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0.2 Abstract

This thesis is concerned with free surface flow in a non-rotating or rotating shal-
low laterally heated cavity which is assumed to be of infinite length in the third
dimension. The flow is driven by a horizontal temperature difference: the two ver-
tical walls are kept at constant, but different, temperatures, giving rise in general
to a large scale circulation known as a Hadley cell. The flow is considered to be
subdivided into three main regions: a parallel-flow core region away from the end
walls and two end zones close to the vertical walls where the fluid is turned through
180 degrees. This study is concerned with identifying the main features of both the
basic flow and temperature fields generated in the cavity and, in the non-rotating
case, with the stability of that flow.

There are two main parts to this thesis: the first part is dedicated to the
flow in the non-rotating cavity and, in the second part, the flow in the rotating
cavity is considered. In each case the steady-state free surface problem is initially
studied. An analytical solution for the parallel-flow core is found; the flow in the end
regions close to the vertical walls is then investigated. Results are presented which
determine the extent of these regions. These complement asymptotic results which
are found for large Rayleigh number (based on the temperature difference between
the vertical walls and cavity depth) in the non-rotating case and small Rayleigh
number in the limit of large rotation rate. Asymptotic solutions are also found in
the limit of large Rayleigh number and rotation rate where a novel boundary layer
structure is identified near the horizontal surfaces.

The linear stability of the non-rotating parallel-flow core is investigated. Here
the neutral curves which delineate the boundary for which instabilities persist are
found and an investigation of the large Rayleigh number behaviour of the neutral
curves is undertaken.

Numerical and analytical methods are used to give complete solutions for
the flow in the end regions from the small rotation rate limit where the solutions
match with the non-rotating results to the large rotation rate limit where the double
vertical boundary-layer structure identified by the asymptotic analysis evolves.



Chapter 1

Introduction

1.1 The basic problem

This thesis is concerned with free surface flow in a non-rotating or rotating shallow
laterally heated cavity. This chapter starts with an explanation of the basic problem
and its geometry, and then gives examples of why this flow is of interest and of work
that has been done before. The non-dimensional governing equations used as a
basis for study throughout the thesis are derived and an outline of the structure and

content of the thesis is given.

Fluid is contained within a rectangular cavity, the depth of which (h) is
generally much less than the length, I, and hence is described as shallow. It is
assumed to be of infinite length in the third dimension, or equivalently may be
viewed as the cross section of a large annulus. The cavity is assumed to be lid-less,
that is the upper surface of the fluid is free, and the problem is thus distinct from
that with a rigid upper surface for which there is much previous work and with which

comparisons will be made. The geometry is represented in the diagram below.

/

The flow is driven by a horizontal temperature difference: the two vertical
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walls are kept at constant, but different, temperatures. The two horizontal surfaces
are taken to be adiabatic, that is thermally insulating. Gravity acts downwards and
the density of the fluid is assumed to decrease linearly with increases in tempera-
ture, so that motion is generated by buoyancy forces. Close to the hotter of the
two end walls, the fluid becomes less dense and rises, and closer to the cooler end
the fluid becomes more dense and sinks, giving rise in general to a large scale cir-
culation of the type shown diagrammatically above. This is known as a Hadley cell
after consideration of the motion of the atmosphere generated by equatorial-polar
temperature differences by Hadley (1735). For a shallow cavity it is often possible
to consider the flow to be subdivided into three main regions: a core region away
from the end walls where the flow near the top is moving from the hot wall to the
cold wall and is returning at the bottom, and two end zones close to the vertical

walls where the fluid is turned through 180 degrees.

The effect on the flow of rotation of the cavity with angular velocity Q is
addressed in the second half of the thesis. The cavity is rotated about a vertical
axis as indicated in the diagram above. In the rotating problem there is a component
of flow perpendicular to the Hadley cell which in the geophysical context resembles
the trade-winds in the atmosphere of the tropics. This study is concerned with
identifying the main features of both the basic flow and temperature fields generated

in the cavity and, in the non-rotating case, with the stability of that flow.

1.2 Previous work

Much of the previous work on shallow rotating or non-rotating laterally heated sys-
tems has been motivated by applications to the large scale motions of the atmosphere
and oceans (Hadley 1735, Jeffreys 1925, Defant 1961, Stern 1975). However, there
has also been interest in flows in a shallow laterally heated rectangular cavity in
connection with the process of growing metal and semi-conductor crystals from a
liquid melt by the gradient-freeze technique (Hurle 1966, Hurle et al. 1974). Such
flows are also of interest in relation to the dynamics of shallow estuaries where the
temperature gradient may be caused naturally or by the discharge of pollutants into
the estuary (Cormack et al. 1974). Other technological examples where convective

motion is driven by temperature gradients not aligned with the gravitational field



include cooling systems for nuclear reactors (Boyack and Kearney 1972) and solar

collectors (Bejan and Rossie 1981).

Early theoretical work such as that of Batchelor (1954) and Gill (1966) con-
centrated on the two dimensional tall or square cavity with applications to the heat
transfer across the air gap between walls in buildings. The steady non-rotating
flow in a shallow laterally heated rectangular cavity has been studied before, but
mostly for the case of a rigid upper surface. In a series of papers by Cormack,
Leal and Imberger (1974), Cormack, Leal and Seinfeld (1974) and Imberger (1974),
an asymptotic theory, numerical solutions and experimental results, were presented
respectively. The asymptotic theory regarded the flow in the cavity as composed
of two symmetric end-regions and a parallel flow core, the solutions for which were
matched asymptotically to gain a leading order solution valid throughout the cav-
ity for Rayleigh numbers (based on the cavity height 1) small compared with the
cavity aspect ratio (I/h). This result was then compared with the numerical so-
lutions for square and shallow cavities and the experimental results for shallow
cavities. Further experimental results at higher Rayleigh numbers were presented
by Bejan, Al-Homoud and Imberger (1981) and a parameter range determined for
which the parallel-flow core solution is valid. Hart(1983a) also discussed the range
of parameters for which there are separate end-regions near the vertical walls, and
a parallel-flow core, and presented numerical solutions for the nonlinear motion in
the end regions at general Rayleigh numbers comparable with the cavity aspect ra-
tio. The behaviour of the temperature and flow in the end regions was investigated
in detail by Daniels, Blythe and Simpkins (1987) for general Rayleigh number and
finite and infinite Prandtl numbers, by assuming that the edge behaviour in the end
zones could be represented by the sum of an infinite number of eigenfunctions which
decay into a parallel-flow core. Their analysis includes a determination of the size of
the end regions, obtained numerically for general Rayleigh number and asymptoti-
cally for Rayleigh numbers large compared with the cavity aspect ratio. Wang and
Daniels (1994a,b) obtained full numerical solutions for the end zones for both adia-
batic and conducting horizontal boundaries and Wright, Gaskell and Sleigh (1995)
presented numerical solutions for the whole cavity. Other numerical investigations
have been reported, for example by Quon (1972) and Shiralkar and Tien (1981) and
other experimental work includes that by Rossby (1965), Simpkins and Dudderar
(1981) and Simpkins and Chen (1986). Daniels and Wang (1994) discussed the

evolution of the flow in a shallow cavity for Rayleigh numbers comparable with the



aspect ratio using a combination of asymptotic and numerical methods.

Cormack, Stone and Leal (1975) examined the effect of upper surface bound-
ary conditions on the non-rotating flow, including the case with adiabatic horizontal
boundaries and a stress-free upper surface, and presented asymptotic solutions for
the end-regions for low Rayleigh numbers and large aspect ratio. The geophysical
application of free-surface flows in rectangular channels with surface cooling has
been studied by Sturm (1981) and by Jain (1982) for sidearms of cooling lakes of
water from electricity power generation. The response of a wedge shaped sidearm

to diurnal heating and cooling is presented by Farrow and Patterson (1993).

There has been considerable discussion of the stability of the non-rotating
parallel-flow core, both analytical and experimental. Gill (1974) considered the
stability of the flow in a cavity with both horizontal surfaces either rigid or free,
and compared his analytical solutions with the experimental results of Skafel (1972)
and Hurle, Jakeman and Johnson (1974), who included the stabilising effect of a
transverse magnetic field in their free surface experiments with gallium. Hart (1972)
presented neutral stability curves for oscillatory perturbations in the rigid surface
case, and later (Hart 1983b) for the rigid and free surface cases for the onset of
longitudinal and transverse instabilities - with axes parallel and perpendicular to
the core flow respectively. Results for the free surface transverse mode of instability
were not presented. As in Gill (1974), there was discussion of the “strong geometric
effects” that make comparisons with the results of experiments difficult. Laure and
Roux (1989) also presented neutral curves for the rigid and free surface cases and
gave plots of the streamlines and isotherms of the perturbations and an indication
of their effect on the core flow. Kuo and Korpela (1987) discussed transverse and
longitudinal instabilities at small Prandtl number for the rigid surface case. In all of
this previous work, the results which are presented focus on the ‘critical” parameter
values, including the lowest values at which instabilities occur, and the neutral curves

are not discussed in detail for general values of the parameters.

Other related work, but excluding the effect of buoyancy, includes that by
Smith and Davis (1983) who considered the instability of the dynamic thermocap-
illary layer. The stability of the combined buoyancy and thermocapillary driven

flow at small Prandtl number was considered numerically by Ben Hadid and Roux

(1992).
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In the rotating case there is a body of work for tall laterally heated cavities,
including that by Fowlis and Hide (1965) and Hide (1967) which gives a range of
parameters for which there is axisymmetric flow in an annulus with differentially
heated walls. Both free and rigid upper surfaces are considered. The theory for
an axisymmetric annulus with a square cross section and rigid upper surface is
given by MclIntyre (1968) for large Prandtl number. The application of a rotating
laterally-heated cavity to the planetary equatorial-polar temperature difference and
to the atmosphere of Venus is discussed by Stone (1968), who considers a shallow
cavity with a free upper surface, but driven by a varying heat flux on the horizontal
boundaries. Other theoretical work on convection induced between rotating planes
includes that by Robinson (1959) and Duncan (1966) while Douglas and Mason
(1973) describe experiments in an annulus with differentially heated walls and a rigid
upper surface designed to determine the temperature structure and the transition
from axisymmetric to non-axisymmetric flow for a range of aspect ratios. The
asymptotic structure of the rapidly rotating, small Rayleigh number flow driven by
differentially heated vertical walls in a rectangular cavity was considered by Hunter
(1967) for both the free and rigid upper surface cases. The boundary layer structure
was described in detail: the horizontal flow is confined to thin Ekman layers close
to the horizontal boundaries, and the vertical flow is confined to thin Stewartson
layers (Stewartson 1957) close to the vertical walls; in the free surface case there
are double Stewartson layers. The flow induced in a rotating annulus by a radial
temperature gradient along the lower horizontal surface was considered at large
rotation rates by Daniels (1976), who made comparisons between this theoretical
work and experiments reported by Stern (1975). Further aspects of the flow and
its stability were considered in a series of papers by Daniels and Stewartson (1977,
1978a,b).

The structure of a rapidly rotating fluid in a shallow cylinder was considered
by Dijkstra and van Heijst (1983), and the effect of rotation on many fluid flows
is discussed in the review by Hopfinger and Linden (1990). The effect of the free-
surface on spin-up of a fluid in a cylinder is studied by O’Donnell and Linden
(1991). Experiments on the spin-up and spin-down on a ;3 plane are presented by
Williams and Maxworthy (1994); the spin-up of fluid in a rectangular container with
a sloping base is considered by van Heijst, Maas and Williams (1994). Hignett
et al. (1981) considered rotating thermal convection in a cylinder with a radial

temperature gradient supplied from below and more recently Miller and Reynolds
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(1991) presented experimental results on thermal convection in a rotating annulus.
The effect of topography was discussed by Bell and Soward (1996). The instability
of flow in a differentially heated rotating annulus has been investigated by Busse
(1986), Busse and Or (1986) and Or and Busse (1987), and in a rotating channel
by Finlay (1990). The transisition to turbulent flow was discussed by Finlay (1992)
and by Kristoffersen and Andersson (1993). The instability of the boundary layer
on a rotating disk has been studied by Lingwood (1995) and experimental results
presented by Lingwood (1996).

1.3 Governing equations and non-dimensionalisation

The dynamic equations with respect to a coordinate system rotating with uniform
angular velocity fi*, representing the conservation of mass, momentum and energy,

as given by Greenspan (1968), are

dp*

aF +v-.(,*u- (1.3.1)
d *

P dbtl* + (u*. V¥u* + 20* x uv*

-Vp* - p*iT x (fi* x x*) + p*F + /iV u* + (A+ -p)V*V*.u*, (1.3.2)

and
/R \ 0* dp* (dp*
NG o+u'v'd 4 prdoride
+A(V*.u*)2+ p[V*2u*.u* + 2V*,(V* x u*) xu* - 2u*.V*V*.u* + V* x u*.V* x u¥],

Fu*Vy =aV*T - -p(V¥g ¥ (1.3.3)

where A is the bulk viscosity, p is the coefficient of viscosity, k is the thermal
diffusivity, cp is the specific heat capacity at constant pressure, a is the thermal
conductivity, p* is the density and p* is the pressure. The Cartesian coordinates
x* = (x*,y*z*) have their origin at the axis of rotation such that z* is in the
vertical direction and x* and y* are in the horizontal plane. The velocity relative to
the rotating frame is u* = (u*v* w*), where u* v* and w* are the components in
the x*, y* and z* directions respectively, and 6* is the temperature. The external

force per unit mass is denoted by F and t* is the time.

The acceleration due to gravity, g, acts in the negative 2* direction, and the
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frame of reference is rotating around the z* axis so that
F = —wyk and f2*=ilk, (1.3.4)

where k is the unit vector in the z* direction. Density differences are assumed to be

linearly dependent on temperature, so that
p* = po(i -w * - €t)), (1.3.5)

where p0 is the density at temperature 9%, and ;3 is the coefficient of thermal ex-
pansion. The Oberbeck-Boussinesq approximation is used so that the variation of

density is assumed negligible apart from when multiplied by g.

The cavity is at rest relative to the rotating frame with its cross section lying
parallel to the x* z* plane and its vertical walls located at x* = hx0 and x* = hx\.
A length scale, x, is introduced, non-dimensionalised with respect to the depth of
the cavity, h, such that x* = h(x + x0,y,z). The cavity is therefore assumed to lie
between z = 0 and z = 1 and between x = 0 and x = x\ — X5 = L, where L is
the aspect ratio of the cavity L = I/h. The velocity field u* and the time t* are
non-dimensionalised with respect to the thermal diffusivity, k, and h, so that

& K

d 1.3.
u an K (1.3.6)

The two vertical walls of the cavity x = 0 and x = L are held at constant tem-
perature 9* and 9" respectively with 6£ > 9% and a temperature 9 is introduced,
non-dimensionalised with respect to the temperature difference between the two
vertical walls. Thus

0*=P+§M-Pc), (1-3-7)
so that the temperature on the cold wall is 9 = 0 and on the hot wall is 9 = 1. The
centrifugal terms are included with the pressure so that a scaled non-dimensional

pressure p is introduced such that

Vp* = V(po”p) - /Poyk- pOD2k x (k x x*). (1.3.8)

At the free surface the stress in the fluid must vanish and to a first approximation the
pressure p* is constant. In order that in the rotating case p* is constant on the free
surface, and since the modified pressure p will be small compared to the hydrostatic

pressure generated by gravity, (1.3.8) implies a change in the height of the free
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surface with x. For the free surface to be taken as level to a first approximation,
it is necessary for this change in height to be small compared to the depth of the
cavity, h. On integrating (1.3.8) and since the far end of the cavity is at distance

hxi from the axis of rotation, the requirement for a small change in height across

the cavity is
£12h 2x\
< h

2¢

which can be written as an inequality for the ratio of the centrifugal and gravitational

(1.3.9)

accelerations,
2hxi -
Qauet )l

9
Thus, for sufficiently large gravitational acceleration, the height of the free surface

(1.3.10)

can be taken as constant, and the boundary conditions are defined below for such a

surface.
With these assumptions the dynamic equations become

Vau =0, (1.3.11)

5u

St @V)u+aT2(k xw = —Vp+ Radk + V2 (1.3.12)

and

A u.V0 = V29
dat

f— iT:[V2uu +2V.(Vxu)xu+V xuV xu], (1.3.13)

where the three non-dimensional numbers — the Rayleigh, Taylor and Prandtl num-

bers — are defined by

4n2h4 \%

R = f3¢(6*h —8*)h3uK, T = —r— anda = s (1.3.14)

respectively. The last term in the energy equation is usually assumed to be small,

which is the case if
AA-R-1< 1, (1.3.15)

and then the non-dimensional governing equations are

Vau =0, (1.3.16)
du

it )ii.V)u + cr(k x u) = —Vp + Radk + (jV2u (1.3.17)

14



dd
— *uV9 =V (1.3.18)
a

The boundary conditions are now considered. The horizontal and vertical
velocity components must vanish on the three solid boundaries, but on the upper
surface only the vertical component of velocity vanishes>Then the requirement that
the tangential stress vanishes on the upper surface implies that the first derivatives

of the horizontal velocity components vanish. This gives the conditions

u=v=w=0onx=0and x = L, (1.3.19)
u=v=w=0o0nz=20 (1.3.20)

and
uz=vz=w=0onz2= 1 (1.3.21)

Strictly speaking the free surface conditions should derive from the requirement that
the three components of stress vanish at the free surface. In practice these conditions
would only be satisfied in general through a displacement of the free surface from the
horizontal. As mentioned earlier, this displacement effect will be assumed sufficiently
small to be neglected, and given that the free surface is horizontal, it follows that
to a first approximation w = 0 there. As stated previously, the temperatures at the

two vertical walls are
9=0 onx=0and 9=1onx=1L, (1.3.22)
and the two horizontal surfaces are taken to be adiabatic so that

9Z=0onz=0and z = 1. (1.3.23)

In the case of a flow which has no y dependence, the system can be simplified

by using a two dimensional stream function ip such that
u = {tpz,v, -ipx), (1.3.24)
where the subscripts denote the partial derivative. The conservation of mass equa-

tion (1.3.16) is then satisfied and the other two equations (1.3.17) and (1.3.18)

Jecome

i 2) (1.3.25)

i dip id _id(v,VQ

Vi T4 1.3.26
@ dz dt d(x,z)’ (1.3.26)

15



The boundary conditions in this case are now

p=ipx=v=0onx —0,L, (1.3.28)
ip —ipz —v=0o0n2=0, (1.3.29)

and
ip=ipzz=vz=0onz=1 (1.3.30)

The temperature conditions remain unchanged.

1.4 Structure of the thesis

There are two main parts to this thesis: the first part is dedicated to the flow in
the non-rotating cavity and, in the second part, the flow in the rotating cavity is
considered. In each case the theory is based on an assumption that the cavity aspect

ratio L is large.

In chapter 2, the steady-state free surface problem for the non-rotating cavity
is studied. The flow in this case is two dimensional. An analytical solution for the
parallel-flow core is found, and the flow in the end regions close to the vertical walls is
then investigated. At low Rayleigh numbers an analytical solution valid throughout
the whole cavity is found, similar to that found numerically by Cormack, Leal and
Stone (1975). For general Rayleigh numbers R comparable with the aspect ratio L,
an eigenvalue analysis is used to determine the effect of the Rayleigh and Prandtl
numbers on the size of the end regions. The numerical scheme for solving the
eigenvalue problem, which is used extensively in various forms throughout this work
is described in detail in this chapter. The results of the numerical work complement
asymptotic results that are obtained for large Rayleigh number. A comparable study
of the end-regions in the rigid surface case was carried out by Daniels, Blythe and

Simpkins (1987), but the free surface case has not previously been considered.

The linear stability of the non-rotating parallel-flow core is investigated in

chapter 3. Neutral curves which delineate the boundary of values of the Rayleigh



number, Prandtl number and wavenumbers for which instabilities persist, are pre-
sented for both transverse and longitudinal perturbations, and the structure of the
perturbed flow is discussed. Previous results pertaining to the free surface have been
obtained by Hart (1983) and Laure and Roux (1989), but only for the critical points
at which instabilities are first sustainable. Here the neutral curves are found for
general Rayleigh number, Prandtl number and wavenumbers and an investigation
of the large Rayleigh number behaviour of the neutral curves is undertaken. The

physical implications of the results are discussed.

The steady-state free surface problem for the rotating cavity is introduced in
chapter 4. The governing equations are derived for the core and the end-regions for
general Rayleigh numbers comparable with the aspect ratio L and for general Taylor
and Prandtl numbers, and an analytical parallel-flow core solution is found. Here
the core flow is three dimensional and dependent on the rotation speed. For large
Taylor number, Ekman layers develop near the horizontal surfaces and the solution

relates to that determined by Hunter (1967).

Chapter 5 concentrates on the properties of the rotating end-regions. Eigen-
value results are presented for general Taylor and Rayleigh numbers which determine
the extent of these regions and complement asymptotic results which are found for
large Taylor number and small Rayleigh number. Asymptotic solutions are also
found in the limit of large Rayleigh and Taylor numbers where a novel boundary
layer structure is identified near the horizontal surfaces. Comparison is also made
with asymptotic solutions for small Taylor number which relate to the non-rotating

case studied in chapter 2.

Numerical and analytical methods are used in chapter 6 to give complete
solutions for the flow in the end regions for small Rayleigh number and general
Taylor number. These allow the evolution of the flow with increasing Taylor number
to be traced from the small Taylor number limit where the solutions match with the
non-rotating results of chapter 2, to the large Taylor number limit where the double

vertical boundary-layer structure identified by Hunter (1967) evolves.

The results are summarised in chapter 7 and an indication is given of possible

avenues for future research.
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Chapter 2

Steady-state solutions for the
non-rotating cavity

2.1 Introduction

The steady free-surface flow in a shallow non-rotating rectangular two dimensional
cavity subject to a horizontal temperature gradient is considered in this chapter.
Initially an exact parallel-flow solution is found for the core region away from the end
walls. This core-flow is turned through 180 degrees in approximately square regions
near the end walls, where the flow is fully nonlinear for Rayleigh numbers comparable
to the cavity aspect ratio. The solution of the two end-region problems is shown to
lead to the determination of the first order correction to the flow and temperature
fields in the core of the cavity. At general Rayleigh numbers the behaviour of the
end-regions away from the vertical walls is characterised by an infinite number of
eigenfunctions which decay exponentially away from the walls; the corresponding

eigenvalues control the distance into the core that these end-zones encroach.

The behaviour of the eigenvalues with respect to the Rayleigh and Prandtl
numbers is investigated by numerical solution of the eigenvalue problem, and a
limiting form of the eigenvalues for large Rayleigh number is found. This strategy
was employed by Daniels, Blythe and Simpkins (1987) for the rigid surface cavity
and comparisons of the end region size for the two different surface conditions are

made.
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Unlike the rigid surface problem for which there exist symmetries discussed
by Gill (1966), in the free surface case there are no symmetries and so both hot
and cold end-zones require individual consideration. Also, there appear to be no
multicellular steady-solutions of the type obtained for the rigid surface by Hart
(1983) and Daniels et al. (1987).

An analytical solution of the end-zone problem is then presented where the
solution is considered as an asymptotic expansion in small Rayleigh number. This
is similar to the large aspect ratio expansion performed by Cormack, Stone and Leal
(1975) but is based on an analytical rather than a numerical solution of the governing
equations. The results of this expansion determine the first order correction to the
core solution explicitly for small Rayleigh numbers. The results are also compared

with a full solution of the end region problem obtained using a multigrid algorithm.

2.2 Governing equations

The system considered here is a rectangular two dimensional cavity of length I and
height h. The left hand vertical wall is at temperature 9* and the right hand wall
is at temperature 9% > 6*. The bottom of the cavity is rigid and adiabatic; the top

is adiabatic, but has no rigid boundary.

Coordinates are non-dimensionalised with respect to the height /i, such that
the cavity lies between z = 0 and 1, and x = 0 and L, where L = I/h. The temper-
ature is non-dimensionalised with respect to the temperature difference 9£ —9% and
is measured relative to the cold wall. The stream-function ip is made dimensionless

with respect to the thermal diffusivity, «.

As shown in section 1.3, subject to the Boussinesq approximation, the steady

dimensionless vorticity and energy equations for the non-rotating cavity are

A7 Pd9 diyNA) 2.2.1)
R dx dix,z) ' o
(2.2.2)
v d(x,zy
Here the Prandtl number
\
<= 7 (2.2.3)
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where v is the kinematic viscosity and k is the thermal diffusivity; the Rayleigh

number
R = Pg{Ph-9*c)h*I VK, (2.2.4)

where 3 is the coefficient of thermal expansion and g is the acceleration due to

gravity.

The boundary conditions are

i, = di —00—0 =0 225
i i 7 on z , (2.2.5)
dH 36
N =0onz=1, (2.2.6)
=0onx=0,1L (2.2.7)
* o dx
6-0onx=0 DB= ool = (2.2.8)

In keeping with previous work (Cormack, Leal and Imberger 1974; Daniels,
Blythe and Simpkins 1987; Hart 1983) the aspect ratio of the cavity is considered to
be large, L >> 1. It was noted by Daniels et al. (1987) that for the rigid surface case
there are strong non-linear effects in the end regions when the Rayleigh number R

is comparable with the aspect ratio L, or equivalently when
R1= R/L = 0(1). (2.2.9)

This is the parameter range investigated here. The strategy employed in solving
this problem follows that of Daniels et al. (1987). An exact parallel-flow solution
is found for the core — the region away from the vertical walls. Near the ends the
flow is turned through 180 degrees by local nonlinear adjustments to this core flow
which decay exponentially away from the walls; this decay is described by solving
an eigenvalue problem obtained on substituting the perturbed core flow into the

governing equations.

