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Abstract

The aim of the thesis is the statistical and mathematical modelling of trends over time in age - 

specific mortality rates based on lives, policies and amounts. The analysis is based on the theory 

of generalised linear models (GLM’s).

Further, a method is advocated for the comparison of mortality experiences, as well as a method 

for the construction of a mortality table based on a standard mortality experience.

The results are based on the mortality experience of the UK life offices for whole life and 

endowment assurances, for the time period 1958 - 1990, and for pensioners in pensions schemes, 

for the time period 1983 - 1990, published by the CM1 Bureau of the Institute and Faculty of 

Actuaries.

9



Introduction

The thesis consists of four parts.

The first part explains the need for the graduation process in the construction of life tables, and 

discusses the use of generalised linear modelling techniques.

Chapter I  demonstrates how to construct a life table, explains the need for graduation, and 

reviews the history of graduation methods.

Chapter II discusses the history of the major mathematical formulae used to graduate mortality 

rates.

Chapter III outlines the theory of GLAf s.

Chapter IV  describes the main statistical tests used for the justification of the model structure 

selected in the graduation process in relation to the theory of GLM’s.

The second part considers various statistical distributions for modelling crude mortality rates.

Chapter V deals with the modelling of the central mortality rates 

Chapter VI deals with the modelling of the initial mortality rates.

The third part deals with different approaches to the mathematical modelling of mortality rate 

trends.

Chapter VII considers the methodology advocated for the mathematical modelling of mortality 

rate trends.

In Chapter VIII, the Multiplicative model is applied for modelling

1. Male assured lives, duration J+, ages 24 - 89, time period 1958 - 1990.

2. Male assured lives, duration 5+, ages 42 - 89, time period 1958 - 1990.
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In Chapter IX, the Power model is applied for modelling

1. Male assured lives, duration 5+, ages 24 - 89, time period 1958 - 1990.

2. Male assured lives, duration J+, ages 42 - 89, time period 1958- 1990.

In Chapter X, the Additive model is applied for modelling

1. Male assured lives, duration 5+, ages 24 - 89, time period 1958 - 1990.

In Chapter XI, the Complementary log-log model is applied for modelling 

1. Pensioners, ages 60 - 95, time period 1983 - 1990.

In Chapter XII, the modelling of mortality data based on amounts for pensioners is analysed.

The fourth part describes two methods for the comparison of mortality tables.

In Chapter XIII, the first method deals with testing the hypothesis whether or not two mortality 

experiences can be modelled under the same mathematical structure using F  - tests. As an 

illustration, durations 0, 1, 2, 3, 4 for male assured lives, for ages 23 - 62, and time period 

1958 - 1990, are classified. The second method deals with the construction of mortality tables 

based on a standard mortality table with similar characteristics. This is illustrated by a number of 

examples. A pensioners’ mortality table is constructed based on male assured lives’ mortality 

experience, for the calendar year 1990, and for the range of ages 64 - 89. A mortality table for 

grouped durations 3 - 4  years is constructed based on male assured lives mortality experience 

for durations 5+, for the time period 1958 - 1990, and for the range of ages 23 - 62. Further, 

mortality tables for durations 0, 1, 2 years are constructed based on grouped durations 3 - 4  

years experience, for the time period 1958 -1990, and for the range of ages 23 - 62.
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Definitions

9x the actual number of deaths for lives with age label x.

R°x the central exposed to risk based on lives with age label x.

R 1 the initial exposed to risk based on lives with age label x.JC

P the total number of policies giving rise to claims for lives with age label x.
JC

p Rc the central exposed to risk based on policy counts P for lives with age label x.
x x

PR ‘ the initial exposed to risk based on policy counts P for lives with age label x.
x x

qx the probability that a life, attaining age label x, dies before attaining age label x+1.

¡j.x the force of mortality at exact age x in a life table.

Px(t) the population present at time t for lives with age label x, over the period of the 

mortality investigation.

lx the number of lives at exact age x in a life table.

12



Part 1

Graduation and Generalised Linear Models
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CHAPTER I

Life table and graduation

1.1 Introduction

The life table, also referred to as the mortality table, is a statistical device for presenting and 

summarising the mortality experience of a population in a form that permits answering questions 

such as : What is the probability that a man aged x years will survive to age y, or what is the 

average number of years of life remaining for a person who has reached his x 'th  birthday?

Investigations connected with the construction of life tables began in the 77th century. The 

Englishman John Graunt constructed in 1662 the first life table for the inhabitants of London. 

Later, the famous mathematician Wilhelm Leibniz presented, to the Royal Society in London, 

reliable statistical information for the city of Wroclaw. On the basis of this material, the English 

astronomer Edmund Halley constructed the first reliable life table in 1693, using a method 

known subsequently as the Halley method. In 1760, the Halley method was supplemented by the 

famous Swiss mathematician Leonhard Euler. Later modifications included the contributions of 

Per Wargentin (1749) and Richard Price (1783) and then, in 1812, the French scientist Pierre 

Laplace proposed a direct method for the construction of life table from statistical data. (Gavrilov 

and Gavrilova, 1991, Haberman and Sibbett, 1995).

This initial historical stage can be described as the period of descriptive human mortality 

statistics rather than modelling in the modern sense. Besides their particular interest in human 

mortality, many scientists did not separate man and other living creatures in their investigations 

about mortality, which is justified by the recent tendency of integrating medico-biological and 

demographic research (Gavrilov and Gavrilova, 1991).

The life table was used primarily in actuarial science for the analysis of life contingencies and for 

life insurance calculations such as the practical computation of premiums, and in demography to 

study population structure and change. Due to the work of health statisticians in medical follow-

up studies in the early 1950's, the life table began to attract the attention of biostatisticians. The 

advances in probability and statistical theory, and the life table's similarities with reliability
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theory and survival analysis have made it possible to address the life table from a purely 

stochastic point of view and to provide the subject with a rigorous theoretical foundation. Life 

table analysis has emerged as a rigorous and exact statistical method.

The life table method is applicable to the analysis of not only mortality but of many measurable 

censoring processes such as in the clinical studies of humans, or laboratory studies of animals. 

The applicability of the method can be generalised to non living things as for example to describe 

the life and death history of automobiles in a given year or to study the length of life of light bulbs 

and others. Consequently, the life table has become a valuable tool used by actuaries, biologists, 

physicists, demographers, manufacturers, public health workers and investigators in many other 

fields.

Two ways of categorising the life table are to consider the cohort (or generation) life table and the 

period life table. In the construction of the cohort life table one records the mortality 

experience of a group of individuals (all born at same period) from the birth of the first to the 

death of the last member. Besides the impracticality of long time delays in the construction of the 

cohort life table there are many other difficulties involved as many individuals may migrate or die 

unrecorded. However, cohort life tables have applications in the study of cause-specific mortality 

for humans, animal mortality and in the assessment of the durability of mechanical objects.

The period life table is the most effective means of analysing mortality and survival experience 

of a population. It is also a useful tool for comparing mortality experiences. The period life table 

is entirely dependent on the mortality rates prevailing in the time-period from which it is 

constructed. So, life expectancy based on a period life table means the expected number of years 

of life if the person were subjected throughout his life to the same mortality prevailing in the 

current year, which means that time is not taken into account as a factor influencing mortality. 

However, the construction of period life tables in successive time periods allows the factor time to 

affect mortality after calculating life expectancy on the basis of an ‘artificial’ cohort.

Cohort and current life tables may be either complete or abridged. In a complete life table the 

mortality rates are computed for each year of life; an abridged life table deals with grouped age 

intervals greater than one year.

15



1.2 The construction of a life table

In this section, we consider the construction of a life table from statistical data (crude rates) on 

deaths and lives under observation.

During the investigation period, we group the population concerned by noting age, sex and any 

other possible factors affecting mortality rates (such as social and cultural background, 

occupation, physical environment, standard of living, education and intelligence, mode of living 

or duration since initial selection). That is, we need a homogeneous population in which all
o,r«

individuals have cjpse to a common force of mortality, in order to achieve accurate results. Of 

course, practical considerations require constraints to be placed on the degree of subdivision of 

the data so that there are adequate amounts of data available in each classified cell, in order to 

produce sound statistical results.

In the process of deriving mortality rates, it is not enough to count only the deaths occurring 

during the investigation period. We also need to know the amount of time that the lives under 

observation have been ‘exposed’ to the risk of death, so that we can estimate the crude rate of 

mortality. This quantity forms the divisor of the crude mortality rate and is known as the exposed 

to risk (Benjamin and Pollard, 1980).

But before describing how the exposed to risk is calculated, it is necessary to define the period of 

time during which all the lives have the same ‘label’ which categorises the individuals according 

to those factors under consideration (for example, age). We need the definition of the label, 

according to which both the exposed to risk and deaths classify the individuals under observation, 

so that both deaths and exposed to risk correspond and are used to estimate the mortality rates 

correctly.

For example, we can count deaths and exposed to risk for individuals aged x last birthday, that 

is for individuals aged between exact x and exact x+1, during the investigation period. The only 

factor in this case is the age, and only the lives with age between jc and x+1 are counted in the 

exposed to risk and the possible numbers of deaths.

This period of time is called the rate interval and is essential for the ‘Principle of 

correspondence’ according to which lives and deaths must be grouped under the same age label 

(Puzey, 1986).
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The same principles apply to the construction of crude mortality rates considering additional 

factors of mortality, as in the case of select rates after classifying exposed to risk and deaths 

according to the additional factor which is the duration since initial selection.

The type of crude mortality rate defined by the above procedure depends on the way the exposed 

to risk time for the lives under the investigation is calculated. There are two kinds of exposed to 

risk, both measured in units of years : central exposed to risk and initial exposed to risk.

1. central exposed to risk

One approach is to calculate the exact time period o f exposed to risk for lives participating 

in the investigation. Using the same example as before, we consider a group of persons between 

ages x and x+1 observed during a time period. Assuming that the zth person enters the 

investigation at age x+a(- and leaves at age x+bh either by death or survival, the actual time he 

was under observation is bj - at. The sum of all those individual exposures form the central 

exposed to risk symbolised by RLX . This computational procedure is called the direct method.

An alternative, more practical, approach is the census method. The central exposed to risk can 

be written as the integral of the population P  (t) present at time t for lives with age label x,

over the whole period of investigation (Puzey, 1986), that is

T

K  -  \ p x(<)dt
0

This equation gives the total exposure time, in life years, during the investigation period (0,T) of 

lives with age label x. Each individual contributes exposure time to the above integral only while 

he is alive with age label x.

For the calculation of the central exposed to risk by the census method, we can interpolate any 

mathematical formula which passes through the censuses, and integrate it explicitly as was 

indicated before. This mathematical expression will portray P (t) ,  the population present at
X

time t for lives with age label x, over the period of the investigation. For instance, if there are 

available censuses only at the beginning and the end of the investigation and assuming that 

P ( 0  varies linearly over the two successive censuses, the trapezium rule gives an

approximation for the above integral. That is,

17



K  = f  • (Px(0)+Px(T))

In either case (using the direct or the census method), dividing the number of deaths (0X)

observed for lives with age label x by the corresponding central exposed to risk, R cx , the crude 

central mortality rate is obtained for every age label x in question.

Further, assuming that mortality is constant over the period with age label x, then the central 

rate over the period of age label x is identical with another mortality measure which is called the

o
crude force o f mortality and is symbolised by ft  . The assumption about constancy of the 

force of mortality over the period with the same age label x is utilised throughout the thesis.

Thus, the crude central mortality rate over the period with age label x is

Mx = 8x , K  ' (U )

The central mortality rate m is defined by the ratio
a:

1

\  lx+t Mx+t- dt
0m = — ------------------

* r
J lx+t ' dt
o

and if jux+t = Xx V t e (0,1) then central mortality rates are identical with the force of 

mortality. Therefore, central mortality rates, in this thesis, are considered to be identical with the 

force of mortality, under the assumption of constancy of mortality during the interval for lives 

with age label x.

18



2. initial exposed to risk

If, in the event of death, the exposure time is continued up to the time where the individual would 

have normally left the investigation, and we add this extra time to the central exposed to risk, we

form the initial exposed to risk R ‘ .
X

An approximation to the initial exposed to risk is given by the equation

R ‘x = R cx + —X X 2

on the assumption that the deaths are uniformly distributed over the rate interval x to x+1. 

Note that the above assumption may be inconsistent with the earlier assumption that the force 

of mortality ¿ux+t is constant for 0 < t < l .

Dividing the number of deaths observed for lives with age label x by the initial exposed to risk 

the crude mortality rate is obtained for every age in question. This kind of mortality measure is
O

called the crude initial rate o f mortality and is symbolised by qx . That is,

q x = 0X/ R ‘X (1.2)

The exact relationship between the force of mortality and the rate of mortality is obtained by

qx = i - e x p i - ^ t  d t)

Yet, assuming constancy for the force of mortality for each age interval (x, x+\) the above 

formula becomes

qx = 1 -exp (-¡ix+i/2)

Then, following the approach of Sverdrup (1965), the (maximum likelihood) estimator for the 

rate of mortality using the central exposed to risk is given by

qx = ! - exp (- 0X !RXC)
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Quoting Sverdrup (1965), it is explained that “There is a real loss in information by
O

disregarding the waiting time, such as in the case when q x = 0X/ R X is used in place of

o

qx = 1 - exp (-6X/ R X). When probabilities of death are small the frequencies give us the

essential information needed, but as the probabilities become large the total waiting time R c 

is of greater and greater importance, and when death is almost certain it is the waiting time 

that is pertinent”. This point takes us beyond the restrictive assumption that deaths are 

uniformly distributed over the age interval (x, x+7).

Moreover, “ qx has the weakness that it only reflects the total effect of mortality over a year, i.e. 

how many died by the end of a year, and is not affected by how these deaths are distributed over 

the year”. (Puzey, 1986)

“Central rates are very efficient (i.e. with little loss of information) and if the denominators are 

accurately computed, the main argument for their introduction was certainty of achieving 

unbiasedness” (Sverdrup, 1965).

Furthermore, se{6x / R lx } /  se{l - exp (-0X/ R x )} > 1, where se denotes the standard error 

(Sverdrup, 1965).

However, we should note that the census method used in the CMI Reports for computing Rc is 

only approximate, so that, in practice, it is often the case that exact information on Rc is not 

available.

Now, the force of mortality can be expressed as

Pr ( death occurs between x and x + Sx | survival to x )
Mx = lim ------------------------------------- --— ----------------------------------

Sx -> 0+ °x

Therefore

,. Sx <lxjux = lim ——

20



where ^ qx is the probability of death in the age interval x to x + 8X, conditional on the 

survival at age x.

In statistical terms jux , is identical to the hazard rate function h(x). If T, the future lifetime, 

is considered as a random variable, for a homogeneous population of individuals for which failure 

is death, and each having a ‘failure time’ (lifetime) T, then

h(t) ■ dt = P ( t  < T < t+dt | T > t ), for small dt 

The failure distribution F(t) is defined to be the probability of death before some time t, thus

F(t) = P r ( T < t )

The survival function is defined to be the probability of surviving to time t, thus

S(t) = P r (T  > t )  = /  - F(t) = exp [  -H(t) ]  

and the density function or the absolute instantaneous failure rate f(t) as

f( t)= h (t)  ■ S(t) = h(t) ■ exp [  - H(t) ]

where

t
H(t) = \h(x) dx 

0

is called the integrated hazard. In the case of translating distributions, by introducing an 

additional parameter 6, everything can be converted into distributions on (S,oc).

The construction of the life table is accomplished by computing the lx values, which give the 

population present at the beginning of the interval for lives with age label x, from the following 

relationships

^x la  ‘  x-aP a

for arbitrary la and computing

21



and

x - a P  a

x-a-1n
t=0

(1 '  #a+f)

/

^ V x + t  = exP ( - \ p x+t+s ds) =  exp ( -M x + t + 1 /2 )
0

under the same assumption of constancy of the force of mortality over each year of age.
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1.3 The nature o f  graduation

The above two mortality measures (the force of mortality and the initial rate of mortality) are 

subject to sampling errors giving an uneven progression from age to age. We assume initially 

that the irregularities are due only to the random variability inherent in the finite sample we 

observe (and we relax this assumption in a later paragraph on the following page). That is, 

increasing the size of the sample would lead to the irregularities being minimised and the crude 

rates would show an even progression through the ages. Thus, mortality rates are assumed to be a 

continuous and smooth function of age. Graduation is the practical means of compensating for 

the lack of availability of an infinite sample size with a practicable alternative of estimating the 

true mortality values as accurately as possible.

Copas and Haberman (1983) refer to the graduation problem and comment that, “the fundamental

0
justification for the graduation of a set of observed probabilities like q x is the premise

(suggested by experience o f nature) that, if the number of individuals in the group on whose 

experience the data are based had been considerable larger, the set of observed probabilities 

would have displayed a much more regular progression with x”.

Regarding the graduation problem, Puzey (1986) explains that, “the process of seeking to remove 

the random fluctuations is known as graduation”.

Benjamin and Pollard (1980, page 240), state that, “the art of smoothing the separate maximum 

likelihood values to obtain the best possible estimates of the underlying population values is 

called graduation”.

In other words, graduation is the procedure of estimating the expected mortality rates, under the 

principle (axiom) that the resulting mortality values should show a smooth trend, or, that each set 

of neighbouring graduated values should satisfy the mathematical criteria of smoothness, 

differentiability and continuity.

Graduation should only remove random fluctuations. Crude rates can also include irregularities 

which are not due to sampling errors. In this case the true mortality rate in a particular range of 

ages inherits a specific feature which is not very smooth, and which has been called intrinsic 

roughness (Benjamin and Pollard, 1980). A characteristic example of this phenomenon is the 

accident ‘hump’ occurring around age 18 among male lives in certain western European
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countries. Intrinsic roughness can be verified by previous experience, or by attaching a specific 

distribution to those crude rates and analysing the residual variations arising from a graduation, 

as will become clear in the following Chapters.

Removing only random sampling errors is different from the process in which the graduated rates 

have an unreasonably excellent goodness of fit to the crude rates (undergraduation), and from 

the removal of intrinsic roughness or any other particular trend that the crude rates might include 

{overgraduation). The graduation process intrinsically involves a trade off between smoothness 

and adherence to the crude rates. It could be stated, that the weights of this trade off depends on 

the fidelity to data and on tastes. More specifically, if the crude rates have been derived from a 

large population, like the English Life Tables {ELT) mortality investigations, adherence to the 

crude rates (undergraduation) is desirable.

We conclude that graduation is not achieved only by following an algorithm strictly, but is based 

as well on personal judgement and experience, and visual inspection should be an important part 

of the criteria for the acceptance of any particular graduation.

24



1.4 Methods o f  graduation

There are a number of methods for carrying out a graduation. These include the graphic method, 

graduation using splines, graduation by mathematical formula, non - parametric methods.

I. In the graphic method, a hand - drawn, curve is fitted to pass inside the corridor formed by 

the 95% confidence intervals based on the crude mortality rates. This is a useful method for 

scanty data, where personal judgement is important, but there is the risk of bias being introduced. 

The graphic method in now mainly of historical interest.

II. Graduation by mathematical formula is the method when a mathematical model structure 

is applied to describe the mortality experience in question with the parameters involved being 

estimated by some optimisation criterion. Optimisation can be achieved

a) by (weighted) least squares method minimising the quantity

q = T * w x <z x - z x (m 2
X

in respect of [5, where z = q or p , and wx are prior weights, or

b) by maximising the (log) - likelihood of the observed events, which is the sum of the (log) - 

likelihoods for each observation (under the independence assumption), after attaching an 

appropriate distribution to the observed rates, or

c) by minimising the X  value.

A special case of graduation by mathematical formula is the reference to a standard table 

method which is introduced where the mortality experience under analysis is believed to be related 

to a particular standard table. The method can be helpful again when the data are scanty. Various 

connections between the graduated rates and the mortality rates from the standard table have been 

suggested such as

<lx=a -(l x +b  or <lx =(l x - ( a  + b-x)  or qx = q sx+h+ k  (1.3)
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where qsx are the graduated values from the standard table, or models in terms of 

Mx 31101 ¿ V

In Benjamin and Pollard (1980) and Chadburn (1991), the reader can find a thorough analysis of 

the previous methods and a detailed consideration of the advantages or disadvantages of each 

method.

III. Graduation using splines has been used recently (ELT, No 14) for mortality experiences 

which include different generations, where mathematical formulae commonly fail to produce an 

adequate fit for the whole range of ages under graduation. Spline functions can be considered to 

be an intermediate method between parametric and non - parametric methods.

According to their degree (d) they are defined by

f ( x )  = X a  •x J + X p  . - ( x - k  ) d 
j=0 J j=l 1 1 +

d d
where (x -  k) = ( x - k )  if x> k and 0 otherwise,« the number of knots, and k

the positions of the knots over the age range. Optimised estimation of the parameters 

( a  ., P j , k .) can be achieved as above.

IV. Non - parametric methods of graduation have long been developed, including Whittaker- 

Henderson graduation and moving weighted average methods (commonly used in the U.S.A.) and 

Kernel methods: further details are provided by London (1985), Copas and Haberman (1983) and 

Gavin et al (1993, 1994). Verrait (1992) has shown how these methods can be put in a dynamic 

generalised linear modelling framework, with the estimated parameters being changed for each 

age in a ‘time series’ manner.

All the above approaches have their advantages and limitations. For example, non - parametric 

methods could be useful for graduations with a large range of ages such as English Life Tables, 

while the graphic method or reference to a standard table method could be very useful when a 

small sample participates in a mortality investigation.

The most relevant methods, for the kind of data being analysed in this thesis, seem to be the 

method of graduation by mathematical formula or the method of graduation using splines. This
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preference lies in the insight they provide when comparing different mortality experiences or 

when analysing any trends or even when attempting a forecast of future mortality rates. 

Moreover, the assured smoothness we automatically obtain using mathematical formulae, the rich 

gamut of them and the modern statistical computing packages all make these methods even more 

attractive.

The theory of Generalised Linear Models (GLMs) is used throughout this thesis and its 

connection with graduation is explained in Chapter III.
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CHAPTER II

History o f major Mathematical formulae fitted to Mortality data

2.1 Introduction

The first attempts to explain the quantitative laws o f life span begin in the /9th century, after 

the accumulation of reliable statistical data and the development of more sophisticated analytical 

methods.

But, before the description of the major mathematical laws it would be desirable to ask what we 

aim to achieve by modelling life span mathematically, and what conditions a mathematical model 

must satisfy.

According to Gavrilov and Gavrilova (1991), “the recognition that what we basically aim to 

achieve is nevertheless a clarification of the mechanism which determine the life span of 

organisms. Starting from this point, mathematical modelling is not a goal in itself, but only one of 

the means of achieving the intended goal. Therefore, we should pay particular attention not to 

cumbersome mathematical constructions which claim to be fundamental theories, but rather to 

comparatively simple heuristic working models which correspond to the known facts and predict 

new regularities”.

“The best guarantee of success in applying the technique of mathematical modelling to 

biosystems is a dynamic change of models. A mathematical model should be investigated to see 

how its capabilities match the aims for which it was created, and once a model has been derived, 

it should be subjected to criticism and never made into a dogma for any length of time”.

Thus, the construction of mathematical models is a method to describe the observed mortality 

experience. These mathematical models involve parameters and it would be desirable to use 

simple models that allow for change since time is an important factor for analysing mortality 

trends.
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The second question, which arises naturally, is how we achieve the mathematical modelling of 

life span, bearing in mind the above remarks.

Gavrilov and Gavrilova (1991) describes the following general ‘Methodological principles for 

selecting the life span distribution law’.

1. The principle o f theoretical justification

According to this principle, only those equations should be used which have theoretical 

justifications. Then the recording of data using such an equation is simultaneously the first step to 

its interpretation. Starting from this principle, special attention should be devoted to formulae 

derived from theoretical hypotheses rather than to the empirical formulae.

2. The principle o f universality

The aim of revealing general regularities which are valid for the widest possible range of natural 

phenomena is the very essence of the scientific world - view. In conformity with this principle, 

special value should be attached to general life span distribution laws which are valid for the 

greatest variety of organisms, including man.

3. The principle o f the best approximation with the fewest parameters

A formula satisfying this principle allows data to be recorded in the most compact form, thereby 

permitting the distribution to be recovered with the minimal number of observations. This 

principle is a particular case of the idea that “entities are not to be multiplied beyond necessity”, 

known as Occam's razor. As applied to the problem of life span, this principle points us not 

towards an absolutely exact description of the observed lifetime distributions using formulae with 

many parameters, but towards the use of models which reflect the most prominent characteristics 

of those distributions. In this connection, a promising approach might involve a factor analysis of 

mortality patterns, permitting a determination of the minimum number of parameters necessary to 

describe the salient features. Keyfitz (1982) provides a full review of the different approaches to 

the principle of a ‘minimum parameter representation’.
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4. The principle o f local description

Since many systems have critical periods in their development when they qualitatively change 

their properties and behaviour, we should not try to describe the whole extent of the process in 

one go. The history of science demonstrates that the local description of a process is the most 

efficient path to take, with the subsequent ‘dovetailing’ of the various scientific approaches in the 

framework of a new, more general conception. Therefore, if a proposed life span distribution law 

is valid only for a restricted age interval, this is not in itself a basis for being critical towards it. 

The restricted applicability of the law does not demonstrate that it is incorrect, but merely that it 

is only a special case of another, more general and as yet unknown law.

Therefore, according to the third principle, “simplicity, represented by parsimony of 

parameters, is a desirable feature of a model. We do not include parameters that we do not need. 

Not only does a parsimonious model enable the analyst to think about his data, but one that is 

substantially correct gives better predictions than one that includes unnecessary extra 

parameters” (McCullagh and Nelder, 1983, page 6).

Moreover, if a model fits very closely to a particular set of data, it will not include changes or any 

measure for comparison that might be useful when another set of data relating to the same 

phenomenon is collected. Parsimony is related to parameter invariance, that is to parameter 

values that either do not change as some external condition changes or change in a predictable 

way (McCullagh and Nelder, 1983).

Finally, quoting from McCullagh and Nelder (1983, page 6), on the question of what constitutes 

a good model, we have that “Modelling in science remains, partly at least, an art. Some principles 

do exist, however, to guide the modeller. The first is that all models are wrong', some, though 

are better than others and we can search for the better ones. At the same time we must recognise 

that eternal truth is not within our grasp. The second principle (which applies also to artists!) is 

not to fall in love with one model, to the exclusion of alternatives. Data will often point with 

almost equal emphasis at several possible models and it is important that the analyst accepts this. 

A third principle involves checking thoroughly the fit of a model to the data, for example by using 

residuals and other quantities derived from the fit to look for outlying observations, and so on. 

Such procedures are not yet formalised (and perhaps never will be), so that imagination is 

required of the analyst here as well as in the original choice of models to fit”.
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2.2 History of major mathematical formulae

This section deals with the major mathematical formulae that have been used in the Actuarial 

literature. Fuller information can be obtained from the reviews written in Benjamin and Pollard 

(1980) and elsewhere.

I. De Moivre ( / 725)

A first attempt to describe a life table by a mathematical law was given by Abraham de Moivre 

(1725) in his hypothesis of equal decrements. In his book Annuities upon Lives he provided a 

thorough discussion of the valuation of annuities, but the underlying mortality hypothesis was 

defective as a representation of human mortality. His basic formula relates to lx and is

lx = k ■ (co-x)

where co is the ‘maximum’ age.

II. Gompertz’s law (1825)

A major improvement in the mathematical analysis of law for life span dates from 1825, when 

the English actuary Benjamin Gompertz gave a theoretical foundation that the force of mortality 

increases with age according to the geometric progression law, and he argued on physiological 

grounds that the intensity of mortality (in his terms, the average exhaustion of man's power to 

avoid or “resist” death) gained equal proportions in equal intervals of age. His law became the 

keystone of the biology of life span. Gompertz suggested that the rate at which the ‘resistivity to 

death’ decreases is proportional to the resistivity itself. Since the force of mortality acts as a 

measure of the human susceptibility to death, Gompertz took its reciprocal as a measure o f 

resistivity, thereby deriving the equation

d_
dx

1 1 
(— ) = - a - ( — ) 
Mx Mx

where a  is a non - negative constant.

(2.1)
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After integration the equation (2.1) turns into

ju  ̂ — A - exp (a  ■ x) or ju = A • B x

We notice that the log transformation of the above formula produces linearity, i.e.

logO* ) = log(^) + log(5) -x = J3+a-x

Thus, the graphical presentation of the force of mortality on the log scale should be linear over 

the ages. So, Gompertz's law is the same formula associated with the log link, used in the theory 

of GLMs for the force of mortality, with the line (polynomial of first degree) as the linear 

predictor.

Formula (2.1) can be viewed as a linear differential equation with constant coefficients. More 

specifically it can be obtained from the following

f ' (x)  + a - f ( x )  = 0

where f ( x )  denotes the resistivity to death. The solution to the above differential equation is 

Gompertz’s law.

Gompertz’s law is based on a theoretical justification with a parsimonious number of parameters 

and provides a description for the life span beyond about age 30, where mortality is a 

monotonically increasing function of age. Another restriction imposed by this law is that on the 

log scale the force of mortality should be linear over the ages.

III. Gompertz - Makeham's Law (1860)

Gompertz noted that alongside this law of mortality there must exist an element of mortality 

which does not depend on age. He explains that “it is possible that death may be the consequence 

of two generally coexisting causes: the one chance, without previous disposition to death or 

deterioration, or increased inability to withstand destruction” (Gompertz, 1825).

Gompertz's observation was taken into account in 1860 by the English actuary William 

Makeham, who stated the force of mortality as the sum of a constant (the Makeham term) and an 

exponential (the Gompertz function). The mathematical expression thus takes the following form
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n  = A + B C X

Both laws gave satisfactory results for the late 79th and early 20th century.

Further modifications made to the Gompertz - Makeham law have included for example, the 

addition of a polynomial term to the Gompertz function, or of a component linearly dependent on 

age to the Makeham term. Another way to modify the Gompertz function is to divide the

Gompertz function by a term (7 + D ■ Cx ), giving rise to a logistic formula, which was first 

suggested by Perks (see Perks’ formulae, No VI).

IV. Oppermann (1870)

Oppermann suggested a formula in terms of the force of mortality suitable for infancy and 

childhood

jux = ~j= + b + c ■ v  x
Vx

It has been shown (Hartmann, 1980) that Oppermann's formula is an extremely flexible means 

for graduation of the first twenty years of life in any of the four regional families of the model life 

tables of Coale and Demeny (1966). However, it does not give a satisfactory graduation to the 

data for the middle and older ages.

V. Thiele and Steffensen (1872)

Modifications of Oppermann's formula were made by Thiele and Steffensen in their attempts 

towards finding graduation formulae valid for all ages. Thiele (1872) was of the opinion that such 

formulae should take into account the differences in mortality behaviour during the major epochs 

of life; childhood, adult and old ages.

Thus, he wanted to partition the force of mortality (and hence the survivorship curve) into three 

components

where

Mx = Ml (*) + #2 (*) + /<?(*)
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f î (x) = ai • ex p (-6 ; • x) for childhood,

fj.2 (x) = a2  • exp ( - & 2  • (x -  c) ) for adult ages and 

ju3 (x) = a3 • exp(b3 ■ x) for old ages.

Thiele proposed this formula for the graduation of mortality throughout all ages and it was used 

for the graduation of Scandinavian mortality. It was widely acknowledged that the formula due to 

Thiele was too complicated for general use and his efforts became of historical importance only. 

This is discussed further in Steffensen (1934).

VI. Perks' formulae (1932)

A + B - C x A + B C VII. * * X
jU = ---------------  & fj. = -----------------------------

* 1 + D - C x X K - C x +1 + D - C x

The above formulae are the principal Perks’ formulae, and constituted a successful attempt to fit 

a single curve to the whole range of ages.

“Perks found an analogy between the inability to withstand destruction' of Gompertz and the 

current physical concept of entropy change; the measure of the time progression of a statistical 

group from organisation to disorganisation.” (Benjamin and Pollard 1980, page 22).

VII. Beard (1951)

Beard (1951) proposed a simplified version of the Perks’ formula, i.e. with A = 0;

B C X

1 + D - C X
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V ili. Weibull distribution (1951)

Following Gavrilov and Gavrilova (1991), the Weibull distribution is widely used and is well 

known in reliability theory. It describes the variability of technical systems with respect to their 

‘lifetimes’. It was proposed by Weibull in 1951, and is different in principle from the Gompertz 

distribution since the rate of failure (the analogue of the force of mortality) is described as a 

power function of age

Recently, the Weibull distribution has also been applied in the description of the lifetime 

variability of organisms (Gavrilov and Gavrilova, 1991).

By analogy with Gompertz’s law, formula (2.2) can be viewed as a linear differential equation 

with variable coefficients. More specifically it can be obtained from the following form

where / (x) denotes the resistivity to death.

The Weibull distribution is valid for a wide (possible) range of natural phenomena. The 

restriction imposed by this law is that on the log scale the force of mortality must be in the 

following form

log(5) + c-log(x)

Gavrilov and Gavrilova (1991) used a generalised form of the Weibull law

(2.2)

f ' ( x )  + - - f ( x )  = 0 
x

jux = A + B- x c

and another law which then called the generalised binomial law

ju  ̂ = A  + (b + c - x )n (2.3)
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IX. ELT 11 {1950 - 1952) & ELT 12 (1960 - 1962)

ELT 11 was based on the deaths in England and Wales in 1950-52 and the population census 

of 1951 and a mathematical formula was used for carrying out the graduation. This approach 

broke away from the traditional approach of dealing with population and deaths separately.

The mathematical formula advocated was a combination of a logistic curve with a symmetrical 

normal curve, involving seven parameters (Benjamin and Pollard, 1980). The following 

expression shows the mathematical structure used for both sexes

^ -  B ■ (x -  x )
m = a + ---------------------  + c-e 2

x - a  ■ (x -  x )
1 + e 1

where m is the central death rate. The parameters were estimated by ‘trial and error’. In the

case of ELT 12, the formula was only applicable from the age of 27 upwards, so that the rates 

for the youngest ages still needed to be graduated by other methods.

