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0.2 A b stra c t

This thesis is concerned with free surface flow in a non-rotating or rotating shal-
low laterally heated cavity which is assumed to be of infinite length in the third 
dimension. The flow is driven by a horizontal temperature difference: the two ver-
tical walls are kept at constant, but different, temperatures, giving rise in general 
to a large scale circulation known as a Hadley cell. The flow is considered to be 
subdivided into three main regions: a parallel-flow core region away from the end 
walls and two end zones close to the vertical walls where the fluid is turned through 
180 degrees. This study is concerned with identifying the main features of both the 
basic flow and temperature fields generated in the cavity and, in the non-rotating 
case, with the stability of that flow.

There are two main parts to this thesis: the first part is dedicated to the 
flow in the non-rotating cavity and, in the second part, the flow in the rotating 
cavity is considered. In each case the steady-state free surface problem is initially 
studied. An analytical solution for the parallel-flow core is found; the flow in the end 
regions close to the vertical walls is then investigated. Results are presented which 
determine the extent of these regions. These complement asymptotic results which 
are found for large Rayleigh number (based on the temperature difference between 
the vertical walls and cavity depth) in the non-rotating case and small Rayleigh 
number in the limit of large rotation rate. Asymptotic solutions are also found in 
the limit of large Rayleigh number and rotation rate where a novel boundary layer 
structure is identified near the horizontal surfaces.

The linear stability of the non-rotating parallel-flow core is investigated. Here 
the neutral curves which delineate the boundary for which instabilities persist are 
found and an investigation of the large Rayleigh number behaviour of the neutral 
curves is undertaken.

Numerical and analytical methods are used to give complete solutions for 
the flow in the end regions from the small rotation rate limit where the solutions 
match with the non-rotating results to the large rotation rate limit where the double 
vertical boundary-layer structure identified by the asymptotic analysis evolves.



C hapter 1

Introduction

1.1 T h e  b asic  p roblem

This thesis is concerned with free surface flow in a non-rotating or rotating shallow 
laterally heated cavity. This chapter starts with an explanation of the basic problem 
and its geometry, and then gives examples of why this flow is of interest and of work 
that has been done before. The non-dimensional governing equations used as a 
basis for study throughout the thesis are derived and an outline of the structure and 
content of the thesis is given.

Fluid is contained within a rectangular cavity, the depth of which (h) is 
generally much less than the length, l, and hence is described as shallow. It is 
assumed to be of infinite length in the third dimension, or equivalently may be 
viewed as the cross section of a large annulus. The cavity is assumed to be lid-less, 
that is the upper surface of the fluid is free, and the problem is thus distinct from 
that with a rigid upper surface for which there is much previous work and with which 
comparisons will be made. The geometry is represented in the diagram below.

/

The flow is driven by a horizontal temperature difference: the two vertical
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walls are kept at constant, but different, temperatures. The two horizontal surfaces 
are taken to be adiabatic, that is thermally insulating. Gravity acts downwards and 
the density of the fluid is assumed to decrease linearly with increases in tempera-
ture, so that motion is generated by buoyancy forces. Close to the hotter of the 
two end walls, the fluid becomes less dense and rises, and closer to the cooler end 
the fluid becomes more dense and sinks, giving rise in general to a large scale cir-
culation of the type shown diagrammatically above. This is known as a Hadley cell 
after consideration of the motion of the atmosphere generated by equatorial-polar 
temperature differences by Hadley (1735). For a shallow cavity it is often possible 
to consider the flow to be subdivided into three main regions: a core region away 
from the end walls where the flow near the top is moving from the hot wall to the 
cold wall and is returning at the bottom, and two end zones close to the vertical 
walls where the fluid is turned through 180 degrees.

The effect on the flow of rotation of the cavity with angular velocity Q is 
addressed in the second half of the thesis. The cavity is rotated about a vertical 
axis as indicated in the diagram above. In the rotating problem there is a component 
of flow perpendicular to the Hadley cell which in the geophysical context resembles 
the trade-winds in the atmosphere of the tropics. This study is concerned with 
identifying the main features of both the basic flow and temperature fields generated 
in the cavity and, in the non-rotating case, with the stability of that flow.

1.2 P rev io u s work

Much of the previous work on shallow rotating or non-rotating laterally heated sys-
tems has been motivated by applications to the large scale motions of the atmosphere 
and oceans (Hadley 1735, Jeffreys 1925, Defant 1961, Stern 1975). However, there 
has also been interest in flows in a shallow laterally heated rectangular cavity in 
connection with the process of growing metal and semi-conductor crystals from a 
liquid melt by the gradient-freeze technique (Hurle 1966, Hurle et al. 1974). Such 
flows are also of interest in relation to the dynamics of shallow estuaries where the 
temperature gradient may be caused naturally or by the discharge of pollutants into 
the estuary (Cormack et al. 1974). Other technological examples where convective 
motion is driven by temperature gradients not aligned with the gravitational field



include cooling systems for nuclear reactors (Boyack and Kearney 1972) and solar 
collectors (Bejan and Rossie 1981).

Early theoretical work such as that of Batchelor (1954) and Gill (1966) con-
centrated on the two dimensional tall or square cavity with applications to the heat 
transfer across the air gap between walls in buildings. The steady non-rotating 
flow in a shallow laterally heated rectangular cavity has been studied before, but 
mostly for the case of a rigid upper surface. In a series of papers by Cormack, 
Leal and Imberger (1974), Cormack, Leal and Seinfeld (1974) and Imberger (1974), 
an asymptotic theory, numerical solutions and experimental results, were presented 
respectively. The asymptotic theory regarded the flow in the cavity as composed 
of two symmetric end-regions and a parallel flow core, the solutions for which were 
matched asymptotically to gain a leading order solution valid throughout the cav-
ity for Rayleigh numbers (based on the cavity height h) small compared with the 
cavity aspect ratio (l /h ). This result was then compared with the numerical so-
lutions for square and shallow cavities and the experimental results for shallow 
cavities. Further experimental results at higher Rayleigh numbers were presented 
by Bejan, Al-Homoud and Imberger (1981) and a parameter range determined for 
which the parallel-flow core solution is valid. Hart( 1983a) also discussed the range 
of parameters for which there are separate end-regions near the vertical walls, and 
a parallel-flow core, and presented numerical solutions for the nonlinear motion in 
the end regions at general Rayleigh numbers comparable with the cavity aspect ra-
tio. The behaviour of the temperature and flow in the end regions was investigated 
in detail by Daniels, Blythe and Simpkins (1987) for general Rayleigh number and 
finite and infinite Prandtl numbers, by assuming that the edge behaviour in the end 
zones could be represented by the sum of an infinite number of eigenfunctions which 
decay into a parallel-flow core. Their analysis includes a determination of the size of 
the end regions, obtained numerically for general Rayleigh number and asymptoti-
cally for Rayleigh numbers large compared with the cavity aspect ratio. Wang and 
Daniels (1994a,b) obtained full numerical solutions for the end zones for both adia-
batic and conducting horizontal boundaries and Wright, Gaskell and Sleigh (1995) 
presented numerical solutions for the whole cavity. Other numerical investigations 
have been reported, for example by Quon (1972) and Shiralkar and Tien (1981) and 
other experimental work includes that by Rossby (1965), Simpkins and Dudderar 
(1981) and Simpkins and Chen (1986). Daniels and Wang (1994) discussed the 
evolution of the flow in a shallow cavity for Rayleigh numbers comparable with the
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Cormack, Stone and Leal (1975) examined the effect of upper surface bound-
ary conditions on the non-rotating flow, including the case with adiabatic horizontal 
boundaries and a stress-free upper surface, and presented asymptotic solutions for 
the end-regions for low Rayleigh numbers and large aspect ratio. The geophysical 
application of free-surface flows in rectangular channels with surface cooling has 
been studied by Sturm (1981) and by Jain (1982) for sidearms of cooling lakes of 
water from electricity power generation. The response of a wedge shaped sidearm 
to diurnal heating and cooling is presented by Farrow and Patterson (1993).

There has been considerable discussion of the stability of the non-rotating 
parallel-flow core, both analytical and experimental. Gill (1974) considered the 
stability of the flow in a cavity with both horizontal surfaces either rigid or free, 
and compared his analytical solutions with the experimental results of Skafel (1972) 
and Hurle, Jakeman and Johnson (1974), who included the stabilising effect of a 
transverse magnetic field in their free surface experiments with gallium. Hart (1972) 
presented neutral stability curves for oscillatory perturbations in the rigid surface 
case, and later (Hart 1983b) for the rigid and free surface cases for the onset of 
longitudinal and transverse instabilities -  with axes parallel and perpendicular to 
the core flow respectively. Results for the free surface transverse mode of instability 
were not presented. As in Gill (1974), there was discussion of the “strong geometric 
effects” that make comparisons with the results of experiments difficult. Laure and 
Roux (1989) also presented neutral curves for the rigid and free surface cases and 
gave plots of the streamlines and isotherms of the perturbations and an indication 
of their effect on the core flow. Kuo and Korpela (1987) discussed transverse and 
longitudinal instabilities at small Prandtl number for the rigid surface case. In all of 
this previous work, the results which are presented focus on the ‘critical’ parameter 
values, including the lowest values at which instabilities occur, and the neutral curves 
are not discussed in detail for general values of the parameters.

Other related work, but excluding the effect of buoyancy, includes that by 
Smith and Davis (1983) who considered the instability of the dynamic thermocap-
illary layer. The stability of the combined buoyancy and thermocapillary driven 
flow at small Prandtl number was considered numerically by Ben Hadid and Roux 
(1992).

aspect ratio using a combination of asymptotic and numerical methods.
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In the rotating case there is a body of work for tall laterally heated cavities, 
including that by Fowlis and Hide (1965) and Hide (1967) which gives a range of 
parameters for which there is axisymmetric flow in an annulus with differentially 
heated walls. Both free and rigid upper surfaces are considered. The theory for 
an axisymmetric annulus with a square cross section and rigid upper surface is 
given by McIntyre (1968) for large Prandtl number. The application of a rotating 
laterally-heated cavity to the planetary equatorial-polar temperature difference and 
to the atmosphere of Venus is discussed by Stone (1968), who considers a shallow 
cavity with a free upper surface, but driven by a varying heat flux on the horizontal 
boundaries. Other theoretical work on convection induced between rotating planes 
includes that by Robinson (1959) and Duncan (1966) while Douglas and Mason 
(1973) describe experiments in an annulus with differentially heated walls and a rigid 
upper surface designed to determine the temperature structure and the transition 
from axisymmetric to non-axisymmetric flow for a range of aspect ratios. The 
asymptotic structure of the rapidly rotating, small Rayleigh number flow driven by 
differentially heated vertical walls in a rectangular cavity was considered by Hunter 
(1967) for both the free and rigid upper surface cases. The boundary layer structure 
was described in detail: the horizontal flow is confined to thin Ekman layers close 
to the horizontal boundaries, and the vertical flow is confined to thin Stewartson 
layers (Stewartson 1957) close to the vertical walls; in the free surface case there 
are double Stewartson layers. The flow induced in a rotating annulus by a radial 
temperature gradient along the lower horizontal surface was considered at large 
rotation rates by Daniels (1976), who made comparisons between this theoretical 
work and experiments reported by Stern (1975). Further aspects of the flow and 
its stability were considered in a series of papers by Daniels and Stewartson (1977, 

1978a,b).

The structure of a rapidly rotating fluid in a shallow cylinder was considered 
by Dijkstra and van Heijst (1983), and the effect of rotation on many fluid flows 
is discussed in the review by Hopfinger and Linden (1990). The effect of the free- 
surface on spin-up of a fluid in a cylinder is studied by O’Donnell and Linden 
(1991). Experiments on the spin-up and spin-down on a ¡3 plane are presented by 

Williams and Maxworthy (1994); the spin-up of fluid in a rectangular container with 
a sloping base is considered by van Heijst, Maas and Williams (1994). Hignett 
et al. (1981) considered rotating thermal convection in a cylinder with a radial 
temperature gradient supplied from below and more recently Miller and Reynolds
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(1991) presented experimental results on thermal convection in a rotating annulus. 
The effect of topography was discussed by Bell and Soward (1996). The instability 
of flow in a differentially heated rotating annulus has been investigated by Busse 
(1986), Busse and Or (1986) and Or and Busse (1987), and in a rotating channel 
by Finlay (1990). The transisition to turbulent flow was discussed by Finlay (1992) 
and by Kristoffersen and Andersson (1993). The instability of the boundary layer 
on a rotating disk has been studied by Lingwood (1995) and experimental results 
presented by Lingwood (1996).

1.3 G overn ing  eq u ations and n o n -d im en sio n alisa tio n

The dynamic equations with respect to a coordinate system rotating with uniform 
angular velocity fi*, representing the conservation of mass, momentum and energy, 
as given by Greenspan (1968), are

dp*
â F  + v - .( ,*u - (1.3.1)

P
du*
dt*

+ (u*. V*)u* + 20* x u*

-V p* -  p*iT x (fi* x x*) + p*F  + /iV u* + (A + -p)V*V*.u*, (1.3.2)

and

/ /Q/Q* \

^ G +u' v ' d  +
0* dp* (  dp*
p* d9* i dt*

7~k , , \ 2+ u * .V y  = a V * T  -  -p(V *.u (1.3.3)

+A(V*.u*)2 + p[V*2u*.u* + 2V*.(V* x u*) x u * -  2u*.V*V*.u* + V* x u*.V* x u*],

where A is the bulk viscosity, p, is the coefficient of viscosity, k  is the thermal 
diffusivity, cp is the specific heat capacity at constant pressure, a  is the thermal 
conductivity, p* is the density and p* is the pressure. The Cartesian coordinates 
x* =  (x*,y*,z*)  have their origin at the axis of rotation such that z* is in the 
vertical direction and x* and y* are in the horizontal plane. The velocity relative to 
the rotating frame is u* = (u*,v*,w*),  where u*, v* and w* are the components in 
the x*, y* and z* directions respectively, and 6* is the temperature. The external 
force per unit mass is denoted by F  and t* is the time.

The acceleration due to gravity, g, acts in the negative 2* direction, and the

12



frame of reference is rotating around the z* axis so that

F  = — yk and f2* = ilk, (1.3.4)

where k is the unit vector in the z* direction. Density differences are assumed to be 
linearly dependent on temperature, so that

p * = po ( i  -  w *  -  e*c)), (1.3.5)

where p0 is the density at temperature 9*, and ¡3 is the coefficient of thermal ex-
pansion. The Oberbeck-Boussinesq approximation is used so that the variation of 
density is assumed negligible apart from when multiplied by g.

The cavity is at rest relative to the rotating frame with its cross section lying 
parallel to the x*, z* plane and its vertical walls located at x* = hx0 and x* =  hx\. 
A length scale, x, is introduced, non-dimensionalised with respect to the depth of 
the cavity, h, such that x* = h(x + x0,y ,z ) . The cavity is therefore assumed to lie 
between z =  0 and z = 1 and between x = 0 and x = x\ — Xq =  L, where L  is 
the aspect ratio of the cavity L = l/h . The velocity field u* and the time t* are 
non-dimensionalised with respect to the thermal diffusivity, k , and h, so that

u•k K
and

K
(1.3.6)

The two vertical walls of the cavity x =  0 and x = L  are held at constant tem-
perature 9* and 9̂  respectively with 6£ > 9*, and a temperature 9 is introduced, 
non-dimensionalised with respect to the temperature difference between the two 
vertical walls. Thus

0* = Pe + § M - P c ) ,  (1-3-7)

so that the temperature on the cold wall is 9 =  0 and on the hot wall is 9 =  1. The 
centrifugal terms are included with the pressure so that a scaled non-dimensional 
pressure p is introduced such that

Vp* =  V(po^p) -  />oyk -  p0D2k x (k x x*). (1.3.8)

At the free surface the stress in the fluid must vanish and to a first approximation the 
pressure p* is constant. In order that in the rotating case p* is constant on the free 
surface, and since the modified pressure p will be small compared to the hydrostatic 
pressure generated by gravity, (1.3.8) implies a change in the height of the free
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surface with x. For the free surface to be taken as level to a first approximation, 
it is necessary for this change in height to be small compared to the depth of the 
cavity, h. On integrating (1.3.8) and since the far end of the cavity is at distance 
hxi from the axis of rotation, the requirement for a small change in height across
the cavity is

£l2h2x\
2 g

<  h (1.3.9)

which can be written as an inequality for the ratio of the centrifugal and gravitational
accelerations,

Q2hx i

9
<  2x1- l (1.3.10)

Thus, for sufficiently large gravitational acceleration, the height of the free surface 
can be taken as constant, and the boundary conditions are defined below for such a 
surface.

With these assumptions the dynamic equations become

and

5u
~dt

dA
dt

V.u = 0,

+ (u.V)u + a T 2 (k x u) = — Vp + R adk + ctV 2u

u.V0 = V 29

(1.3.11)

(1.3.12)

f  — i T : [V2u.u + 2V .(V  x u) x u + V x u.V x u], (1.3.13)

where the three non-dimensional numbers — the Rayleigh, Taylor and Prandtl num-
bers — are defined by

, 4n 2h4 V
R = f3g(6*h — 8*c)h3/uK, T =  ---- r— and a  =  —.

K,
(1.3.14)

respectively. The last term in the energy equation is usually assumed to be small, 
which is the case if

A A -R -1 <  1, (1.3.15)

and then the non-dimensional governing equations are

du
dt

V.u = 0,

)ii.V)u + c r ( k  x u) = —Vp + R adk + (jV2u

(1.3.16)

(1.3.17)
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and
dd
— + u ,V9 = V 29. (1.3.18)
at

The boundary conditions are now considered. The horizontal and vertical 
velocity components must vanish on the three solid boundaries, but on the upper 
surface only the vertical component of velocity vanishes>.Then the requirement that 
the tangential stress vanishes on the upper surface implies that the first derivatives 
of the horizontal velocity components vanish. This gives the conditions

u = v = w =  0 on x = 0 and x =  L, (1.3.19)

u = v = w = 0 on z = 0 (1.3.20)

and
uz = vz = w = 0 on 2: =  1. (1.3.21)

Strictly speaking the free surface conditions should derive from the requirement that 
the three components of stress vanish at the free surface. In practice these conditions 
would only be satisfied in general through a displacement of the free surface from the 
horizontal. As mentioned earlier, this displacement effect will be assumed sufficiently 
small to be neglected, and given that the free surface is horizontal, it follows that 
to a first approximation w =  0 there. As stated previously, the temperatures at the 
two vertical walls are

9 = 0 on x =  0 and 9 = 1 on x = L, (1.3.22)

and the two horizontal surfaces are taken to be adiabatic so that

9Z =  0 on z = 0 and z =  1. (1.3.23)

In the case of a flow which has no y dependence, the system can be simplified 
by using a two dimensional stream function ip such that

u = {tpz,v, - ip x), (1.3.24)

where the subscripts denote the partial derivative. The conservation of mass equa-
tion (1.3.16) is then satisfied and the other two equations (1.3.17) and (1.3.18)
)ecome

i dip
V ¿v -  T*

dz

d(x, z)

_i dv_ _ id(v,VQ
dt d (x ,z ) ’

(1.3.25)

(1.3.26)
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The boundary conditions in this case are now

(1.3.28)

(1.3.29)

ip =  ipx = v = 0 on x — 0, L,

ip — ipz — v = 0 on 2 = 0,

and
ip =  ipzz = vz =  0 on z = 1. (1.3.30)

The temperature conditions remain unchanged.

1.4 S tru c tu re  o f th e  th esis

There are two main parts to this thesis: the first part is dedicated to the flow in 
the non-rotating cavity and, in the second part, the flow in the rotating cavity is 
considered. In each case the theory is based on an assumption that the cavity aspect 
ratio L  is large.

In chapter 2, the steady-state free surface problem for the non-rotating cavity 
is studied. The flow in this case is two dimensional. An analytical solution for the 
parallel-flow core is found, and the flow in the end regions close to the vertical walls is 
then investigated. At low Rayleigh numbers an analytical solution valid throughout 
the whole cavity is found, similar to that found numerically by Cormack, Leal and 
Stone (1975). For general Rayleigh numbers R comparable with the aspect ratio L , 
an eigenvalue analysis is used to determine the effect of the Rayleigh and Prandtl 
numbers on the size of the end regions. The numerical scheme for solving the 
eigenvalue problem, which is used extensively in various forms throughout this work 
is described in detail in this chapter. The results of the numerical work complement 
asymptotic results that are obtained for large Rayleigh number. A comparable study 
of the end-regions in the rigid surface case was carried out by Daniels, Blythe and 
Simpkins (1987), but the free surface case has not previously been considered.

The linear stability of the non-rotating parallel-flow core is investigated in
chapter 3. Neutral curves which delineate the boundary of values of the Rayleigh



number, Prandtl number and wavenumbers for which instabilities persist, are pre-
sented for both transverse and longitudinal perturbations, and the structure of the 
perturbed flow is discussed. Previous results pertaining to the free surface have been 
obtained by Hart (1983) and Laure and Roux (1989), but only for the critical points 
at which instabilities are first sustainable. Here the neutral curves are found for 
general Rayleigh number, Prandtl number and wavenumbers and an investigation 
of the large Rayleigh number behaviour of the neutral curves is undertaken. The 
physical implications of the results are discussed.

The steady-state free surface problem for the rotating cavity is introduced in 
chapter 4. The governing equations are derived for the core and the end-regions for 
general Rayleigh numbers comparable with the aspect ratio L and for general Taylor 
and Prandtl numbers, and an analytical parallel-flow core solution is found. Here 
the core flow is three dimensional and dependent on the rotation speed. For large 
Taylor number, Ekman layers develop near the horizontal surfaces and the solution 
relates to that determined by Hunter (1967).

Chapter 5 concentrates on the properties of the rotating end-regions. Eigen-
value results are presented for general Taylor and Rayleigh numbers which determine 
the extent of these regions and complement asymptotic results which are found for 
large Taylor number and small Rayleigh number. Asymptotic solutions are also 
found in the limit of large Rayleigh and Taylor numbers where a novel boundary 
layer structure is identified near the horizontal surfaces. Comparison is also made 
with asymptotic solutions for small Taylor number which relate to the non-rotating 
case studied in chapter 2.

Numerical and analytical methods are used in chapter 6 to give complete 
solutions for the flow in the end regions for small Rayleigh number and general 
Taylor number. These allow the evolution of the flow with increasing Taylor number 
to be traced from the small Taylor number limit where the solutions match with the 
non-rotating results of chapter 2, to the large Taylor number limit where the double 
vertical boundary-layer structure identified by Hunter (1967) evolves.

The results are summarised in chapter 7 and an indication is given of possible 
avenues for future research.
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C hapter 2

Stead y-state solutions for the 
non-rotating cavity

2.1 In tro d u ctio n

The steady free-surface flow in a shallow non-rotating rectangular two dimensional 
cavity subject to a horizontal temperature gradient is considered in this chapter. 
Initially an exact parallel-flow solution is found for the core region away from the end 
walls. This core-flow is turned through 180 degrees in approximately square regions 
near the end walls, where the flow is fully nonlinear for Rayleigh numbers comparable 
to the cavity aspect ratio. The solution of the two end-region problems is shown to 
lead to the determination of the first order correction to the flow and temperature 
fields in the core of the cavity. At general Rayleigh numbers the behaviour of the 
end-regions away from the vertical walls is characterised by an infinite number of 
eigenfunctions which decay exponentially away from the walls; the corresponding 
eigenvalues control the distance into the core that these end-zones encroach.

The behaviour of the eigenvalues with respect to the Rayleigh and Prandtl 
numbers is investigated by numerical solution of the eigenvalue problem, and a 
limiting form of the eigenvalues for large Rayleigh number is found. This strategy 
was employed by Daniels, Blythe and Simpkins (1987) for the rigid surface cavity 
and comparisons of the end region size for the two different surface conditions are 

made.
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Unlike the rigid surface problem for which there exist symmetries discussed 
by Gill (1966), in the free surface case there are no symmetries and so both hot 
and cold end-zones require individual consideration. Also, there appear to be no 
multicellular steady-solutions of the type obtained for the rigid surface by Hart 
(1983) and Daniels et al. (1987).

An analytical solution of the end-zone problem is then presented where the 
solution is considered as an asymptotic expansion in small Rayleigh number. This 
is similar to the large aspect ratio expansion performed by Cormack, Stone and Leal 
(1975) but is based on an analytical rather than a numerical solution of the governing 
equations. The results of this expansion determine the first order correction to the 
core solution explicitly for small Rayleigh numbers. The results are also compared 
with a full solution of the end region problem obtained using a multigrid algorithm.

2.2 G overn ing  equ ations

The system considered here is a rectangular two dimensional cavity of length l and 
height h. The left hand vertical wall is at temperature 9* and the right hand wall 
is at temperature 9*h > 6*. The bottom of the cavity is rigid and adiabatic; the top 
is adiabatic, but has no rigid boundary.

Coordinates are non-dimensionalised with respect to the height h, such that 
the cavity lies between z = 0 and 1, and x = 0 and L, where L = l/h . The temper-
ature is non-dimensionalised with respect to the temperature difference 9£ — 9*, and 
is measured relative to the cold wall. The stream-function ip is made dimensionless 
with respect to the thermal diffusivity, k .

As shown in section 1.3, subject to the Boussinesq approximation, the steady 
dimensionless vorticity and energy equations for the non-rotating cavity are

?4 7 P d9 . d i y ^ A )
R dx d {x ,z ) ’

(2.2.1)

v  d (x ,z y
(2.2.2)

Here the Prandtl number
V

<* = -•> (2.2.3)
K7
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where v is the kinematic viscosity and k, is the thermal diffusivity; the Rayleigh
number

R = Pg{Ph -9*c )h * lVK, (2.2.4)

where ¡3 is the coefficient of thermal expansion and g is the acceleration due to 
gravity.

