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 Abstract 
 Accessing  the  resilience  of  large  cyber-physical  systems  (LCPS)  is  essential  for 
 ensuring  the  continuity  of  operations  and  minimising  the  impact  of  disruptions  caused 
 by  natural  disasters,  cyberattacks,  and  other  stressful  events.  Recent  empirical  studies 
 of  LCPS  have  demonstrated  the  usefulness  of  modelling  and  simulation  in  assessing 
 properties  that  emerge  from  component  interactions,  including  resilience.  However, 
 the sheer complexity of CIs poses challenges for modellers: 

 1)  Resilience  assessment  requires  high-fidelity  models  that  include  a 
 probabilistic  model  of  the  system  and  adverse  events  of  interest,  such  as  accidental 
 failures  or  malicious  activities,  and  a  physics  simulation  model  of  LCPS  processes,  such 
 as power/liquid/gas flows. 

 2)  Assessing  resilience  with  high  statistical  significance  requires  a  systematic 
 exploration  of  the  space  of  possible  adverse  events  and  recovery  from  their  e�ects. 
 Exploring this space requires a significant amount of e�ort. 

 This  work  o�ers  solutions  intended  to  help  modellers  overcome  these  di�culties 
 by using the recent advances in modelling LCPSs and high-performance computing: 

 i)  It  o�ers  a  new  modelling  methodology  for  building  agent-based  hybrid 
 hierarchical  stochastic  models  using  a  new  domain-specific  language.  The  new 
 modelling  approach  allows  easy  integration  of  a)  a  variety  of  modelling  formalisms 
 used  to  model  cyber-attacks  on  CI/LCPS;  and  b)  a  set  of  deterministic  models,  as 
 needed  by  the  chosen  level  of  fidelity  and  specific  for  the  modelled  CI.  However,  the 
 deterministic  models  are  not  the  focus  of  this  work.  Such  models  are  assumed  to  exist 
 in software available from third-party vendors. 

 ii)  It  presents  a  set  of  tools  to  support  this  methodology:  the  visual  modeller  and 
 an  extensible  Monte  Carlo  simulation  engine  designed  to  utilise  high-performance  and 
 cloud  computing  capabilities.  The  engine  and  the  editor  utilise  modern  development 
 practices and technologies to provide a state-of-the-art solution. 

 This  thesis  provides  a  survey  of  the  relevant  literature,  summarises  the  progress 
 with  the  modelling  methodology,  and  presents  the  results  published  to  date  with  case 
 studies  based  on  an  extended  Nordic32,  a  reference  architecture  of  a  power 
 transmission  network  with  the  SCADA  subsystem.  The  studies  explore  the  e�ects 
 caused  by  adversaries  targeting  IT  infrastructure  and  demonstrate  the  application  of  a 
 defence-in-depth approach to reduce the e�ects of these attacks. 
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 1. Introduction 

 1.1 Objectives 

 Modern  systems  have  made  people  safer  and  more  secure  by  providing  better 

 access  to  emergency  services,  enhancing  surveillance  and  security  systems, 

 and  improving  disaster  response.  However,  as  people  increasingly  rely  on 

 digital systems, it becomes crucial to ensure they are reliable, safe, and secure. 

 Establishing  confidence  in  whether  a  system  can  reliably  fulfil  its  purpose 

 (i.e.  validation)  is  an  integral  part  of  the  engineering  discipline.  The 

 applicability  of  di�erent  validation  methods  depends  on  the  characteristics  of  a 

 system.  For  dispensable  mechanical  systems,  validation  often  involves  testing 

 the  system  under  various  conditions.  However,  the  direct  testing  approach  is 

 unsuitable  for  larger  systems,  as  it  is  either  expensive,  unsafe,  or  both.  System 

 modelling  is  the  only  practicably  applicable  methodology  for  analysing  the 

 behaviour  of  large  systems  under  severe  stress  factors,  such  as  natural 

 disasters,  massive  cybersecurity  attacks,  overloading,  or  failures  of  critical 

 components. 

 The  main  idea  of  system  modelling  is  to  create  an  abstraction  or 

 simplified  representation  of  a  complex  system  and  then  use  this  model  to 

 investigate  the  system’s  behaviour  under  di�erent  circumstances.  The 

 fundamental  problem  of  modelling  is  ensuring  that  the  model,  despite  being  an 

 abstraction, retains the essential properties of the modelled system. 

 The  most  commonly  used  approach  for  modelling  large  systems  is 

 representing  the  system  as  a  composition  of  many  interconnected  components. 

 This  modelling  paradigm  is  a  core  concept  of  the  system  dynamics, 

 agent-based,  and  discrete  event  simulation  modelling  approaches.  Applying 

 other  methodologies,  although  theoretically  possible,  may  present  challenges 

 that  are  hard  to  overcome.  For  example,  representing  a  complex 

 multi-component  system  as  a  Markov  state  machine  most  likely  results  in  a 

 machine with an enormously large and unmanageable state space. 

 The  central  problem  in  model-based  resilience  assessment  of  critical 

 infrastructures  is  model  validation.  The  standard  way  to  validate  is  to  compare 
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 the  model’s  behaviour  with  the  behaviour  of  the  modelled  system  under 

 equivalent  circumstances.  Validating  the  model  of  critical  infrastructure  is 

 usually  possible  for  normal  working  conditions.  However,  research  often 

 focuses  on  understanding  how  the  system  functions  in  exceptional 

 circumstances.  This  work  does  not  address  the  problem  of  model  validation 

 directly.  Instead,  it  o�ers  advances  in  creating  and  simulating  models  that  give 

 practitioners  a  powerful  and  flexible  tool  which  can  be  tuned  to  operate  at  the 

 chosen level of abstraction. 

 For  critical  infrastructures,  exceptional  events  of  significant  impact  are 

 natural  disasters,  overloadings,  or  massive  cyber-attacks.  These  are  rare  and 

 unique  events  which  may  never  be  seen  before  assessment.  The  lack  of 

 observations  for  these  events  makes  the  model  validation  problematic. 

 Therefore,  the  typical  approach  for  assessing  the  reliability  properties  of 

 critical  infrastructures  is  to  validate  the  model  reaction  against  the  observed 

 events  and  extrapolate  it.  This  approach,  however,  requires  a  lot  of 

 building-simulating-analysing  iterations  before  reaching  su�cient  similarity 

 between  model-generated  data  and  real-life  datasets.  It  is  di�cult  because  it 

 takes  significant  computation  resources  and  requires  modelling  tools  tailored 

 to the studied problem domain. 

 These  objective  di�culties  are  unlikely  to  be  solved  in  the  foreseeable 

 future.  However,  the  right  editing  tools  and  performant  simulation  engines  can 

 help reduce the time required to build, adjust, and run the model. 

 These  observations  are  based  on  the  experience  gained  while  working  on 

 the  SESAMO  project  [1]  at  the  Centre  for  Software  Reliability  in  City,  University 

 of  London.  In  this  project,  the  research  team  applied  the  “Preliminary 

 Interdependencies  Analysis”  methodology  to  assess  the  resilience  of  a  large 

 power transmission network. 

 “Preliminary  Interdependencies  Analysis”  [2]  is  a  methodology  that 

 helps  to  understand  interdependencies  between  the  elements  through  the 

 development  of  a  simulatable  model,  in  which  the  studied  part  of  the  system  is 

 represented as a set of semi-Markov continuous-time state machines. 

 The  method  introduces  stochastic  associations  as  a  generic  mechanism  of 

 modelling  dependencies  between  the  components  of  a  system  with  a  large 

 number  of  elements  without  explicitly  generating  the  entire  system  state  space, 
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 which  for  realistically  complex  critical  infrastructure  is  too  large.  The 

 application  of  the  method  revealed  the  following  problems:  the  modelling  of 

 large  systems  is  complicated  and  error-prone;  the  performance  of  the 

 simulation  engine  is  not  satisfactory;  the  editing  tools  do  not  provide  enough 

 support for the modeller. 

 To  adequately  address  these  issues,  the  questions  directing  this  research 

 have been established as follows: 

 -  What  is  the  most  e�ective  methodology  for  modelling  large-scale 

 network  systems  that  accurately  captures  the  intricacies  of  the  system's 

 behaviour,  including  both  probabilistic  elements  and  complex 

 deterministic  processes  such  as  power  distribution,  hydrodynamics,  and 

 meteorological patterns? 

 -  How  can  the  duration  required  for  obtaining,  aggregating,  and 

 interpreting  simulation  results  be  minimised,  potentially  through  the 

 implementation  of  extensive  high-performance  computing  (HPC) 

 optimization strategies and cloud-based parallelisation techniques? 

 -  Which  editing  features  significantly  enhance  the  e�cacy  of  the 

 modelling  process?  Could  it  be  features  such  as  visualisation  and  editing 

 tools,  access  to  component  libraries,  or  facilities  for  running  and 

 reporting? 

 -  How  do  the  constructed  models  and  their  subsequent  results 

 substantiate  existing  methodologies  for  assuring  system  safety  and 

 security?  Specifically,  is  it  possible  to  construct  reusable  patterns  that 

 align with current structural approaches? 

 -  What  strategies  can  be  implemented  to  achieve  the  reusability  of  the 

 constructed  models  and,  in  doing  so,  expedite  subsequent  research 

 projects? 

 The  methodology  presented  in  this  thesis  provides  the  answers  to  the 

 above  questions.  It  reduces  the  complexity  of  modelling  large  systems  by 

 introducing  hierarchical  composition  and  encapsulation.  The  new  simulation 

 engine  and  task  distributor  improve  the  simulation  performance  and 

 horizontal  scaling.  The  new  editor  increases  e�ciency  and  provides  a 

 consistent  user  interface.  The  developed  methodology  and  solutions  were 
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 applied  while  researching  the  e�ects  of  cyber-security  attacks  on  Nordic32,  a 

 power transmission network. 

 1.2 Thesis summary 

 The organisation of this thesis is as follows: 

 ●  Chapter  1,  “Introduction”,  defines  research  objectives,  summarises  the 

 results, and provides the list of publications. 

 ●  Chapter  2,  “Background  Review”,  reviews  the  fields  of  study  relevant  to 

 the  research:  definitions,  analysis,  and  modelling  of  critical 

 infrastructures;  system  resilience  and  assessment;  high-performance 

 computing. 

 ●  Chapter  3,  “Assurance  Cases  for  Critical  Infrastructures”,  provides 

 research  results  supporting  reliability  assessment  in  assurance  cases 

 with stochastic models. 

 ●  Chapter  4,  “  Stochastic  Modelling  and  Simulation  ”,  presents  research 

 results on developing modelling methodology and simulation engine; 

 ●  Chapter  5,  “Applications”,  demonstrates  the  applicability  of  the 

 developed modelling methodology and tools; 

 ●  And  final  Chapter  6,  “Conclusion”,  concludes  the  dissertation  with  a 

 summary and a discussion on the need for future research. 

 ●  Appendix  1,  “Nordic  32”,  contains  an  overview  of  the  Nordic32  power 

 transmission network. 

 ●  Appendix  2,  “Preliminary  Interdependency  Analysis”,  provides  an 

 overview of the Preliminary Interdependency Analysis methodology. 
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 1.3 Publications 

 Netkachov  O,  Popov  P,  Salako  K.  Quantification  of  the  impact  of  cyber  attack 

 in  critical  infrastructures.  Lecture  Notes  in  Computer  Science  (including 

 subseries  Lecture  Notes  in  Artificial  Intelligence  and  Lecture  Notes  in 

 Bioinformatics). Springer; 2014. pp. 316–327. 

 doi:10.1007/978-3-319-10557-4_35 

 A  study  on  the  impact  of  cyber-attacks  on  complex  industrial  systems  is 

 reported  in  this  paper.  The  approach  involves  building  a  hybrid  model 

 comprising  the  system  under  study  and  an  adversary.  The  model  is  applied  to  a 

 complex  case  study  of  a  reference  power  transmission  network  (NORDIC  32), 

 which  is  enhanced  with  a  detailed  model  of  the  computer  and  communication 

 system  used  for  monitoring,  protection,  and  control.  The  resilience  of  the 

 modelled  system  is  analysed  under  di�erent  scenarios,  including  a  baseline 

 scenario  where  the  system  operates  in  the  presence  of  accidental  failures 

 without  cyber-attacks  and  scenarios  where  cyber-attacks  can  occur.  The 

 study's findings are discussed, and future research directions are outlined. 

 The  main  research  results  presented  in  this  article  contribute  to  Chapter 

 4  and  Chapter  5.  The  methodology,  modelling  language,  and  simulation 

 approach  are  described  in  Chapter  4.  Chapter  5  focuses  on  applying  the 

 methodology,  and  presents  the  model  and  research  results  on  resilience 

 assessment. 

 NNetkachova,  K.,  Netkachov,  O.,  Bloomfield,  R.  (2015).  Tool  Support  for 

 Assurance  Case  Building  Blocks  Providing  a  Helping  Hand  with  CAE  .  In:  F. 

 Koornneef  and  C.  van  Gulijk  (Eds.):  Computer  Safety,  Reliability,  and  Security, 

 SAFECOMP  2015  Workshops,  ASSURE,  DECSoS,  ISSE,  ReSA4CI,  and  SASSUR, 

 Delft,  The  Netherlands,  September  22,  2015,  Proceedings.  Lecture  Notes  in 

 Computer  Science,  vol.  9338,  pp.  62-71,  2015.  Springer  International 

 Publishing Switzerland. doi:10.1007/978-3-319-24249-1_6 

 The  presented  tool  and  methodology  in  this  paper,  which  are  designed  to 

 structure  arguments  in  assurance  cases,  have  potential  applications  for 
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 reliability  assessment  and  assurance  cases.  The  methodology  of 

 Claims-Arguments-Evidence  (CAE)  Building  Blocks  provides  a  set  of 

 archetypal  fragments  to  support  the  structuring  of  cases  in  a  formal  and 

 systematic  manner.  The  tool  automates  the  creation  of  claim  structures  and 

 manages  CAE  blocks,  which  facilitate  the  development  and  maintenance  of 

 structured  assurance  cases.  Additionally,  the  paper  proposes  new  visual 

 guidelines  named  "Helping  hand"  to  aid  in  the  application  of  the  building 

 blocks.  The  tool  has  been  implemented  on  the  Adelard  ASCE  platform,  and  its 

 intended  audience  includes  assurance  case  developers  and  reviewers.  The  tool 

 and  methodology  provide  a  valuable  framework  for  building  structured 

 assurance  cases  and  can  potentially  enhance  the  reliability  assessment  of 

 critical systems. 

 The  research  results  presented  in  the  article  are  related  to  Chapter  3, 

 which  focuses  on  applying  the  introduced  approach  for  assessing  the  reliability 

 properties of a system. 

 Netkachova,  K.,  Bloomfield,  R.,  Popov,  P.,  Netkachov,  O.  (2015).  Using 

 Structured  Assurance  Case  Approach  to  Analyse  Security  and  Reliability  of 

 Critical  Infrastructures.  In:  Koornneef,  F.,  van  Gulijk,  C.  (Eds.):  Computer 

 Safety,  Reliability,  and  Security,  SAFECOMP  2015  Workshops,  ASSURE, 

 DECSoS,  ISSE,  ReSA4CI,  and  SASSUR,  Delft,  The  Netherlands,  September  22, 

 2015,  Proceedings.  Lecture  Notes  in  Computer  Science,  vol.  9338,  pp.  345-354. 

 Springer International Publishing Switzerland. 

 doi: 10.1007/978-3-319-24249-1_30 

 This  paper  describes  an  approach  for  justifying  the  use  of  models  to  ensure  the 

 security,  reliability,  and  resilience  of  critical  infrastructures  (CI).  Due  to  the 

 challenges  posed  by  complex  and  interdependent  systems  and  the  pace  and 

 scale  of  attacks,  model-based  approaches  and  probabilistic  design  are 

 necessary  to  evaluate  CI.  However,  it  is  essential  to  assess  the  trustworthiness 

 of  these  models.  To  this  end,  the  paper  presents  a  structured  assurance  case 

 framework  based  on  Claims,  Arguments,  and  Evidence  (CAE).  The  Preliminary 

 Interdependency  Analysis  (PIA)  method  and  platform  are  utilised  in  a  case 

 study  involving  a  reference  power  transmission  network  with  an  industrial 
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 distributed  system  of  monitoring,  protection,  and  control.  The  paper  discusses 

 the  benefits  of  the  modelling  and  assurance  case  structuring  approaches, 

 highlights  findings  from  the  case  study,  and  outlines  future  work  directions.  In 

 conclusion,  this  approach  provides  a  valuable  framework  for  evaluating  the 

 trustworthiness  of  models  used  in  ensuring  critical  infrastructure  security, 

 reliability, and resilience. 

 A  core  contribution  to  the  content  of  Chapter  3  is  the  approach  described 

 in  this  article,  which  involves  using  stochastic  models  for  assessing  system 

 properties in assurance cases. 

 Netkachov  O,  Popov  P,  Salako  K.  Model-based  evaluation  of  the  resilience  of 

 critical  infrastructures  under  cyber  attacks  .  Critical  Information 

 Infrastructures  Security.  Cham:  Springer  International  Publishing;  2016.  pp. 

 231–243. doi:10.1007/978-3-319-31664-2_24 

 This  paper  reports  on  the  results  of  improved  models  and  simulation  engines, 

 which  build  on  the  work  presented  in  a  previous  article  titled  "Quantification  of 

 the  impact  of  cyber  attacks  in  critical  infrastructures."  The  models  and 

 simulation  engines  presented  in  this  paper  are  applied  to  a  complex  case  study, 

 specifically  a  reference  power  transmission  network  enhanced  with  a  detailed 

 model  of  the  computer  and  communication  network  used  for  monitoring, 

 protection,  and  control,  compliant  with  the  international  standard  IEC  61850. 

 The  improved  models  utilise  a  hybrid  approach,  where  accidental  failures  and 

 malicious  behaviour  are  modelled  stochastically,  while  the  consequences  of 

 these  failures  and  attacks  are  modelled  deterministically.  The  results  of  the 

 simulations,  which  include  various  scenarios  of  cyber  attacks,  are  discussed 

 and  analysed  in  the  context  of  the  resilience  of  the  modelled  system.  The 

 contributions  of  the  work  are  mainly  related  to  the  content  of  Chapters  4  and  5, 

 which  describe  the  methodology,  modelling  language,  simulation  approach, 

 and applications of the methodology to the case study. 
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 Netkachov  O,  Popov  P,  Salako  K.  Quantitative  Evaluation  of  the  E�cacy  of 

 Defence-in-Depth  in  Critical  Infrastructures.  In:  Flammini  F,  editor. 

 Resilience of Cyber-Physical Systems. Springer; 2019. pp. 89–121. 

 doi:10.1007/978-3-319-95597-1_5 

 The  feasibility  of  quantitative  cyber-risk  assessment  in  cyber-physical 

 systems  (CPS),  such  as  power-transmission  systems,  is  discussed  in  this  book 

 chapter.  Experimental  evidence,  using  Monte-Carlo  simulation,  is  presented  to 

 demonstrate  that  the  losses  from  a  specific  cyber-attack  type  can  be  accurately 

 established  using  an  abstract  model  of  cyber-attacks.  The  benefits  of  deploying 

 defence-in-depth  (DiD)  against  failures  and  cyber-attacks  for  two  types  of 

 attackers  are  established.  This  study  provides  insight  into  the  benefits  of 

 combining  design  diversity  with  periodic  "proactive  recovery"  of  protection 

 devices  to  harden  some  of  the  protection  devices  in  a  CPS.  The  results  are 

 discussed  in  the  context  of  making  evidence-based  decisions  about 

 maximising the benefits of DiD in a particular CPS. 

