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ABSTRACT

With the use of ultrasonic transducers, the relation between defect sizes and ranges
with the their echo amplitudes has been investigated both theoretically and
experimentally. It is demonstrated that this relation is affected by diffraction effects
which also complicate the interpretation of echo signals. These diffraction effects
are interpreted in terms of compression plane and edge waves together with
mode-converted shear edge waves emanating from a circular compressional
transducer.

The investigation has been established with the aid of a model that predicts echo
responses for flat-bottomed holes (FBH) in isotropic lossless solids interrogated by
uniformly excited sources. The results predicted by the model are in good
agreement with experimentally measured results obtained using commercially
available wide and narrow band circular transducers.

It has been shown experimentally and theoretically that, using transducers excited
with multi-cycle pulses produces large fluctuations with range in echo amplitudes
for small targets. These fluctuations might results in misinterpretations of target
size. The fluctuations disappear when a short pulse is used to excite the transducer.

The model is also used to obtain new distance-gain-size (DGS) diagrams that can
predict the significant response variations in both the near and the far fields of a
transducer. Calculated DGS diagrams have shown good agreement with
experimentally obtained curves for small FBH targets positioned mostly in the near
field ofthe transducer.

Factors like the transducer radius, excitation-pulse shape, and the method of
calculating the echo amplitude have been shown to affect DGS diagrams, especially
for the case of small targets in the near field. The new model provides the
explanation ofthese effects.

A comparison between the new curves and curves produced using an earlier fluid
model showed that there are significant differences between both curves, especially
for small targets. Therefore, care should be taken when the fluid model is used to
estimate target size in a solid medium.
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1- INTRODUCTION

Ultrasonic pulse echo methods have many applications in the nondestructive testing
of materials, including material evaluation and defect detection and
characterisation. The detection of defects has been considered to be easier than
their characterisation (Krautkramer, 1959) because of several factors. These are
defect type, shape and the roughness of its surface, the ultrasonic beam behaviour

in the material, and the electronics involved in the process of testing.

An early attempt to size defects was introduced by Krautkramer in 1959 in which
he related the echo amplitude for flat disc-like defects to their size and distance
from the transducer in a fluid medium. These targets were at right angles to the
axis of the radiated field. He defined this relation as Distance Gain Size (DGS)
diagrams. However, Krautkramer's diagrams were produced theoretically for
targets in the very far field of the probe. The rest of the diagrams for targets in the
near field were completed experimentally. For targets within the near field of the
transducer, it was noted that there were fluctuations in the echo amplitudes with

range. These fluctuations increase as target sizes decrease.

Since then, this method of defect sizing has been widely used in many countries
and it was considered to be a very important step in solving the defect sizing
problem. However, the method is not without its drawbacks. For example, The
reason for fluctuations in the echo amplitude for small targets positioned in the
near field of the probe was to a certain extent not known. Also, the same method
was used for defect sizing in solids, while originally it had been developed for
targets in a fluid medium. These setbacks meant that it was very important to
understand the propagation of ultrasound in a solid medium, its interaction with

targets and the corresponding echo waveforms on reception

Consequently, many approaches have been made towards this understanding. For
example, solving the elastodynamic equations (EDE), (Schmerr and Sedov, 1989)
The main setback of this approach is the length of time required. Another approach

was using the geometrical theory of diffraction (GTD), (Chapman, 1988).



However, this approach  used continuous wave theory and assumed the

propagated waves to be plane

A different approach was the transient field theory. In this theory most calculations
of transient piston fields have been based on a convolution integral representation
(Stepanishen, 1971). This integral introduces the concept of an impulse response
which relates the acoustic field to the radiating source geometry. Using the same
transient field theory, the propagation of sound in a fluid medium has also been
defined using the concept of plane and edge waves (Weight and Hayman, 1978).
With the aid of the same concept, the propagation of sound in a solid medium
(Weight, 1982, 1987) and the echo responses of small targets in solids (Weight,
1993) were modelled.

The approach given by Weight (1993), gave the ability to develop a model that can
predict the echo responses from flat-bottomed hole (FBH) targets of various sizes
(as will be seen later in Chapter 2). The study ofthe echo responses ofsuch targets

is one of'the objectives ofthis thesis.

Other important objectives are the applications of the new model in defect sizing in
solids. As mentioned earlier, the first method introduced for defect sizing was the
use of DGS diagrams for targets in a fluid medium. It is intended that this model
will be able for the first time to produce full theoretical DGS diagrams for targets
in a solid medium. Also, it will provide a quantitative explanation for the
fluctuations in the amplitude of the echo response for the same target size with
range and the reason behind the reduction in these fluctuations as the target size
increases. A comparison between the new DGS diagrams constructed using the
new model and the diagrams produced using the fluid model is given. At this
point, it is very important to mention that only aspects relating to the propagation
of ultrasound from the transducer face and its subsequent scattering and reception
in pulse-echo mode are considered and not the electro-acoustic modelling to relate

the motion ofthe transducer to the electrical excitation pulse.



Briefly, the material presented in this work is laid out as follows:

Chapter 2 begins by introducing, briefly, the transient theory for propagation of
sound in a fluid, as well as the impulse response method for the calculation of
pressure waveforms and transmit-receive mode responses for uniformly excited
transducers. Next, the extension of the impulse response method to model the
propagation of sound in a solid is reviewed. This is followed by a discussion of the
origin of the mode-converted shear waves radiated from normally coupled
transducers. Then, extension of the theory to predict the echo response of small
targets in a solid medium is reviewed. This leads to a model which predicts the

echo response of finite sized targets in a solid medium.

A brief review of the origin of DGS diagrams follows. The advantages and
disadvantages of these diagrams as a method of defect sizing and new
developments in this method are discussed. Chapter two finishes with the
numerical calculations implemented for the impulse responses and the echo

responses for finite-sized targets.

Chapter 3 describes the transducers and measuring systems used to obtain the
experimental waveform measurements presented in this work.

Detailed calculations of transmit-receive mode responses from targets of various
sizes in a solid medium are given in Chapter 4. These calculations are compared
with experimental results obtained using conventional narrow- and wide-band
transducers. The applications of this model in producing new DGS diagrams for
targets in solids are shown and are experimentally verified for both narrow and
wide band transducers. Some other factors that can affect DGS diagrams, like the
method of detecting the echo amplitude are discussed. Also, a comparison between
the diagrams produced using the new model and diagrams produced using the fluid
model is shown.

Chapter 5 deals with the implications of the results in Chapter 4 for defect
detection and sizing in practical NDT.

Proposed future work and developments are given in chapter 6, followed by

conclusions of'this work in chapter 7.



2- THEORY

Much of'the theoretical and experimental work presented in this thesis is associated
with the propagation of ultrasound in a solid medium, its interaction with targets
within the solid and the reception of the ensuing scattering back at a single
transducer. This is generally more complicated than the corresponding problem
with a fluid medium of propagation, because shear waves as well as compression
waves can propagate in a solid. For this reason, the theory for solids is introduced
by first briefly reviewing the existing impulse response theory for fluids (after
Weight and Hayman 1978). This is followed by a more detailed review of a model
used to predict the echo responses of point-like targets in solids (Weight 1993).
This model is then extended to deal with finite sized targets in solids. Finally, the

use ofthe new model as a tool to size defects in solids is discussed.



2.1 Propagation of sound in a fluid using the impulse response method

Rayleigh's equation for arbitrary motion ofa source radiating into a fluid expresses
the velocity potential at a point as the sum of contributions from all the elementary

Huyghens sources that make up the source surface. This gives
<Kr,/)=127tJ~v~ds, (1)
where <is the velocity potential, vis the normal velocity of the piston, r is the

distance from the field point to the surface element ds and c is the velocity of

sound in the fluid.

The pressure in a fluid of density p is then given by

P(r,t) = pdfy/dt. 2)

If the piston velocity v is uniform over the piston surface then by using the shifting

property

K '-f)=KO0*8(t-i), (3)

where * denotes convolution.

Assuming a linear-time invariant system, the velocity potential for arbitrary motion

v(7) of the source is then

dh 0 = KO *<G1) . 4)

and the impulse response <>is



After a velocity impulse has been applied to a piston at ¢ = 0, the field at point O is
made up of contributions from all points on the piston surface a distance ¢/ from 0.
These equidistant points lie on a circular arc centred at the projection of 0 on the

source plane, as shown in Figure 2.1.1.

Figure 2.1.1: Geometry for a circular source of radius a, propagating in a fluid
medium, showing the angle subtended at the transducer circumference from a point
Q on the medium. The angle Q is the included angle of an arc on the transducer
surface, each point on the arc being equidistant from Q.

By a simple change of variable (Stepanishen, 1971), a very useful result is obtained
for the solution to Eq (1), namely that the velocity potential for an impulsive
motion of a source is proportional to the length of equidistant arc included in the

source surface. Mathematically this is

im0 = cQ.(cl)/2n ifr\ <ct <ri (6)

and 4i(r,t) = 0 elsewhere, where Q is the full angle of the included equidistant arc,
rl and r2 are the distances from the field point to the near point and the far point of
the source circumference, respectively. For the case of a circular source analytic
expressions for O (c/) have been given by a number of authors using the law of

cosines, those tabulated by Robinson (1974) are summarised in the appendix. The



pressure impulse response may then be obtained by numerical differentiation and

convolved with the source velocity motion to give the pressure response as:

p =v(1)*pi, (7)

where

Pi = P3gh/dt (8)

Weight and Hayman (1979), introduced a physical explanation that follows from
Eq (7) which said that the field structure for a circular source emanating in to a
fluid medium consists of plane and edge waves. The plane wave travels in the
geometrical beam region straight ahead of the transducer. The edge wave travels
as a spreading wave from the edge of the transducer and has a toroidal wavefront.
As an aid to clarify the concept of plane and edge waves Figure 2.1.2 shows a
schematic representation for these waves. Since in this thesis more attention is
given to the propagation of sound in solids as seen later in section (2.2), more
details about the propagation of sound in fluids can be seen elsewhere (Weight, and

Hayman, 1978 and 1979)

Figure 2.1.2: A schematic representation of the concept of the plane and edge
waves emanating from the transducer excited with single sinusoidal pulse. Shown
i(n ((:)i)rcles are the opposite polarities of the waveforms at the moment of excitation
t=0).



21.1 Impulse response method to calculate pulse echo waveforms for a point-like
target in a fluid.

By invoking the principle of reciprocity (Weight and Hayman, 1978/ 79), the
impulse response method has been extended to allow calculations to be made of
the transmit-receive mode response of a uniformly excited source interrogating a
point-like target in a fluid. If the source is considered to also function as a
receiving transducer that is uniformly pressure sensitive, its output voltage £(/),
when used in transmit-receive mode on reception of the echo from an idealised

point reflector is given by

E(t) = (kp/2c)v(t) * dfyyj/de * dsj/dt, (9)

where k is a constant.

The above result is obtained by making the simplifying assumption that the incident
wave is locally plane and the target has a reflection coefficient of I. i.e, the target
has an acoustic impedance much smaller than that of the fluid medium in which it is
immersed. The double convolution of Eq (9) means of course that the pulse-echo
waveform is quite different (Weight and Hayman (1978)) from that obtained for
the field point pressure. Predicted echo responses for small targets in fluids using
Eq (9), showed good agreement with experimentally obtained echo responses for

the same targets (Hayman and Weight, 1979).



2.2 Propagation of sound in a solid

In solids, both longitudinal and transverse waves can propagate, and so the
modelling of the propagation of sound in a solid is a harder task than is the case
with fluids. Many approaches have been developed. For example, using the
Cagniard de Hoop method (1959), Aulenbacher and Langenberg (1983) have
given the impulse response and hence the pulsed directivity pattern of a line or
point source radiating into a solid half- space. By suitable integration techniques
they have extended the line source results to calculate the impulse response of an

infinite ribbon source.

Weight (1982) introduced a simple model for the impulse response that can be
used to rapidly calculate the propagation of sound in solid. His work is discussed in

detail in section 2.2.1.

Kawashima (1984) numerically evaluated the integral expressions for the
displacement amplitude for any point in the field of a circular source undergoing
continuous sinusoidal motion. He then obtained pulsed displacements by harmonic

synthesis.

Ilan and Weight (1987) used the finite difference approach to calculate the time
development of displacements within a solid half space. Then they expressed the
elastodynamic equations in cylindrical co-ordinates by inserting suitable surface
boundary conditions into the equation From that they calculated the displacements

due to a circular source undergoing arbitrary motion.

Bresse and Hutchins (1989) showed how the use of integral transforms and the
Cagniard method can give exact, finite integral expressions that can be evaluated

numerically for the transient waves generated from axisymmetric sources.



Schmerr and Sedov (1989) calculated the propagation of sound in a solid using an
elastodynamic model that uses high frequency asymptotic solutions. This was done
for both compression and shear wave transducers that were directly coupled to a
solid surface and radiating a short pulse. Interestingly, they demonstrated that
within the main beam of'the transducer and in the far field, the differences between
their model and the fluid model are very small. But, in the near field, the
elastodynamic model provides a more complete description of the transducer
radiated wave field than does the fluid model. However, they concluded that their
solid model agrees very well in many cases with the simpler fluid models that have

been used for such problems.

Djelouha and Baboux (1992), modelled the problem ofthe transient ultrasonic field
radiated from a circular source in a solid medium, by a homogeneous isotropic
elastic half space whose surface is subjected to a normal load uniformly distributed
under the active area of the transducer. Taking account of these particular
boundary conditions, they solved the partial derivative equations that govern the
propagation of elastic waves using integral transform techniques. The numerical
simulation obtained using this formulation showed that the radiated field is
relatively complicated because of the diffraction by the transducer edges. The
radiated field obtained consists of a compression plane wave propagating in the
geometric region straight ahead of the source, together with compression- and

shear-edge waves emanating from the transducer circumference.

Baboux and Kazys (1992), studied the transient radiation of ultrasonic fields into
isotropic solids by circular sources. Their calculations of the axial and radial
components of the particle velocity spatial-temporal distributions were performed
using an harmonic synthesis approach. The results obtained were explained in

terms of direct, compression-edge, shear-edge and head waves.

Lhemery (1994), introduced an approximate model for the solution of the problem
of the radiation of the transient pulses in an elastic medium. In his work Lhemery

derived two approximations allowing the proposal of a new integral formula for the

10



problem of the radiation of transient pulses in an elastic medium by an arbitrary
loading. The first approximation was to neglect the first term in Green's dyadic (K
Aki and P. G. Richard, 1980). The second approximation was to ignore the head
waves. His results showed good agreement with the exact solutions obtained by

Baboux and Kazys (1992).

Most of the above approaches are time consuming in terms of computation even
on main frame computers. Since the present work is mainly involved in extremely
extensive calculations (like producing DGS diagrams), these approaches would be
very time consuming. Hence the need for a model that produces rapid and accurate

results has arisen.

2.2,1 Impulse response method to calculate the propagation of sound in a solid.

Plane wave theory predicts that a compression wave obliquely incident on a surface
partially mode converts into a shear wave. However, other studies showed the
existence of shear waves radiating from  normally coupled compressional
transducers, (Hall 1977, Hayman and Weight 1977, Saches and Hsu 1978, Ying
and Li 1981).

Hayman and Weight (1977) suggested that these shear waves are mode converted
edge waves and thus may be considered to be shear edge waves. Evidence to
support this hypothesis was given by using a stroboscopic photoelastic system to

visualise a short pulse propagating into a fused quartz block.