The boundary conditions are

i ,  =  d- i  =

d H
*  =  d ^  =

*  dx
6 — 0 on x = 0,

00
—  = 0 on z =  0, 
dz

(2.2.5)

36
—  =  0 on z = 1, 
dz

(2.2.6)

= 0 on x = 0, L, (2.2.7)
«51 II o p H II (2.2.8)

In keeping with previous work (Cormack, Leal and Imberger 1974; Daniels, 
Blythe and Simpkins 1987; Hart 1983) the aspect ratio of the cavity is considered to 
be large, L  >> 1. It was noted by Daniels et al. (1987) that for the rigid surface case 
there are strong non-linear effects in the end regions when the Rayleigh number R  
is comparable with the aspect ratio L, or equivalently when

R 1 = R /L  = 0 (  1). (2.2.9)

This is the parameter range investigated here. The strategy employed in solving 
this problem follows that of Daniels et al. (1987). An exact parallel-flow solution 
is found for the core — the region away from the vertical walls. Near the ends the 
flow is turned through 180 degrees by local nonlinear adjustments to this core flow 
which decay exponentially away from the walls; this decay is described by solving 
an eigenvalue problem obtained on substituting the perturbed core flow into the 
governing equations.

There are no symmetry properties for this system of the type described by 
Gill (1966) for the system with a rigid upper surface. Therefore there are distinct 
solutions associated with the end regions near the hot and cold walls.
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2.3  C ore flow

In the core region away from the end walls, the order one variable £ = x /L  is used 
so that 0 < £ < 1. In this region the flow is parallel to the horizontal boundaries 
and the temperature is linearly dependent on £, equivalent to an exact solution of 
the Boussinesq equations obtained by setting

4> =  /(z), (2.3.1)

0 = AC + g(z), (2.3.2)

for some constant A and functions f ( z )  and g(z).

The governing equation (2.2.1) then simplifies to

r  =  RiA, (2.3.3)

with f  =  f'  = 0 o n z  = 0 and / = /" =  0 on z = 1, where primes denote derivatives 
with respect to z. This has the solution

/  = (2.3.4)

From (2.2.2)
A f'L - i (2.3.5)

with g' = 0 on z =  0, 1. On substitution of (2.3.4) into (2.3.5), and consideration 
of the boundary conditions,

where S is  a constant.

9 =
^ 1 , 1  5
-----------  —Z
24T v 5

- z 4 + - z 3) + B ,
8 2 ;

(2.3.6)

By defining

G(z) 1 5 5 4 1---- z — -----z — z
120 192 48

the parallel-flow core solution can be written as

= R\AG\

6 = At + B  + R XA2GL~\

(2.3.7)

(2.3.8)

(2.3.9)

In order that the boundary conditions for 6 are satisfied at the two end walls, it is 

necessary that
A = l + L~1A1 + . . .  (2.3.10)
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and
B  =  0  +  L ^ B i  + . . . (2.3.11)

in the limit as L —> oo. The order L  1 corrections are generated by the temperature 
field produced in the end regions of the cavity to be considered in section 2.4 below.

Plots of G, G' and G" against z are given in figure 2.1. These show graphically 
how the temperature, stream function and horizontal velocity depend upon z. The 
graph of G shows how the temperature increases towards the top of the cavity; that of 
G" shows that the hotter fluid moving towards the cold wall occupies approximately 

the top 40% of the cavity: when G" — 0 ,z  =  0.578.

The results (2.3.8)—(2.3.11) can also be obtained by formally expanding the 
solution in inverse powers of L and solving the individual problems which arise at 
each order of magnitude in the Boussinesq system. In summary, the core solution 
can be expanded in the form

ip — R iG '(l + L M i) -f- 0 (L  2) \ f t
0 = p + L -\ A 1C + B 1 + R1G) + O (L -2) ~ " ° °

(2.3.12)

2 .4  E n d -reg ion s

The flow is turned through 180 degrees in approximately square regions at the end 
walls. Near the cold wall

ip =  ip(x, z) +  . . . ,  6 = L 10(x, z) -f . . . ,  (L —> oo), (2.4.1)

and substitution into (2.2.1) and (2.2.2) shows that ip and 6 satisfy the full governing 
equations with R replaced by R\.

V 4iP -  R i—  = ade  . ^ ( v V M )
dx

v 2e =

d(x, z)
d(6,iP)
d(x, z )

The solution must satisfy the wall conditions

i , =  a i  = e "
dip 06 

^ = ~d~z = Ih

(2.4.2)

(2.4.3)

0 on x = 0, (2.4.4)

0 on z = 0, (2.4.5)
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and the free surface conditions

, 0V ae4> = -H"T = T -  =  o on 2 =  1.
O Z z O z

Finally, the solution must match with the core solution, requiring that

RiG'
6 ~  x -j- c T Ri G

where, from matching with (2.3.12),

c = B\

(x —> oo)

(2.4.6)

(2.4.7)

(2.4.8)

Near the hot wall

ip = ip(x, z) + 6 — 1 + L 19(x, z) + . . . ,  ( L —> oo), (2.4.9)

where x = L — x. Substitution into (2.2.1) and (2.2.2) yields similar equations to 
those of the cold end-zone, except that because of the replacement of x by L  — x, 
the two Jacobian terms and the buoyancy term have opposite sign:

+ = - adx
0

d (x ,z )  ’ 

d(x, z)
=  -

(2.4.10)

(2.4.11)

The solution must satisfy the wall conditions

dip
ip  =  —— =  # =  0 o n x  =  0, 

ox
~ d i p  3 6

’/ '= x -  = y -  = 0 o n z  = 0, 
dz dz

and the free surface conditions

=
d2ip 36

(2.4.12)

(2.4.13)

(2.4.14)

As in the case of the cold end-zone problem the solution must also match with the 
core solution, requiring that

-P -» RiG'
9 ~ —x + c T RiG (x —> oo) (2.4.15)
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where from (2.3.12)
c — Ai + B\. (2.4.16)

The two end region problems must be solved to determine the constant pa-
rameters c = c (R i,a )  and c = c (R i,a )  as functions of both Ri and a. The core 
solution (2.3.12) is then completed to order L ~l , given that

A\ = c — c, Bi = c. (2.4.17)

Properties of the end region solutions will now be considered.

2.5 E n d -z o n e  eigenvalue p roblem

Insight into the behaviour of the end region solutions for general Ri 
gained by considering the manner in which the core flow is recovered 
x —* oo. For the cold end-zone it is expected that

and a  can be 
as x —> co and

V’ ~ Æ i G , + £ ^ Æ 1>‘r)e“B> (2.5.1)

6 ~  x + c + RiG  + Y  0 (z> Æ1; <7)eax,
OL

(2.5.2)

for R e(a ) < 0, ï >  1, while for the hot end-zone it is expected that

~  Ri'G’ + Y  <K*,Ru (2.5.3)

9 ~  - £  + 5 + RiG  + ^  0 (z , R 1}tj)e~a£,
a

(2.5.4)

for R e(a)  > 0, x 1. Substituting (2.5.1)—(2.5.4) into the governing equations and 
linearising leads to a single eigenvalue problem for both end-zones:

<j?v + 2a 2f  + a V  a R i® =  ( G " ( f  + a 2<P) Giv(/)),
a

0 "  + a 2Q -  (/>' = aRi(G"Q  -  G'<f>),

(2.5.5)

(2.5.6)

with 4> =  (j)' = 0 ' = 0 on z =  0 and (f) = ft' = 0 ' = 0 on 2 = 1. In general the 
eigenvalue a  is complex: a  = a r + ia,-. Solutions where a r > 0 relate to the hot 
end-zone; where a r < 0 the solutions correspond to the cold end-zone. By taking
the complex conjugate of (2.5.5) and (2.5.6) it can be seen that if a is an eigenvalue
corresponding to eigenfunctions cj> and 0  then a* is the eigenvalue corresponding to
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the eigenfunctions </>* and 0*, where the asterisk denotes the complex conjugate. To 
avoid confusion, the imaginary part of the eigenvalue, is taken to be positive at 
the hot end and negative at the cold end.

For general R\ it is necessary to solve the eigenvalue equations (2.5.5) and 
(2.5.6) numerically. Results were obtained using a fourth order Runge-Kutta scheme 
with Newton iteration, which found a  while keeping R1 fixed. The initial estimate 
of a. needed for such a scheme was taken to be the result at the previous R\ value. 
Thus values of a  were traced out for increasing R\ starting from R\ =  0 where the 
eigenvalue problem is analytically solvable, as follows.

When Ri = 0 the end zone eigenvalue problem simplifies to

<j)tv ±  2a2 (j)" + a 4 (f) — 0,

0 "  + a 20  -</>' =  0,

with cj) — 41' = 0 ' = 0 on 2 =  0 and (j) =  (f>" =  Q' =  0 on z =  1.

For the trivial solution of (2.5.7), 4> — 0, the solution of (2.5.8) yields the real
eigenvalues

a  = ±n7r, n = l , 2 , . . . ,  (2.5.9)

with eigenfunctions of the form 0  = cos mvz. Note that any multiple of the eigen-
function is a solution of the eigenvalue problem.

Alternatively, the relevant non-trivial solutions of (2.5.7) are

cf> = sin az  — az  tan a. sin az  — az  cos az, (2.5.10)

where a  is a solution of
sin 2a — 2a = 0. (2.5.11)

The complex roots of (2.5.11) are tabulated by Hillman and Salzer (1943), giving 

a  =  ±(3.7489 + 1.3844z), ±(6.9500 ±  1.6761 i), . . . .  (2.5.12)

2.6 N u m erica l so lu tion  o f th e  eigenvalue p rob lem .

(2.5.7)

(2.5.8)

It is necessary to solve the eigenvalue problem numerically for general values of R\. 
A fourth order Runge-Kutta scheme was used to integrate the equations from the
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2 .7  N u m erica l resu lts

The eigenvalue problem (2.5.5), (2.5.6) was solved numerically by the method de-
scribed in section 2.6 for a range of Prandtl numbers including both infinite Prandtl 
number and small values of around 0.1 or less. Results are given in sections 2.7.1 and 
2.7.2 respectively. Results for a Prandtl number equivalent to that of water, a  «  7, 
were found to behave in a similar manner to those for infinite Prandtl number. For 
each Prandtl number regime, results for both the hot and cold ends are given, and 
each end has both ‘real’ and ‘complex’ eigenvalue branches which stem from the 
limiting behaviours at R\ = 0 defined by (2.5.9) and (2.5.12).

As discussed in section 2.5, a  and its complex conjugate a*  are solutions of 
the eigenvalue problem, and thus for simplicity both real and imaginary parts of the 
hot end solutions are taken as positive, while both real and itimimry parts are taken 
as negative for the cold end solutions.

2.7.1 Infinite Prandtl number

Figures 2.2 and 2.3 show values of a as a function of Ri for the first four real 
and complex modes of the hot end solution. The fifth real mode is also shown as 
this interacts with the fourth real mode. Apart from this small ‘interaction’, which 
produces a complex solution near Ri = 1800, the behaviour of a  with Ri is relatively 
simple; the real modes become increasingly more important than the complex modes 
as R 1 —> oo in the sense of determining the scale of decay of the end-zone solution. 
This is indicated by the decrease in value of the real mode eigenvalues (compared 
with the increase in the real part of the complex mode eigenvalues) and represents 
an expansion of the end zone into the core as Ri increases.

Figures 2.4 and 2.5 show the corresponding eigenvalues of the real and com-
plex modes of the cold end solutions. Here the fourth complex mode is plotted with 
the real eigenvalues to indicate an interaction with the fifth real mode. A detailed 
interpretation of these ‘interactions’ is not undertaken here because the modes decay 
too quickly to be of interest.

Comparison of the results for the hot and cold ends at large values of R\
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shows that the magnitudes of the real eigenvalues of the cold end are smaller than 
those of the hot end, suggesting that the cold end-zone extends further into the core 
than the hot end-zone at large Rayleigh numbers.

The real eigenvalues and the real part of the complex eigenvalues remain 
non-zero for all values of Ri which suggests that the end-zone solution approaches 
the core-flow as proposed in section 2.5, and that as in the case of a rigid upper 
surface (Daniels et al. 1987) no steady multiple cell solutions develop in the system 
at large Prandtl number.

Figures 2.2-2.5 show that for R\ > 3000, the most important modes at both 
the hot and cold ends are the first three real modes; the complex modes are com-
paratively insignificant and correspond to a strongly-damped oscillatory component. 
Thus most of the turning of the fluid is associated with the first three eigenfunctions 
(f), which are plotted as functions of z in figure 2.6.

For both hot and cold ends the first eigenfunction of (j) (which affects the 
core flow first as it approaches the end wall) is similar in shape to the core-flow 
stream function. This basically has the effect of slowing the flow. The second and 
third eigenfunctions of (j) at the hot end have the greatest effect on the core-flow 
at the bottom of the cavity, while those of the cold end have the greatest effect in 
the upper part of the core-flow; at first glance there seems to be an odd symmetry 
between the second and third eigenfunctions at each end.

The corresponding temperature eigenfunctions 0  in figure 2.7 show a similar 
odd symmetry: the largest effect on the core temperature is at the top of the hot 
end and at the bottom of the cold end. The first eigenfunctions have the effect 
of lowering the temperature towards the top of the cavity near the hot end and 
increasing the temperature towards the bottom of the cavity near the cold end, so 
that the temperature becomes more constant with depth towards the walls.

2.7.2 Small Prandtl number

The eigenvalue problem was solved for three different small values of the Prandtl 
number: 0.1, 0.05 and 0.02. The real and complex eigenvalues for the hot end are 
plotted in figures 2.8 and 2.9 and for the cold end in figures 2.10 and 2.11. Only
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the first modes are shown as these have the most penetrating effect on the core flow 
and are therefore of greatest interest.

Although different in detail, the real modes at both ends are similar to those 
for infinite Prandtl number -  similar in magnitude and decaying with R i. A com-
plicated interaction between the first few real modes at the hot end is shown for 
a  — 0.1 in figure 2.12. The higher ‘real’ modes appear to develop extensive complex 
portions as Ri increases.

The behaviour of the complex modes is quite different from that of the infinite 
Prandtl number case. Both real and imaginary parts of the eigenvalues for the first 
hot end mode decay very quickly with itfl, while the eigenvalues for the first cold end 
mode appear to converge to constant values with increasing Ri. The eigenvalues for 
the second cold end mode decay quickly with increasing Ri and soon become more 
important than the first mode.

For both the hot and cold ends and for values of R\ up to 3000, the real part 
of the complex eigenvalue is smaller in magnitude than the first real eigenvalue. 
The results suggest that at large values of R1 the decay in the end-zones remains 
dominated by the complex modes, equivalent to a slowly damped oscillatory decay 
into the core-flow. Thus the main difference between the infinite and small Prandtl 
number problems is that at large values of Ri the most important modes in the 
latter case are the complex modes while in the former case the real modes dominate 
the flow. Neither the real modes nor the real part of the complex modes appear to 
reach zero at finite Ri and so the parallel-flow core solution remains valid, unlike 
the case of a rigid upper surface where at small Prandtl numbers the flow is forced 
to break down into stationary multicellular convection at sufficiently high values of

Ri.

2.8  A sy m p to tic  resu lts  for large Ri

The numerical solutions of the eigenvalue problem (2.5.5), (2.5.6) for infinite Prandtl 
number plotted in figures 2.2-2.5 suggest that the real eigenvalues a  have the be-

haviour
a  ~ OLq

R i
as Ri oo. ( 2 .8 . 1 )
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For finite Prandtl numbers, the numerical results shown in figures 2.8-2.12 suggest 
that there are solutions which behave in a similar manner as Ri -—> 00, but with 
«o either real or complex. In this section an investigation is undertaken to identify 
these solutions which determine the scale of decay of each end-zone at large values 
of R1.

2.8.1 Infinite Prandtl number

Substitution of (2.8.1) into (2.5.5) and (2.5.6) at infinite Prandtl number and reten-
tion of the leading order terms as Rx —► 00 yields the reduced problem

iT  -  a o0  = 0, (2.8.2)

0 " = a 0(G"O -G'<f>), (2.8.3)

with cj) = (j)' = 0 ' = 0 on z = 0 and (j> = (f>" = 0 ' =  0 on z = 1. This was solved 
using the Runge-Kutta iteration scheme described in section 2.6. The results for 
the first three real modes are given in Table 2.1, and show good agreement with the 
numerical solution of the full equations at R1 = 3000, particularly in respect of the 
leading mode at each end of the cavity.

Asymptotic Full solution
mode OL 0 a 0/R i (Ri =3000) Ct(Ri =3000)
hot 1 2179 0.7262 0.7125
hot 2 8142 2.7140 2.439
hot 3 19520 6.5080 5.131

cold 1 -2009 -0.6695 -0.6534
cold 2 -7442 -2.4810 -2.2200
cold 3 -17440 -5.8140 -4.5480

Table 2.1: Comparison of the results of the asymptotic form and full-equation form of the 

eigenvalue a .

The values of a 0 for these leading modes suggest that the e-folding decay 

length for the hot end-zone is

x ~  4.59 x 10“4Ri, Ri —>• 00, (2.8.4)
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and for the cold end-zone is

x ~  4.98 x lO“4# !, R\ —> oo, (2.8.5)

indicating that the cold end-zone extends somewhat further into the core than the 
hot end-zone. Daniels et al. (1987) found that the e-folding decay length for the 
end-zones of the problem with a rigid upper surface is

x ~  2.20 x 10"4i2i, (2.8.6)

roughly half the length of the end-zones here for the free surface problem.

2.8.2 Finite Prandtl number

For finite Prandtl numbers substitution of (2.8.1) into (2.5.5), (2.5.6) and retention 
of the leading order terms as R\ —> oo gives

4?v -  a o0  =  — { G " f  -  Glvcj)), (2.8.7)
C7

0 "  -(/)' =  a o(G "0  -  G'(f>). (2.8.8)

The results of solving (2.8.7) and (2.8.8) by the Runge-Kutta iteration scheme are 
given in figures 2.13 and 2.14 as plots of a 0 against a. The numerical solutions of 
both the full equations at i?i =  3000 and the asymptotic equations with a  = 0.10, 
0.05, 0.02 are given in Table 2.2 for the first complex mode relating to the hot end- 
zone, and in Table 2.3 for the second complex mode relating to the cold end-zone 
-  figure 2.11 shows that for large Ri the second complex mode decays slower than 
the first. The results in these tables indicate good agreement between the numerical 
results and the asymptotic theory.

Asymptotic Full solution (iq=3000)
a a or Op; Opr /R i (fli=3000) Ct-Oi/Rl (-Ri=3000) (Xr a.l

0.10 559 414 0.186 0.138 0.180 0.137
0.05 289 219 0.0963 0.0729 0.0961 0.0725
0.02 119 88.7 0.0397 0.0296 0.0395 0.0295

Table 2.2: Comparison of the results of the asymptotic form and full-equation form of the 
complex eigenvalue a.
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Asymptotic Full solution (¿?!=30oo)
a a 0i OLoJ R\ (^=3000) QOi/Rl (Hi=3000) a r OLl

0.10 -2074 -842 -0.692 -0.281 -0.694 -0.283
0.05 -1078 -418 -0.359 -0.139 -0.360 -0.140
0.02 -434 -168 -0.145 -0.056 -0.146 -0.055

Table 2.3: Comparison of the results of the asymptotic form and full-equation form of the 
complex eigenvalue a.

Figures 2.13 and 2.14 show that, at both ends, in general the leading complex 
solutions of the form a  ~  a 0/R i  only exist for a  less than about 0.5. At a  = 2, the 
values of a 0 for the first few real modes have approached their limiting values for 
cr = oo given in Table 2.1, and for these modes there is little dependence on Prandtl 
number for a  > 2.

2.9  A sy m p to tic  exp ansion  o f th e  end reg ion  solu-
tio n  for sm all R\

The asymptotic solution as Rx —> 0 for the cold end-zone is considered first; similar 
results for the hot end-zone are then derived, allowing the constants Ax and B x in 
the first order correction to the core solution to be obtained in the limit of small 
Rayleigh number.

The stream function and temperature in the cold end-zone can be expanded 
in the form

ip — Ri'pi T R x'lp2 T  ■ • • j (2.9.1)

0 — $o + Ri@i + Rx@ 2 + • • •, (2.9.2)

as R x 0 with
c — Co + R\C\ T R xc2 T . . . .  (2.9.3)

Substitution of (2.9.1) -  (2.9.3) into the end-zone system (2.4.2) -  (2.4.7) yields a 
succession of problems at each order in Rx as follows.

At order one, the heat equation gives

V 2#o = 0, (2.9.4)
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with

#o = 0 on x = 0, 

90 ~  x -f c0 as x —> oo,

and

dz
0 on z = 0,1.

Integrating (2.9.4) between z = 0 and 1 gives

d 2 r1

dx2 [  90 dz = 0 
Jo

(2.9.5)

(2.9.6)

(2.9.7)

(2.9.8)

where (2.9.7) has been used. Integrating twice with respect to cc and using (2.9.5) 
and(2.9.6) shows that cq = 0 and the required solution for 90 is

9n = x. (2.9.9)

At order i?i, 0 i is generated by this horizontal thermal gradient and is found 
to satisfy

V 40 j = 1, (2.9.10)

with

dib\ <920 i
0 i = =  0 on z =  0, 0 i = w y  = 0 on z = 1,

az o z 2

0 i =  = 0 on x =  0 and 0 i —> G' as x —> oo.
ox

The solution can be written in the form

0 i = G' +

(2.9.11)

(2.9.12)

(2.9.13)

where 0(a3,z) satisfies the biharmonic equation and can be found by separation of 
variables in the form

OO

4> = R e^ 2  [ik (sin afcZ — a^z cos a^z — a^z tan a*, sin a^z) eakX, (2.9.14)
k=l

where /¿j. are constants to be determined from the boundary conditions at x = 0, 
and ajt are the roots of

= — sin 2a/. (k =  1 , 2 , . .  .) (2.9.15)
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with negative real part. These were found by Newton-Raphson iteration and checked 
with the results of Hillman and Salzer (1943).

The boundary conditions at x = 0 given in (2.9.12) are now 

Re [ ^ 2 / k̂ ŝin a kz — a kz cos a kz — a kz tan a k sin a kz) \ = —G', (2.9.16)
\k=i

and

Re J^  cikf^k(sin a kz — a kz cos a kz — a kz tan a k sin a kz) = 0. (2.9.17)
\k=l

The eigenfunctions and the velocity profile G' are written as Fourier sine series, 
giving

/ oo oo \
z =  —  J ^  en sinmrz,

( OO OO

JO JO bn,k sin mrz
k =  1 71=1

and

where

and

OO OO

Re JO a kfik JO 6„,fc sin mrz =  0,
\k=l n—1

bn,k — bn,kr “f"
4n7T

a t  — nir y y akSm  afc>

(2.9.18)

(2.9.19)

(2.9.20)

(2.9.21)

 ̂ ) yf̂ kr n̂,kr f̂ kî n,k̂ j (2.9.22)
k=1

OO

J  ) (̂ î kr (̂ k̂r b-n,kr ¿̂k{ bn,k̂  ) t̂ k{ n̂,kT T -̂kT̂ n,ki ')̂ j 6; (2.9.23)
k= 1

- 1
( ( n 7 r ) 2 +  8  ( (  — l ) n  — 1 ) )

4(n-/r)5
Equating coefficients of sinnirz leads to a series of equations of the form

where ¡ik = fMkr + i/J,ki. The matrix system was solved using Gaussian elimination 
with partial pivoting and values of the first few coefficients are given in Table 2.4; 
the infinite sum was truncated at k = 8 at which point the first four coefficients 
were estimated to be accurate to three significant figures. Figure 2.15 shows the 
streamlines of the end-zone flow associated with tpi which indicate the fastest motion 
near the free surface.

/ii 1.82 x 10-3 — 8.49 x 10~3f
fi2 1.27 x 10-4 + 4.58 x 10_4i
fi3 2.34 x 10-5 — 1.14 x 10-5f
/¿4 -9 .94  x 10~6 + 3.21 x 10~5z

Table 2.4: Estimates of the first four values of fi.
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The first order temperature field 6X is now generated via the equation

(2.9.24)

obtained from the order Ri terms in (2.4.3). The boundary conditions are

V 2f?i =
dz

ddi
dz

= 0 on z = 0,1

61 = 0 on x = 0 and —> G +  c\ as x —> oo.

Integration of (2.9.24) shows that

d2 r1

(2.9.25)

(2.9.26)

dx-
[  &i dz = 0 

Jo

and it follows from (2.9.26) that

fCi = — / G dz ~ ------- .
1 720

The solution for can be written in the form

= G + 0 (x , z)

where

(2.9.27)

(2.9.28)

(2.9.29)

(2.9.30)
n = 0

n — 1 . tan Q!fc 1
+ Re< 2_̂  Hk\-----tan a sm c^ z -------------cos a^z H— z sm a^z

k= 1 2
q;̂  tan <y.k 2 ■ 2 \ olii4— z ta n a i c o s a iz ---------------z sm a t z ------- z cosaiz e 1,

4 4 4 '

and rjn, n =  0,1, .  . . are real constants to be determined from the boundary condition

0  = — G at s  =  0. (2.9.31)

The thermal eigenfunctions associated with are written as a Fourier cosine series 
of the form OO

an>fc cos nirz, (2.9.32)
n = 0

where

@"n,k
4a:j? (ra7r)2 tan a*.

(a l ~ (n7r)2)3) 1
(2.9.33)
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was determined analytically and then the resulting z integrations were performed 
numerically using Simpson’s rule with a step size of 10~4, and the same values of 
77 and ¡1 . This gave the value of the integral (2.9.52) as 6.29 X 10~6. The earlier 
integrals for which analytical solutions were found were used to check that the 
numerical solver performed correctly. It was also adapted to perform the entire 
double integral

[°° f 1 ©ym dz dx (2.9.53)
Jo Jo dz

directly, as a verification of the above work.

