

City, University of London Institutional Repository

Citation: Netkachov, O. (2023). Quantitative Resilience Assessment of Critical

Infrastructures using High-Performance Simulations. (Unpublished Doctoral thesis, City,
University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/31086/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

 Quantitative Resilience Assessment of

 Critical Infrastructures using

 High-Performance Simulations

 by Oleksandr Netkachov.

 The thesis is submitted for the degree of Doctor of Philosophy

 to City, University of London.

 The research was conducted at City, University of London,

 School of Science & Technology,

 Department of Computer Science.

 July 2023

 1

 Contents

 1. Introduction 9
 1.1 Objectives 9
 1.2 Thesis summary 12
 1.3 Publications 13

 2. Background Review 17
 2.1 Modelling Critical Infrastructures 17
 2.2 Assessing Resilience 22
 2.3 High-Performance Computing 27

 3. Assurance Cases for Critical Infrastructures 33
 3.1 Overview 33
 3.2 CAE Assurance Cases 35
 3.3 Using Stochastic Models in CAE Assurance Cases 37

 4. Stochastic Modelling and Simulation 41
 4.1 Overview 41
 4.2. Modelling 42
 4.3 Logical Model 47

 4.3.1 Definitions Model 49
 4.3.2 Simulation Model 54

 4.4 Implementation 59
 4.5 Extensibility 68

 5. Applications 71
 5.1 Overview 71
 5.2 Nordic32 Case Study 72
 5.3 Performance of Power Flow Calculation 78
 5.4 Assessing Resilience to Cyber-attacks 83

 6. Conclusion 90
 6.1. Summary 90
 6.2. Future Work 91

 Appendix 1. Nordic32 93
 Appendix 2. Preliminary Interdependency Analysis 98
 References 101

 2

 Acknowledgements

 I would like to o�er my appreciation and thanks to my supervisor, Dr

 Peter Popov, for his support during this project, and to my second

 supervisor, Prof Robin Bloomfield, for his inspirational and practical

 suggestions. I am grateful for the opportunity to explore this exciting

 area of research at the Centre for Software Reliability at City, University

 of London.

 I would also like to thank Dr Kizito Salako for his expert guidance,

 support, and advice during our working group meetings.

 3

 I, Oleksandr Netkachov, grant powers of discretion to the Director of

 Library Services to allow this thesis to be copied in whole or in part

 without further reference to me. This permission covers only single

 copies made for study purposes, subject to the standard

 acknowledgement conditions.

 4

 5

 6

 7

 Abstract
 Accessing the resilience of large cyber-physical systems (LCPS) is essential for
 ensuring the continuity of operations and minimising the impact of disruptions caused
 by natural disasters, cyberattacks, and other stressful events. Recent empirical studies
 of LCPS have demonstrated the usefulness of modelling and simulation in assessing
 properties that emerge from component interactions, including resilience. However,
 the sheer complexity of CIs poses challenges for modellers:

 1) Resilience assessment requires high-fidelity models that include a
 probabilistic model of the system and adverse events of interest, such as accidental
 failures or malicious activities, and a physics simulation model of LCPS processes, such
 as power/liquid/gas flows.

 2) Assessing resilience with high statistical significance requires a systematic
 exploration of the space of possible adverse events and recovery from their e�ects.
 Exploring this space requires a significant amount of e�ort.

 This work o�ers solutions intended to help modellers overcome these di�culties
 by using the recent advances in modelling LCPSs and high-performance computing:

 i) It o�ers a new modelling methodology for building agent-based hybrid
 hierarchical stochastic models using a new domain-specific language. The new
 modelling approach allows easy integration of a) a variety of modelling formalisms
 used to model cyber-attacks on CI/LCPS; and b) a set of deterministic models, as
 needed by the chosen level of fidelity and specific for the modelled CI. However, the
 deterministic models are not the focus of this work. Such models are assumed to exist
 in software available from third-party vendors.

 ii) It presents a set of tools to support this methodology: the visual modeller and
 an extensible Monte Carlo simulation engine designed to utilise high-performance and
 cloud computing capabilities. The engine and the editor utilise modern development
 practices and technologies to provide a state-of-the-art solution.

 This thesis provides a survey of the relevant literature, summarises the progress
 with the modelling methodology, and presents the results published to date with case
 studies based on an extended Nordic32, a reference architecture of a power
 transmission network with the SCADA subsystem. The studies explore the e�ects
 caused by adversaries targeting IT infrastructure and demonstrate the application of a
 defence-in-depth approach to reduce the e�ects of these attacks.

 8

 1. Introduction

 1.1 Objectives

 Modern systems have made people safer and more secure by providing better

 access to emergency services, enhancing surveillance and security systems,

 and improving disaster response. However, as people increasingly rely on

 digital systems, it becomes crucial to ensure they are reliable, safe, and secure.

 Establishing confidence in whether a system can reliably fulfil its purpose

 (i.e. validation) is an integral part of the engineering discipline. The

 applicability of di�erent validation methods depends on the characteristics of a

 system. For dispensable mechanical systems, validation often involves testing

 the system under various conditions. However, the direct testing approach is

 unsuitable for larger systems, as it is either expensive, unsafe, or both. System

 modelling is the only practicably applicable methodology for analysing the

 behaviour of large systems under severe stress factors, such as natural

 disasters, massive cybersecurity attacks, overloading, or failures of critical

 components.

 The main idea of system modelling is to create an abstraction or

 simplified representation of a complex system and then use this model to

 investigate the system’s behaviour under di�erent circumstances. The

 fundamental problem of modelling is ensuring that the model, despite being an

 abstraction, retains the essential properties of the modelled system.

 The most commonly used approach for modelling large systems is

 representing the system as a composition of many interconnected components.

 This modelling paradigm is a core concept of the system dynamics,

 agent-based, and discrete event simulation modelling approaches. Applying

 other methodologies, although theoretically possible, may present challenges

 that are hard to overcome. For example, representing a complex

 multi-component system as a Markov state machine most likely results in a

 machine with an enormously large and unmanageable state space.

 The central problem in model-based resilience assessment of critical

 infrastructures is model validation. The standard way to validate is to compare

 9

 the model’s behaviour with the behaviour of the modelled system under

 equivalent circumstances. Validating the model of critical infrastructure is

 usually possible for normal working conditions. However, research often

 focuses on understanding how the system functions in exceptional

 circumstances. This work does not address the problem of model validation

 directly. Instead, it o�ers advances in creating and simulating models that give

 practitioners a powerful and flexible tool which can be tuned to operate at the

 chosen level of abstraction.

 For critical infrastructures, exceptional events of significant impact are

 natural disasters, overloadings, or massive cyber-attacks. These are rare and

 unique events which may never be seen before assessment. The lack of

 observations for these events makes the model validation problematic.

 Therefore, the typical approach for assessing the reliability properties of

 critical infrastructures is to validate the model reaction against the observed

 events and extrapolate it. This approach, however, requires a lot of

 building-simulating-analysing iterations before reaching su�cient similarity

 between model-generated data and real-life datasets. It is di�cult because it

 takes significant computation resources and requires modelling tools tailored

 to the studied problem domain.

 These objective di�culties are unlikely to be solved in the foreseeable

 future. However, the right editing tools and performant simulation engines can

 help reduce the time required to build, adjust, and run the model.

 These observations are based on the experience gained while working on

 the SESAMO project [1] at the Centre for Software Reliability in City, University

 of London. In this project, the research team applied the “Preliminary

 Interdependencies Analysis” methodology to assess the resilience of a large

 power transmission network.

 “Preliminary Interdependencies Analysis” [2] is a methodology that

 helps to understand interdependencies between the elements through the

 development of a simulatable model, in which the studied part of the system is

 represented as a set of semi-Markov continuous-time state machines.

 The method introduces stochastic associations as a generic mechanism of

 modelling dependencies between the components of a system with a large

 number of elements without explicitly generating the entire system state space,

 10

https://paperpile.com/c/kEIrDG/8tB0o
https://paperpile.com/c/kEIrDG/BRFh

 which for realistically complex critical infrastructure is too large. The

 application of the method revealed the following problems: the modelling of

 large systems is complicated and error-prone; the performance of the

 simulation engine is not satisfactory; the editing tools do not provide enough

 support for the modeller.

 To adequately address these issues, the questions directing this research

 have been established as follows:

 - What is the most e�ective methodology for modelling large-scale

 network systems that accurately captures the intricacies of the system's

 behaviour, including both probabilistic elements and complex

 deterministic processes such as power distribution, hydrodynamics, and

 meteorological patterns?

 - How can the duration required for obtaining, aggregating, and

 interpreting simulation results be minimised, potentially through the

 implementation of extensive high-performance computing (HPC)

 optimization strategies and cloud-based parallelisation techniques?

 - Which editing features significantly enhance the e�cacy of the

 modelling process? Could it be features such as visualisation and editing

 tools, access to component libraries, or facilities for running and

 reporting?

 - How do the constructed models and their subsequent results

 substantiate existing methodologies for assuring system safety and

 security? Specifically, is it possible to construct reusable patterns that

 align with current structural approaches?

 - What strategies can be implemented to achieve the reusability of the

 constructed models and, in doing so, expedite subsequent research

 projects?

 The methodology presented in this thesis provides the answers to the

 above questions. It reduces the complexity of modelling large systems by

 introducing hierarchical composition and encapsulation. The new simulation

 engine and task distributor improve the simulation performance and

 horizontal scaling. The new editor increases e�ciency and provides a

 consistent user interface. The developed methodology and solutions were

 11

 applied while researching the e�ects of cyber-security attacks on Nordic32, a

 power transmission network.

 1.2 Thesis summary

 The organisation of this thesis is as follows:

 ● Chapter 1, “Introduction”, defines research objectives, summarises the

 results, and provides the list of publications.

 ● Chapter 2, “Background Review”, reviews the fields of study relevant to

 the research: definitions, analysis, and modelling of critical

 infrastructures; system resilience and assessment; high-performance

 computing.

 ● Chapter 3, “Assurance Cases for Critical Infrastructures”, provides

 research results supporting reliability assessment in assurance cases

 with stochastic models.

 ● Chapter 4, “ Stochastic Modelling and Simulation ”, presents research

 results on developing modelling methodology and simulation engine;

 ● Chapter 5, “Applications”, demonstrates the applicability of the

 developed modelling methodology and tools;

 ● And final Chapter 6, “Conclusion”, concludes the dissertation with a

 summary and a discussion on the need for future research.

 ● Appendix 1, “Nordic 32”, contains an overview of the Nordic32 power

 transmission network.

 ● Appendix 2, “Preliminary Interdependency Analysis”, provides an

 overview of the Preliminary Interdependency Analysis methodology.

 12

 1.3 Publications

 Netkachov O, Popov P, Salako K. Quantification of the impact of cyber attack

 in critical infrastructures. Lecture Notes in Computer Science (including

 subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

 Bioinformatics). Springer; 2014. pp. 316–327.

 doi:10.1007/978-3-319-10557-4_35

 A study on the impact of cyber-attacks on complex industrial systems is

 reported in this paper. The approach involves building a hybrid model

 comprising the system under study and an adversary. The model is applied to a

 complex case study of a reference power transmission network (NORDIC 32),

 which is enhanced with a detailed model of the computer and communication

 system used for monitoring, protection, and control. The resilience of the

 modelled system is analysed under di�erent scenarios, including a baseline

 scenario where the system operates in the presence of accidental failures

 without cyber-attacks and scenarios where cyber-attacks can occur. The

 study's findings are discussed, and future research directions are outlined.

 The main research results presented in this article contribute to Chapter

 4 and Chapter 5. The methodology, modelling language, and simulation

 approach are described in Chapter 4. Chapter 5 focuses on applying the

 methodology, and presents the model and research results on resilience

 assessment.

 NNetkachova, K., Netkachov, O., Bloomfield, R. (2015). Tool Support for

 Assurance Case Building Blocks Providing a Helping Hand with CAE . In: F.

 Koornneef and C. van Gulijk (Eds.): Computer Safety, Reliability, and Security,

 SAFECOMP 2015 Workshops, ASSURE, DECSoS, ISSE, ReSA4CI, and SASSUR,

 Delft, The Netherlands, September 22, 2015, Proceedings. Lecture Notes in

 Computer Science, vol. 9338, pp. 62-71, 2015. Springer International

 Publishing Switzerland. doi:10.1007/978-3-319-24249-1_6

 The presented tool and methodology in this paper, which are designed to

 structure arguments in assurance cases, have potential applications for

 13

 reliability assessment and assurance cases. The methodology of

 Claims-Arguments-Evidence (CAE) Building Blocks provides a set of

 archetypal fragments to support the structuring of cases in a formal and

 systematic manner. The tool automates the creation of claim structures and

 manages CAE blocks, which facilitate the development and maintenance of

 structured assurance cases. Additionally, the paper proposes new visual

 guidelines named "Helping hand" to aid in the application of the building

 blocks. The tool has been implemented on the Adelard ASCE platform, and its

 intended audience includes assurance case developers and reviewers. The tool

 and methodology provide a valuable framework for building structured

 assurance cases and can potentially enhance the reliability assessment of

 critical systems.

 The research results presented in the article are related to Chapter 3,

 which focuses on applying the introduced approach for assessing the reliability

 properties of a system.

 Netkachova, K., Bloomfield, R., Popov, P., Netkachov, O. (2015). Using

 Structured Assurance Case Approach to Analyse Security and Reliability of

 Critical Infrastructures. In: Koornneef, F., van Gulijk, C. (Eds.): Computer

 Safety, Reliability, and Security, SAFECOMP 2015 Workshops, ASSURE,

 DECSoS, ISSE, ReSA4CI, and SASSUR, Delft, The Netherlands, September 22,

 2015, Proceedings. Lecture Notes in Computer Science, vol. 9338, pp. 345-354.

 Springer International Publishing Switzerland.

 doi: 10.1007/978-3-319-24249-1_30

 This paper describes an approach for justifying the use of models to ensure the

 security, reliability, and resilience of critical infrastructures (CI). Due to the

 challenges posed by complex and interdependent systems and the pace and

 scale of attacks, model-based approaches and probabilistic design are

 necessary to evaluate CI. However, it is essential to assess the trustworthiness

 of these models. To this end, the paper presents a structured assurance case

 framework based on Claims, Arguments, and Evidence (CAE). The Preliminary

 Interdependency Analysis (PIA) method and platform are utilised in a case

 study involving a reference power transmission network with an industrial

 14

 distributed system of monitoring, protection, and control. The paper discusses

 the benefits of the modelling and assurance case structuring approaches,

 highlights findings from the case study, and outlines future work directions. In

 conclusion, this approach provides a valuable framework for evaluating the

 trustworthiness of models used in ensuring critical infrastructure security,

 reliability, and resilience.

 A core contribution to the content of Chapter 3 is the approach described

 in this article, which involves using stochastic models for assessing system

 properties in assurance cases.

 Netkachov O, Popov P, Salako K. Model-based evaluation of the resilience of

 critical infrastructures under cyber attacks . Critical Information

 Infrastructures Security. Cham: Springer International Publishing; 2016. pp.

 231–243. doi:10.1007/978-3-319-31664-2_24

 This paper reports on the results of improved models and simulation engines,

 which build on the work presented in a previous article titled "Quantification of

 the impact of cyber attacks in critical infrastructures." The models and

 simulation engines presented in this paper are applied to a complex case study,

 specifically a reference power transmission network enhanced with a detailed

 model of the computer and communication network used for monitoring,

 protection, and control, compliant with the international standard IEC 61850.

 The improved models utilise a hybrid approach, where accidental failures and

 malicious behaviour are modelled stochastically, while the consequences of

 these failures and attacks are modelled deterministically. The results of the

 simulations, which include various scenarios of cyber attacks, are discussed

 and analysed in the context of the resilience of the modelled system. The

 contributions of the work are mainly related to the content of Chapters 4 and 5,

 which describe the methodology, modelling language, simulation approach,

 and applications of the methodology to the case study.

 15

 Netkachov O, Popov P, Salako K. Quantitative Evaluation of the E�cacy of

 Defence-in-Depth in Critical Infrastructures. In: Flammini F, editor.

 Resilience of Cyber-Physical Systems. Springer; 2019. pp. 89–121.

 doi:10.1007/978-3-319-95597-1_5

 The feasibility of quantitative cyber-risk assessment in cyber-physical

 systems (CPS), such as power-transmission systems, is discussed in this book

 chapter. Experimental evidence, using Monte-Carlo simulation, is presented to

 demonstrate that the losses from a specific cyber-attack type can be accurately

 established using an abstract model of cyber-attacks. The benefits of deploying

 defence-in-depth (DiD) against failures and cyber-attacks for two types of

 attackers are established. This study provides insight into the benefits of

 combining design diversity with periodic "proactive recovery" of protection

 devices to harden some of the protection devices in a CPS. The results are

 discussed in the context of making evidence-based decisions about

 maximising the benefits of DiD in a particular CPS.

 The approach employed in this study represents an evolution of the

 model and simulation engine used in “Model-Based Evaluation of the

 Resilience of Critical Infrastructures under Cyber Attacks” and is a significant

 contribution to Chapter 4. The primary contribution to the content of Chapter 5

 is the results obtained from the DiD study.

 16

 2. Background Review

 2.1 Modelling Critical Infrastructures

 In the context of a company, the infrastructure is defined by the ISO standard

 9001 as a system of facilities, services, equipment, and other assets that

 support the organisation in delivering a service or product to its customers or

 clients. This list of assets includes (but is not limited to) premises, supplies,

 equipment, and information.

 Critical Infrastructure (CI) di�ers from infrastructure by the e�ect its

 disturbance causes on the system. As defined in the US President's Commission

 on Critical Infrastructure Protection Report [3] , the US's critical

 infrastructures “are so vital that their incapacitation or destruction would have

 a debilitating impact on defence or economic security.” The infrastructures in

 the scope of the commission are information and communications, electrical

 power systems, gas and oil production, storage and transportation, banking

 and finance, transportation, water supply systems, emergency services, and

 government services. In the EU, a critical Infrastructure is defined by Council

 Directive 2008/114/EC as “an asset, system or part thereof located in Member

 States which is essential for the maintenance of vital societal functions, health,

 safety, security, economic or social well-being of people, and the disruption or

 destruction of which would have a significant impact in a Member State as a

 result of the failure to maintain those functions” [4] . Specifically, the directive

 defines "European critical infrastructure" as “critical infrastructure located in

 Member States the disruption or destruction of which would have a significant

 impact on at least two Member States.”. The UK government defines critical

 national infrastructure as “Those infrastructure assets (physical or electronic)

 that are vital to the continued delivery and integrity of the essential services

 upon which the UK relies, the loss or compromise of which would lead to severe

 economic or social consequences or to loss of life” [5] . The UK government

 authority for protective security advice to the UK national infrastructure,

 National Protective Security Authority (NPSA), recognises 13 national

 infrastructure sectors: Chemicals, Civil Nuclear Communications, Defence,

 17

https://paperpile.com/c/kEIrDG/4bh9
https://paperpile.com/c/kEIrDG/gMZlb
https://paperpile.com/c/kEIrDG/jkYlI

 Emergency Services, Energy, Finance, Food, Government, Health, Space,

 Transport, and Water [6] .