X. Male assured lives mortality (1949/1952)

“In 1955, the CM1 Committee produced a new standard table of mortality based on the pooled 

experience of the contributing life offices for the years 1949 - 1952. A two - year period of 

selection was adopted”. For practical reasons, the Committee considered that the “construction of 

a smooth series of rates was more important than the achievement of a very good fit to the 

observed data. So this was not to be a graduation in the traditional sense. The Committee decided 

that the key features were to be (/) an almost flat level of qx at young ages, (ii) a sharp upward 

turn between ages 40 and 55, (Hi) a flattening off in the curve at the oldest ages” (Benjamin 

and Pollard 1980, page 306). The mathematical formula used (due to Beard) is related to the 

Perks family of curves

B C X
q x = AH---------------------------------

E C ~ 2 x +1 + D C X

The parameters were estimated by ‘trial and error’ after many numerical experiments. This 

formula made no attempt to reproduce mortality rates decreasing with increasing age at the 

youngest ages (around the range of ages 22 - 30), an effect that reflected the distribution of 

deaths from accidents (Benjamin and Pollard, 1980).
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XI. Male assured lives (1967/1970)

The data relate to male assured lives under whole life and endowment assurances issued in the 

United Kingdom and were collected by the CMI Bureau. The investigation was carried out in 

select form, the period of selection studied being five years. Computers were used for the first 

time in the graduation of such data-this allowed many separate graduations to be carried out, and 

tested, and the final graduations were made using the formula

q x—  = A -  H  x + B C (Barnett formula)
Px

with the parameters being estimated by maximum likelihood methods. This formula allowed 

mortality rates to decrease with increasing age at the youngest adult ages and produced a 

satisfactory graduation (Benjamin and Pollard, 1980). The graduation was cut off below age 17 

because the above formula gave inappropriate values for ages below 17. Also, due to the errors 

in the exposed to risk for ages above 89, which led to the exposed to risk being overstated, the 

data were ignored at these ages.

XII. Pensioners and annuitants (1967/1970)

Experiments showed that satisfactory results for the corresponding pensioners and annuitants 

experience could be obtained using the formula

qx ~ 1 +

where F(x) is a polynomial of x. This formula was used, at the suggestion of A. D. Wilkie, for 

all the graduations of the pensioners' and annuitants' experiences in the Second Report of the 

CMI Committee (1976). Two parameter polynomials gave satisfactory results for all graduations 

except female annuitants (ult) where a four parameter formula was more satisfactory.

In terms of a GLM, the above formula is identical with the log - odds or logit link function, 

when using a Binomial error.
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XIII. Heligman and Pollard (1980)

The best known of all formulae which describe mortality over the entire age interval is the 

formula proposed by Heligman and Pollard

-  E{\nx -  In F)2

+ G -H
X

Px

The curve reproduces three distinct features; “the mortality of a child adapting to its new 

environment, the mortality associated with the ageing of the body and the superimposed accident 

mortality; and the 'law' is applicable throughout the life span of more than a hundred ages” 

(Benjamin and Pollard 1980, page 309). Each parameter by Benjamin and Pollard (1980) is 

described as follows: “A is almost the same as qx, c measures the rate of decline of mortality in 

early life (the rate at which a child adapts to his environment), B reflects the difference between 

q0 and qx, G indicates the level of senescent mortality, while H  measures the rate of increase 

of that mortality, D represents the intensity of the accident hump, while F  indicates the location 

of the hump and E  its spread”. Thus, in Heligman and Pollard’s law each parameter has a 

significant explanatory contribution. Heligman and Pollard showed that the above formula 

graduates Australian mortality accurately (Heligman and Pollard, 1980).

The data for English Life Table No 14 was graduated by J. J. McCutcheon, using a cubic 

spline, s(x), defined on the interval [2, 99], with ‘knots’ at the points Xj, x2, .... xn, a function 

which is piecewise - cubic on each of the subintervals [2, xrf, [xj, x j ,  .... [xn, 99], s(x) is twice 

- differentiable at each of the knots.

McCutcheon used n = 10 knots for males and n = 11 knots for females. His formula can be 

described as

XIV. English Life Table (14) (1980-1982)

i = 1
where
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( x - x . )  =v l ' +

0 i f

( x - x . )  i f

X < X.I

X > X.

For ages higher than 99 an extrapolation was carried out by a cubic polynomial, using the spline 

values at ages 90, 91 and 92 and the somewhat arbitrary value of 0.75 at age 105.

He explains that “the method of cubic splines is in essence a refinement of the method of 

oscillatory interpolation devised by George King earlier this century”, “in which (method) only 

one derivative exists at the knots” (Office of Population Censuses and Surveys, English Life 

Tables, No 14).

XV. UK life - offices mortality experience (1979 - 1982)

A comprehensive description of the graduation of these data using so-called Gompertz - 

Makeham formula of the type

q r - 1 s - 1
p  or - —-— = GM (r,s)~  X a . ■ x ‘ + exp (  X b . • x  J) 

x 1 — q x 1 J** i = 0 j  = 0

in which the parameters are estimated by maximum likelihood methods, is given by Forfar et al 

(1988). Renshaw (1991b) has noted that their methodology can be reformulated and extended 

through the use of generalised linear and non - linear models. This methodology is extended to 

model trends in mortality in this thesis.
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CHAPTER III

Generalised Linear Models (GLMs)

3.1 Introduction to GLMs

We introduce GLMs with two important quotations from McCullagh and Nelder (1983 & 1989).

“Classical linear models and least squares began with the work of Gauss and Legendre who 

applied the method to astronomical data” (McCullagh and Nelder, 1989, page 1).

“Generalised Linear Models permit us to study patterns of systematic variation in much the same 

way as ordinary linear models are used to study the joint effects of treatments and covariates” 

(McCullagh and Nelder, 1983, page 6).

In the theory of GLMs the data take the following form

(yl , Xj), (y2 , x2), ■ ■■,&„, x f  for n observations

where {y,} is a vector of responses or dependent variables treated as a realisation of a vector 

of independent random variables {T,}. The vectors x(. = (xu , x i2, .... xik) e  Rk having a specific

structure, V i = 1, 2, n are a set of qualitative covariates (factors), or quantitative covariates 

(explanatory variables). We are interested in finding the underlying relationship between yj and

the Xj or in predicting yj from the Xj.

The modelling or error distribution imparted to the independent random variables Y-s is 

specified by the first two moments

(p -V(m )
mi = E ( Y )  & Var(Y) = ----------- l— (3.1)

i CO j

where cp> 0 is the scale parameter, co / the prior weights and V () the variance function.
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Another approach would be to consider an error distribution selected from the exponential 

family of distributions. The exponential family comprises a wide range of well - known and 

useful distributions such as the binomial, Poisson, Weibull, normal, inverse Gaussian, and 

gamma distributions. But, despite this wide range of error distributions, the first approach, given 

by the equations (3.1), grants more freedom for the error distribution and this approach is 

advocated in this thesis.

Quoting McCullagh and Nelder (1989, page 23), “With the introduction of GLMs, scaling 

problems are greatly reduced. Normality and constancy of variance are no longer required, 

although the way in which the variance depends on the mean must be known”.

The covariate structure is specified through a linear predictor of the following form

k
t i . = x . . - / 3 .11 1 ¡I ^  j

i=i

with known covariate structure (x  .) and unknown parameters (/?• ). This is linked to the meanij J

response by the equation

g(m.) = p. with inverse g~! (p .) = m.

Necessary restrictions imposed on the link function g  are the existence of its inverse and its first 

derivative.

Thus, the response random variable of a GLM is considered to be decomposed into two parts : a 

systematic component linking the linear covariate structure to the mean, and a random component 

specified by the error distribution.
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3.2 Model fitting

The unknown parameters /?, are estimated by maximising the quasi log - likelihood defined 

by the expression

The (3j enter this expression through the upper limit ny and the predictor - link expression

These are called the quasi - likelihood estimating equations and may be solved by a numerical 

iterative weighting method (Newton - Raphson). The statistical package GLIM (Generalised 

Linear Interactive Modelling, Francis et al, 1993) was specially written for fitting generalised 

linear models, and is used throughout to implement the graduations in this thesis.

The formula (3.2) behaves asymptotically like a log - likelihood, since it satisfies certain 

properties found in asymptotic theory connected with the log-likelihood. It also reduces to the log 

- likelihood for the specific distributions which are members of the exponential family of 

distributions.

If in the structure of the linear predictor certain additive terms are known in advance, then the 

sum of their contributions to the linear predictor is called an offset, so that

In fitting such a model, the offset term is first subtracted from the linear predictor, and the result 

can be regressed on the remaining covariates.

(32)

k
S ( m i ) = Z x ij ■ P j

j=i

leading to the optimisation equations

rji = offset + Y,x.. -Pj
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3.3 Goodness o f  f it  and deviance

The unsealed quasi - deviance is defined by

yi
D { c , f ) = -2-cp -Q (y;w ) = d i = 2 ' H  °>i J

/=y i=l

yj - u  
V{u)

du (3.3)

where m denote the fitted values for the current model c.

Then the scaled quasi - deviance is defined by

S(c,f) = D(cJ) /(p

For members of the exponential family of distributions this is identical to -  2 • log (likelihood 

ratio), that is

S ( c , f )  = -  2- log (lc / lf )

where lc and f  denote the values of the likelihood under the current model c, with fitted 

values irij, and under the saturated model f ,  with fitted values _y;-, respectively.

The scale parameter cp (for the current model c) may be estimated by

. D ( c , f )

where p  denotes the degrees of freedom of the current model c. It is defined to be p  — n - k, 

where n is the number of observations and k  is the dimension of the linear vector space 

generated by the linear predictor structure.

The scaled quasi - deviance or deviance of the current model is a measure of discrepancy between 

the responses and the fitted values. Comparison of different choices of nested predictor 

structures, that is GLMs with a fixed modelling distribution, fixed link and different predictor 

structures which are subsets of one another, can be based on the difference between the model
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deviances. In particular when the predictor structure of the model Cj is nested in the predictor 

structure of the model c2 the difference in the (scaled) deviances

S ( c , , f )  -  S(c2 , f )

is approximately distributed as the chi - square distribution with p  - q degrees of freedom, 

where p  and q denote the degrees of freedom of Cj and c2 respectively. The addition of a

greater number of nested parameters, for a fixed error and fixed link function, reduces the 

deviance and induces a pay - off situation.

Now, because the deviance is twice the difference between the maximum quasi - likelihood 

achieved by the full model and that achieved by the current model, the above statistic is the 

same as twice the difference between the maximum quasi - likelihoods achieved by the two nested 

current models, i.e. the following statistic

log {Q(y,mI,p) /Q(y,m2,q)}

where Q{y,tnx,p )  & Q iy^U li^)  *s the quasi - likelihood for the model with p & q 

degrees of freedom respectively.

Within this context the Akaike Criterion of best fit (Forfar et al, 1988, page 49) is given by

AC = Log { Q(y ,mx ,p)  } - 2 ■ (p - q) (3.4)

As an alternative to using the chi - square distribution as a rough means of assessing the relative 

merits of nested predictor structures, it is possible to use the approximate F  - statistic

q • {S(C], f )  -  s (c2 , f ) }  _

(.P ~ q ) - S ( c 2, f ) = FP~w

The result is known to be exact under the normal distribution but not otherwise.

The implementation of the theory of GLMs in the graduation of mortality rates (for the 

construction of a current life table), is achieved by modelling age as the explanatory variable and 

the crude mortality rates as realisations of the independent response variables.
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3.4 Residuals

In classical linear regression theory where the independent responses {Yj} have the normal

The rationale behind the desirable normality property of such residuals arises in part from the 

simple visual judgement that can be made, as to the goodness of fit of the modelling distribution.

It is necessary to extend this definition in the case of GLMs. Within the context of a GLM there 

are two types of residuals of interest.

1) The Pearson residuals defined by

distribution N(mi ,cr2), the standardised residuals, defined by

where rhj denote the fitted values and a 2 estimates a 2 are approximately distributed as

N(0,1).

Yi ~ mi
I r o V

where V denotes the variance function and coj denote the prior weights.

2) The deviance residuals defined by

where d  . are the (unsealed) deviance components of equation (3.3).
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Both types of residuals may be standardised by dividing by Ĵ<p ■ (1 -  hj) where <p is the 

estimate of the scale parameter and ht a minor technical adjustment described in Francis et al 

(1993, pages 283 - 285).

Residuals can detect the inadequacy of fit of a model in terms of inadequacies in the error 

distribution (as represented by the choice of the variance function) or inadequacies in the 

mathematical model (as represented by the link function and form of the linear predictor) 

(McCullagh and Nelder, 1989, pages 391 - 400).
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CHAPTER IV

Statistical tests o f a graduation

4.1 Introduction

Apart from assessing the goodness of fit, there are certain features which it is necessary to check 

in any graduation. According to Benjamin and Pollard (1980, page 226) this include the checking 

of deviations for the possible existence of

a. a number of excessively large deviations (counter - balanced by a number of small deviations)

b. a large cumulative deviation over part (or the whole) of the age range

c. an excess of positive (or negative) deviations over the whole of the age range

d. an excessive clumping of deviations of the same sign over the whole of the age range.

Several statistical criteria have been devised to explore the adequacy of any proposed 

graduation model. We are mainly concerned with the Chi - square test, the Individual 

Standardised Deviations test, the Sign test and the Runs test. Each of the above tests 

examines certain desirable features of a graduation, and the failure of any of the tests may result 

in the reconsideration of the fitted model.

The statistics used for these tests in this thesis are the deviance

devx = yx - m x

where yx & mx denote the observed responses and fitted values respectively of the GLM and

D sign(devx ) • f d f

z * ~  J v - u - h

the standardised deviance residuals of Section 3.4.
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Note that the corresponding studentised Pearson residuals of Section 3.4 are used in CMI 

graduations (Forfar et al, 1988 and Benjamin and Pollard, 1980). Moreover, all of the graphical 

diagnostics in this thesis are based on deviance residuals, as we will see later in the next Sections.
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4.2 The chi - square test

The chi - square test assesses the overall goodness of fit of a graduation. It involves the

2
statistic X  defined as the sum of the squared residuals :

X
2 n

i  ( z V  
x=l x

where z D are the standardised deviance residuals of the associated GLM, defined by equation 

(4.1), and which approximately follow the standard normal distribution.

The p  - value of the test is the appropriate tail area, calculated using the chi-square distribution 

with n - k  degrees of freedom, based on n age cells (constructed by grouping adjacent ages 

where necessary) and a linear predictor involving k independent parameters.

If smoothness has been assured then we have an upper one - tailed test otherwise we have a two - 

tailed test allowing for the undesirable feature of undergraduation. Thus, one concludes that if the 

graduation has being'carried out by the use of mathematical formula, then the chi - square test 

becomes one - tailed. Thus the p  - values quoted in this thesis for any test of any model structure 

are defined by

i  - F„_k d  (2 y >
x=l x

where Fn_k is the cumulative distribution function for the chi - square distribution with n - k 

degrees of freedom.
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4.3 Other tests

As a standard practice with testing graduations, we have also used

I. The individual standardised deviations test which is designed to safeguard against the 

features described under 4. la. The test is based on an upper one - tailed p  - value.

II. The sign test which is designed to safeguard against features described under 4.1c. The test 

is based on an two - sided p - value.

III. The runs test which is designed to safeguard against features described under 4. Id. The 

test is based on an upper one - tailed p - value.

IV. The cumulative deviations te s t, which is designed to safeguard against features described 

under 4.1b. For reasons of simplicity we do not use this test since the results are usually 

satisfactory.

Full details are given in Benjamin and Pollard (1980, Chapter 11).
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4.4 Visual checks

As an additional check, the theory of GLMs provides visual tests of the statistical analysis 

through residual plots. Standardised deviance residuals, as they are defined by equation (4.1), 

are recommended in the text book by McCullagh and Nelder (1989, page 398), plotted either 

against the linear predictor, or against the fitted values transformed to the constant information 

scale (CIS) of the error distribution.

The CIS of the error distribution is defined by the formula

\dU  /

Thus for Poisson errors we use 2 • yfju , for binomial errors we use 2 ■ sin' 1(yfi}) and for 

gamma errors log ju .

Such a plot is capable of revealing isolated points with large residuals, or a general curvature, 

indicating unsatisfactory covariate scales or link function, or a trend in the spread with increasing 

fitted values, indicating an unsatisfactory variance function (McCullagh and Nelder 1983, page 

216).

If the model provides a satisfactory fit, residuals plot should show a ‘corridor of values’, or 

should not show any underlying pattern when plotted against the explanatory variables or against 

the fitted values.

51



Part 2

Statistical Modelling for Mortality Rates
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CHAPTER V

Modelling central rates

5.1 Introduction

The Poisson process provides a useful theoretical background in the analysis of mortality rates, 

and the basic properties of this process are considered next.

The conditions which the stochastic point event counting process {X(t), t > 0} must satisfy in 

order to form a Poisson process are given by the following four assumptions (Kakoulos 1990, 

page 92).

a. The number of point events in non - overlapping time intervals, (more generally, parametric 

sets) are independent events.

b. The probability that the number of point events, k, occurring in a given interval [0,t], denoted 

by ak(t), is the same for all the intervals of the same length. This means that the process is 

homogeneous (or stationary) over time. So, for k = 0, 1, ... we have

P [  X(t+s) - X(s) = k ]  = ak (t) V t >0, s >0

c. In the extremely short ‘time’ interval^, t+h) one event at most may occur. That is, there 

is a constant X > 0 such that

a,(h) = P [ X ( t + h ) - X ( t )  = l ]  = A - h  + o(h)

a0(h) = P [  X(t+h) - X  (t) = 0 ]  = 1 - A - h  + o(h) (5.1)

where o(h) symbolises a function of h such that o(h) /  h tends to zero when h —>0.
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It follows from the above relationships that the probability that more than one event occurs in 

(t,t+h) is

ak(h) = o(h) V k > 1

and it follows from (5.1) that

lim
A->0+

a ¡(h) 
h

= A

The parameter A gives the rate with which the events occur, referred to as the intensity of the 

Poisson process, and is equal to the expected number of events in a unit time (or parametric) 

interval.

d. X(0) = 0, since we start to count the events at time 0.

So, X(t) simply represents the number of point events occurring in the interval (0,t) or, because 

of condition b, in any interval (5 , s+t) with length t.

Any process satisfying the four conditions above is called a homogeneous or simple Poisson 

process having a Poisson distribution with mean A ■ t (Kakoulos 1990, page 93). That is

Pk (t) = P[X(t) = k] = exp { (-A-t)j{A-t)k/k \y ,  for k = 0, 1, 2, ...
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1. The parameter t usually represents time, so that X(t) counts the number of point events 

occurring up to time t. But if t is a measure of length, area, volume, etc. we still have 

Poisson process but with parameter space instead of time.

2. We can allow the intensity of the process to depend on time t. Thus

P[X(t+h) -X (t) = 1 ]  = A(t) - h +o(h)

t

and X(t) has again a Poisson distribution but with mean ¡A(s) d s . In this situation
0

(X(t), t>0} is referred as a non - homogeneous or time dependent Poisson process.

3. If in a ‘small’ time interval more than one event may occur given that at least one event has 

occurred, we have the generalised Poisson process or the compound Poisson process. 

Further assuming that there is a probability function p k such that for k=l,2,... and t > 0

lim P[X(t+h) - X(t) = k / X(t+h) -X (t) >1 ] =  p,
h-*0+

then it can be shown that (X(t), t > 0} is a stochastic process with homogeneous and 

independent point-events and is a generalisation of the simple Poisson process for which 

Pj = 1 and p k = 0 for k * 1 (Kakoulos 1990, page 100) .

The compound Poisson process can be written in the form

N(t)

x«)= Z
n=l

where {N(t), t > 0} is a simple Poisson process and Yn -  0, 1,2, . . .  are independent 

random variables with the same distribution which are also independent of N(t). Then,

E[X(t)J = E[N(t)] ■ E f Y J  = A ■ t • E [Y J  &

V[X(t)J = E[N(t)J ■ V(Yfj) + V[N(t)J ■ E2(Yn) = A - t  • E[Yn2]  (5.2)

Next, the following three generalisations of the Poisson process are of interest in any mortality

investigation (as will become clear later in context).
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1. The intermediate ‘time’ intervals between consecutive point events i - 1 and / say, 

denoted by Ti , are independent and identical distributed exponential random variables. 

Hence if Wv denotes the waiting time until the vth event, 7) = Wj - Wt_j has density

~ — A ' t
/ r , (  t )=A-e

Next, the following three basic properties of the Poisson process are of interest when modelling

crude mortality rates.

So, the waiting time until the vth event Wv = Tj + T2 + ... + Tv , has the Erlang (gamma) 

distribution with parameters v and A. That is

-A-t  (A - t Y ’1

( , ) = Ae- ^ r

2. If {X(t), t>0} is a homogeneous Poisson process with intensity A, then the distribution of 

the times h <t2< -  < tv for the realisation of the v - events given that X(t) = v, is the 

same as the distribution generated by selecting a random sample of v observations from 

the uniform distribution on [0, t] (Kakulos, 1990, page 98).

3. If we know the number of point events that occur in a given ‘time’ period, then the number 

of events which occur in any sub - interval depends only on the length of the sub - interval 

and follow the Bernoulli law. That is, if (X(t), t>0} is a Poisson process, then V 0 < s < 

t and k < v, the distribution of X(s) given X(t) = v is Binomial (v,s/t) (Kakulos, 

1990, page 99).
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5.2 Poisson process for deaths

(using central exposed to risk)

Consider a group of lives all having the same age. Following Subsection 2.4 of Forfar et. al. 

(1988), if 0  denotes the number of deaths and Rc the central exposed to risk, with © (but not 

Rc) modelled as a random variable, then the number of deaths has a Poisson distribution with

mean and variance both equal to R c ■ p  , where p  denotes the force of mortality. That is,

0  ~ P ( R C • p)

This may be likened to a Poisson process, in which the number of point events (deaths), in a fixed 

interval (the exposure to risk), has a Poisson distribution with intensity p  (the force of 

mortality).

The values 0 and Rc are minimal sufficient statistics for p. Hence it is natural to base all 

statistical inferences on these two quantities (Sverdrup 1965). It is assumed that the force of 

mortality p  is piecewise constant within each age category and investigation period so that the 

ratio {61 Rc} is the maximum likelihood estimator for p.

Expressed as a GLM based on the independent response random variables { 0  ̂ } where x 

denotes age, we have, in comparison with equations (3.1)

E ( 0 X) = mx = R cx ■ Px & Var(Qx ) = mx

with scale parameter (p = 1, prior weights cox = /, and variance function V(mx ) = mx .

For notational convenience, we shall use p  for the constant value of the force of mortality over 

the age interval under discussion, rather than p  / .
x + —

2
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Evaluating the integral of expression (3.2), for this particular case, gives the expression for the 

deviance

S ( c , f )  = 2- X  { > V log (~  ) - O '* -* »  ) }
x mx

where y x denote the observed responses 0X, and m denote the fitted values Rx ■ ju under 

the current model. Thus, the above expression for the deviance can be rewritten as

S ( c , f )  = 2- Y j  { 0 x -\og(-
Or

K - f i x
(0x - R C-fix ) } (5.3)

Renshaw (1991a), describes the implementation of p x - graduations in GLIM based on these 

distributional assumptions coupled with the use of log link predictor formulae (the canonical 

link for the Poisson distribution) of the type

Vx = logtw*) = l o g ( - z ^ )  = log( Rx ) + \og(px ) = l o g ( ^ )  + X  Pj -xJ

in which the log Rx term is treated as an offset as described in Section 3.2. Note that the 

graduation formula

lo g O jc) = Z  Pj xJ
j

implies that the force of mortality px is modelled as an exponentiated polynomial in age x.

As an alternative to using offsets and / or in the implementation of other link based jux 

graduation formulae such as the power link, new responses {Yx } based on the transformation

in which 0 X is still the random variable are needed.
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For these responses

E ( Yx )  = m x = - ^ - E ( Q x ) = ju 
R v

& Var(Yx ) =
1

(R cx ) 2
Var(Gx )

with scale parameter <p = 1, prior weights cô  = RLX. and variance function V(mx ) = mx .

The expression (5.3) quoted for the deviance S (c ,f )  still applies (Renshaw, 1991a).
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5.3 Gamma distribution for the resistivity to death

(based on deaths)

As noted by Gerber (1990, page 113), the expression for the log - likelihood under the 

assumption

0 ~  P (R C M)

is identical to the expression for the log - likelihood under the assumption

R c ~ G ( 6 ,  /u) (5.4)

where X  ~ G (a ,  /? ) means the gamma distribution with density

/3a
R x )  = f ~ - x a 

T(a)
• exp ( - /?  • x)

Expressed as a GLM with the central exposures { Rx } as the independent response variables, it 

follows from the properties of the gamma distribution that

E ( R C) = mx = 0 & Var(Rcx ) = dx

with scale parameter (p = 1, prior weights co = 6 , and variance function V(mx ) = m2x .

Evaluating the integral in expression (3.3), for this particular case, gives the following 

expression for the deviance

S ( c , f )
X

c c
R R - m

X  X X
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.  Oxwhere mY = ~r~ denote the fitted values under the current model. Note that the above formal
Mx

expression for the deviance can trivially be shown to be identical to the expression for the 

deviance in the previous case, equation (5.3).

Within this context, it is possible to target the resistivity of death /ux l , so described by Gompertz 

(1825), by means of log link predictor formulae of the type

Gx = \og(mx ) = [og(Gx ) + \og(U jux ) = \og(Gx ) + T  /3 -x J
j

in which \og(G ) are treated as offsets. Note the graduation formula*

l o g ( / / / ^ )  = Z  fij ■x J
j

which again implies that the force of mortality, jux , is modelled as an exponentiated polynomial 

in age x. Provided that the weights Gx are all non - zero, the method produces identical 

graduations to the previous method : see Renshaw et al (1996b).

We note also, that assumption (5.4) implies

R c
—  ~ G ( G , 0- M)

R c
Expressed as a GLM, with the resistivity to death Y = —:— as the independent response

X  HWX

variables, it follows from the properties of the gamma distribution that

E (Y  ) = mx -  —  
* K

& Var(Y)  =
(*x r

r Wy■ Var(Rc) = ——
x 0 X

with scale parameter (p -  1, prior weights co - G  , and variance function V(mx ) — m \.

The expression (5.3) quoted for the deviance S (c, f)  still applies. Again, provided that the 

weights G are all non zero the method produces identical graduations to the previous method.

61



5.4 Compound Poisson process for policies

(using central exposed to risk)

As in Section 5.2, in this Section the number of deaths, © , is modelled as a Poisson random 

variable with E ( 0  ) = R c ■ p  . Again consider a group of lives all having the same age.

In a mortality investigation associated with assured lives the data available do not consist of the 

actual deaths and the exposures based on individual lives. Each policyholder may have more than 

one policy and any claim may subsequently give rise to more than one ‘death’. The actual data 

available, for this kind of investigation, are the number of policies ceasing through death and the 

corresponding exposed to risk based on policies. Therefore, a simple Poisson process no longer 

describes the real process under which the assured lives data are generated.

Let Pt denote the number of duplicate policies giving rise to a claim from policyholder i. Let 

9 denote the actual number of deaths, and P the total number of policies giving rise to claims.

Let R c denote the central exposed to risk based on actual deaths. Then, we have the following 

relationship

e

i=l

Then, assuming that the P(s can be treated as independent and identically distributed random 

variables, it follows from the third generalisation of the Poisson process discussed earlier in 

Section 5.1 and equations (5.2) that

E(P) = p - R c ■ E(Pi)  & Var(P) = p  - R c ■ E(Pi2)  (5.5)

under the assumption that there is no mortality selection among policyholders with different 

number of policies, such that E (P) is an unbiased estimate for the average number of duplicate 

policies giving rise to claims for each policyholder.
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Following Forfar et al (1988, page 30), let p R c denote the central exposed to risk based on 

policy counts, 6 l denote the number of policyholders who die (at age x) and have i policies and 

T l denote the central exposure based on lives, arising from those cases for which the 

policyholders has i policies. Then, we have that

0 '  ~ P (Tl ■ p ) & T‘ ~ G(Gl , p ) (5.6)

and

p = Y Ji - o i
i

& p r c
i

(5.7)

Further it has been proved that (Forfar et al, 1988, page 31),

E(P) = PR C m

Then, comparison with the first equation in the equation system (5.5) gives that

PR C = R c ■ E(Pi)

Now, equations (5.5) become

E ( P ) = p p Rc & V ar(P) = E ( P) - (E ( P i2) / E ( P i) }  (5.8)

In the context of a Poisson GLM this feature is described as over - dispersion because

Var (P) > E (P)

since E (P’¡ )  > E(P¡) in practice. See for example Renshaw (1992).

Various techniques have been developed to facilitate the graduation process in the presence of 

over - dispersion. Forfar et al (1988), transform the data before modelling by dividing both policy 

counts and exposures by so-called variance ratios, defined as

r = l ?  f (i)/
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where f(i) denotes the proportion of policyholders holding i policies. A possible deficiency of 

this method is that the values of the variance ratios are not always readily available.

The over - dispersion parameter

E(P-) Var(P)

m >  ~ E m

defined by equation (5.8) is the ratio of the second moment of Pi divided by the first moment of 

Pi (under the same assumption about mortality selection), or the ratio of the second central 

moment of P to the first moment of P.

Renshaw (1992), describes a methodology of joint modelling of the mean and of the dispersion, 

using the over - dispersed Poisson model for policies, such that

E(P) = fi -PRC & Var(P) = <p ■ E(P) (5.9)

where the over - dispersed parameter q> is independent of /u , and is the theoretical equivalent 

of the empirical variance ratio r discussed by Forfar et al (1988).

The method involves modelling the unknown dispersion parameter cp as a secondary inter - 

related GLM in order to model (p as a function of age. In this thesis, we will assume 

throughout that (p is independent of age since the effect on the graduation process is known to 

be small and we estimate (p as described in Section 3.3 (Renshaw, 1992).

Thus, expressed as a GLM, we model Px , the total number of policies giving rise to claims at 

age x, as over - dispersed Poisson response variables where

E(PX) = mx =PRX ■ nx & Var(Px ) = <p-mx

with scale parameter <p, prior weights cox = 1, and variance function V(mx ) - m x .

Evaluating the integral of expression (3.2), for this particular case, gives the expression for the 

deviance
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(5.10)s(c,f) = 2-L  • £  ! e,.u*-A _) - ( e , }
v  ,  K - &

The same predictor link structures described in Section 5.2 also apply here.

As an alternative to using offsets and / or in the implementation of other link based p x 

graduation formulae such as the power link, new responses { Yx } based on the transformation

y ____•*
* '  PRÏ

in which Px is still the random variable are needed. For these responses

E(Yx ) = mx =
p Ri

E(Px ) = u & Var(Yx ) =
(PK ) 2

■Var(Px ) = (p-
PK

with scale parameter (p, prior weights - PRX , and variance function V(mx ) = mx .

The expression (5.10) quoted for the deviance S (c , f)  still applies.

The estimates of the parameters are identical with the Poisson case (if the same mathematical 

formula is used). The only difference occurs in the standard errors of the parameter estimates and 

the p  - values in the tests of a graduation, since the standardised deviance residuals include the 

over - dispersed parameter, cp.

To allow for over dispersion, the Akaike Criterion of best fit, expression (3.4), is adjusted to

AC  = Log { Q (y,m x,p )}  - 2 ■ cp ■ k
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(based on policies)

In this Section, the central exposed to risk based on policies p R c is treated as a random variable 

conditional on the number of policies P ceasing due to deaths 0 .

From Section 5.3 the central exposed to risk, R c , is the gamma random variable

5.5 Gamma distribution fo r  the resistivity to death

R c ~ G ( 0 , p ) (5.11)

The expected number of duplicate policies E(P() on an individual / is assumed to be the 

same for all policyholders, and it is assumed that there is no mortality selection among 

policyholders with different number of policies.

Following Forfar et al (1988, pages 30 - 32), we have similarly, due to equations (5.6) & (5.7), 

that

n r ' ST i V $  P
E(pRc) = J Ji-E(T') = YJi —  = -

i i E M

and

Var(pRc) = X / 2 - V a r i f  ) =
0_

2
E

X / 2 - ^  Y j - 0

X f*^
= r —  = {E(.eRc) y  

E

where

r
Z i 2 - *

Z i ' 6 1

the so - called variance ratios or the theoretical equivalent over - dispersed parameter, <p.
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Expressed as a GLM, with the central exposed to risk based on policies { p Rc } acting as
•X

independent responses, comparison with equations (3.1) gives

E (p Rc ) = mx =
X

Px_

Vx
& Var ( PR C)= ~ r -m x2 (5.12)

x Px

with scale parameter q> -  r, prior weights cox = Px , and squared variance function V(mx) = mx .

The expression (5.10) quoted for the deviance S (c , f)  still applies. The above GLM structure 

is suitable for use in combination with log link predictor formulae as described in Section 5.3.

We note also, that equations (5.12) imply that

PRC 1
E ( - p ^ )  = mx = —

x Mx

PRCx <P 2& V a r ( - ^ ) =  —  mx2
X  * x

Thus, as an alternative to using offsets and / or in the implementation of other link based jux 

graduation formulae such as the power link, new responses { Yx } based on the transformation

yx =

in which pR°x is still the random variable are needed. Note that, this is now identical to the

situation described in Section 5.3 subject to the introduction of a free standing scale parameter 

cp. Thus, expressed as a GLM, we get

E(Yx) = mx = — & Var(Yx ) = mx2 -
r x

with scale parameter <p, prior weights co = Px , and squared variance function V(wx) = m 2

The expression (5.10) quoted for the deviance S(c, f )  still applies. The issues in this section 

are discussed in greater depth by Renshaw et al (1996b).
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5.6 Normal distribution for the logarithm o f the resistivity to death

Consider the gamma based GLM of the previous Section 5.5 with responses {Yx} such that

EiYJ = m x =
Mx

& Var(Yx)
r x

where

Yx =

P r c

X

According to McCullagh and Nelder (1989, pages 285 - 286), for small (in association

with the above error structure) we have that

£ (log  Y ) = log — & Var (log r  ) =
*x

Thus, the log transformation of the inverse of the force of mortality stabilises the variance. The 

removal of the skewness will be assumed under the normal approximation for the response 

variable, the natural logarithm of the empirical resistivity to death.