In summary, the value of c2 for the cold end-zone is determined as

c2 =  1.37 x 10“5 -  1.04 x 10“5 -  6.29 x 10“6 = 9.65 x 10“6 (2.9.54)

which agrees to within 1% with the numerical result obtained by Cormack, Stone 
and Leal (1975) using a finite difference approximation of the end-zone flow.

In the hot end-zone, the co-ordinate x = L — x is used as the distance from 
the hot wall, and 9 and ip represent the local temperature and stream function fields. 
These satisfy the equations and boundary conditions given in (2.4.10) -  (2.4.15). For 
small R l , ip and 9 can be expanded in the form

ip — R\îpi 4- R iï ’n+ ■ ■ ■ ; (2.9.55)

9 — 9q + R\9\ + R \ . . .  , (2.9.56)

C = ¿0 + R\Ci + -R1 C2 + . . .  . (2.9.57)

Substitution into (2.4.10) and (2.4.11) yields a succession of problems at each order 
in Ri similar to those of the cold end-zone. At order one it is easily established that

c0 = 0 and

1II0
'<35 (2.9.58)

At order i?i, ipi and satisfy

VS/q:= 1 and V 2èx = , 
dz

(2.9.59)

with

xp1 —>• G' and 9i G +  ¿1 as x —> 00,

ip1 = = §1 = 0 on x =  0, 
ox

(2.9.60)

(2.9.61)
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The solution for A\ shows that as R x increases, the influence of the end walls is to 
reduce both the speed of the core flow and the horizontal thermal gradient. The 
solution for Bi represents a downward shift in the temperature field throughout the 
core so that the temperature at the free surface is

and on the base is

C + L ^ R j ^ -  
 ̂ 576

(2.9.72)

Ì - L ~ l R1— . 
 ̂ 720

(2.9.73)

2 .10  D iscu ssion

Unlike the case of a rigid upper surface where at small Prandtl numbers the flow 
breaks down into multicellular convection at sufficiently high values of R 1, neither 
the real modes nor the real part of the complex modes appear to reach zero at finite 
Ri and so the parallel-flow core solution remains valid. The top 40% of the parallel- 
flow in the core moves from the hot to the cold end with a maximum velocity at 
the free surface of — i?i(1 /48), greater than the maximum velocity (11/16).[R\ /48) 
of the return flow in the lower 60% of the cavity. At finite Ri the cold end-zone 
is slightly larger than the hot end-zone, but both have an e-folding decay length 
of order Ri and are roughly twice as long as the end zones in the rigid surface 
case. The end-zones for small Prandtl number are dominated by spatial oscillatory 
modes; at infinite and moderate Prandtl numbers the end-zones are dominated by 
non-oscillatory modes.

The analysis of section 2.9 gives an almost wholly analytical first order solu-
tion throughout the cavity for small Rayleigh number and large aspect ratio. The 
small R\ analysis shows that to a first approximation the streamlines are symmetric 
in the end-zones, and the first order temperature adjustment indicates an increased 
temperature in the upper half of the cavity and a reduction in the lower half rela-
tive to that corresponding to the basic linear temperature gradient. The first order 
stream function has a negative symmetry equivalent to a slowing down of the flow 
near the top of the cavity in the cold end zone and a speeding up of the flow near 
the top of the cavity in the hot end zone.

Some solutions of the full governing equations (2.4.10) and (2.4.11) were

42



found numerically using a non-linear multigrid program written by N.G. Wright, 
and discussed in Wright, Gaskell and Sleigh (1995). The original program solves 
the problem in the whole cavity with a rigid upper surface, but here a version was 
developed to solve the free surface problem for the hot end zone. Solutions were 
computed for low Rayleigh numbers in the range 1 < Ri < 50 and an estimate of c 
found from the formula

c n  — @N T x — RiG (z) (2.10.1)

where 9^ is the temperature profile computed numerically at a reasonably large 
distance from the wall (x = 4). For small R\, this produced the behaviour

c N  =  - 1 . 3 8  x 10~3Ri -  1.88 x 10~5R 3, R i  —► 0, (2.10.2)

the two coefficients being within 0.4% of the values predicted by the asymptotic 
analysis of section 2.9. The numerical computations also produced streamlines al-
most identical to those given in figure 2.15, confirming excellent agreement between 
the analytical and numerical solutions. It is hoped that further numerical work will 
give values for the constants c and c at moderate and at large Ri and show how the 
stream function and temperature profiles behave in the end zones as the Rayleigh 
number increases. Experiments by Simpkins and Chen (1986) suggest that for the 
rigid-surface case there is an almost stagnant core with jet-like motion near the 
horizontal boundaries at large Rayleigh number.

It is also possible to consider an asymptotic theory for the flow development 
as Ri —» oo. Daniels (1993) argued for the rigid surface case that consideration 
of the vertical boundary layer and the horizontal heat transfer balance in the end 
zones leads to a prediction of the leading order behaviour of c(R i, a )  as R 1 —> oo of 
the form

c(Ri,cr) = R *c0(cr) + . . . ,  (2.10.3)

The same arguments are equally applicable in the free surface case, the only differ-
ence being the contribution to Co from the horizontal heat flux Q, so that for both 
end zones it can be argued that

where

7

c ~ c ~ R {c0(cr), R\ —> oo, (2.10.4)

/3 Q y
Co = U a J  >

(2.10.5)
O 1
- a *  (2.436 + 4 .884^  + 4.952a) ? (2.10.6)
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and in the free surface case the heat flux is given by

Q = £  G' 2 dz = 19/1451520 =  4 .75£rigid. (2.10.7)

Finally, an indication of the free-surface end zone flow at moderate Rayleigh 
numbers was obtained by extending the analysis of section 2.9 in an approximate 
manner as follows. The low Rayleigh number eigenfunctions were replaced by those 
obtained numerically in the eigenfunction analysis of section 2.7 and the boundary 
conditions on the velocity field applied at x = 0 and x — 0. This procedure is not 
strictly valid because the exponential eigensolutions are not relevant close to the 
wall at finite non-zero values of Ri. However, the results probably provide a good 
indication of how the flow develops as Ri increases. The results shown in figure 2.17 
are for i?i = 3000 and a  = oo and indicate a downward shift of the streamlines in 
the cold end zone and an upward shift in the hot end zone.
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Figure 2.1: Plots between z — 0 and 1 of G(z) (core temperature profile), G' (core 
stream function profile) and G" (core horizontal velocity profile).
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0 . 0  1 0 0 0 . 0  2 0 0 0 . 0  3 0 0 0 . 0

Ri
Figure 2.2: Eigenvalues a  of the first five real modes of the hot end as a function of 
R1 for a  = oo. The dotted line is the imaginary part of the fourth/fifth modes.

Ri
Figure 2.3: Real (solid lines) and imaginary parts of the first four (numbered) com-
plex mode eigenvalues a of the hot end as a function of Ri for a = oo.

46



 



0 1 0 1

z z

Figure 2.6: First three ^-eigenfunctions (from the top down) of the cold (left) and 
hot (right) end solutions at Ri = 3000 and a  = oo as functions of z.
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z z

Figure 2.7: First three ©-eigenfunctions (from the top down) of the cold (left) and 
hot (right) end solutions at i?i = 3000 and a  = co as functions of z.
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0.0
0.0 1000 .0 2 0 0 0 .0 3 0 0 0 . 0

Ri
Figure 2.8: First two real mode eigenvalues a  for small Prandtl numbers as a function 
of R\ (hot end).

Ri
Figure 2.9: Real (solid line) and imaginary parts of the first complex mode eigen-
values a for small Prandtl numbers as a function of Ri (hot end).
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Ri
Figure 2.10: First real mode eigenvalues a  for small Prandtl numbers as a function 
of Ri (cold end).

Ri
Figure 2.11: Real (dot-dashed line) and imaginary (dotted line) parts of the first, and 
real (solid) and imaginary (dashed) parts of the second, complex mode eigenvalues 
a  for small Prandtl numbers as a function of R1 (cold end).
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Ri
Figure 2.12: Interaction of the first few real mode eigenvalues at Prandtl number 
a  — 0.1. The first mode is the solid line, other modes are dashed lines; the dotted 
lines are imaginary parts of the eigenvalues.
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0.0
0 . 0  0 . 5  1 . 0  1 . 5  2 . 0

a
Figure 2.13: Real (solid lines) and imaginary parts of the reduced eigenvalues a 0 as 
a function of the Prandtl number for the hot end-zone.

a
Figure 2.14: Real (solid lines) and imaginary parts of the reduced eigenvalues a0 as
a function of the Prandtl number for the cold end-zone.
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Figure 2.15: Contour plot of the first order stream function xfj1.
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Figure 2.16: Contour plot of the first order temperature function 6\.
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Figure 2.17: Approximate solutions for the streamlines in the two end zones based 
on the eigensolution of section 2.7 (cold on the left, hot on the right) for Ri = 3000
and a  = oo.
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C hapter 3

Stab ility  of the non-rotating core 
flow

3.1 In tro d u ctio n

The stability of the system to transverse and longitudinal disturbances is investi-
gated in this chapter, by considering perturbations to the core solution of the full 
governing equations. Previous work has mostly been concerned with the problem 
with a rigid upper surface, although the stability of the free upper surface system 
has been studied before both analytically and experimentally. Hart (1983) discussed 
the onset of longitudinal instabilities and obtained the critical Grashof number as a 
function of Prandtl number, a, as did Laure and Roux (1989) using a variant of the 
Galerkin method. Gill (1974) did not consider transverse mode instability for the 
rigid and free upper and lower surface problems because of its non-oscillatory char-
acter, but on discussing earlier experimental results concluded “that the side walls 
of the box stabilized this form of disturbance, or that the measurement techniques 
were not sensitive to its presence.” The Galerkin-method/QR-algorithm scheme 
used by Hart(1983) did not converge very well for cr > 0.1, and so “these modes 
being of less interest” no calculations were made beyond this point.

In this chapter the whole neutral curve is described for both transverse and 
longitudinal disturbances and a detailed asymptotic analysis is undertaken to de-
scribe the limiting structure of the curve for large Rayleigh numbers. Using both 
asymptotic and numerical techniques, estimates are found for the critical Prandtl
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numbers, a c, above which the system is stable.

The chapter is split into two main sections: one for the transverse modes of 
instability, and one for the longitudinal modes. For each problem the linear stability 
equations are derived assuming that the perturbations are made to a parallel free- 
surface core flow. The stability equations are solved analytically for perturbations 
with zero wavenumber k and general R i, and for general wavenumber at Ri = 0, 
where the system is stable. These results then assist in solving the problem for 
general R1 and general k using a Runge-Kutta scheme with Newton iteration.

For both transverse and longitudinal modes, the large Ri asymptotes are 
examined in detail. The development of boundary layers for finite wavenumber and 
large Rayleigh number makes the numerical solution of the full stability problem less 
accurate in this limit, but leads to an interesting asymptotic theory, the physical 
interpretation of which is discussed in section 3.5.

3.2  T h e  tran sv erse  s ta b ility  eq u ation s

The full equations governing two dimensional motion parallel to the cross-sectional 

plane of the cavity are

T2J.

V 4V> -  R^~ = a 
ox d ( x , z )

V 2 9  =
8 ( 9 , xp)
8 ( x ,  z )

3 ^ = 0  =- M — (dz

dt

+ 5 ?

(3.2.1)

(3.2.2)

previous chapter, away from the end walls (3.2.1) and (3.2.2) have an exact steady 
parallel-flow core solution xp = xps, 9 =£0S where to a first approximation

86
i>s = Ri G'(z), 

89 s
a , - 1- =

(3.2.3)

(3.2.4)

with Ri = R /L  and G = z5120 192 ^  ^  48 ^  ’

To study the stability of the system to transverse disturbances, the core 
solution is perturbed by functions <f> and 0  which are assumed to depend on x, z
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and t, so that

(3.2.5)

(3.2.6)

4> = 4>s + e<j>(x,z,t),

6 = y(l9S + e é (x , z , t ) ) .
L/

The transverse perturbations are assumed to be oscillatory in the x direction with 
axes perpendicular to the core flow, and have the form

^ 0  =  { ^ ) , 0 ( z ) } e “ f e ‘ f a , ( 3 . 2 . 7 )

where the wavenumber k is real and u> = ay + zoy.

Substituting the perturbed core flow (3.2.5), (3.2.6) into the governing equa-
tions (3.2.3), (3.2.4) and linearising in e yields the perturbation equation for the 
transverse modes:

4fv- 2 k 24>"+ k4p - R 1ik&  =  l̂ ( G " U " - k 2(l>)-(t>Glv) + - U " - k 2(t>), (3.2.8)
a a

Q"—k2Q ~4>' =  R1ik(G"Q  -  G'4>) + l >Q, (3.2.9)

with (f) = 4>' = 0* = 0 on z = 0 and ÿ = 0 ' = 0 on 2 =  1. These are solved for 
u! = u;(i?i, k, a), where it is required physically that R 1} a  > 0. If tu(i7i, k, a )  is the 
eigenvalue corresponding to the eigenfunctions (p and 0 , then u *(R i, — k, a )  is the 
eigenvalue that corresponds to the eigenfunctions </>*(R\, — k , a)  and 0 * (R 1, — k, a) 
(where the asterisk denotes the complex conjugate) and thus solutions are only 
required for k > 0. The system is stable if uy < 0 and unstable if ay > 0. From the 
previous chapter it can be noted that there are no solutions for cu =  0.

3.2.1 Solution of the transverse stability equations

An analytic solution of the stability equations (3.2.8) and (3.2.9) is possible when 
kR i =  0, that is for general R\ when k =  0, and for general k when Ri = 0.

When k = 0 the perturbation equations (3.2.8) and (3.2.9) are independent 

of Ri and have the form

(j)lv -  - f  =  0,
a

0 "  - 4 1  =  W0,
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with (f> = </>' = 0 ' = 0 on z = 0 and </> = (f>" = 0 ' = 0 on z = 1. The ‘thermal’ 
eigenvalues

u; = - (n ir )2, n =  0 , 1 , 2 , . . .  (3.2.12)

are defined from the solution of (3.2.11) for the trivial case of (3.2.10) (<f) =  0), with 
eigenfunctions

0  = cos mr z. (3.2.13)

A second set of solutions arises from the non-trivial solutions of (3.2.10)
given by

(f> — T(cos T z + z — 1) — sin T z, (3.2.14)

where values of T =  ^J—cu/a are determined as the roots of

tan T = r. (3.2.15)

This corresponds to a set of real negative values of l u  given by

l u  =  - {20 .191 ,59 .680 ,118 .900 ,197 .858 , . .  , } a  (3.2.16)

and which approach the asymptote l u  ~  — ( 2n  +  l ) 2( i r / 2 ) 2a  for large integer values
of n.

When Ri = 0, the stability equations (3.2.8) and (3.2.9) simplify to

-  2k2f  + k4(j) = -(</>" -  k2(f>), (3.2.17)
a

0 "  -  k2Q -<!>' = cuQ, (3.2.18)

with cf) = cj)' = 0 ' = 0 on z = 0 and <f> — <f)" = Q' = 0 on z = 1.

For the trivial solution of (3.2.17), (3.2.18) has the solution

0  = cos nir z (3.2.19)

corresponding to the thermal eigenvalues

l u  =  —  (mr)2 — k2, n = 0 , 1 , 2 , . . .  (3.2.20)

which reproduce (3.2.12) and (3.2.13) as k —> 0. Thus, for Ri = 0 the thermal 
eigenvalues are independent of the Prandtl number. Equation (3.2.17) has non-
trivial solutions of the form <j> = emz where in order that <j) may satisfy the boundary
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conditions, it is necessary for there to be an oscillatory component to the solution. 
This is the case if to is real and —cu/cr — k2 > 0 so that

m = ± k ,  ± iT , (3.2.21)

where

T = -  R  (3.2.22)

The required solution of (3.2.17) is

<¡6 = [ekz -  efc(2_z) -  ^  ~ ,.!,(etrz -  eir(2“z))] (3.2.23)
(1 — e2li )

where values of T are determined as the roots of
tanh k tan F
—  = — • <3-2-24>

Note that as k —> 0 this reproduces (3.2.15).

Numerical solutions of (3.2.17) and (3.2.18), initiated from the results (3.2.12) 
and (3.2.16) at k =  0, are shown in figure 3.1 as plots of u> against k for a  =  7, 
corresponding to the Prandtl number of water. The shallow curves are the thermal 
eigenvalues that correspond to the analytic solution (3.2.20), and the steep curves 
are the stream function eigenvalues corresponding to the solutions of (3.2.24). Since 
for the latter curves lu is directly proportional to the Prandtl number at fixed k, 
these curves become less steep as the Prandtl number decreases and then lie above 
the thermal eigenvalue curves at sufficiently high values of k. This suggests the 
possibility that it is these modes that will provide a mechanism for instability at 
small Prandtl number and non-zero values of Ri.

The results of this section show, via (3.2.12) and (3.2.15), that the system is 
always stable for k — 0, and via (3.2.20),(3.2.24) and figure 3.1 that the system is 
always stable for Ri =  0. These results are used to initiate numerical solutions of 
the full system (3.2.8), (3.2.9) for non-zero values of k and R1} to be described next.

3.2.2 Numerical solution of the transverse stability 
equations

The full stability equations (3.2.8) and (3.2.9) were solved numerically using a fourth 
order Runge-Kutta scheme with Newton iteration, similar to that used in the pre-
vious chapter. The stability equations were rewritten as twelve simultaneous first
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order equations. Then for given Ri, k and a, and an initial estimate of u j , the 
Runge-Kutta scheme was used usually with 100 steps to integrate the equations 
from z — 0 (where the boundary conditions are prescribed) to z = 1; the full solu-
tions for <j), 0  and their derivatives are then constructed from linear combinations of 
the solutions for the three different initial conditions <f>" =  1, <jj'" — 1 and 0  = 1 at 
z — 0. The three values of <j>, (j>" and 0 ' at z = 1 then form a matrix, the determinant 
of which must vanish in order that the boundary conditions at z =  1 are satisfied. 
The Newton iteration used the values of the determinant at the points u j , u> +  Auy 
and u j  + Aw, to refine the estimate of u j  and bring the determinant close to zero. 
The iterative scheme was halted when the refinement to u j  became less than Aon In 
most cases the value of A lo was taken to be 10~4. Computations were usually started 
from k = 0 where the values of to are known from the results of section 3.2.1. This, 
together with the results for R 1 =  0 and general k, also provides an opportunity to 
check the numerical results against the analytical solutions. Eigenvalue curves were 
traced out by keeping Ri and a  constant and incrementing k (usually by ~  10-2 ) 
and using the result at the previous value of k as an initial estimate of u j .

3.2.3 Numerical results

As discussed in section 3.2, solutions are only required for positive R1} k and a. Work 
by Hart(1983) on similar problems suggests that the system becomes unstable for 
small Prandtl numbers, and so attention was focused on values of a  around 0.1 
or less. Modes associated with the thermal eigenvalues at k =  0 are referred to as 
‘thermal modes’, and those associated with the stream function eigenvalues at k = 0 
are referred to as ‘stream function modes’.

The curves of the real and imaginary parts of a; as a function of k at Ri =  4000 
and small a  for the first three thermal modes are given in figures 3.2 and 3.3. It can 
be observed that (in the calculated range) although the behaviour of the thermal 
eigenvalues is not simple, these modes are stable. Figure 3.3 suggests that there is 

a strong linear relationship between uji and k.

The modes of greatest interest are the first two modes corresponding to the 
stream function perturbation. Plots of the real and imaginary parts of u j  for the first 
two stream function modes as functions of k at Ri =  4000 for small Prandtl number
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axe shown in figures 3.4 and 3.5 and figures 3.6 and 3.7. These become unstable for 
certain values of cr and k and have a certain predictability in that the higher the 
Prandtl number, the greater the value of k needed for instability. There also seems 
to be a link between these two modes: for a  < 0.065 the first mode becomes unstable 
and the second mode remains stable, but for a  > 0.070, the roles are interchanged. 
The exact point in (cr, ay k) space and method of interchange are difficult to define, 
but the point is at approximately (crmt, aynt, kmt) =  (0.0668,-2.83 + 4.15f, 0.126). 
Figures 3.8 and 3.9 show a neighbourhood of (amt, coint, kmt). The ior curves are 
crossed for a  < <rmi, and uncrossed for a > a int\ the a;, curves are crossed for 
a  < Pint and uncrossed for a  > a int. The crossing of these modes does not seem 

to represent any physical effect on the system: the value of k for which ay = 0 
is ‘predictable’ as a  moves through <Tini, and the eigenfunction cj) when ay = 0 for 
mode 1 at a  = 0.06 and mode 2 when a  = 0.07 are very similar, as shown by the 
plots of the two complex eigenfunctions against z in figure 3.10.

Although not shown in the figures, the third stream function eigenvalues were 
calculated for Prandtl numbers 0.05, 0.10 and 0.15, and were found to be stable. It 
seems likely that further modes are stable.

3.2.4 Neutral Curves

The results described above demonstrate the instability of the system as a function 
of k and a  at fixed Rayleigh number. For example in figure 3.6, for a  = 0.09 
and Ri — 4000, the system is unstable for values of k approximately in the range 
0.8 < k < 1.3. As the system is stable at Ah = 0, this region of instability must 
contract and disappear between Ah = 4000 and Ai = 0.

In order to visualise the values of Ai and k for which the system is unstable, 
the neutral curves (ay = 0) were calculated and are shown in figure 3.11 for various 
values of a. These curves were found using an extended version of the Runge-Kutta- 
Newton scheme which used an additional Newton iteration to bring ay to within 
10^4 of zero. Where the change in Ah was small compared with the change in k, the 
value of k was fixed and Ah found by the second Newton iteration considering lo as 
a function of Ah only; where the change in Ah was large compared with the change 
in k, the value of Ah was fixed and k found by treating uj as a function of k only.
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Computations of the neutral curves for large values of R\/a become less accurate 
and are not shown.

The regions above the neutral curves in figure 3.11 are where the system is 
unstable. As a  increases, these regions become more narrow, and are confined to 
higher values of Ri. This behaviour can be seen graphically in the logarithmic plot 
of Grc = R ic/a  versus a  (figure 3.12), where R ic (the critical value of R i) is the 
minimum point of the neutral curve, that is the smallest value of Ri for which the 
system is unstable. The critical Grashof numbers for the longitudinal modes are also 
shown and will be discussed in section 3.5 below. The results indicate that there is 
a critical value of the Prandtl number, a c, above which the system is stable for all 
values of Ri. For the transverse modes, when a  = 0.11, R\c ~  9 X  104; at such large 
values of R\ the accuracy of the results is reduced and it becomes difficult to trace 
the critical Grashof curve at higher values of a. However, this corresponds to the 
results of Hart(1972) and of Daniels et al.( 1987) for the system with a rigid upper 
surface which suggest that in that case the system is always stable for a  > 0.12. A 
better estimate of this critical Prandtl number a c for the free-surface case is obtained 
in section 3.3.3.

The ratio of the wave speed of the neutral disturbances (c =  tOi/k) to the free 
surface speed Ah/48 is shown in figure 3.13. This indicates the neutral disturbances 
moving in the same direction as the free surface, but at between one third and one 
fifth of the speed. As expected, there is a non-zero value for Lo0i when a;0r =  0, and so 
there are no steady oscillatory solutions similar to those found in the system with a 
rigid surface where stationary multiple cells extend throughout the cavity. The per-
turbation fields corresponding to the critical point on the neutral curve for a  =  0.04 
are shown in figure 3.14; the contours represent the stream function perturbation 
(f>(z)elkx+ut and the shading represents the temperature perturbation 0 (z )e lfcx+“'i at 
a fixed time t. The effect of these perturbations on the core is demonstrated in figure 
3.15 which shows the contours of the overall stream function (3.2.5) and the contours 
of the overall temperature (3.2.6) represented by the shading. For the given instant 
t the value of e has been chosen so that the overall behaviour is easily discernible.
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3.3 A sy m p to tic  so lu tion  o f th e  tran sv erse  
s ta b ility  equ ations for large R\

Solutions of the stability equations for large Rayleigh number and moderate and 
large wavenumbers can not easily be found with the numerical method used in the 
previous section. Most physical applications of the system occur at large Rayleigh 
number though, and so this is an important region of parameter space to understand. 
Two asymptotic regimes are considered: where k = 0 ( R i 1) and u j  = 0 (1 ), and 
where k =  0 (1 ) and u j  = 0(R\), encompassing the two branches of the neutral 
stability curve. Reduced forms of the stability equations, derived by substituting 
these scalings into the full stability equations, are solved numerically with the fourth 
order Runge-Kutta-Newton iteration scheme, for various Prandtl numbers a. These 
results show how u j  depends on k and a  for large R±, and provide a useful check on 
the numerical solutions of the full stability equations.

The extremes of both regimes approach a single problem, the solution of 
which leads to an estimate of the critical Prandtl number, ac, above which all solu-
tions are stable.

3.3.1 Asymptotic results for k = 0 (R 1x), uj = 0(1).

The neutral curves in figure 3.11 show the locus of ujt  = 0 as a function of Ri and 
k. For small k and large R\, the leading behaviours of the left-hand branches of the 
neutral curves are identified with the scalings

k0
k =

Ri
UJ —  CUo +  • • • , R \ oo, (3.3.1)

where k0 and lo0 are finite. Substituting this into the stability equations (3.2.8) and 
(3.2.9), and letting R 1 —> oo yields the simplified problem:

<T -  iko0  =  —  {G"<j>" -  (f)Glv) + — f ,  (3.3.2)
a a

0 "  -</>' =  ik0(G"Q -  G'(f>) + ujq0 , (3.3.3)

with (j) =  ft  =  0 ' =  0 on 2 =  0 and (f> = ft' — 0 ' = 0 on z =  1.

