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Abstract

The overall objective of the thesis is to understand volatility and to derive implications
for options pricing with particular reference to the Nikkei 225 index, which has not been
widely researched. Our brief survey shows us that the volatility models including the
GARCH family can be applied for forecasting the volatility of the Nikkei 225 index
daily returns. In addition, forecasting power of volatility is much stronger when using
implied volatility rather than using historical volatility and the GARCH estimates. We
observe the smile effect and term structure of implied volatility in the Nikkei 225
options market. From the perspective of the international linkage of the world major
markets, both historical and implied volatilities spill over from one market to another.
We can utilise those characteristics for two applications. One is that we can trade
options by forecasting volatilities with volatility models. If our forecasts were higher
than the implied volatility in the market, we would go short in some series of options
with delta neutral hedging. If volatility has declined over the option period, we could
capitalise the forecast with the option positions. Moreover, the information in the
FTSE and S&P markets (historical and implied volatilities) is useful to forecast the
Nikkei volatility, when we trade the Nikkei options. The other application is to
evaluate option positions from the risk management point of view. Middle-office
managers are concerned with profits and losses if the market and volatility move in a
particular way. By using the information of smiles and term structures of implied
volatilities, managers can evaluate their positions more accurately for risk management.
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1. Introduction and Overview

The overall objective of the thesis is to understand volatility and to derive
implications for options pricing with particular reference to the Nikkei 225 index,
which has not been widely researched.

As an option trader, one of the most important decisions for trading is to
estimate volatility for any type of option pricing formula. Even though the
Black-Scholes formula has been widely accepted, we know that historical
volatility of the underlying asset return does not seem constant, but changing
over time. On the other hand, we also observe that volatility figures implied in
the option prices are affected by time to maturity (implied volatility term
structure) and exercise price (smile effect).

Not only for trading but also for managing the risk of a financial
institution, precise evaluation of financial products has become more important
than ever, while derivative products have become more complicated. Many of
the financial derivatives which are managed in financial institutions are option-
related, and risk measurement and management for them are not so
straightforward as for traditional financial instruments. The most difficult part
of risk management for option related products is to estimate volatility, as
described above. The middle office, measuring and managing risks for a whole
institution, must be familiar with models of changing volatility, including term
structure and smile effects.

In this thesis, we look carefully at both approaches to estimating volatility
(historical and implied). We begin in Chapter 2 (Review of the Concepts and
Models of Volatility), with a review of several methods for estimating volatility,

including the historical volatility calculations that utilise extreme values such as
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high/low prices. Then the ARCH models, now the most widely recognised in
finance, are applied for the Nikkei index. JP Morgan’s RiskMetrics™ is
examined in comparison with GARCH, and, in the case of the Nikkei, we find
that RiskMetrics can estimate the volatility as effectively as GARCH, even
though RiskMetrics is very easy to implement.

In trading of options, which volatility estimate is most powerful?
Chapter 3 (Forecasting Power of Volatility: Historical Data vs. the Market)
examines whether forecasts of volatility from past data or from implied
volatility are more accurate, using the Nikkei 225 index. In comparison of
HV22 (22-day historical volatility), HV60 (60-day historical volatility), implied
volatility (OTM, ATM, and ITM), and GARCH estimates, we find that GARCH
has the smallest RMSE (root mean square error). Implied volatility
overpredicts realised volatility, but implied volatility is a better forecast than
simple historical volatility for the Nikkei 225 traded options. We also find that
a combined forecast may be best: encompassing regressions suggest optimal
weights of 80% implied volatility and 20% GARCH.

In Chapter 4 (Implied Volatility Shapes: the Nikkei 225 Case), we
investigate the skewness of the smile. = We find a left-skewed smile, and a
time effect, ie., the shorter the time to maturity, the larger smile. We employ
two different regression methods to find these effects, and find similar results by
both ways.

Chapter 5 (Stock Return and Volatility Transmission: The Nikkei 225 and

other major markets) investigate the linkage of the world markets. It is shown
that the return and volatility on the Japanese stock market (Nikkei 225) are

affected by the American (S&P 500) and British (FTSE 100) markets. In this
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chapter, a general model is developed which integrates return spillovers with
volatility spillovers. We find that traders can utilise the quantitative results of
spillovers in pricing of options, by watching the volatility of the market which
has just closed.

If historical volatility spills over, how about implied volatilities and
smiles? In Chapter 6 (Implied Volatilities and Skewness across the Index
Options Markets: Comparison and Transmission), we examine three subjects, (1)
transmission of implied volatility across time zones, (2) transmission of skewness
across time zones, and (3) domestic influences on skewness. Across a three-
zone world, a change in IV spills over to the next-opening market, but the shape
of volatility smile does not: it is a local phenomenon.

We often observe that the implied volatility for short-term options is
different from that for long-term options. How are they related to each other?
Is the relationship predictable? In Chapter 7 (The Implied Volatility Term
Structure: Cointegration of the Short- and Long-term Implied Volatilities), a
cointegration analysis is applied to the term structure of implied volatilities for
the Nikkei options on futures traded on SIMEX. We find that their
relationships are potentially useful in risk management and in trading; it allows
us to forecast the implied volatility level in the near future. We find that the
short- and long-term volatilities are co-integrated, and that both short- and long-
term volatilities tend to correct any disturbance from equilibrium by changing
their levels over time.

Although several papers derive the implied risk-neutral distribution for an

asset by using the shape of implied volatility smilel, this approach is not very

1 For example, implied binomial tree is suggested by Rubinstein (1994).
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useful unless the shape is stable over time. In Chapter 8 (Stability of Implied
Volatility Functions: A Test on the Nikkei Options), we examine the stability of
the shape of implied volatility smile of the Nikkei 225 options, and find that the
stability is not sufficient to be useful in forecasting option prices. This casts
doubt on so-called “deterministic volatility function” models, such as implied
binomial trees.

Finally, in Chapter 9, conclusions are given. Having examined several
aspects of volatilities, we find some important characteristics of volatility of
asset returns.  Our brief survey shows us that the volatility models including the
GARCH family can be applied for forecasting the volatility of the Nikkei 225
index daily returns. In addition, forecasting power of volatility is much
stronger when using implied volatility rather than using historical volatility and
the GARCH estimates. We observe the smile effect and term structure of
implied volatility in the Nikkei 225 options market. From the perspective of
the international linkage of the world major markets, both historical and implied
volatilities spill over from one market to another.

We can utilise those characteristics for two applications. One is that we
can trade options by forecasting volatilities with volatility models. If our
forecasts were higher than the implied volatility in the market, we would go
short in some series of options with delta neutral hedging. If volatility has
declined over the option period, we could capitalise the forecast with the option
positions. Moreover, the information in the FTSE and S&P markets (historical
and implied volatilities) is useful to forecast the Nikkei volatility, when we trade
the Nikkei options. The other application is to evaluate option positions from

the risk management point of view. Middle-office managers are concerned
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with profits and losses if the market and volatility move in a particular way. By
using the information of smiles and term structures of implied volatilities,

managers can evaluate their positions more accurately for risk management.
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2. Review of the Concepts and Models of Volatility

2.1. Introduction

Estimating volatility is becoming more important, not only for academics
but also practitioners in the financial world. These days, more people are
familiar with the word “volatility” as option contracts are traded more frequently.
After Black and Scholes (1973) revealed their option pricing model, which
includes volatility as an input, traders and users of options should have estimated
volatility for “theoretical” prices to deal with the instruments everyday. It has
been a challenge to find a appropriate volatility input into the Black-Scholes
formula in order to evaluate options because volatility is unobservable.

We have two types of estimated volatilities, historical and implied. At
the beginning stage of utilising the Black and Scholes option pricing model (B-S
model), historical volatility (HV) was mainly calculated for input in order to
derive theoretical option prices. Because the B-S model assumes a constant
volatility, market participants calculated the standard deviation of past asset
returns and used it as a forecast to be inputted into the B-S model. On the other
hand, because option prices are available in the market, practitioners may also
calculate implied volatility (IV) by inputting the observed price into B-S model
to derive volatility. For price-following traders in the market, implied volatility
is the most important indicator because it indicates the consensus volatility
forecast of market participants.

The historical volatility calculation has been modified by Parkinson (1980)
and Garman and Klass (1980). They expand the volatility calculation from
close-to-close returns to more informative high-to-low, open-to-close, and close-

to-next-open returns. Because they assume a constant variance for stationary
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return series, (which is considered incorrect these days), they calculate volatility
as if trading continues in periods when the market is closed. This modification
(Modified Garman-Klass and Modified Parkinson) leads to a rather high
estimate of volatility compared with the classical close-to-close volatility
estimator, as demonstrated in Figure 2.1. In the case of the Nikkei 225 as
shown in Table 2.1, the close-to-next-open volatility is much smaller than the
close-to-close volatility, therefore it seems unreasonable to expand the assumed
measurement period of volatility from trading time to 24 hour trading by using
the assumption of normally distributed returns for an asset.

Volatility has been investigated and analysed by many researchers and
practitioners, after practitioners noticed that volatilities of assets do not seem
constant, that is, the underlying asset returns are not stationary. For the
purposes of options trading and return forecasting as well, researchers have
started modelling volatility as a time series and forecasting volatility statistically.
An early example of comprehensive volatility studies is Taylor (1986), who
focused on squared returns on many kinds of asset and commodity prices in both
cash and futures markets, and modelled volatility that is changing dynamically.
GARCH models are one of the most popular volatility forecasting models in the
financial society at this moment. In the seminal paper, Engle (1982) introduced
autoregressive conditional heteroskedasticity (ARCH) to examine non-stationary
economic data, the U.K. inflation rate being used as an example. The ARCH
model has the disturbance term affecting conditional volatility in the next time
period. Because there are many financial time series, which are non-stationary
due to changing variance, the ARCH methodology is accepted widely by

researchers in finance. Bollerslev (1986) generalised ARCH (GARCH) by
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adding the autoregressive conditional volatility term, which is now the most
widely recognised ARCH model in finance. Engle (1993) summarised the
recent volatility models including GARCH. Bollerslev, Chou, and Kroner
(1992) also introduce GARCH models with detailed analysis for applications.

Stochastic volatility models] have been used in several works such as
Wiggins (1987) and Chesney and Scott (1989). In their studies, the mean
reversion of volatility was assumed. This model is applied to the Nikkei 225
later, but the estimates do not seem plausible in this paper. The daily variance,
or daily squared return, may be unstable when we use a simple autoregression
model for forecasting.

Recently, risk management has become more important than ever in
financial institutions all over the world, and more practitioners are interested in
volatility estimates and forecasts for asset prices to evaluate their position risks
and values. JP Morgan’s RiskMetrics™ (Zangari (1995)) is one of the major
methodologies accepted by risk management professionals, in which an
exponential weighted moving average is used to estimate and forecast volatility
of asset prices. Because their methodology is broadly accepted, it is
worthwhile to double-check its ability to estimate and forecast volatility with
special interest in this paper on the Nikkei index. The difference in methods
for VaR (value at risk) calculation often leads to significantly different risk
measurement results, as Beder (1995) explained.

The purpose of this paper is (1) to apply major volatility calculation
methods to the Nikkei 225 index, and characterise and compare the methods and

results, and (2) to review major volatility forecasting models with the Nikkei 225,

1 Taylor (1992) calls it ARV (autoregressive random variance model).
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including stochastic volatility models, GARCH models, and the exponential
smoothing model suggested by JP Morgan. It is interesting to examine whether
the efforts to introduce more information such as high / low prices and the 24-
hour-trading assumption, made by Garman and Klass and Parkinson, are useful
or not for volatility calculation. In addition, for the purpose of forecasting, we
will examine a GARCH model with the special interest in comparison to JP
Morgan’s model.

In the next section, the methods for volatility calculation are explained.
The classical method is compared to Garman and Klass’s, Parkinson’s, modified
Garman and Klass’s, and modified Parkinson’s methods. Section 3 deals with
stochastic volatility models for the Nikkei index. In Section 4, the
ARCH/GARCH family is introduced. In addition, we compare exponential
weighted moving average volatility (suggested by JP Morgan as RiskMetrics™)
with GARCH in the case of Nikkei, and conclude that this simple method works
rather well.

2.2. Volatility Calculation

2.2.1 Calculation Methods

Five methods are explained in this section. The most popular way of
historical volatility calculation is to use close-to-close returns as shown in

Equation (1).

(D

«“ T =

where,
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-
Cmt

e Closing price of the assat prce at time !
a; number of observation
Several ather wavs of calcelation have been introduced. Ohmura and
Shimizu (1987}, and Lkeda {1989)2 introduced the Parkinson method (Parkinson
(19807, Garman-Klass method, modified Parkinson method, and modified
Garman-Klass method (Garman and Klass {19807 to the Japanese market.

The Parkmson methad 15 expressed as following.

2 I lu—d)
=— 2}
S ”Z 4In2 '

Where,
n = number of days to caleulate volatility {number of samples)
u = IniHigh} - In{Cpen} = normadised high
d = In{Low) - [n{Open) = normalkiscd low

The Garman-Elazss method 13 as below,

'j'_{ =lE[ﬂ.51|fu—d]:—|_'2|n1—]}c:] (A
M
where,

¢ = [n(close) - Infopen) = normalised closs

The madified Packinsen mechod 15 a5 below,

—InCy ) Riu—d)’ )
f (L= f14inz |

=T ]
LI

| 7088,
2|

2 He mentioned that some studies arc wrong in calculations and the following equations arc out
of keda's work. A the coefficients in Equatians {3), (d), and {5} arc seme as the ones in
Crarmuan and Klass (1980).

} Kagraaka {1990} noted that this is |51 He - dal’ +.|l}l';[r.{.u +d- 'EH.:!J —2mIn2 -’ ] :

and 1the secend is considered negligiblc.
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where,

/= a proportional day period when the market closed = .8125 = 19.5/
24 in Japan4.

The modified Garman-Klass method is as below.

12(In(9, -1nC 0)2 | .88( 1
/ 1-/J U

Note that the Parkinson method and others based upon high-low information
require geometric Brownian motion (particularly normal distributions and a
continuous price record), otherwise they are biased.
2.2.2 Data

The daily open, high, low, and close prices of the Nikkei 225 index are
used from 30 March 1991 to 29 March 1996 to calculate daily returns. The
monthly volatilities are calculated as standard deviation of daily returns over one
calendar month. In total, there are 60 observations.
2.2.3 Comparison Results

Equations (4) and (5) are designed to allow for the discontinuous trading
hours of the stock market. For example, the Japanese equity market is closed
and not traded at night in Japan, even though some exceptions exist (for
example, ADRs of Sony and some other major Japanese corporates are traded in
U.S. trading hours). These two modifications above are designed to solve this
problem to obtain the “correct” volatility observation as if trading continued at
night.

However, it is not reasonable to consider that the close-to-close returns

are similarly distributed to the close-to-next-open returns. As lkeda (1989)

4 Trading hour is 4.5 hours (2 hours in the morning and 2.5 hours in the afternoon) a day in
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claimed, Garman and Klass’s and Parkinson’s modifications are based on the
assumption of the same volatility distribution even though the market is closed.
Table 2.1 shows the difference between close-to-close and close-to-next-open
volatilities. In both squared log returns, i. e. (Log of closet / closen)2 and
squared differences, i. e. (closet - closet.i)2, close-to-close and close-to-next-
open data are significantly different by a t test at the 95% confidence interval.
As expected, close-to-next-open squared differences and returns are much
smaller than close-to-close ones.

Table 2.2.a shows the descriptive statistics of the estimates of those five
methods, and Table 2.2.b examines the differences between the results from the
various high/low estimators and the simple close-to-close estimator (Equation
(1)). The table shows RMSE (root mean square error) and ME (mean error),

which are defined as below.

(6]

)

where X is volatility estimator, (e.g. Garman and Klass’s), and CC is the close-
to-close estimator. Garman and Klass and Parkinson have negative ME
relative to close-to-close volatility estimator. The results are consistent with
Ikeda (1989), who also finds a downward bias of volatility estimates in the
Japanese equity market by using those methods. Both methods include high-
to-low and open-to-close, which are normally smaller returns because no price
jump between close-to-next-open is taken into account. On the other hand,

modified Garman and Klass and modified Parkinson have rather large RMSE
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and ME relative to the close-to-close volatility estimator. Both modified
methods overestimate volatility because they take night time into consideration
for volatility calculation. It is also shown in Figure 2.1. The modified
Garman-Klass and modified Parkinson results are always higher than the close-
to-close estimator over the sample period. The original Garman-Klass and
Parkinson methods are lower than the close-to-close volatility in most of the
months in the period.

True volatility is likely to be somewhere between classical and Garman
and Klass’s and/or Parkinson’s methods. True volatility is anyway
unobservable, but it is reasonable to conclude that we should use the classical
volatility estimator for the purpose of historical volatility5, or realised
(observed) volatility6 at this stage.

2.3. Stochastic Volatility Models
2.3.1 Stochastic Volatility Models

The most popular stochastic volatility model is a mean reverting model,
which is explained in Taylor (1986). Equation (8a) shows a concept that the
volatility at t eventually depends on the long-run volatility level (cf) and the

dispersion of the volatility at t-1 from the long-run volatility -0 t)

a, =a tafc,-& ) +4£ (8a)

5 As described in Appendix, the 245 days are used for calculation of all the annualised
volatility hereafter.

Annualised Volatility = x/<72 +V245
6 Realised volatility means observed volatility in my terminology. However, Taylor (1994)
means real (unobservable) volatility by realised volatility.
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Reformulating Equation (8a) into (8b), we can estimate a regression in which

the intercept is (1 - a)o and the slope coefficient is a . Therefore, the long-

term mean for volatility, ¢ , may be estimated.

<J,=CH7,_, +(1 -a)<7 + £, (8b)

Second alternative to the above is to use an autoregressive moving
average (ARMA(1,1)). Harvey (1989) suggests that this formulation is useful
to find a local trend of a time series. The model adds a moving average item
to Equation (8a) and is described as below;

a, -0=0<Mm - a)+e +tdetx )

An additional consideration, Taylor (1986), is to take the logarithm of
volatility, which gives a stationary variable so that In( @) may be used as
dependent variable in Equation (8).

In(cr,) = a + O[In(CT, 1)-a] + 077, (10)
The logarithm transformation is applied for both Equation (8) and (9).
2.3.2 Data
The closing prices of the Nikkei 225 index from 30 March 1991 to 29

March 1996 are utilised to calculate the daily log returns (Ry). Then the daily
volatility at time ¢ is defined as <J, = (R, - m)2, where m is the mean of the

daily log returns. The number of observation is 1,236.
2.3.3 Results

The results of Equations (8) and (9), and those transformed by Equation
(10) are shown in Table 2.3. The ARMA (1, 0) and (1, 1) models have
significant autoregressive coefficients, and give plausible volatility estimates

around 16% annually. The result can be compared with the estimates of
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Parkinson (16.8%) and Garman and Klass (15.9%) methods in Table 2.2.a
The ARMA results are closer to the Parkinson’s and Garman and Klass’s
estimates than the one of the Close-to-Close method. The R squared of ARMA
(1, 1) is larger than the one of ARMA (1,0), being .096 and .025 respectively.

The ARMA model with logarithm of observed volatility has no significant
autoregressive coefficient. The estimate of real volatility, 9.9% annually, is not
plausible, compared with the average level of observed volatility for the Nikkei
225 index. This result may indicate two possible problems; one is that the log
transformation may eliminate the autoregressive nature of the data series, and the
other is that the daily volatility specification and/or estimation method may
include some problems. Even though we can not specify the potential
problems, we may conclude that use of logarithm of observed volatility is not
appropriate in an autoregressive volatility model in terms of daily volatility of
the Nikkei.

2.4. GARCH Models

2.4.1 GARCH Models

The original GARCH model was introduced by Bollerslev (1986), shown

as below;

vl = £l

e,=VVEL CD
ht =(0 +a w; | + Pt x
where,

y: conditional return
e : disturbance

h: conditional volatility
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s crror with standard normeal distribution

iy

e © coetficient of [agged disturbance

At coelficient of lageed conditianal volatility

w | INErCCpe
The disturbance tcrm of retums can be separated into two tcrms, conditional
volatility and a normally distnbuted eror teem. The conditional velatility
depends on the lagged disturbance term and lagged conditional volatilicy itself.

Engle, Lilien, and Robins (1987) generalised GARCH (1, 1) forther t Lhe

GARCH-in-Mean model which s explained as below;

¥, =, +5\/E+E‘

e, =h¢, (12)

h =w+a e +8h
where,

¢ coefficients of aurorcgression of retums

& eocfficient of feedback from conditional volat:liy o retarn

(ther notations are same as the ones for Equatian {11].
Conditivnal valatility now has feedback by adding conditional volatility as an
indcpendent variable to cxplain the conditional mean of retums.
2.4.2 DNata

The closing prices of the Wikke: 225 index from 30 March 1991 w0 29
March 1996 are uwsed to calculate the daily log retumn, ¥, for estimating the
parameters of GARCH.  The number of obsarvarion is 1,236,
243 Resulis

We emploved 6 members of the ARCH family as shown in Tuble 2.4,

Each of the & members can be defined as & special case of the GARCH-in-Mcan
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model, Equation (12). As a result, the difference of one from another is subtle.
The minimum of log of likelihood for the six is 3525.9 (ARCH(l)), and the
maximum is 3589.2 (AR(1)-GARCH(1,1)-Mean)7.

The coefficients are stable within the six models and AlphaO, Alpha 1, and
Betal are significant and strong. The other coefficients, including the
coefficients of the lag returns for AR(1) of returns, are weak and mostly not
significant. It therefore appears that GARCH(1, 1) is sufficient for estimating
the returns and volatilities of the Nikkei, and it is not worthwhile to use more
complicated models, such as GARCH(1, 1)-in-Mean.
2.4.4 GARCH estimates vs. RiskMetrics’s EWMA estimates

The estimates from GARCH (1, 1)8 are compared with exponentially
weighted moving average (EWMA) estimates, which is formulated as below.

EWr=?i-EWt x+(1- X)-y; (13)
where,

EW: exponentially weighted moving average volaitlity estimator

A: decay factor, 0.94, which is used for daily data in RiskMetrics

(Zangari (1995))

¥, daily log return at time t
For the purpose of comparison with RiskMetrics and GARCH, we set decay
factor to be the same as the figure optimised by Zangari, i.e. 0.94, setting a
tolerance level to 1% with 74 historical data points. This formulation

(Equation (13)) enables us to calculate the volatility forecast in the recursive

7 Two times the difference has a chi-squared distribution in some circumstances. See Xu and
Taylor (1995)). We need further research in order to compare the forcasting performance by
both in- and out-of-sample error tests (i.e. RMSE), and/or other tests such as regression
between each model estimates and observed (realised) data.

