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Abstract

Hospitals provide a substantial proportion of the care services within health care 
systems: around 55% of total NHS expenditure is on hospital care. The majority of 
hospital care is undertaken on an inpatient basis requiring patients to be admitted to 
hospital. The range and type of admissions to hospitals, however, vary widely: 
Demand for care is heterogeneous. Hospitals, however, have limited space available 
to treat all the demands for care and excess demand is considered to be an endemic 
problem in the NHS revealed by the existence of long waiting lists.

Given the conflicting demands for care, hospitals must determine the mix of patients 
that they will treat given available capacity. As hospitals have limited capacity 
available to treat patients who demand services, choices must be made regarding the 
use of scarce resources in the face of these conflicting demands for available capacity. 
In addition hospitals face uncertain demand for some of their services, most notably 
those seeking emergency care. The clearest choice facing the hospital is whether to 
use available capacity to reduce waiting lists and treat elective cases, or keep capacity 
available to treat emergency cases should the need arise.

It is our intention to address the issue of how hospitals allocate capacity under 
conditions of demand uncertainty and output heterogeneity, in this thesis. In 
particular, we will consider whether hospitals appear to respond to the inherent trade-
off in a way that can be explained by economics in terms of the behaviour of a rational 
economic agent. In order to investigate this we will attempt to formulate an integrated 
approach to considering the behaviour of hospitals given the nature of the 
environment within which they operate.

The thesis provides a review of the current strands of literature within hospital 
economics that deals with issues related to capacity utilisation and identifies different 
strands in the literature. We also review empirical estimates of hospital costs; these 
identify the theoretical foundations of the empirical studies to date.

The thesis is then separated into theoretical and empirical chapters. The theoretical 
chapter constructs a formal model of hospital behaviour building on theoretical 
foundations, to enable the problem of hospital capacity allocation decisions to be 
viewed within standard economic theory. The basic model introduces output 
heterogeneity, separating output into two, planned and unplanned (elective and 
emergency). In this model we also consider a utility function including a wider social 
perspective. Uncertainty is then introduced into the model, allowing stochastic 
demand for one of the outputs. The impact of uncertainty is considered in a formal 
manner by drawing on current theoretical knowledge regarding the influence of 
demand uncertainty on the production responses of the firm. A mathematical 
approach is specified, which allows an optimal allocation of capacity to be identified. 
This highlights the empirical content necessary to identify a fully specified model of 
hospital allocation decisions.

The empirical section estimates a cost function that is consistent with the theoretical 
specification identified in the previous section, by adjusting for demand uncertainty

viii



and output heterogeneity. The implications for the estimation of a hospital cost 
function are then considered and, particularly, the implications for standard economic 
theory of cost analyses. A number of different estimation approaches are assessed. 
The Box-Cox model is the preferred approach and this performs well, most notably, 
the demand variable included to pick up the influence of demand uncertainty is both 
significant and of the correct hypothesised sign.

The final part of the thesis attempts to bring together a more fully specified empirical 
solution to the problem, by focusing on the social costs of turning emergency patients 
away and leaving elective patients on waiting lists. Two empirical elements are 
identified from the theoretical model as being important: The probability of tumaway, 
and the relationship between waiting lists and this probability. The probability of 
tumaway for each hospital for each month is estimated. A number of different 
estimation techniques were employed to estimate the latter including a Tobit, 
Heckman two-stage and Box-Cox analysis. Based on these estimates a fully specified 
empirical model allowed the calculation of the implied marginal social costs of 
turning an emergency patient away. These were estimated to be around £300, and the 
implied marginal social costs of placing a patient on the waiting list were estimated to 
be just over £1. These represent indicative values and are based on aggregate 
estimates across all hospitals, nonetheless, they provide the first estimates of this kind 
adjusting for demand uncertainty and including output heterogeneity.
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Chapter 1: Introduction

Hospitals provide a substantial proportion of the care services within health care systems. 

In 1994 the NHS spent £21,657m on hospitals representing around 55% of total NHS 

expenditure. This is approximately £880 per household in the UK. The majority of care 

is undertaken on an inpatient basis requiring patients to be admitted to hospital. In 1994 

5,968,000 people received in-patient hospital treatment in the UK. The obvious 

consequence is that hospitals must have beds available in order to provide the necessary 

inpatient care. The total bed capacity in the UK in 1994 was 294,000. The range and 

type of admissions to hospitals, however, vary widely. The ICD three digit classification 

lists over 1,000 different disease states; demand for care is heterogeneous. Each disease 

differs in terms of treatment and severity and, potentially, each requires a different length 

of time in hospital. Hospitals, however, have limited space available to treat all the 

demands for care, and excess demand is considered to be an endemic problem in the NHS 

revealed by the existence of long waiting lists. Given the conflicting demands for care, 

hospitals must determine the mix of patients that they will treat given available capacity.

The reforms of the NHS gave hospitals greater autonomy in terms of choosing the type 

and scope of services provided, allowing hospitals to operate with greater independence. 

Hospitals still, however, operate under intense political scrutiny and their performance is 

monitored on a number of levels. Two issues have attracted particular attention in the 

UK. The first is the size of waiting lists for elective care. In the UK in 1997 there were 

over 1,200,000 patients waiting for hospital treatment, attracting adverse political
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attention. Hospitals are, therefore, under pressure to use capacity to the limit in order to 

treat as many patients as possible given available capacity. However, given the 

heterogeneity of demand for services and that some element of hospital demand is truly 

stochastic, hospitals are faced with the problem that as pressure builds up on capacity 

there is less scope for reducing uncertainty through the existence of excess or standby 

capacity. This leads to the second issue: Hospitals are under pressure to be able to 

respond to the fluctuating need for urgent care, such that treatment should always be 

available and patients seeking emergency care should not be turned away. When patients 

are turned away from hospital facilities this attracts adverse publicity. Therefore, whilst 

waiting lists exist for some forms of care (i.e. planned elective care) other forms of care 

are provided for immediately. This trade-off has been explicitly recognised recently by 

the NHS Executive in EL(97)42, which emphasised the need to look into the balance 

between meeting emergency requirements and the size of waiting lists.

The two problems co-exist yet appear to call for different solutions. The problem of 

waiting lists suggests an increased throughput and full use of existing capacity. The 

potential problem of turning emergency patients away, however, requires that reserve 

capacity to be held in order to maintain the flexibility to respond to random demand for 

services. There exists, therefore, an inherent conflict within the system.

As hospitals have limited capacity available to treat patients who demand services, 

choices must be made regarding the use of scarce resources in the face of conflicting 

demands for available capacity. The clearest choice facing the hospital is whether to use
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available capacity to reduce waiting lists and treat elective cases, or keep capacity 

available to treat emergency cases should the need arise. Staffed hospital beds are costly 

and leaving large amounts of capacity empty for large periods of time will incur costs 

without any apparent benefit being accrued. Nonetheless, given the less than full 

utilisation of hospital capacity over long periods of time, i.e. average occupancy rates 

below 100%, this is what hospitals appear to do. On the other hand, the seasonal peaks in 

emergency demand can lead to excessive pressure on the system, with 100% capacity 

levels being exceeded on occasion.

The fact that hospitals normally operate within capacity constraints indicates that 

hospitals are trading-off these two issues. This suggests that the hospitals may be 

weighing up the costs and benefits of allocating capacity between the conflicting 

demands. It is our intention in this thesis to address the issue of how hospitals allocate 

capacity under conditions of demand uncertainty and output heterogeneity. In particular 

we will consider the optimal response to the inherent trade-off in terms of the behaviour 

of a rational economic agent. We will develop a model that attempts to formulate an 

integrated approach to considering the behaviour of hospitals, given the nature of the 

environment within which they operate.

Economic theory suggests that the rational economic agent will utilise scarce resources in 

order to achieve the maximum benefit from these available resources. Consequently, if 

the hospital is acting as a rational economic agent, it should decide how to use available 

capacity based on the costs and benefits of providing care. The detailed specification of
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these costs and benefits raises three key elements for analysis: The first is the definition 

of the general aims of the hospital, that is, given the non-profit nature of hospitals what 

costs and benefits are they likely to consider? The second is, once the relevant economic 

variables have been identified how do they interact? The third involves providing some 

empirical content to the problem through estimating the magnitude and empirical 

relationship between the economic variables.

The aim of this thesis is to pursue the investigation of the use of hospital capacity in the 

face of demand uncertainty and heterogeneous output, through analysing each of these 

three dimensions in detail. In doing so we will develop an economic theory of hospital 

behaviour that allows the development of empirical hypotheses that can be tested using 

available data. This will improve existing knowledge of hospital behaviour, as well as 

stimulating new ideas in an area that has an important bearing on health care policy. We 

are specifically concerned with the production responses to demand uncertainty and 

output heterogeneity. As such we will develop a theoretical model that distinguishes 

between two broad types of hospital demand; emergency and elective treatments. 

Demand uncertainty characterises emergency treatments, and the production of both 

types of output must take account of this stochastic element of total demand. This 

theoretical model then allows the development of a cost function that is consistent with 

hospital behaviour, where behaviour is determined by production responses to demand 

uncertainty. Finally, other aspects of hospital behaviour relating directly to the trade-off 

between the use of capacity in treating the two broad categories of demand are modelled.
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To address these issues this thesis will be structured in the following way. Chapter 2 will 

review existing work in the area, noting the fragmented nature of current research. In 

particular, we will highlight two distinct strands of literature that have developed, almost 

in isolation to each other; the first are essentially static theories of hospital behaviour, the 

second refer to simulation and empirical models of behaviour. These will be reviewed 

with specific focus on the issues highlighted above: Heterogeneity, demand uncertainty, 

and capacity utilisation.

The static behavioural theories of hospitals allow us to consider the factors that may enter 

the hospital objective function, given the nature of the environment within which 

hospitals operate. This enables us to identify the theoretical trade-offs and arguments that 

enter the hospital’s objective function. The simulation models of hospital behaviour 

allow us to formalise the relationship between the objective function and the decisions 

faced by hospitals, in particular focusing on the issue of limited capacity where our 

interest is in the use of capacity given heterogeneous output and stochastic demand. 

Finally, the review of empirical studies allows us to consider how previous authors have 

estimated cost functions where attention will be paid to the theoretical construction of 

cost functions, and how this fits in with the particular issues we are focusing on.

Chapter 3 will develop a model of hospital behaviour that is consistent with an 

environment in which production must respond to a stochastic element of demand. We 

will use a standard production possibility framework but will introduce uncertainty. This 

is the first time uncertainty has been introduced into such a framework. Building on this
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model, we develop a mathematical representation of the problem consistent with this 

approach, considering output heterogeneity, demand uncertainty, waiting lists, and 

tumaway rates. This will enable the identification of a theoretical optimal allocation 

condition and will identify the first order condition necessary to provide an empirical 

solution to the theoretical model. Chapter 4 will provide the first part of the empirical 

content of this general approach by estimating a cost function that is consistent with the 

theoretical specification, once more paying attention to the issues of heterogeneity and 

demand uncertainty, and focusing on the issues of duality and cost minimisation. 

Chapter 5 will provide the second part of the empirical content and will estimate the 

social costs implied by observed behaviour of hospitals in the NHS that which is 

consistent with the hospital’s basic trade-off in the use of capacity when faced with 

output differentiation and stochastic demands. Chapter 6 will draw together some 

conclusions.

6
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Chapter 2: A review of theoretical and empirical analyses of the hospital

Section 1: Introduction

This thesis concentrates on three main issues; the stochastic demand for hospital services, 

output heterogeneity, and the utilisation of hospital capacity. A large literature exists on 

general hospital economics but very little deals with these specific issues. This chapter 

will review the literature that considers capacity utilisation in some detail. However, it is 

still worthwhile looking at the general hospital literature to give some background, in 

particular to the consideration of the formulation of objectives and the behaviour of the 

hospital as an economic agent. This provides some reference point to the model 

developed in Chapter 3.

There have been two distinct strands of analysis that have developed within the field of 

hospital economics and these will be reviewed in sections 2 and 3. Section 2, itself, will 

be broken into two parts, where the first part considers analyses that do not explicitly deal 

with capacity utilisation, but focus on theoretical constructs of behaviour. The second 

part will deal with a smaller, more specialised literature that considers capacity utilisation 

and stochastic demand. Section 3 will review the empirical models of hospital behaviour 

emphasising the cost function with regard to stochastic demand.

There has been little integration of these strands within the literature, and this has led to 

little formalisation of the capacity optimisation problem. The lack of formalisation across 

the two sections of literature causes problems of integration between the sections, but the
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primary root of the problem is due to the theory itself being inadequately formalised 

without reference to mathematical or empirical models of behaviour. A final section, 

Section 4, will draw together the key issues when considering the development of an 

integrated model of hospital behaviour.

Section 2.1: Theories of hospital behaviour

This section will focus on the purely theoretical constructs of hospital behaviour and 

theories of non-profit institutions. As the objective function is an important determinant 

of hospital behaviour, in general, and a potentially important influence on capacity 

utilisation decisions, in particular, we highlight the lack of agreement across the literature 

over this fundamental aspect.

A number of possible objective functions for non-profit enterprises have been suggested 

in the literature, including revenue maximisation, quantity maximisation, quality 

maximisation, and utility maximisation. These provide grand theories, which largely 

follow neo-classical lines, and consequently, they tell us little about internal allocation 

within the hospital or capacity utilisation. Most of these studies abstract from the 

complexities of the hospital sector and few, for example, have introduced heterogeneous 

output or recognised that stochastic demand exists for some services.

The failure to consider the stochastic nature of demand potentially causes problems, since 

this is one of the key issues in determining capacity utilisation. Whilst there have been

8
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several attempts to develop operational models of hospital behaviour, these have failed to 

incorporate fully the fundamental nature of demand and output; i.e. endogenous output 

for some services and stochastic demand for others. Furthermore, largely due to the 

dominance of theories coming from the US, they have not dealt with capacity constrained 

systems and, therefore, tell us little about internal capacity utilisation.

While the objective function of the hospital is clearly an important factor in defining 

hospital behaviour, the determinants of this function may also be linked to ownership. In 

broad terms, hospitals can be separated into three forms of ownership. Flospitals may be 

privately or publicly owned, or operate as charitable organisations. In addition to which 

hospitals may operate on a for-profit or non-profit basis within each form of ownership. 

The majority of hospitals in the UK are publicly owned and run on a non-profit basis.

The difference between the objective functions of non-profit and for-profit organisations 

has received some attention in the literature, most notably in the US, since there exists the 

full spectrum of ownership, and it is often hypothesised that different ownership types 

will result in different objective functions. It has been suggested by Pauly (1987), 

however, that much of the discussion about the objective function of non-profit 

enterprises is irrelevant, and that for practical purposes the different objective functions 

collapse into three basic forms:

- maximisation of money income of a set of agents (most notably physicians).

- maximisation of profits-in-kind to managers/decision makers.

- maximisation of output or quality.

9
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Pauly concluded that any income maximisation model or profit-in-kind model will yield 

the same quantity, quality, and price as profit maximisation (although costs may differ 

since profit will be represented as costs in profit in kind models) as all models are 

concerned with residual maximisation. He suggested that only if quantity or quality 

directly entered the utility function would an observable behavioural difference be 

apparent. Even here output and quality maximisation could, under certain conditions, be 

compatible with residual maximisation. Pauly concluded that theoretical and empirical 

work might actually suggest that ownership is less important than it initially seemed. 

However, since the majority of objective functions in the literature propose that quantity, 

quality, or both directly enter the utility function, Pauly's conclusions are less than 

satisfying. Furthermore, the evidence Pauly draws on only considers the objective 

function in terms of the impact on efficiency, and, most notably, whether or not non-

profit firms cost-minimise. That is, he does not consider issues of capacity utilisation.

Perhaps the most straightforward yet appealing objective function suggested in the 

literature is that of quantity maximisation. Quantity maximisation has been suggested by 

a number of authors as the relevant objective function for non-profit enterprises. Long 

(1964), for example, suggested that non-profit enterprises would aim to maximise the 

number of patients seen subject to budget, capacity and quality constraints. However, 

straightforward analysis of quantity maximisation, despite its appeal, fails to tell us 

anything about the internal allocation of capacity within a hospital. It fails to recognise 

the heterogeneity of hospital output and clearly, in the short-run, if capacity acts as an 

aggregate constraint, choices regarding capacity utilisation have to be made. Moreover,
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study of output maximisation, per se, considers total capacity rather than issues of internal 

capacity allocation across different demands.

With a straightforward quantity maximisation objective the hospital would, in theory, 

simply treat as many patients as capacity would allow, at least cost. If, however, we 

allow for heterogeneity of output, then the hospital would prioritise patients on the basis 

of, for example, expected length of stay, treating those patients with the shortest length of 

stay first in order to maximise throughput (and, therefore, the number of patients treated). 

The rational hospital would effectively categorise output on the basis of length of stay, 

treating all patients within a given ‘band’ of length of stay, until demand was exhausted 

for the treatments in question, and then move on to the 'next best' category of patient, 

defined by length of stay.

Therefore, a quantity maximisation objective function implicitly gives an equal weight to 

all treatments with the same length of stay, regardless of cost or outcome. That is, 

without reference to the nature of the condition being treated. Long (1964), amongst 

others, recognised the importance of this noting that some treatments may require 

immediate treatment. This, however, suggests that some sort of weighted quantity 

maximand would be more appropriate, recognising the heterogeneity of output within the 

hospital.

Reder (1965), developing the quantity maximising theme, suggested precisely this; that is, 

the objective function should be one of weighted quantity maximisation. Quantity, in his

11
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model, was weighted on the basis of professional prestige as determined by physicians. 

Ginsburg (1970), in a similar maimer, suggested a weighted quantity maximisation 

objective function subject to a budget and capital constraint. Weighted quantity 

maximisation is more informative in that it recognises heterogeneity of output and that 

the hospital (decision makers/physicians) may derive more utility from treating some 

patients than others, (although the exact link between the utility function of the hospital 

and patient is often vague). It can also potentially tell us more about the process of 

capacity utilisation within the hospital, since the relative size of the weights attached to 

each output will be an important determinant of capacity utilisation decisions within a 

capacity constrained system.

The question of how the weights attached to output are determined is not, however, 

straightforward, and depends ultimately on the definition of the appropriate decision-

maker in the hospital. Reder (1965), for example, suggested that the weights are likely to 

be determined by physicians and placed the emphasis on the role of physicians as the 

dominant decision-makers within the hospital. This is consistent with Pauly and 

Redisch's (1973) argument that the hospital acts as a physicians' co-operative, and that the 

physicians dominate the decision making process, such that the aim of the hospital 

becomes one of maximising physicians' income.

Pauly and Redisch (1973) used their model to consider optimum levels of medical staff, 

and suggested that the problem the non-profit hospital faces is identical to the profit 

maximising solution with hospitals as cost minimisers. With respect to issues of capacity
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utilisation, their model is similar to the weighted quantity maximisation model proposed 

by Reder in as much as physicians, who decide which patients to admit, will allocate 

capacity to cases where their fee is highest.

There are, however, problems with this model. First, unless there is sharing of income 

between physicians, there may be internal conflict as physicians compete for limited 

capacity. This is equally true of Reder's model, where physicians are responsible for 

weighting output by 'prestige' attached to treatment, and where the incentive may be for 

each physician to overstate the relative prestige attached to his/her own cases. Secondly, 

the applicability of the model outside the US is limited. This is particularly true in the 

UK where hospital physicians are largely salaried and, consequently, the model looks less 

convincing, although it may be possible that increasing caseload and prestigious cases 

may lead to faster promotion and higher salaries (for example, through merit awards). 

The main problem is that it is difficult to view the hospital as a co-operative when there 

are so many apparent internal conflicts.

Holtmann (1988) criticised Pauly and Redisch on the grounds that their model does not 

explain the existence of non-profit enterprises, and their analysis is essentially a profit 

maximisation model. Nonetheless, the basic idea that output is weighted by price and 

that price is linked to relative worth is an improvement on earlier models. Indeed, 

authors such as Ben-Ner (1986) have suggested that the hospital may in fact be a 

consumers' co-operative, in which case the weights would be related to utility of patients 

rather than physicians. However, the actual mechanism for revealing patients' valuations
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is unclear in a healthcare system where insurance and a principal-agent relationship 

predominates.

In a variant of the straightforward quantity maximisation model, Newhouse (1970) 

suggested a quantity-quality trade-off might exist. He postulated that the first element of 

concern to non-profit enterprises is the quantity of services provided, and the second is 

quality, where quality is linked to professional excellence and the ability of the hospital to 

attract staff. Furthermore, he suggested that administrative staff, medical staff, and 

hospital trustees, may attach different weights to quantity and the elements of quality, 

although this does not affect the theoretical construct of his work.

In his model, quality can be introduced as either a choice variable or a constraint. 

Newhouse considered it to be a choice variable, and proposed a budget constrained 

quantity-quality maximand (although in a cash-limited system such as the UK it may well 

be more appropriate to consider quality as a constraint rather than a choice variable). He 

suggested a number of ways quality could be measured: personnel/patient ratio, 

professional perks/patient ratio, or the extent of laboratory facilities available. However, 

he recognised that these may represent capital/labour substitution rather than quality per 

se.

By letting demand be a function of both price and quality, and proposing that cost be a 

function of quality, Newhouse determined a cost-quality vector by assigning an arbitrary 

ordinal set of numbers to quality, allowing costs to be used as a direct measure of quality.
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Identifying the output associated with any given level of cost/quality allowed the 

quantity-quality locus of equilibria to be defined, where the rational decision-maker will 

choose the point that gives highest utility. Newhouse concluded that as long as resources 

are constrained the quantity-quality trade-off is an inherent one; these are the two 

commodities to which resources can be allocated.

Newhouse explicitly ignored the problems posed by the model (notably the problems of 

inefficiency and maximum quality constraints), and confined his analysis to a single 

product firm, thus side-stepping the problems associated with the heterogeneity of output. 

Nonetheless, the model is reasonable, as far as it goes, if both quality and quantity enter 

the utility function. However, there are a number of problems associated with defining 

quality, measuring a cost-quality relationship, and applying weights to relative quantity- 

quality combinations. Some quality is intrinsic to health care itself, some is related to 

hotel services. Other quality measures may refer to the general performance of the 

hospital, for example related to waiting lists and tumaway rates. The problems of 

measurement are not confined to quality alone, as Newhouse recognised; the 

measurement of the output of the hospital depends on the nature, and severity of the 

disease and a simple measure of patient days may not accurately capture this; nonetheless, 

this is the output measure used. The main problem is operationalising the Newhouse 

approach since it leaves many issues unresolved. Furthermore, since the model avoids 

the issue of output heterogeneity, it provides little to assist in answering this question of 

how hospitals allocate capacity.

15



Ch.2

Other authors have defined the objective function within a general utility maximising 

framework. Lee (1971), for example, assumed that hospital administrators attempt to 

maximise utility, where utility was defined as a broad concept including all the variables 

that affect the administrators well-being; such as salary, prestige, security, power, etc. He 

based his assumption on organisational theories of the firm, where the status and prestige 

of the administrators are dependent on the status of the hospital itself, and where hospital 

status in turn is a function of variety, quantity, and complexity of inputs. Therefore, the 

utility function effectively becomes one of status maximisation, where the hospital 

attempts to minimise the gap between actual and desired status.

Clarkson (1972) suggested that the non-profit hospital managers would have a weaker 

association between their own wealth and that of the hospital organisation. The fact that 

there are no share options or profit related pay means that the cost to the manager of not 

maximising the organisation's wealth is less in the non-profit sector. Furthermore, the 

unconstrained non-profit manager could choose better office facilities, hire more 

congenial colleagues, have more relaxed personnel policies, and other non-pecuniary 

benefits. This is likely to be a function of the defined benefits; i.e. non-profit managers 

may take advantage of non-pecuniary benefits, and this conforms to Pauly's (1989) notion 

that ownership, per se, may not affect behaviour.

Holtmann (1988) suggested Clarkson's view of non-profit firms was in fact a special case 

of a Williamson utility maximising model where non profit firms have the scope for 

opportunistic behaviour, allowing managers to gain utility. However, it is not clear
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whether this is a theory of non-profit, non-competitive, or unconstrained behaviour. As 

Clarkson recognised, if there is scope for opportunistic behaviour this may potentially 

lead to tighter controls on behaviour.

Holtmann (1988) in a review of earlier work, suggested it was possible to set up the 

Newhouse model using a Williamsonian framework, and criticised Newhouse for not 

developing a mathematical model. A mathematical representation could present the non-

profit firm as a utility maximiser that is subject to a break-even constraint. Holtman set 

up the problem as a Lagrangian, presented below:

L = U(Q1,Q 2) + MP,Q1 + P 2Q2-C(Q„Q2)) (2.1)

where utility is a function of quantity and quality, represented by U(Q,, Q2), where Q, is 

quality, Q2 is quantity, P, is the price of quality, P2 is the price of quality, and C(QbQ2) is 

the cost function. The solution of which tells us that the non-profit enterprise will 

produce where product and quality prices are greater than their marginal costs; the extra 

quality being justified by the managers' utility gain.

This, however, implicitly assumes that the hospital is a type of managers’ co-operative, 

and that consumers' utility is a by-product after managers have chosen quantity and 

quality. Alternatively, the situation may be represented by managers acting as imperfect 

agents for consumers, as from the consumers' perspective there is excessive quality and 

output, given that the level of quality is greater than the willingness to pay. Furthermore,
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it is not clear how the market operates in this model, since in a competitive market we 

would expect quality to be reduced, i.e. the market would not withstand excessive quality.

Holtmann suggested that many theories of non-profit enterprises ignore the widespread 

social acceptance and emergence of non-profit firms. Implying that it is unlikely that 

non-profit firms would be acceptable if its managers were behaving opportunistically. 

This ignores the fact that opportunistic behaviour may not be obvious, and those non-

profit firms may only operate in social markets where for-profit firms would be less 

acceptable.

Weisbrod (1975) suggested that non-profit firms may emerge to provide services with 

'public good attributes' (although strictly they are not public goods since they have rivals 

and are excludable) and evidence suggests non-profit firms provide more 'public good' 

services, such as hospital emergency room services than for-profit firms provide. This 

indeed may be observed in the UK, where private, (non-profit), firms only provide 

elective care. Davis (1972), in her review of the theory and empirical evidence of the 

economic behaviour of hospitals, found evidence to suggest that a greater proportion of 

non-profit hospitals operate specialised facilities such as intensive care units and post-

operative recovery rooms than for-profit hospitals. It may also be possible, however, that 

this reflects the difference in objective functions between for-profit and non-profit firms.

Ben-Ner (1986) viewed non-profit firms as consumers' co-operatives that produce output 

as an individual consumption good, and quality as a public consumption good for all
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consumers of the product. However, he viewed quality as non-separable, unlike 

Newhouse. Holtmann (1988), developing this theme, suggested using willingness to pay 

as an index of welfare, such that the welfare function can be written as:

C(Qi ,Q2) is the cost function. Non-profit organisations maximise consumer surplus 

subject to a break-even constraint. However, Ben-Ner (1986) suggested that in an 

ordinary co-operative the power may become concentrated in the hands of a few, and this 

will lead to a conflict between consumers' interests and those controlling the organisation, 

which fits in with Pauly and Redisch's (1973) study.

This analysis, however, depends on the structure of the market and what enters the 

decision-maker's utility function. If consumers' welfare is the sole argument in the 

producer’s utility function, then producers' and consumers' interests will coincide, and 

there would be no conflict.

All of the preceding work highlights the debate over the objectives being pursued by the 

hospital and the resultant behaviour. These theories are consistent with cost-minimising 

behaviour, but say little about the cost generating process, i.e. the production process of 

the hospital. Thus, while we can differentiate extensively amongst the specific details of

Q*

(2 .2)
o

*Where P is price, Q) is quantity, Q is quantity of output produced, Q2 is quality and
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this theoretical literature, there is little insight into the production process and hence little 

knowledge gained about the capacity utilisation issue. Given these limitations there is 

little that can be operationalised from these models, as they are no more than descriptions 

of variants of behaviour stemming from the different specifications of objective 

functions, which in any case, as Pauly pointed out, may be little different from one 

another.

Harris (1977) noted that most models of the hospital are too simple, and fail to capture 

the more complicated features of the sector, e.g., the absence of equity capital, regulatory 

controls, insurance subsidisation. The nature of the health care product has lead to an 

insurance market developing, due to the potentially catastrophic costs of illness and the 

uncertain timing of episodes of illness. It is useful to consider how the hospital responds 

to such a market, and this is where the main contribution of Harris' work lies.

The main thrust of Harris' analysis was that the hospital is really two firms in one. The 

hospital as a firm requires complicated decision processes due to the complex and 

uncertain nature of illness. This requires an organisation that can respond and adapt to 

changing circumstances, such that hospitals operate a specialised system of very short run 

internal resource allocation procedures, and this forms the basis of the split organisational 

structure. Harris emphasised the need for hospitals to maintain flexibility in the face of 

uncertainty.
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Here Harris touched on a very important point related to the nature of demand for hospital 

services and the response of hospitals to this. In essence there are two arguments in the 

paper:

i) that hospitals have an implicit contract to treat patients; and

ii) flexibility is required in the face of uncertainty.

Harris referred to the latter as ‘standby capacity’ (capital, labour and capacity) required in 

order to respond to uncertainty and to have the facilities available to treat all patients. 

Due to the flexibility of labour, he implies that standby bed capacity is likely to be the 

focus of standby capacity requirements. The implication is that hospitals derive some 

sort of utility out of treating patients and disutility if they fail to treat patients.

Harris described a situation whereby physicians make spot markets for ancillary services, 

and this creates the dual nature of the hospital that Harris refers to, where an ‘internal 

market’ is created for these services operating within the hospital. This, however, simply 

reflects the uncertain nature of demand. Harris' argument referred to uncertainty at a 

micro level, regarding specific treatments, but this argument equally applies at a more 

aggregate level where demand for health care is equally uncertain. The emphasis placed 

on supply assurance (i.e. the aim to keep facilities available to treat patients), and the 

need for physicians to obtain access to ancillary services, implies that there is a disutility 

associated with not treating patients.
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Harris described the capacity problem in hospitals as ‘a complicated system of rationing, 

rules and manoeuvring’. He explicitly recognised the fixed nature of certain parameters 

such as beds, and, in the very short run, ancillary services. He suggested that capacity 

decisions should not be considered as different from any other inventory problem, that is, 

the joint probability density functions of demand for inputs as well as the left and right 

hand loss functions of excess and insufficient capacity must be known. Therefore, the 

fundamental problem highlighted by Harris is that demand is uncertain and, given a fixed 

capacity, hospitals must decide how to allocate this capacity in the short-run.

The situation becomes interesting when the heterogeneous nature of hospital services is 

taken into account. The problem becomes one of weighting different treatments and 

weighting the ‘cost’ associated with turning different patients away. Harris recognised as 

much, when he suggested that medical and administrative staff would attach weights to 

the right hand and left hand loss functions. He suggested that administrative staff will 

consider the cost of holding excess capacity in terms of revenue forgone, and that this 

will be heavily weighted; however, medical staff will be more concerned with not turning 

patients away than with costs or empty beds. This was, therefore, a description of the 

bargaining process as related to excess capacity and tumaway, but without formalisation 

and the optimal solution was not outlined.

The description is, however, somewhat limited. For example, the assumption that 

physicians will be less concerned about empty beds than not turning patients away is an 

over-simplification. Physicians will only be unconcerned about empty beds if all demand
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is being met. If, however, as is the case in the UK, there is excess demand for services, 

then physicians may be concerned about empty beds, particularly if, as Harris suggests, 

bed capacity is constrained. However, empty beds may well be a concern to some 

physicians but less so for others, and conflict may arise between physicians. For 

example, an empty bed in an elective specialty with a waiting list represents an untreated 

patient; however, an empty bed in an emergency ward represents flexibility to treat more 

patients should the demand arise unexpectedly, and a reduction in the likelihood of 

having to turn patients away. Therefore, the Harris model, whilst recognising some of the 

complexities of the hospital, does not deal with the issue of how constrained capacity is 

allocated between potentially competing demands and suffers from the lack of 

formalisation of the problem.

The theories discussed thus far represent fairly grand and abstract theories, in most cases 

following neo-classical lines. They are little more than descriptions of outcomes attained 

under a variety of assumed patterns of behaviour. The description by Harris represented a 

step forward in so much as he recognised that one of the key issues facing a hospital is 

demand uncertainty, and that this will be one of the main considerations when 

determining capacity utilisation decisions under fixed capacity constraints. However, as 

with the other theories, there is no formal link to the production process and output 

heterogeneity is widely ignored.

There have, however, been some attempts to simulate and empirically model hospital 

behaviour. Whilst these models move away from a theoretical discussion, it is worth
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considering the theoretical underpinnings of these models here as they offer some 

valuable insights into some of the issues faced when operationalising maximands; they 

also highlight some important issues associated with modelling hospital capacity 

utilisation decisions.

Section 2.2: Simulation models of capacity utilisation

All the above studies are deficient in terms of capacity utilisation being left unanalysed, 

with the exception of Harris. However, as noted above, Harris failed to formalise the 

problem and, therefore, does not allow identification of the optimal solution to the issue 

of capacity utilisation. This section will consider some models that present more formal 

analyses and potentially allow optimal solutions to be identified.

One of the first models to consider hospital capacity decisions was developed by Shonick 

(1970). This model was primarily concerned with the rising costs of hospital care in the 

US and hospital efficiency in general. Shonick suggested that one of the most important 

economic characteristics of hospital operations is the relatively large proportion of cost 

that remains fixed in the face of variability in the proportion of occupied beds. He 

identified two important issues in his model. First, the fact that unoccupied beds do not 

earn revenue. Secondly, that hospitals may have to cover costs and set prices accordingly 

- unoccupied beds result in fixed costs being allocated over fewer cases and this increases 

average costs per case, which has implications for prices. He suggested that if the 

number of beds could be 'safely' reduced without reducing the number of occupied beds

24



Ch.2

this would reduce costs. Shonick addressed the question of how many beds a community 

needs to meet its demand for hospitalisation. The decision context for his model was the 

medium to long term, as it is widely accepted that bed numbers are fixed in the short run.

Shonick recognised that before the question of hospital efficiency could be addressed a 

determination of the criteria of efficiency to be satisfied is required. He noted that a 

common measure of hospital efficiency was the average occupancy rate. He also noted 

that in many cases the only criterion used was the frequency with which all beds were 

occupied. Shonick developed this theme and suggested that high occupancy rates and 

low overfill rates represent two ‘basic’ criteria whose optimisation might be the goal of 

the hospital.

He suggested that concentrating solely on minimising the frequency of overfill implies a 

large number of beds relative to the average daily demand. However, if reducing costs is 

of importance, then this would suggest keeping the number of unoccupied beds low, and 

this implies a small number of beds relative to demand. Thus, using these two criteria 

together creates a potential conflict; there does not exist a choice of beds which will 

simultaneously minimise the overfill rate and empty bed rate. He suggested that, 

consequently, the hospital must choose an acceptable level for each of these, whilst not 

achieving an optimal level for either. The focus, therefore, was on the trade-off between 

these two criteria, such that once the inherent trade-offs between the factors are 

recognised then it is possible to identify an optimal solution, although Shonick actually 

set up the problem as one of maximisatiorfminimisation rather than optimisation.
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It should be noted, however, that it is not immediately clear which of the criteria are 

objectives and which operate as constraints. For example, if the sole reason for including 

occupancy rate is as a proxy for average costs, as Shonick implies, then it is not clear 

whether this should be included as a constraint or an argument in the objective function. 

This raises the issue of what factors enter the hospital's utility function, and in particular, 

why occupancy rate should directly enter the utility function?

Occupancy rate may enter the utility function for two reasons: First, because the higher 

the occupancy rate the larger the number of patient days that can be supplied for any 

given bed number; this argument focuses on quantity of output. Secondly, because of the 

relationship between occupancy rates and costs, i.e. the higher the occupancy rate the 

lower average costs are likely to be and the lower prices will be, therefore, the higher 

demand, and, hence, output will be. The latter argument is the one Shonick focused on.

Shonick was also one of the first authors to note the importance of the stochastic demand 

for services. In specifying his model he assumed that there was a stream of patient 

arrivals with a random number arriving daily. This formed an important part of the 

model specification, where expectations are formed with regard to the random nature of 

arrivals. He noted that since the criteria variables set up in his model were random 

variables they would have probabilities attached to them. Shonick went into some detail 

regarding the precise specification of demand, the calculation of the mean census, and the
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expected loss function. This allowed him to calculate the criteria of efficiency for any 

choice of demand and bed numbers.

He considered the optimisation of two principal criteria: maximising the expected 

occupancy rate and minimising the expected proportion of the time the facility will be 

full. Using the properties of the Poisson distribution, such that expected daily census 

E(C) is:

Where oc is the standard deviation of C, and the coefficient of variation (a/p) is given by

He showed that if demand, y, is sufficiently large, then k, the coefficient of variation is 

small. Therefore, it is possible, in the presence of a large average daily demand, to 

choose the number of beds, such that it is not much larger than y, and yet have a relatively 

small rate at which the facility is full. Thus, under this model the prerequisite for being 

able to satisfy both efficiency criteria is a large effective demand. Shonick suggested this 

was borne out by the often observed high correlation between large hospitals and high 

occupancy rates.

It would appear then, from Shonick’s model, that the size of demand determines whether 

hospitals can satisfy the criteria. Unfortunately this tells us little about the internal

E(C) = y; oc =  Vy; (2.3)

Coeff of Var(C) = 1/Vy = kc (2.4)
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allocation processes. The extent to which hospitals can satisfy the joint objectives of 

maximising occupancy rate and minimising tumaway rate depends, primarily, on the size 

of demand and this is assumed to be outside the control of the hospital.

There is, however, still an inherent conflict between the two objectives, since as the 

number of beds rises, the expected occupancy rate and the expected tumaway rate will 

both fall. The hospital must still choose the level at which the criteria are optimised, 

recognising the inherent trade-off between the two. The model gives no indication of 

how this will be done. Shonick did note that it is common for planning agencies in 

hospitals, particularly in the US, to assert that hospitals should operate at a predetermined 

occupancy rate1. His model, however, points in a different direction. He suggested that 

desirable levels of the efficiency criteria should be administratively determined rather 

than through regulation. Furthermore, that this would especially be the case if the 

tumaway rate was set at a maximum level. This implies that there would be constraints 

introduced into the system. If this were the case, in Shonick’s model once the tumaway 

rate is determined everything else falls out, since hospitals would simply satisfy the 

maximum tumaway rate and this would determine the occupancy rate. This once again 

returns us to the issue of why occupancy rate enters the utility function directly. Shonick 

touches on this in his introduction, stating that a low occupancy rate will increase average 

costs. He does not, however, make any further reference to the cost of providing the 

spare capacity in his model.
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He did, however, implicitly recognise the trade-off between tumaway rate and occupancy 

rate, but does not fully draw out the issues. He noted that there are potential costs, in 

terms of lost utility, associated with turning patients away, and that the probability of 

turning a patient away is inversely related to the bed numbers, however, the more beds 

there are the lower the occupancy rate, and the lower the occupancy rate the higher the 

costs. Therefore, the trade-off is between higher costs and reduced tumaway. An optimal 

decision must be made with reference to the expected rate of tumaway, the associated 

costs of tumaway, and the cost of providing empty beds at the margin.

Consequently, the model highlights some important issues regarding the inherent trade-

offs that exist, but cannot select between the many different solutions due to the lack of 

formalisation of the optimisation process.

Nevertheless, Shonick was one of the first authors to note the importance of the stochastic 

demand for services. He also recognised the importance of the heterogeneity of demand. 

In specifying his model he assumed that there were two annual streams of patient arrivals, 

with the number arriving daily from each represented by random variables Xp and Xn, 

where Xp referred to 'physician generated' or elective arrivals, and Xn referred to 'nature 

generated' or emergency arrivals. He assumed both are Poisson distributed with means A 

p and An respectively. 1

1 For example, the Hill-Burton regulation in the US calculated the total ‘need’ for beds based on an 
occupancy rate of 80%.
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Furthermore, he assumed that if an emergency arrival applied for admission when all beds 

were full they would be turned away. If an elective arrival applies for admission when all 

beds are full they are put on a waiting list. This led to his specification of the model 

differentiating between tumaway rate for emergency cases, and waiting times for elective 

cases.

Shonick calculated a loss function based on the type of arrival. The model also allowed 

Shonick to calculate the expected time for admissions, and the average daily loss of 

patients for elective and emergency cases, respectively, for a given number of beds.

There are, however, issues raised by the split between elective and emergency cases 

concerning the use of the Poisson distribution. He showed that the average daily loss was 

given by:

L = Pnyg(s) (2.5)

and the expected waiting time for admission was:

E(W) = l/p(s-Yp)g(s) (2.6)

where s is the number of beds, 1/p. is length of stay, y is average daily demand, and g(s) is 

the expected time the facility will be full. However, the model requires a potentially 

limiting restriction that yp<s, that is the average daily demand from the elective source 

must be strictly less than the number of beds. This clearly imposes a restriction which
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may not be sustainable in other health care systems outside the US where, particularly the 

UK, there is excess demand for certain, mainly elective, services and queuing is a regular 

occurrence. For Shonick’s calculations to be valid queuing must be an irregular 

occurrence.

In discussing the model's, assumptions Shonick noted that investigators have indicated 

that the distribution of daily census in certain facilities is often well approximated by a 

Poisson. However, the conclusion drawn by some investigators has been that if the 

facility is rarely full, then the distribution of daily demand may be well described by a 

Poisson, but if the facility is often full then the Poisson is not a good description of the 

system. This has led some writers, notably Blumberg (1961), to suggest that if the facility 

is mostly non-scheduled or emergency admissions, then Poisson will hold, otherwise not. 

Once more highlighting the rather restrictive assumption that queuing rarely occurs.

Shonick picked up on this point and criticised some authors for using a Poisson 

distribution to describe fluctuations of the hospital daily census generally. He showed 

that if the facility was often full, then this would bias the observed mean average daily 

census, and he went to some length in the paper to prove that. This may have 

implications for Shonick's model as it will only be applicable for specialties, or 

distinctive patient facilities (DPFs), where the majority of admissions are non-scheduled, 

or the facility is rarely full.
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Nonetheless, Shonick made a useful distinction between emergency and elective arrivals. 

His simulations were based on a total demand that divided into elective and emergency 

and, varying the proportion that was elective and emergency, he calculated the associated 

tumaway rates and occupancy rates. He concluded that the crucial factor in determining 

the efficient number of beds is determined by Pn, the proportion of arrivals which are 

emergency. He did not, however, attempt to assess the size of the emergency demand, 

rather he provided various simulations for different values of Pn. He recognised this in 

his conclusions, stating that a significant improvement on the model would involve a 

complete study of the census fluctuations over a period of time that should at least 

segregate data by DPFs, tabulate daily arrivals, and classify, however rough, arrivals as 

emergency and elective.

The main criticism of Shonick is that he did not provide an explicit model of hospital 

allocation decisions and failed to formalise the trade-offs in a way that allowed an 

optimal solution to be identified. The model, therefore, became little more than a 

simulation game.

Shortly after Shonick developed this model Joseph and Folland (1972) developed a model 

considering how stochastic demand for care affected the optimal size of the hospital. 

Therefore, as with Shonick, the decision context was the medium to long run since the 

number of beds was allowed to vary. Joseph and Folland recognised the role unused 

capacity performs due to peak demands and the inherent trade-off between unused beds, 

costs, and the cost of turning patients away if beds are full. They suggested that the
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hospital would attempt to achieve a balance between the costs of excess capacity and the 

‘hazards’ of insufficient capacity.

The problem was set up in terms of a hospital planner's dilemma. Joseph and Folland 

suggested that increasing the number of beds would increase satisfaction in terms of 

reducing the rate at which patients are turned away and increasing the number of patients 

treated in total. They suggested that, in theory, the dilemma be resolved by increasing the 

number of beds until the marginal cost of providing the extra bed equals the monetary 

value imputed to the corresponding reduction in tumaway. The formulation of the 

problem is useful in that it suggests that the hospital planner will aim to maximise a 

utility function, where the rate at which patients are turned away, and the number of 

patients treated, both enter as arguments in that function. This suggests that the 

objectives are linked to social welfare.

Joseph and Folland also recognised the role of uncertainty in the provision of health care 

and the stochastic demand for care. They acknowledged the role unused capacity 

performs due to peaks of demand and the trade-off between unused beds, the cost of bed 

provision, and the costs attributed to turning patients away if bed capacity is not available. 

The question they addressed was whether a balance could be struck between the costs of 

excess capacity and the ‘hazards’ of insufficient capacity, noting that the daily census 

fluctuates with uncertainty over the year, but that the size of the hospital is more or less 

fixed during the year, resulting in low occupancy in some periods and tumaway in others.
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As with Shonick, they noted that, given the probability mass function of the daily census, 

it was possible to calculate the expected tumaway for any number of beds, S. Once more, 

as in Shonick's specification, the larger S the smaller the rate of tumaway, for any given 

demand.

Given the objective function, increasing S will increase satisfaction in two terms entering 

the objective function; by simultaneously reducing the tumaway rate and serving more 

patients in total. However, Joseph and Folland also noted that increasing S increases total 

costs. They suggested that, in theory, this dilemma be resolved by increasing S until the 

marginal cost of providing an extra bed equals the monetary value imputed to the 

corresponding reduction in tumaway. They then set out to prove this solution 

mathematically.

They made a number of assumptions. First, that the daily census was Poisson distributed; 

this was consistent with Shonick. Secondly, they assumed that the long-run average total 

cost function was constant over the range of hospitals. Thirdly, they assumed that the 

hospital segregated patients into wards, and has the flexibility to change the size of wards 

to meet demands of daily census. This allowed them to ignore the heterogeneity of output 

and treat hospital demand as homogeneous.

The aim of the model was to attempt to determine the optimal size of the hospital. The 

planner faced a daily census with mean, L, and average total cost, C. The expected 

number of patients turned away each day for a hospital size, S, is:
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^ ( R - S ) P ( R ; L )
R= S+ 1

(2.7)

Where R is the number of patients who demand a bed each day. The expected number of 

patients turned away for a hospital size S-l is:

^ ( R - S  +  \ ) P ( R ; L )
R=S

( 2 .8 )

Therefore, the reduction in expected number of patients turned away each day that is 

attributable to the Sth bed is:

R=S

(2.9)

which, the authors pointed out, is the probability of obtaining a census of S or above. The 

problem facing the planner was to choose a value for S. Corresponding to this choice is a 

daily cost for the last bed and the reduction in the number of patients turned away.

They suggested that, if the hospital planner is a utility maximiser, then they will choose S 

such that the monetary value of utility lost by the expected turning away of a patient 

equals the marginal cost of preventing tumaway. On the basis of total costs taken from 

published data in Iowa they calculated the cost per bed day, and, using results from a
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study by Feldstein (1961), they calculated the cost of an empty bed. Using these figures 

they calculated the cost incurred to avoid turning the marginal patient away (i.e. to treat 

the marginal patient) to be $49,200. They presented this as the cost incurred in reducing 

the number of patients turned away by one.

However, they stated that it is possible that hospital planners may not be aware of the 

costs incurred, and if made aware they may alter their decisions. Thus, their calculations 

are based on an implied value approach, however, they assume that B is chosen on the 

basis of the cost of providing an extra bed. Assuming costs are equal they find that B is 

almost the same for all hospitals. If the planner does not know the costs then B will be 

set arbitrarily. Their findings would then require another explanation. It could be that 

costs are not in fact equal, although hospitals set B based on what other hospitals do, or 

that they have a target tumaway rate regardless of costs.

As an extension to their model Joseph and Folland presented a mathematical model of the 

behavioural model as an appendix. The authors suggested that it is not crucial to the 

paper, and other models with different assumptions may also be consistent with their 

model. Nonetheless, this mathematical description highlights an important approach to 

the problem, and allows further insight into their approach, so is worth discussing in 

some detail here.
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They set up the problem by assuming that the hospital planner is a utility maximiser, 

subject to a break-even constraint, where utility is a function of the expected number of 

patients turned away, T(S), and the expected occupancy of L(P) patients. Such that:

U = U[T(S), L(P)] (2.10)

where utility varies inversely with T(S) and directly with L(P), which is inversely related 

to P, the daily charge. Therefore, in their mathematical expression the quantity of 

patients treated and the expected number of patients turned away directly enter the utility 

function.

However, this is inconsistent with the way the model is developed initially, since the 

expected number of patients turned away did not directly enter the function initially, i.e. 

there is no negative utility attached to turning patients away. Rather, the discussion is of 

the willingness to pay (through increase in costs) to treat one extra patient which, whilst 

based on the probability of a patient arriving (and hence if a bed was not available the 

probability of turning a patient away), does not make any reference to the expected 

number of patients turned away once the bed level is chosen. Although it could be argued 

that, by implication, if the hospital chooses a bed level, S, they are not willing to incur the 

implied extra cost to treat one more patient, therefore, they implicitly are taking into 

account the utility lost in not treating the patient and the disutility of associated with 

turning a patient away. This is not explicitly recognised in the utility function specified in 

the mathematical model. This led to problems in the solution derived by Joseph and
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Folland; the importance of which should become clear in the discussion of the 

mathematical solution presented below.

A cost function was outlined, where expected costs for a hospital size S, with expected 

occupancy of L patients per day is:

C = C[L(P)/S].S (2.11)

and the hospital was subject to a break-even constraint, such that:

PL(P) - C + G = 0 (2.12)

Where, PL(P) is expected revenue, C is costs and G is expected gifts of government 

appropriations. A simple Lagrangian was set up such that:

M = U - X[PL(P) - C + G] (2.13)

The hospital planner then must select S and P by following the first order condition, 

which were presented as:

dM dU XdC  A---- = ----- + ------ = 0
d S  d S  d S

(2.14)
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d M  d U  c ? P L ( P )  d C .  A
------------ = --------------+  A \ -----------------------------------------------1 =  0

d p  c P  c P  d P
(2.15)

and

~ ~ r  =  - [ P L ( P ) - C  +  G ]  =  0  (2.16)
O A

Where the last term simply states that the daily charge should equal the daily cost minus 

gifts divided by the number of patients.

From the first term they derived the following expression:

d U

*  =  (2.17a)

~ d S

which is:

x = - * L
d C

(2.17b)

They suggested, therefore, that the unspecified multiplier could be interpreted as the 

marginal utility of money (or more precisely costs).
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Then by the chain rule:

dU dU <?T(S) 
d S  V c T ( S ) J'L d S  J

(2.18)

and this allows the first term in the Lagrangian to be rewritten as:

d u

c T ( S )  = X  

A  ~  ¿ T ( S )
(2.19)

They suggested that this equation gives the monetary value of utility lost by the expected 

turning away of a patient when the hospital is full as equal to the cost that would be 

incurred to prevent the patient from being turned away.

Further they state that the second term in the Lagrangian can be rewritten:

d U

d P  d P L { P )  d C

A  d P  d P

which, they suggested, states that the monetary value of the utility lost by increasing the 

price, and reducing the number of patients treated, is equal to the sum of the changes in 

revenue and costs.
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This, however, is only half a solution and results in problems reconciling the 

mathematical model with the theoretical solution. In the mathematical model the solution 

is driven by the utility (or disutility) attached to turning patients away. However, in the 

intuitive solution, outlined earlier, it is driven by the probability that the bed will be filled 

and the utility attached to treating one extra patient, without reference to the number of 

patients who are turned away. This solution is not entirely consistent with the way the 

problem was set up originally. That is, utility is derived from two sources: the reduction 

in the probability of turning a patient away and the increase in number of patients treated 

as a result of the provision of the extra bed. These two appear to have been collapsed into 

one in the mathematical and intuitive solution proposed by Joseph and Folland. 

However, providing one extra bed will simultaneously reduce the probability of turning a 

patient away and increase the expected number of patients treated, for any given demand. 

The second term is missing from their solution. Consequently, if monetary values were 

attached to preventing tumaway and treating patients, this would lead to an 

underestimation of the optimal bed numbers for any given demand.

Let us reconsider the mathematical specification of the model and the reason for these 

problems should become apparent.

First, Joseph and Folland introduced a break-even constraint into the model, which 

necessarily involves introducing price and cost. When specifying the model, they 

suggested that demand is a function of price, and, therefore, the occupancy, or number of
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patients treated, is a also function of price. Furthermore, they suggested that the expected 

number of patients turned away from the hospital is a function of the number of beds.

Both these assertions are correct. However, as we know from their previous discussion, 

the expected number of patients turned away from a hospital is also a function of demand, 

and it is intuitively obvious that the expected number of patients treated is also a function 

of the number of beds available, S. Therefore, their specification of the mathematical 

model is incomplete. The expected number of patients turned away, T, should in fact be 

represented as T(S,P), and the expected occupancy, or the number of patients treated, 

should be represented as L(S,P). It should be clear that the expected number of patients 

turned away, and the expected number of patients treated, are determined by the same 

factors. Reducing the expected number of patients turned away by increasing the number 

of beds must simultaneously increase the expected number of patients treated, for a given 

demand. Similarly, reducing the demand for treatment must simultaneously reduce the 

expected number of patients treated and the expected number of patients turned away for 

a given bed supply.

Therefore, the model should be specified as:

U = U[T(S,P), L(S,P)] (2.21)

We know that utility is derived inversely with T(S,P) and directly with L(S,P), therefore, 

we will denote this by negative and positive terms respectively in our equation.
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Let us reconsider the solution of the mathematical model using these revised terms. Let 

us consider the first term:

dM a u  AdC A---- = ----- + ------ = 0
as dS dS

(2.22)

By the chain rule we know:

dU _ dU JT(S)

as _  [aT(sy' as (2.23)

However, rewriting this using the re-specified equation gives:

au ar(S) au aL(s)  

7i\s)' as +  aL{sy as _ac 
a ~ as (2.24)

This equation suggests that hospitals will provide more beds up to the point where the 

monetary value of the combined marginal utility associated with treating more patients 

and reducing the disutility associated with turning patients away equals the marginal cost 

associated with providing the extra bed. As more beds are provided the probability of 

these two events, i.e. tumaway and treatment will fall, and, therefore, the expected utility 

will fall. The difference is that the two terms that directly enter the utility function form 

part of the solution rather than one term in Joseph and Folland's solution.
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Similarly:

d U

d P  _  d P L (  P )  d C  

X  ~  d P  d P
(2.25)

now becomes the monetary value of the utility lost by increasing the price and reducing 

the number of patients treated, and the utility gained (or disutility reduced) by reducing 

the number of patients turned away, is equal to the sum of the changes in revenue and 

costs.

Therefore, the first order conditions are specified in very general terms, and the first order 

derivatives of the cost function are not actually calculated. Furthermore, the cost function 

is specified very loosely as being a function of occupancy rate and number of beds. This 

is likely to be an under-specification, although it is a useful way of considering the 

problem.

There are other issues that the mathematical model raises which are worth mentioning 

briefly. In this model costs are not linked to occupancy rate. This may miss a potentially 

important relationship between higher occupancy rate, and lower costs, and increased 

probability of tumaway, which the authors originally recognised. Furthermore, the model 

suggested that the level of beds is chosen based on the tumaway rate, however 

introducing a break-even constraint may significantly alter this, for example it may not be 

possible to satisfy both simultaneously. Additionally, since arrivals are stochastic, the
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mathematical model should be set up using expected utility theory, since the decisions are 

all based on expectations not certainties.

Finally, Joseph and Folland's actual empirical model suffers from not actually specifying 

a cost function, but nonetheless, resting many of their findings on assumptions regarding 

the cost function. For example, the hospital planner’s dilemma is set up as one where 

they will increase S until the marginal cost equals the money value imputed to the 

corresponding reduction in T(S), these assumptions are fairly important. Furthermore, 

they made the assumption that the long-run average total cost function for hospitals is 

constant over the sample in their data. They suggested that if the cost of an extra bed is 

constant, then the optimal values of S corresponding to different expected daily censuses 

will all give the same probability of obtaining a census of S or above. This allows a 

constant value for B to be imposed across all hospitals. The fact that their empirical 

results confirm this does not necessarily support their assumptions regarding the cost 

function, or indeed that all hospitals have the same target tumaway probability. 

Nonetheless, Joseph and Folland’s work did represent an important step forward and led 

to the one of the seminal works in the analysis of hospitals; the work by Joskow (1980).

Joskow’s work highlighted the domination of analysis of hospital behaviour and 

performance in the US as one of concern with hospital beds and occupancy rates. He 

explored the characteristics of hospital bed supply planning in the context of a simple 

queuing model. The model was used to examine hospital bed supply decisions and what 

he termed the ‘reservation quality’ of the hospital.
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A key issue in the work was the identification of the optimal amount of capacity for a 

hospital, or area, and the idea that this was determined by the appropriate probability that 

a hospital will be full and patients turned away, or queued. Joskow suggested that the 

appropriate value for this probability depended on five factors: the kind of patients served 

by the hospital, i.e. emergency or elective; the distance to other hospitals and availability 

of services to which the patients might turn; the admission or queuing discipline used by 

the hospital; the value patients put on a rapid admission; and the costs of maintaining 

various levels of hospital capacity. Therefore, this work drew together many of the 

strands of work identified by other authors.

Joskow identified a number of important issues, noting that the hospital's allocation 

decision will in some way be attempting to optimise an (unspecified) objective function. 

He noted that the different types of demand and the costs associated with turning patients 

away or queuing patients may be important determinants of an optimal allocation rule, 

and that maintaining excess capacity may be costly.

He briefly discussed the literature concerning hospital objective functions noting that 

there had been a wide range of hypothesised objectives. He noted that, generally, the 

hospital is viewed as a monopoly supplier ‘characterised by some objective function over 

quantity, quality, and scope of services’. He suggested that, for his model, the specific 

form of the objective function was not particularly important, and that all that was
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required was a constraint that was binding, and that the value of the objective function 

increased as the number of patients or quality/scope of services increased.

Joskow considered a hospital facing an exogenous demand for admissions and assumed 

that, when full, the hospital turns patients away and that the hospital has an objective of 

achieving a target tumaway probability. Therefore, despite suggesting that the specific 

form of the objective function be unimportant, he implied a general objective function of 

quality/quantity maximisation. Joskow, in fact, specifically imposed an objective 

function where utility is derived solely from a target rate of turning patients away. Thus, 

he specified a very explicit objective of achieving a target tumaway probability, which he 

termed ‘reservation quality’.

Joskow suggested that an accurate estimate of the reservation quality might be useful for 

making welfare judgements about the level of bed capacity in the US system. He stated 

that, in general, as the reservation quality increases the marginal cost of treating an extra 

patient increases. To illustrate this point he calculated the marginal cost per additional 

patients admitted for a range of different values of reserve capacity. He suggested that 

the marginal cost per additional patient treated could easily reach a level where legitimate 

questions could be asked about the inefficiencies resulting from the provision of too many 

hospital beds.

Joskow recognised that the demand for hospital services is stochastic, which was the 

starting point of his analysis. Demand uncertainty, he suggested, meant that the hospital
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must attempt to meet peak demands and, as a result, may be operating at full capacity 

during only a few days of the year, turning some patients away or increasing delays in 

admission during these periods.

He noted that the appropriate value for the tumaway probability depends, amongst other 

factors, on the kind of patients served by the hospital, i.e. emergency or elective. 

