have been commercially incorporated into Talk:About (Don
Johnson, 1995).

3.4 Summary and Implications for Gestural HMI
Design

A number of key user issues are summarised below (italics) followed by suggestions as
to the challenges they present for the design of gestural HMI together with possible
accommodations:

Cerebral palsy covers a range o fmovement disorders with different characteristics'. This
is likely to affect the type of pre-processing needed to enhance the signal-to-noise ratio
of the “noisy” gestural movement. Ideally the system should be optimised for each
individual.

Each primary user is likely to exhibit a highly individual profile ofabilities: The GHMI
system will need to be modular. Just as people with SSMICP undergo assessments to
identify sites on the body that can reliably operate a switch (Beukelman & Mirenda,
1992), a similar process could be employed to identify parts of the body that are involved
in gesture production. Sensors could initially be attached to many body sites, then the
system itself may be able to determine the minimum sensor configuration for robust
gesture recognition. In order to maximise the size of each user’s gestural repertoire,
individual repertoires are likely to be unique. The system should be trainable to
recognise each user’s particular gestural repertoire.

Movement characteristic and abilities can change substantially as a child § neurology
develops: 1t should be possible to accommodate for this by periodically retraining the
system using recent gestural data.

User s physical performance is likely to exhibit significantfluctuations on a daily or
hourly basis due tofactors such as emotional state, fatigue, illness: This is potentially a
problem for HMI based on recognition of movement patterns. Conceivably, it may be
possible to accommodate this effect by anticipating changes in performance (e.g.
changes in range of motion, duration) and adapt the system accordingly.

People with SSMICP communicate multimodally: This implies that the maximum
interface bandwidth will most likely be achieved by harnessing multiple modalities
possibly involving multiple parts of the body e.g. gesture from arms, hands, torso, legs,
head, eye-gaze, and vocalisations.

Potential users ’ages rangefrom infants to adults: The interface will need to be adaptable
and expandable as the user’s abilities, needs, and interests change and develop. Gestural
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HMI incorporated into AAC technology offers a number of advantages. Unimpaired
children are typically producing deictic gestures by 12 months (Bates et al., 1975) and
begin to produce iconic gestures from 12 months onwards (Acredolo & Goodwyn, (in
press) reported in McNeill, 1992). On this basis, gestural HMI would appear to be
appropriate for use by infants with cerebral palsy as part of an early intervention strategy
at an age when complex single-switch scanning technology would be too cognitively
demanding.

CP can be accompanied by cognitive impairment rangingfrom mild to severe: Gesture is
currently used as a method of AAC and as an aid to language development with
cognitively impaired populations (Musselwhite & St. Louis, 1982, Fuller & Wright,
1994, Grove & Dockrell, 1994). Thus, gestural HMI could be integrated into existing
therapeutic language intervention strategies involving gesture.

People with SSMICP often exhibit residual infantile reflexes e.g. asymmetric tonic neck
reflex, startle reflex: The system must be designed so that is does not confuse a reflex
with gestural input. Fortunately, reflexive movement tends to be very stereotypical. In
principle is should be possible to train the system to reliably recognise this type of
movement and thereby minimise any spurious input.

The user is likely to use a wheelchairfor independent mobility: 1f the system is to be
mobile it would most likely be mounted on the wheelchair. It would have to be robust
enough to withstand daily use in a variety of environments. The wheelchair seating and
postural restraints would have to allow for appropriate gestural movement, while still
offering the user adequate support.

Need to designfor secondary users as well as primary user: The system will have to be
simple and quick to set-up and maintain requiring little technical expertise. Although its
internal operation will necessarily be complex, the user’s mental model of the system
should be as intuitive and transparent as possible.
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Chapter 4

Gestural Ability Pilot Study

4.1 Introduction

In order to develop a gestural human machine interface for people with severe speech
and motor impairment it is necessary to investigate the gestural ability of this population.
Rather than attempt to document gestural ability in randomly selected daily activities,
this pilot study aimed to elicit gestural behaviour above and beyond any commonly used
gestural repertoire.

A cognitive framework was constructed using performance arts techniques to elicit a
wide variety of volitional expressive behaviour that was potentially useful for human-
machine interaction.

The gestural ability of twelve children and young adults between the ages of 5 and 18
were studied. The gesture sessions were video-taped and the video material was
reviewed to determine which body parts were involved in the gesture. The summary
results for each subject are presented in this chapter. The transcriptions of the elicited

gestural repertoires for each subject are presented in appendix A.

4.2 Subject Selection

Subjects were selected with the assistance of therapists, special educators and clinicians
from John G. Leach School, Newcastle, Delaware, HMS School for Children with Cere-
bral Palsy, Philadelphia, Pennsylvania, Widener Memorial School, Philadelphia, and the
A. 1. duPont Institute Children’s Hospital. Meetings were held to describe the research
and the subject selection criteria, after which participants were requested to identify
potential subjects for the study. The criteria were:

1) Need: Subjects should be severely motor and communicatively impaired due to cere-
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bral palsy or cerebral palsy-like symptoms. They should have difficulty targeting
switches commonly used in human-machine interaction.

2) Cognitive Ability: Subjects should have sufficient receptive language and demon-
strated cognitive ability to interact in the proposed sessions.

4.3 Subject Profile

Eleven of the twelve chosen subjects met the above criteria. In the case of subject S8,
cognitive abilities had only been informally assessed due to her age (Syrs 9m) and her
difficulty with expressive communication. She was included in the study upon
recommendation of her therapist who thought that it may be possible to elicit gestural
behaviour.

Subject details are listed in table 4.1. All were considered quadriplegic, six spastic, five
athetoid and one spastic-athetoid. All had cerebral palsy except subject S4 who had CP-
like symptoms due to traumatic brain injury. Ages ranged from five years nine months to
eighteen years one month. The group comprised six females and six males. Cognitive
age indicated by the Peabody picture vocabulary test (PPVT-R form L, described in
McLaughlin & Lewis, 1986) ranged from 3 years six months to 11 years (excluding
subject S8). At least eight had persistent asymmetric and/or symmetric tonic neck reflex
and at least six had diagnosed vision or visual tracking problems. Where noted in their
records, the quality of volitional motor ability is detailed.

Table 4.2 details the twelve subjects’ present methods of expressive communication.
Both electronic and non-electronic AAC systems are listed including the input method
for each. The primary method of communication has been noted when it has appeared on
the speech therapy report. Finally any other relevant details have been included.

It should be noted that eleven of the twelve subjects were using or training to use
electronic assistive technology in the form of a VOCA or computer system. Six used eye
gaze as the selection method with their non-electronic AAC system. Ten subjects used
“indirect selection” and one subject used “direct selection”.

For those that used an electric wheelchair, the method used to access powered mobility is
documented in table 4.3. Four subjects were using powered mobility and five subjects
were being assessed for their ability to access powered mobility. Of those using an
electric wheelchair, two used a four position joystick and two used from three to five

distributed switches to control their wheelchair.
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Subject

SI
S2
S3

S4

S5
S6
S7
S8

S9

S10

Sl

S12

Diagnosis

Spastic quadriplegia
P

Spastic quadriplegia
P

Spastic quadriplegia
(CP)

Spastic quadriparesis
and hydocephalus
(TBI)

Athetoid quadriplegia
(CP)

Athetoid quadriplegia
(CP)

Athetoid quadriplegia
(CP)

Athetoid quadriplegia
(Cp)

Spastic-Athetoid quad-
riplegia (CP)

Spastic quadriplegia
(Cp)

Athetoid quadriplegia
(CP)

Spastic quadriplegia
(CP)

Age
year,
month

13,8

12,0

9,4

17,9
9,9
10,7
59

16,9

18,1

10,10

12,11

Sex

M

Cognitive
level3

7,6 (13,2)
7,9 (14,6)
3,6(12,5)

3,11 (8,4)

10,5(16,10)

37098

11,0(17,4)

7,7(16,6)

6,4(10,1)

8,10(12,9)

Vision/

ATNR/  Visual
STNRb tracking

Y

Y

problem
Y

Reported quality of volitional movement (extracted from therapists and clinician reports)

“severe rigid spasticity, very limited active movement”

“active range of motion very limited in both upper extremities”

“slow active movements left-side for functional movements”

“constant athetoid type movement patterns upon any effort or excitement”
“preference for use of right upper extremity”

“isolated finger movement”, “active range of motion within functional limits although often exhibits
excessive end of range of motion”

“imitation of orofacial expressions”
“volition movement of both upper and lower extremities but has poor control”

“active range of motion limited to flailing type movements of upper and lower extremities”
“marked fluctuations in muscle tone with choreoathetotic movements”
‘“unable to functionally use hands secondary to athetoid movements”

“active range of motion limited to involuntary flailing of extremities with high muscle tone”

“Active movements: very large poorly graded athetoid motions, usually extensor patterns”. “Head
control: limited range”, “right hand dominant”
“all fine motor movements require extreme effort and time”

“athetoid quality present in all his movements”
“Jeft hand dominant”

Table 4.1: Details of subjects chosen for gestural ability pilot study

a. As indicated by Peabody picture vocabulary test (PPVT-R form L) year, month. Age at testing indicated in parenthesis.
b. Asymmetric tonic neck reflex (ATNR) / Symmetric tonic neck reflex. These are both involuntary primitive reflexes.



Subject

SI

S2

S3

s4

S5

S6

S7

S8

S9
S10

SU

S12

Electronic Input method

Pad switch with right
elbow

Four direction
foot-joystick

Single right side-mounted
head switch

Left index finger

Single side mounted head
switch. Being evaluated
for multiple switches

Single switch operated
with the hand mounted
vertically at distal right
edge of lap-tray

Pad switch with left hand

Right knee-switch
Head switch

Single left side mounted
head switch

Knee- switch

Selection Strategy

Linear step scanning
and auditory scanning

Directed scanning

Scanning

Direct selection

Row-column scan-
ning 128 location

Row-column scanning

Linear Scanning 32
locations

Row-column scanning

Row-column scanning
128 locations

Row-column scanning
128 locations

Row-column scanning

Electronic AAC system

VOCA (Dynavox)

VOCA (Tailor made)

Undergoing assessment
for VOCA - Uses com-
puter with keyboard emu-
lator

VOCA Touch Talker

VOCA Light Talker

VOCA (Liberator)

VOCA (Light Talker)
(Under evaluation)

None (under assessment)

VOCA (Light Talker)
VOCA (Light Talker)

VOCA (Light Talker)

Light Talker (VOCA)

Non-Electronic

Rebus picture/word
language board -30
items

Rebus picture/word
language board 250
items

Picture board - 88
items (8x11)

English ortho-
graphic board with
adapted Fitzgerald
key.

Picture board built
into lap-tray

Language board
with keyguard-like
grid. 40 items

Object selection E-
tran

Past use of E-tran

Past use of coded
eye-pointing system

Past use of E-tran -
100 number/colour
coded items

Non-Electronic
Selection Method

Right index finger or
knuckle

Eye gaze localized to
numbers and colours

Left index finder

Eye gaze to large
number on board
perimeter

Targeting of colour
coded numbers on
rail around edge of
lap-tray

direct pointing using

left index finger

Eye gaze

Eye gaze
Eye gaze

Eye gaze

Primary Method of

S Other Relevant Details
Communication

“takes 5 seconds to move arm to
picture symbols”

Yes/No head-shake, vocalizations,
some word approximation Speech
is supplemented using Rebus board

yes/no eye gaze and head shake

Single word approximated speech

Combines modalities

Combines modalities “constant poorly graded gross
movements characteristic of athe-

tosis are hard on equipment”

Multiple modalities “accesses computer, battery oper-
ated toys and environmental con-

trol unit via switch.

“direct selection using hand-held
optical indicator was problematic
due to increased athetoid move-
ments as selections were
attempted”

Speech, Light Talker

Vocalization, limited facial and eye
pointing

Speech and Light Talker

Table 4.2: Existing Methods of Expressive Communication



Subject

SI

S2

S3

S4

S5

S6

S7

S8
S9

S10
SII

S12

M obility

Manual wheelchair, being evaluated for
powered mobility

Powered wheelchair

Manual wheelchair, being evaluated for
powered mobility

Manual wheelchair, being evaluated for
powered mobility

Powered wheelchair

Manual wheelchair
Being evaluated for powered mobility

Manual wheelchair
evaluated for powered mobility

Manual wheelchair and walker

Powered wheelchair

Manual wheelchair
Manual wheelchair

Powered wheelchair

4.4 Experimental Design

Mobility Access Method

problem finding three reliable switch sites

Four direction footjoystick with left foot

Looking for four switch sites (not achieved)

Aiming forjoystick control

Three head-switches, 1 knee-switch, 1
elbow switch

Vertically mounted switches at edge of tray
(just under full elbow extension)

Three pad switches with left upper extremity

Three head switch 1knee switch, 1elbow
switch

Left hand operated four position joystick

Table 4.3: Mobility and Powered Mobility Access Method

4.4 Experimental Design

A set of approximately 140 concepts represented by words and phrases was created
based on notions that the investigators could easily express non-verbally themselves. A
set of flash cards was created with one concept written on each card. The cards were

sorted into the categories listed in table 4.4. The individual words and phrases are listed
together with the analysis of the response in appendix A.

Considerable effort was put into creating an environment where each subject could feel
at ease while performing gestures. With this in mind, all sessions took place in familiar
surroundings with familiar people involved. Gestural elicitation sessions were scheduled
to take place within each subject’s regular school therapy session. Each subject’s
therapist was invited to participate. At the beginning of the session the facilitator took
time to explain the nature and purpose of the session. In addition, the facilitator and
investigator had previously met briefly with each subject and their therapist to explain
the project. The facilitator ensured that she was familiar with each subject’s yes/no

response.
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Categories
Actions Musical instruments
Animals Objects
Communication Outlines
Description People
Events Senses
Fantasy characters Sport
Feelings Travel
Food Weather
Movement Miscellaneous

Table 4.4: Concept Categories used to Elicit Gestures

Each subject was told that they would be video-taped so that their gestural responses
could be studied and that the video would remain part of their school record. She/he was
offered the opportunity to decline to be video recorded. The subject was positioned so
that she/he had sufficient space to gesture with the arms without feeling they were likely
to hit anything. Where appropriate, lap-trays, VOCAs, and arm-rests were removed,
restraints loosened with the agreement of the subject and therapist to enable the subject
to move more freely. The therapist was invited to sit next to the subject (but not close
enough to constrain the gestures). The facilitator sat opposite the subject to enable good
eye contact to be maintained.

The concept of mime with some examples was presented to each subject.

The main part of the session comprised a charade-like game where the therapist was a
member of the subject’s team. The facilitator would select a flash card and read aloud the
word or phrase. Time was then allowed for the subject to produce a “mime” to express
the concept. It was explained to each subject that they were in control in that they did not
have to produce a mime if they did not wish to and that they could take a rest or stop at
any time. No constraint or direction was placed on the type of response required,
although it was explained to the subject that they could ask for a clue if they so wished.
Similarly, the facilitator took care not to convey any judgement as to the nature of the
gestural response. Once the facilitator felt the subject had produced a response, the next
concept was introduced. The facilitator carefully managed the interaction so that
motivation was maintained using banter and changing intonation of voice. From time to
time the subject was asked whether they were happy to continue. Each gesture session
lasted around 40 minutes or until the subject asked to stop.

Each video was subsequently reviewed and the gestural responses analysed. The video
was reviewed by one investigator. The purpose of the analysis was to ascertain which
body-parts were involved in the gestural responses. As each gesture was only produced
once it was not possible to make any conclusions as to the repeatability of each gesture.
Inter-observer reliability testing was not applied in this pilot study. Each gesture was
logged, identified by the eliciting word/phrase, recording the part or parts of the body
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observed to be involved in the gestural response. The body-part categories were devised
specifically for the study. They were: vocalisation, head, facial expression, eye-gaze,
mouth, tongue, trunk, left-arm, right-arm, left-wrist, right-wrist, left-hand, right-hand,
legs, feet, whole body. The results for each subject are presented in appendix A.

Histograms of the frequency of involvement of each body part for each subject are
presented in the second part of the following results section.

4.5 Results
4.5.1 Previously Documented Gestural Ability

The subjects’ unaided expressive communicative ability previously documented in

therapists’ reports and medical records are listed in table 4.5. All subjects had severely
dysarthric or no speech. At least six subjects used non-speech vocalisation as a means of
expression. At least six subjects used orofacial expression. At least five used deictic arm
and/or hand gestures. Other gestures included head-shaking, the “OK” hand sign, hand
up for yes, hand down for no. Except for one subject (S4), subject records only contained
details about two types of gesture: gestures symbolizing yes and no and deictic gestures
e.g. the use of eye-gaze, or arm/hand pointing to body parts or objects or people in the
environment, the meaning of which presumably has to be guessed at from context. Seven
gestures were recorded for S4. These are listed in table 4.5. One can only speculate as to
how accurately any documented gestural repertoire reflected each subject’s actual use of
gesture. During the investigators’ contact with the subjects in their school settings, a
number of the subjects used a gestural method of indicating needs such as wishing to go
to the bathroom. This was not documented in their reports.
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Nor(li Orofacial Deictic
Subject  Speech3 Vzt:zrliza Eye Gaze Expression Arm/hand Other Reported Comments
tion P Gestures

SI SD Y Y

S2 N Up-yes Y Head shake

Down -
no
S3 SD
S4 SD Y Y, 5 2
“I”, point to eye; “big”, raises hand at
“love”, hand to heart; side of head;
“you”, points to you; “mad (angry)”, holds
“hand to mouth”, eat/drink; fist up
“hand to ear”, hear/listen
S5 SD up -yes
no- look
down
deictic
S6b N Y Hand up - yes
Down by side for no
S7 N Y Y Y, hand Sign approximations “strong ATNR
“thumb and index restricts reliable use
finger together for of eye gaze, switch
yes (OK sign)” scanning, deictic
hand gestures"

S8 N Y Y Y “imitation of orofacial
expressions, emer-
gence of cognitive
verbal precursors”

S9 SD Y Y

S10 N Y up -yes Y - limited “limited volitional

side to movements
side - no
S1l N Y up - yes Y “gross pointing with arm
down - no and hand”
S12 SD “gestures to the best

of ability”

Table 4.5: Unaided Modalities of Expression

a. SD = severely dysarthric, N = no documentation of any speech ability in reports.
b. Speech therapy report not available for this subject.

4.5.2 Elicited Gestural Ability

Ten subjects participated in this part of the study. Two subjects, S8 and S 10, did not
participate. In the case of S8, the protocol would have had to be substantially modified to
accommodate her level of receptive language. S 10 chose not continue her participation in
the study.

From 30 to 141 gestural responses were produced from the remaining ten subjects. The
elicitation protocol allowed for subjects to ask for clues. Most of the time the gestural
responses were produced readily and spontaneously from the verbal stimuli.

Gestures were articulated from different and multiple body sites depending on the mime.
For example, the static mime for umbrella involved holding the hand stationary above the
head level, the mime for monster often involved the whole body movement and posture
including animated facial expressions and vocalisation and the dynamic mime for violin
involved the co-ordination of head, torso, and arm. Minimal prompting in the form of
clues was necessary from either the therapist or facilitator. The ease of elicitation and
consistency of concept over time suggests that existing kinaesthetic abilities were being
harnessed involving a low cognitive load. Examples of gestures from subjects from
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different schools in different States often appeared to originate from common concepts.
The mime for rainbow typically involved one hand moving in an arc above and across
torso or head. The mime for snake was performed by rapid protrusion of the tongue.
Mimes were spontaneously enacted often with a sophisticated and creative appreciation
of movement in time and space. The subjects were able to convey concepts for weight,
emotion, character formation and object visualisation.

Appendix A contains transcripts of session video-tapes indicating the body-parts
involved in the gestural responses from ten subjects. Histograms indicating frequency of
body-part involvement extracted from these transcripts are presented in figures 4.1 and
4.2. Inspection of the transcripts reveals that, more often than not, multiple parts of the
body are involved in gesture production. The histograms show clearly the relative
involvement of body parts. The arm is involved more frequently than any other body-part
for nine out of ten subjects. All except two subjects exhibited a significant preference for
one arm over the other.
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Figure 4.1 Histograms indicating number of instances of use of body parts involved in ges-
tural repertoires for subjects S1 to S6.
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of body parts involved in gestural repertoires for subjects S7,
S9, S11, S12.
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4.6 Discussion

The gestural ability pilot study results indicate that people with little ability to interact
physically with the environment nevertheless can translate their knowledge of the world
into appropriate physiographic gestures. Since access to play or opportunity to interact
with the environment is severely restricted for this group, it is proposed that the observed
gestural ability may have been acquired without practice. The level of gestural ability
exhibited by subjects in this study was not anticipated by participating therapists,
clinicians, teachers and parents. There was no evidence of appreciable gestural ability
based on analysis of prior documentation in educational, therapeutic, and medical
records.

As far as familiar communication partners were aware, the subject had never been
exposed to similar activities before. The apparent consistency of the underlying form of
production is important as it is much easier to turn the gestures into a method of AAC if
there is consistency across subjects. This, and the ease with which gestures were elicited
suggests that there is a high degree of transparency in the gestural production. In other
words, little effort is needed to learn and remember the gestures. In an HMI system, the
concepts used to elicit the gestures could easily be mapped to input commands of an
application. One of the simplest schemes is to use the conceptual nature of gesture in a
similar way to that of graphic icons used in graphical HCIs. The use of gesture offers an
additional advantage over the use of graphic icons in that gesture draws upon
kinaesthetic recall.

The histograms show that a variety of body parts are involved in production of the
gestures. There was considerable variation between subjects as regards which body-parts
are used to articulate the gestures. More often than not, multiple parts of the body were
involved in gesture production. However the arm was the most commonly used
articulation for nine out of ten subjects.

In addition to documenting gestural ability, the purpose of this part of the study was to
determine which parts of the body to instrument in order to capture gestural movement
that is likely to be recognisable by computer.

From the results presented in this chapter, the most promising single site of the body to
instrument would appear to be the subject’s dominant arm.

45



Chapter 5

Gestural Data Collection for
Pattern Analysis

5.1 Introduction

The utility of the gestures elicited in the gestural ability pilot study for HMI depends on
whether they can be produced consistently and whether they can be reliably recognized
by computer. The research reported in chapters 5 to 8 address these issues by looking at a
sub-set of gestures that could be transduced using a single magnetic tracker attached to
the body. The arm was chosen as it was involved in gestural expression more than any
other part of the body.

This chapter details subject selection, the experimental rig, and the methodology for
collection of dynamic arm gesture data. Details of the movement tracking are presented.
Results relating to the nature of the gestures and their rate of production are presented
and discussed.

5.2 Subject Selection

Five subjects were chosen for instrumented data collection. Subjects were selected based
on their ability to produce a range of gestures involving the arm. Manual segmentation of
the gestural data stream took a considerable amount of time (Chapter 6). As a result, data
from just one subject was used in this part of the study.

Subject S9 was chosen from the group of participants in the gestural ability pilot study.
The subject had a relatively good range of motion using the upper extremities and had a
wide and imaginative range of gestural responses. However, he also had the highest
degree of choreoathetosis in the movement involved in executing those gestures.
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5.3 Subject Description

Although there was plenty of movement to monitor, the level of noise in the movement
was high. This subject’s diagnosis of mixed spastic-athetoid CP represents a category of
cerebral palsy that is increasing in prevalence.

Figure 5,1 Subject performing dynamic arm ges-
ture with magnetic tracker receiver attached distally
to the right forearm. The transmitter was mounted on
a wooden post in-front and to the side of the sub-
ject’s wheelchair

5.3 Subject Description

Subject S9’s age at the initial data collection was 16 years 9 months. His cerebral palsy
was classified as spastic-athetoid quadriplegic.

The motor impairment presented itself as spasticity, particularly in the lower extremities
with contractures in both lower extremities. His upper extremities, head, neck and face
exhibited athetoid movement.

The subject was highly motivated to participate in the study and showed interest in the
research.

His speech was severely dysarthric and usually limited to one or two words. He had been
using electronic communication aids for around 11 years. Prior to this, he used a non-
electronic eye-gaze “E-tran” system.

The following details were extracted from speech/occupational/physical therapy reports:

Gross Motor control:
Passive range of motion: “Difficult to assess accurately due to marked athetoid move-

ments”.

Active range of motion: “Limited to flailing type movements of upper and lower extremi-
ties”.

Tone/Spasticity/Clonus: “Marked fluctuations in muscle tone with choreoathetoid-type
movements”.

Fine Motor control: “Unable to functionally use hands secondary to athetoid movements.
He effectively uses switches with his head and legs”.
Communication:
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“Essentially nonverbal due to severe dysarthria”.
“Attempts to communicate verbally, although he is rather difficult to understand”.
“Frequently attempts to communicate using speech at a one to two word level: Approxi-
mately 25% intelligible to a familiar listener in known contexts”.
Electronic scanning devices:
Previously used: E-tran boards, Zygo instruments device.
Current system: Light Talker with MinSpeak semantic compaction. Inputs information into
the VOCA using a single knee switch.
While working with the subject we were able to observe that he used a mixture of
dysarthric speech/vocalisations, gestures, eye gaze, facial expression and knee-switch
operated VOCA to expressively communicate on a day-to-day basis.

5.4 Gestural Subset

Although gestures were produced using varied and often multiple parts of the body, the
task of transducing let alone integrating and recognizing movement data is anything but
trivial. Attempting to investigate the computer recognition of the complete gesture sets
documented in the last chapter was beyond the scope of the project, requiring unavailable
technology and resources.

The gestural ability pilot study described in chapter four indicated that for the majority of
subjects the arm featured more frequently that any other part of the body. This fact
provided the rationale for limiting the study to dynamic arm gestures.

Although the ultimate goal is to be able to transduce movement from any part or multiple
parts of the body, the computer recognition of CP movement can be investigated in some
depth using data from a single body site.

It was hypothesised that sufficient pertinent information could be transducedfrom such
gestures using a single six-degree offreedom magnetic tracker attached distally to one
forearm.

A sub-set of gestures produced in the gestural ability pilot study were selected on the
basis that they involve one arm as a principal component. This gesture set together with

example verbal prompts are listed in table 5.1. The set comprises twenty-seven gestures

(reduced to twenty-six during segmentation for reasons discussed in section 6.6). The
size of the gesture sub-set was chosen rather arbitrarily on the basis that it was one
greater than the number of letters in the English alphabet.

A variety of gestural forms were chosen for inclusion in the sub-set. The set comprised
gestures that were clearly distinct in their use of space, gestures that used similar areas of
space, but had different form, and gestures that were rather similar to each other (see

section 6.4).
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N

c

0 Gesture Verbal Prompt

d

ea

1 bird Show me a bird

2 cards Pretend to play cards

3 cut throat Pretend to cut your throat

4 drive the car Pretend to drive the car

5 drums Pretend to play the drums

6 heavy weight Pretend to hold a heavy weight
7 helicopter Show me a helicopter

8 hot Show me it’s hot

9 ice-cream Pretend to eat at an ice-cream
10  ironing Pretend to do the ironing

11 knock on the door Pretend to knock on the door
12 lasso Pretend to lasso the steer

13 light feather Pretend to hold a light feather
14 rainbow Show me a rainbow

15  rock a baby Pretend to rock a baby

16  rock guitar Pretend to play a rock guitar
17  scratch your knee Scratch your knee

18  shake hands Pretend to shake hands

19  shave Pretend to shave
20  spank Pretend to spank your brother
21  spider Show me a spider
22 stroke the cat Pretend to stroke the cat
23 surrender Surrender!
24 whistle Pretend to pull the whistle on the train
25  umbrella Pretend to hold an umbrella
26  violin Pretend to play the violin
27 waiter® Pretend to be a waiter in a restaurant

Table 5.1: Gesture Sub-set

a. This code is used as a numerical identifier for each gesture class

b. Discarded from gesture set due to reasons discussed in section 6.6

5.5 Experimental Rig

The experimental rig was designed so that it could be transported to the subjects’ school

(see figure 5.3). A quiet room was provided by the school and the rig installed for the
duration of the data collection process. The floor was marked with tape to ensure that
equipment remained in the same position for each data collection session. A wooden post
and base was constructed and the transmitter attached to the top using self-adhesive
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5.5 Experimental Rig

velcro. A wheelchair registration plate was constructed that when placed on the floor
ensured that the wheelchair could be located in a similar position for each data collection
session. The rig was designed so that data could be collected from either the right or left
arm. The transmitter of the magnetic tracker was positioned so that it was as close as
possible to the receiver without any possibility of the hand or arm coming into contact
with it. It was positioned so as to minimize the possibility that the distance between the
centres of the receiver and transmitter exceeded the range-limit of 36 inches.

The receiver was attached via an elastic wristband that fastened around the forearm using

velcro (see figure 5.2). Velcro was used to secure the receiver to the wristband on the
underside of the receiver and an additional velcro band across the top minimised
movement of the receiver relative to the wrist band. The wristband was carefully adjusted
so that it was comfortable to wear and minimised movement between the receiver and the

forearm. The design shown in figure 5.2 was arrived at after some experimentation.

Figure 5.2 The “Flock of Birds” magnetic tracker receiver was
attached distally using a velcro and elastic wristband developed
for the study.
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RS232 cable

Figure 5.3 Plan view of experimental rig. The facilitator and subject sat facing each other.
The wheelchair registration plate ensured that the subject’s wheelchair was positioned in the
same position relative to the transmitter and the video camera. The gesture tracking system and
videocamera were controlled by the investigator. The receiver was attached distally to the
subject’s right forearm.

5.6 Gesture Tracking System

The “Flock of Birds” six-degrees of freedom magnetic tracker is a self-contained
measurement system. The host computer receives data and sends control commands via

an RS232C serial interface (see fig. 5.5). Both the transmitter and receiver consist of
three large coils of wire wound on perpendicular axes, enclosed in plastic casings. The
electronics unit sends short DC pulses to each transmitter coil in rapid succession. This
generates a brief electromagnetic field along each successive axis which is sensed by the
receiver. The microprocessor in the electronics unit uses the magnitude of these signals
to calculate the 3D position and orientation up to 100 times per second, sending the
measurement to the computer in real-time with a lag of around 24ms (Pauch, 1991,
reported in Meyer et al., 1992). The magnetic tracker was operated in the position/matrix
output format mode. The data record output from the magnetic tracker in this mode
comprised of three position co-ordinates and nine elements of the square rotation matrix
that define the position and orientation of the receiver relative to the transmitter. This

output record per sample is described in table 5.2. Each field comprises two bytes sent
across the RS232 port in low-high byte pairs.

Software was written in C++ code to poll the unit for a measurement record 100 times
per second, the magnetic tracker’s nominal measurement rate. The computer’s real-time
clock (RTC) was temporarily reprogrammed to provide the required timing interrupts
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5.6 Gesture Tracking System

and the measurement was stored in real-time on the computer’s hard-disk . An interrupt
driven serial driver supplied by Ascension Technology Corporation was modified to
allow for the increased frequency of RTC timer ticks. As soon as the gestural data were
received at the serial port they were transferred to a circular buffer of two kilobytes and
then written to a file on the hard-disk of the PC.

Figure 5.4 Schematic of “The Flock of Birds”
magnetic tracker interfaced to a 486 PC.

The manufacturer’s specifications supplied with the device were as follows (Ascension
Technology Corporation, 1993):

Positional range: +/- 36 inches from transmitter over one hemisphere

Angular range: +/- 180 degrees azimuth and roll, +/- 90 elevation

Static positional accuracy: 0.1 inch RMS averaged over the translational range

Positional resolution: 0.03 inches at 12 inches

Static angular accuracy: 0.5 degrees RMS averages over the translational range

Static angular resolution: 0.1 degrees RMS at 12 inches

Update rate: 100 measurements/sec

Environment: 30 degrees C +/- 10 degrees in an environment void of large metal objects and
electromagnetic frequencies other than the power line.

Note that measurements are static. Dynamic performance data are not provided. Static
system accuracy was verified in the laboratory to be within specification at the extremes
ofrange along each axis. It was beyond the resources of the research project to
investigate the dynamic accuracy of the tracker. System functioning was verified by
inspection of the data steam using MATLAB graphics and by comparing the Silicon
Graphics computer animation of tracker movement with the NTSC video.

Position Elements of Rotation Matrix, M
X Y z M2 M@ED) M(1L2) M22  M32) M(13) M23) M33)

Table 5.2: “Flock of Birds” output record per sample

lThanks to John Gray of ASEL for the code for the RTC timer function
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TunsniUer

Figure 5.5 Diagram showing the transmitter and receiver
modules and the co-ordinate system used by the “Flock of Birds”
six-degree of freedom magnetic tracker. (After Ascension
Technology, 1993).

The correspondence with video appeared good within the limits of visual inspection (see
figures 6.3 to 6.6). The device was found to occasionally produce “glitches” during
periods of rapid arm movement (detailed in section 6.6) but these were usually short-

lived and the effects were reduced by low pass filtering (see section 6.7 and figure 6.9).

5.7 Gestural Data Collection Sessions

Each session took place in the familiar surroundings of subject S9’s school. A room was
provided by the school for this purpose that offered a quiet environment with the
minimum likelihood of interruptions. Three sessions over three days were scheduled into
the subject’s regular school timetable, each session taking the place of a regular therapy
session. Prior to the commencement of data collection, the investigators organised
meetings with the subject, therapists, and teaching staff. During these meetings the
purpose and requirements of the data collection sessions were discussed and feedback
invited. This ensured that objectives were understood, that the investigators appreciated
school and subject needs and that potential problems could be anticipated and
accommodated.

Each session lasted 50 to 60 minutes with 33 to 43 minutes of data collection divided
into a number of shorter data collection periods separated by breaks of 1to 5 minutes.

Session schedule:

1. Positioning subject, attaching receiver, social interaction with subject 10 mins
2. First gesture sequence comprising one gesture of each class -3 mins
3. Four to five randomly elicited gesture sequences, each lasting exactly 10 mins

As with the gestural ability pilot study, the subject was made to feel at ease and in
control. It was made clear to the subject that he could take a rest at any time during data
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collection if he felt tired (he never exercised this option). Between sequence data
collection, the subject was permitted to rest for a few minutes. The exact duration
depended on the indicated preference of the subject. The subject was asked whether he
was ready to resume before the next series was started.

The gesture sequences were determined by the phrases written on cards that were
shuffled before each session. A separate pack was used for the first data collection period
at the beginning of each session. This comprised just one gesture per gesture class. This
pack was also shuffled before each session.

The subject was warned that the data collection period (DCP) was about to begin and the
facilitator waited for confirmation that he was ready before each DCP was initiated. The
video camera was started at the beginning of the session just before the first DCP and
was allowed to continue running until the end of the session. The investigator verbally
announced the name of the computer data file that would store the DCP. The data
collection software caused the computer to emit a beep signifying that data recording had
begun. This was used as a cue by both the subject and the facilitator so that they could
start the interaction. The facilitator read aloud the contents of each card in turn. The
subject did not see the contents of the card, but responded to the verbal elicitation and
produced a gestural response. In order to produce a connected stream of gestures in a
manner that approximated that of a viable gestural HMI, the facilitator attempted to
manage the interaction in a number of ways:

» Establishing and maintaining a comfortable and even pace of gesture production in a
way that was likely to lead to sustained performance.