There are no symmetry properties for this system of the type described by
Gill (1966) for the system with a rigid upper surface. Therefore there are distinct

solutions associated with the end regions near the hot and cold walls.
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2.3 Core flow

In the core region away from the end walls, the order one variable £ = x/L is used
so that 0 < £ < 1. In this region the flow is parallel to the horizontal boundaries
and the temperature is linearly dependent on £, equivalent to an exact solution of

the Boussinesq equations obtained by setting

H=/(2), (2.3.1)
0= AC+ g(z), (2.3.2)

for some constant A and functions f(z) and g(z).

The governing equation (2.2.1) then simplifies to
r = RiA, (2.3.3)

with f = f' = Oonz = 0and / = /" = 0 on z = 1, where primes denote derivatives

with respect to z. This has the solution
/ = (2.3.4)

From (2.2.2) '
AfL7! (2.3.5)

with ¢' = 0 on z = 0, 1. On substitution of (2.3.4) into (2.3.5), and consideration

of the boundary conditions,

N1,1 5
= — 7 -z4+ -7z3)+B, 2.3.6
9= 5t vt @t (2:3-6)
where Sis a constant.
By defining
Glz) —z°--2.% 1, (2.3.7)

the parallel-flow core solution can be written as

= R\AG)\ (2.3.8)
6 = At+ B + RXA2GL~\ (2.3.9)

In order that the boundary conditions for 6 are satisfied at the two end walls, it is

necessary that
A=1+L~1A1+ ... (2.3.10)
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and
B =0+ LABi + ... (2.3.11)

in the limit as L —>o00. The order L 1 corrections are generated by the temperature

field produced in the end regions of the cavity to be considered in section 2.4 below.

Plots of G, G' and G" against z are given in figure 2.1. These show graphically
how the temperature, stream function and horizontal velocity depend upon z. The
graph of G shows how the temperature increases towards the top of the cavity; that of
G" shows that the hotter fluid moving towards the cold wall occupies approximately

the top 40% of the cavity: when G" — 0,z = 0.578.

The results (2.3.8) {2.3.11) can also be obtained by formally expanding the
solution in inverse powers of L and solving the individual problems which arise at
each order of magnitude in the Boussinesq system. In summary, the core solution

can be expanded in the form

ip —RiG'(1+ L Mi) £0(L 2) \ft 2312
0=p+L-\AIC+ B1+ RIG) + O(L-2) 3.

2.4 End-regions

The flow is turned through 180 degrees in approximately square regions at the end

walls. Near the cold wall
ip=ip(x, z) + ..., 6=1L 10(x,z)-f..., (L —o00), (2.4.1)

and substitution into (2.2.1) and (2.2.2) shows that ip and 6 satisfy the full governing
equations with R replaced by R\.

o o.de _ . A(VVM)
vaP- Rizo=a’ L0 (2.4.2)
_ d(6,iP)
0= (2.4.3)

The solution must satisfy the wall conditions

. . , Oonx =0, (2.4.4)
i,= ai =e
dip 06 B
A - 11 Oonz =0, (2.4.5)
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and the free surface conditions

=1

’4>=(—)]¥T=?e-=oonz

(2.4.6)
0Zz
Finally, the solution must match with the core solution, requiring that
RiG'
-
6~ x4cT RiG (x —>00) (2.4.7)
where, from matching with (2.3.12),
c = B\ (2.4.8)
Near the hot wall
ip = ip(x, z) + 6 —1+L 19(x,z) + ..., (L —o00), (2.4.9)

where x = L —x. Substitution into (2.2.1) and (2.2.2) yields similar equations to

those of the cold end-zone, except that because of the replacement of x by L —x,

the two Jacobian terms and the buoyancy term have opposite sign:

0
_ 2.4.10
T T Az ( )

© e ) (2.4.11)

The solution must satisfy the wall conditions

= _4- gonx =0, (2.4.12)
0x
~  dip
fl'=x- = y-=0 =0, 2.4.13
/=%, Ty T Oonz (24.13)
and the free surface conditions
_ d2p 36 (2.4.14)

As in the case of the cold end-zone problem the solution must also match with the
core solution, requiring that

P RIiG @ =00y (2.4.15)
9~ —x+ cT RiG



where from (2.3.12)
c —Ai + B\. (2.4.106)

The two end region problems must be solved to determine the constant pa-
rameters ¢ = c¢(Ri,a) and ¢ = c¢(Ri,a) as functions of both Ri and a. The core

solution (2.3.12) is then completed to order L~I, given that
A\l =c¢ —g Bi =c (2.4.17)

Properties of the end region solutions will now be considered.

2.5 End-zone eigenvalue problem

Insight into the behaviour of the end region solutions for general Ri and a can be
gained by considering the manner in which the core flow is recovered as x —>co and

x — oo. For the cold end-zone it is expected that
V~ZEiG,+ £ £ 15r)e’B> (2.5.1)

6~x+c+ RiG + Y(D 0 (z>Al; </)eax, (2.5.2)

for Re(a) < 0, 1> 1, while for the hot end-zone it is expected that

~ Ri'G’+ Y <K*Ru (2.5.3)
9~ -£ +5+ RiG + ~ 0(z, R1}tj)e~af, (2.5.4)
a

for Re(a) > 0, x 1. Substituting (2.5.1) 2.5.4) into the governing equations and

linearising leads to a single eigenvalue problem for both end-zones:

Jo+2a2f +aV aRi®= . (G"(f+a2d) Givf), (2.5.5)
0"+a2Q- #=aRi(G"Q - G), (2.5.6)

with = ()'=0'=0onz =0and )= ft' = 0' = Oon 2 = 1. In general the
eigenvalue a is complex: a = ar + ia,-. Solutions where ar > 0 relate to the hot
end-zone; where ar < 0 the solutions correspond to the cold end-zone. By taking
the complex conjugate of (2.5.5) and (2.5.6) it can be seen that if a is an eigenvalue

corresponding to eigenfunctions ¢g>and 0 then a* is the eigenvalue corresponding to
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the eigenfunctions <¥ and 0*, where the asterisk denotes the complex conjugate. To
avoid confusion, the imaginary part of the eigenvalue, is taken to be positive at

the hot end and negative at the cold end.

For general R\ it is necessary to solve the eigenvalue equations (2.5.5) and
(2.5.6) numerically. Results were obtained using a fourth order Runge-Kutta scheme
with Newton iteration, which found a while keeping R1 fixed. The initial estimate
of a. needed for such a scheme was taken to be the result at the previous R\ value.
Thus values of a were traced out for increasing R\ starting from R\ = 0 where the

eigenvalue problem is analytically solvable, as follows.

When Ri = 0 the end zone eigenvalue problem simplifies to

S+ 2a2()" + a4f -0, (2.5.7)
0" +2a20 <5 =0, (2.5.8)

with g —41=0'=0onz2=0and @)= #'=Q =0onz=1

For the trivial solution of (2.5.7), 4 — 0, the solution of (2.5.8) yields the real

eigenvalues
a = *n7r, n=1,2,..., (2.5.9)

with eigenfunctions of the form 0 = cos mvz. Note that any multiple of the eigen-

function is a solution of the eigenvalue problem.
Alternatively, the relevant non-trivial solutions of (2.5.7) are
= sinaz —aztana sinaz —az cosaz, (2.5.10)

where a is a solution of
sin2a —2a = 0. (2.5.11)

The complex roots of (2.5.11) are tabulated by Hillman and Salzer (1943), giving

a = +(3.7489 + 1.3844z), +(6.9500 + 1.67611), .... (2.5.12)

2.6 Numerical solution of the eigenvalue problem.

It is necessary to solve the eigenvalue problem numerically for general values of R\.

A fourth order Runge-Kutta scheme was used to integrate the equations from the
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apecified bouncary concitions al @ — 0 Lo give aceurale sesulls 2l = — 1, These
reanlis were made consislenl witn the boundary conditions at 2 = 1 by owubining
three independent solalions acd wsing a Newlon Heralion, A siniler scheme wis
naed muccessfully by Deniels ef ol (18871 [ has sood accouracy, converses well
anid the computer encoded version 15 rmalively easy lo checx, These advantages
generally outweigh those of allercative methods, such as Lhose based on Galerkin

techrigues, The compulalions wers carned oot on & Space workstation,

The Runge-Kulla scheme requires ke eggenvalue problem S0 be re-weitten
as a set of frst order equaticns, On geparating the problem inte real and imaginary
aaris, [2.5.8) and [2.5.68) vield {welve Orsl-order equations of the fonn

Wy iy, W= i,

fa= g, =i, Ha= =1

lI:|Iﬁ = ql);-j = Hii ];IIP' = Ii?l:r - I‘Ii'h ' 1} El J.
A L R ':.-" .]

fr=g" =1t Ho=40" =7

ys = Wi = &y,

i1 = E'; = EJ;. Wy = E':' = 1’1:;-:-

vl bourdary conditions

o= ¥ =
1= e = 10, I:E.Fr.ﬂ:l
=% =0, onz-0,
and
¥i =3 =0,
1,'5 — '!II'.:_; = D:I |:2r.i|3:|

== 0, ooe=1

The twelve [irst order equations of the form 3! = filz, g1, ..., 2] arc sobved

by the Runge-Kulwe yiherne

] : B . . .
Viptl — Mn T E.{ ki, 1_] —2ki5,d) -2 E‘.I:_'t:_H:I - 'i"':.li"l 41 [E'ﬁ'4.-'
where
l':;::'ll] = 'll"',lr[z‘l..:::lll'l..rl:"':?1'13.?1_]: X i X
ki 2] = Rflee—thoyna+ R0 LD e | SR(LE, 1], (2.6.5)
£0,3) = Bf(z— ke + R(L D).y + HH(12,2)) e
Ba 4l = kflze - et L3 o) Yz — R12,300
For rost calculations Lhe slep size from 2 = 0 to 2 = 7 was gaually taken Lo

he k= .01, w'th = taking walues [roon O to %9, The outcome of this procedure is

to obtein the valucs ef 1y, .. nalb =1
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Values of 3o are given by the boundasy condilions at = — (), excepl [or

: = 3,06, 7,5%, 9,10, corresponding to the values of ¢/, ¢ and © at = — U, Thus three
solitions are compnted, bhe general solubion being a hnear comaination of the theee:
g o= Ayt 4 Byl gt (2.6.6)
Here 't is the salution for neon-zero " at =z = 0, U(?J i the solution [or non-sero
& gl z — U and ¢ is the solutian “or non-zero € as 5 = 0. In order Lo salisly Lhe
honndary conditions ¢ = 2% — @' — 0 at £ = 1 it is required that
Al a0 Blu ) F oG+l =,
Al | =yﬂ“: Byl 4 iy )+ Clyt +ag ) =4, (26.7)
Al + il )+ Bl +wll + l’“ﬁ;?l} Figl =10,
el z = 1. Thus & nen-irivial solution far A, & and &7 requires Lhal the sorplex

deLernaazl
['I_] (l] |1'|+11||1] 3 i : I'."|-:I

i “?-'2- iy
D=D, -, = ygl" gttt gl gl gl w,fj” [2.6.5)
iz [
3 +'i=3a“ y:l]ﬂym] yis 4 iy
va~ishes at z = 1. Thus toe pair of equations
Br':arg':t:jl = II-'\l'l:l 'I_"Izl:'nﬁw r"':l.:' I-I: I:'Ef.!i_':_;l]

must be solved so determine e, and e, the real and imaginary parts of he eigenvalue

-
L&

The determinant 12 brought suthciently close to gero by the Newton iberation
a0 g

D.+—fa,+ | ha; =10, (26,10}
Few, O,

Iy 4+ ?Dirfca 2k Er.rx = D, (2.6.11)
e, rie;

where S, fo, ase increments in the values of o, and o, Lo praclice, the derivatives
were exlitnaled Uy coraputing three solutions for O al o, o« 8 azd o | oo, with &
gsnally aker to be 10°* The partial derivalives were Lhen appeoximated as o by

uging a sirnale [ocward difference approsimation.

By solving (2.6.10) and (246.11) lor o, and da;, the values of o and o
were nadated and Lhe whole process repeated nanally until the change in on and
ce, wis less thar 8§ Values of D and £, were ronitored to check convergonce.
The accuracy of the computations was also checked by comparison with the resulls
uita ned by halving the step sise in the Runge—Kutta scheme from the usaal 1077

azdl by reducing the tolerancs of the Newtbon iferation.

27



2.7 Numerical results

The eigenvalue problem (2.5.5), (2.5.6) was solved numerically by the method de-
scribed in section 2.6 for a range of Prandtl numbers including both infinite Prandtl
number and small values of around 0.1 or less. Results are given in sections 2.7.1 and
2.7.2 respectively. Results for a Prandtl number equivalent to that of water, a « 7,
were found to behave in a similar manner to those for infinite Prandtl number. For
each Prandtl number regime, results for both the hot and cold ends are given, and
each end has both ‘real’ and ‘complex’ eigenvalue branches which stem from the
limiting behaviours at R\ = 0 defined by (2.5.9) and (2.5.12).

As discussed in section 2.5, a and its complex conjugate a* are solutions of
the eigenvalue problem, and thus for simplicity both real and imaginary parts of the
hot end solutions are taken as positive, while both real and itimimry parts are taken

as negative for the cold end solutions.

2.7.1 Infinite Prandtl number

Figures 2.2 and 2.3 show values of a as a function of Ri for the first four real
and complex modes of the hot end solution. The fifth real mode is also shown as
this interacts with the fourth real mode. Apart from this small ‘interaction’, which
produces a complex solution near Ri = 1800, the behaviour of 2 with Ri is relatively
simple; the real modes become increasingly more important than the complex modes
as R1 —>oo0 in the sense of determining the scale of decay of the end-zone solution.
This is indicated by the decrease in value of the real mode eigenvalues (compared
with the increase in the real part of the complex mode eigenvalues) and represents

an expansion of the end zone into the core as Ri increases.

Figures 2.4 and 2.5 show the corresponding eigenvalues of the real and com-
plex modes of the cold end solutions. Here the fourth complex mode is plotted with
the real eigenvalues to indicate an interaction with the fifth real mode. A detailed
interpretation of these ‘interactions’ is not undertaken here because the modes decay

too quickly to be of interest.

Comparison of the results for the hot and cold ends at large values of R\
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shows that the magnitudes of the real eigenvalues of the cold end are smaller than
those of the hot end, suggesting that the cold end-zone extends further into the core

than the hot end-zone at large Rayleigh numbers.

The real eigenvalues and the real part of the complex eigenvalues remain
non-zero for all values of Ri which suggests that the end-zone solution approaches
the core-flow as proposed in section 2.5, and that as in the case of a rigid upper
surface (Daniels et al. 1987) no steady multiple cell solutions develop in the system

at large Prandtl number.

Figures 2.2-2.5 show that for R\ > 3000, the most important modes at both
the hot and cold ends are the first three real modes; the complex modes are com-
paratively insignificant and correspond to a strongly-damped oscillatory component.
Thus most of the turning of the fluid is associated with the first three eigenfunctions

(f, which are plotted as functions of z in figure 2.6.

For both hot and cold ends the first eigenfunction of () (which affects the
core flow first as it approaches the end wall) is similar in shape to the core-flow
stream function. This basically has the effect of slowing the flow. The second and
third eigenfunctions of () at the hot end have the greatest effect on the core-flow
at the bottom of the cavity, while those of the cold end have the greatest effect in
the upper part of the core-flow; at first glance there seems to be an odd symmetry

between the second and third eigenfunctions at each end.

The corresponding temperature eigenfunctions 0 in figure 2.7 show a similar
odd symmetry: the largest effect on the core temperature is at the top of the hot
end and at the bottom of the cold end. The first eigenfunctions have the effect
of lowering the temperature towards the top of the cavity near the hot end and
increasing the temperature towards the bottom of the cavity near the cold end, so

that the temperature becomes more constant with depth towards the walls.

2.7.2 Small Prandtl number

The eigenvalue problem was solved for three different small values of the Prandtl
number: 0.1, 0.05 and 0.02. The real and complex eigenvalues for the hot end are

plotted in figures 2.8 and 2.9 and for the cold end in figures 2.10 and 2.11. Only
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the first modes are shown as these have the most penetrating effect on the core flow

and are therefore of greatest interest.

Although different in detail, the real modes at both ends are similar to those
for infinite Prandtl number - similar in magnitude and decaying with Ri. A com-
plicated interaction between the first few real modes at the hot end is shown for
a —0.1 in figure 2.12. The higher ‘real’ modes appear to develop extensive complex

portions as Ri increases.

The behaviour of the complex modes is quite different from that of the infinite
Prandtl number case. Both real and imaginary parts of the eigenvalues for the first
hot end mode decay very quickly with itfl, while the eigenvalues for the first cold end
mode appear to converge to constant values with increasing Ri. The eigenvalues for
the second cold end mode decay quickly with increasing Ri and soon become more

important than the first mode.

For both the hot and cold ends and for values of R\ up to 3000, the real part
of the complex eigenvalue is smaller in magnitude than the first real eigenvalue.
The results suggest that at large values of R1 the decay in the end-zones remains
dominated by the complex modes, equivalent to a slowly damped oscillatory decay
into the core-flow. Thus the main difference between the infinite and small Prandtl
number problems is that at large values of Ri the most important modes in the
latter case are the complex modes while in the former case the real modes dominate
the flow. Neither the real modes nor the real part of the complex modes appear to
reach zero at finite Ri and so the parallel-flow core solution remains valid, unlike
the case of a rigid upper surface where at small Prandtl numbers the flow is forced

to break down into stationary multicellular convection at sufficiently high values of

Ri.
2.8 Asymptotic results for large Ri

The numerical solutions of the eigenvalue problem (2.5.5), (2.5.6) for infinite Prandtl
number plotted in figures 2.2-2.5 suggest that the real eigenvalues a have the be-

haviour

a -~ % as Ri 00. (2.8.1)

i
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For finite Prandtl numbers, the numerical results shown in figures 2.8-2.12 suggest
that there are solutions which behave in a similar manner as Ri — oo, but with
«o either real or complex. In this section an investigation is undertaken to identify
these solutions which determine the scale of decay of each end-zone at large values
of R1.

2.8.1 Infinite Prandtl number

Substitution of (2.8.1) into (2.5.5) and (2.5.6) at infinite Prandtl number and reten-
tion of the leading order terms as Rx —oo yields the reduced problem

iT - ao0 = 0, (2.8.2)
0" = a0(G"0 -G'<f>), (2.8.3)

with 9= () =0'=0onz=0and = = 0'= 0on z = 1 This was solved
using the Runge-Kutta iteration scheme described in section 2.6. The results for
the first three real modes are given in Table 2.1, and show good agreement with the
numerical solution of the full equations at R1 = 3000, particularly in respect of the

leading mode at each end of the cavity.

Asymptotic Full solution
mode Qo a(/Ri (Ri=3000)  C(Ri=3000)
hot 1 2179 0.7262 0.7125
hot 2 8142 2.7140 2.439
hot 3 19520 6.5080 5.131
cold 1 -2009 -0.6695 -0.6534
cold 2 -7442 -2.4810 -2.2200
cold 3 -17440 -5.8140 -4.5480

Table 2.1: Comparison of the results of the asymptotic form and full-equation form of the

eigenvalue a.

The values of a0 for these leading modes suggest that the e-folding decay
length for the hot end-zone is

x ~ 4.59 x 10”4Ri, Ri —»o00, (2.8.4)

31



and for the cold end-zone is
x ~ 498 x 107441, R\ —oo0, (2.8.5)

indicating that the cold end-zone extends somewhat further into the core than the
hot end-zone. Daniels et al. (1987) found that the e-folding decay length for the

end-zones of the problem with a rigid upper surface is
x ~ 2.20 x 10"4i2i, (2.8.6)

roughly half the length of the end-zones here for the free surface problem.

2.8.2 Finite Prandtl number

For finite Prandtl numbers substitution of (2.8.1) into (2.5.5), (2.5.6) and retention

of the leading order terms as R\ —>o0 gives

#0- add = = {G"f- Glg) (2.8.7)
0" -()' = ao(G"0 - G(). (2.8.8)

The results of solving (2.8.7) and (2.8.8) by the Runge-Kutta iteration scheme are
given in figures 2.13 and 2.14 as plots of a0 against 2. The numerical solutions of
both the full equations at i?i = 3000 and the asymptotic equations with a = 0.10,
0.05, 0.02 are given in Table 2.2 for the first complex mode relating to the hot end-
zone, and in Table 2.3 for the second complex mode relating to the cold end-zone
- figure 2.11 shows that for large Ri the second complex mode decays slower than
the first. The results in these tables indicate good agreement between the numerical

results and the asymptotic theory.

Asymptotic Full solution (iq=3000)
a  gor O Opr/Ri (fli=3000) C+O/RI (-Ri=3000) 0% a.l
010 559 414 0.186 0.138 0.180 0.137
0.05 289 219 0.0963 0.0729 0.0961 0.0725
0.02 119 887 0.0397 0.0296 0.0395 0.0295

Table 2.2: Comparison of the results of the asymptotic form and full-equation form of the

complex eigenvalue a.
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Asymptotic Full solution (;?!=3000)

a aoi  OLoJR\ (A=3000) QOi/RI (Hi=3000) ar a
010 -2074 -842 -0.692 -0.281 -0.694 -0.283
0.05 -1078 -418 -0.359 -0.139 -0.360 -0.140
002 -434 -168 -0.145 -0.056 -0.146 -0.055

Table 2.3: Comparison of the results of the asymptotic form and full-equation form of the

complex eigenvalue a.

Figures 2.13 and 2.14 show that, at both ends, in general the leading complex
solutions of the form a ~ a(/Ri only exist for a less than about 0.5. At a = 2, the
values of ao for the first few real modes have approached their limiting values for
a = oo given in Table 2.1, and for these modes there is little dependence on Prandtl

number for a > 2.

2.9 Asymptotic expansion of the end region solu-

tion for small R\

The asymptotic solution as Rx —>0 for the cold end-zone is considered first; similar
results for the hot end-zone are then derived, allowing the constants Ax and Bx in
the first order correction to the core solution to be obtained in the limit of small

Rayleigh number.

The stream function and temperature in the cold end-zone can be expanded

in the form

ip —Ri'pi T Rxlp>T meej (2.9.1)
0 —% + Ri@i + Rx@ + ees, (2.9.2)

as Rx 0 with
c —@+ R\C\ T Rxc2T ... (2.9.3)

Substitution of (2.9.1) - (2.9.3) into the end-zone system (2.4.2) - (2.4.7) yields a

succession of problems at each order in Rx as follows.

At order one, the heat equation gives

V 240 = 0, (2.9.4)
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with

#fo=0onx =0, (2.9.5)
9 ~ x -f c0as x —>00, (2.9.6)
and
0 = 0,1. 29.7
dz on z ( )

Integrating (2.9.4) between z = 0 and 1 gives

d> 1
90dz = 0 2.9.8
ol 0 (238

where (2.9.7) has been used. Integrating twice with respect to @ and using (2.9.5)

and(2.9.6) shows that ¢q = 0 and the required solution for 9 is

9n = x. (2.9.9)

At order i?i, 0i is generated by this horizontal thermal gradient and is found

to satisty
V40j =1, (2.9.10)
with
dib <0i
0i= ™ C0onz=0  Oi=wy =Oonz=1, (2.9.11)
az 0z
0i = =0onx=0 and 0i —>G' asx —o00. (2.9.12)

ox

The solution can be written in the form
0i = G+ (2.9.13)

where 0(a3,z) satisfies the biharmonic equation and can be found by separation of

variables in the form

4= ReN2 [ik (sinafcZ —a”z cos a”"z —a”z tan a¥, sin a”z) eakX, (2.9.14)
k=1

where /jj. are constants to be determined from the boundary conditions at x = 0,

and ajt are the roots of

= —sin2a/. (k=1,2,..) (2.9.15)
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with negative real part. These were found by Newton-Raphson iteration and checked
with the results of Hillman and Salzer (1943).