This was solved numerically using the fourth order Runge-Kutta scheme with 
Newton iteration. Here k0 was fixed and u j  found to an accuracy of 10—4, then k0
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was incremented in steps of 10 and the new value of uj found using the previous 
estimate. The curves were traced out in this way starting from k0 = 0 where (from 
section 3.2.1) the values of uj are known.

For small Prandtl number (<r < 0.065), the first stream function mode is the 
only mode to become unstable; the values of u> for the first stream function mode 
are plotted against k0 in figure 3.16. For large k0 the system is unstable with the 
disturbance traveling in the direction of the free surface flow, as seen in the previous 
section. The critical values of k0 = k0c for which instability sets in for different a, 
are given in Table 3.1, and it can be seen from figure 3.16 that as a  increases k0c 
also increases rapidly. Also, at large k0, to behaves almost as a linear function of k0, 
with its slope becoming more shallow with increasing Prandtl number.

Table 3.1 compares the values at of R ik  and uj1 at which lut — 0 found from 
the full stability equations when R 1 = 4000 with k0 and uj0{ found asymptotically 
for small Prandtl number. This confirms the validity of the limiting forms of the 
left-hand branches of the neutral curves, shown graphically in figure 3.11.

Full solution Asymptotic solution
a Rlk(R1=4000) Ui ko “ Oi

0.01 82.4 0.553 81.9 0.550
0.02 214 1.49 213 1.48
0.03 460 3.08 458 3.08
0.04 723 4.65 720 4.65

Table 3.1: Comparison of Rik and wl at uT = 0 and R\ = 4000 found from the full stability 
equations with fc0 and cu0i found asymptotically for small Prandtl number.

The left hand plot of figure 3.18 shows the ratio of the wave speed c = 
R ^ o jk o  to the free surface speed f?i/48. The scaled growth rate is also shown. 
This plot shows that the perturbations travel in the direction of the free surface 
flow but at around 35% of the speed. This is even slower than the maximum speed 
of the return core flow. On the neutral curve (cu0r. = 0) the wave speed is close to a 
minimum; there is a maximum wave speed for longer waves.
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3.3.2 Asymptotic results for k =  0 (1), co = 0 (B i)

At large Ri the right-hand branch of the neutral curve is identified with finite values 
of k and the scaling

cu =  l u iR i + . . . ,  f?i —> oo. (3.3.4)

Substitution of (3.3.4) into the stability equations (3.2.8),(3.2.9) gives at leading 
order the inviscid, convection-dominated system

- ikQ  = — (G " ( f  -  k2<j>) -  (pGlv) + —  (</>" -  k2c/)), (3.3.5)
a  a

0 = ik(G ”Q -G '(f))+ u JlQ, (3.3.6)

which can be simplified to the single second order equation for <j>:

n 2f  -  (k2n 2 + Glviktt + a k 2G')(j) =  0, (3.3.7)

with cj) = 0 on z — 0,1, and where

fi(z) = uq + ikG". (3.3.8)

A fourth order Runge-Kutta scheme with Newton iteration is used to solve (3.3.7) 
for uq at specified values of a  and k, but because of the magnitudes of uq involved, 
oq is found to an accuracy of 10-8 . In general there are values of z for which 
u)t + kG "(z) = 0. Thus, at a neutral point where LOir = 0, 0 (z ) = 0 for some z, 
causing a singularity in the system. This did not cause a problem as k —> 0, but for 
finite non-zero k it was necessary to use up to 104 steps in the Runge-Kutta scheme 
to achieve an accurate result near the pont of neutral stability. Initial estimates for 
LOi were obtained from the asymptotic solutions of section (3.3.1), where for large 
k0, u>0 behaves like ak0 where a is a constant. As k0 —»■ R i, k —> 1 and lu ~  aRi\ that 
is the slopes of the eigenvalue curves in figure 3.16 were used as initial estimates of 

uq at k =  1.

On taking the complex conjugate of (3.3.7) it can be seen that if oq is the 
eigenvalue corresponding to (j)(k] z) then — is the eigenvalue that corresponds to 
<f)*{k\ z), where the asterisk denotes the complex conjugate. All numerical solutions 
are therefore for positive uqr -  the region of instability of the system.

The numerical solutions of (3.3.7) for small Prandtl numbers are plotted in 
figure 3.17. As k —> 0 it can be seen that oq ~  ak. The right hand side of figure
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3.17 indicates the value of k for which u;lr = 0. These are the values of k which the 
R\~k neutral curves approach for large R i, and are shown in figure 3.11 as dashed 
lines.

The neutral curves found by the numerical solution of the full stability equa-
tions become less and less accurate for large Rj and moderate k, until the curves can 
not be computed any further. This means that a close comparison of the solutions 
of the full stability equations with the large R1 asymptotic solutions is not possible. 
However, it can be seen from Table 3.2 that although there is a large difference in the 
k values, the values of coi/Ri and u>1{ compare quite well. The plots of the neutral 
curves and their asymptotes in figure 3.11 help to confirm, if only intuitively, the 

suitability of the limiting form.

Full solution Asymptotic solution
a Wi/Ri x 103 k luu  x 103 k

0.01 9.48 2.23 9.25 2.65
0.02 9.57 2.16 9.61 2.59
0.03 9.64 2.07 9.96 2.52
0.04 9.75 1.98 10.3 2.45

Table 3.2: Comparison of u>l/R\ and k at ay = 0, R\ = 4000 found from the full stability 
equations with and k found asymptotically for small Prandtl number.

The right hand plot of figure 3.18 shows the ratio of the wave speed c = 
R1ujl i /k  to the free surface speed f?i/48 for the region of instability; at the right- 
hand branch of the neutral curve the wave speed is always less than half the free 
surface speed. The wave speed decreases with decreasing wavelength but is always 
non-zero. Both u and uqr confirm the behaviour ~  ak  as k —> 0.

3.3.3 Collapse of the neutral stability curve

In section 3.3.1 the numerical results suggest that

l j0 ~  ak0, ko —> oo, (3.3.9)

where a is a finite constant depending only on the Prandtl number of the fluid. 
Substituting this into the reduced stability equations (3.3.2) and (3.3.3) yields

- ¿ 0  = - ( G " f  -  (j)Glv) + (3.3.10)
a  a
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0 = i(G "Q  -  G'<f>) +  O0, (3.3.11)

which simplifies to

(a + i G")24b" -  (iG lv(a + iG") + aG')<\> = 0 (3.3.12)

with
 ̂= 0 on z =  0,1. (3.3.13)

Similarly in section 3.3.2 it was noted that u>i is proportional to k as k —> 0 
and substitution of the form uq = ak  into the Rayleigh equation (3.3.7) gives the 
same limiting problem for (j) and the eigenvalue a. Thus the real parts of the complex 
eigenvalues a given by the solution of (3.3.12) are the slopes of the growth rate 
curves of figure 3.17 as k —> 0. These slopes become shallower with increasing 
Prandtl number, and the non-zero value of k for which u>ir =  0 decreases with 
increasing Prandtl number until the entire growth rate curve shrinks to a point in 
the neighbourhood of k =  0. This occurs when the slope reaches zero at which 
point there will be no unstable solutions of the system associated with transverse 
modes. This behaviour can also be seen in figure 3.16 where the slopes of the curves 
representing the real part of the eigenvalue cu0 as ko —> oo decrease with increasing 
Prandtl number.

The Rayleigh problem (3.3.12) was solved for a as a function of a  using the 
fourth order Runge-Kutta scheme with the Newton iteration. This allowed the value 
of a to be found to within 10~8 for general values of a. An initial estimate of a was 
made from the graph of u0 against ko (figure 3.16) at a  =  0.01, and a  was then 
incremented in steps of 10-3 . As ar approached zero it was necessary to take up 
to 104 steps in the Runge-Kutta scheme to counteract the effect of the approaching 
singularity at the value of 2 for which a% = —G"{z). The results are shown as a 
plot of a against a  in figure 3.19. For increasing a, the final result obtained at 
a  =  0.161 is a =  2.59 X  10-5 + 9.93 X  10-3h This produces a very good estimate for 
the critical Prandtl number (crc) above which all solutions of the system are stable: 
linear interpolation from the last few points suggests that when ar = 0, to three 
significant figures, a  =  a c =  0.162. This compares with the estimate of a c ~  0.12 
obtained by Daniels et al. (1987) for the rigid surface problem, although it should 
be noted that their estimate was not based on the use of an accurate asymptotic 
analysis of the kind used here. It would be of interest to calculate ac for the rigid 
surface problem using the present approach.
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3 .4  S ta b ility  o f th e  core flow to  lon g itu d in al 
p e rtu rb a tio n s

The stability of the core solution to longitudinal perturbations (perturbations oscil-
latory in the y direction with axes parallel to the core flow) is investigated in this 
section. Numerical results are obtained for general values of R1 and an asymptotic 
theory is developed for large Rayleigh numbers which indicates qualitative differ-
ences from the results obtained for the transverse modes of instability. This theory 
shows that at finite Prandtl numbers only long wavelength disturbances are unstable 
although shorter wavelength longitudinal instabilities do exist, in the limit of van-
ishingly small Prandtl number. The full governing equations for three dimensional 

flow derived in section 1.3 are

du
dt

+ uV u = — Vp + crVu + R6a k,

d [
dt

+ ü.V0 =  V 20, 

V.ü = 0

(3.4.1)

(3.4.2)

(3.4.3)

where u = (u,v, w) is the velocity field, p is the pressure and 6 is the temperature. 
The boundary conditions are

d u d v _
u = 0 on z =  0, —  = —  = io  = 0 o n z  = l,

dz dz
dd
—  = 0 on z = 0, 1. 
dz

(3.4.4)

(3.4.5)

Away from the end walls the steady parallel-flow core solution is u = us, 
p = ps, 6 =l '9s where to a first approximation

dtK
dx = 1,

üs = (RiG"(z), 0,0),

^  = 0, dA  = R lG \z)
dy dz

(3.4.6)

(3.4.7)

with 77, =  R /L  and G{z) = ~ z E -  +  ¿ a 3. The explicit form of ps can also
be written down and is independent of y but it is not needed in order to determine 

the stability equations.

Longitudinal perturbations are made to the core flow, such that

u 0 , +  e(f/(z), V(z),W (z)) u t - \ - i k y (3.4.8)
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p =  ps + eP (z)eut+lky, (3.4.9)

9 = H e, + e® (z)e“t+lky), (3.4.10)
Ln

Here it is assumed that the perturbations are independent of x although it is neces-
sary to incorporate a velocity component in that direction.

Substituting the perturbed solution into the governing equations and linearis-
ing in e yields the perturbation equations for the longitudinal modes:

uU + RiG'"W  = a(U" -  k2U), (3.4.11)

to{W" -  k2W) = a {W lv -  2k2W" + k4W) -  k2RxaQ , (3.4.12)

luQ + C/ + R\G'W — Q" — k2Q, (3.4.13)

to be solved subject to the boundary conditions,

u  = W  = W 1 = Q' =  0 on z =  0, and U' =  W  = W" =  0 '  =  0 on 2 = 1. (3.4.14)

Here V has been eliminated from the equations and boundary conditions by use of 
the relation

V = y W 1, (3.4.15)
k

obtained from the equation of continuity. The perturbation equations are to be 
solved, as previously, for uo =  w(Ri, k, a )  where it is required physically that R\,cr > 
0. The wave number k appears only in the forms k2 and k4 in the perturbation 
equations and so solutions are found for k > 0, the problem being symmetric about

k = 0.

3.4.1 Solution of the perturbation equations

For general R i, a  and k, the perturbation equations were solved using a fourth order 
Runge-Kutta scheme with Newton iteration as discussed in detail in sections 2.6 and 
3.2.2. This method traces out values of to using a previously known value as a first 
estimate. Initial values of oj can be calculated analytically when Ri =  0, when the 
perturbation equations (3.4.11)-(3.4.13) simplify to three independent problems.

When Ri =  0, (3.4.11) becomes

U" = ( ~  + ^2)  U, (3.4.16)
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with U = 0 on z =  0 and U' — 0 on z =  1. This has solutions

7T
U = sin(2n + 1) —z, n =  0 , 1 , 2 , . . . ,  

where the ‘horizontal velocity’ eigenvalues are given by

uj = —
1 2

a  — k2a  n =  0 , 1 , 2 , . . . .

(3.4.17)

(3.4.18)

The second perturbation equation, (3.4.12), becomes

W lv -  ( 2k2 + W" + ( k A +  ^ k 2 ĵ W =  0, (3.4.19)

with W = W' — 0 on z =  0 and W = W" =  0 on z = 1. Solutions of this problem, 
described in more detail in section 3.2.1, are given by

W = =kz _  k ( 2 - z )  _  ( 1  e  )  (  i T z  _  i T ( 2 - z )

(1 — e2lF)

where T is defined in terms of u  bt; the relation

r  =  V V - " 2 '

and is any solution of the equation

tanh k tan T

(3.4.20)

(3.4.21)

(3.4.22)

It was also seen in section 3.2.1 that for k =  0 these eigenvalues reduce to 
the solutions of ___  ___

tan
-uj 1 —uj

(3.4.23)

Finally, the ‘thermal’ eigenvalues at frh =  0 are obtained from the solution 

of (3.4.13) when U = 0:
Q" = (uj + k2)e ,  (3.4.24)

with 0 ' = 0 on z = 0,1. This has solutions 0  = cosmrz and eigenvalues

uj = —( n 7 r ) 2 — A;2, n — 0,1, 2 , . . . . (3.4.25)

It can be observed by inspecting the full perturbation equations (3.4.11)- 
(3.4.13), that in the limit as k —> 0 these three sets of eigenvalues also provide the
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solutions to the perturbation equations when k =  0 for general R\. This is because 
when k =  0 the ‘horizontal velocity’ and ‘thermal’ eigenvalues each correspond to 
the trivial solution W =  0 of (3.4.12) even when R 1 is non-zero. Thus for k = 0 and 
general Ri leading eigenvalues, co, all of which are real, can be listed as

l u  =  - { 0 , 9 .87, 39.5 , . . . } ,  ( 3 .4 .26)

- { 2.47, 22.21, 61.7, . . . }a,

- { 20.19, 59.7, 119, . .  .}a.

3.4.2 Numerical results

The above values of lo at k =  0 are used to initiate the fourth order Runge-Kutta 
scheme with Newton iteration that solves the full perturbation equations (3.4.11)- 
(3.4.13) for general Ri and k. This scheme is similar to the one discussed in detail 
in chapter 2, except that here there are 16 first order equations and eight boundary 
conditions requiring that four independent solutions are computed from the four 
boundary conditions at z =  0 and that a complex determinant is constructed from 
the 4 x 4  matrix of boundary values at z =  1. Newton iteration is then used to find 
the zeros of the determinant.

Figure 3.20 shows the behaviour of the first few eigenvalues lo for Ri =  4000, 
cr = 0.1 and non-zero k. These parameter values were chosen following the results for 
the transverse problem which show that instabilities occur at large Rayleigh number 
and small Prandtl number. The eigenvalues ‘pair up’ quite quickly with increasing 
wavenumber to become one complex eigenvalue instead of two real eigenvalues. Al-
though it is not obvious what happens at large values of the wavenumber, at small 
values of k the real part of only the first ‘paired’ eigenvalue becomes positive.

The neutral curves, defining the values of Ri and k for which cur =  0, were 
calculated as before by using an additional Newton iteration to bring lot to within 
10“4 of zero. These are shown in figure 3.21, along with their asymptotic forms which 
are described later. It becomes difficult to compute the neutral curves for large R\ 
and moderately large k , and the longer curves in this region were computed with 
less accuracy. However the behaviour of the neutral curves is still discernible. The 
critical Rayleigh number — the lowest value of Ri on a given neutral curve — be-
comes smaller with decreasing Prandtl number. It can be seen in figure 3.12 that
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for most values of the Prandtl number, the longitudinal mode becomes unstable at 
a lower Grashof number than the transverse mode. Although not obvious in figure 
3.12, it was shown by Laure and Roux (1987) that for very small Prandtl number the 
critical Grashof number (i2lc/cr) for the transverse perturbation is lower than that 
of the longitudinal perturbation and so the transverse mode is the first to become 
unstable there. This has been observed experimentally for the rigid surface problem 
by Gill (1966). Laure and Roux (1987) suggested that the increased stabilization 
when the temperature field tends to be “frozen” indicates that the origin of the os-
cillations is mainly thermal. Figure 3.20 shows how it is the first thermal eigenvalue 
(paired with the first horizontal velocity eigenvalue) that becomes unstable. In the 
transverse case the thermal modes are stable and the stream function modes are 
unstable (section 3.2.3).

At sufficiently large Prandtl number it can be seen from both the neutral 
curves (figure 3.21) and the critical Grashof numbers (figure 3.12) that there is a crit-
ical Prandtl number above which the system is stable to longitudinal disturbances, 
and that this is greater than that of the transverse mode case. At large Rayleigh 
number the left hand branch of the neutral curve seems to have a behaviour in 
which k is proportional to 1/R\ as in the transverse case. For the transverse mode 
the right-hand branch of the neutral curve asymptotes a finite value of k, but for 
the longitudinal mode the neutral curve turns back on itself. This is described in 
greater detail by the asymptotic analysis to be presented in the next section, and it 
emerges that the right-hand branch also has a behaviour in which k is proportional 

to 1/R i as R\ —> oo.

As in the transverse case, an instantaneous ‘snapshot’ of the perturbations at 
a point on the neutral curve is shown in figures 3.22 and 3.23. Figure 3.22 shows the 
contours of the perturbation zW as the solid lines and the temperature perturbation 
as the shading. The contours of the perturbation iW  are equivalent to instantaneous 
streamlines of the flow perturbation in the y,z plane. Being at right angles to the 
core flow means that for the overall flow the instantaneous streamlines spiral in 
the x direction, unlike the overall flow for the transverse case shown in figure 3.14. 
For the longitudinal case there is also a velocity perturbation in the direction of 
the core flow. This is represented in figure 3.23 by the ‘height’ of the streamline 

perturbations.

74



3.4.3 Asymptotic solution of the stability equations for large
R i

Substituting the assumptions

, k0 , W
k = — , uj = uj0 + • • •, W = — , Ki —> oo,

it 1 ill

into (3.4.11)—(3.4.13) yields the reduced problem

ujqU + WG'" = aU", (3.4.28)

u0W" = aW iv -  k20aQ, (3.4.29)

cuo0  + U + G'W =  0 " , (3.4.30)

with U = W — W' = O' =  0 on z = 0, and U' = W  =  W" = 0 '  = 0 on z =  1.

This was solved numerically by the ubiquitous Runge-Kutta scheme, tracing 
out values of u>0 by incrementing k0, starting from the known values of c j0 at k0 — 0. 
The results of this are plotted in figure 3.24 which shows the wave speed and growth 
rate scaled, as before, with the free surface speed. Although the wave motion is 
perpendicular to the direction of the free surface flow, this plot shows that the waves 
are traveling at a similar speed to the transverse waves, with a maximum speed for 
relatively long wavelength perturbations. In contrast to the asymptotic behaviour 
for the transverse mode perturbations, where u>0 behaved like ak0 as k0 —> oo with 
a > 0, here there are two values of k0 for which Lu0r = 0. This suggests that both 
left and right hand sides of the neutral curve behave like R^1 as Ri —> oo and that 
the curves turn back on themselves. These asymptotes are plotted with the neutral 
curves obtained from the full perturbation equations in figure 3.21.

The two values of k0 for which uj0r =  0 are best visualised by figure 3.26, the 
plot of those values against the Prandtl number. The corresponding values of uj0i 
are shown in figure 3.27 as a function of the Prandtl number. It can be seen that 
for Prandtl numbers greater than approximately 0.415 the system is always stable. 
The accuracy of this value was checked with the Runge-Kutta scheme running over 
200 rather than the usual 100 points. For Prandtl numbers below about 0.08 there 
is one small value of k0, but the ‘large’ value (corresponding to the right hand side 
of the R i-k  neutral curve) is difficult to calculate. This behaviour is investigated by 
performing an asymptotic expansion as k0 —> oo.

(3.4.27)
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The profile of the leading solution W0 is shown in figure 3.25. The first few values 
of O0 in descending order are

= 0.0211, 0.0093, 0.0060 . . . .  (3.4.37)

Neglect of the highest derivatives in (3.4.36) infers the presence of boundary 
layers near the upper and lower surfaces where an adjustment to the full boundary 
conditions is made. These provide conditions which allow the second order core 
problem to be solved and the point of neutral stability to be determined. There 
are two boundary layers associated with this problem: a viscous boundary layer 
where the scaling z — az  ensures that viscous effects come into play, and a thermal 
boundary layer where the scaling z = a xi2z allows the inclusion of the highest 

thermal derivatives.

In the lower thermal boundary layer

U =  a*Uo{z) + . . . ,  W  = a->W o(z) + .. •, 0  = £7*00(5) + . . . ,  (3.4.38)

where W0 = z, U0 — —¿/(8<I>0), and 0 O satisfies

0 "  — ¿o0o = — + t p -23) (3.4.39)OCl?o 10

with boundary conditions

0 q = 0 on z = 0, and 0o ~  — z 3/(16cu0) as z 

implied by the wall condition and matching with the core. Thus

0o = -

oo,

1 _e-V&Ï2 + -^— ¿3 4- 1
,4à>(5/2

0 16ô)i0 4^0 ’

(3.4.40)

(3.4.41)

at leading order as a —> 0. Although this gives a contribution to 0  in the viscous 
boundary layer, it is too small to affect the viscous boundary layer problem at 

leading order.

The lower viscous boundary layer expansion as a  —> 0 is,

U = aÜ0{z) + W = W0(z) + . . . ,  6  = J q 0(z ) +  . . . .  (3.4.42)

The leading order problem is to solve

W t (3.4.43)
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subject to the boundary conditions Wq = W$ = 0 on z = 0 and W$ —> 1 as z —> oo. 
This has the solution

Wo = û>0 ' e - ' fà *

The corresponding solution for Uq is

+ z -  Co 0

1 - 2 . /  - l / 2 _ \  1  .  ~ 1 / 2  _  1  ,

i/o =  - ¿ o  2 1 -  e_w ° 2 --------- ¿Un ze~w0 z -  -¿Ô Z,0 8 0 V y 16 0 8 0 ’

(3.4.44)

(3.4.45)

— 5 / 2 \and matching with the thermal boundary layer gives 0 O = — l/(4u>o ).

Similar scalings are used to reveal the behaviour near the upper boundary 
where W  ~  <r_1a0(l — z ), but here no exponential components are generated at 
leading order. In the upper thermal boundary layer,

0  ~  —(7 CLq
(  1
l 48ô)(

-Z2 +
240/q

(3.4.46)

where Z = cr1/2(l — z). In the upper viscous layer,

, / 3 - ,  3
U ~  a0a 2 [ -̂ ~z— Z2 +

8o/o 4G>1 ’
(3.4.47)

where Z = cr(l — z), showing that the surface temperature and flow speed are given

by
0  ~  —a0a ^t , , , U ~  a0cr2yory, V ~  —— -cn. (3.4.48)

24â>o ’ 4^0 ’ K0

The second order equations in the core are

ü)oU\ T £o\Uo T G'"W\ — 0,
¿/obU" + ù \ W "  =  —  /c20 i  — 2/c0«i' 
cho0 i  + 0>i0o + U0 + G'W1 =  0 " ,

(3.4.49)

and from matching with (3.4.44) across the thermal layer it is found that a solution 

is required for which

W\ =  —Cüq 2 on z =  0, W\ — 0 on z — 1, (3.4.50)

Using (3.4.49) and the first order problem (3.4.35) the second order problem

can be written as

KnG' = 4  2G"Wq -  2ùj\ G'Wo +
LUn UJ,

'/Co Gr
U>0

Wa + 2 w o  g 'W0\ . (3.4.51)
/Co
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A solvability condition can now be found using (3.4.36) and (3.4.51), together with 
the boundary conditions (3.4.50) to give as

-  fa1 G"'Wq dz + |  /o1 G'2W 2 dz + Jo1 GW 02 dz + ^  

a'1 “  "  2 ¡¿G 'W gdz

Noting that cu0 = iCl0Ko, along the neutral curve where Cu0r = 0, the real part of 
(3.4.52) vanishes when

*»* = (I G"w° G '2W2° • (3'4'63>
Values of /Co were computed by Simpson’s rule. It can be noted that it is

l/2necessary for k 0 to be positive for the exponential decay of the lower boundary 
layer solution. Only the leading value of and the corresponding eigenfunction 
Wo leads to a solution giving a consistent theory, so that

k0 ~  12.77(7-1 as a  -> 0. (3.4.54)

This asymptote is shown with the numerically calculated values of k0 in figure 3.26. 
For small Prandtl number the results become inaccurate and are not plotted. The 
difference between the numerical results and the first order asymptote is because the 
asymptote comes from the lower boundary layers which have not properly formed for 
the smallest Prandtl number numerical results. The e-folding decay lengths of the 
viscous and thermal boundary layers are 0.22 and 0.77 respectively when a  — 0.08. 
For the lower thermal boundary layer to be of a more reasonable size, less than 
a quarter of the cavity depth for example, the Prandtl number must be less than 

0.008.