* Maintaining an appropriate level of cognitive engagement and interaction by varying
the style of elicitation, e.g. tone of voice, the type of engagement, verbal “banter”
connecting elicitations.

* Monitoring the subject’s response and estimate fatigue and state of arousal and adjust
the pace and style of elicitation appropriately.

Data was collected over three sessions, one per day over three consecutive days.

5.8 Results and Discussion

5.8.1 Gesture co-articulation and Timing

All gestures were naturally co-articulated in as far as they were produced without
requesting the subject to rest between gestures or asking the subject to move to a certain
position. The next gesture was elicited as soon as the facilitator saw that the gesture had
been completed. She based her decision on her perception of the gesture. It was usual for
the subject’s arm to still be moving when the next gesture was verbally elicited. Close
examination indicated that often movement from the previous gesture was still present
for a short period after the beginning of the next verbal elicitation. As gestures were
elicited in random order, the transition from one gesture to the next could follow a wide
range of path and distances.

5.8.2 Rate of Production of Gestures

Table 5.3 documents the number of gestures produced during each session, the total data
collection time per session and the average time per gesture. The rate of production
during the last session was rather less than the other two. The subject appeared to show
visible signs of fatigue during this session. Although it was not possible to attribute
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cause, this is consistent with day-to-day variability in physical ability often observed in
people with cerebral palsy.

The average rate of production was one gesture per 9.5 seconds or 6.3 gestures per
minute.This measure includes the time for the facilitator to say the next word or phrase
and the time taken for the subject to respond. The rate is very similar to the rate of
selection for indirect scanning (typically 5 to 10 words per minute, Foulds, 1985 reported
in Beukelman & Mirenda, 1992). This rate was maintained over three or four ten minute
periods with only a few minutes rest in between during each session. So, from this result
it has been shown that it is possible for a person with spastic-athetoid quadriplegia to
produce gestures at a sustained rate for a considerable length of time.

Average Time

. No. of Duration
Session . per Gesture
Gestures (min)
(sec)
1 233 34.81 9.0
2 225 34.66 9.2
3 262 44.73 10.2
Total 720 114.20 9.5

Table 5.3: Summary statistics for instrumented gestural data collection sessions
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Chapter 6

Examination and Processing of
Gestural Data Stream

6.1 Introduction

This chapter describes the process of examining the gestural data stream using computer
graphics animation and the subsequent signal conditioning and manual segmentation.
The body model and the approximations needed to create an animation of the arm from
the single point data are described. The computer animation is compared with the
videographic record. Gestures are categorised in terms of their movement characteristics.
The co-articulated nature of the gestures is discussed. Examples of sensor noise from the
magnetic tracker are presented. With a view to developing a strategy for automatic
gesture recognition, the nature of the recognition problem is discussed together with the
advantages and disadvantages of applying feedforward neural networks. A fixed-time
window scheme involving the use of feedforward neural networks in a time-delay
scheme is described and a rationale for adopting this method presented. The process of
manual segmentation is described together with details of gestures that could not be
segmented. It is shown how preprocessing the signal using low pass filtering reduced
sensor noise and reduced the “jerkiness” in the spastic-athetoid movement and reduced
the size of the input feature vector to a practical size.

6.2 Gesture Animation

In order to review and segment the data it was necessary to develop a tool that allowed
the gestures to be visually reconstructed using computer graphics. MATLAB’s graphics
routines were too slow to animate an arm model in real-time. Instead, intermediate files
of frame-by-frame polygon data were created from the magnetic tracker data using a
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body modellcoded in MATLAB script. The polygon data files were then use to create a
real-time animation using a Silicon Graphics (SGI) Iris Indigo Elan workstation. This

was achieved through the development of the ANIMgprogram. The program used the
SGI hardware graphics kernel to animate the body model at speeds up to 30 frames per
seconds (dependent on the size of the image). The program rendered polygons using
Gouraud shading and enabled the gesture to be played back at varying speeds and viewed
from any angle. The mouse could be used to manually scan or step through frames
forward or backwards. Individual frames could be examined, gesture segments chosen
and repeatedly played back and viewed from various angles. Comparisons between
gestures could be made by running more than one copy of the program on the
workstation. The current frame number, segment start frames and stop frames were
continuously displayed. An example of six copies of ANIM being used to display three

exemplars of the gesture “cards” is shown in figure 6.1. In this example, each gestural
exemplar is displayed using two different viewpoints.

Figure 6.1 Dynamic CP arm gestures animated using body model
coded in MATLAB and displayed and viewed from different angles
using six copies of the ANIM program running simultaneously on a SGI
Iris Indigo Elan workstation. Three exemplars of the “static” gesture
“cards" are displayed from the side (top row) and the front (bottom

6.3 Body Model

One of the problems of graphically reconstructing arm movement from the magnetic
tracker data was that the data was incomplete. Mechanically the shoulder is rather
complex, with many degrees of freedom. Since only one tracker was available it was not
possible to continuously monitor shoulder position. However, the minimum useful body
representation needed to include forearm, upper arm, head and torso. These were needed
in order to visually interpret the gesture. Treating the forearm as a rigid body constructed

1 Thanks to Marilyn Panayi for suggesting a suitable level of abstraction for the body model.
Thanks to Marion Harrington for coding the initial body model in MATLAB script.

9
Thanks to Randy Glass and Dr. Garland Stein for the initial coding ANIM and numerous mod-
ifications.
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from six polygons it was possible to calculate the global position of each vertex by using
the magnetic tracker position data to transform the forearm model vertices in local co-
ordinates (origin centre of tracker’s receiver) to the global co-ordinates (origin at the
centre of the magnetic tracker’s transmitter). Creating the forearm and body presented
more of a challenge since the shoulder position was unknown. Use was made of the fact
that, for most arm gestures in the gesture set, the path traced by the hand (and hence the
distal end of the forearm) conveyed much of the meaning of the gesture. The body and
shoulder were fixed to the position at the start of the first session. The upper arm was
constructed by creating six polygons from the vertices of the forearm elbow and the
shoulder. This meant that on the occasions when the shoulder moved forward or the torso
bent to one side, the length of the upper-arm increased. This seemed to only minimally
affect perception of the gesture and was certainly adequate for gesture segmentation.
Studying the video record, it was clear that some of'the gesture involved significant torso
and shoulder movement. However, the base of the trunk was static as it was restrained by
the wheelchair. Allowances had to be made when viewing gestures where the
relationship of the arm to the head was important. The head was most likely to be angled
away from the vertical due to the difficulty that the subject had in maintaining it in the
mid-line position (a common problem with CP). This meant that gestures such as
“shave” and “(eat an) ice-cream” appeared laterally offset relative to the head of the
animation. Gestures involving movement at thoracic level were less of a problem.
Despite these approximations, the representation was clear enough to enable the gestures
to be readily identified and segmented. Another problem was the representation of the
hand. Early experiments developing the model revealed that it was important to represent
the hand. However, wrist flexion data was not available. A wedge-shape was employed to
represent the hand.

This rather abstract representation of the body was appropriate for the limited data
available. Too little detail in the depiction would be detrimental to conveying the sense of
the gesture. Too much detail would lead to the model approximations becoming apparent
resulting in a negative effect on gesture interpretation. The model comprised 32 polygons

and 34 vertices with the following dimensions (see figure 6.2):

Forearm length = 9.5 inches

Wrist dimension 1= 2 ins

Wrist dimension 2 = 1.2 inches

Width across shoulders = 15 inches

Torso thickness = 2 inches

Shoulder position (inches) = [29.10 11.77 -9.64]

Figure 6,2 Body model comprising 32 polygons used to animate the “Flock of Birds”
magnetic tracker arm movement data. Forearm length, wrist dimensions, and shoulder width
were based on physiometric data of subject S9.
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6.4 Qualitative Examination of Gesture Set using
Animation

Figures 6.3 to 6.6 show comparisons between the computer graphics animation of the
magnetic tracker data (sampled at 100hz) and nearest corresponding frames of the

videographic record (NTSC frame rate 29.7hz). Figures 6.3 and 6.4 depict different
exemplars of the gesture class “rainbow”. This gesture involved the arm starting on the
left side of the body at approximately head level tracing an arc above the head to the right

side of the body. Looking at the first exemplar in figure 6.3, shoulder and torso
movement is clearly apparent from the first frame of the video (top left). Although this
information was not available to the animation, the form of the gesture and its
relationship can still be ascertained. Notice there is considerable head movement. In
general, the head position does not correspond to the mid-line “neutral” head position
depicted in the animation. Similarly, finger and wrist flexion and wrist rotation can be
seen to vary with different gestures. Noticeable variation of wrist rotation can be
distinguished between the two exemplars. The gesture occurs as a single movement
along a path.

Figure 6.5 depicts an exemplar of the gesture “surrender”. The gesture involved raising
the arms rapidly upwards to a position high over the head. This is also classed as a single

movement towards a static pose . Figure 6.6 depicts an exemplar for “stroke the cat”.
This gesture involves the extension of the right arm to a position over the left knee and
then traces an elliptical path downwards across the lap and then repeats for a variable
number of cycles. This gesture is classed as a periodic movement.

Within the natural variation of each gesture, all gestures appeared to be produced along
consistent paths and or in consistent regions of space except for the gesture “waiter”.
This gesture involved dramatic interaction with the facilitator to such a high degree that it
was produced in a variety of ways. Although each form was consistent with the “mime”,
it did not result in consistent movement patterns.

Through study of the graphics animation it was found that it was possible to classify the
gestures into three groups based on the movement characteristics of each gesture: static
pose, single movement, and periodic movement. The results of this categorisation are

described in table 6.1. Eight gestures involved static pose, four involved a single
movement and sixteen involved periodic movement. Of these gestures one was
performed with a single movement leading to a static pose (“surrender”) and one was a
periodic movement leading to a single movement (“lasso”). “Waiter” was not categorised
because of inconsistency of form.

EEENTS

3 “Static pose” included gestures that included movements in a small region e.g. “shave”, “ice-



6.4 Qualitative Examination of Gesture Set using Animation

Ncode Gesture Static Pose Single Periodic
Movement Movement
1 bird X
2 cards X
3 cut throat X
4  drive the car X
5 drums X
6 heavy weight X
7 helicopter X
8 hot X
9 ice-cream X
10 ironing X
11 knock on the door X
12 lasso X X
13 light feather X
14 rainbow X
15 rock a baby X
16 rock guitar X
17 scratch your knee X
18 shake hands X
19 shave X
20 spank X
21  spider X
22 stroke the cat X
23 surrender X X
24 whistle X
25 umbrella X
26 violin X
27 waiter - - -
Total 8 4 16

Table 6.1: Gestures categorised in terms of movement characteristics
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6.4 Qualitative Examination of Gesture Set using Animation

Figure 6.3 Corresponding video frames (left) and computer
animated frames of magnetic tracker data (right) for the gesture
“rainbow” exemplar 1. Frames were chosen to convey the form of
the gesture.
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6.4 Qualitative Examination of Gesture Set using Animation

Figure 6.4 Successive corresponding video frames (left) and
computer animated frames of magnetic tracker data (right) for the

gesture “rainbow” exemplar 2. Frames were chosen to convey the
form of the gesture.
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6.4 Qualitative Examination of Gesture Setusing Animation

Figure 6.5 Successive corresponding video frames (left) and
computer animated frames of magnetic tracker data (right) for the

gesture “surrender”. Frames were chosen to convey the form of the
gesture.
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6.5 Developing a Strategy for Gesture Recognition

Figure 6.6 Successive corresponding video frames (left) and
computer animated frames of magnetic tracker data (right) for the
gesture “stroke the cat”. Frames were chosen to convey the form of
the gesture.

6.5 Developing a Strategy for Gesture Recognition
6.5.1 Key Factors Affecting Gesture Recognition

A number of key factors that affect the design of automatic gesture recognition can be
determined from the nature of the gesture set. These are listed below together with their
implications:

Idiosyncratic gesture patterns

This suggests that the system should be trainable using sample gestures from the user.
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6.5 Developing a Strategy for Gesture Recognition

Gesture patterns were co-articulated i.e produced as a connected sequence

This increases the pattern recognition difficulty substantially. Known previous attempts
by others to automatically recognise the gestures from people with SSMICP either
involved gestures produced with a pause between each gesture (e.g. Cairns, 1993,
Harrington, 1995) or gestures segmented by thresholding scheme such as a “tremor
filter” (Harwin, 1990, Perricos, 1994). In the latter case, gestures require the user to have
sufficient movement control to inhibit their movement between gestures. Connected
speech recognition has proved considerably more challenging than isolated word
recognition. It is a similar situation for handwriting recognition, cursive script is much
more difficult to recognise than single characters.

Low signal-to-noise ratio data

Signals can often be usefully processed to improve the signal-to-noise ratio. However, to
do this optimally is a challenge as the relationship between the signal (volitional
movement component) and the noise (uncontrollable movement component) is complex,
and poorly understood.

Small number of gesture classes

This increases the chance of attaining practical real-time recognition. So far gesture
recognition algorithms have only been successful on small gesture sets.

Gesture set comprises gestures that ave static, single movements, or periodic movements.

The presence of static and dynamic gestures in the gesture set prevents the use of
movement level for the differentiation of gesture from non-gesture. As described, the
periodic gestures varied in the number of cycles between exemplars although the form of
each cycle seemed relatively consistent. This is mindful of Rubine’s “eager recognition”
strategy (1991) where gestures were recognised as soon a possible rather that wait for the

gesture to finish.

Addition requirements for a practical system:

* System should be able to learn initially from a relatively small training set of training
exemplars with the potential to retrain itself as more gestural data becomes available
through use.

* The system should have the potential to advise the user or therapist of the set of ges-
tures that are recognised well. In this manner, it could contribute to the development
of a gestural repertoire that can be recognised robustly.

6.5.2 Fixed Time Window Recognition Algorithms

As previously stated, for a gesture recognition system to be of use to people with
SSMICP, it must be able to recognise co-articulated gesture sequences. One gesture must
be able to flow into another so that the interface can be used without undue effort on the
part of the user. As gestures can be produced in any sequence and can conceivably start
and end anywhere in gesture space, movement from the end of one gesture to the
beginning of the next is likely to be highly variant. This, coupled with the presence of
athetotic movement, sheds doubt on the possibility of automatically segmenting the
gesture based on features extracted at the beginning and end of gestures.

Manual segmentation was attempted using the computer animation tool ANIM. This

process is described in detail in section 6.6. As noted in this section, it was necessary to
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6.5 Developing a Strategy for Gesture Recognition

observe the movement pattern as a whole in order to achieve segmentation. If this
process could be automated, it would corresponds to automatic segmentation by
recognition. As already noted, although the gestures were produced over variable
periods, the gestures of long duration were either totally static or periodic. It was found
that the salient repeated part of all single movement gestures fitted with a time-span of
around one second. At least one cycle of all periodic gestures also fitted within the same
time interval. Thus, the variation in gesture duration was not as high as appeared at first
examination.

Although there exists temporal variation between members of the same class and
different classes, it is hypothesised that at minimum a subset of these gestures are
automatically recognisable using a time-window approach. A scheme is proposed where
features are extracted from data over a fixed interval or window back in time. It is
proposed that these features could be applied to the input nodes of a feedforward neural
network in a time-delay scheme. Conceptually, this involves connecting the input nodes
of the neural network to a tapped delay-line through which the sequence of feature
vectors passes. In this way, identical features produced over a fixed period of time get
mapped to the spatial layout of the neural network input nodes, one feature per node.
Although this scheme of recognition has limited ability to accommodate to temporal
variation, it has proved effective in practice (Giles, 1994).

It is proposed that in the fully implemented gesture recognition engine, features will be
continuously extracted from the gestural data stream. Activation levels of the output
layer of the neural network continuously offer a measure of the confidence level that a
particular gesture is being produced at any moment in time. A further algorithm
determines when a gesture is occurring and rejects spurious network predictions if their
duration is too short. Development of this part of the algorithm is left for future work.

As a first step towards implementing this scheme, gestures were manually segmented
into gesture segments of 1120ms duration. This was chosen on the basis that the duration
of all single movement gestures and at least one cycle of periodic movement gestures
was less than this time period.

Manually segmented gestural data were divided up into data sets for training and testing
of neural network classifier performance. Although recognition rates are likely to be
higher that those obtained in the fully implemented gesture recognition engine, the
results are useful for comparing feature sets, comparing classifiers, determining network
architecture, and indicating the size of the time window that yields optimum
performance for the gestural data set. Time windows of 160ms to 1120ms are compared

in section 8.2 using filtered and re-sampled x,y,z position data as input features.

6.5.3 Advantages and Disadvantages of Feed Forward Neural
Networks

In addition to the previous rationale, feedforward neural networks arranged in a time-

delay scheme were chosen as they offer the following advantages:

* A priori knowledge of the relationship between input and output is not required

* The neural network architecture is relatively well understood, therefore it is an appro-
priate place to start when considering neural methods

* As pattern classifiers, they are capable of constructing non-linear feature surfaces of
complex topology e.g. meshed classes

* Training can be achieved with an initial small set of data and then retrained adap-
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6.6 Segmentation

tively as more data becomes available

However, disadvantages include:

* Network training using backpropagation of errors is a gradient search method. As
such, it can get stuck in a local minimum far from the optimum solution (although the
addition of “momentum” and “adaptive learning rate” helps minimise this risk).

* The final weight matrix can be dependent on the initial weights which are initialised
randomly.

* There are a number of problem dependent parameters to adjust

* Training can be a relatively long process.

» It is difficult to examine the neural network’s internal representation of a problem

* The feature vector of a time-delay neural network contains data sampled over a fixed
time period.

6.6 Segmentation

The gesture type and elicitation time were obtained by logging the information from the
sound-track videographic record. The longest data recording period lasted ten minutes.
The start and finish of each magnetic tracker data recording period was captured on the
video soundtrack by a series of computer generated tones. The gesture type and time of
verbal elicitation were obtained by listening to the soundtrack. The time was obtained
logging the time-display of the video recorder. The available equipment did not have a
time-stamping capability, so some error in the elicitation time log was expected. This
was estimated to be less than Is.

These data were used to automatically segment the data stream into gestural data
segments. The time duration of each segment was the time from one verbal elicitation to
the next or 15 seconds in the instances where there was a break in gesture production or
no gesture followed. Polygon animation data was then generated for each segment using
MATLAB. These data were animated and studied using ANIM to determine a more
precise start and end time for each gesture based on gestural features.

More often than not it was necessary to view the whole gestural segment a number of
times to appreciate the gesture in its entirety, and then back-up frames to a point that
could be considered to be the start of the gesture.

It was impossible to identify one common feature in the co-articulated gesture stream
that could be used to signify either the start or the end of all gestures. This is consistent
with the work of Harwin in the study of the computer recognition of head gestures. He
encountered considerable difficulty in automatically segmenting CP head gestures
(Harwin, 1990). This problem also plagues speech recognition. Although we perceive the
words of connected speech as distinct sounds, actually the sounds all run together and it
proves very difficult for a computer to determine the word boundaries automatically
(Mammone, 1994).

One pass was made through all the data to determine the start and end of each gesture
within each gestural segment. This defined a time window within which gestural
movement appeared to correspond to the gesture in question.

The gesture animation revealed that on occasion the magnetic tracker produced
“glitches” where the tracker data would freeze either at the last value orjump to an
unlikely position and then jump back again. The “glitches” were often associated with

rapid arm movement. An example is shown in figure 6.9 (a) and (c). With some
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6.6 Segmentation

exemplars the amount of sensor “glitching” was considerable.

Some gestural exemplars were impossible to segment due to sensor “glitching”, others
were not segmentable due to there not being anything that clearly represented the
gesture. Other gestures were not segmented due to the manner in which they were
produced. For example, the gesture may have been produced in a number of different
ways. This was the case with the gesture for “waiter”. The gesture for “waiter” became a
mime sequence with interaction with the facilitator. Sometimes the mime involved
holding a tray at shoulder height, sometimes it involved passing a tray or food to the
facilitator. Although this was perfectly acceptable as a mime, its inconsistent form made
it impossible to segment. As a result this gesture was removed from the gesture set for
the purposes of computer recognition. This reduced the total number of gestural
exemplars from 720 to 694.

The proportion of gestures of each type that were not segmentable either because of
sensor noise or poor production is described in table 6.2 and as a histogram in figure 6.7.

Another manual pass was made to determine a starting point for a window of around one
second that contained a representative portion of each gestural exemplar. All gesture set
features used in this study were derived from these gestural segments.

Figures 6.10 and 6.11 show graphs of x, y, z position data of gestural segments for
exemplars of the gestures “rock a baby” and “hot” respectively. The two vertical lines
marked on each plot indicate a gestural segment of 640ms. The artificial neural network
input features were extracted from these segments. Zero time represents the time the
gesture was verbally elicited. The graphs end at the sample before the elicitation of the
next gesture. The region before the first vertical line represent the co-articulated portion
of the gesture. For “rock a baby” the previous gesture was “umbrella”. For “hot”, the
previous gesture was “[pull the train] whistle”. Plots (b) and (d) represent the data after
low-pass filtering. The circles on plot (d) represent the data re-sampled after filtering at

6.25s'l
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6.6 Segmentation

Number of Unsegmentable Gestures

Figure 6.7 Histogram showing the number of gestures that were
unsegmentable due to an inconsistent gestural form or severe
“glitching” in the magnetic tracker data stream.

ID Gesture selzg;el:l(:te d Percentage E];:;t;lpiol:s
1 bird 3 111 27
2 cards 4 16.0 25
3 cut throat 1 3.8 26
4 drive the car 8 258 31
5 drums 0 0.0 26
6 heavy weight 1 3.7 27
7 helicopter 3 115 26
8 hot 1 36 28
9 ice-cream 0 0.0 26
10 ironing 3 11.1 27
11 knock on the door 0 0.0 26
12 lasso 3 103 29
13 light feather 1 3.8 26
14 rainbow 2 83 24
15 rock a baby 5 20.0 25

Table 6.2: The number and proportion of gestures of each class that were not
manually segmentable.
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6.7 Signal Conditioning/Data Reduction

ID Gesture selzr(;el::te d Percentage E];((:;:llplfz:)l:s
16 Trock guitar 0 0.0 27
17 scratch your knee 1 43 23
18 shake hands 6 222 27
19 shave 5 15.6 32
20 spank 3 107 28
21 spider 3 12.0 25
22 stroke the cat 7 24.1 29
23 surrender 3 11.1 27
24 whistle 3 115 26
25 umbrella 2 74 27
26 violin 2 83 24
All 26 gestures 70 9.87 694

Table 6.2: The number and proportion of gestures of each class that were not
manually segmentable.

6.7 Signal Conditioning/Data Reduction

Figure 6.9 (a) shows the position data for the gesture “stroke the cat” sampled at 100
samples per second. The jagged component in the signal is due to a combination of
“jerky” movement characteristic of spastic-athetose CP and sensor noise. The benefit of
low-pass filtering the gestural stream was investigated by choosing a cut-off frequency of
2.8125Hz. A Chebychev HR filter type I of order nine and 0.5 dB ripple was designed.
The data stream was then filtered using the FILTFILT function of MATLAB. This
performed a forward and then backward filtering pass over the data to produce an output
with zero phase shift. Start-up and end transients were minimised by matching initial
conditions (MathWorks Inc., 1992). The frequency response of the filter is plotted in

figure 6.8. Data was re-sampled at 6.25Hz or every 16th sample. Note that at half the
sampling frequency (3.125Hz) the response is attenuated by over 20dB. Since the
FILTFILT function passed twice over the data the effective filter response drop-offis
somewhat steeper.
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6.7 Signal Conditioning/Data Reduction

Frequency response of Chebychev type IIIR filter

Frequency is

Figure 6.8 Frequency response of low-pass chebychev MRfilter
type | used to filter the gestural data stream. The cut-off frequency
was 2.8125Hz. Data was re-sampled at 6.25Hz (every 16th sample).

As can be seen from figure 6.9, low-pass filtering the magnetic tracker data smooths out
the gestural movement, removing the ‘jerkiness”. In addition, it removes or reduces high
frequency sensor noise. LP filtering with a 2.8125 Hz cut-off was additionally justified
by inspecting the resulting computer animation. When the filtered data were animated,
the gestures appeared considerably more intelligible (i.e. closer to the investigator’s

stereotype of the gesture). Figure 6.12 shows the power spectral density of the complete
gestural stream of position data comprising one exemplar of each gesture. These plots
show that the dominant frequency components of the signal reside below the filter cut-
off.

Re-sampling reduced the effective sample rate from 100s"" to 6.25s‘ *representing a data
reduction ratio of 16:1. This made it feasible to construct input feature vectors
comprising sequential frames of position data and present these and other feature vectors
in a time-delay fashion to feedforward neural networks.
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6.7 Signal Conditioning/D ata Reduction

Figure 6.9 Gestural stream position data before ((a), (c)) and after ((b), (d)) filtering. The
graphs show how low pass filtering reduces the jerky component of spastic-athetoid movement,
high-frequency sensor noise, and sensor “glitches" (between 7416 and 7563 ms).
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6.7 Signal Conditioning/Data Reduction

Figure 6.10 Plots of position data for one exemplar of “rock a baby” showing manual
segmentation. The vertical lines represent the start and finish of the 640ms time window used
to create many of the feature sets, (a) and (b) are plots of raw X, y, z magnetic tracker data, (c)
and (d) are plots of the signal after low-pass filtering. The circles on plot (d) represent the re-
sampled data points.The portion of the gesture before the first vertical line represents the end of
the previous gesture (“‘umbrella”) plus the movement between gesture.
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6.7 Signal Conditioning/D ata Reduction

(SOL1OUY) UOjljs0d

Figure 6.11 “Plots of position data for one exemplar of “hot”. The vertical lines represent the
start and finish of the 640ms time window used to create many of the feature sets. The circles
on plot (d) represent the re-sampled data after low-pass filtering. The preceding gesture was
“(pull the train) whistle”. The portion of the gesture before the first vertical line represents the
co-articulated portion of the gesture.
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6.7 Signal Conditioning/Data Reduction

Power spectral density

b Y

Power spectral density

Power spectral density

Figure 6.12 Power spectral density of the gestural data stream for x, y, and z positional data
showing the cut-off frequency of low-pass filter used to smooth the gestural motion and to
remove Sensor noise
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Chapter 7

Gesture Classification using
Neural Networks

7.1 Introduction

The following two chapters describe and document the use of feedforward neural
networks to classify CP arm gestures. In this chapter, the neural network architectures,
initialisation and training methods are described.

The gesture recognition performance measures used to compare neural networks and
feature sets is described and justified.

The methods used to prepare the gesture set for training and validation are described
together with the inherent limitations.

Network complexity is discussed and the process of determining the number of hidden-
layer neurons required to solve the problem documented.

Network training behaviour using gestural data is described.

Various combinations of activation functions in the hidden and output layers of the
neural network are compared. Finally, gestures are classified by two k-nearest-neighbour
methods using one feature set for purposes of comparison.

All experiments were based upon the fixed-time window approach involving successive
time frames of gestural data described in section 6.5. Feature set descriptions and
comparisons are described in chapter 8.

Algorithms were coded using MATLAB v4.2 script utilising functions from the
MATLAB Neural Network Toolbox v2.0b where appropriate.
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7.2 Neural Network Description

7.2 Neural Network Description

Mathematical descriptions of feedforward neural networks can be found in most
introductory neural network texts. Fausett (1994), Zurada (1992) and the MATLAB
Neural Network user guide (Demuth and Beale, 1994) were consulted during the writing
of this chapter.

7.2.1 Elementary Neuron Model

The elementary neuron model used in this study comprised a summation stage (where
weighted inputs and bias are summed) and a differentiable activation function. The

neuron in figure 7.1 is shown with R inputs. Each input is associated with an appropriate
weight, Wy. The weighted inputs are summed together with bias b to form the input to an

appropriate activation function to produce activation ay (eqn. 7.1).

{ Inputs } Neuron }

Figure 7.1 Elementary backpropagation neuron with inputs p and synaptic weights w and
bias b. Weighted inputs and bias are summed to form the input to an appropriate activation
function.

( R

~ . 'LPiwj Eqn [7.1]

Vi=i

7.2.2 Activation Function
Notionally the activation function could be any differentiable transfer function fj.

Commonly used functions are the tan-sigmoid *

Sf(x) I+ exp (-px) 1 Eqn [7.2]
and its derivative
/() =30 H()) (A -fix)) Eqn [7.3]
or log-sigmoid
fix) 1+ exp (-px) Eqn [7.4]

Sigmoid refers to the “S shape of the curve.
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7.2 Neural Network Description

f ) =p/x) A-/(*)) Eqn [7.5]

These functions act as “soft-threshold” functions and have the effect of constraining the

0
outputs no matter how large the magnitude of the input sum (figures 7.2 and 7.3). The
main difference between the two families of curves is that log-sigmoid has asymptotes at
f(x)=0 and f(x)=1 while tan-sigmoid has asymptotes at f(x)=-1and 1.

Another function often used in the output layer is the identity function
f(x) =x Eqn [7.6]

The following tan-sigmoid function was used as the activation function for the hidden
layer neurons in most of the experiments in this study:

2

1 U) 1+ exp (-2x) 1 Eqn [7.7]

X
Figure 7.2 Graph of tan-sigmoid activation function for

P=2
The log-sigmoid function with p = 1(eqn. 7.8, fig. 7.3) was also used, but with this
particular pattern recognition problem, either failed to converge to a solution during
training or resulted in significantly poorer performance than tan-sigmoid (see section

7.7).

1

/(*) 1+ exp (-x) Eqn [7.8]

2 They are sometimes referred to as “squashing functions” because of this property.
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7.2 Neural Network Description

Figure 7.3 Graph of log-sigmoid activation function for

P=1

7.2.3 Network Architecture

A fully connected feedforward artificial neural network (FFNN) comprises one input

layer, one or more hidden neuronal layers, and an output neuronal layer. Figure 7.4
depicts a FFNN with one hidden layer. This is usually referred to as a two layer network.

k

{Input} {Hidden Layer} {Output Layer}

alH) WHD
Figure 7.4 Architecture of a fully connected feedforward neural network with a single hidden

layer. The diagram shows the weights assembled as matrices W and V and neuronal input p and
outputs al, a2 as vectors for the MATLAB simulation. Biases are not shown.

79



7.2 Neural Network Description

{ Input }{ Hidden Layer H Output Layer }

R HxlI H Tx1

Figure 7.5 Schematic representation of two layer feedforward neural network architecture
showing bias vectors and matrix dimensions (Adapted from Demuth & Beale, 1994)

as it comprises two neuronal layers (the input layer contains no neurons).
In this study, only two layer feedforward networks were studied. Kolmogorov’s theorem

predicts that theoretically any continuous function f(xv ..., xn) of several variables

defined on f (n> 2) , where I = [0, 1], can be represented in the form

In+1 ( n i)

(> = X 5>« Eqn [7.9]

j=1 V=1

where % and \|are continuous functions of one variable and \|/;/ are monotonic

functions that do not depend on/(Kolmogorov, 1963). Thus theory supports the notion
that two neuronal layers are likely to be sufficient to model most problems.

A schematic of the general network architecture is presented in figure 7.5. The network
architecture involved an input layer where each feature vector p had dimension R. The
summed weighted inputs plus bias formed the input to the activation function of each
neuron. The weighted sum of neuron activations from the hidden layer al plus a bias for
each neuron form the inputs to each output layer activation function. One output neuron
was assigned to each gesture class.

This can be expressed as:

( R
u=s X tby Eqn [7.10]
Vi=1
"
a2k= "L aj\wjk +blk Eqn [7.11]

7=1
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7.2 Neural Network Description

where £k = {1,2, ... ,26} corresponding to output nodes, one per gesture class
a Jj, the output activation of the jth hidden neuron
a2k, the activation of the kth output of the network
wjfa the value of the weight connecting the jth hidden neuron to the kth output
Vy, the value of the weight connection the ith input to the jth hidden neuron
i, the ith input
bjj, the bias on the jth hidden neuron
the bias on the kth output neuron

R, the total number of input nodes

H, the total number of hidden neurons

Convention for describing neural network architecture

The following terminology is used through this thesis to concisely describe the neural
network architecture used in each experiment:

a-bf-cg
a, no. of nodes in input layer, equivalent to dimension of feature space
b, no. of nodes in hidden layer
¢, no. of nodes in output layer
/, activation function used in the hidden layer

g, activation function used in the output layer

f.ge {t,lp}

where:

¢, tan-sigmoid fn.

/, log-sigmoid fn.

p, identity fn.

e.g. 12-16¢-26p represents a network of 12 input nodes, 16 nodes each with tan-sigmoid

activation functions in the hidden layer, and 26 nodes with the identity activation
function.

Tan-sigmoid neurons in the hidden layer (eqn. 7.7) and identity function neurons in the

output layer (eqn. 7.6) were used in preference to tan-sigmoid neurons in both layers
partly on the basis that simpler is better and partly on the results of experiments that
suggested that the former architecture yielded a marginally higher recognition rate. Since
it is not possible to control the number of nodes in the output layer, 26 non-linear
neurons in this layer can be expected to result in over-fitting and poor generalisation.

7.2.4 Network Learning using Back-propagation of Errors

The multilayer feedforward architecture, although fairly simple in structure was once
thought to be untrainable (Minsky & Papert 1969). A training method was found by
Werbos (1974) but failed to become widely publicised. It was also independently re-
discovered by Parker (1985) and by LeCun (1986). The algorithm was also very similar
to a yet earlier optimal control algorithm (Bryson & Ho, 1969). Although there is some
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7.3 Determining a Performance Measure for Gesture Recognition

argument as to who discovered the training method, it was not until it was refined and
publicised by David Rumelhart and James McClelland that the method of
“backpropagation of errors” became widely recognised as a method of training
multilayer neural networks (Rumelhart, Hinton, & Williams, 1986a, 1986b; McClelland
& Rumelhart, 1988).

Backpropagation is a gradient search method of optimization and potentially suffers
from the danger of getting stuck in local minima. Whether this phenomenon is observed
or not depends on the problem. It depends on whether there are deep local minima in
regions far from the desired solution. It should be noted that when training a feedforward
neural network (FFNN), we do not want the weight vector that represents the true global
minimum of the sum-squared error. This is because the global minimum would in fact
represent the weight vector of an overtrained network. Ideally, the search should be
converging towards the global minimum. In practice there is no easy way to establish that
one is heading for that global minimum rather than a local minimum. However, if the
network has trained well enough for a particular task it is of little practical importance,
although it is always conceivable that by starting with a different set of initial weights a
better solution could be found.

