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Abstract

This thesis is concerned with constraint-based logical and computational frameworks 
for resolving and relaxing over-constrained systems. The context is provided by two 
such frameworks, Hierarchical Constraint Logic Programming (HCLP) and Partial Con-
straint Satisfaction Problem techniques (PCSP), both of which have been extensively 
discussed in the literature. Our work is driven by the reasons why over-constrained 
systems arise, the characteristics of the ‘ ideal’ paradigm for resolving them, and the 
issue of compositionality which is very important in general if we wish to examine 
large systems by examining and then combining smaller parts. We abstract away from 
programming language issues in order to focus on constraint solving.

The main original work of this thesis is divided into three parts. Firstly we present 
a complete method for transforming between the HCLP and PCSP representations 
of a problem, thus showing that theoretically they have equivalent expressive power. 
Secondly, having discussed compositionality in general, we present a two-stage variant 
of HCLP; the first stage is compositional but calculates a superset of the solutions 
we expect from HCLP. The second stage removes precisely those solutions which are 
not acceptable to HCLP, but at the cost of re-introducing HCLP’s non-compositional 
behaviour. We also discuss the compositional aspects of PCSP.

The third part of this thesis presents G oes, our system which allows the use of both the 
HCLP and PCSP approaches to problem relaxation and ordering. The G oes integrated 
framework has HCLP and PCSP as special cases and also subsumes all of their separate 
advantages, when considering the characteristics of the ideal system for relaxing and 
resolving over-constrained problems. We present examples throughout the thesis, some 
of which are comparative and so may be used to substantiate our claims. Finally, we 
present conclusions and discuss further work.

IX
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Overview of the Thesis
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Chapter 1

Transformation, Composition, 
and Integration of HCLP and 
PCSP

1.1 Motivation

Constraint programming is becoming more successful all the time. It provides an 
elegant, abstract, and declarative way to specify problems, backed-up by efficient and 
flexible implementations. Constraint-based systems have a strong theoretical basis, 
and yet also appeal to industry: there are many successful practical applications solving 
difficult and commercially important real-world problems. Examples include scheduling 
for factories and for computer instruction sets; financial applications such as options 
and portfolio analysis; and modelling water usage, DNA, and electrical circuits [3, 10, 
23, 24, 38, 39, 64, 72, 78, 79, 86]. Many problems which previously appeared local to a 
particular application domain, and which were therefore solved in an ad-hoc manner, 
can now be seen as instances of constraint problems. For example, AI applications 
as disparate as machine vision and belief revision can now be considered in terms of 
varieties of constraints [12, 62], This has led to re-use of ideas and techniques across 
different domains, and consequently to improved solutions for everybody.

The two main paradigms based on computation over constraints are Constraint Logic 
Programming (CLP) and Constraint Satisfaction Problem techniques (CSP). CLP can 
be thought of as a generalisation of logic programming where unification is replaced 
by constraint solving, often implemented by CSP algorithms, giving a ‘pure’ logical 
reading to what were previously considered ‘impurities’ of particular languages such as 
Prolog.

CLP and CSP have both been very successful in solving real-world problems. There 
are a number of differences between them, such as the fact that CLP defines a class of 
programming languages whereas CSP is a set set of techniques and algorithms which 
can be implemented in any language. But there are also important similarities, and in
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addition to the relationships suggested in the first paragraph, CLP can be thought of 
as providing a declarative general-purpose programming language framework in which 
CSP and other techniques can be embedded. This has benefited CLP, in giving it 
access to a large body of previous work, and it has also benefited the CSP community, 
who gain all the standard advantages of declarative programming (such as focusing on 
representation and high-level issues and being freed from lower-level tasks).

Over-constrained systems arise when a set of constraints does not have any solutions. 
Such situations occur for a number of reasons; in our opinion the two main reasons are 
to do with composition of problems and lack of expressivity of languages. We discuss 
this in more detail in Section 2.5. We consider composition to be very important as it is 
linked to the fundamental scientific methodology of reductionism, i.e. solving a complex 
problem by solving its parts separately and then combining the solutions. Composition 
is discussed in more detail in Part IV. We mention these two reasons here in order to 
have them in mind during the rest of this discussion.

The CLP and CSP communities, as well as those in AI and OR, have addressed the 
issue of over-constrained systems in various disparate ways, and the links which have 
been mutually beneficial in the standard case have not been explored when considering 
the various ‘preference systems’ which have been developed in the separate paradigms. 
Throughout this thesis we use the term preference system to mean any paradigm 
which allows the expression of preferences for some constraints over others, or for some 
variables over others, or any other method of selecting a partial problem from the 
original one. We focus on two such paradigms, HCLP (Hierarchical Constraint Logic 
Programming) and PCSP (Partial Constraint Satisfaction Problems). We will con-
centrate on the application of preference systems to the resolution of over-constrained 
systems.

Current approaches to dealing with over-constrained systems tend to two extremes. 
The first extreme is exemplified by producing all the maximally consistent subsets of 
the inconsistent set. This is computationally expensive and not very useful: the user 
cannot tell which of the flood of maximally consistent subsets is the one he wants. The 
second extreme is for the user to have to do everything, i.e. for each constraint decide 
whether it is essential or not. This is only possible if the user has a great deal of time 
available, and if he has explicit knowledge of the problem down to the level of every 
constraint. We free the user from this necessity, while still giving him the freedom to 
express preference information about individual constraints whenever it is desirable to 
do so.

Numerous different approaches are described in the literature, many of them tending 
towards the second extreme, having the same basic idea of putting all the constraints in 
some kind of partial order, or using strength labels on each constraint to induce an order. 
Then various techniques are used to choose the ‘best’ solution, with various slightly 
different definitions of ‘ best’ . HCLP is usually not cited in these papers, despite often 
subsuming the approach being described. Unfortunately, HCLP has slightly unusual 
semantics, and is non-monotonic. We develop a two-stage variant of HCLP, each stage 
having relatively simple semantics and being easy to implement efficiently.

It is possible that there is some duplication in dealing with preference information in
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the two fields CLP and CSP (as well as in AI in and Operations Research in gen-
eral), and also some re-inventing of the wheel, but markedly different formalisms and 
approaches inhibit cross-fertilisation and mask genuine differences. The distinction be-
tween strength levels and comparators in HCLP is blurred in most other paradigms; this 
is not too important at the implementation level, and may perhaps even be beneficial, 
but it is important semantically: there is a difference between choosing a more preferred 
constraint rather than a less preferred one, and choosing one of two equally preferred but 
mutually contradictory constraints. The former choice is easy to make deterministically, 
and should always be made; it is guaranteed in HCLP by the property of ‘ respecting 
the strength-label hierarchy’ . The latter choice may introduce non-determinism, or ne-
gotiation, or averaging, and can be embodied in the choice of comparator. For example 
it is interesting to note that when we transform between HCLP and PCSP in Part III, 
we must merge the HCLP strength labels and comparator together to create a distance 
function in the PCSP representation. When transforming in the other direction, we 
only need to use one level of the hierarchy. But this difference is hard to evaluate given 
the disparate natures of the two formalisms. We clarify this issue and provide a general 
model for transforming between HCLP and PCSP in Part III.

There have been two recent works which provide general frameworks encompassing var-
ious preference systems including PCSP and (indirectly) HCLP (Bistarelli, Montanan 
and Rossi, and Schiex, Fargier and Verfaillie [4, 5, 71]), but neither discuss the links 
and differences between HCLP and PCSP, only treating them as instantiations of the 
general scheme. One genuine difference between HCLP and PCSP concerns how to 
relax problems, rather than how to chose which relaxation is the best. HCLP reor-
ganises the structure of the problem, by specifying relationships between constraints; 
PCSP keeps a flat structure to the problem, but changes the meaning of the individual 
constraints by adding elements to its domain. This sounds absurd, but there is a strong 
motivating example from the PCSP literature [31]: if none of your shirts match your 
tie, you could say that this constraint is not too important (HCLP), or you could buy 
a new tie (PCSP domain augmentation).

Clarifying the semantics of HCLP by developing a compositional variant, providing 
a common framework for discussing HCLP and PCSP, showing if their methods for 
selecting relaxations are equivalent, and providing an integrated framework which al-
lows both their different approaches to the creation of relaxed problems to be used, 
are all significant advances for both paradigms, for the field of preference systems and 
over-constrained problems, and for the study of constraints in general.

1.2 The thesis

The claim that we make in this thesis is as follows: while current preference systems 
have various advantages, they do not approach the ideal. Small extensions to current 
systems can be made, and bring some benefits, but to get really close to the ideal it is 
necessary to create a new, more general, framework, which we present in this thesis.
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1.3 Our approach

We can improve on the current situation regarding preference systems in a number 
of different ways. The simplest approach is to try and modify either HCLP or PCSP 
in order to improve them and make them closer to the ideal preference system, thus 
avoiding discarding the general body of work done on these paradigms. We take this 
approach in Parts III and IV: in Part III we provide a transformation between HCLP 
and PCSP. This allows the user to have the specification advantages of one of them 
and the implementation advantages of the other, where this is appropriate. In Part IV 
we consider compositionality, and improve the semantics of HCLP in this and other 
respects. Following this approach leads to a certain amount of success, but still leaves 
us some distance away from the ideal preference system.

In Part V we investigate another approach, namely defining our own preference system 
called G oes; it is a new general compositional constraint framework with similarities 
to HCLP and PCSP, and indeed has each of these systems as a special case. However, it 
also permits their two different styles of problem relaxation to be used at the same time! 
G oes  defines a new class of solvers, which would in general require a certain amount 
of implementation effort, but some of the work involved can be avoided by re-use of 
the results of Parts III and IV. G oes has significantly more of the characteristics of 
the ideal preference system than either HCLP or PCSP, and we believe it is sufficiently 
general to include as a special case any other preference system which may be developed.

1.4 Chapter guide

This thesis is structured as a series of parts. Part I, the current part, contains the claim 
of the thesis, with brief motivation and benefits. Part II begins with Chapter 2 which 
contains a discussion of how over-constrained systems arise as well as brief overviews of 
CLP and CSP, and some definitions and clarifications. This is followed by background 
material on HCLP (Chapter 3) and PCSP (Chapter 4). Then Chapter 5 specifies the 
characteristics of the ideal system for resolving over-constrained systems, and analyses 
to what extent HCLP and PCSP conform to the ideal. The part ends with a brief 
overview of certain mathematical tools which will be useful subsequently (Chapter 6).

In Part III, Chapter 7, we present transformations from HCLP into PCSP, and in 
Section 7.3 we also discuss the transformation in the opposite direction, from PCSP 
into HCLP. We describe both transformations in logic, using a single equivalence 
relation.

Part IV begins in Chapter 8 with a general discussion of composition, what it is and 
why it is important. In Chapter 9 there is a discussion of the lack of compositionality 
in HCLP, followed by a presentation of our variant of HCLP which is compositional, 
in as much as any preference system can be. Then we discuss the compositionality of 
PCSP (Chapter 10), against a background of the mathematics of lattices and order.

Part V presents G oes, a preference system we have developed. It is compositional,
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general, includes HCLP and PCSP as special cases, and has all their advantages as well 
as some benefits which they do not have. We also discuss implementations.

Part VI contains summary and conclusions, discussion and benefits, and pointers to 
further work.

The thesis has some Appendices, and also References.

1.5 Benefits

Benefits of our work include:

for the theoretician:

• a framework in which to discuss, compare, and contrast HCLP and PCSP 
simultaneously

• transformations between HCLP and PCSP

• a compositional variant of HCLP, showing at what stage non-monotonic 
(disorderly) behaviour is introduced

• a proof of compositionality for PCSP distance functions with subset and 
subset-closed derived orders

for HCLP implementors and users:

• a two-stage implementation of (a variant of) HCLP, the first stage being 
compositional and incremental. Therefore possibility of more efficient im-
plementations

• ability to delay choice of HCLP comparator until after the first stage, when 
an idea of the approximate number of solutions will be available

6



for implementors of preference systems generally:

• an analysis of the reasons why over-constrained systems arise, leading to a 
list of desirable characteristics for preference systems to have

• transformations between HCLP and PCSP, thus allowing an implementor of 
one of them to re-use an implementation of the other

• clarification of the two different approaches to relaxation of problems, com-
bined with unification of two important methods for choosing which relax-
ation is best

for the user:

• the combination of HCLP and PCSP approaches. No need to label every 
constraint, no need to construct a sophisticated, imperative, distance func-
tion

• hence easier and more expressive specification of constraint systems, and 
quicker and easier debugging and maintenance.
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Part II

Background
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In this part we provide background information on constraint languages and systems, 
on HCLP and PCSP, on bags and on lattices. We also discuss why over-constrained 
systems arise and what are the desirable characteristics of the preference systems we 
use to resolve them.

9



Chapter 2

Constraint Programming and 
Over-Constrained Systems

2.1 Constraint languages, constraint solving, and constraint 
logic programming

Constraint programming systems are interesting because they have a sound theoretical 
basis and yet they also have practical applications. Constraint languages are defined 
with respect to alphabets of symbols, rules for constructing formulae, and so on, with 
the goal of expressing constraints. This is separate from an implementation of an algo-
rithm for solving constraints over that language, i.e. for deciding if a set of constraints 
is consistent, or for reducing constraints to a solved form. There is no point defining a 
language of constraints over a certain domain if no algorithms exist for solving those 
constraints. The issue of solving algorithms is itself separate from any embedding of 
the algorithms into a programming language. Indeed one of the main conceptual dif-
ferences between CSP and CLP is that the former is a collection of algorithms and 
techniques which may be implemented in any language, whereas the latter is a class of 
languages, with computation rules, scope rules, input-output, and so on. Therefore, we 
will now present some background material under three headings: theory concerning 
constraints and constraint solving, languages, and algorithms. We then conclude this 
chapter with some definitions which will be used throughout the thesis.

2.2 Theory of constraint systems and constraints

2.2.1 Constraint systems

Whenever a constraint-based system is being developed, a domain is chosen, for example 
the real numbers, or booleans, or strings. It is assumed that a theory already exists 
for this domain. Therefore notions of what constitutes a relation over the domain, and 
what should be done with a collection of relations, are assumed to be defined. For
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example, systems of linear equations and inequalities over real numbers had been used 
for a long time in Linear Programming, before CLP (7Z) was developed [43]. Therefore it 
was intuitively clear what a ‘constraint’ was (a linear equation or inequality), and what 
should be done to it (ideally, reduced to a set of equations between a single variable 
and a real number, as shown in the example below). Similarly with booleans: we can 
assume that constraints are just well-formed formulae, and constraint solving means 
finding an assignment of truth values to variables such that all the formulae are true.

Therefore there has not been all that much attention paid to what might seem to be a 
very important question: what is a constraint. A straightforward answer, such as can 
be found in the next section, describes constraints in terms of their role in a constraint 
system, which just pushes the question one step away; and the theory behind any given 
constraint system was always assumed to be taken wholesale from an existing domain. 
(This is similar to the assumption of some given equality theory as a basis for logic 
programming languages [40].)

In fact it is possible to abstract away from these assumptions, as has been done by Jaffar 
and Lassez. Their extended technical report version [40] of their seminal paper [41] 
provides a uniform general treatment of constraint systems, based on many-sorted logic. 
However, its rigorous and highly technical discussion of multiple constraint domains 
simultaneously is too complex for our present purposes. In Appendix A we present 
a simplification of their work, restricted to a constraint system over just one domain. 
Such single-domain systems suffice for the presentation of the ideas in the rest of this 
thesis, and make the presentation there much clearer. However, not even the level of 
detail presented in the appendix is necessary to understand this thesis. Therefore, in 
the rest of this section we will follow the example of the field and just assume as ‘given’ 
the theory underlying a constraint system over any particular domain.

2.2.1.1 Example

A standard part of school mathematics is Gaussian elimination to find values for x and 
y from the following equations (calculation of the answer is left as an exercise for the 
reader):

x +  y =  4
x -  y =  2

This sort of problem is known as ‘solving two equations in two unknowns’ and clearly 
it is desirable to be able to solve more complicated instances using a computer. One 
interesting aspect of constraint programming is hidden in this wish, but is explicit in 
the example

X  < 3, A  > 3

From two pieces of partial or non-precise information, we can derive X  =  3, i.e. one 
piece of explicit knowledge. Thus specifiers or users can express as much or as little 
information as they have even if they cannot do so in a precise form, and information
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from two different sources can be distilled. This is not impossible in other computer 
science methodologies, but it is can be done both easily and elegantly using constraint 
solving.

2.2.1.2 Another example constraint domain

Throughout this thesis small examples will be used to clarify the presentation, generally 
modelled using finite domains or reals as these are the simplest to present in a concise 
manner.

However this should not be taken to imply that no other domains are possible. The 
literature contains discussion of strings, booleans, and rational and infinite trees [16, 
17, 18, 77]. We now present a slightly different domain, based on sets and subsets. This 
differs from those already seen because the domain is only partially ordered (by subset 
inclusion).

Consider the problem of organising interpreters for a meeting of an international or-
ganisation. Let us assume that there are three delegates, one French, one Greek, and 
one from Holland, and that the pool of interpreters is modelled using sets, F for those 
who speak French, G, and H . Let us further assume that we have two domain-specific 
constraints x £ S and ^  C 52, as well as equality over both elements and sets. Avail-
able operations include set intersection, union, and so on. Constraint conjunction is 
indicated by commas and query variables are assumed to be existentially quantified, as 
is standard in logic programming and CLP. Unlike CLP, elements are in lower case, 
sets are in upper case, i.e. x ,y ,z  are variables ranging over individuals, X , F, Z are 
variables ranging over sets. The constraint ix can interpret between languages X  and 
F ’ can be expressed easily using the intersection of X  and Y. The first possibility is to 
find up to three individuals each of whom can translate between two of the languages:

x e  F n G , y e  F n  H ,z  e  G n H

However it is quite possible that some of these intersections are empty. Therefore we 
may need to find a pair of translators who have a common intermediate language, X , 
Y, or Z :

aq € F  fl X , #2 G A fl G, y\ £ G fl F , ?/2 € F n 11, z\ £ G i~\ Z, Z2 £ Z O H

We might wish to use as few interpreters as possible. For example, if X  =  F  =  
Z =  English, then we would only need three interpreters. This can be expressed as 
minimising the cardinality of the set {aq, x-i, jq, y?, z\, Z2 }, or by ordering all the possible 
solutions by subset inclusion and picking the first.

If the original formulation was in fact satisfiable, then the second version will have 
solutions in which X — F or X  =  G. If X  =  F then the first constraint becomes 
trivial (for non-empty F) aq € F fl F, and the second constraint is more important 
X2 € F fl G. This will allow aq to take any value in F, and if aq does not happen to 
equal a ,̂ perhaps because we have not in fact attempted to minimise the cardinality, 
then there will be ‘noise’ in the answer.
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A more important problem is the assumption that only a pair of translators will be 
needed to connect two languages; in fact we might need a long sequence. This is where 
a constraint programming language is superior to an isolated solver, as the transitive 
closure of the relationship should be expressed, rather than just the relationship itself. 
Such recursive ‘ancestral’ or ‘path’ predicates can be written in two lines of a (con-
straint) logic programming language, the base case being the relationship itself. The 
following uses standard logic programming notation:

'/, Outputs a list of interpreters, such that Langl can be 

'/. translated into Lang2

interpret([Interpreter], Langl, Lang2) 

speaks(Interpreter, Langl), 

speaks(Interpreter, Lang2). 

interpret([Int|Interpreters], Langl, Lang2) 

speaks(Int, Langl), 

speaks(Int, OtherLang),
interpret(Interpreters, OtherLang, Lang2).

□

2.2.2 Constraints

A constraint is an element of a constraint system as described above. Constraints are 
interpreted with respect to some structure R , such as the real numbers, or booleans, 
or strings, etc. The definition of a constraint has a syntactic aspect, which allows 
one to consider constraints simply as tokens; this is appropriate in certain limited 
circumstances, but is not especially interesting for our purposes. We can say that a 
constraint has operational significance as a consequence of its interactions with other 
constraints, as defined in the theory of the particular domain.

Declaratively, generalising as much as possible without losing the link with an interpre-
tation, we can say that an n-ary constraint is a relation over the domain, i.e. a subset 
of the cartesian product of the domain with itself n times. The subset denoted by a 
constraint may be expressed in a shorthand, such as the finite representation X  > 5 of 
an infinite subset of the reals, or it may be explicitly enumerated, as is often the case 
in Finite Domain problems such as those found in CSPs. In this thesis we will discuss 
‘relaxing’ or weakening constraints; given that a constraint is a subset of a domain, we 
can say that relaxation is effected by taking the union of the constraint with some new 
values. This is the standard mechanism we will use, but it is not necessary to dwell 
on it — we could just consider relaxation as a black-box operation taking a constraint 
as input and producing its relaxation as output. Consequently, whenever it is more 
convenient we can choose to treat constraints as basic, ignoring their internal nature 
as subsets of the domain.

13



2.2.3 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is defined to consist of a pair (U , C) where 
V is a set of variables, each with a domain (extension), and C is a set of constraints. 
Constraints are relations over the variables in V. In CSPs, they are usually treated 
extensionally, i.e. a binary constraint is just considered as a set of pairs. Solving a CSP 
involves finding one value from the domain of each variable such that all the constraints 
are satisfied simultaneously.

Generally, it is standard practice in the field of CSP to restrict discussion to binary 
constraints over variables with finite domains. A constraint c between two variables x 
and y can be denoted cxy. It can be shown that an n-ary relation (and hence constraint), 
n > 2, can always be represented by a set of binary relations (hence constraints). This 
is straightforward for finite relations, but more complicated when they are infinite. The 
domains of the variables in V are usually considered as unary constraints, but they can 
also be represented as binary constraints between a variable and itself: the value v is 
in the domain of a variable x iff cxx contains (v, v). (This suggestion is mentioned by 
Freuder in [31], where he uses it to simplify the presentation of his theory PCSP.)

We can consider a CSP as a graph, with each variable represented by a node and 
each constraint represented by an edge. The constraints are labels for the edges. This 
representation of CSPs has been very fruitful in the past, see for example [20, 32, 55, 63], 
but is not relevant for most of this thesis. (The exception is in Section 7.3.1.2 where it 
provides the intuition for the defence of a certain choice when transforming PCSP into 
HCLP.)

2.3 Languages —  Constraint Logic Programming

Traditional logic programming languages such as Prolog have their domain restricted 
to uninterpreted terms constructed from the constant and function symbols of the pro-
gram, generally called the Herbrand Universe. The only test o f satisfiability, failure of 
which might lead to back-tracking, is a test of syntactic equality, implemented by the 
unification algorithm. Interpretation of numeric constant symbols as numbers in some 
theory of mathematics can be achieved through impurities embedded in the language, 
such as the i s /2  predicate which is an interface to an imperative language implementa-
tion of arithmetic. Constraint Logic Programming [40, 41] extends logic programming 
by containing one or more interpreted domains of constraints. CLP is parameterised by 
the domain of discourse V over which the constraints range. Satisfiability in V  of a set 
of constraints is tested by algorithms specialised to the domain. Many CLP languages 
have been implemented, including CLP(7£), CHIP, and Eclipse [1, 22, 43]. There are a 
number of survey papers and books available [34, 42, 74, 75].

Jaffar and Lassez show that for every domain V  with the two properties of solution 
compactness and satisfaction completeness, CLP(£>) has many desirable characteristics. 
These include the existence of equivalent declarative and operational semantics, and in 
fact all the important properties of pure logic programming hold for the CLP scheme

14



generally. (See [40, 41] for more details, and for definitions of solution compactness and 
satisfaction completeness.)

We have already discussed certain aspects of constraints and constraint systems in 
Section 2.1. Here we briefly present constraints in the context of logic programming. A 
constraint is a relation over a domain V, the choice of which determines the predicate 
symbols n-p of the language, Yiv is partitioned into two, the built-in constraint symbols 
n fa and the symbols for user-defined predicates Ufa. A constraint is an expression of 
the form c(ti , . . . ,  tn) where c is an n-ary symbol drawn from Ufa and each ti is a term. 
Constraints can be written using other syntactical sugar, such as the standard infix 
mathematical order relations, but should always formally be considered as expressions 
of the predicate type.

CLP clauses are of the form

P ( f ) 1̂ ( f  ) i • • • > (f  ) ■

where the 6, ’s are a mixture of c,-’s and g, ’s, and where p, q\,. . . ,  qm are predicate 
symbols from Ufa, t denotes a list of terms, and C i , . . . , c B are constraints from Ufa. 
Declaratively, the order of the c,-’s and ^ ’s is not important, but operationally it is 
usually better to collect the constraints as early as possible, so that assignments of 
values by the predicates of the logic programming part of the program are only made 
if they are consistent with the constraints. The advantage of this is that pruning 
happens early. This is called “constrain then generate” as opposed to the traditional 
Prolog methodology of “generate then test” . Constraints may be thought of as active 
tests: if failure will eventually occur in a branch of the search tree, it is more efficient 
if it happens early.

2.4 Algorithms

During the execution of a program, sets of constraints are collected and tested for 
satisfiability. In the logic programming paradigm unsatisfiability will cause failure, and 
hence backtracking. However, the user does not need to know how this satisfiability 
checking is done, which leads to the ‘black box’ methodology. In fact, the checking is 
done by different algorithms depending on the domain of the constraints.

For example, finite domain constraints are solved by a variety of propagation algorithms 
which seek to establish various levels of ‘arc-consistency’ [55, 61]. One way is to select 
for each variable (node of a graph) a value which remains in its domain. Use the 
constraints on that variable (arcs or edges in the graph with the node at one end) to 
remove incompatible values from the domains of the other variables to which the first 
one is related (thus enforcing arc-consistency). Check that the other domains have at 
least one value remaining in their domains. If not, the choice for the original variable 
was incorrect, and the original value should be removed from its domain and another 
one chosen (backtracking).

There is a trade-off between the amount of consistency enforced at each node and the 
number of nodes visited. These trade-offs are embodied in different algorithms, named
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from AC-1 to AC-7. There are also trade-offs concerning how to decide which variable 
to start with, and which value should be initially chosen. Extensive empirical research 
suggests that the variable with the smallest current domain should be chosen first, 
known as the first-fail heuristic, but that it is not usually worth considering which 
value to give it. Recently there has also been a theoretical analysis of which algorithms 
should be used. See the following papers and the references that they contain for more 
on propagation algorithms: [53, 56, 57, 65, 73].

Another example is the case of linear equations and inequalities over the reals, which 
can be resolved using the Simplex algorithm, a version of which is implemented in 
CLP(77) [43]. The Simplex algorithm is based on symbolic manipulation, similar in 
philosophy to the method which might be used in the example earlier (x +  y =  4, 
x — y =  2). However, it is limited to linear systems. Algorithms exist for polynomi-
als but their theoretical complexity is much worse, and also trigonometric and other 
complicated functions cannot be included. Therefore, interest has also been shown in 
interval methods [76]. These work by starting from a maximum and minimum possible 
value for each variable, and then propagating this information via the constraints, in 
a manner not wholly dissimilar from arc-consistency. It is possible that accuracy will 
be lost, but the advantage of this method is that it can be used when the constraints 
contain inequalities, polynomials, and complicated functions, in fact almost anything 
which can be expressed mathematically.

Ideally, the treatment in this section and the previous one should have been conceptually 
uniform. However, historically languages and solvers developed separately, languages 
within the logic programming community and solvers in AI and OR (Operations Re-
search). Therefore they have their own separate terminology. In fact, this is not as 
important as it might be, because most of the issues in the two areas are orthogonal.

In the rest of this thesis we will continue to refer to some of the concepts outlined 
above. Some precision will be required and therefore we end this chapter by presenting 
various useful definitions.

2.5 Why over-constrained systems arise

Over-constrained systems may arise in various ways:

1. mistake in specifying  or applying the system: in a language such as Pascal, 
a large class of errors will lead to a failure of the program to compile. For example, 
if we mis-measure an aspect of the world (e.g. a task in fact takes 1 hour, but we 
measure it as taking 25 hours), or if we mis-type a measurement when entering it 
into a computer (e.g. typing 11 hours instead of 1), then a strict use of Pascal’s 
data-types may catch our mistake, especially the first one.

However, in a constraint-based language, similar mistakes will not prevent com-
pilation, but will usually cause queries simply to fail. The logical reading of 
such a failure is that a set of constraints is unsatisfiable, i.e. the system is over-
constrained, even though we might characterise it differently, just as a ‘bug’ .
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2. composition: the composition of two self-consistent specifications or models is 
inconsistent (‘feature interaction’), for example some English electrical equipment 
and an American plug — different voltages

3. expressivity: standard (i.e. non-preferential) constraint languages are not rich 
enough. Specifiers sometimes realise that some of their constraints are less im-
portant than others. If they only utilise the most important ones, they get far 
too many solutions. But if they add in all the less important preferences, they get 
no solutions at all. The problem goes from under-determined to over-determined 
in one step. If they have access to a preference system such as HCLP instead of 
CLP, they can express both important and less important constraints, without 
worrying that the latter will impinge upon the solvability of the former.

Consider the following example from Prof. Barry Richards of Imperial College 
[Private Communication]:

We were once asked to model the timetable for an airline. The model 
we created from the information supplied to us had no solutions; there 
were certain hard constraints which could not be “squared” with the 
data. We checked and checked our work for mistakes, until eventually 
we approached the client and admitted that we had a problem which 
we could not solve. They replied that they knew the model had no 
solutions, but all the appropriate staff knew that they had to “relax” 
certain constraints to preserve the timetable!

Note that it is clearly impractical to expect the airline to label every single con-
straint with a strength of preference just to avoid this local inconsistency. It 
would also be very difficult to discover a single global distance function (or cost 
or objective function) which could lead to the relaxation of only these few con-
straints.

In our opinion the first reason is difficult to avoid: humans make mistakes. Good 
programming language design may catch some errors, but probably not the majority; 
however this is outside the scope of this thesis. Instead, we concentrate on composition 
and expressivity.

2.6 Example a

In this section we present the natural language specification of a simple over-constrained 
system which we then model using binary finite domain constraints. We will re-use 
this example at intervals throughout the thesis, so that the similarities and differences 
between various approaches become clear.

Consider the problem of choosing matching clothes (example adapted from Freuder 
and Wallace [33]). A robot wishes to wear a shirt, some shoes, and some trousers, 
and wants them all to match each other. There are various choices for the different 
items and various constraints between them. We can easily model this using three
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finite domain variables with a number of binary constraints between them. If we use 
the letter S to denote the variable for shirts, then we can use F for shoes (footwear) 
and T for trousers. The domain of the shirt variable will be S :: {r , re} for red and 
white respectively, and similarly shoes and trousers will have domains F :: { c , s }  for 
cordovans and sneakers, and T :: {b, d, g}, for blue, denim, and grey. A constraint that 
shirts must match footwear will be denoted Cs f , and so on. Then, using Freuder and 
Wallace’s assumptions about which clothes go with which, the complete problem can 
be expressed as follows (we will call this model a )1:

S :: {r , w }, F :: { c ,s } ,  T :: {b ,d,g}

Cs t  ■■ { (r,g) ,  (w, 6), (w, d)}, CFT "  {(s , d), (c ,g ) } ,  CSf  "  {(w , c )}

This problem is over-constrained; it has no solutions. We can see this by choosing 
the red shirt, and tracing the implications of this choice. We must choose the grey 
trousers, which forces us to choose the cordovans as footwear. But according to Cs f , 
the cordovans only go with the white shirt. Contradiction. We can trace the effects of 
choosing the white shirt in the same way, also arriving at a contradiction.

We can ask why this situation has arisen. It is not because the robot or its designer 
have made a mistake in specifying or applying a model. We do not in fact know 
what has led the designer here, but it could be because the problem of choosing shoes 
has been composed with the problem of choosing shirts and trousers. Or it could 
be because the model can only express one uniform predicate that a certain item of 
clothing matches a certain other, with the same level of preference for each instance 
of this notion. Whatever the reason, we need to consider some way of relaxing or 
weakening the problem until solutions can be found. Various possibilities are discussed 
throughout this thesis.

2.7 Definitions

2.7.1 Valuations, solutions, and satisfaction

The definitions in this and subsequent subsections are not necessarily all standard, 
i.e. they may differ from usage elsewhere in the literature, but they are useful for our 
purposes. Some of the definitions and comments were kindly suggested by Michael 
Maher [Private Communication].

A valuation is an assignment of one value from its domain to each variable in a 
constraint problem.

A valuation is said to satisfy a constraint if the constraint is true in that valuation.

1 In fact, unless there are elements in the domain of a variable which do not appear in any constraint, it 
is redundant to state individual variable domains explicitly: we can always reconstruct them by saying 
that U :: {i \ ( i , j ) g Cuv or (k, i) € Cwu, for all j ,k,  V, W} .  Therefore the formal definition of the 
problem only includes the second of the two lines above.
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A solution to a problem is a valuation which satisfies all the constraints in the problem.