(3.4.52)

3.4.5 Asymptotic analysis of the full problem with k =  0(1)

Having completed the above analysis, the correct scalings for the Rayleigh problem 
can be introduced, and a simpler and more general solution for large Ri and finite k 
can be found for small Prandtl number. Since k = ko/R i and k0 ~  a~3̂ 2 as a  — 0 it 
follows that neutrally stable solutions should exist for k = 0 (1 ) when a  =  0 (R 121/3). 
Thus a  is expanded as

a — R t 3 cr0 + . .., R\ —» 00, (3.4.55)
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a n d s u b stit uti o n i nt o t h e f ull p e rt u r b ati o n e q u ati o n s ( 3. 4. 1 1 ) —( 3. 4. 1 3), gi v e s

l uU + R- l G' " W  = R f J a 0( U " -  k 2 U ),  ( 3. 4. 5 6)

l ü( W " -  k 2 W ) = R ^ a 0( W l v -  2 k 2 W  + k * W ) -  k 2 R * a 0e ,   ( 3. 4. 5 7)

l oQ  + f / + R \ G' W  = 0 ” — k 2 Q.   ( 3. 4. 5 8)

N o w it i s o nl y n e c e s s a r y t o g o t o s e c o n d o r d e r i n t h e e x p a n si o n of t h e s ol uti o n i n 

t h e c o r e r e gi o n of t h e fl o w. T hi s e x p a n si o n i s gi v e n b y

U =  U o{ z) + U 1( z ) R 1 >  + . . . ,  ' 

W = W 0{ z ) R i * + W 1( z ) R ?  + . ..,  ' 

0  = 0 O( z) + ©1  { z) R \ 3 + ■ • • , ,

( 3. 4. 5 9)

wit h

gi v e n b y

w h er e

UJ — L O q R i + ¿ 1 + . . . . (3. 4. 6 0)

l o w er vi s c o u s b o u n d a r y l a y e r of t hi c k n e s s
U - 2 / 3   ■
R 1  ,  i s

U = r J ü 0 ( z )  +

W  = R ^ W 0( z) + ... , > ( 3. 4. 6 1)

0  = R \ 1 0 0( ^ 0 + . . . ,

z  = z R 1 3, (3. 4. 6 2)

a n d at t hi s or d e r t h e r e i s eff e cti v el y n o u p p e r b o u n d a r y l a y e r. T h e t h e r m al b o u n d a r y 

l a y e r d o e s n ot c o nt ri b ut e t o t h e vi s c o u s s ol uti o n at t hi s o r d e r a n d i s n ot di s c u s s e d 

h er e.

T h e l e a di n g or d e r c or e p r o bl e m c a n b e w ritt e n as

c hot /o + G "' W 0  = 0, ( 3. 4. 6 3)

¿ o ( W " -  k 2 W 0) = - k 2a 0 Q 0, ( 3. 4. 6 4)

i h o 0 o + G' W o  = 0, ( 3. 4. 6 5)

a n d c o m bi n ati o n of ( 3. 4. 6 4) a n d ( 3. 4. 6 5) gi v e s

W " = f - ( Ô 2 -  G') W o, ( 3. 4. 6 6)

w h er e ¿ 0 = i G, a 0 , t o b e s ol v e d s u bj e ct t o t h e b o u n d a r y c o n diti o n s Wo = 0 at 

z =  0, 1.  T h e e a rli e r li mit i s r e c o v e r e d i n t h e li mit as k  —> 0 f or k/ Q  = 0 ( 1 ), b ut

8 0



here the behaviour of Cl for finite k can be gleaned: for a non-trivial solution of 
(3.4.66) to exist it is necessary that Cl2 — G' < 0. The maximum of G' is 5.42 X 10-3 
and hence

Cl < 0.0736. (3.4.67)

This limit can be seen for large k in figure 3.29, the plot of against k for the first 
five leading modes. The largest mode is the leading mode. Equation (3.4.66) was 
integrated from z = 0 to z = 1 using a fourth order Runge-Kutta scheme and finding 
Cl from the requirement that W0(l)  = 0. Figure 3.30 shows the dependence of W0(l) 
on Cl for k = 3 and in this case the leading eigenvalue is found to be U = 0.045.

The leading order lower boundary layer problem for W0 is

W™ = — W"
ao

(3.4.68)

with the conditions W0 = W'Q = 0 on z = 0 and Wq —> 1 as z oo, having assumed 
a normalisation of the core solution such that Wq(0) = 1. This has the solution

Wo = (3.4.69)

where a 0 — (1 + ï )Ô1/,2<t (/4/\/2.

The second order core problem is

ùoUx +ÛJ1 U0 +  G"'Wx =  0, (3.4.70)

¿o(W " -  k2Wx) + ûx{WÜ -  k2W0) = - k 2a 0Qu  (3.4.71)

wo0i +  W!0O + U0 +  G'Wx =  ©o -  k2Q0- (3.4.72)

Using the leading order core equations, (3.4.63)-(3.4.66) to rewrite Uo, ©o and W" 
in terms of Wo, substitution of (3.4.72) into (3.4.71) yields

¿0 [ W l ' - k 2 ( l  + ^ ? W  -

2lo1G iW0 -  2G"Wq -  do
- k 2a 0

w n
i k c r
V ^ 0  ,

Wo , (3.4.73)

with the boundary conditions

Wi = — on z = 0, W\ — 0 on z = 1.
V â ’o

(3.4.74)
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Multiplying (3.4.73) by Wo, subtracting (3.4.66) multiplied by Wi and integrating 
from 2 = 0 to 2 =  1, leads to the solvability condition

[W oW li -  [W¿W1]l
- k 2a 0

Lüñ u :
G"W l dz

+2cba C g 'W2 dz -  C G ,2W l dz] , 
Jo luq J o J

which with the boundary conditions (3.4.74) can be written as

LOr
UJ-l =

, P a 02

r  -  T G"'Wl dz +  ^ i 1 G'2W 2
2 Jo Jo

dz
1

2 Jo G'Wq dz

so that, the real and imaginary parts of uq are given by

Re{Cj\)
- n 2Un
V 2k2 f G'"W2 d z - i -  [ l GriWn dz 

JoQ2 Jo 0

— O"o
2V2P/o G'W^dz

(3.4.75)

(3.4.76)

(3.4.77)

(3.4.78)

The theory has thus been completed to second order. Thus finite wavenum-
ber longitudinal instabilities are possible at large Rayleigh number, but only at 
vanishingly small Prandtl number.

3.5  D iscu ssion

The instability of the parallel-flow core to two dimensional transverse waves and 
three dimensional longitudinal waves has been studied in this chapter. For R^k =  0, 
or for large enough Prandtl number, the system is always stable; for the transverse 
case the Prandtl number must be greater than 0.162 and in the longitudinal case 
the Prandtl number must be greater than 0.415. These critical Prandtl numbers 
were found using both analytic and numerical techniques.

For finite Rayleigh and wave numbers, and small Prandtl number, the system 
may become unstable. Previous work such as that by Hart(1972,1983) has concen-
trated on the onset of instabilities. Laure and Roux (1989) give plots of the critical 
Grashof number (Grc = R ijc r)  against Prandtl number for the onset of instabilities
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for both transverse and longitudinal modes which show that in general the longitu-
dinal modes become unstable at lower Grashof number than the transverse modes, 
and are therefore considered more ‘dangerous’. They suggested that the ‘freezing’ of 
the temperature field causes an increase in the stability of the longitudinal modes as 
a  —> 0, so that the transverse modes become more important than the longitudinal 
modes, and that this was due to the origin of the oscillations being thermal in the 
latter case. In the course of this work, this has been shown to be so, and that in 
contrast the origin of the transverse oscillations is associated with the velocity field. 
The eigenfunctions associated with the perturbations are represented graphically in 
figures 3.14 and 3.22, the transverse oscillations propagating parallel to the direction 
of the free surface flow and the longitudinal oscillations propagating perpendicular 
to the free surface flow, both with wave speeds of about one third of the speed of 
the free surface.

The asymptotic behaviour for large R\ has not been studied before. The 
large Rayleigh number, small Prandtl number regime is of particular interest in 
the semi-conductor crystal growing application of the system. The large Rayleigh 
number asymptotic analysis shows that the two modes behave very differently at 
large Rayleigh number. Both modes support longer wavelength instabilities with 
increasing Rayleigh number: the left hand branches of the neutral curves correspond 
to wavelengths of order R\. However, only the transverse mode supports finite 
wavelength instabilities for finite Prandtl number; the right hand branch of the 
neutral curves for the longitudinal mode corresponds to wavelengths of order R\. 
If the width of the cavity (which has been assumed to be infinite in this theory) 
was restricted by vertical walls in the y direction, for example, the long wavelength 
longitudinal mode instabilities may be damped, suggesting that the transverse mode 
may become more important at high Rayleigh numbers.
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k

Figure 3.1: Real eigenvalues lo of the thermal modes (shallow curves) and the stream 
function curves at R\ =  0 for a  = 7.
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1.0

k

Figure 3.6: Real part of eigenvalues cu of the second (j) mode for small Prandtl 
numbers when R\ = 4000.

k

Figure 3.7: Imaginary part of eigenvalues lu of the second </> mode for small Prandtl
numbers when R\ = 4000.
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Figure 3.9: Imaginary part of eigenvalues u> of the first two </> modes for small Prandtl
numbers when Ry =  4000. Key as above.

Figure 3.8: Real parts of eigenvalues lu of the first (1) and second (2) <j) modes 
for Prandtl numbers 0.06681 (a), 0.06682 (b), 0.06683 (c), and 0.06684 (d) when 
Ry =  4000.
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- 3 . 1
0 . 1 2 5 0 0 . 1 2 6 0 0 . 1 2 7 0
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(I
Figure 3.12: Critical Grashof numbers for the onset of instabilities for transverse 
(T) and longitudinal (L) modes as a function of the Prandtl number.

k
Figure 3.13: Ratio of the wave speed on the neutral curves to the speed of the free
surface for various Prandtl numbers.
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Figure 3.14: The transverse perturbations. The solid line is the instantaneous stream 
function perturbation <̂>, and the shading represents the thermal perturbation 9. 
(a  = 0.04, k =  1.36, Ri =  754 «  Ru .)

Figure 3.15: Instantaneous stream lines ip (solid lines) and temperature 6 (shading) 
of a typical overall flow in the perturbed core, (cr =  0.04, k =  1.36, R\ = 754
~ Ru-)
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k o
Figure 3.16: Asymptotic solutions of the real (solid line) and the imaginary (dashed 
line) parts of the eigenvalue lu  for the first stream function mode for small Prandtl 
numbers.

k
Figure 3.17: Asymptotic solutions of the real part of the eigenvalue l u for the first
stream function mode for small Prandtl numbers.
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Figure 3.18: Real and imaginary parts of the normalised eigenvalues c =  48u;o/&o 
(left), and c =  48tUi/k  (right), of the asymptotic solutions as Ri —► oo for small 
Prandtl numbers. The wave speed is the solid line, the dashed line is the growth 
rate.

cr
Figure 3.19: Real (solid line) and imaginary (dashed line) parts of the eigenvalue a
as a function of the Prandtl number.
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k

Figure 3.20: Values of the eigenvalue to for small k when f?i =  4000 and a  =  0.10, 
traced out from the known values at k =  0; ‘a’ represents the —(n7r) ‘thermal’ 
eigenvalues, ‘b’ represents the ‘horizontal velocity’ eigenvalues and ‘c’ represents the 
‘vertical velocity’ eigenvalues.
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k
Figure 3.21: Neutral curves for small Prandtl numbers (as indicated) along with 
their asymptotes for R\ —» oo.

95



Figure 3.22: The longitudinal perturbations. The solid lines are the contours of the 
perturbation iW  elky, and the shading represents the thermal perturbation Qezky. 
(a  =  0.10, k =  0.77, Rt = 207 % Ru .)

Figure 3.23: The longitudinal perturbations. The contours are the streamlines of the 
perturbation iW elky, and the height represents the horizontal velocity perturbation 
Uelky. (a = 0.10, k =  0.77, R1 =  207 «  Ru .)
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2 0 . 0  h

„  1 5 . 0

a
Figure 3.26: Neutral curve for k0 with the large ko asymptote ko ~  /vx—3//2, a  —> 0.

a
Figure 3.27: Values of o>0; along the neutral curve u>or — 0 as a function of a  with 
the asymptote tUo; ~  a  ~* 0 .
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n
Figure 3.28: Values of PFo(O) against H. Relevant values of the eigenvalue are 
those for which Wq(0) = 0.

Figure 3.29: The first four eigenvalues 0  (from the largest down) as a function of k.
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□
Figure 3.30: Values of JFo(O) against Q when k = 3. Relevant values of the eigenvalue 

are those for which Wq(0) = 0.
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C hapter 4

Stead y-state solutions for the 
rotating cavity

4.1 In tro d u ctio n

The effects of rotation are investigated by regarding the two-dimensional cavity 
previously looked at as the cross-section of an annulus or rotating channel. The 
rotation of the annulus or channel about a vertical axis produces an azimuthal ve-
locity perpendicular to the plane of the two-dimensional cavity, and the theory is 
then more applicable to geophysical phenomena: Stone (1968), for example, de-
scribes the application of a rotating annulus with a vertical temperature difference 
to the atmospheric circulations on Venus and in the tropics of the Earth, and to the 
oceanic sinking regions. Using an annulus with a horizontal temperature difference, 
a rigid upper surface and small cross sectional aspect ratio (L < 1), Douglas and 
Mason (1973) describe experiments relating to the temperature structure and to the 
transition from axisymmetric to non-axisymmetric flow. Hide (1967) gives a range 
of parameters for axisymmetric flow for a similar geometry but with free or rigid 
upper surface, and suggests that the azimuthal velocity in the axisymmetric flow 
“resembles the trade wind circulation occuring in the atmosphere in the tropics”.

The theory for an axisymmetric annulus with a square cross section and rigid 
upper surface is given by McIntyre (1968), who makes comparisons with the non-
rotating rectangular cavity. An assumption that the Prandtl number was large was 
considered to place “not too serious a restriction on the applicability of the theory”.
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Rotating thermal convection has also been discussed by Hignett et al. for a 
cylinder with a radial temperature gradient heated from below, and by Hopfinger 
and Linden (1990) in the review of the Euromech conference on rotation. The 
instability of rotating convective flows has been studied in a cylindrical annulus by 
Busse (1986), Busse and Or (1986) and Or and Busse (1987) and in a channel by 
Finlay (1990, 1992).

In this chapter, a theory for an infinite rotating channel, or equivalently an 
axisymmetric flow in a rotating annulus, with rectangular cross section of large 
aspect ratio (L  >> 1) and free upper surface, is described. This is undertaken in a 
similar manner to the non-rotating theory of the previous chapters, by regarding the 
cavity as having a parallel flow core away from the vertical walls and two roughly 
square end zones near the walls where the flow is turned. This geometry is similar 
to that of Hunter (1967), who considered the case of finite aspect ratio and rapid 
rotation. Here the theory is developed first for general rotation speeds, measured 
by the Taylor number

T =
4 n 2h4

(4.1.1)

where 0  is the rate of rotation, h is the height of the cavity and v is the kine-
matic viscosity of the fluid. Nonlinear effects in the end regions are incorporated by 

assuming that

Ri = ~  (4.1.2)

is of order one. The governing equations are given in section 4.2, and then a parallel 
flow solution is found for the core of the cavity away from the vertical walls. The 
equations governing the behaviour in the end regions are given in section 4.4, and 
the matching of the solution of these with the core flow is discussed. Comparisons 
with the non-rotating case are made in section 4.5.

In the subsequent chapters results for small and general Taylor number at 
small and finite Rayleigh number are also presented and a description is given of 
the behaviour of the end zones at large R\ and T.
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4.2  G overn ing  equ ations

The non-dimensional governing equations in the rotating case are derived in Chapter 
1. In addition to the vorticity and thermal energy equations, for the rotating case 
there is also an azimuthal momentum equation. Although the azimuthal velocity 
is in the y direction, there is no dependence on y in the governing equations as 
the cavity is assumed to have infinite length, or equivalently be an axisymmetric 
annulus in which curvature effects are ignored. A stream function may therefore be 
used and the governing equations for steady flow relative to the rotating frame of 

reference may be written in the form

d9 i dv 
R z^  + T ï —  = (4.2.1)

dx dz d(x, z )
o i dip 

V 2ü — =
__1  d(v,ip) 
cr . * , (4.2.2)

dz d{x, z )

v 2e =
d ( e , j )
d(x, z ) ’

(4.2.3)

where 6 is the temperature and the velocity components in the x, y and z directions 

are ü, v and w respectively, with

dip
-  9 ^ A -u = —— and w

dz d x ’
(4.2.4)

where ip is the stream function. The Cartesian frame of reference rotates about a 
vertical axis (in the z direction) and it is assumed that centrifugal effects may be 
neglected. The theory also applies to a rotating annulus provided its radius is large 
enough for curvature effects to be ignored (Hunter 1967). The cavity, whose cross 
section occupies 0 < x < L, 0 < z < 1 is assumed to have thermally insulated 
upper and lower surfaces and a stress-free upper surface; the motion is driven by a 
horizontal temperature difference between the ends. Thus the full set of boundary 

conditions is
7 dÿ de n

ip = = v =  —— = 0 on z — 0,
dz dz

d2ip d v d Ô
'/,= â ?  = f c  =  S  = 0 o n " =  1'

with

7 dip _ 
V =  = vox

0 on x = 0, L, 

=  0 on x =  0 and 9 = 1 on x = L.

(4.2.5)

(4.2.6)

(4.2.7)

(4.2.8)
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As in the non-rotating problem the length of the cavity is assumed to be much 
greater than its depth so that L >> 1. As before, in the regime for which R\ = R jL  
is of order 1 , this allows the cavity to be considered as having a parallel-flow core 
away from the vertical walls and two roughly square end regions where the flow is 
turned through 180 degrees. These regions are considered next.

4 .3  C ore flow

In the core region away from the end walls, the order one variable £ = x /L  is used 
so that 0 < £ < 1. In this region the flow is assumed to be parallel to the horizontal 
boundaries and the temperature is assumed to be linearly dependent on £, allowing
an exact solution to be found in the form

$  = /O), v =  s(z), 0 = A£ + g(z), (4.3.1)

where A is a constant. The governing equations then become

f v - R i A  + TSs' =  0, (4.3.2)

s"-T>f' =  0, (4.3.3)

g " - j f '  (4.3.4)

where Ri = R /L , and the boundary conditions become

/ = f  = 5 = g' = 0 on z = 0, (4.3.5)

f  =  f"  = s' = g' =  0 on z = 1, (4.3.6)

where primes denote the derivatives with respect to z.

Integrating (4.3.3) and using f  =  s' = 0 on z = 1 leads to

5' = T * f ,  (4.3.7)

which can be substituted into (4.3.2) to yield

/*” + T f  = RXA. (4.3.8)

It is convenient to set
s(z) =  R 1T>AG(z]T) (4.3.9)
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so that
/ = R\AG'(z\ T). (4.3.10)

The function G may now be determined by solving (4.3.8) subject to G' =  G" =  0 
on z = 0 and G' = G"1 = 0 on z = 1 . Since in addition G = 0 on 2 = 0 it follows
that

where

D, =

G(z; T) = D1(sm h jz  cos7 z — coshyz sinyz)

~hD2( 1 — e_7Z cos 72: — cosh 72: sin jz )
1 z

- — cosh 72: sin 72  + - ,

' /e 7 (sin7  — cosy)
D2T 7  -------- -------------- - + tanh 7  tan 7  — 1

(4.3.11)

2y T cosh 7  cos 7

+ tanh 7  tan 7  — 1

£2  =
7 T A

( 1 — cosh 7  cos 7  — tanh 7  tan 7  sinh 7  sin 7 ) ,

(4.3.12)

(4.3.13)

and

D3 = e 7(sin 7  — cos 7 ) tanh 7  tan 7  — e 7(siny + cosy)

+ cosh 7  cos 7  + tanh 7  tan 7  sinh 7  sin 7

where 7  = T 1̂ i /\/2. Finally, integration of (4.3.4) twice with use of g'(0) =

g(z) = R1A2G(z] T ) T _ 1  +  B

where B  is a constant, and it is noted that this solution also satisfies ^ ( l)  
parallel flow core solution can now be written as

i> = R 1 AG1, 

v = R1T l/2AG,

6 = AC + B  + R1A2GL~1.

(4.3.14) 

0 yields

(4.3.15) 

= 0. The

(4.3.16)

(4.3.17)

(4.3.18)

In order that the temperature conditions on x = 0 and L are satisfied, it is required

that
.4 = 1 + A1L~1 + . . .  , and 5  = 0 + B 1L~1 + . . . .  (4.3.19)

in the limit as L —» 00. The order L~l corrections are generated as in the non-
rotating case by the temperature field produced in the end regions of the cavity to 
be discussed in section 4.4 below.
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Plots of G(z] T ) and its first two derivatives are shown in figure 4.1, for T  = 
2000,5000 and 10000, where it is seen that the amplitude decreases with increasing 
T. As T  —> 0, G(z\ T) = G(z; 0) + 0 (T ), where G(z;0) is the non-rotating core 
function defined in (2.3.7), that is

G(z] 0) =  ---- z5 -------- z4 H----- z~\ / io n  1 no (4.3.20)
120 192 ' 48

and for T  =  2000, the three profiles are seen to be similar to those for T  = 0 
shown in figure 2.1. From (4.3.11) it can be shown that away from the horizontal 
boundaries, as T —> oo,

G(z-, T ) ~  zT~4 -  V2T “F  (4.3.21)

This implies that the azimuthal velocity and the convective effect on the temperature 
are directly proportional to depth, that the stream function, G'(z\T), is constant 
with depth, and that there is effectively no horizontal velocity, G"{z\T). It also 
suggests that convective effects are damped by an increase in rotation rate. This 
behaviour can be seen in figure 4.1, as can the formation of Ekman layers close to 
the upper and lower boundaries where z and (1 — z) are of order These are
particularly noticeable in the case of G "(z]T ), the radial velocity, where the only 
non-zero values are in the Ekman layers for large Taylor number: in figure 4.2 the 
radial velocity is plotted for T  = 106.

The form of G (z]T ) in the Ekman layers is found by rescaling z. In the lower 
Ekman layer, z is rescaled such that z = T~x̂ 4z with z of order one, and

G{z\T) ~  V2T~*(
z

V 2 6 ^ C° S ^
oo. (4.3.22)

In the upper Ekman layer the order one variable z =  T  1' 4(1 — z) is used and it is 
found that as T —> oo,

G (z;T ) ~  T~4 ( 1 + y/2T~ l e- A (sin_ | _ co, ^ ) (4.3.23)

These are in agreement with the results of Hunter (1967) for the large Taylor number 
limit.

Interestingly, the form of s in (4.3.9) suggests that, while the amplitudes of 
/ and g are always decreasing with increasing T, for small T  the amplitude of s 
increases with increasing T, and there is a maximum azimuthal velocity, 5, at the
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free surface for some finite value of the Taylor number. This behaviour is shown in 
the plot of 5 at 2 = 1 against the Taylor number in figure 4.3. The maximum value 
of the free surface azimuthal velocity can be seen to be at approximately T  = 250. 
This can be compared with the value of the radial velocity at the free surface shown 
in figure 4.4 which decreases with increasing Taylor number from a maximum at 

T =  0.

The results (4.3.9), (4.3.10) and (4.3.15) can also be obtained by formally 
expanding the solution in inverse powers of L and solving the individual problems 
which arise at each order of magnitude. In summary, the core solution can be 
expanded in the form

ip =  f t h ( l  +  L~r Ai)G' +  0 (L ~ 2) ]

v =  R 1(l + L - 1A1)T *G  + 0 (L ~ 2) >(!/—> oo). (4.3.24)
# = £ + .£' 1(Ai£ + Bi + RiG ) + 0 (L  2) J

As T  tends to zero, the non-rotating solution is recovered as expected, and for large 
T convective effects are damped and concentrated in Ekman layers close to the 
horizontal boundaries.

4 .4  E n d  regions

The flow across the cavity is turned in approximately square regions at the end 

walls. Near the cold wall

ip =  ip(x,z) +  )
v =  v (x ,z ) + . . . ,  > (L -> oo), (4-4.1)
6 = L^19(x, z) + . . . , J

and substitution into (4.2.1) -  (4.2.3) shows that ip and 6 satisfy the full governing 

equations with R replaced by R1:

_  d9 idv
Ri w  b T 2 —

ox OZ
- i  d ( V 2Tp,ip) 

d(x ,z )  ’
(4.4.2)

2 „ !  dipV 2u - T 3 - A
OZ

_ i  d(v,ip) 
d (x , z ) ’

(4.4.3)

v 2e d(0,ip)
d (x ,z )'

(4.4.4)
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the free surface conditions

d 2ip dv 06
'/’ = a ?  =  S  = &  = 0 o n z  =  1-

and must also match with the core solution, requiring that

4> -> RxG' 
v - >  RiT?G  
6 ~  —x T c T R1G

where, from (4.3.24),
c — Ai + B\.

(4.4.16)

(4.4.17)

(4.4.18)

The two end region problems must be solved to determine the constant pa-
rameters c = c(R 1, a, T ) and c =  c(i?i, a , T ) as functions of R i, a  and T . The core 
solution (4.3.24) is then completed to order L_1, given that

Ai = c — c, Bi = c. (4.4.19)

Properties of the end region solutions are considered in Chapters 5 and 6.

4.5  D iscu ssion

The work in this chapter extends that of sections 2.2 -  2.4 to incorporate the effect 
of rotation, the most obvious difference being the inclusion of an azimuthal velocity 
perpendicular to the plane of the stream function flow. This renders the nonlinear 
end region flows fully three-dimensional and gives rise to a two-dimensional flow in 
the core parallel to the plane of rotation. Although the amplitude of the core velocity 
is still linearly dependent on the Rayleigh number, the velocity profiles themselves 
are now dependent on the Taylor number as well as being a function of depth. As T 
increases, the radial velocity becomes concentrated in thin Ekman layers close to the 
horizontal boundaries, and its amplitude decreases. The amplitude of the azimuthal 
velocity initially increases from zero at T — 0 to a maximum at approximately 
T  = 250 before it then also decreases. Thus in general a high rotation rate dampens 
the effect of convection.