In this study, momentum and adaptive learning rate were added to the delta rule used for
the backpropagation of error. Momentum lessens the danger of getting stuck in a local
minimum and is added by linearly combining the most recent gradient with the previous
gradient (see appendix B, section B.l).

Adaptive learning rate increases the size of the incremental weight change if the previous
weight change reduced the sum-squared error. This has the effect of increasing training
speed.

It is possible to choose when to update the weight vector e.g. incrementally after each
training exemplar or at the end of a complete pass of input-output training pairs. In this
study the weights were updated at the end of each epoch backpropagating the network
errors produced for the complete training set as a batch (often referred to as “batch
mode”).

7.2.5 Weight and Bias Initialization

The weights and biases are usually initialized using small random values between certain
limits. Weights and biases between the input and hidden layer v were initialized using the
Nguyen-Widrow method (see appendix B, section B.2). This method is designed to
improve the learning ability of the hidden neurons. This is accomplished by distributing
the initial weights and biases so that for each input pattern it is likely that the net input to
one hidden neuron will be in a range that is conducive to rapid learning.

The weights between the hidden layer and the output layer w were initialized to random
values between +1 and -1.

7.3 Determining a Performance Measure for Gesture
Recognition

The average recognition rate of all 26 gestures gives an indication of gesture recognition
performance for the complete set of gestures. However, in real-life, poorly recognised
gestures would be discarded from the set as their continued inclusion would most likely
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be counter productive. Gestures recognised at a low rate would be frustrating to say the
least. So, the average recognition rate of individual gestures is important. It is useful to
define a recognition rate threshold below which gestures are not considered useful. For
the purpose of this study, a threshold of 80% was chosen, i.e. any one gesture recognised
correctly every four out of five times. This threshold was based upon the assumption that
this rate was the lowest that could be tolerated by the user.

In addition to recognition performance being measured in terms of recognition rate of the
complete set, the size of the set of gestures recognised at or above the 80% level was
calculated together with the average recognition rate for that set.

7.4 Preparation of Gesture Sets for Training and
Validation

The size of the complete gesture set containing gestures of all 26 classes was 624
resulting in an average of 24 gestures per class. It was necessary to divide this set up into
data for training the neural network with enough representative exemplars of each
gesture for the network to make reasonable generalisations, and leave enough data for a
test set to validate the results. To this end, the data was divided by randomly selecting
260 gestures, 10 exemplars of each class for the test set, leaving 364 exemplars, an
average of 14 gestures per class for the training set.

In order to train a FFNN using back-propagation it is necessary to determine where to
stop training the network, particularly with small data sets. This was achieved in this
study by training each network for 100 epochs then testing the network using the test
data and storing the resulting confusion matrix together with the weights and biases. The
network which yielded the maximum number of gestures recognised at or above 80%
was chosen and reported as the test results. It should be noted that this does have
implications as regards validation. Although the neural networks were not trained on the
test data, knowledge of the test data was used to choose the network with the best
performance. Ideally the data set should be divided into three rather than two so that one
set can be used to train, the second set used to determine where to stop training, and the
third set for validation. However, with an average of only 24 gestures per class available,
this was not possible.

7.5 Network Complexity

The complexity of the problem as a pattern recognition exercise was not known a priori,
so this needed to be determined empirically. In general, overall problem complexity
involves:

i) Dimension of the pattern-space

ii) The number of classes

iii) The topology of the decision surface required to accurately classify the gestures.

In a FFNN, the dimension of feature space corresponds to the number of nodes in the
input layer. The upper bound on the complexity of the decision surface is determined by
the number of nodes in the hidden layer(s), the number of hidden layers, the type of
sigmoid function used at each node in the hidden and output layers. The following sub-
sections describe how the number of hidden nodes was determined experimentally. In
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this part of the study, the tan-sigmoid function was used in the hidden layer and the
identity function in the output layer.

7.5.1 Method

In order to determine the size of the hidden layer, neural networks with one to twenty
hidden layer neurons were compared.

A feature set comprising four time frames of distal arm position was used for this

procedure (tr/te2ildp, see section 8.2). The ANN architectures compared comprised:

12- nt-26p where ne {1,2,3,4,6,8,10,12,14,15,16,17,18,20}

The neural networks were trained using momentum of 0.95 and an initial learning rate of
0.01. After each 100 epochs the network was tested and the confusion matrix and
weights and biases stored. Training was terminated after 10,000 epochs.

The recognition rate was calculated for the r gestures with the highest recognition rate
where r=I to 26. This was calculated for each network every 100 epochs.

Using the test data, both the average recognition rate for 26 gestures and details of the
gestures recognised at or above 80% were calculated. The results were then analysed to
determine the number of hidden layer neurons that should be used for subsequent
experiments.

7.5.2 Results and Discussion

Figure 7.6 is a histogram of average recognition rate for 26 gestures. Results are
presented for training and test data. Note how recognition rate increased until the number
of nodes in the hidden layer, n=16. The recognition rate then fell significantly for n=17.
This is consistent with the network converging and getting trapped in a local minimum
far from the global minimum. This network was retrained once more using different
weight initialisation and gave similar results. The maximum recognition rate for 26
gestures was achieved using 18 hidden tan-sigmoid nodes in the hidden layer.
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Recognition Rate for 26 Gestures

Figure 7.6 Average recognition rate for 26 gestures
comparing FFNNs with from 1to 20 nodes in the hidden
layer

The results for gestures recognised at or above 80% are presented in figure 7.7. Looking
at graph (b), the number of gestures recognised at or above 80% increases with the
number of hidden layer nodes in a similar fashion to average recognition rate of 26
gestures. In this case n=16 resulted in the largest number of gestures (12) recognised at
an average rate of 90%.
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Figure 7.7 Results for gestures recognised at or above 80% for one to 20 nodes in the hid-
den layer, (a) shows which gestures were recognised at this level r>=0.8. These are marked
with an ‘o’. For comparison, gestures with 0.7>=r<0.8 are marked with V. Gestures recognised
0.6>=r>0.7 are marked with Histogram (b) shows the maximum number of gestures recogn-
ised at r>=0.8. (c) shows the average recognition rate (%) at the respective gesture sub-set. (d)
indicates the amount of training (epochs) the network required to reach maximum performance
(defined by the maximum number of gestures recognised at or above 80%).
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Tables 7.1 and 7.2 contrast the recognition rates gestures for gesture between the 12-4t-
26p and the 12-16t-26p architecture.

Four hidden nodes:

For the network with four hidden nodes, seven gestures are recognised at over the 80%
level. These are listed in table 7.1 together with the average recognition rate for the
individual gesture for the four node and 16 node networks. The 12-4t-26p architecture
comprised 182 weights and biases.

16 hidden nodes:

Adding 12 more hidden nodes results in only five more gestures being recognised at or
above the 80% level (table 7.2) while the 12-16t-26p architecture comprised 650
weights. Thus, in order to increase the number of gestures recognised at or above 80% by
71% it was necessary to increase the number of weights and biases by 357%.

While most of these gestures increase in recognition rate with more nodes, “heavy

LN

weight”, “stroke the cat” and “surrender” decrease.

c 16
0 Gesture 4 hidden hidden
d nodes (%) nodes
e (%)

6 heavy weight 100 80
22 stroke the cat 100 90
20 spank 90 90

8 hot 80 100
14 rainbow 80 90
19 shave 80 100
23 surrender 80 0

Table 7.1: Seven gestures recognised at or above
80% with only 4 hidden nodes

3 Note that the “surrender” was classified by 12-4t-26p but not 12-16t-26p
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¢ 16
0 Gesture 4 hidden hidden
d nodes
nodes

€

1 bird 10 100
24  whistle 0 100
18 shake hands 0 90
10 ironing 0 80
12 lasso 30 80
17 scratch you knee 10 80

Table 7.2: Additional 6 gestures recognised at or
above 80% with 16 hidden nodes

The results indicate that there is a principle of diminishing return as regards the effect of
adding more nodes to the hidden layer. An increasing number of hidden nodes are
required to recognise just a few more gestures. This suggests that for the feature set
comprising 4 time-frames of Xyz position (tr/te2il4p), once the decision surface divides
the feature space in such a way that 6 gestures are recognised well (defined as 80% or
above), the complexity of the feature surface has to increase substantially before more
gestures can be recognised. In other words, it is possible to find seven gestures that can
be easily distinguished by a simple decision surface, while in order to create decision
boundaries for a larger set of gestures, increasingly complex topologies are required due
to the presence of complex class boundaries e.g. meshed classes.

The results indicate that the optimum network size is around 16 hidden nodes. Above
this, the disparity between the recognition rates of training and test data sets become
noticeably greater indicating a loss in generalisation. With such a small data set (13-15
exemplars of each gesture in the training set and 10 exemplars in the test set) it is not
surprising that it is relatively easy to over-fit the data.

7.6 Training Behaviour of Neural Networks using
Gestural Data

This section documents the training behaviour of a neural network of architecture 12-
16t-26p using backpropagation with momentum (0.95) and adaptive learning rate
(initially 0.01). The network was trained using the tr/te2il4p feature set comprising four
frames of xyz position data. The network was trained until 20000 epochs.

Figure 7.8 shows the change in sum-squared error and adaptive learning rate as training

progressed. The sum-squared error is defined in appendix B, equation B.3. The value
was relatively high when first calculated at the beginning of training due to the randomly
chosen weights. This rapidly fell as the network begins to learn (1 to 100 epochs). From
then on the sum-squared error continued to decrease as the backpropagation gradient
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7.6 Training Behaviour of Neural Networks using Gestural Data

search algorithm attempts to converge to a minimum. From time-to-time the sum-
squared error increases slightly, often oscillating slightly before returning to its original
path. Adaptive learning rate can be seen to increase at an increasing rate until a cusp is
reached where it falls rapidly and then starts to increase again. This represents an
acceleration down the path of steepest decent until it overshoots. The spikes every 100
epochs are due to the fact that the learning rate was reset to 0.01 after the weights were
saved every 100 epochs.
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Figure 7.8 Plot of neural network backpropagation training parameters for 12-16t-26 net-
work. (a) sum-squared error, (b) adaptive learning rate during training until 20000 epochs,
(c) sum-squared error, (d) adaptive learning rate during training until 1000 epochs

Figure 7.9 shows the neural network’s recognition rate from training and test data at 100
epoch intervals until 20000 epochs. Results are shown for all 26 gestures and for the
most highly recognised 12 gestures. Note the difference in recognition rate between the
training data and the test data. The network has learnt features in the training data that are
not good generalisations and are not present in the test data.
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Note that although sum-squared error during training (figure 7.8 (a) and (c)) continues to
fall up to 20000 epochs, there is no corresponding continued increase in recognition rate
of the original training data. This is not fully understood, but it is possible to see how this
can happen. The sum-squared error was calculated from the difference between the
actual activation level at the output nodes and the target value. The output activation
could vary between -1 and +1. However, the decision was based on the output node that
exhibited the maximum activation. The same decision would be made whether the
differences between the highest valued output node activation and the activation levels of
other nodes were large or small. The value of sum-squared error on the other hand could
conceivably decrease due to a decrease in some or all of the other nodes, while not
affecting the network decision.

tr/te2i14p 12-16t-26p

Figure 7.9 Gesture recognition rate against number of training
epochs for all 26 gestures and for the best 12 gestures. The maximum
recognition rates in each case is indicated by a cross

7.7 Comparison of Activation Functions
7.7.1 Method

In order to ascertain the performance of various combinations of activation functions
used in the hidden and output layers, six combinations were compared using the tr/
te2il4p feature set. The neural network architectures used for each experiment are

detailed in table 7.3. Note that in this table t,p, and 1refer to the activation functions used
in the corresponding layer. t=tan-sigmoid, p=identity function, I=log-sigmoid.
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Ex 1D Arcﬁilt\leljture
exl6uk 12-16t-26p
ex60uk 12-8t-26t
ex61luk 12-16t-26t
ex62uk 12-161-261
ex63uk 12-81-26p
ex64uk 12-161-26p
ex65uk 12-16p-26p

Table 7.3: Experiments
with varying combinations
of activation function

Each network was trained using backpropagation with momentum (0.95) and adaptive
learning rate (initially 0.01). The networks were trained and tested in an identical fashion

to that described in section 7.5.1.

7.7.2 Results and Discussion

The results for the average recognition rate are presented in figure 7.11. The confusion

matrices are documented in appendix C, sections 5 and 2. Different architectures resulted
in considerably different recognition results even when the number of weights and biases
were identical. All the log-sigmoid networks yielded lower average recognition rates for
26 gestures than the tan-sigmoid networks for the same size of network. In fact the log-
sigmoid networks performed either worse or about as well as the network that used only
linear identity functions in the hidden and output layers. The worst average recognition
rate was produced by the 12-161-261 network and the best was produced by the 12-16t-
26t network (marginally better that 12-16t-26p). Possible explanations include:

1) The log-sigmoid networks consistently converge to local minima at some distance
from the global minimum.

2) The log-sigmoid functions are making poorer generalisations given the small amount
of training data available.
The results for gestures recognised at or above 80% are presented in figure 7.10.

As regards the number of gestures recognised at or above 80%, the 12-16t-26p
outperformed the 12-16t-26t. Again, the 12-161-261 performed worst. All log-sigmoid
performed worse than 12-16p-26p.

These results indicate that choice of activation function can have significant effects on
recognition results. If the plots of the tan-sigmoid and log-sigmoid functions are

inspected (see figures 7.2 and 7.3), there are two apparent differences. The first is that
output values of a tan-sigmoid neuron lie between +1 and -1 while output values of a log-
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7.7 Comparison of Activation Functions

sigmoid neuron has output values between 0 and 1. The second is that for the particular
forms of the functions used in this study, the linear part of the curve was steeper in the
case of the tan-sigmoid function.

The results of this part of the study were used to determine the activation functions used
in the FFNNs subsequent experiments. All other neural network experiments used the
tan-sigmoid function in the hidden layer and the identity function in the output layer.
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Figure 7.10 Gesture recognition results for six different combinations of activation functions in
the hidden and output layers. The tr/te2i14p feature set was used to train and test each network,
(a) shows which gestures were recognised at this level r>=0.8. These are marked with an ‘o’.
For comparison, gestures with 0.7>=r<0.8 are marked with Gestures recognised 0.6>=r>0.7
are marked with Histogram (b) shows the maximum number of gestures recognised at
r>=0.8. (c) shows the average recognition rate (%) at the respective gesture sub-set. (d) indi-
cates the amount of training (epochs) the network required to reach maximum performance
(defined by the maximum number of gestures recognised at or above 80%).

94



7.8 Comparison with k-Nearest Neighbour M ethod

Recognition Rate for 26 Gestures

Experiment ID

Figure 7.11 Comparison of Activation Functions: Average recog-
nition rate for 26 gestures for experiments 60 to 65

7.8 Comparison with k-Nearest Neighbour Method
7.8.1 Method

In order to obtain a comparative measure of the ANN classifier performance, two k-
nearest neigbour type classifiers (kNN) were constructed using MATLAB. Their ability
to classify gestures was investigated. The tr2il4p training data set was used as the set of
prototypes and te2il4p used to test the classifiers. The two varieties of KNN were a)
euclidean distance kNN and b) euclidean distance kNN with standard normalisation.
These algorithms are described in most standard texts on pattern recognition (Tou and
Gonzalez, 1974).

k was varied from one to nine in each case. The second classifier functioned in an
identical fashion to the first except the standard deviation of training prototypes was
calculated for each input dimension and the data normalised using this value. This had
the effect of compressing space in dimensions where the training set was more widely
dispersed so that overall dispersion was approximately hyperspherical.

7.8.2 Results and Discussion

Results are presented for the euclidean kNN classifier in figures 7.12. The corresponding

confusion matrices are presented in appendix C, section 3. The maximum average
recognition rate for 26 gestures was 55.77% for k=8. The maximum number of gestures
recognised at a rate greater or equal to 80% was 6 with an average recognition rate of
86.67. The number of gestures recognised at or above 80% for k=1 was only three. The
fact that k=8 gives considerably improved results compared with k=1 means that a large
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number of prototypes are required to construct representative piece-wise linear class
boundaries. The resultant smoothing of the feature surface improved generalisation.

This suggests that patterns belonging to each class are not tightly clustered compared to
the distance between class centres. The results are consistent with there being a lack of
representative exemplars and/or the existence of overlapping class boundaries.

Results are presented for the euclidean kNN classifier with standard normalisation in
figures 7.13. The corresponding confusion matrices are presented in appendix C, section

4. The maximum average recognition rate for 26 gestures was 55.38% for k=7. The
maximum number of gestures recognised at a rate greater or equal to 80% was 7 with an
average recognition rate of 85.71%.

The results for the euclidean kNN classifier with and without standard normalisation
were similar. KNN with standard normalisation recognised one more gesture at or above
80%.

The results are summarized and compared with recognition results using the same
feature set for a feedforward neural network with architecture 12-16t-26p (see section

8.2) in table 7.4. The FFNN showed a significantly improved performance over both
schemes of kKNN. The FFNN recognised 12 gestures at or above 80% with an average
recognition rate of 90%.

Interestingly, the kNN results are similar to those of a 12-4t-261 network reported in

section 7.5.2.
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Figure 7.12 Gesture recognition results for Euclidean distance k-nearest neighbour classifier
with k=1 to 9 using trte2i14p feature set. (a) shows which gestures were recognised at this level
r>=0.8. These are marked with an ‘0’. For comparison, gestures with 0.7>=r<0.8 are marked
with V. Gestures recognised 0.6>=r>0.7 are marked with Histogram (b) shows the maxi-
mum number of gestures recognised at r>=0.8. (c) shows the average recognition rate (%) at
the respective gesture sub-set. (d) indicates the amount of training (epochs) the network
required to reach maximum performance (defined by the maximum number of gestures recogn-
ised at or above 80%).
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Figure 7.13 Gesture recognition results for Euclidean distance k-nearest neighbour classifier
with standard normalisation with k=1 to 9 using trte2i14p feature set. (a) shows which gestures
were recognised at this level r>=0.8. These are marked with an ‘o’. For comparison, gestures
with 0.7>=r<0.8 are marked with V. Gestures recognised 0.6>=r>0.7 are marked with Histo-
gram (b) shows the maximum number of gestures recognised at r>=0.8. (c) shows the average
recognition rate (%) at the respective gesture sub-set. (d) indicates the amount of training
(epochs) the network required to reach maximum performance (defined by the maximum num-
ber of gestures recognised at or above 80%).
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Classifier nr T80 7580 .G
(x100%) (x100%)
Euclidean k-nearest neighbours k=8 6 86.67 55.77
Euclidean k-nearest neighbours with standard normalisation k=7 7 85.71 55.38
Two layer feedforward neural network 12-16t-26p 12 90.00 50.00

Table 7.4: Summary results showing best recognition rates based on maxtnr>8o,
for k-nearest neigbours and comparison with best results using ANNs using the
tr/te2il4p feature set (four frames of xyz position data)

7.9 Summary and Discussion

Feedforward neural networks with a single hidden layer were trained using
backpropagation of errors with momentum (set at 0.95) and adaptive learning rate (set
initially to 0.01). Weights connecting the input layer to the hidden layer were initialised
using the Nguyen-Widrow method the input-hidden layer. Weights connecting the hidden
layer to the output layer were initialised randomly between 1 and -1.

Average recognition rate alone is not a good indicator of practical classifier performance
as there is a level below which it would be too frustrating to contemplate including the
gesture in the gesture set. Classifier performance was measured by the number of
gestures recognised at or above the 80% level plus the average recognition rate for that
set of gestures.

The manually segmented gestural set of 624 gestures comprised 26 gestural classes. The
gesture set was divided randomly into a training set (364) and a test set (260) for training
and validating the neural network classifiers.

The number of hidden layers needed to solve the problem was determined
experimentally. A feature set comprising four time frames of x,y,z arm position data (12
features) re-sampled at intervals of 160ms was used to train and test the ANNs involved

in this process (feature set tr/te2il4p described in section 8.2). Tan-sigmoid activation
functions were used in the hidden layer. The identity function was used in the output
layer. Networks with up to 20 nodes were compared. 16 nodes in the hidden layer
yielded the optimum number of gestures recognised at or above 80%. This result was
used to determine the number of hidden nodes for most neural network experiments. The
assumption was made that this result will be valid for other input feature sets and other
neuronal activation functions.

A network architecture of 12-4t-26p with four hidden nodes recognised 6 gestures at or
above 80%. It took the addition of another 12 to recognise a further 5 gestures.

The effect of choice of neuronal activation was investigated by constructing ANNs with
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various combinations of tan-sigmoid, log-sigmoid, and identity function in the hidden
and output layers. Substantial variation in recognition rates was found dependent on the
choice of activation function. Tan-sigmoid in the hidden layer and identity function in the
output layer gave the best results (12 gestures). Log-sigmoid in both layers gave the
worst result (3 gestures). Whether this is a local minima problem or another phenomena
is not known. In light of these results, all other ANN experiments used tan-sigmoid
functions in the hidden layer and the identity function in the output layer.

Two k-nearest neighbour classifiers (kNN) were constructed using MATLAB. These
were a) euclidean distance kNN and b) euclidean distance with standard normalisation.
The best result obtained using kNN was 7 gestures recognised at or above 80% with an
average recognition rate of 85.7%. This was considerably lower than that achieved using
ANNs (12 gestures recognised at or above 80% with an average recognition rate of
90%).
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Chapter 8

Feature Set Comparison using
Neural Networks

8.1 Introduction

This chapter documents the part of the study that compared the performance of
feedforward neural networks presented with a variety of feature sets. The feature sets
were grouped into four categories: gesture segment length, forearm orientation, scalar
and vector velocity, curvature of plane of motion. Results are presented in the form of
summary figures and tables. The corresponding confusion matrices can be found in

appendix C and the Hinton diagrams in appendix D.

8.2 Gesture Segment Length
8.2.1 Method

Training and test feature sets containing 3D position data representing varying gesture
segment lengths were compared. Raw position data sampled at 100 s’*was low-pass
filtered and resampled at 6.25 s’*or every 16 samples as described in section 6.7 and the

data segmented into the 7 feature sets (see table 8.1) containing 624 exemplars. These
data were further randomly divided into a training set of 324 exemplars (prefix tr) and a
test data set of 240 exemplars (prefix te) and used as input data to train and test the neural

network (see section 7.4).
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Equivalent  No. of

Feature Poil:ts ANN Time Weights
Set ID architecture Window and
3Space (ms) Biases

tr/te2ilp 1 3-16t-26p 160 506
tr/te2i 12p 2 6-16t-26p 320 554
tr/te2i 13p 3 9-16t-26p 480 602
tr/te2il4p 4 12-16t-26p 640 650
tr/te2i 15p 5 15-16t-26p 800 698
tr/te2il6p 6 18-16t-26p 960 746
tr/te2il7p 7 21-16t-26p 1120 794

Table 8.1: Feature sets of increasing sample size representing increasing gesture
segment length

Each feature set was used to train and test a neural network with architecture x-16t-26p.
Each network was trained for a total of 10000 epochs and the network was tested every
100 epochs, and the results and weights stored.

8.2.2 Results and Discussion

Results are presented in the form of confusion matrices (CFM) together with summary

statistics in section 5 of appendix C. These represent the ANN decision based on the
output node with maximum activation. ANN decisions for training and test data sets are
presented for gesture segment lengths (GSL) 160ms to 1120ms. The accompanying
tables and figures summarise the data from these CFMs.

The histograms in figure 8.1 show the recognition rates for all 26 gestures. The highest
recognition rate of 51.54% for a gesture segment length of 800ms is rather poor.
However, from 7 to 12 gestures were recognised with r>=0.8 dependant on GSL,
representing a good result given that the composition of the gesture set was not chosen or
optimised based on ease of human visual recognition.

In general, the difference between the average recognition rate for test data and training
data increases with GSL. Factors that are likely to contribute to an increasing
generalisation error are:

1) Finite data set size. As the dimension of the input space increases, the data points
become more disperse. The decision surfaces are of increasing dimension, but are fitted
to the same number of points in a hyperspace of increasing dimension.

2) Variance increases with each time frame. The first point was manually segmented
using human recognition, thus this point can be expected to have low variance relative to
subsequent time frames. Variation in the speed and duration of a gesture will have an
increasing effect on subsequent time frames.
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Considering only gestures recognized with R>=0.8, figure 8.2 (b) shows that seven
gestures were recognised well with r>=0.8. This increases with GSL until a maximum is
reached at four points in space equivalent to a time-window of 640ms and an input-space
of twelve dimensions. With this gesture segment length, a further five gestures have been
recognized making a total of twelve gestures. Histogram (d) plots the number of epochs
that yielded the maximum number of r>=0.8 gestures. For gesture segment length of
160ms the network trained in only 300 epochs, while it took 6700 epochs to train the
neural network to recognise twelve gestures. Note, however that with 5 time-frames
(800ms) the network trained in 2700 epochs. This, coupled with a decreased overall

recognition rate (figure 8.1) for both training and test data, suggests that the ANN
converged towards to a local minimum. In addition, only ten rather than twelve gestures
were recognised. These results exhibit the typical variability that might be expected with
gradient search optimisation with randomly chosen initial conditions (Fausett, 1994).
Histogram (c) shows that the average recognition rate of the set of gestures recognized at
r>=0.8 is between 85% and 90% for GSL of 160ms to 1120ms.

The Hinton diagrams for the associated networks are presented in appendix D figures

D.1 to D.3 (a), (b), (c), and (d) and figure D.4 (a) and (b). The size of the rectangles in
these diagrams are proportional to the magnitude of the corresponding weight, (a) and (c)
represent weights W 1 between the input layer and the hidden layer and (b) and (d)
represent weights W2 between the hidden layer and the output layer.

Looking at W 1 for each network, the relative strength of connections associated with
each input is fairly evenly distributed across the input dimensions. This indicates that the
network has used the information present at each input node in some way in the
recognition process.

Looking at W2 for each network, the networks for four, six, and seven frames of xyz
position seem to have a small number of weights with high magnitude with most weights
much lower, while networks for one, two, three, and five have more weights with
relatively large activations. In the former case, some of the hidden neurons have one
weight connected to them that are much stronger than all the others. This suggests that
the activation level of those particular hidden neurons plays a major part in the activation
of the output/gesture classes on the other end of the respective weights. Thus the network
to some degree has tended to associate individual hidden nodes with individual gesture
classes.

In table 8.2 gestures were grouped to show the minimum gesture segment length (GSL)
presented to the ANN that yielded 7p>=0.8 together with those gestures that were not

recognised at this level using position co-ordinates in 3-space as features. GSL of greater
that 800ms failed to recognise any new gestures. Also, although with a GSL of 800ms
the ‘Spider’ gesture was recognised with r>=0.8, the number of gestures recognised at
this level fell.

These results show that by using a fixed time window approach it is possible to classify
CP arm gestures at a level potentially usable for HMI. Segment length is an important
parameter in the resultant recognition rate. The results are consistent with the notion that
for a particular set of gestures there is an optimum window length when using the time-
delay scheme of presenting data to a ANN. For this set of CP gestures, a time window of
640ms results in the greatest number of gestures recognised at r>=0.8. For all 26
gestures, the 960ms GSL gave marginally higher results. Given the small number of
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8.2 Gesture Segment Length

exemplars of each gesture, the results need to be interpreted with some caution, but
clearly a time window of around 600 to 960ms is appropriate for dynamic arm gestures,
at least for this individual.

Recognition Rate for 26 Gestures

Figure 8.1 Average recognition rate for 26 gestures for feature sets
involving gesture segment length
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Figure 8.2 Recognition results of gesture segments from 160ms to 1120ms for gestures rec-
ognized at or above 80%. (a) shows which gestures were recognised at this level r>=0.8. These
are marked with an ‘o’. For comparison, gestures with 0.7>=r<0.8 are marked with V. Gestures
recognised 0.6>=r>0.7 are marked with Histogram (b) shows the maximum number of ges-
tures recognised at r>=0.8. (c) shows the average recognition rate (%) at the respective gesture
sub-set. (d) indicates the amount of training (epochs) the network required to reach maximum
performance (defined by the maximum number of gestures recognized at or above 80%).
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GSL

160ms

320ms

480ms

640ms

800ms

Nolurozngsd 10 G

Code

14
17
20
22

10

12
19
25
18
24
21

11
13
15
16
23
26

Gesture

heavy weight
hot
ice-cream
rainbow
scratch your knee
spank

stroke the cat
cut throat
ironing

bird

lasso

shave
umbrella
shake hands
whistle
spider

cards

drive the car
drums
helicopter
knock on the door
light feather
rock a baby
rock guitar
surrender

violin

8.2 Gesture Segment Length

Table 8.2: Gestures grouped to show the minimum gesture segment length (GSL)
needed to recognise each gesture at or above 80%.

It was useful to inspect the confusion matrix results for a GSL of 640ms (appendix C.5)
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8.3 Forearm Orientation

and to study which gestures the network confuses. Table 8.3 details gestures that have
been recognised as other gestures with r>=0.6. Each one of these mistakes is a
‘reasonable’ error in that they take place in similar areas of space and/or have a similar

morphology.
ANN Actual _ Actual )
decision gesture mor gesture mo i
hot cards 0.8 0 rock guitar 0.6 0.1
shave cut-throat 1 0 ice-cream (.7 0

(train) whistle  helicopter 0.6 0
umbrella surrender 0.6 0

Table 8.3: Gestures misrecognised at or greater than 60% for GSL of 640ms. ,» is
the proportion misrecognised as the gesture in the first column, r, is the recognition
rate for the mis-recognised gesture

The ability of the network to learn the “easier to recognise” gestures in the presence of

more poorly formed gestures and similarly formed gestures is potentially very useful, in
that it could provide feedback to the clinician and/or therapist to aid in the development
of gestural repertoires containing gestures that maximise the overall recognition rate.

These results highlight the fact that gestures with very different meaning can appear
similar in form. When this occurs the gestural HMI could use additional contextual
information to determine which gesture was intended e.g. disambiguation using the
knowledge of application program state or previous gestures of a gestural sequence.

8.3 Forearm Orientation
8.3.1 Method

In section 8.3, the use of successive time frames of xyz position as a feature vector was
shown to yield a best result of 12 gestures recognised at or greater than 80%, with an
average of 90% for those 12 gestures. The average recognition rate for all 26 gestures
was only 50%. In order to explore whether other feature vectors exist that are capable of
improving the recognition rate, a number of feature sets were derived from the position
and combined in various ways to create input feature vectors.

The FFNNs were trained in an identical fashion to the previous studies, training the
network by backpropagation of the sum-squared error for 10,000 epochs, testing and
storing the results every 100 epochs, then searching for the best results.

Feature sets were constructed following the definitions in table 8.4 in order to explore the
effect of adding forearm orientation to the feature vector.

Ex45 to ex48 and ex51to ex54 all used a FFNN architecture of xx-16t-26p. In the case of
the three feature sets of 24 dimensions, the experiments were repeated using an ANN
architecture of more hidden nodes to account for the increased dimension of the feature



space (experiments ex55 to ex57).

8.3 Forearm Orientation

Orientation information was extracted from the raw data from the “Flock of Birds”
sensor by applying the rotation matrix transformation to calculate the elbow position (in
3-space) and also a point approximately radially distant from the elbow. Euler angles
were not used because the resulting signal is discontinuous and the azimuth and roll

become very noisy and exhibit large errors as the elevation approaches +90°.

By considering the wrist relative to the elbow, it is possible to simply derive a pure
direction vector (as elbow length is fixed) that conveys four frames of forearm direction
(tr/te2i4per). Wrist rotation is conveyed by deriving a vector from the radial point relative

to the elbow (tr/te2i4dpar).

Experim.  Dimension No. of
ID/ of Weights
Feature Feature and
Set ID Vector Biases
Ex45 12 650
tr/te2ilde

The approximate elbow position was
calculated from the wrist position and
the rotation matrix assuming the dis-
tance from the distal forearm sensor to
the elbow was 9.5 inches (no allow-
ance was made for sensor offset),

Ex46 12 650
tr/te2ilda

Radial position is defined as a point on
an approximate forearm radius from
the elbow. This exhibits large changes
with wrist rotation.

Ex58,59 24 842
tr/te2ildpe

Four frames of wrist position were
combined with elbow position. (The
forearm assumed to be a rigid body)

Description

xe I ----4f xeb—xed

yr Nour frames of elbow
V  position

P={xel’xe2’xe3x edl

xrlj£ ----44

'

yr sXj.j
At position

Xrl--Xrd
Four frames of radial

p={xrl,xr2,xr3,xr4}

X/ x3 Xj..... X4
J nJC" Fourframes of wrist

p / At position
"K Xe],..., Xed
N xe2 Xe3'L
xel X 4 Four frames of elbow

position

Forearm length 1=9.5 inches

p={x],x2,x3.x4.xei.xe2.xe3.xe4)

Table 8.4: Description of feature vectors p involving forearm orientation and the
associated feedforward neural network



Experim.  Dimension  No. of
ID/ of Weights
Feature Feature and
Set ID Vector Biases
Ex48 24 842

tr/te2il4pa

Four frames of wrist position were
combined with radial position

Ex51 12
tr/te2ilder

650

Relative direction vector of constant
magnitude was derived as a measure of
forearm direction.

Ex52 12
tr/te2il4ar

650

Relative direction vector of constant
magnitude was derived using radial
position and elbow position. This will
exhibit large changes with wrist rota-
tion (although not decoupled com-
pletely from forearm direction).