Although, as with Joseph and Folland, Joskow viewed the hospital as a single 

organisational entity where all beds substitute perfectly for each other and this, he 

recognised, was one of the weaknesses of his approach. Therefore, despite recognising 

the importance of heterogeneity of output and demand, the model failed to fully 

incorporate these factors. In reality he notes that DPFs may exist that are earmarked for 

particular treatments. As a result the demand characteristics and bed supply of each 

individual facility are relevant for planning purposes, rather than aggregate demand as a 

whole.

Joskow found that there are potentially interesting implications of the relationship 

between demand and occupancy rate. For a given reserve capacity, as the average daily 

demand increases so does the occupancy rate, and, therefore, the average cost of 

maintaining spare capacity falls. This, Joskow noted, has implications for regulatory 

efforts to set a standard occupancy rate and favours relatively large providers.

Joskow's model was very similar in specification to Joseph and Folland's in that he 

specified an exogenous demand for admissions arriving according to Poisson process.
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Using the properties of the Poisson he suggested that it is possible to set the probability of 

the hospital being full at any level by choosing how many standard deviations, k, away 

from the mean (ADC) the number of beds (BEDS) is to be:

BEDS-ADC = kVADC (2.26)

Thus he specifies the reserve margin of the hospital, R where:

R = k^ADC (2.27)

The greater k, the larger the average reserve margin, and the smaller the probability that 

the hospital will be full and patients turned away. In the context of his model k becomes 

a target for the hospital. lie stated that, in general, as the value of k increases, (as 

additional beds result in a smaller number of patients not turned away), the marginal cost 

of turning away fewer patients increases. He gave this some empirical content by 

calculating the marginal cost per additional patient admitted to show how the marginal 

cost increases with k. He suggested that the optimal value of k depends on the direct 

comparison of marginal cost and the value to the marginal patient of being admitted 

rather than turned away. This is the same presentation of the problem as Joseph and 

Folland.

The maximisation problem, therefore, became one of weighing up the marginal cost of 

treating the extra patient and the value to the patient of being treated rather than turned
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away. Therefore, this is exactly the same specification as Joseph and Folland in that two 

elements are included in the value of the providing the extra bed; the value attached to 

treatment and the reduced disutility associated with reducing the number of patients 

turned away.

Joskow also dealt with the issue of constraints to behaviour. He suggested that there were 

four characteristics of the market that may constrain the ability of the hospital to 

maximise its objective function: break-even constraint; the nature of demand; medical 

technology; and government regulation. He focused on two factors that may affect the 

hospital supply decisions: inter-hospital competition and government regulatory efforts to 

constrain the expansion of hospital beds. However, in considering regulatory effects 

Joskow's model suffers from its lack of exposition of the underlying economic theory, 

and he did not really consider the objective function of the hospital and the interaction 

with the constraints he identified.

He highlighted the certificate of need regulation (CON) introduced in the 1960s, the aim 

of which was to constrain hospitals from building facilities that were not needed. Given 

demand the CON agencies tried to ensure that the number of facilities satisfied demand at 

a minimum cost, the prevailing utilisation criteria was generally based on 80-90% 

occupancy rates. Joskow stated that in the context of his model CON regulation should 

reduce reserve capacity. Furthermore, this type of regulatory constraint may even move 

the focus of the problem from one of attempting to determine the optimal numbers of
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beds, as originally set out by Joskow, to one of determining the optimal use of existing 

bed capacity.

The other regulatory control Joskow considered was that of using a prospective 

reimbursement system. Joskow noted that, in theory, if a prospective reimbursement 

system succeeds in constraining a hospital's expenditure in some way then a supply 

response would be induced. In particular, he noted that combining an utilisation criterion 

(e.g. occupancy rate) with a reimbursement formula could provide strong incentives . 

Joskow recognised that reimbursement formulas provide incentives. However, what he 

did not draw out was that the incentives they create are also affected by other factors, 

which he earlier recognised as being important determinants of bed supply decisions. 

That is, the objective function, and the constraints within which the hospital operates.

Joskow also considered non-price competition between hospitals. Assuming hospitals 

have some objective function over the quality and quantity of services provided and, 

given that patients have some choice among hospitals in their area and have extensive 

insurance coverage such that prices have an insignificant effect on hospital choice, 

Joskow suggested that quality is likely to determine hospital choice. He suggested that 

the more intensive 2

2 There exists a branch of literature that considers reimbursement issues within the context of the principal- 
agent relationship, see for example Berki (1983), Ellis and McGuire (1986 and 1991 ), and Eby and 
Cohodes (1985) and Morrissey et al (1984) for a review of studies. This literature will not be considered 
here as it concentrates on optimal reimbursement strategies under quantity/quality objectives, rather than the 
reaction of capacity utilisation to changes in reimbursement, and focuses mainly on the impact on costs.
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the competition in an area the greater the quality of services are likely to be. 

Furthermore, he suggested that the probability of being turned away and the expected 

admission delay are likely dimensions of quality from the viewpoint of the patient, 

hospital and physician. Therefore, in the context of his model, the greater the competition 

the higher the reserve capacity will be.

Joskow estimated an empirical model to consider the impact of competition and 

regulatory controls on reserve capacity in the hospital, and found support for his theory 

that competition and CON regulation affect the reserve capacity of hospitals. However, 

as noted above, his model suffers from the lack of foundation in theory and failure to 

fully integrate into the model the influences he highlights as important considerations of 

supply decisions. Having noted the various constraints he does not actually attempt to set 

the model up as a maximisation problem subject to any of these constraints.

Rafferty (1971) developed a model with the aim of identifying and explaining short-run 

variations in case-mix of a hospital's census. He suggested that case-mix is an important 

characteristic which, thus far, had received limited attention. He built his work on a 

theoretical definition of hospital output, drawing on Feldstein (1967), which recognised 

that the marginal social value of hospital treatment will differ for different treatments, and 

that this will be in direct proportion to the degree to which treatment is more or less 

discretionary. This potentially allowed, what Rafferty termed, a ‘maximising tendency’ 

to be identified from which the resulting patterns of case-mix variations may be 

predicted. This suggested that the social value of hospital services would be maximised
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if, under the constraint of limited bed capacity, admission priorities were allocated on the 

basis of medical need.

This suggested that hospitals may pursue an objective that could be loosely defined as 

welfare maximisation. Whilst not explicitly defining an objective function, the 

implication was that with a fixed bed capacity, hospitals will allocate beds on the basis of 

social value, and this will be directly related to the type of case treated, where case type 

can be broadly split into 'necessary' and 'discretionary'. However, it is not immediately 

clear that the efficient outcome of this decision rule would imply that those in greatest 

medical need would receive care first, as suggested by Rafferty, as it fails to consider 

cost. A case with twice the social value of another case would have to have a cost less 

than twice that of the less valued case for this allocation rule to be efficient.

Rafferty stated that evidence suggests physicians do commonly consider the availability 

of beds before admitting patients. As a consequence, an increase in the incidence of 

illness and the resulting increase in occupancy rate could be expected to reduce the 

number of discretionary admissions, and the case-mix properties would respond to 

variations in the relative availability of beds.

This recognised a potentially important trade-off within the hospital when considering 

bed allocation decisions. That is, hospital admission policies will depend on the demand 

for different treatments. Rafferty suggested that as the demand for all types of care 

increases less elective patients would be admitted. He also recognised that aggregate
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analyses of hospital demand may miss the essential nature of the hospital output, and that 

knowledge of case-mix is essential in addressing issues of efficient and optimal use of 

hospital capacity.

Despite this, he failed to fully recognise demand heterogeneity. What may be more 

accurate is that as the demand for e m e r g e n c y  care increases less elective patients are 

admitted. This hints heavily at an objective function of the hospital that is linked to 

supply assurance for emergency patients, and where not turning patients away enters the 

utility function directly.

The implication is that hospitals will be attempting to maximise the social value of 

treatments, however, this was not explicitly drawn out in Rafferty’s work. For example, 

he did not consider why hospitals operate with lower occupancy rates in some periods 

than others if there is a pool of discretionary demand they can call on, or what drives the 

hospital to change admission policy when occupancy rate rises.

If we follow this line of argument, then it seems likely that there are two admission 

sources that roughly correspond to necessary and discretionary admission; these are 

planned and unplanned admissions. In the Rafferty model, when the occupancy rate 

reaches a certain critical level, the hospital would stop taking any more planned 

admissions and devote all beds to unplanned admissions, although this would involve 

cancelling planned admissions, and would suggest that in fact the planning had not been 

particularly successful. Additionally, it fails to recognise that the hospital may be
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concerned with the extent to which it cancels planned admissions and, by implication, the 

size of waiting lists.

The problem is apparent; the model failed to incorporate the stochastic nature of 

unplanned admissions, which intuitively drives the whole problem. The fluctuating 

occupancy rate may be related to the desire not to turn emergency patients away and, 

rather than there existing a critical occupancy rate when discretionary patients are no 

longer admitted, it may be that hospitals plan for fewer discretionary admissions to fit in 

with their expectations regarding emergency arrivals. Therefore, any observed 

fluctuations in casemix may be due to hospital planning.

However, without specifying an explicit objective function that recognises the two types 

of admission and their characteristics, it is difficult to determine the appropriate criteria 

for identifying optima. As with other authors, his model suffers from a lack of a formal 

link between the theory and the model. He suggested that estimated hospital cost 

functions have found costs vary with case-mix, and that since some case-mix patterns 

found in his analysis are related to occupancy rate, that part of the change in costs could 

be due to different services being provided at different utilisation levels.

Rafferty concluded that, given the increased intensity of use of hospital facilities, it seems 

reasonable to reduce admission for certain cases and, conversely, when bed capacity 

increases, or incidence of illness declines, it seems reasonable to increase admission of 

discretionary cases.
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He found evidence to support his theory, whereby admissions for less serious conditions 

fell during periods of high occupancy, and he suggested this was quite probably due to 

conscious rationing on behalf of medical staff. Furthermore, he found that the overall 

number of admissions was not very closely related to occupancy rate, rather he found that 

changes in length of stay were the major cause of changes in occupancy rate. This has 

implications for subsequent analyses of length of stay, which is often treated as an 

exogenous determinant of hospital utilisation. Rafferty suggested that length of stay may 

not only determine occupancy rate, but also be induced by changes in occupancy rate. 

However, as he himself recognised, as occupancy rate rises and rationing of elective cases 

occurs, if priority is given to emergency cases with a greater length of stay, then increased 

occupancy rate may occur without any change in total admission or discharge policies.

This raises the issue of displacement of planned cases, and whether hospitals will be 

concerned about the rate at which this occurs. Once more, based on expectations of 

emergency demand, hospitals might have some idea of the extent to which this event will 

happen. Furthermore, there must be a limit to how many beds they can make available at 

very short notice. They can discharge early, or stop admitting planned admissions up to a 

point, but the extent to which this is feasible will depend on the number of patients 

scheduled for admission and for discharge, and it is likely there will be a limit to the 

extent to which patients can be discharged early based on medical requirements. If 

hospitals do not want to turn serious cases away, and they also have a concern about the 

length of waiting lists, or the number of cancellations, then these factors must be weighed
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against each other. That is, they should enter the objective function directly. Hospitals 

must also make ex ante decisions about allocations, and the requirements for reserve 

capacity, based on expectations of demand. If the demand for emergency care changes 

then this will alter these allocations. This may be the source of fluctuations observed by 

Rafferty.

It seems intuitively obvious that the hospital will have some idea about the level of 

unplanned admissions and will allocate capacity accordingly, however, implicitly in this 

model, the hospital does not want to turn away serious cases due to the high social value 

attached to treatment. Therefore, hospitals may displace discretionary cases when they 

consider that the probability of turning patients away is getting too large, based on the 

expectations of unplanned demand.

The main problem with the model is, once again, its lack of exposition of the underlying 

economic theory. Many of the parts are in place; the discussion of objectives of the 

hospital; recognition of the importance of heterogeneity of demand; and the essential 

nature of the trade-off between using capacity to treat serious and non-serious cases. 

However, he failed to bring these parts together in a formal model of behaviour.

In an attempt to develop a theoretical model for explaining regional differences in the 

utilisation of hospitals, Chiswick (1976) noted that the general concern with the level and 

distribution of hospital services stemmed from the adverse effect of delayed treatment 

arising from insufficient bed capacity on one hand, and the costs of maintaining unused
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beds on the other. The aim of his work was to develop a theoretical model for explaining 

regional differences in the utilisation of general hospitals.

The model assumed that hospital bed capacity is fixed in the short-run, and he graphically 

represented the short-run demand and supply for hospital admissions on a standard 

demand/supply graph. The price of an admission was defined in what Chiswick termed 

'its broadest sense', that is, it included the value of extra discomfort, loss of earnings, and 

curative costs caused by delayed admission and the poorer quality service that may arise 

from crowded hospitals. The demand for admissions was assumed to be negatively 

related to price. Supply was assumed to be positively related to price with an absolute 

upper limit based on the capacity constraint.

Chiswick's model, in its attempt to remain within the simple demand-supply framework, 

rapidly becomes over-complicated. For example, it is not immediately clear, and 

Chiswick does not draw out, why supply will respond to any element of price other than 

the monetary element, although he specified a positive relationship between shadow price 

and quantity supplied.

In his specification of the problem he suggested that if short-run fluctuations in demand 

lead to a shift in demand upwards to the right then this will increase price, due to the 

increased probability of delay or denied treatment, but at the higher price hospitals will 

supply more admissions and increase occupancy rate. However, the mechanism through 

which the supply response operates is not at all clear.
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There is a possible explanation why hospital supply may respond to the shadow price that 

depends on the objective function. If the hospital takes account of the social costs, as 

assumed in this model, then they must, by definition, have an objective function that aims 

to maximise social welfare, such that supply not only responds to monetary price, but also 

to other factors that enter the utility function. Whilst the mechanics of response are not 

clear, the implicit objective function appears to be one of social welfare maximisation.

Chiswick noted that the randomness of short-run demand for admission is an essential 

aspect of the analysis of occupancy rates and bed rates. In the model he suggested that 

the height of the short-run demand curve is, at any moment in time, a function of what he 

termed 'systematic' and 'random' elements. Such things as the demographic 

characteristics of the population and the extent of health insurance determine the 

systematic elements. At any moment in time, at each price of admission, each individual 

has a probability of demanding an admission. The random elements are said to be due to 

'the aggregation across individuals of the outcome of this random process'. Consequently, 

the short-run demand curve fluctuates randomly about its expected value.

Chiswick, as others have done, assumed perfect bed substitutability within hospitals, but 

not between hospitals in a geographic area, citing three reasons for this: differentiation 

among hospitals in the demographic characteristics of the patients they admit; the fact 

that patients may view hospitals as imperfect substitutes; and physicians may have a 

limited number of affiliations thus restricting choice of hospital.
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However, there is another reason why beds may not be perfect substitutes within a health 

region, that is the heterogeneity of product and the geographic nature of some markets. 

This is most notable in the market for emergency services, where delay can result in very 

high costs, and patient choice is often limited to those hospitals within a very limited 

geographic area. Furthermore, this only really applies to emergency cases. Therefore, it 

is important to distinguish between emergency and non-emergency cases. Chiswick did, 

albeit in passing, note that the main costs of increased travel time would be imposed on 

emergency cases. However, he does not fully develop the issue of demand heterogeneity.

Furthermore, the model focused on the issue of how many beds are required by a 

community, based on the probability of turning patients away and the cost of providing an 

extra bed. This, however, does not deal with all the arguments entering the utility 

function and fails to deal with capacity utilisation. In systems such as the UK one of the 

key issues is how to allocate scarce resources. With beds limited in the short to medium 

term, the relevant question is how best to use existing beds, not how many beds are 

required. This leads to different concerns such as the trade-off between different types of 

care.

Once more, Chiswick’s model, as others before, failed to formalise the problem in a way 

that drew out all the relevant arguments in such a way as to allow an optimal solution to 

be identified.
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Few of the models have looked at capacity utilisation, demand uncertainty, output 

heterogeneity and their impact on production. The very few that did, which we have 

detailed here, have not presented formal models. All the models are either ad hoc or 

empirical in their approaches. This lack of formalisation has led to their being little 

ability to generate testable hypotheses with the result, as we shall see, that most of the 

empirical analyses relating to cost and production functions remain ad hoc also.

Section 3: Empirical estimates of hospital cost functions

Interest in specifying and estimating cost functions for hospitals has grown in the last 

three decades, largely reflecting a greater availability of data. The aim of this section is to 

provide an overview of the theoretical underpinnings of the empirical estimates of 

hospital costs, in particular focusing on recent advances in the area that incorporate 

production responses to demand uncertainty.

There have been a number of extensive reviews of hospital cost function analyses. Breyer 

(1987), Cowing et al (1983), and Wagstaff (1989) in the UK, provided a fairly 

comprehensive review of over 80 studies that have attempted to estimate hospital cost 

functions, providing a useful chronicle of how cost function estimation has evolved. It is 

not our intention to replicate these studies here, nor is it necessary. Rather we will 

provide highlights of the development of the different methods employed by considering 

the theoretical and empirical bases. First let us consider the theoretical foundations.
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In the neo-classical theory of the firm the cost function describes the minimum cost of 

producing a given output as a function of the exogenous vector inputs of prices. Duality 

theory demonstrates a one-to-one correspondence between the production function for a 

good and the respective minimum cost function, and as such represents a technical 

relationship. This concept of the cost function has important consequences for the 

specification of a regression equation if observed costs are interpreted as minimum costs.

Independent variables may only comprise output quantities and input prices. Other 

potential independent variables, such as capacity utilisation, cannot be included in this 

type of specification because they do not determine the minimum cost. Rather they 

explain deviations from the theoretical minimum. Examples of this approach include 

Conrad and Straus (1983) and Cowing and Holtman (1983). In both cases the authors 

assume that the observed data represent cost-minimising behaviour (at least in the short- 

run).

There has. however, been a movement away from the traditional production-cost duality 

condition through the employment of behavioural cost functions, which recognise, inter 

alia, that demand could be endogenously determined. Evans (1971), most notably, 

developed an approach, which he termed a 'behavioural' approach, that expresses the idea 

that the cost function represents a behavioural and not merely a technical relationship. 

The argument is that a wider range of effects needs to be taken into account and, by 

definition, cost minimising behaviour is no longer pursued. Evans moved away from the 

idea that demand was exogenously determined. Rather, he suggested that a more realistic
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model would recognise that the demand for hospital services is generated by medical 

practitioners who weigh up the relative costs and benefits of hospitalisation (to 

themselves and the patient). Thus, creating a situation where inputs and outputs are 

determined jointly.

This behavioural theory was in many ways an extension of earlier work by Liebenstein 

(1966) and Cyert and March (1963), which moved away from maximising behaviour. 

Key notions of this approach focused on satisficing behaviour, multiple goals, 

organisational slack and other behavioural characteristics.

De Alessi (1983) built on this work and proposed an alternative approach to neo-classical 

theory that took account of institutional constraints, focusing on property rights and 

transaction costs. The theory can be generalised to include any constraints that affect 

decision makers and limit choice. The individual characteristics and the economic 

context according to Liebenstein, determine the degree of deviation from maximising 

behaviour. The application of some behavioural theories to the hospital sector did not so 

much stimulate output, but led to a diminution in the attention paid to cost function 

specifications.

More recently, however, the duality approach had been revived through the use of flexible 

functional forms that allow approximations to the minimum cost to be specified. If the 

production function is unknown, then it is impossible to specify the form of the minimum 

cost function accurately, increasing the risk of misspecification. Specifying a flexible
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functional form allows an approximation to the minimum cost function to be estimated 

and the restrictive assumptions, like separability, can be dispensed with (see, for example, 

Cowing and Holtman, 1983; and Conrad and, Straus 1983). The most commonly used 

flexible functional form is the transcendental logarithmic function, where all the variables 

are transformed logarithmically and a Taylor series expansion approximates the ‘true’ 

cost function. The increased flexibility is, however, at a cost; the number of parameters 

grows almost proportionately to the square of the original number of regressors. This is 

a particular problem when estimating multiproduct cost functions, (see Caves et al., 

1980), and can cause problems of multicollinearity between the regressors, (see Vita, 

1990; and Dor and Farley, 1996). The translog, nevertheless, remains one of the most 

popular functional forms in UK studies (see McGuire and Westoby, 1983). The Cobb- 

Douglas specification has also been used, (Feldstein, 1967), in UK based estimates. The 

latter specification represents a restricted version of the flexible functional form estimated 

by a translog specification and, obviously, implies a particular functional form. The issue 

of functional form clearly relates to the production process and this is difficult to specify. 

Wagstaff (1989) highlighted the problems of using a Cobb-Douglas specification when 

estimating factor substitution. Estimates by Feldstein (1967.) and Lavers and Whynes 

(1978) both utilised a Cobb-Douglas specification and found exactly the opposite results 

regarding factor substitution between nurses and doctors, i.e. Feldstein’s results indicated 

too much was being spent on nurses relative to doctors and Lavers and Whynes found 

exactly the opposite.
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Econometric considerations such as these have led to a particularly constrained choice of 

output. In most cases studies have relied on measures of throughput such as patient days 

or cases treated and, therefore, specifyied a homogeneous output. Clearly, where output 

is not homogeneous the implication is, as highlighted in the discussion earlier, that equal 

weights are attached to each case. This has led to fairly aggregate patient classifications 

to reflect the multiproduct nature of hospital production. For example, Cowing and 

Holtman (1983) divided patient days into five diagnostic categories, Conrad and Straus 

(1983) by three based on patient age. Feldstein (1967) divided patients into groups 

according to admissions department, and then weighted each case by expected average 

cost. More recently, studies have adjusted for output heterogeneity by including a 

casemix variable to adjust for case complexity (see, for example, McGuire and Williams, 

1986).

The apparent dilemma, where an accurate reflection of patient heterogeneity seems to be 

too demanding for the flexible functional form, has led to authors such as Granneman et 

al (1986) to specify what they term a 'hybrid functional form'. The regressors include 

variables other than output quantities and input prices, but the functional form is 

homogeneous in factor prices. However, Breyer (1987) criticised this approach noting 

that linear homogeneity is not strictly imposed. Thus, most work has relied on 

conventional assumptions in the estimation of cost functions. Econometric, rather than 

economic, considerations have dominated with cost minimisation and duality assumed.
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One of the fundamental aspects of the environment hospitals face is uncertainty over 

demand for services. Despite this, the majority of estimated hospital cost functions have 

assumed that demand is known. The neo-classical theory of hospital cost and production 

requires that production be technically efficient, that is that production occurs on the 

boundary of the production possibility frontier. When a firm faces stochastic demand this 

assumption no longer holds.

Feldstein (1967) was one of the first to consider the general issue of technical efficiency, 

noting that when the hospital operated off its estimated production frontier that this 

indicated whether the hospital was technically more efficient (or inefficient) than the 

average hospital. He, therefore, suggested that the residual of the production function 

could be used as a measure of technical efficiency (see also Wagstaff, 1987, for an 

example of this approach). Hospitals with positive residuals could be considered to be 

producing more than expected, those with negative residuals, less than expected. 

Feldstein used the ratio of actual output to the level of output predicted by the production 

function as a measure of technical efficiency, proposed by Farrell (1957). The main 

problem with frontier analysis of this kind is that it fails to define the cause of the 

technical inefficiency, i.e. there is no theoretical underpinning, and it implicitly assumes 

that all cross-sample variation is due to technical inefficiency. Furthermore, using of a 

ratio measure of actual to forecasted output will not pick up the absolute size of the 

divergence from the production frontier, although it does allow ranking of units by 

efficiency.
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The first authors to explicitly recognise the issue of demand uncertainty were Friedman 

and Pauly (1983), who noted that since hospitals face demand uncertainty then it is not 

possible to assume that inputs were hired to produce at minimum cost. Rather inputs 

have been hired to minimise ex ante expected costs, but, crucially, these may differ from 

ex post realised costs. The divergence between the ex ante expected costs and the ex post 

observed costs will depend on the error in forecasting admissions and, therefore, any 

econometric model of the realised costs should consider the impact that unexpected 

demand, i.e. unforecasted demand, has on costs.

Friedman and Pauly highlighted the apparent anomaly in empirical studies where short- 

run marginal costs appear to be below average costs. This result is at odds with a cost- 

minimising decision-maker that has perfect knowledge of demand conditions that would 

operate at the efficient minimum point rather than on the downward part of their short-run 

average cost curve. However, this may well be explicable as a rational response to 

demand uncertainty when some of their costs are fixed. That is, if decisions regarding 

inputs are made ex ante against the background of uncertainty and some of these costs are 

fixed ex post, i.e. there is no ex post adjustment, then this may be rational. Against this 

background, Friedman and Pauly model the expected cost function as:

E { C , } = K  +  w L t + s  j [ R ( q l ) - L l ] h ( q ) d q l (2.28)
F( L, )
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where E{Ct} is expected costs, K is fixed charges, Lt is quantity of inputs, w is cost per 

unit of inputs, R(qt) is the mapping of outputs to inputs, [R(qt)-Lt] is the input shortfall, 

and s is the rate per unit of the value of this loss and h(q) is the probability density of 

demand. The hospital chooses Lt to minimise this expectation. ’

Gaynor and Anderson (1995) adopted this approach modifying a model developed by 

Duncan (1990) for the telecommunications sector. Their primary aim was to provide an 

estimate of the cost of an empty bed. They specified the hospital’s problem as one of 

minimising cost subject to a production function that incorporates an adjustment for 

demand uncertainty, and a constraint that the probability that the hospital is full at any 

given time does not exceed a pre-determined target level. It was assumed that the 

hospital can adjust its variable input on the spot market once demand was realised. This 

differs from Friedman and Pauly who allowed quality to deteriorate, (resulting in delays 

for treatment), and that this will manifest itself in the form of ‘latent penalties’ (reduction 

in unit price attainable, or reduction in goodwill of physicians). Nonetheless, the concept 

was very similar. The cost function has all the usual properties except duality, since the 

firm is constrained to have the capacity to meet randomly fluctuating demand with some 

probability, and will, generally, not be producing on the production possibility frontier.

Carey (1996) adopted a similar estimation approach as Gaynor and Anderson, and 

Friedman and Pauly to consider a question originally addressed by Joskow (1980) 

concerning the socially optimal level of excess capacity. This involved estimating the

J Pauly and Wilson (1986) extended this work using different data, but the underlying theory was the same.
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cost of an empty bed and included forecasted demand in the cost function estimate. 

Carey, however, developed the model a stage further and set up an optimisation problem 

whereby the hospital will attempt to minimise expected costs, where costs include the 

social cost of turning patients away, which given the distribution of demand will occur 

with some probability. This represents a subtle development from the model Friedman 

and Pauly specified as the model includes social costs as well as private costs, explicitly 

recognising that the objective function of the hospital includes arguments outside the 

narrow private costs and benefits usually assumed.

Setting the problem up in a similar manner to Friedman and Pauly, Carey derived the first 

order condition. The optimal solution occurs where the ratio of the hospital costs of 

staffing the last bed to the social cost of not having a bed available, is equal to the 

probability of tumaway. The optimisation problem that the hospital attempts to solve in 

Carey’s model is to choose the number of staffed beds that will minimise expected costs 

E(C).

E(C) = K + r(B)B + v(V)I0yg(y)f(y)dy + s}y" [h(y)-B]f(y)dy (2.29)

Where K is capital, B is staffed beds, V is the variable input, f(y) represents the 

probability density function of demand, g(y) is the level of occupancy variable input V 

required to treat output y, h is the mapping of output to beds, and s is the social cost of 

not having enough beds to treat all demand. The hospital must, therefore, choose the 

number of beds to optimise this condition, where the hospital provides output to treat
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demand y. The first order condition derived by Carey suggests that the optimal condition 

is where:

[(5r/5B*B + r)/s] = [l-F(y)] (2.30)

That is where the marginal cost of the last bed equals the social cost of not having a bed 

available.

However, the optimal condition is actually more complicated than this, since Carey failed 

to recognise that the demand the hospital can treat, y, is determined by the number of 

beds available. Consequently, B enters as a limit in the integrals as well. Therefore, 

differentiating with respect to B yields a more complicated first order condition4.

Furthermore, whilst Carey represents a move forward in terms of integrating theoretical 

and empirical work the model only allows for one output, treating output as 

homogeneous. It is widely accepted that some demand can be queued and some cannot. 

If output is treated as heterogeneous then demand should be separated into, at least, two.

4
Carey sets up the optimisation problem as:

E(C) = K + r(B)B + v(V)J 0yg(y)f(y)dy + sj y°°[h(y)-B]f(y)dy

Where K is capital, B is beds, v is variable input, f(y) is the pdf of demand, h(y) is mapping of output to 
beds, s is the social cost of having insufficient beds, g(y) is the level of occupancy variable input required 
to treat output y. She then sets up the problem where the capacity is constrained based on the hospital’s 
choice of beds, B, where the hospital will choose to serve demand . However, when differentiating with 
respect to B she fails to recognise that y is also determined by B (i.e. y = B/LOS). Thus, the third term in 
her equation also features B as a limit to the integral. Therefore the first order condition she derives is 
incorrect and missing one term.
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If the reason for spare capacity is primarily to prevent turning patients away, the 

probability of turning away different cases may have different social costs attached. 

Therefore, the model can only deal with total bed supply rather than allocation of internal 

capacity, and in this context it is somewhat limited.

Nonetheless, the work by Carey is consistent some of the earlier work identified in 

section 2.1 (most notably Joskow, 1980; and Joseph and Folland, 1972) and draws 

together some of the empirical work by Friedman and Pauly and Gaynor and Anderson 

into a single model. As such this represents the first work of this kind.

Section 4: Objective functions, model specification and modelling issues

What is clear is from section 2.1 is that there is no general consensus about the 

appropriate objective function. There is also a problem operationalising objective 

functions in general. Having noted this however, almost all commentators suggest that 

quantity and some other factor will enter the utility function, which implies a trade-off 

between quantity and other factor(s). Utility maximisation, regardless of whether 

producers' or consumers', features largely in most specifications.

The main focus of this thesis is on the heterogeneity and uncertainty of demand for 

hospital services. This makes some of the hypothesised objective functions redundant 

since they assume a single output firm. However, some of the specifications have offered 

useful insights into how decision-makers may deal with heterogeneous outputs, although
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not many consider the stochastic nature of demand, with one notable exception. Harris 

analysed the nature of the hospital firm with specific reference to the uncertainty, and 

offers a useful starting point to any specification of the objective function given our own 

objectives. He suggested that hospitals might be interested in things other than output per 

se, most notably, supply assurance.

Whilst most commentators specifications can be viewed from a Williamson perspective 

of utility maxim isation there is no general agreement on what enters the utility function, 

or how it is specified. However, most analyses, which consider heterogeneous output, do 

suggest that there are trade-offs between different services and the output level will 

depend on the relative weights attached to each output. If we integrate these approaches 

with Harris and apply this to our original problem, we arrive at a specification of the 

objective function of the hospital specified in its broadest terms, i.e. utility maximisation, 

with explicit trade-offs between those factors entering the utility function and weights 

attached to each factor.

These grand theories of the objectives of non-profit institutions are, however, often 

difficult to operationalise and tell us little about internal capacity utilisation decisions. 

Operational maximands have been dealt with variously in the literature and some have 

not drawn out the issue fully. This is partly due to the focus of the models, i.e. with total 

bed requirements, rather than capacity utilisation; nonetheless, they do offer useful 

insights into the problem and raise a number of important issues.
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It has widely been acknowledged that the random nature of demand for hospital care is a 

crucial part of the model specification. How this actually effects the allocation process, 

however, depends on how patients are treated, and it is likely that it is possible to place 

some patients in a queue, whilst others require immediate care. This brings us to another 

of the key issues, heterogeneity of demand. The issue of output heterogeneity has been 

dealt variously within the existing models. Despite the promising early work by these 

authors, most notably Shonick, their work was not really built on.

The theoretical models have largely been developed in isolation without reference to the 

more complex theories of the non-profit firm, which have developed in tandem. This is 

partly due to the difficulty in operationalising the grander theories, but also reflects the 

lack of integration in general within the field of hospital economics. The lack of 

formalisation of the problem has led to descriptive models that have been unable to 

identify optimal solutions to the problem. Since the promising early work by Shonick, 

which recognised many of the important features of the environment within which 

hospital operates; uncertainty, demand heterogeneity, etc, progress has been slow. The 

work by Joskow marked an important step forward in trying to empirically analyse the 

reasons why hospital held reserve capacity and the different impacts of the level of 

reserve capacity.

The empirical estimates of cost functions have, largely, been estimated without reference 

to the theoretical or mathematical work. The theories underpinning the estimation 

processes have, upon closer inspection, often been untenable given the environment
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within which hospitals operate. Only recently have their been moves away from 

traditional neo-classical theory to attempt to take account of, in particular, demand 

uncertainty and the impact this has on cost function estimation.

This recent work has attempted to bring together all three strands of hospital economics. 

The study by Carey has gone some way to integrate the three distinct strands that have 

developed, however, this work is still has some outstanding problems. Most notably, it 

failed to recognise output heterogeneity and only allows consideration of total number of 

beds rather than the use of beds within a hospital; this may stem from the lack of formal 

consideration of the theoretical basis of the model. Furthermore, the optimal condition 

specified in the paper, and consequently, the derived first order condition, is not fully 

specified. Notwithstanding these issues, Carey’s work does represent a development 

within the field, which should point the way forward for future work. The intention of 

the remainder of this thesis is to consider a theoretical, mathematical, and empirical 

specification of the issue of optimal use of hospital bed capacity within the framework of 

demand uncertainty and output heterogeneity, building on the existing work reviewed in 

this chapter.
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Chapter 3: An integrated approach to the theory of hospital behaviour

Section 1: Introduction

The previous chapter described some of the approaches adopted by other commentators 

when modelling hospital behaviour. Three areas were highlighted in this discussion as 

important when considering the behaviour of hospitals; the objective of the hospital; the 

heterogeneous nature of services; and the stochastic demand for services. However, 

none of these studies have attempted to build an integrated approach to modelling 

hospital behaviour from a solid theoretical background allowing an empirical 

estimation that is consistent with the theoretical model. Furthermore, previous models 

have not dealt with the issue of internal capacity utilisation given the nature of hospital 

demand and output, which is key to the whole exercise here. The aim of this chapter is 

to bring together the main theoretical features of a model of hospital behaviour, and 

consider the optimal allocation of available capacity given these features.

The conceptual issues regarding the objective of the hospital, the nature of the demand 

for hospital services, and output of hospitals, have been dealt with varying degrees of 

sophistication, as noted in Chapter 2. The objective of the hospital has, nonetheless, 

widely been considered either implicitly, or explicitly, as some sort of welfare 

maximisation. However, this has too often been vaguely specified leading the authors 

to ignore the interactions between the different arguments in the objective function. It 

is widely recognised that the stochastic nature of demand is an essential part of
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modelling hospital behaviour. Less emphasis has been placed on the heterogeneity of 

demand, although some authors have highlighted important issues regarding bed 

substitutability, and particularly the useful distinction between emergency and elective 

cases. However, this issue has largely been ignored in the maximisation and modelling 

process. Trade-offs exist between emergency treatments and tumaways, elective 

treatments and queuing.

Hospitals face a range of demands for their services and, in the UK, the capacity to treat 

these demands is constrained, i.e. in aggregate there is an excess demand for hospital 

services. Furthermore, we know that demand for at least an element of hospital 

services is stochastic. These are the key features of the NHS hospital. Therefore, the 

hospital must decide how best to utilise existing capacity given the nature of demand. 

The question then becomes what is the optimal use of hospital capacity given demand 

heterogeneity and demand uncertainty? This chapter will build a theoretical model of 

hospital capacity utilisation based on standard theories of production, and will consider 

the impact of two main issues; output heterogeneity and demand uncertainty with 

respect to the situation facing NHS hospitals in the UK. Section 2 will consider this 

issue building on underlying economic theory using a standard analysis of production 

theory. Section 3 will consider the specification of a general objective function 

consistent with hospital behaviour, and develop a geometric representation of hospital 

capacity utilisation choices. Section 4 will bring together the arguments in the objective 

function, and develop a four segment representation of capacity allocation. Section 5
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will formalise this model in a mathematical representation allowing the optimal 

allocation condition to be identified. Section 6 will draw some conclusions.

Section 2.1 A conceptual framework for considering capacity utilisation in 

hospitals

Analyses of hospital resource allocation decisions have concentrated largely on intuitive 

rather than theoretical analysis. Formal models have largely ignored theoretical 

foundations and the particular problems facing hospitals. Before considering the full 

theoretical model incorporating the objectives of the hospital, issues of uncertainty, and 

output heterogeneity, it is useful to outline the theoretical approach using a more 

constrained analysis. As such, we will initially focus on the impact that stochastic 

demand has on a hospital’s production process from a private perspective. Later, we 

will consider the same issue but take a wider social perspective and consider social 

costs and benefits.

Before considering the model it is worth outlining the main assumptions we will make 

regarding the features of the hospital firm and the demand for hospital services.

i) The hospital as a multiproduct firm. Hospitals produce many different goods and 

services sharing a common means of production. However, for presentational 

purposes, hospital services will be separated into two outputs here; elective procedures
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and emergency procedures. Whilst this represents a considerable simplification it is 

nonetheless, both convenient and intuitively appealing, for example, reimbursement of 

these two types of service differ in the UK.

ii) The demand for services. We will assume that the demand for emergency services is 

stochastic and that there exists an excess demand for elective services.

iii) Fixed capacity. We will assume that there is a fixed capacity which is based on 

current endowments of capital and labour. We also assume that the hospital must 

decide, ex ante, what level of resources to allocate to each service before demand is 

revealed and that beds are perfectly substitutable between different outputs.

iv) The hospital utility function. Initially we will adopt a private perspective and 

assume that the hospital is a surplus maximiser. In section 3 we will develop a more 

sophisticated vcn Neumann-Morgenstem expected utility maximiser that takes account 

of social costs and benefits.

These simplifications allow us to consider the allocation issues within a standard 

economic framework, outlined in section 2.2, below.
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Section 2.2: Standard analysis of production theory

The starting point for standard analysis of the firm’s production decision is the problem 

of minimising the cost of production of a given output, subject to available technology. 

The production function is a purely technological relationship representing the 

association between inputs and outputs. If we initially restrict the analysis to a firm 

with two inputs (K, L) producing a single output (y), then output can be represented as a 

function of the two inputs:

y  =  f (K,L)  (3.1)

where the factor inputs are combined to produce output which can be represented by a 

production isoquant reflecting all the technically efficient combinations of factors of 

production for a given level of output. This can be represented by an isoquant, such as 

Figure 3.1, which denotes the combination of capital (K) and labour (L) to produce a 

given level of output, y (where the smooth isoquant assumes substitutability between K 

and L over a certain range).
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F i g u r e  3 . 1 :  P r o d u c t i o n  i s o q u a n t

L

If we then extend the analysis to a multiproduct firm we can define the production 

function for two products, yi and y 2 where, as above, each product is assumed to be 

produced by two factors, K and L, such that:

yi- f(Kyi,Lyi)

y i  =  g(Ky2,Ly2) (3.2)

Each production function may now be represented by a set of isoquants. This allows us 

to represent the production possibility curve of the firm using an Edgeworth-Bowley 

box. Assuming that the firm has initial endowments of capital and labour, OK and OL 

respectively, the production function for yi is represented by isoquants A in Figure 3.2, 

and the production function for y2 is represented by B. The points lying on the contract 

curve represent points of efficient production.
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F i g u r e  3 . 2 :  E d g e w o r t h - B o w l e y  b o x

To determine the optimal choice of outputs, yi and y 2 , it is necessary to derive the 

production possibility frontier (PPF). The PPF represents the combination of outputs 

that can be produced by the firm using efficient combinations of inputs, and is derived 

directly from the contract curve in the Edgeworth-Bowley box. This is represented by 

PPF in Figure 3.3. below (which is usually represented as concave reflecting 

diminishing returns to scale and reflects the rate of transformation of yi into y2 ).

F i g u r e  3 . 3 :  I s o - r e v e n u e  c u r v e  a n d  P P F
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The optimal combination of outputs is determined by the indifference curve of the firm, 

which represents the firm's utility function. Standard analysis represents this through 

the iso-revenue curve, which is the locus of points of various combinations of output 

that yield the same total revenue for the firm. For example, in Figure 3.3 where the 

slope of the iso-revenue curve (IR) is equal to the ratio of the price of the two outputs. 

(The iso-revenue curve as represented by IR in Figure 3.3 assumes that prices are 

constant over the entire output, i.e. marginal revenue = average revenue, which is 

consistent with perfect competition). The optimal combination of outputs, for a 

revenue maximising firm, is the one that yields the highest revenue, given available 

inputs. This is located at the point of tangency between the iso-revenue curve and the 

PPF, such as point E in Figure 3.3, where the firm attempts to attain the highest iso-

revenue curve (i.e. furthest away from the origin).

Furthermore, the equilibrium level of output for a profit maximising multiproduct firm 

coincides with the revenue maximising level determined by the above analysis. The 

profit maximising level of output, given the constraints of factors of production, is 

where the marginal rate of product transformation between yi and y2 (represented by the 

slope of the PPF,) and the ratio of the relative prices of the output are equal. At the 

point of tangency the slopes of the iso-revenue and product transformation curves are 

equal, such that

-  —  = M R P T v v = ^ ~  (3-3)
d y 2 ■2"' P y<
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where, MRPTy2,yi is the marginal rate of product transformation between the two 

outputs, dyi/dyi is the slope of the PPF at the point of tangency, and pyi and py2 are the 

relative prices of yi and y2 respectively.

Any movement along the PPF, away from this equilibrium condition, will reduce the 

total revenue received whilst leaving total costs of production unaltered.1 Therefore, 

assuming that the quantity of factors and their prices are given, the maximisation of 

profit is achieved by maximising revenue. Standard economic analysis, thus, allows us 

to determine the optimal allocation of available resources for a two-output firm, where 

optimal output mix is determined by the production process and by the relative return to 

each product.

This approach can be extended to the hospital sector. If we consider the basic 

production processes set out in an Edgeworth-Bowley box in the context of fixed 

amounts of capital and labour, which are used to produce two hospital services; 

emergency and elective treatments, then an efficiency locus can be identified. This 

allows a production possibility frontier for the possible combinations of emergency and 

elective treatments to be identified, such as PPF in Figure 3.4.

The optimal combination of outputs is determined by the hospital's objective function. 

The hospital decision maker's preferences over the combinations of the two illnesses 

can be represented by standard isoutility, or indifference curves. At this stage the

' See Koutsoyiannis (1979) for a proof.
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objective function of the hospital need not be more sophisticated that specifying that the 

hospitals utility function is positive in both outputs. The optimal combination of 

outputs is identified at the point of tangency between the PPF and the highest iso-utility 

curve.

The optimal atta inable combination of emergency and elective treatments is represented 

by E in Figure 3.4, at the point of tangency between the PPF and highest indifference 

curve IC1, (where em represents emergency cases treated and el represents elective 

cases treated and IC1 is convex to reflect diminishing marginal utility).

F i g u r e  3 . 4 :  O p t i m a l  c o m b i n a t i o n  o f  h o s p i t a l  o u t p u t

Therefore, hospital output can be represented using the framework outlined above, 

where the hospital employs existing endowments of capital and labour to produce 

combinations of elective and emergency treatments, where the indifference curve 

represents the preference function for the two outputs.

em

IC1

el
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However, in order to incorporate some of the complexities of the production process, 

detailed earlier, it is necessary to introduce two complications; demand uncertainty and 

a more sophisticated specification of the hospital’s objective function. First, let us 

consider the impact of demand uncertainty before considering a fuller specification of 

the objective function.

Section 2.3: Demand uncertainty

A theoretical analysis of production responses to demand uncertainty can be usefully 

initiated using the analysis of Aiginger (1985). He showed, without any reference to the 

firm’s attitude towards risk or their preference function, that a producer, facing 

conditions of uncertainty arising from stochastic demand, would produce less than 

under conditions of certainty. The inference being that there is an inherent ‘cost’ 

associated with uncertainty. Aiginger distinguished between quantity produced and 

quantity sold in his model. He considered a one period single output model and 

assumed that unsold goods have no value; i.e. they are non-storable and cannot be 

backlogged, such that no value can be attached to unsatisfied demand. For simplicity, 

he assumed risk-neutrality as we will do here.

His model assumed that the firm is an expected profit-maximiser (although in principle 

any objective function can be applied), where profits result from the difference between 

costs and expected revenue; expected revenue being determined by the product price
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and the quantity produced, or demanded, whichever is smaller. This gives:

En =  pmm\q,x\-c(q) (3.4)

Where Etc is expected profits, p is price, q is quantity produced, x is quantity demanded, 

and c(q) represents costs. He further assumed that p is given, which is reasonable if one 

believes that one reaction to demand uncertainty is to accept the previous period’s price.

This can also be expressed in the following way:

where the first term on the right hand side represents the expected level of quantity sold 

for any level of quantity produced, q, for expected demand, x, given the distribution of 

demand, f(x). The second term represents the expectation that for any chosen level of 

quantity produced the good will be sold (i.e. demand will be at least equal to q) and c(q) 

is defined as a function of quantity. Where q is determined ex ante, before demand is 

realised and, ex post, cannot be altered.

Differentiating profits with respect to chosen output, q, gives the optimal allocation 

condition, where we have to employ the Leibniz’s formula to differentiate the second

En = (3.5)
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term since the parameter q features in both the integral function and as a limit, where 

the general Leibniz’s formula for differentiating a function of the form:

m

F ( t )  =  \ f { t , x ) d x

a( t )

where f(t,x), a(t) and b(t) are differentiable functions is:

F \ t )  =  f ( t , a ( t ) ) a ' ( t )  +

b(t)

12( 1 )

df(t,x) 
dt

d x

Thus, differentiating with respect to q gives the following, which is most clearly 

represented by separating the into three parts, where SEn/Sq is:

d j p  ■ x f  (x ) d x

------------------ ----------------------= p q f ( q ) - \ - p - 0 f ( . 0 ) - 0
a q

and, using Leibniz’s rule:

d\p-qf{x)dx
J  oo

—---- ---------= P ■ q ■ /(« )•  0 -  P ■ qf{q) ■ 1 + \ p f  (x)dx.(l)

and
< x ( q )

(dq
c'(q)

which is:
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=  f  P ■ f ( x )dx -  c\q)  
dq •*?

where c'(q) represents the marginal costs of production.

This can be abbreviated to:

p \ \ - F { q j \  =  c X q )

(3.6)

(3.7)

or:

P' =
c'iq)

[i -  f(? i]

(3.7a)

where [l-F(q)] is equal to the probability that output will be sold (and equals the value 

of the integral between q and infinity). Such that the optimal level of production is 

determined by the equality:

P  ~  c \ q )  +  p  ■ F ( q )  (3 -8)

where F(q) represents the probability that q cannot be sold and gives an expression for 

the marginal costs of uncertainty. Since, under conditions of certainty, the profit 

maximising firm will produce up to the point where price equals marginal cost it is 

clear that uncertainty introduces an extra element of cost, i.e. p.F(q).
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Therefore, the reduction in the output of the firm under conditions of uncertainty, as 

compared with conditions of certainty, is as a result of the extra cost component, which 

shifts the marginal cost curve upwards reducing the optimal output level. This can be 

represented using a simple diagram, such as Figure 3.5, where uncertainty can be 

introduced on the production or revenue side. In Figure 3.5 qc represents output under 

conditions of certainty, and q* under conditions of uncertainty, where uncertainty shifts 

the marginal cost curve, (or marginal revenue curve), such that the optimal output under 

conditions of demand uncertainty is less than under conditions of certainty.

F i g u r e  3 . 5 :  O u t p u t  u n d e r  d e m a n d  u n c e r t a i n t y

Just to reiterate, the uncertainty is introduced as a production response to demand 

uncertainty and does not depend on the firm’s risk preferences.

Once more, this general approach can be extended to the hospital sector. First, 

however, let us extend the analysis to consider a two-output firm (hospital), and 

consider the implications for the choice of output if uncertainty is present for one of the 

goods. Drawing on the above framework, let us assume that the hospital produces two
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goods; elective and emergency, and that uncertainty only affects the latter.

As earlier, the objective function of the hospital need not be any more sophisticated 

than specifying that the hospital’s utility is positive in both goods. However, to make 

comparison with the earlier specification easier we will consider an expected surplus 

maximising hospital from a private perspective. We assume that price is determined 

exogenously for the two services, and that each service attracts a different price , and 

has a distinct cost associated with production

Let us set up the; problem as above, where expected En  are given by:

E x  =  p t l - q e, + p em • £"' x f  ( x ) d x  + p em ■ £  q emf ( x ) d x  -  c ( q e m )  -  c ( q el) (3.9)

where pei and p,;m are the elective and emergency prices, respectively, (and pem > pei for 

the hospital to allocate any beds to the emergency sector ), and qei and qem are the 

quantities of electives and emergency cases, respectively. And where the second term 

in equation 3.9 represents the expected level of emergency cases treated and the third 

term represents that probability that the last bed will be filled, given the chosen level of 

emergency capacity. Costs of production are represented by c(qei) and c(qem) for 

elective and emergency cases and we will assume, as above, that production levels are 

determined ex ante, before demand is realised, and are fixed ex post. The costs of 2 3

2 This is consistent with, for example, prices being set via a bargaining process based on the previous 
period's average costs.
3 If Pel > pem then this would lead to a comer solution where all beds where allocated to the elective 
sector.
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production are, therefore, not represented as expectations, since the costs are related to 

output levels produced (rather than actually sold), whereas the revenue depends on the 

amount actually sold, which may of course be less than or equal to the amount 

produced. That is, a number of emergency beds may be staffed for emergency cases, 

but the demand for emergency beds may fall below this production level. This is 

picked up below when the capacity constraint is also introduced.

Differentiating with respect to qem and qei gives:

dEn

d Qel
=  P e l

and:

ôEk

f y e n ,
=  P en, - C ' ( q e J + P e n , - F ( q e J

(3.10a)

(3.10b)

Where, as earlier, the third term in equation 3.9 is differentiated using Leibniz’s rule.

To consider the capacity issue we introduce a fixed capacity constraint determined by 

the number of hospital beds, B, such that the maximum number of emergency or 

elective cases treated is determined by the number of beds available and the length of 

stay. Let us further assume, for simplicity, that the length of stay is equal and 

normalised to one for both emergency and elective cases. This allows the number of 

beds to represent the number of cases treated for both outputs but is by no means 

necessary for the results to hold generally; rather it allows beds and cases to be used
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interchangeably in the subsequent expositions of the problem.

The capacity constraint introduced determines the maximum number of elective and 

emergency cases that can be treated such that:

B qem qel (3.11)

Where B represents the total number of available hospital beds and qem and qei are the 

quantities of elective and emergency cases produced (i.e. rather than demanded). This 

allows the problem to be set up with reference to the constraint, B. It is apparent that 

once the capacity constraint is introduced .the output choice becomes a joint process, 

such that, if the level of emergency output is chosen this determines the remaining 

capacity to produce elective output, and vice versa. The capacity constraint reminds us 

that the production of emergency and elective cases depends on the allocation of 

capacity, and that capacity is allocated to either elective or emergency beds and this 

determines the level of each produced. While this split is based on output produced 

(e.g. an emergency or elective bed), it is once again the case that emergency demand 

(expressed as an expectation reflecting its stochastic nature) may fall below the level 

produced. It is the difference between realised demand and produced output that gives 

rise to the notion of excess (or reserve) capacity. This unused capacity is, nevertheless, 

an efficient response to demand uncertainty.
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Expected surplus is now given by the equation:

E X  =  P e ,  ■ V e , +  P en , ' f  Xf  (*>& + P en, ' £  ~  err, ) “ ^  e, )

S -t B  = <ien, + Q el

This can be solved employing a Lagrangian multiplier. However, since B = qem + qei it 

is possible to substitute qei (or qem) for the expression (B - qei), giving:

E *  =  P e ,  ■ ( B  -  q em ) + P en, ' £ ” Xf  ( * ) *  +  Pen, ’ £  9 e J ( * ) < &  ~  err, )  ~  C ( B  ~  Q en, )

(3.13)

This allows us to differentiate with respect to qem in order to derive the first order 

condition which, on simplification, and once more employing Leibniz’s rule, is:

- P e , +  P en, ' £  Q em f  (*)<** ~  c \ q  em )  + c \ B  ~  q  em ) = 0 (3.14a)

or:

P e n , ^ -  F ( q e J - C ' ( < l e J  =  P e l ~  F  { B  ~  q  eJ  (3.14b)

where c'(qem) and c'(qei) represent the marginal costs of producing emergency and 

elective output, respectively. The optimal allocation of capacity, under conditions of 

certainty, is achieved where the ratio of price, less marginal costs, are equal. Since
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return to the emergency output is uncertain, the impact of uncertainty is seen to be the 

reduction in quantity of emergency output relative to an environment of certainty, as the 

return to allocation of beds to the emergency sector is weighted by the probability of 

emergency demand being present, [1-F(qem)], (which is < 1 for all qem).

This can also be given as the following formally identical interpretations:

Pem — Pel “ ^  (B -q e m ) C (Qem) Pem F(Q em ) ( 3 - 1 5 )

D-F(qem)] = Pei-c'(B-qem) + c '(qei) /p em (3.16)

F(Qem) — [Pern " C (qem) !  Pem] " [Pel " C (B-qenl) / Pem] (3.17)

Where (3.15) replicates the Aiginger result for a two sector output model showing that 

there is a cost of uncertainty in that the marginal cost of an emergency bed is extended 

to include the lost marginal revenue related to the probability that the bed cannot be 

filled, F(qem). Equations (3.16) and (3.17) show the probability that the last emergency 

bed should be needed and is equal to the ratio of marginal cost to price, where part of 

the marginal cost is the surplus that could have been earned in the elective sector, and 

the probability that the last emergency bed will not be filled, respectively. With the 

latter having to equal the mark-up of the price over marginal cost in the emergency 

sector and the markup, in terms of marginal surplus in the elective sector to the
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emergency price, with regards the elective sector. It is the value placed on these 

probabilities which reflect the hospital’s decisions over the reservation capacity to hold 

in trading off the probability of unused capacity or tumaway against surplus. The setting 

of reservation capacity is, therefore, consistent with economic efficiency, even allowing 

for a cost of uncertainty as based on the lost marginal revenue attached to the possibility 

of having an unfilled emergency bed.

It is straightforward enough to reconcile this approach with the earlier representation. 

Recalling equation 3.3; the identity that specifies the efficient allocation of resources 

across the two outputs yi and y2 , we have:

Where the MRPT is equal to the slope of the PPF, and the ratio of Py2/ Pyi represents 

the slope of the iso-revenue curve. Since we have assumed that the lengths of stay are 

equal across the two treatments, the marginal rate of product transformation between

From above we know that, taking into account uncertainty, the hospital will allocate

4 Strictly, this requires the further simplification that the emergency and elective 
treatments also require the same labour input as well as the same capital input since the 
slope of the PPF, i.e. the MRPT is:

d } \ = MRPT,
dy2

emergency and elective care is equal to one4.
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capacity to the emergency (elective) sector up to the point where:

P e n , D -  F ( < l e m  ] “ ) = P e l  ~  C '’(■K  ~  V en, ) (3.18a)

or:

P e n , =1
P e l  - c \ K - q e m )

(3.18b)

Since we have assumed that the marginal costs are equal (i.e. MRPT = 1) then profit 

maximisation is achieved by maximising revenue such that:

M R  P T  _ P  em H F (Q e m  )] _ i (3.19a)
1 1 el,em 1

P e l

or:

M R P T eh
P e rn = 1
P e l

(3.19b)

This can be more generally represented as:

M R P T eiem -  M  -
C (3.19c)

[ 1 - ^ ( 0 ]

where, C is the rate of product transformation and M is the price ratio.

That is, the optimal allocation is at the point of tangency between the MRPT and the 

price ratio, however, the MRPT is determined by the allocation of capacity to the
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emergency sector (i.e. as more capacity is allocated to emergencies the probability of 

demand being present, [1-F(qem)], falls). Therefore, uncertainty alters the MRPT and, 

thus, the optimal allocation.

For exposition purposes, let us consider the impact that demand uncertainty has on the 

determination of efficient capacity utilisation, which is the capacity definition that 

embodies reserve capacity, through the use of a geometric representation of the 

problem. In this way we can concentrate on the manner in which demand uncertainty is 

consistent with reservation capacity.

This can be considered through the use of production possibility frontier and 

indifference curve analysis. If we assume, as above, that the length of stay is equal 

across emergency and elective treatments then the production possibility frontier, which 

represent the transformation of between emergency and elective cases as presented 

earlier, becomes a straight line. For consistency, let us assume that the hospital is an 

expected surplus maximiser where the indifference curves are represented by iso-

revenue curves (such as IR1 in figure 3.6), which show the combination of emergency 

and elective cases that give rise to the same level of revenue. Let us further assume, 

purely for expositional purposes, that the price received for treating emergency cases is 

twice that for elective cases and that prices are constant across the whole output. This 

gives the situation presented in Figure 3.6 where IR1 is the iso-revenue curve, and PPF 

is, once more, the production possibility frontier. In these circumstances and under
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conditions of certainty the hospital would choose a point such as A, where all available 

capacity is given to emergency treatment.

F i g u r e  3 . 6 :  s u r p l u s  m a x i m i s i n g  h o s p i t a l  u n d e r  c o n d i t i o n s  o f  c e r t a i n t y

Given that the hospital receives twice the revenue for treating emergency cases as for 

electives, and that the marginal rate of transformation is one, it should not be surprising 

that a surplus maximising hospital would allocate all capacity to treating emergency 

cases. If, however, we introduce uncertainty then the situation changes.

In order to introduce uncertainty we will assume, as earlier, that the demand for 

emergency care is randomly distributed with a known probability density function. 

Further, we will assume that the hospital must make an ex ante decision regarding 

capacity utilisation based on the expectations of the level of emergency demand, and 

recognising that, ex post, these expectations may not be realised. In order to produce at 

any level of output the hospital must commit resources. Uncertainty results in the 

hospital being faced with a situation whereby there will be a probability of unused

em

A

el
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capacity (or a probability of insufficient capacity, but let us concentrate on the former). 

In the event of ex post unused capacity standard analysis, i.e. not taking account of the 

production response to demand uncertainty, would suggest that the hospital is not 

operating efficiently. That is, the firm will be operating within its production 

possibility frontier and not on its efficiency locus. This result can be considered 

rational, however, once uncertainty is introduced, explaining the existence of reserve 

capacity in the hospital sector.

Recognition of the production reaction to demand uncertainty in an analogous manner 

to the result above, can be shown by constructing a ‘shadow PPF\ which lies within the 

PPF facing the hospital under conditions of certainty. Let us, for the sake of argument, 

assume that emergency demand is randomly and normally distributed such that we have 

a bell-shaped distribution as in Figure 3.7. As more provision is made for emergency 

services the probability of emergency cases arriving falls. That is, as we move towards 

the right hand tail of the distribution in Figure 3.7 the probability of an additional 

emergency arriving falls from one and tends towards zero. (That is, in equation 3.12, as 

qern tends towards oo the value of the third term, i.e. the integral between qem and oo, 

tends towards zero. Therefore, the expected marginal increase in the level of 

emergency output falls as qem increases).
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F i g u r e  3 . 7 :  N o r m a l  d i s t r i b u t i o n

prob

For each allocation of capacity and, therefore, each point on the PPF, there is a 

probability of emergency demand being present, and this probability declines as the 

hospital allocates more capacity to treating emergency cases and moves along the x-axis 

away from the origin in Figure 3.7.