The boundary conditions at x = 0 given in (2.9.12) are now

Re [N2/Nsinakz —akz cos akz —akztan ak sinakz) \= -G/, (2.9.16)
\k=1
and
Re J™ cikf"k(sinakz —akzcosakz —akztanak sinakz) = 0. (2.9.17)
\k=l

The eigenfunctions and the velocity profile G' are written as Fourier sine series,

giving

@® oD \
JO JO bnksinmrzz - — J~ ensinmrz, (2.9.18)
and k=1 71=1
Re JO akfik JO 6,fcsinmrz =0, (2.9.19)
\k=L n—-1
where
. 4n7T
bnk — bnkr ‘1 4t — nir¥ Y akSm afc> (2.9.20)
and .
] n7)2+ 8 ((—1)n — 2.9.21
4(n_/r)5<< 7r)2+ 8 ((—1) 1)) ( )

Equating coefficients of sinnirz leads to a series of equations of the form

kA ) Y ke itk (2.9.22)
=1

J') e Marbnkr ~Kok™) 6 kTT MTPwki)f 6 (2.9.23)
k=1

where jik = fMr + y/Jki. The matrix system was solved using Gaussian elimination
with partial pivoting and values of the first few coefficients are given in Table 2.4;
the infinite sum was truncated at k = 8 at which point the first four coefficients
were estimated to be accurate to three significant figures. Figure 2.15 shows the
streamlines of the end-zone flow associated with fpi which indicate the fastest motion

near the free surface.
/ii 1.82 x 10-3 —8.49 x 10~3f
fiz 1.27 x 10-4 +4.58 x 10_4i
fiz 2.34 x 10-5 —1.14 x 10-5f
/4 -9.94 x 10~6+3.21 x 10~5z

Table 2.4: Estimates of the first four values of fi.
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The first order temperature field 6Xis now generated via the equation

2f4 = 2.9.24
Vv i (2.9.24)

obtained from the order Ri terms in (2.4.3). The boundary conditions are

‘ZI —0onz=01 (2.9.25)

61=0onx=0 and —>G + ¢\ as x —>o0. (2.9.206)
Integration of (2.9.24) shows that
d2 ri1
&dz =10 2.9.27
o b (2.9.27)
and it follows from (2.9.26) that
G= —¢ Gdz ~ —. (2.9.28)
1

720

The solution for can be written in the form

= G+ 0(x, 2) (2.9.29)
where
(2.9.30)
n=0
—1 . tan
+ Re< 2 NHk\--—--tana smc”z---------- & cos a’z H- zsma’'z
k=1 2
AN B
4—4ztanai COSEliZ————Cl'———t—i—LEjZ]% ZSII!la tz —-—-—Zzzcosaiz |\eoln 1

and njn, n = 0,1,. .. are real constants to be determined from the boundary condition
0= —Gats=0. (2.9.31)

The thermal eigenfunctions associated with  are written as a Fourier cosine series

of the form )
arvfccos nirz, (2.9.32)

n=0

where
4aj? (ra7r)2tan a*.

(al ~ (n71)2)3) 1

(2.9.33)
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and op ¢ = 0. Similarly, & is wriliesn as the Fourler cosine series

Z iy, CO8 Tz, 12.9.34)
=0
wnere
| (1™~ 1 .
+ ER '2.%.5)
o A(nm ) Hnw)® - i
ATIE ]
dey — .
T2
The boundary condition B — —% at x = [l can now he written in terms of Fourier
COSLTIO BOTINE AN
dg - Z iy CUS TN E = [958}
n=1
= r Ei oo 5
N — Z Ty COE ATE J'Eei L iy Z Oy o L0 n'.'rz}-
n—1 =1 m-1
Ecusting she constart terms,
-1
e — a0
coofirming the result given carlier lor o BEgualing the coefDoentss of che cosines
lesels to .
iy, = T — Z "{{E’[Fn'rﬂn.i:_] )
=1
aT
= "= = derpinm)® tan oy ,
p o= I. -1 \‘L, 1}_"}"-3(#.1: doeain)? tar {:u) n=1.9... (2937
divem )1 Aaar)® o (] — [mr)2) ~

ani the cocfficienls ny cen oow be calculated using the known values of w. The
firat few cocfficients are given in Table 2.5, Isotherms of # are showrnoan figure 214,
The eFect of # 12 to make the luid at the botterm of the cavity cocler, and thet at
e top hotter, than the tenpezeture field at leading order,

Mmoo 593 = 10T
ng —6.35 = 10"
PR R L
Ny —a06 =« 10°°

Table %.5; Esv mates of the first four values of 0.

Al vrder B @y and &y &re found to salisly

£ -..-:2 f & T .
T, - O Iﬂ:%}’%} i (2.9.38)
[ H |'|_:E.|.3_.'
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PRy

with
i 32 ba
ﬁg;i%—l.luur —1 and y':z_—.{H;"——Ul.l:]z=1|
and O(0y,v,) O
| Y1) | Oy *
2y, — .1,1«"3, a . 20,403
: Az, =) Az’ Iﬁ :I
it a8
el =0wun =z — 10,1 [2.9.41]

Hz
Complete anutions for ¢y and 8y ere cuombersorme and are not allemmpled hers, bul

(205.40) van be mtegrated to obialn a fermula for ex 2s followrs:
1 ey o
i 0'\9] s Y1 j . 1
— ¥ —_— N d 1"' N {2942]
2 s -!aim,z__l z | |,+'3]|_'| ! ]

1 3%, a8, |
o i sz

Uging vy = 88782z — Oen = — U, 1, and integrating with respect 2o = gives

L a6,]™ S N T .
[122] dee [ [ D3P0 panl o (9.6.43)

A I'JI. P Stz {:':_:ll:'ll.ﬁ_:l
where w15 a couslant of tegration, Since #; — o an @ — oo, this implica thal
v 20 aud hence that my = 0. Integrating again and noting thatl

ity — 0 as o

fy = Nonz— 0N yieles
poe geo L Ay ]
eg ==F ST Qe o (24,44}
dp=i Jm'=g Je=1 ﬂ-l' :1:’, 3;' ;
Tzing the substitutions
B =G~B and gy =C"+4, [2.0.45]
tne first two intoprals can be re-wrtlen o
e #l 09(6,)
061, 1) dr' da =
Jzt== Je=0 I:il[.i'r,.?:l
Y T N |
/ (‘?U gi. 9%\ ¢ (ﬁ' + 5_) dzdz’.  [2.9.46]
Jzi=g Jo 1 Fu Az dz’ \ Az
On nterchanging the arder of integraticn, the rnght hand side can be simplified to
[2.9.17]

o o
/ (G’qﬁ G0 + gba—®> dz
0 0z

a8




ared then (2,844} can be written as

Y A (G".-;S—G"E} + (i@) dz du. 2.6.48)
Ja A z

The fire: pasl of Lhe dounle inlegral was lound analylically nicg the symbolic
alpenra package MAPLE. Using the frat four n end p values given in Tables 2.4 and
20 mres

i / (G — GO dadm =2 1,87 » 107% (2,849}

Ja Ja
Lhe contribulion of the higher modes decass cuickly; the contribution of the fourth

rr.n-:lc:]-::ss by a feclor ol 10% lhan Lhel of ke s,

Toe second parl of The integral was st plified ]:l}' firat noticg that

LR, T2
—d —rf de = —.:1’. dx O3 G R
-\.-rl'l q £ JIII ‘If' E:l . - 9 :
and then splilling @ into its complerentary and partienlar pasts [ = €, 4 63,]
such Lhal
. I!'}If.." e Al ﬁ'q.'i-
{'“.l—dzuiu:_fr Le] I'f':i dz o
f [ Ay ..'Ilrl_n Ve °) i
/ / { T cos ?'mz) :
JI) ] =0
- hat I
"& R'-*!Ir-:( ! EAT ey, 81T (2, 2 — A s Q2 + —ZEIN Qg2
=i v deuy 1
1 L Y ¥
-+ y ztan v, CORTL,E — Hr in n Lzt sin oz L? z* cos L‘tHEJ c"“"') } ™
T fe [,u,u; L zeoss o — L) sin eoes — sor 008 r.xkz) g ham g ﬁ“"‘*’.:i e .

The complementary nart of the integral can again be solved acalytically:

) 1 . :
f 6. 4o do = 2051
0 u {-"u \
2[11*1"2.*&-?\
,.,'} Rsl,u. Gafl e
“Z_;j-? k=1 i ) kxk'i”-",' _HE; l.'j‘*_:lllT.l'I

and using the values of 9 sane g given 1n Tebles 2.4 and 2.5, this mves the valae
of Lhe wtegral as —1.04 = 1677 The = inlegrelion of loe 'paruiculaz’ part of the
ILLeEr.

/-w }'1 Gp%dfdﬂ:, 3.0 .52)
Y . Oz ’ ) !
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was determined analytically and then the resulting z integrations were performed
numerically using Simpson’s rule with a step size of 10~4, and the same values of
77 and ;. This gave the value of the integral (2.9.52) as 6.29 X 10~6. The earlier
integrals for which analytical solutions were found were used to check that the
numerical solver performed correctly. It was also adapted to perform the entire

double integral
°° f1©ymdz d 2.9.53
o @)

directly, as a verification of the above work.

In summary, the value of c2 for the cold end-zone is determined as
2= 137 x 10“5- 1.04 x 10"5- 6.29 x 10”6 = 9.65 x 10”6 (2.9.54)

which agrees to within 1% with the numerical result obtained by Cormack, Stone

and Leal (1975) using a finite difference approximation of the end-zone flow.

In the hot end-zone, the co-ordinate x = L —x is used as the distance from
the hot wall, and 9 and ip represent the local temperature and stream function fields.
These satisfy the equations and boundary conditions given in (2.4.10) - (2.4.15). For

small R1, ip and 9 can be expanded in the form

ip — R\ipi 4 Riifn+ wam; (2.9.55)
9 -9+ R +R \ .., (2.9.56)
C= 0+ R\G + RG+ ... . (2.9.57)

Substitution into (2.4.10) and (2.4.11) yields a succession of problems at each order

in Ri similar to those of the cold end-zone. At order one it is easily established that
c0= 0 and

G = (2.9.58)

At order i?i, ipi and  satisfy

VS/q:=1and V2x = P (2.9.59)

with
m —>»G' and 99 G + ;1 as x —>o00, (2.9.60)
ipr = =§1=0onx =0, (2.9.61)

ox
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znd the nsual boundary conditions at z = 0 and z = 1. These problems are identicel

to those Zor ¥y and &) in the cold end-sene so that

¥1(Z, 2) = (&, 2), iz z) =¥z z) (2.0.62)
anc 1
ST T g ~

Ml order H?,

-5'5'-1 15}(¢2ﬁ'j’1;"¢5‘1 )

Wiy = ——— < (2.9.64
¥2= "% 7 T 8z,2) 2-0.64)
_as B B
Vi = ———2—=" - . 2.9.63]
3 Y dz { i
with =he usual heundary conditions at z — 1 and z = 1 anc
whg =y = on 2 =1, {0.5.6R)
and
'I;!E'g ’ U,-..ﬂ:z — {2 A% @ — o, I.-"':lﬁ"_J
Comparizon of (2.9.64) with [2.9.28) indicales thal heve
-q.']:[;i:, 3:| = —alaiT, 2], [ 2.0.6R]
anrl
£z — —Cz. [2.9.64)

Thrs at zhe hot end the leading order slrewn [unclion acd fisst onder tem
peralurs [isld are 'mirror images’ of thase at the cold end shown ic fGpgures 2.15 and
2.6, The nepalive symmetry of the second order stream function iz assocated with
o downward s7ift of the atreamlinea in the coid end and an cpward shill at Lhe hot
end relative Lo Lhe leading order behaviour. Tn the core salution (2.3.12) the Lwo

Al

conetants A, and M are nvow determined from (2.4.27; as

Ay~ —2o R —1EIx I0T°H, Ry -0, [2.9.707
anc
o o~ n'.'f|_..i|:-i'1-|'l'.'-:H:|3
L .
T 965 = W9RS, By s (2071
{
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The solution for A\ shows that as Rx increases, the influence of the end walls is to
reduce both the speed of the core flow and the horizontal thermal gradient. The
solution for Bi represents a downward shift in the temperature field throughout the

core so that the temperature at the free surface is
C+LARjN- (2.9.72)
A 576

and on the base is
I-L~IRI— . (2.9.73)
N

2.10 Discussion

Unlike the case of a rigid upper surface where at small Prandtl numbers the flow
breaks down into multicellular convection at sufficiently high values of R1, neither
the real modes nor the real part of the complex modes appear to reach zero at finite
Ri and so the parallel-flow core solution remains valid. The top 40% of the parallel-
flow in the core moves from the hot to the cold end with a maximum velocity at
the free surface of —i?i(1/48), greater than the maximum velocity (11/16).[R\ /48)
of the return flow in the lower 60% of the cavity. At finite Ri the cold end-zone
is slightly larger than the hot end-zone, but both have an e-folding decay length
of order Ri and are roughly twice as long as the end zones in the rigid surface
case. The end-zones for small Prandtl number are dominated by spatial oscillatory
modes; at infinite and moderate Prandtl numbers the end-zones are dominated by

non-oscillatory modes.

The analysis of section 2.9 gives an almost wholly analytical first order solu-
tion throughout the cavity for small Rayleigh number and large aspect ratio. The
small R\ analysis shows that to a first approximation the streamlines are symmetric
in the end-zones, and the first order temperature adjustment indicates an increased
temperature in the upper half of the cavity and a reduction in the lower half rela-
tive to that corresponding to the basic linear temperature gradient. The first order
stream function has a negative symmetry equivalent to a slowing down of the flow
near the top of the cavity in the cold end zone and a speeding up of the flow near

the top of the cavity in the hot end zone.
Some solutions of the full governing equations (2.4.10) and (2.4.11) were
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found numerically using a non-linear multigrid program written by N.G. Wright,
and discussed in Wright, Gaskell and Sleigh (1995). The original program solves
the problem in the whole cavity with a rigid upper surface, but here a version was
developed to solve the free surface problem for the hot end zone. Solutions were
computed for low Rayleigh numbers in the range 1 < Ri < 50 and an estimate of c

found from the formula
ecn —@NT x —RiG(z) (2.10.1)

where 97 is the temperature profile computed numerically at a reasonably large

distance from the wall (x = 4). For small R\, this produced the behaviour
(N = -1.38 x 10~3Ri - 1.88 x 10~5R3, Ri —p0, (2.10.2)

the two coefficients being within 0.4% of the values predicted by the asymptotic
analysis of section 2.9. The numerical computations also produced streamlines al-
most identical to those given in figure 2.15, confirming excellent agreement between
the analytical and numerical solutions. It is hoped that further numerical work will
give values for the constants ¢ and c at moderate and at large Ri and show how the
stream function and temperature profiles behave in the end zones as the Rayleigh
number increases. Experiments by Simpkins and Chen (1986) suggest that for the
rigid-surface case there is an almost stagnant core with jet-like motion near the

horizontal boundaries at large Rayleigh number.

It is also possible to consider an asymptotic theory for the flow development
as Ri —» oo. Daniels (1993) argued for the rigid surface case that consideration
of the vertical boundary layer and the horizontal heat transfer balance in the end
zones leads to a prediction of the leading order behaviour of c(Ri, a) as R: —>o00 of
the form

c¢(Ri,cr) = R*co(cr) + ..., (2.10.3)
The same arguments are equally applicable in the free surface case, the only differ-
ence being the contribution to (o from the horizontal heat flux Q so that for both

end zones it can be argued that

7
¢~ c~ Rf{cO(r), R\ —oo, (2.10.4)
where
/3Ry (2.10.5)
G=UaJ] >
O 1
-a* (2436 + 4.884" + 4.952a) ? (2.10.6)
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and in the free surface case the heat flux is given by

Q=£ G2dz =19/1451520 = 4.75£rigid. (2.10.7)

Finally, an indication of the free-surface end zone flow at moderate Rayleigh
numbers was obtained by extending the analysis of section 2.9 in an approximate
manner as follows. The low Rayleigh number eigenfunctions were replaced by those
obtained numerically in the eigenfunction analysis of section 2.7 and the boundary
conditions on the velocity field applied at x = 0 and x — 0. This procedure is not
strictly valid because the exponential eigensolutions are not relevant close to the
wall at finite non-zero values of Ri. However, the results probably provide a good
indication of how the flow develops as Ri increases. The results shown in figure 2.17
are for i?i = 3000 and a2 = oo and indicate a downward shift of the streamlines in

the cold end zone and an upward shift in the hot end zone.
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Figure 2.1: Plots between z — 0 and 1 of G(z) (core temperature profile), G' (core
stream function profile) and G" (core horizontal velocity profile).
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0.0 1000.0 2000.0 3000.0
Ri
Figure 2.2: Eigenvalues a of the first five real modes of the hot end as a function of
R1for a = oo. The dotted line is the imaginary part of the fourth/fifth modes.

Ri
Figure 2.3: Real (solid lines) and imaginary parts of the first four (numbered) com-
plex mode eigenvalues a of the hot end as a function of Ri for a = oo.
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Figure 2.5: Reel {solid lne)] and imaginary parts of the Zrsl three (cumbered)
coinplex eigenvalues @ of the cold end as & function of B; for @ = oo,
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Figure 2.6: First three "-eigenfunctions (from the top down) of the cold (left) and
hot (right) end solutions at Ri = 3000 and a = oo as functions of z.
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Figure 2.7: First three ©-eigenfunctions (from the top down) of the cold (left) and
hot (right) end solutions at i?i = 3000 and a = co as functions of z.
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Ri

Figure 2.8: First two real mode eigenvalues a for small Prandtl numbers as a function
of R\ (hot end).

Ri

Figure 2.9: Real (solid line) and imaginary parts of the first complex mode eigen-
values a for small Prandtl numbers as a function of Ri (hot end).
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Ri
Figure 2.10: First real mode eigenvalues a for small Prandtl numbers as a function
of Ri (cold end).

Ri
Figure 2.11: Real (dot-dashed line) and imaginary (dotted line) parts of the first, and
real (solid) and imaginary (dashed) parts of the second, complex mode eigenvalues
a for small Prandtl numbers as a function of R1 (cold end).
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Ri
Figure 2.12: Interaction of the first few real mode eigenvalues at Prandtl number

a — 0.1. The first mode is the solid line, other modes are dashed lines; the dotted
lines are imaginary parts of the eigenvalues.
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Figure 2.13: Real (solid lines) and imaginary parts of the reduced eigenvalues a0 as
a function of the Prandtl number for the hot end-zone.

a

Figure 2.14: Real (solid lines) and imaginary parts of the reduced eigenvalues a0 as
a function of the Prandtl number for the cold end-zone.
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Figure 2.15: Contour plot of the first order stream function xfl.
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Figure 2.16: Contour plot of the first order temperature function 6\.
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Figure 2.17: Approximate solutions for the streamlines in the two end zones based
on the eigensolution of section 2.7 (cold on the left, hot on the right) for Ri = 3000
and a = oo.

56



Chapter 3

Stability of the non-rotating core
flow

3.1 Introduction

The stability of the system to transverse and longitudinal disturbances is investi-
gated in this chapter, by considering perturbations to the core solution of the full
governing equations. Previous work has mostly been concerned with the problem
with a rigid upper surface, although the stability of the free upper surface system
has been studied before both analytically and experimentally. Hart (1983) discussed
the onset of longitudinal instabilities and obtained the critical Grashof number as a
function of Prandtl number, 4, as did Laure and Roux (1989) using a variant of the
Galerkin method. Gill (1974) did not consider transverse mode instability for the
rigid and free upper and lower surface problems because of its non-oscillatory char-
acter, but on discussing earlier experimental results concluded “that the side walls
of the box stabilized this form of disturbance, or that the measurement techniques
were not sensitive to its presence.” The Galerkin-method/QR-algorithm scheme
used by Hart(1983) did not converge very well for a > 0.1, and so “these modes

being of less interest” no calculations were made beyond this point.

In this chapter the whole neutral curve is described for both transverse and
longitudinal disturbances and a detailed asymptotic analysis is undertaken to de-
scribe the limiting structure of the curve for large Rayleigh numbers. Using both

asymptotic and numerical techniques, estimates are found for the critical Prandtl
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numbers, ac, above which the system is stable.

The chapter is split into two main sections: one for the transverse modes of
instability, and one for the longitudinal modes. For each problem the linear stability
equations are derived assuming that the perturbations are made to a parallel free-
surface core flow. The stability equations are solved analytically for perturbations
with zero wavenumber k and general Ri, and for general wavenumber at Ri = 0,
where the system is stable. These results then assist in solving the problem for

general R1 and general k using a Runge-Kutta scheme with Newton iteration.

For both transverse and longitudinal modes, the large Ri asymptotes are
examined in detail. The development of boundary layers for finite wavenumber and
large Rayleigh number makes the numerical solution of the full stability problem less
accurate in this limit, but leads to an interesting asymptotic theory, the physical

interpretation of which is discussed in section 3.5.

3.2 The transverse stability equations

The full equations governing two dimensional motion parallel to the cross-sectional
plane of the cavity are

T2J.

V4¥- RA~ = a (3.2.1)
ox

(3.2.2)
3r =0 =3

previous chapter, away from the end walls (3.2.1) and (3.2.2) have an exact steady

parallel-flow core solution ap = x5, 9 =£0S where to a first approximation

>s = RiG'(z), (3.2.3)
86 89s (3.2.4)
a, - 1- =
with Ri = R/L and G = ,;25 5,0 « 454 -

To study the stability of the system to transverse disturbances, the core

solution is perturbed by functions $and 0 which are assumed to depend on x, z
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and ¢, so that

v
I

$s + e<j>(x,zt), (3.2.5)

3N
Il

Y195+ eé(x,2,1)). (3.2.6)

The transverse perturbations are assumed to be oscillatory in the x direction with

axes perpendicular to the core flow, and have the form
A0 = {~A),0(z))e “fe'fa, (3.2.7)
where the wavenumber k is real and w= ay + zoy.

Substituting the perturbed core flow (3.2.5), (3.2.6) into the governing equa-
tions (3.2.3), (3.2.4) and linearising in e yields the perturbation equation for the

transverse modes:

4fp- 2k 245"+ kdp -R 1ik& = D (G " U " -k 2>)-(t>Glo) + -U " -k 269, (3.2.8)
a a
Q"—k2Q ~4>'= RIk(G"Q - G4>) +1>Q  (3.2.9)

with = £ =0*=0onz=0and ¥ = 0'=0on 2= 1 These are solved for
ul = u;(i%, k, a), where it is required physically that R1fa > 0. If tu(i7i, k, a) is the
eigenvalue corresponding to the eigenfunctions (pand 0, then u*(Ri, —k, a) is the
eigenvalue that corresponds to the eigenfunctions ¥R\, —k,a) and 0*(R1, —k, a)
(where the asterisk denotes the complex conjugate) and thus solutions are only
required for k > 0. The system is stable if uy < 0 and unstable if ay > 0. From the

previous chapter it can be noted that there are no solutions for a: = 0.

3.2.1 Solution of the transverse stability equations

An analytic solution of the stability equations (3.2.8) and (3.2.9) is possible when
kRi = 0, that is for general R\ when k = 0, and for general k when Ri = 0.

When k = 0 the perturbation equations (3.2.8) and (3.2.9) are independent

of Ri and have the form

fo- - f =0, (3.2.10)
0" - 41 = WO, (3.2.11)
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with g = <¢= 0' = 0 on z

eigenvalues

0Oand = " = 0' = 0on z = 1. The ‘thermal

w=-(nir)2, n=20,1,2,... (3.2.12)

are defined from the solution of (3.2.11) for the trivial case of (3.2.10) (< = 0), with

eigenfunctions
0 = cosmr z. (3.2.13)

A second set of solutions arises from the non-trivial solutions of (3.2.10)
given by
E—T(cosTz+z —1) —sinTz, (3.2.14)

where values of T = "~ —cu/a are determined as the roots of
tan = T. (3.2.15)
This corresponds to a set of real negative values of 1. given by
w = -{20.191,59.680,118.900,197.858,.. ,}a (3.2.16)

and which approach the asymptote 1w - - (2n . 1)2(ir/2)2a for large integer values

of n.
When Ri = 0, the stability equations (3.2.8) and (3.2.9) simplify to

- 2K+ k4 = A5 - k2P (3.2.17)
0" - k2Q <> = cuQ (3.2.18)

with =g/ =0'"=0onz=0and £-F"'= Q =00n z= 1
For the trivial solution of (3.2.17), (3.2.18) has the solution
0 = cosnirz (3.2.19)
corresponding to the thermal eigenvalues
w- - (mr)2-k2, n=20,1,2,.. (3.2.20)

which reproduce (3.2.12) and (3.2.13) as k — 0. Thus, for Ri = 0 the thermal
eigenvalues are independent of the Prandtl number. Equation (3.2.17) has non-

trivial solutions of the form = emz where in order that ¢ may satisfy the boundary

60



conditions, it is necessary for there to be an oscillatory component to the solution.
This is the case if fo is real and —cu/cr —k2 > 0 so that

m = +k, *iT, (3.2.21)

where

T= - R (3.2.22)
The required solution of (3.2.17) is

b= lekz - efc2 2) - 2\1 ~ ,.'>,(etrz - eir(2”z))] (3.2.23)
—e

where values of T are determined as the roots of

tanhk tanF

- = _ . <3-2-24>
Note that as k —0 this reproduces (3.2.15).

Numerical solutions of (3.2.17) and (3.2.18), initiated from the results (3.2.12)
and (3.2.16) at k = 0, are shown in figure 3.1 as plots of 1> against k for a = 7,
corresponding to the Prandtl number of water. The shallow curves are the thermal
eigenvalues that correspond to the analytic solution (3.2.20), and the steep curves
are the stream function eigenvalues corresponding to the solutions of (3.2.24). Since
for the latter curves Iu is directly proportional to the Prandtl number at fixed k,
these curves become less steep as the Prandtl number decreases and then lie above
the thermal eigenvalue curves at sufficiently high values of k. This suggests the
possibility that it is these modes that will provide a mechanism for instability at

small Prandtl number and non-zero values of Ri.

The results of this section show, via (3.2.12) and (3.2.15), that the system is
always stable for k — 0, and via (3.2.20),(3.2.24) and figure 3.1 that the system is
always stable for Ri = 0. These results are used to initiate numerical solutions of
the full system (3.2.8), (3.2.9) for non-zero values of k and R1} to be described next.