8.3 Forearm Orientation

Description

Jf—£
oo/

Xrj x

X <ee
Four frames of wrist

position

9 X *
o e .
Four frames of radial
position

r=13.8 inches

p={X1],X 2<5.Xj.Xr],Xr2,Xrj,Xrj}

F xrel=x Fxel
'fo1 ! xre2~x2~xe2
/N b
- xre3~x3~xe3
A = [~
Xetl xed x red=x4~x ed

Forearm length 1=9.5 inches

P~ {xrel’Xre2'Xre3 ’Xre4/

X1 Jr__4

’ o 1 ’
/ !

xrri=xrl-x1
xXrr2=xr2-x2

xrr3~xr3~x3

x j Xr2 Xr]X§‘4 xrrd=xrd4-x4

rJ

r=13.8 inches

P~ixrrl’Xrr2,xrr3,x rr4/

Table 8.4: Description of feature vectors p involving forearm orientation and the
associated feedforward neural network



8.3 Forearm Orientation

Experim.  Dimension No. of

ID/ of Weights .
Description
Feature Feature and
Set ID Vector Biases
Ex53,56 24 842
tr/te2i4per xrel XIxel
., . ’ ! p—
Four frames of position were com- fo1 X re2=x2-xel
bined with four frames of wrist direc- [N v / * x re3=x 3-x e3
tion X , Xe2 Xred=x4-xed
eJ x ed
Forearm length 1=9.5 inches
p ={X],X2,X3,X4,Xre],Xre2,Xre3,Xred}
Ex54,57 24 842
tr/te2i4par EPAN Xrri=Xr]-X]
Four frames of position were com- o ' X rr2=xr2ex 2
bined with four frames of wrist rota- - - /! x rr3=xr3~x3
tion x , r2 xrréd=xré4-x4
rl xrd

r-13.8 inches

P —fxj,x2,x3,x4,xrrj,xrr2,xrr3,x rr4}

Table 8.4: Description of feature vectors p involving forearm orientation and the
associated feedforward neural network

8.3.2 Results

The average recognition rates for 26 gestures are documented in figure 8.3. These were

extracted from the confusion matrices detailed in appendix C section 6. The best average
recognition rates were achieved by tr/te2id4per (four frames of wrist position plus four
frames of wrist direction) at 52.69%. This was closely followed by tr/te2il4pa - four
frames of wrist position plus four frames of radial position, and tr/te2i 14pe - four frames
of wrist position plus four frames of elbow position. Both yielded a recognition rate of
51.15%. The recognition results for gestures recognised at or above 80% are presented in

figure 8.4. The number of gestures recognized at or above 80% is detailed in plot (b). tr/
te2il4pa, four frames of position plus four frames of radial position, and tr/te2i4per, four
frames of wrist position plus four frames of wrist direction produced the highest figure of
12 gestures. Although in the case of the average recognition rate for 26 gestures the tr/
te2ild4pe gesture set was the second highest, only six gestures were recognised at or
above 80%.

The Hinton diagrams associated with these data are presented in appendix D, figure D. 10

(c) and (d) and figures D.1 Ito D. 15 (a), (b), (c), (d). Inspecting the weights W |, between
the input and hidden layers, each input feature had weights of strength comparable to
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8.3 Forearm Orientation

other input features. This suggested that all features were involved in the pattern
classification process. This was the case for all feature sets in involving forearm
orientation.

Recognition Rate for 26 Gestures

Feature Set

Figure 8.3 Recognition rate for 26 gestures for feature sets involving
forearm orientation
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Figure 8.4 Recognition results feature sets containing forearm orientation information for
gestures recognized at or above 80%. (a) shows which gestures were recognised at this level
r>=0.8. These are marked with an ‘0’. For comparison, gestures with 0.7>=r<0.8 are marked
with V. Gestures recognised 0.6>=r>0.7 are marked with Histogram (b) shows the maximum
number of gestures recognised at r>=0.8. (c) shows the average recognition rate (%) at the
respective gesture sub-set. (d) indicates the amount of training (epochs) the network required to
reach maximum performance (defined by the maximum number of gestures recognized at or
above 80%).
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8.3 Forearm Orientation

In the case of three of the feature sets with 24 dimensions (tr/te2idper, tr/te2i4par, tr/
te2i4pe), experiments were conducted training networks of architecture 24-20t-26p
(twenty hidden nodes). The results are compared in figures 8.5 and 8.6. The histogram in
figure 8.5 details the average recognition rate for 26 gestures. In the case of tr/te2idpe, 16
hidden nodes performed slightly better than twenty. With tr/te2i4per and tr/te2i4par, the
situation is reversed. In fact, the use of the tr/te2i4per with a 24-20t-26p architecture
gives the highest recognition rate for 26 gestures of 58.85%.

The recognition results for gestures recognised at or above 80% is described in figure
8.6. Looking at the number of gestures recognised at or above the 80% level, 20 hidden
nodes results in worse performance than 16 nodes for tr/te2i4pe and tr/te2idper.
Performance is the same for tr/te2i4par.

Although the average recognition rate did increase in one case by increasing the number
of nodes in the hidden layer, this performance was not reflected in the number of gestures
recognised at or above 80%. Thus, overall FFNNs with 16 hidden nodes performed
better that FFNNs with 20 nodes.

Recognition Rate for 26 Gestures

Feature Set

Figure 8.5 Average recognition rate for 26 gestures. Comparison of
results for networks of 16 and 20 nodes in the hidden layer for feature
sets containing forearm orientation.
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Figure 8.6 Comparison between 16 and 20 hidden nodes ANN architectures for feature sets
containing forearm orientation information, (a) shows which gestures were recognised at this
level r>=0.8. These are marked with an ‘0’. For comparison, gestures with 0.7>=r<0.8 are
marked with V. Gestures recognised 0.6>=r>0.7 are marked with Histogram (b) shows the
maximum number of gestures recognised ar r>=0.8. (c) shows the average recognition rate (%)
at the respective gesture sub-set. (d) indicates the amount of training (epochs) the network
required to reach maximum performance (defined by the maximum number of gestures recog-
nized at or above 80%).



8.4 Scalar and Vector Velocity

8.4 Scalar and Vector Velocity
8.4.1 Method

Feature sets were created that contained qualities of vector velocity (tr/te2ilp3r, tr/te2i4r,
tr/te2i4plr,) and scalar velocity (tr/te2i4s, tr/te2i4p3s, tr/te2i4ps, and tr/te2i4psa). These

are described in table 8.4. Since position was sampled at regular intervals every 1/16 sec.,
the vector and scalar distance between samples represented a measure of vector and
scalar velocity respectively.

The feature sets were used to train FFNNs of architecture xx-16t-26p in the previously
described manner.

Dimension No. of

Feature of Weights Description
Set ID Feature and P

Vector Biases
ex38 12 650 x2 x3 a=x2-X]
tr/te2i 1p3
prestlps b x4 b=xr*i
xyz position of first point plus the posi- " C=X4-X]
tion of the next four points relative to p={xlab,c}
the first.
ex39 12 650 a=x2-xi
tr/te2i4r x2 x3 b=x3-x2

'Ca

xyz position of first point plus relative . = = c=x4x3
position between four consecutive d=x5-x4
pairs of points. x5 p={x],a,b,c}
ex40 15 698
tr/te2idplr p={xIx2x3x4x2xl}
Four frames of position plus the posi-
tion of the second point relative to the
first.
ex41 4 522 a-= \XZ—Xj\
tr/te2ids x2 x3 x b=\x3-x2\
The scalar distance between four con- o= brd-x3|
secutive pairs of points. d=1X5-X4)

x5 p={a,b,c,d}

Table 8.5: Description of feature vectors p involving scalar and vector velocity and
the associated feedforward neural network



8.4 Scalar and Vector Velocity

Dimension No. of

Feature of Weights .
Description
Set ID Feature and P
Vector Biases
ex42 15 698 a=\x2-Xjl
tr/te2i4p3s 2 3 b= 1X3-X21
Four frames of position plus the dis- XL = \X4-X 2

tan t n neighbourin ints.
ance between neighbouring po D= (X)X 2.X3.X4va b e}

ex43 13 666

. \Y \Y a=\x2-xA
tr/te2i4ps x2 x3 : 1
Four frames of xyz data plus the scalar Xj/“ «a p ={x;,X2,X3,X4,a}
distance between the first two points
ex44 13 666 a=\x2-xjl
tr/te2i4psa x2 x3 b= 1X3-X2\
Four frames of position plus the mean — xJjg ~ * iT***~Ku 4 ¢ = \X{-Xj)

. - a u c ~

scalar distance between the four mean(ab,c)-(a+b+c)/3
points.

p={xj,X2,X3,X4,mean(a,b,c)}

Table 8.5: Description of feature vectors p involving scalar and vector velocity and
the associated feedforward neural network

8.4.2 Results and Discussion

The histogram in figure 8.7 summarises the average recognition rate for 26 gestures. The
highest recognition rate for 26 gestures of 55% was obtained using the tr/te2i4ps feature
set. The tr/te2i4s, the scalar distance between four consecutive pairs of points, resulted in
the lowest recognition rate of 14.62%.

The recognition results for gestures recognised at or above 80% are presented in figure

8.8. The largest number of gestures recognized at or above 80% was 11. This was
produced by the tr/te2i4ps and tr/te2i4psa feature sets.

Again, tr/te2i4s performed poorly resulting in the recognition of only three gestures.
However, it was very interesting that there was sufficient information in four frames of
scalar velocity (i.e. no position or direction information) to recognise three gestures

EE N1

“ironing”, “shave”, and “spank” with an average recognition rate of 87%.

The associated Hinton diagrams are presented in appendix D, section D.7 to D.9 (a), (b),

(c), (d), and D.10 (a), (b). With Ip3r, the strength of the weights connected to the first
Xyz point are somewhat stronger than the other relative direction features. However this
feature set recognized 11 gestures as compared to 7 gestures in the case of tr/te2ilp, a
single frame of xyz position. With 4plr, four frames of position and one frame of relative
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8.4 Scalar and Vector Velocity

position, the three relative input dimensions gave rise to somewhat stronger weights.

In the case of 4p3s, four frames of xyz position plus the scalar distance between them,
strong weights were associated with the three scalar dimensions, indicating that
significant use was being made of this information in the attempt to classify the gestures.

Again in the case of 4ps, four frames of xyz position plus one feature of scalar velocity,
the strongest weights were associated with scalar velocity.

Finally, in the case of 4psa, four frames of position, and one feature of mean scalar
velocity, the weight strengths associated with the scalar feature are significantly stronger
than the other twelve features.

This suggests that these networks have extracted information in a significantly different
way from the 14p, or four frames of xyz position. However, in none of the cases where
scalar or vector velocity was added to four frames of position (4plr, 4p3s, 4ps or 4psa)
were there any associated increase in recognition rate or in the number of gestures
recognised at or above 80%.

Recognition Rate for 26 Gestures

Feature Set
Figure 8.7 Recognition rate for 26 gestures for feature sets
involving scalar and vector velocity
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Figure 8.8 Recognition results feature sets containing scalar and vector velocity information
for gestures recognized at or above 80%. (a) shows which gestures were recognised at this level
r>=0.8. These are marked with an ‘o’. For comparison, gestures with 0.7>=r<0.8 are marked
with V. Gestures recognised 0.6>=r>0.7 are marked with 7). Histogram (b) shows the maximum
number of gestures recognised at r>=0.8. (c) shows the average recognition rate (%) at the
respective gesture sub-set. (d) indicates the amount of training (epochs) the network required to

reach maximum performance (defined by the maximum number of gestures recognized at or
above 80%).
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8.5 Curvature and Plane of Motion

8.5 Curvature and Plane of Motion

8.5.1 Method

Feature sets were constructed that contained features involving the curvature of the
gestural path and also the plane of motion. The scalar product was used to create features
with qualities of path curvature in the form of the cosine of the angle between the two
direction vectors formed by the three points. The vector product was used to create

features which encoded the plane of motion. Each feature set is described in table 8.4.

Dimension No. of
Feature of Weights
Set ID Feature and
Vector Biases
ex33 13 666
tr/te21l3vce

Three frames of xyz position plus the
vector product of relative direction
plus c, cosine of angle a.

ex34 12 650

tr/te2il3v

Three frames of xyz position plus vec-
tor product of relative direction. The
vector product encodes the plane of
motion together with magnitude of
direction vectors.

ex35 12 650

tr/te21 13n

Three frames of xyz position plus nor-
malised vector product of the relative
direction. The vector product repre-
sents the plane of motion in a 3vector.

Description

\Y v=(x2-x1y(x3-x2)
le = (x 2-Xj)(x3-x2)/1x2-x1\\x3-x 2\

P={x1Lx2x3v,c}

X1 x3
| v=(x2-x,y(x3-x2)
2 P={xhx2x3,v}

X1 x3

n v=(x 2-x )a(x 3-x 2)

n=vAv\

-K " 2 P={xj,x2,x3,n}
x1 x3

Table 8.6: Description of feature vectors p involving curvature and plane of motion
and the associated feedforward neural network
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8.5 Curvature and Plane of M otion

Dimension No. of
Feature of Weights

Set ID Feature and Description
Vector Biases
X3 13 666 C=(x2-X]) (X3-X2)/1x2-Xj11x3-x2\

tr/te21 13nc

| V=(x 2-Xj)a(X3-X2)

rjjv'v n=vAv\
P={x],x2,x3n,cJ

Three frames of xyz position plus nor-
malised vector product of the relative
direction plus cosine of angle a.

XJ x3

ex37 10 618 C=(x2-X]) (X3-X2)/\X2-X]\1X3-X2|
tr/te2il3c

Three frames of xyz position plus the P={x]x2x3c}

cosine of angle a.
X1 x3

Table 8.6: Description of feature vectors p involving curvature and plane of motion
and the associated feedforward neural network

8.5.2 Results

The histogram in figure 8.9 summarises the average recognition rates for 26 gestures.

Recognition rates were all between 46% and 52%. The highest recognition rate for 26
gestures was produced by 13n, three frames of position plus normalised vector product,
at 52.31%.

The recognition results for gestures recognised at or above 80% are summarised in figure

8.10. The number of gestures recognised at or above 80% spans from 8 to 11. The
maximum number of gestures at 11 was achieved by 13c, three frames of position plus

the cosine of angle a .

The Hinton diagrams are presented in appendix D, figures D.4 (c), (d) and D.5 to D.6 (a),
(b), (¢), (d). Looking at the network trained on the 13vc feature set (three frames of
position plus vector product, plus cosine), The weights associated with the vector
product features are considerably stronger that the position or cosine features. All but
one of the weights connected to the cosine feature are zero. This suggests that the vector
product information has played a dominant part in the gesture classification process. The
situation is similar for the 13v (three frames of position plus vector product) case.

However, in the case of the 13n feature set (three frames of position plus normalised
vector product), the weights connected to the normalised vector product features are
extremely small in comparison to the three frames of xyz position. Since the normalised
vector product represents the plane of motion, in the network trained using the 13n
feature set, plane of motion has not played such an important part in network decisions as
the position information.
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8.5 Curvature and Plane of M otion

In the case of the 13nc feature set (three frames of position plus normalised vector
product plus cosine) and the 13c feature set (three frames of position plus cosine), the
weights connected to the normalised vector product and the cosine features are small in
comparison to the weights connected to position features.

This suggests that the vector product is a potentially useful feature, but not for the way in
which it encodes plane of movement as might be expected, but possibly more for the way
it encodes velocity in a particular plane.

Networks associated with 13vc, 13v both used the vector product information in
preference to the position information. In comparison with 13p, three frames of position,
(see section 8.2.2) the addition of vector product (13v) increased the number of gestures
recognised at or above 80% by one from 9 to 10. Interestingly, so did the addition of
normalised vector product (13n). Possibly even more surprising is that adding the cosine
of angle a increased the number of gestures from 9 to 11. The addition of normalised
vector product plus cosine in the case of 13nc seems to have had the effect of reducing
the number of gestures recognised at or above 80% by one.

Whether this a real consequence of adding the feature or an artifact due to the training of
the neural network (local minima effects) is difficult to ascertain.

Although three feature sets apparently improved the number of gestures recognised at or
above 80%, none offered any improvement over the 14p feature set.

Recognition Rate for 26 Gestures

Feature Set

Figure 8.9 Recognition rate for 26 gestures using curvature and plane
of motion features
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8.5 Curvature and Plane of M otion
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Figure 8.10 Recognition results feature sets containing curvature and plane of motion
information for gestures recognized at or above 80%. (a) shows which gestures were recognised
at this level r>=0.8. These are marked with an ‘o’. For comparison, gestures with 0.7>=r<0.8 are
marked with V. Gestures recognised 0.6>=r>0.7 are marked with Histogram (b) shows the
maximum number of gestures recognised at r>=0.8. (c) shows the average recognition rate (%)
at the respective gesture sub-set. (d) indicates the amount of training (epochs) the network
required to reach maximum performance (defined by the maximum number of gestures
recognized at or above 80%).
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8.6 Summary and Discussion

Examining the confusion matrices of the 13c and 13p networks (appendix C, and

respectively) table 8.7 was constructed. The table examines three gestures that occur in a
similar region of space, “cut throat”, “ice-cream” and “shave”. In the case of the network
associated with 13p, 90% of test exemplars of “shave” are recognised correctly. 90% of
“ice-cream” exemplars are recognised as “shave”. Only 40% for the gesture “cut-throat”

are recognised correctly, the other 60% being recognised as “shave”.

In the case of the network associated with 13c, all test exemplars of “cut throat” are
recognised correctly. 80% of “ice-cream” test exemplars are recognized correctly.
However “shave” is never recognised correctly, being recognised either as “cut throat”
(80%) or “ice-cream” (20%).

The average recognition rate of the three gestures in the case of 13p is 43% and in the
case of 13c is 60%. From the table it is clear that the decision surfaces of these two
networks differ considerably.

Network Network
Decision (%) Decision (%)
te2i!3c te2i!3p
Actual = § % I S %
gesture b i 5 = A
5 2 5 2
cut throat 100 40 60
ice-cream 80 90
shave 80 20 10 90

Table 8.7: Confusion matrix of three visually similar arm gestures recognised by
using tr/te2il3c, three frames of xyz position plus dot product, 9-16t-26p
architecture (extracted from appendix C.8 ex37uk and C.5 GSL 480ms)

8.6 Summary and Discussion

These results show that by using a fixed time window approach it is possible to classify
CP arm gestures at a level potentially usable for HMI. The GSL feature set study
demonstrated how segment length is an important parameter in the resultant recognition
rate. For this set of CP gestures, a time window of 640ms results in the greatest number
of gestures recognised at or above 80%. For all 26 gestures, the 960ms window gave very
marginally higher results. Given the small number of exemplars of each gesture, the
results need to be interpreted with some caution, but clearly for this individual, a time
window of around 600 to 960ms is appropriate for dynamic arm gestures.
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8.6 Summary and Discussion

Table 8.8 summaries the recognition results documented in this chapter. The table lists
the feature set which yielded the highest number of gestures recognised at or above 80%
for each feature set category together with the results for 13p.

From the table, it can be seen that 14p, 14per, 14pa, 4ps recognised the same number of
gestures at or above 80% at similar average recognition rates. Thus, in this study, the
network associated with four frames of position marginally exhibits the best performance
with the test data.

It is quite likely that certain feature combinations offer advantages that have not become
apparent in this study. A much larger set of gestural exemplars would have been useful in
enabling feature sets to be compared with higher resolution. This would have enabled the
recognition rates to be validated with more certainty.

This study has shown that FFNNs can classify gestures at a potentially useful level, using
a variety of feature sets and with quite different internal representations. This
insensitivity to gestural input features is encouraging as this property is an important
element in the construction of a robust gesture recognition system.

Feature Set ", >80 - > ge G
tr/te2il4p Four frames of xyz position data over 640ms 12 90.00 50.00
tr/te2i 14per Four frames of position and four frames wrist 12 86.67 52.69
relative to the elbow
tr/te2i 14pa Four frames ofposition and four frames radial 12 88.33 51.15
point
tr/te2i4ps Four frames of xyz data plus the scalar distance 12 88.33 55.00
between the first two points
tr/te2i 13c 11 89.09 51.15
tr/te2i 13p 9 8556 44.24

Table 8.8: Summary results showing best recognition rates based on max"nr;>so
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Chapter 9

Conclusions

9.1 Summary

Chapter 2

Human factors and technological issues of gestural human-machine interaction are
closely linked. An argument is made for the need to give equal emphasis to both aspects.
A human-factors driven approach was adopted on the basis that human issues should
shape technological development. A conceptualisation of HMI was proposed where the
human, machine, and environment are considered as a system of dynamically interacting
non-linear sub-systems. Such systems are known to exhibit emergent properties. It was
proposed that human machine interaction can be considered as an emergent property
where new expressive human behaviours may emerge as a result of the interaction.
However, it was also proposed that expressive behaviour can be critically dependent on
the environment and components within that environment, particularly if physical
impairment restricts self-adaptive ability. The research aims of the thesis were related to
a conceptualisation where a Venn diagram represented three components of human
behaviour: “elicitable”, “observed”, and “useful for HMI”. The aim of the human factors
part of the study was to increase the intersection between “observed” and “elicitable” by
eliciting new behaviours that were potentially useful for human-machine interaction. In
contrast, the aim of machine recognition part of the study was to increase the intersection
between “observed” and “useful for HMI” by developing automatic gesture recognition
algorithms. The relevance of this theoretical framework to human-machine interaction
involving people with severe speech and motor impairment is discussed.

The second half of this chapter discussed issues relating to the machine perception of
human behaviour. It is suggested that for high bandwidth efferent HMI to maximally



9.1 Summary

harness the expressive behaviour of people with SSMICP, it will be necessary to harness
multiple signals from the body. An architecture for a complete gesture recognition
system involving multiple sensors is proposed. However, the work in this thesis was
restricted to the investigation of issues relating to the pattern recognition engine.

Chapter 3

This chapter focused on defining the target users of the proposed gestural HMI and
examining human issues that impact on HMI design. The complex nature of cerebral
palsy and its effect on communicative interaction are described and discussed. Existing
HMI for this population is described including HMI used for augmentative and
alternative communication. Key factors considered to be of particular relevance to
gestural HMI include: each user is likely to exhibit a highly individual profile of physical
and cognitive abilities; movement characteristics can change as a child’s neurology
develops; physical performance can change as a result of fatigue, emotional state or
illness; infantile reflexes often persist into adulthood.

Chapter 4

The theoretical framework established in chapter 2 together with the user issues
described and discussed in chapter 3 led to the development of a methodology to elicit
candidate behaviour for gestural HMI involving human-human interaction. This
methodology was applied in the design of a gestural ability pilot study. The study
investigated the gestural ability of twelve children and young adults between the ages of
5to 18 years. A cognitive framework was constructed using performance arts techniques
to elicit a wide variety of volitional expressive behaviour. Subjects readily produced a
repertoire of gestural movements far greater than that anticipated from the study of their
therapeutic, medical and educational records. Video-tape recordings of the gestural
repertoire were analysed in respect to the body parts involved to produce each gesture.
Histograms of body part involvement showed that gestures were produced using
movement of the head, arms, torso, leg, facial expression, eye-gaze, and vocalisation.
Substantial individual variation is apparent. However, the arm was the most frequently
used articulator for nine out of ten subjects.

Chapter 5

The utility of the gestures elicited in the gestural ability pilot study for HMI depend on
whether they can be produced consistently and whether they can be reliably recognised
by computer. Five subjects were chosen for instrumented data collection. A sub-set of
the gestures was selected for each subject. It was hypothesised that sufficient pertinent
information could be transduced from such gestures suitable for gesture recognition. The
six-degree of freedom magnetic tracker was attached distally to one forearm. The arm
was selected as it was found to be significantly involved in gestural expression (chapter
4). Data was collected in three sessions over three days, each session lasted 50-60
minutes with 33-43 minutes of data collected divided into a number of shorter data
collection periods separated by breaks of 1-5 minutes. The process of manual
segmentation of the gestural data stream needed to create training and test data for the
neural networks was labour intensive (chapter 6). As a result, data from just one subject
was used. Results illustrated that the gestures were co-articulated in so far as they were
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9.1 Summary

produced without requesting the subject to rest between gestures or asking the subject to
move to a certain position. Close examination indicated that movement from the
previous gesture was often still present for a short period after the beginning of the next
verbal prompt. The gestures were elicited in random order, the transition from one
gesture to the next could follow a wide range of paths and distances.The average rate of
production was one gesture per 9.5 seconds or 6.3 per minute. This rate was maintained
over three or four ten minute periods with only a few minutes rest in between during
each session. These results indicate that is possible for a person with spastic-athetoid
quadriplegia to produce gestures at a sustained rate for a considerable length of time at a
rate similar to the rate of selection for indirect scanning.

Chapter 6

A computer graphics animation tool was developed to “play-back” and examine the
dynamic arm gesture data collected using the magnetic tracker. This examination
revealed that most gestures fell into one of three categories: static, single movement and
periodic movement. In addition, single movement gestures fitted within a time window
of around one second. The duration of static gestures was at least one second long. The
periodic gestures all had a periodic length of less than one second. A computer
recognition scheme was proposed that involved the use of time-delay feedforward neural
networks. The scheme would involve continually extracting features from a finite time
window of around one second past which all the gestural data flowed. The network
would be trained on manually segmented data. The final system would use the neural
network output neuron activation levels as a measure of confidence that a particular
gesture is being produced at an instant in time. A further algorithm would be used to
examine activation level and activation level duration to make the final classification and
hence reject network decisions where the confidence level was low or duration too short.
While the implementation of this scheme was left for further work, the scheme provided
the rationale for the investigation of recognition algorithm performance using manually
segmented test data.

Gestural data was animated and viewed after low pass filtering with a cut-off of around
3Hz. Filtering resulted in removal of much of the ‘jerkiness” of the movement due to
cerebral palsy, while preserving the overall form of the gesture. As a result, the gestural
data was preprocessed using a low pass filter of 2.8125 Hz. This process also reduced
high frequency sensor “glitches” that occurred occasionally during periods of rapid
movement and enabled the data to be re-sampled at 3.125 Hz. This meant that 1120ms of
gestural data could be represented by only seven samples in time.

Chapter 7

Data was divided randomly into training and test sets of gestural data exemplars. Feed
forward neural networks with one hidden layer were trained using backpropagation with
momentum and adaptive learning rate. The network complexity, i.e. the number of nodes
required for the hidden layer, was investigated experimentally using a feature vector
comprising four time samples (frames) of x,y,z re-sampled position data (12 features) as
input (representing a time window of 640ms). The results showed that 7 gestures could
be recognised using only four nodes in the hidden layer, while it took another 12 nodes to
recognise an additional 5 gestures. Optimum recognition rates were obtained using 16
nodes in the hidden layer. The effect of varying the type of activation function used in the
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9.2 Interpretation and Implications of Research

hidden and output layers was examined. There was a surprisingly large difference
between the use of tan-sigmoid and log-sigmoid activation functions. The reason for this
was not determined. Tan-sigmoid activation functions in the hidden layer, and the
identity function in the output layer yielded the highest recognition rates. The
classification performance of two k nearest neighbour algorithms (kNN) (euclidean
distance kNN and euclidean distance kNN with standard normalisation) was ascertained
using the training set as prototypes. The kNN methods recognised 6 or 7 gestures
compared to the best NN result of 12. However the recognition rates for all 26 gestures
were similar (55%).

Chapter 8

Feature vectors comprising from one to seven time frames of x,y,z position data (3 to 21
input features) corresponding to time windows spanning from 160ms to 1120ms were
compared. Optimum recognition was obtained for 4 time frames, equivalent to a time
window of 640ms.

A further 20 feature vectors were created that included measures of forearm orientation
(8), scalar and vector velocity (7), curvature and plane of motion (5). However, none
performed as well as the feature vector containing 4 frames of x,y,z position data.

9.2 Interpretation and Implications of Research

The outcome of the gestural pilot study indicates that the subjects have expressive
abilities above and beyond that which can be harnessed using existing technology. In
addition, they have expressive ability above and beyond that which is regularly observed
in every day settings. The application of techniques from the performing arts proved to
be highly appropriate for engaging the imagination and eliciting a wide range of
behaviours based on the subject’s knowledge of the world. The use of “generative”
methods were necessary to facilitate the emergence of the subjects’ latent gestural
ability. This outcome is consistent with the theoretical arguments posed in chapter 2.

The gesture recognition study suggests that a magnetic tracker attached distally to one
forearm can transduce sufficient gestural movement to recognise gestures even when
other parts of the body are involved. Results from the feature vector study in chapter 8
suggest that adding features containing forearm orientation decreased the overall
recognition rate. This could presumably be due to the presence of a high level of variance
in forearm orientation, an important result as it indicates that some components of
movement may be so variable that the recognition rate may be reduced. It is common for
people with SSMICP to have great difficulty pronating and supinating the hand and arm,
so conceivably this lack of volitional control is reflected in these results. In principle, it
should be possible to increase the range of expressive behaviours useful for human
machine interaction by transducing more of the human body. However, if this is
attempted without care, the process may be counterproductive as was found to be the
case with forearm orientation.

A number of feature sets gave similar recognition results even though examination of the
Hinton diagram indicated that in some instances they had based their decisions upon
very different feature subsets. It is possible that these feature sets possessed similar
properties as regards class separation and clustering. Another interpretation is that the
neural network is exhibiting its ability as a non-linear classifier to construct feature
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surfaces with a wide range of topologies. If the latter is the case, then the results are a
demonstration of the flexibility of neural networks. This is a useful property in the case
of a practical recognition system. The user, clinician, or therapist cannot be expected to
derive the optimal set of features for a particular body site and gesture set.

However, the experiments that looked at the effects of the number of hidden nodes
demonstrated one of the disadvantages of a neural architecture as simple as a fully
connected feedforward neural network with a single hidden layer. While only four
hidden nodes were required to recognize 7 gestures, another 12 nodes were needed to
recognise 12 gestures. This increase in complexity makes it difficult for such a simple
architecture to scale up. In order to recognize a large number of gestures e.g. 1000, it
would be necessary to employ such a large network that it would be impractical to
implement. However, gestural HMI for people with SSMICP is likely to involve a
relatively small set of gestures that can be reliably distinguished from each other. In this
situation, artificial neural networks in their current forms seem more favourable.

9.3 Future Work

Human Factors Issues

The gestural elicitation methodology was successful at eliciting the subjects’ latent
gestural ability. However, for these gestures to be useful for gestural HMI for AAC they
have to be turned into a method of communication. This is an area that can be
investigated further independent of technology using human-human interaction. The
gestures elicited in this research are like many graphic symbol systems in that they relate
to concrete notions that draw upon the user’s knowledge of the world. Thus, it is fairly
easy to envisage the adaptation of AAC techniques involving graphic symbols for
gestural input. It is possible that gesture has a distinct advantage over graphic symbols in
the ease with which they can be remembered due to kinaesthetic recall. This may be of
particular help in the recall of sequences of symbols.

This study has only looked at the gestural abilities of a small number of subjects. More
studies need to be carried out in order to learn more about the gestural abilities of people
with severe speech and motor impairment due to cerebral palsy, particularly from a
developmental perspective. Questions arise such as how do the findings in this study
relate to the population as a whole? As the people with SSMICP have difficulty
physically interacting with their environment, how has this gestural ability been
acquired? What does an infant with SSMICP need to experience to acquire gestural
ability, or is it innate? To what degree do the gestural abilities of people with SSMICP
correspond to or differ from the general population? Answers to these basic
developmental and cognitive questions are needed to see where gestural HMI can be
integrated into early intervention programmes.

The instrumented gestural data collected in this study were collected from subjects who
had no appreciable practice or training in the activity prior to this research study. Two
questions arise. Does daily practice improve gestural ability? If gestural ability is
developed as an infant, does it improve gestural ability physically and cognitively as an
adult?

Technological Issues

The next stage in this research is to develop an algorithm that can recognise gestures by
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passing over a continuous stream of data. If feedforward networks are used in the first
stage then a second stage would be needed to interpret the changing output activation
levels with respect to time. If such a system can be created with acceptable recognition
rates then it should be fairly straightforward to implement in real-time on an 133 MHz
Pentium PC. Once this stage is reached, it will be possible to evaluate the system through
user trials.

As regards the interpretation of the thesis results, it would be useful to investigate the
human recognition rate of the gestural repertoires. These data would be useful as a
baseline to determine targets for automatic recognition. In particular, it would be useful
to compare human recognition rates with the modest 50-55% automatic recognition rate
achieved for all 26 gestures. It was not possible to conduct this study within the
resources of the project.

The low-pass filter employed in this research project is likely to be far from optimal.
Also, signal enhancement requirements are likely to vary for each individual. Different
types of cerebral palsy are characterised by different movement characteristics, so each
is likely to need processing differently. Thus, the development of a more optimal filter is
a useful line of investigation that could lead to improved recognition performance. Self-
adaptive filtering may be particularly useful in this respect.

There are other pattern recognition methods that are superior to FFNNs in the way that
they model dynamic processes. In theory, these should be better able to deal with
variance in time. Suitable neural methods include the recurrent neural network
architecture in its various forms. Some of the most successful speech recognition
algorithms combine the use of neural networks with hidden Markov model (HMM)
methods. They are reported to offer the discriminating powers of ANNs with the
temporal modelling abilities of HMMs (Mammone, 1994). A similar strategy may have
value in gesture recognition.

As previously discussed in the thesis, for people with SSMICP, inhibition of movement
can take as much effort as initiation. Algorithms that do not take this into account are
likely to be of limited application for this population. As illustrated by the gestural
repertoires elicited in this study, the salience of gesture can be in either movement, path,
or static position. For this reason, segmentation through simple feature extraction
followed by thresholding and the pattern recognition techniques that rely on such a
strategy are rejected as a future path of investigation. “Segmentation by recognition”
seems the line of investigation most likely to produce robust automatic recognition that
can recognise a wide range of gesture categories. Although usually these algorithms are
significantly more computationally intensive that other methods, they are rapidly
becoming more feasible as more computational power becomes available for the
interface.

Closely linked to the underlying processes of gesture production, another important area
of investigation is the way in which gestures can be symbolically represented in a
machine. This impacts on both the type of features that are extracted from raw movement
data and at the higher level of gesture interpretation. A number of coding schemes have
been developed for transcribing human movement but few have been investigated as to
their value in gesture recognition. High level symbolic processing of gestural features is
attractive as the gestural data is then in a form that can easily be manipulated by
computer and combined with other information. However there are potential problems
associated with the application of simple coding schemes to translate body cerebral palsy
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movement to gesture symbols. The problem lies in their sensitivity to the “noise” in the
movement signal. There are possibly two questions here. Can coding features be found

that are relatively “noise” insensitive? Can “noisy” gestural data at the symbolic level be
processed effectively?

Gestural Human-Machine Interaction

The area of gestural human-machine interaction is still in its infancy although interest in
the area continues to grow rapidly. This research confirms the potential value of gestural
human-machine to people with speech and motor impairment due to cerebral palsy. In
addition, it has the potential to enhance the quality of interaction for all users of
computer technology.

The frontiers of the problem are likely to expand as more and more human activities
become computer mediated. More research is needed in both human factors and machine
perception areas. Knowledge gained in the cognitive aspects of human gesture promises
to offer insight into the creation of machines that can exploit such ability. In the
endeavour to create machines that understand gesture, it is likely that we will also learn
more about its production.