To show that these waves originate from the edge of the probe and are not due to
mode conversion at the edge of the incident compression plane wave, Weight
(1982) showed results taken with the transducer water-coupled, at a range of
4mm, to a quartz block. The positions of the compression plane wave and the

shear edge wave were marked on a glass slide placed alongside the quartz block



Then the transducer coupling range was increased to 8mm but the depth of
penetration into the quartz remained the same. If the shear edge wave was due to
mode conversion at the edge of the incident compression plane wave, the radius of
curvature of the shear wave at the new coupling range would be the same as at the
4mm coupling range. However, this was not the case. In fact, consistently with the
idea of mode-converted edge waves, the centre of the curvature of the shear edge
wave at the 8mm coupling distance was back at the edge of the transducer

(allowing for refraction at the fluid/solid interface).

Thus the basis of the model to be used here is to consider that the compression
edge wave that propagates from the rim of the transducer partially mode converts
into a shear edge wave, the proportion depending on the angle from the field point
to each element of the source rim. This is achieved by 'splitting' the compression
edge wave component from each element of the source rim into two components,
one propagating at the compression wave velocity, the other at the shear wave

velocity (Weight, 1987).

It is important that to express the impulsive velocity potential at a point inside
the solid as the sum oftwo Rayleigh diffraction integrals, one for the compression
wave the other for the shear wave, is not valid as it stands since the assumptions
made in deriving Rayleigh's integrals are only valid for a fluid propagating medium.
For instance, such an approach would predict the existence of a shear plane wave
from a normally coupled compression wave transducer. This contradicts the
theory of the propagation of plane waves across a boundary. However, Weight
(1982) suggested that the fluid theory could be used to predict the form of the
shear edge wave radiated from a normally-coupled transducer. He showed that the
the problem of the non-existing shear plane wave also predicted could easily be

overcome by simply omitting it from all further calculations.

Thus Weight (1987) expressed the pressure impulse response as,

PS =pc;[6(t- To) - -u) - (c,/ci)m, (Q)f,(t- 1)]. (10)

12



where f, (¢t - t) is the edge-wave contribution predicted for a fluid propagating
medium having sound velocity c(and f7 (¢ - ¢t) is that for a medium having sound
velocity ct . The functions f¢(/ - /,) and f¢(t - t() are extracted from the impulse
response given by Eq (6) and the expressions are listed in the appendix It should
be mentioned that for the on-axis case, these functions reduce to a delta function
since, on-axis, the edge wave components are no longer dependant on the angle 9
(due to the symmetry around the axis of propagation) and are only dependant on
the mode conversion factors. The terms m/(0 ) and m#9) are mode conversion
factors for compression and shear edge waves respectively and are explained in

more detail in section 2.2.2.

Thus ml{(9 )ft(t- () and mt (Q ) ft(t - 1) are the compression and shear edge wave
components, respectively. and # being the arrival times at the field point of the
compression and the shear wave contributions from each element of the source
circumference. The limits of# and #f are given by

ri/ci <ti< r-ilci
and

ri/ct <t,<rlct

where, (Figure 2.1.1), rt and r, are the distances from the field point to the near
point and the far point of the source circumference, respectively The angle 0 is

now given by

9 =sin~{(r(/citi) =sin_I(ro/c,T) (10

13



2.2.2 Mode conversion

It is convenient at this point to consider the angular variation of the mode
conversion factors m/ (0 ) and mi (0 ). These are dimensionless factors that give
the relative amplitudes of the particle velocities of the compression and shear edge
waves, respectively. These functions and the constants within them (equations 12
and 13) were empirically derived by Weight (1987) in order to match results
predicted using the finite difference method and used in his impulse response

model.

m,(Q)= \-e~ce (12)

and

m,(Q) = [220«(1-19)]2, (13)

where 0, the angle from each element of the source rim to the field point, is given

by

O0=sin [(rOrQ , (14)

where rOand rgare the distances from the field point to the plane and each point of
the rim ofthe source, respectively, and a and b are normalising factors to relate the
amplitude of the edge wave components to that of the compression plane waves.
Values ofa and b may be found by again referring to finite difference results (Ilan
and Weight, 1987) to obtain the ratio of the amplitudes of the two edge waves in

the normal direction straight ahead ofthe source rim.

It was found empirically by Weight (1993) that good agreement was obtained

between predicted and measured results, ifa = b= 2.

14



From Eq (10) the two edge wave components ofthe impulse response are

ei = pcimi(QYi(t- h) (15)

e =p (16)

2.2 3 Vector Particle velocities

Eq (10) gives the scalar pressure at points in the field of a circular source coupled
to a solid. To give a complete treatment for propagation in solids, vector particle

velocities are required.

The approach adopted here (Weight, 1987) is to make use of a knowledge of the
plane and edge wave structure of the radiated pulses. This, together with
considering the wave front as locally plane, will then allow vector particle

velocities to be obtained as described below.

Figure 2.2.1 shows a two dimensional schematic representation of the plane and
edge waves radiated, including their relative polarities. The convention (Weight,
1987) adopted for the sign of compression and shear wave particle velocities is
shown in the same figure. The radial and tangential components of the edge wave
portions of the particle velocity impulse response us are denoted wur and ufp
respectively. The corresponding vertical and horizontal components of the
compression wave particle velocities in the plane z= 0 are denoted by wd and w/,
respectively. Similarly, the vertical and horizontal components of the shear edge

wave are ux and u { . The polarities indicated by the arrows representing the

15



]

I
I
Axis of symmetry

Figure 2.2.1: The wavefront of the plane and edge waves with their relative
polarities radiated from a circular source coupled to a solid, Weight (1987).

vector particle velocities are those predicted by scalar impulse response theory and
their direction is given by the plane and edge wave structure of the wave fronts

radiated. With 9 and 3 as defined in Figure 2.1.1 and 2.2.1, then (Weight, 1987)

uxi = ;//sin0, (17)
uyi = -1z/cosOcosp , (18)
U = Jaoso, (19)
iyt = 7/fsinOsinp . (20)

By assuming that the edge waves may be considered locally plane, the amplitudes

ofthe compression and shear particle velocities are given by, respectively,

ui =ei/pa , (21)

u, - e/pc,, (22)

16



where < and et are the compression and shear-edge wave impulse responses given

in Eqs (15) and (16).

Using Eqs (17) and (19), the normal component of the particle velocity impulse

responsce becomes

Udi = 5(/- To) - mi(Q)fi(t- 1/)sinQ - - 6)cos0 , (23)

From which the particle velocity response for an arbitrary source velocity motion

becomes

the= v(t) * s, (24)

where v(/) is the velocity function ofthe transducer.

2,2,4 Impulse responses and particle velocity waveforms

A graphical representation of Eq (24) will give a clearer picture to the reader about
the nature of sound propagation in a solid. This representation is seen in Figure
2.2.2 which shows on-axis calculated impulse responses and waveforms for short
ultrasonic pulses propagating from a 19mm diameter, SMHz transducer into a
solid medium. These waveforms and the way in which they vary with range can be
explained in terms of the contributions of the compression plane and edge waves

together with a mode converted shear edge wave.

The waveform starts with a contribution due to arrival of the locally plane wave
(P) which retains its shape and amplitude at all points within the geometric region
straight ahead ofthe source. The plane wave pulse is followed by the compression
edge wave pulse (Ec¢). Since for a point on axis the edge contributions from each

element of the source rim arrive simultaneously, there is then just one edge-wave
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Impulse response Velocity Functiom v (z) Particle velocity

Es
-f

Metal distance = 50mm

Figure 2.2.2: Impulse responses and particle velocity waveforms of sound propagating
in an ideal solid medium at different axial ranges assuming a 19mm diameter source
excited with a SMHz short pulse. P denotes the compression-plane wave pulse, Ec
denotes the compression-edge wave, and Esdenotes the shear-edge wave pulse.*
denotes convolution
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pulse. As described in section 2.1, this pulse has opposite polarity to that of the
plane wave pulse (propagation of sound in fluid). In a similar fashion, there is a
single shear edge wave pulse (Es) at an axial point and as expected this arrives after
the compression edge wave. At short ranges the angle subtended at the source rim
is such that strong mode conversion ofthe incident compression edge wave occurs,
as shown in the examples in section 2.2.2. Further away, the mode convesion
effect is less strong. Note also that the separation between the compression plane
and edge wave components becomes less with axial range and with increasing
range they will eventually overlap. However, since the shear wave travels at
approximately half the compression-wave velocity, the shear-wave pulse becomes
further separated from the compression pulses and its amplitude becomes smaller
than that of the compression edge-wave pulse as the mode conversion becomes

weaker.

As shown in Figure 2.2.3, for points off the axis of the source, the plane wave
pulse is the same as that in the on-axis results, but each of the edge wave
contributions (Ecand Es) are now smaller and smeared out in time. However, two
main contributions to the smeared edge wave pulse can be seen, one from the

nearer edge of the source, the other from the further edge.

Weight (1987) verified the predictions of the model by comparing its results with
experimental measurements of field point waveforms at points on the surface ofa

solid.
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Impulse response On-Acxis Particle velocity

2mm Off-Axis

Figure 2.2.3: Impulse and particle velocity waveforms for axial and non-axial
points in a solid. The source parameters are as mentioned in Figure 2.2.2



2.2.5 Pulse echo waveforms for a point-like target in a solid

In a solid medium, scattering of the incident plane and edge waves gives rise to a
multipulse echo response even more complicated than of a similar target in a fluid
(Weight, 1993). Such complications stem from the existence of shear edge waves
and the probability of mode conversion at the target. For the case of a target in a
solid, the approach adopted here is similar to the approach reviewed in section
(2.1.1) for a fluid medium, but takes into account the extra complications of the
compression and shear components of the interrogating beam and the behaviour of

the transducer when acting as a directly coupled receiver.

Following Weight's approach (1993) the target is considered to be a point-like free
boundary in the solid. Using the same geometrical variables as defined in figure
(2.1) the motion vrof the target is equal to the normal component of the particle
velocity ofthe incoming waves. Thus, for impulsive motion of a transducer directly

coupled to the surface ofa solid, v. is

U= ks (25)

where as above uxSis the normal component of the radiated particle velocity us
(7,1). The minus sign in equation 25 comes as a result of making the simplifying
assumption that the incident wave is locally plane and that the target has a
reflection coefficient of -1. This assumption is valid since the difference in acoustic

impedance between air and a solid medium is sufficiently great

Consider now the behaviour of the transducer in reception. Since a finite
transducer may be represented as a collection of point receivers, it may be
considered that a directly coupled transducer is uniformly sensitive to the normal

components ofthe particle velocity of the incoming waves (Weight, 1993).
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As a result, for the case of a target in a solid medium, the normalised particle

velocity impulse response is given as

£5*(0 = Wdr, t) * ux5(r, /), (26)

and the echo response for arbitrary excitation ofthe transducer is then

Es(t) - v(t) *Ess(t). 27

From Eq (27), it is clearly seen that the waveform from a small target in a solid is
obtained by a double convolution. This means that waveforms produced by Eq
(27) are considerably different from those at points in the radiated field, there being

further time-separated components - as discussed below.

Before going into more details about the nature of these echo responses it is
appropriate to define 'the path difference (PD)' as used extensively in this thesis.
As mentioned earlier, the plane wave travels from the face of the source to reach a
certain point in the field. The edge waves travel from the source edge to reach the
same point. The difference in the distance travelled by both is defined as 'path

difference' or PD. For axial points, the term is defined by

PD= JR2+x2 -x . (28)

where R is the transducer radius and x is the distance from the centre of the
transducer to the (axial) field point. This term has considerable importance in the
present work, since many of the results shown later greatly depend on the path

difference between the plane and edge wave components.

It should be mentioned that for a multi-cycle pulse and at an axial point, when the
PD between plane and edge waves is nA (wave length) destructive interference

between these waves takes place when they overlap. In this thesis such range is
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defined as "Destructive interference range" When the axial PD is (2n + 1)A /2, the
overlapping portion of the plane and edge waves interfere constructively. This

range is defined as "Constructive interference range".

Computed impulse responses and transmit-receive mode responses, for point-like
axial targets at various ranges in a solid are shown in Figure 2.2.4. These exhibit a
more complicated structure than the corresponding particle velocity waveforms
shown in Figure 2.2.2. The form of these responses has already been described in
previous work (Weight, 1993), but briefly, for an axial target, the echo impulse
response consists of a series of six pulses. At short ranges, the various plane and
edge wave components are well separated. As the target range increases, the PD
between compression plane and edge waves decreases. As a result, the first three
pulses become closer together, to form a group well separated from the 4th and
5th pulses, which also move towards one another to form a second group. The
separation between the second group and the 6th pulse also increases. Further
details of'the origin and phase relationships of each component is given in the next

section



Impulse response v(t) Echo response
C Target range 12mm

Figure 2.2.4: Calculated impulse responses and echo responses for small target at different ranges
assuming a 19mm diameter transducer excited with SMHz single-cycle pulse . The symbols shown
at the top right of the figure are explained in the text.
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Figure 2.2.4: continued, the S component is not shown in the
responses at these two ranges since it is very small.

Target range 48mm
Echo response

A

Target range 60mm



2.2.6 Physical explanation ofthe form of echo responses

The definition of each pulse shown in Figure 2.2.4 is based on their physical origin
(Weight, 1993). They are arranged according to their arrival time as shown in

Table 2.2.1. There are many components that go to form the overall echo response
and for convenience each of these is given a separate identity using lower case
letters (the "echo component" column in Table 2.2.1, p 28). Some of these
components overlap to give overall responses that for circular sources and

point-like axial targets consist of six pulses (the "echo pulse" column in capitals in
Table 2.2.1). The first component, pcpc arises from the scattering of the original
compression plane wave that returns as a spreading compression wave to be
received paraxially at the centre of the transducer. This is the sole component
within the first pulse and hence the corresponding echo pulse is labelled P®@C In
contrast, the second pulse P&Ec is comprised of two components that each take a
different propagation path, but are received at the same time. Component pcec
arises from the scattering of the incident compression plane wave as it is
simultaneously received by each element of the source rim Whereas, component
ec arises as the scattering of the incident compression edge wave reaches the
centre ofthe source. Note that the phase relationships of these various components
have been explained in detail in earlier work (Weight and Hayman, 1978, Weight,
1993) but briefly, a locally spherical wave propagating from an axial scatterer to be
received at the source centre will give rise to a pulse of opposite polarity to that of
the later arriving pulse generated when the wave is received at the source rim.
However, since as shown above in Figure 2.1.2 (p 7), the outgoing plane wave has
opposite polarity to the edge wave radiated into the geometric region straight
ahead of the source, the final result is that the pcecand eqc components have the
same polarity. Since as a result of circular symmetry they are received at the same
time, they reinforce to give an increased amplitude pulse (the second echo pulse
labelled PcEc in Table 2.2.). The fourth component ecec arises when scattering of
the outgoing edge compression wave is received at the edge of the source. Since

this is the sole contribution to the third pulse this is labelled pulse EdEc.
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Note that this latter pulse has the same polarity as the first pulse. Since the first
three pulses arise from waves that propagate both to and from the target at the
compression wave velocity, it is convenient to refer to them as a group labelled 'C',

as is also done in Figure 2.2.4.