8 The estimated parameters are as shown in Table 2.4, GARCH(1, 1)
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manner, so that we can save much system resources in practice. The initial EW
value is set as the variance of the 74-day returns prior to the comparison period.

Figure 2.2 shows the annualised daily volatility (estimated as square root
of squared daily return), GARCH estimates, and EWMA estimates. The
difference between the GARCH and EWMA estimates is rather small. The
exponentially weighted moving average is easier to estimate than GARCH and
as good in measuring volatility level, as tested for the Nikkei index.

Table 2.5 shows that EWMA is better than GARCH in both mean error
and root mean square error. With 1,163 data points, EWMA (74 days) and
GARCH forecast the volatility of the day, and the forecasts are compared with
the daily squared returns. The mean error of EWMA is 5.0%, whereas the one
of GARCH is 5.5% in an annualised term. In the RMSE analysis, 14.7% for
EWMA is less than 15.7% for GARCH.

2.5. Summary

We compare historical volatilities including Garman and Klass (1980) and
Parkinson (1980) in the case of the Nikkei 225 index, as shown in Figure 2.1.
Table 2.1 shows that the variance of close-to-next-open returns is significantly
different from the one of close-to-close returns, therefore, we consider that
modified Garman and Klass and modified Parkinson methods tend to
overestimate real volatility. Stochastic volatility models, or autoregressive
volatility models are employed for the Nikkei index, but the estimates are not
meaningful for practitioners. On the other hand, GARCH model can utilise to
measure volatility for the Japanese equity market. JP Morgan’s exponential
weighted moving average (EWMA) used for RiskMetrics™ is compared with

GARCH, and we conclude that EWMA is as effective as GARCH to the Nikkei
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index.
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Table 2.1. Difference in Close-to-Close and Close-to-Next-Open Volatilities

Squared Log Returns = (In C, /C_, )2

Close-to-Close Close-to-Open
Mean 0.000201053 3.58676e-6
Variance 1.93672¢-7 2.03405e-11
#Observation 1236 1236
Degrees of Freedom 1235
t value 15.791

t value is for the test of difference of means (Close-to-Close vs. Close-to-open)

Squared Difterence = (C, - C,,)2

Close-to-Close Close-to-Open
Mean 71651.698 1358.913
Variance 23214857098 3071537.6
Observation 1236 1236
Degrees of Freedom 1235
t value 16.236

t value is for the test of difference of means (Close-to-Close vs. Close-to-open)

Table 2.2.a Descriptive Statistics

C-to-C Parkinson Garman Mod.Par Mod.Gar

Mean 20.48% 16.82% 15.90% 35.41% 34.46%
Standard Error 1.08% 0.82% 0.75% 1.73% 1.62%
Median 18.42% 15.58% 15.19% 32.80% 32.92%
Standard 8.34% 6.35% 5.78% 13.36% 12.52%
Deviation

Variance 0.007 0.004 0.003 0.018 0.016
Kurtosis 0.219 0.227 0.389 0.227 0.390
Skewness 0.815 0.773 0.811 0.773 0.811
Range 35.42% 27.43% 25.38% 57.69% 54.97%
Minimum 8.33% 7.03% 6.66% 14.84% 14.46%
Maximum 43.76% 34.46% 32.04% 72.53% 69.43%
Observation 60 60 60 60 60

N.B.: EWMA (exponentially weighted moving average) is also calculated with
the same data (monthly volatility of daily returns) of 60 observations. The
mean is 21.04% and the standard deviation is 7.58%.
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Table 2.2.b Root Mean Square Error and Mean BError

relative to Close-to-Close

Estimator

X EMSE Mcan Error (ME)
Parkinson's 4 5585 -3.605%
Garman and Klass’s 5.903% -4 SRa%
bodified Parkinson’s 159695 14930
hModified Garman and Klass's [5.116% 13.975%

N N
EMSE = \/%2.:_5:, —cey ME = %Z{Xr ~CCH
=1 i

Tahble 2.3. Autoregressive Moving Average (ANRMA)

Sigma Log Sigma
ARMA (L, ARMA (1, T ARMA LDy | ARMA (L 1]
Canstant SE e (2 LA Te-U5 -4.54501 MiA
{3 (21.824} (2,285 (32770
ALbi e gressiai 58229 ATH209 AHME MIA
(4] [5.a2opeee N (1513
Moving Aversrs -- hnszov -- MEA
(&) (EER- 1
R sgquared 1250 L9357 16 AEE10e-2 --
Sipma bar { & ) oz 0L .0063 Mo converse:d
[Annualised] [ L& 165%] QR [5.00%:]

t valucs arc in brackets (***; the 1% significance level)

Siama:

7, = @ =T,

g =0/-4)
Log Sigma: In(o, ) =o+@llnio ) —al-an,

g =exp{C/{f-4)

)+ e,

+ e,
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Table 2.4. Autoregressive Conditional Heteroskedasticity (ARCH) Family

AR} AR AR}
ARCH (L) ARCHI]} GARCHIL 1) |(GARCHCL 1} [{GARCHCE, 1) fOARCTICL ]
-plzan B-Pelesn
C - - 16523003 - BEOEESe-(4 -- - 178 e.0Z
§-. 4200 {23 (-1.1132)
lag{Return) - Mr3545 - A 1983 Te-02 - - 4537 e-03
(g0 (4581 {0349 (- 115}
Theda - -- - MIL5TZA [ 54308
(43 (544 (1230)
Alphal LOIIMa-0F |, G288 5-00 | A938ETe-05 | 500647 e-05 | 51600 Le~05 [ 4R0223e-05
Py | (2021900 | o agyees | (S 376 | (SARI)EeE | (5373w | (5 0RE R
Alphal 201132 MILBETS RIREY Y 73674 JIT46ED ATI060
| [w) (O ETEW R | (G254 | (T2650FR | (T246)%** [ (V2000 |6 e
i Betal TS 2547 SRR BIAES
i LI (A9 FTAPEEE | (635550 %* | (AR PR3)=* | [OR.IR4)= ¢
| Hik - T0E96%e- | 7058 24e-04 | 7715202-04
| (1416} {14100 (1.561)
| L AEAE G 153A04 358530 58834 358547 358518
Mumber of observation = 1,236 oo constant L: Log likelibood

t values arc in brackets {***; the |5 significance level)
.]'Ir :'IP‘IF T (SVI{F +E|

E, =

hé&,

ho=@+a-el, + [k

Table 2.5, Root Mean Square Error and Mean Error relative to Daily Squared
Relurns (SR

X BEMSE Mcan Error (ME)
EWMA 14, 7% 5.0%
GARCH | 5. 7% 54%
[ 1 N . I hs
RMSE = |—% (X -5R)° ME=—Y (X -5k
3, -sw L3

Page 28



N. Kamiyama

Annualised Volatility
(on Daily Returns Observed over One Month)
The Nikkei 225 index
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Figure 2.1. Various Volatility Calculations
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Figure 2.2. Annualised Volatility (Observed) and Estimates (GARCH and EWMA)
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Appendix 2.1. Rolling GARCH estimates vs. RiskMetrics’s EWMA estimates
The five year rolling (daily) estimates from GARCH (1, 1) are compared
with exponentially weighted moving average (EWMA) estimates, also calculated
for a rolling five-year period daily. The formulation and optimised decay factor
0f 0.94 are set in the same manner of Equation (13).

The difference between the rolling GARCH and EWMA estimates is
rather small. As Zangari (1995) claims, the exponentially weighted moving
average is easier to estimate than GARCH and as good in forecasting volatility
level, as tested for the Nikkei index.

Table Al shows that EWMA is better than GARCH in both mean error
and root mean square error. With 1,163 data points, rolling EWMA (74 days)
and rolling GARCH (5 year) forecast the volatility of the day, and the forecasts
are compared with the daily squared returns. The mean error of EWMA is
5.0%, whereas the one of rolling GARCH is 5.5% in an annualised term. In the

RMSE analysis, 14.7% for EWMA is less than 15.8% for rolling GARCH.

Table Al. Root Mean Square Error and Mean Error relative to Daily Squared
Returns (SR)

X RMSE Mean Error (ME)
EWMA 14.7% 5.0%
Rolling GARCH 15.8% 5.5%

RMSE =
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Appendix 2.2. Number of Trading Days a Year
It is reasonable to set the number of trading days in Japan 245 days for volatility
calculation. We have 104 weekend holidays (= 52 weeks x 2) and 14 to 17

market-closing days. If a national holiday is on Saturday, the holiday is not

postponed. Ifit is on Sunday, the holiday is postponed to Monday.

January 2 national holidays and at most 2 market closing days
=2-4

February I national holidays =1

March I national holidays =1

April 1 national holidays 1

May 3 national holidays =3

June No national holidays =0

July 1 national holidays =1

August No national holidays =0

September 2 national holidays =2

October I national holidays =1

November 2 national holidays =2

December I national holidays and at most 1market-closing day = 1-2
Total = 15-18

Therefore, trading days are between 243 to 246 (in a leap year, 248) days. In
this paper, all the volatility is annualised with 245 days a year.

1 month means: 20 days 2 month means: 41 days

3 61 4 &2

5 102 6 123
7 143 8 163
9 184 10 204
11 225 12 245

In order to annualise volatility, we calculate as following:

VE=Y-Vi (A1)
where,

J* : annualised volatility

V' daily volatility

t : number of days a year = 245 in Japan
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3. The Forecasting Power of Volatility: Historical Data vs. the Market

3.1. Introduction

Forecasting volatility is a major issue in options trading. Immediately
following the discovery of the Black-Scholes (B-S) formula (Black and Scholes
1973), market participants used the historical volatility (HV) as an input to the
equation, based upon some arbitrary sample period. However, they soon also
started to pay attention to the implied volatility (IV), because it was positioned to
be a rational estimate of future volatility.

Several sophisticated volatility forecasts have been presented by using
historical data. An early example is French, Schwert, and Stambaugh (1987),
who examined the relation between stock returns and volatility. Engle (1982)
introduced the ARCH paradigm and Bollerslev (1986) generalised the method
(Generalized ARCH, or GARCH). Bollerslev, Chou, and Kroner (1992) have
reviewed the ARCH family of models concisely. Nowadays, GARCH is one of
major ways to forecast volatility for option pricing and also to evaluate option
positions and portfolios. Many empirical studies for the Japanese stock market
have been performed, such as Tokunaga, lihara, and Kato (1993). In addition to
the ARCH family, stochastic volatility (SV) is modeled and examined by Harvey
and Shephard (1993). In the stochastic volatility context, volatility is not the
variance of the one-step ahead error, but an unobserved variable, the change in
which is treated as an independent variable of a stochastic system. Taylor (1994)
compared ARCH with SV in the foreign exchange market (DM/$), and concluded
that they gave similar estimates of the persistence of volatility shocks (25 - 30

days of half-lives).

Page 33



N. Kamiyama

The time-series behaviours of implied volatility itself has also been
examined. Franks and Schwartz (1991) used an autoregressive model of implied
volatility to forecast the one-step ahead weighted implied standard deviation
(WISD). A recent study done by Resnick, Sheikh, and Song (1993) showed
evidence to improve option pricing models by using expiration-specific WISDs.
Harvey and Whaley (1992) also extended Franks and Schwarts (1991) and
concluded that change in implied volatility is predictable, but no actual arbitrage
is possible when transaction costs are considered. Their model is called implied
volatility regression (IVR). Recently, volatility term structures and smile effects
have been observed, especially after the crash in 1987. Xu and Taylor (1994)
found that a term structure does exist in the foreign exchange option markets.
Heynen, Kemna, and Vorst (1994) tested if any of the ARCH family can explain
the term structure in Dutch index options.

There are many reports which compare historical volatility forecasts
(including GARCH) with implied volatility to forecast realised volatility. An
early example is Akgiray (1989), who found that GARCH was superior to HV.
Day and Lewis (1992) compared the implied volatility of the S&P 100 options to
GARCH and EGARCH, and found that the volatility forecasts by GARCH and
EGARCH reflect incremental information relative to implied volatility.
Lamoureux and Lastrapes (1993) found that realised volatility (RV) was
positively related to implied volatility (IV), negatively related to historical
volatility (HV), and not significantly related to GARCH forecasts. Their error
analysis showed that IV tends to underestimate RV. Xu and Taylor (1995) found
that, when IV is used, neither historical volatility nor a GARCH forecast has

incremental forecasting power in forecasting currency volatility. Canina and
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Figlewski (1993) used an encompassing regression to examine the forecasting
power of implied versus historical volatilities. Their result in the S&P 100
options market is different from the perception normally held by the academic
community (for example, Gemmill (1986)), because it shows that implied
volatility has weaker power than historical volatility to forecast the future
volatility. Figlewski (1994) also found that historical volatility with a long
sample period gives a better forecast than one with a short sample period,
although his main purpose was to forecast a long-term volatility. He also
claimed that GARCH estimates are less accurate than the simple historical
volatility. Noh, Engle, and Kane (1994) reported GARCH is better than the [VR
modelled in Harvey and Whaley (1992), by simulating straddle trades in the S&P
500 options on futures market.

The purpose of this chapter is to compare the forecasting power of HV, IV,
and GARCH, using data on the Nikkei 225 index. Even though this article
complements research by Lamoureux and Lastrapes (1993), essential differences
are: (1) to use the Nikkei options rather than individual stock options on CBOE;
(2) to analyse a range of option (3 moneyness) and forecast horizons (4 periods);
and (3) to use two types of historical volatility (22 day and 60 day volatilities) for
encompassing regression tests. By analysing 22-day and 60-day HVs, we are
able to compare our results with those of Figlewski (1994), reaching a different
conclusion.

In the next section, the methods undertaken are shown. Then Section 3
explains the data used in this paper. The test results are analysed in Section 4
and the conclusions are brought together in Section 5.

3,2. The Method
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We use the sample period of 12-Jun-89 to 06-May-94. For the initial
condition, GARCH (1, 1) is estimated using the data from 06-Sep-85 to 11-Jun-
89 In the sample period, daily rolling GARCH (introduced in Bollerslev

(1986)) is applied as:

)5 =m + £t (la)
£,=VVEL, £~A(0,1) (1b)
ht = a + /tea, +yh,_l (lC)

vt is return, m is a constant and £7is a disturbance term. et is heteroscedastic as

shown in (Ib) and (Ic). In order to forecast volatility over the option period by

GARCH, in addition to the recursive input to A¢, ££.j2 is replaced by At as well,
because V(et) = E(et2) - (E(et))2 = E(et2) = ht when E(et) = 0. That is, the
expected value of et is equal to ht. The GARCH parameters are estimated daily

in the rolling manner to obtain the GARCH forecasts. Mean error (ME), mean
absolute error (MAE), and root mean square error (RMSE) are examined from 12-
Jun-89 to 06-May-94. The encompassing regression approach is used.
Because of overlapping data of historical volatility, it is too complicated to
explicitly show the correlation of the disturbance term. In order to obtain
efficient estimates of the parameters, it is appropriate to use GMM, generalised
method of moments2 One of the early examples of the encompassing regression
method is in Hansen and Hodrick (1980). Fair and Shiller (1990) discuss
encompassing tests and combination of forecasts. A recent example in stock
returns is Canina and Figlewski (1993).

ME, MAE, and RMSE are defined as followed.

1 The Crash in 1987 period is not left out because the impact was not so large in Japan as in the American
market.
2 The details of GMM implemented here is shown in Appendix B.
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ME =jf"(X,-RVt) (2a)

MAE =+ - fj\X] -RV,\ (2b)
N A

RMSE= U-X(X'-RV')2 (2¢)

where,

X ; forecast of volatility from IV, HV22, HV60, or GARCH,
RV, realised volatility during the option period from t
1V; implied volatilities (average of call and put by Near-/In-/Out-of-the-money)
att
HV22; 22-day historical volatility at t
HV60; 60-day historical volatility at t
GARCH;, forecasted volatility using (1) at t
The encompassing regression test is based upon:
RV, =a+blV,+cHV22,+dHV60 +e-GARCH, +e, (3)3
The test gives us weights of importance among all the independent variables.

The tests are made with four combinations as below.

RV, =a0+bOV, +c0-GARCH, @)
RV, =al+br IV, +cl HV22,+dl HV60, ()
RV, =a2+b2ulV, +c2+HV22, +d2uGARCH, (6)
RV,=a,+ b3wV, +c3w V60 +d3wGARCH, 7)
RV, =ad+b4-1V, +cA~HV22, +d4wiV60 +e4uGARCH, ®)

3.3. The Data

3 The disturbance term of the equation may not be normally distributed because all the independent
variables are censored (always larger than zero). Therefore, one should note that the t values are biased,
when we interpret the regression results. We do not constrain coefficients to sum to one in this paper.
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The options were classified according to deepness in the money and time to
maturity. The nearest-the-money contract was defined as at-the-money (ATM).
In-the-money (ITM) and out-of-the-money (OTM) were chosen to be 500 yen on
either side of the ATM options.

There were 1,209 business days during the out-of-sample period, and 157

data-missing days. The remaining 1,052 data are available.

Whole dataset 1,052 data
Subset (Shorter Days to Maturity) =5-25 days’ maturity 725 data
Subset (Longer Days to Maturity) =20-40 days’ maturity 586 data

The implied volatilities of puts and calls are averaged. IV is calculated
with the generalised Black-Scholes formula, which is the extended version with
the dividend yield input of Black and Scholes (1973). The Nikkei Index options
are European-style contracts, so that there is no early-exercise premium and the
Black-Scholes formula is appropriate. The daily 3-month CD rates are used as

risk free interest rates. The dividend yield rate is assumed constant at 0.7%.

Historical volatility (@ ) is calculated as below.

Cr2 = ----—-- %lnR, —m)2 9)
n- 1p

where,

G is Closing price of the Nikkei index, n = 22 (hv22) and n = 60 (hv60) are
calculated. The 22 days are representative to one-month of trading days and the

60 to three-months of trading. Realised Volatility (RV) is calculated over each
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option maturity period in the same way as HV, in which case n means the
remaining days of option to expiry.
3.4. Test Results

3.4.1 Forecasting Errors

In Table 3.l.a, descriptive statistics are shown. Table 3.1.b gives the
results for simple forecasting errors in terms of ME, MAE, and RMSE. There are
three main points to be noted. (1) HV22 has the smallest error in terms of bias
(ME) and in terms of MAE as well, and GARCH is the smallest in terms of
RMSE. These results hold in shorter maturity subset, but IV (ATM) is best in
the case of longer maturity subset. (2) IV gives the smallest RMSE for longer
maturity subset. Among Vs, the at-the-money (ATM) forecasts have smaller
RMSE than the out-of-the-money (OTM) or in-the-money (ITM) forecasts. (3)
HV60 is inferior to HV22 in all respects. This result is different from that of
Figlewski (1994), who claimed that the long-term historical volatility is a superior
estimator to the short-term volatility.
3.4.2 Encompassing Regressions

In Table 3.2, the results of encompassing regression is shown. Four points
are notably observed. (1) Positive weights are observed on IV and GARCH.
HV22 has positive weights in Equations (6) and (9), but the positive weights are
not significant in Equation (9) with GARCH. HV60 has a negative weight,
which is significant in all the subsets. (2) The large coefficients of IV indicates
that IV was the most important forecasting component. The coefficients (from
0.6 to 1.0) have significant t values in all the subsets and models. (3) The
constants of the regression results are not significant in most of the subsets. It

seems no down/upward shift (bias) arises from this analysis. (4) The GARCH
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coefficients are not significant in 'full models' (Equation (9)) for the longer time to
maturity.

In addition, Table 3.3 shows the supplemental results of encompassing
regression comparing three of IV (at-, in-, and out-of-the-money)4. OTM
implied volatilities are better than ATM and ITM.

3.4.3 Interpretations

Four points may help to interpret the results from the error analysis and
encompassing regressions. Firstly, implied volatility was significantly upward
biasedS. This means that market participants may require a risk premium in
options trading, as Lamoureux and Lastrapes (1993) suggested for stock options
in the United States. The observed bias decreases as the days to maturity
increase. The market participants may mean that market participants believe that
the risk of a change in volatility is larger when the maturity is shorter. Canina
and Figlewski (1993), who studied the S&P 100 index options at CBOE, found
that IV was not superior to HV, which is opposite to the result shown here.
Gemmill (1992) suggested transaction costs to explain this fact in the FTSE index
options listed on LIFFE.

Secondly, IV has the largest weight among all the factors. The magnitude
is between 0.60 and 0.95. However, this market is not informationally efficient,
because GARCH and HV also have significant coefficients. Therefore, market
participants do not seem to utilise all the historic information efficiently to set up
option prices. In Equation (9), the regression based on all data, all the
coefficients (except for HV22) are significant. Thirdly, the GARCH has a

positive weight, and HV60 has a negative weight. Lamoureux and Lastrapes

4 There is col-linearity in this model, but we are able to see which IV most powerful forecast is.
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(1993) find that the GARCH forecast has no significant weight, and a large
negative weight on HV.  The historical information content in the sample
variance (HV60) might be totally ignored as Lamoureux and Lastrapes
mentioned. The alternative interpretation is an overreaction, which is also
suggested by them. However, the HV22 has no significant weight in the ‘full
model’ in the short options case, therefore, the participants do not seem to
overreact to the recent information. Finally, the constants of the regression tests
are not significant in most of the subsets, but the biases are observed as time to
maturity becomes longer. On the other hand, the longer the time to maturity, the
smaller the significance of GARCH. The reason seems to be that the GARCH
(1,1) model assumes one day autoregressive conditional variance. The recursive
one-step-ahead forecasts may cause a large amount of errors as the number of
recursive operations increases, as Xu and Taylor (1995) have pointed out.

The OTM implied volatilities are better than ATM in encompassing
regression with three different strike prices. The best forecasts by traders may be
mostly influenced to OTM because they prefer to trade slightly OTM options to
reduce costs (in absolute dollar amount) to control their risk exposures.

3.5. Conclusion

Figure 3.1 shows that the implied volatility tends to follow the realised
volatility moderately well. However, it has an upward bias (as shown in Table
3.1). Curiously, the coefficients of the long-term historical volatility such as 60-
day volatility in the encompassing regression are significantly negative. Because
the options analysed in this paper have 5-40 days to maturity, 60-day volatility is

rather longer than the life of the options. This means that the too long cycle is5

5 Note that the option price data were closing prices, therefore no bid-ask bias exists in average.
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drawn by the 60-day average compared with the realised volatility movement, as
shown in Figure 3.2.