Appendix A

Gesture Elicitation Sessions:
Transcripts
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Appendix A: Gesture Elicitation Sessions - Transcription

s

Hungry X X X

6.1 ¢

Pull
Yes
Stop

Bye
No X
Pizza X
Sip Soda

Ice-cream X

Fast Car
Drive Bus
Helicopter
Train X
Aeroplane
Spider
Pig
Alligator
Caterpillar
Lion X
Bird
Butterfly
Elephant
Snake X X
Fish
Mickey Mouse X
Spank
Knock
Throw
Scratch
Jump
Ballerina
Open Box
Open Door
Door Bell
Deal Cards
Fishing X X X
Bowling
Canoeing
Swimming
Baseball
Basketball
Cold
Hot
Drum
Rock Guitar
Shake Hand
Sad X X

Table A.l: Transcript of gesture elicitation session: Subject SI
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51
52
53
54
55
56
57
58
59
60
61

2R22D

67

69
70
7
72
3
74
75
76
77
78
79
80
81
82

Appendix A: Gesture Elicitation Sessions - Transcription

ac GRtenERt e

Barf (vomiting)
Yummy X X X X
Soft X X X X
Listen X
Sticky X
Smell X X X X
Ouch! X
Love X
Yuk! X
Stir
‘Wash Face X X X X
Cut throat
Picture
Salute X X X X
Dig Hole X
Crawl X
Jump
Knitting X
Toss Pancake
Dance X X
Fly Kite X X X X X X X
Milk Cow X
Poison X
Naughty X
Witch X X X
Type X X X
Mosquito Bite
Rip Paper X
Earthquake
Explosion X
Witch
Dragon
Monster X X

Table A.l: Transcript of gesture elicitation session: Subject SI
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Appendix A: Gesture Elicitation Sessions - Transcription

X
X
X
X
(
Wash 1 X
X
X
X
X
X
X
X
X
X
X
1 X
X

Table A.2: Transcript of gesture elicitation session: Subject S2
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51
52
53
54
55
56
57
58
59
60
61
62
63

65
66
67

69
70
71
72
73
74
75
76
77
78
79
80
81

FEBVY

86
87

89
90
91
92
93
94
95
96
97
98
99
100
101

Appendix A: Gesture Elicitation Sessions - Transcription

o fegisniiiialed

Deal Cards
Swimming
Make of Basket
Grand Slam
Touchdown
Tennis
Hockey
Smell
Sticky
Listen
Hot
Cold
Soft
Bright Light
Smooth
Fish
Snake
Elephant
Butterfly
Bird
Lion
Caterpillar
Mickey Mouse
Mouse
Alligator
Pig
Spider
Explosion
Earthquake
Don’t Know
Thinking
Tired
Yummy
Barf (vomiting)
Hug
Angry
Sad
Asleep
Kiss
Yuk!
Love
Ouch!
Hungry
Rainbow
Rain
Knock on Door
Toss a Pancake
Khnit
Crawl
Throw
Dance

X X X X

X

X

X X X X
X
X
X
X
X
X
X X
X
X
X
X
X X
X
X
X
X
X
X X

Table A.2: Transcript of gesture elicitation session: Subject S2
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Appendix A: Gesture Elicitation Sessions - Transcription

ac §EEYSEIEEEEE

102 Scratch Nose X
103 Saw

104 Fly Kite X

105 Jump X X
106 Door Bell X
107 Open Box X
108 Open Door X
109 Dig Hole X X
110 Push Door Closed X
m Pull Rope X
112 Shave

113 Shampoo (puppet) X
114 Phone X
115 Smoke Cigar X

116 Steal X
117 Ironing X
118 Mosquito Bite X X X
119 Type X
120 Lick X X X

121 Naughty X X

122 Milk Cow X

123 Poison X X X X

124 Ghost

125 Witch X

126 Dragon

127 Monster X X X

Table A.2: Transcript of gesture elicitation session: Subject S2
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Pull
Yes X
Stop X
Hungry X
Bye
No X
Pizza
Sip Soda
Ice-cream
Fast Car X
Drive Bus
Helicopter
Train X
Aeroplane
Spider
Pig X
Alligator
Caterpillar
Lion
Bird
Butterfly
Elephant
Snake
Fish
Mickey Mouse
Spank
Knock
Throw
Scratch
Jump
Ballerina
Open Box
Open Door
Door Bell
Deal Cards
Fishing
Bowling
Canoeing
Swimming
Baseball
Basketball
Cold
Hot
Drum
Rock Guitar
Shake Hand
Sad
Kiss
Angry
Hug

Appendix A: Gesture Elicitation Sessions - Transcription

e

X X
X X
X X
X X
X X X
X X X
X X
X X X
X
X X X

X X
X
X
X
X X X
X X
X
X
X X X
X X X X
X
X
X X
X X
X X
X
X X X
X X X
X X X
X
X X
X X

Table A.3: Transcript of gesture elicitation session: Subject S3
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51
52
53
54
55
56
57
58
59
60
61
62
63

65

67

69
70
7
72
73
74
75
76
71
78
79
80

82

Appendix A: Gesture Elicitation Sessions - Transcription

]

Barf (vomiting)
Yummy X
Soft
Listen X
Sticky X X X
Smell
Ouch! X
Love X
Yuk! X
Stir
‘Wash Face X X X X
Cut throat
Picture X
Salute
Dig Hole
Crawl
Jump X
Knjtﬁng X X X X X X
Toss Pancake
Dance X
Fly Kite X
Milk Cow X X X X x X X
Poison X X X X
Naughty X
Lick (chocolate) X
Type X
Mosquito Bite X
Rip Paper X X X
Earthquake
Explosion
Witch
Dragon X X X
Monster X X X

Table A.3: Transcript of gesture elicitation session: Subject S3
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19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Yes
No
Bye
Elephant
Caterpillar
Butterfly
Bird
Lion
Ice-cream
Yummy
Explosion
Fly Kite
Catch
Spank
Swim
Make a Basket (basketball)
Gram Slam (baseball)

Touchdown (American foot-
ball)

Fishing
Pizza
Big
Short
Tall
Giant
Cowboy (on a horse)
Lasso
Milk Cow
Helicopter
Train
Racing Car
Car
Aeroplane
Handshake
Sleep
Earthquake
Guitar
Drum
Flute
Sip Soda
Bathroom
Throw
Itch
Alligator
Smoke Cigar
Wash Face
Handshake (with puppet)
Stir Soup
Barf
Triangle (shape)

Table A.4: Transcript of gesture elicitation session: Subject S4

X

X

x

X X X X X

Appendix A: Gesture Elicitation Sessions - Transcription

ac §ESYsREEEoREReg

X

X

X

X

X

X

X X
X X

X

X

X

X

X X

X X

X

X

X

X X
X X

X

X

X

X

X

X

X

X

X X

X

X

X

X X X
X

X

X X

X

X X
X

X

X

X X X
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50
51
52
53
54
55
56
57
58
59
60
61
62

64
65
66
67

69
70
71
72
73
74
75
76
77
78
79
80
81

FEB

86
87

89
90
91
92

o gEgisE

Cold
Snowflake
Rain
Eﬁinbow

ove You
Kiss
Hug
Sleep
Baby
Eat
Money
‘Waiter
Umbrella
Binocular
Necklace
‘Waves
Mountain
Book
Hungry
Ouch!
Yuk!
Angry
Sad
Excited
Press Door Bell
Open Door
Open Box
Smell
Sticky
Lick
Phone
Shampoo
Shave
Salute
Poison
Cut Throat
Steal
Ghost
Dragon
Witch
Monster
Pig

Table A.4: Transcript of gesture elicitation session: Subject S4
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Appendix A: Gesture Elicitation Sessions - Transcription
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x
X X X X X X

x
X X X X X X X X

x
X X X X X X X

X X X X X X

X X X M X X X X

x

X X X X X X X

X X X X X X

X X X X X X X X

x

X X X X X X X
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16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Appendix A: Gesture Elicitation Sessions - Transcription
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Yes X

No X

Bye

Ice-cream X X X

Bathroom X

‘Wash Face X X X X

Short X X X X

Tall X X X X

Large

Giant

Cowboy X X X

Lasso X X X X X

‘Wave

Necklace X

Umbrella

‘Waiter X X X

Money X X X

Beard X X X X

Baby X

Book X X

Mountain

Binocular

Pizza

Sip Soda X
Radio (music)

Flute X X

Violin X X
Keyboard (music) X
Trumpet X X X X

Rock Guitar X X X X

Hot

Cold

Rain X

Snowflake

Rainbow

Smooth X
Bright Light X X X X X

Soft

Listen X X X

Sticky

Smell

Train

Drive
Racing Car
Aeroplane
Helicopter
Earthquake X
Explosion X X
Triangle (shape) X
Handshake X

HooH K] X

HooX X X

Table A.5: Transcript of gesture elicitation session: Subject S5
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Appendix A: Gesture Elicitation Sessions - Transcription

]

51 Circle

52 Square

53 Stripes

54 Zig-zag

55 Stop X

56 Hello X

57 Eat X X

58 Caterpillar X

59 Lion X X X X

60 Bird

61 Butterfly X

62 Elephant X X

63 Snake X

64 Spider X X X

65 Pig

66 Alligator

67 Mouse X

68 Tennis X X X

69 Touchdown

70 Grand Slam X X

| Swimming X

72 Dealing Cards X

73 Fishing X

74 Bowling X X

75 Canoe X X

76 Throw Dice X X X X X

77 Mosquito Bite X X

78 ‘Whistle

79 Tear Up X X

80 Cross X X

81 Sewing X X X X

82 Ironing X X

83 Pick-pocket, Steal X X X X X

84 Itch X X

85 Smoke Cigar X X X X

86 Phone X X X X X

87 Shampoo X X

88 Shave X X X X X X

89 Salute X X

90 Milk Cow X X X

91 Naughty X X X

92 Poison X X X X

93 Cut Throat X X

94 Lick X

95 Press Bell X X X

96 Pattercake X X X

97 Saw X X X X

98 Hold bunch of balloons X X X

Type X X X X

@ Fly a Kite X X X X X

Pretend to knit X X X

Table A.5: Transcript of gesture elicitation session: Subject S5
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103
104
105
106
107
108
109
110
1
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
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136
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Appendix A: Gesture Elicitation Sessions - Transcription
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Fly a Kite
Spank X X X
Crawl X
Catch X X X X
Jump X
Throw Hammer X X X X
Stir X X
Knock on Door
Open Box X X
Open Door X X
Pull Rope X X
Kick/Push
Dig Hole X X
Dance X X X X X
Climb X
Scratch Nose X
Take a Picture
Toss a Pancake X X X X X
Asleep X X X
Sad X X
Mad X
Angry X
Hug X
Barf X X
Yummy X X X
Tired X X
Don’t Know X
Think X X X
Excited X
Hungry X X
Love X X X X
Ouch! X
Yuk! X
Kiss
Fish X X X
Ghost X
Witch X X X X X X
Dragon X
Monster X X

Table A.5: Transcript of gesture elicitation session: Subject S5
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Appendix A: Gesture Elicitation Sessions - Transcription
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@re
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No X
Ice-cream
Pizza
Sip Soda
Lion X X X
Bird X
Butterfly
Caterpillar
Fly Kite X
Spank
Crawl X X
Jump
Hammer
Train
Helicopter
Aeroplane
Racing Car
Drive Car (slow) X
Explosion X X
Earthquake
Drums
Guitar X X
Trumpet
Piano
Violin
Cowboy X X
Large
Tall X
Short
‘Wash Face X X
Mosquito X X X
Bathroom X
Ocean X X X
Smell X
Sticky
Listen
Hot
Cold
Yummy
Barf (vomit) X X X
Hug
Sad
Angry
Yuk! X X
Love X

x X X X X X X X X X x X X X X X X X X X
x x
x x
x

xX X X X
x

x

xX X X X
X X X X
X X X X

X X X X
x

X X X X
x

Hungry X X
Don’t Know X X X
Tired X
Necklace X

X X X X

Table A.6: Transcript of gesture elicitation session: Subject S6
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52
53
54
55
56
57
58
59
60
61

22281

66
67

69
70
71
72
3
74
75
76

G.1 I

Milk Cow
Salute
Shave

Shampoo
Phone

Kick
Throw
Lick

Cut Throat

Poison
Kiss
Rainbow

Snowflake
Rain

Elephant

Alligator

Pig
Spider
Snake

Knock on Door
Open Door

Open Box
Ghost X
Witch

Dragon
Monster X

Table A.6: Transcript of gesture elicitation session: Subject S6

X X X X

Appendix A: Gesture Elicitation Sessions - Transcription
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Yes
No X
Bird
Butterfly
Caterpillar
Elephant X
Explosion
Sip Soda X
Tall
Short
Handshake
‘Wash Face
Bathroom
Train
Helicopter
Racing Car
Pizza X X
Ice-cream
Asleep X
Barf
Lion
Yummy
Catch
Crawl
Climb Mountain X
Cut Throat
Dance
Dig Hole
Fly Kite
Swimming X
Cold
Hot X
Rainbow
Raining
Snowflake
Sad
Kiss
Hug
Hungry
Ouch! X
Yuk!
Angry X X
Itch
Throw
Spank
Witch
Dragon
Ghost X
Monster X

X X X X

Table A.7: Transcript of gesture elicitation session: Subject S7

X

147

X X X X

X X X X

X

X

X X X X

X

X

X X X X

X

X

Appendix A: Gesture Elicitation Sessions - Transcription
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51
52

Appendix A: Gesture Elicitation Sessions - Transcription
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Alligator X
Triangle

Table A.7: Transcript of gesture elicitation session: Subject S7
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Yes
Good-bye
Don’t Know
Hello
No
Stop
Kiss
Mickey Mouse
‘Waiter
Giant
Open Box
Cowboy/Horse Ride
Lasso
Baby
Bathroom
Money
Necklace
Umbrella
Binoculars
Trumpet
Violin
Guitar
Piano
Saxophone
Flute
Drum
Explosion
Earthquake
Pizza
Ice Cream
Yuk!

Sip Soda
Eat
Yummy
Triangle
Mountain
Square
Circle
Stripes
Hungry
Excited
Tired
Hug
Sad
Love
Ouch!
Angry
Fast Car (Racing)
Train/Pull Whistle
Helicopter

x

x

x X

X X X X X

X

X

Appendix A: Gesture Elicitation Sessions - Transcription
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X X
X
X
X
X
X X
X
X X
X X
X
X
X X
X X
X
X
X
X
X
X
X X X
X X
X X
X
X
X
X
X
X
X
X
X X
X
X
X
X X

xX X X X

X X X X X X X X X X X

X X X X X X

X X X X X X

X X X X X X X X X X

X X X X X X

Table A.8: Transcript of gesture elicitation session: Subject S9
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51 Car (slow) X
52 Aeroplane X X X
53 Listen X X X X X X
54 Captured (Surrender) X X
55 Bright Light X X X
56 Hot X X
57 Smell X 1 X
58 Smooth X X X X
59 Cold X X X
60 Soft X X X X
61 Ten Pin Bowling X X X
62 Cards X X X X X X
63 Fishing X X X
64 How Big? (fish) X X X
65 Canoe X X X
66 Swimming (Crawl) X X X
67 Grand Slam
68 Make a Basket X X X
69 Tennis X
70 Throw Dice X
7 Football/Touchdown X X X
72 Rain X X X
73 Cold X X X X
74 Hot X
75 Sunny X X X X
76 Rainbow X
77 Snowflake X X X
78 Lion X X X
79 Pig
80 Caterpillar X X
81 Butterfly
82 Alligator X X
83 Elephant X
84 Snake X
85 Fish X
86 Bird X X
87 Spider X X X
88 Beard
89 Poison X X X X
90 Naughty X X X
91 Large X
92 Tall X
93 Short X
94 Milking a Cow X X X
95 Mosquito X X
96 Steal X
97 Waves (Sea) X
98 Think X X X
99 Toss a Pancake X X X
100 Shampoo
101 Cigar X X X X

Table A.8: Transcript of gesture elicitation session: Subject S9
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,, Balloons X X X X
! Kite X X X X
[‘: Pattercake X X X
!/ Salute X X X X
[' Press Door Bell X X X
! Open Door X X X
.’; Close Door X X X
X Jump X X
I' Itch
” S ‘Wash Face X X X X X
! -' Dig Hole X X X X
! E Crawl X X X X
! A Pull Rope X X X X
! Asleep X X X
! Take a Picture X X X X X X
! Handshake X X X
! Dance X X X X X X X
! - Sticky X X X X
! Khnit X X X X X X X
Cut Throat X X X X
Sewing X X X X X X X X
Whistle X
Stir X X X X
Cup X X X
Type (Typewriter) X X X
Climb X X X
Tear Up X X X X
Throw X X X
Knock X X X
Saw X X X X X
Bring! bring! (Phone) X X X
Catch X X X X X
Hammer X X X
Push X
Shave X X X X X X X
Ironing X X
Dragon X X X X X
Witch X X X X X
Ghost X X X X
Monster X X X X

Table A.8: Transcript of gesture elicitation session: Subject S9

151



DRESocwaa s LN

A LA A B B B BB BE B W W W W W W W WW R NNENNENINDNDNNDLLD M = m - p—
%\Dw\lﬁ\(llAQJN’-‘O\Gm\]Q\UIAWN'-‘O\Gw\IO\UIhWN_O\Qw\IC\GJB

(aie

Yes
Bye
Stop
Hello
Don’t Know
Hungry
Yummy
Sip Soda
Eat
Ice-cream
Pizza
Rain
Rainbow
Snowflake
Hot
Cold
Ironing
Shave
Push
Hammer
Saw
Throw/Catch
Phone
Open Door
Shampoo
‘Wash Face
Close Door
Dig Hole
Crawl
Excited
Pull Rope
‘Whistle
Sewing
Itch
Fast Car
Train
Helicopter
Car
Type
Aeroplane
Spank
Tear Paper
Climb
Knock
Throw
Cut Throat
Khnitting
Sticky
Dance
Handshake

Table A.9: Transcript of gesture elicitation session: Subject S11

x

x

X X X X

x

X

X

X X X X

X X X X

x

X X X X

X

Appendix A: Gesture Elicitation Sessions - Transcription

Plsuriziete]

X X X X

X



51
52
53
54
55
56
57
58
59
60
61
62

64
65

67

69
70
7
72
3
74
75
76
77
78
79
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Take Picture
Asleep
Giant
Waiter
Mickey Mouse
Cowboy
Lasso
Barf
Pay Attendon/Listen
Salute
Bird
Butterfly
Fish
Snake
Elephant
Lion
Caterpillar
Alligator
Pig
Spider
Baby
Kiss the Baby
Love
Ouch!
Angry
Sad
Monster
Hug
Open Box

Table A.9: Transcript of gesture elicitation session: Subject S11

X
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Pull Tail
Yes
Hello/Hi
No
Kiss
Handshake
Don’t Know
Bye
Stop
Yuk
Love
Ouch
Angry
Sad
Tired
Hungry
Excited
Hug
Sticky
Type
Lick
Dance
Knit
Crawl
‘Wash Face
Cut Throat
Pattercake
Saw
Mouse
Elephant

X X X X X X X

Appendix A: Gesture Elicitation Sessions - Transcription

X X X X X

X

X X X X

X X X X

e

X X X
X X
X X X

Table A.10: Transcript of gesture elicitation session: Subject S12
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Appendix B.l Backpropagation Training Algorithm

B.l1 Backpropagation Training Algorithm

The backpropagation training algorithm was provided by the “trainbpx” function of the
MATLAB Neural Network toolbox (Demuth & Beale, 1994). This employed
backpropagation of error with adaptive learning rate to decrease the training time and
momentum to decrease the likelihood of getting stuck in local minima. The
backpropagation learning rule involves minimising the sum-squared error (SSE) of the
network. This is achieved by incrementally changing the network’s weights and biases in
the direction of steepest descent with respect to error. The derivatives of error (called
delta vectors) are calculated for the network’s output layer, and then backpropagated
through the network. The basic backpropagation algorithm is described in most
introductory neural network texts (Zurada, 1992, Fausett, 1994). Momentum and
adaptive learning rate were implemented in a manner similar to that described in Vogl et
al. (1988). The sum-squared error was calculated from the individual errors of all
training input-output pairs (i.e. “batch mode” training).

If the SSE had decreased from the last pass through the training data (epoch), the
adaptive learning rate [r was increase by a factor of 1.05 and the weights incremented
using the equation:

AW (i,j) = mcAWod(ij) + (1 - me )Ir-d(i)p () Eqn [B.1]

Momentum term me was set to 0.95. d is the delta vector and p the input vector.

If the SSE had increased by more that a factor of 1.04 the learning rate was decreased by
multiplying by 0.7 and the effects of the momentum term temporarily disabled.
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Appendix B.2 Nguyen-W idrow Initialisation

B.2 Nguyen-Widrow Initialisation

This scheme of weight initialisation typically gives rise to faster learning. It is used to
initialise weights between the input and the hidden-layer and is designed to improve the
learning ability of neurons in the hidden-layer. Weights and biases are initialised so that
the resultant hidden layer neuron activation is in the linear region (Nguyen & Widrow,
1990). For the particular case of inputs lying on the interval -1 to 1 it is computed as

follows: n , number of input units, p, number of hidden units, (3, scale factor

b = 0.7 (p) Eqn [B.2]

For each hidden unit (/'=/,....,p) :

Initialise the associated input weight vector

V,. (0ld) = random number between =1 i=(1..,n) Eqn [B.3]

Compute |[v (old) |

Re-initialise weights:

BvA- (0ld)
Eqn [B.4]
Vi Mold) |
Set bias:
v = random number between + B3 Eqn [B.5]

End



Appendix C

Confusion Matrices

Note: Upper confusion matrix corresponds to training data, lower confusion matrix
correspond to test data
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Appendix C.1 Confusion M atrices: Network Com -

C.l1 Confusion Matrices: Network Complexity

Experiment ex21uk
12-1t-26p

cfmname: ctrlO O

Network Decision

Gesture: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 100
cards 2 — —_— 100
cut throat 8 e e e e e e s e e e e e e 100
drive the car 4 100
drums 5 — - —_— ——100
heavy weight 6 — —_ 100
helicopter 7 100
hot 8 — 100
ice-cream 9 — — 100
ironing 10 —_—— 100
knock on the door 11— 100
lassou 12 100
light feather 13 —_— 100
rainbow 14 — 100
rock a baby 15 100
rock guitar 16 100
scratch your knee 17 — —_— 100
shake hands 18— 100 ——
shave 19 ——100
spank 20 — - ——— 100
spider 21— 100 - — -
stroke the cat 22 — ——— 100
surrender 23 100
whistle 24
umbrella 25
violin 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs * 100
No of gestures recognised at or above 80% 1
Average rec. rate of best 1 gestures lﬂlllf'/o
Average recognition rate of all gestures 3.85%
cfmname: ctel0 O

Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 —_—
cards 2 —
cut throat 3
drive the car 4
drums 5
heavy weight 6
helicopter 7 —
hot 8 —
ice-cream 9
ironing 10—
knock on the door 11—
lassou 12—
light feather 13 —
rainbow 14 —
rock a baby 15—
rock guitar 16—
scratch your knee 17 —— - e—-
shake hands 18 e e e e —
shave 19 —
spank 20
spider 21—
stroke the cat 22 —
surrender 23
whistle 24
umbrella 25
violin 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 100

No of gestures recognised at or above 80%
Average rec. rate of best 1 gestures
Average recognition rate of all gestures

l(ﬁ(l%

3.85%
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Experiment ex 18uk
12-2t-26p

cfmname: ctr600
Network Decision

Gesture: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 100

cards 2 55 — 45

cut throat 3 3 — 67

drive the car 4 100

drums 5 100

heavy weight 6 100

helicopter 7 100

hot 8 29 71

ice-cream 9 50 38 6

ironing 10 71 21

knock on the door 11 13 88

lassou 12 100

light feather 13 73 27

rainbow 14 8 33

rock a baby 15 60 == 20™= - 10

rock guitar 16 18 — 29 — 12 29

scratch your knee 17

shake hands 18 — - 18 36

shave 19 29 — 65 e -— 6

spank 20 —— — 20 7 73
spider 21 —_— — 17 67 17
stroke the cat 22 100
surrender 23 100

whistle 24 100

umbrella 25 100

violin 26 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 600

No of gestures recognised at or above 80% 3
Average rec. rate of best 3 gestures l(ll(ll‘%
Average recognition rate of all gestures 14.73%

cfmname: cte600
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 100
cards 2 40— 60
cut throat 3 10— 9
drive the car 4 20 10
drums 5 Py 20 80
heavy weight 6 I(X)' ‘‘‘‘
helicopter 7 100
hot 8 2 10
ice-cream 9 90 — 10
ironing 10 60— 30 10
knock on the door 11 - — 10 20
lassou 12 100
light feather 13 70 30—
rainbow 14 -— 10 10 20— 60
rock a baby 15 80 10— —— 10
rock guitar 16 50 20— —— 20 10
scratch your knee 17 . 100
shake hands 18 io 60 30
shave 19 30
spank 20 10 70
spider 21 20 10
stroke the cat 22 o100
surrender 23 100
whistle 24 100
umbrella 25 100
violin 26 100
1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 600
No of gestures recognised at or above 80% 4
Average rec. rate of best 4 gestures 97.50%
Average recognition rate of all gestures 15.38%
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Experiment ex23uk
12-3t-26p

cfmname: ctr900
Gesture: 1 2 3 4 5 6 7 8 9 10 11
bird 1 7 — 14
cards 2 9 91
cut throat 3 Bg
drive the car 4 8
drums 5 25 —
heavy weight 6 94 6
helicopter 7
hot 8 10.)
ice-cream 9 81
ironing 10 21 79
knock on the door 11 6
lassou 12 =
light feather 13 53 47
rainbow 14
rock a baby 15 30 50
rock guitar 16 65
scratch your knee 17
shake hands 18
shave 19 94
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25
violin 26
1 2 3 4 5 6 7 8 9 10 11

Number of Epochs = 900
No of gestures recognised at or above 80% 3
Average rec. rate of best 3 gestures 97.92%
Average recognition rate of all gestures 17.67%
cfmname: cte900
Gesture: 8
bird 1
cards 2
cut throat 3
drive the car 4
drums 5 %
heavy weight 6 1
helicopter 7

8

9

10
knock on the door 11
lassou 12
light feather 13 40
rainbow 14
rock a baby 15 30 60
rock guitar 16 60
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25
violi 26

1 2 3 4 5 6 10 11

Number of Epochs = 900
No of gestures recognised at or above 80% 5
Average rec. rate of best 5 gestures 92.00%
Average recognition rate of all gestures 18.08%
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Network Decision

Network Corn-

22 23 24 25 26

14

1 ——

15

82
80

75

22 23 24 25 26

22

10 -

10
10

12 13 14 15 16 17 18 19 20 21
7 7
13 —
15 23 31
38
92
13 6
i) Ce
67
6 o= 1§
18 6
22
10 *
22
12 13 14 15 16 17 18 19 20 21
Network Decision
19 20 21
30 10 —
50
20 40 —
30 10—
100 .
12 13 14 15 16 17 18 19 20 21

23 24



Experiment ex 19uk
12-4t-26p

cfmname: ctrl800
Gesture: 1 2 3 4 5 6 17 8
bird 1 14
cards 2
cut throat 3 —
drive the car 4 8
drums 5
heavy weight 6 —
helicopter 7 —
hot 8 —
ice-cream 9 —
ironing 10 —
knock on the door 11 —-————o -
lassou 12 —
light feather 13 —
rainbow 14 —
rock a baby 15—
rock guitar 16 e e
scratch your Knee 1 7 —— e e e e e e e
shake hands 18 —————————
shave 19 —— ——
spank 20
spider 21
stroke the cat 22— 8 S
surrender 23
whistle 24 15 8 8
umbrella 25
violi 26
1 2 3 4 5 6 7 8
Number of Epochs = 1800
No of gestures recognised at or above 80% 7
Average rec. rate of best 7 gestures 94.50%
Average recognition rate of all gestures 33.30%
cfmname: ctel800
Gesture: 1 2 3 4 5 6 7 8
bird 1 10— go —
cards 2 = e 20— 170
cut throat 3
drive the car 4
drums 5
heavy weight 6
helicopter 7
hot 8
ice-cream 9
ironing 10
knock on the door 11
lassou 12
light feather 13
rainbow 14
rock a baby 15 70— 20
rock guitar 16 20 20 — 40
scratch your knee 17
shake hands 18 10
shave 19
spank 20 10
spider 21
stroke the cat 22
surrender 23
whistle 24 10 20
umbrella 25
violin 26

1 2 3 4 5 6 7

Number of Epochs = 1800

No of gestures recognised at or above 80% 7
Average rec. rate of best 7 gestures 90.00%
Average recognition rate of all gestures 30.38%

10

Appendix C.l

Network Decision
11 12 13 14 15 16 17 18 19 20 21

80

38

31 6
6 44 —
75
10 20—
18 —
17 —
82 —
94
100
58
15
17— 8 e — 33 17

11 12 13 14 15 16 17 18 19 20 21

Network Decision
11 12 13 14 15 16 17 18 19 20 21

10
100
10—

Confusion M atrices:

Network Corn-

22 23 24 25 26

31 —
6

13 — 19 ---.
6
83
9

22 23 24 25 26

10

1 m——

30 10

30— 10—

11 12 13 14 15 16 17 18 19 20 21
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Appendix C.1 Confusion M atrices:

Experiment ex20uk
12-6t-26p

Network Corn-

cfmname: ctr2900
Network Decision
Gesture: 1 2 3 4 5 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 86 - 7
cards 2 — © 45 — - 18
cut throat 3 — = 20— 80
drive the car 4 69 - 8 — 23
drums 5 38 - 38 - 13
heavy weight
helicopter 8 23— 15—
hot 100
ice-cream 6 63 6
ironing
knock on the door 11 25 — — 13
lassou 12
ht feather 13

rainbow 14
rock a baby 15 m-—20™ 40— 20
rock guitar 16 12— 6 5 e
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21 25
stroke the cat 22 100
surrender 23 100— """"
whistle 24 31 38— 15—
umbrella 25 73 — 27 —
violin 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 2900
No of gestures recognised at or above 80% 9
Average rec. rate of best 9 gestures 95.49%
Average recognition rate of all gestures 39.69%
cfmname: cte2900

Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 80 — ==m=mmme 20 T mmmmmmsmmsssssees
cards 2 20 30 — 10 40
cut throat 3 100
drive the car 4 30 10— 10 30
drums 5 40 30 10
heavy weight 6
helicopter 7 20 - 30
hot 8 10
ice-cream 9 20
ironing 10 - -
knock on the door 11 20 —— 20
lassou 12
ight feather 13
rainbow 14
rock a baby 15
rock guitar 16
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21 10 =
stroke the cat 22
surrender 23 80— 20—
whistle 24 60 10 20— 10 ™=
umbrella 25 10 60— 30—
violin 26 80 20

1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 2900

No of gestures recognised at or above 80% 9
Average rec. rate of best 9 gestures 91.11%
Average recognition rate of all gestures 36.15%
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Appendix C.1 Confusion M atrices: Network Com -

Experiment exl4uk
12-8t-26p

cfmname: ctr5000
Network Decision

Gesture: 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
bird 1 86

cards 2 73

cut throat 3 100

drive the car 4 69

drums 5 31 6 =

heavy weight 6 100——

helicopter 7 23 31

hot 8 6 —

ice-cream 9

ironing 10 21—

knock on the door 11 31 13- 13

lassou 12 25 56 - 6 — 6 —
light feather 13 100

rainbow 14

rock a baby 15 10 40 — 20—

rock guitar 16 6 6

scratch your knee 17

shake hands 18 18 55

shave 19

spank 20 20 73— 7

spider —_ 42 --9;

stroke the cat I

surrender 100—
whistle 24 46—
umbrella 25 7 — 7 80—
violin 26 67 — 8

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 5000

No of gestures recognised at or above 80% 7
Average rec. rate of best 7 gestures 95.93%
Average recognition rate of all gestures 40.66%

cfmname: cte5000
Network Decision
Gesture: i 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter

hot 60— 30 10
ice-cream 9 100
ironing 10 20 — 80
knock on the door 11 10 10—
lassou 12 10 10— 10— 20—
light feather 13 90 — 10 —
rainbow 14
rock a baby 15 30 20 —
rock guitar 16 20 10 — 30— 30 10
scratch your knee 17
shake hands 18 30 — 30 - - 30
shave 19
spank 20
spider 21 30—
stroke the cat 22
surrender 23 20 —
whistle 24 10 10—
umbrella 25 2 -  e—— 60— 20—
violin 26 10 70— 10 -
1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 5000

No of gestures recognised at or above 80%

Average rec. rate of best 8 gestures 90.00%
Average recognition rate of all gestures 38.85%
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Experiment ex 13uk

12-10t-26p

Appendix C.1

Confusion M atrices:

23

38

24

13—

93
23
73

23

23

25

15

24

24

10—

10

cfmname: ctr2700
Network Decision

Gesture: 1 2 7 8 11 12 13 14 15 16 17 18 19 20 21 22
bird — 14 7 - 21
cards = 27 —— — 1 - 27
cut throat 3 —_— 93
drive the car g 23-—— 31 — 8 —
drums 44— 13— 13 6 6 ———
heavy weight 6
helicopter T e is 8 15
hot 100
ice-cream 6 75
ironing
knock on the door 11 6 13 ——— 25 6 —
lassou 12 69 13—
light feather 13 20
rainbow 14 100
rock a baby 15 20 — 10_ 2( ||—————————— 10 20 10 ™™ 10
rock guitar 16 6 = — 53— 6 — 6 12— 6 6 —
scratch your knee 17 100
shake hands 18 9 9 — 27 — 9 36 <= 9 e
shave 19 — — 100— — —
spank 20 20 73 —- 7
spider 2 . —S 25 75 —-
stroke the cat 22 - 8 8 75
surrender 23
whistle 24
umbrella 25
violin 26 25 50 -

1 2 3 4 5 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Number of Epochs = 2700
No of gestures recognised at or above 80%
Average rec. rate of best 7 gestures 95.15%
Average recognition rate of all gestures 48.44%
cfmname: cte2700

Network Decision

Gesture: i 2 9 10 11 12 13 14 15 16 17 18 19 20 21 22
bird . —— Do
cards 10 30 — 20 —
cut throat
drive the car 20— - 2 _____ -
drums 20 10 — —_ —
heavy weight -— 80
helicopter 10 ————m 10 30
hot 80 — 20 ——— ————
ice-cream 9
ironing 10
knock on the door 11 -- 20 30 —
lassou 12 20—
light feather 13 40 .- 10— 30— 20
rainbow 14
rock a baby 15 20 .- 70
rock guitar 16 10 -- 70
scratch your knee 17 80 20
shake hands 18 10 —_— - 10 ———— 10 40 = 30 e
shave 19 100
spank 20 10 90
spider 21 10— 10 50
stroke the cat 22 20 80
surrender 23
whistle 24
umbrella 25 20 -
violin 2 e — 10 30 — 10 - J—

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Number of Epochs = 2700

No of gestures

Average rec.