In similar fashion to that described above for compression waves, there will be a
number of components arising from waves propagating either to or from the target
as shear waves. The fifth component pcee® in Table 2.2.1 is due to reception of the
scattering of the outgoing compression plane wave that returns as a shear wave to
be received at the source rim. Note that there will be no pulse produced when this
latter scattering first reaches the plane of the source, since on reception the source
responds to the normal component of the particle velocity. For an axial target,
there will be no component in the normal direction when the shear wave scattering
it produces is received at the source centre (Weight 1993). The sixth component
epcarises from an outgoing shear edge wave that returns to the transducer centre
as a compression wave. Again, the arrival time of these two components is the
same and just as with the second and third components they have the same
polarity. They therefore superimpose to give the fourth echo pulse ( labelled PEY
in the overall response. The seventh and the eighth components also have the same
total propagation time. The e * component travels from the rim of the source at the
compression wave velocity but back to the rim at the shear wave velocity. Whereas
the essccomponent travels from the rim at the shear wave velocity but back at the
compression wave velocity. Again these components add to give the fifth pulse
EsEc in the echo response. Also, note that the PdEs and the EsEc pulses have
opposite polarities. Since the fourth and fifth pulses in the response arise from
waves that travel with the compression wave velocity and back with the shear
wave velocity or vice versa, they are denoted as the 'C/S' group. As can be seen in
Figure 2.2.4, this group becomes increasingly separated from the "C" group as the

target range increases.

The final, ninth component eestravels from and to the source rim as a shear

wave. Again, since this is the sole contribution to the final pulse in the overall
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response, it is labelled pulse EsEsin Table 2.2.1 and this is the only pulse in the
final "group" denoted 'S'. Again, as the target range increases, this pulse becomes

increasingly separated from the "C" and "C/S" groups (see Figure 2.2.4).

The form of the above calculated results has been experimentally verified
elsewhere (Weight, 1993). Further confirmation showing results appropriate for

the current work are given later in section 4.2.

Echo Echo Echo Incident wave Received  Scattered wave
component No pulse No  group at source:
bepe I PP, I plane compression ~ Centre compression
e 2 plane compression Rim compression
cec
C .
e cPe 3 P&EC : edge compression Centre compression
¢ eec 4 EEC 3 edge compression Rim compression
Pees 5 plane compression Rim shear
ces
o spe 6 PES N edge shear Centre compression
C/S . .
e 7 edge compression Rim shear
eces
ceee 8 E®s g edge shear Rim compression
cses 9 ESES 6 S edge shear Rim shear

Table 2.2.1: Labelling system to identify the various components in the overall
echo response of small targets as given in Figure 2.2.4. (after Weight, 1993).

So far, this section has dealt with echo responses from axial point-like targets at
various ranges. It is now helpful to consider what happens when targets lie off axis.
As will be seen later, this will aid in describing the form of echo responses from
finite sized targets. Figure 2.2.5 shows responses for a point-like target, on and off
axis at a range of 12mm. Since all of the targets are within the geometrical region,
each will give rise to scattering of the incident plane wave and this will be first
received when the scattering first returns to the plane of the source. Therefore the
first component of the echo response will have exactly the same form whether or
not the target is on axis. However, with off-axis targets, all the later arriving

components arise either from the scattering of edge waves or from the rim

reception ofthe scattered plane wave. On reception, such components are smeared
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Impulse response On-axis Echo response

PEC

4mm Off-axis

PcPc

Figure 2.2.5: calculated Impulse and echo response for small target on and off-axis
at 12mm range assuming the source parameters mentioned in Figure 2.2.4.
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out in time, since the propagation paths from each element of the source rim to

the target and back are not equal

2.2.7 Echo responses of finite sized targets in a solid

There have been several approaches used to predict the echo response of planar
finite sized targets in a solid medium. These approaches assume that the medium
of propagation is isotropic and lossless and that the target is interrogated by waves

emanating from a circular compressional wave transducer.

However, some ofthese approaches assume that the target is in the far field of the
transducer and is interrogated by plane waves only. For example, Chapman (1988),
used the geometrical theory of diffraction (GTD) to predict echo responses for
planar targets in isotropic lossless solids. But this was only valid if all the

dimensions ofthe problem are much greater than the pulse wave length.

Another approach adopted by Ogilivy (1991) was the use of Kirchhoff theory.
Using this theory the target needs to be at least three pulse wavelengths in extent
to give reliable predictions. However, real piezoelectric ultrasonic transducers used
in NDT, have been shown to produce more complicated pulses, as mentioned in
sections 2.2.5 and 2.2.6. Diffraction effects and mode conversion generate
significant compression and shear edge waves and these go on to scatter and
produce significant extra signals in many practical situations. Also, the target in
many cases can be in the near field of the transducer. Hence, the above
assumptions can neither explain such signals nor deal with situations in which they

arise.

By using the finite difference method, a more accurate approach to model the echo
response of targets in solid has been developed by Stacey and Weight, (1993). This
approach provides a relatively straightforward way of modelling the formation of

echo responses from scattering defects and readily incorporates realistic transducer
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signals. However, one disadvantage of this work is the length of computer time

needed.

Recently, Lhemery (1995) proposed a model to predict the echo response from a
defect of complex geometry at arbitrary position in a solid medium in the field of
an arbitrary transducer. His model treated scattering by the defect under the
Kirchhoff approximation, assuming homogeneous, free boundary conditions. He

illustrated the applicability of his model by treating the case of flat-bottomed holes.

Krstelj and Markucic (1997), introduced a different approach of the mathematical
modelling of the disc reflector response. Their choice of the mathematical function
which represents the echo response is based on trial and error, depending on the
experimental data obtained. The fitting parameters of the function are then

estimated and optimised using numerical and statistical procedures, respectively.

L. Wang, J. Deng and J. Shen (1997), combined the time-domain boundary
element method with electro-mechanical reciprocity relation to give an accurate
model for the ultrasonic echo pulse. Good agreement between the measured echo
response of a 5Smm-diameter void in a solid and its simulated response was
obtained. Although their model was accurate, its main disadvantage is the

computing time required.

A rapid method for predicting the echo response of finite sized targets can be
implemented by extending the model mentioned in section 2.2.5. However, the

extension is valid only for axisymmetric circular targets.

As might be anticipated if only the front surface scatterer is considered, the echo
waveform from the surface of a finite sized target can be thought of as the sum of
the contributions from all the elementary point targets that make its surface
(McLaren and Weight, 1987). As a result, the impulse particle velocity response

for a finite sized target can be represented as:



Ess(y) =Ila Gb *ux&la (29)

where a is the surface area ofthe target.

As a result of the circular symmetry of the radiated field from a circular source,

the particle velocity impulse response at all points on a circular arc on the
scattering surface that are equidistant from the source centre are identical. The
surface integral in Eq (29) may therefore be transformed into a line integral by
treating the surface ofthe target as a sum of elemental circular rings of area da, all
points on the circular segments being equidistant from the transducer-.centre. For
axial circular targets these equidistant ring segments are complete and d a , Figure

2.2.6, is then

da = 2%ydy (30)

Figure 2.2.6: As in Figure 2.1.1, but the ultrasonic beam is interrogating a circular
target ofradius R.

where y is the distance off axis. The particle velocity impulse response now

becomes
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£5i(0 = io » "xb2nydy (31)

where R is the target radius. The echo response is

Es(t) =-ksv(0 *io t<b *uxblnydy (32)

For circular targets of different size, but with identical acoustic properties, relative

echo amplitudes are determined by the integral within Eq (32).

Although the integral in Eq (32) is derived from the work of McLaren 'and Weight
(1987) for targets in a fluid medium, the present formulation for uxS calculates an
echo response for finite targets in a solid in terms of particle velocities and not

pressure.

It should be mentioned here that in deriving Eq (32) a number of assumptions were
made. Firstly, the head and surface waves were ignored. The justification for
neglecting them is that the Rayleigh waves are confined near to the surface of the
solid and since most uses of ultrasonic transducers involve the interaction of the
radiated field with subsurface reflectors many wavelengths into the solid, such
Rayleigh wave contributions are not significant. Also the head waves have a limited
region ofinfluence. Schmerr and Sedov (1989) showed that these waves are absent
beyond the region of 1.73R, where R is the probe radius, into the solid. For
example ifthe probe radius was 9.5mm then the head waves will be absent beyond

about 16mm into the solid.

Secondly, it is assumed that the target surface moves with the normal component
of any non-normal incident waves such as edge waves. This is a major
simplification which is only likely to be reasonably valid for small angles of
incidence. Thirdly, on reception the transducer is assumed to respond to the normal
component of the incoming particle velocity waveform. Finally, the medium of

propagation is assumed to be isotropic and lossless.
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The model used in the present work has the advantage that it can predict echo
responses more rapidly than the finite difference method mentioned above.
Although less accurate than the finite difference method, the new model has an
accuracy adequate for many practical applications and gives great insight into the

formation ofecho responses.

Detailed results using the new model are given later in Chapter 4 but as an aid to
demonstrate the way in which the echo impulse response varies with target size
some preliminary results are given here in Figure 2.2.7. These results are for
various diameter FBH's at a range (12mm) where the variation in echo impulse
response with target size is clearly seen. As can be seen in Figure 2.2.7, the first
arriving plane wave component comes to dominate the response as target size
increases. This is because the edge wave components are smeared out with time as
the integration of Eq (31) proceeds, whereas the first received plane wave

contribution is not.

Figures 2.2.7 and 2.2.4 show that in general, the C/S and the S components are
smaller than those within the C group. As will be discussed later in Section 4.4, this
will be of relevance when estimating pulse amplitudes, especially when considering
the variation of echo amplitude with range where there will be opportunities to

reduce calculation times.
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Figure 2.2.7: Impulse responses for various target sizes at 12mm range from a 19mm.diameter transducer calculated using
the finite-sized target model. The graphs were scaled to show the edge wave components . The S components in the impulse
responses of the 9 and 19mm diameter targets are too small to be shown in the figure.



2.3 DGS diagrams

So far we have been looking into the modelling of echo responses for
flat-bottomed holes in a lossless isotropic solid medium. It is well known that the
target size and its distance from the probe play a big role in determining its echo
amplitude. The relationships between echo height, distance and size of a circular
disk defect were brought into simple and wuniversally applicable forms by
Krautkramer (1959) in a set of curves known as Distance Gain Size (DGS)

diagrams.

In deriving his curves, Krautkramer (1959) first considered the sound pressurep at

points along the axis of a circular source excited with continuous sinewaves, i.e.
p = 2/?0sin [TtA.{(Dj/4 +x2)05 -x } ], (33)
where X is the wavelength, Ds is the diameter of the transducer and x is the

distance along the axis. p 0 is taken to be the average pressure immediately in front

of'the probe, when the crystal is much larger than the wave length.

For a large distance x compared with the diameter Z*and with the near field length

of'the probe, N, where N = D2/ 4X, Eq (33) becomes

p=pOn(D2V4Xx). (34)

IfA =x/N, where A4 is the normalised distance,

p-poTi/A. (35)

A very large flat defect or a flat back wall will reflect the beam like a mirror and

the transducer then acts as a receiver to its own beam at twice the back wall
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distance The probe will then measure uniform sound pressure over the whole of

its surface.

P backwall P() Til2A (36)

If a small, circular disc is placed in the axis of the beam at so great a distance that
the sound pressure p On IA is uniform over its surface, then this may be regarded as
the initial pressure of a new radiator, which radiates a similar wave back to the

probe. The probe itself will therefore measure the echo as:

Pdefect—Q;n%IA)(%erx) ’ (37)

where Nr=DJ4A is the near field of the reflector, the diameter of which is Dr. If

the defect size is measured in terms of the diameter of the probe one obtains the

'reduced defect size' G where G = Dr/Ds and equation (37) can be simplified to:
Pdefect=P0K2(G2I42) (38)

The average pressure p 0 can be taken as the back wall echo of a plate which is of

thickness less than that ofthe near field ofthe transducer.

Eqs (36) and (38) express the facts that for sufficiently large distance from the
transducer, the back wall echo amplitude decreases inversely with the distance and
the defect echo amplitude is proportional to the target area and inversely
proportional to target range. A graphical representation of Eq (38) is shown in

Figure 2.3.1.
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Figure 2.3.1 :DGS curves produced theoretically by Krautkramer (top) and the

rest of the curves completed experimentally (bottom).
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Eq (38) has several limitations that have been mentioned by Krautkramer. For
example, it is only applied to the far field, it assumes a fluid medium of
propagation, and is valid as long as the wavelength is not larger than the diameter
of either the probe or the defect. This equation was used by Krautkramer to give

the far-field portion ofhis DGS diagrams.

Because of such limitations, many studies published were not in favour of this
method. For example, Bastien (1968), Bradfield (1968), Whittaker (1972) and
Mundery (1972) claimed the impracticality of such curves in pulse ultrasonic flaw
detection due to practical problems, like the influences of the probe ahd the shape
of defects. They suggested that more studies were needed to improve the general

understanding ofthe behaviour of sound in the material.

In contrast, Hislop (1969) showed that, if the probe was chosen so that targets
were positioned in the far field of the transducer, results given by the DGS
diagrams agreed well with actual target size. He did this by immersing the
transducer in a water tank and made sure that the echo was detected in a water
bath which placed the target in the far field of the transducer. He also showed that
targets can be positioned in the far field easily in direct contact testing by changing
the probe ie. smaller diameter probe. This however has some limitations in
practical NDT. For example, in the far field there is beam spreading. Also, a
smaller diameter probe limits the ratio of the target size to that of the probe. His

results were most satisfactory in the region of 1.5-3 NF distances.

McNab (1977) said that the DGS diagrams and reference block methods had the
advantage that they give a reproducible absolute reference against which to judge
flaw size. But they do not take into account variation in flaw characteristics, such
as shape, reflectivity and roughness. Therefore it is not possible to derive actual
flaw size from these diagrams except where the reflector is the same as that used

for reference.
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Some publications dealt with producing DGS diagrams using shear wave probes
(Certo, 1984) and they recommended this method to be used for defect sizing.
More details regarding using this method for shear wave probes are explained in

the above article.

Following the development of the impulse response method to model the
propagation of ultrasound in fluids, McLaren and Weight (1987) developed full
theoretical DGS diagrams for disc-like targets in a fluid, using an impulse response
method to predict the echo response of finite targets in a fluid medium. Their
diagrams compared very well with the diagrams produced by Krautkramer in the

near field as well as in the far field.

Schmerr and Sedov (1989), developed a model that predicts the pulse echo

responses from a flat-bottomed hole whose axis is aligned with the axis of the
compressional wave transducer (axial targets). In their model, they used the
Schoch solution ( RA, is much larger than 1, where R is transducer radius) for the
waves incident on the hole bottom, the KirchofF approximation at the hole ( the
wave length should be larger than the target) and a high frequency asymptotic
approximation to obtain an approximate analytical expression for the measured
response. However, in their model they neglected the shear waves, ie. they
replaced the elastic solid by an equivalent fluid. This assumption came as a result of
their work on developing an elastodynamic model for propagation of ultrasound in
a solid, in which they argued that the effect of shear waves is very small (Schmerr
and Sedov, 1989). The scattered waves received back at the transducer were
obtained via a combination of exact integrations and the method of stationary
phase. From this model, they produced DGS-like diagrams that can predict the

significant response variation in both the near and far fields of the probe.

Sumbatyan (1989) described the development and numerical implementation of a
calculation method for DGS diagrams for a flat-bottomed hole that is positioned
coaxially with a normal transducer (compressional). The method is based on the

solution of the elastodynamic equations with mixed boundary conditions for the
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case of oscillations that are harmonic in time. From his model, he produced DGS
diagrams that are similar to those produced by Krautkramer. However, in
explaining the behaviour of the diagrams in the near field, he only speaks of
qualitative comparison of these results. For example, he mentioned that for small
targets there is a sharp minimum in the range of 0.4-0.5 NF and he confirmed this
experimentally. He also concludes that DGS diagrams are not universal and that
they are dependent on the factor R/A. , where R is the probe radius and X is the

wavelength ofthe propagating sound.