 The  approach  employed  in  this  study  represents  an  evolution  of  the 

 model  and  simulation  engine  used  in  “Model-Based  Evaluation  of  the 

 Resilience  of  Critical  Infrastructures  under  Cyber  Attacks”  and  is  a  significant 

 contribution  to  Chapter  4.  The  primary  contribution  to  the  content  of  Chapter  5 

 is the results obtained from the DiD study. 
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 2. Background Review 

 2.1 Modelling Critical Infrastructures 

 In  the  context  of  a  company,  the  infrastructure  is  defined  by  the  ISO  standard 

 9001  as  a  system  of  facilities,  services,  equipment,  and  other  assets  that 

 support  the  organisation  in  delivering  a  service  or  product  to  its  customers  or 

 clients.  This  list  of  assets  includes  (but  is  not  limited  to)  premises,  supplies, 

 equipment, and information. 

 Critical  Infrastructure  (CI)  di�ers  from  infrastructure  by  the  e�ect  its 

 disturbance  causes  on  the  system.  As  defined  in  the  US  President's  Commission 

 on  Critical  Infrastructure  Protection  Report  [3]  ,  the  US's  critical 

 infrastructures  “are  so  vital  that  their  incapacitation  or  destruction  would  have 

 a  debilitating  impact  on  defence  or  economic  security.”  The  infrastructures  in 

 the  scope  of  the  commission  are  information  and  communications,  electrical 

 power  systems,  gas  and  oil  production,  storage  and  transportation,  banking 

 and  finance,  transportation,  water  supply  systems,  emergency  services,  and 

 government  services.  In  the  EU,  a  critical  Infrastructure  is  defined  by  Council 

 Directive  2008/114/EC  as  “an  asset,  system  or  part  thereof  located  in  Member 

 States  which  is  essential  for  the  maintenance  of  vital  societal  functions,  health, 

 safety,  security,  economic  or  social  well-being  of  people,  and  the  disruption  or 

 destruction  of  which  would  have  a  significant  impact  in  a  Member  State  as  a 

 result  of  the  failure  to  maintain  those  functions”  [4]  .  Specifically,  the  directive 

 defines  "European  critical  infrastructure"  as  “critical  infrastructure  located  in 

 Member  States  the  disruption  or  destruction  of  which  would  have  a  significant 

 impact  on  at  least  two  Member  States.”.  The  UK  government  defines  critical 

 national  infrastructure  as  “Those  infrastructure  assets  (physical  or  electronic) 

 that  are  vital  to  the  continued  delivery  and  integrity  of  the  essential  services 

 upon  which  the  UK  relies,  the  loss  or  compromise  of  which  would  lead  to  severe 

 economic  or  social  consequences  or  to  loss  of  life”  [5]  .  The  UK  government 

 authority  for  protective  security  advice  to  the  UK  national  infrastructure, 

 National  Protective  Security  Authority  (NPSA),  recognises  13  national 

 infrastructure  sectors:  Chemicals,  Civil  Nuclear  Communications,  Defence, 
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 Emergency  Services,  Energy,  Finance,  Food,  Government,  Health,  Space, 

 Transport, and Water  [6]  . 

 The  "critical  infrastructure"  term  is  also  used  in  application  to  a  company 

 or  country,  defining,  in  a  broader  sense,  the  system's  connectivity  and 

 distribution  assets  and  processes  crucial  for  the  system's  existence  - 

 significant  damage  of  these  assets  or  disruption  of  the  processes  may  cause  the 

 system to become extinct. 

 The  critical  infrastructure  consists  of  highly  interdependent  systems.  For 

 example,  financial  services  highly  depend  on  information  and  communication 

 services,  while  the  latter  highly  depend  on  electricity.  Electrical  production  and 

 distribution,  in  turn,  require  transport  and  financial  services.  Although  the 

 unprecedented  level  of  integration  of  infrastructural  systems  nowadays 

 increases  e�ciency,  it  also  can  lead  to  increased  damage  as  failures  can 

 propagate in many directions through the network of the system components. 

 The  dominant  modelling  approach  in  the  research  community  is  to 

 represent  CI  as  a  graph  in  which  nodes  represent  infrastructure  components, 

 either  physical  or  virtual,  and  edges  correspond  to  the  dependencies  between 

 the  components  [7]  [8]  .  Specific  components,  their  properties,  types  of 

 dependencies, and modelling algorithms vary significantly between models. 

 Within  computer  systems,  the  specific  physical  and  logical  components 

 (including  human  participants)  are  modelled  by  creating  corresponding 

 software  agents,  e.g.,  processes  or  objects.  It  is  impossible  to  create  a  perfect 

 digital  copy  of  a  system,  “all  models  are  wrong”  [9]  .  Instead,  the  common 

 practical  approach  is  to  model  the  relevant  parts  of  the  system  at  some  level  of 

 abstraction,  which  includes  validating  whether  the  created  model  satisfactorily 

 represents  the  system  for  known  scenarios.  A  su�cient  similarity  between  the 

 model  and  the  actual  system  in  known  scenarios  provides  a  foundation  for 

 trusting the model and deploying it under major stresses. 

 The  important  property  of  the  modelling  framework  is  how  general  it  is.  A 

 general  modelling  framework  is  applicable  in  many  domains.  It,  however,  may 

 require  time  and  e�ort  to  apply  it  for  a  particular  domain  as  some  unique 

 processes,  relationships,  and  entities  should  be  implemented.  In  contrast, 

 domain-specific  frameworks  usually  fit  very  well  for  the  specific  problem,  but 

 the reusability of the constructed models is usually very limited. 
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 The  frameworks  are  very  di�erent  regarding  a  community  of  users, 

 available  training  materials,  and  commercial  support.  These  properties,  of 

 course,  correlate  with  the  generality  of  the  framework.  Unsurprisingly,  the 

 more  general  frameworks  have  a  more  extensive  community,  but  specialised 

 frameworks may contain quite sophisticated modelling artefacts. 

 According  to  Pederson  et  al.  [10]  and  Eusgeld  et  al.  [11]  comparative 

 reviews,  the  main  approaches  to  modelling  CIs  are  agent-based,  system 

 dynamics,  input-output  model,  physics  models,  Petri  Nets,  and  Markov 

 Chains. 

 Agent-Based  Modelling  (ABM)  represents  the  system  as  a  stateful 

 environment  that  hosts  agents  -  individual  entities  which  can  observe  the 

 environment's  state  and  other  agents  through  sensors  and  act  according  to 

 their  perceptions  by  modifying  the  state  or  interacting  with  other  agents.  The 

 agent's  internal  decision-making  behaviour  can  be  implemented  in  various 

 ways,  including  machine  learning  (neural  networks,  etc),  state  machines 

 (either  with  Markov  property  or  without,  finite  or  infinite,  deterministic  or 

 probabilistic, etc), decision trees, and others. 

 System  Dynamics  is  a  method  to  analyse  the  system's  behaviour  over 

 time.  The  system  is  modelled  as  a  set  of  processes  and  state  variables.  The 

 processes  update  the  state  variables  either  by  decreasing  (negative  feedback) 

 or increasing them (positive feedback). 

 Petri  Net  represents  a  system  as  a  set  of  places,  transitions,  and  arcs  [12]  . 

 The  dynamic  aspect  of  the  system  is  represented  via  tokens  (or  marks)  that 

 sojourn  in  places  and  move  through  the  arcs  when  transitions  are  enabled.  This 

 model  was  extended  by  adding  non-deterministic  behaviour  (Stochastic  Petri 

 Nets  [13]  )  and  later  with  timed  transitions  (Generalised  Stochastic  Petri  Nets, 

 GSPNs  [14]  [15]  ). 

 A  system  can  be  represented  as  a  Markov  Chain  (or  corresponding  Markov 

 State  Machine)  when  its  state  is  a  combination  of  discrete  variables  and 

 transitions  from  one  state  to  another  are  Markovian  (memoryless,  not 

 dependent on the previous states). 

 ABM  is  the  most  frequently  used  method  for  modelling  CIs.  14 

 methodologies  out  of  31  reviewed  by  Pederson  et  al.  [10]  represent  and  model 
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 CIs  with  ABM.  In  33  methodologies  reviewed  by  Eusgeld  et  al.  [11]  ABM  is  used 

 in 13, and the use of other methods is shown in the table 2.1. 

 Underlying method  No. of tools 

 Agent-Based Method  13 

 Geographic Information System  6 

 System Dynamics  4 

 Statistical Data Analysis  3 

 Monte Carlo  3 

 Input-Output Methods  2 

 Graph Theory  2 

 Control Theory  1 

 Miscellaneous  1 

 Table 2.1: Underlying methods used in tools for modelling and simulation of 

 CIs in review by Eusgeld et al. 

 Bonabeau  [16]  stated  three  main  benefits  of  ABM:  i)  it  captures  emergent 

 phenomena,  which  result  from  the  interactions  of  individual  entities  and 

 cannot  be  reduced  to  the  system’s  parts;  ii)  it  provides  a  natural  description  of 

 a  system  in  a  sense  that  it  is  more  natural  to  describe  how  shoppers  move  in  a 

 supermarket  than  to  come  up  with  the  equations  that  govern  the  dynamics  of 

 the  density  of  shoppers;  iii)  it  is  flexible  as  new  behaviours  or  agent  types  can 

 be added in the straightforward model. 

 Object-Oriented  Programming  (OOP)  has  a  lot  in  common  with  ABM. 

 Luna  and  Stefansson  [17]  noted  the  similarity  between  OOP  concepts  and  ABM: 

 encapsulation,  inheritance  and  polymorphism  correspond  to  the 

 self-contained  nature  of  agents  of  some  types  participating  in  communication 

 based  on  agent  type's  features.  The  basic  OOP  mechanics,  however,  are  too 

 limited  to  support  a  variety  of  behaviours  like  asynchronous  communications, 

 di�erent  internal  behaviours,  control  and  observing  states.  As  a  result,  many 

 extensions,  frameworks,  libraries  and  tools  emerged  aiming  to  circumvent 

 these  limitations  in  modern  programming  languages  for  particular 

 environments and problems. 
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 Macal  and  North  [18]  in  their  tutorial  on  ABM  and  simulation  defined  the 

 following activities: 

 ●  thinking  through  an  agent  model  -  identify  structural  elements  of  the 

 problem  domain,  their  level  of  autonomy,  structure,  relationships  with 

 other  elements  and  environment,  behaviours,  motivation  and  goals, 

 emergence; 

 ●  model  agents  -  improve  general  understanding  developed  while 

 thinking  through  the  agent  model  by  defining  formal  types  (classes)  and 

 their attributes; 

 ●  describe  agent-based  models  in  some  kind  of  formal  notation,  especially 

 consider Overview, Design Concepts, and Details (ODD); 

 ●  design  model  element  -  identify  reusable  elements,  construct  agents 

 from templates, apply design patterns; 

 ●  advance  model  -  enrich  it  with  distributed  computing,  machine 

 learning,  GIS  data  or  layout,  fetch  relevant  data  from  relational 

 databases,  consider  version  control  system  and  development 

 environment; 

 ●  use  software  and  tools  -  bring  the  designed  and  advanced  model  to  life 

 (perform  computation)  either  by  using  spreadsheet  editors, 

 computational  systems,  dedicated  ABM  modellers  and  simulators,  or 

 programming language. 

 Due  to  the  highly  complex  nature  of  particular  CIs,  many  studies  have 

 resulted  in  the  construction  of  hybrid  models,  which  are  created  by  combining 

 multiple  models  of  di�erent  kinds,  e.g.,  Markov  chains,  agent-based,  and 

 physics-based.  Application  of  PIA  methodology  [2]  to  modelling  of  the  power 

 production  and  transmission  CI  to  analyse  risks  in  the  context  of  the  IRRIIS 

 project  is  an  example  of  a  hybrid  model,  where  the  state  is  captured  by 

 probabilistic  state  machines  with  the  CI  dependencies  modelled  by  triggers 

 changing  the  probabilistic  characteristics  of  the  machines'  transitions  and 

 more  complex  relationships  (relations  between  power  grid  substations)  are 

 handled by the power flow solver (physics model). 

 The  findings  of  the  studies  surveyed  in  this  chapter  indicate  an  ongoing 

 necessity  for  an  enhanced  modelling  framework  that  fulfils  several  key  criteria. 

 Specifically,  the  framework  must  possess  generality,  allowing  for  broad 
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 application  across  various  domains  and  disciplines.  Furthermore,  the 

 framework  should  leverage  the  latest  advancements  in  computing  and 

 modelling  technologies,  ensuring  accuracy  and  relevance.  Additionally,  it 

 should  be  user-friendly,  facilitating  ease  of  use  by  researchers  and 

 practitioners.  Not  least,  the  framework  should  make  use  of  high-performance 

 computing  techniques  as  studies  with  CI  typically  require  extremely  high 

 computational  intensity.  These  criteria  are  fundamental  in  achieving  an 

 e�ective,  e�cient,  and  contemporary  modelling  framework  essential  for 

 addressing the challenges of the modern world. 

 2.2 Assessing Resilience 

 The  work  “Resilience  and  Stability  of  Ecological  Systems”  [19]  is  frequently 

 cited  as  influential  work  in  which  Holling  C.  S.  demonstrated  the  application  of 

 the  principle  of  resilience  to  ecological  systems  [20]  ,  [21]  .  In  this  work, 

 resilience  was  defined  as  a  measure  of  the  ability  of  the  system  to  absorb 

 changes  in  state  variables  and  persist.  Since  then,  “resilience”  emerged  as  a 

 transdisciplinary  concept  that  applies  to  systems  in  a  range  of  disciplines: 

 social  science,  construction,  engineering,  economics,  medicine,  environmental 

 studies and many others  [22]  . 

 The  meaning  of  the  term  “resilience”  experienced  a  significant  shift  from 

 the  Holling’s  definition,  and  in  modern  publications  “resilience”  is  described 

 or defined as: 

 ●  “Cyber  resilience  refers  to  the  ability  of  digital  systems  to  prepare  for, 

 withstand,  rapidly  recover  and  learn  from  deliberate  attacks  or 

 accidental  events.  It  encompasses  people-centred  aspects  of  resilience 

 such  as  reporting,  crisis  management  and  business  continuity.”  cyber 

 safety and security  [23]  ; 

 ●  “an  ability  to  deliver,  maintain,  improve  service  when  facing  threats  and 

 evolutionary  changes”,  information  and  communication  technology 

 [22]  ; 

 ●  “the  ability  of  an  organisation  to  absorb  and  adapt  in  a  changing 

 environment  to  enable  it  to  deliver  its  objectives  and  to  survive  and 

 prosper”, organisational management  [24]  ; 
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 ●  “by  the  functionality  of  an  infrastructure  system  after  a  disaster  and 

 also  by  the  time  it  takes  for  a  system  to  return  to  pre-disaster  levels  of 

 performance”, transportation  [25]  ; 

 ●  “a  tendency  has  been  to  use  it  [resilience],  in  each  specific  community, 

 to  indicate  a  more  flexible,  more  dynamic  and/or  less  prescriptive 

 approach  to  achieving  dependability,  compared  to  common  practices  in 

 that community”  [26]  ; 

 ●  “the  ability  to  adapt  to  changing  conditions  and  withstand  and  rapidly 

 recover  from  disruption  due  to  emergencies”,  US  Department  of 

 Homeland Security  [27]  ; 

 ●  “Infrastructure  resilience  is  the  ability  of  assets  and  networks  to 

 anticipate,  absorb,  adapt  to  and  recover  from  disruption.”  UK  Cabinet 

 O�ce  [28]  . 

 Pimm's  definition  of  the  resilience,  “the  rate  at  which  population  density 

 returns  to  equilibrium  after  a  disturbance  away  from  equilibrium”,  [29] 

 although  attributed  as  “engineering  resilience”  to  be  distinguishable  from 

 “ecological  resilience”  [30]  ,  was  used  as  in  many  research  project  and 

 publications. 

 Bruneau  et  al.  [31]  proposed  a  measure  of  resilience  as  a  total  loss  in 

 quality occurred as a result of an event: 

 where  t  0  is  the  time  of  the  event,  t  1  is  the  time  of  full  recovery,  Q  (  t  )  is  the  quality 

 of the analysed system, ranging from 0 (no service) to 100 (no degradation). 

 Tierney  and  Bruneau  [25]  introduced  a  visual  concept  of  the  “resilience 

 triangle”,  shown  in  figure  2.1.  This  concept  was  used  by  Adams  et  al.  [32]  to 

 analyse  the  e�ect  of  extreme  weather  conditions  on  transportation.  Their 

 quantitative  approach  for  calculating  resilience  resulted  in  categorising 

 weather  conditions  by  the  e�ect  they  cause.  Their  work  also  shows  two  stages 

 of the system's response to the disruption: reduction and recovery. 
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 Figure 2.1: Resilience triangle, introduced by Tierney and Bruneau. 

 Gluchshenko  and  Foerster  [33]  proposed  a  quantitative  measure  of 

 resilience  based  on  comparing  time  of  deviation  T  d  with  time  of  recovery  T  r  , 

 where  the  time  of  deviation  is  a  time  between  leaving  the  normal  state  and 

 reaching  an  extremum  and  the  time  of  recovery  is  a  time  between  an  extremum 

 and returning to the normal state. They introduced three levels of resilience: 

 ●  high  resilience  -  the  time  of  deviation  is  considerably  longer  than  the 

 time of recovery, i.e.  T  d  ≫  T  r  ; 

 ●  medium  resilience  -  the  time  of  deviation  and  the  time  of  recovery  are 

 approximately equivalent, i.e.  T  d  ≈  T  r  ; 

 ●  low  resilience  -  the  time  of  deviation  is  considerably  shorter  than  the 

 time of recovery, i.e.  T  d  ≪  T  r  . 

 In  addition,  they  proposed  measurable  robustness  defined  as  the  amount 

 of  stress  the  system  can  accumulate  without  leaving  the  normal  state,  which 

 can be alternatively defined as a time the system withstands a deviation. 

 The  figure  2.2  demonstrates  the  generalised  resilience  triangle  for  a 

 highly  resilient  system,  system’s  robustness  R,  time  of  deviation  T  d  ,  time  of 

 recovery  T  r  ,  as  defined  in  Gluchshenko  and  Foerster.  As  the  load  on  the  system 

 increases,  the  system  continues  to  operate  at  its  normal  level  until  its 

 robustness  is  depleted.  Then,  the  system  gradually  decreases  its  level  of 

 operation  until  the  accumulated  stress  is  dissipated.  Then  the  system  quickly 

 returns to normal operation. 
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 Figure 2.2: Conceptual view of resilience triangle for a highly resilient system. 

 The  research  studies  and  engineering  techniques  based  on  the  definition 

 of  resilience  as  the  rate  of  recovery  recently  formed  a  recognisable  engineering 

 specialisation  known  as  “resilience  engineering”  [34]  .  The  recovery  from 

 disruption  is  part  of  the  o�cial  definition  of  the  resilience  of  the  US 

 Department of Homeland Security  [27]  and the UK Cabinet  O�ce  [28]  . 

 The  framework  for  assessing  resilience  proposed  by  Bruneau  et  al.  (2003) 

 [31]  conceptualises  resilience  of  socio-technical  systems  and  infrastructures  as 

 encompassing  the  technical,  organisational,  social,  and  economic  dimensions 

 and  consisting  of  the  robustness,  redundancy,  resourcefulness,  and  rapidity 

 properties.  It  defines  resilience  as  an  integral  loss  in  quality  over  time  and 

 suggests  finding  di�erent  performance  measures  for  systems  under 

 assessment. 