3.2.2 Numerical solution of the transverse stability
equations

The full stability equations (3.2.8) and (3.2.9) were solved numerically using a fourth
order Runge-Kutta scheme with Newton iteration, similar to that used in the pre-

vious chapter. The stability equations were rewritten as twelve simultaneous first
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order equations. Then for given Ri, k and a4, and an initial estimate of .;, the
Runge-Kutta scheme was used usually with 100 steps to integrate the equations
from z — 0 (where the boundary conditions are prescribed) to z = 1; the full solu-
tions for ) 0 and their derivatives are then constructed from linear combinations of
the solutions for the three different initial conditions ¥'= 1, " —1and 0 = 1 at
z — 0. The three values of ¥ (™ and 0' at z = 1 then form a matrix, the determinant
of which must vanish in order that the boundary conditions at z = 1 are satisfied.
The Newton iteration used the values of the determinant at the points uj, v . Auy
and u; + Aw, to refine the estimate of u; and bring the determinant close to zero.
The iterative scheme was halted when the refinement to .; became less than Aon In
most cases the value of Alo was taken to be 10~4. Computations were usually started
from k = 0 where the values of to are known from the results of section 3.2.1. This,
together with the results for R1= 0 and general k, also provides an opportunity to
check the numerical results against the analytical solutions. Eigenvalue curves were
traced out by keeping Ri and a constant and incrementing k (usually by ~ 10-2)

and using the result at the previous value of k as an initial estimate of ;.

3.2.3 Numerical results

As discussed in section 3.2, solutions are only required for positive R1} k and a. Work
by Hart(1983) on similar problems suggests that the system becomes unstable for
small Prandtl numbers, and so attention was focused on values of a around 0.1
or less. Modes associated with the thermal eigenvalues at k = 0 are referred to as
‘thermal modes’, and those associated with the stream function eigenvalues at k = 0

are referred to as ‘stream function modes’.

The curves of the real and imaginary parts of a; as a function of k at Ri = 4000
and small a for the first three thermal modes are given in figures 3.2 and 3.3. It can
be observed that (in the calculated range) although the behaviour of the thermal
eigenvalues is not simple, these modes are stable. Figure 3.3 suggests that there is

a strong linear relationship between uji and k.

The modes of greatest interest are the first two modes corresponding to the
stream function perturbation. Plots of the real and imaginary parts of u; for the first

two stream function modes as functions of k at Ri = 4000 for small Prandtl number
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axe shown in figures 3.4 and 3.5 and figures 3.6 and 3.7. These become unstable for
certain values of o and k and have a certain predictability in that the higher the
Prandtl number, the greater the value of k needed for instability. There also seems
to be a link between these two modes: for a < 0.065 the first mode becomes unstable
and the second mode remains stable, but for 2 > 0.070, the roles are interchanged.
The exact point in (cr,ay k) space and method of interchange are difficult to define,
but the point is at approximately (crmt, aynt, kmt) = (0.0668,-2.83 + 4.15f, 0.126).
Figures 3.8 and 3.9 show a neighbourhood of (amt, wint, kmt). The ior curves are
crossed for 4 < <mi, and uncrossed for a > aint\ the a;, curves are crossed for
a < Pint and uncrossed for a > aint. The crossing of these modes does not seem

to represent any physical effect on the system: the value of k for which ay = 0
is ‘predictable” as 2 moves through <fini, and the eigenfunction g) when ay = 0 for
mode 1 at a = 0.06 and mode 2 when a = 0.07 are very similar, as shown by the

plots of the two complex eigenfunctions against z in figure 3.10.

Although not shown in the figures, the third stream function eigenvalues were
calculated for Prandtl numbers 0.05, 0.10 and 0.15, and were found to be stable. It

seems likely that further modes are stable.

3.2.4 Neutral Curves

The results described above demonstrate the instability of the system as a function
of k and a at fixed Rayleigh number. For example in figure 3.6, for a = 0.09
and Ri — 4000, the system is unstable for values of k approximately in the range
0.8 < k < 1.3. As the system is stable at Ah = 0, this region of instability must
contract and disappear between Ah = 4000 and Ai = 0.

In order to visualise the values of Ai and k for which the system is unstable,
the neutral curves (ay = 0) were calculated and are shown in figure 3.11 for various
values of a. These curves were found using an extended version of the Runge-Kutta-
Newton scheme which used an additional Newton iteration to bring ay to within
10”4 of zero. Where the change in Ah was small compared with the change in k, the
value of k was fixed and Ah found by the second Newton iteration considering lo as
a function of Ah only; where the change in Ah was large compared with the change

in k, the value of Ah was fixed and k found by treating uj as a function of k only.
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Computations of the neutral curves for large values of R\/a become less accurate

and are not shown.

The regions above the neutral curves in figure 3.11 are where the system is
unstable. As a increases, these regions become more narrow, and are confined to
higher values of Ri. This behaviour can be seen graphically in the logarithmic plot
of Grc = Ric/a versus a (figure 3.12), where Ric (the critical value of Ri) is the
minimum point of the neutral curve, that is the smallest value of Ri for which the
system is unstable. The critical Grashof numbers for the longitudinal modes are also
shown and will be discussed in section 3.5 below. The results indicate that there is
a critical value of the Prandtl number, ac, above which the system is stable for all
values of Ri. For the transverse modes, when a = 0.11, R\c ~ 9 x 104; at such large
values of R\ the accuracy of the results is reduced and it becomes difficult to trace
the critical Grashof curve at higher values of a. However, this corresponds to the
results of Hart(1972) and of Daniels et al.(1987) for the system with a rigid upper
surface which suggest that in that case the system is always stable for a > 0.12. A
better estimate of this critical Prandtl number acfor the free-surface case is obtained

in section 3.3.3.

The ratio of the wave speed of the neutral disturbances (c = tOi/k) to the free
surface speed Ah/48 is shown in figure 3.13. This indicates the neutral disturbances
moving in the same direction as the free surface, but at between one third and one
fifth of the speed. As expected, there is a non-zero value for [oi when a;0r = 0, and so
there are no steady oscillatory solutions similar to those found in the system with a
rigid surface where stationary multiple cells extend throughout the cavity. The per-
turbation fields corresponding to the critical point on the neutral curve for a = 0.04
are shown in figure 3.14; the contours represent the stream function perturbation
(> (z)elkx+ut and the shading represents the temperature perturbation 0(z)elfoti at
a fixed time t. The effect of these perturbations on the core is demonstrated in figure
3.15 which shows the contours of the overall stream function (3.2.5) and the contours
of the overall temperature (3.2.6) represented by the shading. For the given instant

t the value of e has been chosen so that the overall behaviour is easily discernible.



3.3 Asymptotic solution of the transverse
stability equations for large R\

Solutions of the stability equations for large Rayleigh number and moderate and
large wavenumbers can not easily be found with the numerical method used in the
previous section. Most physical applications of the system occur at large Rayleigh
number though, and so this is an important region of parameter space to understand.
Two asymptotic regimes are considered: where k = 0(Ril) and «.; = 0(1), and
where k = 0(1) and «; = O(R\), encompassing the two branches of the neutral
stability curve. Reduced forms of the stability equations, derived by substituting
these scalings into the full stability equations, are solved numerically with the fourth
order Runge-Kutta-Newton iteration scheme, for various Prandtl numbers a. These
results show how .; depends on k and a for large R+, and provide a useful check on

the numerical solutions of the full stability equations.

The extremes of both regimes approach a single problem, the solution of
which leads to an estimate of the critical Prandtl number, ac, above which all solu-

tions are stable.

3.3.1 Asymptotic results for k= O(R1x, y = 0(1).

The neutral curves in figure 3.11 show the locus of ujt = 0 as a function of Ri and
k. For small k and large R\, the leading behaviours of the left-hand branches of the
neutral curves are identified with the scalings
k = k(.) w—ab. ... R\ 00, (3.3.1)
Ri
where k0 and 100 are finite. Substituting this into the stability equations (3.2.8) and

(3.2.9), and letting R1 —> o0 yields the simplified problem:

<T- ik = — (G- ()Go) + -, (3.3.2)
0" <5 = ik0(G"Q - G(®) + ujg0, (3.3.3)

with )= ft =0'=0onz2=0and = ft' —0'=0onz =1

This was solved numerically using the fourth order Runge-Kutta scheme with

Newton iteration. Here k0 was fixed and .; found to an accuracy of 104, then k0
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was incremented in steps of 10 and the new value of uj found using the previous
estimate. The curves were traced out in this way starting from kO = 0 where (from

section 3.2.1) the values of uj are known.

For small Prandtl number (< < 0.065), the first stream function mode is the
only mode to become unstable; the values of 1> for the first stream function mode
are plotted against k0O in figure 3.16. For large k0 the system is unstable with the
disturbance traveling in the direction of the free surface flow, as seen in the previous
section. The critical values of kO = k( for which instability sets in for different a,
are given in Table 3.1, and it can be seen from figure 3.16 that as a increases k(r
also increases rapidly. Also, at large k0, fo behaves almost as a linear function of k0,

with its slope becoming more shallow with increasing Prandtl number.

Table 3.1 compares the values at of Rik and uj1 at which 1ut — 0 found from
the full stability equations when R1 = 4000 with k0 and uj(f found asymptotically
for small Prandtl number. This confirms the validity of the limiting forms of the

left-hand branches of the neutral curves, shown graphically in figure 3.11.

Full solution Asymptotic solution
a  RIk(R1=4000) U ko “0
0.01 82.4 0.553 819 0.550
0.02 214 149 213 1.48
0.03 460 3.08 458 3.08
0.04 723 465 720 4.65

Table 3.1: Comparison of Rik and wl at uT= 0 and R\ = 4000 found from the full stability
equations with f and afli found asymptotically for small Prandtl number.

The left hand plot of figure 3.18 shows the ratio of the wave speed ¢ =
R”™ojko to the free surface speed f?i/48. The scaled growth rate is also shown.
This plot shows that the perturbations travel in the direction of the free surface
flow but at around 35% of the speed. This is even slower than the maximum speed
of the return core flow. On the neutral curve (culk. = 0) the wave speed is close to a

minimum; there is a maximum wave speed for longer waves.
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3.3.2 Asymptotic results for k= 0(1), ® = O(Bi)

At large Ri the right-hand branch of the neutral curve is identified with finite values

of k and the scaling
ar= 1uiRi + ..., f?2i —oo0. (3.3.4)

Substitution of (3.3.4) into the stability equations (3.2.8),(3.2.9) gives at leading

order the inviscid, convection-dominated system

- ikQ = —(G"(f- k29~ (pGlo) + — (&'~ k2o)) (3.3.5)

0=ik(G"Q-G'(f))+uJlQ, (3.3.6)

a

which can be simplified to the single second order equation for >
n2f - (k2n2+ Glviktt + ak2G')(j) = 0, (3.3.7)
with g)= 0 on z — 0,1, and where
fi(z) = uq + ikG". (3.3.8)

A fourth order Runge-Kutta scheme with Newton iteration is used to solve (3.3.7)
for uq at specified values of 2 and k, but because of the magnitudes of uq involved,
oq is found to an accuracy of 10-8. In general there are values of z for which
wt + kG"(z) = 0. Thus, at a neutral point where Iy = 0, 0(z) = 0 for some z,
causing a singularity in the system. This did not cause a problem as k —>0, but for
finite non-zero k it was necessary to use up to 104 steps in the Runge-Kutta scheme
to achieve an accurate result near the pont of neutral stability. Initial estimates for
I3 were obtained from the asymptotic solutions of section (3.3.1), where for large
k0, v behaves like ak0 where a is a constant. As k0 —aR i, k —>1 and Iu ~ aRi\ that

is the slopes of the eigenvalue curves in figure 3.16 were used as initial estimates of

uq at k = 1

On taking the complex conjugate of (3.3.7) it can be seen that if oq is the
eigenvalue corresponding to (j)(k] z) then — is the eigenvalue that corresponds to
fk\ z), where the asterisk denotes the complex conjugate. All numerical solutions

are therefore for positive uqr - the region of instability of the system.

The numerical solutions of (3.3.7) for small Prandtl numbers are plotted in

figure 3.17. As k —>0 it can be seen that oq ~ ak. The right hand side of figure
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3.17 indicates the value of k for which ylr = 0. These are the values of k which the
R\~k neutral curves approach for large Ri, and are shown in figure 3.11 as dashed

lines.

The neutral curves found by the numerical solution of the full stability equa-
tions become less and less accurate for large Rj and moderate k, until the curves can
not be computed any further. This means that a close comparison of the solutions
of the full stability equations with the large R1 asymptotic solutions is not possible.
However, it can be seen from Table 3.2 that although there is a large difference in the
k values, the values of coi/Ri and wPIf compare quite well. The plots of the neutral
curves and their asymptotes in figure 3.11 help to confirm, if only intuitively, the

suitability of the limiting form.

Full solution Asymptotic solution
a  Wi/Ri x 103 k  luu x 103 k
0.01 9.48 2.23 9.25 2.65
0.02 9.57 2.16 9.61 2.59
0.03 9.64 2.07 9.96 2.52
0.04 9.75 1.98 10.3 2.45

Table 3.2: Comparison of 1#/R\ and k at ay = 0, R\ = 4000 found from the full stability
equations with and k found asymptotically for small Prandtl number.

The right hand plot of figure 3.18 shows the ratio of the wave speed c =
R1ujli/k to the free surface speed £?i/48 for the region of instability; at the right-
hand branch of the neutral curve the wave speed is always less than half the free
surface speed. The wave speed decreases with decreasing wavelength but is always

non-zero. Both u and uqr confirm the behaviour = ~ ak as k —0.

3.3.3 Collapse of the neutral stability curve

In section 3.3.1 the numerical results suggest that
1i0 ~ ak0, ko — o0, (3.3.9)

where a is a finite constant depending only on the Prandtl number of the fluid.

Substituting this into the reduced stability equations (3.3.2) and (3.3.3) yields

=0 =-(Gf- ()G + (3.3.10)
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0=1i(G"Q - G<¥5)+ OO, (3.3.11)
which simplifies to
(@a+iG")24" - (iGlv(a + iG") + aG)<\>= 0 (3.3.12)

with
A=0onz=0,1. (3.3.13)

Similarly in section 3.3.2 it was noted that w4 is proportional to k as k —0
and substitution of the form uq = ak into the Rayleigh equation (3.3.7) gives the
same limiting problem for () and the eigenvalue a. Thus the real parts of the complex
eigenvalues a given by the solution of (3.3.12) are the slopes of the growth rate
curves of figure 3.17 as k —> 0. These slopes become shallower with increasing
Prandtl number, and the non-zero value of k for which w>r = 0 decreases with
increasing Prandtl number until the entire growth rate curve shrinks to a point in
the neighbourhood of k = 0. This occurs when the slope reaches zero at which
point there will be no unstable solutions of the system associated with transverse
modes. This behaviour can also be seen in figure 3.16 where the slopes of the curves
representing the real part of the eigenvalue af) as ko —> 0o decrease with increasing

Prandtl number.

The Rayleigh problem (3.3.12) was solved for a as a function of a using the
fourth order Runge-Kutta scheme with the Newton iteration. This allowed the value
of a to be found to within 10~8 for general values of a. An initial estimate of a was
made from the graph of u0 against ko (figure 3.16) at a = 0.01, and a was then
incremented in steps of 10-3. As ar approached zero it was necessary to take up
to 104 steps in the Runge-Kutta scheme to counteract the effect of the approaching
singularity at the value of 2 for which a%= -G"{z). The results are shown as a
plot of a against a in figure 3.19. For increasing a, the final result obtained at
a = 0161 isa = 259 x 10-5 + 9.93 x 10-3h This produces a very good estimate for
the critical Prandtl number (crc) above which all solutions of the system are stable:
linear interpolation from the last few points suggests that when ar = 0, to three
significant figures, 2 = ac = 0.162. This compares with the estimate of ac ~ 0.12
obtained by Daniels et al. (1987) for the rigid surface problem, although it should
be noted that their estimate was not based on the use of an accurate asymptotic
analysis of the kind used here. It would be of interest to calculate ac for the rigid

surface problem using the present approach.
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3.4 Stability of the core flow to longitudinal

perturbations

The stability of the core solution to longitudinal perturbations (perturbations oscil-
latory in the y direction with axes parallel to the core flow) is investigated in this
section. Numerical results are obtained for general values of R1 and an asymptotic
theory is developed for large Rayleigh numbers which indicates qualitative differ-
ences from the results obtained for the transverse modes of instability. This theory
shows that at finite Prandtl numbers only long wavelength disturbances are unstable
although shorter wavelength longitudinal instabilities do exist, in the limit of van-
ishingly small Prandtl number. The full governing equations for three dimensional

flow derived in section 1.3 are

‘Z +uV u= —Vp+crVu + Réak, (3.4.1)
d
dt[ + @V0 = V20, (3.4.2)

Vi =0 (3.4.3)

where u = (u,v, w) is the velocity field, p is the pressure and 6 is the temperature.

The boundary conditions are

d d
u=0onz=0 ="=""=0=00nz=1, (3.4.4)
dz  dz
ad
— =0onz=01 (3.4.5)
dz

Away from the end walls the steady parallel-flow core solution is u = us,

p = ps, 6 =1'% where to a first approximation

is = (RiG"(z), 0,0), (3.4.6)
dtK A _
_ =0 A =RiG\) 3.4.7
dx L dy dz ( )
with 77, = R/L and G{z) = ~ z E- + ¢a3. The explicit form of ps can also

be written down and is independent of y but it is not needed in order to determine

the stability equations.
Longitudinal perturbations are made to the core flow, such that
u 0, +e(/(z), V(z),W(z) ‘" (3.4.8)

70



p = ps+ eP(z)euttlky, (3.4.9)
9= que, + e®(z)e t+lky), (3.4.10)

Here it is assumed that the perturbations are independent of x although it is neces-

sary to incorporate a velocity component in that direction.

Substituting the perturbed solution into the governing equations and linearis-

ing in e yields the perturbation equations for the longitudinal modes:

ull + RiG""W = a(U" - k2U), (3.4.11)
O{W" - k2W) = a{Wh - 2k2W" + kdW) - k2RxaQ, (3.4.12)
wQ + g+ R\G'W — Q" —k2Q, (3.4.13)

to be solved subject to the boundary conditions,
u=W=WI=Q =0onz=0 and U =W=W"=0'=0on2=1 (3.4.14)

Here V has been eliminated from the equations and boundary conditions by use of

the relation
V= %WJ, (3.4.15)

obtained from the equation of continuity. The perturbation equations are to be
solved, as previously, for wo = w(Ri, k, a) where it is required physically that R\,cr >
0. The wave number k appears only in the forms k2 and k4 in the perturbation
equations and so solutions are found for k > 0, the problem being symmetric about

k= 0.

3.4.1 Solution of the perturbation equations

For general Ri, a and k, the perturbation equations were solved using a fourth order
Runge-Kutta scheme with Newton iteration as discussed in detail in sections 2.6 and
3.2.2. This method traces out values of fo using a previously known value as a first
estimate. Initial values of oj can be calculated analytically when Ri = 0, when the

perturbation equations (3.4.11)-(3.4.13) simplify to three independent problems.
When Ri = 0, (3.4.11) becomes

U= (~ +2) U (3.4.16)
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with U= 0onz=0and U —0on z= 1 This has solutions
7T
U=sin@2n+ 1) -z n=20,12,..., (3.4.17)

where the ‘horizontal velocity” eigenvalues are given by

12
uj = — a —k2a n=20,1,2,.... (3.4.18)

The second perturbation equation, (3.4.12), becomes
Wiy - (2k2+ W" + (kA+ "k2j W = 0, (3.4.19)

with W=W' —0onz=0and W = W" = 0on z = 1. Solutions of this problem,

described in more detail in section 3.2.1, are given by

_ =k o kiz-z) - (1 e ) ( iTz _ iT(2-2)
W = 3.4.20
(1 —e2IF) ( )

where T is defined in terms of u bt; the relation

(3.4.21)
r=V V-"2
and is any solution of the equation
tanhk tanT
an an (3.4.22)

It was also seen in section 3.2.1 that for k = 0 these eigenvalues reduce to

the solutions of

i T—uj
tan " i (3.4.23)

Finally, the ‘thermal’ eigenvalues at frh = 0 are obtained from the solution
of (3.4.13) when U = 0:

Q"= (uj+k2e, (3.4.24)
with 0' = 0 on z = 0,1. This has solutions 0 = cosmrz and eigenvalues
uj= —m7r2 —A&, n -0,1,2,.... (3.4.25)

It can be observed by inspecting the full perturbation equations (3.4.11)-
(3.4.13), that in the limit as k —>0 these three sets of eigenvalues also provide the
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solutions to the perturbation equations when k = 0 for general R\. This is because
when k = 0 the ‘horizontal velocity” and ‘thermal” eigenvalues each correspond to
the trivial solution W = 0 of (3.4.12) even when R1is non-zero. Thus for k = 0 and

general Ri leading eigenvalues, co, all of which are real, can be listed as

w o= -10,9.87,395,...1, (3.4.26)
-{247,22.21,61.7,... }a,
-{20.19,59.7,119,.. .}a.

3.4.2 Numerical results

The above values of lo at k = 0 are used to initiate the fourth order Runge-Kutta
scheme with Newton iteration that solves the full perturbation equations (3.4.11)-
(3.4.13) for general Ri and k. This scheme is similar to the one discussed in detail
in chapter 2, except that here there are 16 first order equations and eight boundary
conditions requiring that four independent solutions are computed from the four
boundary conditions at z = 0 and that a complex determinant is constructed from
the 4 x4 matrix of boundary values at z = 1. Newton iteration is then used to find

the zeros of the determinant.

Figure 3.20 shows the behaviour of the first few eigenvalues lo for Ri = 4000,
a = 0.1 and non-zero k. These parameter values were chosen following the results for
the transverse problem which show that instabilities occur at large Rayleigh number
and small Prandtl number. The eigenvalues ‘pair up’ quite quickly with increasing
wavenumber to become one complex eigenvalue instead of two real eigenvalues. Al-
though it is not obvious what happens at large values of the wavenumber, at small

values of k the real part of only the first ‘paired” eigenvalue becomes positive.

The neutral curves, defining the values of Ri and k for which ar = 0, were
calculated as before by using an additional Newton iteration to bring lot to within
10”4 of zero. These are shown in figure 3.21, along with their asymptotic forms which
are described later. It becomes difficult to compute the neutral curves for large R\
and moderately large k, and the longer curves in this region were computed with
less accuracy. However the behaviour of the neutral curves is still discernible. The
critical Rayleigh number — the lowest value of Ri on a given neutral curve — be-

comes smaller with decreasing Prandtl number. It can be seen in figure 3.12 that
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for most values of the Prandtl number, the longitudinal mode becomes unstable at
a lower Grashof number than the transverse mode. Although not obvious in figure
3.12, it was shown by Laure and Roux (1987) that for very small Prandtl number the
critical Grashof number (i2lc/cr) for the transverse perturbation is lower than that
of the longitudinal perturbation and so the transverse mode is the first to become
unstable there. This has been observed experimentally for the rigid surface problem
by Gill (1966). Laure and Roux (1987) suggested that the increased stabilization
when the temperature field tends to be “frozen” indicates that the origin of the os-
cillations is mainly thermal. Figure 3.20 shows how it is the first thermal eigenvalue
(paired with the first horizontal velocity eigenvalue) that becomes unstable. In the
transverse case the thermal modes are stable and the stream function modes are

unstable (section 3.2.3).

At sufficiently large Prandtl number it can be seen from both the neutral
curves (figure 3.21) and the critical Grashof numbers (figure 3.12) that there is a crit-
ical Prandtl number above which the system is stable to longitudinal disturbances,
and that this is greater than that of the transverse mode case. At large Rayleigh
number the left hand branch of the neutral curve seems to have a behaviour in
which k is proportional to 1/R\ as in the transverse case. For the transverse mode
the right-hand branch of the neutral curve asymptotes a finite value of k, but for
the longitudinal mode the neutral curve turns back on itself. This is described in
greater detail by the asymptotic analysis to be presented in the next section, and it
emerges that the right-hand branch also has a behaviour in which k is proportional

to 1/Ri as R\ —>oo.

As in the transverse case, an instantaneous ‘snapshot’ of the perturbations at
a point on the neutral curve is shown in figures 3.22 and 3.23. Figure 3.22 shows the
contours of the perturbation zIW as the solid lines and the temperature perturbation
as the shading. The contours of the perturbation ilV are equivalent to instantaneous
streamlines of the flow perturbation in the y,z plane. Being at right angles to the
core flow means that for the overall flow the instantaneous streamlines spiral in
the x direction, unlike the overall flow for the transverse case shown in figure 3.14.
For the longitudinal case there is also a velocity perturbation in the direction of
the core flow. This is represented in figure 3.23 by the ‘height” of the streamline

perturbations.
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3.4.3 Asymptotic solution of the stability equations for large
Ri
Substituting the assumptions
= — uj = ujO"i eoe = 'VT\II, Ki —o00, (3.4.27)
1

into (3.4.11) «3.4.13) yields the reduced problem

uwgl + WG'" = all", (3.4.28)
WOW" = aWiv - kaQ, (3.4.29)
a0 + U+ G'W = 0", (3.4.30)

withdU=W -W' =0 =0onz=0and U =W=W"=0"=0onz=1

This was solved numerically by the ubiquitous Runge-Kutta scheme, tracing
out values of 1) by incrementing k0, starting from the known values of cj0 at k0 — 0.
The results of this are plotted in figure 3.24 which shows the wave speed and growth
rate scaled, as before, with the free surface speed. Although the wave motion is
perpendicular to the direction of the free surface flow, this plot shows that the waves
are traveling at a similar speed to the transverse waves, with a maximum speed for
relatively long wavelength perturbations. In contrast to the asymptotic behaviour
for the transverse mode perturbations, where 0 behaved like ak0 as kO —>oo with
a > 0, here there are two values of k0 for which Ii0r = 0. This suggests that both
left and right hand sides of the neutral curve behave like R"1 as Ri —>o00 and that
the curves turn back on themselves. These asymptotes are plotted with the neutral

curves obtained from the full perturbation equations in figure 3.21.