In this section we use this approximate result by modelling {log Yx} as the responses where 

£ (log  Y ) = mx = log —  & Var(log Yx) = p  ■ ~
x Mx p x

with scale parameter (p = p, prior weights cox = Px , and variance function V (mx) = 1.

Thus, estimation of the predictor parameters is by the familiar weighted least squares method 

associated with the normal modelling distribution.
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“If the analysis is exploratory or if graphical presentation is required, transformation of the data 

is convenient and indeed desirable. However, if the response variable Y  is a variable with a 

physical dimension or if it is an extensive variable the method of analysis based on transforming 

to logy  seems unappealing on scientific grounds” (McCullagh and Nelder, 1983, page 150).

Therefore, the benefits of this approach depend on the results of the associated statistical tests 

after the normalisation of the response variable.

The following example (Section 5.1) illustrates the various statistical approaches of this Chapter 

and illustrates the similarities and differences between them.
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5 .7  Example

The example is taken from the CMI assured males lives experience, for duration 5+, in the time 

period 1987 - 1990 and for the age range 22 to 89.

The graduation formula and hence linear predictor used involves Legendre polynomials defined 

either by

i  r  „

w  = l )  ’

or by their recursive relationship

(n+1) -Ln+I(x)-(2-n+ l)- x  -L„(x ) + n-L„.](x )  = 0, n = 1,2, 3, .. 

with L0(x) =1 & Lj(x) = x .

The Legendre polynomials satisfy the following system of equations

1
J  Ln(x) ■ Lm(x) dx = 0 V n * m  

- l

J i m *)]2 *  -  ^ 7

which implies orthogonality. To achieve this in practice we transform the x using

a + b
2

b - a
2

where a and b are the youngest and oldest ages respectively, so that x ' e [-/,/].

The usefulness of employing orthogonal polynomials lies in the fact that the estimate of an 

additional coefficient in the predictor structure does not effect the estimates of the other 

coefficients and that this additional coefficient “may be capable of a relatively simple 

interpretation” (Forfar et al, 1988, page 19).
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In this example, the log link is used, and the optimisation of the Akaike Criterion leads to the 

acceptance of Legendre polynomial of the fourth degree. Hence the graduation formula 

throughout is

4

log//* = ' Z a j - Lj ( x ' )
j=o

Table 5.1 summarises the results obtained using the GLIM statistical package, for Poisson 

responses based on the death rate (Section 5.2), for gamma responses based on the resistivity to 

death (Section 5.5), and for normal responses based on the natural logarithm of the resistivity to 

death (Section 5.6), as described in this Chapter. Note that the gamma responses, based on the 

resistivity to death (Section 5.5), produces identical results with the compound Poisson responses 

(Section 5.5), since there are no zero reported deaths in any of the age cells.

Table 5.1 : Results for Poisson. Gamma & Normal 

Poisson Gamma
responses

Normal—
Parameter 

(Standard errors) 
-5 .1 0 0  

0.01698  

3 .1 7 6  

0.03613  

0 .3 7 1 9  

0.03814  

-0 .4 2 0 5  

0.02934  

0 .1 4 7 6  

0.02319

Normal

CCo

ax

a2

a 3

Ox

Parameter estimates 
(Standard errors) 

-5 .1 0 4  

0.01213  

3 .1 8 2  

0.02585  

0 .3 6 6 4  

0.02725  

-0 .4 1 7 9  

0.02098  

0 .1 4 6 8  

0.01644

Parameter 
(Standard errors) 

-5 .1 0 4  

0.0171 

3 .1 8 2  

0.03639  

0 .3 6 6 4  

0.03842  

-0 .4 1 7 9  

0.02956  

0 .1 4 6 8  

0.02336

p - values Poisson
Pisi 99 99 98

40 40 60
41 41 23

P chi 49

<P= 1 (P
55

--2.028
48

tp= 1.998

Note that the above p  - values have been calculated using standardised deviance residuals. Their 

values, for each of the error distributions, reveal a satisfactory adherence of the graduated rates 

to the crude rates (chi - square value), with an excellent distribution of the graduated rates around
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the crude rates (ISD - value), a balanced fit (sign - value), and a satisfactory relationship of the 

resulting curve to the crude rates (runs - value).

The parameter estimates and deviance value 127.75 in association with 63 degrees of freedom 

are identical for the Poisson and gamma error models. This is to be expected certainly for the log- 

link model structure when there are no zero reported deaths in any of the age cells, as here. So, 

the graduated mortality rates are identical for these two cases. The corresponding parameter 

standard errors (gamma to Poisson) differ by a factor of approximately 1.41, the square root of 

the estimated scale factor associated with the gamma model (the scale factor for the Poisson 

model being 7). The deviance value 125.89 and the parameter estimates for the normal error 

model differ only slightly from the deviance and parameter estimates for the other two cases.

Figure 5.1 presents the crude rates (as dots) and the graduated force of mortality (as a 

continuous curve), on a log scale, for all three error distributions, plotted against age. Note that it 

is not possible to detect the small differences between the graduated values for the Poisson - 

gamma and normal error models on such a graph.

Plots of standardised deviance residuals against the appropriate constant information scale, for 

each error distribution, and against age for the gamma - compound Poisson error distribution, are 

presented in Figures 5.2 - 5.5.
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Figure 5.1 : Logarithm of u ̂  and fux against age

Male assured lives 1987 - 1990, duration 5+

Figure 5.2 : Deviance residuals for Poisson error against CIS =

s o 1-1-H
40

-f*"i ■ I
80 1 OO 120
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CIS =  2 -  l o g ( 4 - )
Mx

Figure 5.3:  Deviance residuals for gamma - compound Poisson error against

3 rq

a —

-n-r
4 8 lO 12

rrTn
14 16

Figure 5.4: Deviance residuals for normal error against CIS = log(^r~)
Mx
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Figure 5.5 : Deviance residuals for gamma - compound Poisson error against age x
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1.00 7 

0.00 —

— l.oo  —

—  2 .00  —

— 3.00 —]----r
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40 50 60 80

Each of the above figures is supportive of the particular error distributions concerned. The 

deviance residuals do not show any underlying pattern.
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CHAPTER VI

Modelling initial rates

6.1 Binomial distribution for deaths

(Using initial exposed to risk)

Consider a group of lives all having the same age. As described in Chapter I, each life 

contributes a whole year to the exposed to risk on entry into investigation. For reasons of 

simplicity we assume that there are neither new entrants nor withdrawals, so that each life 

contributes a whole year to the initial exposed to risk.

Then, it is natural to assume that each life behaves as a Bernoulli trial, with a ‘success’ to 

denote death, and with the ‘probability of a success’ to denote a discrete measure of mortality, the 

rate o f mortality q, as described in Chapter I.

The sum of all these 'successes' aggregates to give the number of deaths, © , which has the 

binomial distribution

0  ~ Bin ( R ‘, q)

where R l denotes the initial exposed to risk. It is assumed that the death or survival of each life 

is independent of the death or survival of each of the others, for the particular age in question.

The crude rate of mortality, q, is estimated by the ratio of the number of deaths divided by the

o
initial exposed to risk, as described in Chapter I, i.e. q = 0 / R l , which is the maximum 

likelihood estimator under the binomial distribution.

The rate of mortality, qx , is the conditional probability of death in the rate interval associated 

with age x, given that an individual is alive at the beginning of the rate interval with age x.
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Expressed as a GLM based on the independent responses { 0  ̂ } where jc denotes age, 

comparison with equations (3.1) implies that

m
E(®x) = mx = R ‘x -qx & Var(®x) = mx ■ ( ! - - f )

Rx

with scale parameter (p = 1, prior weights cox = 1 and variance function

m
V(m ) = m • ( / - — )

Evaluating the integral in expression (3.3), for this particular case, gives the expression for the 

deviance

S(c , f )  = 2- X  { 0 X - lo g (^ - )  + (R‘x - f l ) - l o g ( " .* X )  }  (6.1)
x mx R x - ™ x

where
A r)/ AmY = R ■q

x  x  ^  X

denote the fitted values under the current model.

Renshaw (1991b) describes the implementation of qx graduations using GLIM based on these 

distributional assumptions, coupled with the use of the following three (inverse) link functions in 

combination with polynomial predictors in age effects.

1. The complementary log-log  link with inverse qx = 1 -  ex p (- exp( r]x ))

2. The logit link with inverse expCfo)
q* l + exp(rjx)

3. The probit link with inverse <lx -  ^ ( R x )

where O  denotes the cumulative distribution of the standard normal distribution.
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6.2 Compound binomial distribution for policies
(Using initial exposed to risk)

Consider a group of lives all having the same age. In the presence of duplicate policies, as in 

Section 5.4, let Pj denote the number of duplicate policies giving rise to a claim from

policyholder j. Let 6 denote the actual number of deaths, and P  the total number of policies 

giving rise to claims. Assume that the random variables Pj are independent and identically

distributed for all j, and are independent of the number of deaths, 6 . Let R ‘ denote the initial 

exposed to risk based on actual deaths. Then,

0

p -  S  Pj
1=1

and it follows from the well - known relationships, for any compound process, that

E(P) = E( ®) ■ E(Pj) & Var(P) = E ( Q ) ■ Var(Pj) + Var( 0  ) ■ E2(Pj) (6.2)

This assumes that there is no mortality selection among policyholders with different numbers of 

policies. So, E(Pj) is an unbiased estimate for the average number of duplicate policies giving 

rise to claims for each policyholder.

Under the assumption 0  ~ Bin (Rl, q), so that V(Q) -  E (® ) ■ (1-q), we can rewrite 

expression (6.2) for the variance as

Var(P) = E ( Q j  { E (P f) - E2(Pj ) }  + { E(Q ) ■ (1-q) }  • E2(Pj) }

This implies

Var(P) = E( ®) ■ E (P f) - E( ®) ■ q ■ E2(Pj) 

which reduces, on using the first of equations (6.2), to

E ( P 2)
Var(P) = E ( P ) - { —j ~ — - q E { P j )}
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Renshaw (1992) has shown that it is possible to rewrite this expression as the variance of an over 

- dispersed binomial variate, for which

Var(P) = (p ■ E(P) ■(! -q )

where

E ( P ! )
= — L— -(l  

E(P; )

E ^ P j )

E(P)2)
• « H Z - ? ) - '

Further, expression (6.3) approximates to

(6.3)

E
‘  E(P. )

> 1

because of the relative smallness of q for all but the oldest ages, so that (p does not depend on 

the target q and may be interpreted as a dispersion parameter.

From the first of equations (6.2) and the assumption 0  ~ Bin(R' ,q)  we obtain

E(P)  = R ‘ -E(Pj ) -q  = pR i -q

where we write

pR l = R ‘ -E(Pj)

to denote the exposed to risk based on policy rather than head counts. Recall E(Pj )  is the

expected number of policies giving rise to a claim, per person j, and is the same for all 

individuals.

Expressed as a GLM therefore, the number of policies ceasing through death {Px}, for 

individuals aged x, form the response variables with

E ( p x )  = mx =  P r 1x -qx & Var(Px ) = (p-mx ■(!-
m
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with scale parameter (p > 1, prior weights cox = 1 and variance function

m
V(m ) = m ■(! -  x. )

x x PR ‘X

Evaluating the integral in expression (3.3), for this particular case, gives the expression for the 

deviance

S(cJ) = 4 -  Y  { p x 1 0 8 ( 4 4  + (pR‘ -  P' ) log((P m Y x x

p  R'

(p P R ' _ - ) } (6.4)
ffl,

where <p denote the estimated scale parameter, and

q
x X  ^ X

denote the fitted values under the current model.
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6.3 Example

The example is again taken from the CMI assured males lives experience, for duration 5+, in 

the time period 1987- 1990 and for the age range 22 to 89.

The initial exposed to risk are approximated by the well known relationship R[ = R cx + %
2 ’

since the data set is based on central exposures. Legendre polynomials are used as in the previous 

example.

The following table is a matrix of déviances, in which the columns correspond to the degree (k - 

1) of the polynomial predictor and the rows correspond to the different link functions

Table 6.1 : Table of deviance for different link functions
II <NII k  =  3 k  =  4 Si- ll c*» k  =  6

L o g  -  lo g 106527.4 524.8 489.6 204.7 127.8 124.9

L o g it 106527.4 476.1 464.5 206.7 127.3 124.9

P ro b it 106527.4 1260.2 343.7 162.8 125.1 124.9

For each of the different link function we choose the optimum deviance using the (modified) 

Akaike Criterion. Then, for the optimum choice for the whole table, we choose from the optimum 

deviances (using the Akaike Criterion) the deviance based on the least number of parameters, or 

the one with the minimum deviance value if all the optimum deviances are based on the same 

number of parameters.

In this example, each of the link functions attain their optimum deviance at k = 5, and the probit 

link function in combination with a quartic in age effects is chosen as the ‘optimum’ model. The 

details of the parameter estimates for this model are presented in Table 6.2, where

4

<S>~I (q x ) =  Z  a j - L j ( x ' )
j=o
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Table 6.2 : Parameter estimates and standard error for the probit link function in combination
with a quartic in age effects.

p.e. s.e.
-2.419 0.00522
1.180 0.01098

0.2521 0.01225
-0.1012 0.00920
0.03895 0.00885

<p = 1.986

Individual Standardised Deviations (or standardised Pearson residuals) are used as residuals, 

based on the normal approximation to the binomial distribution. Thus, if © has an over 

dispersed binomial distribution with parameters (R , q) then approximately

0  *  N (R  q, <p- R q - ( l - q ) ) & 1SD
e - R - q  

yj <p ■ R ■ q ■ (1 — q)
N(0,1)

The p  - values for the statistical tests are

P ^ - 0 . 8 8  Ps & - 0 . S 0  p Turi = 0.69 PM ~0.56

The above p  - values reveal a satisfactory adherence of the graduated rates to the crude rates (chi 

- square value), with an excellent distribution of the graduated rates around the crude rates (ISD - 

value), an excellent balanced fit (sign - value), and a satisfactory relationship between the 

resulting curve and the crude rates (runs - value).

Figure 6.1 displays the crude mortality rates (as dots) and the graduated mortality rates (as a 

continuous curve), on the log scale, plotted against age.
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Figure 6.1: Logarithm of q x and qy against age

Male assured lives 1987 - 1990, duration 5+

The Individual Standardised Deviations (ISD) are plotted against the constant information scale, 

defined by CIS = 2 ■ sin” 1 (qx ) , in Figure 6.2.

3 —1

2 —

Figure 6.2 : Individual standardised deviations against CIS

O —

—  2  —

— 3---0.0

The lack of any underlying pattern is supportive of the model.
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Part 3

Mathematical Modelling for Mortality Trends
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CHAPTER VII

The methodology o f modelling mortality trends

7.1 Introduction

The aim of this section is the construction of a mathematical relationship which describes the 

mortality trends in connection with age and time. The methodology employed can also be 

extended when further factors of mortality, other than age and time, are also included.

Moreover, using the constructed mathematical model, forecasting of future mortality rates can be 

considered. However, in order to make any hypothesis about future mortality values, we firstly 

need some strong remarks about the nature of the past experience and the degree to which this 

characterises the whole observed mortality experience. For these features, we will make the 

assumption that they will continue to apply for a sensible time span in the future.

Further, we should like to condense the information contained in the past experience into a set of 

critical parameters, which contain as much information as possible. This process will have the 

advantage of providing a better understanding of the evolution of the mortality through time and 

it will enable us to consider the forecasting of future mortality rates and to consider expanding the 

future forecasting period.

Forecasting of mortality rates depends strongly on the way that the mathematical modelling has 

been carried out. The following section describes the method advocated for the mathematical 

modelling of the mortality rates.
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7.2 Methodology

Mathematical modelling, in this context, means the construction of a mathematical formula to 

describe the mortality trends through age and time. Therefore, we need a real function

/  : R2 -* R such that /r = /  ( x, t, b)
x,t

where b is a vector of unknown parameters.

The methodology for the derivation of the function /  will be based mainly on the construction 

of a mathematical formula capable of graduating the data in question for each year separately.

Given mortality data for a sequence of years {/} and a sequence of ages {x}, we can define

»x,t =

to be the formula which graduates the data for each individual year t, where 

denotes a set of parameters for each year t.

Such structures are fitted using GLIM by declaring / as a factor. The resulting parameter 

estimates (/3i t ) are examined for possible trends in time /, for each i = 1, 2, k. By this 

means, when trends are established, a drastic reduction in the number of parameters is possible 

by modelling t, as well as x, as an (independent) variable; whereby establishing an appropriate 

form for the parameterised function f  It is also possible to reverse the roles of x and t in the 

above process, which we shall do on occasions.

Using the mathematical formula /  , we do not insist on ‘perfect’ tests of a graduation for each 

of the years concerned. The aim of this method is to derive a simple mathematical expression to 

describe the underlying pattern in mortality with age over time. The formula /  will be 

extrapolated in time to investigate possible forecast mortality values.
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7.3 General description of the mathematical modelling employed in

Chapters VIII - XII

The following Chapters (VIII - XI) consider the methodology advocated in this Chapter for the 

mathematical modelling of age specific mortality trends through time. Various approaches are 

attested employing different mathematical models for the UK life offices for whole life and 

endowment assurances, for the time period 1958 - 1990, and for pensioners in pensions schemes, 

for the time period 1983 - 1990.

For male assured lives, duration 5+, and ages 24 - 89, the log link (Chapter VIII), the power 

link (Chapter IX) and the additive model structure (Chapter X) are analysed.

The log link function is deemed to be an adequate choice for the link for the central mortality 

rates, justified by the smooth progression imparted to the mortality trends when the log 

transformation is applied. It gives the minimum deviance when applying a polynomial predictor 

structure in age and time effects (Section 8.2.2, model 8.4). In association with a quadratic 

spline predictor structure in age effects and a fractional polynomial predictor structure (Royston 

& Altman, 1994) in time effects, a flexible model is produced with a parsimonious number of 

parameters. The knots are located at the age points where the mortality curve changes curvature 

(distinctively for the multiplicative model, it seems that there exists a critical point in the 

neighbourhood of the age of 42, where the mortality ‘development’ changes curvature, according 

to the principle of local description in Section 2.1. This feature is imparted to the power model 

structures as well).

The power model structure gives the least number of parameters in association with the highest 

deviance when employing a polynomial predictor structure in age effects and a fractional 

polynomial predictor structure in time effects (Section 9.2.3, model 9.5). Also, employing the 

power model structure in association with a quadratic polynomial predictor structure, in age and 

time effects, we obtain a parsimonious number of parameters for each calendar year in question 

(Section 9.2.2, model 9.2).

The additive model produces sound results when it is associated with cubic spline functions in 

age effects and a fractional polynomial structure in time effects (Section 10.2.2, model 10.4).
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Further, a different perspective of the above approaches is exercised, by discussing mortality 

trends through time, for each age in question as regards the multiplicative model structure 

(Section 8.2.4), the power model structure (Section 9.2.4), and the additive model structure 

(Section 10.2.2).

Now, focusing on the range of ages [42, 89] we have derived some simple mathematical 

expressions in association with the multiplicative and power model structures.

For the multiplicative model, a simple model structure is presented (Section 8.3), using a 

fractional polynomial structure in both age and time effects (model 8.20).

For the power model, again a simple model structure is presented, using a fractional polynomial 

structure in time effects and a polynomial predictor structure in age effects (Section 9.3, model 

9.13).

In Chapter XI, the Complementary log - log model is applied for modelling pensioners, ages 

60 - 95, time period 1983 - 1990, using a polynomial structure in time effects and an inverse 

polynomial predictor structure in age effects (Section 11.2.2, model 11.2).

In Chapter XII, on the modelling of amounts, the approach developed for the graduation of 

‘amounts’ provides some insight into the patterns of the claims amounts and of the modelling 

assumptions, using a polynomial structure in both time and age effects (Section 12.3, model 

12.7). The methodology is strongly connected with the earlier work by Renshaw (1992) on 

duplicate policies where the effects on the graduation approach are modelled through over-

dispersion.
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CHAPTER VIII

Multiplicative models

8.1 Introduction

In this Chapter we focus on log link predictor relationships and define

%  = l0* <

where TJxt denotes the parameterised linear predictor and m the expected response. Offsets 

are declared where necessary.

As implied previously in various sections of Chapter V, the log link based parameterised 

mathematical formulae play a central role in modelling the force of mortality. The log link is the 

canonical or natural link when targeting the force of mortality, under the Poisson error 

distribution. The log link function is also applied in association with the gamma error distribution 

when targeting the resistivity to death. It is not, however, the canonical link when used in this 

context.
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8.2 UK male assured lives, duration 5+, period 1958 - 1990, ages 24-89

8.2.1 Description of the data

The data, as supplied by the Continuous Mortality Investigation (CMT) Bureau, consist of the 

number of policies ceasing through death, and the central exposed to risk of death based on 

policies, for UK male assured lives, by individual calendar year from 1958 to 1990 

inclusive and by individual ages.

The data are further subdivided, for each calendar year, by duration of either 0, 1, 2, 3, 4 and 

5+ years. Within this division the age range is defined by x  = 17+d, ..., 66+d years for 

duration d = 0, 1, 2, 3, 4 and x = 24, 23, ..., 89 years for duration 5+. The data for duration 

5+ are known to be suspect for ages in excess of 89 years.

We are mainly concerned here with the data for duration 5+ only, which comprise the bulk of 

the data. The data are presented in Appendix A, as published by the CM1 Bureau of the 

Institute and Faculty of Actuaries.

The analysis of durations 0, 1, 2, 3, 4 is studied in Chapter XIII, where comparisons between 

mortality experiences are investigated.

O
By way of illustration the logarithms of the crude central mortality rates, p  x[, plotted against

calendar years, at five yearly age intervals for duration 5+ years are reproduced in Figure 8.1. 

The various curves, which are in descending order of age, starting with age 85 and reducing to 

age 40, indicate a general improvement in mortality over the calendar period concerned.
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Fisure 8.1 : Logarithm of Crude Central Mortality rates from various ages against time

91



8.2.2 Modelling trends using polynomial predictor structures

We target the force of mortality in accordance with the distributional assumptions of Section 5.4. 

As an initial investigation polynomial predictor structures of degree k in age x were fitted 

separately for each year t. This heavily parametarised structure

k ,
log (/*,,/) = £  Pi,t ■ Li(x  ) (8-1)

involves the declaration of time t as a factor with 33 levels (1958 - 1990).

The optimum degree k for each calendar year is of interest. This is investigated by applying 

F  - tests as described in Section 3.3 (using the normal approximation for the logarithm of the 

resistivity to death as described in Section 5.6), for the nested structures

H0- P k , t =  0 vs H x: p k t *  0

k = 4,5,6,  7 and for each calendar year /.Table 8.1 lists the p - values of these F - tests.
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Table 8.1: p  - values for hypothesis H(l. k = 4, 5, 6, 7’ model (8.1)

Y ear

>II II V©II« II■¿¡e

1958 00.0 00.1 52.9 05.0
1959 00.0 53.9 26.9 78.8
1960 00.0 06.6 08.3 95.0
1961 00.0 28.2 40.2 41.2
1962 00.0 07.5 57.6 00.6
1963 00.0 07.8 39.2 80.0
1964 00.0 45.4 12.3 37.8
1965 00.0 39.0 39.4 33.7
1966 01.0 64.7 98.6 66.8
1967 00.0 00.0 97.3 87.7
1968 00.0 00.0 79.9 05.9
1969 00.0 03.4 10.5 16.2
1970 06.8 01.7 00.0 47.3
1971 00.0 00.0 22.3 34.3
1972 00.0 00.0 00.1 04.9
1973 00.0 00.0 56.1 00.5
1974 00.0 00.0 00.0 29.2
1975 00.0 00.0 26.8 22.4
1976 00.0 00.9 97.2 37.7
1977 00.0 00.0 20.9 30.5
1978 00.0 00.8 06.3 09.8
1979 00.0 00.0 62.4 00.7
1980 00.0 00.0 21.5 83.4
1981 00.0 00.0 00.4 12.4
1982 00.0 00.1 17.3 80.1
1983 00.0 08.3 38.0 38.3
1984 00.0 02.0 97.6 34.9
1985 00.0 26.6 19.8 17.8
1986 00.0 06.1 05.6 18.3
1987 00.0 52.5 73.1 70.5
1988. 00.0 03.7 26.4 22.2
1989 02.2 21.2 06.8 91.2
1990 05.4 15.2 09.4 97.9

Significant p  - values at the 5% level of significance are highlighted by bold. For k = 6 or 7 

the null hypothesis H0 : fd ¡.t = 0 gives consistently high p  values, which means the null

hypothesis is supported. For k = 5 or 4 the null hypothesis H0 : (4 k t = 0 gives low

significant p  values, which means that the null hypothesis is rejected. Considering all these 

hypothesis tests, we conclude that the model structure with a 5th degree polynomial is the most 

efficient parsimonious structure to carry out graduation for each calendar year.

Next, we fit an exponentiated polynomial graduation formula (in age effects) with a multiplicative 

age independent adjustment term for calendar year effects, given, on the log scale, by the 

following equation
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k r
log (Mx,t) = £  Pj 1 L-}(x ) +  I  a t -t

j= 0  i= l
(8.2)

where L . ( x )  denote Legendre polynomials of degree j ,  and x and t denote transformations

of x  and t respectively onto the interval [-1,1] defined in Section 5.7.

The optimum value of r is determined by monitoring the improvement in the model deviance as 

the value of r is increased (Recall that the optimum value of k -  5 was determined above). 

The resulting deviance profile is reproduced in Table 8.2. The optimum value selected is r = 2, 

since there is no reduction of note in the deviance beyond this point..

Table 8.2 : Deviance profile for various additive polynomial predictors of degrees r and s

k r = 0  r = l  r = 2  r= 3  r= 4
5  24759 5113 4374.5 4374 4373.8

Finally, the structure of the linear predictor is further refined through the introduction of mixed 

polynomial terms in age and calendar year effects by switching to multiplicative age dependent 

adjustment term for calendar year effects, given, on the log scale, by the following equation

Starting with the predetermined values of r = 2 and k = 5, one possible sequence for 

introducing mixed product terms of increasing degree leads to the following extension of the 

deviance profile reported in Table 8.3.
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Table 8.3 : Deviance profile for additional product terms

Noting the reductions in the deviance as further model terms are added, coupled with the 

examination of the significance of the individual parameters, the final model adopted is

5 , 2 2 3log (Mx, t) = I P j ' £:(*)+ 2  a . - t *  + S I y  - L A x ) - i l (8 .4)
j=0 J i = 7 i = 7/ = 7 J J

This later expression is quadratic in time, on the log scale, while the coefficients of the quadratic 

are themselves polynomials in age effects, x.

The quasi-likelihood parameter estimates and their standard errors are given in Table 8.4.
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Table 8.4 : Parameter estimâtes, standard error, and t - values for model (8.4)
p.e. s.e. t  -  values

a, -0.2641 0.006214 -42.5
a2 -0.05622 0.011548 -4.9
Po -4.7451 0.0049 -968.4
p, 3.1899 0.010258 311
P: 0.1457 0.010225 14.2
Ps -0.3232 0.010467 -30.9
P4 0.2139 0.007318 29.2
Ps -0.0882 0.006679 -13.2
y u 0.0004535 0.01298 0.04
y 2i -0.05589 0.02402 -2.3
yn 0.078137 0.011127 7.0
y22 0.121517 0.0206627 5.9
yn -0.042916 0.010558 4.1
y23 -0.097016

<p = 1.868
0.019602 4.9

With the exception of yn the t - statistic associated with each parameter estimate, calculated by 

dividing the parameter estimate by its standard error, has an absolute value in excess of 2, 

indicating statistical significance. The scale parameter also quoted in Table 8.4, is estimated by 

dividing the model deviance by the associated degrees of freedom. The magnitude of the scale 

parameter gives an indication of the degree of over - dispersion present.

By way of illustration the same predictor structure was refitted by targeting the resistivity to 

death in accordance with the distribution assumptions of Section 5.5.

The values of the resulting parameter estimates are reproduced in Table 8.5. It is of interest to 

note that the parameter estimates are identical in magnitute to those of Table 8.4 but opposite in

sign due to the replacement of log(// ) on the LHS of expression (8.4) with lo g (//~ /).

This dual property of graduation under the assumptions of Section 5.4 and Section 5.5, leading 

to basically identical graduations, is developed further in Renshaw et al (1996b).
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Table 8.5 : Parameter estimates, standard error, and t - values for model (8.4) based on
gamma responses
p .e . s .e . t  - v a lu e s

a , 0.2641 0.00622 42.5

a 2 0.05622 0.0116 4.8

00 4.7451 0.0049 968.4

0 t -3.1899 0.01025 -311

02 -0.14575 0.01023 -14.2

0 s 0.3232 0.01049 30.9

0 3 -0.2139 0.00739 -28.9

03 0.0882 0.00672 13.2

yn -0.0004326 0.013 -0.04

y  2i 0.05589 0.02417 2.3

yn -0.07815 0.01115 -7.0

y 22 -0.12155 0.02080 -5.8

y is 0.04293 0.010612 4.0

y  23 0.09705

(p =  1.868

0.01972 4.9

Next, a summary of some of the formal statistical tests of a graduation, applied to all 33 separate 

calendar years, is presented in Table 8.6. These involve an analysis of the standardised deviance 

residuals, for each calendar year, t, based on the tests described in Chapter IV. The few 

significant entries, implying failure of the test concerned, all at the 5% level of significance, are 

highlighted by bold.
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Table 8.6 : p  - values, formal graduation tests for each calendar year separately for model (8.4)

Y ear IS D S ig n R u n s C h i

1958 82 31 41 45
1959 94 68 23 48
1960 61 31 41 42
1961 92 40 84 46
1962 77 42 1 44
1963 16 98 69 57
1964 86 40 6 48
1965 60 93 4 54
1966 80 68 78 48
1967 0 0 72 39
1968 60 4 2 43
1969 2 93 15 61
1970 15 99 29 55
1971 31 10 1 43
1972 41 93 15 52
1973 80 83 8 49
1974 27 68 89 48
1975 60 4 18 41
1976 74 40 40 48
1977 32 2 59 46
1978 82 7 2 47
1979 74 7 31 44
1980 65 93 4 47
1981 43 16 44 46
1982 99 23 42 49
1983 31 83 87 51
1984 43 10 97 44
1985 78 40 69 51
1986 68 68 61 47
1987 26 23 97 40
1988 72 4 74 41
1989 53 4 8 50
1990 44 98 2 48

Figure 8.2 displays just a few of the standardised deviance residual plots against age examined, 

for each calendar year.
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Figure 8.2 : Standardised deviance residuals vs. age, various calendar years, model (8.4)
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To illustrate the impact of the age specific trend adjustments on mortality, we plot the predicted 

force of mortality against calendar year at ten yearly age intervals in Figure 8.3.
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Figure 8.3 : Crude and predicted force of mortality vs. calendar year, various ages, model (8.4)
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Here we have superimposed the crude mortality curves on the corresponding predicted mortality 

rates. This acts as a further visual check on the predictive qualities of the model. At each age, the 

graduated values are given by an exponentiated quadratic in calendar time with age specific 

polynomial coefficients (Renshaw et al, 1996a).

Finally, for this model, the predicted values of the force of mortality, /jxt, in the age range x = 

24 to 89 years, over the calendar period t= 1960 to 1990 at 5 yearly intervals, are presented 

for completeness in Table 8.7.

Table 8.7: Predicted force of mortality, quinquennial periods - ages, model (8.4)

1960 1965 1970 1975 1980 1985 1990

25 0.00093 0.00082 0.00074 0.00070 0.00068 0.00069 0.00072
30 0.00078 0.00071 0.00066 0.00061 0.00057 0.00054 0.00051
35 0.00098 0.00092 0.00086 0.00079 0.00072 0.00065 0.00058
40 0.00155 0.00148 0.00139 0.00127 0.00113 0.00099 0.00085
45 0.00274 0.00264 0.00248 0.00226 0.00200 0.00172 0.00144
50 0.00496 0.00480 0.00451 0.00411 0.00363 0.00312 0.00260
55 0.00887 0.00856 0.00803 0.00733 0.00651 0.00561 0.00471
60 0.01535 0.01474 0.01381 0.01264 0.01130 0.00986 0.00841
65 0.02573 0.02454 0.02297 0.02111 0.01905 0.01687 0.01467
70 0.04216 0.03998 0.03741 0.03454 0.03146 0.02828 0.02508
75 0.06817 0.06447 0.06038 0.05601 0.05145 0.04680 0.04216
80 0.10889 0.10320 0.09695 0.09031 0.08339 0.07634 0.06928
85 0.16903 0.16158 0.15272 0.14270 0.13184 0.12042 0.10875

From the above Table it is deduced that the predicted force of mortality for the age 25 is raised 

in the last years, even if the observed values, for that age, show a general decline over the years in 

question. This feature could be granted to the high level of ‘noise’ in observed values.
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8.2.3 Modelling trends using quadratic spline predictor structures in age 

effects and fractional polynomial predictor structures in time effects

For the data under consideration, it is suspected that the empirical central rate of mortality 

changes curvature with age, on the logarithmic scale, in the region of age 42 years, for each 

calendar year. It is observed that the force of mortality for ages less than approximately 42 

years has a convex shape, changing to a concave shape for ages greater than approximately 42 

years. This characteristic can be modelled by using polynomial predictors of degree greater than 

one in which the second derivative changes sign at the critical age of approximately 42 years. 

Further, it will be shown that quadratic predictors can be used to graduate the two age ranges in a 

very satisfactory way.