A constraint problem may have many solutions which can be represented in shorthand 
using the various constraint symbols allowed in the input, and not just equality. For 
example CLP(77), which has the real numbers as one of its domains, expresses solutions 
using < , <, etc. The constraint problem { X  > 3, X > 4} has infinitely many solutions, 
which CLP (77) represents by { X  > 4 } .

2.7.2 Entailment, consistency, and contradiction

a |= c A set of constraints a entails a constraint c, written a \=  c, if, in every model 
(valuation) where all the constraints in o  are true, c is also true.

a c A set of constraints a does not entail a constraint c, written a c, if there 
exists at least one model in which all the constraints in a are true but c is not 
true.

<7 A c |= -L A set of constraints a contradicts a constraint c, written a A c [= J_, if 
there does not exist any model in which all the constraints in a are true and c is 
also true2.

f f A c J i l  A set of constraints a is consistent with a constraint c, written a A c ^  J_, 
if there exists at least one model in which all the constraints in a are true and c 
is also true.

[derived] A set of constraints a is inconsistent or over-constrained if it contains a 
subset s C. a and a constraint c £ a such that s contradicts c. This can be written 
cr (= _L, but in fact we will not subsequently need to use a symbolic description.

Note that the definition of ‘does not entail’ is not the same as the definition of ‘is 
consistent with’ .

We abuse language by stating that some individual constraint entails (or contradicts or 
is consistent with) another, when we should really say that the singleton set containing 
the constraint entails (or contradicts or is consistent with) the other.

As we require (Appendix A) that equality is part of the language of all constraint 
domains, an assignment can be represented as an equality constraint. Therefore a 
valuation can be considered as a set of constraints, and hence as a constraint problem. 
When considered as a problem in this way, a valuation has precisely one solution, 
namely itself. Consequently, we may say that a valuation (qua valuation) satisfies a 
particular constraint, or we may abuse jargon slightly by saying that a valuation (qua 
constraint set) entails a constraint, to the same effect.

As a valuation has precisely one solution, if a valuation is consistent with a constraint 
then it entails it, and if a valuation does not entail a constraint it must contradict it.

2We could also write this as a U { c} |= _L, but we choose not to, as union sometimes represents 
conjunction (as here, when we are combining problems) but sometimes represents disjunction (when 
combining solutions).
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This is one of the reasons why we are often only concerned with the distinction between 
entailment and contradiction, and can ignore the other two definitions.

2.7.3 Metrics, metric spaces, metric comparators

A metric space is a mathematical concept arising in topology (see e.g. [59]). A metric 
space is defined to be a set S with a function d defined over S X S —> R such that:

d(x, y) > 0: the distance between any two points is a non-negative real number

d(x, y) =  0 &  x =  y: the distance between two points x and y is zero iff they coincide

d(x,y)  < d(x, z) +  d(z, y): the ‘triangle inequality’ holds — the direct distance be-
tween two points is never greater than the indirect distance via a third point

In the theory of Partial Constraint Satisfaction Problems (PCSP, see Chapter 4 and 
[31, 33]), Freuder and Wallace use the word metric to mean a function over the space 
of problems which returns some notion of the distance of one problem from another. 
One can see why they chose this name, but in fact it is slightly misleading, as they 
do not need the third condition listed above, and conceivably might not even need the 
second3. More importantly, this term might cause confusion with the HCLP notion of 
a ‘metric comparator’ (see below). Consequently, in this thesis in the context of PCSP 
we will use the term distance function instead of ‘metric’ .

In the theory of Hierarchical Constraint Logic Programming (HCLP, see Chapter 3 and 
[8, 83, 85]), Borning, Wilson, and others use the term metric comparator to mean a 
mechanism for comparing two solutions of a constraint problem, where the constraint 
domain has what they call a metric over it. (Again, the authors do not in fact need 
the triangle inequality to hold in the spaces which interest them.)

A distance function (PCSP-metric) measures the distance of one Constraint Satisfaction 
Problem from another in problem space, where the second is a relaxation or weakening 
of the first. An HCLP metric comparator measures how well a valuation satisfies a 
constraint, when the constrained variables range over a metric domain (a value space, 
as opposed to a problem space). Metric comparators are explained in more detail in 
our presentation of HCLP in Chapter 3; here we just to wish to emphasise that they 
are not the same as PCSP metrics.

2.7.4 Predicate and metric error functions in HCLP

In HCLP, comparators are divided into the two classes ‘predicate’ and ‘metric’ , de-
pending on whether they use a predicate ‘error function’ or a metric one. The concept 
of an error function captures the notion of the error of a valuation 0 with respect to a

3Maher feels that these criticisms are unfair; the word ‘metric’ is often used simply to mean ‘concerning 
measurement’ without implying formalisation as a metric space [Private Communication],

20



particular constraint c, and is written as e(c9) or e(c, 9). Error functions are defined as 
returning a non-negative real number; they return 0 only if the constraint is true in that 
valuation. In the literature, e is presented as having one argument c9, i.e. the result 
of applying 0 to c. We prefer to think of e as taking two arguments, written e{c,9),  
and then stating explicitly what it means to apply a valuation to a set of constraints. 
We do this below, separately for the two classes of error function. (It is just a minor 
aesthetic issue. [Sebastian Hunt, Private Communication].)

The simplest error function returns the value 0 if the constraint is satisfied by the 
valuation, and 1 otherwise. Borning and Wilson call this a ‘predicate error function’ 
which is slightly misleading as it is not a predicate in the logical sense; it returns 0 or 
1, not true or false. However, we will continue to use their terminology to be consistent 
with the literature. The informal definition of this error function given by Borning and 
Wilson is completely clear, but is not backed-up with a formal one. Therefore we offer 
the following:

e ( c , 0 )
0, if 9 \= c
1, if 9 A c \= T

As a valuation has precisely one model, the two cases in this definition are sufficient to 
cover all four definitions in the list presented in Section 2.7.2, as is discussed there.

If the constraint domain has a distance function defined over it which satisfies the first 
of the conditions for a metric space, and if a particular valuation 9 does not entail some 
constraint c, then we can ask by how much c remains unsatisfied. This calls for the 
use of a ‘metric error function’ , another notion which is defined clearly but informally 
in the standard literature. (We provide a formal definition in the next paragraph.) As 
an example, consider the constraint c =  lX  > 3’ and the valuation 9 =  lX  =  1’ . If we 
wish to know how well or badly 9 partially satisfies c, we must chose a valuation which 
completely satisfies c, and calculate its distance from 9. Formally speaking, in the 
previous sentence ‘partially satisfies’ actually means ‘does not satisfy’ , and ‘completely 
satisfies’ just means ‘satisfies’ , but the motivation for this usage is clear, c can be 
completely satisfied by many different valuations such as X  =  3, X  — 4, X — 5, etc., 
and so the error for the valuation X  =  1 might be 2 (i.e. 3 — 1), 3, 4 etc. We cannot 
choose the appropriate valuation a priori, but it is clear that in general we ought to 
take the minimum of the errors. (For example, when asking how far a point is from 
a line, we are assumed to want the distance to the nearest part of the line, i.e. the 
minimum distance.)

Another issue is that c may constrain more than one variable. We will denote the 
tuple of all the variables in c by x  (bold a;). Let 9 |x and <f>\x denote the projection of 
two valuations 9 and <f> respectively on to the variables in x, and let d be the distance 
between two points in valuation space. If x  only contains one variable, we can imagine 
that d(u, v) =  | u — v |, as was done in the example in the previous paragraph. But if 
there is more than one variable in c we must decide how to combine their individual 
distances. (For example, we could use the distance along each dimension separately, or 
we could consider the diagonal distance, etc.) Having chosen d , and considering all of 
the above, we can formally define the metric error function e (c , r )  as follows:
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e(c,0) =  min{d(0|x, <j>\x) | <£ N c }

Different definitions for a number of the terms that we have defined in this section are 
given by Satoh and Aiba [69]; the net effect is similar to ours, but they have many 
differences of detail.
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Chapter 3

HCLP —  Hierarchical Constraint 
Logic Programming

The Hierarchical Constraint Logic Programming (HCLP) scheme of Borning, Wilson, 
and others [8, 83, 85] greatly extends the expressivity of the general CLP scheme [41]. 
A semantics has been defined for HCLP [83, 84] and some instances of it have been 
implemented [60, 83]. There is also related work by Satoh [68].

The presentation in this section is adapted from Wilson’s thesis [83], which should 
be referred to for more details and examples. Other references are also available e.g. 
Borning, Freeman-Benson and Wilson [7], and Wilson and Borning [85]; the second of 
these includes a discussion of the logic programming aspects of HCLP, such as goal- 
reduction, disjunctions of clauses, and so on.

3.1 Formulation

The Hierarchical CLP scheme includes both required and optional constraints. The 
HCLP scheme is parameterised not only by the constraint domain V  but also by the 
‘comparator’ C, which is used to compare and select from the different ways of satisfying 
the soft constraints.

An HCLP clause has the form

p(t) b\ ( t ) , . . . ,  bm+n (t ) .

where the bfs are a mixture of /,ct’s and g,-’s, and where t is a list of terms, p, qi, . . . ,  qm 
are atoms and l\C\, . . . ,  lncn are labelled constraints i.e. constraints annotated with a 
strength level /. A program is a bag (multiset) of rules, and a query is a bag of atoms. 
The strengths of the different constraints are indicated by a non-negative integer label. 
Constraints labelled with a zero are required (hard), while constraints labelled j  for 
some j  > 0 are optional (soft), and are preferred over those labelled k, where k > j .  A 
program can include a list of symbolic names, such as required, strongly-preferred, etc., 
for the strength labels, which will be mapped to the natural numbers by the interpreter.
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If the strength label on a constraint is omitted, it is assumed to be required. As can 
be seen, this standard definition assumes that the strength levels are totally ordered, 
which is an assumption we will continue to make in the rest of this thesis. However, 
partially-ordered hierarchies are briefly discussed in Section 3.5.5.

Goals are executed as in CLP, except that initially non-required constraints are ac-
cumulated but otherwise ignored1. If there is more than one solution to a goal, the 
accumulated hierarchy of optional constraints is then solved, thus refining the valua-
tions. The method used to solve the non-required constraints will vary from domain to 
domain, and for different comparators within a given domain.

The constraint store a (a set) is partitioned into the set of required constraints 5o and 
the set of optional ones Si. The solution set for the whole hierarchy is a subset of the 
solution set of So, such that no other solution could be ‘better’ , i.e. for all levels up 
to k, this solution is at least as good as all others, and for level Sk+i this solution is 
better, in terms of some comparator. Backtracking and incomparable hierarchies give 
rise to multiple possible solution sets, each a subset of the solution to Sq .

3.2 Comparators

3.2.1 Definitions

A constraint hierarchy is a finite bag of labelled constraints. Given a constraint hier-
archy H, Ho is a sequence of the required constraints in H, in some arbitrary order, 
with their labels removed. H i is a sequence of the strongest non-required constraints 
in H (with their labels removed), and so on up to the weakest constraints H n, where 
n is the number of non-required (optional) levels in the hierarchy. For completeness, 
Wilson also defines Hjt =  { }  for all k > n.

A valuation function for a bag of constraints over the domain V maps the free vari-
ables in (some of) the constraints to elements of V. A solution of a hierarchy is a 
set of valuations for all the free variables in the hierarchy. The first requirement of 
HCLP is that all the valuations in the solution set satisfy the required constraints. In 
addition, each valuation must satisfy the optional constraints at least as well as any 
other valuation in the solution set. In other words, there can be no valuation which 
satisfies the required constraints and which is “better” than the one being considered. 
There are a number of different ways to compare valuations, which give rise to different 
definitions of “better” . The methods are called comparators. Solution sets and various 
comparators are formally defined in the following sections. *

lrrhis is an implementation detail but, while it is not essential, it helps us to understand the differing 
roles of required and optional constraints. Menezes et al. use an alternative ‘optimistic’ strategy [60],
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3.2.2 Summary

Certain comparators can be used with any domain. For example, a ‘predicate’ com-
parator prefers one solution to another if it satisfies more constraints at some level (and 
an equal number of constraints at all previous levels). However if the domain has a 
metric (such as the real numbers) it is possible to ask how far from the preferred answer 
a solution is, in which case one might prefer fewer constraints to be exactly satisfied if 
the distance of the answer from a given point can be minimised. Weights can be used 
within a particular level of the hierarchy in order to influence the solution, but a heavily 
weighted constraint in a given level is completely dominated by the lightest constraint 
in any more important level. Wilson calls this property ‘ respecting the hierarchy’ [83]. 
Because weights cannot have an effect outside their own level of the hierarchy, and in 
order to simplify the subsequent presentation, we will not consider them further in this 
thesis. They can, however, be easily incorporated into all our theories and formalisms.

In the rest of this thesis we mainly consider the unsatisfied-count-better (UCB) com-
parator, which is quite simple to understand and which can be defined over any do-
main2. Basically, one valuation is better than another if it leaves fewer constraints 
unsatisfied (or equivalently, if it satisfies more constraints).

Definition:
A solution 6 is unsatisfied-count-better than a solution o  if it satisfies as many con-
straints as o  does in levels 1 . . .  k — 1, and at level k it satisfies strictly more constraints 
than o.

Quite a lot of the other work on HCLP considers a different comparator, locally- 
predicate-better (LPB), which is slightly less discriminating than UCB but is easier 
to implement in certain situations. Locally-predicate-better is concerned not just with 
the numbers of constraints satisfied by a particular valuation, but by the particular 
constraints themselves. See Section 3.5.1 for a more detailed comparison of LPB and 
UCB.

Definition:
A solution 6 is locally-predicate-better than a solution o  if it satisfies every constraint 
that o  does in levels 1 . . .k  — 1, and at level k it satisfies a strict superset of the 
constraints satisfied by o. (If 6 and o  satisfy different constraints then they are incom-
parable and both will appear in the solution set.)

The following sections contain a more detailed presentation of comparators.

3.2.3 Error functions

To compare valuations, HCLP begins by considering how well a particular valuation 
satisfies a single constraint. The error function e(c6) returns a non-negative real number 
which indicates how well a valuation 6 satisfies constraint c, where c6 denotes the result

2Thanks to Michael Maher for emphasising the difference between UCB and LPB and for noting that 
UCB is more appropriate for our work [Private Communication].
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(In certain circumstances later in this thesis, one of the sequences might be shorter 
than the other. In this case a sequence is always considered lexicographically earlier 
than another sequence of which it is a strict prefix.)

We consider a mathematical mechanism for avoiding the use of lexicographic orders 
over sequences in Section 3.5.4.

3.2.5 Solutions to constraint hierarchies

Using all the above definitions, we can now present Wilson’s definition of the solution 
set S of a constraint hierarchy H , by using the comparator defined by the combining 
function g , its associated function G, and the lexicographic order defined by < l g - So 
denotes the solution to the required constraints i.e. ignoring the optional constraints. 
The set 5, whose calculation is the aim of the whole process, is all the valuations in ,5'o 
for which no better valuation exists, as designated by the lexicographic ordering < l g -

S0 =  { 0 | V c e t f o -e(c0) =  O}
S =  {0 | 0 6 So AV<r G So

- ( G ( [E ( f t a ) , . . . ,  E(Hna)}) < LG (G ([E (Hrf) , . . . ,  E (Hn0)]))}

3.2.6  Comparator taxonomy

Wilson defines a number of comparators, each of which embodies a different way of 
defining the set of solutions to a constraint hierarchy. There are three main classes 
of comparator: global, local, and regional3. Remember that the error sequences for 
the constraints at levels are compared using a lexicographic ordering, i.e.
if a solution 0 is better than a solution a , this is because there is some level k in 
the hierarchy such that for 1 < i < k, g(E(ff¿0)) < > g g(E(if,-cr)), and at level k, 
g(E(Hk6)) < g g(E(Hka)).

A local comparator considers each constraint individually. A solution 0 must do exactly 
as well as o  for each constraint in levels 1 .. .k — 1, and at level k, 0 must do strictly 
better for at least one constraint, and at least as well as a for all the others. A global 
comparator combines the errors for all constraints at a given level using the combining 
function g, and only then compares two valuations. A regional comparator considers 
each constraint at a given level individually, similarly to a local comparator. But two 
solutions that are incomparable at a stronger level may still be compared at a weaker 
level, unlike a local comparator, leading to one being discarded. Therefore, in general 
a regional comparator will discriminate more than a local one.

We can define various classes of comparators, each using a specific combining function 
g and relations < > g and < g. Then within each class, the choice of error function will 
specify the individual comparator.

3It would be more intuitive if the names global and regional were swapped, but we will stick to the 
standard HCLP usage.
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The class of global comparators includes weighted-sum-better, worst-case-better, and 
least-squares-better-, the constraint errors within each level are combined by taking 
the weighted sum, the weighted maximum, and weighted sum of squares respectively. 
Typical local and regional comparators form the classes locally-better and regionally- 
better.

For weighted-sum-better, g(v)  =  X)[=i w%vi• Worst-case-better has £f(v) =  max{ii),t),' | 
1 < i <| v  |} and least-squares-better has #(v) =  I^i=i wivf • 1° all three cases, < g is 
defined as for the reals, and < > g is equivalent to =  for the reals.

For locally-better, g(v) =  v and < > g and < g are defined as follows:

v < g u =  V i ■ Vi < Ui A 3 j  such that Vj < Uj
V < > g U : V i • Vi =  Ui

Regionally-better has g(v)  =  v, and < > g and < g defined as follows:

v < g u =  V i • Vi < Ui A 3 j  such that vj < Uj
V <>S U =  -i((v <g u) V (u < g v))

Independent of the choice of a global, regional, or local combining function, an error 
function also needs to be selected. Locally-predicate-better (LPB) is locally-better using 
the simple error function that returns 0 if the constraint is satisfied and 1 if it is not. 
Locally-metric-better is locally-better using a domain-dependent metric for computing 
the errors for each constraint for each valuation. We can define weighted-sum-predicate- 
better, weighted-sum-metric-better, etc, in a similar way.

If we consider weighted-sum-predicate-better with weights of 1 on every constraint, we 
get unsatisfied-count-better (UCB). It simply counts the number o f constraints which 
are left unsatisfied by a valuation. (The order induced by UCB is the same as the one 
we would get by counting the number of constraints satisfied by each valuation, and 
choosing the highest score. However, in general, we wish to consider scores as errors, 
and so we would like lower scores to indicate more preferred solutions.)

Wilson gives reasons why the unweighted predicate versions of the other two global 
comparators are not very useful, and so she chooses to use the shorter names worst- 
case-better and least-squares-better (LSB) to refer to the metric variants.

Wilson uses the terminology bettered, a, H ) as shorthand for

G ([E (£ fif f ) , . . . ,E (fr Il(7)]) < l g  G ( [ E ( ^ ) , . . . ,E ( ^ 6 > ) ] )

This terminology makes it easy to express the relational properties of comparators: 
they are all irreflexive i.e. V # V H ■ ->better(6, 0, H). Many of them are transitive:

V#,cr, r, M H • bettered, a, H) A better(cr,T, H) —>• better(d,r, H)
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The regional comparators are not transitive, because their < > g relations are not tran-
sitive. However, better will always be transitive when the comparator’s < > g relation 
is.

All comparators must be defined so as to give rise to a better that respects the hierarchy 
i.e. any number of weaker constraints can be violated if the alternative is to violate a 
single stronger constraint. More formally, if 5b contains a valuation that completely 
satisfies all the constraints up to level k, then all the valuations in S must satisfy all 
the constraints up to level k:

if 3 # € 5 b A 3 f c > 0  such that V i £ l . . . k \ / c £  Hi-c9
then V a G S V i G 1. . .  & V c £ Hi ■ c6

3.3 The disorderly property of HCLP

Wilson discusses a very simple but powerful example in her PhD thesis [83], which 
shows the non-monotonic, hence non-compositional, nature of any variant of HCLP 
which respects the hierarchy.

Wilson defines the ‘orderly’ property as follows: Let P and Q be constraint hierarchies, 
and let S{p}(C) be the set of solutions to the hierarchy P when comparator C is used. 
Then C is orderly if *S{pUQ}(C) C S{py(C), where we use U to stand for constraint text 
union (constraint conjunction). A comparator which is not orderly is disorderly.

Proposition 1:
Any comparator which respects hierarchies over a non-trivial domain V is disorderly. 

Proof (Wilson [83, Section 2.5.3]):
Let P =  {weak X = a} and Q =  {stron g  X = b } for two distinct elements of V, 
a and b. (The existence of distinct elements is what makes V non-trivial.) S^pj(C) 
will contain the valuation which maps X to a, and if C respects the hierarchy then 
5'{pu<3}(£) will contain the valuation which maps X to b. So S{pu q j (C) % 5{p}(C), so 
C is disorderly. □

The disorderliness of HCLP is very important, as we shall see in Part IV where we 
discuss compositionality in more detail.

3.4 Example a in HCLP

Each of the binary constraints in the example called a in Section 2.6 are satisfiable in 
themselves. It is only when we combine them that we arrive at an over-constrained 
system. HCLP resolves this situation by changing the relationship between different 
constraints, by treating some of them as more important than others.

The specifier of the problem might be asked to order the constraints by how important 
they are. The result might be that it is an absolute requirement that the shirt matches
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the trousers whereas it is not a requirement that the trousers match the shoes, but it is 
a strong preference. It would be nice if the shirt could also match the shoes, but that 
is only a weak preference:

required C s t , strong C f t , weak C s f

Using any comparator will give the same results in this case4: (r , c , g ) (red shirt, 
cordovans, grey trousers) and (w ,s ,d ) (white, sneakers, denim). The blue trousers b 
do not match any item of footwear and so are less preferred according to the strong 
constraint. The weak constraint contradicts the others and so is ignored.

Note that it is possible for HCLP to fail to resolve an over-constrained system, if the 
inconsistency arises between required constraints. This is a useful property to have 
in, say, safety-critical situations, where a requirement really is a requirement. But in 
optimisation problems, where we just wish to get a ‘reasonable’ or ‘best possible’ answer, 
a failure might be irritating. The obvious answer is not to have any required constraints, 
labelling them all ‘very-strong’ , say, but this might have efficiency implications for 
certain implementations.

3.5 Discussion of certain issues in HCLP

3.5.1 Comparing two comparators —  LPB and U CB

In this thesis, we mainly discuss HCLP’s unsatisfied-count-better comparator (UCB), 
whereas most of the standard literature uses locally-predicate-better (LPB). In this 
section we compare them from two points of view; how well they capture various aspects 
of a problem, and ease of implementation.

LPB considers one solution o to be better than another, 6, if for all levels of the 
hierarchy from 0 to Ar — 1 they satisfy precisely the same constraints, and at level k 
o  satisfies a strict superset of the constraints satisfied by 6. If the sets of constraints 
satisfied by each solution are neither a subset nor a superset of each other, then the 
two solutions are incomparable and are considered to be equally good. So if 99 people 
want a meeting at 2 p.m. and just one person of equal rank wants a meeting at 3 
p.m., both times are acceptable. In our opinion this is ridiculous. UCB, however, 
would offer 2 p.m. as the sole solution, since a valuation which satisfies 99 constraints 
will be preferred over a valuation only satisfying a single constraint5. When HCLP is

4 This is because comparators select solutions which are best for each constraint within a particular 
level. As there is only one constraint at each level, its solutions will always be preferred. It is the 
hierarchy that is responsible for inter-level effects.
5In fact, as an implementation detail, if we are considering UCB with sets rather than bags of con-
straints, 99 separate instances of the same constraint would collapse into one. (See Section 6.1.2 for a 
discussion of why we use bags and not sets.) However other examples can easily be formulated with 
the same undesirable behaviour that we criticise here. Consider the following set of constraints

required 0 <  X  <  10, strong X  =  2, strong X  >  5, strong X  =  6 

LPB will offer two solutions: X  =  2 and X  =  6. Using UCB gives the intuitively correct answer of a
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implemented in a standard SLD-based logic programming system which returns one 
solution at a time, it is quite possible that the first solution offered to the user in this 
situation will be 3 p.m.

In fact, this is a clue as to why LPB is used so much: it has a good fit with SLD logic 
programming languages and so is very easy to implement in a backtracking environ-
ment. Treating the optional constraints as though they were a special type of predicate 
(ignoring the ‘constrain-then-generate’ paradigm), consider the problem’s search tree: 
each leaf will describe a consistent set of constraints. The set o f preferred solutions will 
be the equivalence class of all equally good solutions, i.e. all the leaves o f the three. 
Therefore, if only one solution is required, the implementation may as well pick the 
leftmost branch.

Many of the applications of HCLP in graphics do in fact only need one solution. (A 
graphics environment [6] provided the original impetus to the development of HCLP.) 
In graphics, the set of constraints specifies the relationship between various objects on 
the screen. When one of them is dragged using the mouse, the others must follow. This 
requires constant re-execution of the same set of constraints, and each execution must 
return the ‘same’ solution otherwise objects might jump around the screen. Borning and 
Wilson’s HCLP (LPB) interpreters satisfy this requirement operationally, even though 
it is not captured by the semantics of HCLP. It would be harder to use UCB under 
this additional requirement. [Thomas Schiex, Private Communication].

With UCB each leaf will have an error score, the number of constraints at that level 
which it leaves unsatisfied, and the preferred solutions will be the equivalence class of 
all leaves with minimal scores. Even if only one solution is required, in principle the 
whole space must be searched. (In practice, one can imagine using branch-and-bound 
methods, but in the worst case this will not lead to any benefit.) In Prolog terminology, 
this process can be though of as taking the s e to f  solutions and then picking the best. 
Clearly, using s e to f  is less efficient than simply accepting the first leaf as is done by 
LPB.

We feel that the trade-off between efficiency and what we consider to be accuracy should 
not be hidden in the choice of comparator. If a solution is genuinely acceptable to the 
user even if it only satisfies one of the constraints at a level and other solutions might 
satisfy more, this choice should be made explicitly by defining a new comparator. This 
comparator might be called unsatisfied-count-reasonable or perhaps unsatisfied-count- 
n. Clearly, for n =  1 only one branch of the search tree would need to be examined.

The meeting example partly explains why we prefer UCB: it gives what we consider 
to be the intuitively correct results. Related to this, UCB is sensitive to whether the 
collections of constraints are sets of bags. If bags are used, composition o f preferences 
from different problems can be defined precisely, whereas LPB is insensitive to the 
choice. Composition, and our choice of bags instead of sets as in standard HCLP, are 
discussed elsewhere in this thesis.

However, we recognise that the situation is not black-and-white; one advantage of LPB

single solution X  =  6. We will continue with the example in the main text as it makes LPB’s behaviour 
so clear.
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is that in certain circumstances an SLD-based implementation could provide the user 
with the first solution even if certain other parts of the computation, further to the 
right in the tree, would be infinite. An implementation of UCB could not tolerate 
such a situation. However, we feel that this advantage is not sufficiently important to 
override our other concerns.

3.5.2 Implementations of HCLP

DeltaBlue [29, 67] and SkyBlue [66] are designed for an HCLP approach to user-interface 
construction and are efficient for repeated solving of a relatively simple set of constraints 
(e.g. when a mouse moves the end of a line). But DeltaBlue cannot cope with multiple 
output variables or with cycles (see below), and SkyBlue copes with them only be 
invoking a separate solver (for example, one based on Gaussian elimination or the 
Simplex method). DeltaBlue has been shown to be optimal for its task by Gangnet 
and Rosenberg [35]. Both DeltaBlue and SkyBlue provide one solution chosen non- 
deterministically, as opposed to our work which provides all solutions. (Borning has said 
[Private Communication] that in general his applications only need the first solution.)

The notion of a cycle arises due to the operational nature of the solving attempted by 
these algorithms, in which a constraint such as A =  B +  C is considered to be solvable 
in three different ways (by three different ‘methods’) namely A:=B  +  C, B:=A  +  C, 
and C:=A +  B. Then the two constraints A =  B +  C, B =  C +  D may or may not form 
a cycle, depending on the particular methods chosen to solve them. Most constraint 
problems outside the domain of user-interfaces will contain many cycles, and anyway 
one of the key advantages of the constraint paradigm is its declarative nature.

3.5.3  Labelling predicates as well as constraints

In this thesis, we are really concerned with constraint solving and not constraint logic 
programming (see Section 2.1). This split is acceptable because, we claim, solving is 
mostly orthogonal to programming. This would not be completely true if we allowed 
strength labels on predicates as well as on constraints. Standard HCLP, as introduced 
earlier in this section, assumes all predicates are required and only constraints can be 
optional. In the rest of this subsection, we will consider two possibilities for augmenting 
HCLP with labelled (optional) predicates. We do not develop this further in the rest 
of this thesis, as it is not necessary, as is shown in the next section.

3.5.3.1 Source level transformation

In standard HCLP a rule is of the form

a : —IiCi, I2 C2 , ai, 02, 03.

where l\C\ is a labelled constraint, but oi, 02 etc. are unlabelled atoms /  calls to predi-
cates. It might seem that this restriction limits the expressiveness of the language. But
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this is not generally the case, as can be shown by the following example6:

Consider the facts

is_h a p p y (fre d ). 
is_happy(ann). 
is_ m a rr ie d (fre d ).

We can ask if the query

? -  . . . i s_happy(X) , strong is_m arried(X) . . .

can always be re-written

? -  . . . i s_happy(X) , is_married(NewVar), strong NewVar = X, . . .

where the call to is_m arried is required to succeed, but will always succeed because 
it involves a brand new unconstrained variable.

The answer is ‘yes’ , except in certain error situations: consider the case where there 
are no clauses defining is_m arried(AnyVar), or if it is defined as

is_m arried(X) : -  f a i l .

The transformed query will fail, even though the original query would not. This problem 
can be avoided if we are willing to transform the program as well as the query [Jean- 
Marie Jacquet, Private Communication], Assuming an SLD computation rule, if we 
change the code for any predicate which has a strength label by adding a cut ‘ ! ’ to the 
end o f the last clause in its definition, and then adding another clause afterwards, we 
can avoid failure in this case.

is_m arried(X) : -  f a i l , ! .  
is_m arried(X) : -  tru e .

If we do not wish to transform programs in this way, then the programmer must guar-
antee that he will avoid pathological situations, in which case our query transformation 
is sufficient.

Therefore the mechanism for transforming away any strength-labelled predicates is very 
simple: consider a predicate P, labelled with strength £ , with k arguments variables 
called X\, . .  We must invent k new variables, say t/i,. . . ,  i/*, not used anywhere
else in the program. Then delete the strength label from the predicate P and swap 
new variables for old. Finally create k new equality constraints, each labelled with 
the strength £ , equating corresponding variables ‘£  =  yC. So

C P (x i , . . . , x k) becomes P(t / i , . . . ,  yt), Cxx =  2/1, . .  . ,Cxk =  t/*.

The program transformation is as follows: for each predicate P labelled with some 
strength-label, re-write the final clause of P by adding a cut after the last goal. Then 
add another clause, with body true.

6 Due to Alan Boming [Private Communication]
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Simplistically, the ordinal numbers are defined to allow orderings beyond ‘ infinity’ , 
which is denoted by u  (omega). See e.g. [37] for a formal presentation. It is known that 
there is an isomorphism between the lexicographic order over sequences of integers, and 
the ordinals with their standard order. The isomorphism is established by considering 
an encoding which, for example, converts the sequence [a, b] into the ordinal au> +  b. 
In general, a sequence of integers of length k +  1 such as [n*, rik-i, 2, . . . ,  n2, « 1, no]
can be represented by the ordinal nkU)k +  nk-\ojk~l +  n*_2û ~2 +  . . .  +  n2cu2 +  t iil o +  n0. 
The order over the ordinals so constructed is the same as the lexicographic ordering of 
the original sequences.

3.5.5 Partially ordered hierarchies and ‘sequences’

For a brief overview of the theory of partial orders and lattices, see Section 6.2.

Borning and Wilson briefly mention the subject of partially ordered hierarchies in [7, 
pp. 242-244]. Instead of having required, strong, weak, one can have required, 
{strong, tough}, {weak, wimpy} etc., with the additional fact that strong is stronger 
than weak, tough is stronger than wimpy, but strong and tough are incomparable, as 
are weak and wimpy. They suggest that the solution to such a hierarchy is the union 
of all the solutions to the different possible flattenings of the partial order into a total 
order. In other words, calculate the solution on the assumption that the total order is 
required, strong, tough, weak, wimpy, then calculate the solution on the assumption 
that the total order is required, tough, strong, weak, wimpy, etc etc, then union all 
the solutions together. Quite a lot of work!