The two values of k0 for which uj0r = 0 are best visualised by figure 3.26, the
plot of those values against the Prandtl number. The corresponding values of ujli
are shown in figure 3.27 as a function of the Prandtl number. It can be seen that
for Prandtl numbers greater than approximately 0.415 the system is always stable.
The accuracy of this value was checked with the Runge-Kutta scheme running over
200 rather than the usual 100 points. For Prandtl numbers below about 0.08 there
is one small value of k0, but the ‘large’ value (corresponding to the right hand side
of the Ri-k neutral curve) is difficult to calculate. This behaviour is investigated by

performing an asymptotic expansion as k0 —>oo.
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3.4.4  Asvmptotic analysis of the redoced problem at Iarge
b

The large by problem was st studied for finite o, expanding wi o terms of .irEI ".2:

ap = dipky + A ...k — 00, (34.31)

At Lhe lerding order, dy 15 iImagimary. 'Lhe second crder component @y has & negative

real part implying that at finite Prandtl number the system 1s stable. As o — 1,

173 A

and o*'? respectively. However, as is of order urity as

—3."2)

wn ol wn are of order &
a0, and Lhus the expenszion (54,31} hreaks down when &y = (Ha . There i=
t=ern the possibility of nentral stability because the conlributios Lo the growlh raie

frorm i becornes comparahle with that from oy,

With thiz & priort assumption & more detziled theory 132 now given, where it
18 assumed Lhal

ki Koo T 4+ mpaTE . ooasg 0, (3.£.32)
ard where IF, W and & are expanded for small Prandt] numnber as
U=zl +olhilzy+...,
W= "Wa(z] + Buiz) + .., i 3.4.43)
8= 8ylz] | elz)+ ...,
with
wp = g —i +-... i 3.4.34)
Ak leading order the reduced oroblemn {3,428 )-(3.4.30] becomes
-\'J-.i|_'.|!-.."'_| t Sﬂrl-'i"rg = U, ]
II;‘UL'L'F{;J = —-";-EE:'DJ > [3435}
SpBa + W, =0, |

giving Iy = — M TW, and By = —GPE5 ' T, Thus W, must be found by solving
Wy = —=Wa, (3.4.36)

where dy = 1QOoko, and {1y is real, subject to the houndary conditicns Wy = 0 on
= =0 1. Salutions [or Qo and Wi were found using the Runge-Kutla scheme and
~armalised such that W) = 1 on 2 =10, and then W{1) = a5 where aq is a constant.
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The profile of the leading solution V0 is shown in figure 3.25. The first few values

of O0 in descending order are

= 0.0211, 0.0093, 0.0060 .... (3.4.37)

Neglect of the highest derivatives in (3.4.36) infers the presence of boundary
layers near the upper and lower surfaces where an adjustment to the full boundary
conditions is made. These provide conditions which allow the second order core
problem to be solved and the point of neutral stability to be determined. There
are two boundary layers associated with this problem: a viscous boundary layer
where the scaling z —az ensures that viscous effects come into play, and a thermal
boundary layer where the scaling z = ax2 allows the inclusion of the highest

thermal derivatives.
In the lower thermal boundary layer
U= a*Uofz) + ..., W =a->Wo(z) +.. ¢ 0 =£7°0005) + ..., (3.4.38)

where W0 = z, U0 — —;/(8<I>0), and 0 Osatisfies

0" —;000 = ~am + 1tOp—ZB) (3.4.39)
with boundary conditions
0q=0onz=0, and 0o ~ —z3/(16cu0) as z 00, (3.4.40)

implied by the wall condition and matching with the core. Thus

- 1 eV&D2+ -~— 34 1 (3.4.41)
Oo ,4é>6/2 166)0 40’

at leading order as a —>0. Although this gives a contribution to 0 in the viscous
boundary layer, it is too small to affect the viscous boundary layer problem at

leading order.

The lower viscous boundary layer expansion as a —>0 is,

U = allofz) + W=MW0z) +..., 6=] q0z)+.... (3.4.42)

The leading order problem is to solve

Wt (3.4.43)



subject to the boundary conditions Wg = W§ = O on z = 0 and W§ —1 as z —>oo0.

This has the solution
Wo=00"'e-'fa* +z- @@ (3.4.44)
The corresponding solution for U is
12y /20 I
9= g2yt e 2y '—““1—6‘{‘8 ze~ul) z - —g% Z, (3.4.45)

and matching with the thermal boundary layer gives 0 O= —1/(4u>8/ ? )

Similar scalings are used to reveal the behaviour near the upper boundary
where W ~ < 1a0(l —z), but here no exponential components are generated at

leading order. In the upper thermal boundary layer,

(1
0~ — -Z2+ 3.4.46
701 4802 207 N
where Z = al/2(1 —z). In the upper viscous layer,
ad 3 =, 3
U~ ala2 {J\z—ZZ + (3.4.47)
8/o 4 7
where Z = cr(l —z), showing that the surface temperature and flow speed are given
by

0~ —alant,,, U~ alc2yory, V ~ —— -cn. 3.4.48
4a>0’ XAIBI’ KO ( )

The second order equations in the core are

ioll\ T £\lb T G"W\ — 0,
JJOBU + unw - — 201 —2/Dcd! (3.4.49)
do0i + 0>i0o+ U0+ G'WI= 0",

and from matching with (3.4.44) across the thermal layer it is found that a solution

is required for which

W= -G 2onz=0, W\ —0onz —1, (3.4.50)

Using (3.4.49) and the first order problem (3.4.35) the second order problem

can be written as

KnG' oGr
[8:9)

=4 ZG”Wq _ ZL\!]\G|W0 + Wa+ 2wo g 'WO\ . (3451)
[Lh g fo
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A solvability condition can now be found using (3.4.36) and (3.4.51), together with
the boundary conditions (3.4.50) to give  as

- PlG"Wgdz+ | AG2W2dz + JooGWQdz +

(3.4.52)
a'l” " 216G'Wgdz
Noting that a0 = iClOKo, along the neutral curve where G0r = 0, the real part of

(3.4.52) vanishes when

= (I Gw’ G 2N i (34@

Values of A6 were computed by Simpson’s rule. It can be noted that it is
necessary for « }/2 to be positive for the exponential decay of the lower boundary
layer solution. Only the leading value of and the corresponding eigenfunction

Wo leads to a solution giving a consistent theory, so that
kO~ 12.77(7-1 as a -> 0. (3.4.54)

This asymptote is shown with the numerically calculated values of k0 in figure 3.26.
For small Prandtl number the results become inaccurate and are not plotted. The
difference between the numerical results and the first order asymptote is because the
asymptote comes from the lower boundary layers which have not properly formed for
the smallest Prandtl number numerical results. The e-folding decay lengths of the
viscous and thermal boundary layers are 0.22 and 0.77 respectively when a — 0.08.
For the lower thermal boundary layer to be of a more reasonable size, less than

a quarter of the cavity depth for example, the Prandtl number must be less than

0.008.

3.4.5 Asymptotic analysis of the full problem with k= 0(1)

Having completed the above analysis, the correct scalings for the Rayleigh problem
can be introduced, and a simpler and more general solution for large Ri and finite k
can be found for small Prandtl number. Since k = ko/Ri and k0 ~ a~32asa — 0it
follows that neutrally stable solutions should exist for k = 0(1) whena = 0(R12/3.

Thus a is expanded as

a —Rt3a0+ ..., R\ —» oo, (3.4.55)
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and substitution into the full perturbation equations (3.4.11)-(3.4.13), gives

WU + RG"W = R ao(U" — K2U), (3.4.56)
WW" — KB*W) = R, Soo(W™ — 26*W + k*W) — k* R} 000, (3.4.57)
wO + U+ RiG'W = 0" — k0.  (3.4.58)

Now it is only necessary to go to second order in the expansion of the solution in

the core region of the flow. This expansion is given by

U = Us(z) + Us(2)By* + ..., l
W = Wo(2)R; ® + Wa(2)R* + ..., (3.4.59)
© = Og(z) + O1(2)R;* + ..., I
with
PN . A (3.4.60)
The expansion in the lower viscous boundary layer of thickness Rl_z"j?', 18
given by
U=R %,._5;0(2) b e |
W = Rj*Wo(2) + ... ., (3.4.61)
0 =R;"00(2)+ ..., I
where
s =3RF (3.4.62)

and at this order there is effectively no upper boundary layer. The thermal boundary
layer does not contribute to the viscous solution at this order and 1s not discussed

here.

The leading order core problem can be written as

SoUo + G"Wo = 0, (3.4.63)
So(W — KWo) = — k20000, (3.4.64)
woeBOg G}WO =0, (3465)

and combination of (3.4.64) and (3.4.65) gives

k2

W = Qz(fz2 - G"YW, (3.4.66)

where wy = iQoé’)E, to be solved subject to the boundary conditions Wy = 0 at

z = 0,1. The earlier limit is recovered in the limit as & — 0 for k/Q = O(1), but
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here the behaviour of O for finite k can be gleaned: for a non-trivial solution of
(3.4.66) to exist it is necessary that Ck —G' < 0. The maximum of G' is 5.42 X 10-3
and hence

d < 0.0736. (3.4.67)

This limit can be seen for large k in figure 3.29, the plot of against k for the first
five leading modes. The largest mode is the leading mode. Equation (3.4.66) was
integrated from z = 0 to z = 1 using a fourth order Runge-Kutta scheme and finding
d from the requirement that WO(l1) = 0. Figure 3.30 shows the dependence of WO0(1)

on d for k = 3 and in this case the leading eigenvalue is found to be U = 0.045.
The leading order lower boundary layer problem for WO is
WIM = _ W (3.4.68)
ao

with the conditions W0 = WQ= 0Oon z= 0and Wq —>1as z 00, having assumed

a normalisation of the core solution such that Wq(0) = 1. This has the solution

o = (3.4.69)

where a0 — (1 + 1)01/2¢(/4/\/2.

The second order core problem is

tiollx +UJi Uo + G"'Wx = 0, (3.4.70)
;0(W" = K2W) + dxfWLT - k2WD) = -k 240Qu (3.4.71)
woli + WI00+ U0+ G'Wx = ©o - k2Q0- (3.4.72)

Using the leading order core equations, (3.4.63)-(3.4.66) to rewrite Uo, ©o and W"
in terms of Wo, substitution of (3.4.72) into (3.4.71) yields

o [WI'-k2(1+"~ 2 W -

-k 2a0 ikcr
" 201GIN0- 2G"Wq - do Wo (3.4.73)

wn VA0,

with the boundary conditions

Wi = — onz=0, WA\ —=0onz=1 (3.4.74)



Multiplying (3.4.73) by Wo, subtracting (3.4.66) multiplied by Wi and integrating
from 2 = 0 to 2 = 1, leads to the solvability condition
- k2a0

[WoWli - [W;WIJI .

G'Wldz

+2cba C g 'W2dz - CG,2WI dz} , (3.4.75)
Jo Jo

lug
which with the boundary conditions (3.4.74) can be written as

16} . 1
U = .- Torwiaz+ ~ i 16aw2dz (3.4.76)
pag 10 Jo 2Jo G'Wy dz

so that, the real and imaginary parts of uq are given by

2
V2k2
- @
2V2P/o0 G'WAdz

| i ‘ 477
Ref{Gj\) f G'"W2d z zQzllolGrzWi@ dz (3.4.77)

(3.4.78)

The theory has thus been completed to second order. Thus finite wavenum-
ber longitudinal instabilities are possible at large Rayleigh number, but only at

vanishingly small Prandtl number.

3.5 Discussion

The instability of the parallel-flow core to two dimensional transverse waves and
three dimensional longitudinal waves has been studied in this chapter. For Rk = 0,
or for large enough Prandtl number, the system is always stable; for the transverse
case the Prandtl number must be greater than 0.162 and in the longitudinal case
the Prandtl number must be greater than 0.415. These critical Prandtl numbers

were found using both analytic and numerical techniques.

For finite Rayleigh and wave numbers, and small Prandtl number, the system
may become unstable. Previous work such as that by Hart(1972,1983) has concen-
trated on the onset of instabilities. Laure and Roux (1989) give plots of the critical

Grashof number (Grc = Rijcr) against Prandtl number for the onset of instabilities
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for both transverse and longitudinal modes which show that in general the longitu-
dinal modes become unstable at lower Grashof number than the transverse modes,
and are therefore considered more ‘dangerous’. They suggested that the ‘freezing’ of
the temperature field causes an increase in the stability of the longitudinal modes as
a —>0, so that the transverse modes become more important than the longitudinal
modes, and that this was due to the origin of the oscillations being thermal in the
latter case. In the course of this work, this has been shown to be so, and that in
contrast the origin of the transverse oscillations is associated with the velocity field.
The eigenfunctions associated with the perturbations are represented graphically in
figures 3.14 and 3.22, the transverse oscillations propagating parallel to the direction
of the free surface flow and the longitudinal oscillations propagating perpendicular
to the free surface flow, both with wave speeds of about one third of the speed of

the free surface.

The asymptotic behaviour for large R\ has not been studied before. The
large Rayleigh number, small Prandtl number regime is of particular interest in
the semi-conductor crystal growing application of the system. The large Rayleigh
number asymptotic analysis shows that the two modes behave very differently at
large Rayleigh number. Both modes support longer wavelength instabilities with
increasing Rayleigh number: the left hand branches of the neutral curves correspond
to wavelengths of order R\. However, only the transverse mode supports finite
wavelength instabilities for finite Prandtl number; the right hand branch of the
neutral curves for the longitudinal mode corresponds to wavelengths of order R\.
If the width of the cavity (which has been assumed to be infinite in this theory)
was restricted by vertical walls in the y direction, for example, the long wavelength
longitudinal mode instabilities may be damped, suggesting that the transverse mode

may become more important at high Rayleigh numbers.
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Figure 3.1: Real eigenvalues lo of the thermal modes (shallow curves) and the stream
function curves at R\ = 0 for a = 7.
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Figure 3.2: Real part of eigenvalues w of the first three £ modes for smal’ Prandtl
rumber (as indicated ) when f; = 4000,
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Figure 3.3: lmaginary past of eigenvalues w of the first three 8 modes for small
Frandt] rnumber when H; = 4000,
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Figure 3.5: Inaginary part of eigeavalues w of the firal ¢ mode for small Prandtl
numbers when f; = 4000,
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1.0

k

Figure 3.6: Real part of eigenvalues a: of the second () mode for small Prandtl
numbers when R\ = 4000.

k

Figure 3.7: Imaginary part of eigenvalues /u of the second ¥mode for small Prandtl
numbers when R\ = 4000.
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Figure 3.8: Real parts of eigenvalues iu of the first (1) and second (2) <9 modes
for Prandtl numbers 0.06681 (a), 0.06682 (b), 0.06683 (c), and 0.06684 (d) when
Ry = 4000.
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Figure 3.9: Imaginary part of eigenvalues 1> of the first two #modes for small Prandtl
numbers when Ry = 4000. Key as above.
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Figure 3.11: Wentral curves (solid lines) lor various Prandil numbers and their
asymptotic lomms as B — o0 k ~ kp, /By dotted line; & -+ kb, dashed line.
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Figure 3.12: Critical Grashof numbers for the onset of instabilities for transverse
(T) and longitudinal (L) modes as a function of the Prandtl number.

k

Figure 3.13: Ratio of the wave speed on the neutral curves to the speed of the free
surface for various Prandtl numbers.
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Figure 3.14: The transverse perturbations. The solid line is the instantaneous stream
function perturbation < and the shading represents the thermal perturbation 9.
(a = 0.04, k = 1.36, Ri = 754 « Ru.)

Figure 3.15: Instantaneous stream lines ip (solid lines) and temperature 6 (shading)
of a typical overall flow in the perturbed core, (ar = 0.04, k = 1.36, R\ = 754

~ RU,—)
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Figure 3.16: Asymptotic solutions of the real (solid line) and the imaginary (dashed
line) parts of the eigenvalue u for the first stream function mode for small Prandtl
numbers.

k

Figure 3.17: Asymptotic solutions of the real part of the eigenvalue /. for the first
stream function mode for small Prandtl numbers.
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Figure 3.18: Real and imaginary parts of the normalised eigenvalues ¢ = 48u,0/&o
(left), and ¢ = 48tUi/k (right), of the asymptotic solutions as Ri —¥o0o for small
Prandtl numbers. The wave speed is the solid line, the dashed line is the growth

rate.

a

Figure 3.19: Real (solid line) and imaginary (dashed line) parts of the eigenvalue a
as a function of the Prandtl number.
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Figure 3.20: Values of the eigenvalue fo for small kK when f?i = 4000 and a = 0.10,
traced out from the known values at k = 0; ‘a’ represents the —(n7r) ‘thermal’
eigenvalues, ‘b’ represents the ‘horizontal velocity’ eigenvalues and ‘c’ represents the
‘vertical velocity’ eigenvalues.
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Figure 3.21: Neutral curves for small Prandtl numbers (as indicated) along with
their asymptotes for R\ — oo.
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Figure 3.22: The longitudinal perturbations. The solid lines are the contours of the
perturbation iWelky, and the shading represents the thermal perturbation Qezky.
(a = 010, k = 0.77, Rt = 207 % Ru .)

Figure 3.23: The longitudinal perturbations. The contours are the streamlines of the
perturbation iWelky, and the height represents the horizontal velocity perturbation
Uelky. (a = 0.10, k = 0.77, R1= 207 « Ru )
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Figure 3.25: The profile of Wy as a lunctien of 2 for £ = 00217,
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a
Figure 3.26: Neutral curve for k0 with the large ko asymptote ko ~ /w-3//2 a —>0.

a

Figure 3.27: Values of o¥); along the neutral curve wor — 0 as a function of a with

the asymptote tly ~ a ~*o.
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Figure 3.28: Values of PFo(O) against H. Relevant values of the eigenvalue are
those for which Wq(o) = o.

Figure 3.29: The first four eigenvalues 0 (from the largest down) as a function of k.
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Figure 3.30: Values of JFo(O) against Q when k = 3. Relevant values of the eigenvalue
are those for which Wgq(o) = o.
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Chapter 4

Steady-state solutions for the
rotating cavity

4.1 Introduction

The effects of rotation are investigated by regarding the two-dimensional cavity
previously looked at as the cross-section of an annulus or rotating channel. The
rotation of the annulus or channel about a vertical axis produces an azimuthal ve-
locity perpendicular to the plane of the two-dimensional cavity, and the theory is
then more applicable to geophysical phenomena: Stone (1968), for example, de-
scribes the application of a rotating annulus with a vertical temperature difference
to the atmospheric circulations on Venus and in the tropics of the Earth, and to the
oceanic sinking regions. Using an annulus with a horizontal temperature difference,
a rigid upper surface and small cross sectional aspect ratio (L < 1), Douglas and
Mason (1973) describe experiments relating to the temperature structure and to the
transition from axisymmetric to non-axisymmetric flow. Hide (1967) gives a range
of parameters for axisymmetric flow for a similar geometry but with free or rigid
upper surface, and suggests that the azimuthal velocity in the axisymmetric flow

“resembles the trade wind circulation occuring in the atmosphere in the tropics”.

The theory for an axisymmetric annulus with a square cross section and rigid
upper surface is given by Mclntyre (1968), who makes comparisons with the non-
rotating rectangular cavity. An assumption that the Prandtl number was large was

considered to place “not too serious a restriction on the applicability of the theory”.
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Rotating thermal convection has also been discussed by Hignett et al. for a
cylinder with a radial temperature gradient heated from below, and by Hopfinger
and Linden (1990) in the review of the Euromech conference on rotation. The
instability of rotating convective flows has been studied in a cylindrical annulus by
Busse (1986), Busse and Or (1986) and Or and Busse (1987) and in a channel by
Finlay (1990, 1992).

In this chapter, a theory for an infinite rotating channel, or equivalently an
axisymmetric flow in a rotating annulus, with rectangular cross section of large
aspect ratio (L >> 1) and free upper surface, is described. This is undertaken in a
similar manner to the non-rotating theory of the previous chapters, by regarding the
cavity as having a parallel flow core away from the vertical walls and two roughly
square end zones near the walls where the flow is turned. This geometry is similar
to that of Hunter (1967), who considered the case of finite aspect ratio and rapid
rotation. Here the theory is developed first for general rotation speeds, measured

by the Taylor number

4n 2h4
T = (4.1.1)

where o is the rate of rotation, h is the height of the cavity and v is the kine-
matic viscosity of the fluid. Nonlinear effects in the end regions are incorporated by
assuming that

Ri = ~ (4.1.2)

is of order one. The governing equations are given in section 4.2, and then a parallel
flow solution is found for the core of the cavity away from the vertical walls. The
equations governing the behaviour in the end regions are given in section 4.4, and
the matching of the solution of these with the core flow is discussed. Comparisons

with the non-rotating case are made in section 4.5.

In the subsequent chapters results for small and general Taylor number at
small and finite Rayleigh number are also presented and a description is given of

the behaviour of the end zones at large R\ and T.
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4.2 Governing equations

The non-dimensional governing equations in the rotating case are derived in Chapter
1. In addition to the vorticity and thermal energy equations, for the rotating case
there is also an azimuthal momentum equation. Although the azimuthal velocity
is in the y direction, there is no dependence on y in the governing equations as
the cavity is assumed to have infinite length, or equivalently be an axisymmetric
annulus in which curvature effects are ignored. A stream function may therefore be
used and the governing equations for steady flow relative to the rotating frame of

reference may be written in the form

d9  idv
RiA + T1Y = 421
%lx ldz d(x, z) ( )
3 i dip __1d(v,ip),
v - ! = Vi1Pk 422
dz T dfx, 2) (322)
02 = 2ed) (4.2.3)
d(x, z)

where 6 is the temperature and the velocity components in the x, y and z directions

are i, v and w respectively, with

dip
= 9% nd
" dz anc @ dx’

where ip is the stream function. The Cartesian frame of reference rotates about a

(4.2.4)

vertical axis (in the z direction) and it is assumed that centrifugal effects may be
neglected. The theory also applies to a rotating annulus provided its radius is large
enough for curvature effects to be ignored (Hunter 1967). The cavity, whose cross
section occupies 0 < x < L, o < z < 1is assumed to have thermally insulated
upper and lower surfaces and a stress-free upper surface; the motion is driven by a
horizontal temperature difference between the ends. Thus the full set of boundary

conditions is

7 dj de n
ip = Zi;l/= p=—=oonz -0, (4.2.5)
d2p dovdO (1.26)
'/=4? =fc =S =0on"=1 o

with
7 - dip =p 0Oonx=01L, (4.2.7)
ox

=0onx=0and 9= 1on x = L. (4.2.8)
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As in the non-rotating problem the length of the cavity is assumed to be much

greater than its depth so that L >> 1. As before, in the regime for which R\ = RjL

is of order 1, this allows the cavity to be considered as having a parallel-flow core

away from the vertical walls and two roughly square end regions where the flow is

turned through 180 degrees. These regions are considered next.

4.3 Core flow

In the core region away from the end walls, the order one variable £ = x/L is used

so that 0 < £ < 1. In this region the flow is assumed to be parallel to the horizontal

boundaries and the temperature is assumed to be linearly dependent on £, allowing

an exact solution to be found in the form
$=/0), v=s(z), 0=A£+ g(z),
where A is a constant. The governing equations then become

fo-RiA + TSS'=o,
Su_T>fr= o,

where Ri = R/L, and the boundary conditions become

Oonz =0,

~
Il

~
1l

U1
Il
Il

Il
=

0onz

~n
Il
T
Il
U)_
Il
Il

where primes denote the derivatives with respect to z.
Integrating (4.3.3) and using f = s' = 0 on z = 1 leads to
5 = T*f,
which can be substituted into (4.3.2) to yield
/¥ + Tf=RXA

It is convenient to set
s(z) = RIT>AG(z]T)
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(4.3.3)

"Lif'(4.3.4)

(4.3.7)

(4.3.8)

(4.3.9)



so that
/ = R\AG'(z\ T). (4.3.10)

The function G may now be determined by solving (4.3.8) subject to G' = G" = 0
onz=0and G' = G"I= oon z = 1. Since in addition G = o on 2 = 0 it follows

that

G(z; T) = D1(smhjz cos7z —coshyz sinyz)
~hD2(1 —e_7Z cos 72: —cosh 72:sinjz)

- cosh 72:sin72 + —Z, (4.3.11)
where
‘ e 7(siny7 —cos
D, = D2T7/ 7(sin7 y>—+tanh7tan7 -1
2yT cosh7 cos7
+tanh7tany7 —1 (4.3.12)
£2 = (1 —cosh7 cos7 —tanh7 tan7 sinh7 sin7y), (4.3.13)
7T A
and

D3= ¢ 7(sin7 —cos7)tanh7 tan7 —e 7(siny + cosy)
+ cosh7 cos7 + tanh 7 tan 7 sinh 7 siny (4.3.14)

where 7 = T1N/\/2. Finally, integration of (4.3.4) twice with use of g'(0) = o yields
g(z) = R1A2G(z] )Tt 1 + B (4.3.15)

where B is a constant, and it is noted that this solution also satisfies (1) =0. The

parallel flow core solution can now be written as

i>= R1AG] (4.3.16)
v = RITI2AG, (4.3.17)
6= AC+ B + RIA2GL~1, (4.3.18)

In order that the temperature conditions on x = 0 and L are satisfied, it is required
that

4=1+AI1L~1+ ..., and 5 = 0+ BIL~1+ .... (4.3.19)
in the limit as L —» oo. The order L~I corrections are generated as in the non-
rotating case by the temperature field produced in the end regions of the cavity to

be discussed in section 4.4 below.
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Plots of G(z] T') and its first two derivatives are shown in figure 4.1, for T =
2000,5000 and 10000, where it is seen that the amplitude decreases with increasing
T. As T —0, Gz\T) = G(z;0) + 0(T), where G(z;0) is the non-rotating core
function defined in (2.3.7), that is

Gl 0) = 1525 i3 z4H— 7~ (4.3.20)

and for T = 2000, the three profiles are seen to be similar to those for T = 0
shown in figure 2.1. From (4.3.11) it can be shown that away from the horizontal

boundaries, as T —>00,
G(z-, T)~ zT~4- V2T“F (4.3.21)

This implies that the azimuthal velocity and the convective effect on the temperature
are directly proportional to depth, that the stream function, G'(z\T), is constant
with depth, and that there is effectively no horizontal velocity, G"{z\T). It also
suggests that convective effects are damped by an increase in rotation rate. This
behaviour can be seen in figure 4.1, as can the formation of Ekman layers close to
the upper and lower boundaries where z and (1 —z) are of order These are
particularly noticeable in the case of G"(z]T), the radial velocity, where the only
non-zero values are in the Ekman layers for large Taylor number: in figure 4.2 the

radial velocity is plotted for T = 106.