The research into DGS diagrams since they were introduced, can be summarised

as follows:

F There are still models that produce DGS diagrams assuming the propagation

medium to be fluid, arguing that the effect ofthe shear waves is very negligible.

Ii- Other models produce DGS diagrams for targets in a solid medium using the
elastodynamic equation, which takes into account the shear waves. However, these

models use much computer time.

fil- The two kinds of assumption mentioned in the first and second points, give a
qualitative description of the fluctuations seen in the near field of these diagrams

without offering a quantitative description.

In the work presented here, DGS diagrams for flat-bottomed holes in isotropic
lossless solid are introduced. This can be done by generating programs which use
Eq (32) to generate echo responses for several targets at several ranges. Also,
experimental DGS diagrams for small targets (i.e. 2mm diameter flat
bottomed-holes) in solid are shown and compared with predicted DGS diagrams
using the new model, for both wide and narrow band transducers. In addition, a
comparison is introduced between the new DGS diagrams for targets in a solid

medium and the diagrams produced for targets in a fluid medium. The reason for
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this comparison is to quantitatively investigate the differences between diagrams
produced for a fluid or solid medium. Finally, some other effects on DGS

diagrams, such as the excitation pulse of the transducer and the method by which

the amplitude ofthe echo is calculated, are explored.
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2.4 Numerical calculations.

Echo responses from normally aligned flat-bottomed hole targets of finite
dimensions are calculated by numerical evaluation of the convolution and the
integral in Eq (32). The integration with respect to y is performed with a constant
increment of 0.lmm. At each value of*y on the target surface the particle velocity
potential is calculated as a function of time using the new model and making use of
the analytical expressions given in the Appendix. Then it is differentiated
numerically to give the particle velocity impulse response. For targets at short
ranges, the time increment used in the calculations is chosen to be less than the
time difference between the arrival of the compression and plane and edge waves.
This is very necessary in order to avoid any numerical errors in the calculations.
Also, in order to compare measured and calculated echo responses, the time
increment used in calculating the simulated echo responses must equal that of the
measured transducer velocity function. At short ranges a time increment of 10ns
gives adequate accuracy and the same increment could be used when digitising the
experimental velocity function. As the target range increases, the time increment 8t
must be reduced to maintain adequate accuracy as descibed later in Section 4.4 that
deals with DGS diagrams. It is of course crucial to make a corresponding change
in the velocity function time increment and this is done by simple linear
interpolation when measured velocity functions are used. The echo response can
then be obtained by performing a direct time domain convolution of the particle

velocity impulse response with the relevant source velocity function.

The source velocity function V() can be in several forms. Examples of v(/) that
consist of several cycles of sinusoidal functions are illustrated in Figure 2.4.1.

These synthetic pulses are specified by the functions

V() = sin (cof) - (N/N+ 1) sin [(N/N+ 1)ot] (39)



for the top one and

v(t) =sin(m/) sin(co//jV) (40)

for the bottom one,where N is the number of cycles and ce is the angular frequency.
Alternatively, v(z) could be measured experimentally by digitising the reflected
pulse from a perfect reflector. In practice the back wall echo from a thin parallel
sided aluminium block can be used for this purpose; it is assumed that any
distortion of the incident pulse introduced by the reflector is negligible (G.

Georgiou, 1989).
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Time (|is)

Figure 2.4.1: Graphical representation of the source velocity functions
synthesized by using Egs (39) and (40). Top is the slowly rising and decaying
sine envelop function. Bottom is the plateau function.
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3- EXPERIMENTAL MEASUREMENTS.
3.1 The transducers.

Two circular transducers were used to obtain all experimental results shown in this
work. One was a wide-band transducer (Aerotech Alpha FO8179 19mm diameter,
5MHz central frequency, X= 1.24mm in aluminium). The other was a narrow-band
transducer (Harisonic HC-3144, 19mm diameter, 3.6 MHz central frequency, X=
1.72mm in aluminium). The transducers were used for obtaining short and

multi-cycle pulses respectively.

3 2 The targets

The model introduced in Chapter two predicts the echo response for axisymmetric
circular targets. To compare the predictions of the model with measured echo
responses, FBH's were suitable because they offer an optimum reflecting surface
(with the larger sizes) that is reproducible and they are relatively easy to machine.
Furthermore, FBH's have many applications in NDT. For example, they are one of
the oldest reference/calibration standards in the field of ultrasonic non destructive
testing. They have been used for calibration of ultrasonic test equipment sensitivity,
flaw detector linearity checks, near surface resolution measurement and for
generation of distance-amplitude correction curves (Halmshaw, 1991). They are
also useful for equivalent flaw sizing applications since they can represent the

response at normal incidence ofideal "perfect" scatterers, such as flat cracks.

As has already beeen demonstrated the echo response from point-like targets has a
complicated mulipulse structure and to obtain experimental measurements to
confirm this using FBH's it is important to consider the smallest practicable size.
One relevant factor is the grain structure of the test material i.e. the target should
have a certain size so that its echo response is not masked by unwanted grain
scattering. The transducer dynamic range can also limit the smallest target that can
usefully be used, since the back scattering which comes from within the transducer
backing can mask the reflected signal from the target, especially when the target

range is small.
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Another factor that experimentally confines the target to a certain range is the
'dead time'. This is the time needed for the amplifier to recover from saturation.

Bearing in mind the above constraints it was found that a minimum FBH target
diameter of 2mm could be used. Since this size was larger than some of the
wavelengths within the interrogating pulses, the smallest FBH was still too large to
behave as a "point-like" target and it was found that a better approximation for a

small target was obtained by using a 2mm round-bottomed hole.

3,3 Experimental set-up for short pulse measurements.

Figure 3.3.1 shows the experimental set up used to capture the echo responses of
targets using a single, directly-coupled wide band transducer (Aerotech Alpha

F08179 19mm diameter, 5 MHz).

A Panametrics 5052PR puiser receiver unit, simultaneously triggers the digital
oscilloscope and a high level pulse generator. The pulse generator produces a
unidirectional pulse of several hundreds volts. This pulse is then applied to the
wide band transducer that is directly coupled to the block under test. The scattered
signals from targets within the block are received by the same transducer and fed to
the receiver amplifier within the Panametrics 5052PR. The output from the
receiver is then digitised at a sampling frequency of 100MHz using the Lecroy
digital oscilloscope. The digitised waveforms are then fed to a 486 DX computer

and stored as files.
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Figure 3.3.1: Block diagram of the excitation system used to capture data
using the wide-band transducer. In the dotted box the trigger and the
receiver are in the same Panametrics unit.
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3.4 Experimental set-up for multi-cycle pulse measurements

In order to make experimental measurements to investigate the interference effects,
a controllable multi-cycle sinusoidal excitation pulse is required. A schematic
representation of the set-up that produces such a pulse is shown in Figure 3.4.1,
The basis of the system is a gated amplifier and a suitably synchronised high

frequency sinewave generator.

The gated amplifier requires to be synchronous to the sinewave generator to
generate gated sinusoidal waves that are locked to the gate control pulse.
Furthermore, the pulse repetition frequency (PRF) must be adjustable, to avoid the
problem of ghost echoes that can mask the echo response of small targets. In
order to adjust the PRF the synchronous trigger pulse was derived using the
triggering facilities of an oscilloscope. This was done by synchronising the
'"Tektronix' oscilloscope type 7603 to the sinewave generator. Because the output
pulse from the oscilloscope as it stands was not suitable, some pulse shaping was
required. To shape the pulse, the output from the oscilloscope was used to trigger
a 'Lyons Instruments LI' pulse generator (type PG 2B). This gave control over the
pulse width, height, and polarity. The output pulse from the PG2B then triggers

simultaneously the gated amplifier and the Lecroy digital oscilloscope

Using this set-up, the pulse repetition frequency can be controlled using the time
base of the 7603 oscilloscope. It was noted experimentally that to minimise the

'ghost echoes' a PRF as low as 20Hz was required.

At the output of the gated amplifier, the signal level is just a few volts and this
must be considerably amplified proir to to exciting the transducer. To give useful
overall sensitivity, a pulse of several hundreds of volts is required. This is achieved

by connecting the gated sinewaves to a 50dB power amplifier.
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Figure 3.4.1: Block diagram of the excitation system used to capture data when
the transducer is excited by gated sinusoidal waves.
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Since the measured echo responses are obtained using a single transducer, the
noise at the amplifier output will be connected to the receiving amplifier. As a
result, extremely poor echo signal to noise ratio will occur between noise and
target signals. Using an 'Hewlett Packard' r.m.s voltmeter, the measured noise was
equal to 6mv. Such a noise level can be larger than the wanted echo signal from the
smaller targets of interest. Fortunately, it is relatively straight forward to reject

such noise using the simple diode network shown in Figure 3.4.2.

As a result of their exponential forward characteristics, the diodes will only
conduct when the voltage across them is greater than ~ 0.6V. So, provided that the
noise level is less than 600mv it will be rejected. The output voltage of the gated
sinewaves is several hundreds of volts but the measured noise signal voltage is

6mv.

The reflected sound pulse is then fed to the receiver within the Panametrics 5052
PR. The received echo pulses are digitised using the Lecroy oscilloscope and the

data stored as individual files on a PC.
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Figure 3.4.2: Block diagram showing the function of the Noise
reduction network. Shown in the dotted box the construction of
the network.
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4- RESULTS

This chapter first introduces a method to measure the radius of the probe and
experimental factors affecting the measurements of the echo responses.

Experimental results obtained using short pulses to detect 2mm diameter round
bottomed-holes in steel are given. This is followed by results from 2mm and 4mm
diameter flat bottomed holes (FBH's) in aluminium. These results are compared
with the theoretical predictions of the present model. Using the same targets, the
variations of echo responses with range, are then compared with those predicted by

the model.

Measured and calculated DGS diagrams using both short and multi-cycle pulses
are given. The influence of the source velocity function on DGS diagrams is then
shown. Finally a comparison between the diagrams calculated using the solid model

and diagrams produced using the fluid model is introduced.
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4.1 Experimental factors affecting the measurements.

411 Measurement of radius of the transducer.

As will be demonstrated later in Section 4.3.4, a number of the theoretical results
are particularly sensitive to changes in the effective source radius. Thus to obtain a
true comparison between the theoretical and measured waveforms it is necessary to
accurately measure the true radius of the transducer. It turns out that an
uncertainty in the effective radius of the transducer has the largest effect on the
echo response for the case where a multicycle pulse is used to interrogate a small
target at a range where destructive interference occurs between the compression
plane and edge wave components. Such a combination of experimental conditions

can be employed to make accurate measurements ofthe effective source radius.

To measure its radius, the transducer was immersed in a scanning tank filled with
water and was positioned to be axially aligned with the centre of a small (0.8mm
diameter) flat-ended cylindrical target. The measurements were taken with the
frequency of the (gated) sinewaves accurately set to 3.6MHz using a digital
frequency meter. The distance between the target and the probe was adjusted to be
close to the range where the PD between the plane and edge waves was 2X (a
"destructive inteference" range - see Section 2.2.5, p 22). The target range was
then adjusted until a null in the pulse was observed, confirming that the PD was
accurately 2|. The true radius could then be found using Eq (28). Since the
method requires an accurate figure for the velocity of sound, the temperature at

which the measurements were taken was monitored using a digital thermometer
(accuracy £0.1°C). The average temperature was 18.3 °C, the corresponding sound

velocity in water being 148mm/ps.

The range was measured using the positional sensors (£0.1 mm accuracy)

incorporated in the scanning tank, by first positioning the probe so that it touched
the target and then moving it away until the null in the echo pulse was at an exact
minimum. This was repeated fives time and an average figure taken for the
destructive interference range (55.21mm, corresponding to a PD of 2X). Using Eq.

28, the figure obtained for the source radius was 9.55mm. As it turns out, this was
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in fact dose to the nominal radius of 9.53mm stated by the manufacturer, but as
stated above it is particularly important to accurately know the true radius, and
there was no guarantee that the nominal radius was accurate. The way in which
errors in the transducer radius affect predicted echo pulse shapes and amplitudes is
investigated quantitatively in Section 4.3.4. Similarly, their affect on defect sizing

using DGS diagrams is demonstrated in Section 4.6.

4,1.2, Uncertainties in measurements ofthe echo responses.

Several uncertainties can affect the experimentally obtained echo responses.
Firstly, the errors associated with the geometry of the test targets must be
considered. The 2mm and 4mm FBH's were machined using specially ground drills.
To minimise errors in flatness, the drill was ground on a numerically controlled
machine. A check was made on the sensitivity of the calculated echo responses to
an error in length of the metal path to each target. The metal path was found by

measuring the thickness of the block and depth of the hole using a vernier gauge

and subtracting. The estimated accuracy of the metal path was 0.5mm. Feeding

this uncertainty into the model showed that the corresponding error in the
predicted echo response amplitude was +3% for the 2mm diameter FBFL For

larger targets the error becomes smaller.

The velocity of sound in the test blocks was measured using the method of
successive back wall echoes as displayed on the digital oscilloscope. Knowing the

thickness of the block, the velocity of sound in the metal was 6.2mm/|.is, with

estimated uncertainty of +3%.

In addition to these uncertainties, there are several factors which can affect both
the shape and amplitude of the echo responses ofthe targets. A major factor is the
coupling condition. Ifthe couplant is not uniform over the face of the transducer,
the symmetry of the radiated edge waves will be severely affected. As a result, all
edge-wave contributions to the overall echo response will be smaller than with true
uniform coupling. This effect will lead to errors in echo pulse shapes and

amplitudes, especially for small targets, where the effect of the edge waves is
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pronounced (as seen later in the measured echo responses for 2mm diameter
round-bottomed targets). To ensure the full propagation of both the plane and
edge waves, the transducer surface was uniformly and smoothly covered with the
couplant and the transducer and test block were carefully lapped. To ensure that
the maximum sound energy has entered the metal, the couplant layer was made as
thin as possible. As a further check on experimental conditions, repeated checks
were made to monitor the reproducibility of the back-wall echo from a region free

ofknown defects.

It should be mentioned that uncertainties that result from the couplant and the
flatness of the transducer cannot be easily be estimated quantitatively. To guard
against such errors, the measured echo responses were taken several times for each

target and the uncertainty in the echo amplitude due to coupling effects was

estimated to be £5%.

When measuring relative amplitudes, using an attenuator and a digital oscilloscope,

the uncertainty was estimated +4%, leading to an overall accuracy in the measured
results of +£12%.
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4.2 Echo responses from point-like targets in steel.

In this section, a comparison between calculated and measured echo responses for
point-like targets is shown. The target sizes and shapes were as discussed in
Section 3.2 but briefly, the most suitable practical point-like target was found to be
a 2mm diameter-round bottom hole, whereas the calculated results were close to

those of an ideal point-like target ifa FBH of 1mm diameter or less was assumed

Figure 4.2.1 shows measured and calculated echo responses for small targets in
steel. As described in Section 2.5, to give a good comparison between calculated
and measured echo waveforms, the shape ofthe theoretical source velocity
function has been chosen to match the shape ofthe measured back wall echo
(shown inset to the same time scale) of a thin parallel side steel block of 10mm
thickness. The theoretical waveforms for each target range have been obtained by

convolving this pulse with the appropriate target impulse response.