 The "critical infrastructure" term is also used in application to a company

 or country, defining, in a broader sense, the system's connectivity and

 distribution assets and processes crucial for the system's existence -

 significant damage of these assets or disruption of the processes may cause the

 system to become extinct.

 The critical infrastructure consists of highly interdependent systems. For

 example, financial services highly depend on information and communication

 services, while the latter highly depend on electricity. Electrical production and

 distribution, in turn, require transport and financial services. Although the

 unprecedented level of integration of infrastructural systems nowadays

 increases e�ciency, it also can lead to increased damage as failures can

 propagate in many directions through the network of the system components.

 The dominant modelling approach in the research community is to

 represent CI as a graph in which nodes represent infrastructure components,

 either physical or virtual, and edges correspond to the dependencies between

 the components [7] [8] . Specific components, their properties, types of

 dependencies, and modelling algorithms vary significantly between models.

 Within computer systems, the specific physical and logical components

 (including human participants) are modelled by creating corresponding

 software agents, e.g., processes or objects. It is impossible to create a perfect

 digital copy of a system, “all models are wrong” [9] . Instead, the common

 practical approach is to model the relevant parts of the system at some level of

 abstraction, which includes validating whether the created model satisfactorily

 represents the system for known scenarios. A su�cient similarity between the

 model and the actual system in known scenarios provides a foundation for

 trusting the model and deploying it under major stresses.

 The important property of the modelling framework is how general it is. A

 general modelling framework is applicable in many domains. It, however, may

 require time and e�ort to apply it for a particular domain as some unique

 processes, relationships, and entities should be implemented. In contrast,

 domain-specific frameworks usually fit very well for the specific problem, but

 the reusability of the constructed models is usually very limited.

 18

https://paperpile.com/c/kEIrDG/2aAp
https://paperpile.com/c/kEIrDG/m8CF
https://paperpile.com/c/kEIrDG/gRBO
https://paperpile.com/c/kEIrDG/Ic2G

 The frameworks are very di�erent regarding a community of users,

 available training materials, and commercial support. These properties, of

 course, correlate with the generality of the framework. Unsurprisingly, the

 more general frameworks have a more extensive community, but specialised

 frameworks may contain quite sophisticated modelling artefacts.

 According to Pederson et al. [10] and Eusgeld et al. [11] comparative

 reviews, the main approaches to modelling CIs are agent-based, system

 dynamics, input-output model, physics models, Petri Nets, and Markov

 Chains.

 Agent-Based Modelling (ABM) represents the system as a stateful

 environment that hosts agents - individual entities which can observe the

 environment's state and other agents through sensors and act according to

 their perceptions by modifying the state or interacting with other agents. The

 agent's internal decision-making behaviour can be implemented in various

 ways, including machine learning (neural networks, etc), state machines

 (either with Markov property or without, finite or infinite, deterministic or

 probabilistic, etc), decision trees, and others.

 System Dynamics is a method to analyse the system's behaviour over

 time. The system is modelled as a set of processes and state variables. The

 processes update the state variables either by decreasing (negative feedback)

 or increasing them (positive feedback).

 Petri Net represents a system as a set of places, transitions, and arcs [12] .

 The dynamic aspect of the system is represented via tokens (or marks) that

 sojourn in places and move through the arcs when transitions are enabled. This

 model was extended by adding non-deterministic behaviour (Stochastic Petri

 Nets [13]) and later with timed transitions (Generalised Stochastic Petri Nets,

 GSPNs [14] [15]).

 A system can be represented as a Markov Chain (or corresponding Markov

 State Machine) when its state is a combination of discrete variables and

 transitions from one state to another are Markovian (memoryless, not

 dependent on the previous states).

 ABM is the most frequently used method for modelling CIs. 14

 methodologies out of 31 reviewed by Pederson et al. [10] represent and model

 19

https://paperpile.com/c/kEIrDG/UmZTA
https://paperpile.com/c/kEIrDG/lgdvB
https://paperpile.com/c/kEIrDG/pNTs
https://paperpile.com/c/kEIrDG/XcwV
https://paperpile.com/c/kEIrDG/4Fdo
https://paperpile.com/c/kEIrDG/xQng
https://paperpile.com/c/kEIrDG/UmZTA

 CIs with ABM. In 33 methodologies reviewed by Eusgeld et al. [11] ABM is used

 in 13, and the use of other methods is shown in the table 2.1.

 Underlying method No. of tools

 Agent-Based Method 13

 Geographic Information System 6

 System Dynamics 4

 Statistical Data Analysis 3

 Monte Carlo 3

 Input-Output Methods 2

 Graph Theory 2

 Control Theory 1

 Miscellaneous 1

 Table 2.1: Underlying methods used in tools for modelling and simulation of

 CIs in review by Eusgeld et al.

 Bonabeau [16] stated three main benefits of ABM: i) it captures emergent

 phenomena, which result from the interactions of individual entities and

 cannot be reduced to the system’s parts; ii) it provides a natural description of

 a system in a sense that it is more natural to describe how shoppers move in a

 supermarket than to come up with the equations that govern the dynamics of

 the density of shoppers; iii) it is flexible as new behaviours or agent types can

 be added in the straightforward model.

 Object-Oriented Programming (OOP) has a lot in common with ABM.

 Luna and Stefansson [17] noted the similarity between OOP concepts and ABM:

 encapsulation, inheritance and polymorphism correspond to the

 self-contained nature of agents of some types participating in communication

 based on agent type's features. The basic OOP mechanics, however, are too

 limited to support a variety of behaviours like asynchronous communications,

 di�erent internal behaviours, control and observing states. As a result, many

 extensions, frameworks, libraries and tools emerged aiming to circumvent

 these limitations in modern programming languages for particular

 environments and problems.

 20

https://paperpile.com/c/kEIrDG/lgdvB
https://paperpile.com/c/kEIrDG/wWaOk
https://paperpile.com/c/kEIrDG/Qfuoz

 Macal and North [18] in their tutorial on ABM and simulation defined the

 following activities:

 ● thinking through an agent model - identify structural elements of the

 problem domain, their level of autonomy, structure, relationships with

 other elements and environment, behaviours, motivation and goals,

 emergence;

 ● model agents - improve general understanding developed while

 thinking through the agent model by defining formal types (classes) and

 their attributes;

 ● describe agent-based models in some kind of formal notation, especially

 consider Overview, Design Concepts, and Details (ODD);

 ● design model element - identify reusable elements, construct agents

 from templates, apply design patterns;

 ● advance model - enrich it with distributed computing, machine

 learning, GIS data or layout, fetch relevant data from relational

 databases, consider version control system and development

 environment;

 ● use software and tools - bring the designed and advanced model to life

 (perform computation) either by using spreadsheet editors,

 computational systems, dedicated ABM modellers and simulators, or

 programming language.

 Due to the highly complex nature of particular CIs, many studies have

 resulted in the construction of hybrid models, which are created by combining

 multiple models of di�erent kinds, e.g., Markov chains, agent-based, and

 physics-based. Application of PIA methodology [2] to modelling of the power

 production and transmission CI to analyse risks in the context of the IRRIIS

 project is an example of a hybrid model, where the state is captured by

 probabilistic state machines with the CI dependencies modelled by triggers

 changing the probabilistic characteristics of the machines' transitions and

 more complex relationships (relations between power grid substations) are

 handled by the power flow solver (physics model).

 The findings of the studies surveyed in this chapter indicate an ongoing

 necessity for an enhanced modelling framework that fulfils several key criteria.

 Specifically, the framework must possess generality, allowing for broad

 21

https://paperpile.com/c/kEIrDG/ggVdA
https://paperpile.com/c/kEIrDG/BRFh

 application across various domains and disciplines. Furthermore, the

 framework should leverage the latest advancements in computing and

 modelling technologies, ensuring accuracy and relevance. Additionally, it

 should be user-friendly, facilitating ease of use by researchers and

 practitioners. Not least, the framework should make use of high-performance

 computing techniques as studies with CI typically require extremely high

 computational intensity. These criteria are fundamental in achieving an

 e�ective, e�cient, and contemporary modelling framework essential for

 addressing the challenges of the modern world.

 2.2 Assessing Resilience

 The work “Resilience and Stability of Ecological Systems” [19] is frequently

 cited as influential work in which Holling C. S. demonstrated the application of

 the principle of resilience to ecological systems [20] , [21] . In this work,

 resilience was defined as a measure of the ability of the system to absorb

 changes in state variables and persist. Since then, “resilience” emerged as a

 transdisciplinary concept that applies to systems in a range of disciplines:

 social science, construction, engineering, economics, medicine, environmental

 studies and many others [22] .

 The meaning of the term “resilience” experienced a significant shift from

 the Holling’s definition, and in modern publications “resilience” is described

 or defined as:

 ● “Cyber resilience refers to the ability of digital systems to prepare for,

 withstand, rapidly recover and learn from deliberate attacks or

 accidental events. It encompasses people-centred aspects of resilience

 such as reporting, crisis management and business continuity.” cyber

 safety and security [23] ;

 ● “an ability to deliver, maintain, improve service when facing threats and

 evolutionary changes”, information and communication technology

 [22] ;

 ● “the ability of an organisation to absorb and adapt in a changing

 environment to enable it to deliver its objectives and to survive and

 prosper”, organisational management [24] ;

 22

https://paperpile.com/c/kEIrDG/SZu72
https://paperpile.com/c/kEIrDG/rcbXa
https://paperpile.com/c/kEIrDG/fDiRx
https://paperpile.com/c/kEIrDG/qpAWD
https://paperpile.com/c/kEIrDG/N3dy
https://paperpile.com/c/kEIrDG/qpAWD
https://paperpile.com/c/kEIrDG/qgIxJ

 ● “by the functionality of an infrastructure system after a disaster and

 also by the time it takes for a system to return to pre-disaster levels of

 performance”, transportation [25] ;

 ● “a tendency has been to use it [resilience], in each specific community,

 to indicate a more flexible, more dynamic and/or less prescriptive

 approach to achieving dependability, compared to common practices in

 that community” [26] ;

 ● “the ability to adapt to changing conditions and withstand and rapidly

 recover from disruption due to emergencies”, US Department of

 Homeland Security [27] ;

 ● “Infrastructure resilience is the ability of assets and networks to

 anticipate, absorb, adapt to and recover from disruption.” UK Cabinet

 O�ce [28] .

 Pimm's definition of the resilience, “the rate at which population density

 returns to equilibrium after a disturbance away from equilibrium”, [29]

 although attributed as “engineering resilience” to be distinguishable from

 “ecological resilience” [30] , was used as in many research project and

 publications.

 Bruneau et al. [31] proposed a measure of resilience as a total loss in

 quality occurred as a result of an event:

 where t 0 is the time of the event, t 1 is the time of full recovery, Q (t) is the quality

 of the analysed system, ranging from 0 (no service) to 100 (no degradation).

 Tierney and Bruneau [25] introduced a visual concept of the “resilience

 triangle”, shown in figure 2.1. This concept was used by Adams et al. [32] to

 analyse the e�ect of extreme weather conditions on transportation. Their

 quantitative approach for calculating resilience resulted in categorising

 weather conditions by the e�ect they cause. Their work also shows two stages

 of the system's response to the disruption: reduction and recovery.

 23

https://paperpile.com/c/kEIrDG/YrVl0
https://paperpile.com/c/kEIrDG/9RJKE
https://paperpile.com/c/kEIrDG/w1Q2R
https://paperpile.com/c/kEIrDG/JRC3S
https://paperpile.com/c/kEIrDG/gTxCt
https://paperpile.com/c/kEIrDG/oZSyA
https://paperpile.com/c/kEIrDG/9Nmr7
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20R%20%3D%20%5Cint_%7Bt_0%7D%5E%7Bt_1%7D%20(100%20-%20Q(t))%20dt%20#0
https://paperpile.com/c/kEIrDG/YrVl0
https://paperpile.com/c/kEIrDG/F3dvx

 Figure 2.1: Resilience triangle, introduced by Tierney and Bruneau.

 Gluchshenko and Foerster [33] proposed a quantitative measure of

 resilience based on comparing time of deviation T d with time of recovery T r ,

 where the time of deviation is a time between leaving the normal state and

 reaching an extremum and the time of recovery is a time between an extremum

 and returning to the normal state. They introduced three levels of resilience:

 ● high resilience - the time of deviation is considerably longer than the

 time of recovery, i.e. T d ≫ T r ;

 ● medium resilience - the time of deviation and the time of recovery are

 approximately equivalent, i.e. T d ≈ T r ;

 ● low resilience - the time of deviation is considerably shorter than the

 time of recovery, i.e. T d ≪ T r .

 In addition, they proposed measurable robustness defined as the amount

 of stress the system can accumulate without leaving the normal state, which

 can be alternatively defined as a time the system withstands a deviation.

 The figure 2.2 demonstrates the generalised resilience triangle for a

 highly resilient system, system’s robustness R, time of deviation T d , time of

 recovery T r , as defined in Gluchshenko and Foerster. As the load on the system

 increases, the system continues to operate at its normal level until its

 robustness is depleted. Then, the system gradually decreases its level of

 operation until the accumulated stress is dissipated. Then the system quickly

 returns to normal operation.

 24

https://paperpile.com/c/kEIrDG/hMdSf

 Figure 2.2: Conceptual view of resilience triangle for a highly resilient system.

 The research studies and engineering techniques based on the definition

 of resilience as the rate of recovery recently formed a recognisable engineering

 specialisation known as “resilience engineering” [34] . The recovery from

 disruption is part of the o�cial definition of the resilience of the US

 Department of Homeland Security [27] and the UK Cabinet O�ce [28] .

 The framework for assessing resilience proposed by Bruneau et al. (2003)

 [31] conceptualises resilience of socio-technical systems and infrastructures as

 encompassing the technical, organisational, social, and economic dimensions

 and consisting of the robustness, redundancy, resourcefulness, and rapidity

 properties. It defines resilience as an integral loss in quality over time and

 suggests finding di�erent performance measures for systems under

 assessment.

 Bloomfield and Gashi (2008) proposed a risk-based framework for

 assessing resilience based on distinguishing two types of resilience: to design

 basic threats and their e�ect on availability, robustness, confidentiality,

 integrity and resilience beyond basic design threats - to threats that are

 unknown when the system is designed or assessed. The proposed framework

 was built by combining existing risk assessment techniques such as HAZOP,

 the definition of resilience and research trends in assurance cases, the

 discovery of interdependencies, formal methods, static analysis,

 25

https://paperpile.com/c/kEIrDG/fizf0
https://paperpile.com/c/kEIrDG/w1Q2R
https://paperpile.com/c/kEIrDG/JRC3S
https://paperpile.com/c/kEIrDG/9Nmr7

 fault-tolerance assessment, benchmarking, modelling with a view on the

 assessed system as a system of systems.

 Devanandham and Ramirez-Marquez [20] provided an illustrative

 example of assessing change in system resilience when comparing recovery

 strategies. Starting from defining the loss function (figure-of-merit) and

 deriving quantitative resilience metrics from this function, they set system

 boundaries, identify risks, build models, perform calculations and analyse

 results.

 The brief and concise algorithm for assessing the resilience of a system

 was published by Gluchshenko and Foerster [33] :

 ● define and describe the system and its boundary to the environment;

 ● specify the scale and/or the level of hierarchy to observe;

 ● define the performance indicators;

 ● specify the reference state of the system;

 ● indicate and classify disturbances by type, frequency, intensity and

 duration;

 ● set the time horizon and investigate resilience or robustness of the

 system.

 Based on the observed studies on assessing resilience and experience in

 modelling critical infrastructures, it can be concluded that evaluating the

 resilience of large cyber-physical systems to significant events requires the

 creation of a hybrid model that incorporates both the system and the

 adversary. This model should be constructed at an appropriate level of

 abstraction and verified by comparing its predictions with data collected from

 observed events. Once the model is verified, the system's resilience can be

 assessed by observing the service degradation of the model when the

 disturbing factor is introduced and monitoring the recovery process as the

 disturbing factor is lifted. This approach provides valuable insights into the

 system's resilience, facilitating the identification of vulnerabilities and the

 development of mitigation strategies to enhance the system's overall

 resilience.

 26

https://paperpile.com/c/kEIrDG/rcbXa
https://paperpile.com/c/kEIrDG/hMdSf

 2.3 High-Performance Computing

 High-performance computing (HPC) refers to using computer clusters,

 supercomputers, and parallel processing techniques to perform

 computationally intensive tasks. It requires specialised hardware devices to

 achieve high processing power:

 - CPUs: Central Processing Units (CPUs) are the main processing units in

 HPC systems. CPUs are responsible for executing instructions and

 performing arithmetic and logical operations. HPC systems often use

 multiple CPUs, which can be arranged in clusters to provide increased

 processing power.

 - GPUs: Graphics Processing Units (GPUs) are specialised processors

 designed to handle complex graphical computations. However, GPUs are

 also useful for HPC, particularly for parallel processing tasks.

 - FPGAs: Field-Programmable Gate Arrays (FPGAs) are specialised

 hardware devices that can be reconfigured to perform specific tasks.

 FPGAs are particularly useful for processing large datasets and can be

 customised to handle specific data types and processing needs.

 - ASICs: Application-Specific Integrated Circuits (ASICs) are specialised

 chips designed for a specific purpose. In HPC, ASICs are used for

 specialised applications requiring high processing power, such as

 encryption and decryption.

 - Memory: Memory is a crucial component in HPC systems, as it

 determines the amount of data that can be processed at once. HPC

 systems often use high-speed memory devices, such as solid-state

 drives (SSDs) or dynamic random-access memory (DRAM), to achieve

 faster processing speeds.

 - Interconnects: Interconnects are specialised networking devices used to

 connect multiple CPUs, GPUs, and other devices in a high-performance

 computing cluster. High-speed interconnects are essential for achieving

 the low latency and high bandwidth required for HPC applications.

 Cloud-based HPC has become increasingly popular recently as businesses

 and individuals seek fast, e�cient, and cost-e�ective ways to access

 specialised HPC hardware devices and configurations without investing in their

 27

 infrastructure. Cloud companies have recognised the demand for HPC

 capabilities, and many are now o�ering high-performance computing devices

 on demand. These devices typically include powerful processors, large

 amounts of memory, and specialised software and tools for running complex

 applications. Cloud-based HPC solutions also o�er flexibility in terms of

 scalability, as users can easily adjust their computing resources as their needs

 change. Businesses and organisations can easily ramp up their computing

 power during peak periods or reduce their usage during lower demand.

 As a recognisable field of study, HPC focuses not only on hardware but

 also on theoretical and practical aspects of algorithm implementations. HPC is

 generally about achieving maximum performance for a family of algorithms by

 utilising available computational resources or engineering a custom solution

 [35] .

 The software frameworks and libraries for HPC address the challenges

 raised by the problem of orchestrating a computation on a large number of

 processors, considering network bandwidth, correctness and ease of

 programming. OpenMP is considered an industry standard for implementing

 HPC algorithms using shared memory [36] .

 The computer program's performance depends on how e�ectively the

 program manages the CPU and communication devices. On the micro-level, it

 may include minimising cache misses, organising the code in a way that keeps

 the CPU conveyor busy, reducing wrong branch prediction, and optimising

 memory reads. The macro-level computational performance depends on the

 task scheduler, managing shared resources and utilising network bandwidth.