Average recognition rate of all

recognised at or above 80%
rate of best 10 gestures
gestures

&0

41.54%

23

24

10
10

30

20

20
10

25

Network Com-



Experiment ex32uk
12-12t-26p

cfmname: ctr8300
Gesture: 1 2
bird 1 7 —
cards 2 91—
cut throat 3 7 —
drive the car 4 54 --
drums 5 69 --
heavy weight 6
helicopter 7
hot 8 100
ice-cream 9 19 25
ironing 10 7 —
knock on the door 11 6
lassou 12
light feather 13 40— 13—
rainbow 14
rock a baby 15 30 — 10—
rock guitar 16 41—
scratch your knee 17
shake hands 18
shave
spank
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25
violin 26
1 2 3 4 5
Number of Epochs = 8300
No of gestures recognised at or above 80%6 - 10
Average rec. rate of best 10 gestures - 94.02%
Average recognition rate of all gestures = 51.49%
cfmname: cte8300
Gesture: 1 2 3 4 5
bird
cards
cut throat 20
drive the car 10"‘_ 20 === 10—
drums 40 —-—- -— 20 === 20 ™
heavy weight —_ 90 -
helicopter 20'———
hot 20
ice-cream 9 e 30 20
ironing 10
knock on the door 11 10"'_
lassou 12
light feather 13 —_ 0 40—
rainbow 14
rock a baby 15 20—
rock guitar 16 10"'_
scratch your knee 17
shake hands 18
shave 19 —TTT— 10
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella
violin
1 2 3 4 5 6
Number of Epochs = 8300
No of gestures recognised at or above 80% 11
Average rec. rate of best 11 gestures 85.45%
Average recognition rate of all gestures 45.38%

Appendix C.1 Confusion M atrices: Network Com -

Network Decision
11 12 13 14 15 16 17 18 19

8
50
93
38—
88 —
. - J— 13
20 20
100
9 — 36— 9
8

10 11 12 13 14 15 16 17 18 19

Network Decision
11 12 13 14 15 16 17 18 19

10 = 10
80
10— 20
10
60—
10 -- — 10
10
10 10
— N Y| J—
40— 10— — 10—
70— 10

10 11 12 13 14 15 16 17 18 19
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20

20
10

20 21 22 23 24 25 26
8
6
- 31— 15—
6
13 e —
e — 6

29— 6
93 — 7
()

93 —

38 38

20— 73—
—_— 42— 17—

21 22 23 24

21 22 23 24 25 26

20 10

30

20

21 22 23 24 25 26



Appendix C.1 Confusion M atrices: Network Corn-

Experiment ex15uk
12-14t-26p

cfmname: ctr5200
Network Decision

Gesture: 1 2 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird 14

cards 9 — 73 9 —

cut throat 87 —

drive the car 8 - — 15

drums 44 -- 6

heavy weight

helicopter

hot

ice-cream 9

ironing 10

knock on the door 11 19 13 e —

lassou 12

light feather 13

rainbow 14

rock a baby 15 20

rock guitar 16 18 --

scratch your knee 17 100

shake hands 18 — 9 — 9 64 -~ 9 -

shave 19 100

spank 20 ———— 13 e 8 7 e

spider 21 8 — 33 58 -

stroke the cat 22 8 92

surrender 23 93 7

whistle 24 -_ 23 31 31

umbrella 25 7 40— 53 —

violin 26 —_— 25 —— 8 e —— 8 - 25
1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 5200

No of gestures recognised at or above 80% 10

Average rec. rate of best 10 gestures 93.07%

Average recognition rate of all gestures 53.81%

cfmname: cte5200

Network Decision

Gesture: i 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

bird

cards 50— 10

cut throat

drive the car 20— — 10— 10— 10

drums 30—

heavy weight

helicopter 20 20 10 10 =—

hot 80

ice-cream 9 10

ironing 10 10

knock on the door 11 20 20 — 10 30

lassou — 10 80 10

light feather 13 - 40— 50 10

rainbow 14 — 90 10

rock a baby 15 —- 10— 20 -—_ 10 30 30

rock guitar 16 30 20

scratch your knee 17 — e 920 10

shake hands 18 - e — 10 ——— 0 70 — 10 —m———————

shave 19 — 100

spank 20 — 100

spider 21 — -_ 10 80 10 ™=

stroke the cat 22 10 90

surrender 70— 30—

whistle 20 — 10 50

umbrella 10 10~ 40— 40—

violin 10 40 —- 10 20 10 - 10
1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 5200

No of gestures recognised at or above 80%

Average rec. rate of best 11 gestures 87.27%
Average recognition rate of all gestures 49.62%

167



Experiment ex24uk
12-15t-26p

cfmname: ctr5200

Gesture: 1 2

bird 79
cards

cut throat
drive the car
drum s

heavy weight

Yo u e ow

helicopter
hot

ice-cream

Appendix C. 1 Confusion M atrices: Network Corn-

Network Decision
11 12 13 14 15 16 17 18 19 20 21 22 23 24

ironing 7 7 -

knock on the door 11 6 —— 31 31—

lassou 12

light feather 13 47 13 27 13

rainbow 14

rock a baby 15 30 10 30

rock guitar 16 2

scrateh your knee 17

shake hands [ p—

shave 19

spank 20

spider 21— 8 - 25

stroke the cat 22—

surrender 23

whistle 24 15 54 8 —

um brella 25 7 33 7053 —

violin 6 50 17 s 8 17
1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 5200

No of gestures recognised at or above 80%

Average rec. rate of best 9 gestures = 94.94%

Average recognition rate of all gestures - 53.45%

cfmname: cte5200

Network Decision

Gesture: 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

bird . 20 - —_— 10

cards 10 - 10

cut throat

drive the car

drums

heavy weight

helicopter

hot 8 T TTmmmTT

ice-cream 9 - 60 30

ironing 10—— 20 80

knock on the door 11 10 10 50

lassou 12 10 80

light feather 13 —— 60 40

rainbow 14

rock a baby 15 50 30 10 10

rock guitar 16 10 30 60

scratch your knee 17

shake hands 18 10 60 -——— 30

shave 19

spank

spider 20

stroke the cat

surrender 10

w histle 10——— 10

um brella 25 40

violin 26 70 = 10 10
1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 5200

No of gestures recognised at or above 80% 10

Average rec. rate of best 10 gestures 88.00%

Average recognition rate of all gestures 47.69%
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Appendix C.1 Confusion M atrices: Network Corn-

Experiment ex 16uk
12-16t-26p

cfmname: ctr6700
Network Decision

Gesture: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 86 7
cards 2 me———ee 9 === 9L e -
cut throat 3 13 - 87
drive the car 4 %&—— 31 fe) 8 23—
drums 5 ~J _I 6 6 - 6
heavy weight 6 9 4 6
helicopter 7 8 31
g === = — — — — [00---—-==- == —
9 25 — e 69 6

93

knock on the door 11

lassou 12

light feather 13

rainbow 14

rock a baby 15

rock guitar 16

scratch your knee 17

shake hands 18

shave 19

spank 20

spider 21 8
stroke the cat 22

surrender 23 7

whistle 24 — 7
umbrella 25

violin 26 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 6700

No of gestures recognised at or above 80* 14
Average rec. rate of best 14 gestures 91.37%*
Average recognition rate of all gestures 56.71*

cfmname: cte6700
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 100

cards 2 80 10 - 10

cut throat 3 100 ——————— —————————————
drive the car 4 30 10 10 10 10— 30

drums 5 10

heavy weight 6

helicopter 7 60——

hot 8

ice-cream 9 70

ironing 10

knock on the door 11 20 10— 40 31b

lassou 12 80 10——— _—
light feather 13 e — 30 — 50 20

rainbow 14 90 io

rock a baby L w1 0 == 50 10 10 - 20

rock guitar 16 —— —— 1 0 —————— 60 — — 10 =—— m-- 10 10

scratch your knee 17 80 10 = ( —EEeeeE——-————
shake hands 18 -_— 10 90—

shave 19 loo —

spank 20 10— 90

spider 21 10 L - 60— —— 10 10—
stroke the cat 22 10 go

surrender 23 10 - io

whistle 24 lo o
umbrella 25 - 20
violin 26 20 ] J—— ]| J—— 10 - 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 6700

No of gestures recognised at or above 80* = 12
Average rec. rate of best 12 gestures - 90.00*
Average recognition rate of all gestures = 50.00*



Experiment ex25uk

12-17t-26p

Appendix C .1

21 22 23 24

Confusion M atrices: Network Com -

25 26

62

cfmname: ctr5900
Network Decision
Gesture: 1 7 9 10 11 12 13 14 15 16 17 18 19 20
bird 1 2i 7 57 7
cards 2 — 9 — 9 36— 27— Em— 18
cut throat 3 93
drive the car 4 46 ———— 8~ — 23 23
drums 5 13 19 13— 25 ¢ 25
heavy weight 6 94 6
helicopter 7 23—
hot 8 12 59 —
ice-cream 9 6
ironing 10 14
knock on the door 11
lassou 12
light feather 13
rainbow 14
rock a baby 15
rock guitar 16
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25
violin 26
1 3 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of Epochs 5900
No of gestures recognised at or above 80%
Average rec. rate of best ¢ gestures 92.97%
Average recognition rate of all gestures 34.80%
cfmname: cte5900
Network Decision
Gesture: 1 3 5 6 9 10 11 12 13 14 15 16 17 18 19 20
bird 30— 50
cards - --— 20 10
cut throat I I(X)'"
drive the car 30—
drums 10 30—
heavy weight 100
helicopter
hot 50— 30 20
ice-cream 9 100
ironing 10
knock on the door 11 10 - 10_
lassou 12— 1 Q ===mm———
ght feather 13 —
rainbow 14 —
rock a baby 15 - 10 — 70
rock guitar 16 -—- 20— 60
scratch your knee 17 — 80
shake hands 18 — oO——— 20— —— 10 20—
shave 19 — 100
spank 20 mm—
spider 21 _
stroke the cat 22 —
surrender 23 —
whistle 24 — 40 10
umbrella 25 — 10
violin 26 — 10 - 10— 10
10 11 12 13 14 15 16 17 18 19 20
Number of Epochs = 5900
No of gestures recognised at or above 80% = 7
Average rec. rate of best 7 gestures = 90.00%
Average recognition rate of all gestures = 35.77%
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Appendix C.1 Confusion M atrices: Network Corn-

Experiment ex17uk
12-18t-26p

cfumarne: ctr7400

Network Decision

Gesture: 1 2 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
bird
cards 45 18 ——— 27
cut throat
drive the car i - 18—
drums 6 —
heavy weight
helicopter 8 31
hot
ice-cream
ironing
knock on the door 11 6— — 56 13— 6
lassou 12 6 —
light feather 13
rainbow 14 8 —
rock a baby 15
rock guitar 16 [ — 6 —
scratch your knee 17
shake hands 18
shave 19
spank 20
spider
stroke the cat
surrender
whistle
umbrella 7
violin 26 58

1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Number of Epochs = 7400
No of gestures recognised at or above 80%
Average rec. rate of best 13 gestures 91.04%
Average recognition rate of all gestures 59.55%
cfmname: cte7400

Network Decision

Gesture: i 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20
bird
cards 10— 10
cut throat
drive the car 30 —— 10
drums 10— 10
heavy weight
helicopter 20 ““““
hot
ice-cream ——— 60
ironing 10
knock on the door 11 10 ————e
lassou 12 10—
light feather 13
rainbow 14 30—
rock a baby 15 3010 1-0= —20" = 10
rock guitar 16 e e e e e 201 0 = 2010———— 216 Z) 10
scratch your knee 17 I(X)—
shake hands 18 10 70 10
shave 2?)
spank - 10— 90
spider
stroke the cat
surrender
whistle 10
umbrella
violin » go— 10

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20
Number of Epochs = 7400
No of gestures recognised at or above 80% = 9
Average rec. rate of best 9 gestures = 88.89%
Average recognition rate of all gestures = 52.31%

23 24 25
6
15
F I J—
86 — 7
15 62 38
33 60
8
23 24 25
23 24 25
10

20
20 30 ———
10 =— 20
70— 30
10 80 —
50— 40
23 24 25

26

26



Experiment ex22uk
12-20t-26p

Appendix C.1

Confusion M atrices: Network Com -

cfirmante: ¢ tr3000
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 7
cards 18 9
cut throat 73
drive the car 8 15— 8
drums 6 - 13 —_
heavy weight 6
helicopter — 31— 8 8 23 —— 23 —
hot 24
ice-cream 25 56 6 — —
ironing -_ 79
knock on the door 11 6 ~——w——m 6 13— = ——————— 44 6 === 18 m————— - 6 6 m——
lassou s 6 81 6 w—— 6
light feather -_ 13 27
rainbow 00
rock a baby - 1 _—— _—— 1 _—- 2) 1 _——
rock guitar 29 m —_— 12 6 mm—————— —
scratch your knee 17 — - 1
shake hands 18 —_ 91
shave 19 — 6 94
spank 20— 7 93
spider 21—
stroke the cat 22—
surrender 23 —
whistle 24 8 23
umbrella 25 -
violin 26 -—

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 3000
No of gestures recognised at or above 80% 10
Average rec. rate of best 10 gestures 91.89%
Average recognition rate of all gestures 52.36%
cfmname: cte3000

Network Decision

Gesture: i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 90
cards 2 —— 30 30
cut throat 3
drive the car 4 Z) —_— T e 10 10
drums 5 30 10 -_
heavy weight 6 11 C——
helicopter 7 b 10 20 — 10 20
hot 8 80 — - - — 10
ice-cream 9 10 10— 50
ironing 10 20 80
knock on the door 11 20 30 —-——— 10 30 10
lassou 12 10 80 10
light feather 13 60— 40
rainbow 14 100
rock a baby 15 - 40 30 10
rock guitar 16 30 10 20
scratch your knee 17
shake hands 18 10— 10— ~— 10 60 _— 10
shave 19 - = - I(X)___ —_———
spank 20 - 10 10— 80
spider 21 20— 10 20 —
stroke the cat 22 -
surrender 23 - 30
whistle 24 10 D - 60
umbrella 25— 50 -
violin 26

1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 3000

No of gestures recognised at or above 80%
Average rec. rate of best 10 gestures
Average recognition rate of all gestures

&(D%)

45.38%



Appendix C.2 Comparison of Activation Functions

C.2 Comparison of Activation Functions

ex60
cfmname: ctri900

Gesture:

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter

hot

ice-cream
ironing

knock on the door
lassou

ight feather
rainbow

rock a baby
rock guitar
scratch your knee
shake hands
shave

spank

spider

stroke the cat

11

Network Decision

43 . __ 7 21— 7
—_— 18 — - 9 — 55
—_—— 27
23 u 62
13 u 7% ——— 6
1 i ; 15 —
13 19— 13
— 6 wm 13—
—_— 53— 13- 33

13— - 80—

surrender 23
whistle 24 15 15 23 31— 8
umbrella 25 — 13 53 --- 33 -
violin 26 —_ 75

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 1900
No of gestures recognised at or above 80% = 7
Average rec. rate of best 7 gestures = 95.41%
Average recognition rate of all gestures = 43.55%
cfmname: ctel900

Network Decision
Gesture: 1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 18 19 20 21 22 23 24 25 26
bird 1 50— --- 40 —_ 10
cards 2 mmm—— 10 - 40 = 20 1&)
cut throat 3
drive the car 4 10— - 20 —— 20 = 10 B
drums 5 30— --- 40 10 - 10 -
heavy weight
helicopter 30— 10
hot 80— 20
ice-cream
ironing 10
knock on the door 11 10-— h—
lassou 12
light feather 13 -_ 50—
rainbow 14
rock a baby 15 -_ 20— 170
rock guitar 16 10 e 70
scratch your knee 17
shake hands 18 Z)
shave
spank 10
spider 20— 20 50 10——
stroke the cat 70 30
surrender  — 70 30
whistle 24 10 20— 50
umbrella 25 10— 10 10 60 10
violin 26 60— 10 3 0 ——————————— S
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 1900
No of gestures recognised at or above 80%
Average rec. rate of best 8 gestures 88.75%
Average recognition rate of all gestures 36.92%



Appendix C.2 Comparison of Activation Functions

ex6l
cfmname: ctr8000
Network Decision
Gesture: 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 93 —
cards — 18
cut throat
drive the car 23
drums 19
heavy weight
helicopter
hot .- 94 ——m
ice-cream - 19 —
ironing D 7 —
knock on the door 11 13 13 g_
lassou 12 — 75 -
light feather 13 — 53 =
rainbow 14 — —_ 92—
rock a baby 15— — 40 20— 18_
rock guitar 16 - 24 ————— 41— -
scratch your knee 17 — l(I)
shake hands 18 —— 91—
shave 19 — - 8
spank 20 — 93—
spider 21 — —— 75
stroke the cat 22 —
surrender 23 — — 93 — 7 —
whistle 24 8 = 15 23 38 ---
umbrella 25 — - 87 —
violin 26 — w— 75
1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 8000
No of gestures recognised at or above 80% = 12
Average rec. rate of best 12 gestures = 93.10%
Average recognition rate of all gestures = 62.01%
cfmname: cte8000
Network Decision
Gesture: 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 80
cards 2 — _K) 50 &}
cut throat 3 1
drive the car 4 30 10 K)
drums 5 30 20 K) D K)
heavy weight 6 go
helicopter 7 10 io 30 Z) 10 Z)—
hot § e - §0 — e - —
ice-cream 9 -
ironing 10 10 50 -
knock on the door 11 10 ——— 10— 20 40 10— 10—
lassou 12 10 8o
light feather 13— 40— 10 —-——m 50 —
rainbow 14 —I(D
rock a baby 15 ———————— 30— 30— 10 10 Z)
rock guitar 16 ——— 10 10— 10— - 5 0= 10 10
scratch your knee 17 . mEmmE T T T e e e
shake hands 18 r———— 10 60 1- v 30
shave 19
spank 20 1(X)
spider 21 10 60 30 -
stroke the cat 22 10 90
surrender 23 30 —
whistle 24 10 D 10 —
umbrella 25 20 — 50 —
violin 26 40 20 40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 8000
No of gestures recognised at or above 80% 9

91.11%
52.69%

Average rec.
Average recognition rate of all

rate of best 9 gestures
gestures



Appendix C.2 Comparison of Activation Functions

ex62uk
cfmname: ctr200
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 — 4 29 29 29
cards 2 — }@

cut throat 3 =

drive the car 4

drums 5 — 13

heavy weight 6 — 50

helicopter 7

hot 8 — 1(D

ice-cream 9 — 94

ironing 10 — 7

knock on the door 11

lassou 12 6

light feather 13 — 60

rainbow 14

rock a baby 15 — Z)

rock guitar 16 — 47

scratch your knee 17

shake hands 18

shave 19

spank 20 40 60
spider 21 l(D

stroke the cat 22 17

surrender 23 93

whistle 24 85

umbrella 25 d) 13

violin 26 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 200

No of gestures recognised at or above 80% 3
Average rec. rate of best 3 gestures 95.05%
Average recognition rate of all gestures 12.26%

cfmname: cte200
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird [ 10 30
cards

cut throat

drive the car 4 ——/—/————————— T/ 7730 MU TTTETETTTTTTT Z) Z)
drums 10 40
heavy weight 50
helicopter

hot K)
ice-cream

ironing

knock on the door
lassou

light feather
rainbow

rock a baby 40
rock guitar 70
scratch your knee L ) J—
shake hands 20 10
shave

spank 70 30
spider

stroke the cat 60
surrender

whistle

umbrella

violin

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 200

No of gestures recognised at or above 80% 3
Average rec. rate of best 3 gestures 90.00%
Average recognition rate of all gestures 13.08%
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Appendix C.2 Comparison of Activation Functions

ex63uk
cfmname: ctr9600
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 lm
cards 2 1%——
cut throat 3 ———— 80 -
drive the car 4 38 8 54
drums 5 63— 38
heavy weight 6 69 13 6
helicopter 7 46 — 54
hot 8 94 — 6
ice-cream 9 — 44 56 —
ironing 10 7 86 7
knock on the door 11 63— 38
lassou 12 69 — 31
light feather 13 87 13
rainbow 14 8
rock a baby 15 lm_
rock guitar 16 82 12
scratch your knee 17
shake hands 18 82 —
shave 19 — 53 47 —
spank 20 —_— Z)
spider 21 lsd)—
stroke the cat 22 50 8 42 I(I)
surrender 23
whistle 24 23— . T 77
umbrella 25 13— 87
violin 26 22 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs 9600
No of gestures recognised at or above 80% 4
Average rec. rate of best 4 gestures 91.43%
Average recognition rate of all gestures 16.23%
cfmname: cte9600

Network Decision
Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 10 20
cards 2 920
cut throat 3
drive the car 4
drums 5
heavy weight 6 - K)
helicopter 7
hot 8
ice-cream 9 - Z)
ironing 10
knock on the door 11 50 -
lassou 12 9%—
ight feather 13 1 T Tt TTTTTTTETTTTTTT T T T T T T T T
rainbow 14 90— - 10
rock a baby 15 T 10 ﬂ):
rock guitar 16 1 T T T T T T T T T e
scratch your knee 17 100
shake hands 18 90 — 10
shave 19 40 —
spank 20 %b— 10
spider 21 e K)
stroke the cat 22 90 — 10
surrender 23 10 10 80
whistle 24 20 80
25 40 — 60

violin 26 9 10—

1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs 9600
No of gestures recognised at or above 80% 4
Average rec. rate of best 4 gestures 90.00%
Average recognition rate of all gestures 16.54%



ex64uk
cfmname: ctr400
Gesture: 12 3 4 5 6
bird 1 14— 14 29
cards 2 9
cut throat 3 e a7
drive the car 46—
drums 5 69 —
heavy weight 6 —-100
helicopter 7
hot 8
ice-cream 9
ironing 10
knock on the door 11
lassou 12
light feather 13
rainbow 14
rock a baby 15 10
rock guitar 16 6
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25
violin 26
1 2 3 4 5 6
Number of Epochs = 400

No of gestures recognised at or above 80%
Average rec. rate of best 7 gestures

Average recognition rate of all gestures
cfmname: cte400
Gesture:
bird 1
cards 2
cut throat 3
drive the car 4 40 —
drums 5 10—— 10 60 --
heavy weight 6
helicopter 7
hot 8
ice-cream 9
ironing 10
knock on the door 11
lassou 12
light feather 13
rainbow 14
rock a baby 15 —-—— 10 --
rock guitar 16 ——— —— 10 —
scratch your knee 17
shake hands 18
shave 19 ~TTTTT 20
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25
violin 26
1 2 3 4 5 6
Number of Epochs = 400

No of gestures recognised at or above 80%
Average rec. rate of best 7 gestures
Average recognition rate of all gestures

Appendix C.2 Comparison of Activation Functions

Network Decision

7 8 9 10 11 12
36 —_ 7
— 64 27—
27 —
8 —T—— —_— 15
94 —
6 19
6 emmm———— 25 6 —
6 — 25 19
7 —————— 13— 27
121 :2: — 24
36 9 18— 9
'''' Ty
33
8 8 mmmm—— 50 8
7
8 8 8 — 15
7
25 — 8
7 8 9 10 11 12 13 14
94.51%
44.34%
Network Decision
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
. Y — 20
- 50 30 10 —- 10
40
— g
30 VD—- DO
80 10 10
10 60 30
80
30 — e 30 20 20—
10—
10 60 30
30 --
10 - 10 —
7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
= 7
= 87.14%
* 45.00%
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ex65uk

cfmname: ctrl000

Gesture: 12 3 4 5 6 7

bird 1
cards 2
cut throat 3
drive the car 4
drums

heavy weight
helicopter

hot 6
ice-cream

ironing

knock on the door
lassou

light feather
rainbow

rock a baby

rock guitar
scratch your knee
shake hands

shave

spank

spider

stroke the cat
surrender

whistle

umbrella

violin

24

Number of Epochs = 1000

No of gestures recognised at or above 80*
Average rec. rate of best 7 gestures
Average recognition rate of all gestures

cfmname: ctel000

10

91.75%
50.49*

Gesture: 12 3 4 5 6 7 8

bird

cards

cut throat
drive the car
drums 5

10

Appendix C.2 Comparison of Activation Functions

Network Decision

11 12 13 14 15

16

17 18 19 20 21 22 23 24 25 26

6 —
6 —

6 —
69 —
40

13

18

Network Decision

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

10

20

10

30
20

10

heavy weight 6
helicopter 7
hot 8
ice-cream

ironing

knock on the door
lassou

light feather
rainbow

rock a baby

rock guitar
scratch your knee
shake hands

shave

spank

spider

stroke the cat
surrender

whistle

umbrella

violin

20—

1000
recognised at or above 80*
rate of best 8 gestures

Number of Epochs =
No of gestures
Average rec.

Average recognition rate of all gestures

20
30

86.25*
42.69*

10

[ —

10

10

20

10

30 ——- 10_ T

10

40
10
30 -
60

60 —
10 =
80 —

10

11 13 14 15 16 17 18 19 20 21 22 23 24 25 26

178



Appendix C.3 Confusion M atrices: k-Nearest Neigh-

C.3 Confusion Matrices: k-Nearest Neighbours
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Experiment ex49uk

cfmname: ctel
Gesture:
bird 1
cards 2 — 50 10
cut throat 3 70
drive the car 4
drums 5
heavy weight 6
helicopter 7
hot 8 — 30
ice-cream 9 = 10
ironing 10 = 20
knock on the door 11 30 10
lassou 12
light feather 13 -- 30
rainbow
rock a baby 10
rock guitar 10— 10
scratch your knee 17 — —
shake hands
shave 60
spank
spider
stroke the cat
surrender 10
whistle 10
umbrella 25
violin 26
No of gestures recognised at or above 80% = 3
Average rec. rate of best 3 gestures = 86.67%
Average recognition rate of all gestures = 52.31%
cfmname: cte2
Gesture:
bird 1 70—
cards 2 — 70 20
cut throat 3 - —— 80
drive the car 4 2-0——— 20
drums 5 20 10— 20
heavy weight 6
helicopter 7
hot 8
ice-cream 9
ironing 10 20
knock on the door 11 10
lassou 12
light feather 13
rainbow 14
rock a baby 15 - 20
rock guitar 16 - 20
scratch your knee 17
shake hands 18 —————
shave 19 ——— 80
spank
spider
stroke the cat
surrender
whistle
umbrella
violin
No of gestures recognised at or above 80% = 4
Average rec. rate of best 4 gestures = 85.00%
Average recognition rate of all gestures = 45.77%
cfmname: cte3
Gesture:
bird 1 70— 10 10— 10
cards 2 — 70 10 —mm
cut throat 3 90
drive the car 4 20 ——— 50 10 —
drums
heavy weight
helicopter
hot 8 10 20 "——seme————————
ice-cream 9 — 20 40 —m
ironing 10 10 10
knock on the door 11 30 10
lassou 12
light feather 13 -- 50
rainbow
rock a baby 15 -
rock guitar 16 —
scratch your knee 17 —
shake hands 18 —-
shave 19 —— 60
spank
spider 21
stroke the cat
surrender 23 10
whistle 24 30 30
umbrella
violin 26 10
1 2 3 4 5
k - 3
No of gestures recognised at or above 80% 4
Average rec. rate of best 4 gestures 90.00%
Average recognition rate of all gestures 51.54%

Appendix C.3 Confusion M atrices: k-Nearest Neigh-

Network Decision

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
30
20
10= - 10
10 - —
10 10— 10
10 20
60 20
20— 10 20
10 1 OO
10— 10 60— 10
-_ 30
20 — 80
10 — e 60 — 30
10 10 — 80
40 — 50 —
60 10 —
10 10 70 10
50
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Network Decision
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
10 ———
20 10 10=
- 10 10 10
10— 10
20 — ----
60
- 40 10 20
50 10 - -
20 20 40 -
30
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Network Decision
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
10— 10
[ ——
-— 30 20
10
40
20 — 10
10— 9
30
40 50
_____ 20 20 - -
10 — 30 - 50 10
30 20 40
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
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cfmname: cte4
Gesture:

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream
ironing

knock on the door

lassou

light feather
rainbow

rock a baby
rock guitar

scratch your knee

shake hands
shave

spank

spider

stroke the cat
surrender
whistle
umbrella
violin

k - 4
No of gestures

cfmname: cte5
Gesture:

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream
ironing

knock on the door

lassou

light feather
rainbow

rock a baby
rock guitar

scratch your knee

shake hands
shave

spank

spider

stroke the cat
surrender
whistle
umbrella
violin

k - 5
No of gestures

Average recognition

cfmname: cte6
Gesture:

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream
ironing

knock on the door

lassou

light feather
rainbow

rock a baby
rock guitar

scratch your knee

shake hands
shave

spank

spider

stroke the cat
surrender
whistle
umbrella
violin

No of gestures

i 2

recognised at or above 80%
Average rec. rate of best 5 gestures
Average recognition rate of all

recognised at or above 80%
Average rec. rate of best 5 gestures
rate of all

60 -

Appendix C.3 Confusion M atrices: k-Nearest Neigh-

Network Decision
12 13 14 15 16 17 18 19 20

10

Average recognition

20—
- 40
— 10

recognised at or above 80%
Average rec. rate of best 4 gestures
rate of all

109)

10— 30
7 8 10 11 12 13 14 15 16 17 18 19 20
= 5
= 88.00%
= 54.23%
Network Decision
11 12 13 14 15 16 17 18 19 20
40
— 40
10 20 100
10— 20 10
10 11 12 13 14 15 16 17 18 19 20
86.00%
54.23%
Network Decision
11 12 13 14 15 16 17 18 19 20
E- ) —
10 10
70— 20 10
—_— 50 --
c—— 10
50
20 -— 10 50
100
10
10—— 10
10
10
10— 10 20
9 10 12 13 14 15 16 17 18 19 20
= 4
= 90.00%
= 52.31%

21 22
21 22
21 22
20 m—
21 22
21 22
1 0 m—
30—
21 22

23 24 25 26

23 24 25 26

23 24 25 26

10—
10 =

30 _

40 — 50

10 50 - -

30 - 50 -

40

23 24 25 26

23 24 25 26

10 10— 10

10— g
10= 10 30

30 —
40 — 50
10 40 — -
10 — 70 —



Appendix C.3 Confusion M atrices: k-Nearest Neigh-

cfmname: cte7
Network Decision
Gesture: 1 2 3 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird
cards
cut throat
drive the car
drums
heavy weight
helicopter 40 20
hot 10 10
ice-cream
ironing 6) """ Z) - 10
knock on the door — 50— —— 10— 20—
lassou 30
light feather
rainbow
rock a baby —_—
rock guitar
scratch your knee 17 —
shake hands 18
shave
spank
spider 30 10
stroke the cat
surrender 23 10 50
whistle 24 20 10 — _
umbrella 25 e e 60 —
violin 50
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
No of gestures recognised at or above 80% = 6
Average rec. rate of best 6 gestures « 86.67%
Average recognition rate of all gestures m 54.62%
cfmname: cte8
Network Decision
Gesture: 1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird i 70 20
cards 2 - 90 10
cut throat 3 - - 60
drive the car 4 10 - - 60 20
drums 5 20 20 - 20 20
heavy weight 6
helicyoptef 7 10 10— 10
hot 8 - 20 - - 50 10— 10
ice-cream 9 - 30 40
ironing 10 70 ——
knock on the door 11 20 — 50 —
lassou 12 20 — 10 —— 10 30
light feather 13 - 50
rainbow 30— e e
rock a baby 40 10
rock guitar 20 50
scratch your knee 17 —
shake hands 18
shave 19
spank
spider
stroke the cat
surrender 10
whistle 10
umbrella
violin
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
No of gestures recognised at or above 80% = 6
Average rec. rate of best 6 gestures = 86.67%
Average recognition rate of all gestures = 55.77%
cfmname: cte9
Network Decision
Gesture: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 70 —— -
cards 2 — 80 20
cut throat 3 = - 60
drive the car 4 60
drums 5 30 20 —- 10
heavy weight 6
helicopter 7 20— 10 Z)— 10
hot 8 — 30— — - 50
ice-cream 9 — 30 50 —
ironing 10 20— 10
knock on the door 11 10 — 50—
lassou 12 10 - 20
light feather 13
rainbow 14
rock a baby 15 == 20 10 10=
rock guitar 16 10___ 10 K) 40 — — 10 10
scratch your knee 17 -—100
shake hands 18
shave 19 — 70
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25 e 10 ——— 20 -~ 60 ——-
violin 26 20 50
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
k =9
No of gestures recognised at or above 80% = 6
Average rec. rate of best 6 gestures = 85.00%
Average recognition rate of all gestures = 55.38%

Experiment ex50uk
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Appendix C.4 Confusion matrices: k-Nearest Neigh-

C.4 Confusion matrices: k-Nearest Neighbour with
Standard Normalisation
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cfmname: ctel

Gesture:

bird
cards
cut throat

drive the car
drums

heavy weight
helicopter

hot

ice-cream

ironing

knock on the door
lassou

light feather
rainbow

rock a baby

rock guitar
scratch your knee
shake hands

shave

spank

spider

stroke the cat
surrender
whistle

umbrella

violin

k =1
No of gestures
Average rec.
Average

cfmname: cte2

Gesture:

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream
ironing

knock on the door
lassou

light feather
rainbow

rock a baby
rock guitar
scratch your knee
shake hands
shave

spank

spider

stroke the cat
surrender
whistle
umbrella
violin

k * 2
No of gestures
Average rec.

recognition

BRR R
PWNROCOOWNOOPAWNER

Appendix C.4 Confusion matrices: k-Nearest Neigh-

11

10

10
10

30

30

1 2

30

3

a

rate of best 4 gestures

rate of all gestures

10

10

5 6

recognised at or above 80% 4

85.00%
51.15%

11

Network

12

20

10
60

10

12

13

10

40

30

13

Network

12

13

Decision

14 15 16 17 18 19 20 21 22 23 24 25 26

10
10

B

20

30
10

10 10—

10
0
30

20
20

10

14 15 16 17 18 19 20

Decision

14 15 16 17 18 19 20 21 22 24 25 26

10

10— — —

10— - - _—~

10

Average recognition rate of all

cfmname: cte3

Gesture:

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream

4

rate of best 6 gestures
gestures =

5 6 7 8 9 10

recognised at or above 80% = 6

= 83.33%
46.15%

11

14 15 16 17 18 19 20 21 23 24

Network Decision

12

13

14 15 16 17 18 19 20 21 22 23 24 25 26

10

10

ironing
knock on the door

lassou

light feather
rainbow

rock a baby
rock guitar
scratch your knee
shake hands
shave

spank

spider

stroke the cat
surrender
whistle
umbrella
violin

k - 3
No of gestures
Average rec.