However, irrespective of how the solution is defined, it is clear that we can indeed 
imagine partially ordered hierarchies. Then, when calculating HCLP solutions, instead 
of comparing two (totally ordered) sequences (pointwise) using a lexicographic order 
to see which is more preferred, we must compare two partially ordered sets. To do this 
we can use a variant of the following ‘natural’ order:

(cri,T1) <SXT (ct2, t 2) if °\ <s  cr2 and t x < T r2

This approach can be extended to our own work: in Chapter 7, when transforming a 
constraint hierarchy into a PCSP problem, we calculate a set of distance functions, one 
for each level of the hierarchy, and create a single unified distance function by placing 
the results of all these individual functions in a lexicographic sequence. Clearly, we 
could instead construct a partially ordered set of functions, and compare two possible 
solutions pointwise using the natural combination of all the results for the individual 
functions.

Similarly, in our integrated framework for HCLP and PCSP in Chapter 11, we lexi-
cographically order the results of our [_] operator. Again, this work could be easily 
extended to cover partially-ordered hierarchies and distance functions.

We will not pursue this possibility further, as it reduces the clarity of the presentation 
of the formalisms.
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Chapter 4

PCSP —  Partial Constraint 
Satisfaction Problems

All this section is taken from Freuder [31]. See also [33].

Freuder has developed a theory of Partial Constraint Satisfaction Problems (PCSPs) to 
weaken systems of constraints which have no solutions, or for which finding a solution 
would take too long. Instead of searching for a solution to a complex problem, Freuder 
says we should consider searching for a simpler problem which we know we can solve.

Freuder formalises the notion of a Partial CSP by considering three components

<(P, U), (PS, <) ,  (M , (TV, 5 )))

where P  is a constraint satisfaction problem (see Section 2.2.3), U is a set of ‘universes’ 
i.e. a set of potential values for each of the variables in P , (PS, < ) is a problem space 
with PS a set of problems and < a partial order over problems, M  is a ‘distance 
function’ on the problem space, and (A , 5) are necessary and sufficient bounds on the 
distance between the given problem P and some solvable member of the problem space 
PS.

A solution to a PCSP is a problem P' from the problem space and its solution, where 
the distance between P and P' is less than N . If the distance between P and P' is 
minimal, then this solution is optimal.

The necessary and sufficient bounds may be ignored, in which case the sufficient bound 
on the distance between the original and relaxed problems is assumed to be 0, and 
the necessary bound is infinity. In fact, only M  and one of P and PS are generally 
important. (P and PS can be derived from each other.)
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4.1 The problem space

A problem space PS is a partially-ordered set of CSPs where the order < is defined as 
follows and sols(P) denotes the set of solutions to a CSP called P:

Pi < Pi iff sols(Pi) D sols^P2)

Note that the ordering is over problems, but defined in terms of solutions. The problem 
space for a PCSP must contain the original problem P , which can provide the maximal 
element in the order, for standard problem spaces. In the most general case, PS can 
in fact contain Q such that P < Q or such that P  and Q are incomparable. But if 
we take the conjunction of all the constraints in all the problems in PS and create a 
single problem R , then R will definitely be the greatest element in the order. If P has 
no solutions, then sols(P) =  { } ,  which is a subset of all other sets.

The obvious problem space to explore when trying to weaken a problem is the collection 
o f all problems Q such that Q < P, but it may also be useful to consider only some 
of these Qs, i.e. those problems which have been weakened in a particular way which 
makes sense in the context of the system that we are trying to model.

4.2 Weakening a problem

There are four ways to weaken a CSP: (a) enlarging the domain of a variable, (b) enlarg-
ing the domain of a constraint, (c) removing a variable, and (d) removing a constraint. 
Consider the following example due to Freuder: if none of your shirts match your tie, 
you could buy a new tie (variable domain enlargement /  augmentation), you could de-
cide that a certain tie does, after all, go with a certain shirt (constraint augmentation), 
you could decide not to wear a tie (variable removal), or you could ignore clashes be-
tween ties and shirts (constraint removal). (As a comparison with these four methods, 
in HCLP we could decide that the constraint that shirts match ties is simply not very 
important.)

Freuder shows that these can all be considered in terms of (b) above i.e. enlarging con-
straint domains (adding extra pairs to the relation which defines the constraint), (a) As 
we have already decided to consider the domains of variables as binary constraints cxx, 
domain enlargement can clearly be achieved by constraint augmentation, (d) Enlarging 
a constraint cxy until it equals x X y (the cartesian product of the domains) has the 
same effect as removing it altogether, (c) Removing all the constraints on a variable 
achieves the aim of removing the variable itself. See [31].

4.3 One augmentation can create multiple solutions

It it possible to augment one constraint with one extra tuple and yet increase the 
number of solutions by more than one. For example, consider the three constraints 
X Y  =  { ( a , e ) , ( 6, c ) } ,  YZ =  { ( c / , / ) } ,  and XZ  =  { ( a , / ) ,  {b,f),  ( c , / ) } .  There are no
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solutions. Adding the single tuple (c, d) to the domain of the constraint X Y  will 
give rise to the solution X  =  c, Y — d, Z =  f . But if instead we add the single 
tuple ( e , / )  to the domain YZ , we would immediately jump to having two solutions: 
X  — a, Y =  e, Z =  f  and X  — b, Y =  e, Z =  f .

This is similar to imagining two routes from London to Oxford, but none from Oxford 
to Birmingham. Adding just one road from Oxford to Birmingham means that there 
are suddenly two ways to get from London to Birmingham.

4.4 The distance function

Different distance functions1 are possible, but one obvious one is derived from the 
partial order on the problem space. If M(P, P') equals the number of solutions not 
shared by P and P ', then when P' < P the distance function measures how many 
solutions have been added by the relaxation of P. We call this the ‘solution-subset’ 
distance function. Another distance function is a count of the number of constraint 
values not shared by P and P ', i.e. the number of augmentations of P  needed to get to 
P'. This is referred to below as the ‘augmentations’ distance function.

A third distance function called MaxCSP is defined as seeking a solution “that satisfies 
as many constraints as possible” [33]. MaxCSP was studied extensively in the longer 
journal article on PCSP by Freuder and Wallace [33], and is in some ways the most 
important distance function, or the one that is most closely identified with PCSP. The 
journal article shows how PCSP (MaxCSP) fits into the framework of arc-consistency 
and other standard CSP algorithms.

Other distance functions can be defined, including ones based on HCLP-like strength 
labels. Furthermore, Freuder suggests that a distance function may be used which 
will tend to find weakened problems with certain properties, for example one whose 
constraint graph has a certain structure which makes solving it easier (e.g. see [20, 30, 
32]).

4.5 Example a in PCSP

In Section 2.6 we presented an example, a, of choosing which clothes to wear, and then 
relaxed the problem by using HCLP in Section 3.4. We will now consider the same 
example as a PCSP. Remember that the original problem had no solutions, and was 
modelled as follows:

S : : { r ,w } ,  F : : { c , s } ,  T : : {b ,d ,g }
C s t  ■■■ { ( r ,g ) , (w ,b ) , (w ,d ) } ,  C FT :: { ( s ,  d), ( c , g)},  C Sf  ■■ { ( w , c ) } ,

As mentioned in the discussion of PCSP, we only need to consider weakening caused 
by constraint augmentation. If we add a pair (x , y) to a constraint between variables

1 Freuder uses the term ‘metric’ instead of ‘distance function’ . We explain why we have changed this 
in Section 2.7.
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U and V, then we implicitly assume that x is either already in the domain of U or is 
added to it, and y is in, or is added to, V.

Initially, we will only augment constraints with pairs whose elements are in the domain 
o f the variables concerned. Even with this restriction, we can still weaken the problem 
in a number of different ways. For example, consider the following variants on the 
original constraints (additional pairs are in bold):

C's t : {{r,g),{w,b),(w,d),(vi,g)} C  ° FT : {{s,d),(c,g) ,(s,b)}
C'ST : { ( r , £ / ) , ( u ; ,  &),(tM),(r,b)} C "V FT : {(s, d), (c, g), (c, d)}
rim
° 5 T : { (r , f l f ) ,  (w, b), (w, d ), (w,g),(r,b)} /-’ll!

° FT : {(s,d),(c,sO,(s,b),(c,d)}

C'SF ■: {(u>,c),(w,s)}
C "  •: { ( u q c ) ,  (r,s)}
run  • 
^ SF *: {(w, c), (w, s), (r, s)}

Note that the first two variants of each constraint, C' and C", have one additional 
pair, while the third variant contains two additional pairs. The set of augmentations 
we have made is incomplete; other possibilities have not been enumerated for reasons of 
space. The largest variant of a constraint Cuv is U X V, the cartesian product of the 
individual domains. If all the constraints are replaced by their cartesian products, (i.e. 
removed), we would expect to get 12 solutions (as there is a choice of two possibilities 
for two of the types of clothing, and three for one of them).

However, if we calculate all the possible solutions to all the combinations of different 
weakenings, we will get more than 12 because of duplicates. This is because any solution 
involving C'" will also appear in either C' or C". But this is intentional: the PCSP 
problem space does indeed contain problems defined in terms of all three weakenings 
of each constraint C. In this case, we would expect more than 500 solutions when 
duplicates are counted.

Assuming a simple distance function, namely that we prefer solutions involving the 
smallest total number of augmentations, we discover that there are five equally good 
solutions, each with just one of the constraints receiving one extra pair of values. 
One solution is (S, F, T ) =  (u?, s, d), i.e. we can find a set of matching clothes if we 
decide that the white shirt does after all match the sneakers. This solution involves 
C's f  :: i ( w’ c)> (w > s)l- The other four solutions are (iu, c, 6), (w, c, d), (w, c, g), and 
(r, c, (j), including some involving augmentations not listed above.
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Chapter 5

The Ideal System

5.1 Disadvantages of current methods

There are various methods for resolving over-constrained systems in CLP and CSP, 
infeasible systems in linear programming in OR, and some of the knowledge represen-
tation formalisms of AI. They have different characteristics, and some of them have 
been the subject of quite a large amount of work, leading to the existence of robust im-
plementations. Therefore they have many advantages. However, they also have certain 
drawbacks. These are discussed here in the context of each system; their negations are 
summarised alongside their advantages in a later section which lists the characteristics 
of the ideal system.

• In linear programming, Chinneck and Dravnieks have done some work on what 
they term IIS’s (infeasible systems of linear equations and inequalities) [14, 15]. 
They relax each inequality i by adding a distinct new variable e,- to it, and replace 
the original optimisation function with one which minimises the sum of the e’s. 
Any non-zero e in the answer indicates one member of the minimal infeasible 
subset. If that e is then removed and the system solved again, another member 
of the infeasible subset is identified. When all have been enforced in this manner, 
the next attempt fails. In fact their method is more general than this, in order to 
cover cases when there is more than one independently inconsistent subset, and 
in order to include equalities. Drawbacks of the approach are that it

— produces answers which are hard to understand — all the minimally 
inconsistent subsets are produced, which are hard to understand as they 
are somewhat out of context. Taking all the maximally consistent subsets 
instead would produce a flood of very similar solutions.

— is computationally expensive —  if the system as a whole contains n con-
straints and the minimal infeasible subset contains s of them, it is necessary 
to solve s + 1 different problems each of size n. Solving one of these problems 
is hard enough (the theoretical complexity is exponential; in practice most of 
the time much better results can be achieved, but it is still quite expensive),
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and yet the worst case is when n =  s and so one must solve n +  1 problems 
of size n.

• The process supported by the system described by Maher and Stuckey in their 
paper “Expanding Query Power” [58] requires continuous user interaction while 
the solver is running. This interaction cannot be automated therefore the human 
user does too much work when interacting with the computer.

• The disadvantages of HCLP are considered in detail below (Section 5.3). One 
of them is that HCLP requires the user to label every constraint in advance; 
there might be thousands of them and therefore the human user does too 
much work before starting to interact with the computer. Furthermore, correct 
labelling requires a great deal of human expertise. HCLP is declarative, which is 
very useful, but not compositional.

This issue of being required to consider the correct strength label for every single 
constraint could be resolved in another way, which we briefly mention in Sec-
tion 5.4.

• PCSP requires the user to define the distance function. Occasionally this will 
be straightforward, especially if the user has no preferences for certain subsets of 
the constraints or variables, but just wants a global property satisfied. But in 
all other cases it may be difficult to define the appropriate function, just as it is 
difficult in OR to find the correct objective function. Therefore it may be hard 
to model problems. Furthermore, when it is found, such a function may not 
be declarative. This makes it much harder to maintain the model when the 
problem evolves. Other disadvantages of PCSP are discussed in Section 5.3.

In their survey paper, Jaffar and Maher briefly discuss preference systems [42]. They 
criticise some of the OR systems for having objective functions with non-logical be-
haviour. (They also mention some work which addresses this issue.) Jaffar and Maher 
feel that the two approaches of HCLP and OR each have advantages compared to the 
other, in certain areas, but neither is completely acceptable in general. The OR ap-
proach is useful when there is an obvious choice of objective function, but often this is 
not the case; therefore it may be difficult to represent one’s intended preferences. HCLP 
provides a more abstract method of specifying preference (more declarative than encod-
ing preference in some objective function) but it is harder to ‘fine-tune’ [to achieve some 
general or global objective], say the authors, and may produce far too many maximally 
preferred answers. Also, it is hard to detect inconsistencies among these preferences.

5.2 Characteristics of the ideal system

It is hard to define the ‘perfect’ preference system, if indeed such a thing exists. How-
ever, we now present a reasonably complete list of the features we think would be 
useful.
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Important characteristics:

1. enables the declarative expression of preference (equivalent to: does not require 
machine code level of detail to specify distance functions). Declarative behaviour 
makes it easier to maintain systems, and to verify that they satisfy their specifi-
cations.

2. takes account of any user-provided strength labels present. Then the airline staff 
in Richards’ example (Section 2.5, page 17) would have been able to encode their 
knowledge of local relaxations.

3. does not require all strength levels to be stated

4. the theory behind the system is compositional

Other characteristics:

5. output is easy to understand. The user would not be able to choose from a 
flood of n different relaxations, each containing one relaxed and n — 1 unrelaxed 
constraints in the original, as may be the outcome with the linear programming 
approach mentioned previously.

6. allows the expression of required constraints which must not be violated. For 
example, when composing some English electrical equipment with an American 
plug, it is better that the equipment does not work than that it works but electro-
cutes someone. So the safe limits of the equipment should be treated as required 
constraints.

7. can cope when the set of default1 constraints is itself over-constrained e.g. when 
the specifier of the original system had not considered the possibility of composi-
tion.

8. allows the relaxation of the general problem structure (as opposed to changing 
the meaning of individual constraints).

9. allows the relaxation of individual constraints (the opposite of item 8)

Hard-to-quantify characteristics:

Severity: With respect to a mistake in specifying the system leading to an over-
constrained situation, there is a characteristic which preference systems might have 
which is quite hard to quantify, namely ‘severity of response to errors’ . If a mistake

1 In HCLP, unlabelled constraints are assumed to be required. This syntactic convention is to preserve 
backwards-compatibility with CLP. It has the effect that an over-constrained system of unlabelled 
constraints cannot be resolved by HCLP; failure will occur just as in CLP. Therefore standard HCLP 
does not possess the characteristic in this list item. However, it is clear that a very minor change of 
convention would rectify this. In PCSP, of course, the default is that all constraints can be relaxed, 
which is equivalent to a convention that unlabelled constraints are all at the same non-required strength 
level.
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is made when specifying the system and so an incorrect constraint is added to the 
representation, if it is weak HCLP will probably ignore it. If it is strong, HCLP will 
give it high preference, and so the specifier is likely to become aware of it. In PCSP 
with the standard distance function, all constraints are treated equally, and so it is 
possible that the error will remain unnoticed longer than in the HCLP case. We feel, 
therefore, that HCLP is more severe than PCSP; usually this is beneficial as we would 
like to be aware of our mistakes.

Implementability: There is no point in defining the perfect preference system if it 
is not possible to implement it, or if all implementations are guaranteed to be unus- 
ably inefficient. Both HCLP and PCSP are so general that it is possible to imagine 
parameters that would make them inefficient, for example a poor choice of comparator 
or distance function. But both of them have instances which have already been im-
plemented in a sufficiently efficient manner [29, 33, 60]. Indeed Sannella has produced 
the Sky Blue system which contains an HCLP solver sufficiently efficient to be used for 
interactive graphics [66]. Goes, our framework for preference systems which can com-
bine all the advantages of HCLP and PCSP, is more general than HCLP and PCSP, 
and so poor choices of its various parameters will be detrimental to efficiency. However, 
appropriately chosen instances should in principle be as efficient as HCLP or PCSP.

As an example of a system which might be said to have poor implementability, consider 
Satoh’s work on constraint hierarchies [68]. One of the criticisms that has been made 
of his work is that it is based on an undecidable fragment of second-order logic. In fact, 
first-order logic is itself only semi-decidable, so it is not clear whether the pertinent 
criticism of Satoh’s work is decidability per se, or its implications for implementation. 
Note that his theories have in fact been implemented as part of the ICOT programme
[69]. In fact, completely unimplementable systems are unlikely to be publicised.

5.3 Analysis of HCLP and PCSP

If we examine HCLP with the above characteristics in mind, we can see that it possesses 
1, 2, 5, 6 and 8, as well as being more severe on errors than PCSP, and equally 
implementable, at least in principle. Note therefore that HCLP possesses two out of 
the four most important characteristics (printed in bold type).

PCSP benefits from the following characteristics in full: 3, 4, 7, and 9. Therefore 
PCSP possesses the other two of the four important characteristics.

PCSPs output may sometimes be easy to understand (characteristic 5), but this is 
not always the case. For example, if the problem contains n mutually inconsistent 
constraints and the distance function minimises some global property such as total 
number o f constraint augmentations, the user is likely to be presented with n equally 
acceptable solutions. This may or may not be a ‘flood’ , depending on the size o f n, but 
certainly choosing among them may be very difficult2.

2 In one case we examined, a slightly larger version of Example a with four constraints, there were 16 
equally good solutions. Thus the user was required to discriminate between 16 solutions, even though 
the original problem only contained four constraints.
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HCLP

Figure 5.1: HCLP and PCSP have different advantages

HCLP can also suffer from this problem in theory, but only when all n constraints 
are at the same level of the hierarchy and a predicate comparator is used. These two 
conditions must occur simultaneously, and the less likely this situation is, the more 
HCLP benefits by comparison with PCSP on this point. G oes allows but does not 
require the use of different strength levels, and so a flood can always be reduced by 
additional labelling in the relevant area, without needing to label every single constraint 
in the problem.

Proponents of PCSP might claim that it also possesses important characteristic 2, i.e. it 
can take account of any user-provided strength labels present, but this is only true if the 
distance function specifically highlights particular constraints. In fact it is reasonably 
easy to select particular variables and give them a large priority in the distance function, 
by giving them a very large score, but it is difficult to select particular constraints in 
this way. This is also why we claim that standard PCSP does not allow the expression 
of required constraints which must never be violated (characteristic 6). Conversely, in 
HCLP it is easy to give all constraints equal importance, e.g. label them all strong, but 
it is difficult to treat all variables symmetrically.

Summary: HCLP possesses characteristics 1, 2, 5, 6 and 8. PCSP possesses 3, 4, (5), 
7 and 9. We will claim in Part V that implementations of G oes  could possess all the 
separate advantages of these two systems.

5.4 Constraint schemas —  one possible approach to one 
of the disadvantages of HCLP

In this section we briefly describe a possibility which we have not followed in this thesis. 
Our reasons for not doing so are mentioned towards the end of the section.
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HCLP has many good characteristics. But one of its disadvantages is that the user has 
to label every single constraint. An obvious method of avoiding this difficulty would 
be to have patterns or ‘constraint schemas’ so that every constraint with a particular 
pattern is given the same strength label. For example:

Var = Num are required
Var = Num +  Var are strong
Var > Num are strong
Var > Num * Var * Var are weak

This example is motivated by the observation that some equalities between a single 
name and a single number are not really constraints but are definitions of natural 
constants such as n =  3.141.

Another heuristic would be to have a list of variables: any constraint containing one 
or more of these variables is to be labelled ‘ required’ while all the other constraints 
are optional. A variant of this could be related to the issue of composition of two 
problems: any constraint containing variables only in one of the two problems can be 
considered weaker than any ‘glue’ constraint containing variables from both. (Or the 
opposite course could be adopted, in which the glue is considered less important than 
the properties of the individual systems.)

The approach suggested here would mean that an expert in a given domain would have 
to create a set of constraint schemas just once, and then would not have to subsequently 
label all the constraints in individual problems.

(ft might be necessary to put all the constraints into some canonical or normal form 
before applying schemas to them, but this is straightforward.)

This suggestion has the advantage of simplicity, but we did not follow up this idea in 
this thesis for two reasons: (a) it seemed unlikely to work, (b) even if the approach 
was successful, we would only have improved HCLP with respect to one of the char-
acteristics o f the ideal preference system. We now consider these two reasons in more 
detail.

(a) ft seems difficult to discover a set of schemas which capture exactly or even ap-
proximately the labellings that we require. This is partly because there are so many 
different ways of modelling a problem using constraints. For example, in finite domain 
CLP, the day of the week on which an event occurs will probably be represented by a 
single variable ranging over seven possible values. In integer programming, however, 
there would be seven variables each with domain [0,1], representing the truth or falsity 
of a statement such as “The event is on Monday” . Schemas written on the assumption 
that the first of these two representations was going to be used would not work for the 
second.

Furthermore, in the case of composition of two self-consistent systems which contradict 
each other, the constraints which clash are likely to have the same form or pattern. In 
other words, the infeasibility will arise within one of the schema classes. For example, in 
the case of electrical equipment, the British system will contain the constraint V oltage
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= 240 and the American system will contain the constraint Voltage = 110. These two 
constraints will belong to the same schema class irrespective of which of the heuristics 
mentioned above is used. Of course these problems can be overcome by adding strength 
labels to particular constraints manually, but we feel that this is only acceptable if the 
number of constraints needing this treatment is small.

(b) With respect to the list of characteristics of the ideal system, the approach men-
tioned here would only have one extra advantage over HCLP, namely not needing to 
label every constraint. Therefore there would still be a number of characteristics that 
it would not have:

Schemas will not detect mistakes in applying a given schema model to some situation 
for which it was not designed — there will always be a default labelling for constraints 
not covered by one of the schema patterns. Also, semantically different constraints 
which happen to have the same pattern as a schema will not be detected. Schemas 
will not detect mistakes in modelling a particular instance within the correct schema 
class (for example Voltage = 2400). Schemas do not aid expressivity, in fact they 
may reduce it; certainly they are less flexible than full HCLP. And finally, as discussed 
above, in our opinion schemas will only have limited success in resolving contradictions 
arising from composition.

For these reasons, and because schemas would not subsume PCSP, and because an al-
ternative approach (G oes) seemed likely to be more fruitful, we decided not to develop 
this idea further.

5.5 Issues we will not analyse or investigate

In this thesis we are not really concerned with the (logic) programming aspects of CLP. 
A collection of constraints arrives at the solver and is found to be over-constrained. We 
then consider what to do about it; but we are never concerned with the order in 
which the constraints arrived at the solver, how they got there, or whether or not the 
programming language contains back-tracking. Of course PCSP is not a Constraint 
Logic Programming language, and therefore it would introduce many irrelevancies into 
the comparison, transformation, and integration of it with HCLP if we were to discuss 
these issues, and also others such as parsing, debugging, parallelism, etc. This is not 
to suggest that these issues are unimportant, just that they are not only beyond the 
scope of this thesis, but are in fact orthogonal to it.

The conceptual separation we have tried to make is not perfect, and decisions at one 
level almost always have effects elsewhere. Therefore we occasionally touch on themes 
which are not directly to do with constraint solving. For example, standard HCLP 
allows strength levels to be used to label constraints but not predicates, and in Sec-
tion 3.5.3 we briefly considered if this affects its expressivity or not. Also, our compo-
sitional variant of HCLP is more easily parallelised than HCLP itself. This is worth 
noting even though parallelism is not our main concern.

Finally, although we have claimed not to be interested in the manner or order in
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which constraints arrive at the store, in actual fact the issue of incrementality is very 
important; if 19 constraints have been processed and a twentieth arrives, we do not 
wish to have to discard all the work we have already done and start from scratch. 
Incrementality is a key motivation for the work on HCLP in Part IV, where its links 
to compositionality are developed. Part of the illustration of this involves a discussion 
of query composition in logic programming (Section 8.5), but what we do not develop 
there is a model of the precise order in which constraints arrive. We have abstracted 
away from that issue, and hence away from the details of, say, SLD implementations of 
(constraint) logic programming languages.
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Chapter 6

Mathematics

6.1 Bags (Multisets)

6.1.1 Standard definitions

Bags, sometimes called multisets, are like sets except that duplicate elements are al-
lowed i.e. la, â  ^  la  ̂ (we use l, ]J to denote bags). In this chapter, we define various 
properties of bags, treating as basic the notion of number of occurrences of an element 
in a bag. In other words, a bag based on some set of elements S' is a function S —1 N; 
see Gries &; Schneider [36]. A brief overview of some of the properties of bags can be 
found in Knuth [52].

By definition, an element which occurs a times in a bag A, and b times in B, occurs a +  b 
times in the additive-union A l+l B, max(a,b) times in A U B, which is the equivalent of 
set-theoretic union, and min (a, b) times in the intersection AC\B. We will not generally 
use A U B in this thesis, and so we feel free to refer to A t+J B as union, rather than the 
more clumsy ‘additive-union’ .

Let e # i?  denote the natural number n of occurrences of the element e in the bag B .1 
E xam ples: a# la, a  ̂ =  2. b#  la, a]j =  0.

A shorthand is to label elements with a superscript indicating the number of occur-
rences. E xam ple: la, â  — la2]. Of course a#lak  ̂=  k.

The membership function e € A returns ‘true’ if e # A  > 0, ‘false’ otherwise. The empty 
bag contains zero occurrences of all elements: V e • =  0.

We can now define union and intersection in terms of # ;  we will follow standard practice

1 Schemes based on bags seem more appropriate for finite domains. But they can also be considered for 
domains where an extensional view would be impractical, such as the reals, if we allow the ‘extension’ 
of a constraint to be written as the union of disjoint ranges. For example, the ‘extensional solution’ 
of the constraints ‘weak X  >  5, weak X  <  10’ is ‘ (X  <  5), (5 <  X  <  10), (5 <  X  <  10), (10 >  X ) ’ 
or, equivalently, ‘ (X  <  5), (5 <  X  <  10)2, (10 >  X ) ’ . Then #  denotes the number of occurrences of a 
range, rather than a single element.
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The above example can be modelled using set union, giving two possible solutions which 
are as good as each other and better than the alternatives. However, we will now show 
that union of sets is not useful in general. Consider a variation of the first example. 
Now David is happy to have a meeting either at 2 p.m. or at 3 p.m., and Bernie would 
be satisfied with either 3 p.m. or 4 p.m. The union of the separate solution sets contains 
three valuations { T  =  2, T — 3, T — 4 }. Of course a meeting can only happen at one 
time, and so a choice must be made. Clearly, two out of the three choices represented 
by this set of solutions are incorrect: T =  2 or T =  4 would only satisfy one person, 
when a solution exists which would be acceptable to both. In this case set intersection 
would have found the correct answer.

It appears that we would like to calculate the intersection of the sets when it would 
not be empty, and the union otherwise. However, a disjunction ( “ . . .  if D fl B =  { } ,  
. . .  otherwise” ) in the definition of the solution is not elegant. Let us instead consider 
union of bags. Then the first example has solution [T  — 2, T =  4 j and the second 
has solution 1T =  2, T =  3, T =  3, T =  4j. The first solution is clearly correct. The 
second is not perfect: ideally we would like just [T  =  3, T =  3j or £T — 3 .̂ However, 
at least the second solution distinguishes between T =  3 and the other possibilities. 
(See Chapter 9 for how to obtain £T =  3, T — 3  ̂ from IT  =  2, T  =  3, T  =  3, T =  4j.) 
Therefore union of bags is preferable to either union or intersection of sets.

Another possibility might be suggested: instead of using sets, use weighted sets. Then 
T  =  3 would be more heavily weighted than T — 2 and T =  4, which in turn would be 
preferred over all other valuations. Then the solution set for the second example would 
be { (T  =  2,1),  ( T  =  3,2),  (T  =  4,1)} .  But this is just another way of representing 
bags! As mentioned in the previous section, formally a bag can be considered as a 
function from elements to N. It does not matter if the result of the function on element 
e is expressed explicitly by (e, n), or implicitly by e , . . . ,  e (n occurrences). As weighted 
sets are slightly less standard, and rather more concrete, than bags, we choose to use 
the latter.

6.1.3  Bags other than of tuples of values

Much of the discussion elsewhere in this thesis is in terms of bags of tuples of values (i.e. 
bags of tuples of elements from the domains of variables). This approach is motivated 
by the fact that the CSP paradigm is committed to this style of representation, and 
so to be able to compare HCLP with PCSP it is necessary to work at this level. But 
we do not actually need to use bags of tuples; we could instead use bags of anything 
which has certain characteristics. We define such entities as SCCs ( ‘soluble combinable 
[simple] constraints’).

What qualifies as an SCC? It depends on the domain. An SCC is required to have 
a certain property (see below); in the context of finite unordered domains, tuples of 
elements do indeed have these properties, and we use them in this thesis for ease of 
presentation.
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In a finite or infinite ordered domains, we can also use bags of disjoint intervals2. In a 
finite ordered domain, the intervals should be closed3. In an infinite ordered domain, 
the intervals should be closed at the value 3 (say) if the constraint being represented 
is X  > 3, but should be open at that end if the constraint is X > 3.

The defining property of SCCs is that they can be combined (bag-union) together 
without invoking the constraint solver. For example it is clear that in finite domains 
la2, b3, c4_51±) 2.61, c1, dl ] =  la2, b4, c5, d1  ̂ without constraint solving (just add the su-
perscripts which indicate number of occurrences). For the real numbers, it is clear to 
the eye that (0 < X  < 10) l±i (5 < X  < 15) =  (0 < X  < 5)1 l±l (5 < X  < 10)2 i±J (10 < 
X  < 15)x; ranges of the sort on the right-hand side would be considered as SCCs as a 
computer can manipulate them “easily” .

In the rest of this thesis we will just consider tuples of values, but we believe that 
everything we say applies to any representation which can be considered as SCCs.

6.2 Lattices

A partially-ordered set (poset) is a set over which a binary relation < is defined which 
is reflexive, transitive, and antisymmetric.

For a poset S with partial order < , then a € S is an upper bound of a subset X  C S if 
for all x £ X , x < a. a does not need to be a member of the subset X . Similarly, b is 
a lower bound of X  if for all x £ X , b < x.

A subset X C S has a least upper bound or infimum a £ S if a is an upper bound of X  
and for any upper bound a of X , a < a. Similarly, a lower bound b e  S is a greatest 
lower bound or supremum of X  if b is a lower bound of X  and for all lower bounds (3 
of X , ¡3 < b. If a least upper bound (denoted lub(X)) exists, it is unique. Similarly for 
greatest lower bounds glb(X).

A partially-ordered set is a lattice if and only if every pair of elements in the set has 
a least upper bound and a greatest lower bound. If every subset of the set also has a 
gib and a lub, then the lattice is said to be complete. All lattices with a finite number 
of elements are complete. All the partially ordered sets which we will consider are in 
fact complete lattices, but we will not need to use many of their properties. For more 
details, see one of the many books on lattice theory, e.g. [19].

2 An interesting presentation of interval constraints can be found in [76],
3 A closed interval is one where the end-points are included in the domain. An open interval does not
contain its endpoints.
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Part III

Transformation
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In this part we present a transformation between HCLP and PCSP. This will show that 
problems which can be expressed in one of these two formalisms can also be expressed 
in the other.
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Chapter 7

Transformations between HCLP 
and PCSP

7.1 Preliminary remarks

HCLP and PCSP are not identical in scope, therefore it is impossible to transform 
all of HCLP into PCSP. However, the work presented in the rest of this chapter is 
complete in the sense that we present transformations for every single aspect which 
can be transformed. First of all, however, we discuss those parts of HCLP which are 
outside the scope of PCSP, and make other preliminary remarks.

7.1.1 Differences which will not be transformed away

Firstly, CLP in general defines a class of programming languages, which place constraint 
solving in a logic programming framework, whereas CSP defines a set of problems, 
techniques, and algorithms. We could embed PCSP in a logic programming framework, 
and then a comparison with HCLP would make sense, or we can ignore the programming 
language aspects of HCLP, and compare the resulting theory of ‘constraint hierarchies’ 
with PCSP. In this chapter we will consider the latter approach, i.e. when we say 
‘HCLP’ we really mean ‘constraint hierarchies’ .