 Machine code instructions are executed by CPU directly, thus

 implementing algorithms directly in machine codes (or Assembler) and

 applying the platform-specific optimisations gives the maximum

 performance. However, the result might not be transferable to other

 architectures. The Lack of high-level abstractions for data structures in

 Assembler makes algorithm implementations more verbose and more

 challenging to maintain than implementations in other languages. Progress in

 compilers capable of generating e�cient code with applied

 architecture-specific optimisations from high-level languages made

 28

https://paperpile.com/c/kEIrDG/hpy2r
https://paperpile.com/c/kEIrDG/rhQcl

 programming in Assembly completely ignored while considering language for

 high-performance algorithm implementation.

 According to many studies and benchmarks, the top most popular and

 performant languages for HPC are C/C++ and Fortran. However, there are also

 languages that demonstrate performance similar to C/C++ on a range of tasks,

 also providing additional benefits to developers: simplified memory

 management, abstraction for data structures, advanced syntax, and portability.

 Performance comparison of 29 modern programming languages [37]

 shows that the most performant implementations of the benchmarked

 algorithms are in C. Other languages with comparable performance: C++, Rust,

 Julia, Fortran, C#, Chapel, Ada, Haskel, FreePascal, Go, F#, Swift, Java, Lisp,

 OCaml.

 Figure 2.3: Performance of top 15 implementations of tested algorithms in

 Benchmarks Game.

 The comparative review of the RosettaCode algorithm implementations

 in the most popular programming languages [38] led to the following

 observations:

 ● most popular languages by category are: procedural - C and Go,

 object-oriented - Java and C#, functional - F# and Haskel, scripting -

 Python and Ruby;

 ● functional and scripting languages provide significantly more concise

 code than procedural and object-oriented languages;

 29

https://paperpile.com/c/kEIrDG/08GRr
https://paperpile.com/c/kEIrDG/N45sZ

 ● C is the best on computing-intensive workloads and Go is close to C in

 performance, other compared languages are slower;

 ● procedural languages use significantly less memory than other

 languages;

 ● compiled strongly-typed languages are significantly less prone to

 runtime failures than interpreted or weakly-typed languages; Go is the

 least failure-prone performant language in the study.

 The performance of the C programming language is unbeatable. By

 design, the statements and data types are mapped to typical machine

 instructions very e�ciently. It is also one of the most popular languages, so the

 hardware vendors optimise their compilers and tools to produce the most

 e�cient machine code from C code [39] .

 Thus suitability of other languages for HPC applications highly depends

 on whether it can call high-performance libraries (usually written in C or

 Fortran) e�ciently. For example, Python, which is increasingly popular in the

 research community, has adapters (bindings) to the e�cient data processing

 libraries: NumPy, SciPy, and pandas [40] . By combining calls to e�cient

 libraries with high-level management code, Python programs can successfully

 compete with C in terms of performance. However, there are a few limitations

 of this approach: i) performance degrades quite quickly when the amount of

 computations performed outside of high-performance libraries grows; ii)

 interoperability with other libraries depends on whether e�cient bindings

 exist for them; if two previous limitations are successfully addressed by

 extending the host language with C/C++ functions, maintaining the result

 requires advanced programming skill.

 The limitations of the C language inevitably encouraged programmers to

 extend the language with domain-specific features or syntax constructions

 supporting other programming paradigms. The most successful, of course, has

 been the C++ extension that added constructions to facilitate object-oriented

 programming. Another direction in which the C language was extended is

 parallel programming. It was supported in the language by either additional

 libraries and frameworks, like OpenMP, or with language extensions, like

 Unified Parallel C.

 30

https://paperpile.com/c/kEIrDG/rnF0F
https://paperpile.com/c/kEIrDG/bThnl

 In recent years several alternatives to the C language emerged. Swift,

 Rust, Go are comparable with the C programming language in terms of

 computational performance while providing developers with constructions

 that simplify designing parallel algorithms and make the application less

 error-prone.

 Swift [41] is a general-purpose, multi-paradigm, compiled programming

 language developed by Apple Inc. Its features and patterns include compulsory

 initialisation of variables, checking array boundaries, checking overflows for

 integers, ensuring that nil values are handled explicitly, automatic memory

 management via reference counting, and error handling. Its performance for

 tasks where memory management is not involved is close to C/C++.

 Rust [42] is a systems programming language sponsored by Mozilla

 Research. Its main design goal is to be fast, concurrent, and safe. It supports

 functional and imperative-procedural paradigms. Its strategy to make code

 safer is to avoid null pointers, dangling pointers, or data races. It manages

 memory by "resource acquisition is initialisation" (RAII) with optional

 reference counting. On most of the benchmarks, its performance is very close

 to C/C++ code.

 Go [43] is a general-purpose, procedural (like C but with limited

 structural typing), compiled programming language developed by Google. One

 of the design goals of the Go programming language was "The e�ciency of a

 statically-typed compiled language with the ease of programming of a

 dynamic language". The garbage collector manages the memory within the Go

 process. The Go language syntax of the language is one of the simplest, albeit it

 supports advanced language elements like first-class functions and closures.

 The Go language contains an integrated concurrent programming model

 similar to CSP. This model simplifies parallel algorithms and utilises the

 available multi-core CPU resources e�ciently. The performance of the Go

 programs is quite close to C/C++, and there is no strong evidence that

 algorithm implementation in Go is always slower than the implementation in

 C/C++.

 In summary, multiple factors should be taken into account to achieve the

 best performance while developing a hybrid model of a large complex system

 and running simulations. These factors include the network topology, how

 31

https://paperpile.com/c/kEIrDG/F0qYW
https://paperpile.com/c/kEIrDG/v0cjK
https://paperpile.com/c/kEIrDG/NCaxz

 di�erent scenarios change the computation hardware requirements, how

 third-party physics models are implemented and integrated with the model,

 how frequently and easily the model needs to be adapted for new

 requirements, whether the data is sensitive and can be transmitted to the

 cloud, whether the focus of the simulations is a small number of complex

 simulations or a large number of simple simulations, and whether a single

 simulation benefits from running on specialised hardware such as GPUs,

 FPGAs, or ASICs. These factors may a�ect the selection of technology,

 algorithms, hardware, and premises for the computation. Achieving the peak

 possible performance requires making the right decisions for these trade-o�

 questions. Therefore, a comprehensive and systematic analysis of these factors

 is essential for developing and implementing a hybrid model of a large complex

 system.

 32

 3. Assurance Cases for Critical
 Infrastructures

 3.1 Overview

 E�ective reasoning about safety, security, reliability, and assurance requires a

 structured approach. Many years of research resulted in a number of

 approaches being developed. They were applied while constructing and

 maintaining assurance cases for a wide range of devices, constructions, and

 networks. Structured assurance cases were developed for miniature medical

 sensors, nuclear power plants, and multinational power networks.

 Decades of research in structured assurance cases showed that building

 sound assurance cases is di�cult. The basic model of argumentation developed

 by Toulmin [44] was one of the first attempts to address this di�culty by

 introducing structured graphics notation. Studies that followed contributed to

 increased confidence in the fact that structuring an assurance case increases

 clarity and understanding, contributes to better decision-making, reduces

 risks, and improves accountability.

 Among the factors that lead to choosing the best approach for a particular

 assurance case, the most important one is which processes the assurance case

 should support within an organisation. Characteristics of these processes lead

 to choosing between a less structured approach, e.g., a list of facts in

 presentation, and a more sophisticated one, such as using visual notation (e.g.,

 ASCAD [45] or Goal Structuring Notation, GSN [46]) and special editing tools.

 Assessing safety, security, reliability, resilience, and other system

 properties of a large cyber-physical system is only possible in one of two ways:

 constructing argumentation considering the observed operation history or

 substituting the system with an appropriate model (a “digital twin”) to study

 how good the real system.

 Substituting the system with a model, together with the introduction of

 blocks [47] , and Assurance 2.0 [48] , helps create more rigorous assurance

 cases. With the credible simulatable substitution of the system, the natural

 language claims about the system’s reliability properties can be replaced, by

 33

https://paperpile.com/c/kEIrDG/tGqeQ
https://paperpile.com/c/kEIrDG/fxKlc
https://paperpile.com/c/kEIrDG/5dB9
https://paperpile.com/c/kEIrDG/Q7baH
https://paperpile.com/c/kEIrDG/obhO

 applying the Substitution and Conretion CAE blocks, with the appropriate

 quantitative evidence such as distributions against failures and intrusions

 obtained through simulation.

 For this approach to be successful, the credibility of the model needs to be

 confirmed by a separate justification that the model and the tool can be trusted.

 Confidence in the results obtained with the model (e.g. via solving the

 model using Monte Carlo simulation) depends on whether the model

 represents the real system accurately, i.e. with a su�cient level of detail and at

 the right level of abstraction. In other words, whether the model of the system

 behaves close enough to the real system in situations that are relevant to the

 assessed properties. There are di�erent strategies for addressing this

 challenge, e.g. comparing the model behaviour and observed behaviour of the

 real system under the same environmental circumstances.

 Several aspects contribute to the trustworthiness of the simulation engine

 when it is applied to a particular scenario. Among them is whether there are

 successful applications of the simulation engine for similar use cases, whether

 the simulation engine produces results similar to observations under the

 equivalent modelled circumstances, and whether the quality of the simulation

 engine software is adequate. For any particular application of the engine,

 applicability analysis needs to be performed, in which the above and other

 relevant factors should be considered. Although the following chapters provide

 input for this analysis, such as the architecture of the software, comparison of

 implementation, and use cases, exploring the applicability of the engine for

 di�erent scenarios is not a part of this thesis.

 A number of studies and research projects, including IRRIS and SESAMO

 [49,50] , demonstrated that in practical applications substituting a large and

 complex system with a formal model, which can be solved analytically (e.g.

 state machine), is either very hard or practically impossible. As a result, most

 of the substituting models are hybrid agent-based models, i.e. the individual

 parts of the system are modelled independently with technologies most

 appropriate for a particular component or process. For example, the individual

 independent components can be modelled as state machines, and they

 participate in or are a�ected by a computational approximation of a physical or

 chemical process.

 34

https://paperpile.com/c/kEIrDG/gqyNf+rHSvv

 Processes happening in large systems are frequently probabilistic - the

 events of interest such as disturbances, failures or malicious interventions can

 be captured by a suitably chosen stochastic process. Grasping the stochastic

 aspects of the component behaviour is one of the challenges the model

 developers need to take into account when substituting the real system with its

 model. It is a common practice to use probabilistic state machines in

 continuous time with distributions of the time spent in a particular state

 assigned to state transitions. Some of the probabilistic parameters often can be

 estimated from available operational data (e.g. for accidental failures of the

 components). Some other parameters, however, may be di�cult to estimate

 due to lack of su�cient operational data (e.g. on malicious interventions). In

 such cases one can deploy “sensitivity analysis” and study the model

 behaviour under di�erent values of the parameters, which are di�cult to

 estimate. As a result of sensitivity analysis, one gains an insight as to how

 di�erent parameters a�ect the system properties of interest and concentrate

 on those parameters which a�ect significantly the properties of interest. The

 properties of such models are calculated by observing and aggregating the

 outcomes of repetitive simulations, i.e. using the Monte-Carlo method.

 The results of model simulations, either deterministic or stochastic, e.g.

 in the form of the probabilistic distribution of a variable of interest (often

 referred to as a “utility function” or “reward”), can be used to support the

 argumentation in the assurance case. In the Claim-Argument-Evidence

 approach, as will be shown in the next section, simulation results can be

 incorporated in the assurance case as evidence.

 3.2 CAE Assurance Cases

 Claim-Argument-Evidence (CAE) approach [45,51] provides an e�ective

 methodology for developing, maintaining, and communicating cases. Its

 graphic notation, ASCAD, is used to visualise and organise relations between

 the claims, argument, and evidence.

 Using stochastic models in CAE assurance cases requires developing a

 systematic and practical approach. It should provide guidance on how to

 perform decomposition of the top claim and identify system properties that can

 35

https://paperpile.com/c/kEIrDG/fDxsJ+fxKlc

 be calculated, justify the substitution of the system with its model, build the

 credible model, obtain and interpret model simulation results, and incorporate

 them into the assurance case.

 The key elements of a CAE approach are the following:

 ● Claim - a statement about the system, its parts, or operation context.

 ● Argument - a structured and systematic way of arguing that upholds the

 claim through more detailed sub-claims or by providing evidence either

 supporting or refuting the claim and subclaims.

 ● Evidence - support of the claim (i.e. that the statement captured by the

 claim is true), e.g. formal analysis, design, verification. The evidence

 may be supportive of the claim or otherwise (i.e. can contradict the

 claim).

 The graphical notation ASCAD provides a framework for visualising

 relations between claims, arguments, and evidence. The Adelard ASCE tool

 provides a visual editor for creating and maintaining structured safety cases

 using the CAE approach and the ASCAD graphical notation.

 The normal form of a CAE assurance case requires it to begin with a

 top-level claim, which is justified by argument and supporting sub-claims and

 evidence nodes. The top claim formulates the general assertion about the

 system, e.g. “the system is safe for a given application in a given

 environment”. The practical approach to justification may begin with

 expressing initial thoughts as a diagram, showing the factors that influence the

 claim, followed by iterative application of CAE building blocks, improving

 understanding, and using sophisticated engineering models.

 CAE building blocks are archetypal CAE fragments. Bloomfield and

 Netkachova defined the following five CAE blocks [47] :

 ● Decomposition - deducing conclusion about the claim through claims or

 facts about constituent parts.

 ● Substitution - replacing the claim about the system with a similar claim

 about an equivalent system.

 ● Evidence incorporation - justifying the claim with evidence.

 ● Concretion - providing a more precise definition or interpretation of the

 claim.

 36

https://paperpile.com/c/kEIrDG/Q7baH

 ● Calculation - justifying the claim through computing a numerical value,

 e.g. evaluating a formula or gathering data while simulating a model.

 Architecting an assurance case is a creative process. Creating an

 assurance case for simple systems might be possible by starting with a top

 claim and just expanding the claim’s tree up to evidence leaves. However, in

 the most practical applications, this process is di�erent. It begins with

 expressing the initial thoughts informally, in lists, notes, and simple diagrams.

 While the understanding of the system improves, the structure of the case

 becomes more formal. With this approach, whether or not part of the system

 can be modelled and used to justify claims can be decided at the beginning.

 This decision influences the development of the case, e.g. the Decomposition

 block may emerge to narrow down the part of the system that is modelled, and

 the Concretion block may be used to transition from human-readable claims to

 claims that can be calculated. On the path from the top claim to the Calculation

 block should be an instance of the Substitution block. At this instance, it is

 crucial to justify that the model is indeed an equivalent of the real system and

 suitable for providing evidence through calculating.

 3.3 Using Stochastic Models in CAE Assurance Cases

 While assessing the properties of interest of a system, the results from

 stochastic model simulation can provide evidence for claims in CAE assurance

 cases [52] . However, these results can provide su�cient evidence only when

 the credibility of the model is assured.

 In CAE methodology, the purpose of the Substitution block is to replace a

 claim about the system with an equivalent claim about the substituted system,

 provided that the second system is an adequate substitution of the first system.

 For example, if the second system is a successfully validated model of the real

 system, then the claim about the real system can be substituted with a similar

 claim about the model.

 37

https://paperpile.com/c/kEIrDG/smwaH

 Figure 3.1. Substitution of the model for the real system.

 Figure 3.1 demonstrates an example of ASCAD assurance case in which the

 real system, the Nordic32 power transmission network, is substituted with its

 stochastic model. The side-claim supports the justification that the model

 adequately represents the real system for this specific purpose. The

 justification is based on confirming that the simulation platform is trustworthy

 and relevant simulation models are validated, i.e. adequately representing

 reality.

 The assertion concerning the reliability properties requires

 decomposition into several claims about particular properties. The properties

 of the power distribution system are quantitative characteristics important to

 the consumers, e.g., total losses. Figure 3.3 demonstrates the decomposition of

 the general claim about the system’s reliability into concrete claims about

 specific properties.

 The aggregated statistical results from the Monte-Carlo simulations of

 the Nortic32 stochastic model support the claims about the properties of the

 real system once the subclaim that the model of the system is credible..

 38

 Figure 3.2. Expanded side-claim, justification of the model substitution [52] .

 39

https://paperpile.com/c/kEIrDG/smwaH

 Figure 3.3. Demonstration of the decomposition of the general claim into

 claims about specific properties.

 40

 4. Stochastic Modelling and Simulation

 4.1 Overview

 My research on substituting real systems with models, as shown in the

 previous chapter, resulted in developing the following key requirements for a

 modelling and simulation framework:

 ● It should support hybrid models , incorporating di�erent approaches,

 such as agent-based models, probabilistic (stochastic) models, and

 deterministic physics models (e.g. power-flows in power systems).

 ● It should be capable enough to provide the methods for modelling the

 system’s components and the stress factors of interest, among them the

 state of the operational environment (e.g. the weather conditions),

 accidental component failures and repairs, the actions of malicious

 agents (adversaries), etc.

 ● It should be supported by software tools which allow for fast model

 creation and for e�cient model validation, which must be

 user-friendly, providing researchers and practitioners with a consistent

 user interface.

 ● Furthermore, it should leverage the latest advancements in

 high-performance computing, including cloud-on-demand HPC

 capabilities, so that the complexity of “solving” the models and

 obtaining useful estimates of system resilience can be achieved in a

 timely manner.

 ● The implementation technology must be carefully selected, too,

 considering the trade-o�s between performance, ease of extending and

 modifying the system models, and integration with existing third-party

 solutions (e.g., libraries, executables, services, and hardware

 components).

 The modelling framework presented in this section attempts to fulfil

 these requirements by: i) providing a new domain-specific language for defining

 hierarchical models, ii) an extensible simulation engine that supports local and

 cloud-based simulation agents, and iii) a Web-based editor that provides a

 41

 visual aid to model developers. The engine and the editor utilise modern

 development practices and technologies to provide a state-of-the-art suite.

 4.2. Modelling

 This section provides an introduction to the HPS modelling methodology.

 Within this introductory section, the subsequent terms are defined with their

 corresponding meanings (in alphabetical order):

 - Component is a constituent part of a system. In the model, a component

 is represented as a machine .

 - Definition is a formal and generalised representation of a particular type

 of component . It is a template that defines the properties and behaviours

 of the component .

 - Instance is a concrete representation of a definition . It is created by

 instantiating the definition and assigning specific values to its properties .

 It is unique and distinct from other instances of the same definition .

 - Machine is a formal representation of an acting entity within the system .

 It serves as a means to represent a component of the system within the

 model . A machine is both defined and instantiated within the model ,

 allowing for it to be utilised as a building block.

 - Model is a formal representation of a system . It is constructed by

 representing the components as machines , where component types are

 defined as definitions and individual components and the system as a

 whole are represented as instances .

 - Plugin is a programmatic extension to a simulation engine that provides

 additional functionality beyond what is available through the base

 functionality of the engine. Plugins are designed to address specific

 needs or requirements that are not possible to capture using definitions ,

 such as models of physical processes or other complex phenomena. A

 plugin typically consists of one or more modules or libraries that are

 loaded into the simulation engine at runtime, and which provide

 additional functionality or services to the simulation.