One can improve the forecast of future realised volatility by using both
implied volatility and a GARCH historic estimate. However, the GARCH model
can only forecast the short-maturity options significantly, because it requires one-
step-ahead forecast in the time horizon of one day. Therefore, the GARCH result
tends to overreact to a volatility shock when forecasting more than one day ahead.
Figure 3.3 shows the overreacted errors. For example, the huge shock which can
be observed in the 3rd quarter of 1990 causes a too large GARCH forecast.

It is very interesting to consider which error is most important from the
trader’s point of view. HV22 has the smallest bias (ME) but the bias is not very
important because negative and positive errors are offsetting. A trader would
lose money if she made an error in forecasting volatility in either positive or
negative manner. Therefore, a comparison band on bias is not good for the
trading purpose. Mean absolute error (MAE) may be the best way to choose a
single forecast from the candidates. As long as we assume that managers keep a
delta neutral position, the profit/loss is generated from the difference between
forecasted volatility and realised volatility, multiplied by its position vegat
Given a vega, we can estimate the profit/loss amount as MAE multiplied by vega.
RMSE exaggerate the forecasting error from the realised volatility if we estimate
the profit/loss in the manner mentioned above. In the RMSE calculation, a large
error affects more than MAE because it is squared. Therefore, RMSE can not be
an exact estimate of the profit/loss impact. However, RMSE may be a good

indicator to choose a stable volatility forecast. RMSE pays more attention to a
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sporadic huge difference between a forecast and a realised volatility than MAE.
HV22 is the best in MAE, but GARCH is the best in RMSE. 1V is biased
upward rather simply, therefore we may be able to adjust the level to the unbiased
IV level to forecast the realised volatility. As one can see the encompassing
regression, IV has the best forecasting power (the largest weight), if we recognise
the bias in practice.

There is no reason to choose a single volatility forecast. The encompassing
regression result suggests that a combination of several indicators including
historical estimates can enhance volatility forecast. A forecast can be relied on
IV in more than 75% in weight, and also on historic estimate such as GARCH in
25%, especially in the case that the number of days to maturity is shorter than 10
days. Although the appropriate weight is stable when the days to maturity is
longer than 10, the more the number of days to maturity, the lower the
significance. It is rational to forecast volatility by using a composition of several
indicators.

Appendix 3.A shows another encompassing regression test to compare with
Canina and Figlewski (1993). In the analysis above and the result of Appendix
as well, one can find that IV is alway better than HV. The weight for IV is
around one compared with that for HV which is around 0.5.  We do not reject the
hypothesis that the coefficient of IV is greater than zero, whereas Canina and
Figlewski (1993) find the hypothesis is not significant.

The implication of all the results above for option practitioners is that IV is
the best of all but two points should be added. One is that HV and GARCH

analyses can improve the IV forecast. The other is that IV tends to be higher than6

6 Vega is defined as a sensitivity of option’s price to a change in volatility. Mathematically, it is defined
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the volatility which is realised in the future. Using the encompassing regression
coefficients, we can optimise the combination of all kinds of volatility estimates to

predict real volatility which is occurring in the future.

as the first derivative of option pricing equation (such as Black-Scholes formula) in volatility.

Page 44



N. Kamiyama

Figure 3.1. Realised Volatility and Implied Volatility
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Figure 3.2. Realised Volatility and Historical Volatility
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Figure 3.3. Realised Volatility and GARCH Forecast
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Table 3.1.a Descriptive Statistics (Annualised Volatilities)

Whole Sample RV IV-ATM IV-ITM IV-OTM
Mean 0.21290 0.25410 0.25794 0.25610
Standard Deviation 0.11056 0.09346 0.09268 0.09466
Variance 0.01222 0.00873 0.00859 0.00896
Kurtosis 3.88254 0.27524 0.64964 0.54492
Skewness 1.45232 0.53654 0.63205 0.58471
#Obs 1052 1052 1052 1052

Shorter (5-25) RV IV-ATM IV-ITM IV-OTM
Mean 0.21193 0.26116 0.26623 0.26393
Standard Deviation 0.11736 0.09833 0.09745 0.09954
Variance 0.01377 0.00967 0.00950 0.00991
Kurtosis 4.35875 0.19074 0.59865 0.48509
Skewness 1.61023 0.55804 0.65158 0.61856
#Obs 696 696 696 696

Longer (20-40) RV IV-ATM IV-ITM IV-OTM
Mean 0.21587 0.24540 0.24711 0.24576
Standard Deviation 0.10295 0.08879 0.08792 0.08948
Variance 0.01060 0.00788 0.00773 0.00801
Kurtosis 2.23083 0.08883 0.27851 0.09382
Skewness 1.15772 0.48658 0.54017 0.47227
#Obs 586 586 586 586

Table 3.1.b  Analysis of Forecast Errors

- Whole Sample (1,052 data)
IV-ATM IV-ITM IV-OTM HV22
ME 0.0412007 0.0450421 0.0432050 0.0092356
(SD)  (0.0854356)  (0.0858755)  (0.0850500)  (0.1011146)
MAE 0.0793892 0.0811320 0.0799841 0.0771192
RMSE 0.094815 0.096935 0.095359 0.10149

- Shorter Days to Maturity Subset (5-25 days) (696 data)
IV-ATM IV-ITM IV-OTM HV22
ME 0.0492283 0.0542956 0.0520018 0.0145930
(SD)  (0.0894328)  (0.0897844)  (0.0520018)  (0.1073373)
MAE 0.0859906 0.0883379 0.0859646 0.0814035
RMSE 0.10203 0.10487 0.10176 0.10825

- Longer Days to Maturity Subset (20-40 days) (586 data)
IV-ATM IV-ITM IV-OTM HV22
ME 0.0295292 0.0312434 0.0298957 0.0013798
(SD) (0.0808312)  (0.0805698)  (0.0811185)  (0.0946217)
MAE 0.0716120 0.0718385 0.0718992 0.0734302
RMSE 0.085991 0.086351 0.086387 0.094551

ME =— Y (X f-RV,)
Ntt

RMSE=1j+x(x,-Rv,)y-
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HV22 HV60 GARCH
022213 023001  0.24490
0.10380  0.09047  0.07244
0.01077  0.00819  0.00525
0.78474  -0.09651 7.18373
0.83565 035436 161435

1052 1052 1052

HV22 HV60 GARCH
022652 023236 0.24736
0.10774  0.09247  0.07842
001161  0.00855  0.00615
0.70938  -0.18811  7.07603
0.88205 033628 1.64622

696 696 696

HV22 HV60 GARCH
021725 022545  0.24244
0.10081  0.08950  0.06390
0.01016 000801  0.00408
083367  0.00124  2.02337
076820  038%411  0.96206

586 586 586
HV60 GARCH
0.0171129 0.0320099
(0.1120616)  (0.0891358)
0.0889883 0.0772479
0.11331 0.094669
HV60 GARCH
0.0204252 0.0354249
(0.1179410)  (0.0948747)
0.0948441 0.0814150
0.11961 0.10121
HV60 GARCH
0.0095839 0.0265746
(0.1053475)  (0.0838309)
0.0818161 0.0730510
0.10569 0.087874

MAE =—V \1X - RV

wtr
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Table 3.2. Encompassing Regression Tests
Whole Sample

A. ATM - Whole data (1,052 data)

Eq const v HV22 HV60 GARCH
Adjusted (t; GMM) (t; GMM) (t; GMM) (t; GMM) (t;GMM)
5 -0.00750980 0.620028 " " 0.256664
0.4453 (-0.63) (5.80)*** (2.52)%**
6 0.035129 0.893208 0.222083 -0.428359 -
0.4760 (2.58) (8.67)*** (3.03)*** (-5.83)***
7 -0.020315 0.679224 -0.151777 " 0.385196
0.4487 (-1.50) (6.06)*** (-1.78)* (3.00)***
8 0.00028471 0.836754 — -0.374172 0.351390
0.4828 (0.02) (7.09)*** (-5.73)*** (3.49)***
9 0.021681 0.822498 0.076641 -0.401165 0.293320
0.4830 (0.52) (7.05)*** (0.84) (-5.42)*** (2.34)***

b . nfM - Whole data (1,052 data)

Eq const v HV22 HV60 GARCH
Adjusted R (t; GMM) (t; GMM) (t; GMM) (t; GMM) (t; GMM)
5 -0.013420 0.597680 " " 0.294609
0.4423 (-1.09) (5.50)*** (2.86)***
6 0.031459 0.835063 0.258351 -0.397141 —
0.4649 (2.21) (8.08)*** (3.55)*** (-5.43)***

7 -0.024774 0.644903 -0.128988 — 0.408226
0.4446 (-1.75) (5.74)y*** (-1.48) (3.08)***

8 -0.00819829 0.777400 — -0.337295 0.400782
0.4737 (-0.67) (6.62)*** (-5.24)%** (3.90)***

9 0.00019444 0.761762 0.089674 -0.369560 0.331951
0.4742 (0.01) (6.57)*** (0.96) (-5.06)*** (2.57)***

C. OTM - Whole data (1,052 data)

Eq const v HV22 HV60 GARCH
Adjusted R* (£:GMM)  (6;GMM)  (1;GMM)  (t;GMM) (t; GMM)

5 -0.00488471  0.640136 " — 0.219844
0.4499 (-0.41) (5.80)* (2.00)**

6 0.034640 0.910236 0.202497 -0.434061 -
0.4844 (2.59) (8.92)** (2,75 (-5.92)**

7 -0.017399 0.698232 -0.151058 - 0.347203
0.4532 (-127) (6.10)** (-1.77)* (2.53)%*

8 0.00392512  0.861430 — -0.380220 0.309554
0.4886 (0.32) (7.14)5* (-5.81 )% (2.83)%**

9 0.011531 0.846647 0.083478 -0.409983 0.246195
0.4891 (0.80) (711)*** (0.91) (-5.50)%** (1.83)*

t values in brackets. *: 5%, **: 2.5%, ***: 1% significant
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Shorter Days to Maturity Subset

D. ATM - Subset (5-25 days) (696 data)

Eq

Adjusted R*
0.4532
0.4874
0.4571
0.4926

0.4931

const
(t;GMM)
-0.013426
(-1.03)
0.027151
(1.63)
04571
(-1.78)
-0.00398333
(-0.30)
0.00411238
(0.26)

v
(t; GMM)
0.658634
(4.95)%x
0.915199
(7.77y***
0.716805
(5.27)%x
0.860422
(6.11)%*
0.846425
(6.10)%+*

E .n"M - Subset (5-25 days) (696 data)

Eq
5

6

Adjusted R*
0.4509
0.4761
0.4545
0.4848

0.4850

const
(t; GMM)
-0.020553
(-1.51)
0.021446
1.22)
-0.033106
(-2.12)
-0.013721
(-1.00)
-0.00638330
(-0.39)

\Y
(t; GMM)
0.636760
(4.74)%**
0.867369
(7.20y%**
0.691292
(5.05)%**
0.805761
(5.75)y%**
0.792695
(5.72)%**

F. OTM - Subset (5-25 days) (696 data)

Eq

5

6

t values in brackets.

Adjusted R-
0.4637
0.5021
0.4679
0.5043

0.5048

const
(t;GMM)
-0.011015
(-0.87)
0024291
(1.49)
-0.023419
(-1.63)
-0.00068298
(-0.05)
0.00754932
(0.48)

* 5%, **:

v
(t; GMM)
0.702969
(5.10)%x
0.946214
(8.18)
0.761490
(5.46)+x
0.904749
(6.29)**
0.891025
(6.29)***

HV22
(t;GMM)

0233131

(Q2.71)**+

-0.051566
(-1.75)*

0.096892
(0.90)

HV22
(t; GMM)

0.256064

(2.95)%x

-0.161292
(-1.63)

0.085965
(0.78)

HV22
(t; GMM)

0.196626
(2.27)%*
-0.170793
(-1.80)*

0.099095
(0.92)

HV60
(t;GMM)

-0.460681
(-5.31yx**

-0.396080
(-5.24y%xx
-0.434786
(-4.93)#*

HV60
(t;GMM)

0423644
(-4.84) ¥+

-0.362360
(-4.76)%*
-0.396665
(-4.53 )+

HV60
(t; GMM)

-0.458938
(-5.28)***

-0.399175
(-5.27y%*
-0.439195
(-4.95)x5

2.5%, ***: 1% significant
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GARCH
(t;GMM)
0.215675
(1.81 )%

0357375
(2.22)%*
0336514
(2.76)**
0.266190
(1.76)*

GARCH
(t; GMM)
0.254538
(2.13)**

0.394304
(2.51yw*
0385410
(3.14y%*
0323308
Q.11y**

GARCH
(t;GMM)
0.151239
(1.16)

0.295348
(1.80)*
0.269134
(2.03)**
0.197341
(1.22)



Longer Days to Maturity Subset

G. ATM - Subset (20-40 days) (586 data)

Eq

Adjusted R~
0.4292
0.4592
0.4297
0.4605

0.4605

const
(t;GMM)
0.012397
(0.65)
0.045622
(3.13)
0.001219
(0.06)
0.015901
(0.87)
0.025926
(1.12)

v
(t;GMM)
0.646265
(5.71)rxx
0.882500
(7.68)***
0.688187
(6.26)%*
0.866266
(6.46)***
0.845058
(6.64)%**

h . rfM - Subset (20-40 days) (586 data)

Eq
5
6

7

Adjusted R-
0.4295
0.4567
0.4291
0.4559

0.4572

const
(t;GMM)
0.00970581
(0.52)
0.042515
(2.94)
0.00300025
(0.14)
0.011606
(0.65)
0.027015
(1.18)

v
(t;GMM)
0.653592
(5.96)***
0.845808
(7 93)***
0.675892
(6.42)%x%
0.840646
(6.69)***
0.813953
(6.85)%**

1. 01fM - Subset (20-40 days) (586 data)

Eq
5
6

7

t values in brackets.

Adjusted R*
0.4281
0.4622
0.4287
0.4661

0.4634

const
(t;GMM)
0.013370
(0.69)
0.047197
(3.23)
0.00181221
(0.08)
0.017990
(0.98)
0.028031
(1.22)

* 50, **

v
(t;GMM)
0.638429
(5.65)%**
0.900476
(7.71 )
0.682484
(6.19)%*
0.885071

(6.47)%#*
0.863830
(6.64)y***

2.5%, *HE:
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HV22
(t;GMM)

0.173236
(1.95)
-0.100545
(-0.81)

0.087954
(0.66)

HV22
(t;GMM)

0.200426
(2.29)%*
-0.058688
(-0.47)

ER)

0.132758
(0.98)

HV22
(t;GMM)

0.171128
(1.93)*
-0.104855
(-0.86)

0.088394
(0.68)

HV60
(t; GMM)

-0.372372
(4. 11yw%

-0.335490
(-3 99)*#*
-0.359072
(-3.92)***

HV60
(t; GMM)

-0.351286
(-3.98)y%**

-0.302184
(-3.70y*x
-0.340557
(-3.80)y***

HV60
(t; GMM)

-0.398358
(4.34)%*

-0.361228
(-4.24yx5%
-0.384511
(-4.12)y%%

1% significant

N Kamivama

GARCH
(t;GMM)
0.185112
(1.32)

n

0.278882
(141)
0.259955
(1.93)*
0.183189
(0.93)

GARCH
(t;GMM)
0.184176
(1.37)

0.241694
(1.22)
0.266691
(2.08)**
0.147059
(0.75)

GARCH
(t;GMM)
0.188066
(1.33)

"

0.285039
(1.46)
0.254904
(1.89)*
0.177463
(0.07)



Table 3.3. Encompassing Regression with Three Implied Volatilities

Whole Sample (1,052 data)

Eq
5

6

Adj R2
0.4505

0.4855
0.4542
0.4900

0.4902

const IV-ATM
-0.0072062 -0.09353
(-0.59) (-0.36)
0.031337 -0.04187
(2.26) (-0.17)
-0.020735 -0.04653
(-1.48) (-0.19)
0.00096292 0.01838
(0.08) (0.08)
0.00794725 0.00378
(0.55) (0.02)

t values by GMM in brackets.

Shorter Maturity Subset (696 data)

Eq
5

6

Adj R2
0.4649

0.5033
0.4695
0.5058

0.5060

t values by GMM in brackets.

const IV-ATM
-0.013110 -0.3446
(-0.99) (-1.15)
0.020637 -0.22852
(1.22) (-0.80)
-0.026703 -0.30012
(-1.77) (-1.03)
-0.00391273 -0.18102
(-0.29) (-0.65)
0.00361679 -0.18883
(0.23) (-0.68)

Longer Maturity Subset (586 data)

Eq
5

Adj R2
0.4304

0.4637
0.4308
0.4640

0.4642

t values by GMM in brackets.

const IV-ATM
0.011991 0.215960
0.64) (0.52)
0.043286 -0.02944
(2.98) (-0.07)
0.00143233 0.228340
(0.07) (0.55)
0.016907 0.006288
(0.93) (0.02)
0.027625 -0.02069
(1.20) (-0.05)

IV-ITM  IV-OTM
0.20182 0.54376
(1.54) (2.04)**
0.22234 0.74749
(170)**  (3.03)**
0.21784 0.54365
(L67)*  (2.09)%*
0.22492 0.63616
(L70y%  (2.58)%+*
0.21891 0.64258
(L66)*  (2.60)*+*
* 5%, **:2.5%,
IV-ITM  IV-OTM
0.22079 0.83758
(1.50)  (2.66)**
0.23947 0.95109
(L60)  (3.39)**
0.25169 0.82591
(L71)*  (2.68)%**
0.256187  0.846722
(L72y%  (2.92)%**
0.243972  0.853295
(1.64) (2.94)***

* 5%, **: 2.5%,

IV-ITM IV-OITM

0.339303  0.115518
(1.67)* (0.26)
0.342230  0.601722
(1.78)* (1.37)
0323622 0.158209
(1.59) (0.36)
0295515 0.602870
(1.53) (1.38)
0307823  0.595372
(1.60) (1.36)

* 5%, **:2.5%,
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HV22 HV60
0.19558  -0.43490
(2665 (-5.94)x*x
-0.15853 —
(-1.86)*

— -0.38454
(-5.88) %%

0.07525  -0.41104
(0.83)  (-5.52)%*x

ik 1% significant

HV22 HV60
0.18661  -0.45652
(Q.14y%*  (-5.24yxx
-0.17797 —
(-1.87)*

" -0.40248
(-5.3 1y

0.088109  -0.43750
(0.82)  (-4.93)*+

%k 1% significant

HV22 HV60
0.162903  -0.39048
(183)%  (-4.30)**
-0.09614 —
(0.77)
" -0.35452
(-4.21 %%
0.094428  -0.37957
071)  (A11)s*

ik 1% significant

N. Kamlyarna

GARCH

0.21459
(1.94)*

0.34810
(2.55)x
0.30532
(2.81)%**
0.24820
(1.86)*

GARCH

0.14232
(1.08)

0.29243
(1.76)*
0.262596
(1.97y**
0.198740
(1.23)

GARCH

0.159399
(1.14)

0.249276
(1.26)
0231632
(1.73)*
0.148458
(0.76)
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Appendix 3.A Historical and Implied Volatility

This Appendix shows the result of an encompassing regression which is
comparable to Canina and Figlewski. It shows that implied volatility is a better
forecast than historical volatility for the Nikkei 225 traded options, which is the
opposite to Canina and Figlewski (1993).

Al. The Data
- The 774 data are used from 07-Sep-90 to 08-Nov-93. (The data is different
from the data in the main part of this paper.)

- Subsets are defined by the number of days to expiry.

Subset 1=5- 25 days 533data
Subset 2= 10-30  days 539data
Subset 3 = 15 - 35days 504data
Subset4 = 20 -40  days 421 data

A2. The Method
The regression test for rationality of a forecast is expressed as;
0 =a+bF(0)+u (A)
where, H<E»); the forecast of a based on the information set ¢
A regression residual
If the forecast is true, a = 0, and b = L. Any significant deviation form these
figures shows the fact that the forecast is biased and inefficient.  The
encompassing regression is used for analysing the relative information content of
two different forecasts.
a =a+bwx0,) +c-F2(d2)+u (A2)

The less informed forecast should have the parameter of 0.
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The GMM (Generalised Method of Moments) is used for analysing

overlapping time period of data®. The time series of forecast errors is serially
dependent in this case, therefore the GMM is used to estimate the parameters
efficiently in the heteroscedastic systems of a time series. If the system is known
as a heteroscedastic, or an unobservable disturbance vector may be serially
correlated and nonstationary, the GMM estimates efficient standard errors. The
parameters are same as if estimated by the least square method, therefore GMM is
good for estimating a heteroscedastic system with an unknown form.

A3. Test Results

mit(z) =al +b{Tv,, +ut] (A3)
v, (t) =a2+b2 -hv22ti + «,. (A4)
v, (t) = a3+ 33 */zv60,, +uti (AS)
v, (r) = a4 +b4 wvt] +c4v22,, +w, (A6)
v, (t)=a5+b5 wvti+c5mv60,+ « , (A7)

Those above are annualised.

yrv,(T)=a, +V yivti tuti (A8)
yrv, (t)= a2 +b2whv?22, ,+uti (A9)
yrv, (T)= a, + *y*v60,+ m (A 10)
yrv, (1) = a4+ 64ey/v,+chdey/zv22,,. +uri (All)
yrv, (T) = aS+bSwivy +cS5eyhv 60,,+ uti (A12)

When we see the result from the annual volatility based analysis, bS5 is

significantly positive and close to one. This means that implied volatility7

7 See Appendix 3.B.
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contents a good deal of information on the future volatility compared with
historical volatility, which has negative coefficient of c5.

It is possible to say that the negative coefficient means mean-reverting
relationship between historical volatility and realised volatility. In this analysis,
the time to maturity of options is shorter than 60 days, therefore, the 60-day

historical volatility is likely to be smoother than the realised volatility.