 Bloomfield  and  Gashi  (2008)  proposed  a  risk-based  framework  for 

 assessing  resilience  based  on  distinguishing  two  types  of  resilience:  to  design 

 basic  threats  and  their  e�ect  on  availability,  robustness,  confidentiality, 

 integrity  and  resilience  beyond  basic  design  threats  -  to  threats  that  are 

 unknown  when  the  system  is  designed  or  assessed.  The  proposed  framework 

 was  built  by  combining  existing  risk  assessment  techniques  such  as  HAZOP, 

 the  definition  of  resilience  and  research  trends  in  assurance  cases,  the 

 discovery  of  interdependencies,  formal  methods,  static  analysis, 
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 fault-tolerance  assessment,  benchmarking,  modelling  with  a  view  on  the 

 assessed system as a system of systems. 

 Devanandham  and  Ramirez-Marquez  [20]  provided  an  illustrative 

 example  of  assessing  change  in  system  resilience  when  comparing  recovery 

 strategies.  Starting  from  defining  the  loss  function  (figure-of-merit)  and 

 deriving  quantitative  resilience  metrics  from  this  function,  they  set  system 

 boundaries,  identify  risks,  build  models,  perform  calculations  and  analyse 

 results. 

 The  brief  and  concise  algorithm  for  assessing  the  resilience  of  a  system 

 was published by Gluchshenko and Foerster  [33]  : 

 ●  define and describe the system and its boundary to the environment; 

 ●  specify the scale and/or the level of hierarchy to observe; 

 ●  define the performance indicators; 

 ●  specify the reference state of the system; 

 ●  indicate  and  classify  disturbances  by  type,  frequency,  intensity  and 

 duration; 

 ●  set  the  time  horizon  and  investigate  resilience  or  robustness  of  the 

 system. 

 Based  on  the  observed  studies  on  assessing  resilience  and  experience  in 

 modelling  critical  infrastructures,  it  can  be  concluded  that  evaluating  the 

 resilience  of  large  cyber-physical  systems  to  significant  events  requires  the 

 creation  of  a  hybrid  model  that  incorporates  both  the  system  and  the 

 adversary.  This  model  should  be  constructed  at  an  appropriate  level  of 

 abstraction  and  verified  by  comparing  its  predictions  with  data  collected  from 

 observed  events.  Once  the  model  is  verified,  the  system's  resilience  can  be 

 assessed  by  observing  the  service  degradation  of  the  model  when  the 

 disturbing  factor  is  introduced  and  monitoring  the  recovery  process  as  the 

 disturbing  factor  is  lifted.  This  approach  provides  valuable  insights  into  the 

 system's  resilience,  facilitating  the  identification  of  vulnerabilities  and  the 

 development  of  mitigation  strategies  to  enhance  the  system's  overall 

 resilience. 
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 2.3 High-Performance Computing 

 High-performance  computing  (HPC)  refers  to  using  computer  clusters, 

 supercomputers,  and  parallel  processing  techniques  to  perform 

 computationally  intensive  tasks.  It  requires  specialised  hardware  devices  to 

 achieve high processing power: 

 -  CPUs:  Central  Processing  Units  (CPUs)  are  the  main  processing  units  in 

 HPC  systems.  CPUs  are  responsible  for  executing  instructions  and 

 performing  arithmetic  and  logical  operations.  HPC  systems  often  use 

 multiple  CPUs,  which  can  be  arranged  in  clusters  to  provide  increased 

 processing power. 

 -  GPUs:  Graphics  Processing  Units  (GPUs)  are  specialised  processors 

 designed  to  handle  complex  graphical  computations.  However,  GPUs  are 

 also useful for HPC, particularly for parallel processing tasks. 

 -  FPGAs:  Field-Programmable  Gate  Arrays  (FPGAs)  are  specialised 

 hardware  devices  that  can  be  reconfigured  to  perform  specific  tasks. 

 FPGAs  are  particularly  useful  for  processing  large  datasets  and  can  be 

 customised to handle specific data types and processing needs. 

 -  ASICs:  Application-Specific  Integrated  Circuits  (ASICs)  are  specialised 

 chips  designed  for  a  specific  purpose.  In  HPC,  ASICs  are  used  for 

 specialised  applications  requiring  high  processing  power,  such  as 

 encryption and decryption. 

 -  Memory:  Memory  is  a  crucial  component  in  HPC  systems,  as  it 

 determines  the  amount  of  data  that  can  be  processed  at  once.  HPC 

 systems  often  use  high-speed  memory  devices,  such  as  solid-state 

 drives  (SSDs)  or  dynamic  random-access  memory  (DRAM),  to  achieve 

 faster processing speeds. 

 -  Interconnects:  Interconnects  are  specialised  networking  devices  used  to 

 connect  multiple  CPUs,  GPUs,  and  other  devices  in  a  high-performance 

 computing  cluster.  High-speed  interconnects  are  essential  for  achieving 

 the low latency and high bandwidth required for HPC applications. 

 Cloud-based  HPC  has  become  increasingly  popular  recently  as  businesses 

 and  individuals  seek  fast,  e�cient,  and  cost-e�ective  ways  to  access 

 specialised  HPC  hardware  devices  and  configurations  without  investing  in  their 
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 infrastructure.  Cloud  companies  have  recognised  the  demand  for  HPC 

 capabilities,  and  many  are  now  o�ering  high-performance  computing  devices 

 on  demand.  These  devices  typically  include  powerful  processors,  large 

 amounts  of  memory,  and  specialised  software  and  tools  for  running  complex 

 applications.  Cloud-based  HPC  solutions  also  o�er  flexibility  in  terms  of 

 scalability,  as  users  can  easily  adjust  their  computing  resources  as  their  needs 

 change.  Businesses  and  organisations  can  easily  ramp  up  their  computing 

 power during peak periods or reduce their usage during lower demand. 

 As  a  recognisable  field  of  study,  HPC  focuses  not  only  on  hardware  but 

 also  on  theoretical  and  practical  aspects  of  algorithm  implementations.  HPC  is 

 generally  about  achieving  maximum  performance  for  a  family  of  algorithms  by 

 utilising  available  computational  resources  or  engineering  a  custom  solution 

 [35]  . 

 The  software  frameworks  and  libraries  for  HPC  address  the  challenges 

 raised  by  the  problem  of  orchestrating  a  computation  on  a  large  number  of 

 processors,  considering  network  bandwidth,  correctness  and  ease  of 

 programming.  OpenMP  is  considered  an  industry  standard  for  implementing 

 HPC algorithms using shared memory  [36]  . 

 The  computer  program's  performance  depends  on  how  e�ectively  the 

 program  manages  the  CPU  and  communication  devices.  On  the  micro-level,  it 

 may  include  minimising  cache  misses,  organising  the  code  in  a  way  that  keeps 

 the  CPU  conveyor  busy,  reducing  wrong  branch  prediction,  and  optimising 

 memory  reads.  The  macro-level  computational  performance  depends  on  the 

 task scheduler, managing shared resources and utilising network bandwidth. 

 Machine  code  instructions  are  executed  by  CPU  directly,  thus 

 implementing  algorithms  directly  in  machine  codes  (or  Assembler)  and 

 applying  the  platform-specific  optimisations  gives  the  maximum 

 performance.  However,  the  result  might  not  be  transferable  to  other 

 architectures.  The  Lack  of  high-level  abstractions  for  data  structures  in 

 Assembler  makes  algorithm  implementations  more  verbose  and  more 

 challenging  to  maintain  than  implementations  in  other  languages.  Progress  in 

 compilers  capable  of  generating  e�cient  code  with  applied 

 architecture-specific  optimisations  from  high-level  languages  made 

 28 

https://paperpile.com/c/kEIrDG/hpy2r
https://paperpile.com/c/kEIrDG/rhQcl


 programming  in  Assembly  completely  ignored  while  considering  language  for 

 high-performance algorithm implementation. 

 According  to  many  studies  and  benchmarks,  the  top  most  popular  and 

 performant  languages  for  HPC  are  C/C++  and  Fortran.  However,  there  are  also 

 languages  that  demonstrate  performance  similar  to  C/C++  on  a  range  of  tasks, 

 also  providing  additional  benefits  to  developers:  simplified  memory 

 management, abstraction for data structures, advanced syntax, and portability. 

 Performance  comparison  of  29  modern  programming  languages  [37] 

 shows  that  the  most  performant  implementations  of  the  benchmarked 

 algorithms  are  in  C.  Other  languages  with  comparable  performance:  C++,  Rust, 

 Julia,  Fortran,  C#,  Chapel,  Ada,  Haskel,  FreePascal,  Go,  F#,  Swift,  Java,  Lisp, 

 OCaml. 

 Figure 2.3: Performance of top 15 implementations of tested algorithms in 

 Benchmarks Game. 

 The  comparative  review  of  the  RosettaCode  algorithm  implementations 

 in  the  most  popular  programming  languages  [38]  led  to  the  following 

 observations: 

 ●  most  popular  languages  by  category  are:  procedural  -  C  and  Go, 

 object-oriented  -  Java  and  C#,  functional  -  F#  and  Haskel,  scripting  - 

 Python and Ruby; 

 ●  functional  and  scripting  languages  provide  significantly  more  concise 

 code than procedural and object-oriented languages; 
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 ●  C  is  the  best  on  computing-intensive  workloads  and  Go  is  close  to  C  in 

 performance, other compared languages are slower; 

 ●  procedural  languages  use  significantly  less  memory  than  other 

 languages; 

 ●  compiled  strongly-typed  languages  are  significantly  less  prone  to 

 runtime  failures  than  interpreted  or  weakly-typed  languages;  Go  is  the 

 least failure-prone performant language in the study. 

 The  performance  of  the  C  programming  language  is  unbeatable.  By 

 design,  the  statements  and  data  types  are  mapped  to  typical  machine 

 instructions  very  e�ciently.  It  is  also  one  of  the  most  popular  languages,  so  the 

 hardware  vendors  optimise  their  compilers  and  tools  to  produce  the  most 

 e�cient machine code from C code  [39]  . 

 Thus  suitability  of  other  languages  for  HPC  applications  highly  depends 

 on  whether  it  can  call  high-performance  libraries  (usually  written  in  C  or 

 Fortran)  e�ciently.  For  example,  Python,  which  is  increasingly  popular  in  the 

 research  community,  has  adapters  (bindings)  to  the  e�cient  data  processing 

 libraries:  NumPy,  SciPy,  and  pandas  [40]  .  By  combining  calls  to  e�cient 

 libraries  with  high-level  management  code,  Python  programs  can  successfully 

 compete  with  C  in  terms  of  performance.  However,  there  are  a  few  limitations 

 of  this  approach:  i)  performance  degrades  quite  quickly  when  the  amount  of 

 computations  performed  outside  of  high-performance  libraries  grows;  ii) 

 interoperability  with  other  libraries  depends  on  whether  e�cient  bindings 

 exist  for  them;  if  two  previous  limitations  are  successfully  addressed  by 

 extending  the  host  language  with  C/C++  functions,  maintaining  the  result 

 requires advanced programming skill. 

 The  limitations  of  the  C  language  inevitably  encouraged  programmers  to 

 extend  the  language  with  domain-specific  features  or  syntax  constructions 

 supporting  other  programming  paradigms.  The  most  successful,  of  course,  has 

 been  the  C++  extension  that  added  constructions  to  facilitate  object-oriented 

 programming.  Another  direction  in  which  the  C  language  was  extended  is 

 parallel  programming.  It  was  supported  in  the  language  by  either  additional 

 libraries  and  frameworks,  like  OpenMP,  or  with  language  extensions,  like 

 Unified Parallel C. 
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 In  recent  years  several  alternatives  to  the  C  language  emerged.  Swift, 

 Rust,  Go  are  comparable  with  the  C  programming  language  in  terms  of 

 computational  performance  while  providing  developers  with  constructions 

 that  simplify  designing  parallel  algorithms  and  make  the  application  less 

 error-prone. 

 Swift  [41]  is  a  general-purpose,  multi-paradigm,  compiled  programming 

 language  developed  by  Apple  Inc.  Its  features  and  patterns  include  compulsory 

 initialisation  of  variables,  checking  array  boundaries,  checking  overflows  for 

 integers,  ensuring  that  nil  values  are  handled  explicitly,  automatic  memory 

 management  via  reference  counting,  and  error  handling.  Its  performance  for 

 tasks where memory management is not involved is close to C/C++. 

 Rust  [42]  is  a  systems  programming  language  sponsored  by  Mozilla 

 Research.  Its  main  design  goal  is  to  be  fast,  concurrent,  and  safe.  It  supports 

 functional  and  imperative-procedural  paradigms.  Its  strategy  to  make  code 

 safer  is  to  avoid  null  pointers,  dangling  pointers,  or  data  races.  It  manages 

 memory  by  "resource  acquisition  is  initialisation"  (RAII)  with  optional 

 reference  counting.  On  most  of  the  benchmarks,  its  performance  is  very  close 

 to C/C++ code. 

 Go  [43]  is  a  general-purpose,  procedural  (like  C  but  with  limited 

 structural  typing),  compiled  programming  language  developed  by  Google.  One 

 of  the  design  goals  of  the  Go  programming  language  was  "The  e�ciency  of  a 

 statically-typed  compiled  language  with  the  ease  of  programming  of  a 

 dynamic  language".  The  garbage  collector  manages  the  memory  within  the  Go 

 process.  The  Go  language  syntax  of  the  language  is  one  of  the  simplest,  albeit  it 

 supports  advanced  language  elements  like  first-class  functions  and  closures. 

 The  Go  language  contains  an  integrated  concurrent  programming  model 

 similar  to  CSP.  This  model  simplifies  parallel  algorithms  and  utilises  the 

 available  multi-core  CPU  resources  e�ciently.  The  performance  of  the  Go 

 programs  is  quite  close  to  C/C++,  and  there  is  no  strong  evidence  that 

 algorithm  implementation  in  Go  is  always  slower  than  the  implementation  in 

 C/C++. 

 In  summary,  multiple  factors  should  be  taken  into  account  to  achieve  the 

 best  performance  while  developing  a  hybrid  model  of  a  large  complex  system 

 and  running  simulations.  These  factors  include  the  network  topology,  how 
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 di�erent  scenarios  change  the  computation  hardware  requirements,  how 

 third-party  physics  models  are  implemented  and  integrated  with  the  model, 

 how  frequently  and  easily  the  model  needs  to  be  adapted  for  new 

 requirements,  whether  the  data  is  sensitive  and  can  be  transmitted  to  the 

 cloud,  whether  the  focus  of  the  simulations  is  a  small  number  of  complex 

 simulations  or  a  large  number  of  simple  simulations,  and  whether  a  single 

 simulation  benefits  from  running  on  specialised  hardware  such  as  GPUs, 

 FPGAs,  or  ASICs.  These  factors  may  a�ect  the  selection  of  technology, 

 algorithms,  hardware,  and  premises  for  the  computation.  Achieving  the  peak 

 possible  performance  requires  making  the  right  decisions  for  these  trade-o� 

 questions.  Therefore,  a  comprehensive  and  systematic  analysis  of  these  factors 

 is  essential  for  developing  and  implementing  a  hybrid  model  of  a  large  complex 

 system. 
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 3. Assurance Cases for Critical 
 Infrastructures 

 3.1 Overview 

 E�ective  reasoning  about  safety,  security,  reliability,  and  assurance  requires  a 

 structured  approach.  Many  years  of  research  resulted  in  a  number  of 

 approaches  being  developed.  They  were  applied  while  constructing  and 

 maintaining  assurance  cases  for  a  wide  range  of  devices,  constructions,  and 

 networks.  Structured  assurance  cases  were  developed  for  miniature  medical 

 sensors, nuclear power plants, and multinational power networks. 

 Decades  of  research  in  structured  assurance  cases  showed  that  building 

 sound  assurance  cases  is  di�cult.  The  basic  model  of  argumentation  developed 

 by  Toulmin  [44]  was  one  of  the  first  attempts  to  address  this  di�culty  by 

 introducing  structured  graphics  notation.  Studies  that  followed  contributed  to 

 increased  confidence  in  the  fact  that  structuring  an  assurance  case  increases 

 clarity  and  understanding,  contributes  to  better  decision-making,  reduces 

 risks, and improves accountability. 

 Among  the  factors  that  lead  to  choosing  the  best  approach  for  a  particular 

 assurance  case,  the  most  important  one  is  which  processes  the  assurance  case 

 should  support  within  an  organisation.  Characteristics  of  these  processes  lead 

 to  choosing  between  a  less  structured  approach,  e.g.,  a  list  of  facts  in 

 presentation,  and  a  more  sophisticated  one,  such  as  using  visual  notation  (e.g., 

 ASCAD  [45]  or Goal Structuring Notation, GSN  [46]  )  and special editing tools. 

 Assessing  safety,  security,  reliability,  resilience,  and  other  system 

 properties  of  a  large  cyber-physical  system  is  only  possible  in  one  of  two  ways: 

 constructing  argumentation  considering  the  observed  operation  history  or 

 substituting  the  system  with  an  appropriate  model  (a  “digital  twin”)  to  study 

 how good the real system. 

 Substituting  the  system  with  a  model,  together  with  the  introduction  of 

 blocks  [47]  ,  and  Assurance  2.0  [48]  ,  helps  create  more  rigorous  assurance 

 cases.  With  the  credible  simulatable  substitution  of  the  system,  the  natural 

 language  claims  about  the  system’s  reliability  properties  can  be  replaced,  by 
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 applying  the  Substitution  and  Conretion  CAE  blocks,  with  the  appropriate 

 quantitative  evidence  such  as  distributions  against  failures  and  intrusions 

 obtained through simulation. 

 For  this  approach  to  be  successful,  the  credibility  of  the  model  needs  to  be 

 confirmed by a separate justification that the model and the tool can be trusted. 

 Confidence  in  the  results  obtained  with  the  model  (e.g.  via  solving  the 

 model  using  Monte  Carlo  simulation)  depends  on  whether  the  model 

 represents  the  real  system  accurately,  i.e.  with  a  su�cient  level  of  detail  and  at 

 the  right  level  of  abstraction.  In  other  words,  whether  the  model  of  the  system 

 behaves  close  enough  to  the  real  system  in  situations  that  are  relevant  to  the 

 assessed  properties.  There  are  di�erent  strategies  for  addressing  this 

 challenge,  e.g.  comparing  the  model  behaviour  and  observed  behaviour  of  the 

 real system under the same environmental circumstances. 

 Several  aspects  contribute  to  the  trustworthiness  of  the  simulation  engine 

 when  it  is  applied  to  a  particular  scenario.  Among  them  is  whether  there  are 

 successful  applications  of  the  simulation  engine  for  similar  use  cases,  whether 

 the  simulation  engine  produces  results  similar  to  observations  under  the 

 equivalent  modelled  circumstances,  and  whether  the  quality  of  the  simulation 

 engine  software  is  adequate.  For  any  particular  application  of  the  engine, 

 applicability  analysis  needs  to  be  performed,  in  which  the  above  and  other 

 relevant  factors  should  be  considered.  Although  the  following  chapters  provide 

 input  for  this  analysis,  such  as  the  architecture  of  the  software,  comparison  of 

 implementation,  and  use  cases,  exploring  the  applicability  of  the  engine  for 

 di�erent scenarios is not a part of this thesis. 