The form of G (z]T) in the Ekman layers is found by rescaling z. In the lower

Ekman layer, z is rescaled such that z = T~x™z with z of order one, and

Z
Giz\T) ~ VaT~*( * A g 00. (4.3.22)

In the upper Ekman layer the order one variable z = T 14(1 —z) is used and it is

found that as T — o0,
G(Z;T) ~ T~4(1+ y/ZTN le-A (sin_ | _co, N ) (4.3.23)

These are in agreement with the results of Hunter (1967) for the large Taylor number

limit.

Interestingly, the form of s in (4.3.9) suggests that, while the amplitudes of
/ and g are always decreasing with increasing T, for small T the amplitude of s

increases with increasing T, and there is a maximum azimuthal velocity, 5, at the
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free surface for some finite value of the Taylor number. This behaviour is shown in
the plot of 5 at 2 = 1 against the Taylor number in figure 4.3. The maximum value
of the free surface azimuthal velocity can be seen to be at approximately T = 250.
This can be compared with the value of the radial velocity at the free surface shown

in figure 4.4 which decreases with increasing Taylor number from a maximum at

T =0.

The results (4.3.9), (4.3.10) and (4.3.15) can also be obtained by formally
expanding the solution in inverse powers of L and solving the individual problems
which arise at each order of magnitude. In summary, the core solution can be
expanded in the form

ip= fth(l + L~rAi)G' + 0(L~2) ]
v=RII+L-1IA)T*G + 0(L~2) >(!/ —>00). (4.3.24)
#=£+ £ 1(Aif + Bi + RiG) + O(L 2) ]
As T tends to zero, the non-rotating solution is recovered as expected, and for large
T convective effects are damped and concentrated in Ekman layers close to the

horizontal boundaries.

4.4 End regions

The flow across the cavity is turned in approximately square regions at the end
walls. Near the cold wall
ip = ip(x,z) + )
v=ouv(x,z)+ ..., >(L -> 00), (4-4.1)
6= L"N19(x,z)+...,]
and substitution into (4.2.1) - (4.2.3) shows that ip and 6 satisfy the full governing
equations with R replaced by R1I:

_d9 idv -i d(V2Tp,ip)
. 4 4 442
Ri ox T2 (074 d(x,z) ' ( )
Viu-T3-%p - d(v,ip) (4.4.3)
oz d(x,z)°
w2 O (4.4.4)
d(x,z)'
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The zolution must satisfy the wall conditions

It
q&:-ﬁ:w:ﬁ':ﬂun::ﬂ',
e
it b1l
W= — =% = —Deomz=1"0
\ o k3 iz !
gnrl the free aurfree conditions
ot Vs TR 0 .
P=—= = =Monz =21,
T g Pz 8z

Alsa, the solitior must match with the core salution, requiring that

W '*"'ltl"a--"'_'I
v— BT (z — oo)
#rx—ec+ Rl

where, from matching with [4.3.24),

,E':B".
Mear the hot wall
b=t )
tl:ﬁ{iiz:l_._"" }l:..r.—iml,:h
A=14+L78& )+, )

(4.4.3)

(4.48)

(4.4.7)

[4.4.8)

{4.4.9]

(44100

where & = L — 7. Substitution into (4.2.1} - [4.2.3) yvields equations similar to those

of the cold end-zane, except that because of the replecement of ¢ by L — 2, the

Jacohian torms and the bueyaney term have apposite sign:

.y a4 Ao AV, )
4,1 Tyl = gl i
Vot Rt T T T Ty
SIS 1] B,
,Z . ‘||"|_ —_ 1._'_
i iz T Bz
"-T"EI:J _ '?LH:I#"]
ez, z)

The solution musl salisly the wall condizinns

ﬂ—%-ﬁ=ﬁ=ﬂuzmﬁ—u,
9 7"
i

=0ecnz—10,

w=a=ﬂ=a—3

1%

(4.4.11}
(44,12}

(44,23

(4.4, 4}

(4.4.753



the free surface conditions

dZzp dv 06
(4.4.106)
'/=a? =S =& =0onz = 1-
and must also match with the core solution, requiring that
4 -> RxG'
v.. RiT?G (4.4.17)
6~ —xTcTRIG
where, from (4.3.24),
c —Ai + B\. (4.4.18)

The two end region problems must be solved to determine the constant pa-
rameters ¢ = ¢(R1,a, T) and c = c(i?i, a,T) as functions of Ri, a and T. The core

solution (4.3.24) is then completed to order L_1, given that
Ai =c —¢ Bi =c (4.4.19)

Properties of the end region solutions are considered in Chapters 5 and 6.

4.5 Discussion

The work in this chapter extends that of sections 2.2 - 2.4 to incorporate the effect
of rotation, the most obvious difference being the inclusion of an azimuthal velocity
perpendicular to the plane of the stream function flow. This renders the nonlinear
end region flows fully three-dimensional and gives rise to a two-dimensional flow in
the core parallel to the plane of rotation. Although the amplitude of the core velocity
is still linearly dependent on the Rayleigh number, the velocity profiles themselves
are now dependent on the Taylor number as well as being a function of depth. As T
increases, the radial velocity becomes concentrated in thin Ekman layers close to the
horizontal boundaries, and its amplitude decreases. The amplitude of the azimuthal
velocity initially increases from zero at T — 0 to a maximum at approximately
T = 250 before it then also decreases. Thus in general a high rotation rate dampens

the effect of convection.

In Chapter 3, the linear stability of the two dimensional, non-rotating core

flow was investigated. It seems likely that at small Prandtl numbers the core flow in
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the rotating case will also become unstable for sufficiently high Rayleigh numbers,
although this is not investigated here. The stability properties of the flow are likely
to be quite different at large rotation rates where away from the Ekman layers and
the end regions, the only flow is in the azimuthal direction. Chapters 5 and 6
are devoted to a detailed investigation of the properties of the basic steady three-
dimensional flow which occurs in the end-regions of the cavity at general rotation

rates.
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G(zT) x 104 G'(zT) x 104 G”(zT) x 103

Figure 4.1: Plots of G(z]T) (core temperature and azimuthal velocity profile), G'
(core stream function profile), and G" (core radial velocity profile) as functions
of z for T=2000,5000,10000. In each set of graphs, the amplitude decreases with

increasing T.
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Figure 4.2: Plot of the radial velocity, G"(z;T), as a function of z for T = 106.
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Figure 4.3: The azimuthal velocity T12G(1; T) at the free surface as a function of
T.
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G” (1;T)
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Figure 4.4: The radial velocity G"{I1] T') at the free surface as a function of T.
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Chapter 5

Steady-state solution of the
rotating end zone eigenvalue
problem

5.1 Introduction

Solutions in the two end regions of the cavity may be found as an infinite set of
eigenfunctions that decay into the parallel-flow core. In this chapter, the eigenvalue
problem is derived for general Rayleigh, Taylor and Prandtl numbers. This problem
is solved analytically for Ri = T = 0 and involves the introduction of an ‘azimuthal’
mode in addition to the modes determined previously for the non-rotating problem
in chapter 2. The eigenvalues are then ‘traced out’ numerically from these known
values to find solutions for general Ri and T, allowing the lateral extent of the end
regions to be determined. The lack of symmetry between the two ends means that,

in general, the hot and cold end regions need to be considered separately.

These results for general R1 and T are complemented by asymptotic analyses
of the problem for small Rayleigh number and large Taylor number - recovering the
double vertical boundary layers, or Stewartson layers, found by Hunter (1967) - and
for large R\ and large T, where a novel boundary layer structure is identified in

Ekman layers along the horizontal boundaries.
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5.2 Derivation of the eigenvalue problem

Insight into the behaviour of the end region solutions for general Ri, T and a can
be gained by considering the manner in which the core flow is recovered as x —>o00

and x —o00. For the cold end-zone it is expected that

(5.2.1)
v~ RITW + J2v~]Ri,T,a)eax (5.2.2)
e "x +c+ RiG + lzt, 0(2;Ru T, v)eax (5.2.3)
for Re(a) < o, x 1, while for the hot end-zone it is expected that
-RiG 1+ J2 t&Ri, T,a)e~ai: (5.2.4)
v~RANG +X]v(z;M,T, a)e~at (5.2.5)
6~ -x +5+ RiG + 0(2; Ri, T, a)e~ai (5.2.6)

G

for Re(a) > 0, x > 1. Substituting (5.2.1)«5.2.6) into the governing equations
(4.4.2) - (4.4.4) and linearising leads to a single eigenvalue problem for both end-
zones:
yi?
v + 2a2f + a AP aRi® + T*V' = . {G'((P" + a2sh Giv(P) (5.2.7)
V'+ a2V - T%j)' = aR\cr~(G"V - TG'<P), (5.2.8)
0" +a20 <" = aRi[G"Q - G, (5.29)

with )= 9=V =0"=0onz=0and = = V' = 0' = 0on z = 1. In general
the eigenvalue a is complex, with a = ar + icti- Solutions where aT > 0 relate
to the hot end-zone; where ar < o the solutions correspond to the cold end-zone.
By taking the complex conjugate of (5.2.7) - (5.2.9) it can be seen that if a is an
eigenvalue corresponding to eigenfunctions () V and 0 then a* is the eigenvalue
corresponding to the eigenfunctions (j)% V* and o *, where the asterisk denotes the
complex conjugate. To avoid confusion, the imaginary part of the eigenvalue, is

taken to be positive at the hot end and negative at the cold end.

For general 4, Ri and T it is necessary to solve the eigenvalue problem (5.2.7)

- (6.2.9) numerically. A fourth order Runge-Kutta scheme was used to compute
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solutions from the specified boundary conditions at z = o to give accurate results at
z = 1. These results were made consistent with the boundary conditions at z = 1by
combining four independent solutions and using a Newton iteration. This is similar

to the scheme discussed in detail in section 2.6.

The eigenvalue problem (5.2.7) - (5.2.9) was first solved numerically for R1 =
0 and general T, and then for finite, fixed T and general Ri. Results for both the
hot and cold ends are given, and each end has both ‘real” and ‘complex” eigenvalue

branches which stem from the limiting behaviour at R1 = 0 to be discussed below.

5.3 Small Rayleigh numbers, i?i <C1

Values of a were first traced out for Ri = 0 and general T by starting from the
analytical solution of the eigenvalue problem which is available when i?i = T = 0.
This analytical solution is described first and then subsequent parts of this section
describe solutions obtained for finite and large values of T, using both numerical

and asymptotic methods.

531 Small T

When Ri = T = 0 the end zone eigenvalue problem simplifies to

(fiv+ 2a2()" + aAfj = o, (5.3.1)
V" + a2V = 0 (5.3.2)
o"+ a2 -<>'=o, (5.3.3)

Fd= =<m=o0'=oonz -oand §=4"'=V =o0'=oonz = 1. For the
trivial solutions of (5.3.1) and (5.3.2), = V — 0, the solution of (5.3.3) yields the

real eigenvalues
a = £n7, n=1,2,..., (5.3.4)

with eigenfunctions of the form 0 = cos mrz. Alternatively, the relevant non-trivial

solution of (5.3.1) is

9 = sinaz —az tana sinaz —az cosaz, (5.3.5)
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where a is a solution of
sin2a —2a = 0. (5.3.6)

The complex roots of (5.3.6) are tabulated in Hillman and Salzer (1943), giving
a = +(3.7489 + 1.3844z), £(6.9500 + 1.67611), .... (5.3.7)

Unlike the non-rotating case, there is now a third set of eigenvalues that comes from

the azimuthal velocity equation; the solution of (5.3.2) yields the eigenvalues

+ 1)7
a = (2n 7T n —o0,1,2 ... (5.3.8)

and the eigenfunctions V = sin(2n + 1)ttz/2.

5.3.2 General T

For zero Rayleigh number and general values of T, equations (5.2.7) «5.2.9) reduce

to
tw+ 2a2f +a4h+ TW =0, (5.3.9)
V't a2V -T<A' =0, (5.3.10)
0"+a20-" =0 (5.3.11)

with boundary conditions,
w~@g—-—V -0 —-0on2—-0 and E= =V -QI=0onz -1 (53.12)

It can be seen that, as all the powers of the eigenvalue a are even, this problem is
the same for both hot and cold end regions, with the eigenvalues for the cold end
equal and opposite to those for the hot end. Thus only the results for the hot end

zone where Re(a) > 0 are given.

The results of solving (5.3.9)-(5.3.12) numerically with the fourth order
Runge-Kutta scheme from the known values at Ri = T = 0 are given in figure 5.1,
which shows how the real azimuthal velocity mode and the complex stream function
mode depend on the Taylor number for zero Rayleigh number. These modes remain
independent of thermal effects. The thermal eigenvalues (a = mr) determined by
(5.3.11) remain unchanged with increasing Taylor number and are not shown; these
correspond to the trivial solution = V = 0 of (5.3.9) and (5.3.10).
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The complex stream function modes differ from the real azimuthal modes
in that initially they decrease with increasing but small Taylor number. The first
real mode is always dominant though, and for large T, all the modes are increas-
ing with increasing T, so that the end regions contract as the rotation rate
increases. Greater insight into the end region structure can be gained by a study of

the asymptotic structure for large T.

5.3.3 Large T

At general values of T, the vorticity and momentum equations (5.3.9) and (5.3.10)
together with the boundary condition (5.3.12) can be written as the single sixth

order problem
Vm+ 3a2VIv + 3a4V" + a6V + TV" = (, (5.3.13)

with boundary conditions
V=V"=Vo+ 3a2V'" + 2a4V'+ TV' = oon z = o, (5.3.14)

and
Vi=V"=Vv=0onz-=1. (5.3.15)

As T —>o00, there are two different behaviours of a. In general, a is proportional to
T1/6, but for the leading mode, of greatest importance in terms of the decay length
of the end regions, the value of a is proportional to T1/8. The analysis for each
case is given below in terms of asymptotic expansions for a and V as T —Poo. The
two behaviours correspond to the inner and outer vertical boundary layer scales
discussed by Hunter (1967) and originally identified by Stewartson (1957) in his
analysis of the flow generated between differentially rotating disks.

A balance between the final two terms on the left-hand side of (5.3.13) sug-
gests that in general the expansion of the eigenvalue a as T —>00 can be expressed

in the form
a=T"a, a=do+ mee, T —o00. (5.3.16)

Neglect of the highest order derivatives then leads to the existence of boundary layer

regions near z = 0 and z = 1. Expansions for the azimuthal velocity V in the core
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and the Ekman layers in the limit as T —>o00 are shown below.
z=1-zT~* V =W+ 7"~
V=W+..
z = zT~* V=W+ ~

In order to obtain the correct boundary conditions for the core region it is useful to
first consider the problems arising in each Ekman layer. In the lower Ekman layer

it is assumed that V = V(z) in which case it follows from (5.3.13) and (5.3.14) that

V satisfies the equation

Vi + V" + 3T~*42Viv + 3T-34a4E" + T~*516Y = 0, (5.3.17)
with boundary conditions
V=V"=Vo+ Y +3T-6a2y,,+ 2T -384E' = 0 on z = 0. (5.3.18)
Integrating (5.3.17) once yields
Vo+ V' + 3T~ect2V'" + 3T->a4V' = 0{T~") + dx, (5.3.19)

where di is a constant of integration. However, the third boundary condition at
z = 0 implies that di = 0(T'_1'/3), and therefore letting z —>o00 in (5.3.19) implies
that E'(0o) = (9(T_1/3). This implies that the leading order term in the expansion

of the core solution must satisfy
Fo(0) = 0. (5.3.20)

A similar consideration of the problem in the upper boundary layer, where V = V(z)

implies that
Vo+ V' + 3T -ia2V"' + = 0(T~*) + d2, (5.3.21)

where dZsa constantof integration and V satisfies the boundaryconditions V =
V" = Vo= 0 on z= 0. These conditions imply thatd2 =0(T-1"2), and thus,
letting z —>o00 in (5.3.21) implies that, V'(oo) = 0(T~1/2). This implies that the

leading order term in the expansion of the core solution must satisfy

yO(1) = 0. (5.3.22)



The leading order coro cquation
V= —afia, (5.3.23)

cen now be solved with the boundary conditioas ¥ = 0 ow 2 = 0,1 Lo give Lae

eigenfunctions ¥y — cosnwz and she eigenvalues

2

1 =a'a
ap — (nr)h {1, ik ) n=12..., (5.3.24)

Here only the eigenvalues with positive real part are sclected, equivalent to sohetiona
which decay into the core as required - those with negative real part are the
snrenvalies for the ather ['-:'.-;:r]ﬂ] end. In fact it w3l be shown below that the leading
eigenvalue actually corresponds to the solution [3.3.24) with n = 0. From (5.3.16;
Lhis is equivalent to a scaling of & with Twhich is much smaller than T4% as T — oo

and 20 a senarate asymptotic analysis 18 requited for this mode.

For the mades with n > 1 the [eading order soluticn in the lower Thman
layer can now alzo be found explicitly by solving

Vit 1 =, (5.3.23)
subject 1o
=V =V sV =0an z=1, (5.3.26)
and masching with the core which requizes Lhat by L az 2 — oo This gives
] . . ; )
H:l - :{E L EHEJ, k'ﬁ'g'??f
wheoe 43
—1+: .
Wiy = ———. (5.3.28)
V&

There are no expaonential terms in the leading order upper Ekman layer solution,
wahich is simply Tp = (—=11". Thus shere is effectively no apoer BEkmar layer al this

arder,

Far n — 1l the above theory predicls an eipenvalue an associated wish a core
cigenfunction 1y = 1 independent of 2. For this special case it emerges that there
13 a solution for o wilh positive real past a8 T — oo and that the asymptotic form
{5.0.18) mnust be replaced by

o= g —omd 14, T —oo [5.2.29]



and that the azimuthal velocity, V, must be expanded in powers of T in the core

and in the two Ekman layers, as shown below.

z=1-zT~* V= 1Tp+ FiT~? + V2T~i +
V=W+ VIT-1+ ...
z = zT~\ V=W+ ViT-*+ V2I'-z+ ..7

It is again helpful to first consider general properties of the Ekman layers in order
to identify the correct boundary conditions for the core. In the lower Ekman layer

it is again assumed that V = V(z), in which case V satisfies
VU+ V" + 3T~*a2Viv + 3T~>a*V" + T~*a6V = 0, (5.3.30)

with boundary conditions

V=V"=Vo+ VIi+ 3T~*a2V'" + 2T~*1*V' = oon z = o. (5.3.31)
Integrating (5.3.30) once yields
Vo+ V' + 3T-"cc2V'" + 3T -*cia V' = 0(T~%) + d3, (5.3.32)

where d3 is a constant of integration. The third boundary condition at z = 0 implies
that
d3= a4T"h'(0) + 0{T~*), (5.3.33)

and letting z —>o00 in (5.3.32)it follows that to a firstapproximation as T — oo,
V'(oo0) = a*T~*V'(0). (5.3.34)

The leading order boundary layer problem for Vs the same as that for the case

when n > 1, so that
W= "2- en- e2), where uliz=a" - (5.3.

and since V(0) = ~ it follows from (5.3.34) that to a first approximation

V'(00) = -AT-*. (5.3.36)

V2
Matching with the core solution then implies that the core boundary conditions for

the first two terms in the core expansion are

K@) =0 and V'(0)= * , (5.3.37)
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In the upper Ekman layer where V = V(z), similar considerations lead to
the results that

Vo+ V' + 3T-*a2V" + 3T~"adV' = 0(T~*) + dA (5.3.38)

where d4 is a constant of integration and V satisfies the boundary conditions V' =
V"' = Vo= 0on z = 0. These conditions imply that d4 = 0{T~3l4), and therefore
letting z —moo in (5.3.38) it follows that y'(oo) = 0(T “3/4). Thus, matching with
the core solution as z -> 1 implies that the leading two terms must satisfy the
boundary conditions

K@) = vz = 0. (5.3.39)

As in the case where n > 1, there is effectively no upper Ekman layer at this level

of approximation.
The leading order core problem is now to solve
V7 =0, (5.3.40)

with k0 = 0 on z = 0 and 1. Assuming a suitable normalisation, this has the

constant solution Vo = 1.
The equation for the first order core function W is
V' = -a%v0, (5.3.41)

and since Vo = 1, this yields

W= — &%+ do, (5.3.42)

where d5 and 46 are constants of integration. The constant 46 is equivalent to a
normalisation of the solution and so can be taken as zero without loss of generality,

and using V/(l) = o, this gives
Vi=y((2z - z2). (5.3.43)

Finally, from (5.3.37), it is required that 14/(0) = do/V” which implies that non-zero
solutions for ao satisfy a2 = 2~1/2. Thus for the hot end zone the relevant solution
is

jo= 2-s (5.3.44)
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and the negative root provides the corresponding solution for the cold end.

In the lower Ekman layer the first order solution for Vj can now also be found

by solving the equation
Vim+ 3 ~ " + V7=, (5.3.45)

subject to the boundary conditions Vj = Vj" = oonz = oand VJ' ¥ 0 as z —» 00 to
give

t4 = ("I - eAE)+ -alz K_ e+ — . (5.3.46)
4 8 \lg B ]

The third boundary condition on z = 0, Vjv + 3aoVj," + Vj' = 0, is automatically

satisfied in line with the general argument leading to (5.3.34).
In the upper Ekman layer the corresponding problem for Vj simplifies to
V?+Vi"=0, (5.3.47)

which by matching with the core and using Vj' = Vj" = 0 on z = 0 yields the simple
solution Vi = a®/2, equivalent to the fact that at this level of approximation there

is no variation across the upper Ekman layer.

These asymptotes are not shown explicitly with the numerically calculated
curves shown in figure 5.1 as the numerical and asymptotic curves are indistinguish-

able at all but very small Taylor number.

54 General Rayleigh numbers

The eigenvalues a are now traced out for fixed Taylor number and general Rayleigh
numbers using the Runge-Kutta numerical scheme from the values found for Ri = 0
in section 5.3.2. In this regime the eigenvalues are dependent on the Prandtl number.
However, following the findings of McIntyre (1968) and the results of chapter 2,
which suggest that there is little variation with Prandtl number for a2 > 1.5, the

Prandtl number is taken to be infinite in this section.

Figures 5.2 and 5.3 show results for T = 500 for the ‘real’ and ‘complex’
modes in the hot end region. The eigenvalues are referred to as ‘real” and ‘complex’

by reference to their form at Ri = 0, but as can be seen in figure 5.2, the ‘real’
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azimuthal and thermal eigenvalues interact at certain values of R to become a single
complex eigenvalue, the real part being given by a solid line and the imaginary part

by a dotted line.

Plots of a against Ri are given in figures 5.4 and 5.5 for T = 5000, and similar
plots of ‘real” and ‘complex’ eigenvalues against R1 for T = 500 and T = 5000 are

given in figures 5.6-5.9 for the cold end.

In both hot and cold end zones, the ‘real” eigenvalues appear to decrease in
size with increasing Rayleigh number, but the increase in T causes this decrease
to become less. (These results can be compared with those for T = 0 and infinite
Prandtl number in chapter 2.) As in the non-rotating case, the real part of the
‘complex” modes increases with increasing Rayleigh number. The behaviour of the
‘complex” modes with T is not as obvious as with the ‘real’ modes, but it appears
that the value of the real part of a at large R\ decreases with increasing T. This
value is still alot larger than the smallest ‘real” eigenvalue, and it is suspected that
the ‘complex” modes only become dominant for small Prandtl number (a < 1), as
in the non-rotating case, or possibly for general Ri and large T, but this is not

investigated here.

The ‘real’ and ‘complex’ eigenvalues behave in a similar manner for both hot
and cold end zones, especially the complex modes when T = 5000. At large R\, the
leading ‘real” eigenvalue in the cold end is slightly smaller in size than the leading
eigenvalue of the hot end, suggesting that the cold end extends further into the core

than the hot end. This is investigated further in the next section.

5.5 Large Rayleigh numbers, R\ O 1

The similarity in the results for the rotating and non-rotating ‘real’ modes suggests

that, as in the non-rotating case, the ‘real” eigenvalues may depend inversely on the

Rayleigh number at large R\.