The agreement between the calculated and measured results is generally good in
terms of the pulse shape, bearing in mind that the comparison between the
simulated and the measured results is for different target shapes (although both are
reasonable approximations of a point target), and the existence of coherent
ultrasonic "noise" (see Section 3.2). Another possible reason for these differences
is the coupling error discussed above in Section 4.1.2.

At 10mm range, the compression group (C) is clearly seen containing the plane
P®Cand Pd&Ec pulses. The PEcpulse is seen to have a different polarity from the
plane wave pulse. The C/S group can be seen after the compression packet. Again
the difference in polarity is clearly seen in the two components, in both the
measured and calculated results.

Further away from the transducer, at 15mm range, the pulses forming the C group
start to overlap, and the separation between the pulses is less noted.

Also, as predicted by the model (section 2.2.6), the C/S group is further separated
from the C group.

The S group at the two ranges is very small compared with the other two

packages, especially at the longer range as discussed earlier in section (2.2.5, p 27).
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Figure 4.2.1: Measured and calculated echo responses for point-like targets in steel. The measured echo responses
were taken using a 19mm diameter wide band transducer excited with a 4MHz short pulse (shown inset) . C and C/S
denotes the compression and the compression shear groups of the pulse.



4.3 Echo responses from FBH's in aluminium.

In order to evaluate the usefulness and accuracy of the model described in section
2.6, a number of experimental measurements of echo responses from 2 and
4mm-diameter FBH's were made and compared with corresponding theoretically
predicted results. The experimental measurements were made using transducers

excited with both short and multi-cycle pulses.

4,3,1 Echo responses from 2mm and 4mm FBH targets.

Figure 4.3.1 shows measured and calculated transmit-receive mode waveforms at a
range of 12mm for 2mm and 4mm diameter targets when interrogated by a short
pulse from a Panametrics transducer (4MHz, 19mm diameter). As before, the
shape of the theoretical source velocity function has been measured by taking the
back wall echo (shown inset) of a thin parallel sided block. Here, a 10mm-thick
aluminium block was used. The theoretical waveforms were obtained by

convolving the source velocity function with the appropriate impulse response.

In general, there is good agreement between the predicted and measured echo
responses. However, as is the case for the results from the 2mm round-bottomed
holes shown in Figure 4.2.1, there are a number of small discrepancies due to the
non-ideal behaviour of the transducer. Note that even though the present model
does not take into account Rayleigh and head waves, there is reasonable agreement
in the detailed structure of the predicted and measured results. Note also that with
all targets greater than about 1mm diameter, the pure shear (S) components are in
general insignificant and no attempt has been made to display them in Figures
4.3.1-8.

The pulse denoted '™' in the measured result for the 4mm diameter target is a
"multiple" echo arising from that portion of the first-received pulse that is reflected
from the coupling surface to be further scattered by the target. In its present form,
the new model does not take such effects into account. Note that the

corresponding multiple pulse with the 2mm target is too small to be clearly seen.
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Figure 4.3.1: Measured and calculated echo responses for 2mm and 4mm diameter flat-bottomed holes in
aluminium, using a 19mm diameter transducer excited with a 4MHz short pulse (shown inset).



For targets at a range of 12mm, the pulses of the compression group C can be
clearly seen, especially the PdPc and the PcEc pulses with their opposite polarities
for the case of the 2mm target. The PdEc pulse is less pronounced in the echo
responses for the 4mm target as would be anticipated from the explanation of the
effect of target size given in Section 2.3.4. The two pulses of the C/S group can

also be clearly seen.

In the results shown in Figure 4.3.2 a multi-cycle excitation pulse was used. It was
decided to use a suitable target range of 25mm, where atlA, the PD gives complete
destructive interference over the "steady state" region of the C group. The centre
frequency of the multi-cycle pulse was 3.8MHz. The relative sensitivities in the
experimental results for each target are given by the scale factors in dB in the left
hand corner of each experimental measurement. Again, it can be seen that there is
good agreement between the measured and calculated echo responses for both

targets.

In the measured and the calculated echo responses for the 2mm target shown at the
top of Figure 4.3.2, the null region can be seen in the middle of the compression
group 'C'. The existence of this null region makes it look as though there are two
separate pulses that could be falsely interpreted as coming from two closely spaced
targets. In fact it isjust an interference effect over the various components of the

C group from a single target.

For the case of the 4mm target, the destructive interference between the plane and
edge waves can still be noted, but its effect is not as strong as in the 2mm target
case. This is because as the target size increases, the contribution of the plane
waves becomes larger than that of the edge wave and hence the echo response is

dominated by the plane wave pulse.

Although two completely different source velocity functions were used in obtaining
the results shown in Figures 4.3.1 and 4.3.2, there can in fact be quite significant

differences in small target echo pulse shapes for relatively subtle changes in
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velocity function. For example, Figure 4.3.3 shows calculated echo responses for
2mm and 4mm diameter FBH's at the same range and for the same source diameter
and centre frequency as in Figure 4.3.2, but with the two velocity functions shown
inset. For the 2mm target, there are pronounced differences in pulse shape above
that due to the difference in the velocity functions themselves. Again, with the
plateau function (right) the echo response could be confused as coming from two
separate targets, whereas with the sine envelope (left) function this is not the case,
there being one continuous C group. Note also that there is around a factor of two
difference in the peak-to-peak amplitude of the two responses, even though the

source funtions have the same amplitude.

With the larger 4mm-diameter target the difference in the echo response using each
velocity function is much less dramatic and is virtually just that due to the different
shape of the functions themselves. The explanation brieflly stems from integrating

the impulse response over the area ofthe target (see p61 and Section 2.2.7, p 34).

4,3,2 Variation ofecho responses with target size.

Figure 4.3.4 shows calculated echo responses for 2mm, 4mm, 9mm and 19mm
diameter FBH's at 12mm range, interrogated by short (a) and multi-cycle pulses (b)

centered at 3.8MHz. Again a 19mm diameter source is assumed.

From Figure 4.3.4a, the result for the smallest 2mm-diameter target shows the
complicated multipulse structure ascribed to diffraction effects and described in
Sections 4.3.1 and 2.3.3. Atjust over 1 (centre frequency) wavelength across, this

target behaves as a point-like scatterer.

The result from the 4mm-diameter target shows a similar multipulse structure, but
the edge wave contributions are smaller and smeared out in time (see Sections
2.3.4 and 4.3.1). With even larger targets (9 and 19mm diameter), the multipulse
structure is less evident, the response being dominated by the first arriving plane
wave contribution (again see Section 2.2.7). The 19mm-diameter target, being

some 15 wavelengths wide results in an essentially specular reflection of the direct
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plane wave with just a very small contribution from the edge waves, as illustrated
at the bottom of Figure 4.3.4a. It should be mentioned that although the plane
wave contribution retains the same shape with increasing target size, its amplitude

increases. The increase is approximately proportional to the (planar) target area.

Figure 4.3.4b shows a similar set of results except that the source velocity function
is now a multi-cycle pulse centred at 3.8MHz. Since the PD at this frequency,
source diameter and target range is almost exactly 2X for small targets there will
be a marked effect due to destructive interference of the various plane and edge
wave components (as also shown in the measured echo responses of Figure 4.3.2) .
The resulting null region in the steady portion of the response is clearly seen with
the 2mm-diameter target but with the larger targets, this is no longer evident.
Again this results from the fact that the interfering contributions are no longer of

similar amplitude.

It is interesting at this point to consider the way in which the overall echo pulse
amplitude changes when the target size increases from 2 to 4mm for both the short
and multi-cycle source velocity functions. When the short pulse source velocity
function is used, the increase in amplitude is proportional to the target area, i.e. the
echo amplitude for the 4mm target is four times larger than that of the 2mm target.
This stems from the integration of the plane wave over the surface of the target.
Also at such short range, there is no interference between the pulses since they are
separated. However, when the multi-cycle source velocity function is used, the
echo amplitude for the 4mm target is nearly 6 times larger than that of the 2mm
target. The explanation for such deviation can be for two reasons. The first one is
that the edge wave contribution in the case of the 2mm target is strong and is
nearly equal to that ofthe plane wave. So, when these waves destructively interfere
they nearly cancel each other out. For the case of the 4mm target, the plane wave

contribution is larger than that of the edge wave. Hence, the result of the
interference will not be as dramatic as in the case of the 2mm target. Hence at this
range and for these target sizes the rise in the amplitude is not proportional to the

target area.
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For both source velocity functions, moving from 4mm target to the bigger targets,
the increase in the overall echo amplitude is proportional again with to target size.

This is because the echo response is dominated by the plane-wave contribution.

Finally, note that in this section the variation of echo response with target size is
discussed at just one range (12mm). An investigation of the variation of echo
response with range for two different target sizes is discussed in the next section.
These variations in echo amplitude with target size and range have important

implications for defect sizing using DGS diagrams as discussed in section 4.4.2.

4,3,3 Variation of echo responses with target range in the near field.

In this section, the variation of echo response with range is considered only in the
near field. In the far field the variation of echo responses is well documented and
will be considered later when dealing with DGS diagrams in section 4.4. The way
in which the axial response from 2mm and 4mm diameter targets varies with
near-field range is illustrated in Figures 4.3.5 and 4.3.6. Both theoretical and
experimental results are given. The theoretical source velocity function has been
chosen to be a back wall echo (shown inset) from 10mm aluminium block. To
match the calculated amplitudes with the measured amplitudes, the positive peak
amplitude of the calculated echo response for the 2mm target at 12mm range was
scaled to the measured positive peak amplitude of the same target. The subsequent
results are plotted using the same scaling factor but note that the relative
sensitivities in the experimental and calculated results for each target are given by

the scale factors in dB in the left hand corner of each experimental measurement.

There is good agreement between the predicted and the measured echo responses
at several ranges in terms of both amplitude and shape. Close to the transducer
(Figure 4.3.5) at a range of 12mm, the echo response is the same as that described
in Figure 4.3.1. The multipulse structure due to diffraction effects is clearly
evident. With increasing range, the PD between the plane and diffracted
compression edge waves becomes smaller causing them to progressively overlap.

With the short pulse excitation used here and with these near field results, the
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pulses can only interfere constructively to give an increase in pulse amplitude with
range. Note also that as a result of the variation of mode conversion with angle
subtended at the source rim, the contribution of the compression edge wave
becomes larger with range while the shear edge wave contribution becomes
smaller, exactly as predicted in Section 2.3.3. These effects result in the echo
amplitude with the 2mm target increasing by 6dB as the target range increases

from 12 to 37mm.

From Figure 4.3.6 it can be seen that the rise in echo amplitude with range for the
case of the 4mm target is smaller than that for the case of 2mm,target. The
increment in the echo amplitude between 12mm and 37mm is roughly 2dB. This is
because the edge wave contribution is relatively smaller (see Section 4.3.2 above)
than the compression plane wave contribution. So, even though their contribution
is increasing with range, their effect on the overall response is too small to produce
a pronounced increment in the amplitude. Further discussion about the variation of

short pulse echo amplitude with range and size is introduced Section (4.4.1)

Similar sets of results for those shown in Figures 4.3.5 and 6 for short pulses are
given in Figures 4.3.7 and 8 but for a multi-cycle pulse centred at 3.8 MHz. A
different set of ranges was used, corresponding to a PD range from Xto 0.5A. The
matching between calculated and measured amplitudes was done in the same way
as in the case for the short pulse results but this time the matching range was
25mm. Again, the relative sensitivities in the experimental and calculated results for
each target are given by the scale factors in dB in the left hand comer of each

experimental measurement.

For the case ofthe 2mm target (as shown in figure 4.3.7) at 25mm range, the false
'double' pulse structure as explained before is clearly seen. When moving to a
further range, i.e. 29mm (PD = 0.92A), the central null region in the pulse
disappears and instead there is just a slight drop in amplitude as a result of the
partial destructive interference. Further away from the transducer, at range of

35mm (PD 0.77mm), there is partial constructive interference, leading to an
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Figure 4.3.8: Variation of multi-cycle pulse (3.8MHz and 19mm diameter
transducer) echo response with range for 4mm diameter FBH.
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increase in amplitude compared to those at the shorter ranges. When the target
position is at the range where PD is 0.5A (47mm), full constructive interference
occurs giving rise to a pulse having an amplitude which is some 17dB higher than

that at the considerably shorter range of 25mm.

For the case of the 4mm target, (as can be seen in Figure 4.3.8) at a range where
PD is X ie 25mm, as explained earlier in Section 4.3.3, the destructive
interference between plane and edge waves is less noted than in the case of the
2mm targets. At further ranges, the variation of the echo response has a similar
behaviour to that of the 2mm target, especially at 47mm range where the PD is
X/2. Finally the increase in amplitude when moving from 25mm to 47 mm is
roughly 10dB. The implications of these large echo amplitude variations with range
are further discussed when the relation between the target size and its echo

amplitude and range are investigated in section 4.4.3

43,4 Effects ofuncertainties in transducer radius.

In the previous sections variations in echo responses with target size and range
have been explored. Investigations showed that accurate predictions of echo
responses depend very much on the true diameter of the transducer used. So, at
this point, it is appropriate to demonstrate quantitatively how uncertainties in the

transducer diameter affect the echo response.

Figure 4.3.9 shows two sets of calculated echo responses for Imm diameter FBH
at a destructive interference range (35mm) assuming a SMHz transducer excited
with two different multi-cycle pulses (shown inset). The transducer diameter has
been slightly changed from 19mm (the wanted radius) to 19.2mm and 20mm
diameter. These changes in the diameter represent errors that might result from

measuring its effective diameter. These errors are approximately 1% and 5%

respectively.
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Figure 4.3.9: Two sets of echo responses for 1lmm diameter target at a destructive
interference range (35mm) obtained with different source radiuses (SR), excited
with two different source velocity functions (at the bottom of each set). The echo
response shows only the C group contribution since other groups contributions
are negligible.
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From Figure 4.3.9 the variation in echo pulse shape and amplitude are clearly
demonstrated for the uncertainties in the transducer diameter, assuming the two

source velocity functions. These differences are listed in Table 4.3.1.

Type of source source diameter echo amplitude Echo shape
function uncertainty change change
Plateau 1% +8% slight

5% +100% rapid
Sine envelope 1% +54% slight
5% +150% rapid

Table 4.3.1: Changes in echo amplitude and shape of echo responses for
2mm-diameter target at a range of 35mm as a result of uncertainties in transducer

diameter.

Figure 4.3.10 shows two sets of calculated echo responses for the same target size
but at a constructive interference range (22mm). Generally the uncertainties in the
transducer radius has no great effect on the echo response shape. However, the

effects on the amplitude are noticeable. Again, these differences are listed in Table

4.3.2 below.

Type ofvelocity ~ Source diameter  Echo amplitude Echo shape
function uncertainty change change
Plateau 1% -7% negligible

5% -44% negligible
Sine envelope 1% -8% negligible
5% -58% negligible

Table 4.3.2: Changes in echo amplitude and shape of echo responses for
2mm-diameter target at a range of 22mm as a result of uncertainties in transducer

diameter.

As can be seen in the above two tables, the uncertainties in the source diameter
have greater effects when the target is at a destructive interference range. This
arises because, for small targets the interference is between two nearly equal
amplitude contributions. Also, a small change in the edge wave contributions will
have a greater effect when there is destructive rather than constructive interference
The uncertainties discussed above are returned to in Section 4.4.4 when discussing

the use of the present model to calculate DGS diagrams.
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Figure 4.3.10: Two sets of echo responses for Imm diameter target at a
constructive interference range (22mm) obtained with different source radiuses
(SR), excited with two different source velocity functions (at the bottom of eacli
set).
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4.4 New DGS diagrams for FBH targets in a solid medium

In the following Sections, experimental DGS diagrams for 2mm diameter FBH's at
different ranges are compared with the corresponding calculated curves predicted
by the model. The effect of the source velocity function on the diagrams is then
considered before showing the way in which the method of amplitude detection

affects the curves.