An alternative way to describe this feature mathematically in the case of a quadratic predictor 

is for the coefficient of the quadratic term to be positive in the age range less than the critical age, 

changing to negative in the age range greater than the critical age. Thus

logOx) =
a l + Pj ■ x  + y l ■ x 2 if x < k  > 0 )

a 2 +P2 -X + / 2  'X 2 ‘f  x > k  (y 2 <0)
(8.5)

for a specific t, where k denotes the critical age.

The use of such quadratic expressions, in association with the log transformed force of mortality, 

can be justified on the basis of the theoretical hypothesis that the rate at which the resistivity 

to death decreases with age, divided by the resistivity itself, is a linear function of age, that is

d_ J _  
d x Vp x

) = - 0 f f + y x ) . ( — )
Mx

This may be viewed as a generalisation of Gompertz' law, for which y = 0 (as discussed in 

Section 2.2). The above relationship can be viewed as a linear differential equation of the first 

degree with variable coefficients, namely

f ' ( x) + (P + 2 -y  - x)- / ( x )  = 0, f ( x ) = —
Mx
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and solved to give expressions of the type

log (px ) = a  + j3-x + y - x 2

In order to ensure continuity at the critical age k, expressions (8.5) are combined into a 

quadratic spline function with a single knot located at the critical age. Thus,

log (/q ) = a  + f i ■ x  + y  • x 2 + ô • (x -  k ) 2 (8.6)

where (■x - k ) 2+
0 i f  

( x - k ) 2 i f

x  < k 

x > k

Hence, expression (8.6) can be rewritten in the form of expression (8.5) as

log ( /^ )

2
a +  f i - x  + y - x  if  x < k

(a  + 5- k 2) + ( /3-2-k-<5)-x + (y + S ) - x 2 if  x > k

All predictor link structures in this subsection were fitted by targeting the resistivity to death in 

accordance with the distributional assumptions of Section 5.5.

To start with, structure (8.6) was fitted for each calendar year separately, so that

2 2
log(/y ) - a  +B ■x + y  x ~ + S  •(x - k  )

x, t  t t t t t +
(8.8)

The optimum knot positions, determined by minimising the deviance, for each calendar year in 

question are shown in Figure 8.4.

so -q
4S / 
4 ©  -3 

44 
42 
-1 O  —

Figure 8.4 : Optimum knot position against calendar year, model (8.8)
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From Figure 8.4, it is reasonable to assume a constant critical age k t = k  = 42 years. Further 

supportive evidence for the actual positioning of a single constant knot k t = k -  42 in equation 

(8.8), is to be found in the deviance profile for this structure, reproduced in Figure 8.5.

Figure 8.5 : Profile of deviance against knot position k, model (8.8) with k t = k

6 0 0 0  —  

5 5 0 0  - j  

5 0 0 0  -

3 2 4 2 5 2 6 2

It is easily concluded from this Figure that the minimum value of the deviance is obtained when 

the knot position approximates the age 42 years, where the deviance is 3703 on 2046 degrees 

of freedom. Experiments involving the introduction of a second knot were tried and rejected on 

the basis of deviance profiles.

The trend in the parameter estimates for the heavily parameterised model structure

l°g (Fx t) = a  t + P t ‘x + y t ' x + S t '(x ~ 42) 2+ (8-9)

are displayed in Figure 8.6, while the choice of model has also been further justified on the basis 

of the statistical tests of a graduation, described in Chapter IV, but not reproduced here.
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Figure 8.6 \ Trend in parameters estimates through time, model (8.9)

a t - trend
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In an attempt to simplify the heavily parameterised structure (8.9) and produce a model with 

smoother parametric trends, the values of the deviance for various nested structures, determined 

by setting certain of the parameters equal to a constant, are presented in Table 8.8.

Table 8.8 : Déviances for various simplifications of model (8.9)
istant deviance d.f

Ô 3774 2078
y 3777 2078
0 3777 2078
a 3766 2078

y , 6 3927 2110
0,ô 3897 2110
a ,  Ô 3862 2110
0, y 3865 2110
a ,  y 3967 2110
a ,  0 4227 2110

From Table 8.8 it is revealed that the model structure with the minimum deviance is attained 

when the parametric vector a  is kept constant (from among the models with one constant 

parameter), and when the parametric vectors a, 6 are kept constant (from among the models 

with two constant parameters). Noting that the difference in the unsealed deviance between model 

(8.9) and the nested model with a, 5 treated as constants is 159 on 64 degrees of freedom. 

The effective (approximate) p  - value is 6%, allowing for a scale parameter with value 2.04. 

Alternatively the value of the F  - statistic is 1.37 on (64,oo) degrees of freedom, with an 

approximate p  - value of 8%.

It is also desirable to investigate the model structure in which the parametric vectors a, 6 are 

kept constant (since it leaves only two time dependent parameters, a desirable property according 

to Anson, 1988). The trends in the two sets of parameter estimates, for the time dependent 

parameters in the model structure

\og(p  ) = a  + f t  • x  + y
x , t  1

x ~ + 5  ■ (x -  k ) 2 (8.10)

are displayed in Figure 8.7, and the adequacy of the model, on the basis of the statistical tests of 

a graduation, has been justified. Note that the trends in the estimated parameters are quite 

smooth.
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Figure 8.7 : Trend in parameter estimates through time, model (8.10)
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Finally, in order to produce a parsimonious model, the number of parameters is reduced further 

using fractional polynomials (Royston and Altman, 1994) of the type

a + b - t k

to represent the variation in both J31 & y  (the empirical coefficient of correlation, between

the parametric vectors fi & y, takes the value p  p>y= -0.995), where k is a fixed index. The

value k = 1.8 is based on the deviance profile of Figure 8.8, constructed by fitting the model 

structure

^ g ( p x t ) = a  + (j3] +j32 - t k) - x  + ( y I + y 2 - t k) - x 2 + S - ( x - 4 2 ) 2+ (8.11)

for different values of k (in steps of 0.1), where t=  calendar year - 1957.
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Figure 8.8 : Deviance profile for different values of A:, model (8.11)

The parameter estimates, standard errors, and t - values for the model structure

log(/7x t) = a  + (j3 l + j37- t L8) - x  + (y  , + y  7- t L8) - x 2 + S - ( x - 4 2 ) [  (8.12)1 ^  2 1 '  2

are as shown in Table 8.9.

Table 8.9 : Parameters estimates, standard errors, and t -  values, model (8.12)

p .e . s .e . t  -  v a lu es

a -4.003 0.1737 -23.04

6, -0.2328 0.00867 -26.85

6i -0.00004336 0.00000093 -46.62

yi 0.004263 0.000107 39.84

y-> 0.0000004075 0.0000000138 29.52

à -0.00477

(p = 1.934
0.0001126 -42.36

The deviance for the model structure is 4200.5 on 2172 degrees of freedom.

The p  - values for the statistical tests of a graduation are presented in Table 8.10, and just some 

of the many standardised deviance residual plots examined (on the constant information scale 

CIS = 2 • log(7 / jux[ ) ), for various calendar years, presented in Figure 8.9.
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Table 8.10 : p - values, formal statistical tests for each calendar year separately, model (8.12)

Y ear IS D S ig n  R u n s  C h i

1958 69 23 42 44
1959 74 23 11 41
1960 30 76 33 58
1961 73 59 50 50
1962 83 76 17 58
1963 1 0 46 31
1964 77 76 7 49
1965 57 4 7 40
1966 43 68 84 53
1967 0 0 33 67
1968 26 99 29 63
1969 16 31 16 27
1970 15 2 39 37
1971 28 93 1 62
1972 57 10 6 44
1973 88 40 16 50
1974 91 59 77 55
1975 44 98 14 65
1976 98 59 7 51
1977 4 99 71 53
1978 6 99 7 52
1979 62 98 9 58
1980 54 10 3 52
1981 39 95 8 53
1982 96 76 62 47
1983 63 10 75 43
1984 77 89 83 55
1985 63 68 78 41
1986 68 16 18 51
1987 88 50 89 64
1988 94 68 41 60
1989 68 89 6 48
1990 15 1 8 44
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8.2.4 Analysis of age specific mortality trends

It is desirable to take a different perspective of the above approach by discussing mortality trends 

through time, for each age in question. In particular it is possible to rearrange equation (8.12) in 

the following way

log (ju ) -  A (x ) + B (x ) •t L8 (8.13)
t,x

where

2 2 2 
A(x)  = a  + / ? ; -x + y ] -x + S - ( x - 4 2 )  + & B(x) = J3 2 -x + y  2 -x

and the values of the parameters are as quoted in Table 8.9. Thus, the log of the force of 

mortality is represented by a fractional polynomial in time effects with age dependent coefficients.

By way of illustration, the graphs in Figure 8.10 illustrate the force of mortality plotted against 

age, as predicted by the model structure (8.13), at five yearly time periods, starting with 1960 

through to 2005.

Figure 8.10 : Log - mortality against age, various periods, based on model structure (8.13)
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The highest mortality curve corresponds to the calendar year 1960, moving downwards through 

progress calendar years, to the year 2005. This represents a fairly uniform overall improvement 

in mortality across all ages.
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As a further check on the model structure (8.13) it was decided to fit the following model 

structure

l°ë(1 / Mt,x) = A x + B x ' tL8 <8-14)

treating age as a factor. Not suprisingly this heavily parameterised structure was found to fit the 

data well. As evidence of this p  - values for the dual statistical tests based on each age (rather 

than period) are presented in Table 8.11.
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Table 8.11 : p  - values, formal statistical tests for each age separately, model (8.14)
Age ISD Sign Runs Chi
24 16 97 70 41
25 99 57 81 65
26 50 43 19 74
27 99 30 72 59
28 100 43 30 48
29 18 30 72 75
30 95 57 6 43
31 99 30 20 52
32 96 70 58 37
33 100 57 43 46
34 84 19 98 59
35 96 57 2 43
36 58 70 44 55
37 94 30 82 50
38 99 43 97 58
39 83 30 31 51
40 94 57 2 43
41 96 70 58 39
42 50 43 57 44
43 97 57 29 47
44 28 19 92 51
45 99 57 30 45
46 85 57 3 37
47 97 70 3 50
48 100 57 0 45
49 68 30 45 50
50 64 43 89 49
51 12 70 11 52
52 74 57 70 51
53 78 43 30 48
54 78 81 13 45
55 80 30 45 49
56 99 43 30 47
57 34 89 68 44
58 95 57 2 47
59 96 30 59 49
60 78 19 22 46
61 99 43 11 50
62 93 70 59 44
63 99 43 0 47
64 93 43 3 48
65 85 70 11 44
66 43 89 53 41
67 89 81 62 47
68 96 30 72 52
69 77 70 95 49
70 100 57 19 50
71 72 57 94 46
72 77 30 44 44
73 84 57 70 50
74 87 19 6 51
75 95 30 31 50
76 87 19 96 52
77 47 19 22 53
78 97 57 70 48
79 44 57 70 52
80 37 89 67 47
81 91 70 72 45
82 97 70 19 49
83 93 70 44 48
84 82 70 1 49
85 84 70 20 47
86 84 70 72 44
87 94 57 89 49
88 36 19 75 50
89 55 89 68 40
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It is informative to plot the two sets of parameter estimates Ax & Bx for this model (8.14) 

against the respective curves A(x) & B(x) defined above for model (8.13). This is done in 

Figures 8.11 & 8.12 respectively. Both Figures are supportive of the choice of model (8.13). 

Note the different scale used for Figures 8.11 & 8.12.

Fisure 8.11 : Ax & A(x) values vs. x

We also note that Ax & A(x) are similar in shape to ‘crude’ and ‘graduated’ mortality curves 

respectively, on the log scale, at time t = 1 (1958).

Fisure 8.12 : Bx & B(x) values vs. x

The values Bx represent the pace of mortality improvement in time, on the log scale, for each 

age x. Lower values denote faster improvement. So Figure 5.12 indicates that mortality 

improvement in the middle ages is higher than that for the youngest and the oldest ages, which 

have about the same pace of mortality improvement, on the log scale.
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Additional diagnostic evidence for model (8.13) is provided by the plots of standardised deviance 

residuals against the constant information scale (CIS = 2 • log(l t ¡j.tx\ )  at ten yearly age 

intervals in Figure 8.13. The predicted force of mortality (for the time period 1990 to 2010), 

against calendar year at ten yearly age intervals is shown in Figure 8.14.
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Figure 8.13 : Standardised deviance residuals vs. CAS', various ages, model (8.13)
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Figure 8.14 : Crude and predicted force of mortality vs. calendar year, various ages, model (8.14)
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Here we have superimposed the estimated mortality curves on the corresponding crude mortality 

rates. This acts as a further visual check on the predictive qualities of the model. At each age, the

graduated values are given by an exponentiated fractional polynomial of the type a+ b -t  in 

calendar time, with age specific quadratic polynomial coefficients.

Finally for this model, the predicted values of the force of mortality, in the age range x = 24 to 

89 years, over the calendar period t = I960 to 1990 at 10 yearly intervals, and the forecast 

values of the force of mortality over the calendar period t = 2000 to 2010 at 10 yearly 

intervals, are presented for completeness in the following Table 8.12.

Table 8.12 : Predicted and forecasting force of mortality. 10 years period, quinquennial ages,
model (8.13)

1960 1970 1980 1990 2000 2010
25 0.00077 0.00072 0.00062 0.00050 0.00038 0.00027
30 0.00078 0.00071 0.00060 0.00047 0.00035 0.00024
35 0.00097 0.00088 0.00073 0.00056 0.00040 0.00027
40 0.00150 0.00136 0.00111 0.00084 0.00059 0.00038
45 0.00275 0.00247 0.00201 0.00151 0.00104 0.00066
50 0.00500 0.00448 0.00364 0.00270 0.00185 0.00117
55 0.00886 0.00795 0.00645 0.00479 0.00327 0.00207
60 0.01533 0.01378 0.01122 0.00837 0.00575 0.00366
65 0.02586 0.02333 0.01912 0.01440 0.01002 0.00648
70 0.04253 0.03858 0.03196 0.02443 0.01734 0.01146
75 0.06822 0.06233 0.05237 0.04086 0.02976 0.02031
80 0.10668 0.09839 0.08417 0.06737 0.05070 0.03599
85 0.16269 0.15174 0.13265 0.10951 0.08572 0.06381

It is of interest to investigate some properties, over time, of the model structure (8.13). We first 

note that, under this model structure, the force of mortality does not increase with time, since 

B(x) is always negative (Figure 8.12).

Further, it can be seen Figure 8.14 that the predicted mortality curves change their curvature 

during the time period involved. This feature indicates that the rate of the mortality decline 

through time reaches a maximum, in that time period, and afterwards diminishes. In mathematical 

terms, this turning point can be viewed as the time point where the second derivative, with respect 

to time, equals zero. That is, when

d 2
2 Bxt 0
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which leads, after some algebrical manipulations of formula (8.13), to the point

t = (-0.444 ■
1

B(x)

T he‘points of inflection’ tx are plotted against x  in Figure 8.15.

Figure 8.15 : Time - points where the second derivative equals zero, with respect to time, for
model structure (8.13)

It is possible to conclude from Figure 8.15 that the rate of the mortality decrease reaches its 

maximum during the 1980' s decade for ages in the neighbourhood of 53.
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8.3 UK male assured lives, duration 5+, period 1958 - 1990, ages 42 - 89

As noted in the previous section, the force of mortality viewed as a function of age, changes 

curvature in the neighbourhood of age 42 years. This enables one to investigate some simpler 

trend structures in the restricted age range 42 to 89 years.

In this section we begin by investigating model structure of the type

_

<S - I 5 >

This structure was arrived at by first trying models of the type

p  = A • B X

for each period t and different predetermined values of k.

By analogy with the Gompertz type differential equation defined by the relationship (2.1), we 

obtain the following linear differential equation (of degree one) with variable coefficients

f ' ( x ) - a - x k ~ 1 - f ( x )  = 0 (8.16)

where f(x) denotes the resistivity to death at age x. This generalisation includes Gompertz’s 

law as an obvious special case when k = 1. The only difference with Gompertz's law lies in the 

fact that we are to use Vx instead of x. This reflects the fact that the force of mortality, on the 

log scale, is no longer linear in age but is linear in the square root of the age.

There is evidence in the literature to suggest that mortality rates increase less rapidly from age to 

age at the oldest ages compared to the younger adult ages (see Perks (1932), Redington (1969) 

for example). This suggests that k < 1 would be an expected choice given that we are here 

focusing in the age range 42 to 89.

To implement equation (8.15) we note that it is equivalent to the equation
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to g C u ^ ) = « , + / ; ,  V i 0.1V

where we choose to target the resistivity to death in accordance with the distributional 

assumptions of Section 5.5 for consistency. This gives identical results to the targeting of the 

force of mortality based on over - dispersed Poisson responses, since all data cells contain non-

zero numbers of deaths.

To justify the choice of k = 0.5 the deviance profile for various values of k (in steps of 0.1) 

under the model structure

Px l = A, B f  (8.18)

in which t is treated as a factor, is reproduced in Figure 8.16.

Figure 8.16 : Deviance profile for various values of k for the model structure (8.18)

The p  - values for the statistical tests based on model (8.17) were then obtained using 

standardised deviance residuals, and the results indicate high acceptance for the model used, 

except for a few (randomly) scattered years, where the runs test fails.

The trends in the two sets of parameter estimates under the model structure (8.17) are presented 

in Figures 8.17 & 8.18.
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at Figure 8.17 : a t against t, model (8.17)

(3t Figure 8.18: ¡3t against t, model (8.17)

For the reasons described in Section 8.2.3 it was decided to replace both sets of parameters a t 

& (3, by fractional polynomial of the type

k
a  x+ a 2 -t

Thus, the model structure

Jç ----- -----

log (ju ) = a + b-t  +C-y/x +d-yjx  - t ‘X, t (8.19)

was considered next. The deviance profile for various values of k (in steps of 0.1) is reproduced 

in Figure 8.15 which implies an optimum value of k  = 1.8.
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Figure 8.19 : Deviance profile for various values of k, model (8.19)

leading to the adoption of the model structure

a + b - t 1'8 + c- yfx + d  ■ yfx ■ t
1.8

(8.20)

It is of interest to compare this structure with that of model (8.13), which, for x > 42, can be 

written as

log (px{) = A(x) + B(x) -118

where both A( x ) and B(x)  are quadratic in x. Here, model (8.20) can be expressed in exactly 

the same general form, but where both A(x)  and B(x)  are linear in Vx .

The associated parameter estimates, standard errors, and t - values are as shown in Table 8.13.

Table 8.13: Parameters estimates, standard errors, and t - values, model (8.20)

p .e . s .e . t  -  v a lu e s

a -16.76 0.0311 -538.9
b -0.002464 0.000125 -19.7
c 1.624 0.003931 413.1
d 0.000177

<p = 2.034
0.0000157 11.2

The deviance for the model structure (8.20) is 3214.1 on 1580 degrees of freedom.

The p  - values for the statistical test of a graduation using standardised deviance residuals are as 

shown on Table 8.14.
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Table 8.14 : p  - values, formal statistical tests for each calendar year separately, model (8.20)

Year IS D S ign R un C h i

1958 92 19 14 36
1959 88 50 7 40
1960 55 95 8 51
1961 96 50 50 45
1962 68 80 1 41
1963 29 7 62 28
1964 24 80 14 44
1965 94 61 19 38
1966 77 50 61 40
1967 0 100 92 57
1968 42 95 21 42
1969 13 28 8 25
1970 14 2 0 27
1971 13 95 8 55
1972 37 4 32 33
1973 92 19 0 38
1974 77 19 75 38
1975 67 87 34 47
1976 68 80 2 42
1977 46 95 68 42
1978 19 98 17 41
1979 59 92 6 46
1980 43 4 1 41
1981 60 71 29 43
1982 54 28 40 42
1983 33 7 93 39
1984 67 87 91 43
1985 68 80 14 35
1986 86 61 61 44
1987 74 50 99 45
1988 96 71 20 45
1989 22 99 4 48
1990 28 4 21 40

Considering the simplicity of the model used, the above table gives very satisfactory results.

The standardised deviance residuals plotted against the constant information scale (CIS = 

2 ■ log(7 / fj,xt ) ) for some of the calendar years are presented in Figure 8.20.
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Figure 8.20: Standardised deviance residuals vs. CIS, various calendar years, model (8.20)

3 
2 
1 
0 

-1 
-2

12.49  10.11  7.96  5.97  4.12

calendar year 1960

calendar year 1970

3  
2 
1 
0 

-1 
-2 
-3

13.21 10.77  8 .55  6 .50  4.59

calendar year 1980

3 
2 
1 
0 

-1 
-2 
-3

13.89  11.38  9.10  7.00  5.04

calendar year 1990

*♦
♦ --------

 ̂ a
* ♦

* ♦

Finally for this model, the predicted values of the force of mortality, fix t , in the age range x  =

42 to 89 years, over the calendar period t = 1960 to 1990 at 10 yearly intervals, and the 

forecast values of the force of mortality for the years 2000 and 2010 are presented for 

completeness in the Table 8.15.
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Table 8.15 : Predicted and forecasting force of mortality. 10 yearly intervals, quinquennial ages.
model (8.20)

1960 1970 1980 1990 2000 2010
45 0.002814 0.002496 0.00198 0.001423 0.000934 0.000562
50 0.005075 0.004529 0.003635 0.002656 0.00178 0.001098
55 0.008893 0.007982 0.006477 0.004809 0.003288 0.002079
60 0.015200 0.013716 0.011249 0.008479 0.005910 0.003824
65 0.025415 0.023055 0.019102 0.014608 0.010371 0.006862
70 0.041679 0.038001 0.031794 0.024656 0.017819 0.012045
75 0.067172 0.061545 0.051979 0.040855 0.030037 0.020730
80 0.106578 0.098111 0.083621 0.066584 0.049773 0.035045
85 0.166713 0.154173 0.132570 0.106899 0.081205 0.058296

Furthermore, the simplicity of the model jux ( = A  f -B used to graduate the available

data for each calendar year separately, means that we are able to interpret the trend in mortality 

through an examination of the values of a, and fit . The parameter at indicates the level of 

mortality for year t, and the parameter f)t indicates the growth, or the rate of increase of 

mortality with age, for the year t. Figure 8.18 shows that the growth of mortality decreases 

between 1958 and 1970, and subsequently is projected to increase in a quadratic manner. We 

conclude from Figures 8.17 & 8.18 that for the period 1958 - 1970, the downward mortality 

trend favours the oldest ages. But for the years 1970 - 1990, the nearly quadratic decrease in the 

level parameter and the nearly quadratic increase in the growth parameter shift the graduated 

curves downwards and bend the curves in favour of the middle ages.
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CHAPTER IX

Power link models

9.1 Introduction

In this Chapter we focus on power link predictor relationships of the type

'xt = m p
Xt

for some predetermined power p *  0 , where rj denotes the parameterised linear predictor, 

and m the expected response.

It includes the identity link when p  = 1, and the log link when p  —> 0.

The optimum value of p  for a specific linear predictor structure is determined by repeatedly 

fitting the structure over a range of values of p  and monitoring the resulting deviance profile.

Given a close approximation p 0 to the optimum value of p, determined by the above process, 

it is possible to determine a closer approximation to the optimum value of p  using the method 

proposed by Pregibon (1980) (McCullagh and Nelder, 1989, pages 375 - 376).

The optimisation of the p  - value or equivalently the minimisation of the deviance for different 

p  - values is achieved through the approximation of the expansion of the link function in a Taylor 

series about a fixed value p 0. This approximation is achieved by keeping only the linear term. 

Thus, for the power family we have

g(nr,p) = m p = g(m;p0) + ( p - p 0)-g'p (m;p0)

so that

g(m-p) = m Po + ( p - p 0) - m Po - log(m)
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Thus we can approximate the correct link function 77 = m p by

Vo =mP° = ™p -  (p -  p 0)- m Po • logO ) = 1 $  • Xi -  ( p -  p 0) ■ mPo • log(w)

Given a first estimate p 0 of p  we can fit the model by including an extra covariate 

- m Po ■ logO?) in the linear predictor, whose parameter estimate measures p  - p 0, the first 

order adjustment to p 0. To obtain the optimum value for p  we have to repeat the above 

process forming a new adjusted value for p  at each stage. Convergence is not guaranteed 

however and requires that the starting value p 0, is sufficiently close to p  for the process to 

converge.

Using the power link function, we choose to target the resistivity to death for consistency 

throughout this Chapter, unless otherwise stated, in accordance with the distributional 

assumptions of Section 5.5.
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9.2 UK male assured lives, duration 5+, period 1958 - 1990, ages 24 - 89

9.2.1 Description of the data

The methods of Section 9.1 are applied to the UK male assured lives data set, for duration 5+, 

period 1958 to 1990 and ages 24 to 89 years, both inclusive, as described in Section 8.2.1. 

The data are presented in Appendix A, as published by the CMI Bureau of the Institute and 

Faculty of Actuaries.

Since these data have at least one reported death in each cell, as with log-link formulae, the 

targeting of the resistivity of death is identical to the targeting of the force of nortality, (subject to 

a change in sign in the estimated power index under the two approaches), in the case of power- 

link formulae (Renshaw et al, 1996b).
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9.2.2 Modelling trends using polynomial predictor structures

The number of terms needed in the polynomial predictor is determined by the shape of the crude 

mortality curve. For the data in question, the crude mortality rates are not in monotonic order 

over the whole of the age range (24 to 89 years), so that a polynomial of degree higher than one 

is needed when formulating the linear predictor. A quadratic predictor in age effects has been 

found to be sufficient, for each calendar year in question, so that we start the analysis with the 

following model structure.

Mxt Pt = a  ( +j3 t -x + y  t - x 2 (9.1)

The fitting of this structure is equivalent of using a power link function and quadratic linear 

predictor in age effects to graduate the mortality experience for each calendar year separately.

The sum of déviances over all years, based on the fitting model structure (9.1), is 3884.8 on

2046 degrees of freedom.

The results of the tests of a graduation based on standardised deviance residuals, for each 

calendar year, are reported in Table 9.1.
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Table 9.1: p  - values, formal statistical tests for each calendar year separately for model (9.1)

Y ear IS D S ig n R u n s C h i

1958 65 89 47 34
1959 94 69 11 40
1960 97 69 16 9
1961 61 50 69 50
1962 96 69 51 18
1963 15 93 22 52
1964 25 40 16 82
1965 99 40 1 64
1966 22 69 96 22
1967 88 50 59 87
1968 69 77 33 50
1969 62 96 1 47
1970 22 31 4 33
1971 24 11 9 4
1972 76 50 0 94
1973 96 60 50 21
1974 8 16 35 50
1975 84 69 4 31
1976 86 69 16 53
1977 30 84 64 77
1978 63 89 0 17
1979 92 50 11 38
1980 95 50 7 34
1981 69 77 17 24
1982 95 50 30 19
1983 85 60 84 13
1984 90 77 79 28
1985 89 69 31 47
1986 63 60 84 42
1987 59 23 98 67
1988 89 60 23 55
1989 83 69 23 40
1990 74 50 50 91

The resulting p  - values indicate the acceptance of the model used to carry out graduation for the 

data in question. Moreover, all tests do not show any trend through time, giving no preference, for 

the choice of the formula used, to any specific time period.

The optimum values of the power link parameter p t have been obtained for each calendar year 

as described in Section 9.1. These values are displayed in Figure 9.1.
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Figure 9.1 : Estimated p t against /.model (9.1)
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As implied, by Figure 9.1, the estimated values of p t are banded about the value -0.36, with 

no clear trend. As a consequence of this, and also because of the potential difficulty of modelling 

the power parameter as a function of t, it was decided to model p t as a constant p.

The deviance profile, produced by fitting the model structure

»Z t = a t + p t -x + y  t - x 2 (9.2)

for various values of p, is reproduced in Figure 9.2. This has an optimum value at p  = -0.36. 

Figure 9.2 : Deviance profile against p , model (9.2)
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Again, the p  - values for the statistical tests of a graduation based on each calendar year, for 

model (9.2) with p = -0.36, are highly supportive except for a few years where the runs test 

fails. This seems to be the result of the constant power parameter having somewhat less 

flexibility.
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Now the analysis can proceed in two different ways. One possibility is to model all the parametric 

trends which are included in the model structure (9.2) through time, the other possibility is to set 

certain of the parameters equal to constants over time. The second approach will be discussed in 

Section 9.2.3. Employing the first method we obtain the following results.

The trends in the three sets of estimated parameters for the model structure (9.2) with p  = -0.36 

are displayed in Figure 9.3.

Figure 9.3 : Parameters estimates against time, model (9.2)

0 . 2 2  t=i

0.16

0.14 -=

1 957

-0.005

-0 .006

-0 .007

— 0 . 0  1 0  -4 -
1957

1 977

at - values

fit - values

0.00014 —|

0.000 1 3

0.00012 —

0.000 1 1
1957 1967 1977

yt - values

133



As a consequence, the replacement of the time dependent sets of parameters in equation (9.2) by 

quadratic polynomials in time effects was found to be very effective in reducing the excessive 

amount of parameterisation.

The parameter estimates, standard errors, and t - values obtained on fitting the model structure

0.36 2 2 2 2
p  x t = (a j+ a  2 -t + a -t )+  (b { +b 2 -t +b 3 -t ) • x + (c t +c 2 -t + c 3 -t ) • x (9.3)

where t = calendar year - 1957 (where calendar year = 1958, 1959, ...) is given in Table 9.2.

Table 9.2 : Parameter estimates, standard error, and t - values for model (9.3)

p .e . s.e . t  -  va lu es

a, 0.174 0.00531 32.76

a2 -0.003291 0.000688 -4.78

a3 0.000154 0.00001958 7.86

b, -0.007233 0.000203 -35.63

b2 0.0001322 0.00002665 4.96

b3 -0.000004316 0.000000759 -5.68

c, 0.0001343 0.000001907 70.42

c2 -0.000001387 0.000000252 -5.5

c3 0.00000003425

ç  = 2.004
0.0000000072 4.75

The deviance obtained is 4346 on 2169 degrees of freedom.

By way of comparison Table 9.3 contains the parameter estimates, their standard errors, and t- 

values, when fitting the same structure through targeting the force of mortality to death in 

accordance with the distribution assumptions of Section 5.2. Again note the parameter estimates 

are identical under the two sets of modelling assumptions, but that the power p  takes opposite 

signs, leading to identical graduations, see Renshaw et al (1996b). Note also that the 

corresponding standard errors differ by a factor of J p  .
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Table 9.3: Parameter estimates, standard error, and ¿-values for model (9.3) based on
Poisson error distribution

p .e . s.e . t  -  va lu es

a, 0.174 0.003801 45.8

a2 -0.00329 0.0004919 -6.7

a3 0.000154 0.000014 11.0

b, -0.007234 0.0001454 -49.8

b2 0.0001321 0.00001905 6.9

b3 -0.000004315 0.0000005426 -8.0

c, 0.0001343 0.000001361 98.7

C2 -0.000001387 0.0000001806 -7.7

Cs 0.00000003425

(f> = 1

0.00000000515 6.7

The p  - values for the statistical tests of a graduation are presented next in Table 9.4, and just 

some of the many standardised deviance residual plots on the constant information scale (CIS = 

2 • log(7 / p xt ) ), for various calendar years, presented in Figure 9.4.
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Table 9.4 : p - values, formai graduation tests for each calendar year separately, model (9.3)

Year ISD Sign R un s C hi

1958 74 83 26 58
1959 99 40 4 50
1960 49 76 33 65
1961 97 68 31 52
1962 55 89 3 61
1963 12 1 5 31
1964 54 76 17 47
1965 3 16 5 37
1966 93 76 85 51
1967 0 99 35 65
1968 53 89 20 60
1969 3 16 35 25
1970 3 0 81 34
1971 44 89 1 56
1972 33 2 1 35
1973 77 31 1 44
1974 5 7 85 52
1975 74 83 5 64
1976 94 40 1 48
1977 32 95 65 54
1978 75 93 1 50
1979 63 93 15 56
1980 79 10 9 50
1981 89 76 11 53
1982 89 50 10 51
1983 94 23 85 43
1984 12 97 38 58
1985 60 50 30 46
1986 71 40 50 53
1987 66 77 98 69
1988 53 93 15 68
1989 46 83 12 53
1990 29 1 8 54

Although generally satisfactory it is noticeable that these graduations fail a number of the 

statistical tests for the period 1967 - 1973.
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Figures 9.4 : Standardised deviance residuals vs. CIS, various calendar years, model (9.3)
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We also reproduce the plots of the standardised deviance residuals against the constant 

information scale, at ten yearly age intervals, in the Figures 9.5. The predicted force of mortality 

(for the time period 1958 to 2010) is plotted against calendar year, at ten yearly age intervals, 

in Figure 9.6.
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Figures 9.5 : Standardised deviance residuals vs. CIS, various ages, model (9.3) 
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Here we have superimposed the estimated mortality curves on the corresponding crude mortality 

rates. This acts as a further visual check on the predictive qualities of the model.

Finally for this model, the predicted values of the force of mortality, jux t, in the age range x =

24 to 89 years, for the calendar period t = I960 to 1990 at 10 yearly intervals, and forecast 

values for the years 2000 and 2010 are presented for completeness in Table 9.5.