A4. Conclusion
Using GMM to regress overlapping data, we conclude that implied
volatility is a better forecast of volatility realised during option period. The 60-
day historical volatility is negatively correlated to the realised volatility over the
remaining life of options. Despite Canina and Figlewski (1993), the results shown
above suggest that implied volatility is a better forecast of future volatility than

historical volatility.
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AS5. Tables

Daily Error Variance Analysis

rv=al+bl *iv;

Whole data
al -0.00006517
SE 0.00003521
t -1.85
bl 0.981582
SE 0.12947
t 7.58
RA 0.3754
N 774

=a2 + b2 * hv22;

Whole data
a2 0.000095358
SE 0.00001469
t 6.49
b2 0.581318
SE 0.06797
t 8.55
RA2 0.1762
N 774

=a3 + b3 * hv60;

Whole data
a3 0.00011548
SE 0.00001268
t 9.11
b3 0.492035
SE 0.06269
t 7.85
RA2 0.0792
N 774

Encompassing Regression (1) - Daily RV

rv=a4 + b4 *iv + c4 * hv22;

Whole data
a4 -0.00006521
SE 0.00003491
t -1.87
b4 1.026624
SE 0.19593
t 5.24
c4 -0.054056
SE 0.1324
t -0.52
RA2 0.3761
N 774

=a5 + b5 *iv+c5 * hv60;

Whole data
a5 -0.00003191
SE 0.00002648
t -1.21
b5 1.264102
SE 0.17919
t 7.05
c5 -0.450985
SE 0.10428
t -4.32
RA2 0.4109
N 774

5-25
-0.00009729
0.00004412
-2.21
1.049679
0.15955
6.58
0.387
531

5-25
0.000092605
0.00001914
4.84
0.589792
0.08932

6.6

0.1567

533

5-25
0.00010309
0.00001745

591
0.541513
0.08867
6.11
0.077
533

5-25
-0.00009626
0.00004273
-2.25
1.112461
0.21973
5.06
-0.08114
0.10975
-0.74
0.3886
533

5-25
-0.00005771
0.00003356
-1.72
1.32002
0.20894
6.32
-0.471 116
0.12101
-3.89
0.4196
533

Number of Days to Maturity

10-30 15-35
-0.00007641 -0.00001521
0.00004092 0.00002584
-1.87 -0.59
1.018698 0.833395
0.14816 0.10493
6.88 7.94
0.3712 0.3031
539 504
Number of Days to Maturity
10-30 15-35
0.00011266 0.00010771
0.00001444 0.00001395
7.8 7.72
0.554459 0.549292
0.06507 0.06535
8.52 8.41
0.1428 0.1935
539 504
Number of Days to Maturity
10-30 15-35
0.00012884 0.00013349
0.00001275 0.00001178
10.1 11.33
0.48433 0.443543
0.06334 0.05361
7.65 8.27
0.0626 0.0769
539 504
Number of Days to Maturity
10-30 15-35
-0.00007759 -0.00001417
0.00003929 0.00002798
-1.97 -0.51
1.184867 0.808942
0.23168 0.17057
5.11 4.74
-0.200774 0.025704
0.12327 0.09734
-1.63 0.26
0.3801 0.3033
539 504
Number of Days to Maturity
10-30 15-35
-0.00003648 4.50142E-06
0.00002901 0.0000215
-1.26 0.21
1.31501 1 1.051831
0.20151 0.16335
6.53 6.44
0.50404 -0.331103
0.12238 0.09823
-4.12 -3.37
0.4109 0.3251
539 504
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20-40
3.2209 IE-06
0.00002269
0.14
0.804593
0.09605
8.38
0.3236
421

20-40
0.00010408
0.0000151
6.89
0.566243
0.07219
7.84
0.2343
421

20-40
0.00014113
0.00001188

11.88
0.417231
0.05135
8.13
0.0851
421

20-40
6.51979E-06
0.00002304
0.28
0.717486
0.13943
5.15
0.089709
0.09422
0.95
0.3257
421

20-40

0.000021174
0.00001917
11

1.045199
0.16116

6.49
-0.339825
0.10247
-3.32
03511

421



Annualised Volatility Analysis

yrv =al + bl *yiv;

al
SE
t
bl
SE
t
RA
N

Whole data
0.01154
0.01488

0.78
0.787665
0.06064
12.99
0.3684
774

=a2 + b2 * yhv22;

a2
SE
t
b2
SE
t
RA
N

Whole data
0.088273
0.0077979
11.32
0.568144
0.03617
15.71
0.2616
774

=a3 + b3 * yhv60;

a3
SE
t
b3
SE
t
RA
N

Whole data
0.105752
0.008896

11.89
0.474973
0.03926
12.1
0.1309
774

5-25
-0.00178315
0.01901
-0.09
0.81383
0.07713
10.55
0.3724
533

5-25

0.085014
0.0098621
8.62

0.567325
0.04665
12.16

0.2387

533

5.25
0.101207
0,01175

8.61
0.451178
0.05257

9.15

0.1195

533

Number of Days to Maturity

Encompassing Regression (2) - Annualised RV

yrv =a4 + b4 *yiv +c4 *

yhv22;

a4
SE
t
b4
SE
t
c4
SE
t
RA
N

Whole data
0.012542
0.01529
0.82
0.698603
0.10513
6.65
0.096684
0.0639
1.51
0.3712
774

=a5 + b5 *yiv+c5 *

60,

as
SE

b5
SE

c5
SE

Whole data
0.025001
0.01309
191
1.003351
0.09399
10.67
-0.289549
0.06047
-4.79
0.3894
774

5-25
-0.00160091
0.0192
-0.08
0.766371
0.12301
6.23
0.053679
0.07096
0.76
0.3733
533

5-25
0.015517
0.0168
0.92
1.045495
0.1 1242
9.3
-0.326725
0.07427
-4.4
0.3973
533

10-30 15-35
0.0069089 0.025125
0.01777 0.01417
0.39 1.77
0.80712 0.750481
0.07213 0.0589
11.19 12.74
0.3687 0.3518
539 504
Number of Days to Maturity
10-30 15-35
0.093487 0.094563
0.009014 0.0091657
10.37 10.32
0.561303 0.561114
0.0421 0.04245
1333 13.22
0.2374 0.2794
539 504
Number of Days to Maturity
10-30 15-35
0.110527 0.112276
0.01032 0.0098432
10.71 11.41
0.472424 0.469243
0.04578 0.04343
10.32 10.8
0.1197 0.1384
539 504
Number of Days to Maturity
10-30 15-35
0.00690902 0.028824
0.01858 0.01437
0.37 2.01
0.807113 0.628892
0.13418 0.09556
6.02 6.58
7.7159E-06 0.122795
0.08268 0.06527
0 1.88
0.3687 0.356
539 504
Number of Days to Maturity
10-30 15-35
0.022773 0.034501
0.01523 0.0132
L5 2.61
1.047841 0.928598
0.1 1245 0.09839
9.32 9.44
-0.331245 -0.233852
0.07477 0.06653
-4.43 -3.52
0.3948 0.3664
539 504
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20-40
0.032861
0.01418
2.32
0.743559
0.05891
12.62
0.3703
421

20-40

0.093551
0.0099266
9.42

0.574633
0.04591
12.52

03111

421

20-40
0.114334
0.01019
11.22
0.470579
0.04476
10.51
0.1549
421

20-40
0.037059
0.01364
2.72
0.575535
0.0857
6.72
0.169862
0.06584
2.58
0.3786
421

20-40
0.041226
0.01324
3.11
0.925407
0.10476
8.83
-0.229964
0.07201
-3.19
0.3852
421



N. Kamiyama

Appendix 3.B  GMM, generalised method of moments

This Appendix shows how we implement the GMM for our analysis8.

RVt=a+bIVt+cHV22,+d-HV60 +eGARCH{ +£t (B1)

Consider Equation Bl has the unobservable non-linear disturbance term of e

Note that we do not explicitly assume any autoregressive error term. For

simplicity, Bl can be re-written as B2.

£, = q(RV, ,xt,6)

2z =Z(xt) (B2)

where x is a vector of explanatory variables, 6 is a vector of the parameters, and

z is a vector of instruments. The desired condition is E(et ® z,)= 0, that is, the

expected crossproducts of the disturbance and functions of the observable

variables are set to 0. The first moment of the crossproducts is:

mnz;ql'glfm(yt,xt,O) )
m(yt,x!,9) =q(y,,xt,6)® z

where y is the dependent variable (RV), and n is number of observations. We
estimate the parameters by minimising the objective function of:

S(d, V) = [nmn(0)]'V  1/nmn(0)] (B4)

where the variance of moment function is defined as:

V = Cov{[nmn{9°)],[nmn(0°)]'), and 6° is the true parameter vector. The

parameters obtained in minimising the objective function are the GMM
estimators. Note that the objective function of the ordinary least square method

1s r ¥/n, where r is the vector of residuals.

8 GMM is calculated with the SAS/ETS® software and its specification.
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4. Implied Volatility Shapes: the Nikkei 225 Case

4.1. Introduction

It is becoming known to many option practitioners that implied volatility
shape (smile or exercise price effect) is a signal of the market participants’ view
of the underlying asset return. One practical usage of the shape is to input the
skewed volatility figure to evaluate an option into the Black-Scholes (B-S)
formula. However, Black and Scholes (1973) assumes a constant volatility of an
underlying asset return to formulate their pricing theory, therefore, inputting
different volatilities to the B-S formula is not correct from the theoretical point of
view.

These days, a tighter control on the derivatives products is desired by the
managements of financial institutions world-wide and the financial regulators as
well. Many banks and securities firms have introduced a risk management
framework such as VaR (value-at-risk) originally implemented by Bankers Trust,
and a table of parameters (ex. volatilities and correlations of asset prices) input for
evaluation such as RiskMetrics suggested by J.P. Morgan. From the financial
professional’s point of view, the pitfalls of the B-S formula should be corrected to
grasp the exact risks and unrealised profit/loss of the position held.

Many works have been written to explain the smile effect within a context
of stochastic volatility. Hull and White (1987) introduced stochastic volatility
into option pricing, and showed the smile effect as overpricing of Black-Scholes
model. Taylor and Xu (1994a) showed that the smile effect is the logical
consequence of stochastic volatility, and that the empirical regression results are
robust against the selection of maturities. In their paper, they examine the

foreign exchange options listed on the Philadelphia Stock Exchange, set up the
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model which assumes a symmetric shape of smile depending on moneyness, and
find that the magnitude of the smile is decreasing as the time to maturity becomes
longer. Bates (1994) developed an American option pricing method which take
jump risk and volatility risk into account as non-diversifiable risks. He found
that the stochastic volatility-jump-diffusion specification improved the pricing
model’s ability to fit actual option prices, especially in- and out-of-the-money
short-term options which are assumed to have larger smile effects than long-term
near-the-money options. Madan and Chang (1995) claim that the Black-Scholes
option pricing framework is likely to overstate the value of a short call position,
and understate the one of a short put position, compared with their pricing model
using a variance-gamma process, which takes the skewness and kurtosis of asset
returns into consideration and makes less errors than the Black-Scholes formula.
They also conclude that a worst case definition by using the Black-Scholes
formula may not be conservative enough.

Shimko (1991) used a polynomial fitting to estimate a shape of implied
volatility by exercise price and apply the estimated shape for specifying a return
distribution function without a priori parameters such as GARCH. Taylor and
Xu (1994b) showed the theoretical background of the shapes of implied volatility
when asset prices are correlated with volatility shocks, and made an empirical test
on the S&P futures options. They relax the model of 1993, and allow the smile
to be asymmetricl. Heynen (1994) showed the smile pattern on EOE Dutch index
options. Even though Heynen’s model is simple and easy to handle, two

I Practitioners often claim that one can observe symmetric smiles in the foreign exchange and
commodity markets, and asymmetric ones in the equity markets. Taylor (1986) examines a

variety of data series including stock prices, indices, foreign exchanges, and commodity prices
both in cash and futures markets, and finds that most of the returns have nearly zero skewness

and are approximately symmetric. On the other hand, he finds most of all the time series have

higher kurtosis than 3.5, which is 3.0 if normally distributed.
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consideration should have been added on. Firstly, implied volatilities should be
normalised by the overall level of volatility, and secondly, time to maturity effect
should be included in the model. Rubinstein (1994) shows an optimisation
method to specify a return distribution consistent with a smile for his implied
binomial tree.

The purpose of this paper is to examine existence of an exercise effect or
‘smile’ in the Nikkei 225 traded options market by using the modified Heynen,
and Taylor and Xu methods, and observe the shape and characteristics, if any.
Neither of these two models is a structural models, but they are mechanically
fitted. If we find evidence from the models that the shape of implied volatility is
smiling and/or skewed, it is reasonable to take the shape into consideration with
the risk management framework and evaluation of positions held in banks.
Figure 4.1 shows the average implied volatility relative to at-the-money options,
for Nikkei 225 options contracts traded on the Osaka Security Exchange. The
graph suggests that there is a rather symmetric smile in the options which are
nearest to maturity (less than 10 days), but the smile becomes more skewed as
maturity increases. As expected, it is the in-the-money options which have the
highest volatilities. However, as maturity decreases, the shape becomes more
like smile by increasing the implied volatility of out-of-the-money puts. We will
estimate the shape and find the characteristics of the shape to avoid to
over/underestimate of the risks and evaluation in the risk management framework
built for a financial institution. We do not examine the stability of a “daily”
volatility shape, as Dumas, Fleming, and Whaley (1995) have done for S&P 500

options on futures contracts, but try to find the overall characteristics of the shape.
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[n Section 2, the methods employed are explained. The Heyren's meathod 15
rmodified and named *Nommalized Heynen' method to take the time effect into
consideration. The Taylor and Xu method 15 wsed as it is shown in Taylor and
Xu (1994h). In Section 3, the data uwsed For this analysis are explained, and the
results are analysed in Section 4. Section 5 con¢ludes this paper.

4.2. The Methods
4.2.1 Normalised Heynen Method

Heynen (1994) used the formula below to examine the Dutch index options

implied volanhty shape. Implied volatility with exercise price of X { o) is

determined by the function of relative moneyness (¥) as;

O = g + &y (¥ - Ymin) + 82 (¥ - Yrinf® + E (la)

where y = X/ 587 5 is underlying index peice, and d is dividend yietd?,
However, this formulation is not neuateal to an overaf] level change in level

of volatility, or a shift of the smile curve.  Becauss a rather large range (from 4%

to 58%) of the implied volatility is observed in the perod examined in this

chapter, it is better to “normalise’ by using the same approach as the Taylor and

Xu method employs as below,

G.\' 2

—~=a, +raN+a,N +¢ (lb)
Ty

where &, iz implied volatlity of ATM forward, ¥ is the forward price, ie, F =
SN and N is Moneyness definedas N= X/ F- 1. opand o arc calculated

by the pencralised Black-Scholes formula, as explained in Section 3,

2 Griginally Heynen ¢ 1499%4) calenbuted ¥ by using dividend amount tadher than dividend yield,
wheee p = X/ (5-Dk".
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Hewnen (1994) showed the results by subset of time to maturity, [t is
possible (o consider the time to maturity as a factor of the regression where me
has an inverse impact. The inverse interaction also aveids the parallel shift of

the curve due to a different time length. This leads 1o:

., N N?
ﬁ=.:z.‘,+.-J,a"l."+a:1.,1"'n"+'::|JT+4:,,f—_4—4—: (lc)
T T 1

where I is time to matunty {in year). This formuolation does not impose
symmerry, nor does it require the minimum point o be at-the-money.  Ir 5 also
formulated to recogmse the non-hnear decreasing time effect on the shape 16 a,
andfor ay 15 significant.  That 15, the curvature of the shape 15 expected
decrease as the time to maturity bocomes longer. We also include puts in our
analysis, whereas Heynen examines only calls.

4.2.2 Taylor and Xu Method

The Taylor and Xu formulation is more complicated. T includes the interaction
between moneyness and square oot of time, and between moneyness and the
volatility level.  The curvature of the shape is likely to depend on the square root

of time fmom the view point of probabifity theary®.  The regression equation is

then:
a, M M? M M? M M’
= iy, T =+ i, —— i, — tas———+a, 7=
o, T ONT  § T VT, ro,
, (2)
A M-
- IT; + iy == F
T, T,

where Gy 15 the implied volatilicy of the option with exercise price of X, g5 the
implied volatility of the ATM options with a specific cxpiration, and M is

Moneyness defined as In{FrX0.

3 The equation provided by Taylor and Xu (199407 s their plausible tirst goess to estimate
sorme non-linear function of £
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This formulation does not impose symmetry or constrain the minimum volatility
to be at-the-money. We include square root of time with inverse interaction to
moneyness, so that a larger ‘smile’ is possible compared with a result of the
adjusted ‘normalised’ Haynen method. From the view point of standard
deviation, square root of time should be directly related to the shape of the curve.

We segregate the data into the groups by time to maturity and by type (calls
and puts) to characterise the shape of the smile in depth, which is not mentioned
by Taylor and Xu (1994b).

4.3. The Data

The raw data are Nikkei 225 option prices from the Osaka Exchange.
There were 1,209 business days during the sample period (12-Jun-89 to 26-May-
94).  When put-call parity (¢ +x-e~n =p +5) is significantly breached, the data
are omitted. The condition of omitting is the £150 point difference from the
parity4. The mean of the errors in put-call parity5 is -4.37 (ATM puts and calls)
with SD of 127.09. Data with less than one SD are kept to analyse.

IV is calculated in the generalised Black-Scholes formula, which is the
extension version with the dividend yield input of Black and Scholes (1973). IV
of puts and calls are averaged. The daily 3-month CD rates are used as risk free
interest rates. The dividend yield rate is assumed constant as 0.7%.

Either data series of calls or puts may be biased. Gemmill (1995) reports

the 2% put bias, i.e. the mean of put IV is 2% larger than the one of call IV, in the

4 The example price level of the call option (24 days to maturity) is 380 point with 20,500
exercise price when the index equals 20,442.6 (nearest-the-money), where the delta is
approximately 0.46 and IV is roughly 21% annually. (Closing level as of 19 March 96, April
contracts expiring on 12 April 96.) The screening rule of 150 point to omit the parity-
breaching data is rather large.

5An error in put-call parity (e) is defined as below:

e=S+P-C-Xexp(-rt)
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case of the FTSE 100 option contracts. In the case of the Nikkei 225 options
traded on Osaka. The mean of the call IV is 25.86% in the annual term, and the
one of the put IV is 25.35%. The call IV is significantly 0.51% larger than the
put IV6.

There are 392 data-missing days. The remaining 817 days are available.
The nearest-the-money contract is defined as at-the-money (ATM). In-the-
money (ITM) is defined as ATM - 500 yen in calls and ATM + 500 yen in Puts.
OTM is the exact converse. ATM, OTM, and ITM are combined within the
option types (Call and Put), so that the number of data for regression analysis is
tripled.

The contracts were quasi-American type (exerciseable every Friday) before
May 92, and from June 92 contracts, the specification was changed into European.
Regressions were initially conducted separately for the pre-June 1992 data (451
days) and the post-May 1992 data (366 days). Because the results were not

different, the whole period is reported here (817 days).

Whole data set 2,451 data
Subset 1=5 - 10 days 489 data
Subset 2 = 11 - 20 days 663 data
Subset 3= 21 -30 days 945 data
Subset 4 =31 - 40 days 354 data

4.4. Test Results: Goodness of fit
In Table 4.1, the results of the original (but already normalised) (Equation
Ib) and the adjusted (time-considered) Heynen method (Equation Ic) are shown.

The R squareds (0.02 to 0.10) are lower than the ones in the Taylor and Xu results

6HO: The mean of call IV (x1) is equal to the one of put IV. HA: The mean of call IV (x2) is
not equal to the one of put IV. Reject HOifz < -1.96 or z> 1.96, where z = (x 1 - x2) / square
root of (varl / nl + var2 / n2). Because z= 2.06, the call IV is significantly biased to the put
IV by 0.51%.
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(0.07 t0 0.27). The R squareds are also lower than Heynen’s result for the Dutch
equity index options, which are in the range of 0.30 to 0.70. The adjusted
Heynen method improves the R squared compared with the original method, but
the improvement is marginal. The estimated coefficients seem very sample-
dependent. The instability is likely to be due to the multi-colinearity of those
independent variables. The shape of the smile is plotted in Figure 4.2. The
curvature of the shape is increasing as the time to maturity is decreasing in both
calls and puts. The magnitude of the smile is more in puts than in calls in the
sample period.

The result of the Taylor and Xu method is shown in Table 4.2. With the
whole-data set, one can see the significant smile and skewness effects, which are
shown graphically in Figure 4.3. The magnitude of the smile is more in puts
than in calls, which is a similar result to the one of the normalised Haynen
method. The R squared is higher, 0.07 to 0.27, than for Heynen’s method. The
R squared is much lower than the Taylor and Xu’s result in the S&P options,
which is in the range 0f 0.7 to 0.9. The subsets results are not stable. In the 11-
20 days subset, most of all the t values are less than 2 in absolute term as they are
also in the 21-30 days call subset. The reason for this instability is likely to be
multi-collinearity of the formulation.

When we impose symmetry by taking out a,, a3 a,, and a7 R squareds are
reduced from 0.1657 and 0.1975 to 0.1157 and 0.1699 of calls and puts,
respectively.

4.4.1 Smile effect
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The Taylor and Xu model shows larger effects in smile than the normalised
Heynen model in Figures 4.2 and 4.37. In comparing with actual plotting in
Figure 4.1, the Taylor and Xu model seems to have too large curvature to estimate
the real curve. It seems because the Taylor and Xu method has some more
independent variables to make the curve more convex, so that the possible
erroneous data around the deep-in- and -out-of-the-money positions may have a
strong impact.

4.4.2 Time effect

The time effect is similar in both approaches. It is observed in both models
that the shorter the maturity, the more the time effect in smile, as shown in
Figures 4.2 and 4.3.

4.5. Conclusion

We find a smiling shape of implied volatility in the case of the Nikkei 225
index options listed on the Osaka Security Exchange, by the fitting models
originally introduced by Heynen (1994) and Taylor and Xu (1994b). We
confirm the decreasing smile effect with increasing time to maturity. Gemmill
and Thomas (1995) suggest that the decreasing smile effect in time is due to a
series of mean-reverting asset prices. Their reasoning seems appropriate
similarly for the Nikkei options. The magnitude of the smile in puts is larger
than the one of calls in the results of both models, but no specific reason is found.
It may be due to the erroneous data because of lack of market makers on the

Exchange: prices are sometimes left as they were on a few days before, if no trade

7 Note that the definitions of moneyness, that is, M(Equation (1)) and N(Equation (2)) are

conversed in Figures 4.2 and 4.3.

Page 67



N. Kamiyama

occurs8. In conclusion, we characterise the smile, and time effects, all of which
are basically the same as the results of Heynen (1994) and Taylor and Xu (1994b).

As many practitioners claim regarding the most of equity markets of the
world, the lower the exercise price, the larger the volatility in the case of the
Nikkei option contract, as shown in Figure 4.1. We find the existence and
characteristics of the shape, and it seems reasonable to use this additional
information by fitting a curve to the shape, and then measure risks and evaluate
unrealised profit/loss of the derivatives positions. In order to correct the
over/underestimate of the value of customised options such as exotic options, we
should implement the assessment of the implied volatility shapes. The straight
B-S formula application to the position evaluation and risk measurement is rather

crroncous.