Secondly, CSP techniques are always defined with finite domains whereas the CLP 
framework extends to continuous domains such as the real numbers. We will only 
attempt to transform HCLP(FD); however, we will transform metric comparators as 
well as predicate ones. Metric comparators required a notion of ‘distance’ between 
points in the domain, but there is no reason why this distance cannot be discrete (see 
Section 2.7.3).

Finally, in HCLP the required constraints are special; the difference between required 
and strong constraints is richer than the difference between, say, strong and weak. 
PCSP does not have this special class of required constraints [Borning, Private Com-
munication]. This is discussed further in the next section.
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7.1.2 PCSP with distinguished required constraints

In Section 4, we presented the standard formalisation of PCSPs as {{P, U), {PS, < ), 
(M , {N, S'))). We can modify this to allow us to denote a subset of the constraints in P 
as ‘ required’ , giving a theory which can be called I^CSP. Our additions are in italics:

{ {P,R,  U) , (PS,<) , {M, {N,S) ) )

where P  is a constraint satisfaction problem, R C P is a set of constraints, U is a 
set o f ‘universes’ i.e. a set of potential values for each of the variables in P , {PS, < ) is 
a problem space with PS a set of problems each of which contains all the constraints 
in R, and < a partial order over problems, M is a ‘distance function’ on the problem 
space, and (N, S) are necessary and sufficient bounds on the distance between the given 
problem P  and some solvable member of the problem space PS. A solution to a PCSP 
is a problem P' from the problem space and its solution, where the distance between P 
and P' is less than N, and where all the constraints in R are satisfied. If the distance 
between P and P' is minimal, then this solution is optimal.

In Section 4 we noted that Freuder states that the obvious problem space to explore 
when trying to weaken a problem is the collection o f all problems Q such that Q < P, 
but we also noted that it may be useful to consider only some of these Qs, i.e. those 
problems which have been weakened in a particular way which makes sense in the 
context of the system that we are trying to model [32]. Therefore we note that I^CSP 
can be considered simply as selecting those Qs which satisfy all the constraints in R.

One way to select the appropriate part of the problem space is to choose a distance 
function which gives an infinitely large distance for all other parts. If distance functions 
are generally denoted by /i, from now on we will assume the existence of a particular 
function usually parameterised by a set of required constraints a, which defines a 
distance of zero to any problem which satisfies all the constraints in o , and a distance of 
infinity to all other problems. If T is some arbitrary problem drawn from the problem 
space, then

f 0, if a C T 
1 oo, otherwise

In fact, this definition is sufficient, but not necessary, i.e., any problem given a distance 
of zero will indeed satisfy the required constraints, but some acceptable problems will 
not be given a distance of zero. For example, consider sets of constraints which are 
syntactically different from o but logically equivalent. However, given that PCSP 
does not create new problems arbitrarily but by relaxing constraints from the original 
problem, this definition is acceptable.

Note that the obvious alternative, namely

, . _  i 0, if sols{T) C sols(o)
Pco(<r){ | oo, otherwise

is necessary but not sufficient. It measures any over-constrained problem T to be at 
zero distance from o (as 7” s solutions are the empty set), even if T concerns completely 
different variables and constraints.
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Hoo(a ) t îe ^rst element ° f  the sequence of functions /x =  [/xr, /xs, /xw, ...] parame-
terised by the constraints at each level of the hierarchy. For example, if the comparator 
used is UCB, then /x =  [Moo(<7r)> tJ‘UCB(<r,)i ^UCB(awy  ■ • •]•

The main conclusion of this section is that we can deal with the issue of required 
constraints in a straightforward and localised manner. Therefore, perhaps surprisingly, 
in the rest of this chapter we do not really need to emphasise the difference between 
PCSP and PRCSP.

7.1.3 Distance function and comparator typing

Freuder discusses different PCSP distance functions, and also different types of distance 
functions (where ‘type’ is used in the sense of integers, reals, strings, pointers etc), 
although he does not explicitly use type terminology. One distance function is derived 
from the partial order on the problem space. Then M(P,P' )  equals the number of 
solutions not shared by P and P'. Clearly, this distance function takes two inputs of 
the same type, and outputs a number. Another distance function suggested by Freuder 
is the one which counts the number of constraint values not shared by P and P'\ this also 
has two inputs of the same type, and this would appear to be a general characteristic. 
Sometimes the initial problem P is used by the distance functions implicitly, which 
makes them look like they have just one input, namely P'. But this is not actually the 
case.

HCLP comparators, on the other hand, have as input a bag of labelled constraints and 
a set of valuations, and as output the set of incomparable valuations, a subset of the 
second input, such that no other valuations in the input are better. See Section 3.2 for 
a complete discussion of comparators.

Using [a] to represent a collection of elements of type a  (the difference between a set, 
a bag, and a sequence is not important here), and using con as the type of unlabelled 
constraints and Icon as the type of labelled constraints, and val as the type of a valu-
ation, we can give type definitions of a generic distance function /x and comparator C 
as follows:

/x : [con] X [con] —> num 
C : [Icon] X [val] —> [val]

Consequently, it might seem that when transforming comparators into distance func-
tions, we ought to remember that distance functions have homogeneous input types 
whereas comparators don’t. In fact, however, HCLP comparators are defined in terms 
of various functions, including error functions e which have as input a single constraint 
and a single valuation, and which return numbers (not sets of valuations). There is 
also E, which is a version of e raised to collections of constraints, and a function g 
which combines all the errors for the individual constraints into an overall error for 
that valuation, using e.g. ‘sum’ , or ‘max’ or ‘ least-squares’ . Finally G  raises the errors 
once again, to consider the different levels of constraints in the hierarchy. Labelling 
of constraints can just be though of as a mechanism for partitioning a collection into
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sub-collections (all the required constraints, then all the strong ones, etc). So we can 
see that [Icon] can be thought of as [[con]].

e : con x val —> num 
E : [con] X val —> [num] 
g : [con] x val —» num

G  : [[con]] X val —>• [num] or equivalently

G  : [Icon] X val —> [num]

The comparator C is a version of G  raised over all possible valuations: the sequences 
of numbers calculated for each valuation with respect to all the constraints in the 
hierarchy can be compared lexicographically, in order to find the equal-best solutions 
(valuations) to the hierarchy as a whole.

As mentioned above, a particular CSP problem which is a PCSP relaxation of the 
original problem, may have more than one solution, and hence more than one valuation. 
Therefore the val which appears in the type definition for g would be replaced by [val], 
and so the num would be replaced by [num]. However, we introduce a step of taking 
the maximum. Clearly max : [num] num, and so the types of g and G  can be 
respected.

Therefore if we split the comparator into its constituent parts, we may interpose the 
step of taking the maximum of a sequence of numbers, and thus arrive at an appropriate 
distance function. This is done in Section 7.2.2. In other words, despite initial appear-
ances, the issue of differing types does not present an obstacle to the transformation 
progress.

7.1.4  Characterisation of HCLP and PCSP

In this section we present those aspects which are relevant for the transformation pro-
cess. The relevant aspects for HCLP are

(H =  (H0, Hlt H2 , -..]), C =  (e, E, g))

where H is a hierarchy of constraints, made up of all the required constraints Ho, the 
strongly preferred constraints H i, weaker preferences H 2 etc. The comparator C is used 
to compare different solutions; it is made up of various functions as described in the 
previous section, and results in a sequence of errors [r, s ,w , ...] giving the errors with 
respect to each level of the hierarchy (required, strong, weak, etc). These sequences 
are used to order different possible solutions lexicographically. The lowest element in 
the order indicates the best solution.

PCSP is formalised as a triple ((P , U), (PS, < ), (M, (N , 5 ))), but we need only consider 
certain elements of it as follows: P is a constraint satisfaction problem, and M  is a 
distance function which selects the consistent problem ‘nearest’ to P.
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When transforming HCLP into PCSP, we will take all the constraints in H without 
their strength labels as being P. We will use the strength label information and the 
comparator to construct the appropriate distance function.

When transforming PCSP into HCLP, the constraints in the hierarchy will just be the 
constraints in P, and the distance function will be used to define their strength labels 
(i.e. which of the H, should contain each constraint) and the comparator C.

In the case of the standard PCSP distance function, all the constraints from P must 
be placed in the same non-required level of the hierarchy, but it does not matter which 
one is used. Arbitrarily, we choose to label them ‘strong’ and so put them in H i.

7.2 Transforming HCLP into PCSP

7.2.1 Creating the distance function

The base problem P is all the constraints in the hierarchy, without their strength 
labels. U, PS , and (A , S) remain as they would for an original PCSP based on P. (By 
‘original PCSP’ we mean one written down by a user, as opposed to one created by 
automatically transforming an HCLP problem.)

The distance function will be calculated from a combination of the HCLP comparator 
and the particular hierarchy of labelled constraints, and the hierarchy will lead to it 
being stratified into a lexicographic order.

The distance function derived from a hierarchy with n levels will be stratified into n 
parts, whose results will be ordered lexicographically (i.e. it will not calculate a single 
distance of the relaxed CSP from P).  Each relaxation (each problem drawn from the 
problem space PS) will be annotated with a sequence1 [cfo, d\, (¡2 , . . . ,  e?n -i] each element 
of which is calculated by the respective distance function in /z =  [/¿0, /¿x, . . . ,  (The
required level is formally called level 0, the strongest non-required level is 1, down to 
n — 1 for the weakest level.) For example, in the case of a hierarchy containing only 
required, strong and weak constraints, each candidate problem will be annotated with 
a sequence [r ,s , w], where r is the distance according to fir, the part of the distance 
function derived from the required constraints, s is the distance according to fi$, the 
part of the distance function derived from the strong constraints, and w is the weak 
distance, calculated by fiw. We then order the various relaxations according to the 
lexicographical order of their sequences.

7.2.2 Transforming hierarchies into distance functions

The distance function calculates the distance of one of the problems, say T, in the 
problem space PS from the ‘ ideal’ set of constraints which would have distance zero

1 We use a sequence because the hierarchy’s strength labels are totally ordered. We discussed partially- 
ordered hierarchies in Section 3.5.5.
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(i.e. completely satisfy all the constraints in the original problem). In fact, as the 
original constraints might be inconsistent, it is possible that no such ideal set exists.

Let us define sols(T) to be the set of solutions to T. We assume that T is consistent 
(even though a might not be), and so sols(T) will never be empty. Each member of 
sols(T) is a valuation, i.e. an assignment of a value from its domain to each variable 
in T. We can calculate how well a particular valuation satisfies the constraints a using 
the machinery developed by Borning and Wilson in HCLP.

T  may have more than one solution, and hence may give rise to more than one valuation, 
therefore we define the distance of T from a to be the maximum of distances of each of 
the valuations in T. This is necessary because HCLP’s comparators take as input the 
set of original constraints and a single valuation/possible solution. The output is the 
score for that particular valuation, which can then be used to place that valuation in 
an order. In PCSP, however, distance functions create an order over sets of constraints; 
a set of constraints can have many solutions, and so we have to choose the score of one 
of them. We choose the worst (largest) score, i.e. this set of constraints can never give 
an answer with a score worse than x. (The reasons for this choice are discussed in the 
next paragraph.) For example, if T is said to be a distance of 2 from a , that means 
that any solution of T is a distance of at most 2 from a. HCLP’s comparators work by 
measuring errors, and so, by choosing the maximum of the errors for each valuation, 
we are considering the worst possible case. (The larger the distance, the greater the 
error. This is similar to the case in HCLP, where all the comparators give larger scores 
for less preferred valuations.)

We choose the maximum because any other choice would be unsound. Consider two 
possible CSPs, T\ with solutions with scores 1,2,3,4,5, and T2 with solutions all with 
score 4. If we order problems by the minimum or mean, say, T\ will be selected in 
preference to T2- All the solutions to Tj are considered equally as solutions to the 
PCSP. So if we happen to choose the solution with score 5, we have in fact chosen a 
CSP such that a different choice would have had a better (more preferred) solution. 
This is clearly incorrect.

Therefore, using some HCLP terminology including denoting a general comparator by 
C (defined in terms of g, e, and E), the PCSP distance function defined in terms of the 
set a of constraints from one optional level of the hierarchy is:

Vc(<r)(T ) =  max{sf(E(o-T) | r e sols(T)}

In other words, we treat all the constraints in a as a sequence, apply a particular 
valuation r  to each of them, combine the errors using g , and then take the maximum 
of the errors for all the r  and treat it as the error for T.

The various distance functions, each parameterised by the constraints from a different 
level of the hierarchy, will lead to results which are lexicographically ordered, just 
as in HCLP. The main difference between standard HCLP and our work is that we 
interpose the step of taking the maximum error for each of the valuations in T between 
the application of g and placing in an order.
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Initially, for clarity of presentation, this figure contains an implication <— , and not an 
equivalence <— >. We will develop, below, an implication in the other direction, and 
then combine them to form an equivalence relation in a later section.

7.2.4  Example f3

Consider a constraint hierarchy containing three strong constraints (or rather, three 
optional constraints all at the same arbitrary strength level) 4  =  ‘X  > 7’ , £  =  ‘X  < 3’ , 
and C  =  ‘2 < X  < 5’ , where the variables are assumed to range over integers. Its 
HCLP solutions using UCB (unsatisfied-count-better) are {X  =  2, X — 3}, each of 
which satisfies two out of three constraints. Its LSB (least-squares-better) solution 
would be {X  =  5}, which has total square error of 22 +  22 -f- 0 =  8.

The base set of the PCSP will be P =  {^4, £ ,  C }, i.e. all the constraints in the hierarchy. 
P  is inconsistent, so we will augment the domains of some of the constraints in P  to get 
a consistent, weaker, problem. We will denote augmenting the domain of a less-than or 
greater-than constraint using V, e.g. Ai — ‘X  > 7 V X  =  2’ means that we have relaxed 
A by adding the value 2 to its domain. (This could also be written A  ̂ =  A U {2 }.) 
There are many different relaxations of A, B , and C, including

4o : X > 7 V X == 0 ^024 : X > 7 V X == 0 V X
42 : X > 7 V X == 2 ^23 : X > 7 V X == 2 V X
45 : X > 7 V X == 5 ^235 : X > 7 V X == 2 V X

£4 : X < 3 V X == 4 B6 : X < 3 V X == 6
£5 : X < 3 V X == 5 Bo : X < 3 V X == 9

C 0 :: 2 < X < 5 V X  =  0 . . .

The distance of any set of constraints from the ‘ ideal’ will be given by some dis-
tance function. We will consider the two previously defined distance functions, namely 
f i u c b ( {A  B c }) an<̂  I1 LSB ( {A B c}) (i-e- n°t the standard PCSP distance function, but 
two drawn from HCLP). We will also consider various sets drawn from the problem 
space, each containing one constraint derived from each of the constraints in the orig-
inal set e.g. { 42 , £ , C }, { 4 5, B6, C }, {4 ,  £ 5, Co), etc. Following PCSP, we will only 
consider consistent sets. In this case, the sequences will only contain one element, and 
so we do not really need to consider lexicographic orderings.

Consider the distance function Pu c b ({a ,b ,C}) and the set T =  { A 2 , B , C} .  This set 
has only one solution when it is treated as a normal CSP, namely the valuation r =  
‘X  =  2’ . (Remember that PCSP induces an order over different problems and not 
different solutions, so the fact that a particular problem only has one solution is not 
important.) We can now apply this valuation to all the constraints in the original set: 
the error function will return 1 for e (4 ,r )  because X  =  2 is inconsistent with the 
original 4  constraint, and 0 for each of B and C. The sum of all these errors is 1, 
and this is the only sum for the set T and hence the maximum. We can go through a 
similar procedure for some of the other members of the problem space, and we end up 
with the following table:
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set sols. UCB errors LSB errors
max max

a 2 , b , c X  =  2 1 1 25 25
A 2 3 , b , c X =  2 1 1 25 25

X  =  3 1 16
^235) B, C X  =  2 1 1 25 25

X  =  3 1 16
A 5 , B5 , C X  =  5 2 2 8 8

d-235) B5 , C X  =  2 1 25
X  =  3 1 2 16 25
X  =  5 2 8

The absolute values of the summed errors for LSB are much larger than those for UCB, 
but this is irrelevant; the only question is the order induced by each distance function 
separately. It can be seen that the first three sets are equally good as far as UCB is 
concerned. It does not matter that { A 2 ,B,  C}  only produces one of the two possible 
solutions, as PCSP delivers an equivalence class of all those CSPs equidistant from 
{A,  B, C }; the only way to guarantee that all equally good solutions have been found 
is by exploring all the members of the class. This is similar to the distinction between 
one-solution and all-solutions in CSPs or in logic programming.

The fourth set has the lowest error under which indicates that X  =  5 is the
least-squares-better solution to the hierarchy (found by us after a straightforward dif-
ferentiation of the error function, as opposed to an exhaustive search).

7.3 Transforming PCSP into HCLP

7.3.1 Transforming the augmentation distance function

7.3.1.1 General remarks

To transform PCSP with the standard distance function into HCLP, we take the 
constraints in P  and give them all the same arbitrary non-required strength label, 
say ‘strong’ . Thus they will be placed in H i. Then we use the HCLP comparator 
unsatisfied-count-better (UCB). We claim that this is the correct comparator to use, 
i.e. we claim that the solutions calculated by HCLP using UCB are the same as those in 
PCSP, and the particular solutions which are best according to PCSP will also be best 
according to UCB. (The intuition is as follows: the number of unsatisfied constraints 
counted by UCB is the same as the number of constraints which would need a single 
domain augmentation to create a consistent CSP, thus UCB measures an equivalent 
distance to that measured in PCSP.)

Certain combinations of augmented constraints in the PCSP formulation, which dupli-
cate solutions found at a closer distance, will not appear in the HCLP answer, but all
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might, however, lead to an additional two or more solutions, but we can ignore this 
situation due to the following claim:

Claim: the additional solutions caused by n > 2 augmentations of a single constraint 
can be completely separated into n classes, each of which contains solutions caused 
by only one of the n augmentations. The CSPs represented by these singly-augmented 
constraints will all appear in the partial order induced by the distance function, and they 
will all appear earlier than the CSP containing the n-augmented constraint. Therefore, 
no solutions will be lost by ignoring all multiply-augmented constraints. Therefore, 
the fact that UCB only picks out those solutions which violate the smallest number 
of singly-augmented constraints, does not change the set of solutions computed. (All 
that would happen is that two solutions Si and S2 will separately appear as, say, the 
equal-best solutions to the hierarchy, but their union will fail to appear as a second-best 
or third-best solution.)

Example: Let A! denote the constraint A with one extra tuple added to its domain, in 
the usual manner. Usually there will be more than one way to augment A; these alter-
natives may be indicated by A[,  A2, etc. Let A" generally denote two augmentations to 
A, and specifically A" 2 denote that the two augmentations are equivalent to A[ U A'2. 
Then our claim is that all the solutions to the CSP { A " 2, B^A, C§ 6} are present in the 
union of the solution sets {A'x, # 3, C5} U {A'2, B%, C5}  U {A'x, ¿ 4, C5'}  U {A 2, B'A, C5}  U .. .. 
In other words, we can ignore multiple augmentations of a single constraint.

Intuition: Consider the CSP as a graph, with each variable represented by a node and 
each constraint represented by an edge (see also Section 2.2.3). The tuples which make 
up the constraint are labels for the edges. A solution to the CSP is a path through 
every edge in the graph, consistent with the labels. If we add a label to an edge, we are 
increasing by one the number of paths between the two nodes connected by that edge2. 
If instead we added a different label, we would again increase the number of paths 
between these two nodes by one. It is intuitively clear that adding these two labels 
simultaneously will add precisely two paths between the two nodes: any path can only 
take account of one of the two labels on the edge. We could have arrived at the same 
set of total paths through the graph by taking two copies of the original graph, adding 
one new label to each of them, finding the new paths caused by this single extra label, 
and then eventually taking the union of the two sets of paths.

Proof:
Consider various binary constraints over different pairs selected from n variables X\, . . . ,  
Xn. We can define the expansion C*j of each constraint Cy, which originally related 
Xi and Xj, to a set of n-tuples by creating a tuple for each element of the cartesian 
product of the variables not originally involved in the constraint:

C*j =  { ( « i ,  V2 , ■.., Vi, vj, . . . , v n) | (vi, vj) G Qj, vk G d o m ( X i ) ,

1 < k < n, k /  i, k /  j ) }

2 The number of paths through the entire graph may increase by more than one. If there are k paths 
leading into the start node of the edge under consideration, and l paths leading away from the end 
node, then adding a path between the two nodes may increase the number of paths through the entire 
graph by up to kl, as discussed earlier in Section 4.3.
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7.3.3 Transforming non-standard distance functions

We have shown above how to transform problems using the standard PCSP distance 
function into HCLP. We now consider three other possibilities, firstly where all the 
variables and constraints are treated equally by the distance function but the distance 
is not defined as minimum augmentation, secondly where some of the variables in the 
problem are highlighted, and finally where some of the constraints are highlighted. As 
an example we then present a description in logic of this third possibility.

7.3.3.1 Non-specific (homogeneous) distance functions

All the constraints are put at the ‘strong’ level o f the hierarchy resulting from the 
transformation. The combining function embodied by the distance function must be 
transformed into an HCLP-like comparator, specifically into an error function for each 
constraint and a combining function which combines the errors at each level.

7.3.3.2 Distance functions which prefer a subset of the variables

In general CSPs are considered in terms of binary constraints. The theory can be 
extended, but complications are introduced. CLP, on the other hand, is indifferent to 
the arity of constraints. Therefore, if a PCSP problem has some kind of cost function 
which selects solutions which minimise the value of some function of (some of) the 
variables, we can simply treat it as another constraint. If the use of the cost function 
is expressed in the usual way ( “Do not violate any constraints in order to minimise the 
function” ) then it can be labelled ‘weak’ , while all the constraints in the original PCSP 
are labelled ‘strong.’ If it is acceptable to violate constraints in order to minimise the 
function, then the inverse strength labelling can be used.

7.3.3.3 Distance functions which prefer a subset of the constraints

This possibility can be transformed into HCLP in a very straightforward manner: the 
preferred constraints are labelled ‘strong’ , while the others are labelled ‘weak’ . If there 
are multiple subsets with some order over them, then clearly more HCLP strength 
levels can be used.

7.3.3.4 Another FOPL description

Figure 7.5 contains a slightly more complicated FOPL description than the previous 
PCSP-to-HCLP figures in this chapter. The implication in Figure 7.3 is extended to 
include non-standard distance functions, i.e. those which treat some of the constraints as 
being more important than others. We assume that Special is a list of the distinguished 
constraints (or a list of lists if more than two classes of constraint are desired). Note 
that within the distinguished constraints the distance function is assumed to operate

67



in the same manner as it does within the other constraints. If not, a single HCLP 
comparator could not be used.

transform-PCSP-HCLP( (Constraints, df(DF, Special)),
(LabelledConstraints, Comparator) )  <—

collect-unlabelled-constraints([UL-Strong,UL-Weak], ( Constraints, df(DF,Special))) A 
remove-labels([Strong,Weak], [UL-Strong,UL-Weak]) A 
partition-labelled-constraints (LabelledConstraints, [Strong, Weak]) A 
comparator-distance-function(Comparator, DF).

Figure 7.5: PCSP into HCLP — non-standard distance functions

Special parameterises the distance function and will also be an additional parameter 
for various predicates, to allow the distinguished constraints to be placed in the ‘strong’ 
level while the others are considered to be ‘weak’ . This is why the previous specifications 
contained the variable Strong inside a list — so that the extension to the non-standard 
case would be easier. The changes to the subsidiary predicates necessitated by the extra 
parameters are obvious. However, this extension reduces the clarity of Figure 7.5, which 
is why we did not consider this case when defining the general equivalence between 
HCLP and PCSP. Nonetheless, it is clear that the equivalence could indeed be extended 
in this way.

7.4 Discussion and conclusions

7.4.1 Backwards and forwards

The transformations between HCLP and PCSP create a relation between them, i.e. we 
can imagine transforming an HCLP representation of a problem into PCSP, and then 
transforming the resulting PCSP problem into HCLP. If we end up with the same 
representation that we started with, we can say that the transformation

HCLP — > PCSP — > HCLP

is in fact an equivalence relation

HCLP <— ► PCSP

We have shown this equivalence for the standard PCSP distance functions (Figure 7.4). 
Also, in principle we feel that the discussion and description in logic in Section 7.3.3 
shows how to create such a relationship for non-standard distance functions.

7.4.2 Conclusions and benefits

We have developed a general methodology for transforming between HCLP and PCSP. 
We have clarified various issues, and provided a proof of correctness of the choice of
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UCB for the augmentations distance function. We have shown that strength labels, 
associated with constraints in HCLP, contain information which is necessary to define 
the global distance function in PCSP. If we do not have an implementation of HCLP, 
we can replace a call to it by the two calls transform, PCSP, and vice-versa. Therefore 
problems which can be expressed in one of these two formalisms can also be expressed 
in the other.

HCLP and PCSP each have advantages when modelling problems, and each have ad-
vantages when implementing models and solving them. Using the work presented in 
this Part, the appropriate paradigm can be used for each of these steps, with a meaning-
preserving transformation in between if necessary.
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Part IV 

Composition
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In this part we discuss composition and how it relates to constraint-based systems. 
We then present our two-stage compositional variant of HCLP. Finally we discuss 
compositionality in PCSP, proving an important combining operator to be compositional 
and providing a heuristic condition for its general applicability.
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Chapter 8

Compositionality

8.1 Introduction

Compositionality attracts attention for various reasons. At a very general level, it is 
related to the standard scientific principle of reductionism, i.e. describing a complex 
system in terms of the properties and interactions of its parts1. Systems with non- 
compositional models cannot be addressed in this manner.

Compositionality is a desirable property for programming paradigms to possess. It is 
beneficial from a software engineering view because it allows modularity, not just when 
writing programs but also when executing them. Therefore parallel and distributed 
implementation are made easier. At this level as well as at others, compositionality 
implies decompositionality, i.e. we can solve a complex problem by splitting it into 
simpler parts, solving them, and then composing the results into a complete solution.

Compositionality also makes it much easier to reason about the properties of a program, 
allowing different aspects to be considered separately. Furthermore, it is easier to make 
local optimisations, and as long as meaning is preserved at the local level it can be 
guaranteed that the global meaning is also unchanged. Of course, after the parts have 
been composed together, global optimisations can still be applied.

In the context of constraint programming, compositionality is a useful property for a 
system to have because it suggests that implementations will have the potential to be 
efficient. Standard HCLP is very expressive, but the efficiency of its implementations 
may be poor, and its semantics lacks certain desirable properties. Our proposal in 
this part of the thesis involves splitting HCLP into two parts to gain a more tractable 
semantics (Chapter 9). We then discuss compositionality in the context of PCSP; this 
has not been considered before, and the implicit assumption that PCSP is compositional

1In fact, in the philosophy of science reductionism is sometimes considered to have two aspects: (a) ex-
planation of macroscopic effects in terms of microscopic causes, i.e. describing a system in terms of its 
parts, but also (b) explanation of qualitative change at the macroscopic level in terms of quantitative 
change at the microscopic (see e.g. Losee [54]). One could try and stretch this notion by saying that 
our bag-based approach in Chapter 9, in which the number of times a constraint appears can affect the 
solution to the problem, is an instance of (b), but that might be going too far.
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is investigated in Chapter 10. We present a condition on the distance function which is 
sufficient to show that the standard PCSP distance functions are indeed compositional, 
when they have been interpreted in a certain way.

8.2 Compositionality

In constraint logic programming, efficiency is discussed with reference to ‘incremental- 
ity’ , whereas in discussing semantics one characteristic that we look for is composition-
ality; these are the concerns of the rest of this section and the next one.

We say that a function or operator is compositional if it preserves certain structure that 
is relevant in a given situation. For example, set union is commutative and associative, 
but does not preserve number of occurrences. So union is compositional when we 
consider, say, a collection of raindrops merging together (as one drop plus another drop 
is still just one drop), but not when we consider the volume of the water involved. In 
the context of incremental implementations of CLP systems, we can say that a theory 
is compositional if the solution to the combination of two problems is the same as the 
combination of the solutions to the problems separately. More formally, if we have 
some kind of solution function or proof system p, if we can combine problems using Up, 
and if we can combine solutions using op, then

p(A Up B ) =  p(A) op p{B)

For our purposes, proving the compositionality of the p system will entail proving the 
associativity and commutativity of op, at least.

8.3 Incrementality

Whereas compositionality is a property of formal systems, incrementality is a (desir-
able) property of Constraint Logic Programming implementations. There is no precise 
definition, but what it means is that the work required to add an extra constraint to 
the solution of a large set of constraints and check its satisfiability2 is proportional 
to the complexity of the addition, and not related to the size of the initial set. If a 
system is not incremental, then adding one more constraint to the solution of, say, 20 
constraints, involves as much work as solving the system of 21 constraints from scratch.

In fact, even in an ‘ incremental’ system the amount of work required to deal with 
an additional constraint will probably depend on more than just the constraint itself: 
the number of variables in the original set may be relevant, as well as other factors. 
This is not surprising, as too rigid a definition of compositionality would require O(n) 
computational complexity, and certain varieties of constraint solving are in principle

2Smolka distinguishes between CLP, which requires an incremental test of constraint satisfiability, and 
the Concurrent Constraint paradigm, which requires an incremental test of constraint entailment as 
well [CompulogNet Newsletter].
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exponential. (Restricted cases are not quite as computationally complex, but certainly 
remain much greater than linear.)

We wish to suggest that compositionality is weaker than incrementality: a theory which 
has compositional semantics may have a non-incremental implementation, often inten-
tionally. For example, batch processing of queries in relational databases is much more 
efficient than line-at-a-time database accesses, notwithstanding the compositional na-
ture of relational database theory. Conversely, a truly incremental implementation of 
a non-compositional formalism is difficult to define. What is more important than the 
distinction between incrementality and compositionality is the distinction between hav-
ing both these properties and having neither, which is related to the distinction between 
‘sufficiently efficient’ and ‘unusably inefficient’ . Both logic programming and constraint 
logic programming are in principle sufficiently efficient, and they have compositional 
theories (see Section 8.5), and so compositionality is assumed to hold in general, almost 
without being mentioned. Therefore, the focus in previous CLP work has tended to be 
on incrementality alone, rather than on its relationship with compositionality.

See Section 10 of Jaffar and Maher’s survey [42] for more on incrementality, including 
various definitions and a detailed discussion of algorithmic complexity.

8.4 Partial compositionality

Throughout this thesis we are concerned with the application of preference systems 
to over-constrained problems. As the original problem is over-constrained, we cannot 
solve it precisely. Therefore we create various weakenings or relaxations of it, and then 
we place them in an order of preference. The first or equal-first elements in the order 
are the ‘ best’ solutions we can hope for.

Within this area, one of our main themes is composition: can we find the solution 
to a combination of problems by combining the solutions to the individual problems, 
ft turns out that we can usually combine the elements and that we can sometimes 
combine the orders as well; we characterise the appropriate orders later in this thesis.

The final task is to find the best element of the order, i.e. the best solution to the com-
bined problem, in terms of the best elements of the individual solutions. Unfortunately, 
we cannot always succeed, if the best solution to one of the problems is incompatible 
with the best solution to the other, then the best solution to the combined problem will 
not be the combination of the best elements of the individual problems. Note that the 
best solution to the combination can indeed be the combination of the best individual 
solutions if they are not incompatible. More formally, if we combine problems using U 
(constraint text [bag] union), and denote the relaxations of a problem P  by [P], and if 
we combine solutions using ©, and order them using <, then

best<[PU(2] 7̂  best<[P] © best<[<3]
if best<[P] is inconsistent with best<[Q]

This is a property of all preference systems even when the original problems are not
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of two solutions takes time related to the size of the solutions, and not related to the 
size of the original programs. Similarly, in constraint logic programming, solving the 
conjunction of two output sets of constraints will depend on the size of the output, not 
on the size or complexity of the input constraints. These two operations, of finding the
m.g.u. and conjoining the constraints, are intensional, i.e. they deal with the abstract 
representation of the solutions. If we consider extensional solutions (models), then in 
both cases composition is just intersection/join.

In the next chapter we develop a compositional variant of HCLP.
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Chapter 9

A Compositional Version of 
HCLP

We have previously discussed the difference between constraint theories, languages, 
and solving algorithms. In this chapter we present a new operational semantics for a 
language with exactly the same syntax as HCLP, and which gives the same results. 
Our semantics is based on bags, whereas HCLP is based on sets, and our work consists 
of two stages. Nonetheless, we will treat the work in this chapter as being a new solver 
for an old language, and not as a new language in its own right.