 A  number  of  studies  and  research  projects,  including  IRRIS  and  SESAMO 

 [49,50]  ,  demonstrated  that  in  practical  applications  substituting  a  large  and 

 complex  system  with  a  formal  model,  which  can  be  solved  analytically  (e.g. 

 state  machine),  is  either  very  hard  or  practically  impossible.  As  a  result,  most 

 of  the  substituting  models  are  hybrid  agent-based  models,  i.e.  the  individual 

 parts  of  the  system  are  modelled  independently  with  technologies  most 

 appropriate  for  a  particular  component  or  process.  For  example,  the  individual 

 independent  components  can  be  modelled  as  state  machines,  and  they 

 participate  in  or  are  a�ected  by  a  computational  approximation  of  a  physical  or 

 chemical process. 
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 Processes  happening  in  large  systems  are  frequently  probabilistic  -  the 

 events  of  interest  such  as  disturbances,  failures  or  malicious  interventions  can 

 be  captured  by  a  suitably  chosen  stochastic  process.  Grasping  the  stochastic 

 aspects  of  the  component  behaviour  is  one  of  the  challenges  the  model 

 developers  need  to  take  into  account  when  substituting  the  real  system  with  its 

 model.  It  is  a  common  practice  to  use  probabilistic  state  machines  in 

 continuous  time  with  distributions  of  the  time  spent  in  a  particular  state 

 assigned  to  state  transitions.  Some  of  the  probabilistic  parameters  often  can  be 

 estimated  from  available  operational  data  (e.g.  for  accidental  failures  of  the 

 components).  Some  other  parameters,  however,  may  be  di�cult  to  estimate 

 due  to  lack  of  su�cient  operational  data  (e.g.  on  malicious  interventions).  In 

 such  cases  one  can  deploy  “sensitivity  analysis”  and  study  the  model 

 behaviour  under  di�erent  values  of  the  parameters,  which  are  di�cult  to 

 estimate.  As  a  result  of  sensitivity  analysis,  one  gains  an  insight  as  to  how 

 di�erent  parameters  a�ect  the  system  properties  of  interest  and  concentrate 

 on  those  parameters  which  a�ect  significantly  the  properties  of  interest.  The 

 properties  of  such  models  are  calculated  by  observing  and  aggregating  the 

 outcomes of repetitive simulations, i.e. using the  Monte-Carlo method. 

 The  results  of  model  simulations,  either  deterministic  or  stochastic,  e.g. 

 in  the  form  of  the  probabilistic  distribution  of  a  variable  of  interest  (often 

 referred  to  as  a  “utility  function”  or  “reward”),  can  be  used  to  support  the 

 argumentation  in  the  assurance  case.  In  the  Claim-Argument-Evidence 

 approach,  as  will  be  shown  in  the  next  section,  simulation  results  can  be 

 incorporated in the assurance case as evidence. 

 3.2 CAE Assurance Cases 

 Claim-Argument-Evidence  (CAE)  approach  [45,51]  provides  an  e�ective 

 methodology  for  developing,  maintaining,  and  communicating  cases.  Its 

 graphic  notation,  ASCAD,  is  used  to  visualise  and  organise  relations  between 

 the claims, argument, and evidence. 

 Using  stochastic  models  in  CAE  assurance  cases  requires  developing  a 

 systematic  and  practical  approach.  It  should  provide  guidance  on  how  to 

 perform  decomposition  of  the  top  claim  and  identify  system  properties  that  can 
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 be  calculated,  justify  the  substitution  of  the  system  with  its  model,  build  the 

 credible  model,  obtain  and  interpret  model  simulation  results,  and  incorporate 

 them into the assurance case. 

 The key elements of a CAE approach are the following: 

 ●  Claim - a statement about the system, its parts, or operation context. 

 ●  Argument  -  a  structured  and  systematic  way  of  arguing  that  upholds  the 

 claim  through  more  detailed  sub-claims  or  by  providing  evidence  either 

 supporting or refuting the claim and subclaims. 

 ●  Evidence  -  support  of  the  claim  (i.e.  that  the  statement  captured  by  the 

 claim  is  true),  e.g.  formal  analysis,  design,  verification.  The  evidence 

 may  be  supportive  of  the  claim  or  otherwise  (i.e.  can  contradict  the 

 claim). 

 The  graphical  notation  ASCAD  provides  a  framework  for  visualising 

 relations  between  claims,  arguments,  and  evidence.  The  Adelard  ASCE  tool 

 provides  a  visual  editor  for  creating  and  maintaining  structured  safety  cases 

 using the CAE approach and the ASCAD graphical notation. 

 The  normal  form  of  a  CAE  assurance  case  requires  it  to  begin  with  a 

 top-level  claim,  which  is  justified  by  argument  and  supporting  sub-claims  and 

 evidence  nodes.  The  top  claim  formulates  the  general  assertion  about  the 

 system,  e.g.  “the  system  is  safe  for  a  given  application  in  a  given 

 environment”.  The  practical  approach  to  justification  may  begin  with 

 expressing  initial  thoughts  as  a  diagram,  showing  the  factors  that  influence  the 

 claim,  followed  by  iterative  application  of  CAE  building  blocks,  improving 

 understanding, and using sophisticated engineering models. 

 CAE  building  blocks  are  archetypal  CAE  fragments.  Bloomfield  and 

 Netkachova defined the following five CAE blocks  [47]  : 

 ●  Decomposition  -  deducing  conclusion  about  the  claim  through  claims  or 

 facts about constituent parts. 

 ●  Substitution  -  replacing  the  claim  about  the  system  with  a  similar  claim 

 about an equivalent system. 

 ●  Evidence incorporation - justifying the claim with evidence. 

 ●  Concretion  -  providing  a  more  precise  definition  or  interpretation  of  the 

 claim. 
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 ●  Calculation  -  justifying  the  claim  through  computing  a  numerical  value, 

 e.g. evaluating a formula or gathering data while simulating a model. 

 Architecting  an  assurance  case  is  a  creative  process.  Creating  an 

 assurance  case  for  simple  systems  might  be  possible  by  starting  with  a  top 

 claim  and  just  expanding  the  claim’s  tree  up  to  evidence  leaves.  However,  in 

 the  most  practical  applications,  this  process  is  di�erent.  It  begins  with 

 expressing  the  initial  thoughts  informally,  in  lists,  notes,  and  simple  diagrams. 

 While  the  understanding  of  the  system  improves,  the  structure  of  the  case 

 becomes  more  formal.  With  this  approach,  whether  or  not  part  of  the  system 

 can  be  modelled  and  used  to  justify  claims  can  be  decided  at  the  beginning. 

 This  decision  influences  the  development  of  the  case,  e.g.  the  Decomposition 

 block  may  emerge  to  narrow  down  the  part  of  the  system  that  is  modelled,  and 

 the  Concretion  block  may  be  used  to  transition  from  human-readable  claims  to 

 claims  that  can  be  calculated.  On  the  path  from  the  top  claim  to  the  Calculation 

 block  should  be  an  instance  of  the  Substitution  block.  At  this  instance,  it  is 

 crucial  to  justify  that  the  model  is  indeed  an  equivalent  of  the  real  system  and 

 suitable for providing evidence through calculating. 

 3.3 Using Stochastic Models in CAE Assurance Cases 

 While  assessing  the  properties  of  interest  of  a  system,  the  results  from 

 stochastic  model  simulation  can  provide  evidence  for  claims  in  CAE  assurance 

 cases  [52]  .  However,  these  results  can  provide  su�cient  evidence  only  when 

 the credibility of the model is assured. 

 In  CAE  methodology,  the  purpose  of  the  Substitution  block  is  to  replace  a 

 claim  about  the  system  with  an  equivalent  claim  about  the  substituted  system, 

 provided  that  the  second  system  is  an  adequate  substitution  of  the  first  system. 

 For  example,  if  the  second  system  is  a  successfully  validated  model  of  the  real 

 system,  then  the  claim  about  the  real  system  can  be  substituted  with  a  similar 

 claim about the model. 
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 Figure 3.1. Substitution of the model for the real system. 

 Figure  3.1  demonstrates  an  example  of  ASCAD  assurance  case  in  which  the 

 real  system,  the  Nordic32  power  transmission  network,  is  substituted  with  its 

 stochastic  model.  The  side-claim  supports  the  justification  that  the  model 

 adequately  represents  the  real  system  for  this  specific  purpose.  The 

 justification  is  based  on  confirming  that  the  simulation  platform  is  trustworthy 

 and  relevant  simulation  models  are  validated,  i.e.  adequately  representing 

 reality. 

 The  assertion  concerning  the  reliability  properties  requires 

 decomposition  into  several  claims  about  particular  properties.  The  properties 

 of  the  power  distribution  system  are  quantitative  characteristics  important  to 

 the  consumers,  e.g.,  total  losses.  Figure  3.3  demonstrates  the  decomposition  of 

 the  general  claim  about  the  system’s  reliability  into  concrete  claims  about 

 specific properties. 

 The  aggregated  statistical  results  from  the  Monte-Carlo  simulations  of 

 the  Nortic32  stochastic  model  support  the  claims  about  the  properties  of  the 

 real system once the subclaim that the model of the system is credible.. 
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 Figure 3.2. Expanded side-claim, justification of the model substitution  [52]  . 
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 Figure 3.3. Demonstration of the decomposition of the general claim into 

 claims about specific properties. 
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 4. Stochastic Modelling and Simulation 

 4.1 Overview 

 My  research  on  substituting  real  systems  with  models,  as  shown  in  the 

 previous  chapter,  resulted  in  developing  the  following  key  requirements  for  a 

 modelling and simulation framework: 

 ●  It  should  support  hybrid  models  ,  incorporating  di�erent  approaches, 

 such  as  agent-based  models,  probabilistic  (stochastic)  models,  and 

 deterministic physics models (e.g. power-flows in power systems). 

 ●  It  should  be  capable  enough  to  provide  the  methods  for  modelling  the 

 system’s  components  and  the  stress  factors  of  interest,  among  them  the 

 state  of  the  operational  environment  (e.g.  the  weather  conditions), 

 accidental  component  failures  and  repairs,  the  actions  of  malicious 

 agents (adversaries), etc. 

 ●  It  should  be  supported  by  software  tools  which  allow  for  fast  model 

 creation  and  for  e�cient  model  validation,  which  must  be 

 user-friendly,  providing  researchers  and  practitioners  with  a  consistent 

 user interface. 

 ●  Furthermore,  it  should  leverage  the  latest  advancements  in 

 high-performance  computing,  including  cloud-on-demand  HPC 

 capabilities,  so  that  the  complexity  of  “solving”  the  models  and 

 obtaining  useful  estimates  of  system  resilience  can  be  achieved  in  a 

 timely manner. 

 ●  The  implementation  technology  must  be  carefully  selected,  too, 

 considering  the  trade-o�s  between  performance,  ease  of  extending  and 

 modifying  the  system  models,  and  integration  with  existing  third-party 

 solutions  (e.g.,  libraries,  executables,  services,  and  hardware 

 components). 

 The  modelling  framework  presented  in  this  section  attempts  to  fulfil 

 these  requirements  by:  i)  providing  a  new  domain-specific  language  for  defining 

 hierarchical  models,  ii)  an  extensible  simulation  engine  that  supports  local  and 

 cloud-based  simulation  agents,  and  iii)  a  Web-based  editor  that  provides  a 
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 visual  aid  to  model  developers.  The  engine  and  the  editor  utilise  modern 

 development practices and technologies to provide a state-of-the-art suite. 

 4.2. Modelling 

 This  section  provides  an  introduction  to  the  HPS  modelling  methodology. 

 Within  this  introductory  section,  the  subsequent  terms  are  defined  with  their 

 corresponding meanings (in alphabetical order): 

 -  Component  is  a  constituent  part  of  a  system.  In  the  model,  a  component 

 is represented as a  machine  . 

 -  Definition  is  a  formal  and  generalised  representation  of  a  particular  type 

 of  component  .  It  is  a  template  that  defines  the  properties  and  behaviours 

 of the  component  . 

 -  Instance  is  a  concrete  representation  of  a  definition  .  It  is  created  by 

 instantiating  the  definition  and  assigning  specific  values  to  its  properties  . 

 It is unique and distinct from other  instances  of  the same  definition  . 

 -  Machine  is  a  formal  representation  of  an  acting  entity  within  the  system  . 

 It  serves  as  a  means  to  represent  a  component  of  the  system  within  the 

 model  .  A  machine  is  both  defined  and  instantiated  within  the  model  , 

 allowing for it to be utilised as a building block. 

 -  Model  is  a  formal  representation  of  a  system  .  It  is  constructed  by 

 representing  the  components  as  machines  ,  where  component  types  are 

 defined  as  definitions  and  individual  components  and  the  system  as  a 

 whole are represented as  instances  . 

 -  Plugin  is  a  programmatic  extension  to  a  simulation  engine  that  provides 

 additional  functionality  beyond  what  is  available  through  the  base 

 functionality  of  the  engine.  Plugins  are  designed  to  address  specific 

 needs  or  requirements  that  are  not  possible  to  capture  using  definitions  , 

 such  as  models  of  physical  processes  or  other  complex  phenomena.  A 

 plugin  typically  consists  of  one  or  more  modules  or  libraries  that  are 

 loaded  into  the  simulation  engine  at  runtime,  and  which  provide 

 additional functionality or services to the simulation. 

 -  Reward  function  is  a  computation  that  provides  a  quantitative  measure 

 of  the  performance  of  a  system  .  The  reward  function  is  typically  defined 
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 in  terms  of  a  set  of  objectives  or  criteria  that  the  system  is  intended  to 

 achieve  in  the  simulation  .  These  objectives  might  include  maximising 

 e�ciency,  minimising  response  time,  or  optimising  the  use  of 

 resources.  The  reward  function  itself  is  a  function  that  takes  as  input  the 

 state  of  the  model  at  a  given  time,  and  returns  a  numerical  value  that 

 reflects the desirability of that state. 

 -  Simulation  is  a  process  of  executing  a  model  and  generating  output  data 

 that  reflects  the  behaviour  and  performance.  It  involves  interpreting  a 

 model  within  a  simulation  engine  to  simulate  the  interactions  between 

 the  components  of  the  system  and  producing  results  that  can  be  used  to 

 analyse  and  understand  the  system  's  behaviour  under  di�erent 

 conditions. 

 -  Simulation  engine  is  a  software  program  that  interprets  a  model  and 

 executes  a  simulation  of  the  model.  The  engine  uses  algorithms  and 

 mathematical  models  for  simulating  the  behaviour  of  the  components  of 

 the  system,  as  represented  in  the  model  ,  and  producing  output  data  that 

 reflects  the  performance  and  behaviour  of  the  system  under  di�erent 

 conditions. 

 -  System  is  a  set  of  interconnected  and  interdependent  components  that 

 are  orchestrated  together  to  perform  a  specific  set  of  functions. 

 Components  of  the  system  can  be  hardware,  software,  data,  people,  and 

 social and physical processes. 

 The  aim  of  the  HPS  modelling  approach  is  to  create  a  sound,  justifiable 

 representation  of  a  system  amenable  to  an  e�cient  solution  via  Monte  Carlo 

 simulation  .  The  core  of  the  approach  is  a  continuous  and  incremental  process  of 

 refinement,  in  which  assumptions  about  identified  components  and  processes, 

 their  relations,  interactions,  and  stochastic  characteristics  are  documented  and 

 captured  by  the  developed  model.  The  method  is  an  evolution  of  the 

 Preliminary Interdependency Analysis (PIA)  [2]  . 

 Similarly  to  the  PIA  approach  (spelled  out  in  more  detail  in  Appendix  2), 

 most  of  the  activities  in  the  HPS  modelling  are  either  related  to  a  qualitative  or 

 quantitative analysis  . 

 Qualitative  analysis  is  a  process  of  identifying  components  and  activities 

 within  the  system,  patterns  in  component  organisation  and  interaction.  This 
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 analysis  can  be  used  to  gain  insights  into  the  emergent  behaviour  and 

 dynamics  of  the  system  ,  as  well  as  the  interactions  and  decision-making 

 processes of individual  components  within the  system  . 

 Quantitative  analysis  ,  in  turn,  involves  the  use  of  statistical  and 

 mathematical  methods  to  analyse  and  interpret  the  numerical  data  generated 

 by  Monte  Carlo  simulations  of  the  model  constructed  through  qualitative 

 analysis  .  The  goal  of  this  type  of  analysis  is  to  quantify  the  measure  of  interest 

 (e.g.  the  loss  of  supplied  energy  in  power  systems  due  to  accidental  failures 

 and/or  due  to  successful  cyber-attacks),  the  e�ect  of  strength  of  relationships 

 among  interdependent  components  (e.g.  failure  propagation  likelihood). 

 Identifying  “interesting/surprising”  patterns  and  trends  within  the  simulated 

 data  is  of  great  interest,  too,  as  they  provide  the  operators  of  simulated  critical 

 infrastructures  with  insight  about  how  to  make  the  infrastructure  more 

 resilient. 

 The  PIA  approach  recognises  two  levels  of  abstraction  while  modelling 

 the  system  and  two  models  simultaneously  developed  while  modelling  the 

 system:  the  interacting  services  model  (service-level  model)  and  the  detailed 

 service  behaviour  model.  The  HPS  approach  extends  this  to  support  multiple 

 levels of abstractions within a single hierarchical model  . 

 The  PIA  approach  is  iterative  and  based  on  revisiting  earlier  stages  after 

 progressing  on  the  latter  stages.  The  HPS  approach  is  incremental  and  focuses 

 on  identifying  and  implementing  changes  that  incrementally  improve  the 

 model  and  its  artefacts,  e.g.,  documents,  definitions,  components,  libraries, 

 and plugins. 

 The  HPS  approach  begins  with  establishing  the  following  major  artefact 

 groups: 

 -  System  documentation.  This  includes  all  the  available  information  on 

 the  modelled  system  ,  including  requirements,  architecture,  design, 

 operational environments, adversaries, and telemetry data. 

 -  Scenarios.  Research  objectives,  boundaries,  selected  adversaries, 

 environmental  circumstances,  performance  metrics,  and  reward 

 functions  . 

 -  Modelling  artefacts.  This  includes  models  ,  plugins  ,  documented 

 assumptions, and  simulation results  . 
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 -  Results.  This  includes  aggregated  simulation  results  and  their 

 interpretation. 

 There  are  several  processes  that  result  in  incremental  improvements  in 

 the artefacts: 

 -  Collecting  information.  This  includes  collecting  initially  available 

 system documentation and filling gaps in understanding and coverage. 

 -  Setting  and  updating  research  goals  and  scenarios.  This  includes 

 collecting,  defining,  and  elaborating  on  research  goals  and  scenarios, 

 defining  metrics,  determining  boundaries  and  limitations,  and 

 assessing feasibility and risks. 

 -  Modelling.  This  includes  identifying  components  ,  their  dependencies 

 and  interactions  and  increasing  the  level  of  abstraction  to  a  more 

 detailed level by adding implementation. 

 -  Simulation.  This  includes  allocating  resources,  performing  simulations  , 

 and aggregating  results  . 

 -  Interpreting  simulation  results.  This  involves  analysing  and 

 interpreting  simulation  results  to  draw  conclusions  and  make 

 recommendations based on the research goals and scenarios. 

 Fig. 4.1. Data flow between HPS processes (  ) and  backpropagation of 

 changes (  ). 
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 Any  of  the  processes  can  result  in  modifying  any  artefacts.  For  example, 

 results  obtained  through  simulation  may  reveal  a  deficiency  in  the  system 

 documentation,  justify  the  investigation  of  new  scenarios  or  need  for 

 performance improvements in the  model,  engine  ,  or  plugin  . 

 The  HPS  modelling  starts  by  representing  the  entire  system  as  a  single 

 machine  .  This  component  is  added  to  the  library  (HPS  term)  of  identified 

 components.  New  components  are  identified  and  organised  through  a 

 systematic  review  of  the  collected  system  documentation,  accompanied  by 

 setting initial research goals and identifying scenarios. 