 - Reward function is a computation that provides a quantitative measure

 of the performance of a system . The reward function is typically defined

 42

 in terms of a set of objectives or criteria that the system is intended to

 achieve in the simulation . These objectives might include maximising

 e�ciency, minimising response time, or optimising the use of

 resources. The reward function itself is a function that takes as input the

 state of the model at a given time, and returns a numerical value that

 reflects the desirability of that state.

 - Simulation is a process of executing a model and generating output data

 that reflects the behaviour and performance. It involves interpreting a

 model within a simulation engine to simulate the interactions between

 the components of the system and producing results that can be used to

 analyse and understand the system 's behaviour under di�erent

 conditions.

 - Simulation engine is a software program that interprets a model and

 executes a simulation of the model. The engine uses algorithms and

 mathematical models for simulating the behaviour of the components of

 the system, as represented in the model , and producing output data that

 reflects the performance and behaviour of the system under di�erent

 conditions.

 - System is a set of interconnected and interdependent components that

 are orchestrated together to perform a specific set of functions.

 Components of the system can be hardware, software, data, people, and

 social and physical processes.

 The aim of the HPS modelling approach is to create a sound, justifiable

 representation of a system amenable to an e�cient solution via Monte Carlo

 simulation . The core of the approach is a continuous and incremental process of

 refinement, in which assumptions about identified components and processes,

 their relations, interactions, and stochastic characteristics are documented and

 captured by the developed model. The method is an evolution of the

 Preliminary Interdependency Analysis (PIA) [2] .

 Similarly to the PIA approach (spelled out in more detail in Appendix 2),

 most of the activities in the HPS modelling are either related to a qualitative or

 quantitative analysis .

 Qualitative analysis is a process of identifying components and activities

 within the system, patterns in component organisation and interaction. This

 43

https://paperpile.com/c/kEIrDG/BRFh

 analysis can be used to gain insights into the emergent behaviour and

 dynamics of the system , as well as the interactions and decision-making

 processes of individual components within the system .

 Quantitative analysis , in turn, involves the use of statistical and

 mathematical methods to analyse and interpret the numerical data generated

 by Monte Carlo simulations of the model constructed through qualitative

 analysis . The goal of this type of analysis is to quantify the measure of interest

 (e.g. the loss of supplied energy in power systems due to accidental failures

 and/or due to successful cyber-attacks), the e�ect of strength of relationships

 among interdependent components (e.g. failure propagation likelihood).

 Identifying “interesting/surprising” patterns and trends within the simulated

 data is of great interest, too, as they provide the operators of simulated critical

 infrastructures with insight about how to make the infrastructure more

 resilient.

 The PIA approach recognises two levels of abstraction while modelling

 the system and two models simultaneously developed while modelling the

 system: the interacting services model (service-level model) and the detailed

 service behaviour model. The HPS approach extends this to support multiple

 levels of abstractions within a single hierarchical model .

 The PIA approach is iterative and based on revisiting earlier stages after

 progressing on the latter stages. The HPS approach is incremental and focuses

 on identifying and implementing changes that incrementally improve the

 model and its artefacts, e.g., documents, definitions, components, libraries,

 and plugins.

 The HPS approach begins with establishing the following major artefact

 groups:

 - System documentation. This includes all the available information on

 the modelled system , including requirements, architecture, design,

 operational environments, adversaries, and telemetry data.

 - Scenarios. Research objectives, boundaries, selected adversaries,

 environmental circumstances, performance metrics, and reward

 functions .

 - Modelling artefacts. This includes models , plugins , documented

 assumptions, and simulation results .

 44

 - Results. This includes aggregated simulation results and their

 interpretation.

 There are several processes that result in incremental improvements in

 the artefacts:

 - Collecting information. This includes collecting initially available

 system documentation and filling gaps in understanding and coverage.

 - Setting and updating research goals and scenarios. This includes

 collecting, defining, and elaborating on research goals and scenarios,

 defining metrics, determining boundaries and limitations, and

 assessing feasibility and risks.

 - Modelling. This includes identifying components , their dependencies

 and interactions and increasing the level of abstraction to a more

 detailed level by adding implementation.

 - Simulation. This includes allocating resources, performing simulations ,

 and aggregating results .

 - Interpreting simulation results. This involves analysing and

 interpreting simulation results to draw conclusions and make

 recommendations based on the research goals and scenarios.

 Fig. 4.1. Data flow between HPS processes () and backpropagation of

 changes ().

 45

 Any of the processes can result in modifying any artefacts. For example,

 results obtained through simulation may reveal a deficiency in the system

 documentation, justify the investigation of new scenarios or need for

 performance improvements in the model, engine , or plugin .

 The HPS modelling starts by representing the entire system as a single

 machine . This component is added to the library (HPS term) of identified

 components. New components are identified and organised through a

 systematic review of the collected system documentation, accompanied by

 setting initial research goals and identifying scenarios.

 When a new component is identified, it is categorised either as a

 completely new component and added to the library or as an instance of an

 already identified component. Correctly adding the instance to the model

 requires identification of the context where this instance operates. When the

 context is an already identified component, incorporating the instance requires

 this component to be of a network type. If the identified component is already

 implemented as a state machine , the implementation can be shifted down into

 the new component and the component can be converted to the network of two

 components, a newly identified instance of an existing component and the

 instance of the state machine. If the identified component is implemented in

 any other way, apart from a state machine and network, e.g., as a model of

 physical process or hardware component, the method of encapsulation of an

 instance should be found in the documentation for this implementation.

 The state machine component defines a state machine with a finite

 number of states and transitions between them. One of the states is an initial

 one, i.e. when a state machine is created by the simulation engine, it starts with

 this state. While simulating, the engine transitions the state machine from one

 state to another by choosing the state that is incidental to activated transitions

 of the current state. Transitions are activated or deactivated by their associated

 triggers .

 The trigger is a function that enables and disables transition . The trigger

 can be as simple as the deterministic trigger , which activates a transition at a

 specific simulation time, or as complex as a real device, e.g. the trigger can be a

 program that reads measurements from a sensor, which is connected to a

 general purpose input/output (GPIO).

 46

 The network is a set of component instances. The instance is defined by

 specifying the component and providing values for its properties.

 Similarly to the state machine component , the network component also has

 properties which can be mapped to one or many instances’ properties . It is

 possible to create complex hierarchical structures by including the network

 instances in the networks .

 The component 's behaviour can be parameterised by defining a property

 and mapping its value to a trigger 's or action's property. Consider the following

 example: the power line component of the power transmission system is

 modelled as a state machine with states OK and Fail . There are many lines in the

 system and for each of the lines its probability of failure depends on the line's

 length - longer lines fail more often. Therefore, the transition between OK and

 Fail is controlled by the Probabilistic trigger with the Exponential distribution . The

 straightforward approach to represent the lines in the model would be to

 define a state machine for each line and set the λ property of the distribution to

 the corresponding value. However, it creates a lot of duplicates of the same

 state machine, which greatly complicates maintainability. Much more concise

 approach is to create a definition of the Link machine as a state machine with one

 property of the ITrigger type and use the Property trigger to evaluate the trigger

 from this property . Then while creating a network component that represents the

 system , the links can be represented by instances of the Link definition with

 corresponding property values.

 4.3 Logical Model

 A deterministic finite automaton (DFA) is defined by a quintet:

 Here Q is a non-empty finite set of states, Σ a non-empty finite set of

 inputs, the "alphabet", σ maps state and input pairs to new states, q 0 from Q is

 an initial state, and F is a possibly empty set of final (without outgoing

 transitions) states from Q .

 47

https://www.codecogs.com/eqnedit.php?latex=(%20Q%20%3D%20%5C%7B%20q_i%20%5C%7D_%7Bi%3D0%7D%5En%2C%20%5CSigma%20%3D%20%5C%7B%20%5Csigma_i%20%5C%7D_%7Bi%3D0%7D%5Ek%2C%20%5Csigma%20%3A%20Q%20%5Ctimes%20%5CSigma%20%5Crightarrow%20Q%2C%20q_0%20%5Cin%20Q%2C%20F%20%5Csubseteq%20Q%20)#0

 A DFA can be visualised as a directed multigraph with labelled edges,

 representing transitions, nodes, representing states, and one node marked as

 an initial node.

 Stochastic State Machines are the result of merging together concepts of

 probabilistic Markovian transitions and state machines. For the stochastic

 state machine definition, sets Q and Σ , initial state q 0 and F have the same

 meaning. The σ function is di�erent. Instead of returning a next state for (state,

 input) pairs it returns a probability distribution for states

 where

 When the transition represents an event in continuous time and the

 probability of these events is defined as a probability distribution function,

 then the transition function can be defined as follows:

 where

 A hybrid state machine is a state machine with deterministic, discrete

 stochastic, or continuous-time stochastic transitions. It is defined as follows:

 When a state machine has continuous-time transitions, the deterministic

 and discrete stochastic transitions are executed instantly, i.e. the system

 spends no time in a state prior to the triggered transitions.

 Let’s define a factory function as a function as

 where P i is a set of all possible values for i th property and M H is a set of all

 possible hybrid state machines.

 A state machine, defined as a quintet of state-space set, input alphabet

 set, transitions, initial state, and final states set, can be equivalently described

 as a factory and a vector of property values for this factory.

 Let's define a Simulated Stochastic Network recursively as a tuple of

 48

https://www.codecogs.com/eqnedit.php?latex=%5Csigma%20%3A%20Q%20%5Ctimes%20%5CSigma%20%5Crightarrow%20P(Q)#0
https://www.codecogs.com/eqnedit.php?latex=P(Q)%20%3D%20%5C%7Bp_q%20%7C%20p_q%20%3A%20Q%20%5Crightarrow%20%5Cmathbb%7BR%7D_%7B%5Cgeq0%7D%2C%20%5Csum_%7Bs%20%5Cin%20Q%7D%20p_q(s)%20%3D%201%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Csigma%20%3A%20Q%20%5Ctimes%20%5CSigma%20%5Crightarrow%20P_t(Q)#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=P_t(Q)%20%3D%20%5C%7Bp_q%20%7C%20p_q%20%3A%20Q%20%5Crightarrow%20p(t)%2C%E2%88%80t%3Ap(t)%5Cgeq0%2C%20%5Cint_0%5E%5Cinfty%20%5C!%5C!%20p(t)%5C%2C%20dt%20%3D%201%5C%7D#0
https://www.codecogs.com/eqnedit.php?latex=(%20Q%20%3D%20%5C%7B%20q_i%20%5C%7D_%7Bi%3D0%7D%5En%2C%20%5CSigma%20%3D%20%5C%7B%20%5Csigma_i%20%5C%7D_%7Bi%3D0%7D%5Ek%2C%20%5Csigma%20%3A%20Q%20%5Ctimes%20%5CSigma%20%5Crightarrow%20Q%20%5Clor%20P(Q)%20%5Clor%20P_t(Q)%2C%20q_0%20%5Cin%20Q%2C%20F%20%5Csubseteq%20Q%20)#0
https://www.codecogs.com/eqnedit.php?latex=f%20%3A%20P_1%20%5Ctimes%20P_2%20%5Ctimes%20...%20P_n%20%5Crightarrow%20M_H#0

 - State machines, defined as quintets.

 - State machines, defined as factory functions and property values.

 - Simulated Stochastic Network

 - Properties, bound to the properties of state machines and networks

 - Current simulation state of state machines and networks.

 During initialization, the simulation engine recursively constructs state

 machines from factories.

 While simulating, if the state machine factory's range comprises

 machines with identical state spaces, changing the definition's property

 substitutes the machine or network. The new machine is in the same state and

 its continuous-time transitions are recalculated.

 The following logical model provides a conceptual view of the domain

 entities, their attributes and relationships. It can be di�erent in some areas

 from the implementation model. It is created with abstract data types such as

 lists, maps, and numbers instead of technology-specific data types. It does not

 include infrastructural classes. The language of the logical model diagrams is

 UML2.

 4.3.1 Definitions Model

 Definitions Model is a model for machine factories. It describes networks,

 machines, properties, and instances.

 The main interface of the HPS definitions model is IMachine . It represents

 an entity within the system, e.g. a device, a person, or a process. The abstract

 class MachineBase provides a default implementation for the properties defined

 in the interface IMachine .

 Fig. 4.2. IMachine interface from the definitions package.

 49

 The machine’s properties serve two purposes:

 - It is an observable part of the machine’s state. Other machines can

 subscribe to the property notifications and change their behaviour when

 the property changes.

 - They modify the behaviour of the machine. E.g., the property may be

 mapped to the parameter of the probabilistic trigger.

 The composition pattern of simulated stochastic networks is supported

 by the structure of classes presented in Fig. 4.3.

 Fig. 4.3. Network and Instance classes from the definitions package.

 The implementation of the factory creates the actual simulated state

 machine by finding the definition specified in Type , and then constructing the

 machine that corresponds to the given property values. PropertyValue has a

 special semantic in this logical model. It represents a container that can store

 any value. In the runtime, the exact value will be deserialized and cast to the

 property’s value.

 The logical model includes classes for defining state machines, as

 presented in Fig. 4.4.

 50

 Fig. 4.4. State machine classes from the definitions package.

 The logical model defines implementations of the interfaces ITrigger ,

 IAction , and IProperty that were found to be useful while working on the use

 cases.

 The abstract class TriggerBase provides the default implementation of the

 interface ITrigger .

 Fig. 4.5. ITrigger interface and the abstract base class.

 The Deterministic , Probabilistic , Instant , and Idle triggers represent

 di�erent transition types:

 ● Idle - this trigger never invokes the transition and can be used as the

 initial value of the property.

 ● Instant - this trigger invokes the transition immediately and can be

 used as the initial value of the property. This kind of transition is known

 as “an automatic transition” or “an eventless transition” [53] .

 ● Deterministic - triggers transition in the specified time.

 ● Probabilistic - the time of triggering is probabilistic, distributed

 according to the value of the attribute “distribution”: normal - normal

 distribution parameterised by the attributes “mu” (parameter μ) and

 “sigma” (parameter σ); exponential - exponential distribution,

 51

https://paperpile.com/c/kEIrDG/H4nU

 parameterised by the attribute “lambda”, which corresponds to the

 parameter λ .

 Fig. 4.6. Triggers, representing di�erent transition types.

 The Gate trigger enables or disables the transition depending on the other

 machine’s property or state.

 52

 Fig. 4.7. The Gate trigger and di�erent gate openers.

 The special Property trigger maps the trigger of the transaction to the

 machine’s property.

 Fig. 4.8. Implementations of IAction in the definitions package.

 53

 Fig. 4.9. Implementations of IProperty in the definitions package

 How exactly the implementations of the logical model classes are

 instantiated depends on the chosen deserialisation approach. E.g., the entire

 model could be read from a single project file, there could be a single file per

 component, or the definitions could be read from the database.

 4.3.2 Simulation Model

 Similarly to the main interface in the definitions model, the main interface of

 the HPS simulation model is IMachine . The machine has properties that

 represent an observable part of its state.

 An object, implementing IMachine , should be owned by the object,

 implementing IContainer . This relation is represented by the association

 between IMachine and IContainer .

 Machines are hosted and simulated within the Environment. Machines

 backreference the environment in their Environment property, which is

 read-only. Therefore the machine can only belong to one environment.

 54

 Figure 4.10: Main HPS interfaces.

 HPS provides two implementations of the IMachine interface: State

 Machine and Network.

 State Machine is a modelling abstraction that represents a component of

 the system as a set of states and transitions between them. When the

 probability of transitioning from one state to another depends only on the

 current state, the probabilistic state machine is a Markov state machine.

 The state machine can be specified in the “structure” section of the

 machine definition using the following HPS DML structure:
 "structure": {

 "states": ["state1", "state2", ...],

 "initial": "state1",

 "transitions": {

 "state1": {

 "state2": [{

 "type": "probabilistic",

 "distribution": "exponential",

 "parameter": 0.1

 }]

 },

 ...

 }

 }

 55

 The states of the machine should be specified in the “states” property of

 the definition, with the initial state defined in the “initial” property.

 Transitions between states are defined in the “transitions” property, and the

 transition has an associated triggering function.

 The triggering function defines the rule for invoking the transition from

 one state to another. Transition can be invoked by several triggers. The next

 transition is identified by enumerating all the transitions from the current

 state in the order in which they are defined, selecting the transitions that have

 the event time closest to the current moment and then selecting the first of

 them.

 The required attributes for the trigger are “type” and “comment”. “type”

 specifies the type of the trigger and can be one of the supported trigger types.

 “comment” contains text associated with the trigger. Other trigger attributes

 depend on the type of trigger.

 Network is a container for the machines. It is constructed by defining the

 machine instances. In agent-based modelling terms, it is the environment

 where the agents operate. The special type of machine, the network machine, is

 constructed by wrapping the network into a machine, forming a high-level

 agent, consisting of low-level agents. The top-level network in the simulation

 session is called Environment.

 The internal structure of the machine is a concern of the HPS Engine. The

 language defines two types of machines: network - to support hierarchical

 composition, and state machine - to implement probabilistic and deterministic

 aspects of the systems.

 Project

 Project is a root element of the model. It contains project information

 properties, e.g. Title, and collection of the model components.

 JSON Example:
 { "title": "Power Grid",

 "description" : "The model for analysing resilience of the power grid.",

 "components" : { ... } }

 56

 Machine

 The machine represents the actor of the scenario. It encapsulates the

 observable state and behaviour associated with the acting element. The

 observable state is defined as machine properties. The behaviour is specified by

 the type of machine. The machine is identified by its unique name.

 The property definitions are shared by all the machine instances, but the

 values of these properties are specific to the instance.

 The machine’s implementation can either be implemented in a plugin

 and injected into the engine or one of the supported machine kinds can be used.

 While creating the instance of the machine, the engine gets the initialisation

 parameters from the “structure” property of the machine. The format of this

 property should be supported by the engine. Data format of this property can

 inherit the data format of the document.
 "machines": [

 {

 "name": "Substation",

 "type": "state-machine",

 "properties": { ... },

 "structure": { ... }

 },

 ...

]

 Network

 The network is defined by specifying its name, machine instances and their

 properties. All required properties without default values should be set while

 defining the instance of the machine.
 "networks": [

 {

 "name": "Substations",

 "machines": [

 {

 "name": "G1",

 "machine": "Substation G1",

 "properties" : { "power": 1000 }

 },

 ...

]

 }, ...]

 57

 Properties

 The properties of the machine represent a part of the machine state that is

 visible to engine components. During simulation, the components can read the

 properties and react to changes in their values.

 Property is identified by its name. The name should be unique among

 other property names, which are associated with the machine. The set of

 property values can be restricted by specifying the property type in the

 definition. The Required property specifies if the property value should be set.

 When the machine is instantiated, the property is created with its default

 value or empty value. If the property is required, then the value should be

 specified while defining the network instance.
 "machines": [

 {

 "name": "Substation",

 "properties": {

 "load": { "type": "Number", "required": true }

 },

 ...

 "networks": [

 {

 "name": "Substations",

 "machines": [

 {

 "name": "G1",

 "machine": "Substation",

 "properties" : { "load": 1000 }

 },

 ...

 Property values are parsed by the HPS engine and then passed to the

 machine properties in the run time. The property value data format can extend

 the data format of the document.

 The simulation begins with the environment starting its machines. While

 running, the machines enqueue their events into the timeline, and then the

 environment dequeues and runs them. If there are several events scheduled for

 the same time, they are dequeued in order of enqueueing, i.e. FIFO.