Table 9.5 : Predicted force of mortality, 10 yearly intervals, quinquennial ages, model (9.3)

1960 1970 1980 1990 2000 2010
25 0.000743 0.000601 0.000560 0.000609 0.000763 0.001066
30 0.000785 0.000659 0.000578 0.000533 0.000521 0.000538
35 0.001036 0.000898 0.000752 0.000604 0.000461 0.000330
40 0.001613 0.001429 0.001165 0.000857 0.000549 0.000285
45 0.002759 0.002473 0.001998 0.001418 0.000837 0.000365
50 0.004905 0.004417 0.003575 0.002532 0.001486 0.000636
55 0.008744 0.007875 0.006421 0.004630 0.002814 0.001297
60 0.015324 0.013770 0.011341 0.008394 0.005377 0.002759
65 0.026155 0.023425 0.019496 0.014849 0.010065 0.005759
70 0.043331 0.038661 0.032508 0.025463 0.018220 0.011508
75 0.069656 0.061911 0.052556 0.042257 0.031764 0.021856
80 0.108792 0.096336 0.082493 0.067928 0.053351 0.039484
85 0.165403 0.145952 0.125966 0.105976 0.086517 0.068115

From the Table 9.5, we can conclude that the force of mortality for the first ages (25 & 30) 

increases for the last years in question. Yet, comparing the jj.25.2010 = 0.001066 value from the

above Table, which is based on the model structure (9.3), with the M25 2010~ 0.00027 value

from Table 8.12, which is based on the model structure (8.13), we can observe a large 

discrepancy between these two values. This discrepancy seems to be the result of the constant 

power parameter attached to the model structure (9.3) having somewhat less flexibility in 

association with the parsimonious number of parameters.
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9.2.3 Modelling trends using fractional polynomial predictor structures in 

time effects and polynomial predictor structures in age effects

On the basis of the model structure (9.2) with p  = -0.36, another effective way to reduce the 

excessive amount of parameterisation and produce a simple mathematical expression was found 

by suppressing the parameter yt and setting yt = y for all t, so that

0.36 2
p  = a  + j 3 - x  + y- x

x, t l ' t (9.4)

The trends in the other two sets of parameter estimates are displayed in Figure 9.7.

Figure 9.7 : Parameters estimates against time, model (9.4)
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Finally the number of parameters was further reduced by using fractional polynomials of the type

a + b ■ tk

to represent the variation in both a t & (the coefficient of correlation for the two

parametric vectors has the value -97.7%, so that the vectors at & are highly correlated 

and hence a similar formula was used to describe both parametric trends), where k is a suitable 

fixed index. The optimum value k = 1.6 was determined by looking at the appropriate deviance 

profile constructed by fitting the model structure for various values of k in the neighbourhood of 

the 1.6.

The parameter estimates, their standard errors and / - statistics for the model structure

0.36 1.6 1.6 2 
ju x ( = {a ,+ a  2 -t ) + ( b j +b 2 -t ) - x + c ] -x (9.5)

are given in Table 9.6.

Table 9.6 : Parameter estimates, standard error, and t - values, model (9.5)

p.e. s.e. t - values

at 0.146 0.001652 88.3
« 2 0.0001028 0.000006131 16.7
b, -0.006113 0.00006068 -100.7
b2 -0.000004452 0.0000001176 -37.8
Cl 0.0001235 

ç  = 2.034
0.00000057 216.6

The deviance for the model structure is 4421 on 2173 degrees of freedom

The p  - values for the statistical tests of a graduation are presented in Table 9.7, and some of 

the many standardised deviance residual plots on the constant information scale (CIS = 

2 ■ log(7 / juxt ) ), for various calendar years, are presented in Figure 9.8.
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Table 9.7 : p  - values, formai graduation tests for each calendar year separately, model (9.5)

Year IS D S ign R uns C hi

1958 37 10 1 44
1959 65 7 15 41
1960 26 83 18 57
1961 91 77 33 46
1962 91 83 8 55
1963 3 0 35 28
1964 64 89 9 46
1965 4 7 2 35
1966 97 77 85 51
1967 0 100 33 65
1968 46 93 22 61
1969 5 23 17 26
1970 14 0 57 35
1971 43 89 1 58
1972 25 7 0 38
1973 78 23 0 46
1974 8 16 44 54
1975 79 83 5 64
1976 99 31 1 49
1977 29 89 28 53
1978 46 98 4 50
1979 23 95 7 56
1980 65 7 10 51
1981 82 89 6 53
1982 92 68 16 53
1983 86 10 95 44
1984 46 93 50 59
1985 72 59 31 47
1986 71 40 50 53
1987 66 77 99 69
1988 52 93 15 67
1989 28 93 6 52
1990 15 0 25 52
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Figures 9.8 : Standardised deviance residuals vs. CIS, various calendar years, model (9.5)
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9.2.4 Analysis of age specific mortality trends

In a similar manner to Section 8.2.4, we take a different perspective of the model by rearranging 

the linear predictor in expression (9.5) as follows

0.36 , 1.6
M Xtt -  A (x) + B(x) - t  (9.6)

where

2
A(x)  = (a l +b ] -x + c ; -x ) & B(x)=(a2 + b 2 -x)

and the values of the parameters are as quoted in Table 9.5. Thus the power of the force of 

mortality (index 0.36) is represented by a fractional polynomial in time effects with age 

dependent coefficients.

As a further check on the model structure (9.6) it was decided to fit the following model 

structure

0.36 , _ 1.6
V x i = A + B 't <9J>x >‘ x x

treating age as a factor. Not suprisingly this heavily parameterised structure was found to fit the 

data well. As evidence of this p  - values for the dual statistical tests based on each age (rather 

than period) are presented in Table 9.8.
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Table 9.8 : p  - values, formai graduation tests for each calendar year separately, model (9.7)
A ge ISD Sign Runs Chi
24 16 97 70 42
25 100 57 81 65
26 63 57 19 74
27 99 30 72 59
28 100 43 30 48
29 29 30 72 75
30 81 57 43 43
31 99 30 20 52
32 96 70 59 37
33 98 57 43 46
34 84 19 98 59
35 92 70 11 43
36 58 70 45 55
37 94 30 59 50
38 96 43 97 58
39 83 30 31 51
40 94 57 3 43
41 96 70 59 39
42 50 43 57 44
43 97 57 30 47
44 28 19 92 51
45 98 57 30 45
46 85 43 3 38
47 98 57 3 49
48 96 70 1 45
49 53 19 48 50
50 64 43 70 49
51 12 70 11 52
52 78 57 70 51
53 78 43 30 48
54 78 81 13 45
55 96 43 19 49
56 99 43 30 47
57 34 89 68 45
58 96 43 11 47
59 94 30 59 49
60 78 19 22 46
61 94 43 11 49
62 86 70 59 44
63 96 57 1 47
64 90 57 3 48
65 85 70 11 44
66 55 89 54 41
67 96 70 59 47
68 98 30 90 52
69 78 70 95 49
70 99 43 19 49
71 84 57 95 46
72 54 30 44 44
73 97 57 70 49
74 72 19 7 51
75 99 43 10 49
76 72 19 96 52
77 22 19 22 52
78 97 57 70 48
79 74 57 70 52
80 79 81 62 46
81 98 57 89 45
82 97 70 11 48
83 93 70 45 48
84 82 70 1 49
85 82 70 20 47
86 79 43 43 44
87 78 43 97 49
88 36 19 75 50
89 26 89 67 40
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It is informative to plot the two sets of parameter estimates Ax & B x for model (9.7)

against the respective curves A (x ) & B(x)  defined above for model (9.6). This is done in 

Figures 9.9 & 9.10 respectively. Both Figures are supportive of the choice of model (9.6). 

Note the different scale used for Figures 9.9 & 9.10.

A A

Figure 9.9 : Ax & v4(x) values vs. x

A A

We also note that Ax & A(x)  are similar in shape to ‘crude’ and ‘graduated’ mortality curves 

respectively, on the power transformation scale (index 0.36), at time t = 1 (year 1958).

Figure 9.10 : Bx & B(x)  values vs. x

The Bx values represent the pace of mortality improvement in time, on the power (0.36) scale, 

for each age x. Lower values denote faster improvement. So, Figure 9.10 indicates that 

mortality improvement at the oldest ages is higher than for the youngest ages, on the power (0.36) 

scale. The different degree of closeness revealed on the two sets of graphs, is due to the different 

scale presented, while the p-values for the formal statistical tests reproduced in Table 9.9, are 

generally supportive of the model.
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Table 9.9: p - values, formai graduation tests for each age separetelv. model (9.6)
A ge ISD Sign Runs Chi
24 71 19 34 18
25 4 1 17 18
26 40 3 25 38
27 61 6 31 33
28 74 19 3 38
29 29 6 96 72
30 99 56 19 34
31 17 30 20 58
32 57 94 5 57
33 60 88 53 58
34 17 88 53 71
35 1 100 2 51
36 76 88 53 63
37 60 88 67 62
38 95 43 81 54
39 60 69 3 64
40 3 99 29 64
41 95 43 81 36
42 10 99 31 52
43 49 88 38 51
44 64 43 81 55
45 93 43 57 43
46 36 6 1 38
47 30 19 1 42
48 89 69 0 46
49 23 6 31 43
50 21 6 45 40
51 16 6 74 45
52 89 19 34 47
53 41 5 19 43
54 46 56 30 40
55 69 6 2 45
56 57 19 62 43
57 86 56 57 43
58 57 80 62 50
59 66 69 31 52
60 93 69 44 48
61 64 19 12 48
62 80 19 85 43
63 93 43 10 45
64 62 19 7 46
65 62 88 38 49
66 1 100 29 56
67 0 100 80 63
68 4 99 92 64
69 4 99 92 60
70 9 88 53 58
71 18 98 67 58
72 3 98 20 54
73 33 94 31 59
74 58 94 45 59
75 76 43 10 51
76 88 69 59 55
77 71 19 22 51
78 95 43 70 48
79 68 69 90 50
80 6 3 25 37
81 82 11 67 39
82 87 80 12 51
83 36 19 22 37
84 50 3 25 40
85 46 11 53 40
86 20 1 10 33
87 95 30 72 39
88 21 11 38 35
89 67 30 82 32
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Additional diagnostic evidence for model (9.6) is provided by the plots of standardised deviance 

residuals against the constant information scale (CIS = 2 • log(/ / juLx ) ), at ten yearly age 

intervals, in Figure 9.11. The predicted force of mortality (for the time period 1958 to 2010), 

against calendar year at ten yearly age intervals, is shown in Figure 9.12.

Figures 9.11 : Standardised deviance residuals vs. CIS, various ages, model (9.6)
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Figures 9.12 : Crude and predicted force of mortality vs. calendar year, various ages, model (9.6)

age 65 years
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Here we have superimposed the estimated mortality curves on the corresponding crude mortality 

rates. This acts as a further visual check on the predictive qualities of the model.

Finally for this model, the predicted values of the force of mortality, jux t, in the age range x = 

24 to 89 years, over the calendar period t = I960 to 1990 at 10 yearly intervals, and the 

forecast values for the years 2000 and 2010 are presented for completeness in Table 9.10.

Table 9.10 : Predicted force of mortality, 10 yearly intervals, quinquennial ages, model (9.5)

1960 1970 1980 1990 2000 2010
25 0.000628 0.000616 0.000598 0.000574 0.000547 0.000516
30 0.000712 0.000668 0.000599 0.000515 0.000426 0.000336
35 0.000995 0.000902 0.000760 0.000597 0.000434 0.000285
4 0 0.001606 0.001426 0.001159 0.000862 0.000576 0.000332
45 0.002795 0.002464 0.001975 0.001437 0.000927 0.000505
50 0.004992 0.004403 0.003532 0.002572 0.001663 0.000909
55 0.008872 0.007861 0.006360 0.004696 0.003101 0.001755
60 0.015443 0.013772 0.011278 0.008484 0.005768 0.003420
65 0.026139 0.023476 0.019475 0.014947 0.010476 0.006517
70 0.042925 0.038822 0.032619 0.025527 0.018417 0.011977
75 0.068416 0.062284 0.052960 0.042200 0.031261 0.021146
80 0.105994 0.097081 0.083455 0.067595 0.051266 0.035893
85 0.159948 0.147308 0.127892 0.105115 0.081403 0.058721

It is of interest to investigate certain properties of model structure (9.6) over time. We first note 

that, under this model structure, the force of mortality does not increase with time, since B(x) is 

always negative (Figure 9.10). Further, in line with the analysis in Section 5.2.4, it can be seen 

from Figure 9.12 that the predicted mortality curves change curvature during the time period 

involved. This feature indicates that the rate of the mortality decline through time reaches a 

maximum, in that time period, and afterwards diminishes. In mathematical terms, this turning 

point can be viewed as the time point where the second derivative, with respect to time, equals 

zero. That is, when

d2
~Z2Bxt =0  a

which leads, after some algebrical manipulations of formula (9.6), to the point

= {-5.7 •m x - h
A(xY

The points tx are plotted against x  in Figure 9.13.
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Figures 9.13:Time-points where the second derivative equals zero, with respect to time, model (9.6)

It is possible to conclude from Figure 9.13 that the rate of the mortality decrease reaches its 

maximum during the decade of the 1980' s for ages in the neighbourhood of 47 (more 

specifically for the range of ages 35 to 70), and during the decade of 1990's for the ages 

above the age of 70. That means that the maximum rate of improvement in mortality rates for 

ages above the age of 70 is expected during the 1990's, and for ages over 85 the maximum 

rate of improvement is expected towards the end of this decade.
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9.3 UK male assured lives, duration 5+, period 1958-1990, ages 42-89

The power link function in association with a polynomial predictor of degree one in age effects, is 

used first to graduate the mortality experience for each calendar year separately. That is

a  + 6  xt ' t (9.8)

Further, for a fixed value of t, model (9.8) can be expressed as

d 1 1
dx jux A - p - x

1

Mx

where
a

A - J P

Thus, when (a  and ¡3 have the same sign and) p  is negative, the rate at which the resistivity to 

death decreases with age, divided by the resistivity itself, is inversely proportional to a linear 

function of the age. Note, that this structure is a special case of the generalised binomial law with 

A = 0, see Gavrilov and Gavrilova (1991).

Under model structure (9.8), the force of mortality automatically changes monotonically with 

respect to age x, for fixed t. This has been found to be consistent with the data in the restricted 

age range 42 to 89 years.

We again choose to target the resistivity or reciprocal of the force of mortality in accordance with 

the distributional assumptions of Section 5.5.

The value of the deviance, when the model structure (9.8) is fitted to the data, is equal to

2754.2 on 1485 degrees of freedom. Standardised deviance residuals were then used to produce 

p  - values for the statistical tests, which where found to justify the choice of the model structure

(9.8).

The trend in the values of the optimum power index p t , is illustrated in Figure 9.14.
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1

Figure 9.14 : Optimum p t values against time, model (9.8)
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The other sets of parameters {a ,}  and {j3t} have similar trends, confirmed by their high 

empirical coefficients of correlation.

Pp,a = 0.9915 p p>p = - 0.992 p ^ a = - 0.9948

As noted previously (Section 9.2.2) it is difficult to model p f as a time dependent variable. 

Noting (Figure 9.14) that the estimated values of p t are banded about the value -0.08 with no 

clear trend, we turn next to the model structure with constant power index

-  p  

x , t
a  + 6  ■xt ^  t (9.9)

The optimum value of p  is again determined by constructing the deviance profile which is 

displayed in Figure 9.15. This has an optimum value at p  -  -0.08.

Figure 9.15 : Deviance profile against p, model (9.9)
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Thus the new model structure is as follows

0.08
M x t  = a t +/ 3t -x (9.10)

The values of the deviance obtained was 2865.8 on 1517 degrees of freedom (an average 

increase in deviance of 3.5 compared with model (9.8), for each calendar year). The parameter 

trends, for model (9.10), are shown in the Figure 9.16.

Figure 9.16 : Parameter estimates against time, model (9.10)
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Due to the simplicity of the model structure we are able to interpret the mortality experience 

through the values of a t and J3t , on the power(O.OS) scale. Thus a t indicates a level of 

mortality for the year t, and /3t represents the rate of increase of mortality with age, for the 

year t, on the power(0 .08) scale.
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Figure 9.16 shows that the parameter Pt decreased for the period 1958 to roughly 1970, and 

subsequently increases. Again, as in Chapter VIII, we can interpret the above two figures 

together as implying that the mortality experience for the period 1958 - 1970 has been in favour 

of the oldest ages, that is there has been a faster mortality improvement for the oldest ages. But 

for the next period (1970 - 1990), the nearly quadratic decrease in the level parameter, a t , and 

the nearly quadratic increase in the growth parameter, f3, , shifts the graduated curve downwards

and bends the curve, at the same time, to favour the middle ages, so that there is faster mortality 

improvement for the middle ages.

Despite the apparently smooth progression in both sets of parameter estimates {a t } and {flt }, 

we attempt to simplify the model structure further by making one of the parameter sets constant 

over time. Thus for the model structure

0 .0 8
M x,t = a  + p ( -x (9.11)

the deviance obtained was 3760.2 on 1549 degrees of freedom, and for the model structure

0 .0 8
M x t  = a ( + p - x  (9.12)

the deviance obtained was 3023.5 on 1549 degrees of freedom (an average increase in deviance 

of 4.9 compared with model (9.10), for each calendar year).

Obviously model (9.12) is more efficient in comparison with model (9.11), due to the lower 

deviance. This is supported by Figure 9.16 on fitting a horizontal line to each set of plotted 

points.

The parametric trend of a t for model (9.12) is shown in the Figure 9.17
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0.36

Figure 9.17 : a, values against time, model (9.12)

0.35 -E

0.34 -E

0.33 -E

0.32 -E

0.3 1 -=|-----r195V 1 96 V 1 982

This suggests that a fractional polynomial of the type a + b ■ tk can be used to represent the 

time variation in a t . Experiments, as before, establish an optimum k value of 1.8. Thus the 

final model structure employed to analyse the mortality trends, takes the form

0.08 1.8 „
M xj  = a  + y  ■ t +J3- x  (9.13)

The associated parameter estimates, standard errors, and t - values are as shown in Table 9.11.

Table 9.11 : Parameters estimates, standard errors, and / - values, model (9.13)

p .e . s.e . t  -  va lu es

a -0.3527 0.0006045 -583.4

P -0.006052 0.00000963 -628.4

y 0.00006094

ç  = 2.039
0.000000624 97.6

The deviance for the model is 3222.1 on 1580 degrees of freedom.

The p  - values for the statistical tests of a graduation, using standardised deviance residuals, are 

as shown in Table 9.12.
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Table 9.12 : p  - values, formai graduation tests for each calendar year separately, model (9.13)

Y ear IS D S ig n R u n s C h i

1958 68 7 62 44
1959 93 28 7 48
1960 51 92 18 58
1961 94 61 72 52
1962 35 87 5 49
1963 12 2 50 35
1964 26 80 14 52
1965 94 61 7 44
1966 44 61 81 48
1967 0 100 92 65
1968 69 92 18 50
1969 16 38 2 34
1970 34 7 1 36
1971 0 95 8 62
1972 6 0 18 41
1973 70 12 1 45
1974 89 19 75 46
1975 85 80 31 54
1976 4 87 3 50
1977 46 95 67 49
1978 19 98 5 49
1979 61 87 5 53
1980 41 4 1 48
1981 58 71 29 51
1982 54 28 40 49
1983 28 7 96 46
1984 51 92 93 50
1985 89 80 4 41
1986 80 50 80 51
1987 82 50 99 53
1988 98 61 7 51
1989 15 95 0 53
1990 24 2 3 45

The standardised deviance residuals against the constant information scale (CIS =

2 • log(7 / faxt ) ), for various calendar years, are presented in Figure 9.18.
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Figure 9.18 : Standardised deviance residuals vs. CIS, various calendar years, model (9.13)
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Finally for this model, the predicted values of the force of mortality, jux i, for ages x = 45, 50, 

...,85, over the calendar period t = 1960 to 1990 at 10 yearly intervals, and forecast values 

for the years 2000 and 2010 are presented for completeness in the Table 9.13.
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Table 9.13 : Predicted force of mortality, 10 yearly intervals, quinquennial ages, model (9.13)

1960 1970 1980 1990 2000 2010
45 0.002785 0.002482 0.001982 0.001427 0.000926 0.000539
50 0.005031 0.004508 0.003637 0.002661 0.001764 0.001055
55 0.008850 0.007968 0.006491 0.004817 0.003256 0.001997
60 0.015190 0.013738 0.01129 0.008489 0.005840 0.003664
65 0.025496 0.023154 0.019183 0.014596 0.010205 0.006536
70 0.041921 0.038214 0.031897 0.024539 0.017412 0.011365
75 0.067628 0.061863 0.051993 0.040409 0.029065 0.019304
80 0.107195 0.098375 0.083208 0.065279 0.047547 0.032090
85 0.167150 0.153859 0.130912 0.103604 0.076344 0.052296

It is of interest to note that the estimated power link index p  = -0.08 in these models is close to 

zero, which implies a log link. Comparison of Table 9.13 with Table 8.15 which is based on a 

log - link formula, indicates that the predicted values from the two models are comparable in size.
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CHAPTER X

Additive models

10.1 Introduction

Throughout this Chapter we again target the resistivity to death using the modelling assumptions 

of Section 5.5. Used in combination with the canonical reciprocal link function

'xt 1 /  mXt

it implies the fitting of mathematical formulae of the type

* *  =

It is of interest to note that for a fixed observation period so that the suffix t is suppressed, this 

includes the De Moivre mortality law of 1725 as a special case (see Benjamin and Pollard, 

1980). More generally the linear predictor gives rise to additive structures in age and period 

effects. We view such structures as experimental.
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10.2 UK male assured lives, duration 5+, period 1958 - 1990, ages 24-89

10.2.1 Description of the data

The methods of Section 10.1 are applied to the UK male assured lives data set, for duration 

5+, period 1958 to 1990 and ages 24 to 89 years, both inclusive, as described in Section 

8.2.1. The data are presented in Appendix A, as published by the CMI Bureau of the Institute 

and Faculty of Actuaries.
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10.2.2 Analysis of age specific mortality trends

We adopt the perspective of Sections 8.2.4 and 9.2.4 at the outset and focus on fractional 

polynomial of the form

Vxt = a x + Px - t k (10. 1)

treating age as a factor. Fitting the above model structure, in association with the inverse link 

function, for different predetermined values of k (in steps of 0.1) leads to the deviance profile 

displayed in Figure 10.1.

Figure 10.1 : Deviance profile against A:, model (10.1)

This suggests the model structure

Mx,t = ax + Px -t,A (10.2)

leading to the two sets of variable parameter estimates displayed in Figures 10.2 & 10.3. The 

deviance for the model structurels 3744.4 on 2046 degrees of freedom and the estimated scale 

parameter <p = 1.83. Again this heavily parameterised structure was found to fit the data well. 

As evidence of this the p  - values for the dual statistical tests based on each age (rather than 

period) are presented in Table 10.1.
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Table 10.1 : p - values, formai graduation tests for each age separately, model (10.2)
Age ISD Sign Runs Chi
24 16 97 70 42
25 99 57 81 65
26 63 57 18 75
27 99 30 72 59
28 100 43 29 49
29 29 30 72 75
30 77 70 58 43
31 99 30 19 52
32 96 70 58 37
33 100 57 43 46
34 84 19 98 59
35 92 70 11 43
36 70 57 18 55
37 94 30 58 50
38 99 43 97 58
39 94 30 31 51
40 94 57 2 43
41 96 70 5 39
42 50 43 5 43
43 97 57 2 47
44 47 19 9 50
45 98 57 2 45
46 81 57 1 37
47 98 57 2 49
48 100 57 0 45
49 53 19 48 50
50 77 57 43 49
51 19 57 29 52
52 74 57 70 51
53 84 70 19 47
54 90 70 31 45
55 96 70 31 49
56 95 43 29 47
57 34 89 67 45
58 99 43 10 47
59 99 43 57 49
60 92 19 22 46
61 84 43 10 49
62 69 70 58 44
63 93 57 1 47
64 96 70 0 48
65 85 70 31 44
66 23 94 60 41
67 85 57 57 47
68 92 19 75 52
69 98 57 94 49
70 99 43 18 49
71 97 57 94 46
72 21 19 48 44
73 97 57 70 50
74 72 19 6 51
75 99 43 10 49
76 63 11 88 52
77 45 19 22 52
78 95 70 44 48
79 61 70 90 52
80 79 81 62 46
81 98 57 89 46
82 97 70 11 48
83 78 70 44 48
84 82 70 1 50
85 88 57 18 48
86 79 43 43 44
87 78 43 97 49
88 36 19 75 50
89 43 89 67 40
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Figure 10.2 : ax against age, model (10.2)
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Figure 10.3 : /3X against age, model (10.2)
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10.2.3 Modelling trends using fractional polynomial predictor structures 

in time effects and cubic spline predictor structures in age effects

Since polynomials in x  were not found to give satisfactory results for modelling the parametric 

trends of ax & (ix , in Figures 10.2 and 10.3 respectively, for the model structure 10.2, 

spline functions were tried as an alternative, and cubic spline functions found to give satisfactory 

results. (In particular we note that mortality rates for English Life Table No 14 were graduated 

using cubic spline functions - see Section 2.2).

Two knots are found to be satisfactory (one knot was not sufficient to describe the patterns noted 

earlier) located at the ages 47 & 64, for both cases, due to high empirical coefficients of 

correlation of the above parameters ax & fix. These knot positions were chosen by monitoring 

the deviance profile for different knot positions under the following model structure

2 3 3 3
p  =a +a ,-x  + a . - x  +a ■ x + a - ( x - k , )  + a e - ( x - k . )  + 

x , t  0 1 2 3 4 v y / + 5 v 2 '  +

2 3 3 3
{bQ + b j - x  + b y x  + b y x  +b4 -(x -  k / ) + + b y ( x  -  k 2) +} - t 14 (10.3)

where k & &2 denote the knot positions. The deviance profile is shown in the Figure 10.4. 

Fisure 10.4 ; Deviance profile against knot positions, model (10.3)
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Thus, the final model derived is of the following form

u  =  a n + a  ,■ x  +  a^  x,t o 1
2

x  + a  3
3 3 3

x +a - ( x - 4 7 )  + a - ( x - 64) +

{b} x  + b 2 - x Z + b 3 -x J +b4 - ( x - 4 7 ) 3+ + b ^ - ( x - 6 4 ) JJ  -t
■!)

1.4 (10.4)

Note that the parameter b0 was found to be insignificant and has been excluded from the model 

structure (10.4).

The parameter estimates, standard errors, and t - tests for the model structure (10.4) are as 

shown in Table 10.2.

Table 10.2: Parameters estimates. Standard errors, and t - tests, model (10.4)

p .e . s.e . t  - te s t

do -0.004027 0.0006288 -6.4

ai 0.0006118 0.00005113 11.9

a 2 -2.48E-05 1.37E-06 -18.1

a 3 3.24E-07 1.21E-08 26.7

a 4 1.03E-06 4.59E-08 22.4

a 5 4.85E-06 2.50E-07 19.3

bi -1.04E-06 1.01E-07 -10.3

b2 6.12E-08 4.99E-09 12.2

b3 -9.62E-10 6.03E-11 -15.9

b4 -2.27E-09 4.74E-10 -4.7

b5 -1.07E-08

(f> = 1.877
3.10E-09 -3.4

The deviance for the model structurels 4067.7 on 2167 degrees of freedom.

Tables 10.3 displays the p  - values for the statistical tests constructed by focusing on each age 

x, for the model structure (10.4). The tests are very satisfactory and are supportive of the model 

structure.
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Table 10.3 : p  - values, formai graduation tests for each age separately, model (10.4)
Age ISD Sign Runs Chi
24 43 89 26 32
25 61 6 46 33
26 79 43 19 70
27 99 30 72 59
28 79 81 34 59
29 7 30 72 83
30 48 81 34 50
31 43 43 43 61
32 57 94 5 52
33 96 57 43 46
34 86 19 98 57
35 94 57 11 31
36 71 30 6 42
37 76 19 62 42
38 26 30 95 37
39 69 11 1 50
40 8 99 17 57
41 69 19 34 29
42 23 99 21 48
43 49 89 39 51
44 84 70 83 56
45 82 70 12 48
46 54 30 0 42
47 89 57 2 48
48 47 70 0 52
49 53 19 48 49
50 90 19 13 45
51 20 43 30 50
52 21 43 30 51
53 69 19 13 46
54 90 56 30 43
55 96 43 30 47
56 72 30 59 45
57 47 89 68 46
58 84 89 68 52
59 37 69 31 54
60 89 81 48 50
61 83 30 12 47
62 57 19 85 41
63 45 6 19 42
64 6 3 14 42
65 96 70 31 43
66 9 99 31 49
67 10 99 90 59
68 43 89 79 59
69 87 81 99 52
70 79 19 1 48
71 85 70 95 49
72 356 19 48 45
73 68 70 59 52
74 47 19 7 53
75 85 11 15 45
76 61 11 88 51
77 78 11 54 48
78 88 30 72 48
79 65 70 90 51
80 10 19 34 39
81 98 57 30 44
82 17 99 20 56
83 51 69 90 44
84 72 57 5 50
85 68 94 19 52
86 48 19 22 43
87 32 94 61 52
88 88 19 34 48
89 6 99 80 46

168



Additional supportive diagnostic evidence for model (10.4) is provided by the plots of 

standardised deviance residuals against the constant information scale (CIS = 2 • log(7 //*&)), 

reproduced at ten yearly age intervals in Figure 10.5. The predicted force of mortality (for the 

time period 1958 to 2010), at ten yearly age intervals is shown in Figure 10.6.
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Fisure 10.5 : Standardised deviance residuals vs. CIS, various ages, model (10.4)
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Figure 10.6 : Crude and predicted force of mortality vs. calendar year, various ages, model (10.4)
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Here we have superimposed the estimated mortality curves on the corresponding crude mortality 

rates. As usual this acts as a further visual check on the predictive qualities of the model.

Finally for this model, the predicted values of the force of mortality, p x t, in the age range x = 

24 to 89 years at 5 yearly ages, over the calendar period t -  1960 to 1990 at 10 yearly 

intervals, and the forecast values for the years 2000 and 2010 are presented for completeness 

in the following Table 10.4.

Table 10.4 : Predicted force of mortality, 10 yearly intervals, quinquennial ages, model (10.3)

1960 1970 1980 1990 2000 2010

25 0.000835 0.000746 0.000623 0.000475 0.000308 0.000124
30 0.000770 0.000704 0.000611 0.000499 0.000373 0.000235
35 0.000920 0.000835 0.000716 0.000574 0.000414 0.000237
40 0.001523 0.001357 0.001124 0.000846 0.000532 0.000186
45 0.002820 0.002487 0.002020 0.001462 0.000831 0.000138
50 0.005077 0.004467 0.003611 0.002588 0.001431 0.000160
55 0.008974 0.007923 0.006448 0.004684 0.002690 0.000500
60 0.015509 0.013776 0.011344 0.008437 0.005151 0.001542
65 0.025690 0.022958 0.019126 0.014544 0.009364 0.003675
70 0.041545 0.037349 0.031463 0.024426 0.016469 0.007731
75 0.067371 0.060937 0.051910 0.041118 0.028917 0.015518
80 0.107771 0.097994 0.084278 0.067880 0.049340 0.028979
85 0.167350 0.152795 0.132377 0.107966 0.080367 0.050057

Further supportive evidence is provided by the p  - values for the statistical tests constructed by 

focusing on each year t, for the model structure (10.3), Table 10.5. We also display some of the 

many standardised deviance residual plots on the constant information scale CIS = 

( 2 ■ log( /  / juxt ) ), for various calendar years, in Figure 10.7.
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Table 10.5 : p  - v a l u e s ,  f o r m a i  g r a d u a t i o n  t e s t s  f o r  e a c h  c a l e n d a r  y e a r  s e p a r a t e l y ,  m o d e l  (10.3)

Year IS D S ign R uns C hi
1958 94 50 59 50
1959 97 59 23 45
1960 42 89 9 59
1961 83 50 50 53
1962 93 89 3 59
1963 5 1 44 30
1964 86 59 2 50
1965 5 1 39 38
1966 34 31 78 52
1967 0 100 34 66
1968 28 99 24 59
1969 4 4 74 27
1970 8 1 29 36
1971 44 83 3 59
1972 64 10 5 42
1973 38 23 7 49
1974 86 40 77 51
1975 65 89 3 63
1976 92 50 16 50
1977 30 97 59 51
1978 7 99 5 50
1979 66 95 7 57
1980 55 7 4 52
1981 43 93 31 54
1982 95 83 64 48
1983 49 23 94 43
1984 23 95 74 56
1985 83 68 78 44
1986 56 16 35 51
1987 41 40 97 67
1988 98 68 78 62
1989 75 89 2 48
1990 9 0 14 42
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Figure 10.7 : Standardised deviance residuals vs. CIS, various calendar years, model (10.4)
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CHAPTER XI

Complementary log - log link models

11.1 Introduction

In this Chapter, we focus on the modelling assumptions of Section 6.2, using the number of 

deaths P* as (over - dispersed binomial) responses, with

m
£ (/> „ ) = ma  = %  • qa  & ) = «’ % '

involving a scale parameter (p > 1, prior weights coxt -  1, and variance function

m
V(m ) = m .(1 - —4-)

v x tJ xt v P R ' j

where pR lxt denote the initial exposures. Both responses and exposures are based on policy 

counts. Used in combination with the complementary log - log link function

log {-lo g  U - q xt)} = Vxt

we target q rates, the probability that a life aged x  dies before age x+1, in period t, where 

rjxt denotes the linear predictor.

175



11.2 Males pensioners, period 1983-1990, ages 60-95

11.2.1 Description of the data

The data modelled in this Chapter were provided by the CMI Bureau, and refer to the male 

pensioners’ experience, under UK life office pension schemes. They consist of initial exposures 

and policy totals ceasing through death, by individual calendar year, for the period 1983 to 

1990 and ages 60 to 95, both inclusive. The data are presented in Appendix B, as published 

by the CMI Bureau of the Institute and Faculty of Actuaries.

Since the exposures are initial and the data based on policy rather than head counts, the number 

of policies ceasing through death are modelled as over - dispersed binomial variables.
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11.2.2 Modelling trends using polynomial predictor structures

We have investigated the complementary log - log link function in combination with polynomial 

predictor formulae of the type

Vx,t =P0 + ^  Pj-Lj (x' )+  £  a i - i i + £  £  y.j -L . (x )- t i (11.1)
j  = 1 i = 1 i = 1 j  = 1

in which some of the parameters may be pre - set to zero. Here both the age and calendar year 

ranges have been mapped onto the interval [-1,1] by translating the origin to the centre of the 

range and using the semi-range for scaling, and where Lfic) denote Legendre polynomials, as 

described in Section 5.7.