The hospital must choose, ex ante, how much capacity to allocate to emergency and 

elective services based on its expectation of emergency demand. The expectation of 

emergency demand is determined by the probability distribution and, when the hospital 

makes its choice of allocation, the expected number of emergency cases treated is 

determined by the expected mean to the left of the truncated distribution (which is the 

represented by terms 2 and 3 in equation (3.12)). Each allocation to the emergency 

sector represents a point on the distribution and, therefore, it is possible to calculate the 

expected number of emergency cases treated for every possible allocation. This allows 

us to construct a shadow PPF such as PPF' in figure 3.8, below.
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F i g u r e  3 . 8 :  T h e  s h a d o w  P P F

The shadow PPF (PPF' in Figure 3.8) reflects the assumptions made above, where as 

more emergency services are catered for the probability of filling all the beds falls, 

consequently the slope of PPF' becomes more shallow as emergency capacity moves 

away from the origin and as the probability density function tends towards zero. (The 

exact shape depends on the actual probability density function (p.d.f.) of emergency 

arrivals). We do know, however, that if the hospital had the capacity to treat all 

possible emergency arrivals, i.e. the full range of the distribution, that the expected 

number of cases treated would be equal to the mean of the normal (i.e. untruncated) 

distribution. Therefore, this sets the upper limit of PPF' at Uem in Figure 3.8. Using this 

framework, it is now possible to consider the impact this has on the allocation decision 

of the hospital.

Let us reconsider Figure 3.6, where the hospital, under conditions of certainty where the 

price of emergency care was twice that of elective care, chose a comer solution such 

that it allocated all available capacity to treating emergency cases, attaining IR1.
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However, when uncertainty is introduced, if the hospital were to allocate at this point it 

would expect to attain IR3 (on Figure 3.9) (where the IR curves represent ‘certain 

equivalent’ levels for emergency services), producing at [eml, 0]. If the hospital takes 

account of uncertainty, however, they would allocate capacity to achieve the highest 

e x p e c t e d  utility; that is on IR2 [em2, el2]. To achieve this point, however, the hospital 

must allocate capacity to produce at E* [em3, el2], even though it only expects to 

produce at em3. Therefore, if the hospital takes account of uncertainty, it will allocate 

capacity in order to achieve the highest expected iso-revenue curve.

F i g u r e  3 . 9 :  O p t i m a l  a l l o c a t i o n  u n d e r  c o n d i t i o n s  o f  u n c e r t a i n t y  u s i n g  t h e  s h a d o w  P P F

This produces a result where, as earlier, under conditions of uncertainty, the hospital 

produces less than under conditions of certainty. Furthermore, the hospital allocates 

capacity to generate reservation capacity as a reaction to demand uncertainty. Simply 

stated this shows it is the allocation of capacity that forms one of the cost components
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resulting from production responses to demand uncertainty. The precise cost of this 

response will depend on the marginal costs of production associated with this 

reservation capacity as shown in equation 3.17, which relates the probability of unused 

capacity to the markups, defined in terms of emergency sector revenue, achievable in 

the emergency and elective sectors.

Furthermore, this is provides a geometric representation of the optimal allocation 

(under conditions of uncertainty) identified earlier, where the MRPT under conditions 

of certainty equals one, and the price ratio equals two (or, more generally, that the 

MRPT equals C and the price ration equals M, where M > C). The hospital will, taking 

into account uncertainty, adjust the ex ante MRPT and allocate capacity based on 

expectations of emergency demand. The optimal allocation occurs where the price ratio 

of emergencies to electives equals the MRPT divided by the probability of emergency 

demand being present. The latter determines the slope of the shadow PPF, which is 

determined by the p.d.f. of emergency demand.

The specification of the problem outlined above has, however, employed a standard 

analysis of the problem in so much as it assumes that the aim of the hospital (firm) is 

surplus maximisation from a private perspective. In the next section we will consider a 

more general specification of the objective function of the hospital from a social 

perspective.
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Section 3.1: Specification of a hospital objective function

The previous section considered two issues of importance when formally modelling 

hospital behaviour; output heterogeneity and demand uncertainty. However, the model 

specified above considered a surplus maximising hospital which only considered 

private costs. At this point it is worth re-considering the objective of the non-profit 

hospital by opening up the discussion to incorporate a social perspective.

The NHS is widely characterised by a capacity constrained system i.e. bed supply is 

limited, such that there exists excess demand for care. The situation is more complex, 

however, due to the existence of heterogeneous demand and demand uncertainty, such 

that there are conflicting demands for the available capacity and some of these demands 

are uncertain, ha section 2, above, we have, as others have done, separated demand into 

two types of care; elective and emergency. In the UK demand for elective care is 

characterised by the existence of waiting lists, reflecting the excess demand for care in 

this sector. However, hospitals quite regularly operate at less than full capacity, which 

as we have shown, can be viewed as a rational response to demand uncertainty. 

However, here we want to move away from a model of behaviour based on assumptions 

of private surplus maximisation. It is clear from observing hospitals in the UK that 

there are times when the hospital will operate at full capacity and times when unused 

capacity exists. The question this raises is why, if demand for elective care is greater 

than capacity, do hospitals operate at less than full capacity? The answer to this
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question provides the general specification of the hospital objective function.

There are three plausible explanations why hospitals would keep reserve capacity, each 

dependent on the objective function. The first explanation can be illustrated by 

employing a simple quantity maximand. If the aim of the hospital was to maximise 

output, then the hospital may keep reserve capacity if the length of stay for emergency 

cases was less than the length of stay for electives. The hospital would maximise 

output by allocating capacity to treat emergency cases as long as the expected length of 

time the bed was empty was less than the difference in the length of stay between 

electives and emergency cases. The main problem with this explanation is that 

empirical evidence suggests that the length of stay of elective cases is less than the 

length of stay of emergency cases.

Therefore, a more sophisticated maximand must be employed. The second explanation 

why hospitals might keep reserve capacity relies on a weighted output maximand. If 

emergency cases spend longer in hospital than elective cases then one reason that 

hospital may keep reserve capacity to treat emergency cases might be that they attach 

greater weight to treating them. (It is immaterial where this weighting comes from at 

this stage; it could be physician, manager or consumer weighting). This being the case, 

hospitals would allocate bed capacity to emergency cases, even if the length of stay was 

longer than for elective cases and demand was uncertain. They would allocate beds to 

emergencies as long as the weight attached to output, adjusted for length of stay, and
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the expectation of demand arriving, was greater than that weight attached to treating 

elective cases, adjusted by length of stay. That is, as long as the expected return per day 

was greater from allocating beds to emergency care than elective care. The question 

this raises is why should emergency output receive greater weight than elective output; 

is there any inherent difference between the two such that the hospital would value one 

more than the other? The intuitive answer is yes. Emergency cases require treatment 

immediately or the consequences for the individual may be serious. This, however, 

makes no reference to the inherent benefit or returns to the hospital from treating 

emergency cases compared to elective cases. Rather it relies on the hospitals suffering 

in some way if emergency patients are turned away. Therefore, the explanation for 

hospitals keeping reserve capacity may have to extend beyond the private returns to the 

hospital.

The most plausible reason for hospitals keeping reserve capacity to treat emergency 

cases when there exists, simultaneously, an excess demand for elective care, is that they 

do not want to turn emergency patients away. That is, the hospital attaches some sort of 

weight to not turning away emergency patients, or, put another way, the hospital 

attaches some sort of cost to turning an emergency patient away. The source of this 

cost may be financial (e.g. penalties for turning patients away or loss of future 

business), however, there may also exist a social cost where financial penalties do not 

exist, which may be related to the cost imposed on the patient who does not receive 

treatment, or the adverse political attention received when such an event occurs. Given
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the non-profit nature of NHS hospitals, it is quite plausible that this may indeed be the 

source of such ‘cost'.

Therefore, in specifying the objective function of the NHS hospital we should take 

account of at least two factors which might explain the existence of reserve capacity; 

the weight or utility attached to treatment, and the cost of turning patients away.

There are, however, two other factors that should be taken into account. If we assume 

that the hospital’s objectives consider factors beyond the purely private costs and 

benefits, then there may also be a social cost attached to leaving patients on the waiting 

list. On the basis of political attention waiting lists clearly are important. Therefore, 

we may also want to specify an objective function that not only attaches a social cost or 

disutility to turning emergency patients away, but also attaches a similar cost to waiting 

lists for elective treatment.

Therefore, the complete objective function should consider six factors: the utility 

attached to treating elective and emergency cases: the disutility attached to turning away 

emergency cases and queuing elective cases: and the costs of treating elective and 

emergency cases. Therefore, the most general specification of the hospital objective 

function can be made with reference to these six factors such that the hospital utility 

function, U, is:
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U = f(qem, qei, emt, we!, cem, cei)

Where qem and c[ei are emergency and elective outputs, respectively, emt is emergencies 

turned away and wei is elective waiting, and cem and cei are the costs of treating 

emergency and elective cases, respectively.

Let us, therefore, consider capacity utilitisation for an expected net social welfare 

maximising hospital with demand uncertainty for emergency care and excess demand 

for elective care and fixed bed capacity.

In the next section, we apply the production possibility/indifference curve approach 

developed above to consider utility and disutility conceptually, and attempt to draw 

together these two elements into a single geometric representation of the allocation 

problem. We will then proceed to formulate a mathematical model to derive the first 

order condition for optimal resource allocation.

Section 3.2: Iso-utility curves

The utility function of the hospital can be represented by standard indifference curves 

with elective arid emergency cases on the two axes, such that the hospital decision-

maker is indifferent between the combinations of elective and emergency cases on the 

same indifference curve. Introducing the PPF enables us to determine the optimal
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allocation point which, as before, is at the point of tangency between the PPF and the 

highest indifference curve. Introducing uncertainty for emergency cases, as earlier, 

gives us the situation in Figure 3.10, where an expected utility maximising hospital 

allocates capacity at E* [em2, ell] to achieve the ex ante maximum indifference curve, 

ICI, based on the expected demand for emergency services.

F i g u r e  3 . 1 0 :  O p t i m a l  c a p a c i t y  a l l o c a t i o n  u n d e r  c o n d i t i o n s  o f  d e m a n d  u n c e r t a i n t y

The iso-utility curves are concave suggesting that the marginal utilities attached to 

treating emergency and elective cases decline with quantity (i.e. diminishing marginal 

utility sets in). This is consistent with general economic theory.

Section 3.3.1: Iso-disutility curves

In addition to the utility derived from the provision of elective and emergency services 

we also assume that there is disutility associated with every choice of elective and
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emergency service provision, based on the size of the waiting list and the number of 

emergency cases; turned away, as a result of the choice of capacity given to each sector.

Consequently, it is possible to represent this situation in a similar framework, where 

instead of indifference curves, which represent iso-utility points, we can represent 

points of iso-disutility, where the production possibility frontier represents the feasible 

combinations of elective waiting list size and number of emergencies turned away. The 

aim of a disutility minimising hospital would be to operate on the lowest possible 

indifference curve, which is the point of tangency between the PPF and the lowest iso-

disutility curve (as the hospital moves towards the origin the disutility falls).

Since the situation is less familiar than consideration of utility maximisation, it is worth 

considering the situation under conditions of certainty before introducing demand 

uncertainty into the problem.

The slope of the disutility curve in Figure 3.11 represents the marginal rate of 

substitution between emergency tumaway and elective waiting list. The shallower the 

slope of the curve, the more disutility the hospital derives from turning emergency cases 

away relative to placing elective patients on the waiting list.

In order to determine the size of the waiting list and number of patients turned away it is 

necessary to impose needs (or demand) constraints. The limits of the PPF are
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determined by the capacity constraints for treating emergencies and electives. The level 

of demand, in conjunction with the capacity constraints, will determine the number of 

patients on the waiting list and the number of patients turned away. (This will also 

determine whether the PPF intersects the x and y axes -  in Figure 3.11, for example, we 

have assumed that there is sufficient capacity to treat either all the emergencies or all 

the electives. If capacity was insufficient to treat either of these then the PPF for 

disutility would not intersect either of the axes, i.e. the hospital could neither produce a 

zero waiting list nor zero numbers turned away). As the PPF moves towards the left 

hand comer of Figure 3.11 the closer the hospital is to being able to treat all demand (at 

the origin there is no capacity constraint, the hospital can treat all demand and the 

problem becomes uninteresting).

F i g u r e  3 . 1 1 :  D i s u t i l i t y  a n d  t h e  P P F

In Figure 3.11 the optimal allocation to minimise disutility is at E* [elwl,emtl] where
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PPF and ICdu are at a point of tangency. The disutility PPF can be thought of as 

emanating from the top right hand comer of Figure 3.11, where the two demand curve 

intersect. At this point waiting list and tumaway are at their maximum, the hospital is 

producing zero output, and the tumaway and waiting lists are determined by size of 

total demand.

The disutility curves are convex if we assume that the marginal disutility associated 

with waiting list size and tumaway rate increases with quantity. This may make 

intuitive sense, as hospitals reduce the numbers of emergency cases turned away, they 

may become more concerned with the size of the elective waiting list and vice versa. 

However, this is an empirical question since we do not have general economic theory to 

guide us here (this issue will be considered in more detail in Chapter 5).

Section 3.3.2: Disutility and demand uncertainty

The optimal allocation of capacity under conditions of demand uncertainty can be 

determined for disutility in the same way it was for utility. Once more it is possible to 

construct a 'shadow PPF. There will, in a similar way to utility, exist a shadow PPF 

that represents ex ante expectations, where the shadow PPF will have the same slope as 

for utility since it will be dependent on the p.d.f. of emergency demand.

The situation is represented below in Figure 3.12, where as more capacity is allocated to
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reducing emergency tumaway the lower the probability of patients actually arriving and 

being turned away becomes. This is analogous to the case for emergency treatments, 

however, the expected number of emergency cases turned away is equal to the expected 

mean to the right of the truncated distribution (whereas the expected number treated is 

equal to the expected mean to the left hand side of the truncated distribution).

F i g u r e  3 . 1 2 :  D i s u t i l i t y  a n d  d e m a n d  u n c e r t a i n t y

By taking account of uncertainty the hospital, ex ante, will attempt to attain the lowest 

possible disutility curve at E* [emtl, elwl]. Therefore, under conditions of demand 

uncertainty the hospital will be able to operate outside its PPF, i.e. at a lower level of 

disutility than implied by the PPF with certainty. This is analogous to the determination 

of utility under similar circumstances.

In the next section, we will bring together the four arguments in the objective function
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in a single representation of the problem, in order to attempt to identify a single optimal 

allocation point taking into account both utility and disutility.

Section 4.1: A four segment geometric model of hospital capacity allocation

From the exposition of the problem above it is clear that the production of utility and 

disutility represents a joint production process, where the choice of emergency and 

elective cases treated determines the number of emergency cases that will be turned 

away, and the number of elective cases that will be queued. Furthermore, under a fixed 

capacity constraint, the production decision in each sector is also jointly determined, i.e. 

when the hospital decides on the capacity to allocate to treating emergency cases, this 

also determines the capacity available to treat elective cases, and consequently the size 

of the waiting list and number of emergency case turned away.

Consequently, the hospitals decision process can be represented on a single, four 

segment diagram incorporating all four arguments in the objective function (as in 

Figure 3.13). The main objective of this, is to bring together all the factors influencing 

the hospital’s decision-making process, to attempt to identify a single optimal allocation 

point.

In Figure 3.13 below utility is represented in the top right hand segment of the four 

sector diagram and the bottom left hand segment represents the production of disutility.
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It is now possible to identify the optimal allocation points for utility and disutility, 

independently.

F i g u r e  3 . 1 3 :  J o i n t  p r o d u c t i o n  p r o c e s s

em

Eu* represents the optimum point of production if hospitals consider only utility, where 

the hospital produces [eml, ell] and Edu* is the optimal point if they only consider 

disutility, producing at [em2, el2].

Section 4.2: Identifying a unique optimal allocation point

The optimal allocation points identified in the four segment diagram are considered in 

isolation. In order to identify a unique optimal allocation point it is necessary to bring 

the two segments together, as they represent a joint production process.
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Bringing the two segments together allows us to consider the problem using a two- 

dimensional diagram, with elective services and emergency services on each of the 

axes, as originally presented. However, in this presentation of the problem the disutility 

associated with the indifference curves declines as we move away from the origin, 

(since more services are being provided, therefore, the tumaway and waiting lists are 

lower).

The result of incorporating the disutility curves in the analysis is that the hospital may 

move away from the original optimal allocation point, based solely on utility. The 

direction in which the hospital moves depends on the shape of the iso-disutility curves. 

If, for example, the disutility indifference curves are steep, suggesting that there is 

greater disutility attached to turning emergencies away than putting electives on waiting 

lists, then the hospital will shift its allocation upwards to the left (if the slope is shallow 

then the hospital may move downwards to the right). It is, of course, possible that the 

optimal allocation implied by the two arguments lead to the same allocation point.

The explanation of this result is that any move away from the optimal allocation point 

on the original curve will reduce utility, but if the allocation moves downwards to the 

right then this will also increase disutility. If, however, the hospital moves upwards to 

the left then disutility is reduced as well, therefore, there is a trade-off between a 

simultaneous reduction in utility and disutility.
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The single optimal allocation point is identified by the point of tangency between the 

indifference curves, (this is similar to optima identified in an Edgeworth-Bowley box), 

where the hospital is simultaneously operating on its highest utility curve and its lowest 

disutility curve.

F i g u r e  3 . 1 4 :  E f f i c i e n c y  l o c u s  f o r  i s o - u t i l i t y / i s o - d i s u t i l i t y

elw

The contract curve identified in Figure 3.14 represents the efficient combinations of 

output, since any points off this locus can be improved on, as with the Edgeworth- 

Bowley box, since it is possible to stay on the same utility (disutility) curve but operate 

on a lower disutility (higher utility) curve.

We can now superimpose the PPF on this locus to identify the unique optimal
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allocation point given available capacity as in Figure 3.15, below.

F i g u r e  3 . 1 5 :  O p t i m a l  a l l o c a t i o n  g i v e n  P P F

elw

However, this identifies the optimal allocation under conditions of certainty. We need 

to introduce the shadow PPFs in order to identify the optimal allocation under 

uncertainty. This is not straightforward, since we know that for any given allocation of 

emergency capacity, the expected number of emergencies treated, and turned away, will 

be less than the under conditions of certainty. Consequently imposing the two shadow 

PPFs on a single diagram leads to the situation in Figure 3.16.

First, let us set out the problem where the hospital has capacity to treat all emergency
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cases (i.e. to cover the right hand tail of the distribution, such that it can choose the 

number turned away to be zero). This sets the limit of the shadow PPF at the expected 

mean of the distribution. Similarly, it is clear that the expected number of patients 

turned away at the limit, when emergency capacity equals zero, will be equal to this 

expected mean. This gives us a better intuitive feel for the situation.

F i g u r e  3 . 1 6 :  O p t i m a l  a l l o c a t i o n  u n d e r  u n c e r t a i n t y

e!w 0

The problem now is that the hospital may not operate at a point of tangency between the 

two isoutility curves, since there are effectively two production possibility frontiers. It 

is possible that an optimal allocation point cannot be identified. If this were the case, 

all we can say is that the hospital will attempt to operate at a point where, ex ante, the 

difference between the two isoquants is at a minimum, since at this point they will 

simultaneously be operating on the highest utility curve and lowest disutility curve. 

That is, where the sum of the social benefits less the sum of the social costs is greatest.
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To formally identify the optimal solution we consider a more formal mathematical 

specification.

Section 5: Mathematical model of resource allocation decisions

The mathematical model will follow the same specification of the problem as above; 

output is split into emergency and elective care. The total number of beds represents 

the fixed capacity constraint. The decision variable is assumed to be the number of 

beds allocated to each sector. We assume that a hospital bed is a homogeneous unit and 

can be allocated to either sector, but once allocated to a sector they cannot be re-

allocated in time period under consideration. Output is the number of cases treated, 

where the total number of cases treated per bed, per day, is equal to the number of beds 

allocated to the sector divided by length of stay.

Demand, or arrivals, are assumed to be random and exogenously determined in the 

emergency sector, according to an, as yet, undefined process. When the emergency beds 

are full the additional arrivals are assumed to be 'turned away' and lost to the system. 

There is assumed to be excess demand in the elective sector, such that demand is 

always greater than capacity, B ,  for all B .  Therefore, the queue is never empty (and the 

choice for hospital is between treating an expected emergency arrival or taking one 

extra patient off the waiting list). Since we assume there is excess demand in the 

elective sector, such that demand is always greater than the available capacity to treat
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cases for all levels of hospital capacity, then the hospital knows that each bed allocated 

to the elective sector will be filled with certainty and that can choose the number of 

elective cases they treat. Furthermore, we assume that for any given decision period the 

total size of elective demand is known.

The objective function of the hospital is assumed to be utility maximisation, where 

utility is derived from treatments provided in both sectors, and disutility is associated 

with turning emergency patients away and placing, (or leaving), elective patients on a 

waiting list. The most general from of the utility function can be specified as:

U = U[qJ - DU[elw] + U [q J  - DU[emt] (3.17)

qel = number of cases treated in the elective sector

elw = size of waiting list in the elective sector 

a = number of emergency cases treated 

emt = number of emergency cases turned away

In the emergency sector, however, we assume that patients arrive stochastically. For 

any chosen bed allocation level in the emergency sector there will be a probability that 

the all the beds are not filled, which, as outlined earlier, is determined by the probability 

distribution around the demand function. Conversely, there will be a probability that
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the number of arrivals will exceed capacity, if this happens patients are turned away. 

The expected numbers of patients treated and turned away are both determined by the 

number of beds allocated to the emergency sector.

The arguments in equation (3.17), therefore, become:

qe, ~ Bei/LOSei 

elw = f(Be|/LOSel) 

qem= f(Bem/LOSein,f(x)) 

em,= f(Bem/LOSem,f(x)

where,

f(x) = the probability distribution around emergency demand 

Bem = number of beds allocated to the emergency sector 

Bei = number of beds allocated to the elective sector 

Bt  = total number of beds available

Where we know that,

Bern Bej — Bj

where, for simplicity, let us also, as earlier, assume that the length of stay for electives 

and emergencies are equal to one; this provides a normalisation and allows us use beds
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and cases interchangeably but is by no means necessary. Furthermore, it allows us to 

assume that the marginal rate of transformation between emergency and elective cases 

is equal to one such that the costs of treating emergency and elective cases are equal as 

in the PPF/IC representation outlined earlier5.

Furthermore let W represent the total number of elective patients waiting for treatment, 

such that:

elw = (W- Be,) (3.18)

This allows us to set up the problem where the hospital aims to maximise expected 

utility, EU, where:

EU = U[Bel] - U[W-Bel] + EU[Bem, f(x)] - EDU[Bem, f(x)]

s.t. Bem + Bel = Bt  (3.19)

This can be solved using a Lagrangian, but, as earlier, since BT = Bem + Bei we can 

substituting for Be! (or Bem) such that:

EU = U[BT-Bem] - U[W-(BT-Bel] + EU[Bem, f(x)] - EDU[Bem, f(x)]

(3.20)

5 Including marginal costs in the specification is trivial if we assume that output, and hence cost, is 
determined ex ante and fixed ex post, since, as earlier, the surplus maximising optimal condition 
coincides with the utility maximising solution. That is, we can simply add marginal costs to each side of 
the first order condition.
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(3.20)

This tells us that expected utility is determined by the choice of beds allocated to treat 

emergencies (electives) given the total bed constraint.

First, let us consider the number of case treated in the emergency sector. Let us, as 

above, assume an unspecified distribution function f(x), where x is the number of 

arrivals (or demand) in the emergency sector and f(x) is the probability density function 

for any x. We know that once the hospital chooses the number of beds, Bem, allocated 

to the emergency sector, this determines the number of cases that can be treated. Let us 

consider the general representation of the situation where we will assume a non-linear 

utility function, and, as earlier, we will assume risk neutrality. The expected level of 

utility associated with any bed level, Bem can thus be represented as:

where the first term represents the expected level of emergency output, given the 

truncation at Bem, and the second the probability that the last bed will be filled. 

Similarly the number of emergency cases turned away by the hospital is also be 

determined by Bem, where the expected number of cases turned away is determined by 

the probability distribution around x, such that:

(3.21)

(3.22a)
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which represents the expected number of cases greater than Bem. This can be simplified 

to:

E D U = [  DU[(x-Bem)].f(x)dx
(3.22b)

The fully specified model becomes:

EU = U[(Bt  -  Bem)] -  DU[(W -  (Bt  -  Bem)] + £  U[x\f(x)dx + £  U[Bem ]f(x)dx 

~ £  DU[(x -  Bem )]f(x)dx

(3.23)

Differentiating with respect to the choice variable, Bem, and once more using Leibniz’s 

rule for terms 4 and 5 in equation 3.23, gives the optimal allocation (or general first 

order condition), which, in full, is:

-  U* '[fir -  B„ ] -  DU„ W  -  (Br -  B „ )] + U„ [B,m ] / (S „  )(1) - 1 /„[» ]/(» )(0 )

-  U,.IB,. ] f(B„  )(1) + £  U'm[B,Jf(x).dx-  £>[/[» -  ](0) -  DU[B„ -  B,m](1)

+ l_D U ;[ (x -B ,J] . f (x ) .dx  = 0

(3.24)

where U 'em and U 'ei represent the marginal utilities of emergency and elective cases,
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respectively and DU'em and DU'ei are the marginal disutilities of emergency and 

elective cases, respectively.

Which is:

- U A B t  - B , J - D U „ ‘[ W - ( B r -B ,„)]+  [  u j [ B , . ] f U ) . d x  

+ (” d u ; [ x -
m

(3.25) 

or:

u „  \ B t -  B„] -  £  DU,'[(x-  B „  )]./(*).&  = £  ]/(* ) - D U J [ W - ( B T -  )]

(3.26)

The second order condition of which is:

K [Br -  B m  ] + D U : \ W - ( B r -  B,„) ] - U ’„ , l B m  ) + £

-  f  O l / J i - ! J . / W A  = 0

where " represents the second derivative. The sign of which is ambiguous and depends 

on the relative magnitude of each component of the solution.

Equation 3.24 can be more simply represented as:
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MUem.[l-F(Bem)] -M D U W = MUe, - MDUt[ 1 -F(Bem)] (3.27)

where

MUem = marginal utility of treating an emergency case (as a function of the number of 

cases treated)

MDUw = marginal utility of treating an elective case (as a function of the number of 

cases treated)

MUei = marginal disutility of turning away an emergency case (as a function of the 

number of cases turned away)

MDUt = marginal disutility of placing an elective on the waiting list case (as a function 

of the number of cases on the waiting list)

[l-F(Bem)] = probability of all emergency case beds being full

The intuitive explanation is that the optimal allocation is where the increase in expected 

utility derived from allocating one more bed to the emergency sector, less the increase 

in disutility in the elective associated with the allocation of a bed to the emergency 

sector, is exactly equal to the increase in utility derived from allocating one more bed to 

the elective sector, less the increase in expected disutility in the emergency sector as a 

result of this. The hospital, therefore, takes account of uncertainty when allocating 

capacity such that it shifts off the PPF and the optimal allocation adjusts that relative 

utilities by [l-F(Bem)]. Giving:

127



Ch.3

MUem [1 -  F(Bem)] + MDU, [1 -  F{Bem)] 

MU el + MDUW
-  M R P T [ \  -  F ( B em)]

(3.28)

This represents, mathematically, the result indicated by the geometric analysis, such that 

the optimal allocation is where the hospital maximises the difference between utility 

and disutility, i.e. allocates such that they operate on the highest expected utility curve 

and lowest expected disutility curve.

Section 6: Conclusions

In this chapter we have extended current theory by considering hospital bed allocation 

issues using a standard production possibility/indifference curve framework. We have 

introduced demand uncertainty and output heterogeneity into the representation; two 

aspects that are fundamental to the specification of the production process. Through 

this analysis we have shown that there is an inherent cost of uncertainty, and that this 

alters the resource allocation decisions of the rational hospital. We have also shown 

that that excess capacity can be consistent with an efficient allocation of resources when 

viewed as a response to demand uncertainty, and have identified a shadow production 

possibility frontier, which represents this response. The existence of planned reserve 

capacity has been shown to be rational from a private perspective. However, hospitals 

in the NHS implicitly have some kind of social perspective, and the existence of reserve
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capacity has been shown to be entirely consistent with this wider objective, although 

identification of an optimal allocation depends on the magnitude of the social elements. 

To show the response to uncertainty more formally we constructed a mathematical 

model that allowed the optimal allocation decision to be identified. This model showed 

that when a social perspective is introduced reserve capacity is a rational response, and 

that this response depends on the arguments that enter the hospital’s utility function, 

and the relative magnitude of each argument, which is consistent with the geometric 

representation. the model provides a conceptual framework for an empirical 

investigation into the hospital’s cost function. It is to this that we now turn.
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Chapter 4: Estimating a hospital cost function

Section 1: Introduction

Interest in specifying and estimating cost functions for hospitals has grown in the last 

three decades largely reflecting a greater availability of data. Much of this work, 

however, lacks theoretical content. The literature has generally failed to address some of 

the key issues that may affect the structure of hospital costs, most importantly the 

heterogeneity of output and demand uncertainty. The aim of this chapter is to build on 

recent advances in the area to estimate a hospital cost function that incorporates 

production responses to demand uncertainty, and introduces output heterogeneity in an 

explicit manner.

In Chapter 2 we reviewed a number of hospital cost function analyses and highlighted 

some of the issues dealt with within this literature. We identified the underlying theories 

relating to cost function analysis. In particular, we highlighted the underlying neo-

classical theory of the firm and the implications for cost function analysis, and the 

problem of assuming that the cost function describes the minimum cost of producing a 

given output. Reliance on neo-classical theory has important consequences for the 

specification of a regression equation if observed costs are interpreted as minimum costs. 

Independent variables may only comprise output quantities and input prices. Other 

potential independent variables, such as capacity utilisation, cannot be included in this 

type of specification because they do not determine the minimum cost; rather they explain 

deviations from the theoretical minimum. The importance of this was further highlighted
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in Chapter 3 where we showed how reserve capacity can be viewed as an efficient 

response to demand uncertainty, but that it leads hospitals to operate within their 

production possibility frontier. Therefore, we suggest, analysis of hospital costs should 

take this into account.

In the review chapter we discussed other theories that have arisen out of the discussion of 

hospital behaviour, but concluded that most work has relied on conventional assumptions 

in the estimation of cost functions. Econometric, rather than economic, considerations 

have dominated with cost minimisation and, hence, duality assumed.

It is not necessary to duplicate the reviews of hospital cost function estimation techniques 

here; a summary of which was provided in Chapter 2. Rather, we concentrate on building 

on recent developments in the literature by Friedman and Pauly (1983), Pauly and Wilson 

(1986), Gaynor and Anderson (1995) and Carey (1996), which incorporate amendments 

for demand uncertainty and highlight the impact that this has on the duality between cost 

and production conditions. In the following sections we will draw on previous work, 

where applicable, and formalise the relationship between demand uncertainty, output 

heterogeneity, and costs with the aim of developing and empirical estimate that is 

consistent with the theoretical specification of Chapter 3.

The chapter is structured as follows: Section 2 will develop a theoretical background to 

the estimation process. Section 3 will consider the specification of the cost function and 

will present the results. Section 4 will draw some conclusions.
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Section 2: The theoretical background

Building on some of the most recent work in estimating hospital cost functions, we note 

that one common dimension of hospital output is the planned excess, or reservation, 

capacity that is provided to ensure treatment is responsive to demand uncertainty. If no 

adjustment is made for this reservation capacity when estimating hospital costs, the 

hospital will appear to be operating inefficiently. It is, therefore, important to adjust the 

cost function to take account of this factor.

The majority of previous studies have considered hospital demand as homogeneous. This 

leads to a number of implications; all demand is either endogenous or exogenous, 

reservation capacity exists to service all demand, and, building on the theoretical 

specification in Chapter 3, that the same social cost is attached to turning away all types 

of demand. A significant improvement is to recognise that demand is heterogeneous, a 

simple classification would be, as in Chapter 3, to specify output as elective and 

emergency cases, where it is possible to queue some kinds of demand (elective), whereas 

other demands must be treated immediately or turned away (emergency). We assume 

throughout that electives are endogenous, and that emergencies are exogenous and arrive 

with some uncertainty attached. As highlighted in the theoretical specification, it is due 

to this latter characteristic that hospitals hold reservation capacity.

The model we will develop here will specify the production process by referring to three 

categories of input with two levels of variability; those that are related to output and those 

that are related to capacity. The three inputs are capital, which is fixed, quasi-fixed.
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which are staffed beds, and variable, such as materials, drugs and dressings. We will 

assume, as previous authors have done, that the hospital chooses fixed and quasi-fixed 

inputs on the basis of ex ante demand expectations and that once chosen there is no ex 

post adjustment. We will also assume that variable costs are chosen on the basis of 

demand expectations but that ex post these inputs adjust to the realised demand level.

Following the discussion of the theoretical model framework in chapter 3 we will specify 

the objective function of the hospital as one of expected cost minimisation, however, we 

will also adjust for demand uncertainty as the hospital will operate within the standard 

PPF. In addition, we will introduce two further elements of cost, such that costs comprise 

the costs of production and the social costs attached to turning patients away, and placing, 

(or leaving), elective patients on a waiting list. As in the previous chapter, the most 

general specification of the optimisation problem is therefore one adopting a social 

perspective:

E{C) = K + scK [elH. ] + £  sc, [(x -  qem )}f{x)dx + cBem [qem ] + cBel [qel ] 

+ f™ cVtm [x] ■ f(x)dx  + £  cVtm [qem ]f(x)dx + [qel ]
(4.1)

where,

E(C) = expected costs

Cvem = variable cost of treating emergency cases 

cvei = variable cost of treating elective cases
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CBem = quasi-fixed cost of treating emergency cases 

cBei = quasi-fixed cost of treating elective cases 

sct = social cost of turning away emergency cases 

scw = social cost of putting patients on the waiting list 

qem = quantity of emergency cases 

qei = quantity of elective cases 

elw = elective waiting list size 

K = Capital

Output is the number of cases treated, where the total number of cases treated per bed, per 

day, is equal to the number of beds allocated to the sector divided by length of stay.

Demand in the emergency sector is assumed to be random and exogenously determined 

according to an, as yet, undefined process. For any chosen bed allocation level in the 

emergency sector there will be a probability that the all the beds are not filled, which is 

determined by the probability distribution around the demand function. Conversely, there 

will be a probability that the number of arrivals will exceed capacity, if this happens 

patients are turned away. The number of beds allocated to the emergency sector also 

determines the number of patients turned away.

There is assumed to be excess demand in the elective sector, such that demand is always 

greater than capacity, B ,  for all B .  Therefore the queue is never empty. Consequently, the 

hospital knows that each bed allocated to the elective sector will be filled with certainty
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and can choose the number of elective cases they treat. Furthermore, we will assume that 

for each decision period the hospital is aware of the total number of patients seeking 

treatment, such that the number of electives treated determines the waiting list size1. 

When all the elective beds are occupied any additional arrivals are assumed to join a 

waiting list.

Therefore, the arguments in equation (4.1) become:

qd =B ei/LOSei) 

elw = f(Be,/LOSel) 

qem=f(Bem/LOSem,f(x))

where,

f(x) = the probability distribution around emergency demand 

Bem = number of beds allocated to the emergency sector 

Bei = number of beds allocated to the elective sector 

LOSem = length of stay in the emergency sector 

LOSei = length of stay in the elective sector

1 More complex models of waiting lists exist, see for example Worthington (1987), however these models 
rely on arbitrary contracts such as ‘discouragement factors’ to enable stationarity to be induced in the 
models. Furthermore they require assumptions about intertemporal bed allocation decisions that are 
inconsistent with our model. We simply assume that elective demand is exogenously determined but that 
the total size of demand is known within any decision period. This does not affect the first order condition 
but does allow a straightforward exposition of the waiting list size.
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Furthermore, let us assume that within any given decision period the hospital knows the 

number of elective patients requiring treatment. Let W represent the total size of elective 

demand such that:

elw = (W-Bei) (4.2)

(This simply assumes that the waiting list is predetermined for any given period, this 

assumption does not affect the first order condition as long as W>Bei, i.e. the waiting list 

is non-zero.)

Furthermore, we know that,

Bern + Bel = Bj (4.3)

where Bt  = total number of beds available

As in Chapter 3, let us also assume that the length of stay for electives and emergencies 

are equal and normalised to one, this allows us to use beds and cases interchangeably but 

is by no means necessary to what follows. By substituting Bei for (BT - Bem) we get the 

following expression, which allows us to maximise with respect to Bem.

E ( C )  =  K  +  s c n. [ W - ( B r  ~ B e m ) \ +  £  s c , [ ( x - B e m ) ] f ( x ) d x  +  c B e m [ B e m ] +  c B e l [ B T - B e m ]

+ £ ” M  • f ( x ) d x  + £  [ B em } f ( x ) d x  + c Vt/ [ B ; -  B em ]

(4.4)
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Where the expected costs and social costs are determined in the emergency sector by the 

number of beds allocated to that sector. The expected variable costs of production are 

determined by the expected mean of the probability density function truncated at Bem (i.e. 

terms 6 and 7 in equation 4.4, above). The quasi-fixed costs are determined with 

certainty, ex ante, based on the choice of Bem. The expected social costs are determined 

by the mean to the right of the distribution truncated at Bem (i.e. term 3 in equation 4.4).

This gives us the following first order condition (as in Chapter 3 we employ Leibniz’s 

rule where Beil, enters as a limit and a parameter within in the integral):

s c J [ W  -  ( B ,  -  B em )] -  £  s c ,  '[x -  B e m \ f ( x ) . d x

+ c L „ l B en, ] -  c'ge, [ B ,  -  B em ] +  £  c'v e m [ B em } f ( x ) d x  -  c'vel[ B ,  -  B em ] = 0
(4.5a)

The second order condition of which is:

< W  -  ( B r -  B em )] + £  s c \ x  -  B em ] f ( x ) . d x  

+  c l m  [ B em J + C m [ B t  - B e m ] +  £  c " em [ B em ] f ( x ) d x  + c ”e/ \ B r -  B em ]
(4.5b)

which is positive as long as the first term is less than the sum of the remaining five terms, 

which is intuitively plausible as the social costs of turning an emergency patient away are 

likely to be greater than the social cost of placing a patient on the waiting list even 

without taking account of the private marginal costs of production. Under these 

conditions a minimum is identified.
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Equation (4.5a) can be represented more simply as:

MSCt[l-F(Bem)]+ MCBe, + MCvel = MSCW + MCBem + MCvem[l-F(Bem)] (4.6)

where,

MSCt = marginal social cost of turning away emergency cases

MSCW = marginal social cost of putting patients on the waiting list

MCBem = marginal cost of a staffed emergency bed

MCBei = marginal cost of a staffed elective bed

MCyem = marginal variable cost of emergency case

MCvei = marginal variable cost of elective case

[l-F(Bem)] = probability of a turning a patient away

That is, an expected cost minimising that takes a social perspective will allocate up to the 

point where the total, (i.e. private and social), expected marginal costs of allocating beds 

to the elective sector equals the total expected marginal costs of allocating beds to the 

emergency sector, 

or:

MSCt[l-F(Bem)]- MSCW = MCBem + MCvem[l-F(Bem)]- MCBel-  MCvel (4.7)

Such that the difference in expected social cost between the two sectors equals the 

difference between the expected marginal costs of allocating an extra bed to the
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emergency sector, less the costs of allocating an extra bed to the elective sector. The

2existence of reserve capacity is consistent with social cost minimisation.

Let us briefly reconsider this issue in such a way that the costs of uncertainty become 

intuitively more appealing, that is, by separating out expected costs and costs of 

uncertainty due to ex post rigidity. This extension of the general specification is useful in 

considering the various dimensions of uncertainty. Essentially there are three aspects.

Since we are assuming that there is ex post flexibility in the choice of variable inputs, but 

that hospitals must choose the number of staffed beds ex ante (with no ex post 

adjustment), equation (4.5) allows us to identify one element of the cost that is introduced 

due to this ex post rigidity, that is c'Bem[Bem]- If there were ex post flexibility of bed 

allocation the expected costs of staffed beds would be:

(4.8)

Therefore, the rigidity introduces an extra cost which is equal to the difference between 

the expected costs, given flexibility, and the actual costs with rigidity, such that:

: Note that the fixed capital costs drop out of the specification when the first order condition is derived so 
we move to a short-run variable cost function.
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(4.9)

which is the marginal cost of an emergency bed less the marginal cost of an empty bed 

weighted by the probability of being filled. As the probability of turning a patient away 

tends to zero this term will tend towards the marginal cost of a bed. If we assume that the 

cost of a bed varies linearly with the number of beds this becomes:

The marginal cost of a bed multiplied by the probability of the bed being empty. So as 

the probability of turning a patient away falls the cost of uncertainty rises, therefore the 

hospital must trade off this increasing expected cost against the cost of turning a patient 

away. The extra cost associated with uncertainty means that the hospital operates inside 

its production possibility frontier (PPF), and appears to be operating inefficiently. 

However, the efficient level of capacity utilisation under conditions of uncertainty must 

take account of the cost of uncertainty. The hospital will attempt to minimise expected 

costs, and this is consistent with operating with reserve capacity. Any deviation from the 

e x p e c t e d  cost minimising position will, however, result in the hospital operating off its 

shadow PPF, (PPF' as outlined in Chapter 3), and now the hospital will be operating

[  f ( x ) d x ] (4.10)

which is:

(4.11)
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inefficiently. It is the extent of this deviation that must be taken into account when 

estimating the cost function.

The cost function has all the usual properties except duality and independence of demand 

and cost, since the firm is constrained to have the capacity to meet randomly fluctuating 

demand with some probability, but will not generally be producing on the production 

possibility frontier. In addition to this cost, the hospital must also enter into the spot 

market to adjust variables inputs to satisfy the ex post realised level of demand. The 

extent of this adjustment corresponds to the difference between ex ante expected demand 

and ex post realised demand:

c 'v e M e n , ~ [ £ “ */(*)<&) + £  Ben,f(X)dx]) (4.12)

where qem is realised output and c 'vem is the spot market price for variable inputs (this can

be negative or positive depending on whether more or less inputs are required, where the 

cost of uncertainty are represented by the adjustments costs). The total impact uncertainty 

has on costs therefore depends on the level of ex post adjustment, and the extent to which 

demand differs from ex ante expectations. That is, how far off the revised, ex ante, 

production possibility frontier (PPF’ in the geometrical exposition in Chapter 3) the 

hospital is operating ex post.
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This gives three potential elements of the impact of uncertainty. The first refers to the 

hospital operating with the PPF, i.e. such that duality is broken. The second refers to the 

hospital operating off its shadow PPF’, this occurs when the actual admission level differs 

from the expected admissions such that the hospital once more is operating inefficiently, 

i.e. off the ex ante cost minimising level of production. The final element refers to the 

cost of entering the spot market to purchase the variable inputs required, (or reduce the 

level of variable inputs), to meet ex post demand. Using these notions of demand 

uncertainty we can develop an empirical model of hospital costs.

Section 3.1: The cost function

While the previous section developed a general social welfare cost function, we will now 

proceed to an empirically testable hypothesis of whether or not demand uncertainty and 

product heterogeneity affect hospital costs. This empirical specification will be 

developed using only data on private costs, since these are the only data reported and 

observed and by focusing on private, rather than social costs we have a 'cleaner' test of 

our hypothesis. As will become clear in Chapter 5, we need to estimate private marginal 

social costs before we can estimate social marginal costs, and we need to undertake 

further modelling in order to derive estimates of social costs. Nonetheless, the estimation 

of costs still relies on the underlying theory developed above.

From the discussion of the theoretical background, it is clear that if demand uncertainty is 

ignored the cost function will be misspecified. Therefore, in order to provide estimates
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that are consistent with our theoretical specification, we introduce demand uncertainty 

into our cost function estimate.

To allow an empirical specification of our hypothesis that demand uncertainty and 

product heterogeneity affects costs let us specify output as:

Qt  — Qem Qel

Where the subscripts T, em and el, represent total, emergency and elective output, 

respectively. Let us define the production process such that:

Qem and Qei = f(k, vf, vv)

This allows, from equation 4.5, the production function under conditions of demand 

uncertainty to be generally specified as:

Qt  = f(k, vf, vv, [l-F(Qem)])

Where [l-F(Qem)] represents the probability that the hospital will be full, or alternatively 

that an emergency patient will be turned away. The implication is that there is an optimal 

level for this probability determined by the relative magnitudes of the social and private 

costs of production. Therefore, the hospital’s aim is to minimise costs subject to demand
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uncertainty, and the maintenance of reserve capacity consistent with achieving its optimal 

level of [l-F(Qem)].

This cost function has the normal properties except duality and independence of demand 

and cost. With the existence of demand uncertainty, it is no longer tenable to assume that 

that inputs have been hired to produce the observed output at least cost. Rather we must 

assume that inputs have been hired to minimise ex ante expected costs. Therefore, costs 

will depend on expected levels of admissions, as well as actual admissions, and the extent 

of divergence between the two.

From equations 4.8-4.12, above, we need to pick up three components of demand 

uncertainty. First, we need to adjust for the deviation of actual from expected output to 

consider the cost of ex post adjustment of variable inputs. Secondly, we need to consider 

the impact of the hospital operating off its ex ante cost minimising position (i.e. the 

shadow PPF). Finally, we need to consider the impact of operating within the PPF 

efficiency locus. One way of incoiporating the first two elements is to include estimates 

of demand expectations and ex post errors of demand in the cost specification. In 

addition, if we also want to consider the impact that operating within the PPF has on 

hospital costs, we need to include a variable to pick up reserve capacity. We will now 

consider these factors in the specification of a cost function, including demand 

uncertainty and output heterogeneity.
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3.2: Specification of the cost function

We estimate a total variable cost function to reflect production responses to demand 

uncertainty. Although in principle there are a number of different measures we could 

have used, such as average cost or total costs, we used total variable costs to enable us to 

pick up the responses to demand uncertainty, and their impact on short-run cost 

structures. Since we model for output heterogeneity, the use of an average cost is 

precluded, and total costs including capital would not focus on the short-run capacity 

utilisation issues in which we are interested.

We assume a monthly planning period within which hospitals allocate available bed 

capacity between elective and emergency cases and we estimate an annual cost function. 

In the cost specification we include estimates of actual emergency and elective output, the 

inverse of the occupancy rate, which measures the extent of excess capacity and also 

controls for fixed factors and length of stay, an estimate of the casemix, and a number of 

dummy variables. A variable is included to capture the impact of demand uncertainty. 

This variable is included to test empirically whether or not uncertainty impacts hospital 

costs. It is hypothesised that if the coefficient on this variable is positive and significant 

demand uncertainty imposes a real cost on hospital production.

As an initiation to our investigations we assume a total variable cost function of the 

following form:
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TVC = f(ELADM, EMADM, RES, BEDSEL, BEDSEM, CASEMIX, INVOCC, 

OPV, DAYATT, AEATT, WI, DV.) (4.13)

where TVC is total variable costs. ELADM is total inpatient elective admissions. 

EMADM is total emergency inpatient admissions. These output measures pick up the 

two main outputs of concern here. BEDSEL are the total number of staffed beds 

allocated to the elective sector. BEDSEM are the total number of staffed beds allocated 

to the emergency sector, ha the short-run the overall capacity is fixed. There is, however, 

still a choice over the level of different outputs. Therefore, to maintain consistency with 

the theoretical specification, we have separated beds into those allocated to the elective 

sector and those to the emergency sector. This will enable us to determine the cost of 

staffed beds allocated to each sector. CASEMIX is an estimate of casemix based on HRG 

weights. Since output is more complex than our two-category definition, this variable is 

necessary to pick up case complexity. INVOCC is the inverse of the occupancy rate 

(BEDS.365/LOS.ADM), which measures the extent to which reserve capacity exists. The 

main focus of the estimation is on inpatient admissions, however, hospital produce other 

outputs; namely outpatient visits and day attendances. OPV are outpatient visits. 

DA YATT are day attendances. AEATT are accident and emergency outpatient visits. WI 

is wage index based on the average wage rate for each hospital, and is a rather imperfect 

measure of the factor prices faced by each hospital. Although we do recognise that within 

the NHS factor prices are set through central bargaining processes and the discrepancy 

between providers should not be large, therefore, a wage index may well capture most of 

the variation. RES is the variable that captures demand uncertainty (discussed in section
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3.3 below). DV, represents a range of group dummy variables (discussed in more detail 

3.5).

The above discussion has highlighted the importance of demand uncertainty, and the 

construction of an appropriate variable to pick up the influence of this uncertainty on 

costs. Before considering the estimation of the cost function we will consider, in some 

detail, the different ways of incorporating demand uncertainty, and the different ways that 

demand forecasts have been estimated.

3.3.1: Incorporating estimates of demand into a cost function

An important question is how should uncertainty be included in the cost function? A 

number of issues need to be addressed. These can best be assessed with reference to prior 

studies, albeit small in number.

Friedman and Pauly (1983) and Pauly and Wilson (1986) both employed a measure of the 

ratio of expected to actual demand to pick up the impact of uncertainty. The main 

problem with this approach is that on average, if we hypothesise that demand is truly 

random but with a known distribution, we may expect hospitals to be able to predict the 

aggregate demand reasonably well within a given time period. Furthermore, a ratio 

measure of this kind will not pick up the magnitude of the uncertainty. Therefore, the 

ratio of forecasted to actual demand may be a poor proxy for the level of uncertainty in 

the system. Indeed Friedman and Pauly reported that the mean of their forecast/actual
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admissions variable was 1.008. Therefore use of this variable may not be particularly 

informative.

Gaynor and Anderson (1995) and Carey (1996) both employed a measure of the standard 

error of the forecast. Gaynor and Anderson used the standard error of actual admissions 

whereas Carey used the standard error of the average daily census (ADC) as a proxy for 

uncertainty. This allowed the researchers to examine the impact of fluctuations around 

the expected mean of demand, although it is questionable whether use of the standard 

error of ADC will pick up the magnitude of the uncertainty, since it adjusts admissions by 

length of stay and the time period. Furthermore, it should be noted that both these authors 

used the standard error of the total actual admissions rather than the separating forecasted 

from unpredicted admissions. It is clear that demand fluctuations per se are not a 

problem, rather demand uncertainty is a problem because, by definition, it is 

unpredictable. Therefore, we need to take care to separate out the predicted from 

unpredicted demand (as Friedman and Pauly did). Consequently, it is likely that the 

estimates used by Gaynor and Anderson, and Carey, will significantly over estimate the 

uncertainty in the system. Since, however, they both used annual data this will temper the 

extent of this overestimation. Although a further compounding factor is that all the 

previous attempts to incorporate demand uncertainty have assumed that all demand is 

unplanned and this in itself is likely to lead to overestimates of the extent of demand 

uncertainty.
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Nonetheless, these previous attempts assist in highlighting the options that are available 

when incorporating demand uncertainty. Consequently it is possible to identify, at least, 

four approaches:

i) Include the standard error of the unpredicted demand from the ADC forecast 

equation. This will give estimate of divergence from expected ADC. The main 

problem is that it does not give a feel for the size of the uncertainty in absolute 

terms.

ii) Include a ratio of actual to estimated demand. The problem is that these tend to 

smooth out such that this variable will tend towards one.

iii) Include the standard error of the unpredicted demand from the forecast of total 

admissions. This will give estimate of divergence from expected total admissions 

and will give a better feel for the size of the uncertainty in absolute terms.

iv) Include the sum of actual errors from forecasted equation. These might represent 

the best feel for the impact of uncertainty and the impact of divergence from the 

ex ante PPF’.

This gives a number of options. However, since we are trying to model the impact of the 

divergence from the ex ante PPF and estimate the impact this has on costs, perhaps the 

best of these options are represented by (iii) and (iv) above. These provide a clearer 

measure of the extent to which the hospital is operating off its ex ante cost minimising 

level of production and are the two approaches we will adopt in the estimation in section 

3.6.
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3.3.2: Previous estimates of demand

Friedman and Pauly (1983) estimated the demand for hospital services using data from 

monthly reports to the Hospital Administration Services in the US. The data comprised 

72 monthly reports for 870 hospitals covering the years 1973 to 1978. However, in order 

to overcome some problems in the data set, (i.e. missing entries, negative numbers and 

large jumps that were inexplicable), they aggregated to a quarterly base. Clearly this 

raises issues regarding the reliability of their data, however these are not issues we wish 

to deal with here. The main problem with aggregating the data set is that they lose 

valuable information regarding fluctuations in demand, which may, as other authors have 

recognised, (see Joskow, 1980), exhibit strong monthly, weekly, or even daily 

components. Disaggregate data reveals the most information in this context.

Friedman and Pauly applied a simple structural model to forecast demand, where, it was 

assumed, the only information hospitals will use is demand experience. This led the 

authors to employ a method of minimum average prediction variance where St was 

defined as a seasonal factor for a quarter t, so that:

S, = SfjDJt (4.14)

Each dummy variable, DJt, corresponds to a season, where j = 1,..,4. For the stationary 

process,

qt = qSt + U, (4.15)
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Where qt is quantity demanded and q is constant over time. Ut is the normally distributed 

random variable. A first-order autocorrelation in the error term was assumed such that:

Ut = pUt.1+ e t (4.16)

The autocorrelation process acts as a way of capturing trends or drift in the series over 

time. Perhaps unsurprisingly, given the inclusion of this process, the authors found that a 

time trend had little effect on the estimation of demand.

Using this simple model, Friedman and Pauly found that the size and parameter values of 

the seasonal factors were unstable, and the autoregressive parameter varied widely across 

the sample. They suggested that this diversity among the estimates meant they could not 

justify pooling the sample. Consequently, they estimated a different demand function for 

each hospital. The differences in goodness of fit between the hospitals were quite 

startling ranging from 0.16 to 0.93 as based on the R2 values.

However, they noted, importantly, that the method used by each hospital for its own 

planning purposes is not observed. Since we are interested in how demand uncertainty 

affects the structure of hospital costs, this is perhaps the key to the whole exercise. The 

impact of uncertainty on the structure of hospital costs will depend on the extent to which 

the hospitals themselves experience uncertain demand, and this will depend crucially on
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their expectations of demand. Therefore, whilst the approach adopted by Friedman and 

Pauly is relatively crude, it may best resemble the expectations of hospital themselves.

Following this general approach, Gaynor and Anderson (1995) used data from the 

American Hospital Association’s Annual Survey of Hospitals to estimate a demand 

function to incorporate in their cost function. Data from 1980-1987 were used to forecast 

admissions. Gaynor and Anderson’s data, however, were annual, and therefore, they 

could not use the time series method adopted by the original authors, and had to ‘exploit 

the cross-sectional as well as the time series variation in the data', or what might more 

contemporarily be termed panel data techniques. The use of annual data also meant that 

valuable information regarding the within year fluctuations was lost.

In order to facilitate the approach chosen, the authors grouped the hospitals by geographic 

area (i.e. those in the same urban, rural, or urban area were grouped together). The 

implicit assumption being that demand would be influenced in some systematic way by 

the geographic location within which hospitals were located.

The authors employed a forecasting equation including a three-lag dependent variable, a 

time trend, and hospital specific dummy variables, allowing the authors to calculate 

forecasts for each hospital, even though they were pooled into geographic areas. It is not 

clear how the grouping affected the lagged dependent variables. Since hospitals were 

grouped by geographic area, it is also not immediately obvious how lags could be 

included in such a model.
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The authors reported excellent fits for the forecasting equations; Rr of between 0.97 and 

0.99. These values are indeed very high and somewhat surprising given the stochastic 

nature of demand hypothesised. In fact, if hospitals were able to predict demand with 

such accuracy based primarily on previous years, then it would suggest that demand 

uncertainty may not be a problem since they appear to be able to explain almost all of the 

demand fluctuation. Herein lies the problem with using annual data; the fluctuations in 

demand between years are likely to be quite small relative to the fluctuations within years. 

That is, it may in fact be surprising if the hospital could not forecast with reasonable 

accuracy the level of demand on an annual basis’. However it is likely to be the week to 

week, or month to month fluctuations that are likely to impact on the hospital’s cost 

structure. Therefore, whilst the approach is similar to that employed by Friedman and 

Pauly, the use of annual data causes problems in assessing the level of uncertainty. This 

is reflected in the size of R“ reported.

Carey (1996) employed a very similar approach to Gaynor and Anderson, once more 

using annual data based on nine years of observations employing a three-year lag 

structure. Dummy variables were included to control for the impact of teaching status 

and ownership along with variables for casemix, and the level of competition. Carey’s

If Gaynor and Anderson had adopted the same approach as Friedman and Pauly, and Pauly and Wilson, 
i.e. ratio of forecasted to actual admissions then the variable would, on average, have been 1.000034 
(reflecting the high R: for the forecasting model).
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results were very similar to Gaynor and Anderson in terms of R values, ranging from 

0.98 to 0.99.

Perhaps the greatest problem with these two approaches, however, lies in the application 

of the demand function estimates. In estimating the impact of uncertainty on the cost 

structure both Carey and Gaynor and Anderson used the standard error of the forecasted 

admissions. These measures of demand uncertainty will only pick up the expected 

fluctuations in demand -  i.e. the ones the hospitals can predict. Therefore the theory they 

are testing is essentially different to that originally tested by Friedman and Pauly, i.e. that 

unexpected demand fluctuations affect hospital cost structures. If hospitals can accurately 

predict the fluctuations then there is no reason to expect this to impact on costs. The 

measure of fluctuations of actual demand around expectations is picked up through the 

standard error of the noise component, which will be minimal with R2s of 0.99. (This is 

borne out by the estimates of the probability of tumaway calculated by Carey which 

appear to be too high given the R2 estimated in her equation -  see Chapter 5 for a full 

discussion).