 58

 4.4 Implementation

 The implementation of the methodology provides the following tools and

 applications: 1) the simulation engine and its infrastructure (e.g., managing

 server and scheduler, computational agents, and command line tools) and 2)

 the Web-based model editor for developing models and orchestrating

 simulations.

 Figure 4.11: Conceptual diagram of the main HPS components.

 Figure 4.12: Part of the Nordic32 study project in the HPS editor.

 59

 The previously defined modelling approach introduced the model

 elements: machine, network, trigger, and others. The implementation of the

 model can be di�erent, depending on usage. In the current implementation, it

 is di�erent in the simulation engine and the editor. The simulation engine has

 two models: the design model, which contains definitions of the components,

 and the simulation time model, which contains instances of these components.

 The simulation engine models are designed to be e�cient and consistent. The

 editor's model is based on the abstract model definition, but it has di�erent

 requirements. It is designed to be easily modifiable. Di�erently from the

 simulation engine model, the editor's model can be inconsistent, e.g. contains

 cross-references and partially configured components.

 The plugin API of the simulation engine provides interfaces for including

 programmatic behaviours into the model. It may be necessary when some

 particular aspect of the system can not be captured by using existing triggers,

 actions, and machines or when it is impractical to do so. For example, the

 technological process of the oil refinery can be implemented as an application

 that calculates critical state by simulating physical processes.

 While simulating the model, the distribution server reads tasks and

 distributes them to agents. While the simulation runs, the agent collects log

 messages and reported measurements and sends them to the server. Server

 aggregates simulations from agents and builds a report.

 Figure 4.13: Deployment diagram of HPS server and agents.

 60

 Where serialisation is necessary, e.g. persisting the editor's model or

 sending the simulation model from the HPS server to the agent, the JSON file

 format is used. The structure of the serialised models is designed to be

 human-readable. Thus it is possible to create, maintain, and run models by

 editing model files directly and running command line tools.

 { "name": "Attacker",
 "type": "state-machine",
 "properties": [
 { "name": "frequency", "type": "Trigger" },
 { "name": "component", "type": "Machine" }],

 "states": [
 { "name": "idle" },
 { "name": "attack", "enter": [...] },
 { "name": "success", "enter": [...] },
 { "name": "disconnectLoad", "enter": [

 { "action": "get machine by tag",
 "tag": "has-load", "property": "machine" }] },

 { "name": "disconnectLine", "enter": [...] },
 { "name": "disconnectGenerator", "enter": [...] },
 { "name": "detected" }],

 "initial": "idle",
 "transitions": {
 "idle": { "attack": [{ "type": "property", "property": "frequency" }] },
 "attack": {
 "success": [{ "type": "gate" }],
 "detected": [{ "type": "gate" }] },

 "success": {
 "disconnectLoad": [
 { "type": "probabilistic",
 "distribution": { "type": "exponential", "lambda": 52560 } }],

 "disconnectLine": [...],
 "disconnectGenerator": [...] },

 "disconnectLoad": { "detected": [...] },
 "disconnectLine": { "detected": [...] },
 "disconnectGenerator": { "detected": [...] },
 "detected": { "idle": [...] } } }

 Figure 4.14: Example of state machine definition in JSON. The sample state

 machine is the Attacker from the Nordic32 case study.

 The model editor provides a visual and editable representation of the

 model components, an interface for running simulations, and basic dataset

 61

 visualisation reports for data collected during simulation runs. The simulation

 results can be exported for more advanced data analysis or charting.

 The editor extends the HPS model with diagram-specific data, e.g.

 instance size and position on the diagram, whether the instance represents a

 link or node on the network graph.

 The selection of an optimal technology for the HPS engine requires a

 multifaceted assessment. This includes, but is not limited to, performance,

 error-proneness, interoperability, maintainability, potential for optimisations.

 While researching the best technology for HPS engine implementation, it

 was implemented in several programming languages: Go, C++, JavaScript, and

 .NET. Based on the analysis of these implementations, it has been observed

 that each of these technologies possesses certain strengths and weaknesses.

 Go is not an OOP language per see, it does not contain hierarchical types.

 However, its other features, such as interfaces and references allow writing

 programs in OOP style, which is more than enough to implement the HPS

 engine. The concept of property implemented as a pair of getter and setter is

 not available in Go. Instead, methods should be used directly to mimic

 property-like getters and setters. The concept of events is not implemented in

 the language either. Instead, first-class functions and arrays can be used to

 implement the concept of multicast delegates.

 Go's approach to error handling is di�erent from other modern

 languages. While many languages use exceptions and exception-capturing

 approaches, Go's approach to handling errors is to return the status while

 calling the operation.
 value, err := action()

 // when action() completes, either value or err is set, not both

 While Go o�ers a favourable blend of code readability and e�cient

 runtime, its lack of robust language constructs such as generics, modularity,

 properties, inheritance, and exceptions can present challenges when it comes

 to modifying and extending models. The absence of generics, for example, may

 require developers to write more boilerplate code to achieve similar

 functionality, which can increase the likelihood of errors and make

 maintenance more challenging. The limited modularity and absence of

 62

 inheritance can also make it harder to write reusable code that can work with

 di�erent types and extend functionality as requirements change.

 As anticipated, the C++ implementation of the language exhibits the

 highest speed performance. Nevertheless, due to the language's complexity

 and challenges in achieving cross-platform compatibility, modellers may

 encounter significant di�culties when working with C++ code. The intricacies

 of C++ make it most challenging for developers to write and maintain code.

 Consequently, while C++ may o�er strong performance benefits, its use may

 be less practical for applications that prioritise ease of development and

 cross-platform compatibility.

 Modern JavaScript stands out as a high-performance scripting language

 in comparison to other languages in the same category. Its ability to interact

 with libraries enables developers to delegate intensive computations to more

 performant languages such as C++. However, these interactions have been

 found to be ine�cient, as a significant number of calls to native libraries can

 diminish the performance benefits of such delegation. While JavaScript is

 renowned for its rapid prototyping and ease of small modifications, ensuring

 the stability of JavaScript code necessitates a significantly larger automated

 testing coverage due to the language's dynamic nature. Overall, while

 JavaScript's performance and library interactions o�er many benefits,

 developers must carefully consider these factors when deciding whether to use

 the language for their particular application.

 According to the analysis, .NET technology exhibits the most

 advantageous combination of strength-contributing factors. Its broad range of

 programming language features and paradigms, combined with the ability to

 execute compiled code on various platforms, including WebAssembly, make it

 a highly versatile and adaptable platform. Additionally, .NET provides robust

 integration and extensibility technologies that further enhance its flexibility

 and usefulness. Moreover, its UI libraries simplify the process of creating

 editors and integrating the engine with them.

 While C++ is a lower-level language that can o�er superior performance,

 it is possible to achieve performance levels comparable to C++ in C#. For this,

 developers can leverage various optimization techniques, such as unsafe code

 blocks and pointer manipulations, using value types, ref parameters, memory

 63

 pools, and structures to minimise unnecessary memory allocations and reduce

 garbage collections.

 From a cloud computing perspective, utilising one of the technologies

 supported by the service providers o�ers the most streamlined integration.

 Currently, the market leaders in cloud computing are Amazon, Microsoft, and

 Google. These providers, namely AWS, Azure, and Google Cloud, o�er similar

 autoscaling solutions for running functions in a fully-managed serverless

 environment, which is the optimal approach for running HPS simulations.

 Among the reviewed technologies, C# and JavaScript are natively

 supported on all of these platforms. This allows for more e�cient development

 and deployment of applications utilising these programming languages.

 Overall, the choice of cloud provider and technology will depend on the specific

 requirements and needs of the project, but opting for a supported technology

 from a leading cloud provider can o�er significant benefits in terms of

 integration and scalability.

 Based on the findings of this comparison analysis, the technology that

 has been selected for the project is .NET 7. The editor is a browser application

 created with Blazor, a modern web application development framework that

 allows using C# for web development. The editor's interface is built with

 Semantic UI. The state machines and network editors are built with jointJS, a

 versatile and advanced diagramming framework.

 Some studies demonstrated that it is possible to achieve similar

 performance by heavily optimising the code. .NET is used in many

 performance-critical applications, including machine learning, finance, and

 game development. .NET's extensibility allows integration with other

 languages and technologies (e.g. CUDA). Where necessary, such libraries can be

 integrated into the HPS simulation engine through its plugin API.

 The HPS simulation engine communicates with the agents and the editor

 through gRPC, a modern high-performance Remote Procedure Call (RPC)

 framework. It connects the editor with the server and the server with the HPS

 agents.

 HPS Engine (HPSE) runs simulations of the models defined in HPS

 Modelling Language (HPSML). It extends the HPSML with the supported

 property and machine types. HPSE defines a runtime simulation environment,

 64

 how the simulation is performed, how the state machine is implemented, and

 rules for hierarchical instantiation of the state and network machines.

 The runtime model is defined in terms of OOP, e.g. interfaces, classes,

 attributes, and objects. Where appropriate, property means HPSML machine

 property and attribute means the attribute of the class/object of the runtime

 implementation.

 Types

 IMachine is an interface that corresponds to the machine instance, defined in

 HPSML. There are two types of machines defined in HPSML that are

 implemented in HPSE: network machine and state machine. Machine has the

 attribute Name and method Event().

 Event defines action that machine is intended to perform at some moment

 in time (possibly, the current moment in case of instant event). During

 simulation, the environment requests all the machines for their planned

 events, executes the most recent one, and then repeats until simulation stops.

 Environment is a container for the machines. The main loop works over

 the environment.

 Property is a data field associated with the machine. It is defined in the

 machine's definition and its value can be defined in machine instance

 definition in the network.

 Events

 The events mechanism is a way for one runtime entity to attach a callback,

 which is executed by another runtime entity in response to some action. For

 example, CPU interrupts is an event system. Some high-level programming

 languages provide language-level support for events. Most of the modern

 languages have features that enable event-driven programming. The essential

 features are an ability for a variable to store function pointers and a way to call

 the function by its pointer. These features are well supported by the C

 programming language. Modern languages have features that greatly simplify

 the interoperability of the code fragments: closures and anonymous functions.

 There are the following events defined in the HPSE:

 ● Simulation events: starting iteration, ending iteration.

 65

 ● Properties: property changed.

 ● State machine: entering a state, leaving a state, changing.

 Simulation Loop

 Simulation loop iterates over the model events and invokes them. Its

 prerequisite is the constructed environment with all machines instantiated.

 The conceptual steps are the following:

 1. Get the most recent event by querying all the machines.

 2. If there is no event, exit from the loop with the status “completed by

 idle”

 3. Update current time.

 4. If one of the limits has been reached (number of events, simulation

 time, clock time) or continue simulation predicate returns false, end the

 simulation with corresponding status.

 5. Notify subscribers of the starting iteration event.

 6. Invoke the event' action

 7. Notify subscribers of the ending iteration event.

 8. Jump to 1.

 Observing Model Properties

 For the model designer the main point of interest is how the model behaves

 when a series of interesting events occurs. For that the model state is needed to

 be observed while simulation runs. The model state means simulation time,

 property values, instances of the machines, their current state and other

 machine-specific attributes.

 The engine provides two approaches for observing the model state:

 ● Tracing model changes can be used while analysing model

 dependencies and chains of cascading events. In this case all model's

 changes are tracked and logged and then these logs either analysed

 manually or processed by the analytic tools. This method is very useful

 while validating and debugging.

 ● Subscribing to events is a preferred way to observe the model state that

 can be used for already validated models, when the simulation time is

 reasonably small and when the number of model changes is large, so

 66

 tracing model changes is impractical. This method is much faster and

 produces much less data about the model.

 Running HPS

 Running the compiled HPS executable without arguments logs error and

 suggests to use ̀hpscmd -h' to get the more information on how to run the

 executable:
 $ hpscmd

 ... Model file is not specified.

 Run 'hpscmd -h' for the details.

 Running the executable with -h prints the supported command line

 arguments with descriptions.

 The HPS repository contains a few test models in the folder “models”. To

 run any of them add the “-file” command line argument followed by the

 relative or absolute path to the model.
 $ hpscmd -file models/test.json

 The test model creates a simple state machine with two states “ok” and

 “fail” and probabilistic transitions between them. Without the specified limits

 for duration, simulation environment time and number of events the

 simulation runs for 10 events or for 1 second, whatever comes first.

 The random number generator seed is initialised by default from the

 current datetime. This option can be overwritten by specifying the “-seed”

 argument. So calling the simulation with the same file, seed and limit produces

 exactly the same results.

 Output Interpretation

 A normal run of the simulation executable “hpscmd” with command line

 arguments uniquely identifying the network generates simulation events.

 These events occur as a result of state machine transition activation, property

 change, or custom message produced by engine plugin(s).

 With the default settings these events are logged to the stdout as JSON

 messages, one message per line. The message includes simulation time and

 payload, which can be either change happening in the model, or custom

 message. In case of multiple changes all of them are recorded at the same time

 and they appear in log in the order of recording.

 Sample log (long lines are truncated for readability):

 67

 {"time":0,"message":

 "starting default with seed 1487207223497346...

 {"time":0.03557550243171388,

 "delta":{"machines":{"test1":{"state":"fail"}}}}

 {"time":0.736920916774142,

 "delta":{"machines":{"test1":{"state":"ok"}}}}

 ...

 {"time":3.0751483156879686,

 "message":"10 events in 64.183...

 Only model changes are recorded, as the original state of the model is set

 by the model file and network.

 The output can be saved to file or redirected to another process using the

 standard operating system commands, such as redirection or pipe.

 Examples:
 $ bin/hpscmd -file models/test.json > log.jslog

 $ bin/hpscmd -file models/test.json | grep test1

 4.5 Extensibility

 Modelling a large system as a set of interconnected semi-Markov state

 machines may not be enough to capture all the relevant factors a�ecting the

 system's behaviour. For example, accurate simulation of the power

 transmission network requires calculating load flow through the power lines, a

 physical simulation technique involving solving a set of non-linear algebraic

 equations (or even a system of di�erential equations).

 The HPS Engine model provides several extension points where plugins

 can be integrated and thus extend the model capabilities without modifying

 the core code. The extension points are implemented as observables (also

 known as events) [54] . In order to receive notifications, a consumer subscribes

 to the producer. At a time of an event, the producer distributes the notification

 to the consumers. In order to stop receiving notifications, the consumer

 unsubscribes from a producer. The order and concurrency of notifications

 received by multiple subscribers to the event are indeterminable and not

 expected to remain consistent across multiple notifications. Notification

 processing is synchronous and completes only when all subscribers complete

 invocations of their methods.

 68

https://paperpile.com/c/kEIrDG/HHbg

 The HPS Engine provides the following events:

 - Initialisation . This event occurs while the engine is initialised on the

 agent. The model is not initialised at this moment. Typical tasks for this

 event include adding new types of machines, triggers, distributions, and

 actions and initialising the plugin’s resources, e.g. caches, repositories,

 and data connections.

 - Environment.OnSimulationBegins . Occurs before starting the

 simulation, the environment is populated with the necessary instances.

 At this event, the plugin can acquire resources specific to the single

 simulation and the particular model. This is a suitable event to subscribe

 to the events of the instances.

 - Environment.OnIterationBegins . Occurs when the next environmental

 event is about to be processed. All calculations related to the previous

 event are done at this moment. Typical tasks for this event are

 recalculating reward functions, physical models, or logging. Any

 changes in the event queue will not a�ect the currently processed event.

 - Environment.OnIterationEnds . It occurs after processing the

 environmental event. Typical tasks for this event are recalculating

 reward functions, physical models, or logging. This is a suitable event to

 change the model and event queue. The following environmental event

 will be picked up from the queue after this event.

 - StateMachine.Changed. Subscribers to this event are notified after the

 state machine enters a new state. Typical tasks for this event are

 modifying the simulation model, recalculating physical models (e.g.

 load flows in power network), and logging.

 - StateMachine.State.Entering. Subscribers to this event are notified

 when the state machine enters a new state but before the state

 machine’s Changed event. Typical tasks for this event are modifying the

 simulation model, recalculating physical models, and logging.

 - StateMachine.State.Leaving . Subscribers to this event are notified when

 the state machine leaves a state. Typical tasks for this event are

 modifying the simulation model, recalculating physical models, and

 logging.

 69

 - Property.Changed . Subscribers to this event are notified immediately

 after the machine’s property changes its value. Typical tasks for this

 event are modifying the simulation model, recalculating physical

 models, and logging.

 The Stochastic Associations approach, introduced in PIA, is a way to

 capture and model dependencies between components. More specifically, a

 stochastic association defines how a probabilistic change in one component’s

 state changes the probabilistic behaviour of another. For example, a stochastic

 association between components A and B can increase the failure rate of B

 10-fold when A is in a failed state. Stochastic associations can be defined as a

 table, with columns “State Machine”, “State”, “A�ected State Machine”,

 “Transition”, “Parameter”, and “Value”.

 In HPS support for stochastic associations is implemented as a plugin.

 The Stochastic Associations plugin reads the table of stochastic associations in

 CSV format, initialises the network, and attaches actions to the state machine’s

 state events. These actions monitor the change in the machines’ state and

 modify the parameter of the transition trigger in the a�ected state machines.

 70

 5. Applications

 5.1 Overview

 The application of a methodology is crucial in verifying its usefulness,

 gathering feedback, and establishing a foundation for further improvements.

 This chapter presents two such applications of the HPS modelling

 methodology.

 The first application demonstrates how the HPS modelling methodology

 supports the model's construction, simulation, collecting and aggregating of

 the simulation’s results [52] . The second case study demonstrates how an

 existing HPS model can be used to investigate the benefits of enhancing the

 system's reliability using the defence-in-depth approach [50] .

 An improved Nordic32, the power production and retransmission

 network with controlling infrastructure and detailed design of the electrical

 substations, was used as a foundation for the first case study. This model was

 developed by the FP7 AFTER project research team (grant agreement number

 261788).

 Although the model of the network represents the physical system only to

 some extent, it allows a much wider range of experiments and observations

 than the real physical system tolerates. Also, analysing the results of the

 simulations with various counter-agents (attackers and protectors) gives a

 base for further advances by providing instruments, scenarios and data.

 The focus of the first study is to apply the modelling methodology to build

 a set of reusable components, such as generators, loads, attackers, and others,

 build networks by combining them and investigate e�ects caused by the

 di�erent types of attackers on the network.

 The focus of the second study is to demonstrate the reusability of the

 model in other research studies.

 71

https://paperpile.com/c/kEIrDG/smwaH
https://paperpile.com/c/kEIrDG/rHSvv

 5.2 Nordic32 Case Study

 The problem of identifying the e�ect of cyber-attacks is important and

 complex. It is important because the information infrastructure becomes

 crucial for the successful operation of the power networks. It is complex

 because there are many types of attacks, from simple worm-like distortions to

 sophisticated and targeted attacks that are very hard to generalise.

 Substation elements are low-level construction elements that represent

 substation devices identified by the standard IEC 61850.

 Figure 5.1: Substation Elements.

 Link

 The Link machine represents physical wiring between two substations. Its state

 represents the physical availability of the wire, so "ok" means that two

 substations can be connected, "fail" represents physical damage (ice, disaster,

 stolen cable, etc). Failure rate and recovery time are di�erent for the links and

 depend on the link's length and reachability.