 When  a  new  component  is  identified,  it  is  categorised  either  as  a 

 completely  new  component  and  added  to  the  library  or  as  an  instance  of  an 

 already  identified  component.  Correctly  adding  the  instance  to  the  model 

 requires  identification  of  the  context  where  this  instance  operates.  When  the 

 context  is  an  already  identified  component,  incorporating  the  instance  requires 

 this  component  to  be  of  a  network  type.  If  the  identified  component  is  already 

 implemented  as  a  state  machine  ,  the  implementation  can  be  shifted  down  into 

 the  new  component  and  the  component  can  be  converted  to  the  network  of  two 

 components,  a  newly  identified  instance  of  an  existing  component  and  the 

 instance  of  the  state  machine.  If  the  identified  component  is  implemented  in 

 any  other  way,  apart  from  a  state  machine  and  network,  e.g.,  as  a  model  of 

 physical  process  or  hardware  component,  the  method  of  encapsulation  of  an 

 instance should be found in the documentation for this implementation. 

 The  state  machine  component  defines  a  state  machine  with  a  finite 

 number  of  states  and  transitions  between  them.  One  of  the  states  is  an  initial 

 one,  i.e.  when  a  state  machine  is  created  by  the  simulation  engine,  it  starts  with 

 this  state.  While  simulating,  the  engine  transitions  the  state  machine  from  one 

 state  to  another  by  choosing  the  state  that  is  incidental  to  activated  transitions 

 of  the  current  state.  Transitions  are  activated  or  deactivated  by  their  associated 

 triggers  . 

 The  trigger  is  a  function  that  enables  and  disables  transition  .  The  trigger 

 can  be  as  simple  as  the  deterministic  trigger  ,  which  activates  a  transition  at  a 

 specific  simulation  time,  or  as  complex  as  a  real  device,  e.g.  the  trigger  can  be  a 

 program  that  reads  measurements  from  a  sensor,  which  is  connected  to  a 

 general purpose input/output (GPIO). 
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 The  network  is  a  set  of  component  instances.  The  instance  is  defined  by 

 specifying the component and providing values for its properties. 

 Similarly  to  the  state  machine  component  ,  the  network  component  also  has 

 properties  which  can  be  mapped  to  one  or  many  instances’  properties  .  It  is 

 possible  to  create  complex  hierarchical  structures  by  including  the  network 

 instances in the  networks  . 

 The  component  's  behaviour  can  be  parameterised  by  defining  a  property 

 and  mapping  its  value  to  a  trigger  's  or  action's  property.  Consider  the  following 

 example:  the  power  line  component  of  the  power  transmission  system  is 

 modelled  as  a  state  machine  with  states  OK  and  Fail  .  There  are  many  lines  in  the 

 system  and  for  each  of  the  lines  its  probability  of  failure  depends  on  the  line's 

 length  -  longer  lines  fail  more  often.  Therefore,  the  transition  between  OK  and 

 Fail  is  controlled  by  the  Probabilistic  trigger  with  the  Exponential  distribution  .  The 

 straightforward  approach  to  represent  the  lines  in  the  model  would  be  to 

 define  a  state  machine  for  each  line  and  set  the  λ  property  of  the  distribution  to 

 the  corresponding  value.  However,  it  creates  a  lot  of  duplicates  of  the  same 

 state  machine,  which  greatly  complicates  maintainability.  Much  more  concise 

 approach  is  to  create  a  definition  of  the  Link  machine  as  a  state  machine  with  one 

 property  of  the  ITrigger  type  and  use  the  Property  trigger  to  evaluate  the  trigger 

 from  this  property  .  Then  while  creating  a  network  component  that  represents  the 

 system  ,  the  links  can  be  represented  by  instances  of  the  Link  definition  with 

 corresponding property values. 

 4.3 Logical Model 

 A deterministic finite automaton (DFA) is defined by a quintet: 

 Here  Q  is  a  non-empty  finite  set  of  states,  Σ  a  non-empty  finite  set  of 

 inputs,  the  "alphabet",  σ  maps  state  and  input  pairs  to  new  states,  q  0  from  Q  is 

 an  initial  state,  and  F  is  a  possibly  empty  set  of  final  (without  outgoing 

 transitions) states from  Q  . 
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 A  DFA  can  be  visualised  as  a  directed  multigraph  with  labelled  edges, 

 representing  transitions,  nodes,  representing  states,  and  one  node  marked  as 

 an initial node. 

 Stochastic  State  Machines  are  the  result  of  merging  together  concepts  of 

 probabilistic  Markovian  transitions  and  state  machines.  For  the  stochastic 

 state  machine  definition,  sets  Q  and  Σ  ,  initial  state  q  0  and  F  have  the  same 

 meaning.  The  σ  function  is  di�erent.  Instead  of  returning  a  next  state  for  (state, 

 input) pairs it returns a probability distribution for states 

 where 

 When  the  transition  represents  an  event  in  continuous  time  and  the 

 probability  of  these  events  is  defined  as  a  probability  distribution  function, 

 then the transition function can be defined as follows: 

 where 

 A  hybrid  state  machine  is  a  state  machine  with  deterministic,  discrete 

 stochastic, or continuous-time stochastic transitions. It is defined as follows: 

 When  a  state  machine  has  continuous-time  transitions,  the  deterministic 

 and  discrete  stochastic  transitions  are  executed  instantly,  i.e.  the  system 

 spends no time in a state prior to the triggered transitions. 

 Let’s define a factory function as a function as 

 where  P  i  is  a  set  of  all  possible  values  for  i  th  property  and  M  H  is  a  set  of  all 

 possible hybrid state machines. 

 A  state  machine,  defined  as  a  quintet  of  state-space  set,  input  alphabet 

 set,  transitions,  initial  state,  and  final  states  set,  can  be  equivalently  described 

 as a factory and a vector of property values for this factory. 

 Let's define a Simulated Stochastic Network recursively as a tuple of 
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 - State machines, defined as quintets. 

 - State machines, defined as factory functions and property values. 

 - Simulated Stochastic Network 

 - Properties, bound to the properties of state machines and networks 

 - Current simulation state of state machines and networks. 

 During  initialization,  the  simulation  engine  recursively  constructs  state 

 machines from factories. 

 While  simulating,  if  the  state  machine  factory's  range  comprises 

 machines  with  identical  state  spaces,  changing  the  definition's  property 

 substitutes  the  machine  or  network.  The  new  machine  is  in  the  same  state  and 

 its continuous-time transitions are recalculated. 

 The  following  logical  model  provides  a  conceptual  view  of  the  domain 

 entities,  their  attributes  and  relationships.  It  can  be  di�erent  in  some  areas 

 from  the  implementation  model.  It  is  created  with  abstract  data  types  such  as 

 lists,  maps,  and  numbers  instead  of  technology-specific  data  types.  It  does  not 

 include  infrastructural  classes.  The  language  of  the  logical  model  diagrams  is 

 UML2. 

 4.3.1 Definitions Model 

 Definitions  Model  is  a  model  for  machine  factories.  It  describes  networks, 

 machines, properties, and instances. 

 The  main  interface  of  the  HPS  definitions  model  is  IMachine  .  It  represents 

 an  entity  within  the  system,  e.g.  a  device,  a  person,  or  a  process.  The  abstract 

 class  MachineBase  provides  a  default  implementation  for  the  properties  defined 

 in the interface  IMachine  . 

 Fig. 4.2. IMachine interface from the definitions package. 
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 The machine’s properties serve two purposes: 

 -  It  is  an  observable  part  of  the  machine’s  state.  Other  machines  can 

 subscribe  to  the  property  notifications  and  change  their  behaviour  when 

 the property changes. 

 -  They  modify  the  behaviour  of  the  machine.  E.g.,  the  property  may  be 

 mapped to the parameter of the probabilistic trigger. 

 The  composition  pattern  of  simulated  stochastic  networks  is  supported 

 by the structure of classes presented in Fig. 4.3. 

 Fig. 4.3. Network and Instance classes from the definitions package. 

 The  implementation  of  the  factory  creates  the  actual  simulated  state 

 machine  by  finding  the  definition  specified  in  Type  ,  and  then  constructing  the 

 machine  that  corresponds  to  the  given  property  values.  PropertyValue  has  a 

 special  semantic  in  this  logical  model.  It  represents  a  container  that  can  store 

 any  value.  In  the  runtime,  the  exact  value  will  be  deserialized  and  cast  to  the 

 property’s value. 

 The  logical  model  includes  classes  for  defining  state  machines,  as 

 presented in Fig. 4.4. 
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 Fig. 4.4. State machine classes from the definitions package. 

 The  logical  model  defines  implementations  of  the  interfaces  ITrigger  , 

 IAction  ,  and  IProperty  that  were  found  to  be  useful  while  working  on  the  use 

 cases. 

 The  abstract  class  TriggerBase  provides  the  default  implementation  of  the 

 interface  ITrigger  . 

 Fig. 4.5.  ITrigger  interface and the abstract base  class. 

 The  Deterministic  ,  Probabilistic  ,  Instant  ,  and  Idle  triggers  represent 

 di�erent transition types: 

 ●  Idle  -  this  trigger  never  invokes  the  transition  and  can  be  used  as  the 

 initial value of the property. 

 ●  Instant  -  this  trigger  invokes  the  transition  immediately  and  can  be 

 used  as  the  initial  value  of  the  property.  This  kind  of  transition  is  known 

 as “an automatic transition” or “an eventless transition”  [53]  . 

 ●  Deterministic  - triggers transition in the specified  time. 

 ●  Probabilistic  -  the  time  of  triggering  is  probabilistic,  distributed 

 according  to  the  value  of  the  attribute  “distribution”:  normal  -  normal 

 distribution  parameterised  by  the  attributes  “mu”  (parameter  μ  )  and 

 “sigma”  (parameter  σ  );  exponential  -  exponential  distribution, 
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 parameterised  by  the  attribute  “lambda”,  which  corresponds  to  the 

 parameter  λ  . 

 Fig. 4.6. Triggers, representing di�erent transition types. 

 The  Gate  trigger  enables  or  disables  the  transition  depending  on  the  other 

 machine’s property or state. 
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 Fig. 4.7. The  Gate  trigger and di�erent gate openers. 

 The  special  Property  trigger  maps  the  trigger  of  the  transaction  to  the 

 machine’s property. 

 Fig. 4.8. Implementations of  IAction  in the definitions  package. 
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 Fig. 4.9. Implementations of  IProperty  in the definitions  package 

 How  exactly  the  implementations  of  the  logical  model  classes  are 

 instantiated  depends  on  the  chosen  deserialisation  approach.  E.g.,  the  entire 

 model  could  be  read  from  a  single  project  file,  there  could  be  a  single  file  per 

 component, or the definitions could be read from the database. 

 4.3.2 Simulation Model 

 Similarly  to  the  main  interface  in  the  definitions  model,  the  main  interface  of 

 the  HPS  simulation  model  is  IMachine  .  The  machine  has  properties  that 

 represent an observable part of its state. 

 An  object,  implementing  IMachine  ,  should  be  owned  by  the  object, 

 implementing  IContainer  .  This  relation  is  represented  by  the  association 

 between  IMachine  and  IContainer  . 

 Machines  are  hosted  and  simulated  within  the  Environment.  Machines 

 backreference  the  environment  in  their  Environment  property,  which  is 

 read-only. Therefore the machine can only belong to one environment. 
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 Figure 4.10: Main HPS interfaces. 

 HPS  provides  two  implementations  of  the  IMachine  interface:  State 

 Machine and Network. 

 State  Machine  is  a  modelling  abstraction  that  represents  a  component  of 

 the  system  as  a  set  of  states  and  transitions  between  them.  When  the 

 probability  of  transitioning  from  one  state  to  another  depends  only  on  the 

 current state, the probabilistic state machine is a Markov state machine. 

 The  state  machine  can  be  specified  in  the  “structure”  section  of  the 

 machine definition using the following HPS DML structure: 
 "structure": { 

 "states": [ "state1", "state2", ... ], 

 "initial": "state1", 

 "transitions": { 

 "state1": { 

 "state2": [ { 

 "type": "probabilistic", 

 "distribution": "exponential", 

 "parameter": 0.1 

 } ] 

 }, 

 ... 

 } 

 } 
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 The  states  of  the  machine  should  be  specified  in  the  “states”  property  of 

 the  definition,  with  the  initial  state  defined  in  the  “initial”  property. 

 Transitions  between  states  are  defined  in  the  “transitions”  property,  and  the 

 transition has an associated triggering function. 

 The  triggering  function  defines  the  rule  for  invoking  the  transition  from 

 one  state  to  another.  Transition  can  be  invoked  by  several  triggers.  The  next 

 transition  is  identified  by  enumerating  all  the  transitions  from  the  current 

 state  in  the  order  in  which  they  are  defined,  selecting  the  transitions  that  have 

 the  event  time  closest  to  the  current  moment  and  then  selecting  the  first  of 

 them. 

 The  required  attributes  for  the  trigger  are  “type”  and  “comment”.  “type” 

 specifies  the  type  of  the  trigger  and  can  be  one  of  the  supported  trigger  types. 

 “comment”  contains  text  associated  with  the  trigger.  Other  trigger  attributes 

 depend on the type of trigger. 

 Network  is  a  container  for  the  machines.  It  is  constructed  by  defining  the 

 machine  instances.  In  agent-based  modelling  terms,  it  is  the  environment 

 where  the  agents  operate.  The  special  type  of  machine,  the  network  machine,  is 

 constructed  by  wrapping  the  network  into  a  machine,  forming  a  high-level 

 agent,  consisting  of  low-level  agents.  The  top-level  network  in  the  simulation 

 session is called Environment. 

 The  internal  structure  of  the  machine  is  a  concern  of  the  HPS  Engine.  The 

 language  defines  two  types  of  machines:  network  -  to  support  hierarchical 

 composition,  and  state  machine  -  to  implement  probabilistic  and  deterministic 

 aspects of the systems. 

 Project 

 Project  is  a  root  element  of  the  model.  It  contains  project  information 

 properties, e.g. Title, and collection of the model components. 

 JSON Example: 
 { "title": "Power Grid", 

 "description" : "The model for analysing resilience of the power grid.", 

 "components" : { ... } } 
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 Machine 

 The  machine  represents  the  actor  of  the  scenario.  It  encapsulates  the 

 observable  state  and  behaviour  associated  with  the  acting  element.  The 

 observable  state  is  defined  as  machine  properties.  The  behaviour  is  specified  by 

 the type of machine. The machine is identified by its unique name. 

 The  property  definitions  are  shared  by  all  the  machine  instances,  but  the 

 values of these properties are specific to the instance. 

 The  machine’s  implementation  can  either  be  implemented  in  a  plugin 

 and  injected  into  the  engine  or  one  of  the  supported  machine  kinds  can  be  used. 

 While  creating  the  instance  of  the  machine,  the  engine  gets  the  initialisation 

 parameters  from  the  “structure”  property  of  the  machine.  The  format  of  this 

 property  should  be  supported  by  the  engine.  Data  format  of  this  property  can 

 inherit the data format of the document. 
 "machines": [ 

 { 

 "name": "Substation", 

 "type": "state-machine", 

 "properties": { ... }, 

 "structure": { ... } 

 }, 

 ... 

 ] 

 Network 

 The  network  is  defined  by  specifying  its  name,  machine  instances  and  their 

 properties.  All  required  properties  without  default  values  should  be  set  while 

 defining the instance of the machine. 
 "networks": [ 

 { 

 "name": "Substations", 

 "machines": [ 

 { 

 "name": "G1", 

 "machine": "Substation G1", 

 "properties" : { "power": 1000 } 

 }, 

 ... 

 ] 

 }, ... ] 
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 Properties 

 The  properties  of  the  machine  represent  a  part  of  the  machine  state  that  is 

 visible  to  engine  components.  During  simulation,  the  components  can  read  the 

 properties and react to changes in their values. 

 Property  is  identified  by  its  name.  The  name  should  be  unique  among 

 other  property  names,  which  are  associated  with  the  machine.  The  set  of 

 property  values  can  be  restricted  by  specifying  the  property  type  in  the 

 definition. The Required property specifies if the property value should be set. 

 When  the  machine  is  instantiated,  the  property  is  created  with  its  default 

 value  or  empty  value.  If  the  property  is  required,  then  the  value  should  be 

 specified while defining the network instance. 
 "machines": [ 

 { 

 "name": "Substation", 

 "properties": { 

 "load": { "type": "Number", "required": true } 

 }, 

 ... 

 "networks": [ 

 { 

 "name": "Substations", 

 "machines": [ 

 { 

 "name": "G1", 

 "machine": "Substation", 

 "properties" : { "load": 1000 } 

 }, 

 ... 

 Property  values  are  parsed  by  the  HPS  engine  and  then  passed  to  the 

 machine  properties  in  the  run  time.  The  property  value  data  format  can  extend 

 the data format of the document. 

 The  simulation  begins  with  the  environment  starting  its  machines.  While 

 running,  the  machines  enqueue  their  events  into  the  timeline,  and  then  the 

 environment  dequeues  and  runs  them.  If  there  are  several  events  scheduled  for 

 the same time, they are dequeued in order of enqueueing, i.e. FIFO. 
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 4.4 Implementation 

 The  implementation  of  the  methodology  provides  the  following  tools  and 

 applications:  1)  the  simulation  engine  and  its  infrastructure  (e.g.,  managing 

 server  and  scheduler,  computational  agents,  and  command  line  tools)  and  2) 

 the  Web-based  model  editor  for  developing  models  and  orchestrating 

 simulations. 

 Figure 4.11: Conceptual diagram of the main HPS components. 

 Figure 4.12: Part of the Nordic32 study project in the HPS editor. 
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 The  previously  defined  modelling  approach  introduced  the  model 

 elements:  machine,  network,  trigger,  and  others.  The  implementation  of  the 

 model  can  be  di�erent,  depending  on  usage.  In  the  current  implementation,  it 

 is  di�erent  in  the  simulation  engine  and  the  editor.  The  simulation  engine  has 

 two  models:  the  design  model,  which  contains  definitions  of  the  components, 

 and  the  simulation  time  model,  which  contains  instances  of  these  components. 

 The  simulation  engine  models  are  designed  to  be  e�cient  and  consistent.  The 

 editor's  model  is  based  on  the  abstract  model  definition,  but  it  has  di�erent 

 requirements.  It  is  designed  to  be  easily  modifiable.  Di�erently  from  the 

 simulation  engine  model,  the  editor's  model  can  be  inconsistent,  e.g.  contains 

 cross-references and partially configured components. 

 The  plugin  API  of  the  simulation  engine  provides  interfaces  for  including 

 programmatic  behaviours  into  the  model.  It  may  be  necessary  when  some 

 particular  aspect  of  the  system  can  not  be  captured  by  using  existing  triggers, 

 actions,  and  machines  or  when  it  is  impractical  to  do  so.  For  example,  the 

 technological  process  of  the  oil  refinery  can  be  implemented  as  an  application 

 that calculates critical state by simulating physical processes. 

 While  simulating  the  model,  the  distribution  server  reads  tasks  and 

 distributes  them  to  agents.  While  the  simulation  runs,  the  agent  collects  log 

 messages  and  reported  measurements  and  sends  them  to  the  server.  Server 

 aggregates simulations from agents and builds a report. 

 Figure 4.13: Deployment diagram of HPS server and agents. 
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 Where  serialisation  is  necessary,  e.g.  persisting  the  editor's  model  or 

 sending  the  simulation  model  from  the  HPS  server  to  the  agent,  the  JSON  file 

 format  is  used.  The  structure  of  the  serialised  models  is  designed  to  be 

 human-readable.  Thus  it  is  possible  to  create,  maintain,  and  run  models  by 

 editing model files directly and running command line tools. 