8 In an order driven market, we would have no good option price reflected by its current
underlying price, because no ask-bid quotation would be available unless there was an order.
In an market-making market, a market maker would quote its closing ask-bid quotation for

official records.
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Figure 4.2. Normalised Heynen Methods: Implied Volatility Shape (Whole-data set)
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Figure 4.3. Taylor and Xu Methods: Implied Volatility Shape (Whole-data set)

t=0.02, 0.03, 0.04 (years to maturity of options)

CALL IV SMILE
(Xu & Taylor)

Moneyness

PUT IV SMILE
(Xu & Taylor)
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Table 4.1. Heynen Method; Bogression Resolos
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Table 4.2. Taylor and Xu Method: Regression Results

CAL!
Whole data 5-10 days 11-20 days
a0 1.012961 1.005444 1.018621
(332.82) (99.49) (174.32)
al -0.636587 -0.163835 1.821932
(-2.83) (-0.10) (1.46)
a2 -14.120431 -34.505471 -9.759828
(:2.31) (-0.75) (-0.29)
a3 0.140646 0.077177 -0.363833
(3.58) (0.32) (-1.47)
ad -0.675849 2.344110 -1.589984
(-0.65) (0.35) (-0.24)
a5 0.265651 0.050742 -0.174970
(5.15) (0.14) (-0.61)
a6 2.471363 7.798506 7.372611
(1.51) (0.65) (0.85)
a7 -0.045341 -0.015464 0.045397
(-5.09) (-0.29) (0.80)
a8 0.604737 -0.155298 -0.442631
(2.22) (-0.09) (-0.26)
R2 0.1657 0.1903 0.1150
PUT
Whole data 5-10 days 11-20 days
a0 0.984261 0.985003 0.984847
(300.88) (83.57) (174.98)
al -0.398272 -1.838247 -0.140207
(-1.65) (-0.95) (-0.12)
W 48465119 -26.290475 72435452
(7.39) (-0.49) 2.27)
a3 0.134433 0.341881 0.066299
(3.18) (121) (0.28)
ad -11.238766 -0.493661 -16.060243
(-10.07) (-0.06) (:2.53)
a5 0.167789 0.589377 0.096759
(3.02) (1.36) (0.35)
a6 -14.547056 3.808385 -20.169724
(-8.28) (0.27) (-2.40)
a7 -0.039491 -0.099744 -0.022370
(-4.13) (-1.58) (-0.41)
a8 3.573128 0.938234 4.714554
(12.21) (0.46) (2.84)
R2 0.1975 0.2773 0.0800
ox M2 M M

<

y/T

M . M 2
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yjT

Page 73

+
7r™ +a-lf7f

21-30 days
1.012816
(271.72)
3.304304

(1.96)
-88.461911
-1.77)
-0.911359
(:2.09)
18.054597
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0.0716
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31-40 days

1.016133
(192.87)
0.736984
(0.20)
73.027677
(0.69)
-0.186221
(-0.16)
-25.854473
(-0.81)
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(-0.40)
-21.794801
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0.118129
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31-40 days
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(-0.99)
30.922318
(1.03)
0.279945
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-10.223053
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5. Stock Return and Volatility Transmission: The Nikkei 225 and
other major markets

5.1. Introduction

Volatility forecasting is one of the most important topics for option users,
traders, and other market participants in the international derivatives markets.
This paper intends to provide an international perspective to forecasting short-run
volatility by examining volatility transmission ("volatility spillover") while
simultaneously considering return transmission ("contagionl" or "return
spillover"), using the Nikkei 225, FTSE 100, and S&P 500 indices.

There are several papers examining return spillovers among the stock
markets. King and Wadhwani (1990) focus on the return transmission from one
market to another, concentrating on the crash of October 1987. They conclude
that rational agents use price changes of the most recently traded market as
material information, and this causes a contagion effect between the international
equity markets. Becker, Finnerty, and Gupta (1990) tested the relation between
the Japanese and the U.S. equity markets and found high correlation between the
Open-to-Close return of the U.S. market and Japanese market returns, but a
relatively small impact of the Japanese market on the U.S. market. Their
analysis includes a consideration of local and common currencies in returns.
Becker, Finnerty, and Tucker (1993) used the stock index futures prices of Japan,
UK., and U.S. to find that the "US performance has a large impact on the
overnight returns in Japan and UK," and concluded that the US market is the
dominant market of the world. Although their model only analysed return
spillovers, they also performed a daily variance comparison and concluded that
the US was also dominant from the volatility perspective. They correctly

pointed out that some degree of risk to underestimate the Close-Open returns

1 "Contagion" is explained in King and Wadhwani (1990) as an effect which occurs between
markets "as a result of attempts by rational agents to infer information from price changes in
other markets." This provides a channel through which a "mistake" in one market can be

transmitted to other markets."
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exists in using the opening price data of the cash index, because the opening price
of the cash index often includes last traded prices (i.e. last closing) of several
constituent shares. The alternative is to use futures price data, but that has its
own problem of roll-overs.2 Cheung and Kwan (1992) provided an interesting
comparison of the Canadian market volatility when the US market is closed with
the volatility when it is open. They conclude that the trading of the US market
affects the Canadian market volatility level through information transmission.
The contagion idea is also applicable to the intra- and inter-industry share price
linkage: for example, Alii, Thapa, and Yung (1994) examined the US equity
market in its way.

Since the ARCH paradigm was developed in the seminal work of Engle
(1982) and its generalisation (GARCH) in Bollerslev (1986), much research has
been performed with their methods to examine volatility in the financial markets.
Bollerslev, Chou, and Kroner (1992) and Engle (1993) provide concise reviews of
the ARCH family of models and their application to asset price movements. The
GARCH model is a powerful tool to explain the fat-tailedness which prevails for
most asset returns3.

The ARCH paradigm is introduced to examine volatility spillovers among
the markets in the other papers. The GARCH concept and the world market
spillovers in volatility are combined in Engle, Ito, and Lin (1990), who compare
"Heat Wave" and "Meteor Shower" Hypotheses to examine the GARCH effects in
the foreign exchange markets. They reject the hypothesis of the independence of
the major market places of the world ("Heat Wave") and prefer the world-wide

linkage model ("Meteor Shower") as the best representation. The well-presented

2 Becker, Finnerty, and Tucker (1993) rolled over the futures at every expiry. From the

Nikkei 225 experience, early roll-over often occurs in the Osaka Securities Exchange and

Singapore International Monetary Exchange (SIMEX) several days prior to the expiry. The

roll-over day is normally defined as the day on which the trading volume of the next contract

month exceeds the volume of the current contract month. When the contract is rolled over, the

trading volume of the nearest contract month decreases, and the opening price of the contract

tends to jump from the last closing price. This may cause an overestimate of the price change

overnight.
3 See, for example, Taylor (1986).
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econometric background including the log-likelihood function specification is
useful and this methodology is followed in our paper. Hamao, Masulis, and Ng
(1990) use the ARCH type of model to analyse the volatility spillover between the
three major equity markets of the world, with data of April 1985 to Mar 1988.
Their specification of the model is slightly different from the one of Engle, Ito,
and Lin. In Hamao, Masulis, and Ng, the conditional variance is a linear
function of past squared errors of the market, with autoregression of the
conditional variance, and the squared residuals of the other market which are
derived from an MA(1)-GARCH(1,1)-M applied solely to the return series of the
foreign market previously opened. Even though their GARCH formulation is
not as comprehensive as the one of Engle, Ito, and Lin (1990) in terms of
interdependent determination of volatility, their careful consideration of the
decomposition of Close-to-Close return into Close-Open and Open-Close returns
is very valuable in delineating the effect of time zone difference for each market.
Susmel and Engle (1994) examine the hourly linkage4 in return and volatility and
then show the spillover effects between the UK and US equity markets with
consideration of timing of information transmission. In addition to using hourly
data, they model asymmetry ('leverage effect') of the conditional variance as
affected by the most recent market returns. Their detailed analysis succeeds in
showing the precise timing and direction of the spillovers between two markets.
A significant spillover is observed at the afternoon session of the London market,
which tends to overreact to the opening of the New York market. They also find
that both markets are efficient in using past information from the other market in
both return and variance. However, they conclude that there is no volatility
spillover between these markets. An hourly analysis for Japan is irrelevant
because trading hours do not overlap with London or New York. Theodossiou
and Lee (1993) expand the analysis of Hamao, Masulis, and Ng by using a

multivariate GARCH-M model which enables them to observe any possible

4 Exactly speaking, they do not use hourly returns but hourly prices to set up several time

segments. Therefore the number of observation is 553 from January 1987 to February 1989.

Page 76



N. Kamiyama

interactions in the mean and volatility of returns among several markets. They
examine Canadian and German markets in addition to the major three markets.
The results for the mean spillover are not significant from Japan to U.S. and UK.,
but the volatility spillover from U.S. to Japan is significant, (the coefficient is
0.0470). Koutmos, Lee, and Theodossiou (1994) investigate ten major equity
markets of the industrialised countries and find time-varying betas in relation to
the world index and volatility persistence in a GARCH formulation.

Multi-factor ARCH models are suggested in King, Sentana, and Wadhwani
(1994) regarding the international major equity markets and Mahien and
Schotman (1994) in the foreign exchange markets. Their models contain not
only price information (historical returns) but also macroeconomic data and/or
other financial market data such as interest rates. Chung and Liu (1994)
examine the Pacific rim equity markets to find the common stochastic trends in
the long run, using co-integration analysis and factor loading matrices in the
analysis of multivariate stock return.  However, because of the limited
availability of macroecomonic data such as GNP., multi-factor analysis can not be
directly applied to daily market linkage and spillovers.

The purpose of this chapter is to examine the linkage of the three major
equity markets of the world in order to help market participants forecast the
volatility and return of the day from the view point of spillovers, with special
interest in the Japanese market. For example, on a Japanese holiday, the S&P
index might be declining steeply. How should a Nikkei trader respond? She
would also like to know how much bid-ask spread should be increased when there
is a volatility increase in the New York market. This chapter will provide a
quantitative solution for traders to support their decision making in trading the
Nikkei and other major markets.

The plan of this paper is as follows; four alternative types of model are
introduced in section 2, including: Return regression, Contagion, GARCH, and

General models. The data used for the analysis are specified and the basic
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autocorrelations are analysed in Section 3. In Section 4, the test results of these
four types of model are examined, and the conclusions are drawn together in

Section 5.

5.2. The Methods
Four different models are used to relate the stock markets. In the first, the
return regression model, returns in one market are related to returns in the most
recently closed other market and also related to this market's volatility. In the
second, the contagion model of King and Wadhwani (1990), the independent
variables are just returns, but at higher lags. In the third, GARCH model.
spillovers of the other market volatility are shown. Finally, in the general model,

return spillovers are combined with GARCH volatility spillovers.

5.2.1 Return Regression Model
This model explains returns of the markets by 1) autoregression, 2) the other
market return, and 3) volatility of the other market. The equation is:
Ru =aj +bj mRjt ,+ G *Rj It +dj whU + ¢j wWlummy (1)
where,

Rjt\ Rate of return - defined as:

In (Closet I Closet_i) in Close-Close Return analysis
In (Closet / Operif) in Open-Close Return analysis
Vi i,: Daily volatility of the Other Market - defined as ( Rj.i* ~ mean of Rj.,it )2
dummy. 1 if after weekends or missing dates, or 0 if not.
J: the Market (f, nk, or sp)
Jj-1: the Other Market (the market most recently closed before the Market)
Equation (1) is more general than the return regression analysis employed
by Becker, Finnerty, and Tucker (1993), because it includes the effects of the
autoregression of the market return and the daily volatility (defined as a squared

excess return of the day) of the other market, as well as the returns of the other
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market. We also add the dummy variable for non-trading days (weekends).
Note that this model examines only retum-to-return and volatility-to-retum
transmission, therefore volatility-to-volatility transmission is omitted in this
analysis.

Because of autocorrelation (see below), one can expect slightly positive

coefficients for the lagged returns of the market (b{). We also expect positive
coefficients for the other market returns (c¢/), and the negative coefficients (due to

risk) for the other market volatility (d/).

5.2.2 Contagion Model

King and Wadhwani (1990) examined the close-close returns with a moving
average process as shown below.
R, =P, (2a>
where L = lag operator. The contagion coefficients, (3js, measure the effects of
the price change on change in the other market. The MA(1) error process acts
as the total news items of the market. We make two adjustments to the model,
by adding: (i) a weekend dummy, and (ii) a mean return (drift). The full model
with both dummy and intercept is:
R t=1ij+Sj wummy +Pj mRM , +(\-0jL)mjt (2b)
In this model, we do not have to add any coefficient for volatility-to-return
spillover because the MA coefficients are products of the contagion coefficients5.
The model focuses on the return-to-return and volatility-to-return spillovers only
and no volatility-to-volatility spillover is considered.

Positive signs are expected of the coefficients of returns of the other
markets (/}/), as found by King and Wadhwani (1990). The coefficients (6j) are
expected to be negative because the other market's effect is likely to be reduced by

weekends.

5 See Appendix 5.1.
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5.2.3 GARCH Model with Volatility Spillovers
The GARCH (1,1) model can be shown as below:

y:j =aj+vjt+5 . «<dummy

hjit=cj +bj wjt {+G v +dj mpit+e; s«dummy ®)

To optimise the parameters of Equation (3), the BHHH method6 is used to

maximise the log likelihood function of;

loglj =£ -05x (loghjt+ ) 4)

Where, j is nk, ft, or sp
and j+1 is the other market in the next time zone
The formulation of Equation (3) is the same as the one used by Engle, Ito, and Lin

(1990) excluding weekend consideration, but slightly different from the
specification of Hamao, Masulis, and Ng (1990). The latter use Ay/ ¢ from the

single-market GARCH result rather than v/ /¢ in Equation (3). The models
described as Equation (3) explain volatility-to-volatility spillover only.

In the model shown as Equation (3), one can expect b/, ci, and df to be
positive, because the autoregression of the conditional volatility (of the market)
and the squared errors (of the market and of the other market) should all be
positively related to the conditional volatility of the market (from a practitioner's

viewpoint). The coefficients of the weekend dummies (<5) in the return equation

are expected to be negative.

5.2.4 General Model (GARCH with Return Spillovers)

The general model is a combination of the return contagion model and the
GARCH volatility spillover model. Returns from the most recently closed
market affect this market's returns, and the residuals of the recently closed market

affect the conditional volatility of this market. Hence, we can combine

6 The Berndt-Hall-Hall-Hausman method is introduced in Berndt, Hall, Hall, and Hausman
(1974).
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simultanecusly the effects of return and volatility in the most recently closed

market {volatlily-to-volatilily).

J;‘ilﬂ=a:rj+uj.J+Ej-dmﬂmy+,ﬂj-;..-I._, )
hy,=a +b b, e v awd vl +e, -dummy
In the model shown as Equation (3), b, ¢, and d; are expected o be positive

because of the reason as abave in 52,3, One can also expect the coefficient of

return {31 o be positive because of the reason as above in 5.2.1 and 5.2.2.

5% The Data
5.3.1 The Data
The Mikkei and the S&P 5300 indices data series are from the FurureSource
data hase, Hoth are Trom 2 January 1987 to 17 August 1994, The Mikket has
I, AR datly data?, and the S&P has 1,928 data (Open and Close).  The FTSE [0
index data senes are @ken from DataStesam, which containg the prices from 2
January 1987 to 19 Avgust 1994, It has 1,992 data (Open and Close).  Several
Open price data ave missing. These three data sets are combined by using the
following rule for exclusion:
. It any of the three markcts is closed, all the data on that day for all markets,
arc omitted,
. The rates of return are caloulated after omitting the missing davs.
The dummy variable is defined as follows; it is O if the date is continuous; and 1t

15 1 tf there are weekends, and holiday or missing data.

5.3.2 Preliminary Analysis of the Data
Tahle 5.7 summarises raw returns and autocorcelations up to Lag 10 for
both close-lo-clise and open-to-close dota, Several of the comelations ars

significant at Lags 1, 2, and 4. The S&P s significant at Lag 3, which is

T The nurnber of rading days in Japan is smallest amang three.  The trading davs per year are
245 in Japan, 230 in US,, and 253 in UK., approsimete|y
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consistent with the weekend cffect as Hamao, Masulis, and Ng (19907 explain.
The autocorrelations of the Open-Close and Close-Close data are similar excepl
for the FT' at Lag 1: it shows positive antocorrelation with Close-Close data, but
negative autocorrelation for Open-Close data.  The reason may be some degres

of high frequency of jumps between Close-tlo-Open prices, thus the Open-Close

return would be ncgative even though the Closc-Close return was positive.

Hamag, hasulis, and Mg (1%%0) repont the same result in the autocorrelation table
for the pre-crash period.
Table 5.2 shows the ARCH effect of each time series. The significant ©

and LM statistics indicate that ARCH effects are presene®.

5.4. Tesl Results

(Throughout this paper, 'A « B means "bMarket A is aftected by Market B”)
5.4.1 Return Regression Model

Table 53 gives the results from estimating the return regression model
(Equation (1)) using Close-to-Close data. . We Dnd thal: a} As expected, retwns
are all positively relaled w the "other” market.  The fargest coetficient 13 in the
case of 3P«FT, 047, indicating a | change in FTSE 15 associated with 0.47%
change in 5&P. B Reloms are megatively inflluenced by the volatility of the

other market [d coeMcient), and again the largest absolote value of the coefficient

15 10 the case of SPTT, -2.12. ) Only 3&F shows significantly negative
autocorrelations (b coefficient), although one would expect a  positive
autocorrelation bocause the preliminary analysis showed positive autocorrelation
al Lag | (Close-Close case).  d) The weekend dummy is significant ooly in the
NE—lag{5P) case, as would be expected, because Friday's S&P close is retlecued
in the UK. on Monday moming,

The analysis of Open-Close Ecturns (Table 3.4) shows similar resulis with

the relurn spillovers (¢ coetticient) smaller for FI—NK and NE—Ilag(5F), but

& Appendin 3.2 shows the results of the GARCH madel fitted with the individual market retums,
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not for SP<FT. The other peculiarity is the much larger impact of volatility (d
coefficient) in the SP<FT case. In addition, R squareds are lower than for the
Close-Close analysis (in the range of 0.02 to 0.16). The FI<-NK combination
has a particularly low R squared, 0.0192 compared with 0.14 in the Close-Close
case result, and this is consistent with the market participants' recognition of only

minor linkage between these markets.

5.4.2 Contagion Model of King and Wadhwani

In the model specification of this paper, the non-overlapping markets cases
are examined only in Close-Close returns9 for comparison. Four results are
observed in 7able 5.5. a) All the coefficients of the other market returns are
significantly positive and in the range of 0.11 to 0.44. The largest is the NKx—
lag(SP) case, b) The moving average factor is negative only in the FI<NK case,
and positive in others, ¢) The weekend dummies are significant in the NK<—
lag(FT) and NK<—ag(SP) cases, and d) the mean is not significantly different
from zero. The standard errors and AICsl0 have no strong direction in
comparing the model with/without the mean. Therefore, the simplest King and
Wadhwani model (Equation (2a)) is preferred to the model with the mean on the
basis of parsimony.

These results are rather different from those of the return regression model.
The most important spillover is from lag(SP) to NK (0.44), whereas it was only
0.27 in the return regression model. This is probably because the contagion
model does not explicitly separate the return effect and the volatility effect of the

recently closed market. An interesting observation, in comparison with the

9 King and Wadhwani (1990) specify the model for examining non-overlapping trading hours
with the Close-Close returns. They used a different type of model for the overlapping market
relationships. Because we focus on the Nikkei, only the non-overlapping model is examined
in this paper.

10 R squared is not utilised because it would be increased by increasing the order. See Harvey
(1993). AIC stands for Akaike’s Information Criterion, which is defined as -2 In(maximum
likelihood + 2 (number of parameters) to penalise the increasing number of parameters. See

an econometrics text book, ex. Judge, Griffiths, Hill, Liitkepohl, and Lee (1984) for detail.
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results of King and Wadhwani (1990), is that the effect of Nikkei on FT (FT«—
NK: 0.24) (for January 87 to August 94) is as large as the one of the crash period
(0.26) found by them (for July 87 to February 88). The effect of lag(SP) on
Nikkei (0.45) is much larger than the one of the crash period (0.16). The NK«—
lag(FT) case has a (3 (retum-to-retum spillover) of 0.22 that is larger than the one
of the just-before-crash of 0.19. From these differences, one may be able to
conclude that linkages among these markets became stronger in the testing period
of 1987 to 1994, although we need to be aware that the sample period is different

in this research from that of King and Wadhwani (1990).

5.4.3 GARCH Model with Volatility Spillovers

In Close-Close returns (7able 5.6), one can observe three points, a) There
are significant spillover effects in volatility for the cases of NK”-lag(SP), FT«—
NK, and NK«—ag(FT) but not for the SP«NK case. These results are
consistent with the ones in Hamao, Masulis, and Ng (1990).  Of these, the FT«—
NK spillover is largest (0.14). The NK«—lag(SP) case has only 0.02 spillover
coefficient, b) The weekend dummies significantly affect all equations, except
the SP«NK return equation. Although the SP«—NK case should not have had
any weekend effect by definition, the volatility dummy has a small but significant
effect because the data are Close-Close returns.

Using Open-Close returns (7able 5.7), the results are familiar, a) The
spillover effect in volatility in the cases of the NK«—ag(SP), FT«—NK, and NK«—
lag(FT), but the SP«—NK case has no significant spillover coefficient. The
largest coefficient is 0.104 in the NK«—ag(FT). It is expected that a large
coefficient in the NK«—lag(SP) should exist, but the figure is 0.0367. b) The
weekend dummy significantly affects all volatilities, but is not significant for
most of the returns (the FT«—NK case is only an exception). This suggests that
the weekend news in weekend New York may affect the NK volatility after the

weekend. However there should be no weekend effect for SP«NK and FT«—
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NK, because no weekend exists between the markets. The weekend effect even
in the continuous market such as the FI<~NK in Open-Close prices means that
the weekend effect is an own-market effect in the continuous market cases. The
weekend dummies of SP<NK (1.619¢-5) and FI<-NK (1.238e-5) are smaller
than NK<t-lag(SP) (1.693e-5) and NKe-lag(FT) (2.309¢-5). This seems to
imply that the weekend effect is largest for the Nikkei because that is the first
market to reopen after the weekend.

This model is not comparable with the two models described so far: it is not
formulated to show any effect of the recently traded market's return on the market
return.  Therefore, it is not comparable with the contagion model which
formulates only return spillovers from the most recently traded markets. Also,
this model does not include any effect of the recently traded market's volatility on
the market return like the return regression model. The GARCH model
formulates only the effect of volatility spillovers on the conditional volatility of

the market.