An examination of the deviance profile induced by changes in the structure of the linear predictor 

formula (11.1), coupled with copious graphical tests of the corresponding deviance residuals, 

leads to the adoption of the model formula

3 , 3 , ,
l o g { - lo g ( 7 - ^ ) }  = J30 + T. P j -L j ( x ) + Y , a i -tl +yn -Lj (x)-t (11.2)

j=l i=l

The details for the parameter estimates, standard errors, and t - values are presented in Table 

11.1. The p  - values, for the corresponding statistical tests, are based on standardised deviance 

residuals, given by the expression (6.4), and are presented in Table 11.2. Note that the estimated 

scale parameter, <pt , is calculated for each year separately.

Table 11.1 : Parameters estimates. Standard errors, and t - tests, model (11.2)

p.e. s.e. t - test
Po -2.674 0.00746 -412.5
Pi 1.637 0.01621 114.6
P2 -1.499E-01 1.256E-02 -11.9
Po -3.243E-02 1.392E-02 -2.3
a 1 -4.721E-02 1.27E-02 -3.7
a2 -3.314E-02 9.02E-03 -3.6
a3 -3.846E-02 1.622E-02 -3.0
Yu -2.405E-02 1.394E-02 -1.7

<p = 1.58

The value of the deviance is 442.28 on 280 degrees of freedom.
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Table 11.2: p - values, formal statistical tests for each calendar year separately, model (11.2)

Y ear IS D  S ig n R u n s C h i

1983 81 75 93 53
1984 43 2 78 44
1985 26 95 95 59
1986 87 16 81 45
1987 66 100 43 48
1988 90 50 0 47
1989 22 9 62 53
1990 38 37 76 42

Finally, for the model (11.2), the predicted values of the rate of mortality, qx t, in the age range 

x = 60 to 95 years, over the calendar period t = 1983 to 1990 at yearly intervals, are 

presented for completeness in the following Table 11.3.

Table 11.3 : Predicted qxt probabilities, period 1983 -1990, quinquennial ages, model (11.2)

1983 1984 1985 1986 1987 1988 1989 1990
60 0.01280 0.01245 0.01219 0.01198 0.01174 0.01141 0.01094 0.0102
65 0.02189 0.02132 0.02093 0.02061 0.02023 0.01970 0.01893 0.0178
70 0.03702 0.03613 0.03555 0.03507 0.03450 0.03367 0.03243 0.0306
75 0.06102 0.05969 0.05885 0.05817 0.05735 0.05609 0.05415 0.0513
80 0.09656 0.09468 0.09355 0.09266 0.09154 0.08974 0.08685 0.0825
85 0.14462 0.14214 0.14073 0.13969 0.13830 0.13590 0.13187 0.1257
90 0.20241 0.19940 0.19785 0.19678 0.19523 0.19230 0.18712 0.1789
95 0.26223 0.25892 0.25742 0.25651 0.25500 0.25174 0.24564 0.2357
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11.2.3 Modelling trends using fractional polynomial predictor structures

We have also investigated the complementary log - log link function in combination with 

fractional polynomial predictor formula. Various parameterised predictor structures of the form

T1xt(.a’b) = at -xa +J3t -xb

were tried in combination with the complementary log - log link function in an attempt to target 

q xt rates. The optimum values of a and b are determined by monitoring the improvement in

the model deviance for different combinations of the values of a and b (in steps of 0.1). The 

minimum deviance obtained is 437.2 when a = -0.4 and b = 0 or when a = -0.3 and b = 

0.1. Besides, another pair of values of a and b which produces a simpler model is when a = 1 

and b = -1. The value of the deviance now is 441.23 on 272 degrees of freedom (the 

difference occur in the deviances is statistically insignificant) and the estimated value of the scale 

parameter is q> = 1.622. This combination assumes the following model structure

1
j  _  a  ■ x  +  J3 ■ —

T) = a . ' X  + B - — or q = l - e  e ‘ ‘ x (11.3)
xt ‘ t x  * x,t ' 7

fitted separately for each period t, by treating t as a factor and age x  as a variate, in an 

attempt to detect any patterns in the parameters a ( & /? over time t.

The p  - values for the statistical tests of the graduation, based on standardised deviance 

residuals, are applied separately for each calendar year, which are highly supportive of this 

heavily parameterised structure, are presented in Table 11.4.

Table 11.4 : p  - values, formal graduation tests for each calendar year separately, model (11.3)

Y ear I S D  S ig n R u n s C h i

1983 94 50 75 53
1984 100 50 75 46
1985 56 37 99 62
1986 96 37 64 49
1987 46 84 11 48
1988 33 37 51 47
1989 78 16 89 55
1990 43 16 11 44
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The trend in the parameter estimates, a  & /? , are displayed in Figures 11.1 & 11.2.

<*t
0.032 —

0.031 -|

0.030 £

0.029 -E 

0.028 — -

Figure 11.1: a t against /. model (11.3)

- i ------1------1------1------1------1----- 1— i-----1-------1— i— i-----1------1— i------1------1— i— i------ 1------1— |------r -
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— 380 -E

— 390 -E

— 400 -E

— 4 10 —-

Figure 11.2 : [3t against /.model (11.3)

Figure 11.1 does not indicate any particular trend in the a t values, while Figure 11.2 indicates 

a downward movement in the J3t . As a consequence of these graphs plus further preliminary 

analysis it was decided to set

a t =  a  &  Pt = P + y  -tk

for different predetermined values of k. The optimum value k = 2 was determined by looking at 

the appropriate deviance profile constructed by fitting the model structure for various values of k 

(note that the value of k = 2.3 gives the minimum deviance, but for reasons of simplicity we 

will use the value of 2 since there is a relatively very small discrepancy in the deviance).

Thus the linear predictor finally adopted has the following mathematical expression

i
v . ,  = « - *  + P - -  + r  -
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The parameter estimates, standard errors, and t - values for the model structure

log { -lo g  ( i - q xt)} a - x  + J3- (11 .4 )

where t = 1, 2, ... (for calendar year 1983, 1984, ...), are as shown in Table 11.5.

Table 11.5 : Parameters estimates, standard errors, and t - tests, model (11.4)

p .e . s .e . t  -  te s t

a 0.03042 0.000257 118.6

P -378.6 1.542 -245.5

y -0.1814  

(f) =  1 .669

0.01288 -14.1

The deviance is 4 75.64 on 285 degrees of freedom.

The p  - values for the statistical tests of a graduation, which are based on standardised deviance 

residuals, are presented in Table 11.6.

Table 11.6 : p - values, formal graduation tests for each calendar year separately, model (11.4)

Y ear 1S D  S ig n  R u n s  C h i

1983 59 91 62 55
1984 28 1 61 44
1985 81 75 87 61
1986 45 2 87 46
1987 13 99 30 50
1988 49 63 9 49
1989 55 37 64 55
1990 16 5 17 42

While the model structure {11.4) fails some of the sign tests, it is nevertheless retained because 

the results for the remaining tests are satisfactory.

Further, because the data are only available for a short run of years, long term forecasting of 

mortality rates would be risky. However the fitted model structure {11.4) can be extrapolated 

forward a few years (up to 4 years say) to forecast mortality rates.

A display of the overall mortality trend is given in Figure 11.3, where the curves represent the 

graduated mortality values for each calendar year {1983 to 1990) separately against age x.
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Figure ¡1.3 : Graduated q ^ values against x, calendar year 1983 - 1990, model (11.3)

The overall level of mortality improvement is noted by the downward movement of the graduated 

curve through time (starting at calendar year 1983 and ceasing at calendar year 1990), with 

more improvement occurring at the oldest ages. The corresponding predicted values of qxt in 

the age range x = 60 to 95 years, at 5 yearly ages, for individual calendar years t = 1983 to 

1990, are presented for completeness in Table 11.7.

Table 11.7 : Predicted qx{ probabilities, period 1983 - 1990, quinquennial ages, model (11.3)

1983 1984 1985 1986 1987 1988 1989 1990

60 0.01118 0.01108 0.01092 0.01069 0.01040 0.01006 0.00968 0.00925
65 0.02105 0.02088 0.02059 0.02020 0.01970 0.01911 0.01844 0.01769
70 0.03686 0.03658 0.03612 0.03548 0.03468 0.03372 0.03262 0.03140
75 0.06080 0.06038 0.05967 0.05870 0.05748 0.05601 0.05432 0.05244
80 0.09529 0.09468 0.09366 0.09226 0.09048 0.08836 0.08590 0.08315
85 0.14277 0.14192 0.14053 0.13860 0.13615 0.13321 0.12981 0.12600
90 0.20526 0.20416 0.20233 0.19980 0.19659 0.19273 0.18824 0.18319
95 0.28381 0.28244 0.28017 0.27703 0.27302 0.26819 0.26257 0.25620

For this model, making use of the well - known relationship

q = 1 -  e  ** xt1 xt

which is exact if ¡j. is assumed to be piecewise constant within each cell (x,t) it follows that 

the force of mortality is approximately described by the relationship

1 r
log( / 0  = a - x + / ? • -  + /■ —

■** X X
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CHAPTER XII

Modelling amounts 

12.1 Introduction

Following up the discussion, in Chapter XI, about the pensioners’ experience under UK life 

office pension schemes, the graduation of the so-called ‘amounts’ data is addressed. These data 

include, in addition to the policies and exposures based on annuity counts, the total amounts 

associated with both the policies and exposures. Previous experience reveals that the ‘amounts’ 

based experience shows a lower mortality than the corresponding ‘lives’ based experiences.

The aim of this chapter is to predict the probability of death based on the ‘amounts’ experience, 

taking detailed account of the underlying structure of the data involved.



12.2 Distribution assumptions

We define, for each age x and each calendar year t :

P = the total number of policies ceasing through deaths 

pRl = the initial exposed to risk based on policy counts 

A = the total amount of pension accruing from deaths 

e = the exposed to risk based on ‘amounts’

A® = the amount associated with policy, i 

A = the average amount accruing from deaths

qx = the probability that a life, age x, dies before age x+1 based on ‘lives’ 

qx = the probability that a life, age x, dies before age x+1 based on ‘amounts’

The data available for analysis comprise (P, PR\ A, e), for each member of the rectangular grid 

of cells (x, t). In each cell u = (x, t), the A® are modelled as independent, identically 

distributed non-negative random variables, independent of P, so that

Pu

An = X  + J'
i = 1

and hence (see equations 5.2)

£ ( A )  = £ ( 4 ° )

&

Var(Au) = V a r(A ^) . E{Pu) + { E { A ? ) } 2 •Var(Pu) (12.1)
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Assumption I

Model the average amounts Au as the independent gamma response variables of a GLM and 

define

E ( Au) = p u & Var(Au) = (12.2)
1U

with scale parameter weights P , and variance function Var(pu ) = p(t .

Note the responses Au are given by the ratio

A u

The above assumption pre-supposes, in part, that the individual amounts A^° follow a gamma 

distribution (Renshaw and Hatzopoulos, 1996) with

£ ( 4 ° )  = A, & V ar(A i°) = y /■ p 2u (12.3)

Assumption II

In keeping with Section 6.2, the number of policies ceasing through deaths Pu, are modelled as 

the independent over-dispersed binomial response variables of a GLM, with

E(Pu) = mu = q u-pR‘u & Var(Pu) = t  ■ mu ■ (1 -
m
PR>

(12.4)

Assumption III

Then the total amounts of pension accruing from deaths Au are modelled as the independent 

responses of a GLM, with

E (Au) = <l*u -eu & Var(Au) = (p + r ) - p u E ( Au) - ~ - - { E ( A u)}2 (12.5)
" R

U
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Expressions (12.5) follow from equations (12.1) in combination with equations (12.2), (12.3)

Au
& (12.4). Equation (12.5), can be implemented in GLIM, by declaring Yu = —  as the

eu

response variables for which

E(Yu) = q*u & Var(Yu ) = co {E(Yu)
{E(Yu)Y

K
(12.6)

with weights cou , where

= ( Y  +  T ) - p u
& =

PR1
U

T-COu

Assumption III may be implemented in combination with any of the predictor-link relationships 

generally associated with binomial response GLMs.
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12.3 Implementation

*
The modelling of q based on Assumption III requires the estimation of i/ / , t  & pu before 

equations (12.6) can be implemented.

Assumption I  can be used to model the average amounts of pension in combination with any 

suitable predictor - link combination, thereby providing an estimate for the scale parameter y / , as 

well as providing fitted values to estimate the p u ’s.

For the UK male pensioners data set, Assumption I  was applied using the log link in 

combination with a linear spline function, with seven knots positioned at ages 60, 65, 75, 76, 79, 

82, 90, for each calendar year separately. By this method the scale parameter y/ was estimated

as y) = 6.134 and the predicted values p xt are reproduced in Table 12.1 (Renshaw and 

Hatzopoulos, 1996, Table 5.4).
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Table 12.1: Predicted oyt values (x = age, t = calendar year) with w = 6.134

a g e 1983 1984 1985 1986 1987 1988 1989 1990

60 630 5293 3849 2895 956 2962 1066 4164
61 904 3868 3064 3955 1258 3188 1741 4998
62 1297 2826 2438 5403 1655 3431 2844 5999
63 1860 2065 1941 7380 2178 3693 4646 7201
64 1030 1280 1298 2578 1436 2171 2694 3232
65 570 794 869 900 947 1276 1562 1451
66 524 714 788 825 879 1151 1419 1389
67 482 642 714 755 816 1039 1289 1330
68 443 577 648 692 758 938 1171 1274
69 407 519 588 633 704 847 1065 1220
70 374 467 533 580 653 764 968 1168
71 344 420 483 531 606 690 879 1119
72 316 378 438 487 563 623 799 1071
73 290 340 398 446 523 562 726 1026
74 267 306 361 408 485 507 660 982
75 245 275 327 373 450 458 600 941
76 232 295 287 360 396 432 537 638
77 246 271 279 349 378 416 493 600
78 262 248 271 338 359 401 453 564
79 279 228 263 327 342 386 416 530
80 261 231 256 301 319 350 396 460
81 244 233 250 278 297 318 377 399
82 229 236 244 256 277 288 359 346
83 223 233 238 249 272 287 342 336
84 217 230 233 243 267 286 327 327
85 212 228 227 236 262 284 312 319
86 207 225 222 230 257 283 298 310
87 201 222 217 223 252 282 284 302
88 196 220 211 217 248 280 271 294
89 191 217 207 212 243 279 259 286
90 187 215 202 206 239 278 247 279
91 192 217 214 209 231 250 262 262
92 198 220 226 212 223 226 278 247
93 203 223 239 215 215 203 295 232
94 209 225 263 218 208 183 313 219
95 215 228 268 221 201 165 332 206

The scale parameter r  is estimated under Assumption II on applying this assumption to the 

appropriate data set based on policy counts, typically as described in Chapter XL There, for the 

UK male pensioners data set, r is estimated as t  = 1.58.

We now proceed to implement Assumption III using the ‘own’ model specification commands in 

GLIM. The results, presented in Tables 12.2 & 12.3 are based on the mathematical formula

lo g { -lo g (7 -V  )} = P o + P rx +p2 -x'2+a -t'
x,t
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consisting of the complementary log - log link in combination with significant polynomial terms 

in x ' & t ' ,  the transformed ages and periods respectively (as defined in Section 5.7). Table

12.2 contains detail of the parameter estimates and their standard errors (Renshaw and 

Hatzopoulos, 1996, Table 5.6) and Table 12.3 lists the predicted values (Renshaw and 

Hatzopoulos, 1996, Table 5.5).

The residual plots and statistical tests for this fit, which are supportive of the model structure, are 

not reproduced.

Table 12.2 : Predictions based on ‘amounts’, parameter estimates with standard errors

p .e . s.e. t- te s t

Po -2.83 0.01136 -249.1

/8, 1.839 0.01992 92.3

f t -0.1174 0.02918

o1

Gfi -0.1011 0.01144 -8.8

*Table 12.3 : Predicted q ^ probabilities based on ‘amounts’ (x = age, t ~ calendar year)

A g e /Y e a r 1983 1984 1985 1986 1987 1988 1989 1990
60 0.00919 0.00893 0.00867 0.00843 0.00819 0.00796 0.00773 0.00751
65 0.01687 0.01639 0.01593 0.01548 0.01504 0.01462 0.01420 0.01380
70 0.03001 0.02917 0.02835 0.02755 0.02670 0.02603 0.02530 0.02458
75 0.05165 0.05021 0.04882 0.04746 0.04614 0.04486 0.04361 0.04240
80 0.08577 0.08343 0.08116 0.07894 0.07678 0.07468 0.07263 0.07064
85 0.13700 0.13337 0.12983 0.12638 0.12302 0.11973 0.11653 0.11341
90 0.20962 0.20430 0.19911 0.19403 0.18906 0.18421 0.17947 0.17483
95 0.30574 0.29849 0.29137 0.28439 0.27754 0.27082 0.26423 0.25778
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Part 4

Comparing Mortality Experiences
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CHAPTER XIII

Comparing mortality experiences and constructing mortality 

tables based on standard tables

13.1 Introduction

In this chapter we will investigate two types of hypotheses.

The first type considers the assumption that two mortality experiences exhibit the same 

underlying mortality. In other words, we examine if two mortality tables can be modelled by the 

same mathematical structure involving identical parametric sets. Thus, the hypothesis test takes 

the form :

H 0 : p '  = p 2 vs Hi : f i 1 *  p 2 (Hypothesis o f type 1)

The data sets for analysis (and comparison) consist of the male assured lives experience, for the 

time period 1958 - 1990 and the range of ages 23 - 62 (where there are sufficient data for 

analysis), for durations 0, 1, 2, 3, 4, 5+. In particular, within these data grids, there are no cells 

in which zero numbers of deaths are recorded, and consequently no data cells are weighted out of 

the subsequent analysis in the examples presented in this Chapter.

The second type concerns the hypothesis that two mortality experiences are connected by a 

specific model structure of the form

Mx =f(x) ■ Hsx (Hypothesis o f type 2)

where f(x) is a function of age x. In other words, the hypothesis that one set of mortality rates

can be constructed by suitable adjustments to another set of standard mortality rates , see

e.g. Chapter 15, Benjamin and Pollard (1980). This can be a useful approach in circumstances 

where one of the two mortality experiences involves scanty data over part of the age range,
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especially at the two ends. Moreover, the above method will allow for extrapolation outside the 

(possible) restricted age range of one of the two data sets.

The first type of hypothesis is a special case of the second type of hypotheses when f(x) = 1 for 

all ages x.

Under the second type of hypothesis, the male assured lives mortality experience for duration 5+ 

is used to construct a standard table which is then used

1) to construct a life table for the pensioners lives mortality experience, for the year 1990, in the 

age range 64 - 89 (where there are sufficient data), and

2) to construct a life table for the male assured lives mortality experience, at durations 0 -1  - 2 - 

3-4 ,  in the period 1958 - 1990 and the age range 23 - 62 (where there are sufficient data).
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13.2 Testing Hypotheses of the form : H0 : (31 = p 2 vs H} : ( f  *  (32

13.2.1 Methodology

In this Chapter we focus on the modelling assumptions of Section 5.6 (that is, the normal 

approximation for the natural, logarithm of the empirical resistivity to death), and which gives rise 

to exact statistical tests.

Focus first on a fixed period and fixed duration. Thus using Qx = log Yx as (normal) responses,

PKwhere Yx = -  A , we have
*X

E(Q x) = mx = log & Var(Qx ) = p-
r-x ‘ x

with scale parameter (p= p ,  prior weights cox =PX, and variance function V(mx) = 1.

First, we examine the particular model structure for each separate mortality experience. The class 

of models used is given by the following (flexible) polynomial structure in age effects

m
X

k ~ l

Y e , (13.1)

In order to determine the optimum polynomial degree, we test hypothesis of the form :

H y p o th e s is  I

using the F  - statistic

H0: Pk = 0  vs H,: pk * 0

dfk+i Dev(k) -  D evjk  + 1)
1 ' Dev(k +1) ~ Pkdfk + I
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to determine the p -  values, where Dev(k) is the deviance and d fk the degrees o f  freedom 

for model structure (13.1) with k parameters (see also Section 3.3).

Having determined the optimum degree of the polynomial by this means, we have now to compare 

the mortality experiences. The following describes the procedure employed for the comparison of 

two mortality experiences, using a different kind of hypothesis of the form :

H y p o th e s is  I I

H 0 - P ! = Pi vs H r  p ! * p ?  V / =  0, 1......k-1

using the F  - statistic

where

n — k 
k

SSq 2 -  s s Q]

S S Q ,
k,n-k

2 *2, { . ,  i 2
s s e , -  Z ( e , - ™ , )  = I

X= Xj x=x/ i=0

xn k 1 • 2
s s e r  L i e  - E i i ' 1 )

x=xj x i=0

and Qx are the responses for the mortality experience with fitted values mx (Klonias, 1987).

The statistics SSq 2 & *S'5'@/ are easily calculated. Thus SSq / is the deviance obtained

when fitting the initial model, on which the inference is based. Further, SSq o is the ‘deviance’

obtained on replacing the fitted values from the initial model, in the expression for the deviance, 

with the fitted values under the null hypothesis H0 .
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13.2.2 Grouping durations 0, 1,2,3 & 4 for male assured lives, period 1958 -

1990, ages 23 - 62

Quoting Puzey (1986, pages 126 - 127), “Temporary initial selection is the name given to the 

phenomenon where mortality rates are believed to depend on the duration since passing some sort 

of medical process as well as on the usual age and sex. For life assurance, this medical screening 

takes place before the issue of a policy.

The fact that such lives have passed the medical screening means that these lives will display 

lighter mortality than the general population which has not undergone selection by medical 

screening. However the effect of having passed the medical screening changes as the duration 

since the medical screening increases. The effect of the medical screening is often said to 'wear

off'-

Where temporary initial selection applies, we subdivide our data according to duration since 

initial selection (e.g. since entry to assurance) as well as according to age and sex, to ensure that 

we calculate mortality rates for groups of lives who have similar characteristics with respect to 

mortality”.

The data available for analysis, as provided by the CMI Bureau, have been subdivided by 

duration 0, 1, 2, 3, 4 and 5+, for each calendar year 1958 - 1990 separately and for individual 

ages in the range 23 - 62 years.

The aim of this analysis is to investigate if it is reasonable to pool the data by duration over the 

whole of the observation period, in much the same spirit as the data are pooled together by 

duration in Section 17 of Forfar et al (1988) for the limited observation period 1967-1970.

Following Section 13.2.1, first we need to examine the particular model structure for all the 

durations and calendar years in order to determine the optimum polynomial degree. That is, 

applying equation (13.1), for each duration (d = 0, 1, 2, 3, 4), and each calendar year (t = 

1958, 1959, ..., 1990), we obtain the following (flexible) model structure :

dmx,t - I *
i = 0

d
i,t

X
i
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Primary work showed that the optimum number of parameters is 5. In order to prove this, Table 

13.1 gives the p  - values for the F  - tests (formula 13.2), for each calendar year and for each 

duration d  separately, after comparing the model structure (13.1) with either 5 or 6

parameters, based on the hypothesis I  : H0: fit? t -  0 vs H j : J3 *09 J 9 ̂

Table 13.1 = 0 , for each d  and t

Y ear du ra tion O d u r a tio n l d u ra tio n 2 d u ra tio n 3 d u ra tio n 4

1958 0.040 0.534 1.000 0.300 0.030
1959 0.042 0.672 0.469 0.018 0.481
1960 0.095 0.864 0.407 0.043 0.690
1961 0.004 0.356 0.871 0.008 0.010
1962 0.202 0.514 0.451 1.000 0.476
1963 0.644 0.818 0.005 0.049 0.029
1964 0.728 0.877 0.329 0.020 0.487
1965 0.069 0.081 0.070 0.838 0.038
1966 0.813 0.199 0.220 0.618 0.059
1967 0.544 0.100 0.118 0.846 0.075
1968 0.109 0.155 0.095 0.459 0.254
1969 0.889 0.312 0.686 0.769 0.112
1970 1.000 0.422 0.626 0.004 0.003
1971 0.835 0.207 0.679 0.636 0.309
1972 1.000 0.793 0.802 0.215 0.418
1973 0.726 0.721 0.052 0.480 0.022
1974 0.855 0.171 0.033 0.755 0.924
1975 0.422 0.630 0.774 0.145 0.763
1976 0.475 0.653 0.171 0.596 0.646
1977 0.242 0.664 0.630 0.918 0.918
1978 0.312 0.268 0.144 0.818 1.000
1979 0.037 0.375 1.000 0.479 0.027
1980 0.504 0.051 0.103 0.507 0.086
1981 0.235 0.879 0.174 0.493 0.837
1982 0.643 0.374 0.085 0.695 0.909
1983 0.211 0.641 0.874 0.605 0.070
1984 0.432 0.571 1.000 0.625 0.483
1985 0.801 0.447 0.014 0.199 0.780
1986 0.814 0.798 0.017 0.543 0.731
1987 0.167 0.460 0.659 0.049 0.597
1988 0.069 0.090 0.001 0.274 0.420
1989 1.000 0.614 0.251 0.843 0.479
1990 0.421 0.241 1.000 1.000 0.804

Significant p -  values at the 5% level of significance are highlighted by bold. Table 13.1 shows 

an acceptable range of p  - values for all the durations, on the basis of the hypothesis that the 

optimum number of parameters is 5.
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Thus the model utilised for the further analysis takes the specific form

d
m

X  , t

±  d i

i= 0  1,1

(13.3)

Now having determined the optimum degree of the polynomial, for each duration and calendar 

year concerned, we are interested in investigating whether the parameters f i f j  and are

equal for different choices of di and d2, based on the hypothesis 11. Table 13.2 gives the 

corresponding p  - values based on the following choices.

Table 13.2 : p  - values for Hq : = f3^

Year/di - d2 0 - 1  1 - 2

1958 0.041 0.067
1959 0.000 0.064
1960 0.000 0.128
1961 0.000 0.508
1962 0.000 0.551
1963 0.142 0.075
1964 0.010 0.007
1965 0.050 0.052
1966 0.000 0.033
1967 0.000 0.196
1968 0.096 0.052
1969 0.006 0.407
1970 0.004 0.055
1971 0.003 0.479
1972 0.000 0.177
1973 0.001 0.187
1974 0.005 0.005
1975 0.067 0.189
1976 0.003 0.002
1977 0.000 0.875
1978 0.000 0.788
1979 0.025 0.438
1980 0.030 0.043
1981 0.000 0.139
1982 0.000 0.000
1983 0.931 0.000
1984 0.451 0.133
1985 0.000 0.014
1986 0.015 0.000
1987 0.045 0.336
1988 0.075 0.136
1989 0.005 0.083
1990 0.005 0.270

2 - 3 3 - 4 2 - 3 4

0.014 0.502 0.014
0.068 0.486 0.068
0.081 0.036 0.081
0.000 0.225 0.000
0.524 0.499 0.524
0.331 0.798 0.331
0.109 0.009 0.109
0.520 0.688 0.520
0.000 0.002 0.000
0.301 0.028 0.301
0.285 0.444 0.285
0.064 0.222 0.064
0.000 0.550 0.000
0.179 0.039 0.179
0.003 0.040 0.003
0.004 0.191 0.004
0.445 0.049 0.445
0.161 0.989 0.161
0.057 0.193 0.057
0.384 0.064 0.385
0.017 0.750 0.017
0.061 0.004 0.061
0.012 0.003 0.012
0.000 0.555 0.000
0.794 0.027 0.792
0.097 0.828 0.097
0.741 0.532 0.741
0.284 0.527 0.284
0.177 0.408 0.177
0.024 0.091 0.024
0.311 0.003 0.311
0.016 0.061 0.016
0.013 0.036 0.013
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Significant p  - values at the 5% level of significance are highlighted by bold. The results 

reported in Table 13.2 indicate that the mortality rates at duration 0 differ significantly from 

duration 1, and from the other durations, that durations 3 & 4 can be grouped together and 

that duration 2 seems to be closer to 3 rather than to duration 1. Therefore, a conservative 

view would be to retain durations 0, 1 and 2 separately and combine 3 -4  together.

Another acceptable grouping would be to keep the durations 0, 1 separate and combine 2 - 3 - 4  

together. This is exactly the practice adopted in construction of A 1967 /  70 with 5 years 

select period, and 1979 - 1982 graduations (CMI Report No 9, 1988).
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13.3 Testing hypotheses of the form :

H o ■ Px = f i x )  ■ n l  vs  H j  : jux *  f (x )  ■ p x V x

13.3.1 Methodology

Recall Section 13.2 involving the normal approximation for the natural logarithm of the 

empirical values of the resistivity to death

^  = lo g 7  = l o g ( - ^ )  *
X w x

with scale parameter cr 2 and prior weights wx = Px, where

E(Qx ) = mx = log
Px

If by p *, we denote the central rates for a standard table and by jux , we denote the central 

rates for a second mortality experience, it follows, using an obvious notation, that we can write

e i - i o g r  *  N(msx, ~ )  
wx

o j
& Qx=logYx »  N(mx .— )

w Y

Then under the assumption of independence between the two mortality experiences, it follows that

2 2
ö t - a = l o g l ? .  log 7, » -X’ s

Wx Wx

or

\rS  2 2 sy  (T, + ö \
log—  *  N(h(x),- 

Y
X

1 x 2 rv*

ws ■ w
X X

) (13.4)

where

h(x)=\og Px

Mr
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■y
For reasons of simplicity, we further assume the same variance a  for both mortality

experiences, so that

7 s
log—  «  N (h (x ) , a 2 

Y
X

w_x

■ W
x

(13.5)

By analogy with Section 5.6 (approximating the logarithm for the resistivity to death as a 

normal distribution), we have

E (lo g ^ ~ )  = h(x) = lo g ~ ~  & V a r ( l o g - )  = a 2 J r
r* Mx Y *

X

2 . W* •
with scale parameter ( p - a  , prior weights Wx =------------, and variance function equal to I.

wY +
x  X

The function h(x), which is the expected value for the modelling distribution (13.5), satisfies the 

relationship

mx = exp (h(x)} • ¡usx (13.6)

It follows that when the modelling distribution (13.5) is used in combination with the identity 

link, then h(x) becomes the linear predictor.

Specifically, when

and when

h(x) = a  then (13.6) becomes jux = A ■ jux

h(x) = a  + f ix  then (13.6) becomes jux = A • B x ■ /j x

In the remaining sections of this Chapter, we seek merely to investigate the feasibility of using 

these methods, without going into a detailed interpretation of any results. There are also various 

aspects of the method, still to be investigated, including a comparison with the approach of Currie 

and Waters (1991) for modelling the effects of select mortality.
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The empirical values of the resistivity to death, for both mortality experiences, are plotted against 

age in Figure 13.1, with the upper curve representing the pensioners mortality experience.

13.3.2 Comparing male assured lives, duration 5+, and male pensioners

mortality experience, year 1990, ages 64 - 89

Figure 13.1 : Resistivity to death vs age
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The empirical responses, under the modelling assumptions 13.5, plotted against age, are 

presented in Figure 13.2.

Figure 13.2: Model responses vs age
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From Figure 13.2 it is seen that there is no particular trend in the responses, so that the function 

h(x) could potentially be modelled as a constant term, h(x) = a. This is verified by fitting the 

null model structure h(x) = a under the modelling assumption (13.5) using GLIM, leading to 

the following results
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Parameter estimate fand standard error)

a = 0.1863 (0.01876)

The deviance is 33.685 on 25 degrees of freedom, with scale parameter a 2 = 1.347.

The introduction of a second parameter, dependent on age, using the linear predictor 

h(x) ~ a + J3 ■ x, proved to be insignificant.

The p  - values for the statistical tests based on the residuals (indicating an excellent fit) are as 

follows

Statistical tests : p  - values

PlSD ~ 97 Psign ~ Pruns ~ 98 Pchi ~ ^6.

Figure 13.3, displays the plot of deviance residuals against age, which does not show any 

abnormalities.

Figure 13.3: Standardised deviance residuals against age
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Thus, the male pensioners’ mortality experience can be represented, in terms of the male assured 

lives mortality experience, by following relationship

log(// ) = 0.1863+ \og(jUS ) or p  = 1.20478 ■ u s
X X X X

where p x and / /  denote the force of mortality for male pensioners and for male assured 

lives, respectively.

The fidelity that the force of mortality for male life office pensioners is greater than that for 

assured lives (age for age) is as expected given the effect of selection, and has been confirmed by 

analyses carried out, from time to time, by the CMI Bureau.
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13.3.3 Comparing male assured lives, grouped duration 3 -4  with duration

5+, period 1958 - 1990, ages 23 - 62

In this Section, the construction of a model structure to represent the mortality experience for the 

grouped duration 3 - 4  based on the mortality experience of duration 5+ is attempted, for the 

period 1958 - 1990 and ages 23 - 62.

That is, using the mathematical model structures derived in Chapters VIII, IX, X  and employing 

the methodology described in Section 13.3.1, we can construct a mathematical model structure 

for the grouped duration 3 - 4, for each calendar year 1958 - 1990 and for the range of ages 23 

-62.

The hypothesis to be tested takes the form

H,0 ■ M x.t4 =  e x p  f h f c t ) } u d5+Mx.t vs H1 Mxît4 *  e x p { h ( x , t ) }
d 5 +

Mx.t V jc , t

Various linear predictor structures h (x ,t)  have been investigated (additive in age and time 

effects) and the following structure is proposed following the usual exploratory analysis

h ( x , t )  =  a  +  b - x  +  c - x 2 + d - t (13.7)

Table 13.3 displays the estimates of the parameters, the standard errors, and the / -tests.