 { "name": "Attacker", 
 "type": "state-machine", 
 "properties": [ 
 { "name": "frequency", "type": "Trigger" }, 
 { "name": "component", "type": "Machine" } ], 

 "states": [ 
 { "name": "idle" }, 
 { "name": "attack", "enter": [ ... ] }, 
 { "name": "success", "enter": [ ... ] }, 
 { "name": "disconnectLoad", "enter": [ 

 { "action": "get machine by tag", 
 "tag": "has-load", "property": "machine" } ] }, 

 { "name": "disconnectLine", "enter": [ ... ] }, 
 { "name": "disconnectGenerator", "enter": [ ... ] }, 
 { "name": "detected" } ], 

 "initial": "idle", 
 "transitions": { 
 "idle": { "attack": [ { "type": "property", "property": "frequency" } ] }, 
 "attack": { 
 "success": [ { "type": "gate" } ], 
 "detected": [ { "type": "gate" } ] }, 

 "success": { 
 "disconnectLoad": [ 
 { "type": "probabilistic", 
 "distribution": { "type": "exponential", "lambda": 52560 } } ], 

 "disconnectLine": [ ... ], 
 "disconnectGenerator": [ ... ] }, 

 "disconnectLoad": { "detected": [ ... ] }, 
 "disconnectLine": { "detected": [ ... ] }, 
 "disconnectGenerator": { "detected": [ ... ] }, 
 "detected": { "idle": [ ... ] } } } 

 Figure 4.14: Example of state machine definition in JSON. The sample state 

 machine is the Attacker from the Nordic32 case study. 

 The  model  editor  provides  a  visual  and  editable  representation  of  the 

 model  components,  an  interface  for  running  simulations,  and  basic  dataset 
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 visualisation  reports  for  data  collected  during  simulation  runs.  The  simulation 

 results can be exported for more advanced data analysis or charting. 

 The  editor  extends  the  HPS  model  with  diagram-specific  data,  e.g. 

 instance  size  and  position  on  the  diagram,  whether  the  instance  represents  a 

 link or node on the network graph. 

 The  selection  of  an  optimal  technology  for  the  HPS  engine  requires  a 

 multifaceted  assessment.  This  includes,  but  is  not  limited  to,  performance, 

 error-proneness, interoperability, maintainability, potential for optimisations. 

 While  researching  the  best  technology  for  HPS  engine  implementation,  it 

 was  implemented  in  several  programming  languages:  Go,  C++,  JavaScript,  and 

 .NET.  Based  on  the  analysis  of  these  implementations,  it  has  been  observed 

 that each of these technologies possesses certain strengths and weaknesses. 

 Go  is  not  an  OOP  language  per  see,  it  does  not  contain  hierarchical  types. 

 However,  its  other  features,  such  as  interfaces  and  references  allow  writing 

 programs  in  OOP  style,  which  is  more  than  enough  to  implement  the  HPS 

 engine.  The  concept  of  property  implemented  as  a  pair  of  getter  and  setter  is 

 not  available  in  Go.  Instead,  methods  should  be  used  directly  to  mimic 

 property-like  getters  and  setters.  The  concept  of  events  is  not  implemented  in 

 the  language  either.  Instead,  first-class  functions  and  arrays  can  be  used  to 

 implement the concept of multicast delegates. 

 Go's  approach  to  error  handling  is  di�erent  from  other  modern 

 languages.  While  many  languages  use  exceptions  and  exception-capturing 

 approaches,  Go's  approach  to  handling  errors  is  to  return  the  status  while 

 calling the operation. 
 value, err := action() 

 // when action() completes, either value or err is set, not both 

 While  Go  o�ers  a  favourable  blend  of  code  readability  and  e�cient 

 runtime,  its  lack  of  robust  language  constructs  such  as  generics,  modularity, 

 properties,  inheritance,  and  exceptions  can  present  challenges  when  it  comes 

 to  modifying  and  extending  models.  The  absence  of  generics,  for  example,  may 

 require  developers  to  write  more  boilerplate  code  to  achieve  similar 

 functionality,  which  can  increase  the  likelihood  of  errors  and  make 

 maintenance  more  challenging.  The  limited  modularity  and  absence  of 
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 inheritance  can  also  make  it  harder  to  write  reusable  code  that  can  work  with 

 di�erent types and extend functionality as requirements change. 

 As  anticipated,  the  C++  implementation  of  the  language  exhibits  the 

 highest  speed  performance.  Nevertheless,  due  to  the  language's  complexity 

 and  challenges  in  achieving  cross-platform  compatibility,  modellers  may 

 encounter  significant  di�culties  when  working  with  C++  code.  The  intricacies 

 of  C++  make  it  most  challenging  for  developers  to  write  and  maintain  code. 

 Consequently,  while  C++  may  o�er  strong  performance  benefits,  its  use  may 

 be  less  practical  for  applications  that  prioritise  ease  of  development  and 

 cross-platform compatibility. 

 Modern  JavaScript  stands  out  as  a  high-performance  scripting  language 

 in  comparison  to  other  languages  in  the  same  category.  Its  ability  to  interact 

 with  libraries  enables  developers  to  delegate  intensive  computations  to  more 

 performant  languages  such  as  C++.  However,  these  interactions  have  been 

 found  to  be  ine�cient,  as  a  significant  number  of  calls  to  native  libraries  can 

 diminish  the  performance  benefits  of  such  delegation.  While  JavaScript  is 

 renowned  for  its  rapid  prototyping  and  ease  of  small  modifications,  ensuring 

 the  stability  of  JavaScript  code  necessitates  a  significantly  larger  automated 

 testing  coverage  due  to  the  language's  dynamic  nature.  Overall,  while 

 JavaScript's  performance  and  library  interactions  o�er  many  benefits, 

 developers  must  carefully  consider  these  factors  when  deciding  whether  to  use 

 the language for their particular application. 

 According  to  the  analysis,  .NET  technology  exhibits  the  most 

 advantageous  combination  of  strength-contributing  factors.  Its  broad  range  of 

 programming  language  features  and  paradigms,  combined  with  the  ability  to 

 execute  compiled  code  on  various  platforms,  including  WebAssembly,  make  it 

 a  highly  versatile  and  adaptable  platform.  Additionally,  .NET  provides  robust 

 integration  and  extensibility  technologies  that  further  enhance  its  flexibility 

 and  usefulness.  Moreover,  its  UI  libraries  simplify  the  process  of  creating 

 editors and integrating the engine with them. 

 While  C++  is  a  lower-level  language  that  can  o�er  superior  performance, 

 it  is  possible  to  achieve  performance  levels  comparable  to  C++  in  C#.  For  this, 

 developers  can  leverage  various  optimization  techniques,  such  as  unsafe  code 

 blocks  and  pointer  manipulations,  using  value  types,  ref  parameters,  memory 
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 pools,  and  structures  to  minimise  unnecessary  memory  allocations  and  reduce 

 garbage collections. 

 From  a  cloud  computing  perspective,  utilising  one  of  the  technologies 

 supported  by  the  service  providers  o�ers  the  most  streamlined  integration. 

 Currently,  the  market  leaders  in  cloud  computing  are  Amazon,  Microsoft,  and 

 Google.  These  providers,  namely  AWS,  Azure,  and  Google  Cloud,  o�er  similar 

 autoscaling  solutions  for  running  functions  in  a  fully-managed  serverless 

 environment, which is the optimal approach for running HPS simulations. 

 Among  the  reviewed  technologies,  C#  and  JavaScript  are  natively 

 supported  on  all  of  these  platforms.  This  allows  for  more  e�cient  development 

 and  deployment  of  applications  utilising  these  programming  languages. 

 Overall,  the  choice  of  cloud  provider  and  technology  will  depend  on  the  specific 

 requirements  and  needs  of  the  project,  but  opting  for  a  supported  technology 

 from  a  leading  cloud  provider  can  o�er  significant  benefits  in  terms  of 

 integration and scalability. 

 Based  on  the  findings  of  this  comparison  analysis,  the  technology  that 

 has  been  selected  for  the  project  is  .NET  7.  The  editor  is  a  browser  application 

 created  with  Blazor,  a  modern  web  application  development  framework  that 

 allows  using  C#  for  web  development.  The  editor's  interface  is  built  with 

 Semantic  UI.  The  state  machines  and  network  editors  are  built  with  jointJS,  a 

 versatile and advanced diagramming framework. 

 Some  studies  demonstrated  that  it  is  possible  to  achieve  similar 

 performance  by  heavily  optimising  the  code.  .NET  is  used  in  many 

 performance-critical  applications,  including  machine  learning,  finance,  and 

 game  development.  .NET's  extensibility  allows  integration  with  other 

 languages  and  technologies  (e.g.  CUDA).  Where  necessary,  such  libraries  can  be 

 integrated into the HPS simulation engine through its plugin API. 

 The  HPS  simulation  engine  communicates  with  the  agents  and  the  editor 

 through  gRPC,  a  modern  high-performance  Remote  Procedure  Call  (RPC) 

 framework.  It  connects  the  editor  with  the  server  and  the  server  with  the  HPS 

 agents. 

 HPS  Engine  (HPSE)  runs  simulations  of  the  models  defined  in  HPS 

 Modelling  Language  (HPSML).  It  extends  the  HPSML  with  the  supported 

 property  and  machine  types.  HPSE  defines  a  runtime  simulation  environment, 

 64 



 how  the  simulation  is  performed,  how  the  state  machine  is  implemented,  and 

 rules for hierarchical instantiation of the state and network machines. 

 The  runtime  model  is  defined  in  terms  of  OOP,  e.g.  interfaces,  classes, 

 attributes,  and  objects.  Where  appropriate,  property  means  HPSML  machine 

 property  and  attribute  means  the  attribute  of  the  class/object  of  the  runtime 

 implementation. 

 Types 

 IMachine  is  an  interface  that  corresponds  to  the  machine  instance,  defined  in 

 HPSML.  There  are  two  types  of  machines  defined  in  HPSML  that  are 

 implemented  in  HPSE:  network  machine  and  state  machine.  Machine  has  the 

 attribute Name and method Event(). 

 Event  defines  action  that  machine  is  intended  to  perform  at  some  moment 

 in  time  (possibly,  the  current  moment  in  case  of  instant  event).  During 

 simulation,  the  environment  requests  all  the  machines  for  their  planned 

 events, executes the most recent one, and then repeats until simulation stops. 

 Environment  is  a  container  for  the  machines.  The  main  loop  works  over 

 the environment. 

 Property  is  a  data  field  associated  with  the  machine.  It  is  defined  in  the 

 machine's  definition  and  its  value  can  be  defined  in  machine  instance 

 definition in the network. 

 Events 

 The  events  mechanism  is  a  way  for  one  runtime  entity  to  attach  a  callback, 

 which  is  executed  by  another  runtime  entity  in  response  to  some  action.  For 

 example,  CPU  interrupts  is  an  event  system.  Some  high-level  programming 

 languages  provide  language-level  support  for  events.  Most  of  the  modern 

 languages  have  features  that  enable  event-driven  programming.  The  essential 

 features  are  an  ability  for  a  variable  to  store  function  pointers  and  a  way  to  call 

 the  function  by  its  pointer.  These  features  are  well  supported  by  the  C 

 programming  language.  Modern  languages  have  features  that  greatly  simplify 

 the interoperability of the code fragments: closures and anonymous functions. 

 There are the following events defined in the HPSE: 

 ●  Simulation events: starting iteration, ending iteration. 
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 ●  Properties: property changed. 

 ●  State machine: entering a state, leaving a state, changing. 

 Simulation Loop 

 Simulation  loop  iterates  over  the  model  events  and  invokes  them.  Its 

 prerequisite is the constructed environment with all machines instantiated. 

 The conceptual steps are the following: 

 1.  Get the most recent event by querying all the machines. 

 2.  If  there  is  no  event,  exit  from  the  loop  with  the  status  “completed  by 

 idle” 

 3.  Update current time. 

 4.  If  one  of  the  limits  has  been  reached  (number  of  events,  simulation 

 time,  clock  time)  or  continue  simulation  predicate  returns  false,  end  the 

 simulation with corresponding status. 

 5.  Notify subscribers of the starting iteration event. 

 6.  Invoke the event' action 

 7.  Notify subscribers of the ending iteration event. 

 8.  Jump to 1. 

 Observing Model Properties 

 For  the  model  designer  the  main  point  of  interest  is  how  the  model  behaves 

 when  a  series  of  interesting  events  occurs.  For  that  the  model  state  is  needed  to 

 be  observed  while  simulation  runs.  The  model  state  means  simulation  time, 

 property  values,  instances  of  the  machines,  their  current  state  and  other 

 machine-specific attributes. 

 The engine provides two approaches for observing the model state: 

 ●  Tracing  model  changes  can  be  used  while  analysing  model 

 dependencies  and  chains  of  cascading  events.  In  this  case  all  model's 

 changes  are  tracked  and  logged  and  then  these  logs  either  analysed 

 manually  or  processed  by  the  analytic  tools.  This  method  is  very  useful 

 while validating and debugging. 

 ●  Subscribing  to  events  is  a  preferred  way  to  observe  the  model  state  that 

 can  be  used  for  already  validated  models,  when  the  simulation  time  is 

 reasonably  small  and  when  the  number  of  model  changes  is  large,  so 
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 tracing  model  changes  is  impractical.  This  method  is  much  faster  and 

 produces much less data about the model. 

 Running HPS 

 Running  the  compiled  HPS  executable  without  arguments  logs  error  and 

 suggests  to  use  ̀hpscmd  -h'  to  get  the  more  information  on  how  to  run  the 

 executable: 
 $ hpscmd 

 ... Model file is not specified. 

 Run 'hpscmd -h' for the details. 

 Running  the  executable  with  -h  prints  the  supported  command  line 

 arguments with descriptions. 

 The  HPS  repository  contains  a  few  test  models  in  the  folder  “models”.  To 

 run  any  of  them  add  the  “-file”  command  line  argument  followed  by  the 

 relative or absolute path to the model. 
 $ hpscmd -file models/test.json 

 The  test  model  creates  a  simple  state  machine  with  two  states  “ok”  and 

 “fail”  and  probabilistic  transitions  between  them.  Without  the  specified  limits 

 for  duration,  simulation  environment  time  and  number  of  events  the 

 simulation runs for 10 events or for 1 second, whatever comes first. 

 The  random  number  generator  seed  is  initialised  by  default  from  the 

 current  datetime.  This  option  can  be  overwritten  by  specifying  the  “-seed” 

 argument.  So  calling  the  simulation  with  the  same  file,  seed  and  limit  produces 

 exactly the same results. 

 Output Interpretation 

 A  normal  run  of  the  simulation  executable  “hpscmd”  with  command  line 

 arguments  uniquely  identifying  the  network  generates  simulation  events. 

 These  events  occur  as  a  result  of  state  machine  transition  activation,  property 

 change, or custom message produced by engine plugin(s). 

 With  the  default  settings  these  events  are  logged  to  the  stdout  as  JSON 

 messages,  one  message  per  line.  The  message  includes  simulation  time  and 

 payload,  which  can  be  either  change  happening  in  the  model,  or  custom 

 message.  In  case  of  multiple  changes  all  of  them  are  recorded  at  the  same  time 

 and they appear in log in the order of recording. 

 Sample log (long lines are truncated for readability): 

 67 



 {"time":0,"message": 

 "starting default with seed 1487207223497346... 

 {"time":0.03557550243171388, 

 "delta":{"machines":{"test1":{"state":"fail"}}}} 

 {"time":0.736920916774142, 

 "delta":{"machines":{"test1":{"state":"ok"}}}} 

 ... 

 {"time":3.0751483156879686, 

 "message":"10 events in 64.183... 

 Only  model  changes  are  recorded,  as  the  original  state  of  the  model  is  set 

 by the model file and network. 

 The  output  can  be  saved  to  file  or  redirected  to  another  process  using  the 

 standard operating system commands, such as redirection or pipe. 

 Examples: 
 $ bin/hpscmd -file models/test.json > log.jslog 

 $ bin/hpscmd -file models/test.json | grep test1 

 4.5 Extensibility 

 Modelling  a  large  system  as  a  set  of  interconnected  semi-Markov  state 

 machines  may  not  be  enough  to  capture  all  the  relevant  factors  a�ecting  the 

 system's  behaviour.  For  example,  accurate  simulation  of  the  power 

 transmission  network  requires  calculating  load  flow  through  the  power  lines,  a 

 physical  simulation  technique  involving  solving  a  set  of  non-linear  algebraic 

 equations (or even a system of di�erential equations). 

 The  HPS  Engine  model  provides  several  extension  points  where  plugins 

 can  be  integrated  and  thus  extend  the  model  capabilities  without  modifying 

 the  core  code.  The  extension  points  are  implemented  as  observables  (also 

 known  as  events)  [54]  .  In  order  to  receive  notifications,  a  consumer  subscribes 

 to  the  producer.  At  a  time  of  an  event,  the  producer  distributes  the  notification 

 to  the  consumers.  In  order  to  stop  receiving  notifications,  the  consumer 

 unsubscribes  from  a  producer.  The  order  and  concurrency  of  notifications 

 received  by  multiple  subscribers  to  the  event  are  indeterminable  and  not 

 expected  to  remain  consistent  across  multiple  notifications.  Notification 

 processing  is  synchronous  and  completes  only  when  all  subscribers  complete 

 invocations of their methods. 
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 The HPS Engine provides the following events: 

 -  Initialisation  .  This  event  occurs  while  the  engine  is  initialised  on  the 

 agent.  The  model  is  not  initialised  at  this  moment.  Typical  tasks  for  this 

 event  include  adding  new  types  of  machines,  triggers,  distributions,  and 

 actions  and  initialising  the  plugin’s  resources,  e.g.  caches,  repositories, 

 and data connections. 

 -  Environment.OnSimulationBegins  .  Occurs  before  starting  the 

 simulation,  the  environment  is  populated  with  the  necessary  instances. 

 At  this  event,  the  plugin  can  acquire  resources  specific  to  the  single 

 simulation  and  the  particular  model.  This  is  a  suitable  event  to  subscribe 

 to the events of the instances. 

 -  Environment.OnIterationBegins  .  Occurs  when  the  next  environmental 

 event  is  about  to  be  processed.  All  calculations  related  to  the  previous 

 event  are  done  at  this  moment.  Typical  tasks  for  this  event  are 

 recalculating  reward  functions,  physical  models,  or  logging.  Any 

 changes in the event queue will not a�ect the currently processed event. 

 -  Environment.OnIterationEnds  .  It  occurs  after  processing  the 

 environmental  event.  Typical  tasks  for  this  event  are  recalculating 

 reward  functions,  physical  models,  or  logging.  This  is  a  suitable  event  to 

 change  the  model  and  event  queue.  The  following  environmental  event 

 will be picked up from the queue after this event. 

 -  StateMachine.Changed.  Subscribers  to  this  event  are  notified  after  the 

 state  machine  enters  a  new  state.  Typical  tasks  for  this  event  are 

 modifying  the  simulation  model,  recalculating  physical  models  (e.g. 

 load flows in power network), and logging. 

 -  StateMachine.State.Entering.  Subscribers  to  this  event  are  notified 

 when  the  state  machine  enters  a  new  state  but  before  the  state 

 machine’s  Changed  event.  Typical  tasks  for  this  event  are  modifying  the 

 simulation model, recalculating physical models, and logging. 

 -  StateMachine.State.Leaving  .  Subscribers  to  this  event  are  notified  when 

 the  state  machine  leaves  a  state.  Typical  tasks  for  this  event  are 

 modifying  the  simulation  model,  recalculating  physical  models,  and 

 logging. 
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 -  Property.Changed  .  Subscribers  to  this  event  are  notified  immediately 

 after  the  machine’s  property  changes  its  value.  Typical  tasks  for  this 

 event  are  modifying  the  simulation  model,  recalculating  physical 

 models, and logging. 

 The  Stochastic  Associations  approach,  introduced  in  PIA,  is  a  way  to 

 capture  and  model  dependencies  between  components.  More  specifically,  a 

 stochastic  association  defines  how  a  probabilistic  change  in  one  component’s 

 state  changes  the  probabilistic  behaviour  of  another.  For  example,  a  stochastic 

 association  between  components  A  and  B  can  increase  the  failure  rate  of  B 

 10-fold  when  A  is  in  a  failed  state.  Stochastic  associations  can  be  defined  as  a 

 table,  with  columns  “State  Machine”,  “State”,  “A�ected  State  Machine”, 

 “Transition”, “Parameter”, and “Value”. 