10

10

20

40

10

20

40

10

100

10

10

10

70

20

10

70

10

s 0 —
10 10

10

10 20 —-

40

Average recognition rate of all

cfmname: cte4

rate of best 2 gestures
gestures

11 12 13

recognised at or above 80% 2

95.00%
50.38%
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Appendix C.4 Confusion matrices: k-Nearest Neigh-

Network Decision

Gesture: 5 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 70 — 10
cards 2 — 70 20 10
cut throat 3 ——— 60 10
drive the car 4 30—
drums 5 30 10— 20 30 -
heavy weight 6 — 80
helicopter 7 10 ————
hot 8 10 30
ice-cream — 30
ironing 10
knock on the door 11 20 10 10
lassou 12 e 20
light feather 13 50
rainbow 14 —— 20 10
rock a baby 15 10 20 10
rock guitar 16 10 10 60 —————— 10
scratch your knee 17
shake hands 18 s ——
shave zb ——————— 60 40
spank -
spider 21 30—
stroke the cat 22 = 100 10 e -
surrender 23 X) 40 —
whistle 24 20 20 10 - 10—
umbrella 25 - 60 — -
violin 26 — 10— 30 10 - 20 w—— 30

1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 26
k - 4
No of gestures recognised at or above 80% = 5
Average rec. rate of best 5 gestures = 86.00%
Average recognition rate of all gestures = 51.92%
cfmname: cte5

Network Decision
Gesture: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 170 ———
cards 3— 80 8
cut throat i
drive the car 4 30 10
drums 5 20 10 -~ 20 20 20
heavy weight
helicopter
hot 8 10 40 — 40
ice-cream 9 — 30 50
ironing 10
knock on the door 11 20
lassou 12 - 10
light feather 13 - 40— 10
rainbow 14— - 70 30
rock a baby 15 - 10 10 40 20 D 10
rock guitar 16 - 10 10
scratch your knee 17 100
shake hands 18— - 10 —— 10 70 ——
shave 20 50
spank 2b T TTT TTT TTTTTTTTT T T 10_ 20
spider 30
stroke the cat 10 10 80
surrender —_— 50 40 ——
whistle 24 20 10 10 50
umbrella 25 ———— 10 10 10 70—
violin 10 30 10 20 30
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
k - 5
No of gestures recognised at or above 80%
Average rec. rate of best 5 gestures 86.00%
Average recognition rate of all gestures 55.00%
cfmname: cteé
Network Decision

Gesture: 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 70 — e
cards 2 — 80 20
cut throat 3 eeee——— 60
drive the car 4 30—
drums 5 30 20 —
heavy weight 6
helicopter 7
hot 8§ 10 40
ice-cream 9 — 30
ironing 10 —_—— 70 .- — 20
knock on the door 11 10 — 5 i0= 10—
lassou 12 30— 20 — 10™== 20 20
light feather 13 — 40 10
rainbow 14
rock a baby 15 = 10 50
rock guitar 16
scratch your knee 17
shake hands 18
shave 60
spank 20
spider 21 — 10
stroke the cat 22
surrender 23 10— 50 —
whistle 24 10— 10= 10=
umbrella 25 70—
violin 26 10— 10— 30—

1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
k - 6
No of gestures recognised at or above 80% 4
Average rec. rate of best 4 gestures 87.50%
Average recognition rate of all gestures 51.15%

cfmname: cte7



Appendix C.4 Confusion matrices: k-Nearest Neigh-

Network Decision
Gesture: 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird

cards

cut throat
drive the car
drums

heavy weight

helicopter K) Z)— 10

hot 10 30 -

S

e-cream — 30 50

ironing 10
knock on the door 11 10 —— -—
lassou 12 ————
light feather 13 50 —
rainbow 14 -— - —
rock a baby 15 10 10 — 50
rock guitar 16 —— e - 10 20
scratch your knee 17 lm_
shake hands 10 8o
shave
spank
spider
stroke the cat 10— 80
surrender 40 —
whistle 10 40
umbrella
violin

1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
k - 7
No of gestures recognised at or above 80% = 7
Average rec. rate of best 7 gestures = 85.71%
Average recognition rate of all gestures = b55.38%
cfmname: cte8

Network Decision
Gesture 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird
cards
cut throat
drive the car
drums
heavy weight
helicopter 10 30 —— 10
hot -— 30
ice-cream — 30
ironing 10
knock on the door 11
lassou 12 20 — 10 —— 10 30
light feather 13
rainbow 14
rock a baby 15 ™ 20 10 06— 40 20 10
rock guitar 16 - 10 20 w—— 50
scratch your knee 17
shake hands 18
shave 19 —mmmmmeoeen 40 10
spank
spider 21
stroke the cat
surrender 23 s —— = ==
whistle e -10—
umbrella 25 10 10 -—— 20 -——— 60 -——
violin 26 FESE———— 2 () 20 50
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

No of gestures recognised at or above 80% = 6
Average rec. rate of best 6 gestures = 83.33%
Average recognition rate of all gestures m 55.00%

cfmname: cte9
Network Decision
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

[
9
«
»
a
~
®
©

Gesture:
bird 50 — — 20 20
cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream
ironing - 60 20 - 20
knock on the door 11 10 10 10 60

lassou

light feather
rainbow

rock a baby
rock guitar
scratch your knee 17
shake hands 18
shave 19
spank

spider

stroke the cat 22
surrender 23 60 _ 40—
whistle 24 10 40 20—
umbrella 30 50 —
violin 10 50

- 60 30
20 - 10

30— 10 30 — 10

-
COENON RONK
N
)

B
°
|
N
)

20— 20 — 10 —- 10 40

10 -. —_— 30

No of gestures recognised at or above 80% = 6
Average rec. rate of best 6 gestures = 86.67%
Average recognition rate of all gestures = b53.85%



Appendix C.5 Confusion Matrices: Gesture Segment

C.5 Confusion Matrices: Gesture Segment Length

Gesture Segment Length: 160ms
Time frame: 1
ANN architecture: 3-16t-26p
(a) Training Set
Gesture: 1 2 5 6 7 8 9 10
bird 1 21 7
cards 2 27 - 45 27
cut throat 3 7 87
drive the car 4
drums 5 6 — 31
heavy weight 6
helicopter 7
hot 8
ice-cream 9
ironing 10
knock on the door 11
lassou 12 6 —
light feather 13 13 —
rainbow 14
rock a baby 15 20 — ===
rock guitar 6  e— 18
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25
violin 26
1 2 3 4 5
Number of Epochs = 300
No of gestures recognised at or above 80%
Average rec. rate of best 4 gestures 90.90%
Average recognition rate of all gestures 35.94%
(b) Test Set
Gesture: 5 10
bird 10
cards 2 30 50 10
cut throat 3
drive the car 4
drums 5 - 10— 50
heavy weight 6 lld)—
helicopter 7 10 =
hot 8 80 —
ice-cream 9 10 90
ironing 10
knock on the door 11 30 —— 20 ™
lassou 12 10—
light feather 13 60 — 40 —
rainbow 14
rock a baby 15 20—
rock guitar 16 10=—
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25
violin 26
1 2 3 4 5 6 7 8 10
Number of Epochs = 300
No of gestures recognised at or above 80% = 7
Average rec. rate of best 7 gestures = 90.00%
Average recognition rate of all gestures = 35.38%

Network Decision

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

—— 23
6 — 13
g = 8
6 6 —
6 13
6 25
17
12 — 6
9
67 — 13
42
75
- 71
8 31 31—
- 27 60 —
17 — 8 — e 8 - 58 —
14 15 16 17 18 19 20
Network Decision
11 12 13 14 15 16 17 18 19 20 21 22 23 24
10— 30 20
10
10— 30 — -
10
40
30 40 —
J— [ 31 R — 30—
10 40 - 30—
50 — 20 20—
10 — 40 —

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Confusion Matrices for (a) training and (b) test sets for GSL=160ms
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Appendix C.5 Confusion M atrices: Gesture Segment

Gesture Segment Length: 320ms
Time frame: 2
ANN architecture: 6-16t-26p
(a) Training Set
Network Decision
Gesture: 1 2 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird

cards

cut throat
drive the car
drums 5
heavy weight 6
helicopter 7
hot 8
ice-cream 9
ironing 10
knock on the door 11
lassou

light feather
rainbow

rock a baby

rock guitar
scratch your knee
shake hands

shave

spank

spider

stroke the cat
surrender
whistle

umbrella

violin

13

15 —
13 e

— 24

______ o——"_2_—

12—
— 87

86 —
54 —
93 —

Number of Epochs = 1000

No of gestures recognised at or above 80%

Average rec. rate of best 8 gestures = 92.49%
Average recognition rate of all gestures *  43.18%

(b) Test Set
Network Decision

Gesture: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird 1 30 e 10 —

cards 2 - 10 10 20 10 10

cut throat 3 —— 90

drive the car 4 10 20— 20—

drums 5 —_— 50 -— 10 20— = 10 10=

heavy weight 6 80 10— - 10

helicopter 7 20  —— 10 — 10

hot 8 — 10_ —_— 10 e -— 80

ice-cream 9 40 10

ironing 10

knock on the door 11 40 —

lassou 12 — 10 60 10

light feather 13 30 —

rainbow

rock a baby 30—

rock guitar 10 =

scratch your knee 17 I(I) -

shake hands 18 10

shave 19

spank 20

spider 21

stroke the cat 22

surrender 23 —

whistle 24 liﬁ)_

umbrella 25 70—

violin 26 10 30
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 1000

No of gestures recognised at or above 80%

Average rec. rate of best 8 gestures 88.75%

Average recognition rate of all gestures 41.15%

Confusion Matrices for (a) training and (b) test sets for GSL=320ms



Appendix C.5 Confusion M atrices: Gesture Segment

Gesture Segment Length: 480ms
Time frame: 3
ANN architecture: 9-16t-26p
(a) Training Set
Network Decision

Gesture: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 7
cards 27
cut throat 7
drive the car
drums
heavy weight
helicopter 8
hot
ice-cream 9 19 — 63 6
ironing 10 7 —
knock on the door 11 19 19 13
lassou 12 — 81 13 6 -----
light feather 13
rainbow 14 8 17 — e - 17
rock a baby 15 - 20 30 10 20
rock guitar 16 6 29 —— — 12 j:_ 6 6 ——————————
scratch your knee 17 —1 —_—— e e e e e
shake hands 18 9 - i 18— 18— 36 —mm———
shave 19 100 —
spank 20 13 g 7 - 53 - 20 - 8— -----
spider 21 25— 17— 42
stroke the cat 22 -- 17 —— 8 == 75 e
surrender 23
whistle 24 8 8 e 8 8
umbrella 25
violin 26 8 —

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 2300
No of gestures recognised at or above 80% 8
Average rec. rate of best 38 gestures 91.85%
Average recognition rate of all gestures 47.68%
(b) Test Set

Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 80_ -_——- 10— —_
cards 2 — 10 30 30
cut throat 3 40 60
drive the car 4 10 ——— 10 40 B 10— h—
drums 5 30 — e 20 — 10 -
heavy weight 6 — 20
helicopter 7 10 ==mmm=== 10 1 ( =TUSSSSSSSS————— 1 10 20 =
hot 8 10 10 80
ice-cream 9 — 10— 20
ironing 10 — 20 30 — 4 0 — e 10 e —
knock on the door 11 — 10——— 20 ~——"" 10——— 10 30 20
lassou 12 90 10
light feather 13 30— 20 m-- 50
rainbow 14 80 10 10—
rock a baby 15 T 7 _— 20— D 10 60 ————— -—
rock guitar 0 wmemvememem 10 10 30
scratch your knee 17 —
shake hands 18 20 ————
shave 19
spank 20
spider 21 10 10
stroke the cat 22
surrender 23 50 -—- 50 -—-
whistle 24 10 10 40 40 -—-
umbrella 25 10— 10— 80—
violin 26 90 10 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 2300
No of gestures recognised at or above 80% 9
Average rec. rate of best 9 gestures 85.56%
Average recognition rate of all gestures 44.23%

Confusion Matrices for (a) training and (b) test sets for GSL=480ms



Appendix C.5 Confusion M atrices: Gesture Segment

Gesture Segment Length: 640ms
Time frame: 4
ANN architecture: 12-16t-26p

(a) Training Set
Network Decision

Gesture: 1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1

cards 2

cut throat 3

drive the car 4

drums 5

heavy weight 6

helicopter 7 31

hot 8

ice-cream 9

ironing 10

knock on the door 11 19 ———— 6 6 25 e 6
lassou 12 6 6
light feather 13

rainbow 14

rock a baby 15 30— 10— 20

rock guitar 16 6 12— 5 3 s 21

scratch your knee 17 -_—- (X)—— —_ T e

shake hands 18

shave 19

spank 20

spider 21

stroke the cat 22

surrender 23 7 29 57 -~
whistle 24

umbrella 25 13 80 -
violin 26 8 ——— 58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 6700

No of gestures recognised at or above 80% - 14
Average rec. rate of best 14 gestures - 91.37%
Average recognition rate of all gestures = 56.71%

(b) Test Set
Network Decision

Gesture: i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1

cards 2 - l&)

cut throat 3 —1

drive the car 4 10 10 30—
drums 5 - — 10—
heavy weight 6

helicopter 7 6 0 ———memem s
hot 8 100

ice-cream 9 30 70

ironing 10

knock on the door 11 10

lassou 12

ight feather 13 30— 50

rainbow 14

rock a baby 15 50

rock guitar 16 60

scratch your knee 17

shake hands 18

shave 19

spank 20

spider 21 10— 10 _ 60 10 10 w=em
stroke the cat 22 10 90

surrender 23 10 10 20 60 —
whistle 24 _— 100

umbrella 25 —_— 20 10 70 —
violin 26 20 —_— 30 —————— 20 e - 10 ~—— 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 6700

No of gestures recognised at or above 80% = 12
Average rec. rate of best 12 gestures = 90.00%
Average recognition rate of all gestures = 50.00%

Confusion Matrices for (a) training and (b) test sets for GSL=640ms



Gesture Segment Length: 800ms
Time frame: 5
ANN architecture: 15-16t-26p
(a) Training Set
Gesture: 1 2 3 4 5 6 7
bird
cards
cut throat
drive the car
drums
heavy weight
helicopter
hot
ice-cream
ironing
knock on the door
lassou
light feather
rainbow
rock a baby 15 50
rock guitar 16 6 —— 12 e
scratch your knee 17
shake hands 18 —
shave 19 —
spank 20 —
spider 21 —
stroke the cat 22 —
surrender 23 —
whistle 24 8
umbrella 25 —
violin 26 —

1 2 3 4 5 6 7
Number of Epochs - 2600
No of gestures recognised at or above 80%
Average rec. rate of best 8 gestures
Average recognition rate of all gestures
(b) Test Set
Gesture: 1 2 3 4 5 6 7
bird 1 80 ______
cards 2 ———— 30
cut throat 3
drive the car 4 Qb
drums 5
heavy weight 6 -_ 8
helicopter 7
hot 8
ice-cream 9
ironing 10
knock on the door 11 30
lassou
light feather 30 -
rainbow
rock a baby 30—
rock guitar = TTTTTT 10_ 20—
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25
violin 26

1 2 3 4 5
Number of Epochs = 2600

No of gestures recognised at or above 80%
Average rec. rate of best 10 gestures
Average recognition rate of all gestures

8
95.81%
49.82%

30

87.00%
43.85%

Appendix C.5 Confusion M atrices: Gesture Segment

Network Decision

9 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
45 9
8 8 8 23
6 13
6
23 23 31 ——-
6
69 6
93
————— 19— 6 U Y - Q—
- — 75 6
13 40
92 8
20 Tm T s 20 — T e
6 29— 6 — 6 ———r
27 45 - 18
100
100
100
8 17 75
e § 14 14 64 —
— 8 — 8 62 8 ——
— 33— 7 13 67 —
so 25 17 8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Network Decision
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
10
10 20 —— 10
10 —— 20 20 —
o— e 20— —
Y J—
10 —— 20
- 10 20
100
10— 100 40— 40
—100
100
10 ——
f I Jp— 10 —— —_ 70—
80 10—
— 10 20— - 10 40 —
— 10 10 10 10 - - 20—
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Confusion Matrices for (a) training and (b) test sets for GSL=800ms
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Appendix C.5 Confusion M atrices: Gesture Segment
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Appendix C.5 Confusion M atrices: Gesture Segment

Gesture Segment Length: 960ms
Time frame: 6
ANN architecture: 18-16t-26p

(a) Training Set
Network Decision

Gesture: 1 2 12 13 14 15 16 17 18 19 20 21 22 23 24
bird
cards
cut throat
drive the car 8
drums 31 6
heavy weight
helicopter 15 31
hot
ice-cream
ironing
knock on the door 11 —_— 19
lassou 12 - 6—
ht feather 13 33 20—
rainbow 14
rock a baby 15 30 -- 10 10— 20 20 10 ———
rock guitar 16 -- 24 — —_— 531 — 6 12
scratch your knee 17 — S
shake hands 8 —— 64— 9 —
shave 19
spank 20
spider 21
stroke the cat 22
surrender 23 —100
whistle 24 22 8 —
umbrella 25 — 20 7 67 —
violin 26 25 — 8 8
1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 6800
No of gestures recognised at or above 8036 12
Average rec. rate of best 12 gestures 95.07*6
Average recognition rate of all gestures 61.5836
(b) Test Set
Network Decision
Gesture: i 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
bird 1 90—
cards 2 — 10 10 —— 20
cut throat 3
drive the car 4 10 30— 10 10 e —
drums 20— =--- 20 20
heavy weight m-- 10
helicopter 10— 10
hot 70
ice-cream 10
ironing
knock on the door 11 20 — = - 10 10 =
lassou 10—
light feather 40— 20
rainbow 20
rock a baby 20 30 10—
rock guitar 10 30 10 20 —
scratch your knee 17 100
shake hands 18 10 e s s 10 50 — 20 10
shave 19 100
spank - ——100—
spider 10 70 20—
stroke the cat 10
surrender 23— 70— 30—
whistle 24 100
umbrella 25 20 ~== 30 === 50—
violin 26 20 10
1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Number of Epochs = 6800
No of gestures recognised at or above 8036 = 10
Average rec. rate of best 10 gestures = 90.0036
Average recognition rate of all gestures = 51.54?6

Confusion Matrices for (a) training and (b) test sets for GSL=960ms
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Appendix C.5 Confusion M atrices: Gesture Segment

Gesture Segment Length: 1120ms
Time frame: 7
ANN architecture: 21-16t-26p

(a) Training Set
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 93 7
cards 2 18 — 9 — 27 e 9
cut throat 3 —_ 27 73 —
drive the car 4 23 54 is — 8
drums 5 38 s 13 44 e 6
heavy weight 6 9 4 6
helicopter 7 23 15— 23 15 15 8
hot 8
ice-cream 9
ironing 10
knock on the door 11 13 44 —
lassou 12 - 88—
ight feather 13 -— 33— 13— 7 - 47
rainbow 14
rock a baby 15 - 20— —— —— 10 - 20_
rock guitar 16 6 3 5 e BATTTTTT 12—
scratch your knee 17 1 _———
shake hands 18 -99 —_— 27—
shave 19 6 ====== e
spank 20 =
spider 21 ———— --100
stroke the cat 22
surrender 23 86 — 14 —
whistle 24 8 8 69 15 —
umbrella 25 13 7 80 —
violin 26 33— - 17 8 25
1 2 3 4 5 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 6700
No of gestures recognised at or above 806
Average rec. rate of best 13 gestures 93.929s
Average recognition rate of all gestures 61.4696
(b) Test Set
Network Decision
Gesture: 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1
cards 2 40 20 30
cut throat 3
drive the car 4 —— — 10 10 10 Z)
drums 5 I— 20 - 20
heavy weight 6 8 0 ——————— —
helicopter 7 10 40 - 10
hot 8 Qb— 10 = e 10 ——— e
ice-cream 9 -
ironing 10 " ‘D 60
knock on the door 11 10 10— = 50 - 20 10 - e
lassou 12 — 80 10 10
light feather 13 40— 30 _— 20 """  ———-———"—————————
rainbow 14 —_ 70 30
rock a baby 15 — 20 — 30 - 10 —————— 10 } —_—— —_— T e
rock guitar 16 10 10 — 49 N TTTTT" Z)
scratch your knee 17 20 10
shake hands 18 10 40 10 ————— 30 10 e
shave 19 s 10 90
spank 20 D B X
spider 21 [y —
stroke the cat 22 - 10—
surrender 23
whistle 24 Ly—
umbrella 25
violin 26 40 10 —
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 6700
No of gestures recognised at or above 809 10
Average rec. rate of best 10 gestures 85.0096
Average recognition rate of all gestures 45.77*6

Confusion Matrices for (a) training and (b) test sets for GSL=1120ms



Appendix C.6 Confusion Matrices: Forearm Orienta-

C.6 Confusion Matrices: Forearm Orientation

Experiment ex45uk

cfmname: ctr7800
Network Decision
Gesture: 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter 23 31 81 —
hot 6 —

ice-cream 9 e 19 50

ironing 10 ———- — 7

knock on the door 11 13 - 25

lassou

light feather
rainbow

rock a baby

rock guitar
scratch your knee
shake hands

shave

spank

spider

stroke the cat
surrender

whistle

umbrella

violin

is ————mm 73

43 7 50—

27— 60—
25— 8 25

1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 7800
No of gestures recognised at or above 80%
Average rec. rate of best 6 gestures = 91.28%
Average recognition rate of all gestures = 48.27%
cfmname: cte7800

Network Decision

Gesture: i 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream

ironing
knock on the door 11 30 K) 10 =
lassou 12 — 10 —————— 10 10 =—

light feather 13— 40 -— 30 10

rainbow 14 —

rock a baby 15 - 100

rock guitar 16 60

scratch your knee 17 — 20

shake hands 18 - 30 30 — 10 —— 10 20— h—
shave
spank 20 60— 10 _ 10 — —
spider 21 —_ 70— 10 - 10 10
stroke the cat 22 — - 90 10

surrender 23 30 10 60 —
whistle 24 10 10 80 — -
umbrella 25 20 10 70 -
violin 26 - —— —_— 40 — 10 40 — - 10

20
70

10 40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 23 24 25 26
Number of Epochs = 7800
No of gestures recognised at or above 80% 8
Average rec. rate of best 8 gestures 85.00%
Average recognition rate of all gestures 43.85%



Experiment ex46uk

Appendix C.6 Confusion M atrices: Forearm Orienta-

cfmname: ctr7800
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 26
bird
cards
cut throat
drive the car - 23
drums - 13
heavy weight 94 e 6 —
helicopter 15 — 46
hot 8 6 — 6 ——— 6 — 82—
ice-cream 13— 19— 13
ironing 7 —— 14 — 79
knock on the door 11 38 -» 13 — 13 —
lassou 12 13 - 6 = - 6
light feather 33— 60 — 33 — 7 —
rainbow 14 ———
rock a baby 15 10 = 70—
rock guitar 16— — 82 — 6 —
scratch your knee 17 — -¢
shake hands 9 — 55 — 9 — 9 ———
shave 18 6 —
spank 7 —
spider 17— 58— - 8
stroke the cat 2 8 — 25
surrender 23 14— 21— 7 — 7 ———— 50—
whistle 24 8 — 8 — 8 — 8 8 8 54
umbrella 25 27 — 13 — 7 — 13 -_ 27— 13—
violin 26 17 — 17— 25— 8 25

1 2 3 4 5 10 11 12 13 14 15 16 17
Number of Epochs = 7800
No of gestures recognised at or above 80%
Average rec. rate of best 7 gestures 89.64%
Average recognition rate of all gestures 42.50%
cfmname: cte7800

Network Decision

Gesture: i 2 3 4 5 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 10
cards 2 —_— 0 —-———— 10 === 30 — 10 —
cut throat 3 —10 fo———
drive the car 4 Z)-— B %— 10—‘-' -_— Z)— 10—
drums 5 30 — 10 K)
heavy weight 6 70 10—
helicopter 7 40 —T==== 20— —_ T e D Jb 10 10 -———
hot 8 -_ 30 50 20
ice-cream 9 —_ 90— 10 — e e
ironing 10
knock on the door 11
lassou 12
light feather 13
rainbow 14
rock a baby 15
rock guitar 16
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21 20 30 10— 30 10—
stroke the cat 22 —_ io 10 —— 10 70
surrender 23 — i 40 10— 30 10
whistle 24 io 10—
umbrella 25 - io 50 10— 10 10 10
violin 26 10 50 10 20 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 7800

No of gestures
Average rec.

Average recognition rate of all

recognised at or above
rate of best 6 gestures

80%

gestures

93.33%
9.23%



Appendix C.6 Confusion M atrices: Forearm Orienta-

Ex5 8uk
cfmname: ctr5200
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 86 e T T e
cards 2 — 36 9 e 9 — 27 9 w—em 9
cut throat 3 27 73
drive the car 4 46 ——— 46
drums 5 38 44 6
heavy weight 6 I(X)
helicopter 7 23 15— 23
hot s 100—
ice-cream 9 6 19
ironing 10
knock on the door 11
lassou 12
light feather 13
rainbow 14
rock a baby 15 10
rock guitar 16 18
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21
stroke the cat 22
surrender 23 86 14 —
whistle 24 — 77 15 —
umbrella 25 a7 40 —
violin 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 5200
No of gestures recognised at or above 80% ]2
Average rec. rate of best 12 gestures 90.84%
Average recognition rate of all gestures 62.03%
Ex5 8uk
cfmname: cte5200

Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird
cards

cut throat
drive the car
drums

heavy weight
helicopter

hot

ice-cream

ironing

knock on the door 11 10 ——r io ———o 50— 10

lassou 12 70— 10 —————— 10 ______

light feather 13 -_— 40 — 40 —————— - 20

rainbow 14 10 D

rock a baby 15 10 20

rock guitar 16 20

scratch your knee 27 . TETEEEEEEE 1“)‘" e

shake hands 18 10 40 —— 30

shave 19 90 -

spank 20 — 80 10

spider 21 10 80 — 10

stroke the cat 22 Z) 80

surrender 23 70 20

whistle 24 10 - -

umbrella 25 10 - 30 30 -

violin 26 10 40
1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 5200

No of gestures recognised at or above 80% 11

Average rec. rate of best 11 gestures 84.55%

Average recognition rate of all gestures 51.15%
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Appendix C.6 Confusion M atrices: Forearm Orienta-

Experiment ex48uk

cfmname: ctr9900
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird

cards 9 — 55—

cut throat

drive the car 38 — 15

drums 31 - 44

heavy weight
helicopter

hot

ice-cream - — 25

ironing f)

knock on the door JE 13 — 19 31—

lassou 6 — 13
light feather 13 33 — 20 — 13 —————————— 33

rainbow 14

rock a baby 15 %

rock guitar 16

scratch your knee 17

shake hands 18

shave

spank

spider

stroke the cat

surrender 23 93—
whistle 24 15 69
umbrella 25 - 7 — 53 — 40 ———
violin 26 - 8 — 8 42— 8 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 9900
No of gestures recognised at or above 80%
Average rec. rate of best 14 gestures 93.80%
Average recognition rate of all gestures 60.14%

cfmname: cte9900
Network Decision

Gesture: 1 2 3 4 5 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream
ironing
knock on the door
lassou

light feather
rainbow

rock a baby
rock guitar

20 02D 10—

COomMNOGARWNR
w
)

BB
B
w
)

10 80 10

HREER

16
scratch your knee 17 80 — 58—
shake hands 18 10 70 -
shave 19 -
spank 20
spider 21 50~ — K) Z)—

|
S

stroke the cat

surrender 23 10 70 20
whistle 24 10 90 ———emmm
umbrella 25 50 30 — -
violin 26

1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs * 9900
No of gestures recognised at or above 80% ]2
Average rec. rate of best 12 gestures 88.33%
Average recognition rate of all gestures 51.15%
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Experiment ex5luk

Appendix C.6 Confusion M atrices: Forearm Orienta-

cfmname: ctr3900
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 86 14
cards 2 45
cut throat 3 13 9]
drive the car 4 38 — 8 e 15
drums 5 50 — 6 e 25
heavy weight 6 56
helicopter 7 8 mm— 15 38 15
hot 8 —_  ——— 7 6 6 6-———--—— O— e —
ice-cream 9 - is 6 6 25 6 —— 13 6
ironing 10 36 50
knock on the door 11 19 e e 6 6 13 13
lassou 12 75 13— 6 - 6
light feather 13 13 80
rainbow 14 _ 8 — 8 8
rock a baby 15 20 ______ — 20 30 10 ————— 10 —— 10
rock guitar 16 - — 18 —_— 6 24 —_—— 35 6 6
scratch your knee 17 100
shake hands 18 27 9 64
shave 19 76 6 ——— 12 6
spank 20 100
spider 21 8— 25 — 8 25 33
stroke the cat 22 8 8 w8 3 rmmmemmm e
surrender 23 50 29 7 14
whistle 24 15 8 8 8 38 23
umbrella 25 7 7 27 7 ——— 53
violin 26 25 8 8 50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 3900
No of gestures recognised at or above 80% 5
Average rec. rate of best 5 gestures 89.81%
Average recognition rate of all gestures 41.99%
cfmname: cte3900

Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 8) T T T TTTTTTTT T S ATTTTTT
cards 2 20
cut throat 3
drive the car 4 20 10
drums 5 - -- 50
heavy weight 6 60 10
helicopter 7 — e -—
hot 8 K) 10 60
ice-cream 9
ironing 10 50 10
knock on the door 11 D 30
lassou 12 70— 0 20—
light feather 13 - 30 20 50
rainbow 14 90 10
rock a baby 15 10 — 30 30 - e 20 e 10 e
rock guitar 16 D 10 — 30 50
scratch your knee 17 100
shake hands 18 - — 20 10 70
shave 19 10 m— 10 10
spank 20 100
spider 21 D 10 10 30 40
stroke the cat 22 20 === 80 s
surrender 23 10— 10 B io ———
whistle 24 TTmTmETm T T 10
umbrella 25 10 — — 10
violin 26 30 10=— 20— 10 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 3900
No of gestures recognised at or above 80% 6
Average rec. rate of best ¢ gestures 88.33%
Average recognition rate of all gestures 37.69%




Experiment ex52uk

Appendix C.6 Confusion M atrices: Forearm Orienta-

cfmname: ctr9500
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 14 —- 7 21 7
cards
cut throat
drive the car
drums
heavy weight
helicopter 8 15 —
hot
ice-cream
ironing
knock on the door 11 25 —-—————- 6
lassou 12 6
light feather 13 7 27
rainbow 14 17
rock a baby 15
rock guitar 16
scratch your knee 17
shake hands 18
shave 19 - 18 6
spank 20 7
spider 21
stroke the cat 22
surrender 23 — 21 7 43 —
whistle 24 - 8 46 —
umbrella 25 = 60—
violin 26 8 8 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 9500
No of gestures recognised at or above 80*6 = 4
Average rec. rate of best 4 gestures = 91.24%
Average recognition rate of all gestures = 41.82%
cfmname: cte9500

Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1
cards 2
cut throat 3 TN
drive the car LI 5.V
drums 5
heavy weight 6
helicopter 7 10—, 40 = 0
s — T10=""T0— "0 = pTo=_To=
ice-cream 9 - 6 0 — ———————
ironing
knock on the door
lassou 10 10
light feather
rainbow
rock a baby
rock guitar
scratch your knee
shake hands B - 10
shave 19 40 K) 20_
spank 20
spider 21 K) ______ 10_ Z) m Z)
stroke the cat 22 10 10— 10— 60
surrender 23 10 10 10 K) 50—
whistle 24 10 30 — 30 10
umbrella 25 80 10
violin 26 Z)

1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 9500
No of gestures recognised at or above 80% 7
Average rec. rate of best 7 gestures 85.71%
Average recognition rate of all gestures 34.62%
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Appendix C.6 Confusion M atrices: Forearm Orienta-

Experiment ex53uk

cfmname: ctr2200
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1
cards 2
cut throat 3
drive the car 4 15,
drums 5 6
heavy weight 6
helicopter 7
hot 8
ice-cream 9
ironing 10
knock on the door 11 44 6 — 6 =—— 13— 6
lassou 12 75 - - 13— 6 - 6
light feather 13 —_— 40 — 7 - T e — 47
rainbow 14
rock a baby 15 D Z)
rock guitar 16 8 2 o e
scratch your knee 17 - 100—— e
shake hands 18 9 18 27 ~——— 18 -
shave 19
spank 20
spider 21
stroke the cat 22
surrender 23 93— 7 —
whistle 24 8 77
umbrella 25 7 27 7
violin 26 25 m—

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 2200
No of gestures recognised at or above 80% E
Average rec. rate of best 12 gestures 92.60%
Average recognition rate of all gestures 62.02%
cfmname: cte2200

Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 199——— D————
cards 2 10 - i-o. 4D 10
cut throat 3 60
drive the car 4 —
drums 5 20
heavy weight 6 ()
helicopter 7 20 10
hot 8 10
ice-cream 9 30 70
ranine S B M g
knock on the door 10 10— - 30 10 10 - e
lassou ———— — i) —_———— 0D—
light feather 13 — 10 s 40 —— 20 — 30
rainbow 14 90 10
rock a baby 15 io - 80 10
rock guitar 16 e ] ) — 9 0] o0
scratch your knee 17
shake hands 18 10 —— 20 70
shave L9 io 90
spank _— io
spider io
stroke the cat
surrender 23 10
whistle 24
umbrella 25 10— 40 10 40
violin 26 10 50— 10— 10— 20

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 2200
No of gestures recognised at or above 80% ]2
Average rec. rate of best 12 gestures 86.67%
Average recognition rate of all gestures 52.69%
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Appendix C.6 Confusion M atrices: Forearm Orienta-

Experiment ex54uk

cfmname: ctr3700
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1
cards 2
cut throat 3
drive the car 4
drums 5 2 § e 19 ——— 19
heavy weight 6 - 100———
helicopter 7
hot 8 1%)— -—
ice-cream 9 - 6
ironing 10 7 — 86
knock on the door 11
lassou 12
light feather 13 53 — 20 - 0
rainbow 14
rock a baby 15
rock guitar 16
scratch your kne« 17 100— -
shake hands 18 45— 18
shave T 1(1)
spank
spider 75 —
stroke the cat - ICO
surrender 23 100——-——
whistle 24
umbrella 25 87— 13—
violin 26

1 2 3 4 5 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 3700
No of gestures recognised at or above 80% 11
Average rec. rate of best 11 gestures 96.22%
Average recognition rate of all gestures 54.09%
cfmname: cte3700

Network Decision

Gesture: i 2 3 4 5 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1
cards 2 40 30
cut throat 3 T T mEmememms e e e lw-__ —_—— s
drive the car 4 - K) —_— = ﬂ) 10
drums s 10——— —_— %8— g%)— —_——— - ——————
heavy weight 6 - teececcs sesscssccsscssccnne 10
helicopter 7 10 40 10 10 10
hot 8 20 - 10_ -
ice-cream 9 ~TTTTT 10 10
ironing 10 }8-— 90 —
knock on the door 11 Z) - 40 20 10 —
lassou 12 10 50 10 - 10 10 10 -
light feather 13 30— 40 20_ ————————————— —_— T T e e e e
rainbow 14
rock a baby 15
rock guitar 16
scratch your knee 17
shake hands 18
shave 19
spank 20
spider 21
stroke the cat 22 100— ————————————
surrender 23 10 e — 80-—— 10—
whistle 24 40 —— 10 —_— 10 40 e
umbrella 25 10— 70— 20—
violin 26 20 20 20— 20 20—