Table 13.3 : Parameter estimates, standard errors, & / - tests, model (13.7)

p .e . s.e . t  -  te s t

a -0.57699 0.1482 -3.89

b 0.004709 0.0008688 5.42

c 0.0265466 0.006811 3.89

d -0.0003655 0.0000762 -4.79

Table 13.4 gives p - values based on the residuals under model (13.7), which reveals an 

adequate fit. The residual plots are not reproduced.
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Table 13.4 : p - values, model (13.7)
Year IS D S ign R u n s C hi
1958 66 82 96 74
1959 12 62 38 6
1960 29 3 22 64
1961 79 89 61 43
1962 17 82 20 82
1963 87 37 51 23
1964 69 37 84 47
1965 24 3 74 68
1966 77 10 90 70
1967 80 62 17 76
1968 95 62 90 61
1969 0 0 51 0
1970 95 50 74 24
1971 57 37 90 65
1972 67 73 40 36
1973 62 73 11 31
1974 41 3 13 17
1975 29 10 73 42
1976 58 17 68 31
1977 11 0 89 25
1978 68 26 53 13
1979 4 1 57 16
1980 5 0 80 15
1981 95 50 17 12
1982 94 17 43 20
1983 35 10 23 52
1984 68 17 31 24
1985 12 1 70 33
1986 59 37 17 89
1987 89 82 56 10
1988 55 73 28 55
1989 32 73 76 65
1990 72 89 14 16

Therefore, if we choose as a standard table for duration 5+ the mathematical expression (8.11), 

which involves the log link function in combination with a quadratic spline function, then the 

construction of mortality table(s) for duration 3 - 4 can be based on the formula

IJ-ij = exp{g(x,t)} ■ jUdx 5t +

That is,

/u fj4 =exp{a + b -x  + c - x 2 +d- t }

•exp{a + ( f i j  + J32 - t L8) • x + O ; + / 2 ■ t 1£) ■ x 2 + 8■ (x -  42)2+} 

where the parameter estimates are given in Table 13.3 for a, b, c & d and in Table 8.9

for a , p j, J32> Y h  72 & s  ■
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13.3.4 Comparing male assured lives, individual durations 0,1, 2 with grouped

duration 3 -4 ,  period 1958 - 1990, ages 23 - 62

As in the previous two sections, we limit the investigation to an examination of the feasibility of 

the methodology. The hypotheses to be tested this time take the form

H0 '■ = exP fa fc O )  ■ vs H i ■ *  exp{h2(x,t)} ■ V x ,t (13.8)
,d34 d2 d34

H 0 : Mdxj  = e x p {hj(x,t)}-pdx 3t4 vs H l : p dI( *  exp{hj(x,t)}■ V x , t  (13.9)

H(> '■ ¿ V  = zxp{h0(x,t)} fd“y  vs H1 : fj,ax {’t * Qxp{hQ(x,t)} ■ ¡ f 3* V x,t (13.10)d34 dO d34

where jud0 , juil[ , /ud2 & p d34 denote the force of mortality for duration 0, 1, 2 and
X $ l  X }  t X . 1 X 91

grouped duration 3 -4  respectively.

Exploratory analysis using GLIM, based on the linear predictor h(j(x,t) in association with the 

identity link, indicates the null structure

hd(x,t) = a d d  = 0,1,2

for all three sets of hypotheses (13.8), (13.9) & (13.10).

The following Table 13.5 displays the parameters estimates, the standard errors, and the t - 

tests for the model structures (13.8), (13.9) & (13.10).

Table 13.5 : Parameter estimates, standard errors. & t - tests, models (13.8), (13.9) & (13.10)

p .e . s .e . t  -  te s t

-0.05131 0.01048 -4.89
-0.1098 0.01107 -9.91
-0.3102 0.01238 -25.05

This simplification means that durations 0, 1, 2 and grouped duration 3 - 4, have similar 

mortality shapes. We need only to subtract a constant value on the log scale to move from one
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duration to another, for each calendar year 1958 - 1990. Also the magnitudes of the estimated 

parameters are such that mortality increases progressively, but at a slower rate, with increasing 

duration, for each fixed x and t.

The t - test for duration 2 (t - value = - 4.89) means that the parameter a2 is significant and 

duration 2 can be considered different from the grouped durations 3 - 4 .  Therefore, we can 

conclude that duration 2  can be modelled independently from the grouped durations 3-4.

Tables 13.6, 13.7 & 13.8 give the p  - values for the statistical tests based on residuals for 

models (13.8), (13.9) & (13.10), all of which reveal satisfactory fits.

Therefore, following up the discussion from the previous section, if we choose as a standard table 

the mathematical expression (8.10) for duration 5+, based on the log link function in 

combination with a quadratic spline predictor, then the construction of mortality table(s) for 

duration 0, 1, 2 & 3 -4  are based on the formula

J ~
p x t = ex p {ad + b- x+  c - x J +d- t }

•exp {a + (/3 j + f i  2 - t L8) - x  + (y ] + y  2 - t L8) - x 2 + S - ( x - 4 2 ) 2+} (13.11)

where the parameter estimates are given in Table 13.3 for a, b, c & d , in Table 13.5 for 

a0, aI & a2 and in Table 8.9 for a , (31, (32 , Y b  Y2 & $  ■
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Table 13.6 : p  - values, formai graduation tests for each calendar year separately, model (13.8)
Year IS D S ign R un s C hi

1958 61 26 39 39
1959 90 62 17 16
1960 91 73 28 35
1961 43 26 3 77
1962 98 50 50 69
1963 84 73 39 91
1964 49 37 17 54
1965 40 89 14 23
1966 57 89 47 8
1967 66 17 20 60
1968 82 50 16 96
1969 31 94 67 28
1970 73 10 14 40
1971 78 10 60 33
1972 70 10 60 47
1973 48 26 10 8
1974 86 82 42 4
1975 19 1 42 67
1976 97 26 52 38
1977 60 89 34 70
1978 53 10 89 29
1979 86 50 10 51
1980 67 94 53 23
1981 55 37 6 17
1982 36 37 74 19
1983 42 62 50 78
1984 99 37 63 58
1985 91 82 42 45
1986 13 82 55 90
1987 90 26 52 68
1988 61 82 30 84
1989 66 62 97 13
1990 86 26 85 39
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Table 13.7 : p - values, formai graduation tests for each calendar year separately, model (13.9)
Year IS D Sign R uns C hi

1958 87 26 65 91
1959 0 62 26 7
1960 92 73 3 14
1961 31 17 12 12
1962 42 50 10 79
1963 88 17 30 25
1964 97 26 65 81
1965 86 37 5 79
1966 93 73 65 83
1967 73 10 82 72
1968 81 50 83 41
1969 98 50 26 25
1970 18 3 91 20
1971 80 17 12 29
1972 8 17 12 22
1973 57 5 1 62
1974 97 62 17 55
1975 42 3 83 57
1976 42 94 10 59
1977 86 82 78 20
1978 77 82 78 63
1979 97 50 10 64
1980 8 89 14 49
1981 95 50 62 5
1982 69 62 5 39
1983 40 17 20 16
1984 96 37 17 21
1985 0 99 66 2
1986 64 50 5 76
1987 84 50 73 64
1988 16 26 28 98
1989 0 82 30 68
1990 38 3 21 66
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Y ear IS D  S ig n  R u n s  C h i

Table 13.8 : p - values, formai graduation tests for each calendar year separately, model (13.10)

1958 99 50 6 55
1959 61 26 39 43
1960 76 10 14 55
1961 4 1 89 38
1962 19 62 50 34
1963 95 50 90 34
1964 93 50 50 55
1965 93 62 38 80
1966 41 10 34 57
1967 17 6 67 13
1968 32 62 10 12
1969 33 50 16 13
1970 18 1 3 49
1971 94 26 10 51
1972 2 0 35 4
1973 36 10 8 7
1974 13 73 39 48
1975 52 50 26 90
1976 64 50 37 86
1977 86 82 92 17
1978 84 26 76 51
1979 56 73 18 9
1980 39 82 30 22
1981 53 10 72 55
1982 97 62 38 35
1983 92 82 20 32
1984 51 94 86 71
1985 22 62 63 11
1986 2 82 68 93
1987 55 37 6 85
1988 98 37 10 59
1989 55 62 38 78
1990 10 89 47 90
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CHAPTER XIV

Conclusions

In part I, a method for the graduation, analysis and modelling of mortality trends has been 

defined. This method was developed using the theory of Generalised Linear Model’s (GLMs). 

In this respect GLMs are seen to be a beneficial tool, providing a sufficient statistical foundation 

for the modelling of mortality rates, a wide class of mathematical model structures, and an 

extensive range of diagnostic checks for confirming the plausibility of any applied model.

The statistical tests (the individual standardised deviation test, the sign test, the runs test, and the 

chi - square test) are based on the standardised deviance residuals, provided by GLM’s, for any 

error assumption, and are complemented by analyses of the residual plots. Therefore, GLM’s 

give a comprehensive framework for the statistical analysis with the potential for comparison 

among different model structures.

In part II, the Poisson process is confirmed to be the basis for the statistical modelling of the 

central mortality rates, in combination with the properties and generalisations suggested.

Emphasis is given to the gamma distribution model for the inverse of the central mortality rates 

(called by Gompertz the resistivity to death). Based on the gamma error for the resistivity to 

death we have derived the normal error distribution for the natural logarithm of the resistivity to 

death.

All the error distributions derived in Chapter V, in association with the central mortality rates, 

i.e. the Poisson (Section 5.2) - gamma (Section 5.3), compound Poisson (Section 5.4) - gamma 

(Section 5.5) and normal error structure (Section 5.6), differ to an insignificant extent as 

illustrated in section 5.7. More specifically, the estimates of the parameters differ to an 

insignificant extent and the deviance (residuals), in association with the log link function, are 

identical with the Poisson model and the compound Poisson model. The same characteristics are 

obtained when employing the power link function.
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Initial mortality rates are associated with the (over - dispersed) binomial law distribution (Section 

6.2). Assuming a log link for the central rates, the canonical link function for central rates, the 

initial rates correspond to the complementary log-log model structure (Section 11.2.3).

Sverdrup (1965) argues that there is a real loss in information by disregarding the waiting time 

(Section 1.2). Therefore, it would be desirable for mortality investigations to be accomplished 

using the central exposed to risk and employing the associated techniques described in Chapter I.

In part III, a method for the construction of a mathematical models for age specific mortality 

trends through time is described. The method can be extended when more factors of mortality are 

involved (Section 7.2).

This method gives various mathematical expressions for mortality trends when employing the 

multiplicative model (Chapter VIII), the power model (Chapter IX), and the additive model 

(Chapter X) for male assured lives data, or the log - log model structure for pensioners data 

(Chapter XI).

The construction of a mathematical formula with independent variables age and time can be of 

considerable importance to insurance companies, when taking account of the change in mortality 

through time (in addition to age effects). This consideration is more important for pensioners’ and 

annuitants’ portfolios, since the (expected) improvement of mortality requires an increase in the 

level of the premiums and consequently of the mathematical reserves.

The log link function is deemed to be the most acceptable choice for the link for the central 

mortality rates, justified by the smooth progression imparted to the mortality trends when the log 

transformation is applied. For male assured lives, duration 5+, the log link gives the minimum 

deviance, in association with a polynomial predictor structure, in age and time effects, where 6 

parameters are needed for each calendar year (Section 8.2.2, model 8.4). Further, in association 

with a quadratic spline predictor structure in age effects and a fractional polynomial predictor 

structure in time effects, a flexible model is produced with a parsimonious number of parameters. 

The knots are located at the age points where the mortality curve changes curvature (Section 

8.2.3, model 8.12). In both cases, the detailed statistical results are acceptable.
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The power(2) model structure gives the least number of parameters (equal to 5), for male 

assured lives, duration 5+, in association with the highest deviance, when employing a 

polynomial predictor structure in age effects and a fractional polynomial predictor structure in 

time effects (Section 9.2.3, model 9.5). Also, when employing the power model structure in 

association with a quadratic polynomial predictor structure, in age and time effects, we obtain a 

parsimonious number of parameters (4) for each calendar year in question (Section 9.2.2, model 

9.3). Despite the lack of a theoretical justification for the choice of the power link function, the 

results produced are worthy of note.

The additive model produces sound results, for male assured lives, duration 5+, when it is 

associated with cubic spline functions in age effects and a fractional polynomial structure in time 

effects. The knots are located at the age points 47 and 64 for each calendar year (Section 

10.2.2, model 10.4).

Further, a different perspective, of the above approaches is exercised, by discussing mortality 

trends through time, for each age in question as regards the multiplicative model structure 

(Section 8.2.4), the power model structure (Section 9.2.4), and the additive model structure 

(Section 10.2.2).

Now, focusing on the range of ages [42, 89] we have derived some simple mathematical 

expressions in association with the multiplicative and power model structures. Especially for the 

multiplicative model, it seems that there exists a critical point in the neighbourhood of the age of 

42, where the mortality ‘development’ changes curvature, according to the principle of local 

description in Section 2.1. This feature is imparted to the power model structures as well. For the 

multiplicative model, a simple model structure is derived using a fractional polynomial structure 

in both age and time effects (Section 8.3, model 8.20). For the power model, again a simple 

model structure is presented, using a fractional polynomial structure in time effects and a 

polynomial predictor structure in age effects (Section 9.3, model 9.13).

In Chapter XI, the Complementary log - log model is applied for modelling pensioners, ages 

60 - 95, time period 1983 - 1990, using a polynomial structure in time effects and an inverse 

polynomial predictor structure in age effects (Section 11.2.2, model 11.2).
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By way of comparison we illustrate the impact of the age specific trend adjustment on male 

assures lives’ mortality rates and we plot the fitted force of mortality for the time period 1958 to 

1990 and the predicted force of mortality for the time period 1990 to 2010 against calendar 

year at 5 yearly age intervals in the following graphs, Figures 14.1-14.13.

Figure 14.1 : Crude and predicted - forecasting force of mortality vs. calendar year, based on 

model structures (8.14) - multiplicative model, (9.3) - power! 7) model. (9.6) - powers ) model

& (10.4) - additive model, age 25 years

Figure 14.2 : Crude and predicted - forecasting force of mortality vs. calendar year, based on 

model structures (8.14) - multiplicative model, (9.3) - power! 7) model, (9.6) - power!2) model

& (10.4) - additive model, age 30 years
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Figure 14.3 : Crude and predicted - forecasting force of mortality vs. calendar year, based on

model structures (8.14) - multiplicative model (9.3) - power(7) model, (9.6) - power(2) model

& (10.4) - additive model, age 35 years

Figure 14.4 : Crude and predicted - forecasting force of mortality vs. calendar year, based on 

model structures (8.14) - multiplicative model (9.3) - power(7) model, (9.6) - power(2) model

& (10.4) - additive model, age 40 years

-crude

- additive 

power(1)

- power(2)

multiplica
tive
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Figure 14.5 : Crude and predicted - forecasting force of mortality vs. calendar year, based on

model structures (8.14) - multiplicative model. (9.3) - power(7) model, (9.6) - power(2) model

& (10.4) - additive model, age 45 years

Figure 14.6 : Crude and predicted-forecasting force of mortality vs. calendar year, based on 

model structures (8.14) - multiplicative model, (9.3) - power(7) model, (9.6) - power(2) model

& (10.4) - additive model age 50 years
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Figure 14.7 : Crude and predicted-forecasting force of mortality vs. calendar year, based on

model structures (8.14) - multiplicative model. (9.3) - power!/) model, (9.6) - power(2) model

& (10.4) - additive model, age 55 years

-crude

-additive

multiplie! 
tive

Figure 14.8 : Crude and predicted - forecasting force of mortality vs. calendar year, based on 

model structures (8.14) - multiplicative model, (9.3) - powerf 1) model, (9.6) - power(2) model

& (10.4) - additive model, age 60 years

-crude

-additive

"  “  "  power(1) 

------- power(2)

multiplie! I 
tive
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Figure 14.9 : Crude and predicted - forecasting force of mortality vs. calendar year, based on

model structures (8.14) - multiplicative model, Î9. jy-power(7) model, (9,6) - power(2) model

& (10.4) - additive model age 65 years

Figure 14.10 : Crude and predicted - forecasting force of mortality vs. calendar year, ased on 

model structures (8.14) - multiplicative model. (9.3) - power(7~) model, (9.6) - power(2) model

& (10.4) - additive model, age 70 years

— crude

— additive

“  power(1)

—  power(2)
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tive

217



Figure 14.11 : Crude and predicted - forecasting force of mortality vs. calendar year, based on

model structures (8.14) - multiplicative model, (9.3) - power(7) model, (9.6) - poweriD model

& (10.4) - additive model, age 75 years

Figure 14.12 : Crude and predicted - forecasting force of mortality vs. calendar year, based on 

model structures (8.14) - multiplicative model, (9.3) - power(7) model. (9.6) - power(2) model

& (10.4) - additive model, age 80 years
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Figure 14.13 : Crude and predicted - forecasting force of mortality vs. calendar year, based on

model structures (8.14) - multiplicative model, (9.3) - power(7) model, (9.6) - power(2) model

& (10.4) - additive model, age 85 years

crude

additive

pcwer(1)

pcwer(2)

multiplica
five

As is shown in the above graphs, in the observed time period (1958 - 1990), the models do not 

differ greatly compared with the differences that occur in the forecasting time period (1990 - 

2010).

The poor goodness of fit, for the first ages (see for example Figure 14.1), is granted to the high 

level o f ‘noise’ in data.

All the graphs show a general decline in mortality rates except for the first ages (24 to 30) 

under the power(l) model structure where the force of mortality increases. This seems to be the 

result of the constant power parameter having somewhat less flexibility, in association with the 

parsimonious number of parameters employed. Both the power model structures show higher 

predicted mortality rates for the ranges of ages [25, 40] & [65, 80].

The additive model shows lower predicted mortality rates, and further it shows a faster decrease 

of mortality along time, for almost all the ages in question. Despite the fact that both the 

multiplicative and the power model structures reveal that the predicted mortality curves change 

their curvature during the time period involved, for all the ages in question, the additive model 

structure does not encompass this feature. Consequently, for the extrapolation of the mortality 

rates, based on this model structure, special conditions are needed, such as, for example, the
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presumption of the rapid decrease of the future mortality rates, in favour of the level of the 

premium or in favour of the level of the mathematical reserves.

The most conservative decline in predicted mortality rates seems to be for the multiplicative 

model, particularly for the range of ages [40, 65].

Further, it can be concluded that the rate of the mortality decrease reaches its maximum during 

the decade of 1980's for the range of ages 35 to SO, and during the decade of 1990's for the 

ages above the age of 80. This means that, on the basis of these models, there is expected to be a 

faster improvement in mortality for ages above 80 during the 1990's (Section 8.2.4, Figure 

8.15 & Section 9.2.4, Figure 9.13).

In all the model structures (Multiplicative, Power(2), Additive), for the male assured lives 

mortality experience, the linear predictor is modelled satisfactorily by fractional polynomials in 

time of the form

0x,t^ax +/3x -tk

for all the ages in question.

The Multiplicative model leads to the value k = 1.8 (Section 8.2.3, model 8.12), the Power(2) 

model the value k = 1.6, in association with the power link p  = 0.36 (Section 9.2.3, model 

9.5), and the Additive model the value k = 1.4 (Section 10.2.2, model 10.4). This suggest that 

fractional polynomials of the above form contain sufficient information needed for the 

mathematical modelling of the mortality trends in time effects (and this for all the available range 

of ages), in association with a parsimonious number of parameters. Anson (1988) argues that a 

two - dimensional mortality space is sufficient to represent the similarities and differences among 

human life tables, namely, the level of mortality (the rapidity with which mortality events occur, 

and hence in the longevity of the population), and its relative shape (the distribution of deaths at 

various ages). The structure of these fractional polynomials models justifies Anson’s argument, 

since only two parameters differentiate the mortality experience among different calendar years.

In Chapter XII, on the modelling of amounts, the approach developed for the graduation of 

‘amounts’ pays more attention to the intrinsic structure of the data than the approach currently 

advocated by the CMI Bureau. This approach provides some insight into the patterns of the 

claims amounts and of the modelling assumptions (while the CMI practice is simply to 

transform the data by dividing both the number of deaths and exposures by so - called variance
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ratios, before graduation proceeds). The methodology is strongly connected with the earlier work 

of Currie & Waters (1991) and of Renshaw (1992) on duplicate policies where the effects on the 

graduation approach are modelled through over - dispersion.

In part IV, Chapter XIII, duration is further classified in durations 0, 1, 2, 3 - 4 & 5+ for the 

male assured lives data. Chapter XIII describes the methodology for comparing mortality 

experiences and for constructing graduated mortality tables based on given standard tables. The 

analysis shows that durations 0, 1, 2 & 3 - 4  have similar mortality shapes, on the log scale, 

and that they are separated by the addition of a constant term, on the log scale, independent of age 

and time. Further, durations 0, 1, 2 & 3 - 4  can be constructed based on the mortality 

experience of duration 5+ by a simple mathematical formula (Section 13.3.4).

Similar results are obtained when comparing male assured lives, duration 5+, with pensioners 

mortality experience, for the calendar year 1990. The results indicate that the mortality 

experiences have similar relative shapes, on the log scale, and the only difference that exists is in 

the terms of their levels (Section 13.3.2).

Also, comparisons between pensioners and assured lives for durations 0, 1, 2 & 3 - 4  and 

assured lives for duration 5+ (taken as the given standard mortality experience), give a simple 

mathematical model structures for the construction of the mortality tables for pensioners and 

assured lives for durations 0,1,2 & 3 - 4  (Section 13.3.4, model 13.11).

The advantage of adopting this approach (rather than to model, in age and time effects, the data 

separately) depends on the fact that the age and (forecasting) time range for the constructed 

mortality tables can be extended beyond the (possible) confined ranges of age and time for the 

crude data alone but of course only as far as the standard mortality experiences’s age and time 

ranges allow. As an example, this could be important for pensioners’ and annuitants’ mortality 

tables (since the mortality experience is restricted in the time period 1983 - 1990 and age range 

60 - 90 years), if we advocate the above methodology and we construct mortality tables in age 

and time effects based on the mortality experience of the assured lives at durations 5+.
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CHAPTER XV

Appendix A

In the following Tables (15.1 - 15.7) the data (central exposed to risk based on policies - policy 

totals ceasing through death) for male assured lives, duration 5+, ages 24 - 89, for each calendar 

year (1958 - 1990) separately, are presented, as published by the CM1 Bureau of the Institute 

and Faculty of Actuaries.
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Table 15.1 : Central exposed to risk, for male assured lives, duration 5+, based on policies -
policy totals ceasing through death, ages 24 - 89, calendar year 1958 -1962

1958 1959 1960 1961 1962
24 5637.0 4 5983.5 10 6305.0 6 6772.0 3 7789.5 12
25 6857.5 8 6985.0 4 7400.5 4 7947.5 8 8806.0 7
26 10749.0 7 10445.0 7 10880.5 4 11602.5 11 12335.0 5
27 15506.5 13 15151.5 10 15060.5 18 15898.0 19 17233.0 12
28 19644.0 22 19701.0 13 19572.0 17 19849.0 15 21301.5 10
29 24778.5 21 24601.0 14 25075.0 19 25439.5 14 26145.5 23
30 30104.0 23 30018.0 26 30471.5 27 31446.5 18 32142.5 27
31 35299.0 35 35266.5 27 35825.5 32 36828.5 31 38217.0 26
32 40176.5 22 40380.5 38 40904.5 44 42024.5 47 43412.5 25
33 44063.0 39 45243.0 50 45993.5 39 46842.5 33 48336.5 37
34 47489.0 49 49026.5 50 50808.0 41 51816.5 47 52946.5 53
35 51095.0 46 52625.5 46 54754.0 46 56699.5 56 57843.0 54
36 55451.0 68 56021.5 73 58080.5 67 60497.0 59 62631.5 38
37 61963.0 67 60080.5 76 61110.5 61 63346.0 79 65836.5 68
38 67680.0 76 66628.0 73 65043.0 98 66253.0 98 68485.0 77
39 62296.5 71 72305.0 109 71679.0 109 70043.5 106 71145.5 96
40 55168.5 70 65551.0 99 76727.5 142 76020.0 111 73956.0 107
41 61547.5 103 58250.5 125 69704.0 135 81482.0 116 80486.0 152
42 70796.0 119 64570.5 114 61659.5 116 73715.5 160 86116.5 149
43 77043.0 170 73829.0 163 67837.5 155 64889.0 157 77336.5 164
44 82491.5 204 80129.5 186 77366.0 193 71064.0 179 67748.0 119
45 86635.0 220 84886.5 222 83169.5 224 80301.0 204 73433.5 188
46 88146.5 252 89106.0 251 88115.5 238 86228.5 257 82935.0 272
47 89647.5 323 90532.0 293 92205.0 322 91143.0 311 88757.0 329
48 92859.0 353 91714.5 316 93288.5 352 94843.5 328 93408.0 361
49 94786.0 447 94309.0 434 93795.0 404 95362.5 473 96741.0 376
50 93833.5 453 94277.0 479 94751.5 476 94289.5 407 95509.5 424
51 91337.5 549 93775.0 542 94824.0 519 95199.0 452 94513.0 507
52 87577.5 522 91337.0 611 94546.5 563 95547.0 564 95565.5 547
53 84911.5 621 87277.0 605 91628.0 649 94740.0 651 95545.0 612
54 81714.0 697 84025.5 714 87200.0 680 91473.5 680 94116.0 721
55 76256.5 693 78460.5 704 81482.0 754 84545.5 678 88218.5 780
56 71171.5 766 73447.0 712 76226.0 763 79204.0 811 81911.0 826
57 66284.0 763 69198.5 764 72025.0 704 74721.5 808 77442.0 800
58 61078.5 784 64174.5 844 67496.5 882 70394.5 910 72880.5 837
59 53745.5 793 57968.5 839 61398.5 906 64709.0 840 67355.5 924
60 39848.0 628 42770.0 726 46643.0 732 49601.5 785 52092.5 761
61 33166.0 587 33866.5 624 36723.0 610 40134.0 682 42602.5 756
62 29804.5 616 30603.5 618 31557.0 582 34332.5 620 37476.5 733
63 26708.5 561 27520.0 591 28528.5 600 29572.5 632 32046.5 726
64 23902.5 572 24033.0 575 25030.5 646 26044.5 650 26916.5 673
65 16220.5 410 15831.0 425 16016.5 416 16684.5 399 16995.0 439
66 11848.0 349 11560.0 326 11331.5 283 11427.5 316 11751.5 397
67 10130.5 292 9978.5 275 9899.0 267 9749.0 281 9739.5 278
68 9044.0 317 8876.5 330 8906.5 247 8900.5 308 8660.5 289
69 8305.5 302 8070.5 322 8030.5 273 8067.0 304 8012.0 294
70 7592.0 323 7351.0 324 7249.0 318 7252.0 324 7202.5 318
71 7009.5 341 6845.5 282 6688.5 311 6624.5 291 6588.5 282
72 6565.5 363 6379.5 337 6284.0 299 6166.0 329 6063.5 289
73 6115.5 320 5947.5 314 5853.0 255 5799.0 304 5665.5 298
74 5699.0 354 5549.5 375 5431.5 326 5386.5 306 5331.5 297
75 5294.5 343 5119.5 328 5003.5 292 4905.0 360 4832.0 332
76 4954.5 383 4757.0 307 4652.0 366 4531.5 315 4427.0 325
77 4697.5 422 4452.5 352 4283.0 340 4191.0 359 4073.0 363
78 4397.0 453 4213.5 335 4017.5 350 3853.0 326 3766.5 320
79 3926.5 392 3852.5 372 3757.5 398 3585.0 313 3431.5 379
80 3382.5 349 3331.5 391 3266.0 404 3190.0 369 3053.0 322
81 2928.0 302 2948.0 322 2892.0 325 2814.5 332 2719.5 307
82 2543.5 320 2550.0 318 2565.5 308 2531.5 361 2456.0 300
83 2227.0 354 2183.0 301 2197.0 291 2168.0 335 2157.0 296
84 1908.0 287 1861.5 292 1844.0 305 1851.5 298 1823.0 315
85 1624.0 271 1571.0 291 1534.0 234 1539.0 233 1520.5 297
86 1297.0 228 1330.5 253 1308.5 219 1290.0 242 1261.0 231
87 988.5 225 1041.0 192 1090.0 227 1064.0 191 1046.5 235
88 756.5 187 774.5 171 831.5 195 882.5 204 834.0 189
89 577.5 126 579.0 170 594.0 127 630.5 154 685.0 135
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Table 15.2 : Central exposed to risk, for male assured lives, duration 5+, based on policies -
policy totals 'ceasing through death, ages 24 - 89. calendar year 1962-1967

1963 1964 1965 1966 1967
24 9051.0 7 9888.0 6 11111.0 10 13445.0 6 15770.0 12
25 10343.5 14 12392.0 11 14170.5 15 16083.0 12 18988.0 17
26 13391.5 10 14817.0 10 17588.0 17 20077.0 16 22104.0 20
27 18542.5 16 20108.0 12 22384.0 22 25479.0 13 27712.0 15
28 23203.0 18 25070.5 18 27751.5 27 30614.0 30 33461.0 29
29 28184.5 23 30721.0 29 33689.0 32 36778.0 15 39122.0 32
30 33230.5 38 35896.0 19 39546.5 39 42842.0 28 45545.0 26
31 39059.0 35 40522.5 36 44280.5 43 48170.0 39 50798.5 29
32 44960.0 43 46111.5 42 48586.0 39 52369.0 47 55213.0 35
33 50039.0 32 51825.5 49 53871.0 45 56129.0 45 58694.5 45
34 54645.0 44 56573.0 57 59489.5 54 61409.0 55 62123.0 47
35 59224.0 50 61333.5 52 64532.0 50 67236.0 43 67405.5 49
36 63711.5 87 65286.0 64 68675.5 61 71815.0 101 72970.0 74
37 67987.5 75 69359.0 91 72183.0 104 75529.0 83 77123.5 81
38 70860.5 69 73376.5 90 76095.5 87 78820.0 81 80487.0 100
39 73259.0 97 75961.0 105 79818.0 104 82469.0 116 83379.0 114
40 74952.0 108 77431.5 135 81815.0 119 85405.0 113 85683.0 110
41 78039.5 138 79307.0 148 83335.5 141 87588.0 149 89035.5 127
42 85022.0 160 82587.0 175 85189.5 166 88886.0 223 91030.5 148
43 90316.5 192 89454.5 200 88356.5 163 90687.0 193 92091.0 204
44 80519.0 187 94399.0 229 95404.0 238 93798.0 188 93376.5 184
45 69973.5 197 83502.5 192 99816.0 275 100272.0 275 95478.5 223
46 75825.0 211 72450.0 278 88222.0 266 104505.0 294 102143.5 272
47 86646.0 323 79583.5 288 75975.0 279 91539.0 261 105706.0 378
48 90913.0 377 87427.0 353 81676.0 335 78931.0 288 92400.0 312
49 95032.0 370 92741.0 356 90933.0 345 84321.0 378 79057.5 329
50 96893.0 490 95568.5 433 95210.5 423 92645.0 471 83264.5 384
51 95696.0 556 97461.5 511 98117.0 548 96990.0 429 91549.0 468
52 94852.5 588 96291.0 556 100005.0 593 99949.0 556 95833.0 530
53 95505.0 639 95045.0 580 98546.5 669 101475.0 732 98379.0 663
54 94755.5 743 95102.5 720 96840.0 786 99643.0 688 99302.0 717
55 90619.0 790 91496.5 847 94024.5 865 95217.0 790 95044.0 729
56 85319.5 868 88006.0 800 90897.0 873 92744.0 835 91133.0 874
57 79925.0 1006 83479.0 913 88066.5 903 90277.0 904 89207.0 901
58 75270.0 906 77867.5 945 83145.5 978 87096.0 1003 86669.5 991
59 69737.5 996 72191.0 915 76203.0 1064 80818.0 951 82182.0 1003
60 54101.5 853 56619.5 844 60269.0 942 63237.0 883 64802.0 889
61 44815.5 831 46757.5 764 50095.5 904 53417.0 870 54702.0 827
62 39783.5 800 42100.0 745 45165.5 937 47944.0 880 49262.5 857
63 34884.0 787 37332.5 712 40412.5 878 42933.0 809 44281.0 783
64 29273.0 696 32057.5 764 34934.0 868 37498.0 907 38671.0 837
65 17229.5 458 18671.0 480 20528.0 520 21560.0 566 21983.0 509
66 11950.5 351 12152.5 326 13155.0 341 14064.0 380 14156.0 347
67 10018.0 311 10229.0 281 10460.5 334 11154.0 310 11557.5 279
68 8599.5 307 8897.0 274 9115.0 303 9182.0 314 9601.5 304
69 7793.0 287 7762.0 302 8119.5 285 8209.0 297 8013.0 296
70 7019.5 303 6794.0 288 6842.0 272 7069.0 290 6984.5 242
71 6504.5 270 6339.5 290 6216.0 274 6216.0 250 6230.0 264
72 6024.0 302 5950.0 298 5838.5 304 5723.0 281 5527.0 270
73 5532.0 328 5495.0 312 5510.0 271 5392.0 281 5139.5 259
74 5162.5 309 5029.0 280 5072.0 305 5058.0 303 4846.0 279
75 4726.5 357 4617.0 296 4561.5 252 4498.0 317 4409.0 233
76 4347.5 315 4248.0 309 4212.0 270 4123.0 294 3981.0 229
77 3945.5 353 3884.0 303 3832.0 300 3794.0 280 3674.0 252
78 3634.5 330 3527.0 298 3508.5 294 3461.0 295 3356.0 287
79 3356.0 304 3250.5 304 3173.0 296 3154.0 311 3069.5 228
80 2945.0 308 2871.5 309 2772.0 285 2718.0 270 2652.5 253
81 2582.5 296 2585.5 254 2577.5 260 2446.0 301 2318.5 275
82 2365.5 291 2275.5 252 2253.5 286 2214.0 274 2093.5 212
83 2134.0 303 2071.5 249 1995.0 258 1918.0 273 1869.5 233
84 1810.5 317 1807.0 226 1777.5 263 1705.0 232 1602.0 228
85 1469.5 237 1502.5 225 1530.0 227 1476.0 250 1399.0 205
86 1228.0 271 1215.0 224 1258.5 212 1279.0 209 1228.5 182
87 1013.5 195 981.0 170 973.5 213 1004.0 180 1036.0 160
88 804.5 209 811.0 157 789.5 175 785.0 167 808.5 151
89 661.0 150 626.0 165 637.0 141 629.0 138 625.5 121
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Table 15.3 : Central exposed to risk, for male assured lives, duration 5+, based on policies -
policy totals ceasing through death, ages 24 - 89, calendar year 1968 -1972
1968 1969 1970 1971 1972