 In  HPS  support  for  stochastic  associations  is  implemented  as  a  plugin. 

 The  Stochastic  Associations  plugin  reads  the  table  of  stochastic  associations  in 

 CSV  format,  initialises  the  network,  and  attaches  actions  to  the  state  machine’s 

 state  events.  These  actions  monitor  the  change  in  the  machines’  state  and 

 modify the parameter of the transition trigger in the a�ected state machines. 
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 5. Applications 

 5.1 Overview 

 The  application  of  a  methodology  is  crucial  in  verifying  its  usefulness, 

 gathering  feedback,  and  establishing  a  foundation  for  further  improvements. 

 This  chapter  presents  two  such  applications  of  the  HPS  modelling 

 methodology. 

 The  first  application  demonstrates  how  the  HPS  modelling  methodology 

 supports  the  model's  construction,  simulation,  collecting  and  aggregating  of 

 the  simulation’s  results  [52]  .  The  second  case  study  demonstrates  how  an 

 existing  HPS  model  can  be  used  to  investigate  the  benefits  of  enhancing  the 

 system's reliability using the defence-in-depth approach  [50]  . 

 An  improved  Nordic32,  the  power  production  and  retransmission 

 network  with  controlling  infrastructure  and  detailed  design  of  the  electrical 

 substations,  was  used  as  a  foundation  for  the  first  case  study.  This  model  was 

 developed  by  the  FP7  AFTER  project  research  team  (grant  agreement  number 

 261788). 

 Although  the  model  of  the  network  represents  the  physical  system  only  to 

 some  extent,  it  allows  a  much  wider  range  of  experiments  and  observations 

 than  the  real  physical  system  tolerates.  Also,  analysing  the  results  of  the 

 simulations  with  various  counter-agents  (attackers  and  protectors)  gives  a 

 base for further advances by providing instruments, scenarios and data. 

 The  focus  of  the  first  study  is  to  apply  the  modelling  methodology  to  build 

 a  set  of  reusable  components,  such  as  generators,  loads,  attackers,  and  others, 

 build  networks  by  combining  them  and  investigate  e�ects  caused  by  the 

 di�erent types of attackers on the network. 

 The  focus  of  the  second  study  is  to  demonstrate  the  reusability  of  the 

 model in other research studies. 
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 5.2 Nordic32 Case Study 

 The  problem  of  identifying  the  e�ect  of  cyber-attacks  is  important  and 

 complex.  It  is  important  because  the  information  infrastructure  becomes 

 crucial  for  the  successful  operation  of  the  power  networks.  It  is  complex 

 because  there  are  many  types  of  attacks,  from  simple  worm-like  distortions  to 

 sophisticated and targeted attacks that are very hard to generalise. 

 Substation  elements  are  low-level  construction  elements  that  represent 

 substation devices identified by the standard IEC 61850. 

 Figure 5.1: Substation Elements. 

 Link 

 The  Link  machine  represents  physical  wiring  between  two  substations.  Its  state 

 represents  the  physical  availability  of  the  wire,  so  "ok"  means  that  two 

 substations  can  be  connected,  "fail"  represents  physical  damage  (ice,  disaster, 

 stolen  cable,  etc).  Failure  rate  and  recovery  time  are  di�erent  for  the  links  and 

 depend on the link's length and reachability. 

 Link's properties: 

 from  - incident substation. 

 to  - another incident substation. 

 kV  - voltage level 

 x  - impedance 
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 cf  - maximum power allowed through the line 

 overloaded  -  flag  showing  whether  the  power  going  through  the  line  is 

 exceeded the "max" value 

 connected  -  flag  specifying  whether  the  line  is  connected  to  the 

 substation's busbar 

 failure  - activator of the "ok" to "fail" transition 

 recovery  - activator of the "fail" to "ok" transition 

 length  - physical length of the line 

 Generator 

 The  Generator  represents  the  power  generator,  connected  to  the  substation.  It 

 is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  The  failure 

 rate  and  recovery  time  are  equal  for  all  generator  instances.  The  Generator  is  a 

 part of the Generator Bay. 

 Load 

 The  Load  represents  the  power  consumers,  served  by  the  substation.  It  is 

 implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  The  failure 

 rate  and  recovery  time  are  equal  for  all  Load  machines.  The  Load  is  a  part  of  the 

 Load Bay. 

 Breaker 

 The  Breaker  represents  the  line  tripping  device  that  disconnects  the  link  when 

 it  becomes  overloaded.  The  device  disconnects  the  line  instantly,  if  it  is  in  the 

 operational  state.  There  are  two  such  devices,  connected  to  every  line  from 

 both its ends. 

 It  is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  The 

 failure  rate  and  recovery  time  are  equal  for  all  breakers.  The  Breaker  is  a  part  of 

 the Line Bay and Transformer Bay. 

 Relay 

 The  Relay  represents  the  line  disconnection  device,  di�erently  from  the 

 Breaker,  which  disconnects  the  line  only  when  the  line  is  overloaded,  the  Relay 

 reacts on the commands from the operator or control centre. 

 It  is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  The 

 failure rate and recovery time are equal for all relays. 
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 There are two relays in the Line Bays on both sides of the line. 

 Current Transformer 

 The  Current  Transformer  represents  a  device  required  to  connect  power 

 networks  with  di�erent  currents.  It  has  its  own  characteristics  of  time  to 

 failure and recovery. 

 It  is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  The 

 failure  rate  and  recovery  time  are  equal  for  all  transformers.  The  Current 

 Transformer is a part of the Transformer Bay. 

 Battery 

 The  Battery  represents  an  emergency  power  provider  to  the  substation 

 infrastructure. 

 It  is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  It  is 

 a part of all bays. 

 Wiring 

 The Wiring represents connectivity between the substation components. 

 It  is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  It  is 

 a part of all bays. 

 Switch 

 The  Switch  represents  a  device  providing  communication  service  to  the  bay 

 components. It is responsible for routing packets between them. 

 It  is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  It  is 

 a part of all bays. 

 Workstation 

 The  Workstation  represents  an  operator  console.  When  the  console  is  working, 

 the operator can configure substation components. 

 It  is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  It  is 

 a part of the Control Bay. 

 Server 

 The Server represents a substation telemetry data storage and processor. 

 It  is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  It  is 

 a part of the Control Bay. 
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 Router 

 The  Router  represents  a  substation  connectivity  device  that  connects  it  with 

 the data centres. Its tra�c is protected by the Firewall. 

 It  is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  It  is 

 a part of the Control Bay. 

 Firewall 

 The  Firewall  represents  a  tra�c  filtering  device  that  resides  between  the 

 incoming  connection  to  the  substation  and  the  Router.  All  the  incoming 

 requests to the substation devices should bypass the Firewall. 

 It  is  implemented  as  a  state  machine  with  two  states  "ok"  and  "fail".  It  is 

 a part of the Control Bay. 

 IT Infrastructure Elements 

 Information  Technology  elements  represent  the  construction  blocks  for 

 building a connectivity network between the control centres and substations.. 

 Figure 5.2: IT Infrastructure Elements. 

 Data Centre 

 The  Data  Centre  is  an  intermediate  data  storage  and  transfer  facility  that 

 participates  in  commands  and  data  transfer  between  the  substation  and 

 control  centre.  The  Data  Centre  can  be  connected  to  any  number  of  other  Data 

 Centres,  Substations,  or  Control  Centres.  All  network's  Data  Centres  form  a 

 fault-tolerant  transmission  network.  The  Data  Centre  should  not  be  able  to 

 tamper,  re-send  or  interfere  in  any  other  way  with  the  power  network  data 

 channels. 

 It is implemented as a state machine with two states "ok" and "fail". 
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 Control Centre 

 The  Control  Centre  is  a  network  management  facility.  It  receives  data  from  the 

 substations  and  sends  commands  back  to  them.  The  Control  Centres  are 

 connected with the Substations through the network of the Data Centres. 

 It is implemented as a state machine with two states "ok" and "fail". 

 Data Link 

 The  Data  Link  represents  connectivity  between  the  Data  Centres  and  other 

 components  of  the  network:  the  Substations,  the  Data  Centres,  and  the  Control 

 Centres. 

 It is implemented as a state machine with two states "ok" and "fail". 

 Substation Bays 

 Bays  are  constructed  by  combining  several  substation  elements  into  a  network. 

 They represent the substation parts as defined in standard [ISO 61850]. 

 Figure 5.3: Substation Bays. 

 Generator Bay 

 The  Generator  Bay  represents  the  connectivity  between  generator  and 

 substation bus bar. 

 The generator bay's properties: 

 capacity  - capacity of the connected generator; 

 connected  - specifies whether the generator is connected. 
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 Line Bay 

 The  Line  Bay  represents  the  connectivity  between  the  link  and  substation  bus 

 bar. 

 The line bay's properties: 

 line  - name of the link connected to the line bay. 

 Transformer Bay 

 The  Transformer  bay  represents  the  connectivity  between  the  link  and 

 substation bus bar through the current transformer. 

 The line bay's properties: 

 line  - name of the link connected to the transformer. 

 Load Bay 

 The  Load  Bay  represents  the  connectivity  between  the  consumers 

 supplied through the substation and the substation's busbar. 

 The load bay's properties: 

 power  - total power required by all the consumers; 

 connected  - specifies whether consumers are connected. 

 Control Bay 

 The  Control  Bay  contains  all  the  IT  devices  of  the  substation:  workstations, 

 servers, router, firewall, switch. 

 The  object  diagram  below  demonstrates  how  the  substation  state 

 machines  are  placed  on  the  "Substations"  network.  Each  instance  corresponds 

 to  the  network  defined  in  the  model.  The  links  on  the  diagram  correspond  to 

 the Link state machines added on the network. 
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 Figure 5.4: Substations. 

 5.3 Performance of Power Flow Calculation 

 Solving  the  Power  Flow  problem  is  an  important  part  of  the  Nordic32 

 simulation  model.  The  flow  through  the  lines  should  be  recalculated  every  time 

 when  the  system's  topology,  generation,  or  load  is  changed.  Performance  of 

 many  other  agents  (control,  attacker,  statistics)  depend  on  how  e�ciently  the 

 power flow solver works. 

 As  DC  power  flow  calculation  is  mainly  matrix  multiplications,  using  the 

 existing  optimised  linear  algebra  library  is  an  obvious  choice.  The  standard 

 software  library  interface  for  numerical  linear  algebra  is  BLAS  [55]  .  Eigen  is  a 
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 highly  optimised  C/C++  implementation  of  BLAS  [56]  .  GONUM  library  set 

 contains  BLAS-compatible  linear  algebra  library  [57]  .  Although  comparing 

 C/C++  and  Go  solutions  might  be  enough  for  the  research,  this  group  of 

 technologies  compared  the  combination  of  high-level  scripting  language  with 

 power  flow  solver  implemented  a)  entirely  in  scripting  language,  and  b)  as  a 

 C/C++  extension  using  Eigen  library.  The  node.js  JavaScript  was  chosen  for  that 

 purpose as it is one of the most popular modern scripting languages. 

 The  target  power  network  is  defined  as  an  undirected  graph. 

 Programmatically, the network data structures are similar to an incident list. 

 IDL definition of the network data structure 

 enum NodeType { Producer, Consumer } 

 interface INode { 

 attribute NodeType Type; 

 attribute float Power; 

 attribute float Capacity; 

 } 

 interface IEdge { 

 attribute int From; 

 attribute int To; 

 attribute float Reactance; 

 } 

 interface INetwork { 

 attribute List<INode> Nodes; 

 attribute List<IEdge> Edges; 

 } 

 Pseudocode of obtaining branch flows for balanced network: 

 Calculating branch flows, F 

 n, M, N = getNetworkData() 

 // construct matrices and vectors from network data 

 Ba = matrix M x N 

 Bm = matrix N x N 

 Bl = vector N 
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 for i in 1..M do 

 from, to, x = n.links(i) 

 Ba(i, from) = 1/x 

 Ba(i, to) = -1/x 

 Bm(from, to) += -1/x 

 Bm(to, from) += -1/x 

 Bl(from) += 1/x 

 Bl(to) += 1/x 

 for i in 1..N do 

 Bm(i, i) = Bl(i) 

 P = n.nodes(2..N).map(x -> x.Power) 

 // calculate flows 

 F = Ba * ([0] + Bm(2..N, 2..N)^-1 * P) 

 To  compare  the  load  flow  performance  the  following  networks  where 

 selected: 

 ●  Nordic32  network  [58]  -  network  of  32  substations  representing  the 

 Swedish electrical network; 

 ●  IRRIIS  network  [59]  -  network  of  52  electrical  substations  in  central 

 Italy; 

 ●  idealised  tree  networks  [60]  -  symmetrical  tree-like  networks  with  94, 

 190, and 384 nodes. 

 Table 5.1: Characteristics of the networks 

 Name  Nodes  Links  Generators  Loads 

 Nordic32  32  60  17  11 

 Rome IRRIIS  52  67  3  46 

 Grid 94  94  93  12  82 

 Grid 190  190  189  12  178 

 Grid 382  382  381  12  370 

 The following implementations of the load flow solver were compared: 

 ●  Go with GONUM library 

 ●  C++ with Eigen library 

 ●  node.js plugin with C++/GONUM solver 
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 ●  JavaScript-only implementation 

 The  correctness  of  the  solvers  was  validated  by  doing  cross-checks  (also 

 referred  often  as  “back-to-back”  testing)  between  the  implementations  and 

 comparing them with examples  [61]  . 

 The  test  networks  are  generated  once  and  used  during  benchmarking  by 

 the  particular  implementation.  The  benchmarking  network  set  contains  1000 

 Nordic32  networks,  1000  Rome  IRRIIS,  1000  Grid  94,  300  Grid  190  and  100  Grid 

 382  networks.  The  networks  are  created  by  randomly  changing  network  loads 

 by up to 5% from their original values and rebalancing. 

 In  order  to  assure  that  the  average  problem  solving  time  is  not  a�ected  by 

 the  random  fluctuations,  the  total  number  of  test  cases  for  every  network  is 

 divided  into  ten  groups  and  an  average  is  calculated  for  each  of  these  groups. 

 The  execution  time  for  the  single  batch  is  selected  to  be  much  larger  than  timer 

 resolution. 

 The  hardware,  compiler  and  compilation  options  greatly  a�ect  the 

 performance  of  the  generated  binaries.  It  is  important  to  mention  that  the  tests 

 were  performed  on  Debian  Linux  64-bit,  C++  version  is  compiled  with  GCC 

 4.7.2-5  on  second  level  of  optimization  (-O2)  and  the  architectural  target  is 

 x64.  The  tests  were  run  on  the  virtual  machine,  using  a  single  core  of  Xeon 

 E5-2680 CPU. 

 The  table  below  contains  average  load  flow  solving  time  calculated  for 

 every  combination  of  technology  and  network.  The  standard  deviation  (  σ  )  is 

 calculated across ten batches of the networks processed by the solver. 

 The  results  of  the  benchmarking  shows  that  the  GONUM  implementation 

 works  slower  on  smaller  networks  (less  than  94  nodes  and  less),  but  faster  on 

 larger  networks  (382  nodes  and  more)  with  median  about  Grid  190  (network 

 with 190 nodes). Unsurprisingly, JavaScript implementation is slowest. 
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 Table 5.2: Benchmark results 

 Name  C++/Eigen 
 (ms;σ) 

 Go/GONUM 
 (ms;σ) 

 JS/C++/Eigen 
 (ms;σ) 

 JS/numeric 
 (ms;σ) 

 Nordic32  0.044;0.005  0.087;0.165  0.193;0.083  0.321;0.460 

 Rome IRRIIS  0.136;0.129  0.180;0.086  0.232;0.125  0.552;0.037 

 Grid 94  0.473;0.177  0.533;0.081  0.646;0.015  2.671;0.265 

 Grid 190  2.895;0.843  2.874;2.801  3.240;0.286  19.897;0.755 

 Grid 382  19.259;2.935  13.471;8.203  19.520;2.973  156.150;3.806 

 The  Fig.5.5  visualises  results  from  the  table  above,  grouping  averages  by 

 network  and  technology.  The  y-axis  is  scaled  logarithmically  as  the  di�erence 

 between extreme cases is 5 orders of magnitude. 

 Figure 5.5: Time in milliseconds required to solve the load flow problem for the 

 networks. Scale of the y-axis is logarithmic. 

 Many  benchmarks  show  that  C++  version  of  the  algorithm  is  one  of  the 

 fastest,  having  Go  implementation  of  the  load  flow  solver  outperforming  C++ 
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 version  may  be  related  to  di�erences  in  algorithms  used  in  Eigen  and  GONUM 

 libraries. 

 However,  the  results  show  that  the  performance  of  the  algorithm 

 implementation  in  Go  is  comparable  to  the  implementation  in  C++. 

 Considering  the  other  benefits  it  gives,  such  as  simple  integration  with  existing 

 C/C++  libraries,  garbage  collector,  closures,  and  parallelisation,  it  is  a  good 

 choice  to  become  a  language  for  simulation  models  and  data  processing 

 problems. 

 5.4 Assessing Resilience to Cyber-attacks 

 This  section  provides  a  synopsis  and  outcomes  of  the  case  studies  conducted  by 

 the  working  group  on  the  critical  infrastructure  modelling  at  CSR  and 

 published  in  the  papers  "Quantification  of  the  Impact  of  Cyber  Attack  in 

 Critical  Infrastructures"  [49]  and  in  the  chapter  "Quantitative  Evaluation  of 

 the  E�cacy  of  Defence-in-Depth  in  Critical  Infrastructures"  of  the  book 

 "Resilience  of  Cyber-Physical  Systems"  [50]  .  The  references  o�er  more 

 information on the methods and techniques used in the research. 

 Assessing  resilience  to  a  threat  is  done  by  measuring  the  metrics  of 

 interest  for  the  system  under  normal  circumstances,  then  for  the  system  under 

 stress  and  then  observing  how  the  metrics  are  changing  when  the  stress  is 

 removed.  As  the  extended  Nordic  32  model  contains  ICT  elements,  it  is  possible 

 to investigate how the network is a�ected by the cyber-attacks. 

 The  e�ect  caused  by  the  cyber-attacks  can  be  observed  by  comparing  the 

 random  variables,  such  as  duration  of  load  shedding  or  total  delivered  power, 

 calculated  when  the  system  operates  normally  and  under  stress.  The  function 

 that  calculates  the  value  of  the  random  variable  selected  for  the  comparison  is 

 called  "reward  function".  For  this  study  the  total  delivered  power  for  10  years 

 of operation was selected as the reward function. 

 The  "normal"  operation  of  the  critical  infrastructure  implies  operation 

 with  periodic  accidental  failures  of  the  components.  Such  failures  and  recovery 

 from  them  are  captured  by  the  transitioning  from  the  "Ok"  state  to  the  "Fail" 

 state  and  back  in  the  state  machines.  This  is  a  base-line  model,  i.e.  it  is  without 

 the adversaries (attackers). 
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 The  introduced  attacker  model  corresponds  to  widely  known  cyber-attack 

 concepts: 

 ●  Attacks  are  periodic,  with  exponentially  distributed  time  between 

 attacks. 

 ●  Attacks  are  performed  through  the  elements  of  the  IT  infrastructure,  in 

 particular - firewalls. 

 ●  Success  of  an  attack  is  probabilistic  -  most  of  the  time  it  fails,  but 

 sometimes it succeeds. 

 ●  Attacks  are  detectable  and  the  system  eventually  recovers  from  them, 

 either by an automatic control function or manual intervention. 