5.4.4 General Model (GARCH with Return Spillovers)

There are four results of interest which can be found in Table 5.8. a)
Compared with the GARCH spillover model in 7able 5.7 (The Open-Close case),
the function values (log L) are improved to some extent, b) The return spillover
is observed in all the cases to be significant in the Close-Close and Open-Close
cases. All the return coefficients are positive from 0.145 (SP<NK) to 0.261
(NK<—ag(SP)). c¢) The volatility spillover is observed significantly except for
the SP<NK case. All the volatility coefficients are positive from 0.0162 (NK<—
lag(SP)) to 0.128 (FT<—NK). d) The weekend effect on volatility transmission is
observed significantly in all the cases without exception. All the coefficients are
positive from 0.0000177 (NK”lag(SP)) to 0.00003228 (FT"NK). The effects

on return spillover are not significant except for the FI<<NK case (-0.002345).
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Comparing the results of the Open-Close and Close-Open cases: 1) there are
higher coefficients in the Open-Close case than in the Close-Open Case except for
the FI<NK case in the return spillovers. This means that the market
participants materialise the news at the recently closed market not at the opening,
but during trading time of the market, 1ii) Volatility spillovers in the Close-Open
case are not significant except for the NK<—lag(FT) case, which means that

volatility transmission is also realised during the trading hours.

5.5. Conclusion

We employed four different types of model to analyse return and volatility
spillovers between the three major equity markets of the world. The return of
the previously closed market affects the return of the next opening market in all
the results of the models. The volatility of the previous market affects
negatively the next market's returns and positively its conditional volatility.

Using the general model with Close-Close data, which we prefer, there are
large and significant return spillovers from the S&P to the Nikkei return,
approximately 26%, and from the FTSE to the Nikkei return, which is
approximately 17%. The variance spillovers are significant but small from the
FTSE to the Nikkei variance, approximately 6.5%, and from the S&P variance to
the Nikkei, approximately 1.6%. The volatility spillover from the Nikkei to
S&P is not significant, but to FT, it is significant and the coefficient is
approximately 13%.

Table 5.9 gives a summary comparison of our result, with those by other
researchers. The return spillovers are observed more than ones of King and
Wadhwani (K&W). Just after the Crash in 1987, the interrelationship of the
markets seemed confused (ex. 0.11 from Lag SP to NK, from Dec 87 to Feb 88 in
K&W), but it increases later in all four market relationships (ex. 0.261 from Lag
SP to NK, from Jan 87 to Aug 94 in the general model). Only the general model

can decompose the return and volatility spillovers from Close to Close into Close-
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Open and Open-Close. Decomposition of Close-Close to Open-Close shows us
that both return and volatility spillovers are mainly observed during the trading
hours (Open-Close). Only the return from Nikkei to FTSE is transmitted at the
opening of FTSE. The return and volatility spillovers are simultaneously
modeled only in the general model and Theodossiou and Lee (T&L) model, but
the T&L model does not find any significant return spillover with their weekly
data, although we often experience the daily spillover between the markets.
Hamao, Masulis, and Ng (EIM&N) find the significant volatility spillover from
NK to SP in the period of 1985 to 1988, but the general model does not in the
period of 1987 to 1994. It seems because SP was somehow affected by NK
before the Crash in 1987, but the effect from NK to SP has become smaller after
the event.

The implication for traders of the Nikkei 225 is to take account of the
returns and volatilities of the FTSE 100 and S&P 500 indices to forecast the
volatility of the Nikkei 225 on the next day. There are strong positive
relationships for both return-to-return and volatility-to-volatility. Traders could
utilise the quantitative results of spillovers in pricing of options.

Table 5.3 shows the return spillover from FT to SP is the largest in
coefficient and R squared. However, the trading time is overlapped (UK
afternoon and US morning), and it should be noted that the relationship shown
here between FT and SP is not causality from FT to SP but correlation to each
other. The coefficient from NK to FT (0.23) includes the effect of the American
news to both NK and FT, therefore the coefficient figure does not directly mean
any causality from NK to FT. The coefficient from NK to SP is rather small
(0.12), that is, NK does not dominant the SP market. Although the U.K. and
Japanese markets have a strong interrelationship, this is probably explained by the
similar relationship between the U.S. and each market. For example, the US

dollar rates are often determined by the relative strength or weakness of the U.S.
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economy. Economic news in the U.S. may affect each market independently,

and the U.K and Japanese markets tend to move in a similar direction as a result.
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Table 5.1. Data Summary: Mean and Corrélations Structure of Retums

Means and Standard Deviations

Close-Close Returns

#obs. Mean
Nikkei 1831 0.000055234
FTSE 1831 0.000350206
S&P 1831 0.000334364
Open-Close Returns
#obs. Mean
Nikkei 1831 -0.000382878
FTSE 1819 0.000205451
S&P 1832 0.000375642
Autocorrelations
Close-Close returns
Lag 1 2 3 4 5
Nikkei
S.Cor 0.02125 -0.10961*%F  0.00443  0.04801*  -0.02516
(S.E) -0.0233 -0.0234  -0.0234 -0.0234 -0.0234
P.Cor 0.02125 -0.11011**  0.00948  0.03606  -0.02605
FTSE
S.Cor  0.0608%** 0.00389  0.03535  0.0939**  0.02844
(S.E.) -0.0234 -0.0235  -0.0235 -0.0235 -0.0235
P.Cor  0.0608%* 0.0002  0.03523 0.09006**  0.01773
S&P
S.Cor 0.019 -0.07925%*  -0.02463 -0.06486** 0.08916%**
(S.E) -0.0234 -0.0234  -0.0235 -0.0235 -0.0236
P.Cor 0.019 -0.07964**  -0.02164 -0.07077** 0.08901%*
Open-Close Returns
Lag 1 2 3 4 5
Nikkei
S.Cor 0.04733* 0.02543  0.03584  -0.02073
0.08123%*
(S.E) -0.0234  -0.0234  -0.0236  -0.0236  -0.0236
P.Cor 0.04733* - 0.03387 0.0262  -0.01934
0.08366%*
FTSE
S.Cor 0.05385*  0.01916  -0.00443  0.02886
0.05554%*
(S.E) -0.0233 -0.0234  -0.0235 -0.0235 -0.0235
P.Cor - 0.05092*%  0.02497  -0.00485  0.02618
0.05554%*
S&P
S.Cor 0.01939 -0.02773 - 0.09923%*
0.07538%* 0.06364%**
(S.E) -0.0234  -0.0234  -0.0235 -0.0235 -0.0236
P.Cor 0.01939 - -0.02484 - 0.09879%*
0.07578%* 0.06877%*
Notes:
S.Cor: Sample autocorrelation
P.Cor: Partial autocorrelation
* = Significant at 5% level {Cor/ ( )> 1.645)

S.D.
0.0148951
0.0103385
0.0111833

S.D.
0.0137571
0.0078636
0.0110009

6 7
-0.04885%  0.03493
-0.0234  -0.0234
-0.03914*  0.03164
-0.0053  -0.0321
-0.0237  -0.0237
-0.00928  0.02733
-0.0193  -0.00854
-0.0238  -0.0238
-0.03522  0.00478

6 7
-0.03516  0.01127
-0.0236  -0.0237
-0.02908  0.00973
-0.02184  -0.01174
-0.0235  -0.0235
-0.019  -0.01678
-0.02337  -0.01286
-0.0238  -0.0239
-0.03922*  0.00105

** = Significant at 1% level {Cor/ (1/7fn )> 2.326)
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0.05535%*
-0.0234
0.04376*

0.02002
-0.0237
0.00696
-0.00125

-0.0238
-0.00723

0.04865*

-0.0237

0.04305*

0.06681**

-0.0235

0.06678**

-0.01602

-0.0239
-0.02132

N. Karniyama

0.00491
-0.0234
0.01207

0.01977
-0.0237
0.01473
-0.01749

-0.0238
-0.00631

0.01916

-0.0237

0.01926

-0.01045

-0.0236

-0.00082

-0.02593

-0.0239
-0.014

10
-0.00019
-0.0234
0.01241
0.02015
-0.0238
0.01761
-0.02764

-0.0238
-0.04036*

10

0.01367

-0.0237

0.02018

0.00547

-0.0237

-0.00267

-0.02871

-0.0239
-0.04596*



Table 5.2. ARCH Tests

Return on Nikkei

Order Q Q>prob
1 83.3466 0.0001
2 102.496 0.0001
3 127.456 0.0001
4 154.291 0.0001
5 166.881 0.0001
6 170.682 0.0001
7 176.945 0.0001
8 187.889 0.0001
9 193.309 0.0001
10 194.903 0.0001

Return on FT

Order Q Q>prob
1 668.886 0.0001
2 806.306 0.0001
3 843.937 0.0001
4 883.883 0.0001
5 904.668 0.0001
6 910.161 0.0001
7 913.643 0.0001
8 922.301 0.0001
9 929.502 0.0001
10 940.763 0.0001

Return on S&P

Order Q

20.1253
60.7558
71.0509
71.5934
106.547
107.707
107.843
111.179
112.742
112.860

W oo N o U1 M W N

-
o

Q>prob
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

LM

89.2252
91.7172
107.452
118.143
120.226
120.268
121.660
124.852
125.285
125.286

LM

667.811

691.740
696.638
707.020
709.513
709.513
710.619
712179
712.293
717.058

LM

20.0944
55.2655
59.4138
59.7955
87.2228
87.2237
88.8118
90.2948
91.6560
92.5552

LM>prob

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

LM>prob

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

LM >prob

0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001
0.0001

N. Kamiyama

Q test:  The probability to see the figure Q is 0.0001 under the null hypothesis of the
returns which are serially independent.

LM test: same in the figure LM.
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Table 5.3. Return Regression Model (Equation (1))

Close-Close Return (Number of the data used = 1,830)
No Dummy
FT<—NK SP<—FT SP<—NK NK<—lag(FT)
a 0.00071319 0.00045084 -1.63534¢-6 -0.00005982
(3.06)*** (1.88)* (-0.01) (-0.17)
b -0.019849 -0.160702 0.0002630 -0.032231
(-0.88) (-6.99)*** (0.01) (-1-31)
c 0.232918 0.470286 0.120752 0.232543
(15.25)*** (18.95)*** (6.60)*** (6.23)***
d -1.675228 -2.123573 1.481087 0.315713
(-6.17)*** (-4.61)*** (4.67)*** (0.48)
R2 0.1361 0.2001 0.0357 0.0224
With Dummy
FT<—NK SP<—FT SP<—NK NK<-lag(FT)
a 0.00087322 0.00037595 0.000055832 0.00081738
(3.31)*** (1.37) (0.18) (2.04)**
b -0.018332 -0.160849 0.00060709 -0.031578
(-0.81) (-7.00)*** (0.02) (-1.29)
c 0.230836 0.471 158 0.1 19974 0.235384
(15.03)*** (18.95)*** (6.52)*** (6.34)***
d -1.655933 -2.128420 1.487839 0.282118
(-6.09)*** (-4.62)**x* (4.68)*** (0.43)
e -0.00069299 0.00031619 -0.00024838 -0.00367943
(-1.30) (0.57) (-0.41) (-4.57)***
R2 0.1369 0.2002 0.0358 0.0335

Keys:

A<—B means "M arket A is affected by M arket B"

a:
b:
c:
d:

€

t-

intercept

autoregression coefficient

return on the other market coefficient
volatility of the other market coefficient

weekend dummy coefficient
values are in brackets

Significant at 5% (t> 1.645)

*E: Significant at 2.5% (t> 1.960)
*¥**%:  Significant at 1% or better (t>2.326)
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NK<—lag(SP)
0.00005171
(0.16)
-0.027032
(-1.21)
0.390968
(11.51)%%*
-1.031933
(-3.50)***
0.1174

NK<—lag(SP)
0.00086439
(2.30)**
-0.0252438
(-1.14)
0.387054
(1 1.45)%**
-1.056697
(-3.60)***
-0.0034074
(-4.44)%%*

0.1268



Table 5.4. Return Regression Model (Equation (1))

Open-Close Return

No Dummy

R2

FT<-NK
0.00036910
(1.96)**
-0.081741
(-3.39)%**
0.052794
(3.88)%%*
-0.795584
(-3.50)%**
0.0192

With Dummy

R2

Keys:

FT<—NK
0.00037494
(1.76)*
-0.080675
(-3.39)%*x*
0.052704
(3.84)% %
-0.795376
(-3.49)%*x
-0.00002534
(-0.06)
0.0192

(Number of the data used = 1,829)

SP<—FT
0.00102024
(4.02)%**
0.00103829
(0.05)
0.477096
(15.77)***
-12.114670
(-8.25)% %+
0.1618

SP<—FT
0.00108248
(3.80)% %
0.00086018
(0.04)
0.476879
(15.76)%**
-12.104043
(-8.24)%%*
-0.0026985
(-0.48)
0.1619

SPf-NK
0.00015937
(0.60)
0.021021
(0.81)
0.080355
(4.14)%%%
1.176825
(3.49)%%*
0.0164

SP<—NK
0.00022228
(0.74)
0.021255
(0.82)
0.079391
(4.07)%**
1.179316
(3.49)%**
-0.00026859
(-0.45)
0.0165

NK<—lag(FT)
0.00004633
(0.14)
0.026433
(1.15)
0.307488
(7.60)%**
-8.219373
(-4.22)%*%*
0.0460

NK<—lag(FT)
0.00095809
(2.53)%%*
0.028805
(1.26)
0311632
(7.75)%%*
-8.354828
(-4.32)%%%*
-0.00378009
(-5.15)%%*
0.0597

A<r-B means "M arket A is affected by Market B"

intercept

a:
b: autoregression coefficient

o o

e: weekend dummy coefficient

t-values are in brackets

: return on the other market coefficient

: volatility of the other market coefficient

*: Significant at 5%
*E: Significant at 2.5%
**%: Significant at 1% or better
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NK<—lag(SP)
-0.00029170
(-0.95)
0.016270
(0.73)
0.276409
(8.63)***
-1.593179
(-5.74)***
0.1034

NK<—lag(SP)
0.00055125
(1.57)
0.018997
(0.86)
0.272249
(8.55)%**
-1.617938
(-5.86)***
-0.00352061
(-4 94)***

0.1153



Table 5.5. Contagion Model (Close-Close Return)

No Intercept No Dummy (Equation (22a))

N. Kamiyama

Regression dummy 3 0 SE/AIC
FTV-NK - 0.23735 -0.05171 0.00970376
(15.41)*** (-2.19)*** -11776.102
NK<—ag(FT) 0.21989 0.02493 0.01473912
(6.24)%+* (1.01) -10239.821
SP<NK - 0.11875 0.02409 0.01105862
(6.46)*** (0.97) -11297.491
NK«-lag(SP) - 0.44582 0.02252 0.01405177
(15.02)%+* (0.95) -10414.612
No Intercept With Dummy (Equation (2b))
Regression dummy 3 9 SE/AIC
FTIxNK -0.0003896 0.23620 -0.05298 0.00970459
(-0.83) (15.26)++ (-2.24y%x+ 11774.792
NK«-ag(FT) -0.0028252 0.22454 0.02414 0.01467837
(-4.02)*** (6.40)*** 0.97) -10253.94
SP<—NK 0.0002672 0.11964 0.02479 0.01106088
(0.50) (6.48)*** (1.00) -11295.744
NK«—lag(SP) -0.0026502 0.44568 0.02152 0.01399577
(-3.96)*** (15.07)*** 0.91) -10428.228
With Intercept No Dummy (Equation (2b))
Regression mean dummy 3 0 SE/ AIC
FTx«NK 0.0003376 «“ 0.23730 -0.05074  0.0097011
(1.42) (15.41)%** (-2.15)***  -11776.111
NK«ag(FT) -0.0000235 - 0.21997 0.02495 1.01474313
(:0.07) (6.23)++ (1.01)  -10237.826
SP<—NK 0.0003278 0.11888 0.02524  1.01105653
(1.30) (6.47)*+ (1.02)  -11297.185
NK«—tag(SP) -0.0000972 - 0.44611 0.02261 1.01405526
(-0.30) (15.02)%** 0.96)  -10412.703
With Intercept With Dummy (Equation (2b))
Regression mean dummy 3 0 SE/ AIC
FT«NK 0.0005495 -0.0008915 0.23467 -0.05205  0.00969622
(2.04)*** (-1.68)* (15.16)*** (-2.20)*** -11776.952
NK<—ag(FT) 0.0008613 -0.0037283 0.22446 0.02761 0.01466237
(2.24)*+ (-4.60)F** (6.41)y%** (1.12)  -10256.933
SP«NK 0.0003527 -0.0001048 0.11856 0.02514  0.01105947
(121) (-0.17) (6.42)%** (1.01)  -11295.214
NK«-lag(SP) 0.0007094 -0.0033902 0.44404 0.02398  0.01398544
(1.93)* (-4.39)%%* (15.02)%** (1.01)  -10429.933
N.B.) Rjt =Hj +Oj dummy +(5j- RH [+ (\-0jL) £t
3: Return spillover coefficients
9: Moving average coefficients
SE: Standard error
AIC: AIC (Akaike's Information Criterion) = -2 log L (cp) + 2 n
A<—B means "M arket A is affected by Market B"
t-values in brackets
*: Significant at 5% **: Significant at 2.5% ***: Significant at 1% or better
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Table 5.6, GARCH Models with Volatility Spillover {Equation (3}

CLOSE-CLOSE
Withow! Dummy
S P Nk Nikkeic lagf&FP)

Var Cocft t valug War Coell t vafuc
n R LR " [ 4457 le-2 4 g
a d Skt et PR a 157555 1agge e
[} 0. 105F A7, MG Ia QL4 11 agEe e
4 DErrE Tin = a 03457 42 1idmer
ik i 18] [ed 154 i L0331 4. AC e
logl. = (4915934 fiirecat; 103 #oby: 1TH2G
FTEE—Nikker Nikkei—laal FTI

ar Coeff [ value Var Cocff t value
o Halh e 12 ees 23 10258 ERHLTAL
o 20151 %85 11 FastEe 5 113570 6 |.7go*

h 1. 1S tEINLLL h 01519 |27 2ass
C Q17146 g ® 0 B34 T3 STaLe
d LT IR L] d 0iETR AERETLLL)
logl = 14671 45D Heerat: 115 #ohs: 1329

With Dinmemy
S Pe—Nikker J\'FMEI'.&ﬂrJEIESPJ

War CoelT I witlue War Cioaff twaln
[} 4 diih: 4 2.1 e 1.340= % 4 BTEwew
& LT IR iHzD & -1 5753 S
a 1.20428 4 T LLL a - TEN-R A
b B.ALT AL h AT i =
[0 014X 207G c [k L4 | L. 30Emes
i 525404 0.431 1] 2.1 -2 A ELJene
e B 230 1.532ver v 137265 B.9agEe-
losl = 14938427 Hilerat: 100 #oby: 1829
FrEEs—Mrkker Mikheeie— las{ FT)

War Coefl L walue War Ciootf t valoe
a 074504 PR T REITE FRTILY
ii -1.588:-1 -2 VO ] o B T AT
# .05 T I5qesd a B.ddle & £ g
h RURCH 5 Myees h QEIG SH.ESTe=
o QL L Calply T u q.164 |2, 50944
d a2 2T sm d 5 1&fe-2 12.5qyw=e
& 3 4855 5440 e [ 158 7e-3 0 ggQass
logl. = EAUT 1444 #icrac: 2004+ Hobs: [B29

¥, =0+, +:5-:.|'umr.lr_1.-

M.EB.

h,=a,+bF,

1 2
e e ‘HJ'J Wi+ - iy

Ae—B means "Market A iz affected by Market B

=: Bigmificent at 5%

#+: Significant ut 2.5%

s Bignificant af % or beoer
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Table 5.7, GARCII Medels with ¥olatility Spillover {Equation (3))

OPEN-CLOSE
Wirhowt Dummy
Srefe P NEkchal Nikkeii—luer SP)

Sar Coeff t value Yar T { walus
[k} 1003 R i 522003 1 Mgwr
El 1.2614¢-5 3 G55k a P LEEIE ] el L
[ 07355 J2.25Thas b L7206 32,80 ==
a 01734 2. L5 aa C L3335 O lgdnee
d TIORERN-3 1.335 d LIRIEEEY 5810w nm
el = 9173055 Fiteral: 98 Mobs = 1114
FTAE—Nikkei N.:'kke.:'{—.rag." FTl

Var {oatf £ valie War ~ Cocff t value
n 4h2died 1AhEE i ETES 24 I GAgeee
a B.O2fteb TAqgwee i 158766 A_|2Geds
b 0.7749 24 BGhmee b 06327 25 153z
& HHHETR T = 0% b Ayyere
d HER 4ngLees N 0, 10E5 [0S0
logl, = 3642, 398 Witerat: 101 #ohs = 1HH

Witk Dhenrny
S PNk e Mikkel—laplSH)

War Cocrf t walue WVar Coell 1wl
oL |.241a % KRR PRl o &, 5054 25014 ks
& T 574 L0600 i 27 i .73
f T i5E-A 2.apyees a | A5 LR
h (KA g n3ueTe b 0.7 F5.81 ===
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Table 5.8. General Model  With Damaty (Equation {3))
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Tahle 5.8, (continued) General Model
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Table 5.9. Comparison Table

With weekend dummy if available
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Market  Method  Return to  Return  Volatility to Volatility
CC oC C-0 CC O-C C-0
NKtoFT  Retun 0::*% gQsees  qor ™ — —
Con 024 _ _ — —
Garch - — — 0.086*#* (.017%** -
Gen o202 0045%  OHS™* 1250 01500 000647
K&W 0.16 — — — — -
HM&N — — — — — 00185k —
T&L  -0.0358 - - 0 — —
NKtoSP  Retun o iz ™% Q8% | - - -
Con o iz skeksk B B o - B
Garch - - - 0.000525 0.005171 —
Gen  0.145%% 0.124%** 000790 0.00734 0.001955 -0.02896
K&W 0.04 — - — - -
HM&N - — — —  0.0159%*x* —
T&L  -0.0765 - — 0 — —
Lag SP to Return 02 ™ o 7 #1050 - - —
NK
Con  0.45%**
Garch — — —  0.0217*** 0.0367*** —
Gen o 261*** Q 0.0767  0.0162*%** (0.0223*** -1.6039
K&W 01 1 — — — — —
HM &N — — — —  0.0519%** —
T&L  0.0705 - — 0.0470%* — —
Lag FT to Return ~ 024%%F g 3pkex 350 — —
NK
Con o o, K
Garch ~— — — — 00517 0.104%  —
Gen  0.173%* O.I75%* 00051  0.065%+* 0.0869*** 0.0223+*
K&W 0.06 — — - - —
HM&N — — — —  0.0995%** -
T&L -0.018 - - 0 - -
Return Return Regression Model ***: significant at 1%
Con Contagion Model **: significant at 2.5%
Garch GARCH Model *: significant at 5%
Gen General Model 02/01/87-31/08/94
K&W King and Wadhwani results 01/12/87-28/02/88
HM &N Hamao, Masulis, and Ng results 01/04/85-31/03/88
T&L Theodossiou and Lee results (W eekly) 11/01/80-27/12/91
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Appendix

Appendix 5.1. King and Wadhwani Model with notations of this chapter
Return of the market is explained as the sum of the cumulative value of
news term of the market and the one of the other market. ~Assuming two markets

(j andj-.) exist, we express this condition as follows;

Rj-u = £j-\.t + Pj-i,j 1 (A1)
R],l :£z],l +P];H '£j-” (A2)

If we reformulate Equation (Al) as an equation of Ej.jj, £j.jtcan be replaced in

Equation (A2), and the new equation is:

RJJ - eit + PjJ-i (Rj-i,t ~P jj - )
Wi Pt Ejt-Pj,joi Pj.j-1"Ejtl
= Pj,H s J*V-Pj.J-1 pjj.j L)-£j,
Then, in the same: manner,
Rj-u - Pi-1 R,-,t-\+(I~Pj-1,pj-uj-V-Cj-u (AT)
R,,=P,H Rum , 1ap,m L)-£j, (A2")

Therefore, the MA coefficient is the product of the contagion coefficients.
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Appendix 5.2. GARCH Model of Single Market
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6. Implied Volatilities and Skewness across the Index Options

Markets: Comparison and Transmission

6.1. Introduction

The linkage of the international equity markets has been examined by
many academics and practitioners, especially after the crash in 1987. The
spillover of returns and volatilities to the next-opening market interests not only
finance-related persons but also regulators, including central bankers and
governmental officers. Examples of works in this field are Becker, Finnerty,
and Gupta (1990), King and Wadhwani (1990), and Hamao, Masulis, and Ng
(1990). Kamiyama (1996) developed a general model which integrates both
return and volatility spillovers, whereas previous papers concentrated on one or
other of them. All of these focus on the returns and/or observed volatilities
which affect each other, but few have examined if there is an implied volatility
spillover among the major international equity index options markets.