In Chapter 3, the linear stability of the two dimensional, non-rotating core 
flow was investigated. It seems likely that at small Prandtl numbers the core flow in
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the rotating case will also become unstable for sufficiently high Rayleigh numbers, 
although this is not investigated here. The stability properties of the flow are likely 
to be quite different at large rotation rates where away from the Ekman layers and 
the end regions, the only flow is in the azimuthal direction. Chapters 5 and 6 

are devoted to a detailed investigation of the properties of the basic steady three- 
dimensional flow which occurs in the end-regions of the cavity at general rotation 
rates.
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G(z;T) x 104 G'(z;T) x 104 G ” (z;T) x 103

Figure 4.1: Plots of G (z]T ) (core temperature and azimuthal velocity profile), G' 
(core stream function profile), and G" (core radial velocity profile) as functions 
of z for T=2000,5000,10000. In each set of graphs, the amplitude decreases with 
increasing T .
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Figure 4.2: Plot of the radial velocity, G"(z; T), as a function of z for T  =  106.
0 . 0 2 5

0 .02 0

0 . 0 1 5

0.010

0 . 0 0 5

0 .000
0  1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0  5 0 0 0

T

Figure 4.3: The azimuthal velocity T 1 '/2Gr( 1; T) at the free surface as a function of 
T.
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Figure 4.4: The radial velocity G"{1] T ) at the free surface as a function of T .
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C hapter 5

Stead y-state solution of the 
rotating end zone eigenvalue 
problem

5.1 In tro d u ctio n

Solutions in the two end regions of the cavity may be found as an infinite set of 
eigenfunctions that decay into the parallel-flow core. In this chapter, the eigenvalue 
problem is derived for general Rayleigh, Taylor and Prandtl numbers. This problem 
is solved analytically for Ri = T  = 0 and involves the introduction of an ‘azimuthal’ 
mode in addition to the modes determined previously for the non-rotating problem 
in chapter 2. The eigenvalues are then ‘traced out’ numerically from these known 
values to find solutions for general Ri and T, allowing the lateral extent of the end 
regions to be determined. The lack of symmetry between the two ends means that, 
in general, the hot and cold end regions need to be considered separately.

These results for general R1 and T  are complemented by asymptotic analyses 
of the problem for small Rayleigh number and large Taylor number -  recovering the 
double vertical boundary layers, or Stewartson layers, found by Hunter (1967) -  and 
for large R\ and large T, where a novel boundary layer structure is identified in 
Ekman layers along the horizontal boundaries.
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5.2 D eriv atio n  o f th e  eigenvalue p rob lem

Insight into the behaviour of the end region solutions for general R i, T  and a  can
be gained by considering the manner in which the core flow is recovered as 
and x —> oo. For the cold end-zone it is expected that

X  —> oo

(5.2.1)

v ~  R 1T 1W  + J 2 v ^ ] R i , T ,a ) e ax (5.2.2)

e ^ x  + c + R iG  + Y ,  0 (2; Ru T, v )eax
ct

(5.2.3)

for R e(a ) < 0, x 1 , while for the hot end-zone it is expected that

- R i G 1 + J 2  t & R i ,  T ,a )e~ ai: (5.2.4)

v ~  R ^ G  + X ] v (z; ^ 1 , T, a)e~ a£ (5.2.5)

6 ~  - x  + 5 + R iG  +  0(2 ; Ri ,T,  a)e~ai
Ct

(5.2.6)

for R e(a  
(4.4.2) - 
zones:

) > 0, x >> 1. Substituting (5.2.1)—(5.2.6) into the governing equations 
(4.4.4) and linearising leads to a single eigenvalue problem for both end-

iblv
ry i?

+  2 a 2f  +  a.A(t> aR i®  + T*V ' = 1 {G"((f>" + a 2</>) Giv(j>),
a

(5.2.7)

V" + a 2V -  T*cj)' = a.R\cr~l (G"V -  T*G'<f>), 

0 "  + a 20  -<f>' =  aRi{G "Q  -  G'cfi),

(5.2.8)

(5.2.9)

with (j) =  <j)' =  V =  0 '  = 0 on z =  0, and </> = (f>" = V' = 0 ' = 0 on z = 1. In general 
the eigenvalue a  is complex, with a  = a r + ict-i- Solutions where a T > 0 relate 
to the hot end-zone; where a r < 0 the solutions correspond to the cold end-zone. 
By taking the complex conjugate of (5.2.7) -  (5.2.9) it can be seen that if a  is an 
eigenvalue corresponding to eigenfunctions (j), V and 0  then a* is the eigenvalue 
corresponding to the eigenfunctions (j)*, V* and 0 *, where the asterisk denotes the 
complex conjugate. To avoid confusion, the imaginary part of the eigenvalue, is 
taken to be positive at the hot end and negative at the cold end.

For general a , Ri and T  it is necessary to solve the eigenvalue problem (5.2.7) 
- (5.2.9) numerically. A fourth order Runge-Kutta scheme was used to compute
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solutions from the specified boundary conditions at z =  0 to give accurate results at 
z = 1. These results were made consistent with the boundary conditions at z = 1 by 
combining four independent solutions and using a Newton iteration. This is similar 
to the scheme discussed in detail in section 2 .6.

The eigenvalue problem (5.2.7) -  (5.2.9) was first solved numerically for R1 = 
0 and general T, and then for finite, fixed T and general Ri. Results for both the 
hot and cold ends are given, and each end has both ‘real’ and ‘complex’ eigenvalue 
branches which stem from the limiting behaviour at R 1 = 0 to be discussed below.

5.3  Sm all R ay le ig h  nu m bers, i?i <C 1

Values of a  were first traced out for Ri =  0 and general T  by starting from the 
analytical solution of the eigenvalue problem which is available when i?i = T =  0. 
This analytical solution is described first and then subsequent parts of this section 
describe solutions obtained for finite and large values of T, using both numerical 

and asymptotic methods.

5.3.1 Small T

When Ri = T  =  0 the end zone eigenvalue problem simplifies to

(j)iv + 2a2 (j)" + aA(j) = 0, (5.3.1)

V " +  a 2V  =  0 (5.3.2)

0 " + a 20  -<j>' =  0, (5.3.3)

IIVIIII-e-rH 0 ' = 0 on z — 0 and <j) = 4>" = V  = 0 ' = 0 on z = 1 . For the
trivial solutions of (5.3.1) and (5.3.2), <f> = V — 0, the solution of (5.3.3) yields the
real eigenvalues

a  = ± n 7r, n =  1 , 2 , . . . ,  (5.3.4)

with eigenfunctions of the form 0  =  cos mrz. Alternatively, the relevant non-trivial 

solution of (5.3.1) is

<j) = sin az  — az  tan a  sin az  — az  cos az , (5.3.5)
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where a  is a solution of
sin2a — 2a = 0. (5.3.6)

The complex roots of (5.3.6) are tabulated in Hillman and Salzer (1943), giving

a  = ±(3.7489 +  1.3844z), ±(6.9500 ±  1.6761 i), . . . .  (5.3.7)

Unlike the non-rotating case, there is now a third set of eigenvalues that comes from 
the azimuthal velocity equation; the solution of (5.3.2) yields the eigenvalues

(2n ±  l)7r
a  = n — 0, 1 , 2  . . . (5.3.8)

and the eigenfunctions V = sin(2n ±  1)t t z/2.

5.3.2 General T

For zero Rayleigh number and general values of T, equations (5.2.7)—(5.2.9) reduce
to

<t>iv + 2 a2f  + a 4(j) + T 1W  =  0, (5.3.9)

V" ±  a 2V — T*<f>' =  0, (5.3.10)

0 " ± a 20 - ^  =  O (5.3.11)

with boundary conditions,

(p ~ (j)* — V — 0  ̂ — 0 on 2 — 0 and (f> = <f>" = V' — Q1 = 0 on z — 1. (5.3.12)

It can be seen that, as all the powers of the eigenvalue a  are even, this problem is 
the same for both hot and cold end regions, with the eigenvalues for the cold end 
equal and opposite to those for the hot end. Thus only the results for the hot end 
zone where R e(a) > 0 are given.

The results of solving (5.3.9)-(5.3.12) numerically with the fourth order 
Runge-Kutta scheme from the known values at Ri =  T  = 0 are given in figure 5.1, 
which shows how the real azimuthal velocity mode and the complex stream function 
mode depend on the Taylor number for zero Rayleigh number. These modes remain 
independent of thermal effects. The thermal eigenvalues (a =  mr) determined by 
(5.3.11) remain unchanged with increasing Taylor number and are not shown; these 
correspond to the trivial solution (f> = V =  0 of (5.3.9) and (5.3.10).
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The complex stream function modes differ from the real azimuthal modes 
in that initially they decrease with increasing but small Taylor number. The first 
real mode is always dominant though, and for large T, all the modes are increas-
ing with increasing T, so that the end regions contract as the rotation rate 
increases. Greater insight into the end region structure can be gained by a study of 
the asymptotic structure for large T.

5.3.3 Large T

At general values of T, the vorticity and momentum equations (5.3.9) and (5.3.10) 
together with the boundary condition (5.3.12) can be written as the single sixth 
order problem

Vm + 3 a 2Vlv + 3a4 V" + a 6V + TV" =  0, (5.3.13)

with boundary conditions

V = V" = Vv +  3 a2V'" + 2a4V' + TV' =  0 on z =  0, (5.3.14)

and
V' = V"' = Vv =  0 on z =  1 . (5.3.15)

As T  —> oo, there are two different behaviours of a. In general, a  is proportional to 
T 1/6, but for the leading mode, of greatest importance in terms of the decay length 
of the end regions, the value of a  is proportional to T 1/8. The analysis for each 
case is given below in terms of asymptotic expansions for a  and V as T  —► oo. The 
two behaviours correspond to the inner and outer vertical boundary layer scales 
discussed by Hunter (1967) and originally identified by Stewartson (1957) in his 
analysis of the flow generated between differentially rotating disks.

A balance between the final two terms on the left-hand side of (5.3.13) sug-
gests that in general the expansion of the eigenvalue a  as T  —> oo can be expressed 
in the form

a  = T^a, a = do + ■ • •, T  —> oo. (5.3.16)

Neglect of the highest order derivatives then leads to the existence of boundary layer 
regions near z =  0 and z =  1. Expansions for the azimuthal velocity V in the core
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and the Ekman layers in the limit as T  —> oo are shown below.

z = l - z T ~ *  V = V0 + 7^~

V = V0 + . . .

z =  zT~* V = V0 + ~

In order to obtain the correct boundary conditions for the core region it is useful to 
first consider the problems arising in each Ekman layer. In the lower Ekman layer 
it is assumed that V =  V(z)  in which case it follows from (5.3.13) and (5.3.14) that 
V satisfies the equation

Vvl + V" + 3 T ~ *â 2Viv + 3 T - 3 â 4Ë " + T~*5l6Ÿ = 0, (5.3.17)

with boundary conditions

V = V" = Vv + Ÿ' +  3T - 6â 2ÿ ,,, + 2T - 3â 4Ë ' = 0 on z =  0. (5.3.18)

Integrating (5.3.17) once yields

Vv + V' + 3T~ect2V'" + 3 T -> a 4V' = 0 { T ~ ’ ) + dx, (5.3.19)

where di is a constant of integration. However, the third boundary condition at 
z = 0 implies that di = 0 (T '_1'/3), and therefore letting z —> oo in (5.3.19) implies 
that Ë'(oo) = (9(T_1/3). This implies that the leading order term in the expansion 
of the core solution must satisfy

Fo'(0) = 0. (5.3.20)

A similar consideration of the problem in the upper boundary layer, where V = V(z)  

implies that

Vv +  V' +  3 T - i â 2V"’ + = 0 (T~* )  +  d2, (5.3.21)

where d2 is a constant of integration and V satisfies the boundary conditions V  =
V"' = Vv =  0 on z =  0. These conditions imply that d2 = 0 ( T -1 2̂), and thus,
letting z —> oo in (5.3.21) implies that, V'(oo) = 0 (T ~ 1/2). This implies that the 
leading order term in the expansion of the core solution must satisfy

y0'(l)  =  0. (5.3.22)
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and that the azimuthal velocity, V, must be expanded in powers of T  in the core 
and in the two Ekman layers, as shown below.

z = l - z T ~ *  V = Vp + FiT~? + V2T~ ï  +

V = V0 +  V1T - 1* +  . . .

z = zT~\ V = V0 + V iT -*  + V2T - z + .. 7

It is again helpful to first consider general properties of the Ekman layers in order 
to identify the correct boundary conditions for the core. In the lower Ekman layer 
it is again assumed that V = V(z),  in which case V satisfies

VV1 + V" + 3 T ~ *â 2Vlv + 3 T~>â*V" + T ~ *à6V = 0, (5.3.30)

with boundary conditions

V = V" = Vv + V1 + 3T ~ *a2V'" + 2T ~ *cl*V' =  0 on z = 0. (5.3.31)

Integrating (5.3.30) once yields

Vv + V' +  3T-^ cc2V'" + 3 T - * c ia V' = 0(T~* )  + d3, (5.3.32)

where d3 is a constant of integration. The third boundary condition at z =  0 implies

that
d3 =  a 4T ^ h '(0 )  + 0{T~*) ,  (5.3.33)

and letting z —> oo in (5.3.32) it follows that to a first approximation as T  —» oo,

V'(oo) = â*T~*V'(0). (5.3.34)

The leading order boundary layer problem for V̂ is the same as that for the case 
when n > 1 , so that

V0 = ^ (2 -  e“ 12 -  e“22) , where u>li2 =  ■ ^  -, (5.3.

and since V '̂(0) = ^  it follows from (5.3.34) that to a first approximation

V'(oo ) = - ^ T - * .  (5.3.36)
v 2

Matching with the core solution then implies that the core boundary conditions for 
the first two terms in the core expansion are

K (0) =  0 and V '(0) =  ^ ,  (5.3.37)
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In the upper Ekman layer where V = V(z),  similar considerations lead to 
the results that

Vv +  V' + 3 T - * a 2V"' + 3T~^a4V' = 0 (T ~ *)  + dA, (5.3.38)

where d4 is a constant of integration and V satisfies the boundary conditions V' = 
V"' = Vv = 0 on z = 0. These conditions imply that d4 = 0 {T ~ 3l4), and therefore 
letting z —■» oo in (5.3.38) it follows that y'(oo) =  0 ( T “3/4). Thus, matching with 
the core solution as z -> 1 implies that the leading two terms must satisfy the 
boundary conditions

K ( l)  = V?(l) = 0. (5.3.39)

As in the case where n > 1, there is effectively no upper Ekman layer at this level 
of approximation.

The leading order core problem is now to solve

V” =  0, (5.3.40)

with k0' =  0 on z =  0 and 1. Assuming a suitable normalisation, this has the 

constant solution Vo =  1 .

The equation for the first order core function V\ is

V" = -a%v0, (5.3.41)

and since Vo = 1 , this yields

V\ = — d~ 5̂% + do, (5.3.42)

where d5 and d6 are constants of integration. The constant d6 is equivalent to a 
normalisation of the solution and so can be taken as zero without loss of generality, 
and using V^(l) = 0, this gives

Vi = y ( 2 z  -  z2). (5.3.43)

Finally, from (5.3.37), it is required that 14/(0) = do/V^ which implies that non-zero 
solutions for a 0 satisfy a 20 =  2~1/2. Thus for the hot end zone the relevant solution

is
¿io =  2 - s  (5.3.44)
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and the negative root provides the corresponding solution for the cold end.

In the lower Ekman layer the first order solution for Vj can now also be found 
by solving the equation

Vjm + 3 ^ "  + V” =  0, (5.3.45)

subject to the boundary conditions Vj = Vj" = 0 on z = 0 and Vj' —* 0 as z  —» oo to
give

t4 = (e"1* -  e ^ E) + - a l z  ( — e"1* + —  . (5.3.46)
4 8 \Uq LO 2 J

The third boundary condition on z = 0, Vjv + 3aoVj,'" + Vj' =  0, is automatically
satisfied in line with the general argument leading to (5.3.34).

In the upper Ekman layer the corresponding problem for Vj simplifies to

V?  + Vj" = 0, (5.3.47)

which by matching with the core and using Vj' =  Vj'" =  0 on z = 0 yields the simple 
solution Vi = a ®/2 , equivalent to the fact that at this level of approximation there 
is no variation across the upper Ekman layer.

These asymptotes are not shown explicitly with the numerically calculated 
curves shown in figure 5.1 as the numerical and asymptotic curves are indistinguish-
able at all but very small Taylor number.

5.4  G en era l R ay le ig h  num bers

The eigenvalues a  are now traced out for fixed Taylor number and general Rayleigh 
numbers using the Runge-Kutta numerical scheme from the values found for Ri = 0 
in section 5.3.2. In this regime the eigenvalues are dependent on the Prandtl number. 
However, following the findings of McIntyre (1968) and the results of chapter 2, 
which suggest that there is little variation with Prandtl number for a  > 1.5, the 
Prandtl number is taken to be infinite in this section.

Figures 5.2 and 5.3 show results for T  =  500 for the ‘real’ and ‘complex’ 
modes in the hot end region. The eigenvalues are referred to as ‘real’ and ‘complex’ 
by reference to their form at Ri =  0, but as can be seen in figure 5.2, the ‘real’
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azimuthal and thermal eigenvalues interact at certain values of R-i to become a single 
complex eigenvalue, the real part being given by a solid line and the imaginary part 
by a dotted line.

Plots of a  against Ri are given in figures 5.4 and 5.5 for T  =  5000, and similar 
plots of ‘real’ and ‘complex’ eigenvalues against R1 for T = 500 and T  =  5000 are 
given in figures 5.6-5.9 for the cold end.

In both hot and cold end zones, the ‘real’ eigenvalues appear to decrease in 
size with increasing Rayleigh number, but the increase in T  causes this decrease 
to become less. (These results can be compared with those for T =  0 and infinite 
Prandtl number in chapter 2.) As in the non-rotating case, the real part of the 
‘complex’ modes increases with increasing Rayleigh number. The behaviour of the 
‘complex’ modes with T  is not as obvious as with the ‘real’ modes, but it appears 
that the value of the real part of a  at large R\ decreases with increasing T . This 
value is still alot larger than the smallest ‘real’ eigenvalue, and it is suspected that 
the ‘complex’ modes only become dominant for small Prandtl number (a  < 1), as 
in the non-rotating case, or possibly for general Ri and large T, but this is not 

investigated here.

The ‘real’ and ‘complex’ eigenvalues behave in a similar manner for both hot 
and cold end zones, especially the complex modes when T  = 5000. At large R\, the 
leading ‘real’ eigenvalue in the cold end is slightly smaller in size than the leading 
eigenvalue of the hot end, suggesting that the cold end extends further into the core 
than the hot end. This is investigated further in the next section.

5.5 L arge R ay le ig h  nu m bers, R\ O  1

The similarity in the results for the rotating and non-rotating ‘real’ modes suggests 
that, as in the non-rotating case, the ‘real’ eigenvalues may depend inversely on the 
Rayleigh number at large R\.

For the rotating case with infinite Prandtl number the reduced problem equiv-
alent to that of section 2 .8.1 is obtained by setting a  = a 0/Ri  and letting Ri  —> co
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Using <̂ (1) =  V '(l) = 0, integration of (5.5.2) yields

V' = Ti(j) (5.5.10)

and so the reduced system (5.5.1)—(5.5.5) can be simplified to

4>iv + T (j)- a 0Q = 0, (5.5.11)

0 "  -  </>' =  a 0T-\G "Q  -  G'</>), (5.5.12)

with boundary conditions

cj) =  (j)' = 0 ; =  0 on z =  0, and (¡> = (j)" = 0 ' = 0 on 2 = 1. (5.5.13)

Once 0  and cj) are determined, the remaining boundary condition V (0) =  0 is used 
when finding V from integration of (5.5.10).

For large T, it emerges that a 0 can be written in terms of an expansion in T 
as follows:

a 0 = ol\T +  a 2T* + . . . ,  (5.5.14)

Note that since the derivation of (5.5.1)—(5.5.3) requires a  to be small, it is necessary 
here that 1 <C T  -C R\ and a new behaviour would be expected to develop when 
T > R u  consistent with the results for large T and finite i?i determined in sections 
5.3.2 and 5.4. The eigenfunctions <f> and 6 are also expanded in terms of T  in the 
core and the two Ekman layers as outlined below.

z — 1 — (j) =  <̂o + T ~ i + . . .
0 = 0o + 01r-T + ...
<!> = + <j>iT * + . . .

_______________ 0  = 0 q + Q\T~* + . . .
= + <j>\T 4 + . . .

z = zT~* 0  = 0 o + 0 iT “ 4 + . . .

These expansions are substituted into the reduced system (5.5.11)—(5.5.13) to yield 
a series of problems at each order of magnitude in T. The leading problems in the 
Ekman layers are solved first to find the correct boundary conditions for the core.

The leading order lower Ekman layer problem is

0 "  = 0, (5.5.15)
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and using 0 q(O) =  0, this implies that 0 O is a constant. Matching with the core 
implies that

0o = 0 o(O). (5.5.16)

At first order the lower Ekman layer problem is

= * 1G"Q0, (5.5.17)

which can be integrated to give

©i = <̂o + oiiG'Qo, (5.5.18)

where the condition 0((O) =  0 has been used. As z —> oo, to match with the core 
solution, it is required that 0 (  —> 0 q(O) and 4>0 —> </>o(0), and hence (5.5.18) implies
that

0o(O) =  M O )  +  « i0 o ( O ) . (5.5.19)

A similar argument in the upper Ekman layer leads to the condition on the core 
solution that

0 '(1 )  = ^o(l) + a 1 0o (l). (5.5.20)

The leading order equations in the core are

<f>o — «100  —  0 ,

0 " ~<f>o =  -«i^o-

(5.5.21)

(5.5.22)

These can be written as a single second order equation for 0o,

0 q — QU0Q + oq0o = 0, (5.5.23)

and using (5.5.21), the boundary conditions (5.5.19) and (5.5.20) become

0 ! — 2a i 0 o = 0 on z =  0 and z =  1.

The general solution of (5.5.23) is

y/3
0 O = e 2 * [A  sin — -a.\z + B  cos - —« 12:

(5.5.24)

(5.5.25)
2 2

The condition at 2 = 0 implies that A = \/3B, and the condition at 2 = 1 yields

2nir
a  1  =

V3
, (n integer.) (5.5.26)
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Negative values of n correspond to the cold end zone and positive values to the hot 
end zone. The solution is normalised such that ô(O) = 1, so that

and

0 O = — e 2 z(cosrïïïz + \/3s'mnirz), 
«1

= e"2“z(cos mrz + \/3 sin n7rz).