 In  addition  to  that,  the  following  alternative  behaviours  of  the  attacking 

 agents were studied: 

 ●  Selective versus random targeting on the substation firewalls. 

 ●  Immediately  disconnecting  the  substation  component  or  changing  the 

 configuration of the components. 

 The  attacking  agent  is  implemented  as  state  machine  of  the  following 

 structure: 

 ●  States:  idle,  attack,  firewallRule1,  firewallRule2,  firewallRule3, 

 firewallRule4,  firewallRule5,  success,  disconnectLoad,  disconnectLine, 

 disconnectGenerator, detected 

 ●  Initial state: idle. 

 ●  With some probability the attacker goes from "idle" to "attack". 

 ●  When attacking, the attacker randomly selects the firewall rule to try. 

 ●  The  firewall  rule  either  succeeds  in  stopping  the  attacker  (it  goes  to 

 "idle" then) or fails (attack succeeds). 

 ●  When  it  is  in,  the  attacker  performs  the  action,  gets  detected  and  goes  to 

 "idle". The action is either: 

 ○  disconnecting the bay (generator, load, or link), or 

 ○  changing the line overloading threshold. 
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 Fig. 5.6. State machine representing the attacker. 

 Disconnecting  the  bay  changes  the  topology  of  the  network,  which  causes 

 recalculation  of  the  load  flow  to  links,  shedding  load  if  necessary,  and, 

 eventually, recovering from the disconnection by the "control" plugin. 
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 Figure 5.7: Distribution of the fraction of delivered power for baseline, yearly, 

 monthly, weekly, and daily attacks. 

 The  attacker  that  changes  the  configuration  properties  of  the  system  has 

 the  same  penetration  algorithm,  i.e.  it  attacks  periodically  through  the  firewall 

 rules.  Di�erently  from  the  previously  described  attacker,  instead  of 

 disconnecting  the  bay  it  changes  the  line  overloading  threshold  to  110%  of  the 

 current  flow  through  the  line.  Changing  the  attack  action  has  a  significant 

 result  -  even  for  the  yearly  attacks  the  e�ect  of  the  stealthy  configuration 

 changes  is  worse  than  the  e�ect  from  the  simple  attacker  and  the  system 

 quickly deteriorates when the frequency of the attacks is increasing. 

 The  subversive  attacker  counterparty  is  the  "inspector"  -  the  agent  that 

 resets  the  overloading  thresholds.  The  inspector  is  implemented  as  a  simple 

 state  machine  with  the  states  "idle"  and  "working".  The  "idle-working" 

 transition  is  configurable,  the  "working-idle"  is  instantaneous,  i.e.  as  soon  as 

 the  state  working  is  reached  and  the  actions  defined  for  that  state  are 

 completed  a  transition  will  take  place  to  the  “idle”  state.  On  entering  the 

 "working" state the machine enumerates all links and restores the thresholds. 

 CDFs of the supplied power are presented on Fig. 5.8 and 5.9. 
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 (a) baseline vs yearly  (b) yearly vs monthly 

 (c) monthly vs weekly 

 Figure 5.8: Distribution of the fraction of delivered power for baseline, yearly, 

 monthly, and weekly subversive attacks. 

 Figure 5.9: Distribution of the fraction of delivered power for baseline, weekly 

 subversive attacks, monthly, weekly, and daily inspections. 
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 Defence-in-depth,  as  defined  by  NIST,  is  an  information  security 

 strategy  that  integrates  people,  technology,  and  operations  capabilities  to 

 establish  variable  barriers  across  multiple  layers  and  missions  of  the 

 organisation  [62]  .  In  terms  of  safety,  the  US  NRC  defines  it  as  “creating 

 multiple  independent  and  redundant  layers  of  defence  to  compensate  for 

 potential  human  and  mechanical  failures  so  that  no  single  layer,  no  matter  how 

 robust,  is  exclusively  relied  upon”  [63]  .  E�ective  placing  of  the  controls 

 requires  assessing  the  e�ect  the  introduced  controls  have  on  the  e�ciency  of 

 the  potential  attacker,  i.e.  answering  the  questions  like  how  long  would  it  take 

 for  the  attacker  to  get  into  the  system.  With  the  constructed  models  of  system 

 and attacker it is possible to answer such questions quantitatively. 

 For  the  Nordic  32  model  the  e�ect  on  introducing  redundancy  and 

 diversity  on  the  Breaker  component  of  the  network  was  investigated.  The 

 Breaker  component  was  selected  because  it  exists  in  all  bays  and  its  failure  is 

 immediately  visible  as  it  disconnects  the  component  connected  through  the 

 bay.  The  redundancy  was  added  by  replacing  the  Breaker  component  with  the 

 two  Breaker  Channel  components.  The  Attacker  in  this  study  is  the  modified 

 subversive  attacker.  On  successful  attack  it  transitions  the  breaker  component 

 into  the  compromised  state,  in  which  the  component  fails  more  often  than  in 

 the  normal  state.  The  Inspector,  in  turn,  transitions  the  breaker  from 

 compromised  to  normal  state.  Simulating  the  spread  of  the  malicious  agent 

 within  the  network,  several  modes  of  acting  were  selected  for  the  attacker, 

 di�erent  on  how  many  breakers  and  of  which  kind  (single  breaker,  all 

 line/generator/load  breakers,  or  all  breakers  within  the  substation).  Attacker's 

 knowledge  about  two  breaker  components  was  modelled  by  analysing  two 

 di�erent  attack  behaviours:  either  attacking  both  breaker  components 

 simultaneously or attacking them independently. 

 The  following  simulation  campaigns  were  run  for  the  network  with  the 

 modified Breaker component and attackers: 

 ●  One  Breaker  Component:  no  attacks  or  attacks  weekly  either  lines,  loads, 

 generators  or  any  of  those,  either  without  inspections  or  with  yearly  or 

 monthly inspections. 13 configurations in total. 
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 ●  Two  Breaker  Components:  no  attacks  or  attacks  weekly  either  lines, 

 loads,  generators  or  any  of  those,  either  without  inspections  or  with 

 yearly or monthly inspections. 25 configurations in total. 

 The main results of the simulation campaigns in both studies: 

 ●  when  it  is  possible  to  build  the  models  of  the  system  and  the  malicious 

 agents,  the  quantitative  results  can  be  obtained  by  running  the 

 simulation campaigns; 

 ●  the  subversive  attacker  has  significantly  greater  e�ect  on  the  system, 

 than the simple attacker; 

 ●  the inspections help reduce the e�ect of the attacks; 

 ●  the  di�erence  between  single  breaker  component  and  two  breaker 

 components for the baseline models is negligible; 

 ●  introducing  diversity  of  the  breaker  component  reduces  the  e�ect  of  the 

 attacks. 

 Figure 5.10: CDF of delivered power by di�erent targets of attacks without 

 inspections. 
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 6. Conclusion 

 6.1. Summary 

 This  thesis  presents  a  new  methodology  for  supporting  the  assessment  of  large 

 cyber-physical  systems,  including  critical  infrastructures.  The  methodology 

 o�ers  a  modelling  approach  and  supports  it  with  the  new  modelling  language 

 for  defining  hybrid  hierarchical  stochastic  networks,  the  simulation  engine  to 

 e�ciently  solve  the  models  via  Monte  Carlo  simulation,  and  an  editor  which 

 allows  analysts  to  build  models  quickly  .  The  applications  of  this  methodology 

 were  applied  on  non-trivial  examples  to  demonstrate  how  the  proposed 

 methodology  and  tool  support  could  support  assessing  the  resilience  of  critical 

 infrastructures. 

 The  development  of  this  new  methodology  was  motivated  by  an  interest 

 in  addressing  issues  discovered  by  applying  other  methodologies  and  tools  for 

 various  case  studies.  While  addressing  these  issues  the  following  research 

 questions were asked: 

 -  Q1: What is the best approach for modelling large networks? 

 -  Q2: What is the faster way to get the results of the simulation? 

 -  Q3: Which editing features help the modeller the most? 

 -  Q4:  How  do  models  and  the  results  obtained  with  them  support  the 

 existing assurance cases ? 

 -  Q5: Are the constructed models reusable? 

 The  proposed  modelling  methodology  described  in  this  thesis  provides 

 answers to the questions above. 

 Specifically,  Chapter  3  addresses  the  questions  related  to  supporting 

 assessment  methodologies  and  demonstrates  how  stochastic  modelling  can  be 

 used  in  CAE  assessment,  including  the  argumentation  of  substituting  the 

 system  with  the  model  and  using  the  results  of  simulations  as  evidence.  The 

 results  of  this  research  are  partially  demonstrated  in  the  works  “Tool  Support 

 for  Assurance  Case  Building  Blocks”  [64]  and  “Using  Structured  Assurance 

 Case  Approach  to  Analyse  Security  and  Reliability  of  Critical  Infrastructures” 

 [52]  . 
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 Chapter  4  provides  solutions  for  modelling-related  questions.  E.g.,  it 

 proposes  hierarchical  composition  as  the  best  way  to  model  large 

 multi-component  systems,  a  plugin  architecture  for  building  hybrid  models, 

 and  cloud-based  HPC  simulations  for  the  best  performance.  The  results  of  this 

 research  are  published  in  the  articles  “Quantification  of  the  impact  of  cyber 

 attack  in  critical  infrastructures”  [49]  and  “Model-Based  Evaluation  of  the 

 Resilience of Critical Infrastructures under Cyber Attacks.”  [65]  . 

 Chapter  5  demonstrates  the  applicability  of  the  methodology  to  use  cases 

 and  the  reusability  of  the  constructed  models.  The  research  results  from  this 

 chapter  are  published  in  the  articles  “Quantification  of  the  impact  of  cyber 

 attack  in  critical  infrastructures”  [49]  and  “Model-Based  Evaluation  of  the 

 Resilience  of  Critical  Infrastructures  under  Cyber  Attacks.”  [65]  and  in  the 

 chapter  “Quantitative  Evaluation  of  the  E�cacy  of  Defence-in-Depth  in 

 Critical  Infrastructures.”  of  the  book  “Resilience  of  Cyber-Physical  Systems” 

 [50]  . 

 6.2. Future Work 

 Although  the  primary  focus  of  the  research  was  to  support  assessing  the 

 resilience  of  critical  infrastructures,  the  proposed  methodology  is  not  limited 

 to  this  one  type  of  system  and  only  reliability  properties.  It  can  be  employed  to 

 assess  other  emerging  properties  and  address  uncertainties  in  any  system  that 

 can be su�ciently represented by a stochastic model. 

 The  hybrid  modelling  approach  already  provides  support  for  integrating 

 di�erent  kinds  of  models.  However,  it  can  be  improved  further  by  adding  the 

 concept  of  actions  ,  explorable  by  a  generic  adversary.  Such  adversaries  can 

 actively examine the system for the shortest path that maximises their reward. 

 The  simulation  engine  for  running  stochastic  models  can  be  further 

 improved.  The  di�erent  optimisation  techniques,  including  parallelisation, 

 memoisation,  adaptive  scheduling,  and  applying  hardware-specific 

 optimisations can be further extended  and incorporated into the engine. 

 This  thesis  explores  how  to  support  the  CAE  assurance  case  approach 

 with  stochastic  modelling,  a  topic  which  recently  has  regained  importance  in 

 the  context  of  safety  assurance  of  autonomous  vehicles  [48]  .  And  of  course,  a 
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 possible  direction  to  further  extend  the  proposed  research  is  its  alignment  with 

 other assurance methodologies. 

 One  potential  approach  to  enhancing  the  usability  of  the  framework  is  to 

 create  a  library  of  reusable  components  ,  models,  and  case  studies.  Such  a  library 

 could  o�er  significant  benefits  to  practitioners  and  modellers  involved  in 

 assurance cases in terms of reducing the time to adopt the methodology . 
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 Appendix 1. Nordic32 

 Nordic32  is  a  model  of  the  Swedish  power  transmission  network  [58]  .  The 

 power  production,  transmission,  and  consumption  elements  of  the  model  are 

 power  substations  and  transmission  lines.  The  power  substations  are 

 characterised  by  the  amount  of  power  produced  on  the  substation  (generation) 

 and the amount of power transmitted by the substation to consumers (load). 

 The  original  Nordic32  model  is  a  fully  specified  electrical  network,  which 

 can  be  modelled  with  a  physical  model  only.  In  the  project  AFTER  this  model 

 was  enhanced  with  an  industrial  distributed  control  system  (IDCS)  compliant 

 with  the  international  standard  IEC  61850  "Communication  networks  and 

 subsystems  in  substations"  [66]  .  Later,  in  the  project  SESAMO,  the  network 

 was  extended  even  further  by  adding  probabilistic  parameterisation  for  failures 

 and recoveries of the network elements  [49]  . 
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 Figure A.1: Electrical components of Nordic32. 

 There  are  four  groups  of  substations  that  corresponds  to  geographical 

 regions: 

 ●  North - northern part of Sweden, high generation, low consumption; 
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 ●  Central  -  central  and  southern  parts  of  Sweden,  moderate  generation, 

 high consumption; 

 ●  Southwest - Zealand island, low generation, high consumption; 

 ●  External - Finland, moderate generation, moderate consumption. 

 There  are  32  substations  in  the  network  and  23  generators  of  di�erent 

 voltage  levels  400,  200  and  130  kV.  The  first  digit  in  the  substation  name 

 corresponds  to  the  voltage  level.  Substations  with  less  than  three  connected 

 lines  are  single  busbar  substations,  with  three  or  more  lines  connected  are 

 double busbar substations. 

 The  communication  network  consists  of  DDCs,  Northern,  Central  and 

 South  RCCs  and  ICC.  The  RCCs  communicate  with  ICC  in  order  to  optimise 

 production  and  consumption  and  reduce  waste.  All  control  centres  have  a  fully 

 redundant  backup  centre.  Each  substation  is  physically  connected  to  one  of  the 

 DDCs.  Connectivity  between  the  substation  and  its  RCCs  is  maintained  through 

 the  chain  of  communication  links  and  DDCs.  The  whole  communication 

 network  is  "N-1"  robust  (failure  of  a  single  component  does  not  interrupt 

 connectivity if all other components operate normally). 

 Figure A.2: The communication network of the North region. 
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 Figure A.3: Structure of the substation 4011. 

 The  substation  consists  of  a  single  busbar  with  bays  of  di�erent  types  of 

 bays  connected  to  it.  There  are  four  bay  types  in  the  model:  line,  generator, 

 transformer,  and  load.  Every  bay  has  a  protection  system  of  two  protection 

 devices.  One  of  the  protection  devices  also  performs  control  functions.  The 

 protection  (such  as  switching  the  line  o�  in  case  of  overload)  is  performed 

 when one of the protected devices is on. 

 Although  the  physical  model  of  the  original  Nordic32  model  is  detailed 

 enough  to  perform  power  analysis  in  AC  mode,  such  simulation  is  quite  intense 

 in  terms  of  required  computational  resources.  To  simplify  the  load  and  keep 

 the  system  behaviour  close  to  the  original,  DC  simulation  can  be  used  instead 

 of AC simulation. 

 Solving  the  Direct  Current  Load  Flow  problem  for  the  network  of  N  nodes 

 and  M  edges is equivalent to the following matrix  multiplication  [61]  : 

 where  P  -  N  -length  vector  of  bus  injections,  B  -  N  ⨉  N  admittance  matrix,  Θ  - 

 N  -length  vector  of  bus  voltage  angles,  P  L  -  M  -length  vector  of  branch  flows,  b 
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 -  M  ⨉  M  diagonal  matrix  of  branch  susceptances,  A  -  M  ⨉  N  bus-branch 

 incidence matrix. 

 The  network  given  to  the  load  flow  solver  is  the  balanced  network,  i.e. 

 total  consumed  power  is  equal  to  total  generated  power.  For  the  purpose  of  this 

 research  the  network  balancer  is  just  sets  all  the  generators  proportionally  to 

 their capacity: 

 where  l  (  n  )  is  a  power  demand  at  the  node  n  or  0  if  the  node  is  not  a  consumer 

 and  c  (  n  ) is a generator capacity of the node  n  or  0 if the node is not a producer. 

 The power injections of generators then: 

 where  G  c  is a vector of generator capacities. 

 In  the  agent-based  model  of  Nordic32,  each  element  such  as  DDC, 

 substation,  busbar  bay,  or  individual  element  is  constructed  as  an  agent.  The 

 agent  is  a  combination  of  a  Markov  state  machine  and  discrete  event  handlers 

 [49]  . 
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 Appendix 2. Preliminary Interdependency 
 Analysis 

 This  thesis  appendix  provides  a  concise  description  of  the  “Preliminary 

 Interdependency  Analysis”  method,  which  is  described  in  the  report 

 "Preliminary  Interdependency  Analysis  (PIA):  Method  and  tool  support"  by 

 Bloomfield et al. (2010). 

 Preliminary  Interdependency  Analysis  (PIA)  is  a  scenario-driven  process 

 of  examining,  evaluating,  and  interpreting  information  about  the  system  to 

 discover  and  improve  understanding  of  interdependencies  between  the 

 system’s  components  and  provide  a  justified  basis  for  further  modelling  and 

 analysis.  Its  objective  is  to  develop  a  documented  appropriate  service  model  for 

 the given system. 

 The  PIA  process  is  a  continuous  and  cyclical  activity  of  creation  and 

 refinement  of  interdependency  models.  In  this  process  earlier  stages  of  model 

 development  are  revisited  to  refine  assumptions  and  design  decisions  in 

 response  to  resolving  uncertainties  and  discrepancies  discovered  in  later 

 stages.  The  e�ect  of  modified  assumptions  and  di�erent  design  decisions 

 propagate  through  stages  of  the  PIA  process  and  results  in  an  improved  model 

 of the system. 

 PIA  comprises  two  analytical  approaches:  qualitative  and  quantitative. 

 Qualitative  analysis  objectives  are  to  define  the  boundaries  of  the  system, 

 identify  components  and  their  interdependencies,  and  make  proper 

 assumptions  about  uncertainties.  The  goal  of  quantitative  analysis  is  to 

 simulate the model and interpret the results. 
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 Fig. A.4. Overview of PIA method and toolkit  [2]  . 

 PIA  is  supported  by  two  tools:  PIA  Designer  and  Execution  engine  .  The 

 designer  utilises  an  existing  proprietary  tool  ASCE  for  visual  representation  and 

 model  navigation.  The  engine  executes  a  model,  developer  with  the  designer, 

 with  Möbius  [67]  . 

 PIA models are developed at two levels: 

 -  Service  level  .  The  modelled  system  is  represented  by  a  set  of 

 interdependent  services.  This  view  is  purposefully  abstract,  focusing 

 only  on  the  existence  of  dependencies,  which  are  elicited  from 

 lower-level  dependencies  among  each  service’s  constituent  entities, 

 such  as  physical  components  and  resources.  These  associations  among 

 components  are  referred  to  as  coupling  points  ,  which  are  in  a  context  of  a 

 component called  incoming  or  outgoing  . 
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 -  Detailed  service  behaviour  model  (DSBM).  Individual  services  are 

 implemented  at  this  level.  Implementation  is  supposed  to  be  owned  by 

 the respective service operator, i.e. an organisation. 

 The PIA process comprises seven stages: 

 -  Stage 1. Establishing system description and scenario context. 

 -  Stage 2. Model development. 

 -  Stage 3. DSVM model development. 

 -  Stage 4. Initial dependency and interdependency identification. 

 -  Stage 5. Probabilistic model development. 

 -  Stage 6. Adding deterministic models of behaviour. 

 -  State 7. Exploratory interdependency analysis. 

 During these stages, the following narrative information is relevant and useful: 

 -  Scenarios. 

 -  Incident description. 

 -  Threat or attack model. 

 -  Model of the threat agent. 

 Fig. A.5. PIA method stages and associated information artefacts 
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