For the rotating case with infinite Prandtl number the reduced problem equiv-

alent to that of section 2.8.1 is obtained by setting a = a(/Ri and letting Ri —>co
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Using <\1) = V'(I) = 0, integration of (5.5.2) yields
V' = Ti(j) (5.5.10)

and so the reduced system (5.5.1) {5.5.5) can be simplified to

4w+ T(j)- a0Q = 0, (5.5.11)
0" - #£=a0T-\G"Q - G5, (5.5.12)

with boundary conditions
g=¢(=0;=0onz=0, and @E=@"=0"=0onz2=1 (5.5.13)

Once 0 and ¢) are determined, the remaining boundary condition V(o) = 0 is used

when finding V' from integration of (5.5.10).

For large T, it emerges that a0 can be written in terms of an expansion in T
as follows:
a0=o\T+ a2T* + ..., (5.5.14)

Note that since the derivation of (5.5.1) £5.5.3) requires a to be small, it is necessary
here that 1 <CT -C R\ and a new behaviour would be expected to develop when
T > Ru consistent with the results for large T and finite i?i determined in sections
5.3.2 and 5.4. The eigenfunctions ¥and 6 are also expanded in terms of T in the

core and the two Ekman layers as outlined below.

z —1 — =<0+ T~i+ ...
0=00+0M-T +...
$=  + Pl *+ L
o =oq+ Q\T~* + ...
= + P\T 4+ ...
z = zT~* o =00+ 0iT“g+ ...

These expansions are substituted into the reduced system (5.5.11) «5.5.13) to yield
a series of problems at each order of magnitude in T. The leading problems in the

Ekman layers are solved first to find the correct boundary conditions for the core.

The leading order lower Ekman layer problem is

0" =0, (5.5.15)
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and using 0 q(O) = 0, this implies that 0 Ois a constant. Matching with the core

implies that
0o = 00(O).

At first order the lower Ekman layer problem is
= *1G"QO0,
which can be integrated to give

©i = <o+ 0iiG'Qo,

(5.5.16)

(5.5.17)

(5.5.18)

where the condition 0((O) = 0 has been used. As z —>o00, to match with the core

solution, it is required that 0( —>0 q(O) and 40 —</>d(), and hence (5.5.18) implies

that
00(0) = MO) + «i0o(0).

(5.5.19)

A similar argument in the upper Ekman layer leads to the condition on the core

solution that
0'(1) = "o(l) + a100(1).

The leading order equations in the core are

$o—«100 - 0,

o" ~fo = -«i*o-
These can be written as a single second order equation for 0o,
0q —QUQ+ oqlo= 0,
and using (5.5.21), the boundary conditions (5.5.19) and (5.5.20) become
o! —2aioo=oonz=o0andz =1

The general solution of (5.5.23) is

00=¢2* [Asin —-a.\z+ B cos —y/é«u:
2 2

(5.5.20)

(5.5.21)
(5.5.22)

(5.5.23)

(5.5.24)

(5.5.25)

The condition at 2 = 0 implies that A = \/3B, and the condition at 2 = 1 yields

2nir (n int )
= , (n integer.
al V3
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Negative values of n correspond to the cold end zone and positive values to the hot
end zone. The solution is normalised such that "o(O) = 1, so that

0 O= — e2z(cosriiiz + \/3s'mnirz), (5.5.27)

« 1

and
= e'2z(cosmrz + \/3 sinn7rz). (5.5.28)

The leading order eigenfunction for the hot end (n = 1) is plotted in figure 5.11.
It can be noted then that $9(a-i,| —z) = e“1/X —1)n™(—ax,2); ignoring the nor-
malisation, the hot end eigenfunction is the upside-down image of the cold end
eigenfunction. This suggests that towards the cold wall the flow at the top of the
cavity slows down and the flow at the bottom speeds up. The area of greatest circu-
lation thus appears to have moved down. The opposite is true near the hot wall: the
area of greatest circulation appears to have moved up. This behaviour was shown
numerically for Rx — 3000 and T = 0 in figure 2.17 and discussed in section 2.10.
The solution is dominated by thermal effects and at this level of approximation the
asymmetry of the free surface has no effect on the form of the eigenfunction. Using

(5.5.10) and U(o) = o, the leading order term in the expansion for V,

V=VT12+ WxTI'A+ ..., (5.5.29)
is
1 a r , 1
W= —e22(v3sinmrz —cosnirz) H—. (5.5.30)
ax ai

The leading order Ekman layer solutions can now be completed. In the lower
layer Q0 = 1/ax and ¥9 satisfies

o+ =1 =0, (6.5.3U0
with 0 = (o= o on 2 = o, giving

o=1—e 'Sz \cos \—/2;2 + sin 72\2) = G1L (5.5.32)

O T
In the upper layer 0 O= eai”2(—I)n/a x and gl satisfies
C +7o-(-1)"e” =0 (5.5.33)
oon z = o, giving

(-iVg. N Lo=1 —e cos 5= = G". (5.5.34)
\%



The theory is now extended to determine the second term in the eigenvalue

ap as T — oo. At first order in the lower Ekman layer, (5.5.18) gives
0, = 20", (5.5.35)

and one integration, together with matching to the core solution, implies that

= S 1
01 = 2(z + V2e¢ E cos _-’32) + 04(0). (5.5.36)
v
The first order stream function equation,
¢ + 1 — 107 — 22,0, = 0, (5.5.37)

can then be solved to give

- g 1 |
¢ =€ sz(dl cos —Z + dy sin —2)

V2 V2

1 iz 1 . 1 = (o)
4 - anze Vi (cos —=Z + sin —=2) + 2047 + 0 ©1(0) + -2, (5.5.38
5 1€ (cos V,Q_z + sin \/zz)% a1z + a;01(0) = ( )
where the boundary conditions ¢,(0) = ¢4(0) = 0 imply that
g 5 -
dy = ~,0,(0) — = and dy=d; — §\/2a1. (5.5.39)
Qg

In a similar fashion the first order equations in the upper Ekman layer,

0! = —do — 01 G'Op, (5.5.40)
B 4§y — 107 — 00 =0, (5.5.41)
have the solutions
O, = -2(-1)"e? (2 + ie"l—zf(cos LB in s 0:(1),  (5.5.42)
V2 V2 V2
b =€ \_;‘iz‘(cfl cos - - Z 4 dysin - }—.é) (5.5.43)

V2 V2

o, 1_ - 1 N O n 2
20 (—1)"e? (Z A 17¢ V2% cos \/§-z)—|—cx1®1(l) F a—j(A-l) er,

where the boundary conditions ¢(0) = ¢”(0) = 0 imply that

dx —04(1) — 2(—1)”6% and dy = -

(&3]
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At second order in the lower Ekman layer, the equation for 0 2is
0" - # = ajG"®©! + a2G"Go - ajGVo. (5.5.45)
This is integrated with respect to z to yield
02 —#H —@&G'Qq —A&G'Qi = Al / G (01 + <9dz, (5.5.46)

where the boundary condition 02(O) = 0 has been applied. Noting that Q[/2
$o= GJ, the integration on the right hand side can be carried out to obtain

—oil / G;(0i + $0)dz - (5.5.47)
-3ai glz + 2\/2e cos —j=z-——--i=¢ " z(2 + cos \[7%Zz + sin \]~22)) + C.
V2 2\/2
where
15x72«!
c= (5.5.48)

From matching with the core as z —>o00, (5.5.46) gives the core boundary condition

©i(0) - &(0) - a10i(0) - a200(0) = C. (5.5.49)

In the upper Ekman layer, there is a similar second order problem for 0 2

that on integration with repect to 5 yields
02+ A~ +a2G'$0 + alG'Ql=ai ]f G'(Q[ - :o0) dz, (5.5.50)
0

where the boundary condition 0'2(0) = 0 has been applied. From the first order
solution it can be noted that —0"/2 = = eai”2(—1)nG" and thus the integration
on the right hand side can be completed, giving

aj G(e[-j>0)dz =

Jo

—Bai( 1)~ (]z + V2e~"(cos \—]i2=z —sin —=1)

x/2
n/2 S . .
(2 + cos \I2z —sin \22)N + C, (5.5.51)
where
C= 15" al(_i)ne” = (5.5.52)
8 2
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From matching with the core as z 0o, (5.5.50) now gives the core boundary

condition

0'x(1) - <M1) - ai©@i(l) - a20 o(l) = + (5.5.53)

The second order core equations are

£ —aqO@i —«200 —0, (5.5.54)
o1 — #l = ~al<rl ~ a-26%, (5.5.55)

which reduce to a single second order equation for 0i:
0" —0qQj + ax0i = a20Q —2ala2Qo, (5.5.56)

to be solved subject to the boundary conditions (5.5.49) and (5.5.53). Equation
(5.5.56) has general solution

©i=e?2 (a{3cos—\—é§a.\z + a’élsinlééa xz)
\fZa2 Nz, , \/3 v/3

—————————— ze 3 sin~Laxz —v 3cos Ya xz), (5.5.57)
2aa v 2 2 i

Substitution of ©i into the two boundary conditions (5.5.49) and (5.5.53), use of

(5.5.54) and subtraction of the two expressions leads to the result

15y/2
a2=.C = yr2ax (5.5.58)
The theory has now been completed to first order, giving the first two terms

in the expansion of a0 for large Taylor number as

2mr I5y/2mr *
]

@ T*+..., (T> 1) (5.5.59)
V3 4y f3

This result compares well with numerical results for a 0 obtained by solving the re-
duced problem (5.5.1)—5.5.3) for large values of T, as shown by the plot of a (/T
against log(T) in figure 5.12. The difference between the hot and cold end eigen-
values caused by the free surface asymmetry and apparent in the numerical results
of figure 5.10 is not evident in the two-term asymptotic expansion (5.5.59). The
asymmetry is small and is expected to affect higher order terms in the expansion
(5.5.59).
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5.6 Discussion

In this chapter a combination of asymptotic and numerical methods has been used
to investigate the lateral extent of the end zones for a range of Rayleigh numbers
and Taylor numbers, with attention focused on the limit of large Prandtl number.
At small Rayleigh numbers, the two end zones contain symmetric turning motions
which contract towards the walls as the speed of rotation increases. At large T, the
results of section 5.3.3 identify two length scales for the decay of the eigenfunctions
into the core, x = (9(T-1/6) and x = These correspond to the two
Stewartson layers described by Hunter (1967). The flow in these layers is described
in more detail in the next chapter. The results show how the size of the end regions
decrease with increasing Taylor number, the slowest decay being associated with the

outer layer for which, from (5.3.44), the e-folding decay length is
x~ 2 , T —>o0. (5.6.1)

The effect of rotation is generally opposite to the effect of increasing the Rayleigh
number where the sizes of the end regions increase. In general the end regions are
not symmetric, but for small rotation rates the results of chapter 2 indicate that

their lateral scales are quite similar, with
x ~ 459 x 10_4A} (cold), x ~ 4.98 x 10_4Ai (hot), Ai —» oo. (5.6.2)

The effect on these long, order R\ scales of increasing the speed of rotation was
examined in section 5.5 both numerically for general Taylor numbers and also in the
limit as T —>o00. This confirmed that the effect of rotation is to reduce the scale of

decay so that for both end zones
(") RiT-1 (5.6.3)

when 1 <CT <CR\- For large rotation speeds, the end zone flows are centrosymmet-
ric to a first approximation, except in the Ekman layers adjacent to the horizontal
boundaries where the asymmetry caused by the free surface is significant. This
means that the lateral scale of decay is the same at both ends to a first approxima-
tion as T —>o0o0. The implication of (5.6.3) is that as T increases the decay scale
is eventually reduced to order one values of x, possibly when T ~ Ri, and then

to the even shorter scale (5.6.1) when T is much larger than Ri. Further study is
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needed to fully investigate the transition from (5.6.3) to (5.6.1) at large values of T.
It is believed that the Ekman boundary-layer structure is much more complicated
in this case. The e-folding decay lengths of the end regions in the various regions
of parameter space are summarised in the diagram below for the case of infinite

Prandtl number.
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15.0

T

Figure 5.1: The real and complex eigenvalues a for general T when R\ = 0. The
solid lines are the real modes; the dashed and dotted lines are the real and imaginary
parts of the complex modes.
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Ri
Figure 5.2: The ‘real” eigenvalues a for finite R1I when T = 500 in the hot end zone.
The solid lines are the real parts and the dotted lines are the imaginary parts.

Ri
Figure 5.3: The ‘complex’ eigenvalues a for finite R\ when T = 500 in the hot end
zone. The solid lines are the real parts and the dotted lines are the imaginary parts.
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Hi
Figure 5.4: The ‘real” eigenvalues a for finite R\ when T — 5000 in the hot end
zone. The solid lines are the real parts and the dotted lines are the imaginary parts.

Ri
Figure 5.5: The ‘complex’ eigenvalues a for finite Ri when T = 5000 in the hot end
zone. The solid lines are the real parts and the dotted lines are the imaginary parts.
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R1
Figure 5.6: The ‘real’ eigenvalues a for finite Ri when T = 500 in the cold end zone.
The solid lines are the real parts and the dotted lines are the imaginary parts.

Ri
Figure 5.7: The ‘complex’ eigenvalues a for finite Ri when T = 500 in the cold end
zone. The solid lines are the real parts and the dotted lines are the imaginary parts.
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Ri
Figure 5.8: The ‘real” eigenvalues a for finite Ri when T — 5000 in the cold end
zone. The solid lines are the real parts and the dotted lines are the imaginary parts.

Ri
Figure 5.9: The ‘complex’ eigenvalues a for finite R\ when T = 5000 in the cold
end zone. The solid lines are the real parts and the dotted lines are the imaginary
parts.
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Figure 5.10: The leading real eigenvalue ao for general T. The solid line is the hot
end zone eigenvalue and the dashed line is the (negative) cold end zone eigenvalue.

Figure 5.11: The leading order eigenfunction (% in the hot end. The cold end
eigenfunction is the other way up.
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Figure 5.12: Values of \cto\/T for general T. The solid line is the hot end zone
eigenvalue and the dashed line is the (negative) cold end zone eigenvalue. The
dotted line is the large T asymptote.
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Chapter 6

Solutions for the rotating end
zones at low Rayleigh numbers

6.1 Introduction

The basic steady-state flow in the end regions at small Rayleigh numbers and general
Taylor numbers is discussed in this chapter. A combined analytical and numerical
method of solution based on the results of the Runge-Kutta scheme already obtained
in chapter 5 and a numerical Fourier series routine, is presented in sections 6.2 and
6.3. This is used to determine the flow in the end regions of the cavity for finite Taylor
numbers. The main results are presented graphically in section 6.4. The solution of
the end region equations, both analytical and numerical, yield the constants c and ¢
which are needed to match with the core solution for a complete description of the

flow in the cavity at leading order as J?2i —>0 m

Previous work, such as that by Hunter (1967), has described the large Taylor
number structure of the flow in the cavity, consisting of horizontal Ekman layers
and vertical Stewartson layers near the boundaries and free surface, already referred
to in chapter 5. In section 6.6 it is shown that this large Taylor number structure
emerges from the numerical solution of the problem presented in section 6.3 as
T —>oo0. Likewise, in section 6.5, an analytical solution for small Taylor number is

found which is consistent with the small Rayleigh number solution of chapter 2 for

the non-rotating case.
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The numerical and analytical results together provide a complete description

of the transition from small to large Taylor number flow.

6.2 End region solution for small R\ and general

T

With the Taylor number of order one, the stream function, azimuthal velocity and
temperature in the cold end are written as asymptotic expansions for small Rayleigh

number as follows:

0 = Riipo T Rlipi + *e9j (6.2.1)
v=RiVo+ RRi + mm,, (6.2.2)
d —x RiQi + R"2+ .. mm (6.2.3)

The leading term in the temperature field follows from the same argument as that
used in the non-rotating case (section 2.9). These expansions are substituted into
the governing equations (4.4.2)-(4.4.7) to yield a set of problems at each order of
magnitude. Recalling that 0 ~ x + RiG(z] T) + ¢ as x —>00, the constant c is also

expanded in terms of R\, such that

¢c —R\C\T R\c2+ ... m (6.2.4)
At order R,
VVo =1- Tiv0;z (6.2.5)
V2u0 = Tiip0z, (6.2.6)
(6.2.7)
with boundary conditions,
b=o00*=W=0z=0o0n2=0, (6.2.8)
0o =0oz= "oz=0\z=0onz2=1, (6.2.9)
0o =00e= =0=0onx =0, (6.2.10)
and
0o =G\z\'T), v0—=>G[z\T), —*G(z;T) + ci as x —>00. (6.2.11)
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The solution is clearly independent of the Prandtl number and is considered in detail
in section 6.3. Although the problem is not completely solvable analytically, unlike
the order R\ problem when T = 0, a hot-end/cold-end symmetry exists as in the
T = 0 case so that it is unnecessary to solve a separate problem at the hot end of

the cavity where if), v and 6 are expanded in the form

V= KiVo+ Ri&i + ... , (6.2.12)
v = Rjvo + R\vi + ... , (6.2.13)
6= —x+ R\B\ + Ri&Q T eee> (6.2.14)
with
c —R\C\+ R\@+ .... (6.2.15)

Thus the solution for the hot end is

i>o(x,z) = ip0{x,z), (6.2.16)
v0(x, z) = v0(x, z), (6.2.17)
. = = (6.2.18)
and
G=43a (6.2.19)

where x — L —x.

The constant c\ can be found as follows. Integration of (6.2.7) with respect

to z yields
1 f2q rgan 1

’
Jo dx2 dz
which with the boundary conditions (6.2.8) and (6.2.9) becomes

=M, (6-2.20)

rl d26l

]{) P dz = 0. (6.2.21)

This can be integrated twice with respect to x, using the conditions on 61 given in
(6.2.10) and (6.2.11) to yield

cl1 = ]f) G{z\T) dz. (6.2.22)

The core function G(z;T) is given analytically by (4.3.11) and it can be

shown that
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1
ci = —-—tanhytany —
2T

T(sin7 —cos
27 —1 —tanh7 tany — C(OSh77 cos 7 7) (6.2.23)

where 7)2 is as defined in (4.3.13). The solution for ci is shown in figure 6.1. As
described in chapter 4, G(z\T) = G(z; 0) + O(T) as T -#0 where G(z; 0) is the
non-rotating core solution, the integral of which is known to be 1/720. The order T

term can also be determined so that as T —>0,

1 1
-T 6.2.24
d 720 22800 ( )
Also, it is known that as T —Pvo, G(z,T) ~ zT 1, and thus
o - T'aT oo. (6.2.25)

These asymptotic values of G are included in figure 6.1.

As shown earlier, the hot-end/cold-end symmetry means that ;1 = cx, and
so from (4.4.19),

Ax= 0{R\) and Bx= cxRx+ O(R\),Rx-> 0. (6.2.26)

The constant Bx in (4.3.24) represents a correction to the core temperature field
arising from convective effects and the presence of the end walls. The rapid increase
in G with T shown in figure 6.1 implies that these effects are damped by rotation.

At order R\ the cold end problem for ipx, vx and 92 is to solve the equations

kdvx _ _idCV2tpo, Vo)

i~ 4 0 6.2.27
Viyi ox g dz d(x, z) ( )

: _xd[yQij)0)
V 2ui - = 6.2.28
' iz~ " d(x,. (6.2.25)

d(6i,ip0) dip!
V267 6.2.29
d(x,z) dz ’ ( )

with boundary conditions

Wi = 0i2=0vx= 92 =o0o0n 2= o, (6.2.30)
oi=o0ix, =ovu = &Z=oonz =1, (6.2.31)
0i=o0i*=vx=o02=o00nx = o, (6.2.32)
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i —o, W —o, 92 —e2asx —»oo0. (6.2.33)

The velocity field can in principle be found first and then the temperature field
is generated by convective effects in equation (6.2.29). The hot end solution then
follows by antisymmetry, as in the equivalent non-rotating problem considered in

section 2.9, so that here

= (6.2.34)
Vi(x,z) = -VxiXtZ), (6.2.35)
02(x, z) = —6(x, z) (6.2.36)
v coa (6.2.37)

Integration of (6.2.29) with respect to z yields

fld22 ,  d62 d(fli,-00)

/5 + dz d(x, z) dz + [t/ilo (6.2.38)

This can be simplified with the use of ifti = 92 = 0 on z = 0 and 1, and integrated
twice with respect to x, using (6.2.32) and (6.2.33) to give

_ dz dx'dx. 6.2.39
G d(x', z) (6.2.39)

Since 9\ and ip0 are independent of the Prandtl number, it follows that c2 is a
function of T only and can be determined once the leading order end-zone solution

is known. This solution is discussed in the next section.

6.3 Leading order end-zone solution for general 7

The stream function, azimuthal velocity and temperature in the end region are
written in terms of infinite sets of eigenfunctions that decay exponentially into the
core. These are the eigenfunctions determined for small values of Ri and large
values of x in section 5.3.2, but here, interpreted as solutions of the linear system

(6.2.5)«6.2.11), they are valid for general values of x. Thus the general solution in
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the cold end zone can be written as
% Nkhi{z)erx + £ M k(z)eNx, (6.3.1)
= ] k=1
% fikVk(z)eakX + £ fikVk(z)e&X (6.3.2)

=1 ]/
3 fika(z)eak;>+O; jlkQk(z)e X+ O; nygLosn’z e_n7rx, (6.3.3)
]/ n~0
where (& = 1,2,...) are complex constants to be determined and jlk and rk

are real constants to be determined. The complex ‘stream function” modes are

represented by the unbarred variables and from (6.2.5)-(6.2.7) are solutions of

C +2aV"+ a4k + T*VI=0, (6.3.4)

VA+a2Vk-TN "k=0, (6.3.5)

Ql+a2k- th=0, (6.3.6)

with the usual boundary conditions at z = 0 and z = 1. The real ‘azimuthal

velocity’ modes are represented by the barred variables and are the real solutions
of the same coupled system. It is evident that the stream function and azimuthal
velocity are independent of the temperature, and that the complementary solution

of (6.2.7) yields the thermal modes associated with 7).

The eigenvalues and corresponding eigenfunctions are produced by the Runge-
Kutta scheme in the manner already described in section 5.3.2. The eigenfunctions
are normalised such that ¢ (I) has the same value (for all rotation speeds) as in the
non-rotating case discussed in chapter 2. This allows the results obtained numeri-
cally at small T in this chapter to be compared with the results of chapter 2. The

real variables are normalised such that ©*.(1) = (—I)fc1 for all rotation speeds.

The constants fik> pk and nn, are now found by considering the boundary
conditions at x = 0. Since the velocity field is independent of the thermal field it
is found first and then the thermal field is determined. The conditions v0 = ipo =

tp = o on x = o become( ho oo
Re\AI*kVk \+ '£fikVk = -T*G, (6.3.7)
vk=I ] k4
R&§ NALESk i N MKk G, (6.3.8)
]vk=l ‘ f k=1f f
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Rej ]2 ak\/k<t>kf+ E ak k =0, (6.3.9)

. The functions 14,

These three conditions determine the constants fik and gk

V4, $4, <4 G and G' are written as Fourier sine series
dnk sin Pnz, Vic = E dn% sin [nz, (6.3.10)
n—1 n=1
@
<4 = E fn,ksinmrz, ok - fu,k sin nixz, (6.3.11)
n=1 n=1

4= E e"sin /inz
n- n=l

where j3n = (2n —1)7t /2. These representations are chosen taking into account as far

as possible the behaviour of the azimuthal velocity and stream function near z = 0

and 2 = 1. The Fourier coefficients are given by
dnfc = 2]/ 14 sin Pnzdz, dms = 2/_[ Vk sin/3,,z dz, (6.3.13)
0 0
fnk —2]/ $k sin7772dz, fnk = ZCé (k SmmTZdz, (6.3.14)
0
. 1 (Irb2 (-1)
]/ Gsin(@rzdz = (6.3.15)
@ ft + T V ft ft
flr, = d ~2(nir)T 1- (-1)r
= & = G 01)- 6.3.16
gn smmrzdz jz r‘)14 ’)T 0;1) T ( )
Equations (6.3.7) «6.3.9) now become
@ o @w
Re \ sinfta2 >+ sinfta = -T* ® ensinft2, (6.3.17)
1 fc=1 n=1 ] /c=1 n=1 n=1
00 00 1 00 00 00
% NE fuk sinzzme >+ EMNE / n «ksingg. = — sin77772, (6.3.18)
c=1 71=1 J fe=1 71=1 71=1
E «™i sin77A2f + E "kfik EE fc sinz72 = 0, (6.3.19)
/c=1 71=1 j /=1 71=1
and comparing coefficients of sin/3n2 in (6.3.17) and sin 7572 in (6.3.18) and (6.3.19)
leads to the triply inﬁni(EeGBnear syptem
i~ ANkd'nk © 2 A AftkMark T 26n, (6.3.20)
le=1 ] /4
f o il @
A1 ftkfn,k | H " Aftkfn,k 9n i (6.3.21)
vfc=l J
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() j @®
Re A (Qfikfn% T )&k kfnk Q (6.3.22)
J

fc=1 fc=1

for the unknowns /Z" and /f7. (k = 1,2,...) where /Z = fikr + i"k{mThis can be

written in matrix form as

( A “ i A J2r e My, (-ThIN
/L1, Aii /L1 /2r Mi, -Mi
@it it=T,/L1;) “T/11  (2rh2r_2j/1,2) Mi 0
i1, “ i 2,1 2.2, M, = -tU2
f2lr “/2i h\ 122r MRi -92
@r/2lr-alif2l) -CLr/2L+1/210 “ir/2n (@2 fR22r~a27:22) M 0
A% jLiJ /

This was solved to find the constants /& and Jik using Gaussian elimination with
partial pivoting, truncating the infinite series at k = 4, 6 and 8. Results for k = 4
were found to give the first two modes accurately to three significant figures and the
next two modes accurate to two significant figures by comparing with the results for
k=6and k —8.