Skewness of the implied volatility is observed in most of the index options
markets of the world. For example, Bates (1991) concludes that the crash of
1987 was expected by market participants in U.S. because negative skewness
was observed during October 1986 to August 1987 in the S&P 500 futures
options market. Gemmill (1995) examines the FTSE options market in pre-
and post-crash periods to show whether market participants anticipated the crash
and finds no such ability. Taylor and Xu (1994b) find evidence of the skewed
shape of the implied volatility vs. exercise price of the S&P 500 options on
futures from January 1988 to December 1992. Heynen (1994) analyses the
implied volatility pattern of the Dutch index options market, and concludes that

the pattern is significantly U-shaped.
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Skewness is set by option market participants and so reflects their
behaviour. One hypothesis of this behaviour is that option markets participants
only passively follow the index return of the day to buy and/or sell options so
that implied volatility skewness is formed. If this were the case, skewness
would be explained by index returns, but index returns on the next day would
not be explained by skewness. The alternative hypothesis of this behaviour is
that option-market participants rationally anticipate the next day return of the
index and develop the appropriate implied volatility skewed shape. If this were
true, the next day’s index returns would be influenced by the skewness of today.

Although there are many papers describing how skewness of implied
volatility affects the pricing of options (ex. Bates (1994) and Madan and Chang
(1995)), there are few papers which focus on the relationship between skewness
and index returns. Gemmill (1995) finds that there was a small tendency for
FTSE to be left skewed when the market had risen and right skewed when it had
fallen. But Gemmill (1995) also finds that FTSE options traders had no
premonition of the crash of 1987.

One purpose of this chapter is to examine the implied volatility
transmission among the three major index options markets all over the world,
including the Nikkei 225 options on futures listed on SIMEX (Singapore
International Monetary Exchange), FTSE index options listed on LIFFE (London
International Financial Futures Exchange), and S&P 500 options on futures
listed on CME (Chicago Mercantile Exchange). Secondly, we compare these
markets in terms of (domestic) index returns versus (domestic) implied volatility
and skewness, both contemporaneously and with lags. In this way, we examine

if the skewness is formed passively by options traders who follow the market
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direction, or option traders can rationally forecast the next day’s return of the
index. The results may vary for the three markets.

The third issue in this chapter is the dependence of skewness among the
three major index options markets, extending what Gemmill (1995) has done by
examining three options markets. Index return spillover is observed by King
and Wadhwani (1990) and volatility spillover is also found by Hamao, Masulis,
and Ng (1990) in the GARCH methodology. How about spillovers in the
skewness of implied volatility? If the skewness of an option market was
subject to the day’s return of the index, skewness would spillover to the next-
opening market because of the index return’s spillover.

The chapter is written as follows. In Section 2, the method undertaken is
explained. Section 3 describes the data utilised in this chapter, and the test
results are shown in Section 4. The conclusions are given in Section 5.

6.2. The Data

For the Japanese market, Nikkei option on future and the underlying future
settlement price data have been provided from the Singapore International
Monetary Exchange (SIMEX). In order to calculate the implied volatilities,
daily three month CD rates are used for all the maturity dates. The nearest
contract month is used for Nikkei, because that is the most heavily traded. We
roll over the nearest contract when time to maturity becomes less than 5 days.
For the British market, FTSE options data have been obtained from Gordon
Gemmill of City University London, who collected originally from the Financial
Times, the Stock Exchange Daily Official List, and London International
Financial Futures Exchange (LIFFE). Three-month interest rates are used for

implied volatility calculation, and the rates are obtained from Datastream by
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Gemmill. The second-month maturity options are analysed because they are
the most liquid. For the U.S. market, S&P 500 options on futures price data
have been provided by the Chicago Mercantile Exchange (CME). For the
short-term interest rate, the 3-month T-Bill rate is used for any time to maturity.
The contract month for the data analysed is the second-nearest contract month,
because it is generally most liquid.

The period examined is from 01 April 1992 to 29 December 1995' and the
total number of daily records of each is 891 for Nikkei, 945 for FTSE, and 928
for S&P. Figure 3 shows the index levels of the three markets during the
sample period (all the indices are set at 100 as of 01 April 1992). Figure 6.4
shows the implied volatilities of the three markets.

Implied volatilities for American-type options on futures (Nikkei and
S&P) are calculated with the method proposed by Barone-Adesi and Whaley
(1987)2 The implied volatility calculations for the FTSE options are made
with a dividend-adjusted binomial model, because this contract is based on the
cash index.

6.3. The Method
6.3.1.a Does implied volatility spillover?

The implied volatility (IV) transmission is examined as below.

1VW=C+ P\ .IVnU-1+P2 (la)
C+ Pi .IV , +pP2 ,IVnk,t +P’IV’ I"J_Z (lb)
Iv,, = c+ P\ + Pi WfiJ (Ic)

where IV is implied volatility, A IV is a daily percent change in implied

1 The SIMEX contract began trading in April 1992, hence the starting data for the data.
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volatility, and ¢ is time counted by day. By using Equations (la), (Ib), and (lc),
we examine how a level of IV of a market affects the next-opening market’s
level of IV2  In other words, we examine if a high level of IV in a market spills

over and makes the next-opening market’s IV higher.

A IV ~c+ o,AVV,, +P.A/V,
A IVt =c+PA v, f AV, +P, A
A lV,r,=c+P, AIVW +P.AV,,

By using Equations (Id), (le), and (10, we examine how a chanse in IV
of a market affects the next-opening market’s change in IV4. This means that
we examine if the large change in IV of a market leads a similar change in IV of
the next-opening market.
6.3.1.b Does implied volatility depend on index return of the day?

We analyse the relationship between returns and implied volatilities as

shown below.

IVxt = c+ Pisretxt + P, mqret xt (1g)

MVxt =c+}seretxt+ /}: esqretv, (1h)
where,

AIV=IVt/IVti -1

> Please see Appendix « .A.
" We employ the SUR (seemingly unrelated regression) process to solve these equations
simultaneously because these three may have correlated disturbance terms. The objective

function to be minimised is

Sn= Lz"Aq (vt,xt,s ) Yj~'q{yt,xt,0), where the model, g, has dependent variables ofy,,
n

independent variables of x/ and the parameters of ¢ . The cross-equation covariance matrix,
2, is estimated by OLS. The SAS/ETS software is used for the process.
« The equations are also solved by SUR.
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c: Constant
x: Nikkei, FTSE, or S&P
ret. Log return of the cash index
sqret: squared return of the cash index

A 1V is proportional change in skewness, which does not depend on the

level of IV with respect to the effect from returns. A squared return may also
be called a daily observed variance. If squared returns strongly affect implied
volatility or change in implied volatility, participants may be considered to buy
and/or sell options by watching observed index direction. The results must be
compared with the relationship between returns and skewness in Section 3.3.
6.3.2 What is skewness?

Bates (1991) developed a skewness measure based upon interpolated
option prices. In this chapter, we will use a measure based upon interpolated
volatilities (Gemmill (1995)), which is:

<+ %) +dijf-a, (-2 %)

skew,
<7, (+2%)

(2)

where,

dijf: the difference in implied volatility (IV) of at-the-money puts and at-

the-money calls (= ATM Put IV — ATM Call 1V),

a : the implied volatility

(+x%): an exercise price which is x% above at-the-money price
We interpolate implied volatilities by exercise price by using nearest-the-money
(NTM) calls and puts, and OTM options (NTM+500 exercise price for calls and
NTM-500 for puts), because normally we have no exact at-the-money options in

any of three markets. In the same way, we interpolate ATM+2% implied
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volatilities. See Figures 6.1.a and ..l.b for more details in calculating the
skewness measure from observed NTM and OTM option implied volatilities.
At-the-Money is defined as the day’s underlying futures price for Nikkei or S&P.
For FTSE options, the forward price of the day for the option’s time to maturity
is calculated, and at-the-money forward is used for analysis.

The ‘dijf’ term is included to allow for difference between at-the-money
put and call volatilities, as were found by Gemmill for the FTSE index options.
In this chapter, we accept the risk free rates from outside of the pricing models,
for example, 3-month CD rates in order to discount the Nikkei 225 options. If
we would like to omit the dijfterm, we needed to accept the “implied” risk-free
rates which would be derived from the option prices which could make the
implied volatilities of calls and puts exactly same. On the other hand, we could
not find diff which may exits, if we accepted the “implied” risk-free rates.

Stationarity of IV and of skewness are examined with the Unit Root
(Dickey-Fuller) test regression. The test is designed as shown below.

AlVx! =. +6 AIV N +fi-1IVXII (3a)
dskewxl =c +9 wiskewxt { + [Swkewxt , (3b)

where dskew is a lagged difference (not a percent difference here). Over the
sample period, it is likely that the IVs and skewness of all three markets are
stationary (;3 <1), although IV of FTSE has the relatively high level of lower tail
area to make an error.
6.3.3 Is skewness dependent on index return of the day?

If option traders were passive to the market direction of the day to form
the smile of implied volatility, we would observe significant coefficients from

the regression models as shown below.
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skewx, =c+ P, eretx, + p. sqretx, 4)

Askewx, =c +p. eretx, + P. ssqretx, (5)
where,

A &w= skewt/ skewt.i -

c: Constant

je: Nikkei, FTSE, or S&P

ret: Log return of the cash index

sqref. squared return of the cash index
A skew is proportional change in skewness, which does not depend on the level
of skew with respect to the effect from returns. A squared return may also be
called a daily observed variance. If squared returns strongly affect skewness or
change in skewness, participants may be considered to buy and/or sell options by
watching observed volatility rather than index direction.
6.3.4 Can Skewness forecast the next-day index returns?

If option traders rationally forecast the returns of indices on the next day,
we would find significant coefficients in the regression model as below.

retx, — C+ P 1% kew x., -1 (6)
If ;3 1iis significant, the skewness level directly affects the next-day return, that
is, the traders change the shape of skewness directly affected by their forecast to
the market. If no coefficient is significant, we may conclude that skewness
does not influence subsequent returns.
6.3.5 How independent is skewness over the world?

Skewness may spill over across markets. Option traders may watch
skewness of implied volatilities in the other markets to form their own skewed

implied volatilities in their option market. This may be tested as follows:

Page 108



N. Kamiyama

(7a)
(7b)
skewipJ=c +P[ wkewspt { +p 2 wkewflt +p 2-skewnkt (7¢)
tekeM>nkt=c + P, Mskewnk, _« +p 2wskewyii_x +/3: Mskewsp:_¢ (7d)
Askewftt=c + (3{ Mskewfi | x+fi2wWskewnkt +/3: wskewspi_« (7e)
Askew"c +P, Mskewspt x+/3. Mskewfit + /] *Ajtew,,*, (79)

Similar to the implied volatility transmission tests (Equations (la) to (If)), we
examine the levels and changes in skewness, i.e. we test if market participants
watch and react in the market either to the levels or changes in skewness in their
own and other nation’s markets5.

In Figure ¢ .2.a, we plot the 20-day moving averages of skew to avoid too
much noise from the data series. These moving averages may be considered as
a measure of optimism / pessimism which is hypothesised to spread across
markets.

6.4. Test Results

As a preliminary, Table 6.1 examines the difference between at-the-money
put and call IVs. They are significantly different (5% level) for all the three
indices. The FTSE options has a “call bias” in the sample period, although a
put bias was reported by Gemmill (1995) for FTSE in the earlier sample period
of July 1985 to December 1990. The Nikkei and S&P options have a “put
bias” on the other hand. A bias in the skewness estimate due to the put/call
difference is avoided by subtracting diff in Equation (2).

The skewness measures of the three markets are shown in Table 6.2 and

s Equations (7a) to (7c) and Equations (7d) to (s f) are solved by SUR.
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Figures . .2.a (20-day moving average) and 6.2.b (5-day average - step 5 days).
All three skewness estimates are significantly negative (5% level). The S&P
skewness is always negative over the sample period, even though the American
equity market was bullish during this period. The S&P skewness is largest
among three, although the reason is not clear. The U.S. traders may be more
cautious to the down-side risks of the market after the Crash of 1987, than the
participants of the other two. The Nikkei skewness is also negative in most of
the period, whereas the FTSE occasionally shows positive skewness. FTSE has
most volatile skewness movement, and S&P the least. From the figures, it can
be expected that the skewness is autoregressive.

Tables « .3.a and 6.3.b show the results of the augmented Dickey-Fuller
test. The Nikkei and S&P IVs are stationary, but it is of some risk to judge that
the FTSE IV is stationary. ~ All the skewness are stationary.
6.4.1.a Does implied volatility spillover?

Table 6.4 gives descriptive statistics on the implied volatility data series
(average of ATM calls and puts) for the three markets. The mean IV of the
Nikkei is the largest of the three (23%), the FTSE is the second (15%), and the
S&P lowest (11%). As might be expected, the FTSE and S&P volatilities are
highly correlated (0.53), the Nikkei and S&P somewhat (0.22), and the FTSE
and Nikkei only slightly (0.11). Table «.5.a gives the regression results for
transmission of the implied volatility levels (Equations (la) to (Ic))6 The level
of Nikkei implied volatility is independent of those in any other market.
However, the S&P IV affects the FTSE 1V a little (coefficient is 0.04), and both

the Nikkei and FTSE IVs affect the S&P IV significantly, although the effects

s The residual covariances are so low to be negligible (from 2.6485¢-06 to 0.00001077).
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are small (coefficients are 0.006 and 0.032 respectively).

In the long run (as reflected by levels)78there appears to be a small impact
of one market’s IV on another. Durbin’s t-tests indicate that the regression
results for Nikkei and S&P are suffered from serial correlation even with lagged
dependent variables. However, the changes in implied volatility (reflecting
short-run effects) (Table 6.5.b) are more interesting (Equations (Id) to (If))9
The change in S&P IV and Nikkei IV affect positively the next day’s change in
the IV for FTSE (coefficient = 0.1026 and 0.048 respectively). The change in
the FTSE IV affects the change in the S&P IV (coefficient = 0.3308), and in the
Nikkei IV (coefficient = 0.1954). Table 6.5.b also indicates that IV is mean-
reverting because all autoregression coefficients are negative.

From the results above, we conclude that long-term levels of IV are related
for FTSE and S&P, but day-to-day changes are more closely related. When the
IV of one market changes, the next-opening market’s IV is likely to change in
the same direction. Options traders tend to react to the change rather than the
level of the other market.

These results for spillovers of IV are different from the results for
volatility spillovers found in Chapter 5, using equivalent regressions. Nikkei
conditional variance (by GARCH) is explained 0.02 by the S&P variance (not
significant for IV change), and FTSE variance is explained 0.13 by the Nikkei
variance (0.048 for IV change). The spillovers from Nikkei to S&P are not

significant in both the GARCH and IV results. Nikkei conditional variance is

» See Appendix « .B for more detailed analysis by ECM (error correction model).

s Durbins’s t-test consists of regressing the SUR residuals at t on the explanatory variable and
the one at t  and testing the significance of the estimate for coefficient of the residua! at t-1.
» The covariances are also very low (from -8.1232e-06 to 0.0000628).
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significantly explained 0.07 by the FTSE variance, and the same direction of IV
spillover is significantly observed (0.1954).
6.4.1.b Does implied volatility depend on index return of the day?

Table 6.5.c and 6.5.d show the results from Equations (Ig) and (lh),
respectively. We find rather low Durbin-Watson statistics for all three markets
by using Equation (Ig), as shown in Table 6.5.c. First differences (Equation
(Ih)) removes the autocorrelation of the original data series, and we find
significant and strongly negative relationships in Table 6.5.d between changes in
implied volatility and returns in all three markets. Also, there is a significant
and strongly positive relationship between change in implied volatility and
squared return in all three markets, which is no surprise.

This evidence supports the idea that the changes in implied volatilities are
domestically determined by returns and volatilities of the underlying asset of the
day. As returns fall in the underlying assets, so implied volatility increases in
all three markets.

6.4.2 Is skewness dependent on index return of the day?

Table . .. .a shows the regression results from estimating Equations (4) in
which skewness is related to market return. We find low Durbin-Watson
statistics for all three markets by using levels (Equation (4)), so those results are
ignored.

Taking differences as in Equation (5) (Table .. .b), we find little
relationship of skewness to returns, except for the S&P case, for which skewness
becomes more negative when volatility (squared returns) rises. The result is
consistent with the result for implied volatility as in Table 6.5.d. When the

S&P index falls, the implied volatility rises and the smile becomes more left-
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skewed.
6.4.3 Can Skewness forecast the next-day index returns?

Table 6.7 shows the regression results from estimating Equation (. ),
which tests whether skewness anticipates next day’s returns. Only the FTSE
index return is significantly dependent on the skewness level of the day before.
The coefficient is positive but its size is small.

6.4.4 How independent is skewness over the world?

Tables . - .a and . - .b show the regression results of Equation (7a) to
(7)1 For all three markets, we find a strong and significant autocorrelation of
the skewness, but very little else. Furthermore, Durbin’s t-tests indicate that all
the three regression results are suffered from serial correlation even with lagged
dependent variables. On the other hand, the changes in skewness have no
significant interrelationship among the three markets. Thus, we conclude that
no spillover of skewness exists among the three markets. Market participants
do not seem to watch any movement of skewness of another market day by day.
We also examine the 5-day average skewness series (Table 6.9), trying to reduce
possible noise in the skewness measures. The data are gapped to avoid
overlapping. The Durbin-Watson statistics indicate strong autocorrelation and
then is no significant relationship among markets.

6.5. Conclusion

Implied volatilities are correlated among the three markets. The
relationship between FTSE and S&P is rather strong. In testing both levels and
changes, FTSE and S&P affect each other while Nikkei affects FTSE and FTSE

affects Nikkei (slightly). The results differ from the GARCH analysis of

10 See Appendix s .B for more detailed analysis by ECM (error correction model).
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historical volatility spillover in Chapter 5 in terms of size of effect. The level
of IV seems to depend mostly on the domestic market matters than what is
happening in other markets.

We find strong and significantly negative relationships between changes in
implied volatilities and market returns. The fact indicates that the traders’
reaction to the downward movement of the domestic market tends to be large
increases of implied volatilities, and vice versa. The squared returns (observed
volatilities) have positive correlations to the implied volatility shifts. Traders’
forecast seems constructed by the recent domestic market direction and volatility,
so that implied volatilities are dependent on the underlying asset returns and
volatilities strongly.

All markets have left-skewed volatility smiles. However, there is no
relationship between skewness across markets (N.B. Appendix ¢.B shows a
different result).  Although a change in IV spills over, the subjective
distribution of the underlying index of the market of a market is not affected by
the one of a trader in any other market. Traders in these three markets do not
seem concerned by the implied distribution formed in other options markets.
However, we already know that returns spill over to each other. Because
returns on the domestic markets affect changes in implied volatilities, the
information contained in changes in skewness may be transferred implicitly in
the returns from the other market, then traders forecast their own market return
distribution seemingly domestically.

Skewness is not related to market returns, but in the U.K. only, market
returns are slightly predicted by skewness. By nature, skewness does not mean

the next-day return prediction, but means the predicted distribution of the
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underlying index returns as of options expiry.

Volatility smiles are local phenomena (N.B. Appendix ¢.B shows a
different resulf). They change frequently but the changes are not caused by
factors which have an international character. There are not waves of
bullishness or bearishness which sweep across markets. Nevertheless, we still
cannot explain the negative skewness of the volatility smiles observed and their

frequent changes".

n For Nikkei, we have also regressed put/call ratio (daily) to skewness, because the ratio is a
bullishness measure of traders in options markets. The result is ambiguous yet. The ratio is
negatively correlated to skewness, but Durbin-Watson statistic is 1.17, too low. The ratio is
not significantly correlated to the first difference of skewness, although the coefficient is

negative.
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Table 6.1. Difference in ATM implied volatilities between Calls and Puts

Nikkei FTSE S&P
Mean 0.015502614 -0.004875307 0.02279714
Standard Deviation 0.016978888 0.021998138 0.005105232
# of observation 891 947 928
95% confidence interval 0.01661899 -0.00347244 0.02312603
is between: and 0.01438624 and -0.00627817 and 0.02246825
Mean is: more than o less than . more than o

N.B.  Difference is defined as Put IV minus Call IV.
FTSE is negatively biased (calls expensive), others positively.