(5.5.27)

(5.5.28)

The leading order eigenfunction for the hot end (n = 1) is plotted in figure 5.11. 
It can be noted then that <f>0(a-i,l — z) =  e“1,/2( —l)n^( —a x, 2 ); ignoring the nor-
malisation, the hot end eigenfunction is the upside-down image of the cold end 
eigenfunction. This suggests that towards the cold wall the flow at the top of the 
cavity slows down and the flow at the bottom speeds up. The area of greatest circu-
lation thus appears to have moved down. The opposite is true near the hot wall: the 
area of greatest circulation appears to have moved up. This behaviour was shown 
numerically for Rx — 3000 and T =  0 in figure 2.17 and discussed in section 2.10. 
The solution is dominated by thermal effects and at this level of approximation the 
asymmetry of the free surface has no effect on the form of the eigenfunction. Using 
(5 .5 .10 ) and U(0) = 0, the leading order term in the expansion for V,

V = VqT 1'2 + VxT l'A + . . . , (5.5.29)

is
1 a  r , 1

V0 = — e 2 2(v 3  sinmrz — cosnirz) H----- .
a x a  i

(5.5.30)

The leading order Ekman layer solutions can now be completed. In the lower 
layer Q0 =  1 /a x and <f>0 satisfies

0̂ + — 1 — 0,

with (f>0 = (j)'o = 0 on 2 = 0, giving

0 = 1 — e 'S?z \ cos —f=.2 + sin —7̂ -2 ) = G1.
V2~ ' “*“ \/2

In the upper layer 0 O = ea i 2̂( — l ) n/ a x and cj)0 satisfies

(5.5.3U

(5.5.32)

C  + ^ o - ( - l ) " e ^  = 0 (5.5.33)

0 on z =  0 , giving

( - iV g . ^ <̂>o = 1 — e cos —j= = G'.
V  2

(5.5.34)
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T h e t h e o r y i s n o w e xt e n d e d t o d et e r mi n e t h e s e c o n d t e r m i n t h e ei g e n v al u e

ai o as T  —>■ o o. At fi r st or d e r i n t h e l o w er E k m a n l a y e r, ( 5. 5. 1 8) gi v e s

©; = 2 G 1, ( 5. 5. 3 5)

a n d o n e i nt e g r ati o n, t o g et h e r wit h m at c hi n g t o t h e c or e s ol uti o n, i m pli e s t h at

1
0 1 = 2 ( z + y/ 2 e  v ^z c o s —p z ) + 0i( O).

v 2

T h e fi r st or d e r st r e a m f u n cti o n e q u ati o n,

( 5. 5. 3 6)

+ <j)  1 — « 1 0 1 — ol 2 Q q  — 0 , ( 5. 5. 3 7)

c a n t h e n b e s ol v e d t o gi v e

< 1̂  = e ~ v/2 z( d 1 c os —¡ =- Z  + d 2 si n —¡ = z)
\ / 2  \ / 2

1 ^ - 1  1  c l

+ ~ ai z e  2̂ z( c o s —  + si n —^ = z) + 2 ai Z + a i 0 i( O ) H- - - ,  ( 5. 5. 3 8)
2 y 2   V 2 « 1

w h er e t h e b o u n d a r y c o n diti o n s < î( 0) = < / >(( 0) = 0 i m pl y t h at

d \ = — ai 0i( O ) ------  a n d d 2 = di — - \ / 2 ai.
cti 2

( 5. 5. 3 9)

I n a si mil a r f a s hi o n t h e fi r st or d er e q u ati o n s i n t h e u p p e r E k m a n l a y e r,

©i — —$>  0 — a i G' 0 0,

b ™  +  <} >i —  oil  0 1 —  0 2  0 q  =  0,

( 5. 5. 4 0)

( 5. 5. 4 1)

h a v e t h e s ol uti o n s

0 i = —2( —1 ) n e ~ ^( z H— ^ e _ v 5 2( C Os — = 2  — si n —= 5 ) ) + 0 i ( l ),  ( 5. 5. 4 2)
\ /2  \ /2  v 2

f  1 1
(j)1 = e v ‘̂ 2( d 1 c o s —r = z + d 2 si n — t= z ) ( 5. 5. 4 3)

\ /2  \ /2

— 2 ai( — l ) n e ^ L( z H— z e V 2 2 c o s — = z) -fi a i 0 i ( l )  4--- - ( — l ) n e ^ ,
4 v 2  oi

w h er e t h e b o u n d a r y c o n diti o n s ^( 0) = ( / >"( 0) = 0 i m pl y t h at

d x =  _ a i 0 i ( l ) - ^ ( - l ) n e ^   a n d  ¿ 2 = - ^ ( - l ) n e ^  
« 1 2

( 5. 5. 4 4)
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0 "  -  #  =  a jG "© ! + a 2G"Go -  ajGVo. (5.5.45)

At second order in the lower Ekman layer, the equation for 0 2 is

This is integrated with respect to z to yield

02 — 4>l — OL2G'Qq — OLi G'Qi =  —Oil / G (01 + <̂ o) dz, (5.5.46)

where the boundary condition 0 2(O) = 0 has been applied. Noting that Q[/2 
<f>o = G1, the integration on the right hand side can be carried out to obtain

— oil / G ; ( 0 i  +  4>o) dz — (5.5.47)

where

-3ai ( z + 2\/2e cos —¡= z------ -i=e ^ z(2 + cos \J~2z + sin \J~2z) ) + C.
V \/2 2\/2 /

15x72«!
C = (5.5.48)

From matching with the core as z —> oo, (5.5.46) gives the core boundary condition

©i(0) -  & (0) -  a 10i(O) -  a 20 o(O) =  C. (5.5.49)

In the upper Ekman layer, there is a similar second order problem for 0 2 
that on integration with repect to 5 yields

0 ' 2 +  ^  + a 2G'$o + a 1G'Q1 = a i  f  G'(Q[ -  ¿ o )  dz, ( 5 .5 .5 0 )
Jo

where the boundary condition 0'2(O) = 0 has been applied. From the first order 
solution it can be noted that — 0^/2 = =  ea i 2̂( — l ) nG' and thus the integration
on the right hand side can be completed, giving

a j  G,( è [ - j > o ) d z  =
J o

— 3ai( — l) 7̂ ^  (z  + V2e~ ^ (c o s  —t=z  — sin —= i)
V \J2 x/2

n/2 ^ ( 2  + cos \Ì2z — sin \//2z) ĵ + C,

where
C = 15^ al ( _ i ) n e^  =

8 2

(5.5.51)

(5.5.52)
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From matching with the core as z 
condition

oo, (5.5.50) now gives the core boundary

0'x(l)  -  <M1) -  a i© i( l)  -  a 20 o(l)  =  +  . (5.5.53)

The second order core equations are

4> i — aq©i — «200 — 0,

© 1  — 4> 1 = ~  a l<^l ~~ a-2(t>0,

which reduce to a single second order equation for 0 i :

0 "  — oqQj + a x0 i  = a 20Q — 2 a1a 2Qo,

(5.5.54)

(5.5.55)

(5.5.56)

to be solved subject to the boundary conditions (5.5.49) and (5.5.53). Equation 
(5.5.56) has general solution

~ , \/3 , , . y/3©i = e 2 (a3 cos----a.\z + a4 sin---- a xz)
2 2

\fZa2 l̂ z, . \/3 r- y/3 .
----------ze 2 sin---- a xz — v 3 cos —— a xz).

2 aa V 2 2 J
(5.5.57)

Substitution of ©i into the two boundary conditions (5.5.49) and (5.5.53), use of 
(5.5.54) and subtraction of the two expressions leads to the result

15 y/2ax
a 2 = - C  =

2
(5.5.58)

The theory has now been completed to first order, giving the first two terms 
in the expansion of a 0 for large Taylor number as

2mr I5y/2mr *
OL o ■ T * + . . . ,  ( T >  1). (5.5.59)

V3 4y/3

This result compares well with numerical results for a 0 obtained by solving the re-
duced problem (5.5.1 )—(5.5.3) for large values of T, as shown by the plot of a 0/T  
against log(T) in figure 5.12. The difference between the hot and cold end eigen-
values caused by the free surface asymmetry and apparent in the numerical results 
of figure 5.10 is not evident in the two-term asymptotic expansion (5.5.59). The 
asymmetry is small and is expected to affect higher order terms in the expansion 

(5.5.59).
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5.6  D iscu ssion

In this chapter a combination of asymptotic and numerical methods has been used 
to investigate the lateral extent of the end zones for a range of Rayleigh numbers 
and Taylor numbers, with attention focused on the limit of large Prandtl number. 
At small Rayleigh numbers, the two end zones contain symmetric turning motions 
which contract towards the walls as the speed of rotation increases. At large T , the 
results of section 5.3.3 identify two length scales for the decay of the eigenfunctions 
into the core, x = (9(T-1/6) and x =  These correspond to the two
Stewartson layers described by Hunter (1967). The flow in these layers is described 
in more detail in the next chapter. The results show how the size of the end regions 
decrease with increasing Taylor number, the slowest decay being associated with the 
outer layer for which, from (5.3.44), the e-folding decay length is

x ~  2 , T —> oo. (5.6.1)

The effect of rotation is generally opposite to the effect of increasing the Rayleigh 
number where the sizes of the end regions increase. In general the end regions are 
not symmetric, but for small rotation rates the results of chapter 2 indicate that 
their lateral scales are quite similar, with

x ~  4.59 x 10_4A} (cold), x ~  4.98 x 10_4Ai (hot), Ai —» oo. (5.6.2)

The effect on these long, order R\ scales of increasing the speed of rotation was 
examined in section 5.5 both numerically for general Taylor numbers and also in the 
limit as T  —> oo. This confirmed that the effect of rotation is to reduce the scale of 
decay so that for both end zones

( ^ )  R iT -1 (5.6.3)

when 1 <C T  <C R\- For large rotation speeds, the end zone flows are centrosymmet- 
ric to a first approximation, except in the Ekman layers adjacent to the horizontal 
boundaries where the asymmetry caused by the free surface is significant. This 
means that the lateral scale of decay is the same at both ends to a first approxima-
tion as T  —> oo. The implication of (5.6.3) is that as T  increases the decay scale 
is eventually reduced to order one values of x, possibly when T  ~  R i, and then 
to the even shorter scale (5.6.1) when T  is much larger than Ri. Further study is
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needed to fully investigate the transition from (5.6.3) to (5.6.1) at large values of T. 
It is believed that the Ekman boundary-layer structure is much more complicated 
in this case. The e-folding decay lengths of the end regions in the various regions 
of parameter space are summarised in the diagram below for the case of infinite 
Prandtl number.

133



15.0

T

Figure 5.1: The real and complex eigenvalues a  for general T  when R\ =  0. The 
solid lines are the real modes; the dashed and dotted lines are the real and imaginary 
parts of the complex modes.
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6.0

4 . 0
is

2 . 0

0 .0  ------- £------ 1------ *— —1-------*------- L-i— ‘-------1--------■—
0  1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0  5 0 0 0

Ri
Figure 5.2: The ‘real’ eigenvalues a  for finite R1 when T = 500 in the hot end zone. 
The solid lines are the real parts and the dotted lines are the imaginary parts.

Ri
Figure 5.3: The ‘complex’ eigenvalues a for finite R\ when T  = 500 in the hot end
zone. The solid lines are the real parts and the dotted lines are the imaginary parts.
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8.0

2.0  -

0 .0  ------- *-------1-------‘-------1------- ‘------ J-------‘-------1------- *—
0  1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0  5 0 0 0

Hi
Figure 5.4: The ‘real’ eigenvalues a  for finite R\ when T — 5000 in the hot end 
zone. The solid lines are the real parts and the dotted lines are the imaginary parts.

Ri
Figure 5.5: The ‘complex’ eigenvalues a for finite R i when T  = 5000 in the hot end
zone. The solid lines are the real parts and the dotted lines are the imaginary parts.

136



R1
Figure 5.6: The ‘real’ eigenvalues a  for finite Ri when T  =  500 in the cold end zone. 
The solid lines are the real parts and the dotted lines are the imaginary parts.

Ri
Figure 5.7: The ‘complex’ eigenvalues a for finite Ri when T  = 500 in the cold end
zone. The solid lines are the real parts and the dotted lines are the imaginary parts.

137



Ri
Figure 5.8: The ‘real’ eigenvalues a  for finite Ri when T — 5000 in the cold end 
zone. The solid lines are the real parts and the dotted lines are the imaginary parts.

Ri
Figure 5.9: The ‘complex’ eigenvalues a. for finite R\ when T  = 5000 in the cold
end zone. The solid lines are the real parts and the dotted lines are the imaginary
parts.
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8.0

o

6.0

4 . 0

2.0

0.0
0 1 0 0 0  2 0 0 0  3 0 0 0  4 0 0 0  5 0 0 0

T

Figure 5.10: The leading real eigenvalue ao for general T. The solid line is the hot 
end zone eigenvalue and the dashed line is the (negative) cold end zone eigenvalue.

Figure 5.11: The leading order eigenfunction (f>o, in the hot end. The cold end 
eigenfunction is the other way up.
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Figure 5.12: Values of \cto\/T for general T. The solid line is the hot end zone 
eigenvalue and the dashed line is the (negative) cold end zone eigenvalue. The 
dotted line is the large T  asymptote.
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C hapter 6

Solutions for the rotating end 
zones at low Rayleigh numbers

6.1 In tro d u ctio n

The basic steady-state flow in the end regions at small Rayleigh numbers and general 
Taylor numbers is discussed in this chapter. A combined analytical and numerical 
method of solution based on the results of the Runge-Kutta scheme already obtained 
in chapter 5 and a numerical Fourier series routine, is presented in sections 6.2 and 
6.3. This is used to determine the flow in the end regions of the cavity for finite Taylor 
numbers. The main results are presented graphically in section 6.4. The solution of 
the end region equations, both analytical and numerical, yield the constants c and c 
which are needed to match with the core solution for a complete description of the 
flow in the cavity at leading order as J?i —> 0  ■

Previous work, such as that by Hunter (1967), has described the large Taylor 
number structure of the flow in the cavity, consisting of horizontal Ekman layers 
and vertical Stewartson layers near the boundaries and free surface, already referred 
to in chapter 5. In section 6.6 it is shown that this large Taylor number structure 
emerges from the numerical solution of the problem presented in section 6.3 as 
T —> oo. Likewise, in section 6.5, an analytical solution for small Taylor number is 
found which is consistent with the small Rayleigh number solution of chapter 2 for 
the non-rotating case.
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The numerical and analytical results together provide a complete description 
of the transition from small to large Taylor number flow.

6.2 E n d  region  so lu tion  for sm all R\ and gen eral
T

With the Taylor number of order one, the stream function, azimuthal velocity and 
temperature in the cold end are written as asymptotic expansions for small Rayleigh 
number as follows:

0  = Riipo T Rlipi + • • • j (6.2.1)

v = RiVo + R R i + ■ ■., (6.2.2)

d — x  RiQi + R^62 + .. ■ ■ (6.2.3)

The leading term in the temperature field follows from the same argument as that 
used in the non-rotating case (section 2.9). These expansions are substituted into 
the governing equations (4.4.2)-(4.4.7) to yield a set of problems at each order of 
magnitude. Recalling that 0 ~  x  + RiG(z] T) + c  as x  —> oo, the constant c is also 
expanded in terms of R\, such that

C — R\C\ T R\c 2 + . . .  ■ (6.2.4)

At order R i,

VV o = 1 -  T iv 0z, (6.2.5)

V 2u0 = T iip0z, (6.2.6)

(6.2.7)

with boundary conditions,

•0o = 00* = Vo = 0\z = 0 on 2 = 0, (6.2.8)

0o = 0ozz = ôz =  0\z =  0 on 2 =  1, (6.2.9)

0o = 0oæ = =  Oi =  0 on x  =  0, (6.2.10)

and

0o —> G\z\ T), v0 —> G[z\ T), —* G (z ; T) + ci as x —> oo. (6.2.11)
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The solution is clearly independent of the Prandtl number and is considered in detail 
in section 6.3. Although the problem is not completely solvable analytically, unlike 
the order R\ problem when T = 0, a hot-end/cold-end symmetry exists as in the 
T =  0 case so that it is unnecessary to solve a separate problem at the hot end of 
the cavity where if), v and 6 are expanded in the form

V’ = -KiV'o + R i’&i + . . .  , (6.2.12)

v = Rjvo + R\vi + . . .  , (6.2.13)

6 =  — x + R\B\ + R i&2 T • • • > (6.2.14)

with
C — R\C\ + R!\C2 + . . . . (6.2.15)

Thus the solution for the hot end is

ï>o(x,z) = ip0{x ,z), (6.2.16)

v0(x, z) =  v0(x, z), (6.2.17)

rHII

1

(6.2.18)

and
Ci = Ci (6.2.19)

where x — L — x.

The constant c\ can be found as follows. Integration of (6.2.7) with respect
to z yields

,1 £>2q r aa 1 1
= M l ,  (6-2.20)

( 6 . 2 . 2 1 )

r
d e1

Jo dx2 dz

which with the boundary conditions (6.2.8) and (6.2.9) becomes

r1 d26l
IJo dx2

dz =  0.

This can be integrated twice with respect to x, using the conditions on 61 given in 
(6.2.10) and (6.2.11) to yield

c  1 = f  G{z \T) 
Jo

dz. ( 6 .2 .2 2 )

The core function G (z ;T ) is given analytically by (4.3.11) and it can be 

shown that
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1
2T

(6.2.23)

ci = — -— tanh 7  tan 7  —

27 — 1 — tanh 7  tan 7  —
T(sin7  — cos 7 ) 
cosh 7  cos 7

where Z)2 is as defined in (4.3.13). The solution for ci is shown in figure 6.1. As 
described in chapter 4, G(z\T) = G(z; 0) + O(T) as T  —■> 0 where G(z; 0) is the 
non-rotating core solution, the integral of which is known to be 1/720. The order T 
term can also be determined so that as T  —> 0,

1 1
Cl -T

720 22800

Also, it is known that as T —► 00, G (z ,T ) ~  zT  1, and thus

1 .
C l — T - 1 as T 00.

(6.2.24)

(6.2.25)

These asymptotic values of Ci are included in figure 6.1.

As shown earlier, the hot-end/cold-end symmetry means that ¿1 =  cx, and 

so from (4.4.19),

Ax =  0{R\)  and B x =  cxR x +  0 (R \ ) ,R x -> 0. (6.2.26)

The constant B x in (4.3.24) represents a correction to the core temperature field 
arising from convective effects and the presence of the end walls. The rapid increase 
in Ci with T  shown in figure 6.1 implies that these effects are damped by rotation.

At order R\ the cold end problem for ipx, vx and 92 is to solve the equations

V ty i - ~ + T
ox

kdvx _  _i dÇV2tpo, V’o)
dz

o

V 2ui -  = a

d(x, z ) 
_xd[yQ,ij)0)

dz d (x ,.

V 267
d(6 i,ip0) dip!
d (x ,z ) dz ’

with boundary conditions

(6.2.27)

(6.2.28) 

(6.2.29)

■0i = 0 i2 = vx = 92z = 0 on 2 = 0, 

0 i = 0 ix, = vu  = &2Z =  0 on z =  1 , 

0 i = 0 i* = vx = 02 = 0 on x = 0,
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(6.2.31)

(6.2.32)



and
(6.2.33)Tpi —> 0, V\ —> 0 , 92 —■► c2 as x —» oo.

The velocity field can in principle be found first and then the temperature field 
is generated by convective effects in equation (6.2.29). The hot end solution then 
follows by antisymmetry, as in the equivalent non-rotating problem considered in 
section 2.9, so that here

1IITT (6.2.34)

Vi(x,z) = -VxiXtZ), (6.2.35)

02(x, z) = —6(x, z) (6.2.36)

¿2 =  - C 2 . (6.2.37)

Integration of (6.2.29) with respect to z yields

f 1 d2e2 , d62
/„ + dz

d(fli,-0o)
d(x, z )

dz + [t/’i ] o (6.2.38)

This can be simplified with the use of ifti = 92z = 0 on z = 0 and 1, and integrated 
twice with respect to x, using (6.2.32) and (6.2.33) to give

C2 = - d(x', z)
dz dx'dx. (6.2.39)

Since 9\ and ip0 are independent of the Prandtl number, it follows that c2 is a 
function of T  only and can be determined once the leading order end-zone solution 
is known. This solution is discussed in the next section.

6.3  L ead ing  ord er end-zone so lu tion  for g en eral 7

The stream function, azimuthal velocity and temperature in the end region are 
written in terms of infinite sets of eigenfunctions that decay exponentially into the 
core. These are the eigenfunctions determined for small values of Ri and large 
values of x in section 5.3.2, but here, interpreted as solutions of the linear system 
(6.2.5)—(6.2.11), they are valid for general values of x. Thus the general solution in
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the cold end zone can be written as

{oo  ̂ oo

£  ^ k h {z ) e ^ x + £  M k(z )e^ x, (6.3.1)

k=1 J k=1

{oo  ̂ oo

£  fikVk(z)eakX + £  fikVk(z)e&kX, (6.3.2)

k= 1 J /c=l

{oo h oo oo

£  fikQk(z)eakX > + £  jlkQk(z)eOCkX + £  7 7„ cosn^z e_n7rx, (6.3.3)

/c=l J /c=l n ~  0

where (& = 1 , 2 , . . . )  are complex constants to be determined and jlk and rjk 
are real constants to be determined. The complex ‘stream function’ modes are 
represented by the unbarred variables and from (6.2.5)-(6.2.7) are solutions of

C  +  2 a V " + a 4<f>k + T*V l =  0, (6.3.4)

V^ + a 2Vk - T ^ ' k =  0, (6.3.5)

Q'l + a 2e k -  (t>'k =  0, (6.3.6)

with the usual boundary conditions at z =  0 and z = 1. The real ‘azimuthal 
velocity’ modes are represented by the barred variables and are the real solutions 
of the same coupled system. It is evident that the stream function and azimuthal 
velocity are independent of the temperature, and that the complementary solution 
of (6.2.7) yields the thermal modes associated with r)n.

The eigenvalues and corresponding eigenfunctions are produced by the Runge- 
Kutta scheme in the manner already described in section 5.3.2. The eigenfunctions 
are normalised such that <f>k(l)  has the same value (for all rotation speeds) as in the 
non-rotating case discussed in chapter 2. This allows the results obtained numeri-
cally at small T in this chapter to be compared with the results of chapter 2. The 
real variables are normalised such that ©*.(1 ) = ( —l )fc_1 for all rotation speeds.

The constants fik> p,k and rjn, are now found by considering the boundary 
conditions at x = 0. Since the velocity field is independent of the thermal field it 
is found first and then the thermal field is determined. The conditions v0 = ipo =

tp0x = 0 on x =  0 become ( oo h oo

R e \ ^ l* k V k \ + '£ fikV k = - T * G ,
v k=l J k—1

( oo > oo

(6.3.7)

R& ‘j  ̂  ̂[¿k$k j ^  ̂ f k̂fik G ,
v k=l J k=1

(6.3.8)
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Re j J 2  a kVk<t>k \ + E  a k ^ k  =  0.
K k = l J k =1

(6.3.9)

These three conditions determine the constants fj,k and gk. The functions 14, 

V4, $4, <?4, G and G' are written as Fourier sine series

dn,k sin  Pnz, Vfc =  E  dn<k s in  /3nz,
n —1 n = l
oo oo

<?4 =  E  f n , k  s in m r z , (¡)k -  f n , k  si]
n = 1 n = l
oo oo

<4 =  E  e"  sin  /5nz an d  G' =  ^  gn

sm nixz,

(6.3.10)

(6.3.11)

(6.3.12)
n —1 n=l

where j3n =  (2n —1)7t /2. These representations are chosen taking into account as far 
as possible the behaviour of the azimuthal velocity and stream function near z = 0 
and 2 =  1. The Fourier coefficients are given by

Sin 77.7T2,

dn.fc = 2 / 14 sin Pnzdz, dn<k =  2 [  Vk sin/3„z dz, 
Jo Jo

fnk — 2 / 4>k sin 77,772 dz, f n k =  2 / (f)k Sm mT Z dz,
Jo ’ do

6rj. / G sin (3r 
Jo

z dz =
1 (T D 2 ( - 1  )'

o f t  +  T  V f t  f t

f 1 r , ■ j  —2(nir)T f  1 -  ( - l ) r
gn = & sm m rzdz = f__u | ^ [ G (0; 1 ) -

(mr)4 + T \ 

Equations (6.3.7)—(6.3.9) now become

77.7T

(6.3.13)

(6.3.14)

(6.3.15)

(6.3.16)

OO oo oo oo
Re \ sin f t 2 > + s in f t2 =  - T *  ^ e n s in f t2 , (6.3.17)

l  f c = l  n = l  J  /c=l n = l  n = l

{oo oo 'l oo oo oo

E ^ E  f n , k  sin 77.7T2 > + E ^ E / n  <k sin 7 7 .7 7 2  = — sin 77.772, (6.3.18)

/c=l 71=1 J  fc = l 71 =  1 71=1

{ OO OO 'l  OO OO

E « ^ i  sin77-7r'2: f + E ^kfik E E f c  sin 77,77 2 = 0, (6.3.19)
/c=l 71=1 j  /c=l 71=1

and comparing coefficients of sin/3n2 in (6.3.17) and sin 77,772 in (6.3.18) and (6.3.19) 
leads to the triply infinite linear system(  OO 'I oo

i ^  ̂ /J'kd 'n ,k r “f" ^  ̂ ftk ^ n ^ k  T 2 6n, 
l/c = l J /c=l

f oo ''j oo

(6.3.20)

^ 1 f t k f n ,k  | H” ^  ̂ f t k f n ,k  9 n  i
vfc=l J /c=l

(6.3.21)
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Re (6.3.22)
OO j oo
 ̂ ( QkfJ'kfn,!*: f T  ̂ ) &k^kfn,k Oj

fc = l J  fc= 1

for the unknowns /ẑ  and /z/. (k = 1 ,2 , . . . )  where /Z*. = fikr + i^k{ ■ This can be 
written in matrix form as

( ¿1 ,i r “ ¿1,1 i ¿1,1 ¿l,2r ... ^ / Ml, \ ( - T h 1 \
/l,l, —/l,ii /l,l /l,2r Mi, -Mi

( a l r f l , l T -“1; /l,l; ) “lr/l,l (a2rh,2r _“2j/l,2j) Mi 0
¿2,1, “ ¿2,1 i ¿2,1 ¿2,2,. M2, = - t U 2
f 2 ,lr “ /2,li h,\ f2,2r M2i -92

(alr/2,lr-ali/2,l;) -(“l,r/2,l;+“l;/2,l7.) “ ir/2,1 (a2rf2,2r ~a2{ ̂ 2,2; ) M2 0
V j l i J \ /

This was solved to find the constants /zk and Jik using Gaussian elimination with 
partial pivoting, truncating the infinite series at k = 4, 6 and 8. Results for k = 4 
were found to give the first two modes accurately to three significant figures and the 
next two modes accurate to two significant figures by comparing with the results for 

k = 6 and k — 8.

The remaining constants rjn can now be determined as follows. The functions 
G, 0  and 0  are expressed as Fourier cosine series

G = an cos mrz,
n —0

(6.3.23)

OO
0fc =  X ] bUik cos mrz,

00

and Ok = Y2 bntk cos mrz. (6.3.24)
n —0 n —0

Both 60,a and b0,k can be shown to be zero by integrating the leading order eigenvalue

problem (6.3.5) to give „1

[&I& +  « 2 / ©A: dz [</>k]Q 7
Jo

(6.3.25)

which, using ^  = 0^ =  0 on 2 =  0 and 1, yields

f 0i. dz =  0.

The constant terms in (6.3.3) thus give

ao + Vo =  0

(6.3.26)

(6.3.27)

where a0 = j^ G d z , and therefore r]0 is equivalent to cx, as may be expected by 

comparing (6.3.3) and the core solution.
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Substituting (6.3.23) and (6.3.24) into (6.3.3) and comparing coefficients of 
cos mvz yields

(  OO oo
T/n = CLn Re \  ̂ ( f̂ k̂ n,k f  ̂ ) f̂ k̂ n,kj Tl >̂ \ (6.3.28)

k ~  1 k—1

where from (6.3.24),

7̂ifc = 2 / Q kcosm rzdz  and bnk =  2 f  Qk cos mr z dz, (6.3.29)
Jo ’ Jo

and from (6.3.23),

l - ( - l ) n\
= / G cos nirzdz

(nir)2 + T
G""(0;T) -

( n 7 r ) 2
(6.3.30)

Thus formula (6.3.28) enables the coefficients rjn to be determined.