To be consistent with the approach adopted by Friedman and Pauly, and to test the same 

hypothesis, Gaynor and Anderson and Carey should have taken the forecasted admissions 

away from actual admissions. This would have enabled them to obtain the size of the 

unexpected admissions for each hospital, then examine the impact this has on the cost 

structure.
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Several issues come out of the above discussions that are pertinent to the estimation of a 

demand function in the NHS. First, the issue of demand heterogeneity, which has not 

been dealt with for various reasons. If hospitals do have an objective function that 

differentiates between demand that can be queued and that which requires immediate 

treatment, and they take account of the social cost imposed by non-treatment of cases 

turned away, then it becomes apparent that we should be attempting to disaggregate the 

data on admissions to reflect this. If we fail to adequately take account of this factor, 

problems in the estimation process arise. If part of the demand is planned it is, by 

definition, endogenous. Any forecasting of this element of demand will be meaningless, 

since hospitals will themselves determine the level of admissions. This also has 

implications for the estimation of cost functions. If some admissions are endogenous, 

whilst others are exogenous, this should be reflected in the cost function estimation 

procedure. Secondly, if it is hypothesised that hospitals are concerned with the social 

costs of turning patients away, and that this is one of the reasons why reserve capacity is 

held, then failure to recognise the heterogeneity of demand may lead to underestimates of 

the reserve capacity held, and over-estimates of the probability of turning patients away, 

(and consequently underestimates of the implied social cost of turning patients away). If 

all demand were planned and could be queued, then there would be no need to hold 

reserve capacity. It is, therefore, our intention to separate demand into two broad 

categories; planned and unplanned admissions to enable us to examine the implication of 

stochastic demand for the behaviour and cost structure of UK NHS hospital trusts.
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3.4: Data

Monthly data on admissions were obtained on a sample of 148 NHS hospital trusts from 

CHKS Ltd over a three-year period (1993-1995). CHKS routinely collects data from 

NHS hospital trusts and holds the largest patient-based data set in Europe. It is currently 

involved with the Casemix Office in devising health related groups (HRGs) in the UK. 

and publishes annual reports listing data on the top 200 HRGs in the UK. Based on 

returns to CHKS by NHS trusts each hospital admission was categorised as either 

emergency, elective, or obstetric (including transfers from other NHS providers), 

corresponding to CMD codes. Data were also supplied on lengths of stay, bed numbers 

and a number of other variables listed in Table 4.1. Data were also collected on the 

catchment demand and estimated percentage share of demand for each provider (taken 

from Department of Health statistics and supplied by Ivan Csaba) and cost data (taken 

from CIPFA Healthcare databases). These data were tied together by CHKS since the 

data they provided were anonymised4.
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Table 4.1: Activity and cost variables
Variable name Definition
A C T I V I T Y

ADMS Total number of admissions
EMERGADM Number of admissions categorised as emergency 

(by provider)
ELADM Number of admissions categorised as elective 

(by provider)
OTHADM maternity care and transfers from other providers
BEDS Total number of staffed beds
ALOS Average length of stay (days) for all admissions
ELALOS Average length of stay (days) for elective 

admissions
EMERGALOS Average length of stay (days) for emergency 

admissions
OTALOS Average length of stay (days) for admissions 

categorised as other
DAYATT Total number of day attendances
AEATT Total number of non-inpatient Accident and 

Emergency attendances
OPATT Total number of non-A&E outpatient 

attendances
CATCHSH % share of beds in total area (DoH (1989))
CATCHD Catchment population of provider in 1989 based 

on DP41 (DoH (1989))
VALDWAIT Total number of elective patients waiting for 

admission
AVCMIX Casemix weight based on DRG weights

O P E R A T I N G  E X P E N S E S

BOARD Board members' fees
SAL Staff costs
SUPCLIN Supplies and services: Clinical
SUPGEN Supplies and services: General
ESTAB Establishment
TRANSEXP Transport
PREM Premises
OTHER Other expenses including miscellaneous services 

from other NHS providers
TOTAL VARIABLE 
COSTS

Sum of operating expenses

4 See Appendix 3 for a full list of data and descriptive statistics.
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The data were collected for financial years 1992/93, 1993/94 and 1994/95. However, 

they were not balanced and there were more observations for the later time periods. 

Furthermore, in attempting to bring together data from different sources we had missing 

observations, since some of the sample provided by CHKS were outside England, 

whereas the data on costs only refer to England. Since the ultimate aim of the work is to 

estimate a cost function for NHS providers we are limited by the lowest common sample.

It is possible from the available data to disaggregate admissions into planned and 

unplanned demand. Elective cases were defined as planned admissions and unplanned 

cases were defined as emergency and obstetric admissions and transfers from other 

providers. This was done for practical as well as theoretical reasons. Emergency 

admissions are obviously unplanned. Regarding obstetric admissions, although women 

are encouraged to register with their local hospitals, and are sometimes induced if they do 

not deliver within a pre-determined period (often two weeks) of the due date, they are still 

largely unplanned in terms of the monthly planning timeframe within which the provider 

units are operating. Transfers from other providers also tend to be unplanned within the 

monthly planning period. Emergency, obstetric and transfers from other providers will 

collectively be referred to as ‘emergency’ admissions from this point (labelled as 

EMADM).

The next section outlines the demand estimation and specification of the RES variable (in 

equation 4.13) that is included in the cost function in order to estimate the impact of 

demand uncertainty.
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3.5.1: Demand forecasting

The separation of admissions into ‘elective’ and ‘emergency’ allows us to estimate 

demand for unplanned emergency care and cost the hospital production reaction to 

demand uncertainty. Since we are grouping together cross-sectional and time series data 

we will use panel techniques to estimate the demand-forecast equation. However, as 

recognised by Friedman and Pauly (1983), we may be less concerned with the statistical 

rigours of the estimation process, and more concerned with whether the estimation 

process is a good approximation to the hospital’s own ability to forecast demand. In other 

words, as with all forecasting equations, the performance criteria rest on their ability to 

forecast rather than explain behavioural relationships. Demand estimation can take a 

number of forms; in general there is a trade-off between statistical criteria and forecasting 

ability. However, there is no correct method for specifying demand-forecast equations. 

Previous authors have used different approaches, as we reviewed in section 3.3.2. We 

will utilise available data to estimate three of the most intuitively appealing methods.

If we assume that we are dealing with a random stationary process, which is probably 

justifiable given the relatively short time period we are dealing with, then it is possible to 

apply a fairly simple estimation procedure. Notwithstanding this conclusion, it is still 

possible to estimate future demand through a number of different demand specifications. 

We will adopt three approaches; the first will be a departure from what has been done 

before, in that, we will estimate demand on the basis of the demand characteristics faced 

by the hospital utilising available data listed in Table 4.1. This is a fuller specification of

159



Ch.4

the structure of demand faced by the hospital. The first model to be estimated is of the 

form:

Where Dt is demand in period t, CATCHD and CATCHSH are defined as above in Table 

4.1 and DVt represents the monthly dummy variables.

The other two approaches follow the lines of previous studies. They assume that 

hospitals estimate demand solely and directly on the basis of previous experience. Two 

distinct estimation processes are followed; a lagged dependent variable model, along the 

lines of Gaynor and Anderson (1995) and Carey (1996) giving rise to the following 

specification:

where D, and DVt are as above and Dt_i is demand in period t-1.

A more rigorously specified impact of previous demand is captured by an autoregressive 

model, following Friedman and Pauly (1983), of the form:

Dt = f(CATCHD, CATCHSH, BEDS, DVt) (4.17)

Dt = f(Dt_!, DVt) (4.18)

D, = D.DV, + p(Dt.i -  D.DVt.O (4.19)
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Where Dt and DV, are as and D is constant over time and p represents the autocorrelation

3.5.2: Demand estimation methods

Since we have cross sectional and time series data we will employ panel data estimation 

techniques, where, essentially there are two techniques to choose from: fixed effects and 

random effects. Where the general model can be represented as:

where a, in the fixed effects model represent a separate constant term for each specified 

unit, Bit is a classical disturbance term. The fixed effects model is a classical regression 

model where the main complication arises if the number of units, i, is large such that it 

becomes computationally cumbersome.

The random effects model can be represented by the a similar equation:

coefficient between periods5.

ylt = a, + P'x.t + eit (4.20)

yit =  a  +  p'Xit + pi + 8it (4.21)

5 Friedman and Pauly estimated p to be, on average, 0.62,where p represents the autocorrelation coefficient 
between periods.
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where ju, is an individual specific disturbance term. The random effects model is a 

generalised least squares model where for a given i the disturbance terms are correlated 

because of their common component p,.

The random and fixed effects models can be extended to incorporate time-specific effects 

as well (this model is referred to as the two factor or two-way model). The general 

specification of this model is, for fixed effects:

The model therefore has a group effect for each group, a„ and a time effect for each 

period, yt. For the random effects model a similar equation can be represented of the 

form:

where, p, is as above in equation (4.21) and w, is the time specific disturbance term.

The question this raises is; which is best in terms of testing our hypothesis, random or 

fixed effects? The choice of approach depends on a number of factors, some theoretical, 

others practical. The fixed effects model allows us to capture systematic differences 

across units that represent parametric shifts in the regression function. These shifts are 

captured in the constant term where each unit has a different a, to estimate. Hence the

y,t = a, + y, + P'xit + Si, (4.22)

y,t = a  + P'xit + p, + wt + Sit (4.23)
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model is often referred to as the least squares dummy variable model. The fixed effects 

model does, however, have a number of restrictions. First, the results of the analysis can 

only be applied to observations within the sample -  i.e. it is not possible to extrapolate 

outside the sample taken. Secondly, it cannot deal with independent variables that are 

time invariant. Finally, and more practically, the dummy variable approach takes up a 

large number of degrees of freedom, which many panel data series will not be able to 

cope with, i.e. those with a relatively short time period and large number of units of 

observation. Under these circumstances it may be more appropriate to use the random 

effects model, which assumes that the individual specific effects are randomly distributed 

across the cross-sectional units. However, the random effects model also has problems. 

Unlike the fixed effects model it assumes that the individual effects are uncorrelated with 

the other regressors, this may not be justifiable. Furthermore, the random effects model 

may suffer from inconsistency due to omitted variables (see, for example, Hsiao (1986) 

for a fuller discussion of issues relating to panel data estimation techniques).

The general approach we will adopt follows that suggested by Greene (1993) where the 

equation is first specified as a classical ordinary least squares (OLS) regression model, we 

will then estimate one way and two fixed and random effects models. We will determine 

the ‘best’ model on the basis of two statistical tests devised specifically for panel data 

estimation techniques. The first is a test designed by Breusch and Pagan (1980) to test for 

the random effects model based on the OLS residuals. Essentially this is a Lagrange 

multiplier (LM) test which tests for the restriction Corr[wjt,WjS] = 0, that is testing for 

whether the individual error terms are serially correlated. If they are then this suggests
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that there are indeed individual effects within the selected groups (which may be random 

or fixed). Where:

H0: ctu2 = 0 (or Corr[wlt,wls] = 0) (4.24)

H0: a u2 *  0

(The LM test is distributed as chi squared with one degree of freedom., where the test 

statistic can be found in standard texts, e.g. Greene, 1993).

The second is a test devised by Hausman (1978) which enables comparisons to be made 

between the fixed and random effects models on the basis of a Chi squared test and tests 

whether the random effects are correlated with the regressors. Under the null hypothesis 

of no correlation, OLS estimates should be consistent with other methods, in other words 

P o l s - P m l e  0 . Hausman devised a formula to estimate the variance of the difference, 

V(P), such that a Wald statistic can be calculated:

[Po l s-Pml e] '[V (Po l s)- V (P ml e)] '[[Po l s-Pml e] (4.25)

which is asymptotically distributed as chi-squared with 4 degrees of freedom. A 

significant value indicates that the regressors are correlated with the random effects and, 

thus, the random effects model should be rejected.
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We highlighted a number of problems relating to the panel data estimation techniques, 

one of which we have to deal with immediately. The first specification of the demand 

equation (equation 4.17) includes time invariant factors (catchment demand and 

catchment share). Since time invariant independent variables cannot be included in the 

fixed effects approach, it is not possible to estimate the first specification of the model 

including hospital specific fixed effects. Consequently, if we are to estimate a fixed 

effects model we have to group providers in some other way. However, in grouping the 

data the implication is that there is some systematic effect in operation between the 

groups that leads to parametric shifts in the regression function. Previous authors faced 

with similar problems have suggested grouping hospitals by geographic location (Gaynor 

and Anderson, 1995), others have suggested grouping by bed size might be appropriate 

(Carey, 1996). Essentially any grouping of this kind is arbitrary unless we have strong a 

priori beliefs about why such groupings should systematically affect demand. For 

example, we could argue that the larger the demand faced by hospital the more 

emergencies hospitals will treat. We may hypothesise that there may be a size effect, 

where individuals are more likely to go to larger hospitals in an emergency, (possibly due 

to quality issues or expectations regarding bed availability). We may expect that the type 

of hospital (teaching, children’s, etc) may influence the number of emergency admissions.

hr order to cover these issues we will group the hospitals using three methods6:

i) Group by site type.
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ii) Group by demand size.

iii) Group by bed size (using two groupings).

Since we have time invariant factors in the specifications of the demand equation above, 

it was also worth considering estimating demand using provider specific effects and time 

period effects alone. To this end we estimated a simple demand equation using only 

group and period effects.

In addition to the group fixed effects we will also consider two way fixed and random 

effects model, i.e. including time effects which we will model as monthly effects.

Section 3.5.3: Demand equation results

The following equations were all estimated using LIMDEP PANEL data estimation 

techniques using one-way and two-way fixed and random effects models. The one-way 

models allow group effects to be incorporated into the estimation process; two-way 

models allow group and time period effects to be included. When estimating two way 

fixed and random effects models using LIMDEP, as part of the output, the package 

produces one-way and OLS regressions, thus, allowing a full comparison of the different 

estimation techniques. LIMDEP also reports the LM and Hausman test statistics thus 

allowing direct comparison of the random and fixed effects models. 6

6 See Appendix A1.1 for group sizes.
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The LM and Hausman tests statistics are reported for all the estimated equations as well 

as the log-likelihood values, the autocorrelation coefficient (which is [1-1/2DW] or 

Durbin’s h-test where the DW is not applicable) and a test for heteroskedasticity (White’s 

test, see White, 1980). The LM test tests the general hypothesis of OLS versus individual 

effects (i.e. random or fixed), where a significant value favours the individual effects 

models over OLS. The Hausman tests for random versus fixed effects, where a 

significant value favours the fixed effects model over the random effects model. For both 

these statistics the significance level is reported in square parentheses [].

The results for the four grouping approaches are summarised below for the model 

described in equation 4.17. The actual groupings and group sizes in each of the following 

regressions are set out in the four tables in Tables A1.1.1 -A 1.1.4 in Appendix ALL The 

results below will present summary tables, the fixed effects (period and group), 

coefficients will not be presented here but are presented in Tables A1.2.1-A1.2.7 in 

Appendix A 1.2.
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Table 4.2: Demand estimation: grouping by site type

OLS Random 

Effects 

(One way)

Fixed 

effects 

(One way)

Random 

Effects 

(Two wav)

Fixed 

effects 

(Two wav)

Variable C o e f f . 
(SE)

C o e f f . 

(SE)

C o e f f . 

(SE)

C o e f f . 

(SE)

C o e f f . 

(SE)

CATCHD 1 .60 4 3 * *  
( 0 . 1 5 1 3 6 )

1 .55 4 1 * *  
( 0 . 1 5 3 1 5 )

1 .557** 
( 0 . 1 5 3 7 )

1 . 5 5 4 0 * *  
( 0 . 1 5 2 3 )

1 . 5 5 8 1 * *  
( 0 . 1 5 2 9 1 )

CATCHSH 1 2 3 5 . 3 * *
( 1 1 0 . 0 7 )

1 0 2 3 . 1 * *  
( 1 1 6 . 2 6 )

1 0 1 6 . 9 * *
( 1 1 6 . 5 3 )

1 0 2 3 . 6 * *  
( 1 1 5 .67)

1 0 1 7 . 7 * *  
( 1 1 5 .94)

BEDS 1 . 7 2 4 3 * *
( 0 . 0 6 4 2 7 )

1 . 8 5 5 7 * *  
( 0 . 0 7 5 9 1 )

1 .856 3 * *  
( 0 . 0 7 7 2 1 )

1 . 8 5 6 1 * *  
( 0 .0755)

1 . 8 5 5 5 * *  
( 0 . 0 7 6 8 2 )

FI LT1 9 9 3 - 1 7 3 . 7 7 * *
( 3 4 . 8 0 2 )

- 1 5 9 . 5 5 * *
( 3 4 .559)

- 1 5 9 . 2 2 * *
( 3 4 .567)

- 1 5 9 . 5 2 * *
( 3 4 . 3 8 3 )

- 1 5 9 . 2 2 * *  
( 3 4 . 3 9 1 )

FI LT1994 - 4 4 . 8 3 3
( 2 9 . 3 4 6 )

- 4 7 . 8 0 7  
( 2 9 . 1 6 8 )

- 4 7 .386 
( 2 9 . 1 8 2 )

- 4 7 . 8 1 9  
( 2 9 . 0 2 )

- 4 7 .382 
( 2 9 . 0 3 3 )

CONSTANT - 8 7 8 . 7 1 * *  
( 1 1 2 . 9 7 )

- 8 8 7 . 7 4 * *
( 1 4 7 . 0 1 )

— - 8 9 2 .33** 
( 1 5 2 .56)

- 7 9 2 . 2 2 * *
( 1 1 3 . 2 6 )

R: 0 .6 4 439 0 . 6 2 6 7 8 7 0 .65322 0 . 6 2 5 7 7 0 . 6 5 9 2 7
L o g -
L i k e l i h o o d

- 1 1 5 3 9 . 0 4 8 — - 1 1 5 2 0 . 0 3 1 — - 1 1 5 0 6 . 2 3 3

LM — 2 9 . 1 9
( 0 . 0 0 ]

— 3 7 . 1 0  
[ 0 . 0 0 ]

—

Haus man — — 1 . 5 6  
[ 1 . 0 0 ]

— 1 . 4 0  
[ 0 . 9 2 4 ]

A u t o c o r r . 0 . 8 8 5 4 0 0 . 1 4 0 4 8 5 0 . 1 4 0 9 1 0 . 1 4 3 0 2 4 0 . 1 4 3 3 7 0
H e t e r o . 0 . 0 0 2 2 . 8 0 0 . 0 0 2 2 . 7 8 0 . 0 0
* significant at 1 0 % level 
** significant at 5% level

Grouping by site type (Table 4.2) appears to add little information to the demand 

estimation process. The magnitudes of the coefficients differ little when estimating using 

random or fixed effects models. The LM test suggests that the individual effects models 

should be favoured over the OLS estimates. The Hausman tests suggest that neither of 

the fixed effects models should be favoured over the random effects model.
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Table 4.3: Demand estimation: grouping by dem and size

Variable OLS Random 

Effects 

(One way)

Fixed 

effects 

(One way)

Random 

Effects 

(Two way)

Fixed 

effects 

(Two way)

C o e f f . 

(SE)

C o e f f . 

(SE)

C o e f f . 

(SE)

C o e f f . 

(SE)

C o e f f . 

(SE)

CATCHD 1 . 6 0 4 3 * *  
( 0 . 1 5 1 3 6 )

- 0 . 1 8 7 0 7
( 0 . 2 2 7 0 3 )

- 0 . 4 7 3 9 7 *
( 0 . 2 3 7 3 1 )

- 0 . 2 4 1 9 4
( 0 . 2 2 7 5 1 )

- 0 . 4 7 3 4 3 *  
( 0 . 2 3 5 7 2 )

CATCHSH 1 2 3 5 . 3 * *  
( 1 1 0 . 0 7 )

- 1 4 . 5 0 9  
( 1 6 2 . 2 1 )

- 2 0 9 . 6 0
( 1 6 9 . 0 2 )

- 5 1 .834 
( 1 6 2 . 4 5 )

- 2 0 9 . 2 2
( 1 6 7 . 8 8 )

BEDS 1 . 7 2 4 3 * *
( 0 . 0 6 4 2 7 )

1 . 4 3 7 6 * *
( 0 . 0 6 6 0 )

1 . 4 0 1 1 * *
( 0 .0665)

1 .4 2 9 9 * *  
( 0 . 0 6 5 6 7 )

1 .40 0 4 * *  
( 0 . 0 6 6 1 5 )

F I LT1 9 9 3 - 1 7 3 .77**  
( 3 4 . 8 0 2 )

- 1 8 4  . 92** 
( 3 2 . 4 4 6 )

- 1 8 6 . 0 9 * *
( 3 2 . 4 8 4 )

- 1 8 5 . 1 8 * *
( 3 2 . 2 3 5 )

- 1 8 6 . 0 9 * *
( 3 2 . 2 6 6 )

FI LT1 9 9 4 - 4 4 . 8 3 3
( 2 9 . 3 4 6 )

- 4 9 . 2 1 9  
( 2 7 .025)

- 4 9 . 0 5 4
( 2 7 .049)

- 4 9 . 2 1 2
( 2 6 . 8 4 8 )

- 4 9 .052 
( 2 6 . 8 6 7 )

CONSTANT - 8 7 8 . 7 1 * *  
( 1 1 2 .97)

1 0 8 2 .5** 
( 2 2 2 .99)

— 1 1 4 0 . 0 * *  
( 2 2 8 . 8 5 )

1 3 2 7 .5** 
( 2 1 6 . 0 2 )

R- 0 . 6 4 4 3 9
L o g -  - 1 1 5 3 9 . 0 4 8
L i k e l i h o o d  
LM

Ha us ma n

A u t o c o r r .  0 . 8 8 5 4 0
H e t e r o .  0 . 0 0

0 . 5 1 7 8  0 . 7 0 6 1 8

1 1 3 9 4 . 7 4 3 2
8 1 7 . 6 0
[ 0 . 0 0 ]

1 9 . 5 3  
[ 0 . 0 0 1 5 ]  

0 . 1 7 8 9 0 5  0 . 1 8 3 9 6 2
3 9 5 . 6 3 * *  0 . 0 0

0 . 5 1 0 2  0 . 7 1 2 2 5

1 1 3 7 8 . 4 5 2 6
8 2 5 . 5 2
[ 0 . 0 0 ]

1 6 . 0 3  
[ 0 . 0 0 6 8 ]  

0 . 1 8 4 3 7 2  0 . 1 8 8 5 4 2
4 1 8 . 1 6 * *  0 . 0 0

* significant at 1 0 % level
** significant at 5% level

Grouping by demand size (Table 4.3) provides mixed results. The LM test suggests that 

the individual effects model should be favoured over the OLS estimates. The Hausman 

tests suggest that both the fixed effects models should be favoured over the random 

effects model. However, the magnitude and significance of the coefficients on the 

independent variables cause some concern. Particularly the counter-intuitive negative 

signs on both catchment demand and catchment share. This is probably explained by the 

impact of the grouping effects. These will be interrelated with the independent variables
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since the groupings are based on these variables. There are also problems of

heterogeneity in this model.

Table 4.4: Demand estimation: grouping by bed size (ten groups -  see Appendix
Al.2.1 for four groups resu ts)________________________________________________________
Variable OLS Random 

Effects 

(One way)

Fixed 

effects 

(One way)

Random 

Effects 

(Two way)

Fixed 

effects 

(Two way)

Coef f . 

(SE)

C o e f f . 

(SE)

C o e f f . 

(SE)

C o e f f . 
(SE)

C o e f f . 

(SE)

CATCHD 1 . 6 0 4 3 * *  
( 0 . 1 5 1 3 6 )

1 . 5 0 1 * *  
( 0 . 1 5 4 7 9 )

1 . 4 7 2 2 * *
( 0 . 1 5 6 2 5 )

1 . 4 9 2 3 * *  
( 0 . 1 5 4 4 6 )

1 . 47 2 7 * *  
( 0 . 1 5 5 2 6 )

CATCHSH 1 2 3 5 . 3 * *
( 1 1 0 . 0 7 )

1 0 4 9 . 8 * *
( 1 0 9 . 6 9 )

1 0 1 8 . 9 * *  
( 1 1 0 . 3 7 )

1 0 3 8 . 1 * *  
( 1 0 9 . 2 8 )

1 0 1 9 . 2 * *
( 1 0 9 . 6 7 )

BEDS 1 . 7 2 4 3 * *
( 0 . 0 6 4 2 7 )

1 . 5 8 7 0 * *  
( 0 . 1 5 3 0 7 )

1 . 2 1 5 8 * *
( 0 . 2 1 7 9 5 )

1 . 4 5 8 0 * *  
( 0 . 1 7 7 0 4 )

1 . 2 1 2 2 * *
( 0 . 2 1 6 5 9 )

F I LT1 9 9 3 - 1 7 3 . 7 7 * *
( 3 4 . 8 0 2 )

- 1 8 9 . 8 6 * *  
( 3 3 . 1 6 4 )

- 1 9 1 . 6 1 * *  
( 3 3 . 2 0 4 )

- 1 9 0 . 6 7 * *  
( 3 2 . 9 7 5 )

- 1 9 1 . 6 1 * *
( 3 2 . 9 9 5 )

F I LT1994 - 4 4 . 8 3 3
( 2 9 . 3 4 6 )

- 1 0 2 . 4 7 * *  
( 2 8 . 0 7 8 )

- 1 1 1 . 7 1 * *
( 2 8 . 2 5 5 )

- 1 0 6 . 0 5 * *  
( 2 7 . 9 6 5 )

- 1 1 1 . 7 7 * *  
( 2 8 . 0 7 7 )

CONSTANT - 8 7 8 . 7 1 * *  
( 1 1 2 . 9 7 )

- 5 8 8 . 4 8 * *
( 1 7 8 . 7 1 )

- 4 7 1 . 1 2 * *  
( 2 0 9 . 2 7 )

- 2 0 6 . 3 8
( 2 1 9 . 0 7 )

R‘ 0 . 6 4 4 3 9 0 . 6 3 6 8 0 0 . 6 9 2 1 2 0 . 6 2 8 6 7 0 . 6 9 8 2 3
L o g -
L i k e l i h o o d

- 1 1 5 3 9 . 0 4 8 - 1 1 4 3 0 . 0 8 6 - 1 1 4 1 4 . 4 2 5

LM - - 1 1 9 6 . 8 4 1 2 0 4 . 7 5
[ 0 . 0 0 ] [ 0 . 0 0 ]

Hausman - - 1 0 . 8 5 6 . 3 3
[ 0 . 0 5 4 4 4 7 ] [ 0 . 2 7 5 2 7 ]

A u t o c o r r . 0 . 8 8 5 4 0 0 . 0 2 6 7 7 7 0 . 0 2 5 2 3 8 0 . 0 2 7 5 2 3 0 . 0 2 6 5 8 8
H e t e r o . 0 . 0 0 0 . 0 0 2 6 . 1 3 * 0 . 0 0 7 3 . 5 0 * *
* significant at 1 0 % level
** significant at 5% level

Grouping by bed size (Table 4.4) appears to provide some evidence for fixed effects. The 

LM test suggests, one more, that the individual effects model should be favoured over the 

OLS estimates and the Hausman tests suggests, at the 10% significance level, that the one 

way fixed effects model, should be favoured over the random effects model. However 

the test rejects the two way fixed effects model. Furthermore grouping by bed size
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appears to reduce the, albeit small, problem of autocorrelation, although there does appear 

to be potential problems of heteroskedasticity associated with the fixed effects models.

The above approaches required what was essentially an arbitrary grouping of the provider 

units. Perhaps the best way of grouping would by provider unit; this would allow us to 

pick up the provider specific effects. However, as mentioned earlier, this requires time 

invariant factors to be dropped. This required both the catchment variables to be 

dropped, which might be expected to significantly weaken the explanatory power of the 

equation. However, since these variables were essentially representing provider specific 

effects, this may not necessarily reduce the predictive power of the equation, and may in 

fact improve it since the provider specific dummies will be allowed to pick up all the 

individual effects. A summary of the results of this approach are presented in Table 4.5 

below (full results are presented in Table Al.2.5 in Appendix A1.2).
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Table 4.5: Demand estimation: grouping jy provider type
Variable OLS Random 

Effects 

(One way)

Fixed 

effects 

(One way)

Random 

Effects 

(Two way)

Fixed 

effects 

(Two way)

C o e f f . 

(SE)

C o e f f . 

(SE)
C o e f f . 

(SE)
C o e f f . 

(SE)
C o e f f . 

(SE)
BEDS 2 . 2 1 9 5 * *

( 0 . 0 4 5 3 9 )
0 . 8 0 6 9 4 * *
( 0 . 1 0 3 8 9 )

0 . 1 9 7 6 6
( 0 . 1 2 2 2 9 )

0 . 7 5 0 8 9 * *
( 0 . 1 0 0 3 9 )

0 . 1 8 5 4 3
( 0 . 1 1 6 4 5 )

F I LT1 9 9 3 - 1 6 8 .12** 
( 3 6 . 1 8 5 )

- 1 1 0 . 2 8 * *
( 1 7 . 0 6 3 )

- 1 1 8 .34** 
( 1 7 . 1 1 9 )

- 1 1 1 . 0 1 * *
( 1 6 . 2 4 3 )

- 1 1 8 .50** 
( 1 6 . 2 9 2 )

F I LT1994 - 5 8 . 8 6 7 *  
( 3 0 . 4 7 7 )

- 2 9 . 7 0 4 * *  
( 1 3 . 8 6 6 )

- 3 5 . 7 6 1 * *
( 1 3 . 9 0 8 )

- 3 0 . 2 7 2 * *
( 1 3 . 2 0 0 )

- 3 5 . 8 9 7 * *
( 1 3 . 2 3 6 )

CONSTANT 3 1 0 . 4 2 * *
( 4 1 . 8 5 4 )

1 4 7 7 . 8 * *  
( 1 0 3 . 9 8 )

1 5 2 4 . 1 * *
( 1 0 4 .69)

1 9 6 9 . 8 * *
( 9 6 . 9 8 8 )

R- 0 . 6 1 4 4 0 0 . 3 6 4 7 5 0 . 9 3 9 2 3 0 . 3 4 4 6 5 0 . 9 4 5 3 8
L o g - - 1 1 6 0 0 . 2 6 5 - 1 0 2 0 3 . 4 2 0 2 - 1 0 1 2 2 . 2 4 9
L i k e l i h o o d
LM 1 3 6 0 2 . 3 5 1 3 6 0 8 . 0 1

[ 0 . 0 0 ] [ 0 . 0 0 ]
Haus man 8 9 . 8 6 9 2 . 5 5

[ 0 . 0 0 ] [ 0 . 0 0 ]
A u t o c o r r . 0 . 8 9 4 1 0 0 . 5 5 7 1 0 3 0 . 5 4 8 8 6 0 0 . 6 6 5 0 1 3 0 . 6 6 0 2 3 5
H e t e r o . 0 . 0 0 5 6 3 . 7 3 * * 0 . 0 0 6 1 6 . 8 3 * * 0 . 0 0
* significant at 1 0 % level 
** significant at 5% level

Grouping by provider type (Table 4.5) appears to provide the best estimation of demand 

in many ways. The LM tests provide strong evidence in favour of the groupings. The 

Hausman test indicates that the fixed effects models are both favoured over the random 

effects, and this provides strong evidence for systematic monthly effects, which is in line 

with a priori expectations. The R2 in this model is also very high (0.94). Furthermore, 

the inclusion of fixed effects overcomes the problems of heterogeneity exhibited in the 

random effects model.

There does, however, appear to be a problem of autocorrelation in this model. This may 

be due to omitted variables, since we have had to drop two of the main explanatory
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variables. This will lead to potentially inefficient but unbiased results and will inflate the 

goodness of fit.

The next two models employ the two different approaches set out in section 3.5.1. The 

first model, based on equation 4.18, employs a simple naïve forecasting model, which 

assumes that hospitals base future forecasts on previous demand. As above, provider 

specific dummy variables were included to pick up any provider specific effects. Since 

the aim of estimating these equations is also to replicate the approaches used by other 

authors, we will not subject these equations to the LM and Hausman tests. (Although it is 

clear from the results of Table 4.5 above that there is strong evidence to support 

individual provider specific fixed effects).

The lagged dependent variable approach is more easily estimated using SPSS as the first 

observations for each provider unit had to be dropped. The full results of this approach 

are also presented in Table A 1.2. 6  in Appendix A1.2.
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Table 4.6: Demand estimation: lagged dependent variable

Variable Lagged

dependent

variable

C o e f f . 

(SE)

F I LT1 9 9 3 - 3 2 . 2 7 9 * *  
( 1 2 . 0 0 0 )

FI LT1 9 9 4 - 4 . 0 4 9  
( 9 . 3 4 8 )

LAGEM 0 . 7 0 3 * *
( 0 . 0 1 8 )

CONSTANT 3 2 0 . 9 7 5 * *  
( 3 2 . 5 4 1 )

R: 0 . 9 7 3 4 8
D u r b i n ' s  h - t e s t 3 4 . 4 2 * *
H e t e r o . 1 9 9 . 0 0 * *
* significant at 1 0 % level 
** significant at 5% level

The results indicate that including a lagged dependent variable improves the fit of the 

equation. This gives an R2 of 0.97, which is of a similar magnitude to that found by other 

authors who have employed this technique. The main problem with the lagged dependent 

variable approach is that it almost inevitably induces autocorrelation. Since we had 

previously encountered problems of autocorrelation using a similar approach, it is not 

surprising that the inclusion of a lagged dependent variable does not ease these problems 

(Durbin’s h-test strongly indicates the presence of autocorrelation in this equation)7.

When autocorrelation is present the least squares estimators are usually unbiased but 

inefficient, although the sampling variances will be biased and sometimes seriously

7 The DW test in invalid when a lagged dependent variable is included as a regressor. Durbin’s h-test 
provides an alternative in such circumstances.
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underestimated. Therefore, the R2, as well as the t-statistics, tend to be exaggerated. 

When lagged dependent variables are included in the equation generally least squares 

estimators are consistent but biased. However, if serial correlation is present in a lagged 

dependent variable model then the least squares estimates become inconsistent and 

biased. Therefore, the problems are potentially serious in a forecasting model. 

Furthermore, there appears to be problems of heteroskedasticity in this model.

The final approach, based on equation 4.19 adopts a simple autoregressive (AR1) process 

to estimate demand. Once more this model assumes that the hospital bases its forecasts 

on demand realisation in the previous period. The AR1 process has dominated the 

empirical literature and can provide a reasonably good model where the underlying 

processes are often very complex. It is an estimation process that explicitly allows for 

autocorrelation. However, it does rely on the premise that the entire correlation structure 

can be explained by a single adjustment.

Equation 4.19 was estimated using LIMDEP and employed the AR1 procedure within this 

statistical package. Estimation is done in two steps, the first estimates the equation 

ignoring the autocorrelation to obtain an estimate of p. The second stage employs a 

generalised least squares procedure. The summary results are presented in Table 4.7 

below (see Table A. 1.2.7 in Appendix A1.2 for full results).
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Table 4.7: Demand estimation: AR(1)
Variable AR(1)

C o e f f .

(SE)

FI LT1 9 9 3 - 1 0 7 . 3 3 * *
( 3 4 . 5 4 0 )

FI LT1 9 9 4 - 2 8 . 6 1 3
( 2 1 . 5 6 7 )

RHO 0 . 6 6 0 6 9 1
R2 0 . 8 2 2 7 6
L o g - L i k e l i h o o d - 9 1 7 6 . 5 5 7 2
A u t o c o r r . - 0 . 0 8 0 8 0 2
W h i t e  X‘ (78 d o f ) 8 6 . 1 8

* significant at 1 0 % level 
** significant at 5% level

2The equation performs quite well with a relatively high R" and appears to deal with the 

problem of autocorrelation. The White test is insignificant (with 78 dof) indicating that 

heteroskedasticity is not a problem. The value of p, 0.66, is similar to the average value 

calculated by Friedman and Pauly (1983) of 0.62.

Overall the three approaches give a range of forecasts with goodness of fit ranging from 

0.64 to 0.97, although we have noted that the existence of autocorrelation in some of the 

models may inflate the R“s. Thus the model with the worst fit still represents a 

reasonably good forecasting tool. Prediction errors from the three approaches were 

around 16% for models based on equation 4.17, 4% for the model based on equation 4.18 

and 6 % for the model based on equation 4.19 (see Table Al.3.1 in Appendix A1.3 for full 

results of the prediction errors and a comparison of the three estimation techniques). 

Friedman and Pauly found that, on average, their estimates suggested estimation error of 

around 2 to 3%, but the data were more aggregate (i.e. quarterly). Pauly and Wilson
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(1986), using actual hospital forecasts returned to Blue Cross and Blue Shield, found a 

variation of 4%.

The choice of demand model is in many ways arbitrary, since we are concerned with 

trying to proxy the hospitals own forecasting abilities and techniques. One criterion we 

could have used was the goodness of fit. However, since one of the problems of 

autocorrelation is that the R" tends to be exaggerated, this is ruled out.

It could be argued that the simplest model best represents hospital forecasts, as hospitals 

are not likely to develop sophisticated forecasting techniques, this would favour a simple 

OLS model. Alternatively, it could be argued that we should use the statistically most 

rigorous model, as the others are likely to incorporate problems in estimating the error 

and variance accurately, and since this is one of the main reasons for our estimation we 

should follow this line. As noted earlier, with any forecasting equation there is a trade-off 

between statistical rigour and forecasting ability.

The lagged dependent variable approach, although intuitively appealing, has statistical 

problems that may limit it usefulness; in particular it will underestimate the standard 

errors of the forecasted equation (one of the main reasons for our estimation). The panel 

data models provide a reasonable estimate of demand. In terms of intuitive appeal, 

however, they may be more limited since they rely on fixed estimates of demand and fail 

to incorporate any systematic time effects that are indicated strongly by the other two 

models. Furthermore, the other models appear to suffer from problems of
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heteroskedasticity, this may indicate that some of the group effects are being missed, or, 

more generally, that there are problems of omitted variables.

Therefore, perhaps the best estimate of demand is found using the simple AR(1) model 

that allow complex relationships to be modelled using a relatively simple model. This 

model incorporates previous demand realisations and also includes the fixed effects 

associated with provider specific influences and therefore combines statistical rigour with 

intuitive appeal. Consequently, when estimating the cost function we will use the 

estimates of demand taken from the AR(1) estimates based on equation 4.19.

3.6: Cost function estimation

The estimation of the cost function will employ the same data set identified in section 3.4 

and listed in Table 4.1. The activity data will be aggregated to fit in with the annual data 

(see Appendix 3). Since panel data are used it is necessary to investigate the data for 

evidence of fixed or random effects. One of the problems with the analysis is that in 

order to determine the appropriate grouping and test for the appropriate functional form 

requires the equation to be specified in advance. In order to specify the appropriate 

grouping we must specify the functional form, but in order to investigate the functional 

form we must first specify the appropriate grouping. In order to break into the analysis 

we must therefore choice the starting point. We will first consider the same groupings as 

considered for the demand equations (i.e. site type, demand size and bed numbers) on the
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basis of a linear specification. We will then choose the appropriate grouping, if any, on 

the basis of the LM and Hausman tests, as earlier.

in Appendix A 1.4. The results indicate that grouping the data by bed numbers, demand 

size, or site type has little statistical justification. That is the LM test indicates that the 

OLS model performs best. Consequently, all further analysis was undertaken without 

group dummy variables (the only dummy variable included is for teaching hospitals as 

this was significant in the OLS estimate). The general form of the cost function will be as 

set out below:

TVC = f(ELADM, EMADM, RES, BEDSEL, BEDSEM, CASEMIX, INVOCC,

As there is no theoretically accepted "true' functional form for hospital cost functions we 

will adopt two alternative approaches to estimation. First we will attempt a 

transcendental logarithmic (translog) function. This allows considerable flexibility in 

estimation, allowing for interactions between variables, and is based on a second series 

Taylor expansion, such that the most general form of the translog function with multiple 

outputs is represented as:

The results of the fixed and random effects models are presented in Tables A 1.4.1-A 1.4.4

OPV, DAYATT, AEATT, WI, DVTEACH) (4.26)

+ l/2LiZjY,jlnpjlnpj + L^lnpjnX, + s (4.27)
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Where C is cost, p is input prices, and X is a vector of outputs. The function is assumed 

to be a representation of the minimum cost function. It has to be positive and 

homogeneous of degree one in prices.

However, the increased flexibility that the translog function allows comes at a cost, not 

least with respect to the number of independent variables, with consequent loss in degrees 

of freedom and potential problems of multicollinearity. Including seven output variables8 

would require 65 parameter values to be estimated. In order to keep the number of 

parameters down to a reasonable size we imposed restrictions on the number of 

interactive terms we will estimate the following form9:

LNTVC -  a  +  PiLNEMADM + l/2p2LNEMADM2 + p3LNELADM +l/2p4 LNELADM2 

+ psLNBEDEM + l/2p6LNBEDEM2 + p7LNOPATT + PgLNOPATT2 + p9WI 

+ l/2pioWI2 +p, iLNELADM.LNEMADM + p,2LNELADM.LNBEDEM 

+ pnLNEMADM.LNBEDEM + p 14LNELADM.LNOPATT 

+ P15LNEMADM.LNOPATT + piôLNELADM.LNWI + P, 7LNEMADM.LNWI 

+ PigLNDAYATT + p,9LNAEATT + p20LNCASEMX + p2,LNRES 

+ p22LNIVOCC + p23DVTEACH + s

(4.28)

where the variables are defined as earlier in section 3.2.

8 These are ELADM, EMADM, BEDSEL, BEDSEM, OPV, DAYATT, AEATT.
9

Preliminary analysis revealed that elective admissions and elective beds are highly correlated (correlation 
coefficient = 0.94), which is to be expected since BEDSEL = ELADM*LOS/365, therefore the analysis 
uses elective admissions only to pick up the cost of an elective admission. Since the theoretical model 
assumes that elective beds are all occupied this does not cause problems of interpretation, as the elective 
admission variable will pick up both the variable and quasi-fixed element of cost.
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The form of this equation can be simplified further by imposing restrictions on the higher 

order terms such that the restricted equation becomes:

LnC = a  + PjlnX, + 01np, + £ (4.29)

which is the Cobb-Douglas form10.

As an alternative specification we will perform a Box-Cox transformation. This approach 

has been suggested by Greene (1993) as an appropriate alternative to the translog when 

variable values equal zero and/or when the functional form of the equation is unknown, 

and allows flexibility in the estimation process including linear and log-linear models as 

special cases of the transform.

The Box-Cox model has appeared in a number of recent studies and is based on the 

transformation:

gw(x) = (xw-l)/X (4.30)

The Box-Cox model is a useful formulation that embodies many models, and is 

particularly useful if the functional form is unknown, or we have no a priori information 

to guide us. The most general form of the Box-Cox transformation allows the dependent 

and independent variables to be transformed by different values such that:
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y(e) =  a  +  SPkXk(X) +  £ (4.31)

Where the linear model and log-linear models are special cases, which results if X  =  9 = 1 

and X  = 9 = 0 , respectively.

3.7: Cost function results

The results of the translog model are poor with counterintuitive signs on the coefficients; 

most notably, a negative sign on the coefficient on emergency admissions variable, and 

insignificant t-statistics on almost all the independent variables. (The results of the 

translog approach are presented in Table Al.4.5 in Appendix A1.4). These problems are 

not unique; others have reported similar findings, (see, for example, Vita, 1990, and Dor 

and Farley, 1996). The relatively high R and lack of significant coefficients on the 

independent variables might indicate problems of multicollinearity. Further investigation 

revealed the probable existence of multicollinearity with 1 2  of the correlation coefficients 

higher than 0.9. Since the focus of our modelling is to elicit marginal cost estimates the 

translog function would be too unreliable. The collinearity diagnostic tests, including 

eigen values of condition indices, are presented in Tables Al.4.6 and Table Al.4.7 in 

Appendix A1.4.

10 Other restrictions could be imposed that would lead to other specifications.
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To examine the model specification we can test the unrestricted translog model (equation 

4.27) against the restricted, Cobb-Douglas, model (equation 4.29) by undertaking an F- 

test to test whether the higher order terms are jointly significant, i.e. whether 6 ,j = y,j = <j), 

= 0 in equation 4.27. The F-value is ( (R S S R-R S S u ) /q ) / (R S S u /(n -k ) ) , where RSSr  is the 

residual sum of squares in the restricted model, R S S u  is the residual sum of squares in the 

unrestricted model, q is the number of restrictions, n is the number of observations and k  

is the number of regressors in the unrestricted model. The F-test statistic was 0.94, 

therefore, accepting the restrictions placed on the higher order terms and choosing the 

Cobb-Douglas in favour of the translog form. Fiowever the Cobb-Douglas model 

performed equally badly in terms of counter-intuitive signs on the independent variables, 

in particular the negative signs on day attendances and emergency admissions, and lack of 

significance of coefficients (only four of the eleven independent variables are significant 

-  see Table A1.4.8 in Appendix A1.4).

The Box-Cox model was therefore employed as an alternative. We adopted the most 

general estimation procedure possible allowing the most flexibility of functional form and 

imposing as few restrictions as possible. This involved allowing the right hand side and 

left-hand side variables to be transformed by different parameter values. The 

transformation parameters were chosen on purely statistical grounds.

If we assume that X  and 0 are unknown parameters, then the choice of transform values 

can be identified by employing a grid search. Since the least squares values of X  and 0 

are usually found between -2 and 2 typically the search takes place within these values. It
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is possible, using LIMDEP, to specify a MLE technique that allows the statistical package 

to identify the optimal values of the two parameters, however the technique used is 

sensitive to the starting values specified. To overcome any potential problems we 

employed a manual grid search using increments of 0.25 over the range -2 to 2 for X  and 

9 to identify the appropriate starting values for the MLE search. The estimates were then 

fine-tuned these using the MLE technique within LIMDEP.

The full log-likelihood values from the grid search employing different values of lambda 

and theta are presented in Table A1.4.9 in Appendix A 1.4 (where lambda is the transform 

applied to the right-hand side variables and theta the transform applied to the left-hand 

side variable). From Table A 1.4.9 it is clear that the maximum log-likelihood lies 

somewhere between 9(0.25-0.5), A.( 1.0-1.50). This suggests that the starting values of 9 = 

0.20 X  =  0.95 should enable us to locate the minimum using MLE. The optimal values of 

X  and 9 were identified as 1.2112 and 0.53812, where the log-likelihood value is -  

325.71".

As outlined above, the linear and log-linear models represent special cases of the Box- 

Cox transform and as such it is possible to test for these two restrictions, i.e. that X  and 9 

both equal either 0 or 1. To test these restrictions we employ the likelihood ratio test, 

which is a Chi squared test where the test statistic is: 11

11 To double-check these values for optimality we also used different starting values for X  and 9 and this 
verified these values.
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-2[Ln(R) -  Ln(max)] (4.32)

where Ln(R) is the likelihood evaluated at the restricted estimate and Ln(max) is the 

optimal value of the likelihood. This test therefore is similar to the F-test. The test 

statistic was constructed using the values from the grid search:

Log-linear (0,0) = -336.94

Linear (1,1) = -335.40

Max (1.2112, 0.53812) = -325.71

The log-likelihood test with 95 observations is Chi squared (1) with 1 degree of freedom. 

The critical value is 3.84. The two test statistics are:

Log-linear = -2[-336.94 -  (-325.71)] -  22.46**

Linear = -2[-335.40 -  (-325.71)] = 19.38**

Therefore both the linear and log-linear models can be rejected at the 5% level in favour 

of the optimal transformed model.

At least two issues present themselves in the cost function estimation that are worthy of 

further investigation; heteroskedasticity and endogeneity.
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We hypothesised that two variables were particularly susceptible to endogeneity; the 

elective admissions and the inverse of the occupancy rate. A Hausman (1978) test was 

performed on the Box-Cox transformed equation, indicating that both could be treated as 

exogenous12. The instruments used to test for endogeneity were catchment demand, 

catchment share, waiting list size, and average waiting time as defined in Table 4.1.

It is often suspected that the error terms in hospital cost functions are heteroskedastic, 

presumably through the effect of increasing hospital size. We tested for heteroskedasticity 

using the White (1980) test, and found that the test rejected the presence of 

heteroskedasticity at the 5% level.

The results of the transformed model are presented below (and in full in Table A1.4.10 in 

Appendix A 1.4. (The results of the linear and log-linear models are presented in Tables 

A 1.4.12 in Appendix A 1.4 for comparison). The standard errors presented in the model 

assume that the values of lambda and theta are fixed, that is they ignore the variation in 

the transformation parameters, this provides t-statistics which are comparable with those 

produced by OLS.

12 We did. in fact, run a regression treating electives as endogenous using an instrumental variables 
approach. In the event the results changed very little (see results in Table A 1.4.13 in Appendix A1.4).
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Table 4.8 Cost function: Box-Cox Non-linear Regression Model

Variable Coefficient Standard Error t-stat
EMADM 0.17291E-05 0.47135E-05 0.367
ELADM 7.1242 2.8144 2.531**
BEDSEM 0.15571 E-02 0.37484E-03 4.154**
CASEMIX 0.28872E-04 0.11057E-04 2.611**
INVOCC -0.39541 0.29344 -1.348
RES 0.88775E-02 0.49121E-02 1.807*
AEATT 0.7168 IE-05 0.20272E-05 3.536**
DAYATT 0.86015E-05 0.32872E-05 2.617**
OPATT 0.26963E-02 0.10556E-02 2.554**
WAGE INDEX 0.4171 IE-02 0.50607E-01 0.082
DVTEACH 5.7278 0.90725 6.313**

CONSTANT 9.9175 1.6035 6.185**
LAMBDA 1.2112
THETA 0.53812

Number of observations 85
Log-likelihood -325.71
F[ 12, 82] 3131.17 **
White test for heteroskedasticity (x ): 0.43

Hausman test for endogeneity (t-test):
ELADM 0.683
INVOCC 0.539
ELADM & INVOCC (F-test) 0.246
* significant at 10% level 
** significant at 5% level

The coefficient on RES is both positive and significant as hypothesised. Thus, supporting 

the hypothesis that uncertain demand has an impact on hospital cost, and the higher the 

extent of the uncertainty the higher costs will be. The signs on all the other coefficients 

are as expected a priori. There are, however, three coefficients that are insignificant, 

those on INVOCC, WAGE INDEX, and EMADM. The insignificant signs on the first
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two variables may be explicable. The impact of reserve capacity may be picked up by the 

inclusion of emergency beds, some of which will remain empty, thus picking up some of 

the effects of unused capacity. However, since ENTVOCC picks up the impact of operating 

off the PPF, this suggests that the effect on the hospital costs due to operating within the 

PPF may be insignificant at standard levels.13 This is consistent with the theory 

developed in section 2 above, as we suggested that hospitals will in fact attempt to 

minimise ex ante expected costs and operate on the shadow PPF rather than the PPF 

itself. The insignificance of the coefficient on the wage level may be due to the existence 

of national pay settlements in the NHS resulting in little variance across provider units. 

The insignificant coefficient on emergency admissions is, however, is a little surprising, 

although it is appears to be of a reasonable magnitude (see the marginal cost estimates in 

Table 4.9 below).

The coefficients on the variables in the results presented above are in themselves 

uninformative, since as in a non-linear model they will not represent the slopes with 

respect to the variables. (Although given the positive values of lambda and theta the 

signs of these coefficients can be interpreted the same way as in a linear model). In order 

to interpret the magnitudes of these coefficients, we need to calculate the implied 

marginal costs using the elasticities based on these coefficients. The elasticity is 

calculated at the mean values of the independent variables using the predicted value of 

total variable cost from the estimated equation (see Greene 1993), where the elasticity is:

13 A quadratic term for inverse of occupancy rate was also included but this was also insignificant. The 
quadratic term was not included in the final specification as it added little to the analysis and reduced the 
significance of the linear term.
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ÔTVC/ÔXj*Xi/TVC (4.33)

where, Xj= independent variable and where:

ÔTVC/ÔXi -  [[a0+ 1 +Zi ßj6 (Xicx' I))/X](1/e' 1)]ß Xi(x'1} (4.34)

The calculated elasticities based on the above coefficients are given in Table 4.9 below:

Table 4.9: Mar ginal cost estimates
Variable Coeff. Mean Elasticity Marginal cost

EMADM 0.17291E-05 25,026 0.0381 £110.97
CASEMIX 7.1242 0.6937 0.4726 £49,660,433.30
BEDSEM 0.15571 E-02 645 0.4084 £45,154.55
RES 0.28872E-04 1,536 0.0217 £1,029.81
INVOCC -0.39541 1.49 -0.0797 -£3,358,154.71
AEATT* 0.88775E-05 59,137 0.1290 £159.01
DAYATT 0.71681 E-02 11,111 0.0591 £387.72
OPATT* 0.26963E-02 190,243 0.1612 £61.77
WAGE
INDEX*

0.4171 IE-02 19,061 0.0154 £58.89

ELADM 0.86015E-05 24,672 0.1863 £550.42

TVC 72,893,450
All calculations are re-adjusted by scaling factor for TVC of 1,000,000 
* re-adjusted for further scaling factor of 1,000

The impact of unexpected demand translates into an average cost of £63 per emergency 

admission. The marginal costs of elective and emergency admission are presented in 

Table 4.10 below.
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Variable Mean Elasticity Marginal cost
EMADM 25026 0.0381 £111
BEDSEM 645 0.4084 £760
ELADM 24672 0.1863 £550

Therefore the total marginal cost of an emergency case is estimated at £871 (i.e. the sum 

of the variable cost element, EMADM, and the quasi-fixed element, BEDSEM) and an 

elective case is estimated to be £550.14 The marginal cost of a bed is estimated by 

calculating the cost per bed day and multiplying by the average length of stay of an 

emergency admission.13

Section 3.8: Sensitivity analysis 

3.8.1: Uncertainty

Let us we now consider the impact of dropping RES and INVOCC and re-estimate 

marginal costs without taking into account uncertainty. The results are presented in Table 

A 1.4.14 in Appendix A 1.4. The calculated elasticities after dropping RESTOT and 

INVOCC are presented in the Table 4.11 below.

Table 4.11: Marginal cost estimates (dropping RES and INVOCC)
Variable Mean Elasticity

l
MC1 Elasticity

2
MC2

EMADM 25026 0.0882 £257 0.1357 £395
BEDSEM 645 0.3707 £691 0.3278 £611
ELADM 24672 0.2077 £614 0.2149 £635
1 = dropping RESTOT only
2 = dropping RESTOT and INVOCC

14 These estimates are of a similar magnitude as those reported by Csaba (1996) who reported the cost of an 
inpatient episode as £585 (representing an aggregate of emergency and elective cases), although these 
estimates did not take account of uncertainty.
' This was the weighted average length of stay of emergency and other admission, which is 6.02.
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These results appear to indicate that, if we do not take account of uncertainty, then we 

will overestimate the variable costs of emergency cases, and underestimate the costs of 

bed days for emergency cases. This is in line with a priori expectations, since estimating 

costs without taking account of uncertainty will fail to recognise that hospitals will aim to 

operate within the PPF efficiency locus. The total impact on the marginal costs of 

emergencies leads to an overestimate of around £100, or about 10%. The estimates of the 

marginal cost of electives appear to be overestimated by a similar amount.

3.8.2: Demand uncertainty variable

Section 3.5.2 discussed a number of different variables that could be used to model the 

impact of uncertainty. The two main variables suggested were the total unexpected 

demand and the standard error of the total unexpected demand. Replacing total 

unexpected (RES) with the standard error of this variable (SERES), appears to provide an 

equally good estimate, (the results are presented in Table A 1.4.16 in Appendix A 1.4). 

The estimated coefficients appear to be stable in sign, magnitude and significance. The 

estimates of marginal costs using standard error in place of total unexpected demand, 

gives estimates of £898 and £647 for emergency and elective cases respectively. The 

estimate of the marginal cost of emergency cases, therefore, remains fairly stable, 

although the estimate of elective marginal costs is higher than when employing the total 

residual.
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Section 4: Conclusions:

In this chapter we have presented an empirical estimate of a total variable cost function 

consistent with the theoretical model developed in Chapter 3, where costs reflect and 

incorporate production responses to demand uncertainty. To do so, we have considered 

the forecasting error that hospitals make in seeking to predict demand. Because it is not 

obvious how hospitals in reality estimate demand, a number of different estimation 

procedures were considered. The chosen method employed a simple autoregressive 

process, as this seemed to perform as well as the others, and was both intuitively 

appealing and statistically robust.

hi specifying the total variable cost model we have deliberately allowed the data to 

specify the functional form, after ruling out a number of commonly used functional 

forms. The estimation was undertaken through a Box-Cox procedure, and the resultant 

total variable cost function gave robust parameter estimates, in particular, our a priori 

expectation that demand uncertainty was important was verified.

The main results reported in this chapter provide reliable estimates of the marginal costs 

of provision of hospital care, based on a cost function with sound theoretical 

underpinnings, taking account of demand uncertainty and output heterogeneity.
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Chapter 5: Activity Analysis

Section 1: Introduction

In Chapter 3 we developed a theoretical model of capacity utilisation decisions, and 

focused on two perspectives; private and social. We showed that reserve capacity could 

be viewed as an efficient response to demand uncertainty from either perspective. In 

Chapter 4 we built on this model and focused on the costs of production. The optimal 

allocation of capacity was identified and, once more, we showed that reserve capacity 

was an efficient response for a cost minimising hospital where demand uncertainty was 

present. The cost function analysis in Chapter 4 focused on the private costs of 

production, as these are the only costs that are observed. However, in the initial 

specification of the problem we considered not only the private perspective but also the 

social costs of production. The optimal allocation of capacity, when the hospital takes a 

wider social perspective, was identified (taken from equation 4.6 in Chapter 4) as:

MSCt[l-F(Bem)]- MSCw = MCBen) + MCvem[l-F(Bem)]- MCBe|-M C vel (5.1)

where,

Bem = number of beds allocated to the emergency sector 

MSCt = marginal social cost of turning away emergency cases 

MSCW = marginal social cost of leaving patients on the waiting list 

MCsem = marginal cost of a staffed emergency bed 

MCgei = marginal cost of a staffed elective bed
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MCvem = marginal variable cost of emergency case 

MCvei “ marginal variable cost of elective case 

[l-F(Bem)] = probability of turning away an emergency case

Where the social cost was derived from two sources; the size of the waiting list for 

elective care and the number of emergency cases turned away. This optimal allocation 

condition suggests that hospitals trade-off the private costs of production associated with 

treating elective and emergency cases and the social costs of turning away emergency 

cases and placing elective cases on the waiting list. Furthermore, it suggests that 

hospitals also take account of uncertainty such that the social and private costs associated 

with the uncertain demand would be weighted by the probability of demand being 

present.

Seven elements determine the optimal allocation of capacity when considered from a 

social perspective. Four of these elements, from equation 5.1, are private costs (i.e. 

MCBem> MCven„ MCBe|, and MCvei), two are social costs (MSCt and MSCW), and the 

remaining factor is the probability of demand being present [l-F(Bem)].

The cost function in Chapter 4 provides estimates of the first four elements. However, as 

noted in Chapter 4, the social costs are unobservable. Nonetheless, we hypothesise that if 

hospitals take account of the social costs attached to production that they will trade-off 

the size of hospital waiting lists against the number of patients turned away. 

Furthermore, from the data identified in Table 4.1 in Chapter 4, we have monthly data on
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waiting lists, bed numbers and emergency demand. Consequently, using these variables, 

and constructing a measure for the probability of turning away an emergency patient, we 

can directly infer the relationship between the waiting list size and tumaway rates at the 

margin. This will enable us to estimate the monthly allocation response of hospitals to 

exogenous changes in the size of the waiting lists and emergency demand.

Using this implied value approach it is possible to estimate the social costs of turning an 

emergency patient away and placing an elective patient on the waiting list. This 

approach relies on estimates of the three outstanding components of equation 5.1. These 

are; the social costs of turning emergency cases away (MSCt), the social cost of placing 

elective cases on a waiting list (MSCW), and the probability that the hospital will be full 

[l-F(Bem)]- This will allow a full empirical specification of the model to be considered.