This approach may be contrasted with those of Parts III and V: the transformations in 
the former may be thought of as a pre-processing stage before using a standard (‘old’ ) 
implementation of standard languages, HCLP and PCSP. The integrated approach in 
the latter part is more radical, presenting a completely new language.

Remember that the non-compositionality of standard HCLP was shown in Section 3.3 
using Wilson’s proof of what she calls its ‘disorderly’ nature. We begin this chapter by 
presenting a new piece of mathematical machinery. Then we discuss the first stage of 
our version of HCLP, which we call BCH — which stands for Bags for the Composition 
of Hierarchies. BCH is compositional, but calculates a superset of the answers that 
would be expected from HCLP. We then present the second stage, which we call FGH 
— Filters, Guards, and Hierarchies. FGH removes precisely those BCH solutions which 
are superfluous according to HCLP, but re-introduces non-compositional behaviour. We 
then conclude the chapter by comparing BCH/FGH with standard HCLP and showing 
that it is equivalent.

9.1 Guards

The work presented in this chapter requires an alternative to bag intersection, with 
certain other properties, and so we now define a new infix binary operator [] (‘guarded 
by’). If A and B are both bags, then A [jB  contains only those elements of A which 
are also in B, with the same multiplicity as in A. For set-like bags, [] is the same as
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Proposition 13: Union Distributivity
( A U B ) [ J C = ( A f f C ) u ( B f f C ) .

Proofs of the previous proposition and the next one follow immediately from the defi-
nitions.

Proposition 14: Intersection Distributivity
A f f ( B n C )  =  ( Af f B) n( Af f C) .

Proposition 15: Intersection Conversion
A f f ( B n C )  = Af l (Bf fC) .

By associativity of [] we can also see that A/J(B fl C) =  (Aff B) ffC .

[] also has the property that (A fl B) H C =  (AD C )ffB .

9.2 BCH —  Bags for the Composition of Hierarchies

9.2.1 Compositionality of BCH

We now define an associative, commutative composition operator o in terms of its effect 
on solutions to individual hierarchies pi,P2 , . .  -,Pki which we assume have each already 
been calculated separately (by some method to be discussed below). This operator 
defines what we mean when we refer to BCH or BCH0:

Definition (BCH Compose):

9 S0{pi) =l .I

o Sn(pi) =  | li)5 »(p ,) j ffoSo(pi) (n > 0)

Note that all these levels are guarded by the solution to level 0, i.e. the required con-
straints. Solutions to pi’s optional constraints which contradict pj’s required constraints 
are removed by the guard, thus any valuation found lower down the hierarchy will be 
acceptable to all the required constraints1. But certain valuations are present which 
are not as preferred as others — these rules have no analogue for comparators in HCLP 
(but see below, Section 9.3). Consequently, as each remaining element of the Si’s sat-
isfies the required constraints we can say that the rules ‘respect the requireds’ . But as 
elements may be present in S2 which are not in S\, say, these rules do not ‘ respect the 
hierarchy’ .

Note that we sometimes abuse notation in the following manner: if p, q and r are the 
names of three problems, then we use p o q =  r as a shorthand for V n • Sn(p) o Sn(q) =

1If the optional constraints contradict the required ones they are ignored. In this case in HCLP 
.Si(p) =  So{p) and in BCH 5i(p ) =  both of which satisfy 5 i(p ) C So(p).
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Sn(r). In other words, it may appear that o is being applied to problems, but in fact 
it is being applied to their solutions.

It is clear that o is commutative, due to the commutativity of intersection and union 
of bags. To show that o preserves all that we require under composition, it is necessary 
to prove that it is associative.

Proposition 16: Compose Associativity
(p o q) o r — p o (q o r)

Proof:
Case So: obvious, by the associativity of fl.

Case Sn (n > 0): In the following, let Po be an abbreviation for So(p), let pn mean 
Sn{p), and similarly for Q0, Po, qn, and rn.

e#{ {Sn{p) o Sn{q)) o Sn(r))

=  e#( ( (pn\Sqn)ff(P0 r) Qo)) & rn) fl(P0 n Q0 n R 0)

!
0, if e# P 0 =  0 or e#Qo =  0 or e#R 0 — 0 
e#{ (pn^qn)f f {Po^  Qo)) +  e # r n, otherwise

0, . . .

f'&Pn T  ei^qn T 
0, . . .
e#Pn +  e# ((qn\il rn) ff (Qo n Ro))

=  e# (((g „l± )rn)/7(Q oni?o))l±lpn)/7(P0 n Q0 n R 0)

=  e#{Sn{p) o (Sn(q) o Sn(r)))

(1) Non-zero (‘otherwise’) case: as e#Po 7̂  0 and e#Qo 7̂  0 
(2) Non-zero (‘otherwise’) case: as e#<2o ^ 0 and e#i?o 7̂  0

□

The above proof is based on one due to Sebastian Hunt. Previously we used a proof 
we had developed independently ourselves, based on some of the properties discussed 
in Section 9.1, but it was about twice as long as the version presented here. Sebastian 
Hunt proved the proposition directly from the definition of [], as opposed to proving 
it from properties which were themselves proved using that definition as we had done. 
This was not done at our request, but of course we prefer to use a proof which is shorter 
and clearer.

{by defn. of 0} 

{by defn. of ß )

{see (1) below}

{see (2) below} 

{by defn. of Q]

{by defn. of 0}

9.2.2 B C H  solutions to individual hierarchies

The previous section was concerned with composing solutions to hierarchies; but where 
do these solutions come from in the first place? One possibility is to assume that 
HCLP has been used initially, with BCH only being invoked to compose the previously 
calculated answers in order to avoid starting HCLP from scratch on the composed
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program texts. All the theory in this chapter is well-defined for this situation (treating 
the various solution sets S\,. . . ,  Sn as set-like bags), however in the rest of this section 
we discuss the second possibility, namely that BCH is used for everything. When we 
use BCH to solve an individual hierarchy we label the rules BCHindiv; when used to 
compose solutions the terms BCH or BCH0 are used.

Note that the answers for a single hierarchy defined by BCHindiv will not be the same 
as those calculated by HCLP (the latter will be a subset of the former, as discussed 
below). The answer to a composition of solutions of course depends on the individual 
solutions; as these will differ depending on whether BCHindiv or HCLP was used to find 
them, the answers to the composition will also differ. But given the solutions to the 
sub-problems, then the solution to their composition calculated by BCH is completely 
determined.

We now define what we mean by BCHindiv: it is the method of calculating the solution 
to an individual hierarchy, defined as follows. The solution to a hierarchy P is defined 
to be a tuple (So(P), 5 i(P ), • • •, Sn(P))  where each Si is the solution to the constraints 
at level i, guarded by 5o- To solve the required constraints and find So, we invoke 
the appropriate CLP solver. In fact, for finite domains this is equivalent to taking 
the intersection/join of the extensions of the individual constraints. To ‘solve’ the 
optional constraints, take the (bag- additive-) union2 of the extensions of the individual 
constraints. Then guard each of the Si, i > 0, with So, thus removing solutions which 
violate the required constraints. We can state this formally, using H0(P)  to indicate 
all the required constraints in P, Hi(P) to indicate all the optional constraints at level 
i of the hierarchy, and (+J) dom(cj) to indicate the union of the domains or extensions 
of the constraints Cj:

Definition (BCH indiv ) •

BCHindiv(P) =  (S0 (P), S\(P),. . . ,Sn(P))

where S0{P)  =  ( f )  dom (c,), ct- G H0{P) ĵ

and Sj (P) =  ( y  dom (cj), c; G Hj ( P ) ) [JS0(P ) (j > 0)

This definition of the solution to an individual hierarchy may seem extravagant, but it 
becomes less so in the context of filter functions such as fmax (Section 9.3.2).

2 In Section 7.3.1.2, we mentioned that when we said ‘intersection’ of constraint domains we really meant 
the intersection of what we called the ‘expansion’ of the constraint domains, i.e. the relational database 
concept ‘join ’ . Similarly, here we do not really mean union, unless we are dealing with expansions, 
but the bag counterpart of the relational database concept of restricted relational product x rest (both 
triples are included):

X x Y  =  {(a,fc,d) | (o,6)  € X , ( c , d )  G Y }  U { ( a , c , d )  | (a,fe) € X , ( c , d )  € Y}
r e s t .

However, using ‘union’ should not be misleading.
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In the above discussion each of the non-required levels contains the union of the exten-
sions of the constraints at that level. HCLP would also produce at most the union of 
the extensions (if all the constraints were consistent with all stronger levels, but also 
mutually contradictory). At the other extreme, if all the constraints were mutually 
consistent, then the HCLP solution would be the intersection of the extensions. If we 
removed the labels from all the constraints at a given level and solved them using CLP, 
the result would be the (possibly empty) intersection of the extensions. Therefore the 
solutions for each level satisfy the following relation:

CLP C HCLP C BCHindiv

9.2.2.1 Relationship between HCLP and B C H indiv

9.2.2.2 Empty solutions for a level

In HCLP, the key difference between required and non-required constraints is that the 
former can cause failure to occur. In other words, the required constraints may have an 
empty solution set, but no weaker constraints can cause a failure if stronger constraints 
have been satisfied3. In our composition rules, in A [ ] B , A represents the solutions 
for a weaker level than B , and yet the definition of [] allows the possibility of A[]B  
being empty even if B is not (in the case that A n  B =  £j). Thus our rules appear 
to allow failure to arise from optional constraints. In fact, as we define the solution S 
to be the tuple (So, S i , . . . ,  Sn) and not just its final element Sn (for use by FGH; see 
Section 9.3), it is not a problem if one of the elements of S is empty: the solution that 
is offered to the user is no longer the final element of the tuple, but all the non-empty 
elements. Thus this aspect of HCLP is not present in our logic, but is left until the 
interpretation.

9.2.2.3 No constraints at a level

If there are no constraints at the required level, the solution set is the entire domain 
(the cartesian product of the domains of all the variables) which we denote by saying 
Sq =  U. It can be seen that guarding any bag with this universal set will not have any 
effect: VA • A[]U  =  A. If there are no constraints at one of the optional levels, the 
BCH solution for that level will be U []So =  So. Therefore, we can see that the rules 
we have defined here will work for hierarchies with arbitrarily many or few constraints 
at any given level.

9.2.2.4 Equivalence of BCHindiv and BCH0 

Proposition 17:
As long as all levels contain constraints, and if U represents constraint text union (i.e.

3 In fact we need a slightly stronger condition in HCLP; if So is non-empty and finite then we can be 
certain that Sn will not be empty. The extra condition is necessary to deal with certain pathological 
cases, such as the hierarchy ‘required X  >  0, strong X  =  0’ with a metric comparator [7],
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constraint conjunction), then BCHiniiv(A) o BCH,„dw(B) — BCHmdlv(A U B)

Proof:
The definition of BCHindiv requires the extensions of each constraint at a level to be 
combined using union (l±l). The definition of o also combines equivalent levels from two 
hierarchies using union. The distributivity of l±) through [) guarantees that the order in 
which the various combinations are done is unimportant. Hence the proposition is true. 
Note that the left-hand-side of the proposition defines the BCH0 solution (i.e. using o 
to compose two previously calculated hierarchies) and so we can see that the difference 
between BCHindiv and BCH0 is that BCHindiv defines the meaning of (_), whereas BCH0 
composes (_)’s, however they are defined. □

9.2.2.5 Relationship between HCLP and BCH0

By a similar argument to that on the relationship between HCLP and BCHindiv (see 
Section 9.2.2.1 above), and considering Proposition 17, we can see that HCLP C BCH0.

9.2.3  Complexity and incrementality of BCH

9.2.3.1 Complexity of BCH

The following is a summary; for detailed calculations, see Appendix C .l.

Using a naive representation, the complexity of composing k hierarchies each with n 
solutions to their required constraints (not necessarily the number of solutions from n 
constraints) and l levels of optional constraints is O (Ikn2) in the worst case. Using a 
more sensible representation, and noting that k and l are likely to be fixed at small 
values, the total complexity of BCH is O(n).

This result is expressed in terms of basic element comparison operations, i.e. whether a 
member of one bag is identical with a member of another bag. Comparing these results 
to the complexity o f HCLP is difficult, partly because no analysis of the latter exists 
in the literature; but note that whatever results might be obtained are likely to be in 
terms of constraint checks, an inherently more difficult operation than simple element 
comparison.

9.2.3.2 Incrementality of BCH

More interesting than standard complexity results is the question of incrementality. If 
we have already composed k hierarchies using BCH, what is the extra work required 
to compose one additional hierarchy?

Let us assume that the previously composed system has a total of n elements in So, and 
hence at most n distinct elements in each of the optional levels. Let us assume that the
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new hierarchy has at most m elements per level. Let l be the maximum of the number 
of optional levels in the two systems. Calculating the new So requires the intersection 
of two sets, of size m and n. This will take O(um) at worst, and the resulting set will 
have size at most max(m,n). For each optional level, finding the union of two bags 
takes 0 (m  +  n), and then guarding with So takes at most 0(m ax(m , n).(m +  n)). If 
we make the assumption that m is as large as n, this expression becomes 0 (n 2).

Therefore when we include the calculations on l optional levels the total complexity is 
O(ran +  Lmax(m, n).(m  +  n)) =  0(/.m ax(m , n).(m +  n)) =  O (In2) (setting m =  n). 
This could be improved by guarding each level of the previously composed system with 
the required level of the new hierarchy before taking the union of the optional levels, and 
by other methods. But even so, it is clear that the work required will be approximately 
quadratic rather than linear in m. Therefore, perhaps, we should not claim that BCH 
is incremental. But note that ft, the number of systems which were originally composed 
together, before the addition of the new hierarchy, is not mentioned in these results. 
In other words, the work done by BCH may depend on the number of solutions in the 
previously composed system, but not on the number of original hierarchies. We are 
able to avoid starting from scratch, re-calculating the composition of ft systems, which 
is not the case in HCLP. So we have achieved the goal set in Chapter 8.

9.3 FGH —  Filters, Guards and Hierarchies

9.3.1 Filter functions

This section describes FGH, which takes the results of BCH and uses them to calculate 
solutions equivalent to those of HCLP. Unlike BCH, FGH respects the hierarchy, and 
so is disorderly and non-monotonic, hence non-compositional.

FGH uses an extra mathematical construct, a class of filters, functions from bags to 
bags, which remove some of the elements from the input bag. It is necessary to introduce 
them here because we will use them in the next section to define rules for removing less 
preferred valuations from BCH solutions. Particular examples are discussed later, but 
in general filter functions will be denoted by f, and F will be used to denote the raised 
version (i.e. f applied to each member of a tuple of bags). Note that the guard operator 
ff is concerned with the relationship between different strength levels in a hierarchy, 
whereas filter functions select solutions within a given level. (Similarly, in HCLP the 
comparators compare solutions within a given level.) More details can be found in the 
next section, where we examine one particular filter at length.

The whole process described in the rest of this section can be summarised as showing 
that the following equation holds, and asking if the right-hand side is more efficient or 
has better semantics than the left-hand side:

HCLP(PU Q) =  F ( P o  Q)

The answer is given in Section 9.5.2, below.
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We now define an operation F which removes elements from bags in a tuple, forming 
new bags. Let P be a program with a BCH solution (S'o(p), S\(p),. . .). Note that 
£ i(p ) ^  So(p), S2 {p) C So{p), etc., but it is not necessarily the case that S2 (p) C 5\(p) , 
etc. As we have already used p o q to refer to a BCH operation we will describe the 
FGH extension as F (p o  q), i.e. F(Sn(p) oSn(q)) for each level n of the hierarchy, where 
F (p) is defined as follows:

Definition F:

F(S0(p),S1( p ) , . . . ,S n(p))
=  (F (5b (p )),F (51(p ) ) , . . . ,F ( 5 n(p))

F(Sb(p)) =  S0(p)
F (Sn(p)) =  f (S n(p)ffF(S*-i(p)))  ( « > 0 )

sols(F(P)) set applied to the final non-empty bag in the tuple
(So(p),S1(p ) , . . . ,S n(p))

where f  is a filter function, applied to the result of guarding a level with the previous 
level (itself filtered). Note that we overload the symbol F, allowing it to operate both 
on tuples and on members of tuples.

The reason for filtering each level is to remove solutions which are less preferred than 
others. The reason for guarding Sn with level Sn-\ is to remove solutions which are 
acceptable to level n, but less preferred by the stronger constraints of level n — 1. Of 
course, we also need to remove solutions which are less preferred by levels n — 2, n — 3, 
etc., but this is dealt with by the fact that Sn-\ has itself been guarded by Sn- 2, and 
so it is not necessary to guard Sn by Sn- 2 explicitly.

Note that in the definition of F itself we have not included an application of set which 
would reduce the number of occurrences of each element to 1. We consider it to be the 
very last action that should be performed on the bags of solutions.

9.3.2 The filter fmax

The rules defined in the previous section are parameterised by filter functions. We now 
define one particular filter function fmax, which is the most interesting when compared 
to HCLP’s ‘unsatisfied-count-better’ comparator. Other comparators and their related 
filters are discussed later, in Section 9.4. fmax removes those elements of a bag which do 
not occur a maximal number of times. In other words, if some elements occur once in 
a given bag, and some elements occur twice, fmax defines the bag containing only those 
elements occurring twice.

Definition:

e #  fmax (-4) =
e# A , if e # A  =  max{i#A ■ i G A}  
0, otherwise
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fma*la,a,b]  =  la, a] 
fmax^a, b] =  la, b]

Enax is defined as fmax raised to the level of tuples of bags in the obvious way (similar 
to Definition F, above).

E xam ple:
F was defined in terms of a single hierarchy p, but p may arise from the BCH com-
position of two or more hierarchies. For this example, let us assume that we have two 
hierarchies q and r with the following solution sets: So(q) =  { a ,b , c }  and So(r) =  
{b, c, d}. Let Si(q) =  {b , c }  and 5 i(r ) =  {b, d}. Then S0(q) o S0(r) — {b , c }  and 
Si(q) o S i(r) =  (lb, b, c, d$ff(So(q) o 50(r)).

FmiX(S1(q )o S 1(r)) =  fm„ ( l b , b , c , d m b , c V  
=  fma x(lb,b,C$)
=  lb, b]

So the BCH solution is Qb, c], lb,  b,c j)  and the FGH(fmax) solution is (lb, c], lb, bty; 
therefore the preferred solution to p is the value b as it is the only element of the final 
non-empty bag in the solution tuple, where the final bag has been affected by all the 
levels of optional constraints. Thus BCH allows us to explore the space of solutions, 
including different values in each bag and all the bags in the tuple, while FGH produces 
its best possibilities, i.e. the best value(s) of the final non-empty bag of the solution 
tuple.

For simplicity, the example above concerned possible values for a single variable (i.e. 
X  — a or X  =  b, for some variable X ). But it is clear that everything can be defined 
in terms of possible values for a vector X  =  [X\, X 2 , . . . ,  X n}. In this case, #  counts 
the number of occurrences of a particular vector and not simply a particular value for 
a single variable. For example, the bag l(a, b), (a, c)$ contains two distinct ‘elements’ , 
corresponding to [Xi =  a, X2 =  b] and [Xi =  a, X2 =  c].

9 .3 .3  C o m p le x ity  o f  F G H

It is clear that F requires l filtering steps for a hierarchy with l levels, using any given 
f.

If fmax is used, for each level it is necessary to sort by number of occurrences (greatest 
first). If there are up to k occurrences of each of n distinct elements in a level, sorting 
will take O(kn\ogkn) simple comparison operations (or O (nlogn) if a sensible represen-
tation is used). Keeping a note of the maximum number of occurrences of an element 
found so far, it is easy to select the first part of the output bag, i.e. those elements 
occurring precisely k times. This process must be repeated for each level, and so the

Example:
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complexity of FGH using fmax is O(lkn\ogkn), where in practice k and l are likely to 
be fixed at quite small values, leading to a complexity of O (nlogn).

All the above is in addition to the complexity of the BCH step, which was found to be 
O(lkn), or O(n) under some sensible assumptions (see Section 9.2.3.1). So we have a 
total complexity of O (n) +  O (nlogn) =  O (nlogn).

9.3 .4  Non-compositionality of FGH

We can show that the FGH scheme is not compositional in general by showing that 
it is not compositional for one filter function, fmax. An alternative would be to show 
that it is disorderly, just like HCLP. We follow both these possibilities in the next two 
subsections.

9.3.4.1 Non-compositionality of FGH(fmax)

We can give a simple example why FGH(fmax) is not compositional as follows: consider 
two bags {a, b] and {b , c j. Composing them with BCH gives la ,b ,b ,c] ,  and then 
filtering with fmax will result in lb, b]. If the third bag contains la, c], then composing 
it with lb, b] followed by filtering will give the incorrect answer lb, However, if 
we had composed it at the BCH stage (getting la, a,b,b, c, c]), filtering would have 
resulted in a different answer. So FGH is not associative, hence not compositional.

Therefore if we wish to add a constraint to the results of filtering a tuple of bags, we 
cannot do it directly. We must compose the BCH solution tuple for the new constraint 
(which will be very simple to calculate) with the BCH solution of the original hierarchy, 
and then re-filter. Thus FGH is not really incremental in its own right. Of course, BCH 
is incremental, and it is relatively cheap to re-filter using FGH4, and so we still have 
some gain compared to HCLP, which must restart right from the very beginning.

9.3.4.2 The disorderly property of FGH

Let us consider again the example which was used in the proof of the disorderly nature 
of HCLP (Section 3.3). The two hierarchies were P =  {weak X = a } and Q =  {s tron g  
X = b } and the solutions calculated by BCH were as follows, where as usual U stands 
for constraint text union:

BCH (P) =  (lUx ,Ux , la j)

B C H (P oQ ) =  ( U x ^ x W l b ^ U x W M )
B C H (P u Q ) =  (UX , W , M )

4 The computational complexity is increased by only a logarithmic factor, assuming a complexity of 
O (n) for BCH and O (nlogn) for FGH.
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acceptable if it satisfies more constraints than the alternative solutions (at level k) and 
as many at levels less than k, their new criterion is a solution is acceptable if it satisfies 
at least a certain number of preferences (a certain ‘threshold’ they say). Clearly, this 
idea can easily be encoded by the use of f#n with n less than the number of constraints 
in the problem.

In Section 3.5.1 we discussed the differences between two HCLP comparators UCB and 
LPB (locally-predicate-better). We noted that LPB will offer certain ‘solutions’ which 
intuitively do not seem to be as good as other possible solutions. We stated that if the 
user decides to accept a certain level of inaccuracy for efficiency reasons, this decision 
should be explicit and not hidden in the choice of comparator. Clearly, allows such 
a choice to be made explicitly.

The ease with which the ideas in the two previous paragraphs fit into the framework 
of filter functions suggests to us that this formalism is very rich and general. Notwith-
standing this, the reason that most of this chapter concentrates on fmax is its closeness 
to UCB, the comparator on which we focus throughout this thesis.

9.5 Equivalence of BCH /FGH  and HCLP

9.5.1 Example 7  —  comparison with HCLP

Figure 9.1 contains an example of the use of both BCH and FGH, and a comparison 
with HCLP. Part of the example (P ) is taken from Wilson’s thesis [83, Sect.2.2]. Note 
that BCH does not discriminate enough, by itself, to capture the behaviour of standard 
HCLP. This is not surprising, and motivates the use of filter functions. Also note that 
the combination of FGH and BCH does indeed give precisely the same answers as 
HCLP.

9.5.2 Relationship between HCLP and FGH

HCLP is parameterised by a comparator C, and FGH is parameterised by a particular 
filter function. Therefore it is not possible to state a relationship as general as, say, 
“The HCLP solution set for a hierarchy is identical to its FGH solution” 5.

Notwithstanding the above, we can claim the following, where UCB stands for the 
unsatisfied-count-better comparator:

Proposition 18: FGH applied to BCH is equivalent to HCLP
so/s (FGH (fmax)(/f)) =  HCLP(UCB)(tf)

Proof:
Reminder: a solution 6 is unsatisfied-count-better than a solution o  if it satisfies as

5 More precisely, we cannot state “The HCLP solution set for a hierarchy H is identical to the result of 
applying set to the final non-empty bag of the FGH tuple of solutions for H ".
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p Q R
required X > 0 0 < X < 20 0 < X  < 23
strong X < 10 X > 5 X > 15
weak X = 4 X div l a X div 8
Sols."
So X > 0 0 < X < 20 0 < X < 23
Si 0 < X  < 10 5 < X < 20 15 < X  < 23
S2 X = 4 * II * II X  =  16

C HCLPd BCH FGHe
So 0 < X < 20 0 < X < 20 0 < X < 20
Si 5 < X < 10 

15 < X < 20
(0 < X < 5)1 
(5 < X < 10)2 
(10 < X < 15)1 
(15 < X < 20)2

(5 < X < 10)2 
(15 < X < 20)2

s2 X = 7, X =  8, 
X  =  16

X = 4, X =  7, 
X  =  8, X  =  14, 
X = 16

X = 7, X = 8, 
X = 16

“ i.e. X  is divisible by 7, shorthand for the domain constraint X ::[0,7,14,... ] 
6HCLP solutions for each hierarchy individually 
“Solutions for the combined hierarchies 
“ Calculated taking into account error sequences [83]
“Using fmax

Figure 9.1: Compositions using HCLP, BCH, and FGH

many constraints as a does in levels 1 ..  .k — 1, and at level k it satisfies strictly more 
constraints than a.

As discussed in Section 9.2.2.5, we assume that the the members of the BCH solution 
tuple will contain only those elements which are acceptable to the required constraints, 
and will contain at least all the elements which are preferred by one or more optional 
constraints.

fmax selects all elements occurring at least n times, for some n, and filters out all 
elements occurring less then n times. An element appears n times at a given optional 
level because it is preferred by n constraints at that level. An element only appears 
less than n times if it is preferred by less than n constraints. Therefore it would not 
have been selected by UCB. □

It might appear that this proof is incomplete in the case that a level is empty, i.e. 
the elements appear 0 times. However, this is not the case. If the final bag in the 
tuple is empty, then it is not considered part of the FGH solution — the definition 
o f so/s(F) is given in terms of the final non-empty bag. Therefore we only need to 
consider the case when a bag, say Sn- 1, is empty, but a subsequent bag is not. But 
F (5 „) =  i (SnffF(Sn-i) ) .  Now by the definition of guard, V x ■ x =  l ]. Therefore if 
Sn-\ =  £5 then Sn is also empty. Contradiction. Therefore the above proof is complete.
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Let us define a CLP(all) solution to be one which satisfies all constraints. Now any BCH 
solution satisfies at least one of the optional constraints. An HCLP solution satisfies as 
many as possible of the optional constraints, as does an FGH solution. CLP(required) 
refers to the solutions found by ignoring the optional constraints, hence it satisfies all 
the required constraints but none of the optional ones. Given these definitions, and 
combining the result of Proposition 18 with that of Section 9.2.2.1, we can say:

CLP (all) C set(FGH) =  HCLP(UCB) C set(BCH) C CLP(required)

9.6 Conclusions and benefits

We have developed a compositional variant of HCLP based on bags, which stores the 
intermediate solutions to a hierarchy in a tuple (So, S i , .. .Sn). We are able to avoid 
invoking the constraint solver to recalculate solutions from scratch, due to the simplicity 
and elegant mathematical properties of our scheme. This scheme allows the exploration 
of the solution space, and can be implemented in an incremental manner.

We have defined a new binary infix relation over bags, called ‘guard’ . We have also 
defined a class of filter functions over bags, and placed them in a non-compositional 
framework which respects the theory of HCLP. We have examined one filter function in 
detail, and shown that it can be used to calculate the same solutions to a hierarchy as 
would be obtained by HCLP using the unsatisfied-count-better comparator. Thus we 
have separated HCLP into its compositional and non-compositional parts. The choice 
of a filter can be left until after BCH has provided the super-bag of solutions; if there 
are many, a more discriminating filter function can be used.

Most of our presentation has been expressed in terms of finite domains of integers, but 
it is clear that our work can be extended to any of the usual constraint domains, such 
as reals, especially if they can be represented by what we term SCCs (see Section 6.1.3).

In general, constraint satisfaction is of exponential complexity, compared to which 
guarding and filtering are cheap. In addition to being efficient, these operations are 
simple to understand, and calculate the answers we would obtain from HCLP while 
avoiding its computational expense and complex semantics.

In the next chapter we extend our discussion of compositionality to PCSP.
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Chapter 10

Composition in PCSP

In this chapter we address the following question: if we have two problems S and 
T which we use as the basis for two PCSPs, can we find the PCSP based on the 
combined problem, say ST, by composing the two PCSPs we have already calculated? 
A shorthand for this question is to ask whether or not PCSP is compositional. If it is, 
we can avoid the situation which we always wish to avoid, namely the requirement of 
combining the problems themselves and starting from scratch.

The results of a PCSP consist of two separate items. (The other parts of the definition 
of a PCSP are not important for a discussion of compositionality.) The first is a set 
of CSPs, each of which is a relaxation of the original problem. We call these the 
elements of the PCSP. The second item is an ordering of these elements induced by 
the distance function. If the original problem was called 5, then we abuse notation 
by calling the PCSP based on S, i.e. the pair (element, order), S as well. Thus we 
assess compositionality by asking if the elements in ST can be easily derived from the 
elements of S and T, and if the order is easily derived from the two original orders.

10.1 The elements

A solution to a CSP is a valuation which satisfies all the constraints at once. If we have 
two CSPs A and j9, then a solution to their conjunction is clearly a valuation which 
satisfies all the constraints in A and at the same time satisfies all the constraints in B. 
We could take the union (conjunction) of the set of constraints in A and the constraints 
in B and find its solutions. Alternatively, we could take the join of the solution set of 
A and the solution set of B (equivalently: take the intersection of the ‘expansions’ of 
A and B, as defined in Section 7.3.1.2). It is clear that these two methods will produce 
the same solutions to the combined problem. Hence it is clear that the CSP paradigm 
is compositional.

The elements of the PCSP based on 5  are all relaxations of the original problem S. 
Any solutions for S will also be solutions for each of the elements. By monotonicity of 
conjunction of constraints, any solution of the problem ST (the conjunction of S and
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T) will be a solution for one of the elements of S (ignoring the values of any variables 
in T and not in S). Any solution of ST will be a solution for all the elements of T 
(again, after projecting out any variables not in T ). Therefore the pairwise joins of 
the solutions of all the different elements in S and T will equal the solutions of all the 
different relaxations in ST.

As we do not need to consider the elements further, we will now turn our attention to 
how they are placed in an order by a distance function.

10.2 The order

10.2.1 Ordering problems and ordering solutions

In PCSP the distance function is defined as ordering problems. There is one particular 
distance function which fits in well with the partial order over the problem space which 
is a separate part of the standard definition of PCSP. It is based on the number of 
solutions not shared by two problems (see Section 4.4 or [31]). However Freuder notes 
that it may be expensive to compute. He suggests an alternative, the ‘standard’ or 
‘augmentations’ distance function, based on the difference between the total number 
of constraints augmented in each problem. This can be calculated without needing to 
solve all the elements. We are interested in composing solutions, and so it might seem 
that we ought only to work with solution-space distance functions. However, this is an 
unnecessary restriction: when ordering problems it may be expensive to consider their 
solutions, but when ordering solutions we already know the various characteristics of 
the problems they solve.

In the following we will discuss the order itself, rather than the distance functions by 
which they are generated, allowing for a general, uniform treatment. Then we shall 
instantiate our general conclusions with particular example distance functions.

10.2.2 Composing orders

An order is a relation. The statement x < y is shorthand for the statement (x,y)  € <, 
where < is treated as the name of a set of pairs. Therefore two instances of the same 
semantic concept give rise to two different orders (e.g. the concept ‘subset’ gives rise to 
two different orders Cg and C y when we consider the subset order over S as opposed 
to the subset order over T).  We can compose two orders which do not share the 
same conceptual background using application-specific information, but examples of 
this nature are too concrete to discuss here. However, in the general case composing 
two conceptually different orders, for example subset over sets which happen to contain 
numbers on the one hand, and a numeric order over the sum of the numbers in each 
set on the other, does not seem coherent semantically.

In the following we use 0  to denote the result of combining two problems and calculating 
the combined PCSP from scratch. The order thus obtained is denoted <s®T, where
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S  a n d T  a r e t h e t w o p r o bl e m s t o b e c o m p o s e d. W e u s e 0  t o d e n o t e s o m e c o m bi ni n g 

o p e r a ti o n o v e r r el a ti o n s, i. e. a f u n c ti o n w hi c h t a k e s t w o s et s o f p ai r s a s i n p u t s a n d 

p r o d u c e s a s e t o f p ai r s a s o u t p u t. A s w e h a v e al r e a d y s h o w n i n t h e p r e vi o u s s e c ti o n 

t h a t t h e el e m e n t s o f S T  c a n b e e a sil y d e ri v e d f r o m t h e el e m e n t s o f S  a n d T,  w e cl ai m 

t h a t t h e f oll o wi n g p r o p o si ti o n i s s elf- e vi d e n t:

P r o p o si ti o n 1 9: C o m p o si ti o n —  G e n e r al C o n di ti o n

If  3 0  a s s o ci ati v e a n d c o m m ut ati v e ■ < s ® T  =   © < t , t h e n P C S P i s c o m p o siti o n al

f o r < s a n d < p .