Since the DGS diagrams will be calculated out to ranges much greater than those
considered so far, it is necessary to consider any implications for numerical
accuracy. For targets at the near-field ranges considered so far, a 10ns time
increment (5t) was fine enough to produce accurate pulse shapes. Numerical
experiments showed that accurate predictions of echo pulse shapes could be made
provided that

5t <~0.05TD, (42)
where the time difference TD is given by PD/c. When calculating DGS diagrams it
would not be efficient if 8t was set to conform with the greatest range considered
since calculation time would be unnecessarily long in the the near field. To save
time, 5t is automatically calculated to approximately conform to the relationship of
Eq (42).
In all calculated DGS curves shown in this section, the source characteristics are
assumed to be a 19mm diameter transducer emanating a pulse (short or multi cycle

pulse) centred at SMHz, unless stated otherwise in the text.

44,1 Measured and calculated DGS diagrams for 2mm FBH targets.

Figure 4.4.1 shows sections of calculated and experimentally measured DGS
diagrams for a series of 10, 2mm-diameter FBH's at ranges varying from 12mm
(PD = 2.1X) to 60mm (PD = 0.47A, ) in an aluminium block. The experimental
results were obtained using the same wide band, 19mm diameter, 4MHz transducer
(Aerotech Alpha FO8179) as used to obtain the short pulse echo responses given
in Section 4.3.3. In order to obtain a good comparison between the measured and

calculated diagrams, the modelling results were calculated with the theoretical
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aluminium, positioned at several ranges from a 19mm diameter transducer excited with 4MHz pulse (shown inset).



source velocity function matched to that of the real transducer (see Sections 4.3.1
&2). When measuring the velocity function, a time increment of 10ns was used.
As was described earlier in Section 2.4, this increment may not be as required for
the numerical calculations. Here we need to conform to Eq (42), and where
necessary linear interpolation between the sampled data points was used.

In both sets ofresults, peak-to-peak echo amplitudes were taken and plotted using
the same normalised scales as in the original DGS diagrams shown in chapter 2.
Note however that the distance scale is now linear. The measured echo amplitudes
were taken after digitally recording the echoes on the Lecroy 9410 oscilloscope,
with sampling frequency of 100MHz. Note that the calculated and measured
results may be plotted to the same relative amplitude scale, since they are
separately normalised to their own echo amplitude for G=1.0.

In general, it can be seen that there is good agreement between the two curves, the
maximum difference being about 4dB, bearing in mind the errors due to
experimental uncertainties, such as machining tolerance, transducer positioning and

coupling, as mentioned in section 4.1.

For the short pulse transducer used and over the near field as considered in Figure
(4.4.1), it can be seen that the variations in echo amplitude with range are small.
For example, the increase in the echo amplitude between 27mm and 47mm ranges
is just 3dB. A similar effect was shown in section 4.3.3, where the echo reponses
themselves were given. However as was also demonstrated earlier (Figure 4.3.7)
there will be fluctuations in near field echo amplitudes when a narrow band

multicycle pulse transducer is used.

To demonstrate this, Figure 4.4.2 shows experimentally measured DGS diagrams
obtained using the narrow-band 19mm Harisonic transducer to give a multicycle
pulse centered on 3.8MHz (shown inset). A corresponding calculated curve is
included for comparison. The band (23-63 mm) oftarget ranges was chosen so that
the PD varied from just over IX to just under X/2, thereby including ranges where
we move from destructive to constructive interference (of the compression wave

components, see Figure 4.3.7). In both sets ofresults, peak to peak relative
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Figure 4.4.2: Comparison between Experimentally obtained DGS diagram and calculated DGS diagrams for
2mm diameter flat-bottomed holes in aluminium assuming a 19mm diameter transducer excited with a
3.8MHz multi-cycle pulse (shown inset).
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amplitudes were taken and plotted using the same normalised scales as in Figure

4.4.1.

In general, there is good agreement between the calculated and measured results,
shown in Figure 4.4.2, the maximum difference being about 3dB (or 4.5dB
including the estimated error). In contrast to the relatively small change in
amplitude with range with the short pulse results of Figure 4.4.1, there is now a

variation of some 18dB as the range varies from 25 to 47mm.

It should be noted here that in both Figures (4.4.1 and 4.4.2) all the experimental
points came below the calculated points. The reasons for such behaviour can be
referred to several reasons. First of them is the coupling conditions at the moment
of capturing the data. As mentioned before (section 4.1.1, p 60-61) ifthe couplant
was not uniform all over the face of the transducer, the contribution of edge wave
will be weak. Hence, the measured amplitude could be less than what it should

have been ifthe couplant was uniform.

The second reason could be the roughness of the targets. As mentioned in chapter
two, the model assumes the target to be smooth and planar. However, the
experimentally available targets, have some roughness in their surfaces. This
roughness causes more scattering of the beam. The combination of such effects
causes the measured echo amplitudes for the targets to be smaller than those ofthe

calculated ones.
Having shown that the model can predict the echo amplitude for targets over

several ranges with reasonable accuracy, we may use it to investigate how various

experimental conditions and uncertainties would affect DGS diagrams in general.
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4,4.2 Effect of the source velocity function on DGS diagrams

In his original work Krautkramer (1959) mentioned the effect of the form of the
ultrasonic pulse on DGS diagrams, especially in the near field region. In the present
work, this effect is taken into account by changing the source velocity function.
However, he did not fully explain this effect. In this section DGS curves are
produced for various source velocity functions including both short- and

multi-cycle pulses. The explanation for each set of curves is given.

Figure 4.4.3 shows DGS curves calculated for FBH targets assuming a single
cycle, sinusoidal pulse (shown inset). These curves are presented in terms of the
usual dimensionless parameters G and A (as defined by Krautkramer, 1959, section
2.3, p 36-37). As usual, the echo amplitudes for all targets at all ranges were
normalised to the echo amplitude of a target which has the same diameter as the

probe, at a range (25mm) within the near field ofthe probe.

As seen in Figure 4.4.3, for the smallest target (G = 0.05), there is a rise in echo
amplitude with range for ranges up to about 1.5NF. Up to 0.8NF there is a steady
rise in amplitude. In order to explain this rise it is helpful to consider the detailed

structure of some appropriate echo responses.

Figure 4.4.4 shows at the top both on-axis and 0.5mm off-axis impulse responses
for a point target at 12 and 22 mm range. Beneath are shown the impulse
responses of a finite target of radius 0.5mm together with the corresponding echo
responses assuming a short pulse velocity function. From the upper results (a & b),
it can be seen that the PECcomponent ofthe impulse response increases with range
for targets both on- and off-axis. This increase stems from the way in which the
mode conversion factor increases with range as explained in Section 2.2. However
for the off-axis results (b), the increase is also because the PdEc components are
less smeared out with time at the longer range. Although both effects can still
cause the rise in the PEC pulse when considering finite-sized targets, a more

important effect comes in to play, as is demonstrated in the lower results (c & d)
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Figure 4.4.4: Impulse responses both on-axis and 0.5mm off-axis for a point
target at 12 and 22mm range (a & b respectively). Impulse response (c) and echo
response (d) for a 0.5mm radius target at both ranges.
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for the 0.5mm radius target. The impulse response for a finite sized target is the
sum of the contributions from all the elementary point targets that make its surface
(see section 2.3 in Chapter 2). So, for a 0.5mm radius target (G = 0.05), the total
P&Ec impulse response is the integration of the Pd&Ec impulse responses of point
targets from on-axis to 0.5mm off-axis. In addition to the effects discussed above,
since the off-axis contributions become more time compressed with range the
integration will cause the total PECimpulse response for this target to increase
with range, as shown in the lower result (c). For such a target size, this impulse
response is the largest component of the total impulse response. When the total
impulse response is convolved with the source velocity function, the amplitude of
the PECpulse increases. So even if there is no overlapping of components within
the overall response (up to about 0.8NF corresponding to PD>X) the echo
response of this target will increase with range as demonstrated in result (d). It is
this "integration effect" that causes the steady rise in amplitude with range (up to
0.8NF) for G = 0.05 in the DGS curves shown in Figure 4.4.3. It should be
mentioned that the integration effect will apply to DGS diagrams calculated using

both the solid and fluid models, as will be demonstrated later in Section 4.5.

From 0.8 to 1.5NF range, there is a steeper rise in amplitude with range for G =
0.05. The reason for this rise in addition to that due to the integration effect is that
the path difference between the plane and the edge waves becomes closer to X/2

and hence they start to interfere constructively.

As discussed above, there is a rise in echo amplitude with range up to 1.5NF for
small targets (G = 0.05). However, as G increases, different behaviour is observed
in the curves. Consider the behaviour ofthe curve G = 0.1. Up to roughly 0.3NF,

the echo amplitude remains constant with range. The reason for this "flatness" in
the plots, is that for this size of target the plane wave contribution becomes larger
than that of the edge wave. As a result, when the peak to peak amplitude of the
echo pulse is measured, the plane wave component (P®Q will be the dominant
factor in the total echo response, in contrast to the situation with smaller targets,

where the PECpulse is the dominant factor. Because the plane wave does not
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change with range in a lossless medium, the echo amplitude will stay constant and
hence the flatness in the curves. Beyond 0.3NF and up to 1.5NF, the echo
amplitude increases with range. Just as was the case for smaller targets, this is due
to both the integration effect and the overlapping of the components within the

overall response.

For G = 0.2, the distance within the near field, up to which the amplitude remains
constant increases to 0.65NF. Again, this is because as the target size increases, the

plane wave component becomes more dominant.

From the progression ofthe G = 0.1 and 0.2 curves, it is expected that the echo
amplitude will be constant over a larger range of distances for G - 0.5 curve.
Interestingly, the range of distances at which the echo amplitude remains constant
is less than that for G = 0.2, i.e. the amplitude remains constant up to just 0.4NF
range and then rises. The unexpected rise in amplitude is because as the target size
increases, impulse responses components corresponding to the edge wave become
closer to the plane wave impulse response component. This is because the PD
between plane and edge waves at the target periphery becomes smaller. Hence the
separation between the components is less than the length of the source velocity
function at ranges from 0.4NF onward. As a result, when the source velocity is
convolved with the impulse response, overlapping between the corresponding echo
pulses takes place. This overlapping between the pulses causes the rise in the
peak-to-peak echo amplitude. Note also that this explanation is also valid for DGS

curves constructed using the fluid models as will be seen in Section 4.5.

In the very far field, the echo amplitude decreases with range for all target sizes,
the reason for this decrease in amplitude is that the plane and edge waves start to
interfere destructively since the PD is now less than 7J2. As the range increases,
the echo amplitude decreases and the echo amplitude becomes zero at infinite
distance, where there will be complete destructive interference between equal

amplitude components.
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The above explanation for the form of short pulse DGS curves can also be used
when considering curves calculated using a multi-cycle pulse. However, the
multi-cycle curves show more fluctuations with range because the various
components within the overall response now overlap over a much greater region of
the field. Figure 4.4.5, shows theoretical DGS curves generated for FBH targets
assuming a 15-cycle sinusoidal pulse (shown inset). Again, these curves are
presented in terms of the usual dimensionless parameters G and A as mentioned

earlier.

Because the compression edge wave contribution is strongest for smaller targets,
the effects of interference between plane and edge waves on the echo amplitude are
more evident than with larger targets. Such strong interference causes the large
variations in echo amplitude with near field range. As the target size increases, the
plane wave contribution becomes larger than that of the edge wave. As a result,
interference effects on echo amplitude become less. This results in less fluctuations

in the echo amplitude for larger targets.

Within the near field, there is good agreement between the general form of the
curves given in Figure 4.4.5 and the original curves published by Krautkramer
(shown in Figure 2.3.1), but it should be born in mind that his results were taken
for disc-like targets in water and were not for exactly the same pulse shape. Also
the new curves have the same general form as those given in the more recent work
of Schmerr and Sedov (1989) and Sumbatyan (1994).

Despite the fact the new model gives similar DGS curve to those produced using
fluid models (Schmerr and Sedov, 1989) there are some differences between these

curves as explained later in Section 4.5.

In the far field, there is a linear reduction in amplitude with distance, as predicted

by Krautkramer as well as by Schmerr and Sedov and Sumbatyan.
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One point which is noted from the curves of Figure 4.4.5 is that, for small values
of G (0.05 and 0.1), the variation in amplitude from 0.5 to 1 NF distance is more
than 20dB. This variation can be one of the greatest drawbacks in sizing small
defects using the DGS method. A similar variation was shown in the measured
waveforms of the 2mm diameter target, where the echo amplitude at 47mm is
nearly 10 times bigger than the echo amplitude at 25mm (Section 4.3.3). With
larger targets (G = 0.5 and 1.0), this particular drawback is less of a problem due
to the domination of the echo response by the plane wave, as explained in section

(4.3.2).

Note when using the present model to calculate DGS diagrams, it is not necessary
to calculate the whole echo response including the shear-wave components,
provided that their effect on the compression edge-wave components (within the C
packet) is included. As mentioned earlier in Section 2.3.3, the shear wave
amplitude is always smaller than that of the compression wave within the ranges
shown in Figures 4.4.3 and 5. Hence, when just the overall amplitude of the
response is required, as in DGS curves, the shear edge wave contribution can be
truncated, thereby reducing calculation times by a factor of around ten times. Using
the truncated responses, the time to carry out the calculations made in producing

the curves shown in Figure 4.4.5 was approximately 2 hours on a 48§6DX PC.

So far in this section, the considerable differences between DGS diagrams
produced using short and multi-cycle pulses have been demonstrated and
explained. In practice, when sizing defects using DGS diagrams there are times
when the effect of smaller changes in pulse shape are required. For instance when

changing transducers ofnominally the same type and centre frequency.

Figure 4.4.6 shows two sets of DGS diagrams produced assuming that the velocity
function was two variants of a muli-cycle pulse (shown inset). The two functions
are the same as used earlier in Section 2.4 . They have the same centre frequency

(5MHz) and number of cycles (15), but different envelopes.
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At certain ranges in the near field, it can be seen that for small targets, there are
some differences between the relative echo amplitudes using the two functions.
As can be seen, the differences are greatest at destructive interference ranges, -
0.25NF (PD= 2X) and 0.5SNF (PD= X). As an example at 0.SNF and for G = 0.05,
the difference in relative echo amplitudes using the two functions is 6dB. This
difference is because at a destructive interference range, the plane and edge waves
are subtracted within the steady-state region of the echo pulse. Where the two
overlapping components are of similar size, the overall peak-to-peak echo
amplitude is likely to be that of the rransient region of the echo response (see
Figure 4.3.2). The transient regions for the echo responses are not the same
because the source velocity functions are different. The plane and edge waves are
of similar sizes, hence small changes in any of these sizes produces large changes
in the total pulse shape. The combined effects of subtracting two equal quantities
and different envelope functions causes the discrepencies in echo amplitude.

At ranges other than those where destructive interference occurs, the differences in
echo amplitude using the two functions are much smaller, this is because the echo
amplitude is a measure of the height of the stcady state region of the echo pulse.
When the plane and edge waves that have similar sizes are added at these ranges,
the different rising and decaying times of the velocity function will have small effect

on the total echo amplitude.