 Link's properties:

 from - incident substation.

 to - another incident substation.

 kV - voltage level

 x - impedance

 72

 cf - maximum power allowed through the line

 overloaded - flag showing whether the power going through the line is

 exceeded the "max" value

 connected - flag specifying whether the line is connected to the

 substation's busbar

 failure - activator of the "ok" to "fail" transition

 recovery - activator of the "fail" to "ok" transition

 length - physical length of the line

 Generator

 The Generator represents the power generator, connected to the substation. It

 is implemented as a state machine with two states "ok" and "fail". The failure

 rate and recovery time are equal for all generator instances. The Generator is a

 part of the Generator Bay.

 Load

 The Load represents the power consumers, served by the substation. It is

 implemented as a state machine with two states "ok" and "fail". The failure

 rate and recovery time are equal for all Load machines. The Load is a part of the

 Load Bay.

 Breaker

 The Breaker represents the line tripping device that disconnects the link when

 it becomes overloaded. The device disconnects the line instantly, if it is in the

 operational state. There are two such devices, connected to every line from

 both its ends.

 It is implemented as a state machine with two states "ok" and "fail". The

 failure rate and recovery time are equal for all breakers. The Breaker is a part of

 the Line Bay and Transformer Bay.

 Relay

 The Relay represents the line disconnection device, di�erently from the

 Breaker, which disconnects the line only when the line is overloaded, the Relay

 reacts on the commands from the operator or control centre.

 It is implemented as a state machine with two states "ok" and "fail". The

 failure rate and recovery time are equal for all relays.

 73

 There are two relays in the Line Bays on both sides of the line.

 Current Transformer

 The Current Transformer represents a device required to connect power

 networks with di�erent currents. It has its own characteristics of time to

 failure and recovery.

 It is implemented as a state machine with two states "ok" and "fail". The

 failure rate and recovery time are equal for all transformers. The Current

 Transformer is a part of the Transformer Bay.

 Battery

 The Battery represents an emergency power provider to the substation

 infrastructure.

 It is implemented as a state machine with two states "ok" and "fail". It is

 a part of all bays.

 Wiring

 The Wiring represents connectivity between the substation components.

 It is implemented as a state machine with two states "ok" and "fail". It is

 a part of all bays.

 Switch

 The Switch represents a device providing communication service to the bay

 components. It is responsible for routing packets between them.

 It is implemented as a state machine with two states "ok" and "fail". It is

 a part of all bays.

 Workstation

 The Workstation represents an operator console. When the console is working,

 the operator can configure substation components.

 It is implemented as a state machine with two states "ok" and "fail". It is

 a part of the Control Bay.

 Server

 The Server represents a substation telemetry data storage and processor.

 It is implemented as a state machine with two states "ok" and "fail". It is

 a part of the Control Bay.

 74

 Router

 The Router represents a substation connectivity device that connects it with

 the data centres. Its tra�c is protected by the Firewall.

 It is implemented as a state machine with two states "ok" and "fail". It is

 a part of the Control Bay.

 Firewall

 The Firewall represents a tra�c filtering device that resides between the

 incoming connection to the substation and the Router. All the incoming

 requests to the substation devices should bypass the Firewall.

 It is implemented as a state machine with two states "ok" and "fail". It is

 a part of the Control Bay.

 IT Infrastructure Elements

 Information Technology elements represent the construction blocks for

 building a connectivity network between the control centres and substations..

 Figure 5.2: IT Infrastructure Elements.

 Data Centre

 The Data Centre is an intermediate data storage and transfer facility that

 participates in commands and data transfer between the substation and

 control centre. The Data Centre can be connected to any number of other Data

 Centres, Substations, or Control Centres. All network's Data Centres form a

 fault-tolerant transmission network. The Data Centre should not be able to

 tamper, re-send or interfere in any other way with the power network data

 channels.

 It is implemented as a state machine with two states "ok" and "fail".

 75

 Control Centre

 The Control Centre is a network management facility. It receives data from the

 substations and sends commands back to them. The Control Centres are

 connected with the Substations through the network of the Data Centres.

 It is implemented as a state machine with two states "ok" and "fail".

 Data Link

 The Data Link represents connectivity between the Data Centres and other

 components of the network: the Substations, the Data Centres, and the Control

 Centres.

 It is implemented as a state machine with two states "ok" and "fail".

 Substation Bays

 Bays are constructed by combining several substation elements into a network.

 They represent the substation parts as defined in standard [ISO 61850].

 Figure 5.3: Substation Bays.

 Generator Bay

 The Generator Bay represents the connectivity between generator and

 substation bus bar.

 The generator bay's properties:

 capacity - capacity of the connected generator;

 connected - specifies whether the generator is connected.

 76

 Line Bay

 The Line Bay represents the connectivity between the link and substation bus

 bar.

 The line bay's properties:

 line - name of the link connected to the line bay.

 Transformer Bay

 The Transformer bay represents the connectivity between the link and

 substation bus bar through the current transformer.

 The line bay's properties:

 line - name of the link connected to the transformer.

 Load Bay

 The Load Bay represents the connectivity between the consumers

 supplied through the substation and the substation's busbar.

 The load bay's properties:

 power - total power required by all the consumers;

 connected - specifies whether consumers are connected.

 Control Bay

 The Control Bay contains all the IT devices of the substation: workstations,

 servers, router, firewall, switch.

 The object diagram below demonstrates how the substation state

 machines are placed on the "Substations" network. Each instance corresponds

 to the network defined in the model. The links on the diagram correspond to

 the Link state machines added on the network.

 77

 Figure 5.4: Substations.

 5.3 Performance of Power Flow Calculation

 Solving the Power Flow problem is an important part of the Nordic32

 simulation model. The flow through the lines should be recalculated every time

 when the system's topology, generation, or load is changed. Performance of

 many other agents (control, attacker, statistics) depend on how e�ciently the

 power flow solver works.

 As DC power flow calculation is mainly matrix multiplications, using the

 existing optimised linear algebra library is an obvious choice. The standard

 software library interface for numerical linear algebra is BLAS [55] . Eigen is a

 78

https://paperpile.com/c/kEIrDG/wUkUs

 highly optimised C/C++ implementation of BLAS [56] . GONUM library set

 contains BLAS-compatible linear algebra library [57] . Although comparing

 C/C++ and Go solutions might be enough for the research, this group of

 technologies compared the combination of high-level scripting language with

 power flow solver implemented a) entirely in scripting language, and b) as a

 C/C++ extension using Eigen library. The node.js JavaScript was chosen for that

 purpose as it is one of the most popular modern scripting languages.

 The target power network is defined as an undirected graph.

 Programmatically, the network data structures are similar to an incident list.

 IDL definition of the network data structure

 enum NodeType { Producer, Consumer }

 interface INode {

 attribute NodeType Type;

 attribute float Power;

 attribute float Capacity;

 }

 interface IEdge {

 attribute int From;

 attribute int To;

 attribute float Reactance;

 }

 interface INetwork {

 attribute List<INode> Nodes;

 attribute List<IEdge> Edges;

 }

 Pseudocode of obtaining branch flows for balanced network:

 Calculating branch flows, F

 n, M, N = getNetworkData()

 // construct matrices and vectors from network data

 Ba = matrix M x N

 Bm = matrix N x N

 Bl = vector N

 79

https://paperpile.com/c/kEIrDG/cYpqo
https://paperpile.com/c/kEIrDG/K6w2d

 for i in 1..M do

 from, to, x = n.links(i)

 Ba(i, from) = 1/x

 Ba(i, to) = -1/x

 Bm(from, to) += -1/x

 Bm(to, from) += -1/x

 Bl(from) += 1/x

 Bl(to) += 1/x

 for i in 1..N do

 Bm(i, i) = Bl(i)

 P = n.nodes(2..N).map(x -> x.Power)

 // calculate flows

 F = Ba * ([0] + Bm(2..N, 2..N)^-1 * P)

 To compare the load flow performance the following networks where

 selected:

 ● Nordic32 network [58] - network of 32 substations representing the

 Swedish electrical network;

 ● IRRIIS network [59] - network of 52 electrical substations in central

 Italy;

 ● idealised tree networks [60] - symmetrical tree-like networks with 94,

 190, and 384 nodes.

 Table 5.1: Characteristics of the networks

 Name Nodes Links Generators Loads

 Nordic32 32 60 17 11

 Rome IRRIIS 52 67 3 46

 Grid 94 94 93 12 82

 Grid 190 190 189 12 178

 Grid 382 382 381 12 370

 The following implementations of the load flow solver were compared:

 ● Go with GONUM library

 ● C++ with Eigen library

 ● node.js plugin with C++/GONUM solver

 80

https://paperpile.com/c/kEIrDG/bTCz8
https://paperpile.com/c/kEIrDG/mMmwH
https://paperpile.com/c/kEIrDG/PsLei

 ● JavaScript-only implementation

 The correctness of the solvers was validated by doing cross-checks (also

 referred often as “back-to-back” testing) between the implementations and

 comparing them with examples [61] .

 The test networks are generated once and used during benchmarking by

 the particular implementation. The benchmarking network set contains 1000

 Nordic32 networks, 1000 Rome IRRIIS, 1000 Grid 94, 300 Grid 190 and 100 Grid

 382 networks. The networks are created by randomly changing network loads

 by up to 5% from their original values and rebalancing.

 In order to assure that the average problem solving time is not a�ected by

 the random fluctuations, the total number of test cases for every network is

 divided into ten groups and an average is calculated for each of these groups.

 The execution time for the single batch is selected to be much larger than timer

 resolution.

 The hardware, compiler and compilation options greatly a�ect the

 performance of the generated binaries. It is important to mention that the tests

 were performed on Debian Linux 64-bit, C++ version is compiled with GCC

 4.7.2-5 on second level of optimization (-O2) and the architectural target is

 x64. The tests were run on the virtual machine, using a single core of Xeon

 E5-2680 CPU.

 The table below contains average load flow solving time calculated for

 every combination of technology and network. The standard deviation (σ) is

 calculated across ten batches of the networks processed by the solver.

 The results of the benchmarking shows that the GONUM implementation

 works slower on smaller networks (less than 94 nodes and less), but faster on

 larger networks (382 nodes and more) with median about Grid 190 (network

 with 190 nodes). Unsurprisingly, JavaScript implementation is slowest.

 81

https://paperpile.com/c/kEIrDG/5xpmt

 Table 5.2: Benchmark results

 Name C++/Eigen
 (ms;σ)

 Go/GONUM
 (ms;σ)

 JS/C++/Eigen
 (ms;σ)

 JS/numeric
 (ms;σ)

 Nordic32 0.044;0.005 0.087;0.165 0.193;0.083 0.321;0.460

 Rome IRRIIS 0.136;0.129 0.180;0.086 0.232;0.125 0.552;0.037

 Grid 94 0.473;0.177 0.533;0.081 0.646;0.015 2.671;0.265

 Grid 190 2.895;0.843 2.874;2.801 3.240;0.286 19.897;0.755

 Grid 382 19.259;2.935 13.471;8.203 19.520;2.973 156.150;3.806

 The Fig.5.5 visualises results from the table above, grouping averages by

 network and technology. The y-axis is scaled logarithmically as the di�erence

 between extreme cases is 5 orders of magnitude.

 Figure 5.5: Time in milliseconds required to solve the load flow problem for the

 networks. Scale of the y-axis is logarithmic.

 Many benchmarks show that C++ version of the algorithm is one of the

 fastest, having Go implementation of the load flow solver outperforming C++

 82

 version may be related to di�erences in algorithms used in Eigen and GONUM

 libraries.

 However, the results show that the performance of the algorithm

 implementation in Go is comparable to the implementation in C++.

 Considering the other benefits it gives, such as simple integration with existing

 C/C++ libraries, garbage collector, closures, and parallelisation, it is a good

 choice to become a language for simulation models and data processing

 problems.

 5.4 Assessing Resilience to Cyber-attacks

 This section provides a synopsis and outcomes of the case studies conducted by

 the working group on the critical infrastructure modelling at CSR and

 published in the papers "Quantification of the Impact of Cyber Attack in

 Critical Infrastructures" [49] and in the chapter "Quantitative Evaluation of

 the E�cacy of Defence-in-Depth in Critical Infrastructures" of the book

 "Resilience of Cyber-Physical Systems" [50] . The references o�er more

 information on the methods and techniques used in the research.

 Assessing resilience to a threat is done by measuring the metrics of

 interest for the system under normal circumstances, then for the system under

 stress and then observing how the metrics are changing when the stress is

 removed. As the extended Nordic 32 model contains ICT elements, it is possible

 to investigate how the network is a�ected by the cyber-attacks.

 The e�ect caused by the cyber-attacks can be observed by comparing the

 random variables, such as duration of load shedding or total delivered power,

 calculated when the system operates normally and under stress. The function

 that calculates the value of the random variable selected for the comparison is

 called "reward function". For this study the total delivered power for 10 years

 of operation was selected as the reward function.

 The "normal" operation of the critical infrastructure implies operation

 with periodic accidental failures of the components. Such failures and recovery

 from them are captured by the transitioning from the "Ok" state to the "Fail"

 state and back in the state machines. This is a base-line model, i.e. it is without

 the adversaries (attackers).

 83

https://paperpile.com/c/kEIrDG/gqyNf
https://paperpile.com/c/kEIrDG/rHSvv

 The introduced attacker model corresponds to widely known cyber-attack

 concepts:

 ● Attacks are periodic, with exponentially distributed time between

 attacks.

 ● Attacks are performed through the elements of the IT infrastructure, in

 particular - firewalls.

 ● Success of an attack is probabilistic - most of the time it fails, but

 sometimes it succeeds.

 ● Attacks are detectable and the system eventually recovers from them,

 either by an automatic control function or manual intervention.

 In addition to that, the following alternative behaviours of the attacking

 agents were studied:

 ● Selective versus random targeting on the substation firewalls.

 ● Immediately disconnecting the substation component or changing the

 configuration of the components.

 The attacking agent is implemented as state machine of the following

 structure:

 ● States: idle, attack, firewallRule1, firewallRule2, firewallRule3,

 firewallRule4, firewallRule5, success, disconnectLoad, disconnectLine,

 disconnectGenerator, detected

 ● Initial state: idle.

 ● With some probability the attacker goes from "idle" to "attack".

 ● When attacking, the attacker randomly selects the firewall rule to try.

 ● The firewall rule either succeeds in stopping the attacker (it goes to

 "idle" then) or fails (attack succeeds).

 ● When it is in, the attacker performs the action, gets detected and goes to

 "idle". The action is either:

 ○ disconnecting the bay (generator, load, or link), or

 ○ changing the line overloading threshold.

 84

 Fig. 5.6. State machine representing the attacker.

 Disconnecting the bay changes the topology of the network, which causes

 recalculation of the load flow to links, shedding load if necessary, and,

 eventually, recovering from the disconnection by the "control" plugin.

 85

 Figure 5.7: Distribution of the fraction of delivered power for baseline, yearly,

 monthly, weekly, and daily attacks.

 The attacker that changes the configuration properties of the system has

 the same penetration algorithm, i.e. it attacks periodically through the firewall

 rules. Di�erently from the previously described attacker, instead of

 disconnecting the bay it changes the line overloading threshold to 110% of the

 current flow through the line. Changing the attack action has a significant

 result - even for the yearly attacks the e�ect of the stealthy configuration

 changes is worse than the e�ect from the simple attacker and the system

 quickly deteriorates when the frequency of the attacks is increasing.

 The subversive attacker counterparty is the "inspector" - the agent that

 resets the overloading thresholds. The inspector is implemented as a simple

 state machine with the states "idle" and "working". The "idle-working"

 transition is configurable, the "working-idle" is instantaneous, i.e. as soon as

 the state working is reached and the actions defined for that state are

 completed a transition will take place to the “idle” state. On entering the

 "working" state the machine enumerates all links and restores the thresholds.

 CDFs of the supplied power are presented on Fig. 5.8 and 5.9.

 86

 (a) baseline vs yearly (b) yearly vs monthly

 (c) monthly vs weekly

 Figure 5.8: Distribution of the fraction of delivered power for baseline, yearly,

 monthly, and weekly subversive attacks.

 Figure 5.9: Distribution of the fraction of delivered power for baseline, weekly

 subversive attacks, monthly, weekly, and daily inspections.

 87

 Defence-in-depth, as defined by NIST, is an information security

 strategy that integrates people, technology, and operations capabilities to

 establish variable barriers across multiple layers and missions of the

 organisation [62] . In terms of safety, the US NRC defines it as “creating

 multiple independent and redundant layers of defence to compensate for

 potential human and mechanical failures so that no single layer, no matter how

 robust, is exclusively relied upon” [63] . E�ective placing of the controls

 requires assessing the e�ect the introduced controls have on the e�ciency of

 the potential attacker, i.e. answering the questions like how long would it take

 for the attacker to get into the system. With the constructed models of system

 and attacker it is possible to answer such questions quantitatively.

 For the Nordic 32 model the e�ect on introducing redundancy and

 diversity on the Breaker component of the network was investigated. The

 Breaker component was selected because it exists in all bays and its failure is

 immediately visible as it disconnects the component connected through the

 bay. The redundancy was added by replacing the Breaker component with the

 two Breaker Channel components. The Attacker in this study is the modified

 subversive attacker. On successful attack it transitions the breaker component

 into the compromised state, in which the component fails more often than in

 the normal state. The Inspector, in turn, transitions the breaker from

 compromised to normal state. Simulating the spread of the malicious agent

 within the network, several modes of acting were selected for the attacker,

 di�erent on how many breakers and of which kind (single breaker, all

 line/generator/load breakers, or all breakers within the substation). Attacker's

 knowledge about two breaker components was modelled by analysing two

 di�erent attack behaviours: either attacking both breaker components

 simultaneously or attacking them independently.

 The following simulation campaigns were run for the network with the

 modified Breaker component and attackers:

 ● One Breaker Component: no attacks or attacks weekly either lines, loads,

 generators or any of those, either without inspections or with yearly or

 monthly inspections. 13 configurations in total.

 88

https://paperpile.com/c/kEIrDG/3T6G
https://paperpile.com/c/kEIrDG/L9v7

 ● Two Breaker Components: no attacks or attacks weekly either lines,

 loads, generators or any of those, either without inspections or with

 yearly or monthly inspections. 25 configurations in total.

 The main results of the simulation campaigns in both studies:

 ● when it is possible to build the models of the system and the malicious

 agents, the quantitative results can be obtained by running the

 simulation campaigns;

 ● the subversive attacker has significantly greater e�ect on the system,

 than the simple attacker;

 ● the inspections help reduce the e�ect of the attacks;

 ● the di�erence between single breaker component and two breaker

 components for the baseline models is negligible;

 ● introducing diversity of the breaker component reduces the e�ect of the

 attacks.

 Figure 5.10: CDF of delivered power by di�erent targets of attacks without

 inspections.

 89

 6. Conclusion

 6.1. Summary

 This thesis presents a new methodology for supporting the assessment of large

 cyber-physical systems, including critical infrastructures. The methodology

 o�ers a modelling approach and supports it with the new modelling language

 for defining hybrid hierarchical stochastic networks, the simulation engine to

 e�ciently solve the models via Monte Carlo simulation, and an editor which

 allows analysts to build models quickly . The applications of this methodology

 were applied on non-trivial examples to demonstrate how the proposed

 methodology and tool support could support assessing the resilience of critical

 infrastructures.