T o b e m o r e p r e ci s e, t h e s et e q u ali t y i n t h e a b o v e p r o p o si ti o n c a n b e u n p a c k e d:

(( sli ii )i (s 2 5 ¿ 2)) 6  < s ® T iff (( si, ¿1 ), ( $ 2, ¿ 2)) G ( < s 0  < t )

1 0. 2. 3  T h e ‘ s o l u t i o n s u b s e t’ d i s t a n c e f u n c t i o n

F r e u d e r s u g g e s t s a m e t ri c b a s e d o n n u m b e r o f s ol u ti o n s n o t s h a r e d b y t w o p r o bl e m s 

( s e e S e c ti o n 4. 4 o r [ 3 1]). H e n o t e s t h a t if P'  < P  t hi s di s t a n c e f u n c ti o n m e a s u r e s 

h o w m a n y s ol u ti o n s h a v e b e e n a d d e d b y t h e r el a x a ti o n o f P 1.  H o w e v e r, b e c a u s e w e a r e 

d e ali n g wi t h o r d e r s i n d u c e d b y t h e di s t a n c e f u n c ti o n s r a t h e r t h a n t h e f u n c ti o n i t s elf, w e 

a r e i n t e r e s t e d i n t h e u n d e rl yi n g s u b s e t i n cl u si o n r el a ti o n o v e r s ol u ti o n s e t s. If n eit h e r 

P < P'  n o r P'  < P  h ol d s, t h e s u b s e t i n cl u si o n o r d e r m a k e s P  a n d P'  i n c o m p a r a bl e. 

T hi s mi g h t s e e m t o b e a diff e r e n c e b e t w e e n it a n d F r e u d e r’ s di s t a n c e f u n c ti o n b a s e d 

o n n u m b e r o f s ol u ti o n s n o t s h a r e d. I n f a c t, w e f e el t h a t hi s di s t a n c e f u n c ti o n i s n o t 

w ell- d efi n e d. S p e cifi c all y, if P  h a s s ol u ti o n s et { a }  a n d P'  h a s s ol u ti o n s e t { 6 }, t h e n 

t h e y a r e a t di s t a n c e 2 f r o m e a c h o t h e r. If Q  h a s n o s ol u ti o n s b u t Q'  h a s s ol u ti o n s et 

{ c , d },  t h e n t h e y a r e al s o s e p a r a t e d b y a di s t a n c e o f 2. B u t w hi c h i s b ett e r, P, P ' , o r 

Q ?  It i s n o t cl e a r. T h e r ef o r e w e c h o o s e t o s h o w t h e c o m p o si ti o n ali t y o f t h e r el a t e d 

s ol u ti o n s u b s e t i n cl u si o n o r d e ri n g i n s t e a d, w hi c h w e d o i n t h e n e x t p r o p o si ti o n.

P r o p o si ti o n 2 0: S ol u ti o n s u b s e t i s c o m p o si ti o n al

A n a p p r o p ri at e  0  e xi st s w h e n  < 5 = C 5 a n d < t  = C r -

P r o o f:

T h e o r d e r, c al c ul a t e d f r o m s c r a t c h, f o r S  <g> T  will b e ( si, t\) < s ® T  ( « 2, ¿2 ) iff « 1 D t \ C 

s 2 D f 2, w h e r e t h e s,- a n d i,- a r e s et s o f s ol u ti o n s. It i s a n o b vi o u s t h e o r e m o f s e t t h e o r y 

t h a t a n 6 C c n d i f f a f l 6 C c  a n d a  n b  C d.  K e e pi n g t hi s t h e o r e m i n mi n d, c o n si d e r 

t h e f oll o wi n g d efi ni ti o n f o r ©:

X  0  Y  =  { ( 2 , i 2 n y 2) | { z, x 2 ) G X,  (z, y 2) G Y }

w h e r e z  i s a s s u m e d t o b e o f t h e f o r m 2  =  z \ D z 2, 

b u t t hi s i s n o t i n f a c t n e c e s s a r y

It i s cl e a r t h a t ( u, w) € X  © Y  iff ( u, v) 6 X  <g) Y.  □

It i s al s o cl e a r t h a t 0  i s c o m m u t a ti v e. W e n o w p r o v e t h a t it i s a s s o ci a ti v e, i. e. X  0  

( Y ® Z )  =  ( X ® Y ) ® Z .  *

' R e c a ll t h a t i n P C S P < i s a n o r d e r o v e r t h e p r o bl e m s p a c e, d efi n e d b y Pi <  P2  iff s ol s( l \ ) D s ol s(  P2 ).
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(We implicitly assume that the various orders X,  Y,  and X  © Y are defined over 
elements of the respective problem spaces i.e. collections of elements.)

Proof:

Now (P,C)G X ® { Y ® Z )

iff (B , C) € { ( A , Pn Q) | (A , P) € X, (A, Q) G Y © Z}

iff 3 P , Q - ( C  =  PC\Q A (P, P) G X A (P, Q) € Y @ Z)

iff 3 p, g • (c = p  n q  a  (5, p) e x  a
3 P, 5 • (Q = P n 5 A (5, P) e Y A (P, S') G Z))

iff 3P ,Q ,P ,5 - (C  =  P n Q  A (p , p ) g x  A
Q = R  n S A { B, R) e  Y A (fl, S) € Z)

iff 3 p, p, 5 • (C = p  n r  n 5 a  { B , p ) e x  a  { B, R) e  y  a
( P ,5 ) G Z )  (1)

Let us leave the above derivation at this point. We will now arrive at a similar expression 
starting from ( X ® Y ) ® Z  (modulo different names for existentially qualified variables).

(We could just continue the above derivation and put it back together to arrive at the 
right-hand side, but the following is clearer.)

Now (P , C)  € ( X © y )  ® z

iff (P, C ) e { { A , p n Q ) \  (a , P) e x  © y, (A, Q) e z }

iff 3 P, Q ■ {C =  P n Q A (P, P) 6 I  ® f  A (P, Q) e Z)

iff 3 P , Q - ( C  =  Pi ) Q  A 3 P ,5 - (P  =  PnPA
(P, R ) e x  A (P, 5) e y) a  (p , q ) e z)

iff 3P ,Q ,P ,5 - (C  =  P nQ  A P =  P n 5 A
(P, P) <E X A (B,S) e Y A (P, Q) G Z)

iff 3Q,P,P- (C  =  P n 5 n  Q A
(P,P) g x  A (P,5) e y a  (P,Q) e z) (2)

We can write (1 ) and (2) above one another as follows:

3 P, P, 5 • (C  =  p n P n 5 A (B , P ) e x  A (P, p ) g  y  A (P, P) G Z)  (1) 
3 P, 5, Q ■ (C = R n S n Q A ( B , R ) e X  A (P, 5) G y  A (P, Q) G Z) (2)
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and we can see that they are identical, modulo different names for existentially quan-
tified variables. □

Note that the earliest member of the subset inclusion order is the empty set. If the 
user would like to have the ‘best’ solution to the PCSP, it will be the earliest non-
empty member of the order. If the earliest non-empty member of S is intersected with 
the earliest non-empty member of T, the intersection might be empty, and therefore 
not a candidate solution for the combined PCSP ST. Therefore, not withstanding the 
above proof of compositionality for the order as a whole, the user is still required to do 
an extra task, namely to ignore or delete the empty members of the order, ffowever, 
checking if a set is empty does not require much work, and therefore we do not consider 
it to be a problem, in general.

The © that we defined in above, and the proof o f its associativity, did not depend on 
the order being subset inclusion. The order was represented simply as the pairs which 
are members of the sets X, Y, and Z. Therefore the proof of associativity holds for 
other orders too, as long as we use this composition operator. But we must ask if this 
particular operator is useful for any orders apart from subset inclusion.

We now define a generalisation of the subset ordering. An order is ‘subset closed’ iff 
V u, £1, X2 • (u C x\ A < xf) —y u < X2 ■ It seems that the © defined above is useful 
for subset closed orders as well as for subset itself. In terms of this definition, it is not 
surprising that C is subset closed, as partial orders must be transitive. It is even less 
surprising when we note that stating that < is subset closed is equivalent to saying that 
< contains C. This observation, and the following proof, are due to Sebastian Hunt 
[Private Communication].

Proof:
Assume that < is subset closed. Then, as < is reflexive, \ / u , x - u C x - + u < x .

Conversely, assume that V u,x ■ u C x -*  u < x. \i u C x and x < y, then u < y, as < 
is transitive. So < is subset closed. □

10.2.4 The M axCSP distance function

Freuder and Wallace define the MaxCSP distance function as seeking a solution that 
satisfies as many constraints as possible (see Section 4.4 or [33]). This can also be 
thought of as seeking a solution which violates as few constraints as possible. For two 
solution sets X  and Y to some problem, the order induced by MaxCSP can be defined 
as follows:

X  <Maxcsp Y iff X  satisfies more constraints than Y

It is clear that a set of solutions U satisfies more constraints than a set of solutions V 
whenever U Ç V. Therefore

U C V ^ U  < M a x C S P  Y

Therefore MaxCSP is subset closed, using Hunt’s equivalent definition.

99



This suggests that MaxCSP is compositional, using an © operation similar to the one 
defined for the subset inclusion distance function. However, instead of defining the 
composed order directly, let us define a combining operator for the scores calculated 
by the distance function, and use the standard ordering over the integers to order the 
solutions according to their scores. We will work at the level of the sets of constraints 
which gave rise to the solution set, rather than at the level of the solution set itself, as 
this is more in keeping with the definition of MaxCSP.

Let s be a set of constraints which is a relaxation of the original OCS 5, and similarly for 
t and T . Let s satisfy ns of the constraints in 5, and let t satisfy of the constraints 
in T. When we previously discussed the elements of the composed PCSP we used 
intersection over solution sets, which gives the same results as conjunction or union of 
sets of constraints. So let us say that s U t is a set of constraints which is a relaxation 
of the problem S U T. Clearly, the solution set for s U t will be the intersection (join) 
of the solution sets for s and t. Its place in the order < s® r will be determined by its 
score nsUt. Clearly, the larger the score of s U t, the earlier in the order <s®T-

The score nsUt of the conjunction of constraints s U i  will not be the simple addition 
of the scores ns and nt due to the possibility of some of the constraints being in both 
sets, and hence counted twice. Let us use n to mean intersection of sets of constraints 
(not sets of solutions). For any x, s n x will be one of the relaxations of S, so that 
s <5 s f l r ,  as solutions to s n x will satisfy fewer constraints than solutions to s. 
Specifically, s n i  will be one of the relaxations of S, and therefore its score nsnt will 
in principle be available. In the light of all the above, it is clear that the appropriate 
compositional operator © for the MaxCSP distance function will be defined as follows:

nsUt =  ns © nt -  ns +  nt -  n,m

It would be preferable if © could be defined only in terms of ns and ni5 but that is not 
possible.

We have abused notation in this section, using © as an operation over scores instead 
of over orders or relations, but we feel that this presentation is sufficiently precise, and 
much clearer.

10.2.5 The ‘augmentations’ distance function

Another distance function mentioned by Freuder is based on the number of constraint 
augmentations not shared by two problems, i.e. the number of relaxations it would be 
necessary to make to P to arrive at P'. In Section 4 we called this the ‘augmentations’ 
distance function. In [31] Freuder does not discuss the semantics of this distance func-
tion when neither P < P' nor P' < P holds. Therefore a question similar to the one in 
Section 10.2.3 (re. P, P1, and Q') arises. Let us avoid this question by redefining the 
distance function as counting number of constraint augmentations between two prob-
lems related by the order < over the problem space2. This ensures that the induced

2 Other plausible assumptions could be made which would turn this distance function into MaxCSP, 
especially in the light of the detailed defence of the choice of UCB for transforming PCSP into HCLP 
(see Section 7.3.1.2), but we wish to avoid repetition of the previous section 10.2.4.
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order is subset closed. Let us further assume that S and T do not contain the same 
constraints: they may contain constraints over the same variables, but let us assume 
that if Cx y  is one of the constraints in 5, then T may contain D\y  but not another 
copy of Cx y  ■ Augmenting Dx y  with some tuple (x, y) is considered to be completely 
separate from adding (x,y)  to the domain of Cx y , even though the same tuple is 
added. This avoids the question of double counting of the same augmentation of the 
same constraint. (An alternative is to use bags, of course, as we do elsewhere in this 
thesis.)

This still leaves an important question. If we augment some constraint in 5  once, and 
we also augment a constraint in T once, but the augmentations do not lead to the same 
solution, the two solutions may not be in the intersection of the two elements. Should 
we nonetheless include the augmentations in the total? We feel that the answer is ‘yes\ 
as it may often be the case that an augmentation has no effect, even when considering 
S alone.

Bearing in mind all these assumptions, we claim that the number of constraint aug-
mentations no longer matters, and we can just consider the induced order. In this case 
we claim that the © defined in the proof of Proposition 20 is also appropriate here, 
given that the order is indeed subset closed.

10.3 Conclusions

We have shown that PCSP is compositional when the best-known distance function 
MaxCSP is used, and also when modifications of the two other obvious distance func-
tions are used.

We have defined a heuristic condition for the applicability of a compositional combining 
operator for distance functions.
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Part V  

Integration
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In Part III of this thesis we discussed transformations between two different constraint 
paradigms, HCLP and PCSP. In Part IV we created a compositional variant of the 
solver part of a language, HCLP.

In this part we define our own framework, G oes, as a compositional integration of 
certain concepts from HCLP and PCSP. Therefore in this part we spend some time at 
the level of languages, before considering implementations and other solver-level issues.

Then we present a large example in order to compare the G oes  approach with that of 
HCLP and PCSP.
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Chapter 11

Goes: A New Preference System 
Integrating HCLP and PCSP

11.1 Introduction

Both HCLP and PCSP have desirable characteristics: HCLP allows a fine-grained 
and declarative expression of preferences, but commits the user to labelling all the 
constraints in the problem. PCSP only requires the specification of a single global dis-
tance function, which can be used for optimisation or to find instances with a particular 
problem structure, but it can be very difficult to find the correct function.

The links between CLP and CSP are well-known, and have greatly benefited both 
paradigms. However, no such link has been developed between HCLP and PCSP. 
General frameworks have been developed of which PCSP and (indirectly) HCLP are 
particular instances [4, 5, 71], but they do not provide a direct link between them. In 
this chapter we present a general framework of which HCLP and PCSP are instances, 
and in which it is also possible to use both approaches simultaneously: an easy-to-find 
global function can be used, fine-tuned with a small number of labels, or more labels 
can be used with the global function relegated to a secondary role. Furthermore our 
framework is compositional, in contrast with [4, 5, 71] where the issue is not even raised.

Our motivation is partly theoretical (similar to [4, 5, 71]) but mainly an attempt to 
capture the two formalism’s orthogonal approaches to over-constrained systems (OCSs) 
in a single framework. Remember that the two orthogonal approaches are as follows: 
HCLP reorganises the structure of an over-constrained problem, by specifying relation-
ships between constraints; PCSP keeps aflat structure to the problem, but changes the 
meaning of the individual constraints by adding elements to the domain.
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11.2 A general framework for over-constrained systems

We now present G oes, a general framework for dealing with over-constrained systems 
(OCSs) i.e. sets or bags of constraints with no solutions. In this section we discuss 
some general characteristics which are desirable for such a system.

This part of our work has similarities of purpose with the work of Bistarelli, Rossi, and 
Montanari [5], and Schiex, Fargier, and Verfaillie [71]; these two theories are compared 
in Bistarelli et al. [4]. However, we go one stage further than these papers: we show how 
the different approaches of HCLP and PCSP can be used simultaneously. Therefore 
the various advantages of each of these systems are available.

11.2.1 Characteristics

We can relax an OCS in two ways: either we can leave out some of the constraints thus 
relaxing the system as a whole, or we can relax some of the constraints individually. 
The first way is effectively what HCLP does, where the choice of constraints to omit is 
guided by the strength labels. It can be considered as the choice of one of the consistent 
members of the power-bag of the original bag. The second method, of which PCSP is 
an example, generates a collection of consistent bags all of which have the same size as 
the original, where some of the constraints are not identical to the original ones, but 
are derived from them. We can also consider this method in the form of an enriched 
notion of power-bag, as will be shown below.

An important question is how to place all the bags in an order, such that the first 
element in the order is the ‘best’ relaxation of the original problem. It is straightforward 
to define a function which calculates a score for each member of a collection of bags 
which shows how good or bad that bag is with respect to the required, strong, weak, 
etc. constraints in an HCLP formulation of the problem. These scores can be drawn 
from any partially ordered set; HCLP itself uses a comparator to calculate sequences of 
numbers [r, s, w, ...], which are then ordered lexicographically. It is also straightforward 
to define a function which calculates a score based on the number of constraints in a 
bag which are relaxations of the original constraints, as in PCSP. (PCSP uses what its 
developers call ‘metrics’ and what we call ‘distance functions’ , to avoid confusion with 
HCLP’s ‘metric comparators’ .) But the question is how to combine these two functions, 
and thus relate these two notions of ‘score’ which may be semantically different even if 
they have syntactic similarities.

We allow a great deal of generality in answering this question, giving some character-
istics that the function must obey, but otherwise not restricting the user too much. 
However, we also give a very simple example to aid the presentation, in which one unit 
of relaxation (one augmentation, in PCSP terminology) is equated with one move down 
the hierarchy of strength labels. In other words, using our example combined function 
(with a lexicographic order on sequences of integers), a required constraint which has 
been relaxed once is given the same score, and hence the same position in the order, as 
a strong constraint which has not been relaxed at all.
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Another restriction is placed on any general framework for OCSs: if the original problem 
is not in fact over-constrained, then it must be considered to be the best possibility; it 
may not be ignored in favour of one of its relaxations.

Compositionality is very important in CLP, both for theoretical reasons and due to its 
relationship with incrementality of implementations. This has been discussed in much 
greater detail in Part IV of this thesis. G oes is as compositional as it is possible for 
a system to be when it includes preferences and partiality; it is a fundamental feature 
of this class of theories that the ‘best’ solution (or the best consistent subproblem) 
of an over-constrained problem P, when combined with the best solution to another 
problem Q , may not be the best solution to the combined system. For example, they 
may not even be consistent with each other! However, if they are consistent with each 
other, then the best solution is indeed the combination of the best sub-solutions (see 
Section 11.3.3).

1 1 .2 . 2  Formal definition of Goes

We define G oes using bags. Our motivation for this is that bags allow us to weight 
preferences during composition. For example, if 19 people strongly want a meeting 
at 9 a.m. and one person strongly wants it at 10 a.m., a set representation of the 
composition of the preferences would have each of 9 a.m. and 10 a.m. occurring once, 
and thus appearing to be equally acceptable, which is clearly incorrect.

For each constraint c in the original problem, we define its set of relaxations Rel(c) 
as being all the bags each containing one possible relaxation (augmentation by adding 
tuples) of c, as well as c itself, and also the empty bag which denotes the complete 
removal of c from the problem1:

Rel produces a set, not a bag. This is because we only want one relaxation of any given 
constraint; bags are not relevant when relaxing one particular problem, only when 
composing two previously-relaxed problems.

Note that c might be labelled with an HCLP-style strength level. In this case, all the 
constraints in the members of Rel(c) keep that same label. Note also that we define 
a bag of labelled constraints to be u/-consistent if the underlying set of unlabelled 
constraints is consistent (where ul stands for ‘unlabelled’ , and where consistency is 
indicated by not entailing a contradiction):

¿ ( / i ,c i ) , ( i2, c 2) , . . . , ( / „ , c n)5 /fe-L if and only if {c i,  c2, . . . ,  cn} ^  1

We can now define our enriched notion of power-bag, in terms of all the consistent 
members of the cartesian product of all the ReVs of the constraints in the original

1 In fact, Freuder has shown that in PCSP it is not necessary to treat constraint removal separately 
from constraint augmentation [31], but it is useful to do so for our purposes, to aid the comparison 
with HCLP.
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11.2.3 Ordering the elements of [_J

In HCLP, it is easy to decide which of two constraints or collections of constraints is 
more important: just use the strength labels and whichever comparator C the user has 
selected. In PCSP, it is also easy: just use whichever distance function the user has 
chosen. In G oes  the user must also select the particular function h to calculate scores 
for the members of [P|, and must start by choosing the distance function S which scores 
each member of Rel(c). The scores must be drawn from some ordered set, but apart 
from that, the only restrictions we place on 6 are that any unrelaxed original constraint 
must be given a score of 0, and if one element of Rel(c) has been augmented more than 
another, it must be given a larger score (a greater distance from c). The definition of 
[_] does not include the scores which annotate all its members, but as they are always 
easily calculated, and depend on nothing but the choice of h and the members of P, 
we can talk as though [_J does include them.

S may treat all the constraints in a problem equally, but it may also discriminate: 
it may define the increase in distance between a once-augmented constraint and a 
twice-augmented constraint to be the same as the distance between a twice-augmented 
constraint and a constraint which has been augmented three times, or it may treat 
them differently.

The score function h : M (L x C ) 4  (7r, < 7̂  has as input a bag of labelled constraints 
which are related to each other by a distance function, and outputs a member of some 
set 7T which is pre-ordered by <v . It is a pre-order rather than a partial order because 
two different bags may have the same score, and hence the same place in the order; 
whenever we talk about the ‘best’ element in the order, we mean the equivalence class 
of all the equal-best elements. Our example throughout this chapter is an h that has 
as output a sequence of integers, ordered lexicographically. (See [4, 5, 71] for discussion 
of the mathematical properties of various functions in different formulations of HCLP 
and PCSP.)

11.2.4 Example a  in Goes

See Section 2.6 for the original description of this example, and Sections 3.4 and 4.5 
for its treatment in HCLP and PCSP respectively. Remember that the HCLP specifier 
had decided to assign the following strength labels to the constraints: required Cs t i 
strong C f t > and weak C s f -

Using the HCLP convention that unlabelled constraints are ‘required’ , the relaxations 
of the three constraints will be:

Rel(CsT) =  U5, ICs t S, IC's t S, IC$T$, ICPri, . . . }
Pe/(strong Cf t ) =  {U , ¡(strong Cf t 5, ^strong C'FT], ¡(strong CFT], . . . }  

Re/(weak Cs f ) =  {¡J , £weak Cs f 5, £weak Cgp^ £weak C'JFl, . . . }

Let us consider a very simple choice for h, namely that it returns a sequence of inte-
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gers [r, s, w, ...] which count the number of unaugmented required, strong, and weak 
constraints present in each of the bags in [a|. These sequences will be ordered lexico-
graphically, with larger (later) elements being more preferred than earlier ones, unlike 
HCLP where scores always measure errors and so bags with lower scores are preferred. 
Then for example the empty bag will be annotated with a score [0,0,0] and so will 
be the worst element in the order, and £weak Cs f S will score [0,0,1]. Given that the 
original problem is of size 3, by the definition of [_] each sequence must sum to at 
most 3; the very best element that the order might contain will be [3, 0, 0]. Let us also 
define a very simple relationship between strength labels and augmentation, namely 
that one augmentation is equivalent to one movement down the hierarchy. For example 
^strong CpT$ will be treated by h in the same way as an unaugmented weak con-
straint. (Note that in this example the number of dashes does not indicate the number 
of augmentations, as there is more than one way to add a single tuple to the each of 
the constraints in a .) Then, for example, ^strong C^r ,weak Cs f 5 will get a score of 
[0,0,2], as it contains two weak-equivalent constraints. In later sections we will refer 
to this score function as max-ucb as it is a combination of HCLP’s UCB comparator 
and the PCSP distance function called MaxCSP.

The annotated, ordered, version of [a] will contain many members; the maximal ones 
will be l C s t , strong C f t , weak G ^ ^ 1,1’0’1! and I C s t , strong C f t -, weak 
where CgF, not listed earlier, is C s f  augmented with the single tuple (r, c). The 
solutions to these two bags of constraints are (w,s,d)  and (r , c , g ) respectively, the 
same as were calculated by HCLP by omitting C s f  completely (Section 3.4). Therefore 
it might seem that in this case we have not gained anything by augmenting constraints. 
But in fact what this example shows is that we can use strength labels with confidence 
in this framework: we labelled sufficiently many of the constraints that we completely 
determined the answer, without the distance function interfering. However, if we have 
a problem with thousands of constraints, and do not wish to label each one individually, 
we could just label those parts of the problem over which we want most control.

11.3 Composition

P rop osition  21:
[ P ] © [ Q ]  =  [ i , a Q ]

P ro o f:

Case C :
Consider a typical element of [P ] © {QJ which, by the definition of ©, must be of the 
form a£l8 for some o £ [P|,(? 6 [Q ]. By the definition of [_], a l+l # contains various 
constraints, each drawn from Rel(c) for some c £ P, or some c £ Q, or in both, c will 
also be an element of Pl+lQ, and so [Pl+lQ] will contain all consistent bags each of 
which contains one member of Rel(c). This is true for all the constraints in cr 1+10. By 
the definition of ©, o l+J 6 must be consistent. Therefore it also satisfies the consistency 
condition in the definition of [_].

Case D:

109



Consider some ip G [FW QJ. It will have the form ip =  £ c f , . . . ,  c*^ where c* G Rel(ci) 
for c,- G P or c8- G Q or both. Let us define two bags a and 9 such that a =  l+J £c* G ip | 
c* G Rel(ci), Ci G P\QJ and 0 =  l+l£c* G I c* G Rel(ci), Ci G <2̂ . Clearly ip =  <71+10. 
Now V7 is consistent, and so a C ip and 9 C ip must also be consistent, and so cr G [PJ 
and 9 G [QJ. Therefore ip =  cr l+J 0 G [PJ 0  [QJ.

Therefore we have shown that 0  is compositional. □

11.3.1 Compositionality of scoring functions

The proof shows that we can compose the solutions to problems without needing to 
compose the problems and re-calculate solutions from scratch. But can we also re-use 
the scores that we calculated for each member of [PJ and [QJ separately? The answer 
is yes, as long as we can define some function 0 a : n x n —> n which has the property 
that h(aiS9) = h(cr) 0 a h(9). It is important for compositionality that © a does not 
depend on P and Q themselves, but only on cr and 9.

We can define © a for our example h using pointwise addition:

|>V, sa, u ^ ,...] 0 a [re, se, we, ...]  =  [ra +  re, sa +  sg, wa +  we, . . .]

It is clear that this definition has the desired property, and so we can combine scores 
without needing to recalculate them, without affecting compositionality. All that is 
necessary is to check that the conjunction of the constraints a t+J# is consistent. This 
consistency condition is important, and it has a key effect on the possibility of total 
compositionality, which is discussed in the next section.

11.3.2 Non-compositionality /  non-monotonicity of pre-ordering

If the best element in the lexicographic ordering of [P ] is inconsistent with the first 
element in [Q ], then their union will not be uZ-satisfiable and so it will not be an 
element of [P  l+J Q\. Therefore, a fortiori, it will not be the first element in the ordering 
of [PWQJ-

So it is possible that the first element in the lexicographic ordering of [P  l+J QJ will 
not necessarily be formed from the union of the first element of the ordering of [PJ 
and the first element of the ordering of [QJ. This is where the non-monotonic nature 
of HCLP is present (and all other systems for expressing preferences have the same 
characteristic). If we had chosen to define the ‘solution’ to be only the first element of 
the order, then the solution of [P  l+J QJ would not necessarily equal the solution of [PJ 
or [QJ. This is why we chose the ‘solution’ to be the entire order, leaving the selection 
of the best element to a subsequent stage.

11.3.3 Summary

G oes defines a class of preference systems, i.e. constraint solvers for relaxing and
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resolving over-constrained systems. Goes takes as input a bag of constraints P  and 
outputs the solution to the ‘best’ relaxation of that bag. Goes is represented by a 
tuple

({Pi  ( * , < * ) , ( © ,  © a))

where [P ] indicates the invocation of G oes on some problem P, h is a score function 
with scores ordered by <A, © composes bags of constraints (which are relaxations of 
different problems), and ©& composes scores.

The best relaxation, and hence solution, is found as follows, h gives a score to each 
possible relaxation of the original bag; these scores are then ordered by <k to find the 
equivalence class of best relaxations. If the original problem is soluble, i.e. it is not 
over-constrained, then it must be found to be the best. This is a restriction we impose 
on h and <h.

The operator © composes relaxations of different problems, avoiding the necessity of 
composing the problems themselves and then relaxing, which would waste any work 
already done in calculating the individual relaxations. Depending on the definition of 
h and <h, it may also be possible to define a function © a which composes the scores 
of the various relaxations.

[Pi+JQJ =  [P ]© [ Q ]

if 3 © a such that h(a 1+10) =  h(a) ©^ h(6)
then best<h ([P  l+l Qj) =  best<A (|PJ) © A best<h ({Qj)  

when best<fc([P])l±lbest<fc([QJ) fa 1

This is only useful if ©* preserves the best elements. In other words

if best<A[P ] has score a
and best<h [Q ] has score r

then best<h ([P  l+l <2]) =  (best<h [P ]) © (best<A [QJ) 
and has score a © a t

11.4 Programming language aspects of G oes

This thesis is mainly about constraint solving and not constraint logic programming. 
However, we will now sketch an implementation of a subset of G oes, partly to clarify 
the framework and partly to aid the comparison with HCLP.

G oes is very general and declarative, and so certain restrictions are likely to be im-
posed by any implementation. One key issue is whether the entire solution space is 
searched before any answers are returned, or whether some kind of ‘first solution’ is 
returned quickly. We will assume that the first successful branch of the search tree 
is not displayed, but simply used as a bound for a branch-and-bound search of the 
remaining space. This guarantees correctness (only good answers are returned) at the
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expense of speed. An alternative would be to display the first bound, and then only 
continue the search if it is not acceptable to the user.

In this section we will use concrete syntax based on that of Eclipse [22] including 
features inspired by its Propia library. An alternative would be to use the style of 
Fages et al. [25].

11.4.1 Score functions

The user chooses a score function in a fashion similar to setting a compiler or debugger 
directive:

? -  se t_scoreJ u n ction (m a x -u cb ).

Various score functions are possible; one example is max-ucb, as described earlier in 
Section 11.2.4. Others are mentioned later in this section. Mixing two or more score 
functions in one query would only make sense if we also defined a score-combining 
function. The results of such a process would quickly become unintuitive for the user, 
and so we only allow one score function to be in use in any given query.

11.4.2 The relaxation operator

The following table lists some of the possible forms for the Rel operation in G oes. 
Each line indicates which constraint or group of constraints is to be relaxed, and what 
specific type of relaxation (or ‘method’) should be used. All methods can be used with 
all the ways of denoting a collection of constraints. If an unlabelled constraint can be 
satisfied as is, then it must not be relaxed.

re la x  What How
1 re la x  constraint outward
2 re la x  constraint with predicate
3 re la x  List-of-variables above
4 re la x  a l l  below
5 re la x  a l l  slack
6 re la x  none
7 re la x  a l l  help (.strength)

Rel is only formally defined as operating on constraints. However, we can add some 
syntactic sugar to reduce the amount of typing that the user must do. Specifically, 
re la x  followed by a list of variables and a method applies that method to all the 
constraints containing at least one of the variables from the list. (In practice, it may 
be more useful to change the semantics of this construct only to relax constraints all 
of whose variables are in the list.) The scope of the relaxation is from where it appears 
textually until the end of the query, or until the next occurrence of re lax . Lines 4 and 
5 show how to relax all the constraints in a query with the same method. Line 6 shows 
how to terminate the scope of a relaxation.
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Relaxing outward means that the domain of the constraint is augmented with values 
which are close to the existing values. A simple example is the constraint X  =  3 where 
A  is a finite domain variable. Using Eclipse syntax (where #  indicates finite domain), 
we can write re la x  X #= 3 outward. If this constraint needs to be relaxed, the values 
2 and 4 are tried first, then 1 and 5, and so on. Thus if we would ideally like to fly 
somewhere on a Tuesday, say, the outward method will try Monday and Wednesday 
before Sunday or Thursday.

Relaxing X  =  3 above would try values greater than 3 rather than less than 3, and 
vice-versa for below.

outward, above, and below can also be defined for n-ary constraints and over non-
integer domains, as long as the domain is ordered (such as the days of the week). An 
outward relaxation of a constraint with tuple (a ,b )  would include ( a , a ) , ( a ,c ) ,  and 
(b ,b ) .  This might appear slightly ad-hoc, but it is under the control of the user, via 
the order he defines over the domain.