The aim of this chapter then is to provide the empirical estimates necessary to calculate 

the implied relative marginal social costs of turning patients away and the marginal social 

cost of placing patients on the waiting list. This allows us to examine the social 

perspective. The chapter will be structured as follows: Section 2 will provide estimates 

of the probability of the hospital being full. Section 3 will investigate the relationship 

between waiting lists and tumaway rate to provide the implied values attached to waiting 

lists and tumaway rates. This will bring together all the elements necessary to enable the 

full empirical specification of the first order condition to be specified, giving estimates of 

the implied social costs. Section 4 will consider two of the key issues identified focused
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on throughout this thesis; heterogeneity and demand uncertainty and will consider how 

they are crucial in accurately estimating the marginal social costs.

Section 2.1: Estimating the probability of turnaway

The probability of turning an emergency patient away is highlighted above as one of the 

determinants of the optimal allocation of hospital capacity. Hospitals will take account of 

uncertainty and will allocate capacity on the basis of private and social costs weighted by 

the probability of demand being present. However, it is not possible to directly observe 

the probability of tumaway. Therefore, it is necessary to construct an estimate of this 

probability using the information we have available. The available data provide all the 

necessary information we need to construct this variable. That is, emergency demand, 

elective demand, and bed numbers. However, in order to estimate the individual 

monthly, provider specific, probabilities we need to estimate demand expectations and 

the standard error associated with this demand, since these will determine the expected 

probability of tumaway. Before outlining the approach adopted and the results of this 

analysis it is worth considering the current, but small, literature on this specific issue.

2.2: Previous estimates of the probability of turnaway

The literature on probability of tumaway estimation is, unsurprisingly, sparse. To our 

knowledge, there have only been two previous attempts to empirically estimate the

196



Ch.5

probability of tumaway in the literature1. The first, by Mulligan (1985), extended the 

work by Joskow (1980) on reserve capacity. Mulligan re-examined the determinants of 

reserve capacity using the same data to calculate exact hospital tumaway rates, rather 

than the notion of a target reserve capacity ‘k’ employed by Joskow (see Chapter 2).

Mulligan assumed a Poisson distribution for arrivals such that the standard deviation was 

equal to the square root of the mean average daily census. The results were sparsely 

presented in the paper. The actual values for the probability of tumaway were not 

reported, although he did report that 70% of hospital appeared to operate with a 

probability of tumaway of less than 0.1%. Furthermore, since he assumed a Poisson 

distribution no attempt was made to estimate the actual standard error of the sample. 

Therefore the approach represented a mixture of observation and simulation.

More recently, Carey (1996) undertook empirical work to directly estimate the 

probability of tumaway. This estimate was necessary to provide empirical content to her 

model of the optimal total bed capacity within a region (see Chapter 2). She estimated 

the average daily census (ADC) for total aggregate demand using a lagged dependent 

variable approach outlined in the previous chapter. Where ADC = (Demand x length of 

stay)/number of days.2 These estimates were used to calculate the expected average daily 

census, the standard error of the ADC and, subsequently, the probability of tumaway. 

Detail on the exact method employed to calculate the probability of tumaway is lacking

1 Shonick (1970) provided simulations that enabled probabilities of tumaway to be calculated but they 
where not based on observed data.
2 The estimation of average daily census provides a way of converting aggregate demand and capacity, 
represented by bed numbers, into common currency.
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in her paper, particularly regarding the distribution used and the exact calculations used 

to estimate the probabilities. It would appear, however, that she assumed a normal 

distribution for ADC, and used the estimates of standard error from the forecasted 

equation to calculate these values using an equation of the form:

1-F[(B -  E(x))/c] (5.2)

where B is the number of beds, E(x) is expected ADC, c is the standard error of the 

distribution and F[.] is the probability density function representing demand. Carey 

estimated the average probability of tumaway across the whole sample period as 0.0062.

There are, however, a number of problems with the approach adopted by Carey that are 

worth discussing here. First, Carey estimated ADC using annual data. This is likely to 

significantly under estimate the variation in demand, as smoothing occurs, since there are 

likely to be significant seasonal, monthly, and even daily fluctuations in admissions. 

Secondly, she did not separate demand into planned and unplanned. This may have two 

effects: It is likely to underestimate the level of reserve capacity held to treat the 

stochastic element of demand. It may also lead to an underestimation of demand 

fluctuations, as planned admissions are likely to be increased when expected emergency 

admissions are low and vice versa, thus reducing the observed fluctuations in admissions. 

Related to this, and perhaps most importantly, she estimated her probability of tumaway 

using the standard error of the actual demand. That is, instead of considering the 

standard error of the level of unexpected demand (i.e. actual -  forecast), she considered
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the standard error of total forecasted demand as the appropriate variation to use when 

estimating the probability of tumaway. This is likely to seriously over estimate the 

variation in demand and, consequently, the probability of tumaway, although, given the 

dual effect identified above, the total effect on tumaway rates is indeterminate.

It is, however, difficult to comment extensively on Carey’s figures as she does not 

present all the data; most notably the standard error values are absent. If, however, we 

assume that the standard error of the distribution is equal to the square root of the mean, 

(as Joskow and Mulligan), and use Carey’s data, it is possible to calculate the standard 

errors using the ADC figures presented in her paper.

If we use equation 5.2 and assume that the probability density function (p.d.f.) can be 

represented by a normal distribution, (where the normal approximates a Poisson when the 

mean is large). Then we can calculate the probability of tumaway using the following 

equation:

where B is the number of beds, g  is the standard error of ADC and p is the mean of

(5.3)

ADC.
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It is now possible to re-examine Carey’s figures. For example, taking the first of Carey’s 

results^, the probability of tumaway is reported to be 0.0055, based on the reported data 

given in Table 5.1 below

Table 5.1: Carey’s Probability  of turnaway
Number of 
beds

Occupancy
rate

Probability of 
tumaway

Implied ADC S.D.
(Va d c )

179 0.58 0.0055 104 10.19

Carey only reports the first three values given in Table 5.1. However, it is possible from 

the first two values to calculate the implied ADC (i.e. ADC = Beds x Occupancy rate). 

Using the properties of the Poisson distribution, the estimated standard error is equal to 

VADC. Re-estimating the probability of tumaway using these data and equation 5.3 

gives an estimated value of 7.99xl0'14, compared to 0.0055 calculated by Carey. To 

replicate Carey’s figures the standard error of the distribution would have to be around 

30. This represents a variation around the mean of nearly 30%, (that is, a factor of ten 

higher than Friedman and Pauly found in their estimates of demand fluctuations using 

less aggregated data). Furthermore, this does not fit well with the high R2 found in her 

predicted equation, which suggests that hospital can predict demand very well over the 

year.3 4 This highlights the problem of using annual data. Carey must rely on fluctuations 

of demand in previous years to generate the standard error in any period and this 

implicitly assumes that the demand level could reach any of the levels previously

3 The estimated probability of tumaway for 1987, presented in Table 2a in her paper (Carey, 1996).
4 Although a rather crude relationship, the goodness of fit of the predicted equation will increase as the 
standard error of the unpredicted element of demand falls (i.e. the standard error of the noise component 
will fall as the R2 increases).

200



Ch.5

observed, consequently the standard errors used by her are very high. At the same time, 

however, the predictions of annual demand perform very well, suggesting that within any 

one year period hospitals have a very good idea of total aggregate demand.

Building on this literature we intend to address two issue here. First we discuss the use of 

total standard error of the forecasted equation to represent unexpected fluctuations in 

demand. Secondly, we disaggregate this demand into monthly forecasts to calculate the 

estimates of probability of tumaway.

2.3: Estimating the standard error of ADC

To obtain estimates of the standard error of unexpected demand, that is fluctuations 

around the expected demand, we first need to re-estimate the demand equations in the 

Chapter 4, replacing total demand with ADC. It is reasonable to assume that the process 

determining demand is the same for ADC as for total demand“, therefore we used the 

same demand function as Chapter 4 and estimated demand using the same three 

approaches and considered the same groupings (i.e. site type, demand size, and bed 

numbers).

As with the previous demand estimation, the AR1 process appeared to perform best in 

terms of econometric and statistical considerations, and this is the equation we will

' Since ADC is simply admissions adjusted for length of stay and the time period.
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continue to use in subsequent calculations.6 The results of the AR1 estimate of ADC are 

presented in Table A2.1 in Appendix A2.1 and will not be presented in detail here.

The estimated standard errors for these equations were calculated by taking actual 

admissions away from forecasted admissions and then calculating the standard of this 

residual (these are presented in Table A2.2 in Appendix A2.2). These estimated standard 

errors now allow us to calculate the probability of turning a patient away.

Section 2.4: Probability of turnaway

The estimated standard errors from the above equations allow us to calculate the 

probability of turning a patient away, given the allocations of beds to the elective and 

emergency sectors. If we make the same assumptions as in Chapters 3 and 4, i.e. that all 

elective admissions are planned and that there is an excess demand for elective beds such 

that all beds allocated to the elective sector are filled, then we can assume that the 

remaining beds are available for, or allocated to, emergency admissions.7 On this basis 

we can calculate the number of beds available for emergency cases, by subtracting the 

number of beds filled by electives from the total number of available beds.

The probability of turning an emergency patient away is estimated by calculating the 

probability that the demand for hospital services exceeds capacity such that:

6 This is not surprising given that ADC is a construct based on total emergency demand. The results of the 
other estimation techniques are not presented as they are very similar to the total demand equations.
7 This assumption does not strictly require that the hospital actually allocates the beds to emergency and 
elective cases simply that unfilled beds are available for emergency cases should they be required.
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l-F[(Bem -  E(Dem))/c] > 0 (5.4)

where, Bem is the number of beds allocated to treat emergency cases, E(Dem) is expected 

ADC for emergency services, and a  is the standard error of the unexpected element of 

ADC.

In order to operationalise this equation we need to define the distribution. As indicated 

above, most commentators have assumed that hospital demand is likely to be distributed 

Poisson, (see Blumberg, 1961; Shonick, 1970; and Joskow, 1980), which describes a 

process where each event is independent and unrelated to previous events.8 The normal 

distribution may be used as a proxy for the Poisson since it approximates a Poisson for 

large N (i.e. N > 30). The assumption of a normally distributed error residual allows us 

to operationalise the above equation, employing the standard normal distribution, such 

that the probability of tumaway becomes:

)2
e  2 a J  d x \  (5.5)

where Bem is the total number of beds allocated to treat emergencies, pem and CTem are the 

mean of the expected ADC and standard error of the unexpected emergency demand, 

respectively.

E { P t ) - f - cr , a/27T
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Using this equation and the standard errors and means from the estimates of ADC, it is 

now possible to calculate provider specific estimates of the probability of turning an 

emergency patient away.

2.5: Empirical estimates of the probability of turnaway

The average probability of turning away a patient, for each provider unit, is presented in 

Table A2.3 in Appendix A2.2. Since we have converted aggregate demand into ADC, 

adjusting by length of stay and time period, these values represent the average daily 

probability of tumaway. These averages differ substantially between provider units, 

where some hospitals have a probability of turning away a patient of zero and others have 

a probability of turning a patient away of close to one.

There is however, another issue raised by these variations, that is; which is the 

appropriate value to use for the average probability of tumaway? If we take the average 

of the sum of monthly turnaway probabilities, we get a different value than if we take the 

average of the sum of the annual probabilities. This, once more, highlights the problem 

of using annual data. The estimate of the probability of tumaway based on monthly 

estimates is 0.040215 compared with the probability given above, i.e. 0.007124 (that is a 

factor of 5.6 times higher). The relative distributions are presented in Table 5.2 below. It 8

8 It has been noted, as pointed out in Chapter 2, that this distribution should only really be applied when the 
facility is rarely full, and Blumberg identified emergency and obstetric treatments as the most likely to 
satisfy this assumption. Therefore, this fits our categorisation of ‘emergency’ demand perfectly.
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is clear that using the monthly provider specific will pick up more of the fluctuations in 

demand, indicated by the higher standard deviation of the distribution in Table 5.2.

Table 5.2: Mean and SD of probability of turnaway

Mean S.D.
Annual average 0.007124 0.0309
Monthly average 0.040215 0.1759

These values provide the first part of the empirical content for equation 5.1. The next 

stage of the analysis is to attempt to provide an empirical estimate of MSCW and MSCt.

The estimates of probability of tumaway presented in Table A2.2 present the average 

probabilities across the all time periods. However, these averages mask a wide 

dispersion of probabilities within hospitals across monthly time periods. These 

differences potentially allow us to investigate the first two components of equation 5.1. 

That is, the implied social costs of turning away emergency cases and the social costs of 

placing elective cases on the waiting list. They potentially allow us to isolate the 

relationship between tumaway and waiting lists such that we can conduct a partial 

analysis necessary to define this relationship.

Section 3.1: Social cost of turnaway and waiting lists

The cost function in Chapter 4 provided estimates of the private marginal costs of 

production. The wider social perspective outlined in equation 5.1 highlighted two other
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costs that influence hospital capacity allocation decisions; the social cost of tumaway and 

waiting lists. Therefore, in order to provide the full empirical content it is necessary to 

augment the private cost estimates with estimates of these social costs.

Since we have information on the size of waiting lists, elective admissions, and 

emergency admissions, we have all the information necessary to determine the 

relationship between these variables. Examination of the monthly fluctuations in bed 

allocation will provide, through an implied value approach, the relative social costs 

attached to turning away emergency patients and placing elective patients on the waiting 

list. That is, since we assume that the total elective and emergency demands are 

exogenous, any shift in demand from one allocation period to the next will potentially 

alter the optimal allocation decision. Such fluctuations in total demand and bed 

allocation decisions will provide us with estimates of the implied social costs.

In order to provide such estimates we need to re-consider the optimal allocation condition 

identified in equation 5.1 and utilise the estimates of the probability of tumaway 

estimated in section 2.

3.2: Theoretical background

The first order condition presented in equation 5.1 is derived from the theoretical model, 

and represents a comparative static model that assumes that this condition holds for each 

decision period.
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From the full comparative static identified in equation 4.5 in Chapter 4, we know that: 

MSCt(x-Bem)[ 1 -F(Bem)] = MSCw(W) + MCBem + MCvem[l-F(Bem)]- MCBe,-M C vel

(5.1a)

Where, MSCt is a function of (x-Bem), which is the number of patients turned away and 

MSCW is a function of W, which is the number on the waiting list. MSCt and MSCW are, 

therefore, potentially functions of the number of patients turned away and the size of the 

waiting list, respectively. From this relationship we know that, there are only three 

reasons that the optimal bed allocation decision and, hence, the probability of tumaway 

[l-F(Bem)] should change. These are if:

i) MSCt changes

ii) MSCW changes

iii) MCs changes

Since, from consideration of the monthly data, we observe monthly fluctuations in the 

probability of tumaway, this suggests that at least one of these components is changing in 

response to maintain the equality in equation 5.1a (assuming hospitals behave 

efficiently).
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In the conceptual specification outlined in Chapter 3, the relationship between waiting 

lists and tumaway implied that the marginal social costs of waiting lists, and the marginal 

social costs of tumaway may be related to the size of waiting lists and numbers turned 

away. That is:

MSCW = f(W) (5.6)

MSC, = f(x-Bem)

where diminishing (increasing) marginal disutility of waiting lists may exist, such that the 

first order derivatives f(W) and f(x-Bem) are negative (positive) and the second order 

derivatives f'(W ) and f'(x-Bem) are negative (positive).

Furthermore, we know, once more from consideration of the monthly data, that waiting 

list size and emergency demand both alter between decision periods, and, as highlighted 

above, we know that the probability of tumaway, and hence bed allocation, alters 

between periods.

We assume that hospitals operate in a single decision period, one month, and therefore 

the waiting list size and the probability of tumaway are based on their bed allocation 

decision.9 If the marginal social costs of tumaway and waiting lists are linked to the

9 We assume a single decision period where the total size of elective demand is known by the hospital. 
There are more complex models of waiting list determination, see, for example, Worthington (1987), 
however these rely on arbitrary constructs such as ‘discouragement factors’, to enable stationarity to be 
induced in the models. Furthermore, they rely on static decisions regarding bed allocation between periods, 
clearly this would be inappropriate for our model.

208



Ch.5

absolute size of tumaway and waiting lists, then the fluctuations in demand for elective 

and emergency care, (leading to changes in the size of waiting lists and numbers turned 

away), will lead to changes in the marginal social costs and, hence, the probability of 

tumaway, if the equality in eqaution 5.1a is maintained.

Therefore, any analysis of the implied values attached to waiting lists and tumaway 

should focus on the three main determinants of the probability of tumaway identifed 

above: That is, MCs, MSCW, and MSCt.

Since the marginal costs are estimated on an annual basis, the only reasonable assumption 

to make is that it is these are fixed over monthly decision periods, (this assumption only 

requires that they be fixed within individual hospitals, not necessarily across provider 

units). These assumptions allow us to directly estimate the relationship between MSC, 

and MSCW by considering the relationship between probability of tumaway and the size 

of the waiting list, controlling for the size of emergency demand. The only reason the 

probability of tumaway will be altered, given the assumption above, is because either 

MSCW or MSC, has changed. That is, from equation 5.1, we can hold the marginal costs 

constant between decision periods such that:

MSC,[l-F(Bem)] = MSCW (5.7a)

and where we can estimate the relationship between changes in MSCW on the probability 

of tumaway, i.e. 5[l-F(Bem)]/5MSCw, which is:
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S[l-F(Bem)]/5MSCw= 1/MSC, (5.7b)

If the probability of tumaway changes between periods then this suggests that either the 

marginal social cost of turning a patient away has changed, or the marginal social cost of 

leaving an elective on the waiting list has changed. The only reason the MSCW will 

change is if, as stated above, it is related to the size of the waiting list10 and the MSCt will 

only change if the MSCt is related to the number turned away. If, for example, the 

marginal disutility of waiting lists increase with waiting list size, then we would expect 

an exogenous increase in the size of the waiting list to lead to an increase in the 

probability of tumaway, holding everything else constant. Therefore the above 

relationship in equation 5.7b, from equation 5.1a, becomes:

MSC,(x-Bem)[ 1 -F(Bem)] = MSCw(W) (5.8a)

and where ô[l-F(Bem)]/ôW is:

5[l-F(Bem)]/5W = MSCw/MSC,(x-Bem) (5.8b)

10 This is also consistent with waiting times since the expected wait for the marginal patient is equal to the 
number already on the waiting list/BEDS*LOS. To maintain consistency with the theoretical construct 
outlined in Chapter 3 we wall focus on waiting lists. The problem of using waiting times is, however, that it 
moves away from a single period decision model and moves towards a more complex model that has to 
consider inter-temporal bed allocation decisions.
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The implied social costs of turning patients away and placing patients on the waiting list 

can be calculated using this estimated partial relationship between the probability of 

tumaway and the waiting list size. Where the estimated coefficient from the partial 

relationship represents the left hand term in equation 5.8a and, therefore, the implied 

value of the marginal social cost of tumaway in relation to the marginal social cost of 

waiting lists.

Since we want to examine the partial relationship between MSCW and MSCt we also need 

to control for any other factors that may have an impact on MSC, or may lead to the 

probability of tumaway changing. If we introduce the size of emergency demand then 

this can control for two important factors that may alter the probability of tumaway. 

First, this variable controls for the relationship between the number turned away and the 

MSCt, i-e. (x-Bem) in 5.8b, since the total number of emergencies turned away will be 

determined by the size of demand and MSCW might be related to the number of cases 

turned away. This variable also controls for the direct impact that an increase in demand 

has on the probability of tumaway. Therefore, when estimating the partial relationship, 

we will include an emergency demand variable in the equation.

Two further restrictions are necessary. First, we must assume that the relationship 

between MSCt and MSCW is constant over time, i.e. that the transformation between the 

two variables does not itself vary over time. Secondly, we need to control for the 

individual provider effects, since it may be that the relationship between the two variables 

varies between providers. Controlling for individual provider effects will also allow for
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any differences between marginal social costs across provider units, which could also be 

a potential source of variation in the probability of tumaway.

The calculation of the marginal relationship between tumaway and waiting list is, 

however, further complicated as, for the empirical calculation, we need to adjust this 

relationship to effect the impact that altering the probability of tumaway has on the 

expected marginal costs. Since, although we assume that marginal costs are constant 

across decision periods, a change in the probability of tumaway will have an impact on 

the expected marginal variable costs of providing emergency, such that the partial 

relationship in equation 5.7a becomes:

MSCt[l-F(Bem)] - MCvem[l-F(Bem)] = MSCW (5.9)

Any estimation of the relationship between the probability of tumaway and the marginal 

social costs of leaving an elective patient on the waiting list must, therefore, take this 

extra element into account.

Since there may be many different influences on the probability of tumaway, (e.g. the 

hospital's ability to deal with overcrowding of facilities, their ability or willingness to 

cancel elective admissions, their ability to discharge patients early, or the availability of 

substitute facilities such as trolleys and corridors), one way to determine the specific 

relationship between waiting lists and tumaway is through a multivariate regression, 

which controls for these other factors. This allows us to estimate the coefficient on the
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waiting list variable with respect to changes in the probability of tumaway, which gives 

the left hand side term in equation 5.8b, taken from the regression of probability of 

tumaway on waiting list size.

3.3.1: Model specification

The use of regression analysis raises the same issues as have been dealt with in the 

empirical estimates in Chapter 4. Most notably issues of functional forms and panel data 

analysis. Since we have no a priori expectations regarding the functional relationship 

between waiting lists and tumaway, it seems clear that we should allow the data to 

determine the appropriate specification. We, therefore, once again, use a Box-Cox 

analysis. The issue of panel data analysis can be more easily resolved, since we have a 

priori expectations that individual providers will have different factors influencing the 

probability of tumaway, this implies the use of fixed effects models to attempt to model 

all the potential arguments that enter the individual provider's objective function.

3.3.2: Data

Any regression analysis is restricted by the availability of appropriate data. Table 5.3 

indicates the activity data that were available.
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Table 5.3: Activity data
Variable name Definition
A C T I V I T Y

ADMS Total number of admissions
EMADM Number of admissions categorised as emergency (by 

provider), maternity care, and transfers from other providers
ELADM Number of admissions categorised as elective (by provider)
BEDS Total number of staffed beds
ALOS Average length of stay (days) for all admissions
ELALOS Average length of stay (days) for elective admissions
EMERGALOS Average length of stay (days) for emergency admissions
OTALOS Average length of stay (days) for admissions categorised as 

other
DAYATT Total number of day attendances
AEATT Total number of non-inpatient Accident and Emergency 

attendances
OPATT Total number of non-A&E outpatient attendances
CATCHSH % share of demand (DoH (1989))
CATCHD Estimated demand (DoH (1989))
WAIT Total number of elective patients waiting for admission
AVCMIX Casemix weight based on DRG weights

The aim of the regression analysis was to get an estimate of the partial relationship 

between waiting list size and probability of tumaway. Given the limited data availability 

there were only a few variables that we could include in this model with theoretical 

justification. Therefore, the use of provider specific dummy variables were thought to be 

the best way of picking up such effects, and they would allow greater flexibility in 

picking up any other provider specific influences, such as the ability to cancel elective 

admissions to create additional bed capacity, the impact of geographic location, and the 

availability of other hospital facilities to act as a safety net. The use of provider specific 

dummies does, however, preclude the inclusion of time invariant factors, such as 

catchment share, which may have an influence on the willingness of hospitals to turn 

patients away and hence the social costs attached to doing so. However, this trade-off
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was thought to be valid since the provider specific effects should also pick up any 

influences that are time invariant. We estimate a simple model outlined in section 3.2.3 

below.

There are, however, other issues that need to be addressed, most notably potential 

problems of endogeneity. Since waiting lists are partially determined by the number of 

beds given to the elective sector, and hence related to the number of beds given to the 

emergency sector there is a problem of endogeneity with the waiting list variable. That 

is, the expected probability of turnaway, E(Pt) and the size of the waiting list, are both 

partially determined by the number of beds given to the emergency sector".

Therefore it is necessary to instrument for the waiting list. The most straightforward way 

of instrumentation is by using the identity:

WAIT = Dei -  ELADM (5.10)

Rearranging gives:

Dei = WAIT + ELADM (5.10a) 11

11 From equation 5.5 we have specified that PT = f(BEDSem, ADCem) and since ADC = (Dom x LOSera)/t 
(where Dem is total expected emergency demand and LOSem is emergency length of stay), this gives have 
E(Pt) = f(BEDSem, Dem, LOSem). Furthermore, we know that WAIT = Del -  ELADM (where Dd is total 
elective demand and ELADM is total number of electives treated) we also know that ELADM = (BEDSd x 
t)/LOSci so that WAIT = f(BEDSe!, Dd, LOSei). Since the total number of beds available is fixed we know 
that BEDSd = BEDST-BEDSem, this means that WAIT = f(BEDScm, DeI, LOSd). Therefore the waiting list 
and probability of tumaway are both determined by the number of beds allocated to the emergency sector.
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If we assume that for any given time period that the total elective demand is exogenous, 

which is reasonable, then we can simply replace WAIT with Dei in the estimated 

equation. Providing the waiting list is non-zero, we can interpret the coefficient on Dei 

list in the same way we would the coefficient on WAIT. This allows us to examine the 

impact of an exogenous change in the size of the waiting list on the probability of 

tumaway and, therefore, the relationship between the two elements of social cost.

Including a variable to adjust for numbers turned away has similar endogeneity problems, 

since the number of emergency patients turned away, (x-Bem), is determined by Bem, 

which is endogenous. Therefore we need to instrument in a similar manner as above, 

using emergency demand as a proxy for numbers turned away.

3.3.3: Specification

The basic specification of the model estimating the probability of tumaway will be of the 

form:

PT= f(Del, Dem, DVj) (5.11)

Where PT is the probability of turning a patient away, Dei is the total number of elective 

patients requiring treatment and Dem is the total emergency demand. DV, represent the 

provider specific effects. Dem is represented by ADC which proxies for the number of
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emergency patients turned away (where total number of patients turned away -  PT x 

ADC) and the impact direct impact of ADC on PT.

As with the cost function we will employ a Box-Cox analysis allowing the data to 

determine the appropriate functional form. As before we will use the most general fomi 

of the Box-Cox transformation, which allows the dependent and independent variables to 

be transformed by different values such that:

y(0) = a  + I p kxk(X) + s (5.12)

There are, however, a number of other issues that have to be dealt with before we move 

onto the estimation of the model. The main issue is that, as indicated in Table A2.2, there 

are a number of zero values for the dependent variable. The existence of zero values can 

cause a number of problems, both practical and theoretical.

Dealing with the practical issue first; the Box-Cox analysis can deal with non-zero 

values, however this requires that both 0 and X  are non-negative and lie between zero and 

one. In addition, this requires that the Box-Cox transformations be performed manually, 

(i.e. not through LIMDEP using the MLE search). On a theoretical level, the existence of 

zero values can be dealt with in a number of different ways.

There are a number of options to overcome the problem of zero values. First, we could 

undertake the analysis on the whole sample using a manual Box-Cox analysis. This has
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the advantage of using the full sample, but, as identified above, has the disadvantage of 

restricting the values of 0 and X  such that they are non-negative and lie between zero and 

one. Secondly, we could select-out the non-zero values and do the analysis on the 

restricted sample. This, however, may introduce bias. Thirdly, we could use a model 

that explicitly deals with unobserved values of the dependent variable, such as the 

censored TOBIT model that treats zero values as censored.

The TOBIT model is similar to the PROBIT and LOGIT models, which assume that the 

left-hand side variable either takes the value of one or zero, and therefore, takes the form 

of a dummy variable approach for the dependent variable12. The model assumes that the 

dependent variable is not observed, rather that it takes a zero or one value1' (e.g. working 

or not working, taking out a loan or not). This gives the following:

y, = 1 if y* > 0 (5.13)
y, = 0 if y* < 0

The approach calculates a probability of an event occurring based on the explanatory 

variables. The TOBIT model, however, allows the dependent variable to be observed 

such that y* is observed if y* > 0 and is not observed if y <0. The observed relationship 

therefore becomes:

y, = yi* = Pi + Pi if y* > 0 (5.14)
y, = 0 if y* < 0

12 See, for example, Maddala (1993) for a full explanation of these models.
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This model, however, still treats the zero values as unobserved and, in principle, these 

could take negative values. This is not the case in our analysis. Maddala (1992) warns 

against the mechanical use of the TOBIT model for these reasons, i.e. that these values 

are zero, not because they are unobserved, but due to the decisions of hospitals. In this 

situations it is advisable to model the process that leads to zero values.

The final option we could use is a Heckman two-stage procedure that allows us to treat 

the zero values as representing a decision (see Heckman, 1979). This model has applied 

to the participation in the labour supply market (Heckman, 1976) dealing with the issue 

of non-labour market participation, and the idea of a reservation wage below which 

workers do not enter the market. The situation may be may be similar in hospitals. If 

hospitals do not appear to be trading tumaway against waiting lists, in some periods, then 

this suggests that there may exist a cut-off point where the hospitals do not ‘enter the 

market'. The Heckman procedure involves estimating a PROBIT model first to identify 

the selection mechanism and then estimation of a TOBIT model. This is designed 

specifically to deal with zero values, where the zero values are a decision variable rather 

than ‘unobserved’.

The PROBIT equation is estimated using maximum likelihood to obtain estimates of y. 

Where, for each observation, a value of X  is constructed to compute:

) 13
(5.15)

13 Models such as this have been applied to the labour market where the dependent variable is zero or one 
representing working or not working, see Quester and Greene (1982) for an example of this approach.
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using the PROBIT coefficients.

Then p and P  ̂= poE are calculated by least squares regression of y on x and X .

As there is no a priori evidence to allow us to choose over the different models we 

considered four approaches:

1) A Box-Cox analysis considering all values of the dependent variable.

2) A Box-Cox analysis considering non-zero values of the dependent variable.

3) A censored TOBIT model which categorises treats zeros as unobserved or censored.

4) A two-stage Heckman procedure.

3.3.4: Results of waiting list-turnaway estimation

The results from the regression analysis allow us now to complete the empirical content 

of the first order condition, and identify the implied social costs associated with waiting 

lists and tumaway. From the regression equation we can determine the trade-off between 

waiting list and probability of tumaway. The calculation is based on the elasticity 

calculated from the coefficient on Dei- This coefficient allows us to calculate the 

marginal effect on the probability of tumaway of an increase in the waiting list, holding 

ADC constant.
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The full regression results for all the approaches are presented in Appendix A2.3. The 

same grid search technique was used as in Chapter 4. A manual search was undertaken 

to identify the values of lambda and theta between which the optimal values lie. The 

results of the grid searches for the Box-Cox models are presented in Table A2.3.1 and 

A2.3.3.

The regressions performed relatively well; the coefficient on waiting list size was positive 

and significant indicating that there does appear to be a trade-off between waiting lists 

and probability of tumaway. The Box-Cox sub-sample model (PT > 0, see Table A5.3.1) 

indicated a transform close to semi-log. The full sample Box-Cox model indicated a 

linear relationship between the variables (see Table A2.3.3 in Appendix). Consequently 

the Tobit and Heckman models were estimated on untransformed data. There were, 

however, problems with the Tobit and Heckman models.

First, since the Tobit model basically assumes that zero values were unobserved this may 

induce bias. Furthermore, it represents a restricted version of the Heckman model, 

therefore it was considered that this model should be discounted early on.

The Heckman model, however also has problems, since the estimated equation has a 

large number of dummy variables, this causes problems for the first stage of the 

estimation process in the Heckman model. That is, the probit model cannot deal with 

left-hand and right-hand side variables that are both equal to one with no variation for a 

large number of observations. Consequently, the dummy variables had to be dropped
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from the first stage of the analysis; this led to an unstable estimate of the relationship (see 

Table A2.3.6). Overall the Heckman model performed reasonably well (see Table 

A2.3.7). The insignificant t-statistic on lambda, however, indicates that an estimate on 

just the sub-sample of data, excluding the zero values, may itself be unbiased. To test 

this we estimated a Box-Cox linear regression using only the sub-sample of PT (see 

Table A2.3.8). The results of this analysis confirmed that estimation using a sub-sample 

might indeed be unbiased, since the results were almost identical to the Heckman two- 

stage procedure.

On this basis, we estimated the partial relationship between waiting lists and tumaway 

probability using the sub-sample, which allowed lambda and theta to take any values (i.e 

they were not restricted to positive values between zero and one as in the full sample). 

We employed a Box-Cox MLE analysis to identify the appropriate transform, (see Table 

A2.3.1). This analysis indicated a (close to) semi-log relationship. The summarised 

results of this analysis are presented in Table 5.4. (The full results are in Table A2.3.2 in 

Appendix A2.3. i.e. including provider specific dummy variables).

Table 5.4 Box-Cox regression (sample = non-zero PT)
V a r i a b l e

o  ---
C o e f f i c i e n t S t a n d a r d  E r r o r t - s t a t

DEL 0 . 3 4 7 8 8 E - 0 2 0 . 4 0 1 7 7 E - 0 3 8 . 6 5 9 *  *■
DEM 0 . 7 0 1 0 7 E - 0 2 0 . 3 4 7  9 7 E - 0 2 2 . 0 1 4 *
Lambda 0 . 7 6 9 6 9
T h e t a 0 . 0 6 5 7 9 4

L o g - l i k e l i h o o d  = 8 6 4 4 . 0 5
N = 814
W h i t e  t e s t  f o r  h e t e o r s k e d a s t i c i t y : 0 . 1 5 9 9
A u t o c o r r e l a t i o n :___________________________ 0 . 0 0 0 6
* significant at 10% level 
** significant at 5% level
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3.3.5: Implied trade-off between turnaway and waiting list size

The figures presented in Table 5.5 are calculated from the coefficient taken from Table 

5.4.

Table 5.5 Elasticity and trade-off
Variable Mean Elasticity Trade-off
DEL1 3772 5 . 8 1 6 7 0 . 0 0 0 0 6 1 9 9 1 3
PT2 0 . 0 4 0 2
1 The trade-off between waiting lists and PT must be estimated using 
the mean value of DEL (i.e. rather than WAIT) since the coefficient 
is estimated based on DEL.

2 The trade-off is calculated at the mean of the full sample to allow 
comparison with the second stage of the analysis.

The elasticity of substitution between the probability of turning a patient away and the 

size of the waiting list, calculated at the mean, is estimated to be 5.8167. That is an 

exogenous 1% in the size of the demand (waiting list) will lead to a 5.8167% increase in 

the probability of turning a patient away. From the above estimation, on average, 

hospitals will increase probability of tumaway by 0.0000619913 when the waiting list 

increases by one. Therefore, if waiting list size increases by one, (representing the value 

of the MSCW. from equation 5.8b), the probability of tumaway adjusts by a relatively 

small amount. Nonetheless, this suggests that as waiting list size increases that hospitals 

respond by increasing the probability of turnaway. This suggests that, holding all other 

things constant, the marginal social cost attached to leaving an elective patient on the 

waiting list does indeed increase as the size of the waiting list increases.
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The Box-Cox transform implies that the trade-off between waiting lists and probability of 

tumaway is non-linear (and close to semi-log), such that as the size of the waiting list 

increases, the hospital reduces the rate at which it is prepared to trade-off the probability 

of tumaway against waiting list size. This gives the relationship in Figure 5.1 below.

Figure 5.1: Trade-off between probability of turnaway and waiting list size

This estimated relationship between an exogenous increase in waiting lists and the 

adjustment of bed allocation in response to this embodies the marginal rate of substitution 

of emergency tumaway and elective waiting lists and, therefore, we can derive the shape 

of the indifference curve from this relationship. The relationship implies an increasing 

marginal disutility of waiting lists such that the relationship between waiting lists and 

probability of tumaway represented on an indifference curve would be convex (i.e. as 

represented in Figure 5.2 below).
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Figure 5.2: Indifference curve turnaway-waiting list

Therefore, the empirically estimated indifference curve is consistent with the shape 

represented in the theoretical model in Chapter 3. That is, the assumed marginal rate of 

substitution is validated.

3.3.6: Implied social costs

Estimation of the cost function enabled the marginal variable and quasi-fixed costs to be 

estimated and put back into the theoretical model. The marginal variable cost of an 

emergency case was estimated at £111, and the marginal quasi-fixed costs of staffed beds 

for an emergency case was estimated to be £760. The marginal cost of an elective case 

was estimated at £550.

From equation 5.1 we know that the optimal allocation is achieved where:

MSCt[PT)]- MSCW = MCBem + MCvem[PT)]- MCBei - MCvel
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and we have estimated the terms on the right hand side of the equality from the cost 

function such that:

MSCt[PT)]- MSCW = £760 + £11 lem[PT)]- £550 (5.16)

We do, however have to make two adjustments at this point. In the initial specification of 

the model we assumed that length of stay for emergency and elective cases was equal. 

Therefore we have to adjust for the difference in length of stay. Furthermore, we have to 

adjust for time period, however, since the probability of tumaway is a daily estimate we 

only need divide by length of stay to derive the estimated cost per day.

Since the full relationship should be:

MSCt[PT)]- MSCw(B.t/LOSei) = MCBem(B.t/LOSem)+ MCvem[PT)J 

- MCBei (B.t/LOSei) - MCvel(B.t/LOSei) (5.17)

Where B represents a bed, t is time period and LOSei and LOSem are elective and 

emergency lengths of stay, respectively. (Where PT is already adjusted for length of stay 

and time period therefore no further adjustment is necessary). Since we differentiate with 

respect to beds to derive the first order condition, all we need to do now is multiply 

through by (t/LOS). Furthermore, since the probability of an extra emergency case 

arriving is PT in any one day, the total expected marginal variable cost for emergency 

cases is MCvem multiplied by PT, whereas the cost of emergency beds is adjusted for the
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expectation of being filled, as we assume that the bed numbers are decided ex ante, and 

fixed ex post. This is entirely consistent with the theoretical construct.

From the analysis in Chapter 4 we know that:

MCvem = £111 

MCBem = £760 

I (  MCvel + MCBei) = £550

We also know that the average values for the length of stay in the two sectors are14: 

LOSei = 4.76 

LOSem15 = 6.02 

And that: 

t = 1

We can now say that the optimal allocation occurs where:

MSCt[PT)]- MSCw/4.76 = 760/6.02 + 11 l[PT]/6.02 - 550/4.76 (5.18)

where [PT] is the probability of turning a patient away.

14 See Appendix 3 for data description.
15 Where LOSem represents an average of emergency and other admissions, weighted by the number of 
admissions.
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The probability of turning a patient away has been estimated at 0.0402. Therefore the 

implied marginal social cost of tumaway relative to the marginal social cost of placing a 

patient on the waiting list would is estimated to be:

MSCt[0.0402] = 0.21MSCw+ 10.69+ 18.44[0.0402] (5.19)

therefore:

MSCt = 5.22MSCw + £265.92 (5.20)

Consequently, the optimal allocation is a trade-off between the relative size of the social 

costs attached to non-treatment, and the difference between the marginal costs of 

treatment and staffed beds.

From the above estimation, on average, hospitals will increase the probability of 

tumaway by 0.0000619913 when the waiting list increases by one. From equation 5.7d 

we also know that:

MSCt = 1/pMSCw + MCem/LOSem (5.21)

Where p represents the coefficient from the estimated partial relationship.

However, we have to make a further adjustment here, since we need to convert the 

probability of tumaway into actual numbers turned away, in order to make the 

appropriate calculation. The expected number of patients turned away is average 

(expected) number of daily admissions x PT, therefore an increase in tumaway by
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0.0000619913 will increase the number of emergency patients turned away by 

0.00438573 per day (i.e. 70.75 x 0.0000619913). Consequently, the trade-off between 

marginal social costs of tumaway and waiting lists, calculated at the mean values of both 

is:

MSCt = [228.01]MSCW + £18.44 (5.22)

and:

MSCt = 5.22MSCW + £265.92 (5.23)

Solving simultaneously gives:

MSCt =£290.60

MSCW = £1.19

The marginal social cost of turning a patient away dominates this relationship, at nearly 

£300, whereas the marginal social cost of leaving an elective case on the waiting list is 

estimated to be a little over £1.

The marginal social costs of turning an emergency patient away are relatively small, 

especially given the potentially catastrophic implications if emergency patients are not 

treated. There are, however, a number of potential explanations for this: First, if the 

hospital is full it does not necessarily mean that the patient will be tumaway away. There 

are increasing reports in the media of emergency patients being placed on trolleys and in
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waiting rooms. The social cost may refer to placing patients in inappropriate facilities. 

Secondly, when the hospital is full, the hospital may have other options available rather 

than turning a patient away, that is, they can cancel elective treatments to make room for 

the extra patients, therefore, the social costs may also reflect this response. Nonetheless, 

these estimates appear to be reasonable in terms of the implied value attached to turning 

an emergency patient away relative to placing an elective patient on a waiting list (i.e. in 

the region of 200 times greater).

Section 4.1: Output heterogeneity and demand uncertainty

Let us now reconsider two issue that have consistently featured throughout this thesis; 

output heterogeneity and demand uncertainty. In this section we will consider the impact 

of each on the estimation of the implied social costs.

4.2: Heterogeneity

If, we failed to recognise the heterogeneity issue and concentrated solely on the social 

costs of the hospital being full, then the decision moves away from the use of existing 

capacity and focuses, as other authors have done, on the issue of how many beds should 

be supplied, in aggregate. In order to estimate the implied social costs of turnaway in 

aggregate, we need to first adjust the marginal cost estimates, since the costs of provision 

would be based on an average marginal cost of output in aggregate, rather than separating
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output into emergency and elective cases. Nonetheless, the basis of the estimation would 

be the equation:

MSC[PT] = MCb/LOS + MCV[PT] (5.24)

Where:

MSC = marginal social cost of turning away a patient 

LOS = average length of stay 

MCV = marginal variable costs 

MCb = marginal costs of a bed

Let us now adjust the cost estimates to provide the average values necessary. If we 

assume that the same proportion of elective marginal costs are due to the quasi-fixed 

element (i.e. staffed beds) as emergencies, then this enables us to estimate the variable 

and quasi-fixed costs for elective cases. That is, the variable element of emergency costs 

represents 13% of total marginal cost (i.e.l 11/871). Applying this proportion to electives 

gives £70 variable cost and £480 staffed bed cost. Since approximately 50% of 

admissions are elective and 50% emergency, the average marginal cost of a staffed bed, 

and the average variable cost, are £620 and £90, respectively. The average length of stay 

can be calculated in the same way, i.e. (4.76+6.02)/2, which is 5.39. If we assume that 

the probability of tumaway is the same as that calculated for emergency cases, (although, 

as we have indicated earlier, this may not be the case but will suffice for illustrative 

purposes), then we have all the data necessary.
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This gives the following equation:

MSC[0.0402] = 620/5.39 + (90/5.39)[0.0402]

Therefore, the marginal social cost, not accounting for heterogeneity, would be £2,878. 

To provide some comparison we can compare this with the average estimate by Carey, 

which was $24,710. Consequently, the implied social cost of an extra bed is much 

smaller in the UK, which may be expected as there is likely to be less reserve capacity in 

the UK and, thus, higher tumaway probability. This is illustrated by using Carey’s own 

probability of tumaway (0.0062) to calculate the social costs. If we use this value the 

implied social costs are estimated to be £18,570. This compares with Carey’s average 

estimate of $24,710 (1987 prices). Therefore these two estimates are very similar.

Clearly the probability of tumaway has an important influence on the estimated social 

costs. To estimate the impact of changing the probability of tumaway on our estimates, 

we will estimate a marginal social cost of tumaway elasticity with respect to the 

probability of tumaway

There is, however, another issue that will affect the social costs; the total bed availability. 

If there is a limited bed supply, this will inevitably impact the implied social costs since 

the greater the total bed availability, the lower the probability of tumaway, since more 

beds are available to allocate to both elective and emergency cases, therefore the implied 

social costs associated with both will fall. Clearly, with a chronic hospital bed shortage, 

the length of waiting lists may become so large that the hospital does not have sufficient
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capacity to enable it to meet the conflicting demands, and achieve an optimal level of 

both waiting list size and tumaway rate, (i.e. that reflects society’s values). This will be 

reflected by the relatively low implied marginal social costs of tumaway. This is a public 

policy issue regarding funding and availability of hospital beds. If the implied social 

costs of tumaway are regarded as ‘too small’, in some subjective sense, then this suggests 

there are not enough hospital beds in total. The low implied marginal social costs 

associated with turning emergency patients away calculated here suggest that this may be 

the case in the UK.

4.3.1: Probability of turnaway: annual average

If we utilised the annual rather than monthly average probability of tumaway the implied 

marginal social costs would, from equations 5.19 and 5.20, become:

MSCt[0.007124]= 0.21MSCW + 10.69 + 18.44[0.007124]

MSCt = 29.48MSCW + £1500.56 + £18.44

Therefore:

MSCt = 29.48MSCW + £1500.56 + £18.44 

And MSCt = 1286.65MSCW + £18.44

Solving simultaneously, the marginal social costs are estimated to be:

MSCt = £1554

MSCW = £1.19
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The impact of the probability of tumaway is quite substantial in this model. If we 

significantly underestimate it, as using annual data may well do, then this could lead to 

serious overestimates of the implied social costs. (MSCW remains the same in this 

example since we have imposed a new probability of tumaway and assumed that the 

marginal trade-off between waiting lists and tumaway probability remains the same as 

estimated earlier).

4.3.2: Cost elasticity with respect to probability of turnaway

By altering the probability of tumaway by a small amount, e.g. 1% we can estimate the 

impact this has on our social cost estimates by re-estimating equation 5.19 using the new 

values. Therefore, let us estimate the impact of a 1% reduction in PT, such that PT 

becomes 0.039798. The marginal social costs of tumaway now become £293.36, 

respectively. Therefore the implied cost elasticity is -0.95. This suggests that the impact 

on marginal social costs of altering PT is almost proportional. If, however, we consider 

the absolute size of the change, i.e. a 1% change in PT is only 0.000402, then it is 

apparent that the impact of altering the probability of tumaway is potentially large (for 

example using annual rather than monthly figures represents a 823% reduction in PT).

It is clear that the social costs depend crucially on the estimation of probability of 

tumaway and the estimates of the marginal costs of elective and emergency care, since 

the difference between these two is an important determinant of the implied values. If the
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marginal social costs of leaving an elective patient on the waiting list were zero, then the 

implied marginal social cost of turning an emergency patient away would be solely 

determined by the magnitude of this difference.

The size of the marginal social cost is determined jointly by the difference between the 

marginal costs of provision and the probability of tumaway. However, if the implied 

marginal social costs of tumaway appear to be small in some subjective sense, this may 

indicate that the hospital sector has too few beds. Increasing the number of beds will 

reduce the probability of tumaway, and increase the implied social costs of turning a 

patient away. The fact that governments take this action by ring-fencing extra money for 

emergency beds may indicate that they do indeed think that the implied social costs are 

too small.

Section 5: Conclusions

This chapter has considered the optimal use of hospital capacity from a wider social 

perspective and has calculated the implied social costs associated with turning away 

emergency patients and leaving elective patients on the waiting list. The underlying 

theoretical model employed in this chapter has maintained consistency with that 

developed in Chapter 3 and the empirical analysis undertaken has utilised the private 

marginal cost estimates derived from the cost function analysis in Chapter 4. Whilst the 

actual estimation procedure is complex the implied social costs calculated from the 

empirical analysis in this chapter seem reasonable.

235



Ch.5

Previous work in this area focused solely on the total number of beds required, rather 

than the optimal use of existing bed capacity and, as a result, failed to take account of the 

inherent trade-off between the use of hospital capacity. As indicated in section 4.2, this 

will lead to an over-estimate of the implied social value attached to turning a patient 

away, and fails to distinguish between the different types of demand for hospital care and 

the way it can be treated. As such, this analysis represents the first specification of the 

actual trade-off between the different hospital outputs. The results indicate that the 

hospital places greater emphasis on not turning emergency patients away, and the higher 

implied social costs of turning an emergency patient away relative to the social costs 

attached to placing an elective patient on a waiting list, reflect this. Furthermore, the 

empirical results presented in this chapter allowed us to estimate the actual shape of the 

indifference curve between tumaway and waiting list size. This indicated a convex 

indifference curve, such that there would be an increasing marginal disutility attached to 

turning patients away.
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Chapter 6: Conclusions

This thesis has investigated the utilisation of hospital capacity under conditions of 

uncertainty and output heterogeneity. A model of hospital capacity utilisation decisions 

has been developed that is located firmly in economic theory. The specification of the 

theoretical model allows an empirical investigation of the hospital’s behaviour to be 

developed. The analysis is rich enough to address the notion of efficient use of capacity 

using a private and social perspective.

Chapter 2 provided a review of the literature within hospital economics that deals with 

issues related to capacity utilisation. Two distinct strands were highlighted; those 

developed under conditions of certainty and those developed under uncertainty. The first 

set of theories considered the aims and objectives of the hospital as a non-profit 

institution and developed, in some cases, grand theories of hospital behaviour. The 

second set of theories considered hospital behaviour addressing issues of capacity use. 

These allowed some of the important issues regarding hospital behaviour to be identified, 

most notably uncertainty. There were, however, some problems with the empirical 

assessments associated with these models as they often failed to fully specify the 

problem, or were inadequately located in economic theory without specifying a formal 

objective function. Consequently, many of these more formal models were unable to 

provide optimal solutions to the problems they identified. The final section of Chapter 2 

reviewed empirical estimates of hospital costs. These identified the theoretical
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foundations of the empirical studies to date, and highlighted the lack of focus on issues 

such as demand uncertainty, which has only recently been addressed.

Chapter 3 constructed a formal model of hospital behaviour, building on theoretical 

foundations, to enable the problem of hospital capacity allocation decisions to be viewed 

within standard economic theory. The basic model introduced output heterogeneity, 

separating output into two components, planned and unplanned (elective and emergency) 

and considered bed allocation decisions from a private perspective. This was then 

represented in a geometric representation using a standard production possibility 

framework. Uncertainty was then introduced into this model, allowing stochastic demand 

for one of the outputs. The impact of uncertainty was considered in a formal manner by 

drawing on current theoretical knowledge regarding the influence of demand uncertainty 

on the production responses of the firm. This represents, to our knowledge, the first 

formal specification of uncertainty using such a framework. Reserve capacity was shown 

to be consistent with the efficient allocation of capacity under these circumstances. The 

objective of the non-profit hospital within the NHS was then re-considered, to broaden 

the aims beyond the narrow private perspective of surplus maximisation. We considered 

a utility maximand where we assumed that hospitals derive utility from treating patients 

and disutility if patients have to be turned away, or queued. A four-sector model was 

outlined representing the two outputs and four arguments in the utility function, showing 

how the trade-offs could be interpreted. The impact of demand uncertainty was 

considered with reference to the four-sector model, allowing the optimal allocation 

decisions of the hospital to be compared under conditions of uncertainty and uncertainty.

238



Ch.6

Once more, reserve capacity was shown to be a rational response to demand uncertainty. 

The optimality condition highlighted the empirical content necessary to identify a fully 

specified model of hospital allocation decisions.

In Chapter 4 we built on this theoretical model and considered a restricted optimality 

condition that allowed some empirical content to be provided to the model. To this end, 

we considered a cost minimand, where costs included private and social costs, i.e. costs 

of production and costs associated with the disutility of turning away or queuing patients. 

This minimand identified six elements that needed to be identified to provide a fully 

specified optimality condition. These were the variable and quasi-fixed marginal costs of 

elective and emergency cases, and the marginal social costs of turning patients away and 

placing patients on waiting lists. However, since private costs are the only ones observed 

we focused on the estimation of a private cost function.

hr Chapter 4 we estimated a cost function consistent with the theoretical model, which 

adjusted for demand uncertainty and output heterogeneity. In this chapter we outlined 

previous studies that have considered the issue of uncertainty and the impact on hospital 

costs and, building on this earlier work, we considered, in a formal way, the impact of 

uncertainty on hospital costs. The implications for the estimation of a hospital cost 

function were then outlined. The analysis of the theoretical underpinnings and the review 

of previous studies highlighted the need to adjust for demand uncertainty, and in 

particular that hospitals would attempt to minimise expected ex ante costs. Therefore, we 

considered a way of adjusting for demand uncertainty through estimating demand
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expectations. A number of different methods for estimating the demand for unplanned 

care were attempted. Various problems were highlighted with the approaches used. The 

best method, in terms of statistical and theoretical considerations, was a simple 

autoregressive process, one that had been applied by authors when estimating hospital 

demand in previous studies. The estimation of hospital demand allowed us to construct a 

variable that in theory would take account of demand uncertainty, and would fit in with 

the theory developed in the previous chapter.

Having estimated the impact of demand uncertainty, we used this to assess the private 

cost minimising position of the hospital. When estimating the cost function, we also 

considered a number of different approaches. The translog approach, which allowed 

considerable flexibility, the Cobb-Douglas model, which is essentially a restricted 

translog model, and the Box-Cox model, which allows the data to determine the 

appropriate functional form. The translog model performed badly with a large number of 

insignificant coefficients and counter-intuitive signs. Two potential problems were 

highlighted with this approach. First, it involves estimating a large number of 

independent variables and, therefore, the degrees of freedom are significantly reduced. 

Furthermore, due to the large number of independent variables that are constructs of each 

other, there was a significant problem of multicollinearity, so much so that the estimates 

of the coefficients on the independent variables may be biased. The Cobb-Douglas 

restricted model performed little better. The Box-Cox approach, however, led to a model 

that appeared to perform well, with a large number of significant coefficients with
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intuitive signs. Most notably, the demand variable included to pick up the influence of 

demand uncertainty was both significant and of the correct hypothesised sign.

Chapter 5 considered the relationship between waiting lists and tumaway rates to provide 

the further empirical estimates necessary to consider optimal allocation decision from a 

wider social perspective. The cost function, estimated in Chapter 4, allowed four 

elements of the empirical content to be identified; these were the variable and quasi-fixed 

marginal costs of elective and emergency care. Two further elements were therefore left 

to be identified; the marginal social costs of waiting lists and tumaway rates.

In Chapter 5 we were particularly interested in the impact of an exogenous shift in 

waiting list size on the probability of tumaway. This potentially allowed the partial 

relationship between waiting lists and tumaway probability to be identified. Before this 

analysis could be undertaken, we needed to calculate the probability of tumaway rates. 

To do this it w'as necessary to re-estimate demand, adjusting for time period and demand 

size. This allowed provider specific probabilities of tumaway to be calculated. The 

calculation of these probabilities maintained consistency with the theoretical model by 

assuming that all elective beds were occupied, and that the remaining beds were available 

for emergency cases, if required.

The implied marginal social costs of tumaway and waiting lists were derived by 

regressing the probability of tumaway on total elective demand, adjusting for the size of 

emergency demand, and using the estimated coefficient to represent the trade-off between
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the two. Since we observed a number of zero values for the probability of tumaway, and 

since this was the independent variable and may introduce bias if we used include all 

values, we considered a number of different estimation techniques, once more allowing 

the data to determine functional form. A Tobit analysis considered zero values as 

unobserved. A Heckman two-stage procedure considered the zero values as a choice. 

We also considered two Box-Cox analyses, where we used the entire sample, and only 

those non-zero values of probability of tumaway. The results of the analysis indicated 

that employing a restricted sample, (i.e. non-zero values of PT), and estimating using the 

Box-Cox method, may not in fact introduce any bias. Therefore, we considered the 

empirical content using the limited sample Box-Cox method, which allowed the 

functional form to be determined using the full sample data. The partial relationship 

between these variables was, therefore, derived based on the coefficient on waiting list 

size. This allowed the final empirical content to be identified.

Based on the fully specified empirical model, the implied marginal social costs of turning 

an emergency patient away were estimated to be around £300, and the implied marginal 

social costs of placing a patient on the waiting list were estimated to be just over £1. 

These represent indicative values, and are based on aggregate estimates across all 

hospitals, as such, they may mask considerable differences between hospitals. 

Nonetheless, they provide the first estimates of this kind adjusting for demand 

uncertainty and including output heterogeneity.
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The analysis in this thesis has separated admissions in a way that has not been attempted 

before. If we do not recognise output heteogeneity, then the marginal social costs of 

turning away, or queuing, the different types of admissions, can only be estimated in 

aggregate. If we assume that reserve capacity is held in order to treat all patients, then 

this is likely to over-estimate the probability of turning away patients. This will have the 

effect of reducing the implied social costs attached to turning patients away. This may 

lead to an under-estimate of the social costs attached to turning emergency cases away, 

and an over-estimate of the social costs of queuing elective cases. This error may well be 

significant; the empirical estimates in Chapter 5 suggest that the marginal social costs of 

turning away emergency patients may be a factor of more than 200 greater than the 

marginal social costs of queuing an elective patient.

The estimates presented in this thesis suggest that cost analyses that fail to take account 

of uncertainty may produce biased estimates. If marginal cost estimates are used for the 

contracting process, this has potential implications for the pricing hospital services, if 

demand uncertainty is ignored. More generally, it suggests that economic evaluations 

should also take account of uncertainty when estimating hospital costs. Furthermore, the 

potential impact of demand uncertainty on costs has implications for the construction of 

efficiency indices. That is, the more uncertain demand is, the higher costs are likely to 

be, therefore, any ranking of hospitals on the basis of costs should take account of the 

extent of demand uncertainty, and the nature of demand for individual hospital services. 

If, for example, an efficiency index is constructed without adjusting for uncertainty, it 

may, incorrectly, attribute the cost residual solely to inefficiency, rather than taking into
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account uncertainty. The implied social values calculated here may allow us to construct 

social efficiency rankings. That is, they potentially allow hospitals to be ranked on the 

basis of the implied social costs attached to tumaway and waiting lists. Thus, allowing a 

wider social perspective to be included in efficiency tables.

Throughout this thesis we have attempted to maintain theoretical consistency and build a 

model of hospital behaviour located firmly in economic theory. Furthermore, we have 

attempted to apply a more rigorous theoretical, mathematical and empirical basis to the 

model. This has facilitated two things. First, we have been able to identify an optimal 

allocation decision based on the theoretical model. Secondly, we have been able to 

provide the empirical input necessary to derive the implied social values derived from the 

first order condition. There are, however, a number of issues that we have not been able 

to address in this thesis. First, we have not been able to consider, what may be termed 

the ‘micro’ response of hospitals to the problems of capacity utilisation, most notably, the 

potential adjustment of admissions policies, discharge policies and length of stay to the 

problem of capacity constraints. However, given the nature of the monthly data some of 

these responses may be picked up by these data (i.e. adjustments in length of stay will be 

taken into account). It is clear that hospitals may respond to capacity shortages by 

revising current scheduled admissions or discharges, however, it is equally clear that 

there is a limit to the extent to which hospitals can do this, limited by the number of 

scheduled admissions and the medical requirements of current patients. This, however, 

does not affect the theoretical foundation of the model developed here, although does 

potentially represent an interesting addition to the work carried out in this thesis.
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Secondly, the availability of data restricted us to panel data analyses that can only 

provide results across the whole sample. Clearly differences between hospitals may be 

important, different hospitals may have different aims, or operate within different 

environments. Such differences might account for the apparently wide diversity of 

tumaway probabilities identified in Chapter 5. Thirdly, we have not considered the 

impact of competition and payment for hospital services, although these considerations 

may be secondary to our model since we have only assumed that elective demand is 

planned and that emergency demand is unplanned. We have not made any assumptions 

regarding the determination of demand, (our demand equations merely consider how 

hospitals predict future emergency demand); rather we have modelled the use of capacity 

and the implications for the likelihood of turning emergency patients away. Once 

elective output is determined, through contracts or otherwise the hospital must still 

determine the level of planned reserve capacity remaining to treat emergency, unplanned 

arrivals. This is still fundamental to the nature of hospital capacity utilisation decisions 

and is reinforced by the ability of hospitals to be able to sell unplanned reserve capacity 

at marginal costs; this reinforces the notion of hospitals planning reserve capacity levels. 