 The development of this new methodology was motivated by an interest

 in addressing issues discovered by applying other methodologies and tools for

 various case studies. While addressing these issues the following research

 questions were asked:

 - Q1: What is the best approach for modelling large networks?

 - Q2: What is the faster way to get the results of the simulation?

 - Q3: Which editing features help the modeller the most?

 - Q4: How do models and the results obtained with them support the

 existing assurance cases ?

 - Q5: Are the constructed models reusable?

 The proposed modelling methodology described in this thesis provides

 answers to the questions above.

 Specifically, Chapter 3 addresses the questions related to supporting

 assessment methodologies and demonstrates how stochastic modelling can be

 used in CAE assessment, including the argumentation of substituting the

 system with the model and using the results of simulations as evidence. The

 results of this research are partially demonstrated in the works “Tool Support

 for Assurance Case Building Blocks” [64] and “Using Structured Assurance

 Case Approach to Analyse Security and Reliability of Critical Infrastructures”

 [52] .

 90

https://paperpile.com/c/kEIrDG/ylJ4
https://paperpile.com/c/kEIrDG/smwaH

 Chapter 4 provides solutions for modelling-related questions. E.g., it

 proposes hierarchical composition as the best way to model large

 multi-component systems, a plugin architecture for building hybrid models,

 and cloud-based HPC simulations for the best performance. The results of this

 research are published in the articles “Quantification of the impact of cyber

 attack in critical infrastructures” [49] and “Model-Based Evaluation of the

 Resilience of Critical Infrastructures under Cyber Attacks.” [65] .

 Chapter 5 demonstrates the applicability of the methodology to use cases

 and the reusability of the constructed models. The research results from this

 chapter are published in the articles “Quantification of the impact of cyber

 attack in critical infrastructures” [49] and “Model-Based Evaluation of the

 Resilience of Critical Infrastructures under Cyber Attacks.” [65] and in the

 chapter “Quantitative Evaluation of the E�cacy of Defence-in-Depth in

 Critical Infrastructures.” of the book “Resilience of Cyber-Physical Systems”

 [50] .

 6.2. Future Work

 Although the primary focus of the research was to support assessing the

 resilience of critical infrastructures, the proposed methodology is not limited

 to this one type of system and only reliability properties. It can be employed to

 assess other emerging properties and address uncertainties in any system that

 can be su�ciently represented by a stochastic model.

 The hybrid modelling approach already provides support for integrating

 di�erent kinds of models. However, it can be improved further by adding the

 concept of actions , explorable by a generic adversary. Such adversaries can

 actively examine the system for the shortest path that maximises their reward.

 The simulation engine for running stochastic models can be further

 improved. The di�erent optimisation techniques, including parallelisation,

 memoisation, adaptive scheduling, and applying hardware-specific

 optimisations can be further extended and incorporated into the engine.

 This thesis explores how to support the CAE assurance case approach

 with stochastic modelling, a topic which recently has regained importance in

 the context of safety assurance of autonomous vehicles [48] . And of course, a

 91

https://paperpile.com/c/kEIrDG/gqyNf
https://paperpile.com/c/kEIrDG/EERj
https://paperpile.com/c/kEIrDG/gqyNf
https://paperpile.com/c/kEIrDG/EERj
https://paperpile.com/c/kEIrDG/rHSvv
https://paperpile.com/c/kEIrDG/obhO

 possible direction to further extend the proposed research is its alignment with

 other assurance methodologies.

 One potential approach to enhancing the usability of the framework is to

 create a library of reusable components , models, and case studies. Such a library

 could o�er significant benefits to practitioners and modellers involved in

 assurance cases in terms of reducing the time to adopt the methodology .

 92

 Appendix 1. Nordic32

 Nordic32 is a model of the Swedish power transmission network [58] . The

 power production, transmission, and consumption elements of the model are

 power substations and transmission lines. The power substations are

 characterised by the amount of power produced on the substation (generation)

 and the amount of power transmitted by the substation to consumers (load).

 The original Nordic32 model is a fully specified electrical network, which

 can be modelled with a physical model only. In the project AFTER this model

 was enhanced with an industrial distributed control system (IDCS) compliant

 with the international standard IEC 61850 "Communication networks and

 subsystems in substations" [66] . Later, in the project SESAMO, the network

 was extended even further by adding probabilistic parameterisation for failures

 and recoveries of the network elements [49] .

 93

https://paperpile.com/c/kEIrDG/bTCz8
https://paperpile.com/c/kEIrDG/hlTWl
https://paperpile.com/c/kEIrDG/gqyNf

 Figure A.1: Electrical components of Nordic32.

 There are four groups of substations that corresponds to geographical

 regions:

 ● North - northern part of Sweden, high generation, low consumption;

 94

 ● Central - central and southern parts of Sweden, moderate generation,

 high consumption;

 ● Southwest - Zealand island, low generation, high consumption;

 ● External - Finland, moderate generation, moderate consumption.

 There are 32 substations in the network and 23 generators of di�erent

 voltage levels 400, 200 and 130 kV. The first digit in the substation name

 corresponds to the voltage level. Substations with less than three connected

 lines are single busbar substations, with three or more lines connected are

 double busbar substations.

 The communication network consists of DDCs, Northern, Central and

 South RCCs and ICC. The RCCs communicate with ICC in order to optimise

 production and consumption and reduce waste. All control centres have a fully

 redundant backup centre. Each substation is physically connected to one of the

 DDCs. Connectivity between the substation and its RCCs is maintained through

 the chain of communication links and DDCs. The whole communication

 network is "N-1" robust (failure of a single component does not interrupt

 connectivity if all other components operate normally).

 Figure A.2: The communication network of the North region.

 95

 Figure A.3: Structure of the substation 4011.

 The substation consists of a single busbar with bays of di�erent types of

 bays connected to it. There are four bay types in the model: line, generator,

 transformer, and load. Every bay has a protection system of two protection

 devices. One of the protection devices also performs control functions. The

 protection (such as switching the line o� in case of overload) is performed

 when one of the protected devices is on.

 Although the physical model of the original Nordic32 model is detailed

 enough to perform power analysis in AC mode, such simulation is quite intense

 in terms of required computational resources. To simplify the load and keep

 the system behaviour close to the original, DC simulation can be used instead

 of AC simulation.

 Solving the Direct Current Load Flow problem for the network of N nodes

 and M edges is equivalent to the following matrix multiplication [61] :

 where P - N -length vector of bus injections, B - N ⨉ N admittance matrix, Θ -

 N -length vector of bus voltage angles, P L - M -length vector of branch flows, b

 96

https://paperpile.com/c/kEIrDG/5xpmt
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cmathbf%7B%5Ctheta%7D%20%3D%20%5B%5Cmathbf%7BB%7D%5E%7B-1%7D%5D%5Cmathbf%7BP%7D%3B%20%5Cmathbf%7BP_%7BL%7D%7D%20%3D%20(%5Cmathbf%7Bb%7D%20%5Cmathbf%7BA%7D)%20%5Cmathbf%7B%5Ctheta%7D%20#0

 - M ⨉ M diagonal matrix of branch susceptances, A - M ⨉ N bus-branch

 incidence matrix.

 The network given to the load flow solver is the balanced network, i.e.

 total consumed power is equal to total generated power. For the purpose of this

 research the network balancer is just sets all the generators proportionally to

 their capacity:

 where l (n) is a power demand at the node n or 0 if the node is not a consumer

 and c (n) is a generator capacity of the node n or 0 if the node is not a producer.

 The power injections of generators then:

 where G c is a vector of generator capacities.

 In the agent-based model of Nordic32, each element such as DDC,

 substation, busbar bay, or individual element is constructed as an agent. The

 agent is a combination of a Markov state machine and discrete event handlers

 [49] .

 97

https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20p%20%3D%20%7B%5Csum_%7Bn%20%5Cin%20N%7D%20l(n)%7D%20%5Cleft%20(%20%7B%5Csum_%7Bn%20%5Cin%20N%7D%20c(n)%7D%20%5Cright%20)%20%5E%7B-1%7D%20#0
https://latex-staging.easygenerator.com/eqneditor/editor.php?latex=%20%5Cmathbf%7BG%27%7D%20%3D%20r%20%5Cmathbf%7BG%7D%20#0
https://paperpile.com/c/kEIrDG/gqyNf

 Appendix 2. Preliminary Interdependency
 Analysis

 This thesis appendix provides a concise description of the “Preliminary

 Interdependency Analysis” method, which is described in the report

 "Preliminary Interdependency Analysis (PIA): Method and tool support" by

 Bloomfield et al. (2010).

 Preliminary Interdependency Analysis (PIA) is a scenario-driven process

 of examining, evaluating, and interpreting information about the system to

 discover and improve understanding of interdependencies between the

 system’s components and provide a justified basis for further modelling and

 analysis. Its objective is to develop a documented appropriate service model for

 the given system.

 The PIA process is a continuous and cyclical activity of creation and

 refinement of interdependency models. In this process earlier stages of model

 development are revisited to refine assumptions and design decisions in

 response to resolving uncertainties and discrepancies discovered in later

 stages. The e�ect of modified assumptions and di�erent design decisions

 propagate through stages of the PIA process and results in an improved model

 of the system.

 PIA comprises two analytical approaches: qualitative and quantitative.

 Qualitative analysis objectives are to define the boundaries of the system,

 identify components and their interdependencies, and make proper

 assumptions about uncertainties. The goal of quantitative analysis is to

 simulate the model and interpret the results.

 98

 Fig. A.4. Overview of PIA method and toolkit [2] .

 PIA is supported by two tools: PIA Designer and Execution engine . The

 designer utilises an existing proprietary tool ASCE for visual representation and

 model navigation. The engine executes a model, developer with the designer,

 with Möbius [67] .

 PIA models are developed at two levels:

 - Service level . The modelled system is represented by a set of

 interdependent services. This view is purposefully abstract, focusing

 only on the existence of dependencies, which are elicited from

 lower-level dependencies among each service’s constituent entities,

 such as physical components and resources. These associations among

 components are referred to as coupling points , which are in a context of a

 component called incoming or outgoing .

 99

https://paperpile.com/c/kEIrDG/BRFh
https://paperpile.com/c/kEIrDG/edlJ

 - Detailed service behaviour model (DSBM). Individual services are

 implemented at this level. Implementation is supposed to be owned by

 the respective service operator, i.e. an organisation.

 The PIA process comprises seven stages:

 - Stage 1. Establishing system description and scenario context.

 - Stage 2. Model development.

 - Stage 3. DSVM model development.

 - Stage 4. Initial dependency and interdependency identification.

 - Stage 5. Probabilistic model development.

 - Stage 6. Adding deterministic models of behaviour.

 - State 7. Exploratory interdependency analysis.

 During these stages, the following narrative information is relevant and useful:

 - Scenarios.

 - Incident description.

 - Threat or attack model.

 - Model of the threat agent.

 Fig. A.5. PIA method stages and associated information artefacts

 100

 References

 1. SESAMO project web-site. In: SESAMO|Security and Safety Modelling
 [Internet]. Available: http://www.sesamo-project.eu/

 2. Bloomfield RE, Chozos N, Popov PT, Stankovic V, Wright D, Howell-Morris
 R. Preliminary interdependency analysis (PIA): Method and tool support
 (D/501/12102/2 v2.0). Adelard LLP and City University London; 2010.
 Available: https://openaccess.city.ac.uk/id/eprint/3091/

 3. Inspectorate NS, House S. A step by step guide on how to interpret each
 clause. 2016; 1–39. Available:
 http://www.nsi.org.uk/wp-content/uploads/2012/11/Annex-A-Step-by-St
 ep-Guide-for-ISO-9001-2015-NG-FG-AG.pdf

 4. The Council of the European Union. Council Directive 2008/114/EC of 8
 December 2008 on the indentification and designation of European critical
 infrastructures and the assessment of the need to improve their protection.
 O�cial Journal of the European Union. 2008;345: 75–82.

 5. Cabinet O�ce. Strategic Framework and Policy Statement on improving
 the Resilience of Critical Infrastructure to Disruption from Natural
 Hazards. London; 2010.

 6. Critical National Infrastructure. In: National Protective Security Authority
 [Internet]. 20 Apr 2021 [cited 18 Jul 2023]. Available:
 https://www.npsa.gov.uk/critical-national-infrastructure-0

 7. Rinaldi SM, Peerenboom JP, Kelly TK. Identifying, understanding, and
 analyzing critical infrastructure interdependencies. IEEE Control Syst Mag.
 2001;21: 11–25. doi: 10.1109/37.969131

 8. Rosato V, Issacharo� L, Tiriticco F, Meloni S, Porcellinis SD, Setola R.
 Modelling interdependent infrastructures using interacting dynamical
 models. International Journal of Critical Infrastructures. 2008;4: 63.
 doi: 10.1504/IJCIS.2008.016092

 9. Box GEP. Science and Statistics. J Am Stat Assoc. 1976;71: 791.
 doi: 10.2307/2286841

 10. Pederson P, Dudenhoe�er D, Hartley S, Permann M. Critical Infrastructure
 Interdependency Modeling: A Survey of U.S. and International Research.
 Idaho National Laboratory. 2006;25: 27. doi: 10.2172/911792

 11. Eusgeld I, Henzi D, Kröger W. Comparative evaluation of modeling and
 simulation techniques for interdependent critical infrastructures. Scientific
 Report, Laboratory for Safety. 2008; 15–35. Available: https://bit.ly/2JdjcpF

 12. Peterson JL. Petri Nets. ACM Comput Surv. 1977;9: 223–252.
 doi: 10.1145/356698.356702

 101

http://paperpile.com/b/kEIrDG/8tB0o
http://paperpile.com/b/kEIrDG/8tB0o
http://www.sesamo-project.eu/
http://paperpile.com/b/kEIrDG/BRFh
http://paperpile.com/b/kEIrDG/BRFh
http://paperpile.com/b/kEIrDG/BRFh
http://paperpile.com/b/kEIrDG/BRFh
https://openaccess.city.ac.uk/id/eprint/3091/
http://paperpile.com/b/kEIrDG/4bh9
http://paperpile.com/b/kEIrDG/4bh9
http://www.nsi.org.uk/wp-content/uploads/2012/11/Annex-A-Step-by-Step-Guide-for-ISO-9001-2015-NG-FG-AG.pdf
http://www.nsi.org.uk/wp-content/uploads/2012/11/Annex-A-Step-by-Step-Guide-for-ISO-9001-2015-NG-FG-AG.pdf
http://paperpile.com/b/kEIrDG/gMZlb
http://paperpile.com/b/kEIrDG/gMZlb
http://paperpile.com/b/kEIrDG/gMZlb
http://paperpile.com/b/kEIrDG/gMZlb
http://paperpile.com/b/kEIrDG/jkYlI
http://paperpile.com/b/kEIrDG/jkYlI
http://paperpile.com/b/kEIrDG/jkYlI
http://paperpile.com/b/kEIrDG/2aAp
http://paperpile.com/b/kEIrDG/2aAp
https://www.npsa.gov.uk/critical-national-infrastructure-0
http://paperpile.com/b/kEIrDG/m8CF
http://paperpile.com/b/kEIrDG/m8CF
http://paperpile.com/b/kEIrDG/m8CF
http://dx.doi.org/10.1109/37.969131
http://paperpile.com/b/kEIrDG/gRBO
http://paperpile.com/b/kEIrDG/gRBO
http://paperpile.com/b/kEIrDG/gRBO
http://paperpile.com/b/kEIrDG/gRBO
http://dx.doi.org/10.1504/IJCIS.2008.016092
http://paperpile.com/b/kEIrDG/Ic2G
http://paperpile.com/b/kEIrDG/Ic2G
http://dx.doi.org/10.2307/2286841
http://paperpile.com/b/kEIrDG/UmZTA
http://paperpile.com/b/kEIrDG/UmZTA
http://paperpile.com/b/kEIrDG/UmZTA
http://dx.doi.org/10.2172/911792
http://paperpile.com/b/kEIrDG/lgdvB
http://paperpile.com/b/kEIrDG/lgdvB
http://paperpile.com/b/kEIrDG/lgdvB
https://bit.ly/2JdjcpF
http://paperpile.com/b/kEIrDG/pNTs
http://paperpile.com/b/kEIrDG/pNTs
http://dx.doi.org/10.1145/356698.356702

 13. Molloy. Performance Analysis Using Stochastic Petri Nets. IEEE Trans
 Comput. 1982;C-31: 913–917. doi: 10.1109/TC.1982.1676110

 14. Ajmone Marsan M, Conte G, Balbo G. A class of generalized stochastic Petri
 nets for the performance evaluation of multiprocessor systems. ACM Trans
 Comput Syst. 1984;2: 93–122. doi: 10.1145/190.191

 15. Ciardo G, Muppala J, Trivedi K. SPNP: stochastic Petri net package.
 Proceedings of the Third International Workshop on Petri Nets and
 Performance Models, PNPM89. IEEE Comput. Soc. Press; 2003.
 doi: 10.1109/pnpm.1989.68548

 16. Bonabeau E. Agent-based modeling: Methods and techniques for
 simulating human systems. Proceedings of the National Academy of
 Sciences. 2002;99: 7280–7287. doi: 10.1073/pnas.082080899

 17. Luna F, Stefansson B. Economic Simulations in Swarm: Agent-Based
 Modelling and Object Oriented Programming. Springer Science & Business
 Media; 2000. doi: 10.1007/978-1-4615-4641-2

 18. Macal CM, North MJ. Introductory Tutorial: Agent-Based Modeling and
 Simulation. Proceedings of the 2011 Winter Simulation Conference, 11-14
 Dec. IEEE Press; 2011. pp. 1456–1469. doi: 10.1109/WSC.2011.6148117

 19. Holling CS. Resilience and Stability of Ecological Systems. Annu Rev Ecol
 Syst. 1973;4: 1–23. doi: 10.1146/annurev.es.04.110173.000245

 20. Henry D, Emmanuel Ramirez-Marquez J. Generic metrics and quantitative
 approaches for system resilience as a function of time. Reliab Eng Syst Saf.
 2012;99: 114–122. doi: 10.1016/j.ress.2011.09.002

 21. Attoh-Okine NO. Resilience Engineering: Models and Analysis. Cambridge
 University Press; 2016. Available:
 https://play.google.com/store/books/details?id=O_-lCwAAQBAJ

 22. Selected current practices. ReSIST (Resilience for Survivability in IST)
 European Network of Excellence. 2009.

 23. Cyber safety and resilience. Royal Academy of Engineering; 2018 Mar.

 24. International Organization for Standardization. Security and resilience --
 Organizational resilience -- Principles and attributes. 2017. Report No.:
 22316.