The help (strength) method simply either includes a constraint or ignores it completely. 
For the purpose of deciding whether to ignore a constraint when other explicitly labelled 
contradictory constraints are present, and for calculating scores, it is necessary to decide 
what strength level the relaxed constraints should be considered to have.

re la x  s la ck  is relevant for constraints over numeric domains, and is based on a 
standard method in linear programming. It means that each constraint has an ad-
ditional non-negative variable denoted c. Constraints of the form aixi > 0 become 
¿2aiXi +  e > 0. Y laixi — 0 becomes Y)aixi — e < 0, and equalities have two ex-
tra variables, one added and one subtracted. Then one can minimise the sum of the 
epsilons (if =  0 then the original problem is recovered) by using score function 
slack-min-sum. An alternative is to minimise the maximum value of any slack vari-
able, so that the solutions offered are ‘near misses’ , by using slack-min-max. Other 
possibilities also exist, such as least-squares.

Using slack-min-sum or slack-min-max gives rise to the question of how to combine 
slack variables with strength labels. One possibility is to say that a sum of slacks 
(respectively, a maximum slack) greater than 10 is equivalent to violating a strong 
constraint, whereas a sum (max) between 5 and 10 is equivalent to violating a medium 
constraint, etc. These equivalences between slacks and strength labels are somewhat 
arbitrary, but are acceptable if they give the user the desired answers in his specific 
applications; indeed, the application expert is the only person who can define these 
equivalences in the first place.

The method indicated in line 2 of the table is the one closest to the standard PCSP 
notion of augmentation. We allow the programmer to define a predicate which takes a 
variable tuple as input and returns a list of lists as output. The elements of the outer 
list represent equivalence classes of relaxations, i.e. a set of relaxations which are to 
be treated as equivalent weakenings of the constraint by the score function. The first 
class represents the unweakened unaugmented constraint. Note that the output list is 
not named in the method, i.e. its effect is communicated directly to the environment, 
similar to the style of Fages et al. [25]. For example
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relax X #= 3 with two_step_up(X)

invokes the relaxation predicate two_step_up which might be defined as follows: 

two_step_up(Num, [ [Num], [Num+2], [Num+4] ] .

The increase in error score (or the decrease in satisfaction rating) when moving from 
one equivalence class to the next is defined in the score function, not in the predicate. 
Of course the score function must also define the relationship between strength-labels 
and relaxations.

This example is just a fact, but a (recursive) predicate can also be used, if a longer (or 
infinite) set of relaxations is required.

11.4.3 Example

We continue to use the HCLP convention that unlabelled constraints are required but 
with the additional proviso that this is only true if they are also not inside the scope 
of a relaxation operation. Consider the following example query:

1 ? -  set_score_fu n ction (m ax-u cb).

Remember that the scope of the relaxation in line 6 only goes downwards, textually. 
Therefore the constraints in lines 2 and 3 are required. The constraints in line 5 have 
been labelled with strength levels but are not inside the scope of any relaxation, and 
therefore can only be either enforced or completely ignored, in the standard HCLP 
manner. There is no difference between the constraints in lines 7 and 9 in terms of how 
they will be relaxed. The only difference caused by one of them having a strength label 
is in the score that will be calculated.

The two predicates p /2  and q /2  are assumed to impose some constraints (we will ignore 
precisely what these constraints are) but, more importantly, they are assumed to include 
disjunctions. The existence of different constraint hierarchies due to disjunctive rules 
(i.e. rules with more than one clause which is satisfiable) leads to the following problem. 
Imagine there are two branches of the computation, one with 10 soft constraints of

y e s .

3
4
5
6
7
8
9
10 
11

2 ? - [X ,Y ,Z] : :  [ 0 . . 1 0 ] ,
X + Y #> Z 
p ( X , Z ) ,
strong X #> 5, weak Y #< X 
re la x  a l l  outward,
X #= 3, 
q (Y, z ) ,
strong Y #= 4, 
re la x  none, 
r ( X , Y , Z ) .
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which 5 are satisfied, and one with 5 constraints of which 4 are satisfied. If we simply 
count number of satisfied constraints as part of the score, then we should treat the first 
branch as being ‘better’ , even though it satisfies a smaller proportion of its constraints. 
A similar problem arises if the number of unsatisfied constraints is counted, if one 
branch satisfies 98 out of 100 constraints but the other satisfies 1 out of 2. Using the 
proportion of constraints satisfied is possible, but also gives rise to problems (for other 
examples). This issue also arises in HCLP, and has been addressed in [83, 84], under 
the heading ‘inter-hierarchy comparison’ . In Goes we also have disjunctions due to the 
different possible relaxations for a constraint, both within and between score function 
equivalence classes, but this does not cause any extra complications of this sort.

When a clause is selected whose head is unifiable with any current bindings on the 
variables, a new instance of the body of the clause is created with new variables. 
These are then unified with the actual parameters as appropriate. Unification can be 
thought of as imposing an equality constraint, which might be within the scope of some 
relaxation method. However, they should not be treated as relaxable. In fact, if an 
Eclipse-like syntax is used it is easy to make the distinction between these equations 
and those imposed by the user: equality constraints over finite domains are indicated by 
#=, and over rational domains by $=, whereas unification equalities are denoted simply 
by =. Therefore there is no problem distinguishing between them, and not relaxing 
these ‘rename-apart’ equalities.

A typical execution strategy for the above query is as follows: follow the constraints in 
textual order, imposing them without relaxing or ignoring them, but making note of 
any strength labels. If a labelled constraint is inconsistent with the current store and is 
not within the scope of a relaxation, then ignore it, but note the fact that a constraint 
of that strength has been ignored. Select one of the clauses for p(X,Z)  for which the 
head is unifiable with any current bindings of variables (all of them are unifiable in this 
case as no variable has yet been bound), create a choice point, and continue imposing 
the constraints found in the body of p(X,Z) ,  and so on, recursively.

When line 5 is reached, impose the labelled constraints, as they are consistent. If such a 
constraint is not consistent, then just ignore it completely, calculating the appropriate 
score. If the constraint in line 7 is consistent, impose it. If not, choose one of the 
relaxations in the earliest consistent equivalence class defined by the relaxation method, 
e.g. X  =  2 or X  =  4. Create a choice point if there are other consistent possibilities, 
whether they are due to the members of that equivalence class, or of other equivalence 
classes in the list.

Line 8 may also create a choice point, leading to other constraints being imposed, and 
other predicates being called. Note that all constraints inside q(Y,Z)  are assumed to 
be inside the scope of the re la x  on line 6, unless explicitly labelled. This gives rise to 
similar questions to those raised by HCLP with strength labels on predicates as well 
as constraints (see ‘min-strength algebras’ etc. in Section 3.5.3).

The constraint in line 9 has a strength label as well as being inside the scope of the 
re la x  on line 6, and so it can be relaxed, or it can be completely ignored, if that 
would result in a better score. If the score function treats relaxing a constraint as a 
smaller change than completely ignoring it, it will probably not be ignored on the first
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sweep through the search space. Once the initial bound has been found, it may in fact 
contradict so many constraints elsewhere that a better score arises from ignoring it 
completely in the HCLP style. Again, if it is relaxed it creates a choice point.

Line 10 indicates that the predicate r /3  is not in the scope of the re la x  on line 6, and 
so any constraints imposed inside it will be assumed to be required, unless themselves 
explictly labelled or relaxed.

In Chapter 12 there is another example of a query in this syntax, in the context of a 
real-world example. It shows how we can use G oes to avoid the HCLP necessity of 
labelling every single constraint in a problem, while still maintaining the possibility of 
local control.

It may be clear from the above how HCLP and PCSP can be treated as instances of 
this scheme, by only using the appropriate half of the syntax (either strength labels 
or relaxation operations). A more formal demonstration of the subsumption o f HCLP 
and PCSP by G oes is given in the next section.

11.5 HCLP and PCSP as instances of G oes

11.5.1 H CLP in Goes

We can show that HCLP is an instance of G oes by showing how we can imitate 
HCLP’s two important characteristics which are (a) all required constraints must be 
satisfied, and (b) constraints are either included or omitted2, without augmentation or 
relaxation. We now consider these two issues in more detail.

(a) If all the required constraints can be satisfied at once, there is no problem: the 
appropriate h will give them scores showing that they are the preferred elements in 
the order. So we only need to consider the case when it is impossible to satisfy all the 
requirements at once. Then HCLP would declare ‘failure’ , and implementations might 
initiate back-tracking, etc. One method would be to parameterise h by r, the number of 
required constraints in the original problem, and give the worst possible score ‘bottom ’ 
to any bag which did not contain them all. Then an additional constraint could be 
placed on what we mean by ‘solution’ ; instead of simply being the best element in 
the order, it would have to be the best non-bottom element. But parameterising h 
in this way would mean that it would not satisfy the property mentioned earlier as 
being sufficient for compositionality of ©/¡. An alternative, therefore, is simply to 
parameterise the pre-order <h instead, so that the solution would be considered to be 
the best element scoring at least r.

Another alternative is, perhaps, even better: a ‘ required’ constraint is one which must 
be used in the final solution, and which cannot be relaxed. In other words, if c is 
required, then

Rel(c) =  M }

2 This is not strictly true when considering metric comparators.
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This forces c to be included in each member of [_]. If the required constraints are 
themselves over-constrained, all these elements will be inconsistent, and so G oes  will 
produce an empty solution set.

(b) If we define a scoring function h which includes a distance function S which gives 
an infinite increase in distance for all augmentations of the original constraint, this will 
have the same effect as removing them from Rel(c), in which case Rel(c) — 
and so the members of [Pj  will be the same as the power-bag of P. This would restrict 
us to either including a constraint or omitting it completely, thus satisfying the other 
characteristic of HCLP.

Thus we can implement HCLP in Goes either by changing the definition of Rel(c) 
to be just { £c j }  for required constraints and for optional constraints, or by
using a particular score function h. The former approach is closer to the philosophy 
behind HCLP itself, but means that Goes has to be parameterised by both Rel and 
h. The latter approach fits more clearly into the Goes’s own framework. Note that 
the modifications to Rel can be simulated by careful choice of h; therefore we will not 
choose definitively between them here.

Given Proposition 21 (compositionality up to the point when the results are ordered — 
see also Section 8.4), then the above reconstruction of HCLP is also compositional up 
to the same point. Of course, this is in contrast to the standard presentation of HCLP 
(Chapter 3).

11.5.2 PCSP in GOCS

Unlike HCLP, PCSP does not have strength labels. Also, it does not distinguish a 
special set of constraints as being ‘ required’ . Therefore, it is clear that we can treat 
PCSP with G oes  by ignoring the label on each constraint, or treating them all as 
being, say, ‘strong’ .

PCSP is parameterised by a distance function <5, whose definition can be used for the 
G oes  score function h. The three standard distance functions are based on number of 
solutions not shared by two problems (the ‘solution subset’ distance function), number 
of values not shared by their constraints (the ‘augmentations’ distance function), and 
number of constraints satisfied by a solution (MaxCSP) [33].

Solution-subset requires all the solutions to be generated before the order can be de-
cided, and so generally it is not used. The links between the augmentations distance 
function and constraint augmentation as represented by Rel(c) are very clear: one 
can almost derive the distance simply by counting the number of dashes on each con-
straint! The order <A can easily be derived from the order over the problem space 
already present in the definition of PCSP. In this case, it is just the standard order 
over the integers. In the present context MaxCSP is similar to the augmentations dis-
tance function, in as much as each constraint violated can be forced to be satisfied by 
augmenting precisely one constraint. Hence a similar argument holds.

Given Proposition 21, the above reconstruction of PCSP is compositional. This is not
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really surprising, as the distance functions normally discussed in PCSP all have the 
subset-closure property we mentioned earlier (Chapter 10); compositionality has not 
been, and has not needed to be, a focus of research in PCSP.

11.6 Comparative complexity of Goes

Goes is very general, in two different senses: firstly, there is a large choice of score 
functions. Secondly, for each score function Goes can subsume both the HCLP and 
the PCSP approach to problem relaxation. Due to the first sort of generality, it is 
possible to express very hard problems. In this case, it would not be surprising if Goes 
was computationally expensive, but that is due to the nature of the problem and not 
the nature of Goes.

However, what is more interesting is what price must be paid for the second sort of 
generality. Specifically, if it is possible to express something in HCLP in such a way that 
it can be solved reasonably efficiently, we would hope that expressing it in G oes  does 
not worsen its complexity significantly. Therefore, we will now consider the complexity 
of the example score function h, similar to UCB and MaxCSP, which we introduced in 
Section 11.2.4. Our argument will be informal, and based on the assumed complexity 
of UCB in a standard HCLP implementation.

For each level of the hierarchy, UCB requires the best subset of that level. Therefore 
if there are n constraints at that level, UCB requires 2n subsets to be examined in the 
worst case. G oes requires the same amount of work, ignoring augmented constraints. 
Once the maximal collection of unaugmented constraints is found, G oes  then augments 
each of the excluded constraints at that level with one extra tuple of values. This should 
take time linear in the number of constraints to be augmented, and therefore can be 
ignored when compared to 0 (2 n). Of course, the collections at all but the first level 
must be checked for consistency within the context of the best solutions found for the 
levels of greater preference, both for UCB and G oes.

Note that augmenting constraints will not affect the possible solutions to subsequent 
levels of the hierarchy — any constraint which might be affected by the presence of the 
augmented constraint would have conflicted with the stronger level anyway. This may 
not be very clear, so consider the following example.

Example:
Consider three constraints at the strong level, X  < 8, X  < 9, and X  > 9, and one 
medium constraint 2 < X  < 5. The best solution to the strong level will satisfy two 
out of the three constraints, X < 8 and X  < 9, and so the third constraint X  > 9 will 
be augmented, and therefore treated as being medium by our example score function. 
X  > 9 can be augmented in many different ways consistent with the solution to the 
strong level, for example I  >  9 V I  =  1, I  >  9 V I  =  2, and X  > 9 V X  =  3. (If 
it is augmented with more than one value, it will move more than one level down the 
strength hierarchy, and so will not affect the medium level.) Any collection of medium 
constraints which contains an augmentation which contradicts 2 < X  < 5 will receive 
a worse score than those containing augmentations consistent with 2 < X  < 5. All
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the possible medium levels in which the augmentation falls between 2 and 5 will be 
given the same score, and so all will appear in the set of maximal solutions to the 
problem as a whole (and therefore it does not matter that the single augmentation 
X  > 9 V  2 < I  < 5  is not present at the medium level). Therefore, pushing the 
contradictory constraint down a level and augmenting it, instead of ignoring it in the 
style of HCLP, will not affect the possible solutions to subsequent levels of the hierarchy.

□

Once a consistent collection has been found, it takes at most linear time to calculate 
its score. It could even take constant time, if information has been accumulated during 
the consistency-checking stage. Clearly, both UCB and Goes can use the best score 
found so far for branch-and-bound pruning of the search space, if only the best solutions 
are required. So if there are k levels with an average of n constraints at each level, 
the complexity of Goes with the particular score function we have been discussing is 
0(k2n) =  0 [2 n), which is the same as the UCB complexity. Any improvements to the 
UCB result should translate directly into the Goes case. Therefore, it seems that we 
do not pay a large price for encoding the HCLP approach in Goes.

PCSP in general treats all constraints equally. Therefore, if there are kn constraints 
in the problem as a whole, all at the same level, any exponential complexity will be in 
terms of 0 (2kn), which is worse than 0(k2n). It is clear that encoding a pure PCSP 
approach in G oes  will not incur additional computational complexity.

The interesting question is to analyse the complexity of a mixed approach, which has 
both HCLP and PCSP aspects at the same time. See, for example, the G oes  treatment 
of the example in the next chapter. If half the constraints have strength labels, and the 
other half do not, the score function which we are discussing will treat the unlabelled 
unaugmented constraints as being ‘strong’ . Therefore the strong level will be quite 
large, containing at least kn/2 constraints (in fact kn/2 plus any which are actually 
labelled strong), and so will have complexity 0 (2 kn/ 2) or more.

Clearly, using <C for ‘much less than’ , we can say that 0 (2 n) <C 0 (2 kn/ 2) <C 0 (2 kn), 
and so G oes  with this score function is in principle no worse than a straightforward 
PCSP approach, and possibly better.

11.7 Conclusions

11.7.1 Goes considered as a preference system

In Section 5.2, we listed some of the characteristics of the ideal preference system. We 
will now go through that list and see to what extent G oes achieves the ideal.

With respect to the four important characteristics Cl -  C4, we claim that Goes enables 
the declarative expression of preferences (Cl) and takes account of any user- 
provided strength labels present (C2), as does HCLP. We also claim that Goes 
does not require all strength levels to be stated (C3) and is compositional
(C4), and shares these two characteristics with PCSP. Therefore G oes has all four of
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those characteristics that we feel are most important.

Figure 11.1: G oes combines all the advantages of HCLP and PCSP

G oes allows preference to be expressed both globally and locally, via the combination of 
the score function h and the definition of Rel. Therefore, the user should get as many 
solutions as match his criteria, but not more, thus the output should be reasonably 
easy to understand (C5). G oes allows the expression of required constraints 
which must not be violated (C6) but can also cope when the set of required- 
by-default constraints is itself over-constrained (C7). These two characteristics 
depend on the definition of Rel and cannot generally hold at the same time.

By design, G oes allows the relaxation of the general problem structure (C8) 
as does HCLP, but also allows the relaxation of individual constraints (C9), like 
PCSP.

With respect to the characteristics that we found hard to quantify, the severity of 
G oes  depends on the precise choice of Rel. Given that it does not impose an overhead 
compared to UCB or PCSP (Section 11.6), we can say that G oes is indeed imple- 
mentable.

Therefore we feel justified in saying that G oes  possesses all the separate advantages 
of HCLP and PCSP, as claimed in Section 5.3. See Figure 11.1.

11.7.2 Conclusions

We have developed a general framework for over-constrained systems. It has HCLP 
and PCSP as special cases, and it allows the use of aspects of both systems at the 
same time, thus giving the user the flexibility to consider the priority of as many or 
few constraints as is desired. Furthermore, it embodies the two different approaches 
to problem relaxation: changing the structure of the problem in the style of HCLP, or 
changing the meaning of individual constraints as done by PCSP.
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HCLP and PCSP have complementary advantages and disadvantages: HCLP allows 
fine-grained control but forces the user to label every single constraint, whereas PCSP 
does not force the user to label all constraints, but does not allow as much detailed 
control. G oes  can use as much HCLP-like labelling information as it is given, but does 
not require more. Therefore the user has all the benefits of HCLP and PCSP without 
the disadvantages.

Compositionality is very important, and yet many other systems for dealing with partial 
and preferential information do not even attempt to limit their non-compositiona.1 and 
non-monotonic aspects. Our framework is always compositional with respect to the 
consistent problems derived from the OCS by constraint relaxation, and as long as a 
certain condition is met it is also compositional with respect to the scores assigned to 
each possible solution.

11.7.3 Benefits

The combination of various of the characteristic of an ideal preference system which 
Goes possesses leads to efficient use of time by specifiers of systems — they can con-
centrate on global issues for most of the time, but are still able to fine-tune the model 
without needing to consider every single local interaction. We demonstrate this in the 
next chapter, which presents a detailed comparative treatment of a real-world example, 
as modelled in HCLP, PCSP, and G oes.
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Chapter 12

Example —  The Radio Link 
Frequency Assignment Problem

12.1 Introduction and background

The “Radio Link Frequency Assignment Problem” (R l f a p ) is to assign frequencies 
to communication links in such a way that no interference occurs. It is a real-world 
problem, which we will specify and solve using HCLP, PCSP, and G oes.

Our aim is to show that it is easier to specify OCSs in Goes than in either HCLP or 
PCSP. HCLP requires every single constraint to be given a strength label, whereas 
PCSP requires any local information to be encoded in the global distance function. 
This will be hard to do, at the least, and the result will usually not be very declarative.

12.1.1 General problem description

R l f a p  problems contain two types of constraint:

• | x — y | > k —  the absolute difference between two frequencies should be greater 
than some given number k

• | x — y | =  k —  the absolute difference between two frequencies should exactly 
equal k

According to the problem documentation, “The first type of constraint is enough to 
make the problem NP-hard since it enables the expression of the Graph k-Colourability 
problem” [13].

The C e l a r  suite is a set of 11 instances of the generic R l f a p  problem, which is regarded 
as a set of benchmarks. These benchmarks are not merely artificial, as they are drawn 
from a real-world military application. We will present a cut-down version of one of the
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C e l a r  instances, known as Problem 6. This shorter version, which we call Example £, 
is over-constrained, as are Problem 6 itself and also some of the other problems.

Having discovered that a particular instance is over-constrained, we must inform the 
customer, an army officer. We can offer him a choice: he must either tell us which 
constraints are important and which are not (in the style of HCLP), or he must provide 
a general cost/objective function, and allow us to relax constraints arbitrarily in order 
to minimise the cost.

The original specifier of the C e l a r  suite probably followed a similar path to the one 
outlined here. The army selected the first option (HCLP-style), as can be seen by 
examining the C e l a r  instances: each constraint has been given a weight1. The smallest 
problem in the C e l a r  suite has more than 1200 constraints, and so choosing the first 
option entails a large amount of work for the specifier. We hope to show that if the 
army had been offered a third choice, namely G oes, they might very well have chosen 
it instead.

Notwithstanding what actually happened, we will now consider our Example (  as a 
problem to be solved, which we will tackle in HCLP, PCSP, and then G oes. First of 
all, we present some common background which will be needed in all three formulations.

12.1.2 Description as a CSP

Each variable represents the frequency to be assigned to one link. The frequencies 
available vary from link to link, but all of them are represented by one o f seven non- 
continuous ranges of integers, i.e. finite domains. The values in the domains range 
from 16 to 792. The largest domain (greatest cardinality) has size 48, i.e. the most 
flexible link can choose one of 48 different frequencies to use between 16 units and 792 
units. The variables are identified by numbers (non-contiguous integers), which we will 
precede with an X  to obey standard CLP variable-naming conventions.

Throughout this chapter, we will use the syntax of the Eclipse finite domain constraint 
solving library [22]. Note that Eclipse does not have a built-in absolute value con-
straint; the abs/1 predicate to be found in Eclipse can only be used with is/2, which 
is not declarative, not back-trackable, and does not propagate information forwards. 
However, Micha Meier has provided the body of the following procedure, as a simple 
implementation of such a constraint [Private Communication].

We have added a procedural wrapper in which the third argument is only used for pat-
tern matching in clause selection. Also, we have reduced the limits in the second clause: 
for full generality D iff  should have domain [—LargeInt..MNum,PNum..LargeInt\1 for 
some large integer value which is the default limit of a finite domain. In Eclipse, 
Largelnt is usually 1,000,000. However, in the C e l a r  problem suite, the largest value 
in any of the domains is 792, and so we can reduce the limits accordingly.

1 In fact, weights and HCLP-style strength labels are not the same semantically (as discussed below in 
Section 12.2). But from the user’s point of view, assigning weights to all the constraints involves as 
much work as assigning strength labels.
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The code for IX  — Y I =  Num and I X  — Y \ > Num is:

abs(X,Y,=,Num)

MNum is -Num,

Diff : : [MNum, Num],

X - Y #= Diff.

abs(X,Y,>,Num) :-

MNum is -Num-1,

PNum is Num+1,

Diff :: [-793.. MNum, PNum..793],

X - Y #= Diff.

12.1.3 Other background information

Each constraint in each problem in the C e l a r  suite is labelled with one of the letters 
D, C, F, P or L2. Note that in Problem 6 all the D-type constraints are equalities (i.e. 
of the form | x — y \ — k), and are required. All the F and P constraints are strong, 
whereas the C and L constraints are either medium, weak, or very weak. This suggests 
that the approach of Section 5.4, where we discussed constraints schemas, might to 
some extent be applicable here.

There are 200 variables in Problem 6, and 1322 constraints. This is the equal-smallest 
problem in terms of number of variables, and second smallest in terms of constraints. 
For comparison, the smallest problem has 200 variables and 1235 constraints, whereas 
the largest problem has 916 variables and 5744 constraints.

In the C e l a r  problem suite, there are four sorts of solution to be found:

S A T : find a valuation satisfying all constraints (both hard and soft);

CARD: if the problem is satisfiable, find a valuation minimising the total number of 
frequencies used

S P A N : if the problem is satisfiable, find a valuation minimising the largest frequency 
used

M A X : if the problem is over-constrained, find a valuation that minimises the total 
cost of violations, using the following optimisation function (we have simplified 
it by omitting references to ‘mobility’ [13]):

cost =  «1 n\ +  . . .  +  Ü4 ri4

where the a; are problem specific (ai =  1000 down to eq =  1 for Problem 6), and 
rii stands for the number of violated constraints with weight a,-.

2 Apparently these letters refer to the original meaning o f the constraints, but they are not directly 
useful in a CSP context [13].
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We chose Problem 6 because it is the smallest instance of type M AX, which is clearly 
the problem class most closely related to UCB and MaxCSP.

Note that the M AX optimisation function, when treated as a PCSP distance function, 
is subset-closed.

Proof:
Reminder: an order < is subset-closed if for all sets of solutions u, xi, £2, ( n C i i A i i  < 
*2) —> u < X2 . In Section 10.2.3 this was shown to be equivalent to saying that < 
contains C [Hunt].

Assume that u C x. So the problem U for which u is the solution set contains more 
constraints than the problem X\ for which x\ is the solution set. So the violation cost 
of U is less than the violation cost of X\. Therefore u < x\. So u C x\ —>■ u < x\, and 
so < is subset closed. □

12.1.4 Our modifications of Problem 6

There are 200 variables in Problem 6 as a whole. 18 of them are identified by (non-
contiguous) numbers between X13 and X146. Another 22 range from X215 to X274, 
and the rest vary from X275 to X880. We decided to focus on the variables between 
X215 and X274, to reduce the size of the problem for clarity of presentation. We will 
refer to these as the X200 variables.

There are 1322 constraints in the problem as a whole, but if we select only those 
involving the X200’s, we get 313, of which 18 are required. This problem is still over-
constrained, including multiple separate infeasible subsets. Note, however, that simply 
selecting constraints involving certain variables changes the meaning of the problem. 
For example, if the original problem contained the four constraints | X13 — X2011 > 24, 
| X 14 -  X202 | > 36, | A201 -  X202 | =  0, and | A 13 — A 14 | =  0, we would simply 
ignored the fourth one when trying to reduce the size of the problem. This removes 
one infeasibility. However, as we have already mentioned, our cut-down version of the 
problem remains over-constrained. Furthermore, the point of this exercise is not to 
solve Problem 6, but to demonstrate the difference in effort of using HCLP, PCSP, 
and Goes — the concept of an RLFAP is important here, and not the solution to any 
particular instance.

In fact, even reducing 1300 constraints to 300, of which 15 must all be ignored to 
get solutions, is too much to present here. Therefore we have deleted more and more 
constraints. We will now present a version with 44 constraints, which still has two 
separate inconsistencies. We have already referred to it, using the name Example £.

12.2 Example (  in HCLP

As mentioned earlier, if all the constraints in £ are considered to be mandatory, the 
problem is over-constrained. Some typical constraints are:
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abs(X271, X272 

abs(X273, X274

238)

238)

abs(X271, X274, >, 293) 

abs(X271, X292, >, 480)

An HCLP-style response would be to label each of the constraints with a strength. 
Apparently, it is standard for the equality constraints in this problem to be considered 
to be required or its equivalent in all the various frameworks which can be used to relax 
OCSs. However, this first step is insufficient: if we ignore all the optional constraints, 
there are far too many solutions.

We could treat all the optional constraints as being equal, and select a comparator such 
as UCB which would try and minimise the number of violated constraints, without 
differentiating between them. This is in fact similar to the PCSP approach which we 
will consider in the next section, and which is not ideal for this problem3.

In order to avoid the problems which will be encountered by the PCSP approach (be-
low), it is necessary to use more than one strength label for the optional constraints. 
This gives rise to three problems:

• In general, there are far too many constraints. Asking an army officer to choose 
a strength label for each constraint individually is not realistic.

• Even if the client is willing to do so, it is difficult for him to be consistent: 
HCLP strength labels are global, and although the officer might know that for 
one particular radio it is better to choose x than y, and for another radio it 
is better to choose u than v , the relative strength of x and u is difficult to 
define. Partially ordered constraint hierarchies could be used (Section 3.5.5) but 
calculating solutions to them is very expensive computationally.

• If the work is split among a number of officers or groups of clients, another problem 
of consistency arises, in addition to the one mentioned in the previous item. 
Individual’s judgements may vary, and this may even be intentional (cheating).

We invite the reader to consider the example provided by Professor Richards discussed 
in Section 2.5, or any large-scale problem of interest — would it be feasible to ask your 
client for every single constraint to be labelled with a strength?

The second and third problems above could be avoided by making the problem modular. 
Each group of clients could specify their own local preferences, without the problems 
entailed by global strength labels. Then the sub-problems could be combined. Unfor-
tunately, standard HCLP is not compositional, and so this approach cannot be used.

In fact, the C e l a r  set of R l f a p  problems includes a weight for each optional constraint. 
In Problem 6, and hence in £, the constraints have a weight of 1000 for the strongest,

3 It is interesting that the simplest HCLP-style approach is so closely related to a simple PCSP model. 
As shall be seen below, the more complex PCSP approach to these benchmarks taken by others is itself 
similar to HCLP.
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then 100, 10, and 1 for the weakest. The cost function is to minimise the weighted 
number of violated constraints. In the problem description files these numbers are not 
used; instead, each constraint has a ‘weight index’ , where an index of 1 refers to a 
weight of 1000, down to an index of 4 for a weight of 1. Figure 12.1 shows all the 
constraints in (  along with their weight indices. For completeness, Figure 12.2 shows 
the domain of each variable.

abs(X13, X14, = , 238) abs(X15, :X16, =, 238)

abs(X81, X82, = , 238) abs(X83, :X84, =, 238)

abs(X85, X86, = , 238) abs(X143, X144, =, 238)

abs(X145, X146, =, 238) abs(X215, X216, =, 238)

abs(X233, X234, =, 238) abs(X235, X236, =, 238)

abs(X237, X238, =, 238) abs(X261, X262, =, 238)

abs(X263, X264, =, 238) abs(X265, X266, = , 238)

abs(X267, X268, =, 238) abs(X269, X270, =, 238)

abs(X271, X272, =, 238) abs(X273, X274, =, 238)

abs(X269, X271, >, 59) */. 1 abs(X269, X272, >. 186) 7. 2

abs(X269, X273, >, 436) •/. 3 abs(X269, X274, >. 293) 7. 4

abs(X270, X272, >, 59) •/. 1

abs(X270, X271, >, 186) 7. 2 (constraint A)

abs(X270, X274, >, 117) 7. 2 abs(X270, X273, >, 293) 7. 4

abs(X271, X273, >, 436) 7. 3 (constraint B )

abs(X272, X273, >, 293) 7. 4 (constraint C)

abs(X271, X556, >, 490) 7. l abs(X271, X292, >, 480) 7. 2

abs(X271, X629, >, 153) 7. 2 abs(X271, X713, >, 12) 7. 2
abs(X271, X714, >. 168) 7. 2 abs(X271, X717, >, 21) 7. 2
abs(X271, X719, >. 21) 7. 2 abs(X271, 1787, >, 216) 7, 2

abs(X271, X555, >, 349) 7. 3 abs(X271, X608, >. 10) 7. 3

abs(X271, X630, >, 10) 7. 3 abs(X271, X274, >, 293) 7. 4
abs(X271, X583, >, 224) 7. 4 abs(X271, X584, >, 53) 7. 4
abs(X271, X718, >, 158) 7. 4 abs(X271, X720, >, 158) 7. 4

Figure 12.1: £ required equality constraints, and optional constraints with weights

Very loosely speaking, we can say that the constraints with index 1 are strong, those 
with index 2 are medium, then weak and very weak. However, this is not correct: 
the cost function would select eleven medium constraints rather than one contradictory
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C e l a r  Domain 1:

[X215, X216, X261, A262, X263, X264, X265, X266, X267, X268, 
X269, X270, X271, X272, X273, X274] ::
[16, 30,44,58,72,86,100,114,128,142,156,254, 268,282,296,
310,324,338,352,366,380,394,414,428,442,456,470,484,498,
512, 526,540,554,652,666,680,694,708,722,736,750,764,778,792]

C e l a r  Domain 3 [sic]:

[X233, 2T234, X235, X236, X237, X238] ::
[30,44,58,72,86,100,114,128,142,268, 282,296,310,324,338,
352, 366,380,428,442,456,470,484,498,512,526,540,666,680,
694,708, 722,736,750,764,778]

The above shows the domains for the variables of interest to us (X200). 
All the others are assigned Domain 1.