The difference in amplitude becomes less as G increases at the same range. Beyond
G = 0.5, the amplitudes are virtually the same because as mentioned earlier, the

echo response is dominated by the plane wave component.

In summary, the shape of the DGS curves in the near field region depends very
much on the source velocity function. For a short pulse, there is a constant or/and
continuous rise in the echo amplitude (depending on the target size) with range.
For multi-cycle pulses, there are fluctuations in the echo amplitude with range, that
decrease as the target size increases. Also, using two different multi-cycle source
velocity functions can cause some significant differences in echo amplitude even for

quite similar driving functions. These differences occur for targets that are up to
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half of the transducer diameter. Note that this only happens when the target is at a
destructive interference range within the near field. At other ranges, the excitation
pulse can make small or no differences on echo amplitude measurement

In the far field, the shape of the DGS curves is the same for both short and

multi-cycle pulses.

4,4,3 Effect of the method of amplitude detection on DGS diagrams.

Figure 4.4.7, shows two sets of theoretical DGS diagrams produced assuming a
19mm diameter source excited with a SMHz 15-cycle pulse. One set is produced
by taking the peak-to-peak amplitude of the echo responses (as has been done
throughout, so far). The other is produced by calculating the mean of the absolute

values of compression packet C at each range for each target size.

In the near field of the source and for small values of G (G = 0.05), the main
differences in echo amplitude using the two methods are clearly seen at a
(destructive interference) range of 0.SNF where PD=A,. There is a difference of
about 4dB between the two methods. The reason for the relative amplitude of the
echo response of the target using the peak to peak method being higher than that
using the mean value method, can be explained by referring to the echo pulse shape
themselves as shown in Figure 4.4.8. The Figure shows calculated echo responses
for Imm, 4mm and 19mm diameter FBH's at 35mm range assuming the same
source parameters used to obtain the DGS curves shown in Figure 4.4.7. At this
destructive interference range, the echo response for the small target (G = 0.05) is
small compared to that of echo response for the larger target (G = 1.0) using the
two methods. However, the null region in the echo response causes the mean of
the pulse to be very small. Hence, when the echo response is normalised to the
mean of the larger target (G = 1.0), its mean will be less than the peak-to peak

amplitude.

As the target size increases the plane wave contribution will be larger than that of

the edge wave. So, at the same range, interference effects on the echo response
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Figure 4.4.7: Calculated DGS diagrams using two different methods of amplitude detection, one is peak
to peak (the dotted line), the other is the mean of the pulse (the solid line) assuming a 19mm diameter
transducer excited with a SMH/. 15-cycle pulse (shown inset).
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Figure 4.4.8: Calculated echo responses for Imm (G = 0.05), 4mm (G = 0.20) and
19mm (G = 1.00) diameter FBH's at a range (-0.5NF) which represents a
minimum at the DGS curves shown in Figure 4.4.7. The height of the dotted line
represents the mean of the absolute values of the pulse. The two headed arrow
represents the peak-to-peak (p-p) amplitude.
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will be small and the null region disappears. This results in increasing the mean of
the pulse. Hence, when the echo response is normalised it is nearly the same using
both methods. This is clearly demonstrated in Figure 4.4.8 for the 4mm (G = 0.2)

target.

At other ranges within the near field, the differences are considerably smaller using
the two methods, since at such ranges, interference effects on the echo response

will not cause rapid changes in the echo shape.

In the far field, for small and large values of G, there are negligible differences in
echo amplitude using the two methods, since again the plane and edge waves
partially overlap and hence the normalised echo amplitudes for both methods are

nearly equal.

4,4,4 Effect of transducer radius on DGS curves.

In section 4.3.4, the effect of uncertainties in the source diameter on the echo pulse
shape was investigated. In this section, the effect of such uncertainties is extended

to the DGS curves.

Figure 4.4.9 shows two sets of calculated DGS curves. One set is produced
assuming a source diameter of 20mm. The other set is produced assuming a 5%
uncertainty in the source diameter (19mm diameter). For both sets of curves, the

source velocity function consists of 15 cycles centred at SMHz.

At short ranges there are significant differences between the two curves, especially
for small targets. For example, within the near field of the source and for G =
0.05, the difference in echo amplitude can be as much as 10dB. The reason for
such differences is that the edge wave contribution is strongest for such sizes. As a
result, any miscalculations in the source transducer and hence the PD between
these waves and the plane wave will produce dramatic differences in the predicted

echo amplitudes.
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Figure 4.4.9: DGS curves calculated assumings uncertainty in the transducer radius. TR stands for
transducer radius.
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As the target size increases, the differences in the echo amplitude becomes smaller.
For G = 0.5 the differences in amplitude are less than IdB for all ranges within the
near field of the source. This is because as explained in Section 4.3.2, the echo
response is dominated by the plane wave and hence any miscalculations in the PD

will have very small effect on the predicted echo amplitude.

In the far field, for small and large targets, discrepancies in echo amplitudes
become less with range since the PD is less sensitive to changes in range. Hence,
uncertainties in the source diameter will have only a small effect on the echo

response.
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4.5 Comparison between DGS diagrams calculated using the solid and fluid
models

As mentioned in section 4.4 there are some differences between curves produced
using the fluid and solid models. In order to show these differences, a comparison
between diagrams produced using the new solid model and diagrams produced
using an earlier fluid model (McLaren and Weight, 1987) is introduced. The

comparison is made for short and multi-cycle pulse sources, respectively.

Earlier in Figure 4.4.1, a DGS curve calculated using the solid model was
compared with an experimental DGS diagram for a 2mm target. These results are
repeated here in Figure 4.5.1, but with a further curve calculated using the fluid
model. As can be seen, the solid model gives a DGS diagram closer to the
experimentally obtained result than does the fluid model, taking into account the
systematic differences between the measured and calculated curves mentioned in
section 4.4.1. An explantion for the higher amplitudes predicted by the fluid model

is given below, after further comparisons between the two models are made.

To extend the comparison, Figure 4.5.2 shows a number of DGS curves produced
using both the fluid and the solid models. Throughout, the source velocity function

is a single cycle sinusoidal pulse centred at SMHz (shown inset).

Before going into the comparison between the curves, it should be pointed out that
the normalisation of the curves has no effect on the differences between the curves.
Since both sets of curves are normalised to the echo amplitude of a target that has
the same diameter as the source (G = 1.0) positioned at a range within the near
field of the source. From Figure 4.5.2, for such targets, echo amplitudes are equal

within the near field of the source, whatever model is used.

For small targets (G = 0.05), there is rise in the echo amplitude with short ranges
for both models. As mentioned earlier in section 4.4.1, this is due to the integration
of the echo impulse responses over the target surface. However, the echo

amplitude given by the fluid model is slightly higher than that obtained using
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Figure 4.5.1: Comparison between experimentally obtained DGS diagrams for 2mm Diameter flat-bottomed holes
m aluminium and calculated DGS diagrams using the fluid and the solid models, using a' 19mm diameter excited
with a SMHz short pulse (shown inset).
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Figure 4.5.2: Comparison between DCS diagrams lor FBH's calculated using the fluid and the solid model,
assuming a 19mm diameter transducer excited with 5SMHz. single sinusoidal pulse (shown inset).



the solid model, especially at shorter ranges. This stems from the fact that in the
solid model, part of the compression edge wave is converted to a shear edge wave,
and so the compression packet C decreases in amplitude. Because this effect is
much stronger at the short ranges, the difference in echo amplitudes using the two
models is slightly bigger there. As the target size increases, the difference in echo
amplitudes using the two models becomes less. This due to the domination of the

echo response by the plane wave, with increasing target size.

With multi-cycle pulses there are also differences in the echo amplitudes using the
two models. Figure 4.5.3 shows a comparison between the measured multi-cycle
DGS curve for a 2mm target (shown in Figure 4.4.2) and calculated DGS curves
using the two models. Again, this figure shows clearly that the solid model gives a
predicted DGS diagram closer to the experimentally obtained DGS diagram than

does the fluid model.

Again, with multi-cycle pulses, the comparison between the two models is
extended theoretically to more target sizes and more ranges, as shown in Figure
4.5.4. As shown in the comparison with the measured DGS curve in Figure 4.5.3,
for small targets there are some differences between the two sets of diagrams,
especially at destructive interference ranges within the near field region. As an
example, For G = 0.05 and at 0.5NF range, the fluid model would give a larger
amplitude for small targets than does the solid model by some 6dB. These
differences are relatively high compared to the differences shown in the case of
DGS curves constructed assuming short pulse sources. As G increases, in general

the differences in echo amplitude using the two models become smaller.

From Figure 4.5.4 it can be seen that within the near field region, at two
destructive interference ranges (i.e. 0.25NF and 0.5NF) the differences between the
models vary. At other ranges, within the near field, the differences between the
models are relatively the same. This stems from the fact that in the solid model the
compression edge wave contribution within the C packet varies with range. So, at

two destructive interference ranges, the subtraction between two nearly equal
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Figure 4.5.3: Comparison between Experimentally obtained DGS diagram and calculated DGS
diagrams using the fluid and the solid models for 2mm diameter FBH's, using a 19mm
transducer excited with 3.8MHz multi-cycle pulse (shown inset).
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Figure 4.5.4: Comparison between DGS diagrams constructed using the solid model (Solid line) and the fluid
model, (Dotted line) assuming a 19mm diameter transducer excited with SMHz 15-cycle sinusoidal pulse
(shown inset)



components, as mentioned in section 4.4.2, (The plane and edge wave) produces
larger differences when one component slightly changes. At other ranges, when
one component changes slightly small errors are produced when the two

components are added.

An important conclusion that can be drawn from the above comparison between
the two models is that, the use of the fluid model to estimate a target size at the
destructive interference range might result in giving the impression of the existence

of a a target that is two times larger than its real size.

For large values of G, i.e. G = 0.5 and 1.0., at all ranges, there are no noticeable
differences in the echo amplitudes using the two models, since for larger targets
the contribution of the edge waves is much smaller than that of the plane wave .
This implies that the fluid model can be used to estimate the size of large targets in

solid medium.

As aresult of the differences noted in construction of the DGS diagrams, using the
fluid and solid models, it is suggested here, that some correction factors are added
to the DGS diagrams constructed using the fluid model and used to estimate target
sizes in solid. It should be noted that these correction factors, should be calculated
for each transducer when applied to the same testing material, since both pulse

shape and the near field are characteristics of the source.

Some authors (Schmerr and Sedov, 1989), argued that their fluid model can be
used to predict echo amplitude of targets in solid medium, with either small or
large targets, because they considered that the existence of the shear waves has
negligible effect on the echo wave-forms of the targets. Other people, (McLaren
and Weight, 1987), argued that using the fluid model to predict the echo amplitude
of targets in solid medium could give some errors in the estimation of the target
size, especially for small values of G. For larger values of G , they argued that
there are no differences in estimating the size of large targets in solid using the fluid

model.
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This work has shown that there are differences between the two models in
estimating the target size, especially for small targets, at certain ranges within the
near field when multi-cycle pulse is used. This would support the argument of
McLaren and Weight that care should be taken when estimating target sizes in
solid using a fluid model. When short pulse is used, the fluid model can be used to
estimate small and large target sizes in solid medium if the small differences
reported in this thesis are tolerable. Hence the argument of Schmerr and Sedov

can be valid for the short pulse case.
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5- DISCUSSION: IMPLICATIONS AND APPLICATIONS FOR NDT
Although some of the results in chapter 4 have already been discussed, in this
chapter the results are discussed in more detail, especially in terms of their
implications for NDT. First the implications for individual echo responses and their
interpretations are considered, before going on to discuss the implications for
defect sizing using DGS diagrams.

This is followed by the introduction of a new method to use the model as a

"theoretical standard block''.

5.1 Interference effects on the echo response.

5.1.1 Short pulse

For small targets at close ranges (i.e. for PD > X), interference between plane and
edge waves does not take place when using wide band transducers that have pulse
shapes similar to the short pulse source velocity shown in chapter 4 (section 4.2
and 4.3, p 58 and 60). An obvious consequence of this multipulse structure is that
it could lead to false identification of non-existent targets. When the small target is
off axis, the edge wave contribution becomes small and only the plane wave pulse
will dominate the echo response. Hence the multipulse structure disappears. This
implies that a skilled NDT operator can ease the detection of the target without

any false interpretation by moving the transducer, so that the target is off-axis.

As the target size increases, the echo response consists mainly of plane waves.
Hence the multipulse structure will be very small. As a result misinterpretations of

the echo response will be minimised.

With short pulse transducers, at ranges where there is no overlapping between
plane and edge waves, the variations in the amplitudes of the echo responses of
small targets are small in the near field of the probe, since interference between
plane and edge waves does not take place. At further ranges, where PD is less than
X, there is a rise in the amplitude of the echo response due to the overlapping

between these waves.
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As the target size increases, variations of echo amplitude with range is small since

the echo response is mainly dominated by the plane-wave component.

Finally, it is of course likely that the shape of the target could dramatically change
the echo waveform and hence the amplitude of the target. This is clearly seen,
when comparing the echo amplitude of the 2mm diameter FBH's and the 2mm
diameter round-bottomed holes shown in Figures 4.2.1 and 4.3.1. The difference in
amplitude between the two targets is nearly 6dB. This means that, as would be
anticipated, the flat-bottomed hole will give a larger amplitude than the round-

bottomed hole despite both having the same diameter.

5,1,2 Multi-cycle pulses.

When the excitation pulse contains several cycles, interference between the plane
and edge waves is clearly seen in the echo responses of the targets. This
interference causes dramatic changes (unlike the short pulse measurements) in the
shape and the amplitude of the echo responses of the targets, especially for small
targets. As an example of the severe change in pulse shape that can occur, the
measured echo response of the 2mm target using the long pulse transducer at
25mm range could give the false impression of two closely spaced targets. Again,

this problem disappears if the target is off-axis.

The variation in the amplitude of the echo response of small targets with range in
the near field of the probe, is shown to be very large, especially for small targets.
This is confirmed experimentally, as seen in Figure 4.3.7 where the echo amplitude
for the 2mm target at 47mm is nearly ten times the amplitude at 25mm range.
These large variations in echo amplitude with range might give the impression of a

target which is some ten times larger than its size.

As the target size increases, the contribution of the edge wave becomes smaller
compared to that of the plane wave. As a result the variation in amplitude with
range, in the near field of the probe, becomes smaller (as seen in Figure 4.3.8). For
example, the ratio of echo amplitudes of a 4mm diameter target (G = 0.2)

positioned at the same ranges as the 2mm diameter target, Figure 4.3.8, is equal to
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1:4. Although the ratio is smaller than that obtained for the echo amplitude of the
2mm diameter target, it still might give the impression of a target which is some

four times bigger than its real size.

For larger targets which are nevertheless smaller than or equal to the transducer
diameter (G = 0.50 and 1.00), the variations in echo response and amplitude with
range are small. This again implies that errors in estimating target size will be

smaller with such large targets.d
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5.2 Defect sizing using DGS diagrams.

The new model, introduced in chapter 2, gave the ability to produce full theoretical
DGS diagrams for flat-bottomed holes in a solid medium, positioned in the near
and the far fields of the transducer and for arbitrary pulse shape. Hence defect
sizing using the DGS method can be extended theoretically to the near field of the

probe using rapidly generated "calibration" curves.