6 .4  N u m erica l resu lts

In order to check that the numerical scheme was working properly, the values of the 
constants /ik and were found for T = 1. These values agreed well with the results 
at T = 0 of section 2.9 and the small T  results of section 6.5 given below. As would 
be expected from the non-rotating work of chapter 2 where there is no azimuthal 
velocity, for small T  the stream function modes (¡>k and the azimuthal velocity modes 
14 become small compared to < and Vk respectively.

Computations were carried!, out for values of T  up to 5000 and results for 
T  = 100, 2000, and 5000 are shown in figures 6.2-6.7. Streamlines for T =  100 
are shown in figure 6.2, and the corresponding lines of constant azimuthal velocity 
are given in figure 6.3. The streamline pattern is similar to that obtained for small 
Rayleigh number and T = 0 in chapter 2 (figure 2.15), except for a small region 
of recirculation just above the mid-height of the cavity. The azimuthal velocity is 
unidirectional, with v0 > 0 so that the flow is in the direction of rotation.

For T = 2000, the recirculation is more obvious, as can be seen in figure 6.4, 
and is centred at a point closer to the vertical wall. The azimuthal velocity contours 
shown in figure 6.5 now indicate an area of reverse azimuthal flow near the bottom

of the cavity.
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In the results shown in figures 6.6 and 6.7 for T  =  5000 the region of recir-
culation has now moved even closer to the vertical wall, and there is evidence of 
the formation of the Ekman layers near the horizontal boundaries. The greatest 
changes in the azimuthal velocity are now close to the vertical wall, and the reverse 
flow at the bottom of the cavity is clear, although its precise form is subject to 
the limitations of the Fourier series representation which become more severe as the 
Taylor number increases and the Ekman layers develop.

The solutions for ipo and do allow the integration (6.2.39) to be completed 
numerically to find the values of the constant c2 for fixed values of T.The result 
for T = 0 in section 2.9 acts as a way of checking the integration routine, which 
was based on Simpson’s rule with intervals of 10~2 in x and 2 . The results of this 
integration for finite values of T  are plotted in figure 6.8. The overall trend is for c2 to 
decrease with increasing rotation although the curve is not monotonic. Some of the 
points approaching the small maximum value of c2 could not be obtained accurately 
and are not shown, although it is not understood why the scheme did not converge 
well in this region. The minimum at slightly smaller Taylor number is at a similar 
value of T  to the maximum of the azimuthal free surface velocity shown in figure 4.3. 
Comparing the two figures (4.3 and 6.8) suggests that for T < 1000 the behaviour 
of c2 may be related to this behaviour of v, although a physical interpretation of 
why this may be is not obvious.

The hot-end/cold-end antisymmetry described in section 6.2 above means 
that in the hot end c2 = — c2 and thus from (4.4.19),

A\ = —2c 2R\ + . . . and Bi = c\R\ + c2i?2 +  . . . .  (6.4.1)

The constant A\ determines the first order correction as L —> oo to the horizontal 
and azimuthal velocity components and the horizontal thermal gradient in the core 
due to the presence of the end walls (see equation 4.3.24). Thus it appears that the 
importance of this correction term, which as c2 is negative represents a reduction in 
these quantities, diminishes with increasing rotation rate.
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6.5 L ead ing  ord er end zone so lu tion  for sm all T

For small Taylor numbers G(z; T ) —> G(z; 0) and the eigenvalue appearing in (6.3.1)- 
(6.3.3) have the limiting forms

Oik —> OLk0, Oik —> OikO, T  —> 0 (6.5.1)

where ako are the complex roots of sin2afco = Seiko- The corresponding eigenfunc-
tions have the limiting forms

fik * h o ,  fik * 0)
Vk '-^TïVko, Vk TîVko,

> ©to, ~> 0,
T -*  0 (6.5.2)

where

cj)ko — sin a koz — a koZ cos ctkoz — a koZ tan a fc0 sin a fcoz 

©to =

(6.5.3)
— 1 . tan ako f------tan ako sin a k o z --------------cos a.koz + —z sin akoz

4 a k0 2 4
1 Oiko tan ako 2 • ot-ko 2-|— z tan ako cosakoz  
4

z2s in akoz ---- — z2 cosakoz  (6.5.4)

are the non-rotating forms determined in section 2.9; the streamlines and isotherms 
associated with the limiting forms of ifto and 0 O as T  —> 0 are the ones displayed in 
figures 2.15 and 2.16. The corresponding azimuthal velocity functions T4o and Vko 
are the solutions of the appropriate limiting forms of (4.4.3), namely

^0  +  a koVkO ~  4>'k0,

Vko  +  Ô 2koVko  =  0 ,

(6.5.5)

(6.5.6)

which satisfy the boundary conditions Vko =  Vko = 0 at z = 0 and V̂ 0 = V̂ 0 = 0 at 

z — 1. Thus

1 2 . 1 .
14o = -(tan  ako 1) 4  - z s m a fcoz

and

with

I 1 , Oiko 2 .-fi—z tan ako cos akoz------- z tana^o s i n a ^
4 4

T? ' 2 k - l \Vko = sin — -—  7rz

a k0

2 k - l \
Q-kO [  ̂ J k =  1,2, . .

z2 cos akoz. (6.5.7)

(6.5.8)

(6.5.9)
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The overall azimuthal velocity as T  —» 0 is given from (4.4.3) by
{ oo oo h

G (z-0) + Re Y , VkoVkoea*°x + £  fikoVkoe ^ x . (6.5.10)

k=1 k=1 J

The limiting forms p,ko of the coefficients ^  as T1 —> 0 are the values determined 
in the non-rotating case (section 2.9) and the corresponding limiting forms /2k0 of 
the coefficients p,k follow from the boundary condition (6.3.7) which, in the limit as
T —> 0, gives

Re \ Y j  f̂ koVko > + Y , /Ifcohfco =  —G(z] 0) (6.5.11)>. k=l k= 1

The functions Vko and G may be written as Fourier sine series
oo oo

vk0 = Y  an,k sin (3nz and G = Y  bn sm/3nz, (6.5.12)
n —1

where ¡3n =  (2n — 1 )7r/2 and

n — 1

^n.k
- 4 aK3n t 8 (--l)"  — 5@„

' j bn
[ c c l o - p i r  4 #

Then a Fourier sine series in sin/3nz of the boundary condition (6.3.7) gives

(6.5.13)

oo oo
Y  bnSmf3nz + R e { Y  f̂ ko  ̂ ) n̂tk s m T   ̂ ( /in0 sin/3nz 0, (6.5.14)

k = 1 n = ln= 1 n=l

and equating coefficients of sin /3nz yields
oo

f̂ n0 — bn h (i( ^ ( f̂ kÔ n̂ y • (6.5.15)
k=l

The first eight values of /qto found earlier were used in (6.5.15) to give the first four 
values of p,k0 given in Table 6.1. These were checked using a collocation method 
where eight values of z are substituted into (6.3.7) and the resulting matrix problem 
for the constants Jlko was solved using Gaussian elimination with partial pivoting.

fi10 = -3.555 x 10“3 
fi20 = 2.562 x 1(T3 
/230 = -1 .4  1 9 x 10 “4 
/240 = 2.921 x 10~5

(6.5.16)

Table 6.1: Estimates of the first four values of /j,k0.
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The leading order azimuthal velocity at small Rayleigh numbers and Taylor numbers 
has thus been found analytically; contours of this function are given in figure 6.9. 
This shows all the azimuthal flow to be in one direction, so that at small Taylor 
number there is no return flow.

6.6  L ead ing  ord er end zone so lu tion  for large T

The form of the eigenvalues for small Ri and large T  was discussed in chapter 5. 
For the cold end zone there is a single mode for which

a 0 ~  - 2 “1/4T 1/8 (T oo), (6.6.1)

and a triply infinite set of modes for which

a k ~  —^(£:7r)1/3(l + zV^)T1/6 and a k ~  ~(kir)1/3T 1/6 (T -»• oo). (6.6.2)

Excluding the Ekman layer regions near z =  0 and z =  1, G{z] T ) ~  zT~x as T —* oo 
so from (6.3.2), v0 can be written in the form

vo = T - i i [ z + v0V0e - 2~iTh*+  (6.6.3)

E  (Re{iyke ~ ^ kn)1/^ 1+lV3)TWx +  uk e - {kn)1,3T?xJ Vk , j ,
k=i  ̂ ' *

where the coefficients fik and jlk are assumed to have the limiting forms

/ik ~ T~?vk and p,k ~  T~?vk as T —> oo. (6.6.4)

From the asymptotic analyses of section 5.3.3, away from the Ekman layers, Vo =  1 
and 14 = cos k m .  Also from (6.2.6) the corresponding leading order stream function 
in the inner Stewartson layer can be shown to be

i>0 = T - i Y ^ r H ^ - lkK)1,tTVt
k=1

R e { -U (1  - i V 3 y ke~^kw)i'3{1+lV )̂Th: sin kixz, T —> oo. (6.6.5)

For the azimuthal velocity to vanish on the vertical wall at x = 0, it is 

necessary that
OO

¿o + £  (R e{vk} + vk) cos kirz = —z. (6.6.6)
k =1
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It is also necessary for the stream function and its first derivative with respect to x 
to vanish there, so that from (6.6.5) the other two vertical wall conditions at leading 
order are OO

E
k=1

^Æe{- - (1  -  i\/Z)vk}  + z/fcj = 0, (6.6.7)

and

E  (R ei Uk} -  Vk) = 0.
k=1

(6.6.8)

By writing z as a Fourier cosine series and comparing coefficients of cos kirz, (6.6.6)
yields

1
"0 = “ 2 ’

(6.6.9)

and

R e{
, _ 2(1 — ( —l) fc) ,

Vk} + Vk~  (jbr)2 ’ k - 1'
(6.6.10)

It then follows that

* > lk (kir)2 ’
(6.6.11)

and

Vk =
( 1 - ( - l ) ‘ ) (3 + iV3) ,  ^

(.kir)2 6
(6.6.12)

Thus the azimuthal velocity for small Rayleigh number and large Taylor number 
has been found at leading order to be

v0 ~  T 2 1 - 2- ï t k  , ^ ( i - ( - i n
2 ¿ Î  0>»)2

1 L — (nir) 3 T  6 x

+ (3 +  i y / 3) l ( n7r)3 ( l + i y ^ l T S  x  _ J _  (3 ¿ v E  ^ - ^ ( n7r)3 ( l - t y /3 ) r 6  Xe 2' (6.6.13)
6 6 

in the core region excluding the Ekman layers. The corresponding leading order 
stream function is

ipo ~  T “ 3 J  (( /1^„—^  sinmrz | e
[ n i r )7/3

L 1
3 — ( n 7 r )  3 T  6 a:

+ (3 - z V /3 )e -2(n7r)' (1+^ )Tix + (3-zv / 3)e-2(n7r)' (1- lV5)T®x^. (6.6.14)

Contours of this stream function and azimuthal velocity are plotted for T  = 5000 in 
figures 6.10 and 6.11, and for T  = 108 in figures 6.12 and 6.13. The small error on the 
wall x = 0 in the azimuthal velocity plots is due to taking a finite number of modes, 
typically eight. The shaded bands in the stream function plot are of circulations 
with opposing directions of rotation decaying exponentially into the core.
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In the inner Stewartson layer, the conditions on 9\ at x = 0 and as x —► oo are 
the same as for u0- Consideration of (6.2.7) thus implies that to a first approximation 
as T  —> co, 9i = T4/2̂ . It then follows from (6.2.39), that for large T, where 
91 = 0 ( T -1 ) and tpo = 0 { T ~2/3) in the inner Stewartson layer, C2 = 0 ( T -11/6) as 
T  —» oo. This agrees with the numerical results given in figure 6.8 which show c2 
decaying with increasing T.

The most obvious difference between the small and large Taylor number 
azimuthal velocity contours is the ‘return’ flow in the bottom left of the cavity 
at large Taylor numbers. This is the effect of the T 1/8 mode in (6.6.13): in the 
outer Stewartson layer the integral of v with respect to z is reduced to zero at the 
outer edge of the inner layer. The complex modes then ensure that within the inner 
Stewartson layer the boundary conditions at x = 0 are met. For the stream function, 
however, the physical importance of the layers is reversed: in the outer Stewartson 
layer there is a relatively minor adjustment of the stream function whereas in the 
inner layer there is a large closed circulation associated with the complex modes 
in (6.6.14). The difference in the length scales of the return flow in the azimuthal 
velocity and the circulation in the stream function is most evident in the T  = 108 
plot. Although the Ekman layers are not properly formed at T — 5000, comparison 
of the analytical results of figures 6.10 and 6.11 with the numerical results of figure 
6.6 and 6.7, suggests that these two results are in good agreement.

6 .7  D iscu ssion

In this chapter, the nature of the transition from small to large Taylor number flow 
in the end-regions has been determined by means of numerical results for finite T 
linking the analytical solutions for small and large Taylor number. The results are 
restricted to small Rayleigh numbers.

For small T, the stream function is the same as in the non-rotating case, 
and the azimuthal velocity is unidirectional in the direction of the rotation. As T 
increases, a region of recirculation, initially centred around the height at which the 
horizontal core flow vanishes, moves down slightly and towards the cold wall. Away 
from the cold wall, along the bottom of the cavity, there is a return of the azimuthal 
flow. As T  becomes larger the region of recirculation moves closer to the vertical
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wall to eventually reside within the inner Stewartson layer of thickness x ~  T ~x/6 
with the centre of circulation at mid-cavity height. At large Taylor number, the 
core flow away from the inner Stewartson layer and the horizontal Ekman layers 
is dominated by the azimuthal flow. The return flow of the large Taylor number 
azimuthal flow is confined to a jet in the lower half of the outer Stewartson layer and 
there is a further adjustment of the azimuthal flow in the inner Stewartson layer. 
Outside the outer Stewartson layer and the Ekman layers, the azimuthal velocity 
is directly proportional to the cavity depth. The radial flow across the cavity is 
confined to the Ekman layers, which transport fluid from the hot end to the cold 
end near the free surface and in the opposite direction near the base. This flow 
becomes slower as the Taylor number increases.

The small Rayleigh number theory for the non-rotating case developed in 
chapter 2, has been extended in this chapter to give a leading order solution through-
out the cavity for general Taylor numbers. Values of the constants A\ and B\ which 
determine the first order correction to the core solution arising from convective ef-
fects and the presence of the end walls have been found as a function of the Taylor 
number. At leading order, B i increases to zero with increasing T  indicating that 
these effects are diminished by rotation and the core temperature becomes conduc-
tion dominated. The value of A\ decreases with increasing T indicating that the 
reduction in the stream function, azimuthal velocity and horizontal thermal gradient 
in the core is also diminished with increasing rotation.
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c,
 x 

1 O
'

Figure 6.1: Values of cx as a function of T. The dotted lines are the asymptotic 
solutions.
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Figure 6.2: Numerical results: streamlines ip0 =constant for T  =  100.

Figure 6.3: Numerical results: contours of constant azimuthal velocity v0 for T 
1 0 0 .
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Figure 6.4: Numerical results: streamlines ijj0 =constant for T  =  2000.

Figure 6.5: Numerical results: contours of constant azimuthal velocity v0 for T 
20 0 0 .
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Figure 6.6: Numerical results: Streamlines ip0 =constant for T =  5000.

Figure 6.7: Numerical results: contours of constant azimuthal velocity v0 for T 
5000.
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c,
x

lO

T

Figure 6.8: Values of c2 as a function of T .

Figure 6.9: Contours of the leading order azimuthal velocity u0 as T  —> 0.

161



Figure 6.10: Analytical results based on the asymptotic theory: streamlines 
•0o =constant for T  = 5000, excluding the Ekman layers.

Figure 6.11: Analytical results based on the asymptotic theory: contours of constant 
azimuthal velocity v0 for T = 5000, excluding the Ekman layers.
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Figure 6.12: Analytical results based on the asymptotic theory: streamlines 
■0o = const ant for T  = 108, excluding the Ekman layers.

Figure 6.13: Analytical results based on the asymptotic theory: contours of constant
azimuthal velocity v0 for T  = 108, excluding the Ekman layers.
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C hapter 7

Conclusion

7.1 Su m m ary

This thesis has been concerned with the flow in a shallow laterally heated cavity 
with a stress free upper surface, and has considered the two dimensional flow in 
the non-rotating case and its stability to oscillatory perturbations and the three 
dimensional flow in the case of a rotating cavity, the latter being analogous to the 
axisymmetric flow in a rotating annulus with differentially heated vertical walls.

The Hadley cell, formed when the fluid near the hot wall rises and the fluid 
near the cold wall sinks, consists of a parallel-flow core region and two end regions 
where the fluid is turned. Unlike in the rigid surface case, the lack of symmetry 
meant that the end regions had to be considered individually. Also it was seen 
that, unlike the rigid surface case, there are no steady non-decaying oscillations 
propagating from the end-regions into the core to formally invalidate the assumption 
of a parallel flow core. However, like the rigid surface case, the non-rotating flow is 
unstable at low Prandtl numbers and sufficiently high Rayleigh numbers and then 
in practice the parallel flow core will be replaced by a travelng wave structure.

In the non-rotating case, approximately the top 40% of the flow in the core 
is moving from the hot end to the cold end with a maximum speed at the free 
surface, and the bottom 60% is moving more slowly from the cold end to the hot 
end. This causes the temperature field to change from one of pure conduction, that 
is dependent only on the distance from the vertical (differentially heated) walls, to
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a depth dependent one -  the top of the cavity being hotter than the bottom. The 
magnitude of the flow speed and vertical temperature difference is directly dependent 
on the Rayleigh number based on the temperature difference between the two end

walls: Ri — (3g(&h —&c)h3/v k L.

The effect of rotation on this core flow is to gradually confine the radial flow 
to thin Ekman layers close to the horizontal boundaries and to slow the speed of 
this flow. Outside the Ekman layers, with no radial flow between the two vertical 
walls, the temperature field becomes conduction dominated. The Ekman layers are 
of thickness T -1/4 where T  is the Taylor number based on the rate of rotation: 
T = 4 0 2h4/i/. For non-zero rotation rates, there is an azimuthal velocity in the 
direction of rotation the magnitude of which grows as T 1̂ 2 as T  increases from zero, 
reaching a maximum at T ~  250, before it too is damped by large rotation rates. 
Outside the Ekman layers, the azimuthal core velocity is directly proportional to 

depth.

Solutions for the end regions were obtained in the form of an infinite sum of 
eigenfunctions decaying into the core, the eigenvalues defining the rate of decay and 
hence the size of the end-regions. The leading order solution for the eigenfunctions 
was found analytically in the lim it of small Rayleigh and Taylor numbers. For small 
Rayleigh number and general Taylor numbers, the two end regions are symmetric at 
leading order; the flow is simply turned and the depth dependence on temperature 
gradually disappears as x tends to zero, as does the azimuthal velocity. The leading 
order solution is also independent of the Prandtl number, o  =  v/ k . A numerical 
scheme based on a Fourier series representation was used to find the relative sizes 
of the eigenfunctions such that the vertical wall conditions were satisfied, and thus 
match the end regions to the core to complete a leading order solution for the entire 
cavity at small Rayleigh numbers and general Taylor numbers. The results of this 
show the damping effect of rapid rotation on the temperature and velocities.

Solutions of the eigenvalue problems in the end regions were found numeri-
cally for general values of the Rayleigh number and Taylor number using a fourth 
order Runge-Kutta scheme. Results were given for general R1 and T =  0, 500 and 
5000, and for Ri = 0 and general T. These numerical results complemented asymp-
totic theories developed for large R-i and for large T. For large Ri and no rotation 
(T = 0), asymptotic theory showed that the size of the end regions is directly pro-
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portional to the Rayleigh number, that the cold end zone is slightly larger than the 
hot end zone, but that both ends were roughly twice the size of the end regions in 
the rigid surface case. For small Prandtl number, the end regions are dominated 
by decaying oscillatory modes, and for infinite Prandtl number they are dominated 
by decaying non-oscillatory modes. In practice however, it was seen that for a  > 2, 
the solution behaved as though the Prandtl number was infinite and in the asymp-
totic theory for large T  and small Ri, only the case of infinite Prandtl number was 
investigated. In this case the leading eigenvalue was seen to behave as T 1/8 and 
the subsequent eigenvalues were seen to behave as T 1̂ 6. This corresponds to two 
vertical boundary layers, or Stewartson layers, of thickness T -1/8 and r _1/6 close 
to the vertical walls. The outer layer contains an azimuthal jet which flows in the 
opposite sense to the direction of rotation and the rest of the azimuthal flow. The 
inner layer contains an intense recirculation flow which lies inside the large-scale 
Hadley circulation which is completed by the radial flow in the Ekman layers. By 
use of the Fourier series representation of the eigenfunctions and application of the 
vertical wall conditions, results for general T  were presented which demonstrated 
the development of the inner recirculation, the azimuthal jet and the Stewartson 

layers.

In general terms, the eigenvalue analysis has shown that the lateral extent of 
the end zones increases with increasing large Rayleigh number and decreases with 
increasing Taylor number. For finite Taylor numbers, the leading eigenvalues behave 
as the inverse of the Rayleigh number as Ri —> oo indicating that the end zones 
then have a large lateral scale of order R1. This scale diminishes with increasing 
Taylor number and when 1 C  T  <C Ri the lateral scale is proportional to R1/T .  An 
asymptotic solution for this regime led to the identification of a novel structure in 
which the thermal properties of the Ekman layers are shown to play an important 
role in the determination of the lateral scale.

The stability of the non-rotating parallel-flow core to both transverse and 
longitudinal perturbations has been investigated in detail in this thesis: numeri-
cally for general wave numbers and Rayleigh numbers and asymptotically for large 
Rayleigh number. Instabilities only occur for small Prandtl numbers: using both 
numerical and asymptotic techniques it was shown that the core flow is always stable 
to transverse mode oscillations for Prandtl numbers greater than 0.162, and stable 
to longitudinal oscillations for Prandtl numbers greater than 0.415.
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Neutral curves produced numerically for general Rayleigh numbers and wave- 
numbers indicate that except at extremely small Prandtl numbers, the longitudinal 
instabilities are more important than the transverse instabilities in that they occur 
at smaller values of the Rayleigh number. Numerical solutions were used to show the 
effect of the neutral perturbations on the core flow and their speed of propagation: 
approximately one third of the free surface speed. An asymptotic analysis shows 
that along the left hand branch of both the longitudinal and transverse neutral 
curves the wavenumber behaves as the inverse of the Rayleigh number as Ah —» oo, 
so that the higher the Rayleigh number the larger the wavelength of neutrally stable 
oscillations. In the case of the transverse oscillations, the right hand branch of the 
neutral curve was shown to approach a finite wavenumber for large Rayleigh num-
bers, but for longitudinal mode the wavenumber of the right-hand branch behaves 
as the inverse of the Rayleigh number. Thus, while finite wavelength transverse in-
stabilities are supported at large fifi and finite a, only large wavelength longitudinal 
instabilities persist. An asymptotic theory showed that finite wavelength longitudi-
nal instabilities can be supported at large Rayleigh number, but only for vanishingly 
small Prandtl number.

7.2 F u tu re  work

The work presented in this thesis suggests a number of avenues for further research, 
both on the stability of the free surface flow and its basic steady-state structure. In 
connection with the stability of the flow, the asymptotic theory developed in chapter 
3 suggests that, in a three dimensional box, if the long wavelength longitudinal modes 
are excluded by vertical side walls parallel to the x, z plane, the finite wavelength 
transverse modes may then be more ‘dangerous’ at large Rayleigh number. The 
influence of such side walls is not investigated at all in this thesis, but would be of 
interest in relating the theory to applications in crystal growth and other areas. In 
this case the basic core flow and temperature fields will depend on both z and y and 
the end-region flows will become fully three dimensional even in the non-rotating 

case.

For the two-dimensional cavity, the stability of the rotating core flow has not 
been addressed here, nor has the stability of the core to three dimensional pertur-
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bations that oscillate in both x and y. Another much more difficult undertaking 
would be to study the stability of the flow in the end regions.

The steady state flow has been investigated in depth in this thesis with 
both numerical and asymptotic results being presented and in particular asymptotic 
results for both large and small values of the Rayleigh and Taylor numbers. A 
numerical multigrid scheme was used to check the analytical results in the steady, 
non-rotating, small fifi case, but a much more comprehensive numerical study is 
needed to examine the non-linear flows for finite and large R x both for the non-
rotating and rotating cases, enabling the constants c and c to be determined over a 
much wider region of the three dimensional parameter space (R\, a, T). A numerical 
study of this kind would complement the asymptotic results obtained here. On 
the theoretical side, it is envisaged that further analysis could be undertaken to 
investigate the effect of the Prandtl number in the rotating case; the difficulty of 
actually viewing the flow in low Prandtl number fluids gives added incentive to 
theoretical and numerical investigations of this regime. Another area of theoretical 
interest is the limiting case where both R1 and T are large; the asymptotic analysis 
of chapter 5 for 1 <C T  <C R1 suggests an interesting boundary layer structure arises 
in this limit and it may be possible to extend this analysis to investigate the flow 
structure throughout the end regions and to consider the case where Rx and T  are 
of comparable magnitude.

Finally, it would be of interest to carry out a numerical investigation of the 
full cavity flow for various values of fifi, a, T  and for moderate to large values of 
L. There are few numerical studies for the shallow cavity with a free upper surface, 
and even fewer for the rotating free surface cavity.

The projects outlined above arise from the studies in this thesis. There are 
many other interesting problems associated with free surface flow in a shallow later-
ally heated cavity, such as the inclusion of thermocapillary forces or the consideration 
of a difference in the depth of fluid in the cold and hot end regions, but it is hoped 
that this thesis serves as a good basis for study in these areas.
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