Figure 12.2: (  variable domains

strong constraint. HCLP comparators ‘ respect the hierarchy’ , which means that an 
infinite number of medium constraints should be violated rather than one strong.

When trying to solve C, it turns out that there are three constraints of interest, labelled 
A, B, and C in Figure 12.1:

A :  abs(X270,X271,>,186) with index 2 hence weight 100
B : abs(X271 ,X273,>,436) with index 3 hence weight 10
C : abs(X272,X273,>,293) with index 4 hence weight 1

There are multiple solutions to £ if A is commented-out, all with cost 100. There are 
also multiple solutions if A is enforced but B and C are commented-out, with cost 11 
(10 +  1). There are no solutions with A enforced and also either B or C enforced, i.e., 
we cannot obtain solutions of cost 1 or 10. Therefore the best solution is to relax B 
and C, with cost 11.

The above result uses the weights supplied by the original specifier, who probably 
expended a great deal of effort (or whose client expended a great deal of effort) to 
define all the weights. However, it appears that the effort was indeed necessary, as the 
‘obvious’ solution, treating all the optional constraints as the same, would be to violate 
A, which is clearly incorrect from the user’s point of view. This issue is important in 
our discussion of PCSP, which follows.
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12.3 Example (  in PCSP

Let us start by assuming that the PCSP approach is being tried ab initio, i.e. without 
knowledge gained in the HCLP stage above. Let us also assume that we have a version 
o f PCSP which allows required constraints, but that we are not using the detailed 
weight information involving the four indices.

We can select a standard PCSP distance function such as MaxCSP, which maximises 
the number of satisfied constraints, i.e. it minimises the number of violated constraints. 
Then the best solution is one in which A alone is violated. But when this solution is 
shown to the user, he will not accept it. He will at least say “There are other optional 
constraints which have been satisfied by this solution which I would prefer to be violated 
rather than A.” In this particular example, the problem could be solved by moving A 
into the class of required constraints, but that is not generally acceptable. For example, 
in a more complex instance it might lead to a constraint with weight index l 4 being 
violated instead of A which has index 2.

If it is not possible simply to re-label A ‘required’ , we could modify the distance function 
to prefer A. Such a distance function could impose the appropriate order on solutions 
o\ and <t 2 by stating that all other things being equal,

<r1 < <r2 if (7i \= A and <72 U A |= _L

However, this might give rise to solutions which satisfy A but which violate stronger 
optional constraints. Furthermore, it does not scale well. If is earlier than <72 
according to one statement like the above, but <r2 < (J\ according to another such 
statement, then the problem has become one of multi-criteria optimisation, which is 
just as hard as any of the other approaches we use.

An alternative which does scale is to ask for more information to establish a total order 
over all the optional constraints, and to select a distance function which takes account 
of it. The order can be defined using strength labels or using weights, but in either case 
we find the same problems that we discussed with respect to HCLP in the previous 
section.

12.4 Example (  in Goes

12.4.1 Formulation

Once more, we start at the beginning, accepting that some constraints are required, but 
not using the weight information. Using some simple score function h, such as max-ucb, 
the one similar to MaxCSP and UCB discussed in Section 11.2.4 and following, G oes 
calculates solutions which violate A. As the user feels that there are constraints which

4I.e. a constraint which we know with ‘hindsight’ to have weight index 1. Clearly, the user may not 
express his preferences in this manner, but equally clearly these preferences do exist, otherwise the 
weights found in the actual benchmark files would be completely arbitrary.
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should be violated rather than A (as well as stronger constraints which should not be 
violated merely in order to satisfy A) we must then ask him to identify some of them.

The user may select a number of constraints (more than just B and C 5), but will 
not need to consider the relationship between all the optional constraints. There-
fore, the HCLP problem does not arise; at worst, probably, the user might label all 
the constraints involving X211 before happening to consider B and C. Eventually, 
perhaps after he has iteratively weakened other constraints without changing the over-
constrained nature of the problem, he may say that A is more important than B and 
C put together.

Then the G oes  formulation will have different relaxation operators Rel for the required 
constraints, for the unlabelled constraints, and for those that we specifically label in a 
local fashion. As discussed in Section 11.5, we can consider the relaxation for a required 
constraint to be simply

Rel(c) =  {¿ e ft

The relaxation of an optional constraint will be 

Rel(c) =  { U , M , l c % l c " 5 , . . . }

whether or not it is labelled with a strength. If it is labelled (or has a weight attached 
to it), then the label (weight) stays the same in all members of Rel.

We label A, 5 , and C in order to define a local ordering over them, and therefore it 
does not matter if we call A ‘strong’ and B ‘medium’ , or A ‘medium’ and B ‘weak’. 
However, just to maintain consistency of presentation with respect to the four weight 
indices, we could label the three constraints ‘medium’ , ‘weak’ , and ‘very weak’ .

Remember that in PCSP, c' denotes an augmentation of the domain of constraint c 
with an extra tuple of values. Finding a solution in which c' is present, and such that 
there is no equivalent solution with c instead of c', is equivalent to finding a solution 
in which c is violated.

Let us use D to denote the bag containing one occurrence of each of all the other 41 
constraints in the problem apart from A, B, and C. D is consistent in itself, and so 
will appear in all the maximally preferred solutions to £. [£J will be annotated with 
sequences of 5 integers, the scores for the required, strong, medium, weak, and very- 
weak levels (or more than 5 integers if the weaker levels are augmented). D contains 
constraints at all the strength levels, but its scores for each level will be the same in 
all cases of interest to us, and so we just place d in the first (required) position in the 
sequence in order to distinguish solutions containing D from the empty bag. In fact 
d =  18 with this score function, but that is not interesting here. Remember that for 
this particular score function, one augmentation is equivalent to one movement down 
the strength hierarchy, so a very-weak constraint (position 5 in the sequence) scores 1

5 Or even a set of constraints which does not include B and C at all, but this will not result in solutions 
which satisfy T4, and so the user may be approached again, until a superset of { B , C}  has been identified.
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in the sixth position if it has been augmented once.
I Q  _ { ^[0,0,0,0,0]̂ ££̂ [<60,0,0,0]̂

IA, D$d’0’I’0’0!, {A, B\ C\ D ^ ’0’1’0,1 -1],
\b , IB, C, d ^ ’0’0’1’1], . . . }

A reminder of the actual constraints named A, B, B', etc, is given on the next page.

Therefore G oes chooses [A, B', C ', £) jKo.i.o.i.i] as it is last in the lexicographic order. 
This is clearly the correct solution.

In order to be explicit about the best bag in the order, let us consider one particular 
choice of B' and C . We also repeat the definitions of the unaugmented constraints 
from Figure 12.1. Remember that D stands for all the other constraints apart from A,
B , and C : 

A : abs(X270, X271,> ,186)
B : abs(X271,X273,> ,436)
B’ : abs(X271 ,X273,> ,436) V (X271.X273) = (708,652)
C : abs(X272,X273,>,293)
C ': abs(X272,X273,>,293) V (X272.X273) = (470,652)

In fact, the solution to £A, B', C', is also one of the solutions for
IA, D $d’0’I-0-0!, as augmenting B is equivalent to violating it, as mentioned earlier. 
In other words, solve the problem, completely ignoring B and C. As it happens, one 
solution includes X271 =  708, X272 =  470, and X273 =  652. Any constraint between 
X271 and X273 which was ignored, such as B, can be included in the original problem 
in augmented form, as long as the tuple (708, 652) is added to its domain, and similarly 
for constraints between A'272 and X273.

IA , D\ has many different solutions, whereas each particular augmentation of B and 
C will only give rise to one solution. However, if we take the union of the solutions to 
all the different possible augmentations of B and C we will obtain the same set as for 
l A , Z) j. Choosing one particular augmentation of each is similar to choosing only the 
‘first’ solution to D].

The fact that the complete removal of B or C from the problem changes 0 solutions 
into a large number is slightly surprising, and may be a side-effect of our reduction of 
the size of the problem. Whatever the reason, such a large number of solutions might 
be considered to be a ‘flood’ and so to be a criticism of G oes. Of course, the HCLP 
and PCSP representations of the problem would also have this number of solutions, 
but that is not an acceptable excuse.

So, given that there are too many solutions, what can be done? The answer is simple: 
impose extra constraints, say E. In HCLP it would be necessary to create the conjunc-
tion l A , D, E  ̂ and re-calculate from scratch. This is not necessary if G oes  is used. 
Calculate the solutions to [F ] and then compose with [£]. As an aside, this shows that 
com positionality is not merely a theoretical issue, but is genuinely useful.

Therefore, perhaps we should not have said that avoiding a flood of answers is a char-
acteristic of the ideal system, as it may be due to the nature of the problem. Instead,
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Part VI 

Discussion
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In this part we draw together the conclusions and benefits of the three previous parts, 
and discuss related issues and further work.
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Chapter 13

Conclusions

13.1 Overview

Over-constrained systems arise for different reasons. We believe that two of the most 
important reasons are related to com positionality and expressiveness. We also 
believe that the design of preference systems, i.e. systems for relaxing OCSs, should 
be driven by the reasons OCSs arise, as well as more standard computer science issues 
such as efficiency.

We have explored compositionality in the context of two of the standard preference 
systems, HCLP and PCSP. We have also transformed between them, to show that in 
principle they have similar expressivity, i.e. a problem expressed in one formalism can 
always be expressed in the other, ffowever, they both lack expressivity in a slightly 
different sense, namely in making it easy for the user to specify as much information 
as he wishes, without needing to express more.

Therefore we have developed our own framework, Goes, which has HCLP and PCSP 
as instances and so is at least as expressive as they are, in the first sense. We believe 
that Goes is more expressive than both of them, in the second sense, and makes better 
use of the specifier’s time. Furthermore, Goes is as compositional as any preference 
system can be.

Thus our two motivations, having been addressed separately (expressiveness and trans-
formation in Part III, composition in Part IV) have been brought together in our 
discussion of G oes in Part V. That Part is called ‘ Integration’ which was explained as 
referring to the integration of HCLP and PCSP approaches to over-constrained systems. 
It can now also be seen as having integrated our two major concerns, expressiveness 
and compositionality, in one general framework.
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13.2 Our general approach

We tackled the two issues of expressivity and com positionality separately, and then in 
combination. Part III investigated if HCLP and PCSP were equally expressive, Part IV 
dealt with compositionality in each of the two theories separately. Part V introduced 
G oes  which has HCLP and PCSP as special cases and so is at least as expressive as 
they are, and is also as compositional as a preference system can be.

Throughout, we abstracted away from programming language issues, to concentrate on 
constraint solving. We used standard mathematics such as bags and partial orders. 
We did not use non-monotonic logic, although preference systems have non-monotonic 
aspects. This was intentional: the mathematical and logical tools we used are very 
standard, and have classical properties. Note the contrast with other work which has 
used second-order logic.

We have made use of logical issues such as soundness and completeness. We may not 
have explicitly labelled the discussion with those terms, but had them in mind when 
showing that BCH/FGH produces the same answers as HCLP, and that problems which 
can be expressed in HCLP can also be expressed in PCSP and vice versa. We have also 
discussed ‘computer science’ issues such as computational complexity.

We have used many simple examples, chosen to illustrate different points of the argu-
ment. Most of them placed clarity above realism, but we also treated an important 
real-world problem in detail.

Therefore the reader has been presented with enough examples to be able to understand 
our arguments, and enough formality to be able to judge their accuracy.

13.3 Related work

To the best of our knowledge, no-one else has considered precisely the issues addressed 
in this thesis. However, there are various pieces of work which touch on different areas 
we have discussed.

As mentioned in Chapter 3, the semantics of HCLP has been considered by Borning 
and Wilson [83, 84]. Fages et al. [25] and Satoh and Aiba [68, 69] have developed alter-
native methods of integrating hierarchies with constraints, and consider semantics as 
well as implementations. Implementations and algorithms embodying standard HCLP 
semantics have been developed by Freeman-Benson, Sannella et al. [29, 66, 67], and 
certain optimality properties have been proven by Gangnet and Rosenberg [35].

The work of Menezes, Barahona, and Codognet [60] is closely related to our interest 
in incremental versions of HCLP. We discuss this at greater length in ‘Further work’ , 
Section 13.7.

There has been a great deal of work in the general area of PCSP, including implementa-
tions and detailed experimental comparisons. See e.g. Wallace and Freuder [80, 81, 82],
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There is less theoretical work, except as discussed below. However, there is theoretical 
work on similar themes, such as Schiex on ‘possibilistic’ CSP [70], and Fargier et al. on 
‘probabilistic’ CSP [26].

The main theoretical work on PCSP is also the closest work we have found to our 
general concern of integrating HCLP and PCSP in a single framework. Bistarelli, 
Schiex et al. [4, 5, 71] consider two different mathematical structures (semirings and 
triangular co-norms) and show that embedding certain operators in these structures 
produces HCLP1, whereas operators with other properties give rise to PCSP, and also 
various other preferential and fuzzy frameworks. One interesting aspect of the co-norm 
framework [4, 71] is that predictions can be made about the computational complexity 
of all possible algorithms for, say, PCSP(MaxCSP), just by a consideration of certain 
mathematical properties of the operators which represent it.

However, each of these theories requires a different set of operators, and so this work 
does not integrate the different approaches to relaxing OCSs that can be found in 
G oes. In other words, the PCSP-semiring is precisely as expressive as PCSP, and 
there is no other semiring which contains PCSP as an instance. Furthermore, there is 
no discussion of compositionality.

Although compositionality is a mathematical property, our interest in it is partly con-
cerned with software engineering issues, which are also the motivation for our discussion 
of expressivity. Much of the other work mentioned earlier in this section is concerned 
with the implementation of existing theories (HCLP and PCSP) rather than modify-
ing them for semantic, engineering, or other reasons. Therefore, we can characterise 
without too much inaccuracy the difference between this thesis and related work as 
follows: whereas others discuss either algorithms (Sannella, Wallace, et al.) or highly 
mathematical theoretical issues (Bistarelli, Schiex et al.), we are more concerned with 
‘usability’ , driven by how over-constrained systems arise in the real-world.

13.4 Our contribution

We have analysed the different reasons why over-constrained systems arise (Section 2.5), 
and how they relate to the ideal characteristics of the preference systems that we would 
like to use to resolve them (Chapter 5).

We have developed a general methodology for transforming between HCLP and PCSP 
(see Part III, Chapter 7). We have shown that strength labels, associated with con-
straints in HCLP, contain information which is necessary to define the global distance 
function in PCSP. We have demonstrated that a call to HCLP can be replaced by a 
call to the transformation predicate followed by applying PCSP to the output, and vice 
versa.

In Part IV, Chapter 8 we discussed compositionality and its relationship with incre- 
mentality. We have shown that non-monotonic systems such as preference systems can

'This is not actually shown directly, but it is clear that it is possible, if necessary using methods similar 
to those we have used in Part III.
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never be completely compositional, and have discussed those situations in which it can 
and cannot. We provided an analogy and contrast with composition in standard logic 
programming and CLP, which are monotonic, as long as the composed queries and 
predicates are disjoint.

We have developed a compositional variant of HCLP. It is based on bags, and trades 
increased space against reduced time when compared to standard HCLP. Our variant 
is defined in terms o f simple mathematical constructs, leading to an elegant scheme 
with clear logical properties. See Chapter 9.

In this context, we have defined a new binary infix relation over bags, called ‘guard’ 
(Section 9.1). We have also defined a class of filter functions over bags, and placed 
them in a non-compositional framework which respects the theory of HCLP (see Sec-
tion 9.3). We have examined one filter function in detail, and shown that it can be 
used to calculate the same solutions to a hierarchy as would be obtained by HCLP 
using the unsatisfied-count-better comparator. Thus we have separated HCLP into its 
compositional and non-compositional parts. The choice of a filter can be left until after 
BCH has provided the super-bag of solutions; if there are many, a more discriminating 
filter function can be used.

Most o f our presentation has been expressed in terms of finite domains of integers, but 
it is clear that our work can be extended to any of the usual constraint domains, such 
as reals, especially if they can be represented by what we term SCCs (see Section 6.1.3).

We have shown that PCSP is compositional when the best-known distance function 
MaxCSP is used, and also when modifications of the two other obvious distance func-
tions are used (Chapter 10). Furthermore, we have defined a condition for the ap-
plicability of a compositional combining operator for distance functions (‘metrics’ in 
standard PCSP terminology).

In Part V, Chapter 11, we developed a general framework for over-constrained systems, 
called G oes. It has HCLP and PCSP as special cases, and it allows the use of aspects 
of both systems at the same time, thus giving the user the flexibility to consider the 
priority of as many or few constraints as is desired. Furthermore, it embodies the two 
different approaches to problem relaxation: changing the structure of the problem in 
the style of HCLP, or changing the meaning of individual constraints as done by PCSP.

HCLP and PCSP have complementary advantages and disadvantages: HCLP allows 
fine-grained control but forces the user to label every single constraint, whereas PCSP 
does not force the user to label all constraints, but does not allow as much detailed 
control. G oes  can use as much HCLP-like labelling information as it is given, but does 
not require more. Therefore the user has all the benefits of HCLP and PCSP without 
the disadvantages.

We presented a detailed example based on a real-world problem, and modelled it in 
HCLP, PCSP, and G oes  (see Chapter 12). As already mentioned, in HCLP the ne-
cessity of labelling every single constraint leads to many disadvantages. Simple PCSP 
approaches avoid these problems, but are not sufficiently expressive to capture the 
user’s requirements. More complex PCSP approaches either suffer similar problems to
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those of HCLP, or require complex distance functions which are also difficult to work 
with. G oes allows the use of a simple global score function, with a small number of 
strength labels to resolve local issues. Thus the client obtains the solution he wants, 
without a great deal of unnecessary effort. This is the concrete and visible benefit of 
having the characteristics of an ideal preference system.

Compositionality is very important, and yet many other systems for dealing with par-
tial and preferential information do not attempt to limit their non-compositional and 
non-monotonic aspects, and usually do not even discuss this issue. G oes  is always 
compositional with respect to the consistent problems derived from the OCS by con-
straint relaxation, and as long as a certain condition is met it is also compositional 
with respect to the scores assigned to each possible solution (Section 11.3).

13.5 Publications from this thesis

Some of the work in this thesis has been presented at various conferences and workshops:

• The work in Chapter 9 was presented essentially unchanged at the Workshop on 
Over-Constrained Systems at CP’95 in Cassis, near Marseilles. Selected papers 
from this workshop, including the one mentioned here, have been published as a 
book by Springer. See references [44, 46] for the full citations.

Some of the background and literature review completed in the context of this 
thesis have informed a Brief Overview of Over-Constrained Systems, which is the 
introduction to the same book published by Springer. See [45].

• An earlier version of the work in Chapter 9 was presented at IJCAI’95 in Mon-
treal. See reference [49].

• The transformation presented in Part III is discussed in a paper to be presented 
at CP’96 in Boston; for details see [51].

• G oes, presented in Part V, has been described in a paper to be presented at the 
Non-Standard Constraints workshop at ECAP96 in Budapest. See [50].

A poster about G oes is to be presented at JICSLP’96 in Bonn.

Among other publications there is a paper which was presented at a constraints work-
shop at ECAP94 in Amsterdam. The theory it discusses does not form part of this 
thesis, but is an alternative attempt to address similar issues. See [48].

13.6 Benefits

Our analysis of the characteristics of the ideal preference system should be useful for 
others wishing to develop their own theories and formalisms. Even if they disagree with 
some of the detailed points in our list of characteristics, they will benefit from analysing
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why the over-constrained systems arise in the first place, as a key determinant of the 
structure of the framework they wish to use to resolve them.

HCLP and PCSP each have advantages when modelling problems, and each have ad-
vantages when implementing models and solving them. Using the work presented in 
Part III, the appropriate paradigm can be used for each of these steps, with a meaning-
preserving transformation in between if necessary.

Using our compositional variant of HCLP, we are able to avoid invoking the constraint 
solver to recalculate solutions from scratch. This scheme allows the exploration of the 
solution space, and can be implemented in an incremental manner. Furthermore, we 
have separated HCLP into its compositional and non-compositional parts, which is 
interesting for all those working with non-monotonic theories. The choice of a filter 
can be left until after BCH has provided the super-bag of solutions; if there are many, 
a more discriminating filter function can be used.

In general, constraint satisfaction is of exponential complexity, compared to which 
guarding and filtering are cheap. In addition to being efficient, the operations we 
define and use are simple to understand, and calculate the answers we would obtain 
from HCLP while avoiding its computational expense and complex semantics.

We have defined a compositional combining operator for certain distance functions 
( ‘metrics’ ), and provided a discussion which will be useful when new distance functions 
are being defined.

The combination of various of the characteristic of an ideal preference system which 
G oes  possesses leads to efficient use of time by specifiers of systems —  they can con-
centrate on global issues for most of the time, but are still able to fine-tune the model 
without needing to consider every single local interaction. We demonstrated this with 
a detailed treatment of a real-world example, modelled in HCLP, PCSP, and G oes. It 
also applies to the motivational example described by Richards, quoted in Section 2.5.

We conclude this section by repeating the benefits announced in Section 1.5:

for the theoretician:

• a framework in which to discuss, compare, and contrast HCLP and PCSP 
simultaneously

• transformations between HCLP and PCSP
• a compositional variant of HCLP, showing at what stage non-monotonic 

(disorderly) behaviour is introduced
• a proof of compositionality for PCSP distance functions with subset and 

subset-closed derived orders

for H CLP implementors and users:

• a two-stage implementation of (a variant of) HCLP, the first stage being
compositional and incremental. Therefore possibility of more efficient im-
plementations ,
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• ability to delay choice of HCLP comparator until after the first stage, when 
an idea of the approximate number of solutions will be available

for implementors o f  preference systems generally:

• an analysis of the reasons why over-constrained systems arise, leading to a 
list of desirable characteristics for preference systems to have

• transformations between HCLP and PCSP, thus allowing an implementor of 
one of them to re-use an implementation of the other

• clarification of the two different approaches to relaxation of problems, com-
bined with unification of two important methods for choosing which relax-
ation is best

for the user:

• the combination of HCLP and PCSP approaches. No need to label every 
constraint, no need to construct a sophisticated, imperative, distance func-
tion

• hence easier and more expressive specification of constraint systems, and 
quicker and easier debugging and maintenance.

13.7 Further work

In Part III we have shown that problems which can be expressed in HCLP can also 
be expressed in PCSP, and vice versa. One interesting question which arises from this 
equivalence of expressiveness is whether the two paradigms are also equivalent in terms 
of computational expense. Therefore, an investigation of the comparative algorithmic 
complexity of HCLP and PCSP would have a good fit with the usability issues we have 
discussed in this thesis.

Our work in Part IV on BCH/FGH, a compositional variant of HCLP, briefly discussed 
metric comparators. We expect that their inclusion in FGH would be straightforward, 
but deeper investigation is necessary to confirm this view.

More interesting, as it touches on concerns with a wider scope, is the possibility of for-
mally including constraint deletion and dynamic constraint satisfaction in BCH/FGH. 
Deletion and dynamicity are difficult to handle in an elegant manner in most for-
malisms, but should be made easier by the modular nature of our tuple representation 
of solutions.

A different line of investigation would consider whether BCH/FGH provides a good 
implementation method for (a subset of) G oes.

As has been mentioned earlier in this thesis, Menezes, Barahona and Codognet have 
developed what they call an incremental compiler for HCLP [60]. They use an opti-
mistic implementation strategy which assumes that most optional constraints will not
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contradict the required constraints. However, as they leave the semantics of HCLP 
unchanged, i.e. non-compositional, their implementation is not truly incremental in all 
cases. Specifically, when some constraints are contradictory, they have to invoke a spe-
cialised backwards phase. The circumstances in which this happens are similar to those 
in which all preference systems become non-compositional (see Section 8.4 o f this the-
sis). However, contradiction always affects the system of Menezes et ah, whereas in fact 
it need only affect the composition of best solutions (Section 8.4). This might be due 
to the ‘lazy’ evaluation strategy they adopt —  the explicit BCH/FGH representation 
of all solutions by bags of tuples can be considered an ‘eager’ strategy2.

The reason for the above seeming digression is to suggest a possible line of further work. 
Menezes, Barahona and Codognet deal with many issues at the implementation level 
which we have dealt with explicitly in the semantics of BCH/FGH. Therefore they do 
not require the user to learn a new theory (although in our opinion BCH/FGH is not 
difficult to understand for those familiar with HCLP). A comparison of the benefits 
available by following each of these two approaches would be very interesting — is the 
support for efficient implementations built in to the semantics of BCH/FGH actually 
useful? Or is it better to focus on existing theories and try and optimise them at the 
implementation level. Certainly, the latter reduces the proliferation of languages, and 
avoids the situation where there are more languages than research groups! Notwith-
standing this feeling, we hope that the work on BCH/FGH is useful to implementors 
of standard HCLP systems.

The last chapter in Part IV provides a proof of compositionality for certain PCSP 
distance functions, and suggests a larger class for which the same composition operator 
is appropriate. We would like to investigate other operators and the conditions for them 
to be compositional as well. It is possible that the work of Bistarelli et al. [5], Schiex et 
al. [71], and their combined work [4] will provided useful pointers. Those papers do not 
discuss compositionality, but do provide interesting mathematical characterisations of 
HCLP, PCSP, and other theories.

It would be interesting to place BCH/FGH and G oes (Part V) in the context of the 
papers by Bistarelli, Schiex, et al., and to discover if what might be called the software 
engineering concerns of this thesis have counterparts in the mathematics of [4, 5, 71].

In Part V we gave a description of Goes, a general framework which can provide the 
basis for the design of systems to solve OCSs.

Further work suggested by this part includes the extension of the Rel operation to 
take account of metric comparators. Also, it would be interesting to see if the subset- 
closure property we use as a heuristic condition for the applicability of a compositional 
combining operator for PCSP distance functions is useful in the context of G oes  score 
functions.

Construction of a particular concrete implementation is out of the scope of this thesis, 
but nevertheless we see it as being an activity that should be undertaken in the future 
when the need arises for a practical system embodying all the benefits of G oes.

2This characterisation of the difference between [60] and BCH/FGH was suggested by an anonymous 
reviewer of [49], a paper based on an earlier version of Chapter 9, which we presented at IJCAI.
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Appendix A

Constraint Systems

This appendix presents a simplification to one domain of the many-sorted foundation 
for constraint systems developed by Jaffar and Lassez in [40].

Let S Y M B  denote a collection of symbols, i.e. a carrier set of elements or tokens which 
are assumed to name different entities, and so can be treated as being different entities. 
(The symbols in S Y M B  will be used as the elements of the domain V  over which the 
constraints range. The difference is that S Y M B  is considered as a completely uninter-
preted collection of symbols, whereas V is assigned some kind of interpretation.) The 
signature of an n-ary function (predicate, variable) symbol /  is a sequence of n +  1 (re-
spectively n, 1 )  repetitions of the name of S Y M B .  Let E  denote a collection of function 
symbols and their signatures, and let fl denote a collection of predicate symbols and 
their signatures. II is required to contain the equality symbol, which must be present 
in all constraint systems but which does not need a signature. r(E ) denotes the ground 
terms of the language, and r(S U  V ) denotes terms possibly containing variables drawn 
from a set of variables V. An atom is of the form p(t\, . . . , t n) where p is an n-ary 
symbol in II and i,- € r(E U  F), for 1 < i < n. Thus we use three different sets of sym-
bols for three different purposes: as elements of the domain, as predicate or function 
symbols, and as variables.

We can define a structure R (E , II) over the alphabets of function and predicate symbols 
E and II, consisting of (i) the non-empty set V , (ii) an assignment to each n-ary function 
/  £ E of a function of type

D x P x . . . x D - > P
' ----------------------------V--------------------------- '

n

and (iii) an assignment to each n-ary p £ II, except for the equality symbol, of a 
function

V x V x ... x V/ { t r u e , f a l s e }

n

(There is a difference between signatures and these type definitions in the many-sorted 
case, which is why we distinguish between them. For single sorts, there is no important 
difference, as can be seen here.)
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An atomic constraint, or more precisely, an atomic ( n -constraint, is an atom over 
the alphabets E and II; a constraint is a finite set of atomic constraints, intuitively 
considered as a conjunction. T R U E  and F A L S E  are distinguished constraints, the former 
corresponding to the empty constraint.

A R (II ,Y,)-valuation on an expression over Id and E is a mapping from each distinct 
variable in the expression into V. If 9 is a valuation for the term t, then t6 denotes 
the appropriate element of V. If 9 is a valuation for the atomic constraint c, then 
c8 denotes the proposition that c0 is equivalent to T R U E  or F A L S E .  (More precisely, 
either R(II, E) (= c9 or R(II, E) |= -ic9.) If C denotes a set of atomic constraints, then 
R (If, E) |= C9 means that R(II, E) |= c9 holds for all c 6 C . Whenever this is the 
case, we can say, following Jaffar and Lassez, that C is R(II, Yh)-solvable and that 9 is 
a solution of C.

Example:
Let us define a constraint system over the real numbers 7Z. Consider the symbols S Y M B  

=  {1,1.1, 1 .01 ,..., 2, 3 , . . . } .  We can use them to name the elements of the domain
V  =  1Z. E includes binary function symbols + , X, etc, and II includes
The set of variables V can be defined as all alphanumeric sequences beginning with 
an upper-case letter. In this case the structure R (II ,S ) consists of (i) the domain
V  =  1Z =  S Y M B ,  (ii) an assignment to each n-ary function /  €  E of a function of type 
TZ X 1Z X . . .  X 1Z —> 1Z, and (iii) an assignment to each n-ary p 6 II of a function 
'll x TZ x . . .  x TZ -> { t r u e , f a l s e }.
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Appendix B

Proofs and clarifications

B .l Clarification of part of Section 7.3.1

In Section 7.3.1.2 we wrote the following:

If we add one pair to the domain of one of the constraints C in a CSP, it is equivalent 
to adding a set o f n-tuples to the domain of that constraint’s expanded version C*, 
where the other places in the tuple are filled with all possible combinations of elements 
from the domains of all the other variables.

Continuing with the example in Section 7.3.1.2, let us assume that we have augmented 
constraint B. This leads to adding a set of n-tuples to B*\ let us call this set of 
additional tuples R. We can imagine adding a different pair to B which would lead to 
adding a different set to B*, say R'. If we add both pairs to B at the same time, then 
we must add R U R' to B*.

This is true because of the following: if the first pair added to constraint Cij is (a, ¡3) 
(giving, say, C 1) and the second pair is (y,S) (giving C 2), and the doubly-augmented 
constraint is called C3,

then Cf* =  C* U {(u i,u 2, vn) \ (vk, k ±  i ,k ^  j)  € dom (X i)}

Cf* =  C*j U {(up v2, . . . , y , S , . . . , v n) | (vt, k ±  i, k ^  ;') G d om (X i)}

and Cf* =  C?j l ) { {v 1,v2, . . . , v i , v j , . . . , v n) \ (vi,vj) G {(a ,/3 ), (7 , ¿ )},

{vk, j )  e  dom(Ajfc)}

then clearly

cl* c}* u Cf*

□
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Appendix C

Complexity

C .l Details of the complexity of BCH

For the required constraints, finding the intersection of k sets each of which contains n 
solutions1 (not necessarily the number of solutions from n constraints) will take time1 2 
proportional to at most 0(kn2), with a naive representation. (In fact, using a sensible 
data representation it can be done in 0 (kn).) The resulting set will have size at most 
n.

For each level of optional constraints, finding the union of k bags o f size n will take 
0(kn)  in the naïve case, although a more sophisticated representation could reduce 
this to O (k) (constant-time append). Guarding the resulting bag of size kn with a 
required-level set of size n will take O {kn2) in the naive case, or O (kn) with a sensible 
choice of representation. So each optional level will take O (kn), or O (kn2) at worst3.

So if there are l optional levels, the total complexity of BCH will be O (Ikn2) in the worst 
case, or O (Ikn) under various sensible assumptions. In practice k and l are likely to be 
fixed at quite small values, in which case the complexity becomes O(n) in the number 
of solutions. Therefore these results are significantly better than constraint solving, 
which is exponential in general, and often n4 or worse for practical cases (although 
those results are concerned with both domain size and number of constraints).

1 Or n disjoint ranges (or, more generally, SCCs) in the case of continuous domains such as the reals 
(respectively: the domain of the SCCs).
2 Measured in terms of basic comparison operations on elements.
3 Note that if So for a particular hierarchy contains n elements, all the optional levels of that hierar-
chy can contain at most n distinct elements. Each element may occur more than once, but this is 
unimportant if we use the alternative representation of bags — as opposed to (a , a).
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