Finally, we have estimated a comparative static model, this, by definition, cannot deal 

with dynamic relationships, in particular we cannot deal with the relationship between 

decision periods. For example, hospitals may allow waiting lists to build in one period, 

when emergency demand is high, with the hope and expectation of being able treating 

more elective patients in subsequent periods.
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The estimates of the probability of tumaway are clearly key to the whole analysis, and 

perhaps, represent the area most in need of advancement in the literature. It is clear that 

the monthly estimates presented here may not pick up the, potentially important, weekly 

and daily fluctuations. Consequently, any estimates of tumaway based on aggregate data 

can only represent an average over the period of analysis. It may well be the case that 

tumaway rates fluctuate daily, for example, if most elective admissions occur during the 

week, then this may lead to the tumaway rates for emergencies being higher in these 

periods. Similarly, if most admissions for emergencies occur during the daytime, this 

may condense arrivals into distinct times within the aggregate period of analysis. These 

factors may explain the identification of zero tumaway probabilities in our sample. 

Furthermore, if the hospital is full, this does not, in practice, always mean that the patient 

is turned away, rather there are other options that have been evident recently, for 

example, placing patients on trolleys. Nonetheless, this does often have serious 

implications for the patients well-being and thus, may have a significant social cost 

attached.

In this thesis, we attempted to identify the inherent trade-offs that hospitals face when 

allocating limited capacity. We have attempted to formalise this trade-off based on 

fundamental economic principles in order to identify a theoretical, geometric optimal 

solution and a mathematical solution to the problem. In addition to this, we have 

provided empirical content to the analysis, and shown empirically that hospital may 

indeed trade-off tumaway and waiting lists. As such, this represents a progression in 

current knowledge in this area.
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APPENDIX 1: Appendix to Chapter 4 

A l.l:  GROUP CATEGORIES

App.l

Table Al.1.1: Site type group
Hospital type Group number Number of observations
— 1 60
C 2 24
N 3 1092
TL 4 120
TP 5 216

Table A l . l .2: Demand group
Demand Group Number Number of observations
0-140 1 156
140-170 2 216
170-200 3 192
200-230 4 180
230-260 5 108
260-290 6 252
290-320 7 108
320-350 8 36
350-380 9 72
380+ 10 192

Table Al.1.3: Bed group (1)
Bed size Group Number Number of observations
0-500 1 60
500-600 2 84
600-700 3 264
700-800 4 216
800-900 5 96
900-1000 6 228
1000-1100 7 144
1100-1200 8 133
1200-1300 9 144
1300+ 10 143

Table Al.1.4: Bed group (2)
Bed size Group number Number of observations
Less than 700 1 408
700-900 2 312
900-1100 3 372
1100+ 4 420
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A1.2: DEMAND EQUATION ESTIMATES 
Table Al.2.1 Grouping by site type RE and FE
Variable OLS Random Effects 

(One way)

Fixed effects (One 
way)

Random Effects 
(Two way)

Fixed effects (Two 
way)

C o e f f . SE C o e f f . SE C o e f f . SE C o e f f . SE C o e f f . SE

CATCHD 1 . 6043** 0.1513 1.5541** 0.1531 1.5570** 0.15370 1.5540** 0.15236 1.5581** 0.15291

CATCHSH 1235.3** 110.07 1023.1** 116.26 1016.9** 116.53 1023.6** 115.67 1017.7** 115.94

BEDS 1.7243** 0.0642 1.8557** 0.0759 1.8563** 0.07721 1.8561** 0.07554 1.8555** 0.07682

FILT1993 -173.77** 34.802 -159.55** 34.559 -159.22** 34.567 -159.52** 34.383 -159.22** 34.391

FILT1994 -44.833 29.346 -47.807 29.168 -47.386 29.182 -47.819 29.020 -47.382 29.033

CONSTANT -878.71** 112.97 -887.74** 147.01 — — -892.33** 152.56 -792.22** 113.26

GROUP
EFFECTS

1 -848.038** 124.565 -56.315 65.175

2 -988.543** 153.539 -197.057 115.589

3 -733.519** 115.298 58.296** 9.514

4 -870.175** 124.430 -78.345 43.559

5 -1005.718** 118.315 -213.67** 42.857

PERIOD
EFFECTS
APR -46.289 42.174

MAY -8.829 42.174

JUN -2.058 42.174

JUL 25.419 42.174

AUG -43.425 42.174

SEP -38.826 42.174

OCT 27.347 42.174

NOV 2.562 42.174

DEC 61.304 42.174

JAN 34.615 42.174

FEB -145.089** 42.174

MAR 133.268** 42.174

R2 0.64439 0.626787 0.65322 0.62577 0.65927

Log-L -11539.0481 -11520.0315 -11506.2330

LM 29.19[0.00] 37.10 [0.00]

Hausman 1.56 [1.00] 1.40 [0.924]

Autocorr 0.88540 0.140485 0.14091 0.143024 0.143370

Hetero 0.00 22.80 0 22.78 0.00

* significant at 10%
** significant at 5%



Table A l.2.2 G rouping by dem anc
App.l

size RE and FE
Variable OLS Random Effects 

(One way)
Fixed effects (One 
way)

Random Effects 
(Two way)

Fixed effects (Two 
way)

C o e f f . SE C o e f f . SE C o e f f . SE C o e f f . SE C o e f f . SE

CATCHD 1 . 6 0 4 3 * * 0 . 1 5 1 3 - 0 . 1 8 7 0 7 0 . 2 2 7 0 3 - 0 . 4 7 3 9 7 * 0 . 2 3 7 3 1 - 0 . 2 4 1 9 4 0 . 2 2 7 5 1 - 0 . 4 7 3 4 3 * 0 . 2 3 5 7 2
CATCHSH 1 2 3 5 . 3 * * 1 1 0 . 0 7 - 1 4 . 5 0 9 1 6 2 . 2 1 - 2 0 9 . 6 0 1 6 9 . 0 2 - 5 1 . 8 3 4 1 6 2 . 4 5 - 2 0 9 . 2 2 1 6 7 . 8 8
BEDS 1 . 7 2 4 3 * * 0 . 0 6 4 2 1 . 4 3 7 6 * * 0 . 0 6 6 0 1 . 40 1 1 * * 0 . 0 6 6 5 1 . 4 2 9 9 * * 0 . 0 6 5 6 7 1 . 4 0 0 4 * * 0 . 0 6 6 1 5
F I L T 1 9 9 3 - 1 7 3 . 7 7 * * 3 4 . 8 0 2 - 1 8 4 . 9 2 * * 3 2 . 4 4 6 - 1 8 6 . 0 9 * * 3 2 . 4 8 4 - 1 8 5 . 1 8 * * 3 2 . 2 3 5 - 1 8 6 . 0 9 * * 3 2 . 2 6 6
F I L T 1 9 9 4 - 4 4 . 8 3 3 2 9 . 3 4 6 - 4 9 . 2 1 9 2 7 . 0 2 5 - 4 9 . 0 5 4 2 7 . 0 4 9 - 4 9 . 2 1 2 2 6 . 8 4 8 - 4 9 . 0 5 2 2 6 . 8 6 7
CONSTANT - 8 7 8 . 7 1 * * 1 1 2 . 9 7 1 0 8 2 . 5 * * 2 2 2 . 9 9 - - - - 1 1 4 0 . 6 * * 2 2 8 . 8 5 1 3 2 7 . 5 * * 2 1 6 . 0 2
GROUP
EFFECTS
1 6 1 1 . 7 7 3 * * 1 7 7 . 2 0 8 - 7 1 5 . 8 2 4 * * 5 7 . 7 6 4
2 1 1 0 1 . 0 8 0 * * 1 9 9 . 6 2 5 - 2 2 6 . 5 0 9 * * 3 9 . 2 7 9
3 1 0 2 9 . 0 2 0 * * 2 0 1 . 6 8 9 - 2 9 8 . 4 4 7 * * 3 6 . 7 0 5
4 1 1 8 9 . 3 3 2 * * 2 1 3 . 9 0 3 - 1 3 8 . 2 0 8 * * 3 3 . 9 3 5
5 1 6 2 9 . 3 1 7 * * 2 0 9 . 6 8 5 3 0 1 . 9 3 5 * * 4 4 . 7 7 8
6 1 3 3 4 . 4 6 0 * * 2 3 0 . 3 6 6 7 . 0 4 1 2 9 . 0 8 1
7 1 9 2 2 . 9 6 1 * * 2 5 0 . 3 7 2 5 9 5 . 6 5 2 * * 5 4 . 7 2 1
8 1 3 9 0 . 8 9 2 * * 2 4 7 . 1 4 2 6 3 . 4 1 4 7 8 . 3 4 8
9 1 7 0 4 . 7 0 7 * * 2 5 8 . 4 8 5 3 7 7 . 4 7 0 * * 6 6 . 9 7 0
10 1 9 2 4 . 2 2 2 * * 2 6 2 . 5 2 8 5 9 6 . 8 7 2 * * 5 3 . 9 9 6
PERIOD
EFFECTS
APR - 4 8 . 5 0 3 3 8 . 9 1 4
MAY - 8 . 6 2 8 3 8 . 9 1 2
JUN - 1 . 8 5 6 3 8 . 9 1 2
JUL 2 5 . 6 2 0 3 8 . 9 1 2
AUG - 4 3 . 2 2 4 3 8 . 9 1 2
SEP - 3 8 . 6 2 4 3 8 . 9 1 2
OCT 2 7 . 5 4 9 3 8 . 9 1 2
NOV 2 . 7 6 3 3 8 . 9 1 2
DEC 6 1 . 5 0 5 3 8 . 9 1 2
JAN 3 4 . 8 1 7 3 8 . 9 1 2
FEB - 1 4 4 . 8 8 8 * * 3 8 . 9 1 2
MAR 1 3 3 . 4 6 9 * * 3 8 . 9 1 2
R
L o g - L
LM
H au sm an
A u t o c o r r
H e t e r o

0 . 6 4 4 3 9  
- 1 1 5 3 9 . 0 4 8 1

0 . 8 8 5 4 0
0 . 0 0

0 . 5 1 7 8

8 1 7 . 6 0  [ 0 . 0 0 ]

0 . 1 7 8 9 0 5  
3 9 5 . 6 3 *  *

0 . 7 0 6 1 8  
- 1 1 3 9 4 . 7 4 3 2

1 9 . 5 3  [ 0 . 0 0 1 5 ]
0 . 1 8 3 9 6 2
0 . 0 0

0 . 5 1 0 2

8 2 5 . 5 2  [ 0 . 0 0 ]

0 . 1 8 4 3 7 2
4 1 8 . 1 6 * *

0 . 7 1 2 2 5  
- 1 1 3 7 8 . 4 5 2 6

1 6 . 0 3 [ 0 . 0 0 6 8 ]
0 . 1 8 8 5 4 2
0 . 0 0

* significant at 10%, ** significant at 5%
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Table A l.2.3 G rouping by bed size (1) RE and FE
Variable OLS Random Effects 

(One way)

Fixed effects (One 
way)

Random Effects 

(Two wav)

Fixed effects (Two 
way)

C o e f f . SE C o e f f . SE C o e f f . SE C o e f f . SE C o e f f . SE

CATCHD 1 . 6 0 4 3 * * 0 . 1 5 1 3 1 . 5 0 1 0 * * 0 . 1 5 4 7 1.  4 7 2 2 * * 0 . 1 5 6 2 5 1 . 4 9 2 3 * * 0 . 1 5 4 4 6 1.  4 7 2 7 * * 0 . 1 5 5 2 6
CATCHSH 1 2 3 5 . 3 * * 1 1 0 . 0 7 1 0 4 9 . 8 * * 1 0 9 . 6 9 1 0 1 8 . 9 * * 1 1 0 . 3 7 1 0 3 8 . 1 * * 1 0 9 . 2 8 1 0 1 9 . 2 * * 1 0 9 . 6 7
BEDS 1 . 7 2 4 3 * * 0 . 0 6 4 2 1 . 5 8 7 0 * * 0 . 1 5 3 0 1 . 2 1 5 8 * * 0 . 2 1 7 9 5 1 . 4 5 8 0 * * 0 . 1 7 7 0 4 1 . 2 1 2 2 * * 0 . 2 1 6 5 9
F I L T 1 9 9 3 - 1 7 3 . 7 7 * * 3 4 . 8 0 2 - 1 8 9 . 8 6 * * 3 3 . 1 6 4 - 1 9 1 . 6 1 * * 3 3 . 2 0 4 - 1 9 0 . 6 7 * * 3 2 . 9 7 5 - 1 9 1 . 6 1 * * 3 2 . 9 9 5
F I L T 1 9 9 4 - 4 4 . 8 3 3 2 9 . 3 4 6 - 1 0 2 . 4 7 * * 2 8 . 0 7 8 - 1 1 1 . 7 1 * * 2 8 . 2 5 5 - 1 0 6 . 0 5 * * 2 7 . 9 6 5 - 1 1 1 . 7 7 * * 2 8 . 0 7 7
CONSTANT - 8 7 8 . 7 1 * * 1 1 2 . 9 7 - 5 8 8 . 4 8 * * 1 7 8 . 7 1 - 4 7 1 . 1 2 * * 2 0 9 . 2 7 - 2 0 6 . 3 8 2 1 9 . 0 7
GROUP
EFFECTS
1 - 9 1 7 . 1 4 2 * * 1 4 3 . 0 7 4 - 7 1 0 . 2 4 4 * * 1 4 2 . 0 2 5
2 - 4 7 5 . 2 4 1 * * 1 5 8 . 6 9 1 - 2 6 7 . 5 0 7 * * 9 3 . 8 1 6
3 - 2 2 1 . 0 4 3 1 7 2 . 2 7 2 - 1 3 . 0 3 0 6 5 . 4 2 1
4 - 2 7 7 . 1 1 5 1 9 5 . 4 3 5 - 6 8 . 7 9 3 4 8 . 3 8 4
5 - 2 8 4 . 9 4 1 2 0 3 . 6 4 1 - 7 6 . 2 7 8 5 2 . 0 4 1
6 - 2 5 2 . 4 0 6 2 2 5 . 6 8 2 - 4 3 . 3 7 7 2 9 . 5 9 0
7 - 3 9 5 . 2 7 6 2 4 9 . 5 0 7 - 1 8 5 . 8 8 6 * * 4 7 . 3 0 1
8 1 5 5 . 0 9 7 2 6 8 . 4 9 6 3 6 4 . 7 8 0 * * 6 2 . 7 1 9
9 2 5 7 . 9 5 2 2 9 0 . 1 6 1 4 6 8 . 0 5 5 * * 8 2 . 5 3 8
10 - 1 3 0 . 8 6 6 3 3 4 . 7 9 1 8 0 . 0 6 7 7 1 2 9 . 3 2 0
PERIOD
EFFECTS
APR - 4 9 . 4 2 0 3 9 . 8 6 0
MAY - 8 . 5 4 5 3 9 . 8 6 0
JUN - 1 . 7 7 3 3 9 . 8 6 0
JUL 2 5 . 7 0 3 3 9 . 8 6 0
AUG - 4 3 . 1 4 1 3 9 . 8 6 0
SEP - 3 8 . 5 4 1 3 9 . 8 6 0
OCT 2 7 . 6 3 2 3 9 . 8 6 0
NOV 2 . 8 4 6 3 9 . 8 6 0
DEC 6 1 . 5 8 8 3 9 . 8 6 0
JAN 3 4 . 9 0 0 3 9 . 8 6 0
FEB - 1 4 4 . 8 0 5 * * 3 9 . 8 6 0
MAR 1 3 3 . 5 5 3 * * 3 9 . 8 6 0
R2 0 . 6 4 4 3 9  0 . 6 3 6 8 0  0 . 6 9 2 1 2  0 . 6 2 8 6 7  0 . 6 9 8 2 3
L o g - L  - 1 1 5 3 9 . 0 4 8 1  - 1 1 4 3 0 . 0 8 6 4  - 1 1 4 1 4 . 4 2 5 9
LM - -  1 1 9 6 . 8 4  1 2 0 4 . 7 5  [ 0 . 0 0 ]
H ausm an
A u t o c o r r  0 . 8 8 5 4 0  
H e t e r o  0 . 0 0

0 . 0 2 6 7 7 7  
2 6 . 1 3 *

* significant at 10%, ** significant at 5%

1 0 . 8 5  [ 0 . 0 5 4 4 4 7 ]
0 . 0 2 5 2 3 8
0 . 0 0

0 . 0 2 7 5 2 3
7 3 . 5 0 * *

6 . 3 3  [ 0 . 2 7 5 2 7 ]
0 . 0 2 6 5 8 8
0 . 0 0
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Table A l.2.4 G rouping by bed size (2) RE and FE
Variable OLS Random Effects 

(One way)
Fixed effects (One 
way)

Random Effects 
(Two way)

Fixed effects (Two 
way)

C o e f f . SE C o e f f . SE C o e f f . SE C o e f f . SE C o e f f . SE

CATCHD 1 . 6 0 4 3 * * 0 . 1 5 1 3 1 . 3 4 7 9 * * 0 . 1 5 3 3 6 1 . 3 1 2 3 * * 0 . 1 5 4 1 8 1 . 3 4 7 9 * * 0 . 1 5 2 5 4 1 . 3 1 2 7 * * 0 . 1 5 3 3
CATCHSH 1 2 3 5 . 3 * * 1 1 0 . 0 7 1 1 7 6 . 8 * * 1 0 9 . 9 2 1 1 6 3 . 6 * * 1 1 0 . 1 4 1 1 7 7 . 0 * * 1 0 9 . 3 3 1 1 6 4 . 0 * * 1 0 9 . 5 4
BEDS 1 . 7 2 4 3 * * 0 . 0 6 4 2 1 . 2 3 7 9 * * 0 . 1 0 8 2 8 1 . 1 6 1 0 * * 0 . 1 1 3 7 7 1 . 2 3 5 9 * * 0 . 1 0 7 7 5 1 . 1 5 9 1 * * 0 . 1 1 3 1
F I L T 1 9 9 3 - 1 7 3 . 7 7 * * 3 4 . 8 0 2 - 1 6 4 . 0 2 * * 3 4 . 0 0 9 - 1 6 3 . 7 8 * * 3 4 . 0 1 1 - 1 6 4 . 0 0 * * 3 3 . 8 2 4 - 1 6 3 . 7 6 * * 3 3 . 8 2 7
F IL T 1 9 9 4 - 4 4 . 8 3 3 2 9 . 3 4 6 - 7 1 . 9 7 2 * * 2 8 . 9 2 1 - 7 3 . 3 4 6 * * 2 8 . 9 3 1 - 7 1 . 9 9 0 * * 2 8 . 7 6 4 - 7 3 . 3 5 5 * * 2 8 . 7 7 4
CONSTANT - 8 7 8 . 7 1 * * 1 1 2 . 9 7 - 3 4 1 . 5 9 * 1 7 1 . 8 2 - 3 4 0 . 1 4 * * 1 7 2 . 7 8 - 2 4 2 . 9 4 * * 1 5 4 . 3 6

GROUP
EFFECTS
1 - 4 4 0 . 0 8 7 * * 1 2 8 . 8 0 8 - 1 9 6 . 6 4 5 * * 4 4 . 2 6 4
2 - 3 5 4 . 1 7 3 * * 1 4 6 . 8 7 0 - 1 1 0 . 4 3 9 * * 3 0 . 9 4 4
3 - 3 4 7 . 7 1 8 * * 1 6 1 . 8 8 2 - 1 0 3 . 6 0 8 * * 2 3 . 2 8 2
4 1 2 0 . 1 6 8 1 9 2 . 1 2 6 3 6 4 . 8 3 0 * * 4 9 . 6 3 3

PERIOD
EFFECTS
APR - 4 9 . 6 7 8 4 1 . 5 7 1
MAY - 8 . 5 2 1 4 1 . 5 7 1
JUN - 1 . 7 5 0 4 1 . 5 7 1
JUL 2 5 . 7 2 7 4 1 . 5 7 1
AUG - 4 3 . 1 1 7 4 1 . 5 7 1
SEP - 3 8 . 5 1 8 4 1 . 5 7 1
OCT 2 7 . 6 5 6 4 1 . 5 7 1
NOV 2 . 8 7 0 4 1 . 5 7 1
DEC 6 1 . 6 1 2 4 1 . 5 7 1
JAN 3 4 . 9 2 3 4 1 . 5 7 1
FEB - 1 4 4 . 7 8 1 * * 4 1 . 5 7 1
MAR 1 3 3 . 5 7 6 * * 4 1 . 5 7 1
R2 0 . 6 4 4 3 9 0 . 6 0 1 9 6 0 . 6 6 2 9 6 0 . 6 0 1 6 7 0 . 6 6 9 0 5
L o g - L - 1 1 5 3 9 . 0 4 8 1 - 1 1 4 9 8 . 5 0 6 0 - 1 1 4 8 4 . 2 2 2 4
LM - - 2 3 7 . 8 2  [ 0 . 0 0 ] 2 4 5 . 7 4  [ 0 . 0 0 ]
H ausm an — 1 . 1 6  [ 1 . 0 0 ] 7 . 8 7  [ 1 . 0 0 ]
A u t o c o r r 0 . 8 8 5 4 0 0 . 1 0 2 1 5 5 0 . 1 0 1 0 5 3 0 . 1 0 4 4 8 5 0 . 1 0 3 3 9 3
H e t e r o 0 . 0 0 1 6 3 . 3 7 * * 0 . 0 0 1 6 5 . 0 9 * * 0 . 0 0
* significant at 10%
** significant at 5%
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Table A l.2 .5  Grouping by provider type RE and FE (dropping time invariant factors -  i.e. CatchD and CatchSH)

Variable OLS Random Effects 

(One way)

Fixed effects (One 
way)

Random Effects 
(Two way)

Fixed effects (Two 
way)

C o e f f . SE C o e f f . SE C o e f f . SE C o e f f . SE C o e f f . SE

BEDS 2 . 2 1 9 5 * * 0 . 0 4 5 3 0 . 8 0 6 9 4 * * 0 . 1 0 3 8 9 0 . 1 9 7 6 6 0 . 1 2 2 2 9 0 . 7 5 0 8 9 * * 0 . 1 0 0 3 9 0 . 1 8 5 4 3 0 . 1 1 6 4
F I L T 1 9 9 3 - 1 6 8 . 1 2 * * 3 6 . 1 8 5 - 1 1 0 . 2 8 * * 1 7 . 0 6 3 - 1 1 8 . 3 4 * * 1 7 . 1 1 9 - 1 1 1 . 01** 1 6 . 2 4 3 - 1 1 8 . 5 0 * * 1 6 . 2 9 2
F I L T 1 9 9 4 - 5 8 . 8 6 7 3 0 . 4 7 7 - 2 9 . 7 0 4 * * 1 3 . 8 6 6 - 3 5 . 7 6 1 * * 1 3 . 9 0 8 - 3 0 . 2 7 2 * * 1 3 . 2 0 0 - 3 5 . 8 9 7 * * 1 3 . 2 3 6
CONSTANT 3 1 0 . 4 2 * * 4 1 . 8 5 4 1 4 7 7 . 8 * * 1 0 3 . 9 8 1 5 2 4 . 1 * * 1 0 4 . 6 9 1 9 6 9 . 8 * * 9 6 . 9 8 8

GROUP
EFFECTS
1 1 9 5 1 . 2 0 2 * * 1 1 0 . 4 7 4 - 8 . 1 4 2 3 5 . 2 5 9
2 2 9 9 7 . 1 1 3 * * 1 6 5 . 3 9 3 1 0 4 3 . 4 6 8 * * 6 9 . 8 9 3
3 3 6 8 8 . 5 5 4 * * 1 4 3 . 3 5 7 1 7 3 2 . 4 1 8 * * 5 5 . 9 4 9
4 1 3 1 9 . 5 8 1 * * 9 5 . 3 6 8 - 6 4 2 . 8 6 2 * * 6 7 . 7 7 4
5 3 1 9 8 . 5 1 4 * * 1 8 1 . 7 2 4 1 2 4 5 . 8 5 2 * * 9 3 . 4 6 1
6 1 6 9 3 . 5 9 5 * * 8 7 . 8 8 4 - 2 6 8 . 1 7 9 * * 4 1 . 2 6 5
7 1 1 2 4 . 5 9 9 * * 6 4 . 2 0 1 - 8 3 9 . 8 8 2 * * 6 0 . 2 5 3
8 1 3 1 4 . 4 1 2 * * 1 0 6 . 5 6 8 - 6 4 6 . 6 2 5 * * 6 3 . 1 5 9
9 3 7 1 7 . 7 3 5 * * 1 3 1 . 1 8 1 1 7 5 9 . 5 7 0 * * 6 3 . 2 9 9
10 1 9 2 7 . 4 6 0 * * 9 8 . 0 2 7 - 3 4 . 6 4 1 6 6 . 4 0 1
11 1 4 5 9 . 7 6 9 * * 8 9 . 9 8 4 - 5 0 2 . 1 4 2 * * 4 8 . 9 6 2
12 2 9 3 9 . 6 2 7 * * 1 5 8 . 3 2 8 9 8 4 . 4 5 8 * * 7 6 . 2 6 4
13 2 0 9 4 . 0 9 6 * * 1 1 1 . 8 2 3 1 3 4 . 8 9 3 * * 3 5 . 4 0 6
14 7 7 0 . 3 4 5 * * 7 5 . 3 0 6 - 1 1 9 5 . 0 1 * * 8 4 . 4 0 0
15 1 2 8 6 . 3 1 4 * * 8 4 . 9 5 0 - 6 7 6 . 1 7 8 * * 5 1 . 9 7 6
16 8 3 2 . 9 2 1 * * 1 2 6 . 3 8 2 - 1 1 2 4 . 7 5 * * 4 0 . 3 1 1
17 1 7 2 5 . 1 7 8 * * 9 4 . 1 5 1 - 2 3 7 . 4 2 4 * * 6 8 . 4 6 1
18 1 4 2 5 . 8 3 0 * * 9 5 . 3 6 8 - 5 3 6 . 6 1 3 * * 6 7 . 7 7 4
19 2 2 7 6 . 0 2 1 * * 9 1 . 7 2 6 3 1 4 . 6 6 6 * * 3 9 . 2 1 0
20 1 6 8 6 . 5 1 9 * * 1 1 9 . 0 2 2 - 2 7 1 . 9 2 4 * * 3 7 . 1 2 6
21 1 7 1 2 . 0 0 6 * * 1 0 5 . 0 6 8 - 2 4 9 . 2 1 5 * * 6 3 . 6 0 0
22 9 5 8 . 2 6 4 * * 1 0 6 . 4 5 6 - 1 0 0 1 . 8 1 * * 4 3 . 4 4 5
23 1 3 8 5 . 2 5 4 * * 8 3 . 1 3 8 - 5 7 7 . 5 3 6 * * 5 4 . 0 4 3
24 3 1 8 4 . 4 1 5 * * 1 3 2 . 5 5 6 1 2 2 7 . 1 5 0 * * 4 9 . 3 7 6
25 1 2 9 8 . 3 7 7 * * 7 6 . 4 6 9 - 6 6 5 . 1 2 4 * * 5 8 . 2 5 0
26 1 7 8 9 . 4 0 5 * * 1 0 9 . 9 0 3 - 1 7 1 . 2 2 8 * * 6 2 . 3 7 0
27 3 1 4 5 . 2 0 4 * * 1 5 2 . 4 5 7 1 1 8 9 . 9 8 8 * * 6 2 . 3 6 4
28 2 2 0 0 . 2 1 2 * * 1 3 2 . 4 8 2 2 4 2 . 1 9 4 * * 6 3 . 6 6 2
29 3 4 2 7 . 1 6 1  ** 1 5 3 . 3 3 8 1 4 7 2 . 0 7 9 * * 6 3 . 0 5 0
30 2 2 4 3 . 9 9 4  * * 1 1 4 . 8 3 5 2 8 3 . 9 4 6 * * 6 1 . 6 8 6



Àppi
31 1 4 0 4 . 3 8 0 * * 7 5 . 7 9 6 - 5 5 8 . 7 4 4 * * 4 9 . 7 7 1
32 2 7 3 1 . 8 5 9 * * 1 6 7 . 0 0 1 7 7 8 . 3 7 9 * * 7 1 . 3 3 5
33 3 7 1 7 . 7 6 1 * * 2 1 0 . 7 7 8 1 7 6 8 . 1 5 6 * * 1 1 8 . 4 3 5
34 1 7 3 7 . 3 7 4 * * 1 0 8 . 0 9 0 - 2 2 2 . 2 2 3 * * 3 5 . 1 4 2
35 2 0 5 1 . 3 0 2 * * 1 3 5 . 5 3 2 9 3 . 6 6 3 6 4 . 6 3 2
36 1 4 7 3 . 3 8 2 * * 8 3 . 4 8 6 - 4 8 9 . 2 8 1 * * 5 2 . 9 5 5
37 3 1 4 3 . 0 8 8 * * 1 4 3 . 9 2 7 1 1 8 7 . 0 2 1 * * 5 6 . 2 3 1
38 1 6 2 7 . 2 5 5 * * 7 8 . 0 3 3 - 3 3 6 . 0 5 6 * * 5 6 . 9 8 5
39 1 6 3 9 . 6 4 8 * * 7 6 . 5 1 3 - 3 2 3 . 3 9 3 * * 4 9 . 1 9 2
40 3 1 4 8 . 0 8 1 * * 1 3 5 . 7 4 5 1 1 9 1 . 3 8 1 * * 4 5 . 9 3 5
41 1 7 5 9 . 1 1 1 * * 8 9 . 7 0 8 - 2 0 2 . 4 6 3 * * 4 0 . 2 4 5
42 2 1 3 5 . 2 1 8 * * 1 0 6 . 7 9 0 1 7 5 . 1 8 3 * * 4 3 . 4 0 8
43 1 9 8 7 . 6 0 1 * * 1 0 8 . 2 0 5 2 8 . 0 1 4 9 3 5 . 1 4 4
44 2 0 9 8 . 2 0 1 * * 1 2 6 . 6 1 6 1 4 0 . 5 5 1 * * 4 0 . 4 3 3
45 2 0 9 6 . 4 5 5 * * 1 1 9 . 4 3 1 1 3 6 . 9 4 5 * * 6 1 . 5 5 5
46 - 2 . 5 9 1 6 5 . 6 4 6 - 1 9 6 9 . 9 3 * * 9 9 . 1 5 8
47 2 5 0 7 . 9 4 5 * * 1 2 8 . 4 8 1 5 4 9 . 4 7 5 * * 6 2 . 6 4 9
48 4 7 3 . 8 9 3 * * 4 7 . 3 0 7 - 1 4 9 4 . 0 6 * * 9 4 . 4 4 3
49 2 6 2 9 . 6 0 0 * * 1 2 1 . 5 4 1 6 7 0 . 3 3 5 * * 6 1 . 6 5 4
50 2 7 1 0 . 6 9 2 * * 1 5 0 . 9 9 4 7 5 5 . 3 6 5 * * 6 1 . 2 7 7
51 1 7 3 5 . 0 9 6 * * 9 0 . 7 3 4 - 2 2 6 . 7 2 9 * * 4 8 . 5 6 2
52 9 8 0 . 2 9 9 * * 7 5 . 9 6 8 - 9 8 3 . 2 6 3 * * 5 8 . 6 6 6
53 2 1 4 5 . 5 0 0 * * 1 3 0 . 6 4 0 1 8 7 . 2 7 5 * * 6 3 . 1 5 7
54 1 9 8 8 . 9 3 5 * * 1 1 7 . 5 4 7 3 0 . 0 6 8 4 3 . 9 0 0
55 1 3 8 4 . 8 4 9 * * 9 0 . 9 7 8 - 5 7 6 . 5 8 7 * * 3 9 . 5 8 2
56 8 3 3 . 7 2 6 * * 6 9 . 9 6 2 - 1 1 3 0 . 0 7 * * 5 4 . 7 8 8
57 1 7 6 8 . 8 0 8 * * 1 4 2 . 9 4 8 - 1 8 7 . 1 4 6 * * 5 1 . 1 0 8
58 1 5 8 9 . 2 6 3 * * 1 0 6 . 5 6 8 - 3 7 1 . 7 7 5 * * 6 3 . 1 5 9
59 2 5 5 9 . 5 0 6 * * 1 8 1 . 0 3 5 6 0 7 . 4 6 0 * * 8 4 . 2 3 8
60 1 6 8 9 . 7 9 4 * * 8 6 . 2 6 5 - 2 7 2 . 5 4 5 * * 5 1 . 1 3 5
61 2 2 4 3 . 2 8 7 * * 1 6 1 . 7 2 1 2 8 8 . 4 8 5 * * 7 8 . 5 0 7
62 1 4 4 9 . 4 3 6 * * 8 3 . 1 6 9 - 5 1 4 . 6 8 3 * * 7 6 . 4 1 3
63 2 5 9 2 . 3 3 9 * * 1 3 0 . 7 6 3 6 3 5 . 1 2 1 * * 4 2 . 7 5 7
64 1 8 5 7 . 3 4 6 * * 8 3 . 2 2 5 - 1 0 5 . 3 4 8 * 5 3 . 1 3 4

PERIOD
EFFECTS
APR - 5 4 . 4 1 7 * * 1 8 . 1 6 3
MAY - 8 . 0 9 0 1 8 . 1 6 3
JUN - 1 . 3 1 9 1 8 . 1 6 3
JUL 2 6 . 1 5 8 1 8 . 1 6 3
AUG - 4 2 . 6 8 6 * * 1 8 . 1 6 3
SEP - 3 8 . 0 8 7 * * 1 8 . 1 6 3
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OCT 2 8 . 0 8 7 1 8 . 1 6 3
NOV 3 . 3 0 1 1 8 . 1 6 3
DEC 6 2 . 0 4 3 * * 1 8 . 1 6 3
JAN 3 5 . 3 5 4 1 8 . 1 6 3
FEB - 1 4 4 . 3 5 0 * * 1 8 . 1 6 3
MAR 1 3 4 . 0 0 7 * * 1 8 . 1 6 3
R2 0 . 6 1 4 4 0  0 . 3 6 4 7 5  0 . 9 3 9 2 3  0 . 3 4 4 6 5  0 . 9 4 5 3 8
L o g - L  - 1 1 6 0 0 . 2 6 5 0  - 1 0 2 0 3 . 4 2 0 2  - 1 0 1 2 2 . 2 4 9 1
LM 1 3 6 0 2 . 3 5  [ 0 . 0 0 ]  1 3 6 0 8 . 0 1  [ 0 . 0 0 ]
Hausm an  8 9 . 8 6  [ 0 . 0 0 ]
A u t o c o r r  0 . 8 9 4 1 0  0 . 5 5 7 1 0 3  0 . 5 4 8 8 6 0  0 . 6 6 5 0 1 3
H e t e r o  0 . 0 0  5 6 3 . 7 3 * ** 0 . 0 0  6 1 6 . 8 3 * *

9 2 . 5 5  [ 0 . 0 0 ]
0 . 6 6 0 2 3 5
0 . 0 0

* significant at 10%
** significant at 5%
(where groups effects 1 -64 correspond directly to providers Provl 0-99 as ordered in Table A2.2)
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Table A l.2.6 Lagged dependent variable

Variable Lagged dependent 
variable

C o e f f . SE

F IL T 1 9 9 3 - 3 2 . 2 7 9 * * 1 2 . 0 0 0
FI L T 1 9 9 4 - 4 . 0 4 9 9 . 3 4 8
LAGEM 0 . 7 0 3 * * 0 . 0 1 8
CONSTANT 3 2 0 . 9 7 5 * * 3 2 . 5 4 1

GROUP
EFFECTS
1 3 5 4 . 5 4 0 * * 4 0 . 3 3 9 8
2 6 9 6 . 6 9 2 * * 5 5 . 3 0 5 7
3 9 6 2 . 2 5 1 * * 6 7 . 0 4 8 2
4 1 7 0 . 3 5 4 * * 4 9 . 7 7 5 6
5 8 3 4 . 0 8 6 * * 6 8 . 4 0 4 0
6 2 7 4 . 7 4 5 * * 3 7 . 5 0 1 0
7 7 6 . 8 1 0 6 * * 3 3 . 9 7 6 6
8 1 6 3 . 4 2 2 * * 4 9 . 8 6 2 7
9 9 2 5 . 2 3 5 * * 7 4 . 1 1 2 3
10 3 5 7 . 6 4 6 * * 5 3 . 1 8 4 9
11 2 0 4 . 5 6 4 * * 3 9 . 7 7 0 3
12 6 8 8 . 0 0 5 * * 6 4 . 6 8 5 7
13 4 0 2 . 6 6 0 *  * 4 1 . 9 2 5 5
14 - 8 . 4 2 7 3 4 8 . 9 0 7 6
15 1 5 1 . 0 2 8 * * 3 8 . 8 4 0 4
16 3 8 . 2 0 8 3 3 3 . 5 8 2 5
17 287 . O i l * * 5 1 . 7 5 7 8
18 2 0 5 . 2 1 4 * * 5 0 . 1 6 3 1
19 4 6 3 . 0 5 7 * * 4 3 . 4 9 6 6
20 2 8 9 . 3 4 0 * * 3 7 . 8 6 7 6
21 2 9 2 . 3 7 2 * * 5 1 . 8 0 4 1
22 6 0 . 3 8 3 3 3 7 . 9 7 8 5
23 1 7 0 . 6 8 8 * * 3 9 . 2 6 8 2
24 7 5 2 . 5 8 7 * * 5 9 . 7 2 3 3
25 1 4 6 . 3 2 8 * * 3 8 . 8 2 6 9
26 3 0 7 . 5 8 2 * * 5 2 . 4 5 5 7
27 7 5 1 . 1 6 6 * * 5 9 . 5 7 0 8
28 4 5 4 . 1 1 0 * * 5 6 . 0 0 4 2
29 8 2 0 . 5 4 3 * * 6 3 . 6 9 7 6
30 4 5 6 . 1 6 7 * * 5 6 . 1 9 0 8
31 1 9 3 . 6 0 8 * * 3 5 . 2 4 0 9
32 6 3 9 . 8 3 7 * * 5 1 . 1 4 2 3
33 8 4 7 . 5 2 9 * * 7 6 . 8 7 1 5
34 2 9 5 . 5 8 7 * * 3 8 . 1 9 3 6
35 3 9 4 . 5 0 6 * * 5 4 . 7 9 5 8
36 2 0 9 . 2 5 6 * * 3 9 . 8 0 6 4
37 7 6 9 . 0 1 1 * * 5 9 . 3 6 9 1
38 2 5 9 . 9 1 1 * * 4 0 . 6 1 3 8
39 2 4 4 . 2 7 4 * * 3 6 . 9 3 0 1
40 7 3 8 . 3 5 2 * * 5 6 . 7 0 7 5
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41 2 8 9 . 2 6 0 * ** 3 8 . 1 1 3 8
42 4 1 3 . 0 1 1 * * 4 5 . 7 2 0 3
43 3 7 6 . 3 9 2 * * 4 0 . 6 5 0 9
44 3 9 4 . 5 2 9 * * 4 2 . 3 2 5 1
45 4 0 4 . 5 0 5 * * 5 4 . 8 7 0 9
46 - 2 6 3 . 7 0 2 * * 5 1 . 6 9 1 6 6
47 5 3 4 . 9 6 9 3 * * 5 9 . 0 9 2 3 6
48 - 1 2 3 . 1 7 5 * * 3 8 . 6 7 8 1
49 5 7 3 . 7 0 5 * * 6 0 . 2 0 8 6
50 6 0 2 . 5 4 9 * * 5 3 . 6 2 9 7
51 2 8 4 . 3 6 1 * * 4 1 . 6 9 4 3
52 4 9 . 8 9 9 1 3 7 . 9 2 2 0
53 4 0 9 . 6 4 5 * * 5 5 . 6 2 7 0
54 3 8 3 . 9 9 8 * * 4 4 . 3 5 5 4
55 2 0 6 . 4 7 6 * * 3 5 . 2 3 4 3
56 — —
57 3 2 1 . 2 2 7 * * 3 9 . 0 5 0 8
58 2 5 7 . 5 0 4 * * 5 1 . 1 5 1 1
59 5 7 8 . 5 8 1 * * 4 9 . 2 4 1 5
60 2 6 9 . 3 7 1 * * 4 1 . 2 6 5 2
61 4 7 7 . 1 1 7 * * 5 6 . 9 3 5 3
62 1 9 0 . 8 0 7 * * 5 0 . 1 8 9 6
63 5 6 1 . 2 3 6 * * 4 8 . 5 6 6 4
64 2 9 1 . 2 3 7 3 * * 4 2 . 7 8 8 9

PERIOD
EFFECTS
APR - 1 6 7 . 8 4 7 * * 2 1 . 9 9 5
MAY - 2 8 . 8 5 2 1 7 . 7 1 1
JUN - 5 5 . 3 5 1 * * 1 7 . 6 7 8
JUL - 3 2 . 6 3 5 1 7 . 6 7 7
AUG - 1 2 0 . 8 0 2 * * 1 7 . 6 8 2
SEP - 6 7 . 7 9 0 * * 1 7 . 6 9 8
OCT - 4 . 8 5 0 1 7 . 6 9 4
NOV - 7 6 . 1 7 0 * * 1 7 . 6 8 3
DEC — —
JAN - 6 7 . 9 9 6 * * 1 7 . 7 1 1
FEB - 2 2 8 . 9 3 3 7 * * 1 7 . 6 8 7
MAR 1 7 5 . 7 9 7 * * 1 7 . 8 9 6
R: 0 . 9 7 3 4 8
F 6 5 3 . 2 5 4 * *
D u r b i n ' s  3 4 . 4 2 * *
h - t e s t
H e t e r o  1 9 9 . 0 0 * *
* significant at 10%
** significant at 5%

SPSS d o e s  n o t  a l l o w  c o n s t a n t  t e r m  t o  a d j u s t  f o r  dummy v a r i a b l e s  t h a t  a r e  
c o l l i n e a r  w i t h  c o n s t a n t  t e r m  t h e r e f o r e  tw o dummy v a r i a b l e s  a r e  d r o p p e d  
f r o m  t h i s  e q u a t i o n  ( i t  was  n e c e s s a r y  t o  u s e  SPSS a s  t h e  l a g g e d  d e p e n d e n t  
v a r i a b l e  m o d e l  i n v o l v e d  d r o p p i n g  t h e  f i r s t  o b s e r v a t i o n  f o r  e a c h  
p r o v i d e r ) .
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Table A l.2.7 AR(1)

V a r i a b l e AR(1)
C o e f f . SE

F IL T 1 9 9 3 - 1 0 7 . 3 3 * * 3 4 . 5 4 0
FI L T 1 9 9 4 - 2 8 . 6 1 3 2 1 . 5 6 7
RHO 0 . 6 6 0 6 9 1

GROUP EFFECTS
1 2 1 4 5 . 6 4 4 * * 7 3 . 1 1 8 3 3
2 3 2 9 6 . 9 5 6 * * 7 3 . 1 1 8 3 3
3 4 1 4 6 . 5 6 8 * * 8 8 . 5 9 2 6 7
4 1 5 1 4 . 7 2 9 * * 1 2 5 . 5 6 7 3
5 3 7 2 5 . 5 8 6 * * 1 2 5 . 5 6 7 3
6 1 8 7 3 . 0 9 5 * * 7 3 . 1 1 8 3 3
7 1 2 1 4 . 5 4 3 * * 7 3 . 1 1 8 3 3
8 1 4 9 7 . 2 7 8 * * 1 2 5 . 5 6 7 3
9 4 0 4 6 . 2 8 5 * * 1 2 5 . 5 6 7 3
10 2 1 4 3 . 2 2 6 * * 1 2 5 . 5 6 7 3
11 1 6 4 1 . 5 1 5 * * 8 7 . 8 5 2 6 6
12 3 2 5 8 . 7 0 3 * * 1 2 5 . 5 6 7 3
13 2 3 0 5 . 6 4 0 * * 7 3 . 1 1 8 3 3
14 9 1 3 . 1 3 4 6 * * 1 2 5 . 5 6 7 3
15 1 4 6 0 . 8 4 8 * * 8 7 . 8 5 2 6 6
16 1 0 7 6 . 0 0 3 * * 7 3 . 1 1 8 3 3
17 1 9 0 8 . 9 3 5 * * 1 2 5 . 5 6 7 3
18 1 6 2 9 . 8 4 6 * * 1 2 5 . 5 6 7 3
19 2 5 0 0 . 4 7 4 * * 7 3 . 1 1 8 3 3
20 1 9 2 1 . 4 3 9 * * 7 3 . 1 1 8 3 3
21 1 9 2 5 . 6 6 4 * * 1 2 5 . 5 6 7 3
22 1 1 5 8 . 2 1 4 * * 8 7 . 8 5 2 6 6
23 1 5 2 5 . 6 7 5 * * 9 0 . 9 2 9 3 4
24 3 4 8 1 . 4 4 7 * * 8 7 . 8 5 2 6 6
25 1 4 4 6 . 6 0 1 * * 8 7 . 8 5 2 6 6
26 1 9 8 2 . 9 2 3 * * 1 2 5 . 5 6 7 3
27 3 4 7 0 . 8 0 6 * * 9 0 . 9 2 9 3 4
28 2 4 6 9 . 7 5 2 * * 1 2 5 . 5 6 7 3
29 3 7 2 2 . 2 7 1 * * 8 7 . 8 5 2 6 6
30 2 4 7 8 . 3 3 2 * * 1 2 5 . 5 6 7 3
31 1 5 9 4 . 4 7 0 * * 7 3 . 1 1 8 3 3
32 3 0 9 3 . 8 2 1 * * 7 3 . 1 1 8 3 3
33 3 8 4 1 . 2 7 9 * * 1 2 5 . 5 6 7 3
34 1944 . 4 36 ** 7 3 . 1 1 8 3 3
35 2 2 7 7 . 0 5 9 * * 1 2 5 . 5 6 7 3
36 1 6 5 6 . 1 1 2 * * 8 7 . 8 5 2 6 6
37 3 5 2 6 . 8 1 1 * * 8 7 . 8 5 2 6 6
38 1 8 2 1 . 2 0 3 * * 8 7 . 8 5 2 6 6
39 1 7 7 4 . 5 5 0 * * 7 3 . 1 1 8 3 3
40 3 4 3 1 . 3 4 0 * * 7 3 . 1 1 8 3 3
41 1 9 2 4 . 6 8 0 * * 7 3 . 1 1 8 3 3
42 2 3 4 4 . 5 6 4 * * 8 7 . 8 5 2 6 6
43 2 2 1 3 . 7 2 6 * * 7 3 . 1 1 8 3 3
44 2 2 8 6 . 0 5 6 * * 7 3 . 1 1 8 3 3
45 2 3 0 7 . 6 2 7 * * 1 2 5 . 5 6 7 3
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46 6 1 . 3 4 2 9 5 1 2 5 . 5 6 7 3
47 2 7 4 6 . 9 6 2 * * 1 2 5 . 5 6 7 3
48 5 4 0 . 1 5 8 6 * * 8 7 . 8 5 2 6 6
49 2 8 7 4 . 0 3 5 * * 1 2 5 . 5 6 7 3
50 2 9 8 4 . 9 1 1 * * 8 7 . 8 5 2 6 6
51 1 9 1 1 . 4 7 2 * * 8 7 . 8 5 2 6 6
52 1 1 2 2 . 8 2 5 * * 8 7 . 8 5 2 6 6
53 2 3 3 3 . 5 2 7 * * 1 2 5 . 5 6 7 3
54 2 2 4 2 . 3 8 0 * * 7 3 . 1 1 8 3 3
55 1 6 3 2 . 2 5 2 * * 7 3 . 1 1 8 3 3
56 9 5 2 . 1 6 5 * * 7 3 . 1 1 8 3 3
57 2 0 3 1 . 4 7 1 * * 7 3 . 1 1 8 3 3
58 1 8 0 9 . 0 9 3 * * 1 2 5 . 5 6 7 3
59 2 8 9 6 . 3 4 7 * * 7 3 . 1 1 8 3 3
60 1 8 6 0 . 3 7 0 * * 8 7 . 8 5 2 6 6
61 2 5 4 9 . 8 8 2 * * 1 2 5 . 5 6 7 3
62 1 5 8 8 . 1 6 2 * * 1 2 5 . 5 6 7
63 2 8 3 9 . 0 7 9 * * 7 3 . 1 1 8
64 1 9 4 8 . 0 4 9 * * 8 7 . 8 5 2

PERIOD EFFECTS
APR - 1 0 8 . 9 1 * * 2 7 . 9 9 2
MAY - 6 4 . 6 0 4 * * 2 4 . 6 6 7
JUN - 5 9 . 8 1 9 * * 2 3 . 0 4 2
JUL - 3 3 . 6 5 3 2 2 . 0 6 3
AUG - 1 0 3 . 3 6 * * 2 1 . 1 2 3
SEP - 9 9 . 3 3 8 * * 1 9 . 8 0 8
OCT - 3 3 . 5 4 1 1 7 . 6 5 5
NOV - 5 8 . 5 7 6 * * 1 3 . 7 2 4
DEC - - —

JAN - 2 6 . 7 9 8 * * 1 3 . 7 2 1
FEB - 2 0 6 . 5 7 * * 1 7 . 6 3 6
MAR 7 1 . 7 3 6 * * 1 9 . 7 3 8
R2 0 . 8 2 2 7 6
L o g - L i k e l i h o o d  - 9 1 7 6 . 5 5 7 2  
F 8 3 . 7 4 * *
A u t o c o r r .  - 0 . 0 8 0 8 0 2
W h i t e  X2 8 6 . 1 8
(78 d o f ) _________________________
* significant at 10%
** significant at 5%
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A l.3: ESTIMATED RESIDUALS

Table Al.3.1: Estimated residuals
SITEID YEAR EMADM RES

(eq 4.18)
RES
(eq 4.17)

RES
(eq 4.19)

Provi 0 1993 26821 1257 3323 3084
Provi 0 1994 24048 1291 1604 1485
Provi 0 1995 23541 761 2403 1484
Provi 00 1993 37867 712 1960 741
Provi 00 1994 39569 1175 2661 1592
Provi 00 1995 37943 716 2910 1073
Provi 03 1995 50914 1675 12400 2222
Provi 04 1995 17258 553 7779 691
Provi 06 1995 41703 1314 3520 2281
Provi 07 1994 21808 728 1882 900
Provi 07 1995 21174 492 769 642
Provi 11 1994 15841 855 2801 2341
Provi 12 1995 17469 315 6890 402
Provi 14 1995 46866 1161 21107 1428
Provi 15 1995 24619 689 1741 881
Provi 17 1994 18202 561 1074 625
Provi 17 1995 19430 531 1841 583
Provi 20 1995 38110 1020 2729 900
Provi 21 1995 26394 940 899 1039
Provi 21 1994 27147 665 1703 731
Provi 22 1995 10103 661 876 730
Provi 24 1995 16981 603 3958 455
Provi 30 1993 11429 316 13090 712
Provi 30 1994 11800 745 13678 649
Provi 31 1995 22094 548 1057 411
Provi 33 1995 18533 620 1812 741
Provi 5 1995 31637 2500 7695 3004
Provi 6 1995 22292 871 3279 722
Provi 6 1994 22015 916 1694 899
Provi 7 1995 22204 748 1107 654
Prov20 1994 13171 691 6853 456
Prov20 1995 13139 583 10674 552
Prov22 1994 17034 729 1719 626
Prov22 1993 17017 948 1225 1153
Prov24 1994 37486 1137 7163 3224
Prov24 1995 43340 1768 11150 22286
Prov26 1994 16598 663 1850 663
Prov26 1995 16544 706 3274 503
Prov27 1995 23247 548 562 549
Prov3 1994 40955 1408 3584 1150
Prov30 1995 28684 791 2096 678
Prov31 1995 43669 1104 3504 1035
Prov31 1994 43830 1423 9014 1152
Prov32 1995 28816 633 8481 606
Prov37 1995 18937 593 974 637
Prov38 1995 37934 1789 3063 1702
Prov38 1994 35249 933 1500 1169
Prov39 1995 48527 2864 6067 4365
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Prov4 1995 23080 622 779 724
Prov45 1995 18527 1111 2474 1690
Prov45 1994 19140 604 1909 1428
Prov48 1995 41354 994 2353 1159
Prov49 1995 21979 1433 2406 1118
Prov49 1994 19130 1097 1905 1218
Prov5 1994 20066 487 1632 327
Prov5 1995 19796 760 726 956
Prov50 1995 41651 904 5022 1428
Prov51 1993 22692 1058 2482 1728
Prov51 1994 22252 863 1214 545
Prov51 1995 21253 730 1295 1134
Prov54 1994 24769 778 1149 925
Prov54 1995 27165 629 1240 1350
Prov55 1994 24243 1934 10139 3645
Prov55 1995 23298 1048 12317 3411
Prov56 1995 27150 2144 2657 1953
Prov59 1995 443 662 3418 691
Prov6 1995 32289 820 6659 634
Prov60 1995 5862 580 1001 434
Prov60 1994 5766 561 1808 568
Prov62 1995 33595 1533 5466 1262
Prov64 1994 35546 1165 1306 1390
Prov66 1995 21919 319 4642 388
Prov67 1995 12593 559 441 547
Prov67 1994 12891 601 1610 615
Prov69 1995 27987 615 883 861
Prov75 1994 23878 791 1165 1964
Prov75 1995 27635 873 1650 1450
Prov78 1994 18850 3291 7411 7715
Prov78 1995 24071 1420 1240 5207
Prov82 1995 8854 958 6203 1848
Prov82 1993 11063 488 2424 1648
Prov82 1994 11673 864 2773 1314
Prov85 1995 23116 517 9345 922
Prov85 1994 23811 723 10353 790
Prov85 1993 22890 673 10666 1101
Prov86 1995 20767 499 2529 452
Prov88 1993 30026 3862 6771 4866
Prov88 1995 36030 1234 2984 2093
Prov88 1994 34500 2549 3902 2718
Prov89 1995 21934 803 960 733
Prov90 1995 29825 778 4252 584
Prov92 1995 18491 847 4662 650
Prov94 1993 33411 932 6720 1353
Prov94 1994 32518 806 2918 809
Prov94 1995 32800 776 5041 779
Prov99 1995 20342 1432 796 2311
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A1.4: COST EQUATION ESTIMATES 
Table Al.4.1 Grouping by bed size (1)
Variable OLS Random Effects 

(One way)

Fixed effects (One way)

C o e f f . SE C o e f f . SE C o e f f . SE

EMADM 4 4 . 0 3 7 3 6 1 . 9 0 1 1 3 . 7 2 3 5 3 . 6 5 2 2 7 . 4 1 3 5 9 . 9 9
CASEMIX 0 . 4 6 0 1 3 E + 0 8 * * 0 . 2 1 7 5 2 E + 0 8 0 . 4 9 9 6 8 E + 0 8 * * 0 . 2 1 9 3 3 E + 0 8 0 . 6 0 5 8 3 E + 0 8 * * 0 . 231 12 E+0 8
BEDSEM 3 0 4 4 5 * * 1 3 1 8 6 3 6 6 2 7 * * 1 3 4 5 6 4 6 8 6 5 * * 14764
DVTEACH 0 . 4 7 4 2 1 E + 0 8 * * 0 . 7 5997 E  + 07 0 . 5 1 2 9 9 E + 0 8 * * 0 . 7 7 1 07E+07 0 . 5 2 8 6 8 E + 0 8 * * 0 . 78 3 3 0 E + 0 7
RES 1 4 7 7 . 0 6 1 9 . 1 4 1 4 4 0 . 5 * * 6 0 4 . 3 2 1 5 2 6 . 8 * * 6 0 9 . 8 6
INVOCC 0 . 2 6 3 5 4 E + 0 6 0 . 3 2 3 4 9 E + 0 7 0 . 8 0 7 8 6 E + 0 6 0 . 3 1 4 9 9 E + 0 7 0 . 1 5 557 E +0 7 0 . 31 788 E+0 7
AEATT 0 . 2 0 2 3 6 E + 0 6 * * 9 2654 0 . 1 9 8 8 1 E + 0 6 * * 9 1558 0 . 2 1 8 0 7 E + 0 6 * * 93 262
DAYATT 3 4 4 . 1 8 * * 1 3 5 . 4 7 3 8 0 . 1 6 * * 1 3 5 . 3 5 4 5 0 . 5 9 * * 1 4 2 . 4 0
ELADM 6 4 8 . 9 9 * * 2 3 9 . 7 4 7 2 7 . 7 9 * * 2 4 0 . 8 7 8 8 0 . 5 0 * * 2 5 8 . 5 3
OPATT 9 4 2 5 7 * * 2 8 9 0 7 8 3 8 1 5 * * 2 8 5 9 8 7 5 7 9 1 * * 2 8 9 5 6
WAGE INDEX - 0 . 7 9 5 7 3 E + 0 6 0 . 7 8  47 6E+06 - 0 . 97 488E  + 06 0 . 7 6 9 5 0 E + 0 6 - 0 . 1 2 0 9 7 E + 0 7  * * 0 . 7 8 1 6 5 E + 0 6
CONSTANT - 0 . 2 0 86 8E +0 8 0 . 2 0 9 5 7 E + 0 8 - 0 . 2 7 4 4 4 E + 0 8 0 . 2 2 0 6 0 E + 0 8

GROUP
EFFECTS
1 - 3 5 1 4 9 7 0 4 2 2 7 6 0 8 8 4
2 - 3 9 4 1 1 3 4 1 2 3 7 1 9 1 1 5
3 - 5 3 1 6 9 5 3 5 * * 2 5 5 2 6 8 0 0
4 - 5 4 0 4 8 0 3 6 2 8 7 9 4 3 0 6

R2 0 . 8 7 1 8 9  0 . 8 6 7 1 1 0  0 . 8 8 4 7 8
L o g -  - 1 5 0 9 . 7 2 0 7  - 1 5 0 5 . 2 1 5 4
L i k e l i h o o d
LM 0 . 0 0  [ 0 . 9 9 2 8 5 3 ]
H a u s m a n  —
A u t o c o r r .  0 . 1 1 3 1 9  0 . 0 0 4 6 1 4  0 . 0 0 0 4 9 7
H e t e r o ________ 0 . 0 0 _________________________________ 4 . 1 0 * ________________________________ 0 . 0 0 ______
* significant at 10%
** significant at 5%
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Table Al.4.2 Grouping by bed size (2)
App.l

Variable OLS Random Effects 
(One wav)

Fixed effects (One way)