24 16888.0 11 17329.0 13 19772.0 14 21307.0 19 19635.0 21
25 21999.0 11 23459.5 26 23717.0 24 27146.0 20 29223.0 20
26 25743.0 18 29708.5 23 31554.0 27 31931.0 32 36567.0 32
27 30208.0 25 35519.5 19 40585.0 24 42668.0 38 43101.0 32
28 35448.0 25 38509.5 21 44992.0 35 50797.0 36 53013.0 32
29 41825.0 33 43759.5 47 47086.0 23 54410.0 42 61211.0 29
30 48117.0 25 51003.0 34 52265.0 40 55257.0 41 63691.0 37
31 53405.0 44 56731.5 50 59593.0 32 60050.0 37 63389.0 42
32 57699.0 41 61135.0 36 64845.0 51 67378.0 41 67342.0 45
33 61559.0 38 64960.0 46 68762.0 58 72372.0 44 74740.0 52
34 64523.0 34 68475.5 59 72468.0 45 76074.0 70 79635.0 55
35 67656.0 45 71218.0 60 75940.0 72 79718.0 65 83444.0 73
36 72674.0 82 73816.0 68 77973.0 83 82439.0 66 86252.0 74
37 77602.0 83 78390.0 63 79920.0 68 83676.0 77 88735.0 78
38 81406.0 83 83121.0 105 84550.0 107 85531.0 85 89479.0 102
39 84276.0 93 75677.5 115 77980.0 103 89996.0 124 91229.0 120
40 85951.0 94 77542.5 103 80727.0 100 93683.0 113 95140.0 117
41 88451.0 133 80372.5 180 84006.0 167 96822.0 153 98950.0 144
42 91659.0 151 82678.0 183 85278.0 180 98417.0 145 101753.0 176
43 93050.0 162 85174.5 156 87276.0 218 99521.0 209 103062.0 194
44 93613.0 195 86514.0 208 89515.0 247 100659.0 187 103521.0 191
45 93748.0 235 85936.0 245 90225.0 251 102560.0 254 103995.0 258
46 96213.0 275 86336.5 303 89658.0 289 103232.0 293 105782.0 297
47 102337.0 298 88319.0 322 89609.0 319 102165.0 348 105850.0 334
48 105829.0 362 94317.0 383 91368.0 387 101982.0 360 104727.0 366
49 91847.0 381 107268.0 485 107020.0 474 103231.0 436 103813.0 419
50 77241.0 379 91934.0 421 108217.0 498 107272.0 502 103896.0 437
51 81508.0 484 77069.0 377 93807.0 511 109843.0 581 107951.0 568
52 89510.0 506 80878.0 474 77555.0 461 93655.0 472 109857.0 650
53 93383.0 628 88642.5 548 81070.0 551 77209.0 443 94093.0 593
54 95181.0 671 92015.0 663 88248.0 682 80230.0 532 76873.0 545
55 93834.0 731 91545.0 725 89910.0 662 85818.0 717 78020.0 671
56 90063.0 817 90516.0 848 89869.0 785 87682.0 778 83896.0 704
57 86794.0 841 87448.0 860 89184.0 923 87970.0 830 85772.0 841
58 84670.0 958 83788.0 985 85736.0 938 86847.0 948 85492.0 904
59 81141.0 996 80657.0 1034 80718.0 920 81968.0 862 83112.0 958
60 65316.0 973 65533.0 950 66101.0 915 66454.0 803 67844.0 861
61 55833.0 818 57162.5 926 58125.0 907 58145.0 863 58318.0 810
62 50186.0 855 51821.5 872 53646.0 964 54502.0 875 54388.0 865
63 45327.0 870 46755.0 903 48754.0 976 50323.0 911 51040.0 922
64 39662.0 858 40972.0 875 42465.0 877 43962.0 898 45344.0 934
65 22105.0 544 22550.0 597 23950.0 554 24827.0 546 25489.0 591
66 14166.0 344 14199.5 370 14354.0 401 14547.0 346 14817.0 353
67 11584.0 353 11658.5 333 11636.0 309 11667.0 274 11882.0 313
68 9911.0 302 9980.5 317 10123.0 343 10051.0 264 10105.0 323
69 8357.0 251 8687.0 294 8784.0 304 8899.0 247 8819.0 312
70 6822.0 259 7196.5 275 7514.0 311 7595.0 280 7723.0 306
71 6147.0 274 6062.5 242 6440.0 250 6699.0 321 6735.0 290
72 5487.0 263 5524.5 235 5507.0 302 5810.0 272 5992.0 261
73 4951.0 254 5000.0 259 5017.0 268 4997.0 213 5303.0 313
74 4587.0 267 4459.0 258 4565.0 283 4594.0 255 4555.0 259
75 4229.0 310 4033.5 268 3978.0 249 4079.0 233 4103.0 258
76 3878.0 262 3720.5 281 3599.0 252 3564.0 224 3641.0 255
77 3542.0 293 3466.5 275 3364.0 267 3235.0 233 3185.0 221
78 3237.0 264 3159.0 257 3080.0 268 2977.0 255 2894.0 231
79 2941.0 294 2835.0 249 2812.0 232 2745.0 187 2642.0 263
80 2588.0 282 2523.0 242 2441.0 213 2431.0 215 2366.0 231
81 2225.0 256 2214.5 238 2211.0 233 2137.0 234 2111.0 213
82 1979.0 233 1929.0 239 1934.0 197 1918.0 219 1854.0 225
83 1800.0 199 1710.0 213 1668.0 233 1662.0 189 1655.0 208
84 1559.0 220 1529.5 215 1446.0 195 1413.0 181 1429.0 190
85 1309.0 198 1276.0 195 1273.0 191 1198.0 171 1164.0 175
86 1156.0 210 1087.5 185 1049.0 175 1025.0 158 960.0 163
87 1015.0 223 939.5 205 870.0 150 845.0 168 839.0 150
88 822.0 173 783.5 164 723.0 124 684.0 137 667.0 144
89 645.0 124 649.5 126 623.0 130 584.0 103 544.0 116
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Table 15.4 : Central exposed to risk, for male assured lives, duration 5+, based on policies -
DOlicv totals ceasing through death, ages 2 4  - 89, calendar year 1973 - 1977
1973 1974 1975 1976 1977

24 18204.0 9 17460.0 11 17233.3 12 17512.8 13 17972.9 11
25 26780.0 19 24889.0 14 24113.0 17 24066.8 18 24060.9 18
26 39492.0 32 36167.0 25 33787.0 16 32941.2 17 32232.0 22
27 49405.0 42 53227.0 38 48592.7 33 45428.4 20 43393.0 23
28 53979.0 26 62055.0 34 67113.5 41 62048.1 41 57404.8 33
29 64357.0 52 65278.0 44 75294.0 39 82059.2 51 75325.4 49
30 72353.0 48 75669.0 49 76489.5 55 89814.5 51 97427.1 56
31 73390.0 41 82759.0 38 86443.1 40 88361.1 65 103128.4 58
32 71420.0 53 82335.0 44 92711.3 54 97551.2 55 99023.1 65
33 74913.0 47 79175.0 59 90831.5 58 103328.0 68 108234.4 71
34 82806.0 68 82288.0 65 86258.0 58 100287.2 75 113199.3 79
35 87832.0 71 90736.0 67 89445.5 68 94609.3 68 109273.4 83
36 91051.0 90 95416.0 87 97960.5 62 97241.2 91 101785.6 99
37 93369.0 85 98007.0 80 102383.0 104 105872.1 120 104089.1 67
38 95470.0 95 99915.0 120 104321.6 85 109789.6 118 112308.5 124
39 95915.0 101 101805.0 107 106032.7 94 111424.2 143 115823.1 146
40 97134.0 96 101472.0 111 107324.1 112 112697.4 115 116874.9 146
41 100936.0 142 102610.0 132 106814.9 146 113720.4 172 117912.9 152
42 104717.0 173 106452.0 144 107540.0 166 112604.2 178 118549.5 170
43 106970.0 215 109697.0 221 111115.1 210 113012.3 193 116890.9 200
44 107900.0 226 111561.0 224 114198.7 241 116159.9 214 116666.6 223
45 107585.0 257 111584.0 293 114979.9 280 118474.0 249 119146.1 257
46 107810.0 288 111292.0 286 115130.5 286 118948.7 306 121018.2 269
47 108936.0 323 110678.0 326 114069.3 354 118552.1 362 121085.3 335
48 108749.0 384 111613.0 351 113237.7 341 117067.7 353 119915.3 351
49 106939.0 437 110736.0 384 113616.2 414 115647.1 412 118025.6 421
50 104770.0 495 107882.0 448 111784.9 487 114754.8 531 115126.7 481
51 104950.0 473 105878.0 509 109003.8 543 112696.7 495 113976.4 486
52 108733.0 561 105684.0 569 106914.7 590 110272.2 491 112562.5 559
53 110843.0 755 109282.0 678 106427.5 614 107587.6 638 109450.0 595
54 94230.0 582 110917.0 829 109498.7 754 106611.4 719 106305.5 757
55 75014.0 553 92272.0 653 109142.6 804 107581.9 771 103436.8 709
56 76688.0 679 73337.0 616 91013.1 719 107507.0 916 104297.2 790
57 81830.0 832 74774.0 707 72197.5 567 89630.0 781 104588.0 1018
58 83734.0 870 80186.0 833 73626.9 706 70876.1 635 86933.3 804
59 82145.0 955 80616.0 936 77647.6 832 70974.1 720 67663.0 758
60 69340.0 835 68733.0 845 68043.0 809 65646.3 842 59427.0 710
61 59998.0 773 61540.0 911 61920.8 886 61125.7 882 58247.4 846
62 54793.0 906 56607.0 841 58683.2 923 58740.3 897 57125.8 869
63 51119.0 918 51610.0 914 53840.6 854 55545.5 913 54808.6 890
64 46399.0 934 46550.0 959 47349.9 872 49129.1 886 50039.5 879
65 26386.0 557 26491.0 534 26533.1 555 26599.4 539 27029.0 509
66 15179.0 342 15311.0 341 15604.0 353 15162.4 333 14491.1 305
67 12171.0 324 12304.0 310 12541.5 328 12589.9 313 12141.9 285
68 10375.0 303 10557.0 276 10819.5 267 10938.5 296 10821.5 280
69 8903.0 283 9147.0 321 9486.5 288 9660.8 275 9647.6 250
70 7708.0 279 7792.0 248 8190.2 248 8463.3 311 8512.5 278
71 6864.0 261 6800.0 294 7127.2 251 7494.9 293 7567.2 269
72 6112.0 246 6296.0 275 6434.9 288 6623.4 288 6836.8 281
73 5494.0 286 5639.0 285 5967.4 273 5935.8 246 6061.1 288
74 4805.0 262 4977.0 250 5262.1 287 5494.4 239 5457.1 260
75 4069.0 248 4258.0 298 4588.1 281 4745.3 265 4933.5 262
76 3679.0 264 3640.0 237 3939.1 247 4146.4 285 4262.0 284
77 3265.0 278 3297.0 197 3437.4 248 3578.0 250 3687.3 253
78 2826.0 241 2916.0 226 3132.1 218 3141.6 245 3213.1 224
79 2585.0 223 2530.0 211 2688.0 208 2795.7 253 2814.1 212
80 2237.0 247 2169.0 195 2266.2 188 2344.8 233 2378.5 215
81 2055.0 212 1971.0 198 2045.4 235 1976.6 185 2012.0 205
82 1844.0 226 1794.0 212 1805.0 186 1775.6 185 1726.2 156
83 1612.0 207 1585.0 205 1646.7 187 1573.7 163 1537.7 168
84 1415.0 208 1358.0 186 1420.2 189 1396.9 193 1316.7 151
85 1165.0 147 1153.0 177 1209.0 182 1150.6 158 1124.5 148
86 958.0 155 963.0 160 1025.5 165 975.2 150 921.2 143
87 784.0 135 787.0 134 885.4 149 849.4 130 801.5 131
88 676.0 136 627.0 128 679.5 111 733.1 152 693.6 101
89 521.0 121 538.0 105 569.9 109 552.8 106 570.4 102
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Table 15.5 : Central exposed to risk, for male assured lives, duration 5+, based on policies -
policy totals ceasing through death, ages 24 - 89, calendar year 1978 - 1982
1978 1979 1980 1981 1982

24 18673.3 11 19187.4 15 17233.3 12 18898.3 10 17089.8 10
25 25033.5 12 25788.9 21 24113.0 17 25447.0 15 23324.5 25
26 32468.0 16 33138.5 16 33787.0 16 32649.5 26 29946.5 17
27 42406.8 25 41830.5 27 48592.7 33 41462.8 21 37802.8 20
28 55001.5 32 52591.3 27 67113.5 41 51216.3 25 46948.3 20
29 70722.8 43 66387.3 39 75294.0 39 61403.8 33 56913.3 37
30 90123.0 65 82899.3 44 76489.5 55 73408.3 42 66963.0 34
31 113237.0 76 102976.8 58 86443.1 40 87952.3 42 78883.3 38
32 117360.8 60 126274.9 59 92711.3 54 104647.5 57 92983.5 75
33 111354.3 57 128857.8 96 90831.5 58 124723.8 84 109355.8 79
34 120231.3 86 121252.8 78 86258.0 58 149156.5 116 129431.3 67
35 125212.8 102 130162.5 116 89445.5 68 149511.3 107 154166.0 98
36 119531.8 119 134398.4 97 97960.5 62 138930.5 95 153700.8 111
37 110773.0 109 127313.9 116 102383.0 104 146951.8 127 141387.0 97
38 112358.3 94 117268.0 85 104321.6 85 149666.8 126 149525.8 168
39 120549.8 133 118593.0 113 106032.7 94 140519.5 120 151491.8 112
40 123568.8 167 126209.8 143 107324.1 112 128133.0 118 141513.3 160
41 124447.3 146 129372.4 170 106814.9 146 128269.0 146 128585.5 154
42 125118.5 181 129717.8 185 107540.0 166 135762.5 174 128459.0 168
43 125124.5 200 129817.4 195 111115.1 210 138184.3 206 135847.3 179
44 122935.3 204 129345.8 224 114198.7 241 137460.3 222 137628.3 237
45 121676.3 241 126068.8 240 114979.9 280 136109.3 233 135705.0 257
46 123863.3 277 124599.8 270 115130.5 286 134224.5 305 134062.5 292
47 125329.5 325 126316.1 315 114069.3 354 130095.0 282 131680.8 289
48 124518.0 334 127421.5 378 113237.7 341 127735.8 297 127435.5 310
49 122927.8 359 126014.3 475 113616.2 414 128381.5 400 124456.8 356
50 119629.8 461 123159.4 494 111784.9 487 127595.5 485 123940.8 408
51 116722.8 542 119819.9 506 109003.8 543 125012.8 552 123187.5 502
52 115654.3 598 116988.4 563 106914.7 590 121944.3 535 120570.0 536
53 113638.8 716 115516.5 685 106427.5 614 118421.5 606 117457.3 588
54 109899.5 629 112949.8 721 109498.7 754 114745.5 651 113770.3 601
55 104859.0 737 107393.1 711 109142.6 804 110778.3 723 108065.3 675
56 102241.8 823 102758.0 767 91013.1 719 106696.8 814 104632.0 738
57 103148.8 872 100546.8 802 72197.5 567 102034.8 876 101153.0 769
58 103448.3 1036 101367.5 933 73626.9 706 97998.0 900 96515.3 819
59 84941.3 820 100322.3 1076 77647.6 832 94520.3 1014 91519.5 901
60 58063.8 654 73185.3 771 68043.0 809 83599.5 914 78662.0 752
61 53886.5 675 52390.3 614 61920.8 886 76923.8 1009 73163.0 895
62 55504.0 770 51243.1 778 58683.2 923 61575.0 805 70715.8 1006
63 54434.3 921 52612.5 875 53840.6 854 46377.0 767 56201.5 825
64 50383.0 907 49650.1 791 47349.9 872 43477.8 693 40697.3 685
65 27923.3 549 27473.3 521 26533.1 555 25362.0 468 22014.0 370
66 14942.3 324 15089.0 293 15604.0 353 14318.0 260 13199.3 288
67 12018.3 249 12144.4 263 12541.5 328 11903.0 222 11231.3 217
68 10719.8 286 10417.8 255 10819.5 267 10555.3 264 10108.5 224
69 9799.8 322 9549.3 264 9486.5 288 9318.5 261 9213.0 243
70 8653.3 264 8653.3 289 8190.2 248 8266.3 249 8138.8 224
71 7795.8 257 7821.8 277 7127.2 251 7702.3 275 7370.0 236
72 7083.0 276 7203.4 258 6434.9 288 7221.0 269 6915.3 239
73 6395.8 281 6573.9 290 5967.4 273 6695.0 310 6533.5 242
74 5616.5 266 5922.4 280 5262.1 287 6178.8 293 6017.3 275
75 4971.5 285 5066.0 269 4588.1 281 5550.3 292 5500.3 303
76 4506.8 258 4517.4 268 3939.1 247 4852.0 262 4897.5 291
77 3883.8 261 4093.0 280 3437.4 248 4224.5 279 4314.0 251
78 3391.0 284 3499.0 219 3132.1 218 3708.5 213 3760.3 250
79 2934.0 232 3053.0 236 2688.0 208 3360.8 243 3332.8 287
80 2467.0 245 2559.3 212 2266.2 188 2784.8 264 2762.5 257
81 2083.3 194 2145.4 204 2045.4 235 2371.8 248 2307.3 206
82 1779.0 171 1842.8 188 1805.0 186 2004.5 194 1987.0 201
83 1534.5 168 1579.3 157 1646.7 187 1675.8 182 1698.5 208
84 1295.5 150 1314.0 142 1420.2 189 1376.8 175 1348.5 133
85 1107.3 137 1180.0 154 1209.0 182 1092.5 131 1065.8 140
86 940.5 157 982.8 125 1025.5 165 927.5 140 854.3 116
87 755.3 133 807.6 101 885.4 149 774.0 107 737.8 118
88 652.0 103 659.1 106 679.5 111 639.5 93 603.0 102
89 577.8 96 580.5 120 569.9 109 532.0 89 500.8 86
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Table 15.6 : Central exposed to risk, for male assured lives, duration 5+, based on policies -
policy totals ceasing through death, ages 24 - 89, calendar year 1983 - 1987
1983 1984 1985 1986 1987

24 15503.0 8 13898.3 4 13063.8 6 11643.5 9 9400.3 5
25 21098.3 13 18364.8 16 16995.5 15 15312.3 9 12435.5 9
26 27169.3 13 23600.3 17 21498.8 16 19147.8 14 15615.3 6
27 34092.3 30 29458.8 16 27057.8 7 23672.8 15 19167.3 17
28 42159.5 24 36301.3 29 33340.0 26 29459.8 16 23197.8 6
29 51322.3 33 44202.5 27 40489.0 16 35755.8 22 28450.0 7
30 61257.0 32 53217.8 27 48835.0 31 42797.5 26 33790.3 19
31 71159.5 42 62809.8 35 58330.0 39 51190.5 22 40176.5 23
32 82972.0 51 72361.3 35 67554.0 36 60001.8 29 47227.5 25
33 97241.5 60 83996.3 39 77571.8 64 69372.8 39 54786.8 34
34 113668.5 74 97958.5 55 89235.0 47 78854.0 54 62905.5 39
35 134331.0 114 114753.0 78 103681.3 57 90521.8 59 71434.5 44
36 159572.0 102 135133.3 81 120870.8 102 105022.3 74 81360.3 47
37 158037.8 134 160225.0 118 141784.8 109 121915.8 98 93797.5 68
38 145712.5 123 158627.0 156 167277.3 160 142669.8 147 108726.5 104
39 153503.3 133 145546.5 115 163539.8 138 166632.5 141 126725.8 99
40 155320.8 158 152933.0 137 150652.8 139 163142.8 191 147468.0 123
41 144959.0 181 154727.3 156 158193.0 221 150365.5 162 146111.5 153
42 131932.0 163 144183.0 154 159559.5 174 157620.0 188 133678.5 110
43 131599.8 191 130790.0 172 148057.3 186 158330.0 163 139933.0 194
44 139099.0 229 130484.3 235 134425.5 219 146777.0 252 140964.8 190
45 140379.8 237 137137.5 268 133718.8 243 132885.5 204 130230.8 254
46 138693.3 298 138471.5 290 140443.3 281 131926.3 269 117778.5 219
47 136754.0 357 136332.5 292 141531.0 290 138323.3 283 116122.8 232
48 134219.5 340 134407.0 349 139262.5 315 139347.5 350 121834.5 285
49 129335.5 403 131579.0 405 137017.0 357 136546.8 325 122200.5 293
50 125563.3 471 125681.8 392 133229.8 443 133561.5 427 119085.8 329
51 125332.8 461 122472.3 430 127383.3 442 129855.0 433 116519.5 364
52 124710.5 452 122599.5 503 124617.0 526 124776.0 509 113640.5 461
53 121889.8 525 121932.5 557 124658.8 557 121987.0 499 109423.8 429
54 118369.0 658 118974.5 624 123999.5 582 121780.0 578 106391.8 458
55 112648.3 726 113591.0 610 118704.0 622 119114.0 678 104574.0 581
56 107410.3 775 108392.3 711 113837.0 686 114582.5 678 102815.8 587
57 104566.8 802 103937.5 752 109152.5 776 110284.8 729 99458.8 735
58 100872.0 898 101175.8 795 104973.0 832 105980.0 839 95796.5 694
59 95061.5 876 96386.3 828 100454.8 868 99926.0 894 90630.0 775
60 80208.3 857 80880.0 823 85803.3 791 86334.5 893 76679.5 707
61 72180.8 835 71421.3 814 74862.3 874 76349.8 856 68610.0 745
62 70192.5 926 67606.3 845 69459.0 865 70030.3 853 63705.0 781
63 67666.3 1117 65458.3 1022 65707.0 969 64563.8 916 58093.3 787
64 52280.8 806 60960.3 1027 59814.8 947 56455.5 893 50515.0 755
65 22210.5 403 27822.0 481 33556.5 634 32070.3 514 27921.5 462
66 12455.3 229 11933.0 202 15426.8 284 18144.0 289 15932.8 301
67 11067.8 247 10055.5 185 10327.8 247 12940.8 250 13522.8 266
68 10097.5 195 9714.8 242 9400.8 209 9184.3 194 10338.3 203
69 9371.5 290 9165.5 228 9329.3 238 8563.8 193 7465.3 175
70 8533.5 239 8542.3 218 8965.8 249 8718.3 254 7188.0 194
71 7712.0 266 7923.8 259 8484.8 238 8460.5 209 7282.0 222
72 7046.5 232 7245.3 227 7930.5 276 8114.3 253 7171.0 220
73 6721.5 286 6688.5 282 7293.5 262 7537.3 294 6751.8 265
74 6263.0 242 6268.0 225 6675.5 271 6874.0 299 6297.0 271
75 5689.3 307 5786.0 258 6172.8 266 6161.8 261 5629.3 224
76 5115.5 257 5216.8 295 5756.0 286 5784.5 314 5037.3 257
77 4601.8 268 4698.0 249 5188.8 316 5404.3 323 4725.8 205
78 4089.5 282 4205.5 242 4720.8 300 4823.8 288 4444.8 269
79 3515.8 257 3685.0 251 4228.5 289 4413.3 313 3954.3 231
80 2947.3 241 3066.3 260 3514.3 275 3695.3 257 3485.3 259
81 2529.0 241 2604.0 209 2961.5 304 3090.3 243 2946.3 217
82 2100.8 212 2216.5 193 2527.3 220 2629.3 217 2516.3 205
83 1828.5 223 1837.0 211 2143.5 206 2269.8 260 2116.5 202
84 1484.8 168 1519.8 173 1732.5 204 1851.5 211 1720.0 146
85 1156.5 128 1185.3 130 1375.3 165 1418.3 181 1361.3 160
86 924.8 122 969.5 137 1112.5 158 1153.3 130 1077.3 131
87 741.5 116 763.8 91 918.3 126 936.5 124 895.3 107
88 621.3 90 624.3 116 732.5 98 798.3 123 735.0 113
89 522.0 116 493.0 72 564.5 93 600.5 79 595.0 86
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Table 15.7: Central exposed to risk, for male assured lives, duration 5+. based on policies -
Dolicv totals ceasins through death, aees 24 - 89. calendar year 1

1988 1989 1990
24 8158.0 11 7305.5 3 6939.0 2
25 11393.5 7 10603.5 6 9523.3 2
26 14545.8 8 13999.8 11 12892.3 3
27 17753.0 6 17234.5 11 16097.5 9
28 21218.8 18 20509.5 13 19124.8 8
29 25463.0 5 24225.5 6 22491.8 16
30 30553.5 16 28861.3 14 26169.8 14
31 35914.5 24 34225.3 23 30659.8 17
32 41841.8 19 39797.5 17 36162.3 29
33 48290.3 25 45912.0 28 41508.8 28
34 55446.8 33 52523.0 26 47326.0 33
35 63456.5 39 60101.0 62 53768.3 33
36 71528.3 30 68307.5 39 61017.8 57
37 81055.8 50 76757.8 63 69190.3 57
38 92998.5 54 86632.0 83 77299.8 64
39 107286.8 91 99022.8 83 87220.3 83
40 124850.5 101 113532.0 107 99177.3 86
41 146965.0 142 131712.8 144 113412.8 122
42 144688.8 138 154268.8 151 131393.3 132
43 131854.3 159 151069.8 177 153582.5 187
44 138010.8 212 137413.8 153 150053.8 212
45 138685.5 205 142753.5 206 136043.5 211
46 128142.8 233 143112.0 248 141513.8 243
47 115223.0 226 131776.0 267 141558.8 279
48 113625.5 270 118358.5 278 130448.5 270
49 118546.0 333 116241.3 237 116943.3 275
50 118266.8 319 119946.8 307 114326.5 312
51 115769.3 366 119750.3 370 118530.3 327
52 113615.0 346 117428.3 402 118867.3 390
53 111111.0 465 115084.3 430 116743.3 355
54 106608.3 428 111965.3 476 114211.3 452
55 101932.8 503 105759.0 453 109591.3 532
56 101483.3 560 102368.8 505 104260.0 537
57 100721.0 593 102757.0 634 101979.8 579
58 97412.3 640 101580.5 636 102100.8 624
59 92678.3 711 96863.5 753 99634.3 668
60 78664.5 664 82588.3 716 85365.3 729
61 69407.8 743 72553.3 667 75709.3 709
62 65136.0 799 67042.0 791 69852.8 726
63 60429.5 793 62662.3 772 64520.0 801
64 53037.8 789 55791.0 727 58014.5 834
65 28719.3 439 29878.3 420 32234.3 487
66 16049.3 262 16591.0 256 18006.5 304
67 13498.5 248 13637.5 233 14743.8 265
68 12326.0 261 12355.0 219 12940.5 280
69 9607.5 220 11672.3 261 12102.0 290
70 7054.5 205 9115.8 224 11457.8 266
71 6814.0 176 6769.0 221 9037.3 239
72 7065.5 241 6632.0 182 6762.8 218
73 6872.5 236 6844.8 217 6658.8 230
74 6434.5 224 6627.0 276 6757.5 262
75 5888.3 256 6083.5 253 6378.3 275
76 5264.5 251 5506.8 257 5876.5 243
77 4780.8 260 4970.0 233 5330.0 281
78 4512.8 267 4522.3 278 4810.5 296
79 4206.8 294 4249.5 289 4338.5 321
80 3600.8 249 3756.0 278 3815.3 283
81 3194.5 254 3297.8 289 3393.3 258
82 2707.5 202 2906.0 247 3003.5 245
83 2296.3 229 2469.5 223 2698.3 287
84 1861.5 215 2002.8 188 2223.3 213
85 1451.3 167 1535.5 187 1709.5 209
86 1129.0 132 1242.0 171 1304.3 148
87 906.8 107 966.8 98 1066.5 149
88 760.8 108 799.8 104 860.5 112
89 600.8 102 640.8 95 704.5 122
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Appendix B

In the following Tables (16.1 - 16.2) the data (initial exposed to risk based on policies - policy 

totals ceasing through death) for male pensioners’ experience, ages 60 - 95, for each calendar 

year (1983 - 1990) separately, are presented, as published by the CM1 Bureau of the Institute 

and Faculty of Actuaries.
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Table 16.1 : Central exposed to risk, for male pensioners, based on policies - policy totals
ceasing through death, ages 60 - 95. calendar year 1983 - 1986

1983 1984 1985 1986

60 384 5 408.5 6 461.6 12 490 10
61 730 7 745.7 5 829.4 13 906.7 9
62 896 11 888.2 17 928.3 17 1002.7 16
63 1091.5 21 1089.5 15 1107.8 15 1146.3 17
64 1034.5 35 1257.3 26 1294.9 42 1292.7 25
65 7235 155 7724.9 161 8831.6 211 8420.3 178
66 16944.5 409 14686.1 357 16948.8 361 18430 396
67 21111 637 17089.1 436 14767.1 365 16513 387
68 24543 796 20762.5 594 16676.3 507 13969.8 408
69 26192.5 848 23961.9 780 20010.5 643 15617.5 431
70 26896 983 25543.5 930 23040.2 788 18799.4 669
71 25840 1122 26113.6 1037 24565.6 946 21618.8 842
72 23677 1016 24754.3 1076 24865.7 1145 22688.4 975
73 22746.5 1160 22590.9 1077 23325.5 1131 22741.4 1030
74 21219 1176 21550.2 1217 21156.5 1090 21267.1 1102
75 19368 1180 20055.1 1197 20147.6 1209 19204 1008
76 17781 1111 18172.3 1192 18627.6 1226 18214.3 1190
77 16351.5 1161 16507.6 1113 16742.1 1286 16610.7 1162
78 14945.5 1212 15148 1193 15166.7 1171 14840.2 1097
79 13165.5 1196 13638 1146 13759.5 1211 13528.3 1126
80 11323 1108 11877.2 1117 12284.1 1124 12261 1152
81 9815 1011 10155.5 1122 10568.3 1117 10776.2 1034
82 8080.5 933 8681.6 1019 8891.5 977 9261.8 1059
83 6333 755 7090.6 901 7557.8 952 7663.1 925
84 4813 665 5486.5 678 6106.1 804 6451.7 821
85 3565 490 4143 579 4757.2 699 5146.3 692
86 2795 462 2994.2 432 3498.2 549 3945.4 580
87 2146 369 2307.6 357 2502.4 402 2867.8 503
88 1562 276 1774.8 326 1913.4 337 2018.6 342
89 1141 226 1249.8 215 1439.8 295 1525.1 283
90 857.5 163 904.2 173 1013.5 193 1110.2 237
91 671 144 680.3 121 723.8 167 783.5 159
92 460.5 90 525.1 106 548.2 123 534.9 101
93 327.5 84 363.8 100 398.4 90 411.4 88
94 215 72 232.1 48 275.6 81 298.1 68
95 122.5 35 145.1 48 171.7 42 192.9 52

231



Table 16.2 : Central exposed to risk, for male pensioners, based on policies - policy totals
ceasing through death, ages 60 - 95, calendar year 1986 - 1990

1987 1988 1989 1990

60 566.4 10 621.9 4 554 6 477.5 1
61 1004.7 15 1082.5 18 1003.5 8 847.5 12
62 1176 18 1235.7 24 1124.1 17 962.8 12
63 1310 27 1431.3 26 1300.4 20 1035.9 11
64 1413.3 35 1516.5 31 1472.3 42 1100.2 18
65 8087.9 183 7563.8 146 6969.7 131 5164.9 101
66 18166.4 417 16668.6 365 15103.3 294 11035.1 217
67 19894.6 508 18349.2 437 16088.5 344 11397.2 230
68 17307.2 433 19555.7 520 17324.7 440 11639.1 317
69 14482.4 443 16865.8 444 18308.1 530 12342.8 328
70 16175.1 567 14183.9 500 15731.2 468 12926.2 393
71 19220.8 760 15710.2 636 13288.5 516 10867.2 343
72 21763.4 959 18345.1 813 14479.9 558 8654.5 311
73 22717 1141 20628.3 993 16848.6 735 9138.7 385
74 22606.5 1191 21384.4 1127 18918.2 991 10415.1 444
75 20986.1 1210 21219.8 1195 19551.7 1047 11518.8 572
76 18877.3 1169 19630.9 1225 19438.1 1210 11717.5 668
77 17597.2 1246 17529.9 1174 17761.7 1211 11363.5 812
78 15953 1228 16259.2 1269 15700.2 1084 10326.3 684
79 14192 1138 14682.6 1172 14510.3 1140 9281.4 730
80 12693.3 1188 12893.1 1125 13058.2 1107 8400.3 719
81 11230.5 1175 11337 1076 11352 1091 7531.4 706
82 9813.5 1118 9947.3 1046 9919.5 1011 6646.4 664
83 8253.3 949 8605.2 978 8626.8 944 5717.2 601
84 6825.6 877 7194.4 861 7365.9 916 4709 565
85 5676.6 818 5873.4 793 6124 800 3772.6 477
86 4483 618 4814.5 683 4917.3 703 3005.9 395
87 3401.3 597 3795 633 3973.4 583 2380.4 353
88 2379.4 362 2797.1 454 3084.3 553 1875.1 285
89 1694.4 341 1970.4 330 2267.6 376 1424.1 205
90 1220.3 233 1349.8 242 1593.5 298 1016 184
91 876.5 154 981 210 1082 205 698.5 136
92 628 129 698.2 152 757 178 459.9 89
93 432.8 104 481.9 113 518.2 116 297.8 57
94 335.6 89 330.6 80 360.6 101 207.2 48
95 226.7 71 241.6 62 235.6 57 147.6 29
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