This work highlights the drawbacks in using DGS diagrams for defect sizing. For
example, the fluctuations with range in the echo amplitude of small targets, within
the near field of the transducer (excited with multi-cycle pulse), can cause
misinterpretations of different size targets positioned at different distances. This is
shown in the experimental DGS diagram obtained for 2mm target (Figure 4.2.2),
where the difference in the echo amplitude of the same target but at different range
can be 18dB. However, when the excitation pulse is short, the variations of echo
amplitude with range are minimised. For example, the experimentally obtained
DGS diagram for the same target (Figure 4.4.1) shows that the variation in the
echo amplitude of the target with range when moving from 12mm to 60mm is

about S5dB.

The main advantage that could be gained from the DGS curves is that they give a
very good indication to the variations in echo amplitude with range. For example,
for short pulse transducers they can show clearly that there is a rise in the
amplitude with near field range for small targets. Also, they can warn the skilled
operator, prior to the inspection process, of the large variation in the echo

amplitude when a multi-cycle transducer is used.

Another practical fact which can be deduced about DGS diagrams is that these
curves are not universal and they depend heavily on the transducer parameters.
This means that each transducer requires a complete set of DGS diagrams.

However, the ability of the new model to produce DGS diagrams for any
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conventional transducer can eliminate this problem by producing calculated DGS

diagrams for each probe.

In practical NDT, measurements of the target range might contain certain errors.
Hence, there will be an error in determining the target size from the measured echo
amplitude. Another application of the model is to relate such errors in target
position to errors in measuring its size, especially in the near field ofthe transducer.
In order to demonstrate this error, DGS diagrams for a series of target sizes of
Imm, 1.2mm, 1.4mm, 1.6mm, 1.8mm, and 2mm diameter were obtained assuming
a 19mm diameter source excited with multi-cycle pulse centred at SMHz. The
range of these targets varied from 23mm to 47mm. Figure 5.2.1 shows these
calculated DGS diagrams. To show how an error in the target range could lead to

an error in its size is explained in the following example.

Consider Figure 5.2.1 and assume that the real target range was 31mm and its real
size was 1.4mm. However, the measured target range was equal to 30mm. When
trying to relate the measured range to the measured amplitude, the NDT operator
would assume that the target size is 1.2mm. So, a difference of Imm target range

could lead to an error of more than 15% in the target sizing.

Also, from Figure 5.2.1 the possibility of errors in target sizing which come as a
result of errors in target ranges increases when the ranges are close to the
destructive interference ranges. This possibility, interestingly, decreases when the
target ranges are closer to the constructive interference range. This effect arises

from the way the waves are added or subtracted as mentioned in Section (4.4.3).
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Figure 5.2.1: A section of DGS diagrams calculated for several target sizes which vary from Imm to
2mm diameter. Note that closer to the destructive interference range, the possibility of defect sizing
error increases. TD = Target Diameter
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5.3 Application of the model as theoretical calibration blocks.

Standard reference blocks must be prepared from material with the same or similar
alloy content, heat treatment and amount of hot or cold working as the material to
be inspected, to ensure equal sonic velocity, attenuation and acoustic impedance in
both reference standard and the test piece (ASTM handbook, 1989). These blocks
can be divided according to their utility. For example, there are area-amplitude
blocks and distance-amplitude blocks. The former deals with FBH's at a certain
range in the block but with different size. The latter deals with FBH's having the

same size but at different ranges in the block.

In the area-amplitude blocks, the holes should be in the very far field of the probe
since at this range the echo amplitude is proportional to the target area. However
this means that the blocks should have a certain thickness, so that the metal range
is at least equivalent to the far field of the transducer. Here, the model can replace
the area blocks by simulating the echo responses of the area amplitude blocks for
the tested material. However, at the present, the simulation can only be done for
materials that are very close to medium characteristics assumed by the model i.e.
isotropic, very low noise and very low attenuation materials. For other test
materials, reference blocks must be prepared. Since the model can be used by the
NDT industry to simulate certain reference blocks, there are opportunity to save
money and time. All that is needed to simulate the calibration blocks is to measure
the sound speed in the material to be tested and the source velocity function for the
transducer used in the testing. These parameters are then fed to the model and the

theoretical reference curves can then be produced.

As a demonstration ofthe ability ofthe model to simulate such blocks, Figure 5.3.1
shows theoretical arbitrary echo amplitudes versus target area for various sizes of
normally aligned, axial FBH's in aluminium. These results were obtained at 15mm
range in the field of 19mm diameter transducer excited with single (solid line) and
multi-cycle pulses (dotted line) centred at SMHz. A peak-to-peak echo amplitude

has been used in detecting all echo amplitudes. Target sizes range from lmm
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Figure 5.3.1: Area-amplitude curve at 15mm range. The echo amplitudes were obtained assuming a SMHz and
19mm diameter circular transducer excited with single pulse (solid line) and multi-cycle (15cycles) pulse (dotted line).



diameter, up to a target with dimensions slightly larger than the source aperture

(20mm diameter).

As seen in Figure 5.3.1, the echo amplitude is proportional to target area for all
targets with a diameter less than 6mm assuming the single cycle pulse. Above this
size there is a departure from linearity, the echo amplitude becoming greater than
would be expected. As the target area approaches that ofthe transducer the rate of
increase in the echo amplitude decreases. The reason for the deviation from
linearity is explained elsewhere ( Weight, 1984 and McLaren, 1987) and here the
focus is towards the effect of the source velocity function on the area-amplitude

relationship.

For the case of a multi-cycle pulse, the same behaviour can be seen, but there is a
slight deviation from linearity for small targets. This could be due to the effect of
the multi-cycle source velocity function on the echo responses, where interaction
between plane and edge waves occurs. To demonstrate this effect on the echo
response, an enlarged part of the curve shown in Figure 5.3.1 is given in Figure
5.3.2. This figure shows clearly the slight departure from linearity (for targets up
to 20mm2in area) in the relation between echo amplitude and target area for the
case of multi-cycle pulse. Also, from the figure the difference in echo amplitude
calculated using the two different velocity functions for the same target area is
relatively high. As an example, for a target diameter of 2mm, the difference in echo
amplitude is nearly 40%. As the target size increases, the difference in the

calculated echo amplitude, as seen in Figure 5.3.1, becomes smaller.

In order to demonstrate clearly the effect of interference between plane and edge
waves on the area-amplitude relation, another curve is constructed for the same
target sizes but at a range where destructive interference between plane and edge
waves occurs (35mm) is shown in Figure 5.3.3. As seen in the figure, the echo
amplitude for small targets obtained with the multi-cycle source velocity function is
smaller than that obtained with single cycle. Figure 5.3.4 shows this large contrast

in the echo amplitudes ofsmall targets (0 to nearly 20mm?2) using the two source
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Figure 5.3.2: Enlarged view of the left hand side of the curve shown in figure 5.3.1. This enlargement

shows clearly that the source velocity function produces small differences in the echo amplitude for the
same target sizes at this range.
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Figure 5.3.3: Area-amplitude curve at a destructive interference range (35mm). The echo amplitudes were
obtained assuming the transducer parameters mentioned in figure 5.3.1 excited with single pulse (solid line) and
multi-cycle pulse (dotted line).
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Figure 5.3.4: Enlarged view of the left hand side of the curve shown in figure 5.3.3. This enlargement
shows clearly that the source velocity function can produce large differences in the echop amplitude for the
same target size. These differences could reach up to 5 times and decreases as the target size increases.



velocity functions. For the 2mm diameter target, the echo amplitude using a
multi-cycle pulse is lower than that calculated amplitude using the single pulse by
nearly 14dB. As the target size increases, the interference effects become smaller.
Hence, the difference in echo amplitude calculated for the targets using different
source velocity functions becomes smaller. This is clearly seen for the Smm
diameter target, where the echo amplitude using multi-cycle pulse is only 2dB

lower than that calculated using the single cycle pulse .

Figure 5.3.5 shows the same area-amplitude relation for the same target areas but
at a range where constructive interference between the plane and edge waves
occurs (22mm). As expected, the echo amplitude for small targets calculated
assuming a multi-cycle pulse is larger than their echo amplitude calculated
assuming a short pulse. This contrast can be clearly seen in the enlarged section of
the area amplitude relation for small targets (0 to nearly 20mm?2 shown in Figure
5.3.6. From the figure, the echo amplitude using the multi-cycle pulse is larger than
that calculated using the single pulse by 7dB, for the 2mm diameter target case.
Again, as the target size increases, the difference in echo amplitude becomes
smaller. For Smm diameter target the echo amplitude calculated using multi-cycle

source function is higher than that calculated using short pulse only by 0.3dB.

The common fact concluded from Figures 5.3.1,3 and 5 is that for large targets the
difference in echo amplitude calculated using both source velocity functions is
small (the differences vary between 0.3dB to 1dB at the most). Hence, for targets
larger than Smm diameter, the source velocity function has only a small impact on

the relation between target area and its echo amplitude.

As a final check on the use of the model as a theoretical calibration block, Figure
5.3.7, shows area-amplitude relation at a very far distance from the transducer
(400mm) for the same target area. The source velocity function consists of 15
cycles centred at SMHz. For small targets, a linear relation between target area and

amplitude is clearly seen. However, as the target size increases there is a deviation

119



6000

5000

4000

3000

2000

1000

50 100 150 200 250

target area (mm2)

Figure 5.3.5: Area-amplitude curve at constructive interference range (22mm).
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Figure 5.3.6: Enlarged view of the left hand side of the curve shown in figure 5.3.5. Note here that
the difference in echo amplitude using produced for the same target sizes could as much as 2 times.
This time, is larger using the multi-cycle pulse. The differences decrease as the target size increases.



from linearity. This theoretical deviation agrees well with similar deviations

recorded experimentally (see for example, ASTM handbook, 1989).

Finally, a major conclusion that stems from Figures 5.3.1,3 and 5 is the amount of
time and material that could be saved in producing the area-amplitude cuves
theoretically. In producing the same relation experimentally, three different blocks
are needed for each range. In addition, the targets machining at each range require

specialised machining and equipment.

In summary, the present model can be used as a theoretical standard to
complement and extend current ultrasonic calibration and sizing procedures that
use FBH's. In order to do this, it is suggested that a topic for future work could be
to compare such theoretical curves with those measured using standard calibrations

blocks..
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Figure 5.3.7: Area-amplitude curve at 400mm range. The curve behavior agrees with the
experimental curve shown in the ASTM handbook
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6- SUGGESTED FUTURE WORK

The main developments which can follow the present work can be divided into two
parts. One deals with the development of the modelling. The other deals with DGS

diagrams. These developments are summarised as follows.

It would be a great advantage if the model was modified so that it could calculate
the echo responses of targets in anisotropic solids and not just the isotropic ones
that the current model considers. This a very important step in the NDT industry,

since many ofthe new composite materials are highly anisotropic materials.

The DGS diagrams produced using the model could be tested practically by
determining the unknown size of a defect from its echo amplitude This can be
done by constructing a DGS diagram for a certain transducer and then using these

curves to determine the size ofthe defect using 'blind' trials.

Finally, One of the further developments which could be made to the DGS
diagrams is the extension of the current DGS diagrams to off-axis targets and not
just on-axis targets. Because variations in echo amplitude with range will be
minimised. It is left as a future work to produce these diagrams theoretically and

compare them experimentally with measured ones.
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7- CONCLUSIONS.

An earlier model for predicting echo responses for point-like targets in a
homogeneous lossless solid can be extended to calculate echo responses for
circular disc-like targets. The new model gives rapid calculation times compared to
numerical methods and can be implemented on a PC. There is good agreement
between the predictions of the model and the experimental measurements of the
echo responses of flat-bottomed holes in aluminium. These verifications were done

using both narrow and wide band transducers.

The model can be used to explain and aid the interpretation of the complicated
multipulse structure of echoes from targets of simple geometry in terms of the
propagation , scatter and reception of three waves: compression plane waves and
compression- and shear-edge waves. Such structure can lead to false prediction of

non-existent targets, especially for the case of small targets

The interference between plane and edge waves seen in the echo responses for
targets using transducers excited with multi-cycle pulses can dramatically affect
the shape and amplitude of the responses. For example, the amplitude of the echo
response for a given target at different ranges in the near field can vary by a factor

of 10.

A calculated section of a DGS diagram plotted using the new model shows good
agreement with an experimental curve obtained from measurements of the echo
responses from a number of mostly near-field FBH targets in aluminium. This

comparison was done using transducers excited with short and multi-cycle pulses.

The new model has been used to produce full theoretical DGS diagrams for targets
in a solid. These diagrams take into account the effect of the radiated shear edge
waves that exist even with directly coupled compression wave transducers and
shear waves produced by the process of mode conversion at the target. Also, the
same model is used to explain the form ofthese diagrams produced for transducers

excited with short and multi-cycle pulses. For example, with a transducer excited
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with a short pulse there are no near field fluctuations in the relative echo amplitude
of the targets with range. However, when a multi-cycle pulse is used, there are
large variations in the echo amplitude of the target with range in the near field of
the probe, especially for small targets. These variations could reach 20dB for

smaller values of G (0.05, 0.10).

Some factors, such as the transducer radius, source velocity function and the
method by which the echo amplitude is detected, are shown to have some effects
on multi-cycle DGS diagrams. These effects are most pronounced when the targets
are at ranges where destructive interference between plane- and edge-wave

components occurs.

Comparison between short pulse DGS diagrams calculated assuming either a fluid-
like medium or a solid medium, shows that the relative echo amplitudes of the
targets in the case of the fluid model are slightly higher than the echo amplitudes of
targets in the case of the solid model, especially for the case of small targets. This
was verified when the two models are compared with experimentally obtained
DGS diagrams using 2mm diameter FBH targets in aluminium. However for larger

targets, there is in general good agreement between the two models.

For the case of a transducer excited with a multi-cycle pulse, the DGS diagrams
produced assuming a fluid or solid model have a similar form. There are however,
localised differences that can result in errors ofaround a factor of2 ifa fluid model
is used to calculate DGS curves subsequently used to estimate the size ofthe target
in a solid. Again, this is mostly noticed for small targets. These differences were
also verified when comparing DGS diagrams calculated using both models with
experimentally obtained curves for the case of 2mm diameter FBH targets in
aluminium. This means that a more accurate way of defect sizing using the DGS

diagrams method could be implemented using the solid model.

For DGS diagrams produced assuming a short pulse, the differences between the

solid and the fluid models are small even for the case of small targets. This was
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verified when comparing DGS curves produced by both models with
experimentally obtained curves for 2mm diameter FBH's. Hence the fluid models
can be used to size defects in solids provided that wide-band short pulse

transducers are used.

The accuracy of target sizing using DGS diagrams can be optimised by calculating
a set of curves for all of the experimental conditions pertaining. But it must be
borne in mind that a major drawback of the DGS method remains, the assumption

ofplanar, normally-aligned targets.

The applications of the model could be extended further so as to be used as
'theoretical standard area and distance blocks'. This was shown theoretically,
especially for the case of area blocks. It was also shown that the source velocity
function can dramatically affect the area-amplitude relationship, especially for small

targets.
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Appendix

Table 1: Expressions for the angle of equidistant arc (2D) on the surface ofa

circular source (after Robinson). The axis and other variables are defined in Figure
2.1

Region Time Limit D (ct)
Inside geometrical t0<t<tl K
beam, y <R fx<t<t2 1,c22x242R2>
A E=4 et
On edge, y=R #*=0 = 1i/2
1\ <t <t2 ' V ")
Outside geometrical to <t <t\ 0
beam, y > R
(71)/(6’22)(201
where
to=x/c ,

h = (/e)[(i2->>)2+x2] 05,
2 = (1/6)[(/2+] )2+x2]05.