The remaining constants #jn can now be determined as follows. The functions

G, 0 and 0 are expressed as Fourier cosine series

G = ancos mrz, (6.3.23)
n=0
@ 00
Ofc = X] bUkcos mrz, and Ok = Y2 bntk cos mrz. (6.3.24)
n=0 n=0

Both 60,a and b0k can be shown to be zero by integrating the leading order eigenvalue

problem (6.3.5) to give 1

[61& + «2 Ié @ dz K] (6.3.25)

which, using # = 0" = 0O on 2 = 0 and 1, yields
f 0L dz = 0. (6.3.26)
The constant terms in (6.3.3) thus give

ao+ ‘/0 = 0 (6.3.27)

where a0 = jAGdz, and therefore 7J0 is equivalent to cx, as may be expected by

comparing (6.3.3) and the core solution.
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Substituting (6.3.23) and (6.3.24) into (6.3.3) and comparing coefficients of

cos mvz yields

(® @
Th= dn Re\"(fKmkf A)PNwk 17\ (6.3.28)
k~1 k-
where from (6.3.24),
NMifc = 2]/ Qkcosmrzdz and bnk = 2/ Qkcosmrz dz, (6.3.29)
0 0
and from (6.3.23),
I-(-1)n\
= ] G""(0;T) - 6.3.30
/ G cos nirzdz (nin2+ T (0;T) w72 ( )

Thus formula (6.3.28) enables the coefficients #n to be determined.

6.4 Numerical results

In order to check that the numerical scheme was working properly, the values of the
constants /ik and  were found for T = 1. These values agreed well with the results
at T = 0 of section 2.9 and the small T results of section 6.5 given below. As would
be expected from the non-rotating work of chapter 2 where there is no azimuthal
velocity, for small T the stream function modes (% and the azimuthal velocity modes

14 become small compared to < and Vk respectively.

Computations were carried!, out for values of T up to 5000 and results for
T = 100, 2000, and 5000 are shown in figures 6.2-6.7. Streamlines for T = 100
are shown in figure 6.2, and the corresponding lines of constant azimuthal velocity
are given in figure 6.3. The streamline pattern is similar to that obtained for small
Rayleigh number and T = 0 in chapter 2 (figure 2.15), except for a small region
of recirculation just above the mid-height of the cavity. The azimuthal velocity is

unidirectional, with vO > 0 so that the flow is in the direction of rotation.

For T = 2000, the recirculation is more obvious, as can be seen in figure 6.4,
and is centred at a point closer to the vertical wall. The azimuthal velocity contours
shown in figure 6.5 now indicate an area of reverse azimuthal flow near the bottom

of the cavity.
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In the results shown in figures 6.6 and 6.7 for T = 5000 the region of recir-
culation has now moved even closer to the vertical wall, and there is evidence of
the formation of the Ekman layers near the horizontal boundaries. The greatest
changes in the azimuthal velocity are now close to the vertical wall, and the reverse
flow at the bottom of the cavity is clear, although its precise form is subject to
the limitations of the Fourier series representation which become more severe as the

Taylor number increases and the Ekman layers develop.

The solutions for ipo and do allow the integration (6.2.39) to be completed
numerically to find the values of the constant c2 for fixed values of T.The result
for T = 0 in section 2.9 acts as a way of checking the integration routine, which
was based on Simpson’s rule with intervals of 10~2 in x and 2. The results of this
integration for finite values of T are plotted in figure 6.8. The overall trend is for c2to
decrease with increasing rotation although the curve is not monotonic. Some of the
points approaching the small maximum value of c2 could not be obtained accurately
and are not shown, although it is not understood why the scheme did not converge
well in this region. The minimum at slightly smaller Taylor number is at a similar
value of T to the maximum of the azimuthal free surface velocity shown in figure 4.3.
Comparing the two figures (4.3 and 6.8) suggests that for T < 1000 the behaviour
of c2 may be related to this behaviour of v, although a physical interpretation of

why this may be is not obvious.

The hot-end/cold-end antisymmetry described in section 6.2 above means

that in the hot end ¢2= —c2 and thus from (4.4.19),
A\ = —2c2R\ + ... and Bi = c\R\ + c2i?2+ .... (6.4.1)

The constant A\ determines the first order correction as L. —> oo to the horizontal
and azimuthal velocity components and the horizontal thermal gradient in the core
due to the presence of the end walls (see equation 4.3.24). Thus it appears that the
importance of this correction term, which as c2 is negative represents a reduction in

these quantities, diminishes with increasing rotation rate.
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6.5 Leading order end zone solution for small T

For small Taylor numbers G(z; T) —>G(z; 0) and the eigenvalue appearing in (6.3.1)-
(6.3.3) have the limiting forms

Gk >0, Gk —>0Q T —0 (6.5.1)

where ako are the complex roots of sin2afco = Seiko- The corresponding eigenfunc-

tions have the limiting forms

fik *ho, fik  *0)

Vk '-ATiVko,  Vk TiVko, T-*0 (6.5.2)
>©to, ~>(,
where
ghko — sinakoz — akoZ cos ctkoz — akoZ tan afd) sin a faw (6.5.3)
-1 .. tan ako f .
©to = —-- tan ako sinako z ------------—-- cos a.koz + —zsinakoz
4a k0 2 4

—|-iz tan ako cosakoz Qo tan ako zis;nakoz—o%ozicosakoz (6.5.4)

are the non-rotating forms determined in section 2.9; the streamlines and isotherms
associated with the limiting forms of ifto and 0 Oas T —>0 are the ones displayed in
figures 2.15 and 2.16. The corresponding azimuthal velocity functions T4o and Vko

are the solutions of the appropriate limiting forms of (4.4.3), namely

N0 + akoVkO ~ &'k, (6.5.5)

Vko + 0 RoVko = 0, (656)

which satisfy the boundary conditions Vko = Vko = 0 at z = 0 and V0 = V0= 0 at
z — 1. Thus

1 2 A
140 = -(tan ako 1)4 -zsmafaw
—ﬁi—z tan ako cos akoz————%@z 2tanatosina”® " kOZZCOS akoz. (6.5.7)

and
Vo = sin 2k \ % (6.5.8)

with

[ZkA'Z \] k=1,2,. (6.5.9)
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The overall azimuthal velocity as T — 0 is given from (4.4.3) by

{ ® @ h
G(z-0) + Re Y, VkoVkoea*x + £ fikoVkoe N x . (6.5.10)
k=1 k=1 ]

The limiting forms pko of the coefficients * as T1 —>0 are the values determined
in the non-rotating case (section 2.9) and the corresponding limiting forms /2k0 of

the coefficients pk follow from the boundary condition (6.3.7) which, in the limit as

T —>0, gives
Re \yKj fNoVko >+ p&j Mahto = —G(z] 0) (6.5.11)
The functions Vko and G may be written as Fourier sine series
@ @
vk0=Y anksin(@nz and G = Y bnsm/3nz, (6.5.12)
n-1 n-1

where 3n = (2n —1)7r/2 and
-4aK3n 8(--1)" —5@,
iobn

.k U (6.5.13)
[cclo-pir 4 #
Then a Fourier sine series in sin/nz of the boundary condition (6.3.7) gives
@ @
Y WmSmf3nz +RelY ffo~)Mlks m T ~(/m0sin/3nz 0, (6.5.14)
n=1 k=1 n=1 n=1

and equating coefficients of sin /hz yields
(68
M0 — bn h((" (fNO™Nye (6.5.15)
k=1

The first eight values of /qo found earlier were used in (6.5.15) to give the first four
values of pk0 given in Table 6.1. These were checked using a collocation method
where eight values of z are substituted into (6.3.7) and the resulting matrix problem

for the constants Jlko was solved using Gaussian elimination with partial pivoting.

filo = -3.555 x 10”3

fid = 2562 x 1(T3 6516
/B0 = -1.419 x 10”4 (6-5.16)
0 = 2921 x 10~5

Table 6.1: Estimates of the first four values of /k0.
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The leading order azimuthal velocity at small Rayleigh numbers and Taylor numbers
has thus been found analytically; contours of this function are given in figure 6.9.
This shows all the azimuthal flow to be in one direction, so that at small Taylor

number there is no return flow.

6.6 Leading order end zone solution for large T

The form of the eigenvalues for small Ri and large T was discussed in chapter 5.

For the cold end zone there is a single mode for which
a0~ -2"1/4T1/8 (T o0), (6.6.1)
and a triply infinite set of modes for which
ak ~ =NE7T)Y/Xl + zVM)TL6 and ak ~ ~(kir)13T 16 (T -»* 00). (6.6.2)

Excluding the Ekman layer regions near z = Oand z = 1, G{z] T) ~ zT~xas T —* oo

so from (6.3.2), v0 can be written in the form
vo= T-ii[z+ vOWe-2~iTh*+ (6.6.3)

E (Refiyke~"kn)1/N 1+1V3)TWx + uke - {kn)1,3T?x] Vk, j,
k=i " ' *

where the coefficients fik and jlk are assumed to have the limiting forms
/ik ~ T~?vk and pk ~ T~?vk as T —>oo0. (6.6.4)

From the asymptotic analyses of section 5.3.3, away from the Ekman layers, Vo = 1
and 14 = cos km . Also from (6.2.6) the corresponding leading order stream function

in the inner Stewartson layer can be shown to be

>0=T - ikzl NrH N - IKKLEITVE

ReWU-(1 -iV 3y ke~Nw)i'3{1+1VYTh: ~ sinkixz, T —>oo.  (6.6.5)

For the azimuthal velocity to vanish on the vertical wall at x = 0, it is

necessary that

00

o+ £ (Re{vk} + vk)cos kirz = —z. (6.6.6)
k=1
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It is also necessary for the stream function and its first derivative with respect to x

to vanish there, so that from (6.6.5) the other two vertical wall conditions at leading

order are ©
E "&Ee{--(1 - i\/Z)vk} + zfj = 0, (6.6.7)
k=1
and
E (Reilkj- W) =0 (6.6.8)
k=1
By writing z as a Fourier cosine series and comparing coefficients of cos kirz, (6.6.6)
ields
' ! 6.6.9
||O= " 2/ ( M )
and
o- 2 =(DHe
R 6.6.10
U+ vie  Gor2 0 k- 1 (6.6.10)
It then follows that
* 6.6.11
ko kin2 00! (©.6-11)
and
-(-1)" i A
e = (1-(-1)")(3 +iVv3) , (6.6.12)

(kir)2 6
Thus the azimuthal velocity for small Rayleigh number and large Taylor number

has been found at leading order to be
,00 ~ T 2 ] - 2=1t k y AA( | - ( - | n —(nir) }T E:Lx
2 ! 0>»)2

(R ‘;y/3) 1(n73 (1+iyr1Ts x 0. (3 ¢VE 5 =703 (I-ty B)r6 X (6.6.13)

+

in the core region excluding the Ekman layers. The corresponding leading order

stream function is
1
6 a:

ipo~T"3] (( /1_/\),7/—3-/\ sinmrz |62 Tes
[nir

+ (3-2V B)e-2n7) (1+" )Tix + (3-zv/3)e-2(@A) (1- IV5)T&". (6.6.14)

Contours of this stream function and azimuthal velocity are plotted for T = 5000 in
figures 6.10 and 6.11, and for T = 108 in figures 6.12 and 6.13. The small error on the
wall x = 0 in the azimuthal velocity plots is due to taking a finite number of modes,
typically eight. The shaded bands in the stream function plot are of circulations

with opposing directions of rotation decaying exponentially into the core.
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In the inner Stewartson layer, the conditions on 9\ at x = 0 and as x —Poo are
the same as for u0- Consideration of (6.2.7) thus implies that to a first approximation
as T —>co, 9 = T4/2". It then follows from (6.2.39), that for large T, where
91 = 0(T-1) and fpo = 0{T ~2/3) in the inner Stewartson layer, G = 0(T -11/6) as
T — oo. This agrees with the numerical results given in figure 6.8 which show c2

decaying with increasing T.

The most obvious difference between the small and large Taylor number
azimuthal velocity contours is the ‘return’ flow in the bottom left of the cavity
at large Taylor numbers. This is the effect of the T18 mode in (6.6.13): in the
outer Stewartson layer the integral of v with respect to z is reduced to zero at the
outer edge of the inner layer. The complex modes then ensure that within the inner
Stewartson layer the boundary conditions at x = 0 are met. For the stream function,
however, the physical importance of the layers is reversed: in the outer Stewartson
layer there is a relatively minor adjustment of the stream function whereas in the
inner layer there is a large closed circulation associated with the complex modes
in (6.6.14). The difference in the length scales of the return flow in the azimuthal
velocity and the circulation in the stream function is most evident in the T = 108
plot. Although the Ekman layers are not properly formed at T — 5000, comparison
of the analytical results of figures 6.10 and 6.11 with the numerical results of figure

6.6 and 6.7, suggests that these two results are in good agreement.

6.7 Discussion

In this chapter, the nature of the transition from small to large Taylor number flow
in the end-regions has been determined by means of numerical results for finite T
linking the analytical solutions for small and large Taylor number. The results are

restricted to small Rayleigh numbers.

For small T, the stream function is the same as in the non-rotating case,
and the azimuthal velocity is unidirectional in the direction of the rotation. As T
increases, a region of recirculation, initially centred around the height at which the
horizontal core flow vanishes, moves down slightly and towards the cold wall. Away
from the cold wall, along the bottom of the cavity, there is a return of the azimuthal

flow. As T becomes larger the region of recirculation moves closer to the vertical
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wall to eventually reside within the inner Stewartson layer of thickness x ~ T ~x/6
with the centre of circulation at mid-cavity height. At large Taylor number, the
core flow away from the inner Stewartson layer and the horizontal Ekman layers
is dominated by the azimuthal flow. The return flow of the large Taylor number
azimuthal flow is confined to ajet in the lower half of the outer Stewartson layer and
there is a further adjustment of the azimuthal flow in the inner Stewartson layer.
Outside the outer Stewartson layer and the Ekman layers, the azimuthal velocity
is directly proportional to the cavity depth. The radial flow across the cavity is
confined to the Ekman layers, which transport fluid from the hot end to the cold
end near the free surface and in the opposite direction near the base. This flow

becomes slower as the Taylor number increases.

The small Rayleigh number theory for the non-rotating case developed in
chapter 2, has been extended in this chapter to give a leading order solution through-
out the cavity for general Taylor numbers. Values of the constants A\ and B\ which
determine the first order correction to the core solution arising from convective ef-
fects and the presence of the end walls have been found as a function of the Taylor
number. At leading order, Bi increasesto zero with increasing T indicating that
these effects are diminished by rotation and the core temperature becomes conduc-
tion dominated. The value of A\ decreases with increasing T indicating that the
reduction in the stream function, azimuthal velocity and horizontal thermal gradient

in the core is also diminished with increasing rotation.
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¢, x10

Figure 6.1: Values of cx as a function of T. The dotted lines are the asymptotic
solutions.
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Figure 6.2: Numerical results: streamlines ip0 =constant for T = 100.

Figure 6.3: Numerical results: contours of constant azimuthal velocity v0 for T
100.
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Figure 6.4: Numerical results: streamlines ijj0 =constant for T = 2000.

Figure 6.5: Numerical results: contours of constant azimuthal velocity v0 for T
2000.
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Figure 6.6: Numerical results: Streamlines ip0 =constant for T = 5000.

Figure 6.7: Numerical results: contours of constant azimuthal velocity v0 for T
5000.
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T

Figure 6.8: Values of c2 as a function of T'.

Figure 6.9: Contours of the leading order azimuthal velocity u0 as T —>0.
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Figure 6.10: Analytical results based on the asymptotic theory: streamlines
*Db =constant for T = 5000, excluding the Ekman layers.

Figure 6.11: Analytical results based on the asymptotic theory: contours of constant
azimuthal velocity v0 for T = 5000, excluding the Ekman layers.
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Figure 6.12: Analytical results based on the asymptotic theory: streamlines
ab = constant for T = 108, excluding the Ekman layers.

Figure 6.13: Analytical results based on the asymptotic theory: contours of constant
azimuthal velocity vOfor T = 108, excluding the Ekman layers.
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Chapter 7

Conclusion

7.1 Summary

This thesis has been concerned with the flow in a shallow laterally heated cavity
with a stress free upper surface, and has considered the two dimensional flow in
the non-rotating case and its stability to oscillatory perturbations and the three
dimensional flow in the case of a rotating cavity, the latter being analogous to the

axisymmetric flow in a rotating annulus with differentially heated vertical walls.

The Hadley cell, formed when the fluid near the hot wall rises and the fluid
near the cold wall sinks, consists of a parallel-flow core region and two end regions
where the fluid is turned. Unlike in the rigid surface case, the lack of symmetry
meant that the end regions had to be considered individually. Also it was seen
that, unlike the rigid surface case, there are no steady non-decaying oscillations
propagating from the end-regions into the core to formally invalidate the assumption
of a parallel flow core. However, like the rigid surface case, the non-rotating flow is
unstable at low Prandtl numbers and sufficiently high Rayleigh numbers and then

in practice the parallel flow core will be replaced by a travelng wave structure.

In the non-rotating case, approximately the top 40% of the flow in the core
is moving from the hot end to the cold end with a maximum speed at the free
surface, and the bottom 60% is moving more slowly from the cold end to the hot
end. This causes the temperature field to change from one of pure conduction, that

is dependent only on the distance from the vertical (differentially heated) walls, to
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a depth dependent one - the top of the cavity being hotter than the bottom. The
magnitude of the flow speed and vertical temperature difference is directly dependent

on the Rayleigh number based on the temperature difference between the two end
walls: Ri — (33(&h —&c)h3/vk L.

The effect of rotation on this core flow is to gradually confine the radial flow
to thin Ekman layers close to the horizontal boundaries and to slow the speed of
this flow. Outside the Ekman layers, with no radial flow between the two vertical
walls, the temperature field becomes conduction dominated. The Ekman layers are
of thickness T-1/4 where T is the Taylor number based on the rate of rotation:
T = 402h4/i/. For non-zero rotation rates, there is an azimuthal velocity in the
direction of rotation the magnitude of which grows as T12as T increases from zero,
reaching a maximum at T ~ 250, before it too is damped by large rotation rates.
Outside the Ekman layers, the azimuthal core velocity is directly proportional to

depth.

Solutions for the end regions were obtained in the form of an infinite sum of
eigenfunctions decaying into the core, the eigenvalues defining the rate of decay and
hence the size of the end-regions. The leading order solution for the eigenfunctions
was found analytically in the lim it of small Rayleigh and Taylor numbers. For small
Rayleigh number and general Taylor numbers, the two end regions are symmetric at
leading order; the flow is simply turned and the depth dependence on temperature
gradually disappears as x tends to zero, as does the azimuthal velocity. The leading
order solution is also independent of the Prandtl number, 0 = v/k. A numerical
scheme based on a Fourier series representation was used to find the relative sizes
of the eigenfunctions such that the vertical wall conditions were satisfied, and thus
match the end regions to the core to complete a leading order solution for the entire
cavity at small Rayleigh numbers and general Taylor numbers. The results of this

show the damping effect of rapid rotation on the temperature and velocities.

Solutions of the eigenvalue problems in the end regions were found numeri-
cally for general values of the Rayleigh number and Taylor number using a fourth
order Runge-Kutta scheme. Results were given for general RIand T = 0, 500 and
5000, and for Ri = 0 and general T. These numerical results complemented asymp-
totic theories developed for large R+ and for large T. For large Ri and no rotation

(T = 0), asymptotic theory showed that the size of the end regions is directly pro-
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portional to the Rayleigh number, that the cold end zone is slightly larger than the
hot end zone, but that both ends were roughly twice the size of the end regions in
the rigid surface case. For small Prandtl number, the end regions are dominated
by decaying oscillatory modes, and for infinite Prandtl number they are dominated
by decaying non-oscillatory modes. In practice however, it was seen that for a > 2,
the solution behaved as though the Prandtl number was infinite and in the asymp-
totic theory for large T and small Ri, only the case of infinite Prandtl number was
investigated. In this case the leading eigenvalue was seen to behave as T1/8 and
the subsequent eigenvalues were seen to behave as T16. This corresponds to two
vertical boundary layers, or Stewartson layers, of thickness T-1/8 and r _1/6 close
to the vertical walls. The outer layer contains an azimuthal jet which flows in the
opposite sense to the direction of rotation and the rest of the azimuthal flow. The
inner layer contains an intense recirculation flow which lies inside the large-scale
Hadley circulation which is completed by the radial flow in the Ekman layers. By
use of the Fourier series representation of the eigenfunctions and application of the
vertical wall conditions, results for general T were presented which demonstrated
the development of the inner recirculation, the azimuthal jet and the Stewartson

layers.

In general terms, the eigenvalue analysis has shown that the lateral extent of
the end zones increases with increasing large Rayleigh number and decreases with
increasing Taylor number. For finite Taylor numbers, the leading eigenvalues behave
as the inverse of the Rayleigh number as Ri —> oo indicating that the end zones
then have a large lateral scale of order R1. This scale diminishes with increasing
Taylor number and when 1 C T <CRi the lateral scale is proportional to R1/T. An
asymptotic solution for this regime led to the identification of a novel structure in
which the thermal properties of the Ekman layers are shown to play an important

role in the determination of the lateral scale.

The stability of the non-rotating parallel-flow core to both transverse and
longitudinal perturbations has been investigated in detail in this thesis: numeri-
cally for general wave numbers and Rayleigh numbers and asymptotically for large
Rayleigh number. Instabilities only occur for small Prandtl numbers: using both
numerical and asymptotic techniques it was shown that the core flow is always stable
to transverse mode oscillations for Prandtl numbers greater than 0.162, and stable

to longitudinal oscillations for Prandtl numbers greater than 0.415.
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Neutral curves produced numerically for general Rayleigh numbers and wave-
numbers indicate that except at extremely small Prandtl numbers, the longitudinal
instabilities are more important than the transverse instabilities in that they occur
at smaller values of the Rayleigh number. Numerical solutions were used to show the
effect of the neutral perturbations on the core flow and their speed of propagation:
approximately one third of the free surface speed. An asymptotic analysis shows
that along the left hand branch of both the longitudinal and transverse neutral
curves the wavenumber behaves as the inverse of the Rayleigh number as Ah — oo,
so that the higher the Rayleigh number the larger the wavelength of neutrally stable
oscillations. In the case of the transverse oscillations, the right hand branch of the
neutral curve was shown to approach a finite wavenumber for large Rayleigh num-
bers, but for longitudinal mode the wavenumber of the right-hand branch behaves
as the inverse of the Rayleigh number. Thus, while finite wavelength transverse in-
stabilities are supported at large fifi and finite a, only large wavelength longitudinal
instabilities persist. An asymptotic theory showed that finite wavelength longitudi-
nal instabilities can be supported at large Rayleigh number, but only for vanishingly

small Prandtl number.

7.2 Future work

The work presented in this thesis suggests a number of avenues for further research,
both on the stability of the free surface flow and its basic steady-state structure. In
connection with the stability of the flow, the asymptotic theory developed in chapter
3 suggests that, in a three dimensional box, if the long wavelength longitudinal modes
are excluded by vertical side walls parallel to the x, z plane, the finite wavelength
transverse modes may then be more ‘dangerous’ at large Rayleigh number. The
influence of such side walls is not investigated at all in this thesis, but would be of
interest in relating the theory to applications in crystal growth and other areas. In
this case the basic core flow and temperature fields will depend on both z and y and
the end-region flows will become fully three dimensional even in the non-rotating

case.

For the two-dimensional cavity, the stability of the rotating core flow has not

been addressed here, nor has the stability of the core to three dimensional pertur-
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bations that oscillate in both x and y. Another much more difficult undertaking

would be to study the stability of the flow in the end regions.

The steady state flow has been investigated in depth in this thesis with
both numerical and asymptotic results being presented and in particular asymptotic
results for both large and small values of the Rayleigh and Taylor numbers. A
numerical multigrid scheme was used to check the analytical results in the steady,
non-rotating, small fifi case, but a much more comprehensive numerical study is
needed to examine the non-linear flows for finite and large Rx both for the non-
rotating and rotating cases, enabling the constants c and c to be determined over a
much wider region of the three dimensional parameter space (R\, a, T). A numerical
study of this kind would complement the asymptotic results obtained here. On
the theoretical side, it is envisaged that further analysis could be undertaken to
investigate the effect of the Prandtl number in the rotating case; the difficulty of
actually viewing the flow in low Prandtl number fluids gives added incentive to
theoretical and numerical investigations of this regime. Another area of theoretical
interest is the limiting case where both R1 and T are large; the asymptotic analysis
of chapter 5 for 1 <CT <CR1 suggests an interesting boundary layer structure arises
in this limit and it may be possible to extend this analysis to investigate the flow
structure throughout the end regions and to consider the case where Rx and T are

of comparable magnitude.

Finally, it would be of interest to carry out a numerical investigation of the
full cavity flow for various values of fifi, a, T and for moderate to large values of
L. There are few numerical studies for the shallow cavity with a free upper surface,

and even fewer for the rotating free surface cavity.

The projects outlined above arise from the studies in this thesis. There are
many other interesting problems associated with free surface flow in a shallow later-
ally heated cavity, such as the inclusion of thermocapillary forces or the consideration
of a difference in the depth of fluid in the cold and hot end regions, but it is hoped

that this thesis serves as a good basis for study in these areas.
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