C o e f f . SE C o e f f . SE C o e f f . SE

EMADM 4 4 . 0 3 7 3 6 1 . 9 0 4 5 . 3 0 8 3 7 7 . 3 2 4 2 . 2 0 4 3 8 4 . 7 3
CASEMIX 0 . 4 6 0 1 3 E + 0 8 * * 0 . 2 1 7 5 2 E + 0 8 0 . 5 2 0 2 6 E + 0 8 * * 0 . 2 2 7  65E+08 0 . 5 3 4 8 9 E + 0 8 * * 0 . 25 3 2 8 E + 0 8
BEDSEM 3 0 4 4 5 1 3 1 8 6 3 0 7 5 9 * * 1 6131 3 16 21 2 1 6 3 2
DVTEACH 0 . 4 7 4 2 1 E  + 08** 0 . 7 5997 E+0 7 0 . 5 0 3 7 1 E + 0 8 * * 0 . 7 9 8 7 4 E + 0 7 0 . 5 0 4 5 2 E + 0 8 * * 0 . 8 09 13E +0 7
RES 1 4 7 7 . 0 * * 6 1 9 . 1 4 1 7 9 6 . 8 * * 6 3 5 . 9 5 1 8 3 7 . 7 * * 6 4 2 . 1 2
INVOCC 0 . 2 6 3 5 4 E  + 06 0 . 32 3 4 9 E + 0 7 0 . 5 5 2 7 8 E + 0 6 0 . 36 0 6 9 E + 0 7 0 . 3 9 0 7 9 E + 0 6 0 . 378 91 E+0 7
AEATT 0 . 2 0 2 3 6 E + 0 6 * * 92654 0 . 1 9 1 2 1 E + 0 6 * * 9 1618 0 . 1 9 1 1 4 E  + 06** 92 318
DAYATT 3 4 4 . 1 8 * * 1 3 5 . 4 7 4 0 8 . 6 2 * * 1 3 9 . 7 5 4 1 9 . 1 7 * * 1 4 8 . 0 7
ELADM 6 4 8 . 9 9 * * 2 3 9 . 7 4 7 9 6 . 4 0 * * 2 5 9 . 8 1 8 1 8 . 0 4 * * 2 8 6 . 8 6
OPATT 9 4 2 5 7 * * 2 8 9 0 7 7 3 0 7 8 * * 2 9 7 6 6 7 0 7 2 3 * * 3 0 045
WAGE INDEX - 0 . 7 9 5 7 3 E + 0 6 0 . 7 8 4 7  6E+06 - 0 . 889 1 5 E  + 06 0 . 7 9 2 52E + 06 - 0 . 8 7 6 9 7 E + 0 6 0 . 7 9 9 7 1E+06
CONSTANT - 0 . 2 0 8 6 8 E + 0 8 0 . 2 0 9 5 7 E + 0 8 - 0 . 2 4 9 9 5 E + 0 8 0 . 2 4 9 4 7 E + 0 8

GROUP
EFFECTS
1 - 2 3 4 6 1 5 0 6 2 4 0 0 4 9 1 7
2 - 2 9 8 0 7 4 4 4 2 7 1 2 1 4 8 1
3 - 2 0 8 5 6 0 0 4 2 7 7 3 5 5 7 3
4 - 2 1 0 4 4 2 1 8 2 8 7 8 9 0 1 9
5 - 2 7 1 4 0 3 2 7 3 0 5 1 2 2 3 5
6 - 3 2 7 9 8 3 2 0 3 1 8 0 7 6 1 2
7 - 3 1 1 5 9 2 6 4 3 4 7 7 2 4 1 8
8 - 3 7 4 0 7 7 4 8 3 6 6 9 0 6 0 8
9 - 2 6 8 0 9 1 4 4 3 8 5 9 3 4 5 2
10 - 1 6 8 5 3 6 4 4 4 1 3 1 2 6 1 3

R
L o g -
L i k e l i h o o d
LM
Hausm an 
A u t o c o r r . 
H e t e r o

0 . 8 7 1 8 9
- 1 5 0 9 . 7 2 0 7

0 . 1 1 3 1 9
0 . 0 0

0 . 8 6 8 1 5 3

4 . 0 3  [ 0 . 1 4 4 ]

0 . 0 0 4 2 4
3 . 8 0 *

0 . 8 9 9 3 0  
- 1 4 9 9 . 4 9 1 0

0 . 0 0 0 0 3 9
0 . 0 0

* significant at 10% 
** significant at 5%
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Table A l.4.3 G rouping by dem and size
Variable OLS Random Effects 

(One way)

Fixed effects (One way)

C o e f f . SE C o e f f . SE C o e f f . SE

EMADM 4 4 . 0 3 7 3 6 1 . 9 0 6 1 . 4 3 3 3 9 4 . 3 0 7 7 . 3 2 3 4 0 7 . 1 1
CASEMIX 0 . 4 6 0 1 3 E + 0 8 * * 0 . 2 1 7 5 2 E + 0 8 0 . 4 6 3 4 2 E + 0 8 * * 0 . 2 2 8 3 4 E + 0 8 0 . 4 8 1 2 6 E + 0 8 * * 0 . 2 30 98E +0 8
BEDSEM 3 0 4 4 5 * * 1 3 1 8 6 3 0 9 0 9 * * 13908 3 2 1 2 5 * * 14 072
DVTEACH 0 . 4 7 4 2 1 E + 0 8 * * 0 . 7 5 9 9 7 E  + 07 0 . 4  902 4E+08 * * * 0 . 8 1 177E+07 0 . 5 0 0 9 0 E + 0 8 * * 0 . 834 94 E+0 7
RES 1 4 7 7 . 0 * * 6 1 9 . 1 4 1 4 7 4 . 4 * * 6 4 9 . 9 3 1 5 0 0 . 8 * * 6 5 3 . 6 8
INVOCC 0 . 2 6 3 5 4 E + 0 6 0 . 3 2 3 4 9 E + 0 7 9 3 7 9 9 0 . 3 4 9 0 2 E + 0 7 1 0 9 2 3 0 . 352 09 E+0 7
AEATT 0 . 2 0 2 3 6 E + 0 6 9 2 654 0 . 2 3 5 4 5 E  + 06** 9 9 0 3 9 0 . 2 4 4 4 4 E + 0 6 * * 0 . 1 0 025 E +0 6
DAYATT 3 4 4 . 1 8 * * 1 3 5 . 4 7 3 8 8 . 8 0 * * 1 6 0 . 0 3 3 7 7 . 1 7 * * 1 6 8 . 1 6
ELADM 6 4 8 . 9 9 * * 2 3 9 . 7 4 5 5 1 . 4 9 * * 2 7 3 . 9 3 5 0 1 . 2 9 * * 2 8 4 . 9 3
OPATT 9 4 2 5 7 * * 2 8 9 0 7 9 1 7 8 3 * * 3 2013 8 9 5 5 6 * * 3 2 5 2 9
WAGE INDEX - 0 . 7 9 5 7 3 E + 0 6 0 . 7 8 4 7  6E+06 - 0 . 9 0 4 4 5 E + 0 6 0 . 8 3 0 2 8 E + 0 6 - 0 . 8 8 7 5 3 E + 0 6 0 . 83 9 1 2 E + 0 6
CONSTANT - 0 . 2 0 8  68E + 08 0 . 2 0 9 5 7 E  + 08 - 0 . 2 0 0 4 5 E + 0 8 0 . 2 3 4 9 4 E + 0 8

GROUP
EFFECTS
1 - 2 1 2 0 0 1 7 3 2 5 4 5 9 9 6 1
2 - 1 7 1 6 7 1 1 4 2 3 0 2 4 7 3 2
3 - 2 5 9 0 8 7 1 6 2 3 7 7 4 9 4 7
4 - 2 3 0 4 0 7 8 2 2 3 6 5 3 1 4 5
5 - 2 5 4 1 7 2 7 1 2 5 1 1 7 5 0 6
6 - 2 3 9 1 2 3 5 4 2 3 3 1 3 2 7 5
7 - 1 1 1 6 3 6 4 8 2 5 7 9 5 7 7 1
8 - 2 9 1 1 6 0 8 3 3 0 6 3 5 3 5 9
9 - 2 1 4 9 7 3 9 8 2 5 4 1 1 8 6 7
10 - 1 8 3 1 6 2 4 9 2 4 6 6 9 6 2 9

R2 0 . 8 7 1 8 9  0 . 8 7 0 3 2 1  0 . 8 8 0 7 1
L o g -  - 1 5 0 9 . 7 2 0 7  - 1 5 0 6 . 6 9 1 1
L i k e l i h o o d
LM 0 . 4 4  [ 0 . 5 0 8 0 6 4 ]
Hausm an
A u t o c o r r .  0 . 1 1 3 1 9  0 . 0 0 3 7 8  - 0 . 0 2 3 1 1 5
H e t e r o _________0 . 0 0 _________________________________4 . 1 7 * _______________________________ 0 . 0 0 _______
* significant at 10%
** significant at 5%
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Table A l.4.4 <Grouped by sitetype (have to drop the teaching fdter for this one)
Variable OLS Random Effects 

(One wav)

Fixed effects (One way)

C o e f f . SE C o e f f . SE C o e f f . SE

EMADM - 7 6 9 . 3 7 4 1 5 . 2 2 - 1 0 . 9 4 3 3 8 1 . 6 2 8 1 . 1 6 9 3 8 6 . 6 0
CASEMIX 0 . 5 5 5 6 6 E + 0 8  * * 0 . 2 6 6 8 7 E + 0 8 0 . 4 6 9 6 0 E + 0 8 * * 0 . 2 3 0 2 5 E + 0 8 0 . 4 5 7 7 1 E + 0 8 * * 0 . 2 3 205 E +0 8
BEDSEM 2 5 1 5 7 16184 3 1 7 7 4 * * 1 4602 3 0 9 5 6 * * 1 4 8 5 6
RES 1 1 7 2 . 0 7 5 9 . 1 0 1 3 9 0 . 9 * * 6 5 8 . 7 9 1 3 9 4 . 7 * * 6 6 1 . 5 0
INVOCC - 0 . 4 6 3 5 5 E + 0 7 0 . 3 8596E +0 7 - 0 . 7 2 5 0 1 E + 0 6 * * 0 . 35 1 1 7 E + 0 7 4 4 5 7 4 * * 0 . 357 51 E+0 7
AEATT 0 . 2 5 7 0 5 E + 0 6 * * 0 . 1 1 3 4 4 E + 0 6 0 . 2 0 1 9 8 E + 0 6 * * 9 6 007 0 . 2 0 1 3 2 E + 0 6 *  * 96308
DAYATT 1 7 3 . 5 5 1 6 3 . 1 8 3 4 0 . 7 1 * * 1 3 9 . 3 9 3 5 7 . 2 6 * * 1 3 9 . 7 7
ELADM 9 7 6 . 0 4 * * 2 8 7 . 7 2 6 4 3 . 5 0 * * 2 6 2 . 1 7 6 0 3 . 0 4 * * 2 6 4 . 7 5
OPATT 0 . 1 6 4 5 7 E + 0 6 * * 3 2 7 4 0 9 9 2 4 9 * * 2 9 5 1 1 9 2 4 6 3 * * 2 9 7 6 9
WAGE INDEX 0 . 1 2 2 1 6 E + 0 7 * * 0 . 8 7 9 4 6 E + 0 6 - 0 . 5 1 0 7 3 E + 0 6 0 . 8 2 2 9 9 E + 0 6 - 0 . 7  3 6 0 5 E + 0 6 0 . 8  40 98E +06
CONSTANT - 0 . 5 2 0 9 0 E + 0 8 0 . 250 3 0 E + 0 8 - 0 . 14 5 9 6 E + 0 8 0 . 2 5 3 2 2 E + 0 8

GROUP
EFFECTS
1 - 2 0 5 1 5 4 8 1 2 5 8 8 1 0 3 7
2 - 1 7 6 2 2 1 3 3 2 2 1 4 9 1 7 9
3 - 2 1 7 9 3 4 4 2 2 3 6 5 0 6 3 8
4 2 6 7 4 7 3 9 4 2 6 9 2 8 9 9 9
5 - 1 8 8 9 3 8 8 0 2 5 5 3 7 9 6 6

R2 0 . 8 0 3 5 6 0 . 7 0 5 1 8 6 E 0 . 8 7 2 6 6
L o g - - 1 5 2 7 . 8 8 8 1 - 1 5 0 9 . 4 6 4
L i k e l i h o o d
LM 0 . 7 3  [ 0 . 3 9 2 2 ]
H au sm an - -
A u t o c o r r . 0 . 0 7 5 3 8 0 . 0 2 7 4 - 0 . 0 3 4 5 2 3
H e t e r o 4 . 6 4 * 3 . 9 8 * 0 . 0 0
* significant at 10%
** significant at 5%
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Table A l.4.5 Translog cost function

D e p e n d e n t  V a r i a b l e  LNTVC

V a r i a b l e B SE B T

LNAEATT . 0 0 6 8 5 1 . 0 1 4 5 8 3 . 470
LNBDEMSQ . 7 6 3 9 6 3 . 5 7 6 6 0 6 1 . 3 2 5
LNBEDEM - 3 . 4 8 0 7 6 6 2 . 8 7 9 3 1 9 - 1 . 2 0 9
LNCASEMX . 0 8 0 2 1 5 . 2 4 2 5 7 6 . 3 3 1 * **
LNDAYATT . 0 0 5 2 7 4 . 0 0 9 9 3 0 . 5 3 1
LNELBDEM 8 . 7 9 3 6 4 E - 0 4 6 . 9 8 2 7 E - 0 4 1 . 2 5 9
LNELSQ . 1 7 1 6 5 6 . 2 3 9 2 0 7 .7 1 8
LNEMBDEM - 9 . 9 5 7 7 6 E - 0 4 7 . 2  68 0 E - 0 4 - 1 . 3 7 0
LNEMADM - 1 . 7 4 4 2 3 4 2 . 8 7 6 9 3 0 -  . 606
LNEMSQ . 1 5 9 5 8 1 . 1 5 6 8 4 9 1 . 0 1 7
FILTEACH . 5 2 1 7 2 1 . 1 54617 3 . 3 7 4 * *
LNRESTOT . 0 1 5 7 9 1 . 0 3 8 8 7 1 . 4 0 6
LNWI - . 0 9 3 0 7 9 6 . 4 5 8 8 5 6 . 014
LNWISQ 1 . 6 7 5 8 6 5 1 . 9 7 6 0 2 4 . 8 4 8
LNOPATT . 1 0 1 2 1 7 . 3 4 2 4 0 8 . 2 9 6
LNEMOPAT 1 . 1 8 7 7 8 E - 0 6 1 . 9 8 6 3 E - 0 6 . 598
LNELOPAT - 1 . 1 5 5 1 3 E - 0 6 1 . 9 2 8 5 E - 0 6 - . 5 9 9
LNEMWI . 1 5 2 8 9 7 . 7 5 2 1 2 4 . 2 0 3
LNELWI - . 6 2 6 5 4 9 . 7 7 1 3 9 9 - . 8 1 2
LNINVOCC . 2 8 3 8 6 6 . 2 8 1 4 1 5 1 . 0 0 9
LNELADM 2 . 6 5 0 0 5 2 . 0 6 7 4 8 2 . 537
LNELEM 5 . 1 6 8 7 4 3 . 0 7 9 2 0 6 . 631
LNOPATTSQ - 7 . 6 5 1 7 0 5 - . 0 7 2 3 7 6 - . 5 7 6
CONSTANT 3 1 . 7 5 3 4 4 0 2 1 . 1 5 3 7 4 3 1 . 5 0 1

R2 0 . 8 5 1 3 3  
F 1 8 . 3 2 4 2 * *  
N 85
* significant at 10%
** significant at 5%
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Table A l.4.6 Collinearity Diagnostics

Number E i g e n v a l  Cond 
Index

V a r i a n c e  P r o p o r t i o n s  
C o n s t a n t  LNAEATT LNBDEMSQ L N B E D E M LNCASEMX LNDAYATT

1 19.02329 1.000 .00000 .00005 .00000 .00000 .00013 . 00016
2 1.06131 4.234 .00000 .00000 .00000 .00000 .00057 . 00572
3 . 42375 6.700 .00000 .00097 .00000 .00000 .00322 .00079
4 . 17254 10.500 .00000 .00299 .00000 .00000 .00023 .00679
5 .11154 13.059 .00000 .00628 .00000 .00000 .01319 . 54362
6 .10069 13.745 .00000 .01157 .00000 .00000 .37609 .00524
7 .05927 17.915 .00000 .02095 .00000 .00000 .06137 .00222
8 .02824 25 .9 55 .00000 .52893 .00000 .00000 .16076 .01882
9 .00864 46.934 .00000 .00805 .00000 .00000 .00073 .00051

10 .00573 57.642 .00001 .02826 .00005 .00002 .00091 .02821
11 .00253 86.763 .00000 .00917 .00002 .00000 . 15327 .08381
12 .00141 116.298 .00031 .05808 .00003 .00003 .00057 .02387
13 .00080 153.803 .00010 .02539 .00221 .00022 .02901 .15005
14 .00018 325.058 .00034 .01233 .00068 .00048 .01691 . 02871
15 .00007 505.089 .00003 .02412 . 00022 .00000 . 04831 . 03144
16 .00001 1287.074 .00000 .13247 .00006 .00106 .00475 .00007
17 .00001 1776 .129 .00003 . 05123 .00027 .00001 .00046 .00286
18 .00000 3105.983 .00047 .03509 .00098 .00190 . 09602 .00572
19 .00000 4003.113 .00253 .00431 . 48170 .48155 .02160 .00007
20 .00000 5045.030 .23977 .02347 . 48972 .49980 . 00244 .04884
21 .00000 8745 .340 .75642 .01631 .02406 .01494 .00945 .01247

LNELBDEM LNELSQ LNEMBDEM LNEMADM LNEMSQ FILTEACH LNRESTOT LNWI
1 .00000 .00000 .00000 .00000 .00000 .00007 .00002 .00000
2 .00000 .00000 .00000 .00000 .00000 .19347 .00001 .00000
3 .00001 .00000 .00001 .00000 .00000 .05718 .00009 .00000
4 .00000 .00000 .00000 .00000 .00000 .00668 . 00027 .00000
5 .00000 .00000 .00000 .00000 .00000 .14597 .00039 .00000
6 .00000 .00000 .00000 .00000 .00000 . 02917 .00065 .00000
7 .00008 .00000 .00006 .00000 .00000 .04811 .00082 .00000
8 .00002 .00000 .00001 .00000 .00000 .01682 .00000 .00000
9 .00000 .00000 .00000 .00000 .00000 .05266 .62650 .00000

10 .00011 .00000 .00004 .00001 .00017 .00872 . 06722 .00001
11 .00023 .00072 .00047 .00000 .00015 .00017 .05121 .00000
12 .00001 .00012 .00028 .00000 .00082 . 01244 . 10934 .00008
13 .00009 .00001 .00039 .00007 .00095 .07232 . 00460 .00001
14 .00049 .00019 .00161 .00004 .00001 .00407 .03378 .00011
15 .06454 .00422 .04575 .00042 .00231 .06848 .01802 .00002
16 .31544 .00314 .29818 .00002 .00153 .13856 .00839 .00000
17 .08241 .00063 .08394 .00156 .33978 .00640 . 00628 .00008
18 .20156 .08503 .19352 . 07380 .36801 .07713 . 01828 .19766
19 .02866 .12998 .00333 .01884 .09263 .02478 .03798 .22805
20 .27644 .29645 . 35620 .00078 .06530 .03591 .00290 .31071
21 .02992 .47950 .01620 . 90445 .12833 .00091 .01325 .26327

LNWISQ LNINVOCC LNEMOPAT LNELOPAT LNEMWI LNELWI LNOPATTSQ
1 .00000 .00005 .00000 .00000 .00000 .00000 .00000
2 . 00000 .00035 .00000 .00000 .00000 .00000 .00000
3 .00000 .00216 .00001 .00001 .00000 .00000 .00000
4 .00000 .11165 .00000 .00000 .00000 .00000 .00000
5 .00000 .00002 .00000 .00000 .00000 .00000 .00000
6 .00000 .00097 .00000 .00000 .00000 .00000 .00001
7 .00000 .00720 .00008 .00008 .00000 .00000 .00001
8 .00000 .01934 .00002 .00002 .00000 .00000 .00001
9 .00007 .00001 .00001 .00001 .00000 .00000 .00000

10 .00039 .01303 .00001 .00001 .00000 .00001 .00048
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11 .00014 .01055 .00033 .00049 .00002 .00002 .00001
12 .00000 . 16951 .00002 .00002 .00010 .00002 .00332
13 . 00012 .09789 .00006 .00005 .00003 .00000 .00330
14 .00000 .01698 .00193 .00812 .00001 .00001 .40470
15 .00020 . 17403 .04019 .03376 .00135 .00033 .10793
16 . 00298 .00439 .67949 .69216 .00000 .00142 .10047
17 .19158 . 15971 .11883 .11640 .05218 .01692 .04330
18 . 64562 .05856 .00003 .00053 .00001 .04513 .06592
19 .01201 .02881 .00032 .00001 .00055 .11953 .05847
20 .03698 .10955 .05206 .05426 .02622 .24548 .00518
21 .10991 .01524 .10661 .09407 .91953 . 57113 .20688
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Table A l.4.7: C orrelation Coefficients

-  -  C o r r e l a t i o n  C o e f f i c i e n t s  -  -

LNAEATT LNBDEMSQ LNBEDEM LNCASEMX LNDAYATT LNELADM

LNAEATT 1.0000 . 1843 . 1970 - . 4 1 7 2 * * . 0227 . 1188
LNBDEMSQ . 1843 1.0000 . 9969 ** - . 1 0 1 3 .2350* .7383**
LNBEDEM .1970 . 9 9 6 9 * *  1 . 0000 - . 1 1 0 1 .2611* .7294**
LNCASEMX - .4172** - . 1 0 1 3 . 1101 1.0000 . 1939 . 1793
LNDAYATT - . 0 2 2 7 .2350* .2611* - . 1 9 3 9  1 . 0000 - . 1 0 7 1
LNELADM . 1188 .7383** .7294** .1793 . 1071 1.0000
LNELBDEM . 1313 . 936 9** . 90 8 1* * - . 0 4 6 7 .0713 .7682**
LNELOPAT . 0805 .6984** . 6755** .0646 . 1725 .7181**
LNELSQ . 1152 . 7287** .7185** . 1844 . 1198 . 99 96 * *
LNELWI . 1523 .5314** . 5299** .1429 . 1733 .8096**
LNEMBDEM . 1569 9 42 1 * * . 91 4 2* * - . 0 8 3 5 .0944 .7375**
LNEMOPAT . 0921 .7047** . 6826** .0379 . 1522 . 6972**
LNEMSQ . 4256** .8027** .8150** - .2 1 8 5 * . 1433 .7513**
LNEMADM .4451** .7890** .8061** - .2 4 4 4 * .1687 .7175**
LNEMWI .3917** .6423** .6626** - . 1 9 0 4 .0686 .6550**
LNOPATT .1590 .8154** .8094** - . 0 4 0 7 .0329 .7592**
LNOPATTSQ . 1506 .8073** .7996** - .0 3 1 8 .0467 .7564**
LNRESTOT .2004 .3350** . 3272** - . 1 1 0 0 .0851 .3160**
LNWI .0136 - . 0 5 1 1 . 0424 .0294 . 1381 .0707
LNWISQ . 0138 - . 0 5 6 5 . 0479 .0381 .1469 . 0666
LNELEM .3072** .8203** .8228** - . 0 3 4 4 . 0222 . 92 84 * *
LNINVOCC .4358** .1257 . 1603 - . 1 8 4 6 . 0267 .3352**
FILTEACH . 1010 . 0127 . 0170 .1599 . 5367** .2234*

* -  S i g n i f . LE . 05 ** -  S i g n i f . LE . 01 ( 2 - t a i l e d )

-  -  C o r r e l a t i o n  C o e f f i c i e n t s  -  -

LNELBDEM LNELOPAT LNELSQ LNELWI LNEMBDEM LNEMOPAT

LNAEATT . 1313 . 0805 . 1152 . 1523 . 1569 .0921
LNBDEMSQ .9369** . 6984** .7287** . 5314** .9421** .7047**
LNBEDEM .9081** .6755** .7185** . 5299** 9142** . 6826**
LNCASEMX - . 0 4 6 7 . 0646 . 1844 .1429 . 0835 .0379
LNDAYATT . 0713 - . 1 7 2 5 . 1198 - . 1 7 3 3 . 0944 - . 1 5 2 2
LNELADM .7682** .7181** .9996** . 8096** .7375** .6972**
LNELBDEM 1.0000 .7676** .7660** . 5362** . 9969** .7673**
LNELOPAT .7676** 1.0000 .7187** .6233** .7591** . 9982**
LNELSQ .7660** .7187** 1 . 0000 .8105** .7346** . 6972**
LNELWI .5362** .6233** .8105** 1.0000 .5069** . 6020**
LNEMBDEM .9969** .7591** .7346** .5069** 1 .0000 .7634**
LNEMOPAT .7673** .9982** .6972** .6020** .7634** 1.0000
LNEMSQ .7157** .6280** .7426** .5761** .7347** .6445**
LNEMADM .6822** .5937** .7075** .5415** .7015** .6107**
LNEMWI .5294** .5604** . 6471** .8148** .5362** .5682**
LNOPATT .7929** 93 43 ** .7526** . 6843** .7922** 93 91 * *
LNOPATTSQ .7935** . 945 0** .7504** . 6805** .7924** . 9 4 9 4 * *
LNRESTOT .3539** .4072** .3159** .2430* .3615** .4140**
LNWI - . 0 8 2 2 . 1054 .0723 .6417** .0931 .0953
LNWISQ - . 0 8 6 4 . 1074 .0684 .6386** .0976 .0969
LNELEM .7881** .7154** . 9235** .7278** .7826** .7137**
LNINVOCC . 0156 .1698 .3290** .2875** .0372 . 1863
FILTEACH . 0186 .3478** .2259* .4278** .0021 . 3274**

* -  S i g n i f . LE . 05 ** -  S i g n i f . LE .01 ( 2 - t a i l e d )
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-  -  C o r r e l a t i o n  C o e f f i c i e n t s  -  -

LNEMSQ5 LNEMADM LNEMWI LNOPATT LNOPATTSQ LNRESTOT

LNAEATT .4256** .4451** . 3917** .1590 . 1506 .2004
LNBDEMSQ .8027** .7890** .6423** .8154** . 8073** .3350**
LNBEDEMT .8150** .8061** .6626** .8094** .7996** . 3272**
LNCASEMX - . 2 1 8 5 * - . 2 4 4 4 * - .1 9 0 4 - .0 4 0 7 . 0318 - . 1 1 0 0
LNDAYATT . 1433 .1687 . 0686 - . 0 3 2 9 . 0467 . 0851
LNELADM .7513** .7175** .6550** .7592** .7564** .3160**
LNELBDEM .7157** . 6822** .5294** .7929** .7935** . 3539**
LNELOPAT .6280** .5937** .5604** . 93 43 * * . 94 50 * * .4072**
LNELSQ .7426** .7075** .6471** .7526** .7504** . 3159**
LNELWI .5761** .5415** .8148** .6843** . 6805** .2430*
LNEMBDEM .7347** .7015** .5362** .7922** .7924** .3615**
LNEMOPAT .6445** .6107** .5682** . 93 91 * * . 9 4 9 4 * * .4140**
LNEMSQ 1.0000 994 7** .8283** .7631** .7522** . 3521**
LNEMADM .9947** 1.0000 .8281** .7419** . 7295** .3287**
LNEMWI .8283** .8281** 1.00 00 .7219** .7090** .2540*
LNOPATT .7631** .7419** .7219** 1.0000 . 99 95 * * . 4227**
LNOPATT5 .7522** .7295** .7090** . 9 9 9 5 * *  1 . 0000 . 4239**
LNRESTOT .3521** .3287** .2540* . 4227** . 4239** 1.0000
LNSALPC - . 0 2 6 7 - . 0 3 9 6 .5261** .1629 . 1592 - . 0 4 8 6
LNSALPCSQ - . 0341 - . 0 4 6 8 .5197** . 1621 . 1587 - . 0 5 1 3
LNELEM . 94 23 ** .9236** .7934** .8101** .8027** .3556**
LNINVOCC .6472** .6612** .5669** .2685** .2581* . 1452
FILTEACH . 0706 . 0705 .2930** . 3075** . 3126** - . 0 3 0 5

* - S i g n i f . LE . 05 ** - S i g n i f . LE .01 ( 2 - t a i l e d )

-  -  C o r r e l a t i o n  C o e f f i c i e n t s  -  -

LNWI LNWISQ LNELEM LNINVOCE FILTEACH

LNAEATT . 0136 . 0138 .3072** .4358** . 1010
LNBDEMSQ - . 0 5 1 1 - . 0 5 6 5 .8203** . 1257 . 0127
LNBEDEM - . 0 4 2 4 - . 0 4 7 9 .8228** . 1603 . 0170
LNCASEMX . 0294 . 0381 - .0 3 4 4 - . 1 8 4 6 . 1599
LNDAYATT - . 1 3 8 1 - . 1 4 6 9 .0222 . 0267 - .5 3 6 7 * *
LNELADM . 0707 . 0666 .9284** . 3352** .2234*
LNELBDEM - . 0 8 2 2 - . 0 8 6 4 .7881** . 0156 .0186
LNELOPAT . 1054 . 1074 .7154** . 1698 .3478**
LNELSQ . 0723 .0684 . 9235** . 3290** .2259*
LNELWI .6417** .6386** .7278** .2875** .4278**
LNEMBDEM - . 0 9 3 1 - . 0 9 7 6 .7826** . 0372 - . 0 0 2 1
LNEMOPAT . 0953 . 0969 .7137** . 1863 .3274**
LNEMSQ - . 0 2 6 7 - . 0 3 4 1 9423** . 6472** . 0706
LNEMTADM - . 0 3 9 6 - . 0 4 6 8 .9236** .6612** .0705
LNEMWI .5261** .5197** .7934** .5669** .2930**
LNOPATT . 1629 .1621 .8101** .2685** . 3075**
LNOPATTSQ . 1592 . 1587 .8027** .2581* . 3126**
LNRESTOT - .0486 - . 0 5 1 3 .3556** .1452 - . 0 3 0 5
LNWI 1.00 00 9992** . 0172 - . 0 0 9 4 . 4039**
LNWISQ 9992** 1.0000 . O l i i - . 0 1 4 5 .4195**
LNELEM . 0172 . O l i i 1 .0000 .5366** . 1557
LNINVOCC - . 0 0 9 4 - . 0 1 4 5 .5366** 1.0000 .1532
FILTEACH .4039** .4195** . 1557 . 1532 1.0000

* -  S i g n i f . LE . 05 ** -  S i g n i f . LE .01 ( 2 - t a i l e d )
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Table Al.4.8: Cobb-Douglas cost function
Variable B SE t-stat

EMADM - 0 . 1 4 1 8 3 0 . 1 6 0 4 6 - 0 . 8 8 4
CASEMIX 0 . 1 1 6 4 4 0 . 2 0 6 4 1 0 . 5 6 4
BEDSEM 0 . 4 0 0 4 8 0 . 1 7 2 8 5 2 . 3 1 7 * * **
RES 0 . 1 6 7 5 7 E - 0 1 0 . 3 4 6 1 4 E - 0 1 0 . 4 8 4
INVOCC - 0 . 7  3 8 2 7 E - 0 1 0 . 2 0 4 5 8 - 0 . 3 6 1
AEATT 0 . 1 4 3 1 8 E - 0 1 0 . 2 8 7 5 2 E - 0 1 0 . 4 9 8
DAYATT - 0 . 2 3 8 7 9 E - 0 3 0 . 8  6 3 4 7 E - 0 2 - 0 . 0 2 8
EL ADM 0 . 3 0 3 4 9 0 . 8 2 3 9 2 E - 0 1 3 . 6 8 3 * *
OPATT 0 . 2 5 0 9 4 0 . 1 0 2 0 2 2 . 4 6 0 * *
WAGE INDEX 0 . 9 1 8 7 9 E - 0 1 0 . 2 0 1 0 1 0 . 4 5 7
DVTEACH 0 . 3 9 7 5 9 0 . 1 1 1 9 9 3 . 5 5 0 * *
CONSTANT - 1 . 6 6 0 0 1 . 0 5 7 8 - 1 . 5 6 9

L o g -  - 3 3 5 . 4 0 2
L i k e l i h o o d  
R2 0 . 8 7 1 8 9
H e t e r o .  0 . 0 0
N_______________85_________
* significant at 10%
** significant at 5%
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Table A l.4.9: Log-likelihood grid search values
X

0 -1.0 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1.0 1.25 1.5 1.75
-1.0 -335.18 -353.13 -351.95 -352.03 -354.30 -357.86 -360.69 -364.36 -368.45 -372.51 -376.32 -379.79
-0.75 -350.87 -348.67 -346.86 -346.06 -347.21 -349.11 -350.65 -353.44 -356.99 -360.79 -364.52 -368.04
-0.5 -348.43 -345.83 -343.45 -341.82 -341.80 -342.05 -342.22 -343.97 -346.81 -350.22 -353.80 -351.32
-0.25 -347.63 -344.72 -341.84 -339.46 -338.31 -336.95 -335.72 -336.26 -338.91 -341.02 -344.32 -347.76
0 -348.55 -345.41 -342.16 -339.14 -336.94 -334.14 -331.51 -330.70 -331.50 -333.54 -336.37 -339.57
0.25 -351.29 -348.03 -344.53 -341.03 -337.95 -333.92 -330.02 -327.80 -327.27 -328.25 -330.34 -333.1 1
0.5 -355.94 -352.67 -349.06 -345.25 -341.53 -336.58 -331.65 -328.09 -326.13 -325.80 -326.86 -328.89
0.75 -362.57 -359.39 -355.81 -351.89 -347.78 -342.30 -336.67 -332.04 -328.71 -326.95 -326.68 -327.62
1.0 - -368.21 -364.79 -360.93 -356.70 -351.07 -345.14 -339.80 -335.40 -332.28 -330.56 -330.1 1
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Table Al.4.10: Box-Cox cost function
Variable Box-Cox model with teaching dummy 

(*•=1.2112, 6=0.53812)

C o e f f . SE t-stat

EMADM 0 . 17291E-05 0.47135E-05 0.367

CASEMIX 7.1242 2.8144 2.531**

BEDSEM 0.1557 IE-02 0.37484E-03 4 . 154**

RES 0.28872E-04 0.11057E-04 2.611**

INVOCC -0.39541 0.29344 -1.348

AEATT 0.88775E-02 0.49121E-02 1.807*

DAYATT 0.71681E-05 0.20272E-05 3.536**

ELADM 0.86015E-05 0.32872E-05 2.617**

OPATT 0.26963E-02 0.10556E-02 2.554**

WAGE INDEX 0.41711E-02 0.50607E-01 0.082

DVTEACH 5.7278 0.90725 6.313**

CONSTANT 9.9175 1.6035 6.185**

FT 0 . 9 9 7 8 9
L o g -  - 3 2 5 . 7 1
L i k e l i h o o d  
H e t e r o _________ 0 . 4 4
* significant at 10% 
** significant at 5%

Table Al.4.11: Elasticities and marginal costs

Variable C o e f f . Mean Elasticity Marginal cost

EMADM 0 . 1 7 2 9 1 E - 0 5 2 5 0 2 6 0 . 0 3 8 1 £ 1 1 0 . 9 7
CASEMIX 7 . 1 2 4 2 0 . 6 9 3 7 0 . 4 7 2 6 £ 4 9 , 6 6 0 , 4 3 3 . 3 0
BEDSEM 0 . 1 5 5 7 1 E - 0 2 645 0 . 4 0 8 4 £ 4 5 , 6 1 7 . 0 5
RES 0 . 2 8 8 7 2 E - 0 4 153 6 0 . 0 2 1 7 £ 1 , 0 2 9 . 8 1
INVOCC - 0 . 3 9 5 4 1 1 . 4 9 - 0 . 0 7 9 7 - £ 3 , 3 5 8 , 1 5 4 . 7 1
AEATT* 0 . 8 8 7 7 5 E - 0 2 59137 0 . 1 2 9 0 £ 1 5 9 . 0 1
DAYATT 0 . 7 1 6 8  I E - 0 5 11111 0 . 0 5 9 1 £ 3 8 7 . 7 2
OPATT* 0 . 2 6 9 6 3 E - 0 2 1 9 0 2 4 3 0 . 1 6 1 2 £ 6 1 . 7 7
WAGE INDEX* 0 . 4 1 7 1 1 E - 0 2 19061 0 . 0 1 5 4 £ 5 8 . 8 9
ELADM 0 . 8 6 0 1 5 E - 0 5 2 4 6 7 2 0 . 1 8 6 3 £ 5 5 0 . 4 2

TVC 7 2 . 8 9 3 4 5
A l l  c a l c u l a t i o n s  a r e  r e - a d j u s t e d  b y  s c a l i n g  f a c t o r  f o r  TVC o f  1 , 0 0 0 , 0 0 0  
* r e - a d j u s t e d  f o r  f u r t h e r  s c a l i n g  f a c t o r  o f  1 , 0 0 0
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Table A l.4.12: L inear and Log-linear estimates
L i n e a r  m o d e l  
(* *-=!,  0=1)

L o g - l i n e a r  m o d e l  
(*•=0, e =0)

C o e f f . SE t - s t a t C o e f f . SE t - s t a t
EMADM 0 . 4 4 0 3 7 E - 0 4 0 . 3 3 5 3 8 E - 0 3 0 . 1 3 1 - 0 . 1 4 1 8 3 0 . 1 6 0 4 6 - 0 . 8 8 4
CASEMIX 4 6 . 0 1 3 2 0 . 1 5 8 2 . 2 8 3 * * 0 . 1 1 6 4 4 0 . 2 0 6 4 1 0 . 5 6 4
BEDSEM 0 . 3 0 4 4 5 E - 0 1 0 . 1 2 2 2 0 E - 0 1 2 . 4 9 1 * * 0 . 4 0 0 4 8 0 . 1 7 2 8 5 2 . 3 1 7 * *
RES 0 . 1 4 7 7 0 E - 0 2 0 . 5 7  3 7 7 E - 0 3 2 . 5 7 4 * * 0 . 1 6 7 5 7 E - 0 1 0 . 3 4 6 1 4 E - 0 1 0 . 4 8 4
INVOCO 0 . 2 6 3 5 4 2 . 9 9 7 8 0 . 0 8 8 - 0 . 7  3 8 2 7 E - 0 1 0 . 2 0 4 5 8 - 0 . 3 6 1
AEATT 0 . 2 0 2 3 6 0 . 8 5 8 6 5 E - 0 1 2 . 3 5 7 * * 0 . 1 4 3 1 8 E - 0 1 0 . 2 8 7 5 2 E - 0 1 0 . 4 9 8
DAYATT 0 . 3 4 4 1 8 E - 0 3 0 . 1 2 5 5 4 E - 0 3 2 . 7 4 2 * * - 0 . 2 3 8 7 9 E - 0 3 0 . 8 6 3 4 7 E - 0 2 - 0 . 0 2 8
ELADM 0 . 6 4 8 9 9 E - 0 3 0 . 2 2 2 1 7 E - 0 3 2 . 9 2 1 * * 0 . 3 0 3 4 9 0 . 8 2 3 9 2 E - 0 1 3 . 6 8 3 * *
OPATT 0 . 9 4 2 5 7 E - 0 1 0 . 2 6 7 8 8 E - 0 1 3 . 5 1 9 * * 0 . 2 5 0 9 4 0 . 1 0 2 0 2 2 . 4 6 0 * *
WAGE INDEX - 0 . 7 9 5 7 3 0 . 7 2 7 2 6 - 1 . 0 9 4 0 . 9 1 8 7 9 E - 0 1 0 . 2 0 1 0 1 0 . 4 5 7
DVTEACH 4 7 . 4 2 1 7 . 0 4 2 8 6 . 7 3 3 * * 0 . 3 9 7 5 9 0 . 1 1 1 9 9 3 . 5 5 0 * *
CONSTANT 2 3 . 9 4 2 1 4 . 0 2 0 1 . 7 0 8 - 1 . 6 6 0 0 1 . 0 5 7 8 - 1 . 5 6 9

L o g -  - 3 3 5 . 4 0 2 2 8  - 3 3 6 . 9 4
L i k e l i h o o d
H e t e r o  ■________ 0 . 0 0 ____________________________________________ 0 . 0 0
* significant at 10%
** significant at 5%
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Table A l.4.13: Instrum ental variables estimate
Variable Box-Cox model with teaching dummy 

(*• = 1.2112, 6 = 0.53812)

C o e f f . SE t-stat
EMADM 0 . 1 6 2 9 0 2 E - 0 5 0 . 2 6 8 0 8 E - 0 5 0 . 6 0 7
CASEMIX 7 . 4 7 6 7 3 . 4 4 6 0 2 . 1 7 0 * *
BEDSEM 0 . 1 4 7 2 3 E - 0 2 0 . 4 3 0 1 7 E - 0 3 3 . 4 2 3 * *
RES 0 . 2 8 5 3 5 E - 0 4 0 . 1 1 6 6 6 E - 0 4 2 . 4 4 6 * *
INVOCO - 0 . 3 7 5 1 7 0 . 3 0 9 3 2 - 1 . 2 1 3
AEATT 0 . 1 0 4 3 8 E - 0 1 0 . 5 0 2 1 2 E - 0 2 2 . 0 7 9 * *
DAYATT 0 . 7 2 3 6 9 E - 0 5 0 . 2 0 9 2 0 E - 0 5 3 . 4 5 9 * *
ELADM (IV) 0 . 7 5 8 9 1 E - 0 5 0 . 5 8 9 7 3 E - 0 5 1 . 2 8 7
OPATT 0 . 2 5 9 4 2 E - 0 2 0 . 1 0 8 6 5 E - 0 2 2 . 3 8 8 * *
WAGE INDEX 0 . 1 0 9 4 5 E - 0 1 0 . 5 2 2 3 7 E - 0 1 0 . 2 1 0
DVTEACH 5 . 7 1 3 4 1 . 0 0 3 3 5 . 6 9 5 * *
CONSTANT 9 . 7 6 9 2 1 . 7 6 0 2 5 . 5 5 0 * *

L o g -  - 3 2 5 . 9 4
L i k e l i h o o d ________
* significant at 10%
** significant at 5%
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Table A l.4.14: Box-Cox estimates dropping RES and INVOCC

B o x - C o x  m o d e l  w i t h o u t  RES 
= 1 . 2 1 1 2 ,  6 = 0 . 5 3 8 1 2 )

B o x - C o x  m o d e l  w i t h o u t  RES & INVOCC 
= 1 . 2 1 1 2 ,  0 = 0 . 5 3 8 1 2 )

C o e f f . SE t - s t a t C o e f f . SE t - s t a t
EMADM 0 . 4 0 0 8 7 E - 0 5 0 . 4 8 1 4 1 E - 0 5 0 . 8 3 3 0 . 6 1 6 1 7 E - 0 5 0 . 4 4 4 4 1 E - 0 5 1 . 3 8 7
CASEMIX 6 . 3 1 6 5 2 . 9 0 7 4 2 . 1 7 3 * * 4 . 8 8 5 4 2 . 6 2 9 3 1 . 8 5 8
BEDSEM 0 . 1 4 1 5 1 E - 0 2 0 . 3 8 5 4 6 E - 0 3 3 . 6 7 1 * * 0 . 1 2 5 0 8 E - 0 2 0 . 3 5 8 9 5 E - 0 3 3 . 4 8 5 * *
RES - - — — — — —
INVOCC - 0 . 3 3 9 9 2 0 . 3 0 4 1 8 - 1 . 1 1 7 — — —
AEATT 0 . 7 2 0 7 2 E - 0 2 0 . 5 0 6 1 8 E - 0 2 1 . 4 2 4 0 . 6 7 5 2 1 E - 0 2 0 . 5 0 8 2 3 E - 0 2 1 . 3 2 9
DAYATT 0 . 7 1 6 7  8 E - 0 5 0 . 2 1 0 7 0 E - 0 5 3 . 4 0 2 * * 0 . 7 1 1 5 5 E - 0 5 0 . 2 1 2 1 9 E - 0 5 3 . 3 5 3 * *
EL ADM 0 . 9 5 9 8 0 E - 0 5 0 . 3 3 9 3 4 E - 0 5 2 . 8 2 8 * * 0 . 9 9 2 9 2 E - 0 5 0 . 3 4 0 5 2 E - 0 5 2 . 9 1 6 * *
OPATT 0 . 2  82 9 4 E - 0 2 0 . 1 0 9 5 9 E - 0 2 2 . 5 8 2 * * 0 . 2 9 1 3 0 E - 0 2 0 . 1 1 0 1 3 E - 0 2 2 . 6 4 5 * *
WAGE
INDEX

0 . 1 2 5 6 9 E - 0 1 0 . 5 2 4 9 1 E - 0 1 0 . 2 3 9 - 0 . 5 8 3 0 7 E - 0 2 0 . 5 0 2 0 6 E - 0 1 - 0 . 1 1 6

DVTEACH 5 . 5 5 6 4 0 . 9 4 0 4 6 5 . 9 0 8 * * 5 . 7 9 9 4 0 . 9 2 1 6 7 6 . 2 9 2 * *

CONSTANT 9 . 4 5 5 7 1 . 6 5 6 4 5 . 7 0 9 * * 9 . 1 8 5 3 1 . 6 5 0 6 5 . 5 6 5 * *

L o g - L  - 3 2 8 . 9 8  - 3 2 9 . 6 1
R2 0 . 9 9 7 7  0 . 9 9 7 7
H e t e r o  0 . 4 2 6  0 . 4 8 5
* significant at 10% 
** significant at 5%

Table Al.4.15: Elasticities and marginal costs without RES and INVQCC
V a r i a b l e E l a s t i c i t y

( -RES)
M a r g i n a l  c o s t  
( -RES)

E l a s t i c i t y  
( -RES & 
INVOCC)

M a r g i n a l  c o s t  
( -RES & INVOCC)

EMADM 0 . 0 8 8 2 £ 2 5 7 . 9 9 0 . 1 3 5 7 £ 3 9 6 . 9 4
CASEMIX 0 . 4 1 8 5 £ 4 3 , 9 7 5 , 6 5 0 . 6 1 0 . 3 2 3 9 £ 3 , 4 0 3 5 , 1 5 7 . 0 6
BEDSEM 0 . 3 7 0 7 £ 4 1 , 4 0 6 . 0 7 0 . 3 2 7 8 £ 3 6 , 6 1 4 . 2 7
RE S - - — — - -

INVOCC - 0 . 0 6 8 5 - £ 2 , 8 6 8 , 0 0 7 . 6 5 - - - -

AEATT 0 . 1 0 4 6 £ 1 2 8 . 5 1 0 . 0 9 8 1 £ 1 2 0 . 5 3
DAYATT 0 . 0 5 9 0 £ 3 8 6 . 0 6 0 . 0 5 8 6 £ 3 8 3 . 4 4
ELADM 0 . 2 0 7 7 £ 6 1 4 . 2 0 0 . 2 1 4 9 £ 6 3 5 . 4 9
OPATT 0 . 1 6 8 9 £ 6 4 . 7 2 0 . 1 7 4 0 £ 6 6 . 6 7
WAGE INDEX 0 . 0 4 6 3 £ 1 7 7 . 0 6 - 0 . 0 2 1 5 - £ 8 2 . 2 2
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Table A l.4.16: Box-Cox estimates using SERES
Variable Box-Cox model with site dummies 

(A.= 0 . 9104 0,6=0.39150)

C o e f f . SE t-stat

EMADM 0 . 3 6 9 4 8 E - 0 4 0 . 6 0 9 7  4 E -04 0 . 6 0 6
CASEMIX 3 . 2 8 3 0 1 . 4 0 4 4 2 . 3 3 8 * *
BEDSEM 0 . 5 4 4 8 7 E - 0 2 0 . 1 5 8 2 8 E - 0 2 3 . 4 4 2 * *
SERES 0 . 3 6 1 1 2 E - 0 2 0 . 2 0 6 0 8 E - 0 2 1 . 7 5 2 *
INVOCO - 0 . 2 0 2 0 3 0 . 2 4 6 6 3 - 0 . 8 1 9
AEATT 0 . 1 0 9 0 7 E - 0 1 0 . 8 5 3 1 5 E - 0 2 1 . 2 7 8
DAYATT 0 . 6 9 2 2 8 E - 0 4 0 . 2 1 3 5 1 E - 0 4 3 . 2 4 2 * *
EL ADM 0 . 1 1 5 2 4 E - 0 3 0 . 3 9 3 4 6 E - 0 4 2 . 9 2 9 * *
OPATT 0 . 6 6 2 3 3 E - 0 2 0 . 3 2 1 8 1 E - 0 2 2 . 0 5 8 * *
WAGE INDEX 0 . 3 3 3 2 2 E - 0 1 0 . 6 8 2 4 9 E - 0 1 0 . 4 8 8
DVTEACH 2 . 9 3 1 3 0 . 5 0 0 7 1 5 . 8 5 4 * *

CONSTANT 5 . 4 9 9 2 1 . 0 5 8 8 5 . 1 9 4 * *

L o g -  - 3 2 7 . 0 9 9 5 8
L i k e l i h o o d  
R2 0 . 9 9 9
H e t e r o _________0 . 6 1 4
* significant at 10% 
** significant at 5%

Table A4.1.17: Elasticities and marginal costs using SERES
Variable Elasticity Marginal cost

EMADM 0 . 0 7 1 0 £ 2 0 6 . 8 0
CASEMIX 0 . 4 4 6 6 £ 4 6 , 9 2 8 , 3 7 3 . 9 1
BEDSEM 0 . 3 7 4 7 £ 4 2 , 3 4 6 . 0 1
RES 0 . 0 4 6 6 £ 2 , 2 1 1 . 4 8
INVOCO - 0 . 0 6 3 4 - £ 2 , 6 7 1 , 3 5 5 . 1 9
AEATT 0 . 0 8 5 2 £ 1 0 5 . 0 2
DAYATT 0 . 0 6 3 5 £ 4 1 6 . 5 9
ELADM 0 . 2 1 8 7 £ 6 4 6 . 1 5
OPATT 0 . 1 4 9 9 £ 5 7 . 4 4
WAGE INDEX 0 . 0 9 2 8 £ 3 5 4 . 8 9
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APPENDIX 2: Appendix to Chapter 5 

APPENDIX A2.1: DEMAND ESTIMATION 

Table A2.1 Estimate of ADC using AR(1 Regression

V a r i a b l e  C o e f f i c i e n t  S t a n d a r d  E r r o r  t - s t a t

DVJAN 1 4 . 1 8 8 * *
DVFEB 1 2 . 3 6 4 * *
DVMAR 2 7 . 3 3 7 * *
DVAPR - 8 . 3 5 4 5
DVMAY - 1 4 . 6 7 7 * *
DVJUN 1 1 . 1 3 3 *
DVJUL - 1 3 . 5 6 6 * *
DVAUG - 2 4 . 8 5 0 * *
DVSEP - 2 . 9 4 8 3
DVOCT - 7 . 4 4 3 3
DVNOV 1 0 . 9 0 7 * *
F IL T 1 9 9 3 - 2 0 . 2 2 9 * *
FI L T 1 9 9 4 - 1 . 8 7 1 3
GROUP EFFECTS
1 4 0 8 . 3 6 6 3 0 * *
2 6 8 8 . 5 0 6 4 1 * *
3 6 5 9 . 3 0 8 0 7 * *
4 2 7 5 . 9 5 8 5 7 * *
5 7 3 1 . 0 5 8 5 9 * *
6 3 5 1 . 2 2 1 1 1 * *
7 2 5 9 . 8 2 5 0 5 * *
8 3 1 2 . 6 8 8 2 2 * *
9 7 4 7 . 0 4 0 4 8 * *
10 4 0 3 . 6 8 6 5 2 * *
11 3 2 8 . 5 5 7 2 7 * *
12 6 1 2 . 5 6 0 3 3 * *
13 3 9 3 . 1 0 2 1 0 * *
14 1 6 1 . 5 8 8 8 7 * *
15 2 3 9 . 7 3 4 7 7 * *
16 2 5 4 . 7 4 8 3 2 * *
17 3 4 5 . 4 6 4 6 5 * *
18 3 0 1 . 4 0 8 6 7 * *
19 4 1 4 . 3 0 5 6 1 * *
20 4 2 1 . 1 3 5 5 9 * *
21 3 3 7 . 0 2 8 7 4 * *
22 2 1 7 . 8 1 0 1 5 * *
23 3 2 0 . 6 7 4 3 3 * *
24 5 3 6 . 7 1 9 1 3 * *
25 2 7 1 . 9 5 5 2 7 * *
26 3 7 3 . 1 7 5 6 0 * *
27 6 1 0 . 3 8 9 0 5 * *
28 4 2 5 . 1 6 7 4 7 * *
29 6 3 6 . 8 0 8 1 0 * *
30 4 3 2 . 4 2 9 1 6 * *
31 3 0 3 . 3 8 8 0 4 * *
32 6 1 8 . 1 9 2 5 9 * *
33 5 4 8 . 4 9 1 8 7 * *

3 . 5 3 9 8 4 . 0 0 8
4 . 4 3 1 4 2 . 7 9 0
4 . 8 6 1 3 5 . 6 2 3
6 . 5 5 1 6 - 1 . 2 7 5
5 . 6 8 7 6 - 2 . 5 8 0
5 . 3 7 8 9 2 . 0 7 0
5 . 2 3 6 2 - 2 . 5 9 1
5 . 0 9 5 8 - 4 . 8 7 7
4 . 8 6 5 5 - 0 . 6 0 6
4 . 4 3 2 3 - 1 . 6 7 9
3 . 5 3 9 9 3 . 0 8 1
6 . 8 5 3 2 - 2 . 9 5 2
4 . 5 9 4 8 - 0 . 4 0 7

1 4 . 5 8 7 7 4
1 4 . 5 8 7 7 4  
1 7 . 6 3 0 0 3
2 4 . 8 6 9 7 6
2 4 . 8 6 9 7 6
1 4 . 5 8 7 7 4
1 4 . 5 8 7 7 4
2 4 . 8 6 9 7 6
2 4 . 8 6 9 7 6
2 4 . 8 6 9 7 6
1 7 . 4 7 9 9 4
2 4 . 8 6 9 7 6
1 4 . 5 8 7 7 4
2 4 . 8 6 9 7 6
1 7 . 4 7 9 9 4
1 4 . 5 8 7 7 4
2 4 . 8 6 9 7 6
2 4 . 8 6 9 7 6
1 4 . 5 8 7 7 4
1 4 . 5 8 7 7 4
2 4 . 8 6 9 7 6
1 7 . 4 7 9 9 4
1 8 . 0 8 9 1 2
1 7 . 4 7 9 9 4
1 7 . 4 7 9 9 4
2 4 . 8 6 9 7 6
1 8 . 0 8 9 1 2
2 4 . 8 6 9 7 6
1 7 . 4 7 9 9 4
2 4 . 8 6 9 7 6
1 4 . 5 8 7 7 4
1 4 . 5 8 7 7 4
2 4 . 8 6 9 7 6
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34 4 0 5 . 0 6 5 2 1 * * 1 4 . 5 8 7 7 4
35 4 3 0 . 8 5 9 4 0 * * 2 4 . 8 6 9 7 6
36 2 6 5 . 8 7 0 8 1 * * 1 7 . 4 7 9 9 4
37 5 5 2 . 3 1 0 7 6 * * 1 7 . 4 7 9 9 4
38 2 8 9 . 6 6 4 1 0 * * 1 7 . 4 7 9 9 4
39 3 3 5 . 5 6 4 3 1 * * 1 4 . 5 8 7 7 4
40 5 7 4 . 6 5 4 5 1 * * 1 4 . 5 8 7 7 4
41 3 3 7 . 6 1 0 3 8 * * 1 4 . 5 8 7 7 4
42 3 7 3 . 3 3 0 9 0 * * 1 7 . 4 7 9 9 4
43 4 5 0 . 6 9 1 9 1 * * 1 4 . 5 8 7 7 4
44 4 1 4 . 2 2 2 2 5 * * 1 4 . 5 8 7 7 4
45 4 3 3 . 2 5 0 3 8 * * 2 4 . 8 6 9 7 6
46 9 . 1 8 3 3 3 2 4 . 8 6 9 7 6
47 4 7 6 . 4 2 2 6 0 * * 2 4 . 8 6 9 7 6
48 4 9 . 2 6 5 1 0 * * 1 7 . 4 7 9 9 4
49 4 4 4 . 5 8 8 1 3 * * 2 4 . 8 6 9 7 6
50 6 5 5 . 3 8 1 0 8 * * 1 7 . 4 7 9 9 4
51 3 5 5 . 0 4 6 6 3 * * 1 7 . 4 7 9 9 4
52 2 3 6 . 7 0 7 5 7 * * 1 7 . 4 7 9 9 4
53 4 5 0 . 4 1 9 5 1 * * 2 4 . 8 6 9 7 6
54 4 4 9 . 2 0 1 1 9 * * 1 7 . 4 7 9 9 4
55 3 2 2 . 3 9 8 1 9 * * 1 4 . 5 8 7 7 4
56 1 9 5 . 4 9 5 3 1 * * 1 4 . 5 8 7 7 4
57 4 4 3 . 9 0 0 5 7 * * 1 4 . 5 8 7 7 4
58 3 2 7 . 8 3 3 9 3 * * 2 4 . 8 6 9 7 6
59 6 2 5 . 1 6 7 7 0 * * 1 4 . 5 8 7 7 4
60 3 3 8 . 9 0 6 7 9 * * 1 7 . 4 7 9 9 4
61 4 9 9 . 9 0 2 2 9 * * 2 4 . 8 6 9 7 6
62 2 6 0 . 0 4 8 8 5 * * 2 4 . 8 6 9 7 6
63 4 8 5 . 3 7 2 3 7 * * 1 4 . 5 8 7 7 4
64 3 7 3 . 0 6 8 1 4 * * 1 7 . 4 7 9 9 4

RHO = 0 . 5 6 9 6 3 7  
R - s q u a r e d  = 0 . 7 7 8 7 9  
F = 6 3 . 5 1 * *
A u t o c o r r e l a t i o n :  - 0 . 0 9 7  
H e t e r o s k e d a s t i c i t y : 7 7 . 3 5  * *
** significant at 5%
* significant at 10%
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APPENDIX A2.2: PROBABILITY OF TURNAWAY ESTIMATES

Table A2.2: Probability of turnaway
SITEID BEDS ADC

est
S.D. of
ADC
residual

Probability 
of turnaway 
(annual)

Probability 
of turnaway 
(monthly)