 25. Tierney K, Bruneau M. Conceptualizing and measuring resilience - A Key to
 Disaster Loss Reduction. TR News. 2007;250: 14–18. Available:
 http://onlinepubs.trb.org/onlinepubs/trnews/trnews250_p14-17.pdf

 26. Strigini L. Resilience Assessment and Evaluation of Computing Systems. In:
 Wolter K, Avritzer A, Vieira M, van Moorsel A, editors. Resilience
 Assessment and Evaluation of Computing Systems. Berlin, Heidelberg:
 Springer Berlin Heidelberg; 2012. pp. 3–24.
 doi: 10.1007/978-3-642-29032-9

 102

http://paperpile.com/b/kEIrDG/XcwV
http://paperpile.com/b/kEIrDG/XcwV
http://dx.doi.org/10.1109/TC.1982.1676110
http://paperpile.com/b/kEIrDG/4Fdo
http://paperpile.com/b/kEIrDG/4Fdo
http://paperpile.com/b/kEIrDG/4Fdo
http://dx.doi.org/10.1145/190.191
http://paperpile.com/b/kEIrDG/xQng
http://paperpile.com/b/kEIrDG/xQng
http://paperpile.com/b/kEIrDG/xQng
http://paperpile.com/b/kEIrDG/xQng
http://dx.doi.org/10.1109/pnpm.1989.68548
http://paperpile.com/b/kEIrDG/wWaOk
http://paperpile.com/b/kEIrDG/wWaOk
http://paperpile.com/b/kEIrDG/wWaOk
http://dx.doi.org/10.1073/pnas.082080899
http://paperpile.com/b/kEIrDG/Qfuoz
http://paperpile.com/b/kEIrDG/Qfuoz
http://paperpile.com/b/kEIrDG/Qfuoz
http://dx.doi.org/10.1007/978-1-4615-4641-2
http://paperpile.com/b/kEIrDG/ggVdA
http://paperpile.com/b/kEIrDG/ggVdA
http://paperpile.com/b/kEIrDG/ggVdA
http://dx.doi.org/10.1109/WSC.2011.6148117
http://paperpile.com/b/kEIrDG/SZu72
http://paperpile.com/b/kEIrDG/SZu72
http://dx.doi.org/10.1146/annurev.es.04.110173.000245
http://paperpile.com/b/kEIrDG/rcbXa
http://paperpile.com/b/kEIrDG/rcbXa
http://paperpile.com/b/kEIrDG/rcbXa
http://dx.doi.org/10.1016/j.ress.2011.09.002
http://paperpile.com/b/kEIrDG/fDiRx
http://paperpile.com/b/kEIrDG/fDiRx
https://play.google.com/store/books/details?id=O_-lCwAAQBAJ
http://paperpile.com/b/kEIrDG/qpAWD
http://paperpile.com/b/kEIrDG/qpAWD
http://paperpile.com/b/kEIrDG/N3dy
http://paperpile.com/b/kEIrDG/qgIxJ
http://paperpile.com/b/kEIrDG/qgIxJ
http://paperpile.com/b/kEIrDG/qgIxJ
http://paperpile.com/b/kEIrDG/YrVl0
http://paperpile.com/b/kEIrDG/YrVl0
http://onlinepubs.trb.org/onlinepubs/trnews/trnews250_p14-17.pdf
http://paperpile.com/b/kEIrDG/9RJKE
http://paperpile.com/b/kEIrDG/9RJKE
http://paperpile.com/b/kEIrDG/9RJKE
http://paperpile.com/b/kEIrDG/9RJKE
http://paperpile.com/b/kEIrDG/9RJKE
http://dx.doi.org/10.1007/978-3-642-29032-9

 27. Resilience. [cited 22 Mar 2022]. Available:
 https://www.dhs.gov/topic/resilience

 28. Cabinet O�ce. Keeping the Country Running: Natural Hazards and
 Infrastructure. Environment. 2011. p. 100. Available:
 http://www.cabineto�ce.gov.uk/resource-library/keeping-country-runni
 ng-natural-hazards-and-infrastructure

 29. Pimm SL. The Balance of Nature? Ecological Issues in the Conservation of
 Species and Communities. University of Chicago Press; 1991. p. 448.

 30. Holling CS. Engineering Resilience versus Ecological Resilience.
 Engineering Within Ecological Constraints. 1996. pp. 31–44.
 doi: 10.17226/4919

 31. Bruneau M, Chang SE, Eguchi RT, Lee GC, O’Rourke TD, Reinhorn AM, et al.
 A Framework to Quantitatively Assess and Enhance the Seismic Resilience
 of Communities. Earthquake Spectra. 2003;19: 733–752.
 doi: 10.1193/1.1623497

 32. Adams TM, Bekkem KR, Toledo-Durán EJ. Freight Resilience Measures. J
 Transp Eng. 2012;138: 1403–1409.
 doi: 10.1061/(ASCE)TE.1943-5436.0000415

 33. Gluchshenko O, Foerster P. Performance based approach to investigate
 resilience and robustness of an ATM System. Tenth USA/Europe Air Tra�c
 Management Research and Development Seminar (ATM2013). 2013; 7.
 Available:
 http://atmseminarus.org/seminarContent/seminar10/papers/277-Gluchsh
 enko_0127130117-Final-Paper-4-8-13.pdf

 34. Hollnagel E, Woods DW, Leveson N. Resilience Engineering: Concepts and
 Precepts. Ashgate Publishing, Ltd.; 2010.

 35. Hager G, Wellein G. Introduction to High Performance Computing for
 Scientists and Engineers. CRC Press; 2010. doi: 10.1201/EBK1439811924

 36. Dagum L, Menon R. OpenMP: an industry standard API for shared-memory
 programming. IEEE Computational Science and Engineering. 1998;5:
 46–55. doi: 10.1109/99.660313

 37. The Computer Language Benchmarks Game. [cited 9 Feb 2018]. Available:
 http://benchmarksgame.alioth.debian.org/

 38. Nanz S, Furia CA. A Comparative Study of Programming Languages in
 Rosetta Code. 2015 IEEE/ACM 37th IEEE International Conference on
 Software Engineering. IEEE; 2015. pp. 778–788. doi: 10.1109/ICSE.2015.90

 39. Bik AJC, Girkar M, Grey PM, Tian X. Automatic intra-register vectorization
 for the Intel® architecture. Int J Parallel Program. 2002;30: 65–98.

 40. Jones E, Oliphant T, Peterson P, Others. SciPy: Open source scientific tools
 for Python. [cited 9 Feb 2018]. Available: http://www.scipy.org/

 103

http://paperpile.com/b/kEIrDG/w1Q2R
https://www.dhs.gov/topic/resilience
http://paperpile.com/b/kEIrDG/JRC3S
http://paperpile.com/b/kEIrDG/JRC3S
http://www.cabinetoffice.gov.uk/resource-library/keeping-country-running-natural-hazards-and-infrastructure
http://www.cabinetoffice.gov.uk/resource-library/keeping-country-running-natural-hazards-and-infrastructure
http://paperpile.com/b/kEIrDG/gTxCt
http://paperpile.com/b/kEIrDG/gTxCt
http://paperpile.com/b/kEIrDG/oZSyA
http://paperpile.com/b/kEIrDG/oZSyA
http://paperpile.com/b/kEIrDG/oZSyA
http://dx.doi.org/10.17226/4919
http://paperpile.com/b/kEIrDG/9Nmr7
http://paperpile.com/b/kEIrDG/9Nmr7
http://paperpile.com/b/kEIrDG/9Nmr7
http://paperpile.com/b/kEIrDG/9Nmr7
http://dx.doi.org/10.1193/1.1623497
http://paperpile.com/b/kEIrDG/F3dvx
http://paperpile.com/b/kEIrDG/F3dvx
http://paperpile.com/b/kEIrDG/F3dvx
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000415
http://paperpile.com/b/kEIrDG/hMdSf
http://paperpile.com/b/kEIrDG/hMdSf
http://paperpile.com/b/kEIrDG/hMdSf
http://paperpile.com/b/kEIrDG/hMdSf
http://atmseminarus.org/seminarContent/seminar10/papers/277-Gluchshenko_0127130117-Final-Paper-4-8-13.pdf
http://atmseminarus.org/seminarContent/seminar10/papers/277-Gluchshenko_0127130117-Final-Paper-4-8-13.pdf
http://paperpile.com/b/kEIrDG/fizf0
http://paperpile.com/b/kEIrDG/fizf0
http://paperpile.com/b/kEIrDG/hpy2r
http://paperpile.com/b/kEIrDG/hpy2r
http://dx.doi.org/10.1201/EBK1439811924
http://paperpile.com/b/kEIrDG/rhQcl
http://paperpile.com/b/kEIrDG/rhQcl
http://paperpile.com/b/kEIrDG/rhQcl
http://dx.doi.org/10.1109/99.660313
http://paperpile.com/b/kEIrDG/08GRr
http://benchmarksgame.alioth.debian.org/
http://paperpile.com/b/kEIrDG/N45sZ
http://paperpile.com/b/kEIrDG/N45sZ
http://paperpile.com/b/kEIrDG/N45sZ
http://dx.doi.org/10.1109/ICSE.2015.90
http://paperpile.com/b/kEIrDG/rnF0F
http://paperpile.com/b/kEIrDG/rnF0F
http://paperpile.com/b/kEIrDG/bThnl
http://paperpile.com/b/kEIrDG/bThnl
http://www.scipy.org/

 41. The Swift Programming Language. [cited 9 Feb 2018]. Available:
 https://developer.apple.com/swift/

 42. The Rust Programming Language. [cited 9 Feb 2018]. Available:
 https://www.rust-lang.org/

 43. Meyerson J. The go programming language. IEEE Softw. 2014;31: 104–104.
 doi: 10.1109/ms.2014.127

 44. Toulmin SE. The Uses of Argument. Cambridge University Press; 1958.

 45. Bloomfield R. E., Bishop P. G., Jones C. C. M., Froome P. K. D. ASCAD -
 Adelard safety case development manual. Adelard; 1998.

 46. The Assurance Case Working Group. Goal Structuring Notation Community
 Standard Version 3. 2021. Available: https://scsc.uk/SCSC-141C

 47. Bloomfield R, Netkachova K. Building Blocks for Assurance Cases. 2014
 IEEE International Symposium on Software Reliability Engineering
 Workshops. 2014. pp. 186–191. doi: 10.1109/ISSREW.2014.72

 48. Bloomfield R, Rushby J. Assurance 2.0: A Manifesto. arXiv [cs.SE]. 2020.
 doi: 10.48550/ARXIV.2004.10474

 49. Netkachov O, Popov P, Salako K. Quantification of the impact of cyber
 attack in critical infrastructures. Lecture Notes in Computer Science
 (including subseries Lecture Notes in Artificial Intelligence and Lecture
 Notes in Bioinformatics). Springer; 2014. pp. 316–327.
 doi: 10.1007/978-3-319-10557-4_35

 50. Netkachov O, Popov P, Salako K. Quantitative Evaluation of the E�cacy of
 Defence-in-Depth in Critical Infrastructures. In: Flammini F, editor.
 Resilience of Cyber-Physical Systems. Springer; 2019. pp. 89–121.
 doi: 10.1007/978-3-319-95597-1_5

 51. Bloomfield R, Bishop P. A Methodology for Safety Case Development.
 Safety-critical Systems Symposium 98. 1998.

 52. Netkachova K, Bloomfield R, Popov P, Netkachov O. Using Structured
 Assurance Case Approach to Analyse Security and Reliability of Critical
 Infrastructures. In: Koornneef F, van Gulijk C, editors. Computer Safety,
 Reliability, and Security. Springer International Publishing; 2015. pp.
 345–354. doi: 10.1007/978-3-319-24249-1_30

 53. State Chart XML (SCXML): State machine notation for control abstraction.
 W3C working draft. 2015. Available: https://www.w3.org/TR/scxml/

 54. Gamma E, Johnson R, Helm R, . Johnson RE, Vlissides J. Design Patterns:
 Elements of Reusable Object-Oriented Software. Pearson Deutschland
 GmbH; 1995. Available:
 https://play.google.com/store/books/details?id=tmNNfSkfTlcC

 55. BLAS (Basic Linear Algebra Subprograms). Available:

 104

http://paperpile.com/b/kEIrDG/F0qYW
https://developer.apple.com/swift/
http://paperpile.com/b/kEIrDG/v0cjK
https://www.rust-lang.org/
http://paperpile.com/b/kEIrDG/NCaxz
http://paperpile.com/b/kEIrDG/NCaxz
http://dx.doi.org/10.1109/ms.2014.127
http://paperpile.com/b/kEIrDG/tGqeQ
http://paperpile.com/b/kEIrDG/fxKlc
http://paperpile.com/b/kEIrDG/fxKlc
http://paperpile.com/b/kEIrDG/5dB9
http://paperpile.com/b/kEIrDG/5dB9
https://scsc.uk/SCSC-141C
http://paperpile.com/b/kEIrDG/Q7baH
http://paperpile.com/b/kEIrDG/Q7baH
http://paperpile.com/b/kEIrDG/Q7baH
http://dx.doi.org/10.1109/ISSREW.2014.72
http://paperpile.com/b/kEIrDG/obhO
http://paperpile.com/b/kEIrDG/obhO
http://dx.doi.org/10.48550/ARXIV.2004.10474
http://paperpile.com/b/kEIrDG/gqyNf
http://paperpile.com/b/kEIrDG/gqyNf
http://paperpile.com/b/kEIrDG/gqyNf
http://paperpile.com/b/kEIrDG/gqyNf
http://paperpile.com/b/kEIrDG/gqyNf
http://dx.doi.org/10.1007/978-3-319-10557-4_35
http://paperpile.com/b/kEIrDG/rHSvv
http://paperpile.com/b/kEIrDG/rHSvv
http://paperpile.com/b/kEIrDG/rHSvv
http://paperpile.com/b/kEIrDG/rHSvv
http://dx.doi.org/10.1007/978-3-319-95597-1_5
http://paperpile.com/b/kEIrDG/fDxsJ
http://paperpile.com/b/kEIrDG/fDxsJ
http://paperpile.com/b/kEIrDG/smwaH
http://paperpile.com/b/kEIrDG/smwaH
http://paperpile.com/b/kEIrDG/smwaH
http://paperpile.com/b/kEIrDG/smwaH
http://paperpile.com/b/kEIrDG/smwaH
http://dx.doi.org/10.1007/978-3-319-24249-1_30
http://paperpile.com/b/kEIrDG/H4nU
http://paperpile.com/b/kEIrDG/H4nU
https://www.w3.org/TR/scxml/
http://paperpile.com/b/kEIrDG/HHbg
http://paperpile.com/b/kEIrDG/HHbg
http://paperpile.com/b/kEIrDG/HHbg
https://play.google.com/store/books/details?id=tmNNfSkfTlcC
http://paperpile.com/b/kEIrDG/wUkUs

 http://www.netlib.org/blas/

 56. Guennebaud G, Jacob B, Others. Eigen v3. 2010 [cited 2 Apr 2018]. Available:
 http://eigen.tuxfamily.org

 57. Gonum Numerical Packages. [cited 9 Feb 2018]. Available:
 https://www.gonum.org/

 58. Peppas D. Development and Analysis of Nordic32 Power System Model in
 PowerFactory. 2008; 77 pp.

 59. Integrated Risk Reduction of Information-based Infrastructure Systems.
 [cited 9 Feb 2018]. Available: https://cordis.europa.eu/project/id/027568

 60. Carreras BA, Lynch VE, Dobson I, Newman DE. Critical points and
 transitions in an electric power transmission model for cascading failure
 blackouts. Chaos. 2002;12: 985–994. doi: 10.1063/1.1505810

 61. Seifi H, Sepasian MS. Electric Power System Planning Issues, Algorithms
 and Solutions. Springer Science & Business Media; 2016. pp. 1055–1063.
 doi: 10.1111/jce.13019

 62. Joint Task Force Interagency Working Group. Security and privacy controls
 for information systems and organizations. National Institute of Standards
 and Technology; 2020 Sep. doi: 10.6028/nist.sp.800-53r5

 63. Drouin M, Wagner BJ, Lehner J, Mubayi V. Historical Review and
 Observations of Defense-in-depth. US Nuclear Regulatory Commission,
 O�ce of Nuclear Regulatory Research; 2016.

 64. Netkachova K, Netkachov O, Bloomfield R. Tool Support for Assurance Case
 Building Blocks. Computer Safety, Reliability, and Security. Springer
 International Publishing; 2015. pp. 62–71.
 doi: 10.1007/978-3-319-24249-1_6

 65. Netkachov O, Popov P, Salako K. Model-based evaluation of the resilience
 of critical infrastructures under cyber attacks. Critical Information
 Infrastructures Security. Cham: Springer International Publishing; 2016.
 pp. 231–243. doi: 10.1007/978-3-319-31664-2_24

 66. After. A framework for electrical power systems vulnerability
 identification, defense and restoration. In: CORDIS [Internet]. 2012 [cited 9
 Feb 2018]. Available: http://cordis.europa.eu/projects/261788

 67. Clark G, Courtney T, Daly D, Deavours D, Derisavi S, Doyle JM, et al. The
 Mobius modeling tool. Proceedings 9th International Workshop on Petri
 Nets and Performance Models. ieeexplore.ieee.org; 2001. pp. 241–250.
 doi: 10.1109/PNPM.2001.953373

 105

http://www.netlib.org/blas/
http://paperpile.com/b/kEIrDG/cYpqo
http://eigen.tuxfamily.org/
http://paperpile.com/b/kEIrDG/K6w2d
https://www.gonum.org/
http://paperpile.com/b/kEIrDG/bTCz8
http://paperpile.com/b/kEIrDG/bTCz8
http://paperpile.com/b/kEIrDG/mMmwH
http://paperpile.com/b/kEIrDG/mMmwH
https://cordis.europa.eu/project/id/027568
http://paperpile.com/b/kEIrDG/PsLei
http://paperpile.com/b/kEIrDG/PsLei
http://paperpile.com/b/kEIrDG/PsLei
http://dx.doi.org/10.1063/1.1505810
http://paperpile.com/b/kEIrDG/5xpmt
http://paperpile.com/b/kEIrDG/5xpmt
http://paperpile.com/b/kEIrDG/5xpmt
http://dx.doi.org/10.1111/jce.13019
http://paperpile.com/b/kEIrDG/3T6G
http://paperpile.com/b/kEIrDG/3T6G
http://paperpile.com/b/kEIrDG/3T6G
http://dx.doi.org/10.6028/nist.sp.800-53r5
http://paperpile.com/b/kEIrDG/L9v7
http://paperpile.com/b/kEIrDG/L9v7
http://paperpile.com/b/kEIrDG/L9v7
http://paperpile.com/b/kEIrDG/ylJ4
http://paperpile.com/b/kEIrDG/ylJ4
http://paperpile.com/b/kEIrDG/ylJ4
http://paperpile.com/b/kEIrDG/ylJ4
http://dx.doi.org/10.1007/978-3-319-24249-1_6
http://paperpile.com/b/kEIrDG/EERj
http://paperpile.com/b/kEIrDG/EERj
http://paperpile.com/b/kEIrDG/EERj
http://paperpile.com/b/kEIrDG/EERj
http://dx.doi.org/10.1007/978-3-319-31664-2_24
http://paperpile.com/b/kEIrDG/hlTWl
http://paperpile.com/b/kEIrDG/hlTWl
http://paperpile.com/b/kEIrDG/hlTWl
http://cordis.europa.eu/projects/261788
http://paperpile.com/b/kEIrDG/edlJ
http://paperpile.com/b/kEIrDG/edlJ
http://paperpile.com/b/kEIrDG/edlJ
http://paperpile.com/b/kEIrDG/edlJ
http://dx.doi.org/10.1109/PNPM.2001.953373