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 3700

10

94.00%
47.69%

No of gestures recognised at or above 80%
Average rec. rate of best 10 gestures
Average recognition rate of all gestures



Appendix C.6 Confusion M atrices: Forearm Orienta-

Ex59uk
cfmname: ctr4400
Network Decision

Gesture: 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 7 21 - 7 7 T e
cards 18—
cut throat 47
drive the car 23 62 8
drums 5 6 50 6 — 13
heavy weight 6 24
helicopter '8 23
hot
ice-cream
ironing ]b 6
knock on the door -
lassou J]Q 19 —
light feather 13 67 — 13
rainbow 14
rock a baby 15 80
rock guitar 16 76 6
scratch your knee 17 10 0 =——meeee
shake hands 18 9 9 36 — 18
shave 19— 94
spank 7 ———— 87
spider —— -— 83
stroke the cat
surrender 23
whistle 24
umbrella 25
violin 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 4400

No of gestures
Average rec.
Average recognition rate of all

Ex59uk
cfmname: cte4400
Gesture: 1 2 3

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter

Se oot o

hot

ice-cream ————— 30

ironing -

knock on the door 11 10—

lassou 12

light feather 13

rainbow 14

rock a baby

rock guitar 16

scratch your knee 17

shake hands 18

shave

spank

spider

stroke the cat

surrender 23

whistle 24

umbrella 25

violin 26— — 10— 10 -
1 2 3 4 5 6

Number of Epochs = 4400

No of gestures
Average rec.
Average recognition rate of all

recognised at or above 80%

rate of best 10 gestures
gestures

10

90.32%
59.84%

Network Decision
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

recognised at or above 80%
rate of best 9 gestures
gestures

1010 10—

20-—-

90 —
— 80
50 — 40 —
R 1 Y —
30 10 40 —
------- 10 40— 10 —_—— 20

86.67%
47.69%



Appendin C.6 Confusion hiatrices: Porearm Oricota-
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Appendix C.6 Confusion M atrices: Forearm Orienta-

Experiment ex57uk
cfirmarne: Ctr2800
Network Decision

Gesture: 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 79

cards 2 9 —

cut throat 3 ~—— 40

drive the car 4 15 ——r 8 — 23

drums 5 13— 25— — 19— 13 25 6 ——

heavy weight 3 — 100

helicopter 7

hot 8 100

ice-cream 9 6 13 6 6 — 50 6
ironing 10 14 7

knock on the door 11 6 13
lassou 12

ight feather 13 40— 20

rainbow 14

rock a baby 10 10 80

rock guitar 16 - 88

scratch your knee 17 100——— —

shake hands 18 -_ 91—

shave 19— 94 —

spank 20 13 7 80

spider 21

stroke the cat 22

surrender 23 100
whistle 24 23
umbrella 25 67
violin 26 —em 2 — — 8 25— 8 8 8 s O3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 2800

No of gestures recognised at or above 80% 11
Average rec. rate of best 11 gestures 95.18%
Average recognition rate of all gestures 61.45%

cfmname: cte2800
Network Decision
Gesture: i 2 3 4 5 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird i 60 ——m— 20
cards

cut throat
drive the car 4 20 — — 10 — 20 10 10 ——

drums 5§ 30 ——— 10— = 4LUTTT o 10

heavy weight — 70 Zb— 10
helicopter = 7 —m™ - LUTTT=== 20 10 30

hot 8
ice-cream 9
ironing 10 —— e —
knock on the door 11
lassou

light feather
rainbow

rock a baby

rock guitar
scratch your knee
shake hands

shave

spank

spider

stroke the cat
surrender

whistle

umbrella

——— 10

10 —— 10 40

40 — 30 — 10

10— 10 20 20

10 90 — -

violin

Number of Epochs = 2800

No of gestures recognised at or above 80% = 10
Average rec. rate of best 10 gestures 91.00%
Average recognition rate of all gestures = 50.77%
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C.7 Confusion Matrices: Scalar and Vector Velocity

Experiment ex38uk

cfirmarne: ctrl0000

Gesture:

bird i

cards

cut throat 3

drive the car 4 31—
drums 5 44—
heavy weight 6 -_ 94
helicopter '8

hot

ice-cream

ironing ]b

knock on the door 11 38

lassou 12 —

light feather 13 — - 33
rainbow

rock a baby 15 e 50
rock guitar 16 6

scratch your knee 17 —

shake hands 18 —

shave

spank

spider

stroke the cat

surrender 23

whistle 24 38

umbrella 25

violin 26

1 2 3 4 5
Number of Epochs = 10000
No of gestures recognised at or above 80%
Average rec. rate of best 10 gestures

Average recognition rate of all gestures
cfmname: ctel0000
Gesture: 1 2 3 4 5
bird 1
cards 2
cut throat 3
drive the car 4 40 —
drums 5 40 —
heavy weight 6
helicopter 7
hot 8
ice-cream 9
ironing 10
knock on the door 11
lassou 12
ght feather 13
rainbow 14
rock a baby 15
rock guitar 16 D
scratch your knee 17
shake hands 18 D
shave
spank
spider
stroke the cat
surrender 23
whistle 24
umbrella
violin 26 -

1 2 3 4 5 6

Number of Epochs = 10000

No of gestures recognised at or above 80%
Average rate of best 11 gestures
Average gestures

rec.

recognition rate of all

Appendix C.7 Confusion Matrices: Scalar and Vec-

Network Decision
7 8 9 10 11 12 13 14 15 16 17 18 19 20

20 10-Z—- 10 10

7 8 9 10 11 12 13 14 15 16 17 18 19 20

10

93.86%
52.09%

Network Decision
7 8 9 10 11 12 13 14 15 16 17 18 19 20

- 20 10 — 1&)
== 10— 10 %

T e s ¥
10— 10 e

86.36%
48.08%
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21 22 23 24

—e 18

79 —
- 54

20—
21 2 23 24

21 22 23 24

20—

- 10
60 — 20—
20

30—
80 —
60 —

40
21 23 24 25 26

25 26

23 —

21—

73—
25 26
25 26



Appendix C.7 Confusion M atrices: Scalar and Vec-
Experiment ex39uk
cfmname: ctr3600
Network Decision

Gesture: 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 64 —cm—m 14 14 - —_— 7
cards 2 91
cut throat 3 93
drive the car 4
drums 5 -
heavy weight 6 - - 31
helicopter 7 8 — 8_
hot 8
ice-cream 9
ironing 10
knock on the door J]Z 25 13—6 18 ———
lassou
light feather 13 7 —
rainbow 14
rock a baby 15
rock guitar 16
scratch your knee 17 17
shake hands 9 — 18 18— 18
shave - (I)
spank
spider 8 — 8 - 17 — 8 =— 17 -
stroke the cat I(I)
surrender 7T —_— 7 7 — 7 7 14— 21 - 7
whistle 16— -~ 8 -
umbrella 7 7 27 -
violin 8 17— 8 8 17— 8 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 3600
No of gestures recognised at or above 80%
Average rec. rate of best 7 gestures 92.46%
Average recognition rate of all gestures 39.57%
cfmname: cte3600

Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 50 = - 1 0 s 10 ———————— 10
cards m
cut throat 1
drive the car 10 —— 10 ——— 10— —_ 10 i8— 18— 10 ——————
drums —_— 10 - -
heavy weight 6 10— 20 — -
helicopter 10— 20 30— 10 10 10
hot g e 10— 70—
ice-cream
ironing i) ‘lb—
knock on the door 11 40 -
lassou 12 80
light feather 13 30 0
rainbow 14 y (%
rock a baby 15 10 30 10—
rock guitar 16 10____ B 30 —-———m
scratch your knee 17 20 ----- 50 —— 10
shake hands 18 N R — 30 - 10 10 - 40 e
shave
spank ib— lﬁ)
spider 3 —_
stroke the cat [ 10 io
surrender 23 10——
whistle 24 50 —memem —
umbrella 25
violin 26

1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 3600

No of gestures
Average rec. rate of best 5 gestures
Average recognition rate of all

recognised at or above 80%

gestures

Koo

30.38%



Experiment ex40uk

Appendix C.7 Confusion M atrices: Scalar and Vec-

cfmname: ctr4500
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
bird 1 7
cards 2
cut throat 3 4 7 s
drive the car 4 23
drums 3i
heavy weight 6 I(D
helicopter 7 15
hot 8 [ 3 S —
ice-cream 9 — 31 e 25 ——— e -
ironing 10 14 86
knock on the door 11 31— 6 13— — 13 6 —
lassou 6 44 —
light feather 7 —— 4T
rainbow
rock a baby 20
rock guitar 16 [ 4 7
scratch your knee 17
shake hands 18
shave 19 ——— 18
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24 15 ——— 8 — e 15
umbrella 25
violin 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Epochs * 4500
No of gestures recognised at or above 80% = 12
Average rec. rate of best 12 gestures = 92.10%
Average recognition rate of all gestures = 52.89%
cfmname: cte4500

Network Decision

Gesture: i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
bird 1
cards 2 30
cut throat 3
drive the car 4
drums 5
heavy weight 6 = 10
helicopter 7 20-—
hot 8
ice-cream 9
ironing 1 0 e e 10 90
knock on the door 11 20 20 30
lassou 30
light feather Z)
rainbow
rock a baby 10
rock guitar
scratch your knee 17 —
shake hands 18— 10—
shave 19 20
spank 20
spider 21
stroke the cat 22—
surrender 23 10
whistle 24 30
umbrella 25 — 30—
violin 26 10=— 20 =——

1 2 3 4 5 6 7 8 9 10 12 13 14 15 16
Number of Epochs = 4500

No of gestures recognised at or above 80%
Average rate of best 9 gestures
Average rate of all gestures

rec.
recognition

86.67%
43.85%
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Appendix C.7 Confusion M atrices: Scalar and Vec-

Experiment ex4luk
cfmname: ctr700
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1

cards 2

cut throat 3

drive the car 4

drums 5

heavy weight 6

helicopter 7

hot 8

ice-cream 9

ironing 10

knock on the door 11

lassou 12

ight feather 13

rainbow 14

rock a baby 15

rock guitar 16

scratch your knee 17

shake hands 18

shave 19

spank 20

spider 21

stroke the cat 22

surrender 23

whistle 24

umbrella 25 - 13- 7 — 7 — 7 — e — 6 T e
violin 26 — § = 25 e T R R —— 17 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 700

No of gestures recognised at or above 80% 3
Average rec. rate of best 3 gestures 90.95%
Average recognition rate of all gestures 18.24%

cfmname: cte700
Network Decision

Gesture: 1 2 3 4 5 6 7 8 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 30 = .- 1 0 e e 20
cards 2 —— e — — 100—
cut throat 3 Z) 100 === -—
drive the car 4 - T T —— 10 ——= 30 - — 10 30
drums 5 10 10— 10 - - 30 10— 30
heavy weight 6 -, 30— 60—
helicopter 7 10——— 10— ‘b Z) } ——— —— — — %
hot 8 ee—— — 3 0 = -— 40 — —_— e mmmm——————
ice-cream 9 - —
ironing 10 Z) 80
knock on the door 11
lassou 12

ht feather 13 %8— 70—
rainbow 14 —_
rock a baby 15 -_ i
rock guitar 16 20 —————— K) %
scratch your knee 17 10 70
shake hands 18 10 20 60
shave 10 0 =———
spank — 10 80
spider 10— 10— — 30 10
stroke the cat 10 20
surrender 22  TZ==" 0— B -_— Z) —————— —_—
whistle Z) - - —_
umbrella 30 — 20 10 o 40 —
violin p— [ ) [y | Y —— 50

1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 700
No of gestures recognised at or above 80% 3
Average rec. rate of best 3 gestures 86.67%
Average recognition rate of all gestures 14.62%
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Experiment ex42uk
cfmname: ctr7300
Gesture:

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter

15—
56 —

hot

ice-cream

ironing

knock on thi door 1]2
lassou

light feather 13
rainbow 14
rock a baby 15
rock guitar 16
scratch your knee 17
shake hands 18
shave

spank

spider

stroke the cat
surrender 23
whistle 24
umbrella 25
violin 26

1 2 3 4 5
Number of Epochs = 7300
No of gestures recognised at or above 80%

11

91.31%

Appendix C.7 Confusion M atrices:

Network Decision

Scalar and Vec-

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
23 38 15 — 15 8
63 6
.- 86
—_— A 19 6 - 6 —_ 6
6 9 . TTTTTTTTT 6 -
- 13 73
S — 8 - 92
i 20— e —~ 20 30
41— 24 — 6
100
RS - R —— - 9 e 9 o 18- 27— 18
100
100
e 17 ——— 33 50
92
86— 14
———— 23 8 15
%0 so—
42
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Network Decision
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Average rec. rate of best 11 gestures
Average recognition rate of all gestures 58.14%
cfmname: cte7300
Gesture: 1 2 3 4 5
bird
cards 2 — 170
cut throat
drive the car 30 B
drums 5 40
heavy weight 6
helicopter g Ql —
hot b—
ice-cream -- 20
ironing i)
knock on the door Jﬁ 10
lassou
light feather 13 10—
rainbow 14
rock a baby 15 —_— 10— 60
rock guitar 16 20 10— 40
scratch your knee 17
shake hands 18
shave 19 ———m 10
spank 20
spider 21
stroke the cat 22
surrender 23
whistle 24
umbrella 25
violin 26
1 2 3 4 5 6

Number of Epochs = 7300

No of gestures recognised at or above 80%
Average rec. rate of best 11 gestures
Average recognition rate of all gestures

11

86.36%
51.15%

U

30

10— 10

70—

10 11 12 13 14 15 16 17 18 19 20 21

w = 10—

50— 30—

22 23 24 25 26



Experiment ex43uk
cfmname: ctr7600
Gesture: 1 2 3 4 5 6

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream
ironing

knock on the door
lassou

light feather
rainbow

Appendix C.7 Confusion M atrices: Scalar and Vec-

Network Decision
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

87

rock a baby

rock guitar
scratch your knee
shake hands
shave

spank

spider

stroke the cat
surrender

10—

D— 10—

whistle 24 8
umbrella 25

------ 17 42 42

23

15

24

38

40—

25 26

15 e
53 e

violin 26 —

Number of Epochs * 7600

No of gestures recognised at or above 80%
Average rec. rate of best 13 gestures
Average recognition rate of all gestures
cfmname: cte7600

Gesture: 1 2 3 4 5 6

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream
ironing

knock on the door
lassou

light feather
rainbow

rock a baby
rock guitar
scratch your knee
shake hands
shave

spank

spider

stroke the cat
surrender
whistle
umbrella
violin

10
10

=
PoSow~N~Noa MR

10

NNNNNNRNRERBRRREREBRREBRER
CURWNROCOMNOGA RGN

1 2 3 4 5 6
Number of Epochs = 7600
No of gestures recognised at or above 80%
Average rec. rate of best 12 gestures
Average recognition rate of all gestures

13 14 15 16 17 18 19 20 21 22

13
93.88%
57.98%

Network Decision
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

23

23

24

24

25 26

80 —- 10
100

U | '] —
10— — To— w

10—

10—
010 10-—-

10 11 12 13 14 15 16 17 18 19 20 21 22

]

88.33%
55.00%
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Appendix C.7 Confusion Matrices: Scalar and Vec-

Experiment ex44uk

cfmname: ctr2000
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 7 7

cards 2 45 9

cut throat 3 7 33

drive the car 4 8 15

drums 5 6 13 13 —— 6

heavy weight 6

helicopter 7 —_ 31—
hot 8

ice-cream 9

ironing 10

knock on the door 11 19 19— 6

lassou 12 81

light feather 13 33 7 20 40

rainbow 14 83

rock a baby 15 40, - 30

rock guitar 16 6 6— 12— 6 ——————
scratch your knee 17

shake hands 18

shave 19

spank 20

spider 21

stroke the cat 22

surrender 23 50— 50
whistle 24 23 38 l(ﬁ
umbrella 25

violin 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 2000

No of gestures recognised at or above 80% = 9
Average rec. rate of best 9 gestures = 92.81%
Average recognition rate of all gestures = 54.28%

cfmname: cte2000
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 80 10 10

cards 3 — 10 ——— —_— 20 ——— :{ Jr— 30

cut throat 00

drive the car 4 10— Py pe— 10 — e - }8— 10— 10— 20— — — 10— _ 10—
drums 5 30 —————— 30 e 20 — - 10

heavy weight 6 80 10 —— 10— e e e e
helicopter 7 20 10 40 — 30

hot 8 — 10— 90 - emmmmmnene

ice-cream 9 io 30— 60

ironing 10 90

knock on the door } 10 20 10 40 20

lassou — T T T T T T T T 80 10 10 ———————m

light feather 13 —_—_ 10———— 30— -1-§ 40 10

rainbow 14 90

rock a baby 15 — 60 30 —

rock guitar 16 — =

scratch your knee 17 e SEm m— ]n_ ==

shake hands 18 10-—--80

shave 6 0 s e e e e 40

spank — 10— 90

spider - e — 80

stroke the cat - lm

surrender 23 N —_———— 10 10 10— 70—

whistle 24 20 10 10 60

umbrella 25 = ———— - 20 80 —

violin 26 00 @ —————— - 10 10 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 2000

No of gestures recognised at or above 80% ]2

Average rec. rate of best 12 gestures 86.67%

Average recognition rate of all gestures 52.31%
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Appendix C.8 Curvature and Plane of M otion

C.8 Curvature and Plane of Motion

Experiment ex33uk
cfumarne: ctr5200
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1

cards 2

cut throat 3

drive the car 4 38—

drums 5 19—

heavy weight 6

helicopter 7 31— 31—
hot 8 24 6

ice-cream 9 25 75

ironing 10 [ I e — 7

knock on the door 11 13 13 -- — a4 6 e 6— 6— 6

lassou 12 6 69 6 ~—— 13— [
light feather 13 27 _7 """ W

rainbow 14

rock a baby 15 —_— 10 ———— 20— 10 -- 40 ——

rock guitar 16 24 53 T

scratch your knee 17 —_— 1 -

shake hands 18 7 3, ex 9

shave 19 —_— m__

spank 20 7 — 93

spider 21

stroke the cat 22

surrender 23 86 —

whistle 24 16— is 8 15—

umbrella 25 13—

violin 26 33

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 5200

No of gestures recognised at or above 80% - 10
Average rec. rate of best 10 gestures m 93.10%
Average recognition rate of all gestures - 53.33%

cfmname: cte5200
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird 1 70 ——— 20

cards 2

cut throat 3

drive the car 4 i?- 10 10 &9

drums 5 e —

heavy weight 6

helicopter 7 10

hot 8 - — 920

ice-cream 9

ironing 10 TTTTT T, T T e e e 8) Z)

knock on the door 11 20— —_ s e 10— - 10— i8—

lassou 12 i -

light feather 13 40— 50

rainbow 14

rock a baby 15 40

rock guitar 16 12) 8 — 10

scratch your knee 17

shake hands 18 70 — 10

shave 19 100

spank 20 10 - 920

spider 21

stroke the cat 22

surrender 23 70 — 30 —

whistle 24 K) 10 10 30 30 -

umbrella 25 20— ——————mn 30— 50—

violin 26 20 30— 10 e 10 — 2 0 e e — 10 —
1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 5200

No of gestures recognised at or above 80% 9

Average rec. rate of best 9 gestures 90.00%

Average recognition rate of all gestures 49.23%
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Appendix C.8 Curvature and Plane of Motion

Experiment ex34uk
cfmname: ctr5200
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 71l e——— 14— St 7 —
cards 2 r— 9 —- 64 9 e —
cut throat 3 i3
drive the car 4 46 23 — —_— 23—
drums 5 31 19 6 - 6 6 6 —— 25
heavy weight 6 9 4 6
helicopter 7 8 e 8 23 23
hot e 100-------
ice-cream 9 —_— 19 6 .- 6 3 e e
ironing 10 7 — 7 — 86
knock on the door 11 6 —————— 6 em— ————————— — 63 6 — 6— 6 6
lassou 1 e e e s e 81—
light feather 13 P e 40— 13— 7 e 40
rainbow 14
rock a baby 15 —— e — 20 — 10 — 30 10 -——— e 20— - 10—
rock guitar 16 a7 24 :t— 6 12
scratch your knee 17 - 1 ————
shake hands 18 — 8 e
shave 19 - m__
spank 20 93
spider 21
stroke the cat 22
surrender 23 93 — 7 —
whistle 24 15 54 8
umbrella 25 60 7 33 —
violin 26
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 5200
No of gestures recognised at or above 80% = 10
Average rec. rate of best 10 gestures = 92.04%
Average recognition rate of all gestures - 54.48%

cfmname: cte5200
Network Decision
Gesture: i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

:::d:h roat ;: —— 1(%)-—— — ——— —

:rr;:‘es th-acar ; ;z _29 10 - 10 - 10 - _10 —10
hecopter 7 10 0 D——
roning e

:(::::“ on the door 11 — 10 Z) _-1(-)__1 0_26:

light feather

rainbow —_ Z)
rock a baby - 10 60 @ e 10 —— Z)
rock guitar 10 10 40 < J 1 S — — 10
scratch your knee 17 — - l(x)—— — —
shake hands 18 — —_ 10 80 — 10
shave 19 —

spank 20 —

spider 21 —

stroke the cat 22—

surrender 23 ———

whistle 24 —

umbrella 25 —

violin 26 ~——— 30 20—

1 2 3 4 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 5200
No of gestures recognised at or above 80%

Average rec. rate of best 10 gestures Q(D)A)

Average recognition rate of all gestures 49.62%



Appendix C.8 Curvature and Plane of M otion

Experiment ex35uk
cfmname: ctr6100
Network Decision
Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird

cards

cut throat
drive the car
drums

heavy weight
helicopter
hot

ice-cream
ironing

knock on the door
lassou

light feather
rainbow

rock a baby
rock guitar
scratch your knee
shake hands
shave

spank

spider

stroke the cat
surrender

19

6—

whistle
umbrella
violin
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 6100
No of gestures recognised at or above 80% 11
Average rec. rate of best 11 gestures = 90.30%
Average recognition rate of all gestures = b58.79%

cfmname: cte6100
Network Decision

Gesture: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

bird 1 K)

cards 2 10

cut throat 3 50

drive the car 4 % K) K)

drums 5

heavy weight 6

helicopter 7 10 10 40 10 Z) 10

hot 8 9 Q s = 10

ice-cream 9 10— 70

ironing 10 ~

knock on the door 11 10 a) Z)

lassou 12 —1

light feather 13 40— 50 10 Z)

rainbow 14 80

rock a baby 15 - 20 30 10 - 10 _— 10 Z) ==

rock guitar 16 10 10 30 40 10

scratch your knee 17 Z)

shake hands 18 — 10 e e 10 ______

shave 19 50 -_

spank 20

spider 21 10 — 50 —— e 30 -

stroke the cat 22 100— e

surrender 23 —_— 80 40 —

whistle 24 10— 10 80 ——emem —

umbrella 25 10 110 — 20 == 60 -

violin 26 80 0— m——————— 10
1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 Z) 21 22 23 24 25 26

Number of Epochs = 6100

No of gestures recognised at or above 80% g@

Average rec. rate of best 10 gestures A)

Average recognition rate of all gestures 52.31%
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Experiment ex36uk

Appendix C.8 Curvature and Plane of Motion

cfmname: ctr5300
Network Decision

Gesture: 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 171 7 7 --
cards 2 9
cut throat 3 33 67
drive the car 4 31 38 8 --
drums 5 31 e 38 -- 6 ——— 13 6
heavy weight 6
helicopter 7 _ 15— 23
hot 8 100— —- — —-
ice-cream 9
ironing 10
knock on the door 11
lassou 12
light feather 13 80
rainbow 14
rock a baby 15 20 10 10
rock guitar 16 6 — 29 12— 6
scratch your knee 17
shake hands 18
shave 19
spank 20 87 — 7
spider 21 — 6 T oe
stroke the cat 22 TEEETE la)
surrender 23 21
whistle 24 38
umbrella 25 73
violin 26

1 2 3 4 5 6 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26

Number of Epochs = 5300
No of gestures recognised at or above 80%

11

Average rec. rate of best 11 gestures = 91.43%
Average recognition rate of all gestures = b58.23%
cfmname: cte5300
Network Decision
Gesture: i 2 3 4 S5 6 8 9 10 11 12 13 14 15 17 18 19 20 21 22 23 24 25 26
bird —
cards 10 — 18
cut throat 3
drive the car 410 — 30 10 D
drums 520 —— 20 — 10
heavy weight 6 80
helicopter 7 10 10— 10—
hot 8
ice-cream 9 ——— - 10 70
ironing 10 -
knock on the door 11 20 — - — — - -— D 10— } -
lassou 12 10
light feather 13 30
rainbow 14— ——— — 100 —
rock a baby 15 20 i% 10— - }8 —————— Z) 58— %(9—
rock guitar 16 ———— 20 10 —_———— - 11U oy 10
scratch your knee 17 —1%
shake hands 18 e e — D - 70 10
shave 19 40 - 60—
spank 20 K) - 20
spider 21 —— 10
stroke the cat 22 — 10
surrender 23 10
whistle 240 —— - 20 10 -
umbrella 25 — y — 40 40 -
violin 26 - 20 50 - - - 10
1 2 3 4 5 6 7 8 9 10 11 12 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 5300
No of gestures recognised at or above 80% 8
Average rec. rate of best 8 gestures = 88.75%
Average recognition rate of all gestures = 46.15%
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Experiment ex37uk

Appendix C.8 Curvature and Plane of M otion

cfmname: ctr6200
Network Decision
Gesture: 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
bird 1 79—
cards 2
cut throat 3 -— 60
drive the car 4 31——— a6
drums 5 31— 19 19 cemeememene
heavy weight 6
helicopter 7 8 23
hot 8
ice-cream 9 ——— 50
ironing 10
knock on the door 11 19 25
lassou 12 — 81
light feather 13
rainbow 14
rock a baby 15 - Z) Z)——— 10——— 10—
rock guitar 16 41 — [
scratch your knee 17
shake hands
shave 76
spank 7 93
spider
stroke the cat
surrender 1(D
whistle 31
umbrella 80 20—
violin _— 17 - - 50
1 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 Z) 21 22 23 24 25 26
Number of Epochs = 6200
No of gestures recognised at or above 809 11
Average rec. rate of best 11 gestures 93.339*
Average recognition rate of all gestures 54.009*
cfmname: cte6200
Network Decision
Gesture: i 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 Z) 21 22 23 24 25 26
bird 1 10_
cards 2
cut throat 3 S~ la)
drive the car 4 %8_ = X) i?_
drums 5 - =
heavy weight 6
helicopter 7 30— 10 —
hot 8
ice-cream 9
ironing 10
knock on the door 11
lassou 12
light feather 13
rainbow 14
rock a baby 15 -7 Z) 30 40 —————— 10
rock guitar 16 10— 30 20 e 16
scratch your knee 17
shake hands
shave ———— 80
spank
spider 60 — 20— 10 w——
stroke the cat
surrender 1) } -
whistle B -
umbrella 1ﬂ) 10 — -
violin w50
1 2 3 4 5 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Number of Epochs = 6200
No of gestures recognised at or above 809 11
Average rec. rate of best 11 gestures 89.0996
Average recognition rate of all gestures 51.159*



Appendix D

Hinton Diagrams of W1 and W2

This appendix contains the Hinton diagrams for each neural network experiment in

chapter 7. The Hinton diagram shows graphically the magnitude and sign of each ANN
weight. Each rectangle represents a weight, the size being proportional to its magnitude.
Rectangles with light shading are positive and those with dark shading negative. The
largest rectangle corresponds to the largest weight in the weight matrix and all others are
draw with sizes relative to this rectangle. W 1 is the weight matrix that contains the
weights connecting the network inputs to the hidden layer. W2 is the weight matrix that
contains the weights connecting the hidden layer (labelled input) to the output neurons.

The Hinton diagram is useful in determining which weights have a large effect on
neuronal output. If all the weights connected to a particular input feature are small it
suggests that this feature is having relatively little effect on the network decisions
compared to other features.



Appendix D: Hinton Diagrams of W1 and W2
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ADL. Activities of Daily Living: Tasks associated with self-care and independent living.

Assistive Technology Device - “any item, piece of equipment, or product system,
whether acquired commercially off the shelf, modified, or customized, that is used to
increase, maintain, or improve functional capabilities of individuals with disabilities.” An
assistive device can be low-tech (mechanical) or high-tech (electromechanical or com-
puterized) and includes products that compensate for sensory and functional losses by
providing the means to move (e.g. wheelchairs, lifts), speak (e.g. voice synthesizers,
voice recognisers), read (e.g. Opticon systems for persons who are blind), hear (e.g.
vibro-tactile aids) and manage self-care tasks (e.g. automatic feeders, environmental
control systems), [as defined in “Technology- Related Assistance of Individuals with
Disabilities Act 1988” (RL. 100-407), USA, adapted to include voice recognition sys-
tems.]

Augmented and Alternative Communication. An area of clinical practice that
attempts to compensate (either temporarily or permanently) for the impairment and dis-
ability patterns of individuals with severe expressive communication disorders (i.e., the
severely speech-language and writing impaired). [ASHA, 1989, p. 107]... “utilize the
individual’s full communication capabilities, including any residual speech or vocaliza-
tions, gestures, signs and aided communication” [ASHA, 1991, p. 10].

Augmented and Alternative Communication System. (AAC). An integrated group of
components, including the symbols, aids, strategies, and techniques used by individuals
to enhance communication” [ASHA, 1991, p. 10].

Augmented and Alternative Communication Devices.

Electronic- Technologies that enable a person with limited communicative modalities i.e
speech, motor control, hearing, vision, cognitive ability to visually or auditorially access
and display their communicative intentions e.g. Voice activated communication aid
(VOCA).

Non-Electronic- Technologies that enable a person with limited communicative modali-
ties i.e speech, motor control, hearing, vision, cognitive ability to visually or auditorally
access and display their communicative intentions. Examples include: flat surface com-
munication word board (e.g. Fitzgerald Key, Bliss board) or book (e.g.Rebus, Makaton)
that contains the letters of the alphabet, numbers, key phrases and/or symbols that the
users is able to access.

Backpropagation. A method of training a feedforward artificial neural network with at
least one hidden layer.

Cerebral Palsy. A broad term used to describe a variety of conditions caused by damage
to the developing brain, usually occurring before, during or shortly after birth. The dam-
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age is such that it affects neuromotor development resulting in a continuum of character-
istic motor disorders affecting a child’s movement, speech, and posture. The condition
can be mild to severe. Although it is considered to be non-progressive, i.e. the initial
brain lesions or abnormalities do not get worse, the degree or type of exhibited motor
dysfunction can change as a child’s nervous system develops. It is considered perma-
nently disabling although therapeutic intervention is thought to have a beneficial effect
on a child’s motor abilities.

Co-articulated. Typically used to describe the act or mode ofjoining in speech, in this
context used to refer to the linkage of gestures similar to the linking of speech phrases.

Confusion Matrix. A square matrix of numbers. Each row corresponds to a gesture
class. Each column corresponds to a classifier decision. Each number represents the pro-
portion of gestures of a particular class that have been classified as belonging to the same
or another class as indicated by their position in the matrix.

Coverbal gesture. Gestures produced in the presence of speech, either simultaneously,
prior or immediately after speech.

Developmental disability. Term used for conditions due to congenital abnormality,
trauma, deprivation, or disease that interrupt or delay the sequence and rate of normal
growth, development and maturation. [(1989) Tabers Cyclopedic Medical Dictionary,
16th Edition, F.A. Davis Co. Philadelphia.]

Dysarthria. Difficult and defective speech due to impairment of tongue or other muscle
essential to speech production. [(1989) Tabers Cyclopedic Medical Dictionary, 16th
Edition, F.A. Davis Co. Philadelphia.]

Emergent. 1. becoming apparent: emerging. 2. the new qualitative synthesis produced
by structures organised in certain patterns that cannot be predicted from examination of
the constituent parts of the whole. 1.[(1991) The Oxford Encyclopedic English Dictio-
nary, Eds. .M. Hawkins and R. Allen, Clarendon Press, Oxford.]. 2. [(1992) Philosophy,
The Harper Collins Dictionary, PA. Angeles, Harper Perennial.]

Gesture. 1. A significant movement of a limb of the body. 2. the use of such a movement
especially to convey feeling or as a rhetorical device. 3. an action to evoke response or
convey intention.[(1991) The Oxford Encyclopedic English Dictionary, Eds. J.M. Hawk-
ins and R. Allen, Clarendon Press, Oxford.] Gesture are considered both global i.e the
whole determines the meaning of the parts and synthetic i.e one gesture can combine
many meanings. This is contrast to the combinatoric linear-segmented property of
speech and sign language. [(1992) Hand and Mind, D. McNeill.]

High bandwidth Afferent HMI. Human-machine interaction where the bandwidth of
information transfer from the machine to the human is of appreciable magnitude.
High Bandwidth Efferent HMI. Human-machine interaction where the bandwidth of
information transfer from the human to the machine is of appreciable magnitude.

Iconic. 1. of or having the nature of an image or portrait. 2. (of a statue) following a con-
ventional type. 3. Linguistics that is an icon. Iconicity: with reference to gesture taxon-
omy, gesture bearing a close formal relationship to the semantic content of speech e.g.

Learned dependency. Dependency on others for interaction with the world. Term sug-
gested by (von Tetzchner 1988, see learned helplessness.)

Learned futility. Creation of dependency on another for assistance and/or mediation for
daily interaction with the world, due to restrictions of a physical and/or cognitive nature
and reaction and responses of others to those restrictions, whereby an individual experi-
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ences a sense of helplessness

Learned helplessness. Precursor to learned dependency, suggestive of more conscious
or unconscious decision to rely on other for interaction in the world. Theory suggests that
the pattern of passivity found in AAC users and its possible relationship to particular
behaviours of their communication partners could be partially explained as an example
of learned helplessness. Could be reinforced by giving rewards that are not dependent on
peformance.Consequences included e.g. decrease in motivation, effects may persist even
when environmental condition may have changed. Seligman (1975), regarded experi-
ences of control and independence in daily life as essential for reducing learned helpless-
ness.

Lexeme. A basic lexical unit of language comprising one or several words, the elements
of which do not separately convey the meaning of the whole.

Physiographic. Depiction through bodily movement.

Salience. That part which carries the meaning e.g., in a gesture of a rainbow the form of
the arc traced in space.

Self-Adaptive. A system capable of adjusting its own internal states in response to its
environment.

Self-Organising. A system capable of autonomously structuring its own internal states.
Sign Language. The various natural language of deaf communities.

Symbol. (-AAC). Refers to the methods used for “visual, auditory, and/or tactile repre-
sentation of conventional concepts e.g., gestures, photographs, manual sign sets.systems,
picto-ideographs, printed words objects, spoken words, Braille)” [ASHA, 1991, p. 10].
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