Provi 0 689 433 28 0.000E+00 2.35E-11
Provi 00 1085 699 26 0.000E+00 1.32E-12
Provi 03 934 670 75 2.158E-04 1.72E-3
Provi 04 513 285 14 0.000E+00 0.000E+00
Provi 06 1012 745 94 2.253E-03 6.89E-03
Provi 07 524 368 20 3.109E-15 1.58E-03
Provi 11 368 261 45 8.709E-03 2.06E-02
Provi 12 548 330 11 0.000E+00 0.000E+00
Provi 14 781 538 31 2.331E-15 9.99E-01
Provi 15 403 333 22 7.318E-04 9.869E-01
Provi 17 534 339 17 0.000E+00 1.277E-15
Provi 20 988 658 16 0.000E+00 0.000E+00
Provi 21 587 411 23 9.992E-15 6.65E-05
Provi 22 292 173 13 0.000E+00 5.857E-12
Provi 24 484 268 15 0.000E+00 0.000E+00
Provi 30 684 261 18 0.000E+00 0.000E+00
Provi 31 512 379 13 0.000E+00 0.000E+00
Provi 33 527 317 9 0.000E+00 0.000E+00
Provi 5 498 415 95 1.911E-01 2.07E-01
Provi 6 822 440 22 0.000E+00 0.000E+00
Provi 7 580 386 20 0.000E+00 4.47E-15
Prov20 697 231 17 0.000E+00 0.000E+00
Prov22 431 324 18 1.392E-09 1.28E-05
Prov24 653 580 29 5.914E-03 4.31 E-02
Prov26 404 282 19 6.799E-11 4.27E-06
Prov27 666 393 15 0.000E+00 0.000E+00
Prov3 1001 637 29 0.000E+00 0.000E+00
Prov30 613 454 19 O.OOOE+OO 1.63E-10
Prov31 968 680 40 3.032E-13 6.29E-11
Prov32 679 460 16 0.000E+00 0.000E+00
Prov37 438 307 32 2.123E-05 1.08E-03
Prov38 972 610 49 7.527E-14 1.90E-07
Prov39 1274 611 171 5.285E-05 1.42 E-04
Prov4 614 421 49 4.097E-05 9.12E-03
Prov43 737 453 23 0.000E+00 0.000E+00
Prov45 491 282 71 1.622E-03 2.58E-03
Prov48 849 590 29 0.000E+00 2.58E-12
Prov49 462 318 23 1.922E-10 2.57E-6
Prov5 467 344 32 6.061 E-05 1.07E-03
Prov50 676 603 42 4.110E-02 1.09E-01
Prov51 570 382 23 0.000E+00 2.49E-12
Prov53 656 409 19 0.000E+00 0.000E+00
Prov54 655 467 30 1.852E-10 2.61 E-07
Prov55 834 423 47 0.000E+00 5.99E-15
Prov56 641 490 45 3.961 E-04 2.73E-03
Prov59 92 11 17 9.468E-07 8.97E-04
Prov6 721 544 12 0.000E+00 0.000E+00
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Prov60 111 50 12 1.858E-07 2.63E-03
Prov62 592 473 17 1.288E-12 1.23E-06
Prov64 933 670 19 0.000E+00 0.000E+00
Prov66 492 362 17 1.033E-14 4.28E-02
Prov67 386 249 14 0.000E+00 2.47E-15
Prov69 684 477 23 0.000E+00 1.94E-06
Prov75 763 464 30 0.000E+00 O.OOOE+OO
Prov78 614 426 124 6.474E-02 8.31 E-02
Prov82 393 196 28 9.978E-13 3.24E-05
Prov85 852 478 23 O.OOOE+OO O.OOOE+OO
Prov86 595 335 11 0.000E+00 O.OOOE+OO
Prov88 1112 646 95 4.672E-07 6.02E-06
Prov89 530 356 34 1.550E-07 1.77E-04
Prov90 628 521 26 1.934E-05 1.71 E-02
Prov92 374 272 16 9.190E-11 3.56E-07
Prov94 704 491 26 0.000E+00 1.70E-07
Prov99 479 390 84 1.447E-01 1.58E-01

Annual average = 0.007214 
Monthly average = 0.040215
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APPENDIX A2.3: COST FUNCTION ESTIMATES

Table A2.3.1 Log-likelihood values of lambda and theta for grid search
(Sample = non-zero PT)

X
0 0 0.25 0.5 0.75 1.0
0 8478.90 8482.10 8484.27 8485.00 8484.37
0.25 7834.12 7836.80 7838.63 7839.62 7839.93
0.5 5860.38 5862.99 5864.75 5865.64 5865.84
0.75 3644.42 3647.98 3650.59 3652.14 3652.77
1.0 1322.46 1327.05 1330.67 1333.17 1334.58

Optimal values ( X  = 0.76969, 0 = 0.065794) Log-likelihood = 8644.50
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Table A2.3.2 Box-Cox analysis (sample PT= nonzero)
V a r i a b l e C o e f f i c i e n t S t a n d a r d E r r o r  t - s t a t

DEL 0 . 5 2 1 1 9 E - 0 2 0 . 68089E - 0 3 7 . 6 5 5 * *
DEM 0 . 7  0 1 0 7 E - 0 2 0 . 3 4 7 9 7 E - 0 2 2 . 0 1 4 *
P10 - 6 . 0 1 4 6 0 . 6 1 0 8 4 - 9 . 8 4 6 * *
P100 - 1 0 . 3 0 7 1 . 1 2 1 1 - 9 . 1 9 4 * *
P103 - 2 . 8 1 7 0 0 . 6 3 7 1 8 - 4 . 4 2 1 * *
P106 - 3 . 7 7 0 5 0 . 8 9 9 2 7 - 4 . 1 9 3 * *
P107 - 4 . 4 4 9 6 0 . 4 3 1 3 7 - 1 0 . 3 1 5 * *
P i l l 3 . 7 6 6 6 0 . 3 7 3 5 7 1 0 . 0 8 3 * *
PI  14 4 . 7 0 2 6 0 . 7 0 9 9 4 6 . 6 2 4 * *
PI  15 5 . 9 6 8 0 0 . 5 6 2 5 1 1 0 . 6 1 0 * *
PI  17 - 6 . 1 0 9 5 1 . 1 5 3 1 - 5 . 2 9 8 * *
P 1 2 1 - 5 . 6 0 2 7 0 . 5 7 1 1 1 - 9 . 8 1 0 * *
P122 - 4 . 8 2 7 6 1 . 1 6 1 2 - 4 . 1 5 8 * *
P15 3 . 5 9 2 0 0 . 4 6 9 5 7 7 . 6 4 9 * *
P17 - 7 . 0 2 0 4 1 . 1 6 1 9 - 6 . 0 4 2 * *
P22 - 3 . 4 4 3 2 0 . 4 2 2 6 2 - 8  . 147**
P24 - 1 . 5 6 3 1 0 . 6 8 3 1 6 - 2 . 2 8 8 * *
P2 6 - 3 . 6 1 1 7 0 . 4 2 7 5 1 - 8  . 4 4 8 * *
P30 - 7 . 6 4 9 7 1 . 0 3 5 7 - 7 . 3 8 6 * *
P31 - 8 . 9 2 7 1 0 . 6 5 0 6 0 - 1 3 . 7 2 1 * *
P38 - 8 . 2 0 6 1 0 . 6 7 5 4 7 - 1 2 . 1 4 9 * *
P39 - 3 . 6 6 6 3 0 . 7 2 1 8 9 - 5 . 0 7 9 * *
P4 - 2 . 6 4 4 6 0 . 5 0 4 9 0 - 5 . 2 3 8 * *
P45 1 . 9 7 0 5 0 . 4 2 4 4 5 4 . 6 4 2 * *
P48 - 1 0 . 2 2 4 0 . 9 0 4 4 8 - 1 1 . 3 0 3 * *
P49 - 3 . 9 1 8 4 0 . 4 1 7 0 7 - 9 . 3 9 5 * *
P5 0 . 2 6 2 9 8 0 . 3 7 4 2 6 0 . 7 0 3
P50 - 0 . 1 2 2 8 1 0 . 6 5 3 7 9 - 0 . 1 8 8
P51 - 6 . 8 6 3 8 0 . 5 3 8 8 9 - 1 2 . 7 3 7 * *
P54 - 6 . 8 9 2 7 0 . 5 2 0 5 3 - 1 3 . 2 4 2 * *
P55 - 7 . 4 2 5 4 0 . 7 2 8 8 1 - 1 0 . 1 8 8 * *
P56 - 0 . 6 5 1 3 0 0 . 5 9 2 8 0 - 1 . 0 9 9
P59 - 1 . 0 8 3 6 0 . 6 6 0 8 6 - 1 . 6 4 0
P60 0 . 3 4 0 5 7 0 . 5 3 2 6 4 0 . 6 3 9
P62 - 7 . 1 7 6 3 0 . 6 9 4 5 4 - 1 0 . 3 3 3 * *
P66 1 . 9 2 0 4 0 . 5 4 9 0 6 3 . 4 9 8 * *
P69 - 6 . 9 0 5 2 1 . 0 3 4 8 - 6 . 6 7 3 * *
P78 5 . 2 5 4 5 0 . 4 0 3 4 8 1 3 . 0 2 3 * *
P82 - 2 . 6 4 3 2 0 . 4 9 4 7 8 - 5 . 3 4 2 * *
P88 - 4 . 3 9 4 5 0 . 5 3 5 5 7 - 8 . 2 0 5 * *
P89 - 2 . 5 8 1 8 0 . 4 2 6 2 0 - 6 . 0 5 8 * *
P90 - 5 . 2 9 7 1 0 . 8 2 5 6 0 - 6 . 4 1 6 * *
P92 - 4 . 0 8 5 4 0 . 5 5 3 3 2 - 7 . 3 8 3 * *
P94 - 7 . 8 7 2 3 0 . 6 4 5 6 3 - 1 2 . 1 9 3 * *
P99 5 . 3 9 7 0 0 . 4 2 8 2 4 1 2 . 6 0 3 * *
C o n s t a n t - 1 0 . 4 6 7 0 . 5 1 6 5 5 - 2 0 . 2 6 3 * *
Lambda 0 . 7 6 9 6 9
T h e t a 0 . 6 5 7  9 4 E - 0 1
L o g - l i k e l i h o o d  = 8 6 4 4 . 50
N = 814
W h i t e  t e s t f o r  h e t e o r s k e d a s t i c i t y : 0 . 1599
A u t o c o r r e l a t i o n : 0 . 0006
* significant at 5%
* significant at 10%
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Since the Box-Cox analysis using the full sample required a manual transformation of the 
data the identification of the optimal transform became more difficult since we could not 
take advantage of LIMDEP’s MLE search once appropriate starting values had been 
identified. Table A2.3.3 indicates that the optimal transformation occurred when lambda 
and theta both equalled one, i.e. a linear transform. This allowed the TOBIT and 
PROBIT models to be interpreted in a straightforward manner without applying 
transforms to the data. In particular the calculation of the implied trade-off between 
waiting lists and tumaway is uncomplicated. Consequently, subsequent models using the 
full sample size were estimated using a linear specification.

Table A2.3.3 Log-likelihood values of lambda and theta for grid search
(Sample = All PT)

X
e 0 0.25 0.5 0.75 1.0
0 -4829.10 -4836.33 -4835.23 -4834.30 -4833.68
0.25 -9156.10 -10533.93 -10564.52 11184.45 1183.02
0.5 1147.89 1187.66 1186.92 1184.45 1183.02
0.75 2100.48 2141.16 2141.82 2140.06 2139.18
1.0 2858.42 2894.57 2896.87 2897.05 2897.33
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Table A2.3.4 Box-Cox analysis (sample PT= all)__________
V a r i a b l e  C o e f f i c i e n t  S t a n d a r d  E r r o r  t - s t a t

DEL 0 . 1 5 7 4 4 E - 0 4 0 . 1 8 2 0 2 E - 0 5 8 . 6 4 9 * *
DEM 0 . 1 0 7 4 9 E - 0 3 0 . 2 1 8 2 9 E - 0 4 4 . 9 2 4 * *
P10 - 0 . 2 9 6 8 0 E - 0 1 0 . 9 0 3 7 7 E - 0 2 - 3 . 2 8 4 * *
P100 - 0 . 1 2 6 9 3 0 . 1 3 8 3 9 E - 0 1 - 9 . 1 7 2 * *
P103 - 0 . 1 0 6 3 4 0 . 1 3 3 4 1 E - 0 1 - 7 . 9 7 1 * *
P106 - 0 . 1 5 9 1 5 0 . 1 8 7 3 5 E - 0 1 - 8 . 4 9 5 * *
P107 - 0 . 1 9 1 1 5 E - 0 1 0 . 8 7 2 9 2 E - 0 2 - 2 . 1 9 0 * *
P l l l 0 . 2 4 2 1 0 E - 0 1 0 . 8  62 6 8 E - 0 2 2 . 8 0 6 * *
P114 0 . 9 0 6 1 9 0 . 1 5 6 3 9 E - 0 1 5 7 . 9 4 3 * *
P115 0 . 9 4 6 9 5 0 . 1 2 5 9 5 E - 0 1 7 5 . 1 8 2 * *
P117 - 0 . 1 0 7 1 8 E - 0 1 0 . 9 6 3 4 1 E - 0 2 - 1 . 1 1 2
P12 1 - 0 . 5 7 4 4 8 E - 0 1 0 . 9 9 5 2 1 E - 0 2 - 5 . 7 7 2 * *
P122 0 . 1 5 5 9 9 E - 0 1 0 . 1 2 4 7 1 E - 0 1 1 . 2 5 1
PI  5 0 . 1 5 0 2 7 0 . 9 9 1 7 9 E - 0 2 1 5 . 1 5 1 * *
PI  7 - 0 . 2 7 3 2 5 E - 0 1 0 . 1 2 3 5 0 E - 0 1 - 2 . 2 1 2 * *
P22 - 0 . 8 2 5 3 8 E - 0 2 0 . 9 6 1 7 0 E - 0 2 - 0 . 8 5 8
P2 4 - 0 . 7 5 4 8 5 E - 0 1 0 . 1 3 9 8 2 E - 0 1 - 5 . 3 9 9 * *
P2 6 - 0 . 1 0 9 5 2 E - 0 2 0 . 9 6 1 2 4 E - 0 2 - 0 . 1 1 4
P30 - 0 . 5 8  9 3 7 E - 0 1 0 . 1 3 1 2 0 E - 0 1 - 4 . 4 9 2 * *
P31 - 0 . 1 0 6 6 3 0 . 1 3 4 1 3 E - 0 1 - 7 . 9 5 0 * *
P38 - 0 . 1 0 2 0 5 0 . 1 2 1 9 6 E - 0 1 - 8 . 3 6 8 * *
P39 - 0 . 1 1 0 6 9 0 . 1 5 4 6 1 E - 0 1 - 7 . 1 6 0 * *
P4 - 0 . 5 8 9 7 0 E - 0 1 0 . 1 0 4 8 0 E - 0 1 - 5 . 6 2 7 * *
P45 - 0 . 6 4  8 9 0 E - 0 2 0 . 9 6 9 9 7 E - 0 2 - 0 . 6 6 9
P48 - 0 . 1 1 6 2 6 0 . 1 3 8 0 8 E - 0 1 - 8 . 4 1 9 * *
P49 - 0 . 7 8  6 9 7 E - 0 2 0 . 9 6 1 7 1 E - 0 2 - 0 . 8 1 8
P5 - 0 . 8 6 6 4 8 E - 0 2 0 . 8 6 2 9 4 E - 0 2 - 1 . 0 0 4
P50 - 0 . 1 0 5 1 4 E - 0 1 0 . 1 3 2 8 8 E - 0 1 - 0 . 7 9 1
P51 - 0 . 3 0 4 6 8 E - 0 1 0 . 8 9 4 5 5 E - 0 2 - 3 . 4 0 6 * *
P54 - 0 . 7  4 5 0 3 E - 0 1 0 . 1 0 7 1 0 E - 0 1 - 6 . 9 5 6 * *
P55 - 0 . 4 3 9 7 9 E - 0 1 0 . 9 3 3 7 2 E - 0 2 - 4 . 7 1 0 * *
P56 - 0 . 5 5 3 1 6 E - 0 1 0 . 1 3 1 0 5 E - 0 1 - 4 . 2 2 1 * *
P59 0 . 4 0 8 8 1 E - 0 1 0 . 1 3 5 9 8 E - 0 1 3 . 0 0 6 * *
P60 0 . 4 5 3 4  6 E -0 1 0 . 1 0 9 7 0 E - 0 1 4 . 1 3 4 * *
P62 - 0 . 7 4 6 7 8 E - 0 1 0 . 1 3 7 1 6 E - 0 1 - 5 . 4 4 4 * *
P66 0 . 1 4 1 9 6 E - 0 1 0 . 9 8 9 5 1 E - 0 2 1 . 4 3 5
P69 - 0 . 7  5 4 3 5 E - 0 1 0 . 1 3 7 2 9 E - 0 1 - 5 . 4 9 5 * *
P78 0 . 7 2  6 9 8 E - 0 1 0 . 9 0 4 1 0 E - 0 2 8 . 0 4 1 * *
P82 0 . 8 4 5 9 1 E - 0 3 0 . 9 0 4 8 2 E - 0 2 0 . 0 9 3
P88 - 0 . 8 1 1 8 5 E - 0 1 0 . 1 1 4 9 7 E - 0 1 - 7 . 0 6 1 * *
P89 - 0 . 1 9 4 8 7 E - 0 1 0 . 9 7 2 8 3 E - 0 2 - 2 . 0 0 3 * *
P90 - 0 . 1 1 5 3 8 0 . 1 7 0 7 6 E - 0 1 - 6 . 7 5 7 * *
P92 - 0 . 7 3 3 0 6 E - 0 2 0 . 1 2 2 4 4 E - 0 1 - 0 . 5 9 9
P94 - 0 . 9 7 2 0 8 E - 0 1 0 . 1 2 0 9 2 E - 0 1 - 8 . 0 3 9 * *
P99 0 . 1 4 0 9 2 0 . 9 8  07 9 E - 0 2 1 4 . 3 6 8 * *
PI  04 - 0 . 8 2 9 7 0 E - 0 2 0 . 1 2 2 0 8 E - 0 1 - 0 . 6 8 0
PI  12 - 0 . 5 0 3 7 3 E - 0 1 0 . 1 3 2 3 5 E - 0 1 - 3 . 8 0 6 * *
P12 0 - 0 . 7 7 1 0 3 E - 0 1 0 . 1 4 3 4 0 E - 0 1 - 5 . 3 7 7 * *
P12 4 - 0 . 2 9 8 1 7 E - 0 2 0 . 9 6 7 6 9 E - 0 2 - 0 . 3 0 8
P130 - 0 . 1 8 5 1 8 E - 0 1 0 . 9 1 0 1 0 E - 0 2 - 2 . 0 3 5 *
P131 - 0 . 997 3 0 E - 0 4 0 . 1 2 3 2 0 E - 0 1 - 0 . 0 0 8
P133 - 0 . 1 0 0 6 8 E - 0 1 0 . 1 2 1 7 1 E - 0 1 - 0 . 8 2 7
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PI  6 - 0 . 2 8 6 9 3 E - 0 1 0 . 9 0 5 3 0 E - 0 2 - 3 . 1 6 9 * *
P20 - 0 . 5 3 5 6 0 E - 0 3 0 . 9 8  0 0 0 E - 0 2 - 0 . 0 5 5
P27 - 0 . 3 6 2 6 8 E - 0 1 0 . 1 2 5 0 9 E - 0 1 - 2 . 8 9 9 * *
P3 - 0 . 7 7  9 4 8 E - 0 1 0 . 1 2 0 9 6 E - 0 1 - 6 . 4 4 4 * *
P32 - 0 . 3 8 2 1 0 E - 0 1 0 . 1 2 6 4 7 E - 0 1 - 3 . 0 2 1 * *
P43 - 0 . 1 0 2 5 2 0 . 1 5 3 4 1 E - 0 1 -  6 . 6 8  3 * *
P53 - 0 . 3 8 0 5 3 E - 0 1 0 . 1 0 1 0 6 E - 0 1 - 3 . 7 6 5 * *
P6 - 0 . 7 0 9 7 7 E - 0 1 0 . 1 3 5 9 5 E - 0 1 - 5 . 2 2 1 * *
P64 - 0 . 9 7 5 2 6 E - 0 1 0 . 1 2  9 5 8 E - 0 1 - 7 . 5 2 7 * *
P67 - 0 . 1 3 3 3 1 E - 0 2 0 . 9 7 2 9 8 E - 0 2 - 0 . 1 3 7
P75 - 0 . 3 2 6 6 6 E - 0 1 0 . 1 0 1 5 6 E - 0 1 - 3 . 2 1 6 * *
P85 - 0 . 6 4 4 2 3 E - 0 1 0 . 1 0 1 5 5 E - 0 1 - 6 . 3 4 4 * *
P86 - 0 . 2  422 I E - 0 1 0 . 1 2 3 3 7 E - 0 1 - 1 . 9 6 3 *

Lambda 1 . 0
T h e t a 1 . 0

L o g - L  = 2 8 9 7 . 0 5
N = 1512
W h i t e  t e s t f o r  h e t e o r s k e d a s t i c i t y : 0. 6 5 843
A u t o c o r r e l a t i o n : 0 . 3 0 260
* s i g n i f i c a n t  a t  5% l e v e l  
** s i g n i f i c a n t  a t  10% l e v e l
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Table A2.3.5 Tobit model
V a r i a b l e C o e f f i c i e n t S t a n d a r d  E r r o r t - s t a t

DEL 0 . 2 7 8 0 3 E - 0 4 0 . 2 8 5 6 2 E - 0 5 9 . 7 3 4 * *
DEM 0 . 1 1 3 7 4 E - 0 3 0 . 3 0 8 8 6 E - 0 4 3 . 6 8 3 * *
C o n s t a n t - 0 . 7 8 8 7 0 E - 0 1 0 . 1 2 0 2 6 E - 0 1 - 6 . 5 5 8 * *
P10 - 0 . 8 7 5 4 5 E - 0 1 0 . 1 4 1 1 9 E - 0 1 - 6 . 2 0 1 * *
P100 - 0 . 2 7 2 5 4 0 . 2 4 3 5 1 E - 0 1 - 1 1 . 1 9 2 * *
PI  03 - 0 . 1 6 2 0 4 0 . 1 8 4 8 9 E - 0 1 - 8 . 7 6 4 * *
P106 - 0 . 2 5 6 3 3 0 . 2  682 5 E - 0 1 - 9 . 5 5 6 * *
P107 - 0 . 4 4 6 6 9 E - 0 1 0 . 1 1 9 7 1 E - 0 1 - 3 . 7 3 1 * *
P i l l 0 . 2 4 7 8 0 E - 0 1 0 . 1 1 2 5 0 E - 0 1 2 . 2 0 3 * *
P I  14 0 . 8 7 0 4 3 0 . 2 1 0 3 7 E - 0 1 4 1 . 3 7 6 * *
P115 0 . 9 2 4 1 7 0 . 1 6 6 1 7 E - 0 1 5 5 . 6 1 6 * *
P I  17 - 0 . 8 8 5 2 0 E - 0 1 0 . 1 9 9 6 5 E - 0 1 - 4 . 4 3 4 * *
P 1 2 1 - 0 . 1 2 3 1 0 0 . 1 5 0 4 4 E - 0 1 - 8 . 1 8 3 * *
P122 - 0 . 3 8 8 1 9 E - 0 1 0 . 2 2 9 7 8 E - 0 1 - 1 . 6 8 9
PI  5 0 . 1 1 5 4 9 0 . 1 3 5 5 2 E - 0 1 8 . 5 2 2 * *
P17 - 0 . 9 9 2 8 9 E - 0 1 0 . 2 3 1 4 1 E - 0 1 - 4 . 2 9 1 * *
P22 - 0 . 1 4 0 5 3 E - 0 1 0 . 1 2 6 0 8 E - 0 1 - 1 . 1 1 5
P2 4 - 0 . 1 4 4 7 8 0 . 1 9 8 7 1 E - 0 1 - 7 . 2 8 6 * *
P2 6 - 0 . 6 1 3 3 6 E - 0 2 0 . 1 2 6 6 7 E - 0 1 - 0 . 4 8 4
P30 - 0 . 1 5 7 5 9 0 . 2 5 4 1 1 E - 0 1 - 6 . 2 0 2 * *
P31 - 0 . 1 6 4 3 7 0 . 1 8  6 6 7 E - 0 1 - 8 . 8 0 5 * *
P38 - 0 . 1 8 6 1 0 0 . 1 8 2 5 3 E - 0 1 - 1 0 . 1 9 6 * *
P39 - 0 . 1 6 6 7 8 0 , 2 1 1 2 8 E - 01 - 7 . 8 9 4 * *
P4 - 0 . 1 0 1 0 8 0 . 1 4 5 2 4 E - 0 1 - 6 . 9 6 0 * *
P45 - 0 . 1 4 2 5 0 E - 0 1 0 . 1 2 6 9 5 E - 0 1 - 1 . 1 2 3
P48 - 0 . 2 3 3 6 6 0 . 2 2 4 0 1 E - 0 1 - 1 0 . 4 3 1 * *
P49 - 0 . 1 2 2 0 7 E - 0 1 0 . 1 2 5 4 2 E - 0 1 - 0 . 9 7 3
P5 - 0 . 1 2 1 7 2 E - 0 1 0 . 1 1 2 5 5 E - 0 1 - 1 . 0 8 2
P50 - 0 . 7 8 5 0 4 E - 0 1 0 . 1 8 9 6 2 E - 0 1 - 4 . 1 4 0 * *
P51 - 0 . 8 3 6 0 1 E - 0 1 0 . 1 3 4 2 0 E - 0 1 - 6 . 2 2 9 * *
P54 - 0 . 1 2 0 6 5 0 . 1 4 8  9 0 E - 0 1 - 8 . 1 0 2 * *
P55 - 0 . 1 2 4 2 2 0 . 1 5 5 8 3 E - 0 1 - 7 . 9 7 1 * *
P56 - 0 . 8 4 9 4 1 E - 0 1 0 . 1 7 4 0 2 E - 0 1 - 4 . 8 8 1 * *
P59 0 . 5 0 1 4 9 E - 0 1 0 . 1 8 0 0 0 E - 0 1 2 . 7 8 6 * *
P60 0 . 5 7 9 2 5 E - 0 1 0 . 1 4 5 9 8 E - 0 1 3 . 9 6 8 * *
P62 - 0 . 1 3 0 0 3 0 . 1 9 2 9 1 E - 0 1 - 6 . 7 4 0 * *
P66 - 0 . 1 7 6 4 6 E - 0 1 0 . 1 3 6 1 1 E - 0 1 - 1 . 2 9 6
P69 - 0 . 1 6 8 7 5 0 . 2 3 5 0 1 E - 0 1 - 7 . 1 8 0 * *
P78 0 . 7 4 8 5 8 E - 0 1 0 . 1 1 9 0 1 E - 0 1 6 . 2 9 0 * *
P82 - 0 . 3 1 6 9 7 E - 0 1 0 . 1 2 9 5 3 E - 0 1 - 2 . 4 4 7 * *
P88 - 0 . 1 1 6 5 8 0 . 1 5 6 1 0 E - 0 1 - 7 . 4 6 8 * *
P89 - 0 . 2 9 8 8 7 E - 0 1 0 . 1 2 7 3 1 E - 0 1 - 2 . 3 4 8 * *
P90 - 0 . 1 9 9 7 7 0 . 2 4 4 0 1 E - 0 1 - 8 . 1 8 7 * *
P92 - 0 . 1 8 5 2 4 E - 0 1 0 . 1 6 2 3 3 E - 0 1 - 1 . 1 4 1
P94 - 0 . 1 8 2 5 5 0 . 1 7 8 1 3 E - 0 1 - 1 0 . 2 4 8 * *
P99 0 . 1 3 6 0 7 0 . 1 2 8 2 2 E - 0 1 1 0 . 6 1 3 * *
P104 - 0 . 2 5 9 7 9 4 . 3 3 2 1 - 0 . 0 6 0
PI  12 - 0 . 3 3 2 6 2 4 . 2 1 8 1 - 0 . 0 7 9
P120 - 0 . 3 6 7 2 9 3 . 9 4 5 9 - 0 . 0 9 3
P12 4 - 0 . 2 5 2 1 8 3 . 0 0 7 2 - 0 . 0 8 4
P130 - 0 . 2 7 9 9 5 2 . 4 7 2 5 - 0 . 1 1 3
P131 - 0 . 2 3 8 1 8 4 . 2 9 0 8 - 0 . 0 5 6
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P133 - 0 .. 2 6 1 6 7 4 .. 1744 - 0 .. 063
PI  6 - 0 .. 2 8 5 1 3 2 .. 4284 - 0 .. 117
P20 - 0 ,. 2 5 1 2 2 2 ,. 9321 - 0 .. 086
P27 - 0 ,. 3 0 2 7 8 4 ,. 0965 - 0 .. 074
P3 - 0 ,. 36 522 2 ,. 6780 - 0  .. 136
P32 - 0  ,. 3 0 0 0 7 4 ,. 2 7 0 8 - 0  .. 070
P43 - 0  .. 4 2 8 6 6 3 .. 7 1 9 5 - 0  .,115
P53 - 0  .. 3 0 4 6 7 3.. 0110 - 0 .,101
P6 - 0 . . 3 5 3 7 9 4 .. 0 6 8 5 - 0 . , 087
P64 - 0 .. 3 9440 2 .. 7 8 3 1 - 0 .,142
P67 - 0 .. 9 3 9 7  9 E -0 1 0 .. 2 4 4 9 5 E - 0 1 - 3 . , 8 3 7 * * **
P75 - 0 .. 2 8 9 9 7 3.. 0308 - 0 ., 096
P85 - 0 .. 3 5 1 8 3 2 ..2 8 1 8 - 0 ., 154
P86 - 0 . . 2 9 0 1 1 3.. 9775 - 0 . , 073

T h r e s h o l d  v a l u e s  f o r  t h e  m o d e l :  Low er= 0 . 0 0 0 0
U p p e r =  + I n f i n i t y

L o g - l i k e l i h o o d  = 1 2 1 9 . 8 2 7
N = 1512
H e t e o r s k e d a s t i c i t y : 0 . 6 6
A u t o c o r r e l a t i o n  :__________ 0 . 0 3 2 4 _____________________________
* s i g n i f i c a n t  a t  5% l e v e l
** s i g n i f i c a n t  a t  10% l e v e l
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Heckman two-stage model

B i n o m i a l  P r o b i t  M ode l  
Maximum L i k e l i h o o d  E s t i m a t e s  
D e p e n d e n t  v a r i a b l e  
Number o f  o b s e r v a t i o n s  
I t e r a t i o n s  c o m p l e t e d  
Log l i k e l i h o o d  f u n c t i o n  
R e s t r i c t e d  l o g  l i k e l i h o o d  
C h i - s q u a r e d

Y1
1512

3
- 1 0 4 0 . 0 3 0  
- 1 0 4 3 . 5 8 4  

7 . 1 0 8 4 5 7

( b i n a r y  y 0 o r  n o t  z e r o )

Table A2.3.6 Binomial probit model
V a r i a b l e C o e f f i c i e n t S t a n d a r d  E r r o r t - s t a t

DEL 0 . 6 5 0 4 8 E - 0 4 0 . 2 4 5 0 7 E - 0 4 2 . 6 5 4 * *
DEM - 0 . 572 6 9 E - 0 3 0 . 3 1 0 1 3 E - 0 3 - 1 . 8 4 7
C o n s t a n t 0 . 1 0 1 0 4 0 . 9 4 6 2 6 E - 0 1 1 . 0 6 8
* s i g n i f i c a n t  a t  5% l e v e l  
** s i g n i f i c a n t  a t  10% l e v e l

F r e q u e n c i e s  o f  a c t u a l  & p r e d i c t e d  o u t c o m e s  
P r e d i c t e d  o u t c o m e  h a s  maximum p r o b a b i l i t y .

P r e d i c t e d
A c t u a l 0 1 TOTAL

0 55 643 698
1 78 736 814

TOTAL 36 1379 1512

S a m p l e  S e l e c t i o n  M o d e l
P r o b i t  s e l e c t i o n  e q u a t i o n  b a s e d  o n  Y1
S e l e c t i o n  r u l e  i s :  O b s e r v a t i o n s  w i t h  Y1 = 1

R e s u l t s  o f  s e l e

D a t a  s e t  
S e l e c t e d  s a m p l e

i o n  :
D a t a  p o i n t s  

1512 
814

Sum o f  w e i g h t s  
1 5 1 2 . 0  

8 1 4 . 0

c t
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Table A2.3.7 Two stage least squares regression
V a r i a b l e C o e f f i c i e n t S t a n d a r d  E r r o r t - s t a t
DEL 0 . 2 6 2 5 5 E - 0 4 0 . 4 5 1 5 6 E - 0 5 5 . 8 1 4 * *
DEM 0 . 1 2 4 6 1 E - 0 3 0 . 5 9 2 7 5 E - 0 3 0 . 2 1 0
PIO - 0 . 4 1 4 6 3 E - 0 1 0 . 1 8 4 4 5 E - 0 1 - 2 . 2 4 8 * *
P100 - 0 . 1 9 2 9 2 0 . 3 2 7 5 4 E - 0 1 - 5 . 8 9 0 * *
P103 - 0 . 1 5 0 6 6 0 . 1 8 7 4 4 E - 0 1 - 8 . 0 3 8 * *
P106 - 0 . 2 3 9 5 8 0 . 2 7 4 8 1 E - 0 1 - 8 . 7 1 8 * *
P107 - 0 . 2 7 2 2 5 E - 0 1 0 . 1 3 0 1 8 E - 0 1 - 2 . 0 9 1 *
P i l l 0 . 2 4 5 7 7 E - 0 1 0 . 1 1 3 4 1 E - 0 1 2 . 1 6 7 *
P114 0 . 8 8 1 2 7 0 . 2 0 8 7 3 E - 0 1 4 2 . 2 2 0 * *
P115 0 . 9 2 8 2 6 0 . 1 6 8 4 3 E - 0 1 5 5 . 1 1 4 * *
P117 - 0 . 1 6 8 0 4 E - 0 1 0 . 3 4 3 8 7 E - 0 1 - 0 . 4 8 9
P121 - 0 . 1 0 2 1 0 0 . 1 7 0 6 0 E - 0 1 - 5 . 9 8 5 * *
P122 0 . 1 0 2 4 6 E - 0 1 0 . 3 5 8 3 9 E - 0 1 0 . 2 8 6
PI  5 0 . 1 2 1 1 4 0 . 1 3 8 7 1 E - 0 1 8 . 7 3 4 * *
P17 - 0 . 4 7 7 9 7 E - 0 1 0 . 3 4 5 9 1 E - 0 1 - 1 . 3 8 2
P22 - 0 . 1 1 6 9 0 E - 0 1 0 . 1 2 6 5 9 E - 0 1 - 0 . 9 2 3
P24 - 0 . 1 3 2 8 9 0 . 2 0 7 9 5 E - 0 1 - 6 . 3 9 1 * *
P2 6 - 0 . 3 0 6 0 8 E - 0 2 0 . 1 2 8 1 3 E - 0 1 - 0 . 2 3 9
P30 - 0 . 1 2 6 2 2 0 . 3 0 9 3 9 E - 0 1 - 4 . 0 8 0 * *
P31 - 0 . 1 4 9 0 5 0 . 1 9 0 1 2 E - 0 1 - 7 . 8 4 0 * *
P38 - 0 . 1 5 8 7 0 0 . 1 9 9 6 4 E - 0 1 - 7 . 9 4 9 * *
P39 - 0 . 1 5 4 9 3 0 . 2 1 1 2 6 E - 0 1 - 7 . 3 3 4 * *
P4 - 0 . 9 4 3 6 4 E - 0 1 0 . 1 5 1 7 3 E - 0 1 - 6 . 2 1 9 * *
P45 - 0 . 1 3 2 4 7 E - 0 1 0 . 1 2 7 3 5 E - 0 1 - 1 . 0 4 0
P48 - 0 . 1 8 7 7 4 0 . 2 7 1 8 0 E - 0 1 - 6 . 9 0 7 * *
P49 - 0 . 1 1 2 5 3 E - 0 1 0 . 1 2 4 7  6 E -01 - 0 . 9 0 2
P5 - 0 . 1 0 9 6 5 E - 0 1 0 . 1 1 2 9 4 E - 0 1 - 0 . 9 7 1
P50 - 0 . 6 6 4 5 4 E - 0 1 0 . 1 9 8 1 6 E - 0 1 - 3 . 3 5 4 * *
P51 - 0 . 5 0 6 2 7 E - 0 1 0 . 1 6 1 7 9 E - 0 1 - 3 . 1 2 9 * *
P54 - 0 . 1 1 0 8 3 0 . 1 5 7 3 9 E - 0 1 - 7 . 0 4 1 * *
P55 - 0 . 6 2 7 7 8 E - 0 1 0 . 2 1 8 0 1 E - 0 1 - 2 . 8 8 0 * *
P56 - 0 . 7 8  8 6 5 E - 0 1 0 . 1 7 7 9 7 E - 0 1 - 4 . 4 3 1 * *
P59 0 . 4 6 4 3 7 E - 0 1 0 . 2 9 3 8 2 E - 0 1 1 . 5 8 0
P60 0 . 5 5 5 6 5 E - 0 1 0 . 2 3 7 4 6 E - 0 1 2 . 3 4 0 * *
P62 - 0 . 1 1 3 8 0 0 . 2 0 8 1 2 E - 0 1 - 5 . 4 6 8 * *
P66 0 . 4 0 2 6 1 E - 0 1 0 . 1 6 4 0 3 E - 0 1 2 . 4 5 4 * *
P69 - 0 . 1 2 6 7 4 0 . 3 0 7 7 5 E - 0 1 - 4 . 1 1 8 * *
P78 0 . 7  6 4 1 5 E - 0 1 0 . 1 2 4 1 6 E - 0 1 6 . 1 5 5 * *
P82 - 0 . 1 0 9 1 0 E - 0 1 0 . 1 6 1 1 0 E - 0 1 - 0 . 6 7 7
P88 - 0 . 1 0 7 6 1 0 . 1 5 6 8 1 E - 0 1 - 6 . 8 6 2 * *
P89 - 0 . 2 7 7  5 5 E - 0 1 0 . 1 2 7 8 7 E - 0 1 - 2 . 1 7 1 *
P90 - 0 . 1 8 6 9 3 0 . 2 5 5 1 0 E - 0 1 - 7 . 3 2 8 * *
P92 - 0 . 1 5 0 5 3 E - 0 1 0 . 1 6 6 2 7 E - 0 1 - 0 . 9 0 5
P94 - 0 . 1 3 7 8 9 0 . 1 9 5 4 3 E - 0 1 - 7 . 0 5 6 * *
P99 0 . 1 3 8 1 6 0 . 1 2 9 5 9 E - 0 1 1 0 . 6 6 1 * *
C o n s t a n t - 0 . 5 4 4 4 0 E - 0 1 0 . 4 2 8 2 6 - 0 . 1 2 7
LAMBDA - 0 . 4 2 0 2 1 E - 0 1 0 . 9 9 2 6 6 - 0 . 0 4 2
L o g - l i k e l i h o o d  = 1358 .7 9
N = 1512
H e t e o r s k e d a s t i c i t y  : 0 . 957
A u t o c o r r e l a t i o n  : 0 . 302
* s i g n i f i c a n t  a t  5% l e v e l  
** s i g n i f i c a n t  a t  10% l e v e l
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The Heckman two-stage model is not, without its problems. Most notably, the PROBIT 
analysis, which is the first stage of the procedure, cannot deal with dummy variables 
where the dependent variable does not change. That is, if the probability of tumaway 
remains at zero for a single provider for all observations then the PROBIT analysis 
cannot deal with these dummy variables. As this condition is likely to be violated by a 
number of our providers we opted to undertake a simple bivariate regression for the 
probit analysis. (Another option would have been to identify all the providers who 
violated the above condition and take out these dummy variables, either of these 
approaches is less than ideal).

The model above is very similar to the Box-Cox linear model; the coefficients are almost 
identical for all variables (see table A2.3.8 below). This indicates that the exclusion of 
non-zero values may not lead to the introduction of bias in the estimation. Furthermore, 
the insignificant values of lambda supports this supposition. Therefore we can use the 
sampled data to estimate the trade-off.
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Table A2.3.8 Box-Cox linear specification_____________
V a r i a b l e  C o e f f i c i e n t  S t a n d a r d  E r r o r  t - s t a t

DEL 0 . 2  6 3 9 3 E - 0 4 0 . 3 1 5 1 8 E - 0 5 8 . 3 7 4 * *
DEM 0 . 9 9 5 8 8 E - 0 4 0 . 3 2 5 0 0 E - 0 4 3 . 0 6 4 * *
P10 - 0 . 4 1 2 9 2 E - 0 1 0 . 1 8 5 2 8 E - 0 1 - 2 . 2 2 9 * *
P100 - 0 . 1 9 2 8 8 0 . 3 4 3 0 2 E - 0 1 - 5 . 6 2 3 * *
PI  03 - 0 . 1 5 0 5 8 0 . 1 9 2 7 7 E - 0 1 - 7 . 8 1 1 * *
P106 - 0 . 2 3 9 5 1 0 . 2 8 4 3 7 E - 0 1 - 8 . 4 2 2 * *
P107 - 0 . 2 7 1 2 2 E - 0 1 0 . 1 3 0 8 5 E - 0 1 - 2 . 0 7 3 * *
P i l l 0 . 2 4 4 9 9 E - 0 1 0 . 1 1 3 8 2 E - 0 1 2 . 1 5 3 *
P114 0 . 8 8 1 1 6 0 . 2 1 6 5 3 E - 0 1 4 0 . 6 9 4 * *
P115 0 . 9 2 8 3 9 0 . 1 6 9 7 0 E - 0 1 5 4 . 7 0 7 * *
P117 - 0 . 1 6 6 9 1 E - 0 1 0 . 3 5 1 6 2 E - 0 1 - 0 . 4 7 5
P 1 2 1 - 0 . 1 0 1 9 6 0 . 1 7 1 8 7 E - 0 1 - 5 . 9 3 2 * *
P122 0 . 9 9 3 8 0 E - 0 2 0 . 3 5 3 3 9 E - 0 1 0 . 2 8 1
PI  5 0 . 1 2 1 2 4 0 . 1 4 0 4 1 E - 0 1 8 . 6 3 5 * *
PI  7 - 0 . 4 7  6 6 9 E - 0 1 0 . 3 5 3 7  4 E -01 - 1 . 3 4 8
P22 - 0 . 1 1 6 4 5 E - 0 1 0 . 1 2 8 7 7 E - 0 1 - 0 . 9 0 4
P24 - 0 . 1 3 2 7 0 0 . 2 0 9 7 7 E - 0 1 - 6 . 3 2 6 * *
P2 6 - 0 . 3 0 8 2 7 E - 0 2 0 . 1 3 0 3 6 E - 0 1 - 0 . 2 3 6
P30 - 0 . 1 2 6 0 5 0 . 3 1 5 9 3 E - 0 1 - 3 . 9 9 0 * *
P31 - 0 . 1 4 8 9 8 0 . 1 9 6 5 1 E - 0 1 - 7 . 5 8 1 * *
P38 - 0 . 1 5 8 5 8 0 . 2 0 4 6 8 E - 0 1 - 7 . 7 4 8 * *
P39 - 0 . 1 5 4 9 7 0 . 2 1 9 1 5 E - 0 1 - 7 . 0 7 1 * *
P4 - 0 . 9 4 2 0 9 E - 0 1 0 . 1 5 1 5 2 E - 0 1 - 6 . 2 1 8 * *
P45 - 0 . 1 3 3 1 1 E - 0 1 0 . 1 2 8 8 2 E - 0 1 - 1 . 0 3 3
P48 - 0 . 1 8 7 5 5 0 . 2 7 8 1 5 E -01 - 6 . 7 4 3 * *
P49 - 0 . 1 1 2 2 6 E - 0 1 0 . 1 2 7 1 0 E - 0 1 - 0 . 8 8 3
P5 - 0 . 1 0 8 9 1 E - 0 1 0 . 1 1 3 9 6 E - 0 1 - 0 . 9 5 6
P50 - 0 . 6 6 2 8 3 E - 0 1 0 . 2 0 0 3 5 E - 0 1 - 3 . 3 0 8 * *
P51 - 0 . 5 0 4 9 2 E - 0 1 0 . 1 6 2 7 7 E - 0 1 - 3 . 1 0 2 * *
P54 - 0 . 1 1 0 6 5 0 . 1 5 5 9 9 E - 0 1 - 7 . 0 9 3 * *
P55 - 0 . 6 2 6 1 1 E - 0 1 0 . 2 2 0 9 0 E - 0 1 - 2 . 8 3 4 * *
P56 - 0 . 7 8 6 8 6 E - 0 1 0 . 1 7 8 2 3 E - 0 1 - 4 . 4 1 5 * *
P59 0 . 4 5 4 7 3 E - 0 1 0 . 1 8 3 7 4 E - 0 1 2 . 4 7 5 * *
P60 0 . 5 4 7 8 7 E - 0 1 0 . 1 4 9 7 1 E - 0 1 3 . 6 6 0 * *
P62 - 0 . 1 1 3 6 1 0 . 2 0 9 6 9 E - 0 1 - 5 . 4 1 8 * *
P66 0 . 4 0 3 6 6 E - 0 1 0 . 1 6 6 1 0 E - 0 1 2 . 4 3 0 * *
P69 - 0 . 1 2 6 5 5 0 . 3 1 4 5 3 E - 0 1 - 4 . 0 2 3 * *
P78 0 . 7 6 5 7 1 E - 0 1 0 . 1 2 1 3 9 E - 0 1 6 . 3  08 * *
P82 - 0 . 1 1 1 9 1 E - 0 1 0 . 1 4 8 2 1 E - 0 1 - 0 . 7 5 5
P88 - 0 . 1 0 7 5 4 0 . 1 6 1 0 6 E - 0 1 - 6 . 6 7 7 * *
P89 - 0 . 2 7  6 7 4 E - 0 1 0 . 1 2 9 2 3 E - 0 1 - 2 . 1 4 1 *
P90 - 0 . 1 8 6 7 2 0 . 2 5 8 7 7 E - 0 1 - 7 . 2 1 6 * *
P92 - 0 . 1 5 1 2 2 E - 0 1 0 . 1 6 8 1 9 E - 0 1 - 0 . 8 9 9
P94 - 0 . 1 3 7 6 9 0 . 1 9 5 7 3 E - 0 1 - 7 . 0 3 5 * *
P99 0 . 1 3 8 2 6 0 . 1 3 0 2 1 E - 0 1 1 0 . 6 1 8 * *
C o n s t a n t - 0 . 7 2 5 7 0 E - 0 1 0 . 1 2 3 2 9 E - 0 1 - 5 . 8 8 6 * *

L o g - l i k e l i h o o d  = 1 3 3 4 . 5 8  
N = 814
H e t e o r s k e d a s t i c i t y : 0 . 8 8 2
A u t o c o r r e l a t i o n  :__________ 0 , 3 6 2
* significant at 5% level
** significant at 10% level
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APPENDIX 3: DATA

This appendix is separated into two main sections. The first deals with data 
definitions and sources, the second deals with descriptive statistics for the data used in 
the analyses presented in the main text. These descriptive data will be separated into 
three parts, referring to the three different analyses undertaken in Chapters 4 and 5.

A3.1: Data sources

The data were collected from three sources; CHKS Ltd, C1PFA and Ivan Csaba, 
Central European University, Budapest.

The primary data were collected for activity variables, such as number of admissions, 
length of stay, number of beds, etc. These data were obtained from CHKS Ltd.

CHKS was founded as a transatlantic joint venture between CPHA (Commission on 
Professional and Hospital Activity) in the US and CASPE research in the UK. CHKS 
is a subsidiary of HCIA Inc. based in the US which holds the world’s largest patient- 
based hospital database (350 million records). CHKS is the biggest supplier of 
comparative hospital data in the UK and a major supplier in Europe.

CHKS collects anonymised copies of the Contract Minimum Data Sets (CMDS) 
returns that hospital have a mandatory duty to submit to purchasers. These contain 
information for each finished consultant episode. The data include detailed patient- 
based information as well as information on the type of admission, length of stay, etc. 
CHKS validates these data and then complies reports summarising the information 
received. They produce a publication entitled Acute Care which are a series of annual 
handbooks providing information on hospital performance at an HRG level.

CHKS are overseen by a board of trustees chaired by the King’s Fund with 
representatives from the Royal College of Nurses, the Royal College of Midwives and 
other professional organisations. One of the aims of CHKS is to improve the quality 
of routinely collected patient-based information.

For our purposes data were aggregated to trust level and all data were anonymised by 
CHKS. All activity data provided by CHKS were on a monthly basis.

The initial data set provided by CHKS were obtained for 47, 83 and 119 hospitals in 
England, Wales, Scotland and Northern Ireland for financial years 1992/3, 1993/4 and 
1994/5 respectively, giving a total of 2,988 observations. Hospitals with incomplete 
observations within any (financial) year were excluded. This restricted the sample to 
124 hospitals. However, since the analysis required extrapolation between the 
different estimated equations we only considered data for those hospitals for which we 
had both cost and activity data. The minimum data set was therefore restricted by the 
availability of cost data. Whilst this reduced our sample size we wanted to avoid 
potential problems of bias that might have occurred had we used different hospitals to 
estimate the different relationships. This restricted our sample to English hospitals
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only since cost data were only available for English trusts

A complete data set, where cost data were also available, was obtained for 64 provider 
units. The activity data provided 1512 observational points. Of these 288 were from 
1992/93, 480 from 1993/94, and 744 from 1994/95.

A list of variables and their definitions and means and standard deviations are 
presented in Table A3.1 below.

Table A3.1: Variable definitions
Variable name Definition Mean

(S.D.)
ADMS Total number of admissions 4,153.58

(1753.71)
EMERGADM Number of admissions categorised as 1,390.69

emergency (by provider) (538.03)
ELADM Number of admissions categorised as elective 2,063.92

(by provider) (1046.79)
OTHADM maternity care and transfers from other 697.92

providers (365.99)
BEDS Total number of available staffed beds 975.38

(365.42)
ALOS Average length of stay (days) for all admissions 4.75

(1.69)
ELALOS Average length of stay (days) for elective 4.76

admissions (.74)
EMERGALOS Average length of stay (days) for emergency 6.90

admissions (1.10)
OTHALOS Average length of stay (days) for admissions 4.33

categorised as ‘other’ (2.05)
AVCMIX Casemix weight based on DRG weights .69

(.09)
VALIDWAIT Total number of elective patients waiting for 1,617.66

admission (1069.51)
PROV Provider type (teaching London, teaching 

provincial, children’s, non-teaching, ‘other’)
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Each trust (provider unit) was categorised by CHKS as teaching London (TL), 
teaching provincial (TP), children’s (C), non-teaching (N) or other (--). Of the sample 
of 64 hospitals the breakdown is listed in Table A3.2 below.

Table A3.2: Hospital categories
Hospital type Number in sample
TL 6
TP 8
N 45
C 1
— 4

The sample contained 14 (22%) teaching hospitals. The majority of hospitals were, 
however, non-teaching hospitals 50 (78%).

The sample provided a total of 6,278,701 inpatient admissions to hospitals in 
England over the three year sample period. 1,161,573 from 1992/93, 1,892,293 from 
1993/94, and 3,224,835 from 1994/95. The number of monthly admissions ranged 
from 494 to 9,210. Figure A3.1 provides a histogram of monthly admissions.

Figure A3.1: Admissions

Of these admissions, 3,120,653 were categorised as elective, 2,102,722 were 
emergency and 1,055,256 were ‘other’, giving a total of 3,157,981 non-elective 
admissions in total.
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In addition to the monthly activity data provided by CHKS we also collected data on 
some additional variables that were not held within the CHKS dataset. These 
variables were provided by Ivan Csaba (based on the Department of Health dataset) 
and were provided on an annual basis and are defined in Table A3.3 below. The data 
provided by Ivan Csaba were tied into the CHKS data by CHKS.

Table A3.3: Annual activity data
Variable name Definition Mean

(S.D.)
DAYATT Total number of day attendances 11,110.58

(12766.99)
AEATT Total number of non-inpatient Accident and 

Emergency attendances
59,137.13
(26781.11)

OPATT Total number of non-A&E outpatient 
attendances

190,243.08
(93857.06)

CATCHSH % share of beds in total area (DoH (1989)) 
DP41

.83
(.28)

CATCHD Catchment population of provider (DoH 
(1989))

356.44
(222.83)

Cost data were taken from CIPFA Healthcare data sets (CIPFA. 1995-1996) for 1994 
and 1995. Cost data refer to those data reported in the annual accounts of NHS trust 
hospitals, including operating costs, capital costs and operating surplus and losses, and 
are reported in an annual form. Data for financial year 1992/93 were also provided by 
Ivan Csaba (due to the unavailability of these data from CIPFA). The variables and 
their definitions are presented in Table A3.4 below. These data were tied into the 
CHKS data set by CHKS to retain the anonymity of the hospitals. All costs were 
converted into 1995 prices using HCHS inflation indices.

A complete data set were obtained for 23, 48 and 66 hospitals for the financial years 
1992/3, 1993/4 and 1994/5 respectively. However, the full sample used in analyses 
refers to the same 64 hospitals identified in the activity data. The number of 
observations for the cost data are fewer than for activity data due to lack of data 
availability over the three years. The sample therefore refers to 85 annual 
observational points.
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Table A3.4: Variable definitions
Variable name Definition Mean (000) 

(S.D.)
OPEXP Operating expenses 76,364.40

(36,911.28)
O P E R A  T I N G  E X P E N S E S

BOARD Board members' fees 254.34
(164.14)

SAL Staff costs 48805.02
(22049.00)

SUPCLIN Supplies and services: Clinical 10567.62
(8191.61)

SUPGEN Supplies and services: General 1715.91
(783.32)

ESTAB Establishment 1774.09
(737.77)

TRANSEXP Transport 208.83
(236.36)

PREM Premises 5136.06
(2812.11)

BADDEBT Bad debts 81.46
(194.71)

DEPREC Depreciation and amorisation 3318.34
(2006.16)

AUDIT Audit (including fees and other 
auditors' remuneration

98.27
(39.74)

OTHER Other expenses including 
miscellaneous services from 
other NHS providers

4431.56
(2476.06)

TOTAL VARIABLE 
COST

OPEXP-(DEPREC+BADDEBT) 72,893.44
(35,174.58)

N U M B E R  O F  

E M P L O Y E E S

MEDNUM Medical and dental 216.84
(116.08)

NURSNUM Nursing and midwifery 1149.55
(468.88)

PROFNUM Professions allied to medicine 146.68
(66.23)

ANCILNUM Ancillaries 315.58
(226.17)

ADMJNNUM Admin and clerical 446.20
(217.86)

WORKNUM Works 45.20
(27.46)

TECHNUM Other professional and technical 221.79
(148.36)

296



App-3

OTHNUM All other staff 37.79
(46.74)

TOTNUM Total number of employees 2579.64
(1185.02)

The sample represents total operating expenditure of £6,490,971,000 over the three 
year period, the range of operating expenses (in £000) covered in the sample is 
presented in Figure A2 below. The average operating expense is £76,364,400

Figure A3.2: Operating expenses

Std D=v= 36011.28 
Mæn= 76364.4 
N = 85.00
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A3.2: Descriptive statistics

This section provides descriptive data for the variables included in the three analyses 
presented in the paper.

A3.2.1 Demand estimation (Chapters 4 and 5)

The following descriptive data refer to the demand equations estimated in Chapters 4 
and 5.

Table A3.5: Demand equation(s)
V a r i a b l e Mean S t d  Dev N

CATCHSH . 8 3 .28 1512
CATCHD 3 5 6 . 4 4 2 2 2 . 8 3 1512
BEDS 9 7 5 . 0 0 3 6 5 . 4 2 1512
EMADM 2 0 8 8 . 6 1 8 3 7 . 1 5 1512
ADC 4 2 5 . 2 2 1 5 5 . 5 1 1512

As Figure A3.3, below indicates, the majority of observations are taken from 
providers that operate in monopoly situations.

Figure A3.3: Catchment share

0.00 . 25 . 50 . 75 1.00
.13 .38 .63 .88

CATCHSH

The distribution of emergency admissions is indicated in Figure A3.4 below. The 
maximum value is 4,903 the minimum 26.
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EM ADM

Figure A3.5: ADC

Std. De v= 155.51 
Msan = 425.2 
N= 151200

ADC
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Figure A3.6: Beds

Std. Dev  =365.42 
IVfean = 975.0 
N= 151200

BEDS
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A 3.2.2: Cost estimation (Chapter 4)

The data in this section refer to data used in the cost function estimate presented in 
Chapter 4.

Table A3.6: Cost equation
V a r i a b l e Mean S t d  Dev N

CASEMIX . 69 . 09 85
INVOCO 1 . 4 9 . 65 85
WI 190 61 2 3 2 0 . 0 0 85
BEDEM 6 4 5 . 0 2 2 4 6 . 7 7 85
DAYATT 1 1 1 1 0 . 5 8 1 2 7 6 6 . 9 9 85
ELADM 2 4 6 7 2 . 0 8 1 2 9 1 6 . 2 0 85
EMADM 2 5 0 2 6 . 9 8 1 0 4 5 1 . 8 9 85
AEATT 5 9 1 3 7 . 1 3 2 6 7 8 1 . 1 1 85
OPATT 1 9 0 2 4 3 . 0 8 9 3 8 5 7 . 0 6 85
RES 1 5 3 5 . 7 2 2 5 5 1 . 6 3 85
SERES 1 0 2 . 7 8 8 9 . 9 3 85
TVC 7 2 8 9 3 4 4 6 3 5 1 7 4 5 8 2 . 4 0 85

The total number of emergency admissions that were unexpected was 130,536 out of a 
2,127,293 total emergency admissions. The distribution of which is presented in 
Figure A3.7 below. The minimum residual in any one month was 327 with a 
maximum of 22,286, reflecting the different size of hospital and the relative accuracy 
of the forecasts.

Figure A3.7: RES

70'[

Std. Da/= 2551.63 
Msan= 1535.7 
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Figure A3.8: Beds allocated to emergency sector (BEDSEM)

BEDSEM

Figure A3.9: Emergency admissions

Std. Dev= 10151.89 
Mean = 25027.0 
N = 85.00
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Figure A3.10: Elective admissions
20i

Std. Dev= 12916.20 
Mean = 24672.1 
N = 85.00
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ELADM

Figure A3.11: Total variable cost (TVC)

JVC

303



App.3

A 3.2.3: Social cost estimation (Chapter 5)

The data in this section refer to the partial analysis of probability of tumaway and 
waiting lists estimated in Chapter 5.

A3.2.3a Probit, Box-Cox and Heckman analyses (full sample)

V a r i a b l e Mean S t d  Dev N

DEM 4 2 5 . 2 2 1 5 5 . 5 1 1512
DEL 3 6 8 1 . 5 8 1 9 8 2 . 5 7 1512
PT . 04 . 13 1512

Figure A3.12: Probability of turnaway

Std. D=v=.13 
Mæn= .01 
N= 151200
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A3.2.3b Box-Cox analyses (sample PT > 0)

Table A3.8: Social cost estimation (sample PT > 0)
V a r i a b l e Mean S t d  Dev N

PT . 06 . 18 814
DEM 4 2 5 . 9 1 1 6 8 . 7 5 814
DEL 3 7 7 1 . 8 1 2 2 2 1 . 6 0 814

Figure A3.15: Probability of turnaway

a d  D=v=.18 
Mæn= .06 
N = 814.00

%  1o % % "b % % 70 % % \
PT

Figure A3.16: Total elective demand
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Figure A3.17: Emergency demand

DEM
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