Table 6.2. Skewness in the Markets

Nikkei FTSE S&P
Mean -0.06780685 -0.07986825 -0.21972618
Standard Deviation 0.081884986 0.04740339 0.057092702

# of observation 891 947 928
95% confidence interval -0.06219669 -0.07666382 -0.21604809

is between: and -0.07296468 and -0.08270983 and -0.22340427
&, (+: %) tdiff —o t(-. %)
<7, (+2%)

Table 6.3.a Unit Root Test (HO: Implied volatility is stationary)

Nikketi FTSE S&P
6 -.055878 -.010887 -.253322
(-1.556) (-.326) (-7.743)
fi -.032233 -.019316 -.074355
(-3.483) (-3.024) (-4.757)
Lower tail area 04157 12784 .00099

t values are in bracket.
A/V,=c+e-A/V,, _1+/S-/V,_,

Table 6.3.b Unit Root Test (Ho: Skewness is stationary)

Nikkei FTSE S&P
6 -.285256 -.200678 -.240527
(-7.657) (-5.921) (-7.225)
fi -.392192 -.336490 -.105689
(-10.394) (-1 1.017) (-6.229)

Lower tail area 00000 00000 0000

t values are in bracket.
dskewxt = c+ ¢ wmiskewx 1+ 3 wkewxf,

Lower tail area: the probability to make an error if HO:( ;3=a -+ =0) is rejected
at the 5% confidence interval with the table provided by

Dickey and Fuller (1981)

Page 122



N. Kamiyama

52.0%
51.0%
50.0%

5

> 49.0%

T.

°)

Q.

E
48.0%
47.0%
46.0%

17900 18000 18100 18200 18300 18400 18500 18600 18700 18800 18900 19000 19100 19200

Exercise Prices

Figure 6.1.a ATM and 2% Implied Volatility Interpolation: Example A
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Exercise Prices

Figure 6.1. b ATM and 2% Implied Volatility Interpolation: Example B
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Figure 6.2.a 20-day Moving Average Skewness for Three Markets
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Figure 6.2.b Skewness in the Three Markets
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Figure 6.3 Relative Price Movements of the Three Indexes
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Figure 6.4 Implied Volatilities of the Three Major Markets
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Table 6.1. Difference in ATM implied volatilities between Calls and Puts

Nikkei FTSE S&P
Mean 0.015502614 -0.004875307 0.02279714
Standard Deviation 0.016978888 0.021998138 0.005105232
# of observation 891 947 928
95% confidence interval 0.01661899 -0.00347244 0.02312603
is between: and 0.01438624 and -0.00627817 and 0.02246825
Mean is: more than . less than o more than .

N.B. Difference is defined as Put IV minus Call IV.
FTSE is negatively biased (calls expensive), others positively.

Table 6.2. Skewness in the Markets

Nikkei FTSE S&P
Mean -0.06780685 -0.07986825 -0.21972618
Standard Deviation 0.081884986 0.04740339 0.057092702
# of observation 891 947 928
95% confidence interval -0.06219669 -0.07666382 -0.21604809
is between: and -0.07296468 and -0.08270983 and -0.22340427
xTn < (+2%) +diff - a (-- %)
N.B. skew, =
<7, (+2%)

Table 6.3.a Unit Root Test (HO: Implied volatility is stationary)

Nikkei FTSE S&P
6 -.055878 -.010887 -.253322
(-1.556) (-.326) (-7.743)
p -.032233 -.019316 -.074355
(-3.483) (-3.024) (-4.757)
Lower tail area .04157 12784 .00099

t values are in brae cet.
Alv,, =c+te-i/v, 1+0-/v,, ,

Table 6.3.b Unit Root Test (HO: Skewness is stationary)

Nikkei FTSE S&P
0 -.285256 -.200678 -.240527
(-7.657) (-5.921) (-7.225)
p -.392192 -.336490 -.105689
(-10.394) (-11.017) (-6.229)

Lower tail area 00000 00000 00007

t values are in bracket.
dskewxt =c+ 9 wiskew([ { + 3 wkewx

Lower tail area:  the probability to make an error if Ho:( ;3- a -1=0) is rejected
at the 5% confidence interval with the table provided by
Dickey and Fuller (1981)
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Table 6.4. Implied Volatilities (at-the-money) across Markets

Nikkei (891 data) FTSE (947 data) S&P (928 data)

Mean 0.2373991 0.1533680 0.1165869
Standard Deviation 0.0790239 0.0289856 0.0159479
Minimum 0.0931895 0.1072213 0.0847353
Maximum 0.5154700 0.2552574 0.1871148
Correlation to Nikkei - - -
to FTSE 0.11373 - -
to S&P 0.22851 0.53672 -

Table 6.5.a Transmission of Implied Volatility across Markets - SUR Results

m"'--"Dependent Nikkei FTSE S&P
IndependenT""-
Constant 0.009960 0.0000056 0.009826
(1.690) (0.004) (4.939)
Nikkei 0.969702® -0.001764 0.006214
(99.434)**x* (-0.693) (1.897)*
FTSE 0.029705 0.963932® 032443
(0.961) (119.065)*** (3.079)***
S&P -0.072490 0.048930 0.858836®
(-1.226) (3.168)*** (42.950)***
R squared 0.9342 0.9658 0.8050
Durbin’s t stat (-1.815)* (-0.378) (-5.191)***

N.B. @ autoregressive coefficient (lagged one period)
t values in bracket :*: 5%, **: 2.5%, ***: 1% significant

Table 6.5.b Transmission of Changes in Implied Volatility across Markets - SUR

Results
N Dependent A Nikkei A FTSE A S&P
Independent™"
Constant -0.003716 -0.000637 0.000823
(-1.193) (-0.514) (0.365)
A Nikkei -0.073360® 0.048415 0.005871
(-1.871)* (3.107)*** (0.206)
A FTSE 0.195431 -0.084574® 0.330880
(2.003)** (-2.193)** (4.646)***
A S&P 0.010104 0.102680 -0.291126®
(0.196) (5.014)*** (-7.751)***
R squared 0.0104 0.0546 0.0979
Durbin's t stat (0.439) (-0.206) (-0.711)

N.B. @ autoregressive coefficient (lagged one period)
t values in bracket 5%, **: 2.5%, ***: 1% significant
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Table 6.5.c Factors Determining IV

Nikkei
Constant 225263
(79.743)
Returns -.215961
(-1212)

Squared Returns 57.9391

(10.391)***

R squared 1160
F statistics 54.0899

Durbin-Watson stat 2533

FTSE
150421
(150.334)
_217734
(-1.870)*
47.5969
(7.839)%**
0627
30.8246
1412

Table 6.5.d Factors Determining Change in IV

A Nikkei
Constant -.013135
(-5.096)
Returns -2.45998
(-15.137)%**
Squared Returns 49.2152
(9.673)***
R squared 2687
F statistics 151.429
Durbin-Watson stat 2.0641

Table 6.6.a Factors Determining Skewness

Nikkei
Constant -.071650
(-22.791)
Returns 302671
(1.527)
Squared Returns 9.63756
(1.553)
R squared ,6174e-2
F statistics 2.5597
Durbin-Watson stat 1.0495

A FTSE
~.13865 le-2
(-1.382)
1220653
(-18.91 1%+
29.2611
(4.809)%**
2807
179.747
2.2309

FTSE
~.082185
(-51.083)
-1.67226

(-8.932) %+

56.0396
(5.740)%**
0954
48.5883
8515

Table 6.6.b Factors Determining Changes in Skewness

A Nikkei A FTSE
Constant -1.45213 -0.455168
(-0.892) (-0.971)
Returns -12.5634 59.7632
(=0 .122) (1.096)
Squared Returns 1471.48 -313.541
(0.458) (o1 10)
R squared ,2645¢-2 1313e-2
F statistics .1090 .6056
Durbin-Watson stat 1.9910 2.0086

N.B. t values in bracket
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S&P
115027
(199.391)
_.618633
(-7.037)%**
50.1706
(6.214)%**
0852
40.8688
2433

A S&P
. 184837¢-2
(-0.907)
-5.32943
(-17.165)%**
132.395
(4.643 )+
2583
152.752
2.5342

S&P
-223336
(-102.521)
295998
(0.891)
101.027
(3.314)%**
0138
6.1617
2505

A S&P
027579
(3.502)
-1.37605
(1.146)
-316.727

(-2.874)%**

ol 14
5.081
2.3093
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Table 6.7 Returns as a Function of Skewness on the Day Before

Nikkei FTSE S&P
Constant .564033¢-03 -,147978e-03 424583¢-03
(0.854) (-0.282) (0.549)
Skew 43437 le-02 .759690e-02 -,201861¢-03
(the day before) (0.695) (-1.335)) (-0.059)
R squared ,5865¢-03 .1930e-02 .3991e-05
Durbin-Watson stat 1.9238 1.8284 1.9781

t values in bracket

Table 6.8.a Skewness across Markets - SUR Results

Nikkei FTSE S&P
Constant -0.044909 -0.039795 -0.030312
(-3.665) (-6.351) (-6.379)
Nikkei 0.440612® 0.003930 0.013072
(12.989) (0.232) (1.009)
FTSE -0.167529 0.559332® -0.013487
(-2.703 )4 (17.650) (-0.567)
S&P 0.037128 -0.024058 0.865390®
(0.790) (-1.007) (47.186)
R squared 0.2007 0.3047 0.7554
Durbin’s t stat (-2.238)*** (-1.826)* (-5.544)%**
N.B. (@ marked for autocorrelation t values in bracket
Table 6.8.b Changes in Skewness across Markets - SUR Results
A Nikkei A FTSE A S&P
Constant -1.382691 -0.639483 0.024358
(-0.736) (-1.050) (2.763)
Nikkei -0.000513® -0.000020493 0.000056266
(-0.013) (0 002)) (0.305)
FTSE -0.001094 0.000448® 0.000344
(-0.009) (601 1) (0.605)
S&P -0.516591 0.730023 -0.182533®
(-0.063) (0.273) (-4.716)
R squared 0 0000 00001 0.0338
Durbin’s t stat (-0.007) (-0.008) (-0.152)
N.B. (@ marked for autocorrelation t values in bracket
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Table 6.9. 5-dav Average of Skewness across Markets

Nikkei FTSE S&P
Constant -.044431 -.022324 -.214489
(-2.504) (-0.854) (-34.309)
Nikkei .049348 .044887
(0.470) (0.678)
FTSE 045135 .045949
(0.900) (1.005)
S&P .090993 123383
(1.159) (1.082)
R squared 0120 0077 .0079
Durbin-Watson stat 0.7440 0.9215 0.3261

N.B.  tvalues in bracket * 5%, **: 2.5%, ***: 1% significant
5-day average is calculated, if any of three markets is open.
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Appendix 6.A. Barone-Adesi and Whaley Model

This Appendix shows how American options on futures are priced, which
was suggested by Barone-Adesi and Whaley (1987).

Black and Scholes (1973) may be adjusted for pricing options on futures
easily as below (it is called Black’s model).

C=e-n(FwN(dx) - KmN(d2))

P=e-n{KwN(-d2)- FuN(-dl))

where (Al
2 In(F / K) +r_(a 2/ 2)t
(TVi
d2=dt—t V7
C: European-type Call Price P: European-type Put Price
F: Underlying future price K: Exercise Price

N( +): Normal distribution density function

a : Annual volatility

Because American option can be exercised if it is appropriate. If /' was more
than the price at which it is appropriate to exercise in terms of call options, call
price would equal F' - X When F* is defined as the boundary condition to

exercise options, American-type options are priced as below:

F
C(F) +A2(— )" F<F
crpy G FAAE) (A2)
F-K F> F*
W +A.E F>F
P(F) = &) (A3)
K-F F< F**
where,
: 7 1 2r , 4-2r/cr-
- 0-A— -0 12
v, = 7 1) /2
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{(i-TVM.iF**)]}
\ i/

\n(F/K) +(r+o22) =
ojt

dI(F) =

The boundary condition is calculated by a numerical method. F* and F*

should have relationships as follow:

CALL: F*- AT= C(F*)+ {I- NJd{(F¥)] -

v2

PUT: F-F" = F(F**)-{1-A[if,(F**)]} K
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Appendix 6.B. Error Correction Model for the Long-run Relationship

In this Appendix, we examine if the implied volatility levels and their
skewness of major markets spill over to one another. Although the basic
results are shown in the chapter, we introduce an Error Correction Model (ECM)
in order to examine a long-run relationship among six time series, that is, IV and
skewness series of Nikkei, FTSE, and S&P.

Firstly, the cointegration test is examined. If we assume an equilibrium
relationship between two time series, we employ the cointegration test to show
the existence of the long-term relationship, proposed by Engle and Granger

(1987). In the present context (implied volatility), we have:

IV fiJ=c+ P/t ~Vid (Bla)
V,r.rC+P,,,-lVf] (Bib)
IV«j=c +P « 'lvw-i (Blc)

where VX, is implied volatility of the x (Nikkei, FTSE, or S&P) market at time ¢
1V is replaced for Skew when we examine the skewness of the three markets. If
a long-term equilibrium relationship exists between two markets out of the three,
the residual of the regression will be stationary. Stationarity is tested by the
Engle-Granger test (EG test), that is:
=(« - Dv(@,_, + uX (B2)

where v, is a residual vector of the volatility regression (B1). The ordinary least
square method is employed to estimate if a . is equal to zero or not, testing
with the Dickey-Fuller critical value table for the t statistic of the coefficient.

Then, the Error Correction Model (ECM) is examined. If two series are

cointegrated, an error from the equilibrium is corrected because the error series
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is stationary. Assuming that the implied volatility of one market is dependent on
the implied volatility of the other market which has just closed, as described in

Equations (Bla) to (Blc), the equilibrium error is defined as:

V= tV.rc-P.-I1Vr.u-i (B3)

In ECM, the dispersion from the equilibrium is a dependent variable (in
the case of Nikkei and S&P as an example) as below.

N IVnKt ~ @k'V'brk "V + Gk A TVt (B4)

1IVot—aP+bp  VHi+cp A IViki (BS)
When the coefficient of the residual in the IV rk equation (brk) is negative, it
means that IVrk corrects the error by changing its own level. When by is
positive, IVsp/ also corrects the error by changing its own level (all the /Vs are
replaced for Skew in the case of examining skewness).

The EG test results are shown in Table B1 There does not seem to be a
long-run relationship in IV from Nikkei to FTSE. However, FTSE affects S&P
in terms of the IV level. Also, S&P seems to be affected by Nikkei and the
Nikkei by S&P in IV. Table B2 shows how the correction process occurs in
each combination. FTSE and S&P are corrected to each other to their long-
term relationship. On the other hand, only S&P adjusts its IV level to the
equilibrium while Nikkei ignores the S&P change in IV.

Table B3 is the EG test results for skewness. In contrast to the results in
Section 4.4 in Chapter 5, there seems to be significant relationships among the
skewness of the three markets. In all the combinations, the coefficients of
residuals are significantly negative. The strongest relationship is from FTSE to
S&P, shown as the coefficient of skewness (-.103522). The -correction

processes to the equilibrium level are shown in Table B4. Between Nikkei and
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FTSE, and between FTSE and S&P, skewness is corrected to each other. Both
have negative coefficients of change in residuals. Between S&P and Nikkei,
we have a confusing result because we have no correction from Nikkei to S&P
under the equilibrium relationship from the S&P skewness at t-1 to the Nikkei
skewness at t, but a significantly negative (coefficient is -.336211) correction
from Nikkei to S&P under the equilibrium relationship from the Nikkei
skewness at t to the S&P skewness at t.

In conclusion, we find significant relationships in IVs and skewness
among the three markets in the long run (co-integrated), except for the
relationship from the Nikkei to FTSE IVs. The correction processes in the
short run are varied, but all the processes are significantly corrected to each

other.
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Table Bl. Co-integration (EG) Test Results (Implied Volatility Level)

Nikkei to FTSE

¢ NKIV Ftesidual
144136 .039727 -.020098 Lower tail area
(46.393) (3.202) (-3.098) 24179
FTSE to S&P
C FTIV Ftesidual
.072967 285132 -.143246 Lower tail area
(30.386) (18.500) (-7.983) .00000
S& P to Nikkei
C SPIV,, FResiduai
111110 1.09184 -.043854 Lower tail area
(5.629) (6.496) (-4.287) 01192
Nikkei to S&P
C NKIV FResiduai
105558 044884 -.119759 Lower tail area
(63.444) (6.758) (-7.138) .00000

Table B2. Error Correction Model (ECM) Results (Implied Volatility Level)

Nikkei vs. FTSE

C A Residual A NKIV, R squared
A FTIV -.146899e-3 -.058192 029495 0143
(-0.741) (-1.543) (3.009)***
C A Residual A FTIV,, R squared
A NKIV - 14233 le-2 1.47705 -1.08770 0134
(-1.907)* (1.949)* (-1.448)
FTSE vs. S&P
C A Residual A FTIV, R squared
A SPIV -, 154597¢-3 -.360159 249525 1319
(-0.638) (-10.323)*** (5.761)***
C A Residual A SPIV,, R squared
A FTIV 152818e-3 149067 .264080e-2 .0358
(-0.793) (1.768)* (0.032)
3 vs. Nikkei
C A Residual A NKIV, R squared
A SPIV 150169e-2 -.063853 021774 4535¢-2
(-1.908) (-1.737)* (0.194)
C A Residual A SPIV,, R squared
A NKIV -,420858¢-4 .574168e-3 016974 2429e-2
(-0.151) (0.045) (1.242)
cei vs. S&P
C A Residual A SPIV,, R squared
A NKIV 165614e-2 -.118424 143501 ,2879e-3
(-2.163) (-0.308) (0.389)
C A Residual A NKIV, R squared
A SPIV -.161732e-3 -311114 016371 0971
(-0.627) (-8.423)%#* (1.286)
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Table B3. Co-integration (EG) Test Results (Skewness)

Nikkei to FTSE
c NK skew Residual
-.082330 -.044648 -.442026 Lower tail area
(-40.426) (-2.339) (-14.4887) .00000
FTSE to S&P
C FT skew Residual
-.227982 -.103522 -.137369 Lower tail area
(-61.681) (-2.606) (-7.966) .00000
5to Nikkei
C SP skew,.. Residual
-.053861 062001 -.558026 Lower tail area
(-4.865) (1.270) (-16.728) .00000
kei to S&P
C NK skew Residual
-.217421 035619 -.134358 Lower tail area
(-85.094) (1.489) (-7.441) .00000

Table B4. Error Correction Model (ECM) Results (Skewness)

Nikkei vs. FTSE
C A Residual A NK skew, R squared
A FT skew .. 144898e-3 -.506177 -.016783 1976
(-0.105) (-13.323)%%* (1.028)
C A Residual A FT skew,_i R squared
A NK skew . 109938¢-2 -.578051 324994 0175
(-0.350) (-3.171)*** (2.008)**
FTSE vs. S&P
C A Residual A FT skew, R squared
A SP skew -.468996¢-3 -.351191 740016¢-02 1171
(-0.475) (-10.239)*** (0.326)
C A Residual A SP skew,.. R squared
A FT skew . 197155¢-3 -.870735 814678 0310
(0.133) (-5.149)%*x* (4.919)**x*
S& i vs. Nikkei
C A Residual A NK skew. R squared
A SP skew -.111497e-2 241765e-2 016685 .1984e-2
(-0.936) (0.118) (0.994)
C A Residual A SP skew,.| R squared
A NK skew .. 122690e-2 -.676691 -.914362 3259
(-0.450) (-17.902)%** (-0.098)
cei vs. S&P
C A Residual A SP skew,.| R squared
A NK skew 577663¢-3 1.69981 -1.72617 0273
(0.179) (4.244)%** (-4.444)% %%
C A Residual A NK skew, R squared
A SP skew -,990423¢-3 -336211 013234 1085
(-0.909) (-8.971)**x* (1.048)
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7. The Implied Volatility Term Structure: Cointegration of the Short-

and Long-term Implied Volatilities

7.1. Introduction

Implied volatility is usually derived from the Black-Scholes option pricing
model which was originally described in the seminal paper, Black and Scholes
(1973). These days, many market participants have noticed that a term
structure of implied volatility exists, that is, different levels of implied volatility
are observed for short- and long-term maturities. This fact implies that a
constant volatility does not normally hold in the real world, and especially for
practitioners, volatility of volatility is rather large for the short-term options.
As shown in Table 7.1, short-term implied volatility for Nikkei options is in the
range from 7% to 52% in the observation period, compared with the range of
long-term implied volatility from 11% to 34%. For the risk management and
evaluation purposes of trader, it is impossible to ignore the term structure of
implied volatilities.

There are a few papers which focus on the implied volatility term structure
analysis. Heynen, Kemna, and Vorst (1994) examined the term structure of
implied volatilities in the Dutch equity index options market, and by utilising the
GARCH frameworks to explain the term structure effect. Xu and Taylor
(1994) used the Kalman Filtering to estimate the term structure of implied
volatilities in the foreign exchange options-on-futures markets. Takezawa and
Shiraishi (1995) tested the Tokyo Currency Option Market by using the similar
volatility forecasting models to the model employed by Fleynen, Kemna, and
Vorst (1994). They concluded that overreaction is observed in implied

volatilities compared with all the mean-reverting, GARCH, and EGARCH
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forecasts.

Cointegration analysis has been utilised for many kinds of econometric
research in the recent years, but no application seems exist for implied volatility
yet. The classic paper in this area is Engle and Granger (1987), who show the
framework of cointegration and error correction. For analysing the term
structure of interest rates following Engle and Granger (1987), Bradley and
Lumpkin (1992) find the cointegration of seven rates in the Treasury yield curve.
A recent example of the methodology is performed by Hiraki and Takezawa
(1995) for the term structure of the Japanese Yen-denominated interest rate swap
market.

The purpose of this chapter is to prove the existence of the implied
volatiity term structure and to examine the cointegrated relationship between the
short- and long-term implied volatilities in the Nikkei index options on futures
market, and derive any causality to drive each other when the volatility level
dynamically changes. As Alexander (1994) points out, it is misleading to use
simple correlation analysis to see the relationship of short-term implied volatility
to long-term implied volatility, because that assumes a stable (or constant)
correlation that is too simplified. A dynamic change in time series of implied
volatilities can be captured by cointegration with greater accuracy than by
correlation. In addition, the error correction model (ECM) associated with
cointegration analysis provides a dynamic correction process and its direction.
In employing cointegration and error correction model for the analysis of the
implied volatility term structure, we obtain an accurate result in association of
volatilities and their dynamic correction process.

The reason for the existence of the term structure is thought to be due to
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the mean-reversion of an underlying asset price. One possibility is that
volatility is mean-reverting. The other is suggested by Gemmill and Thomas
(1995) that the mean-reversion of the asset price leads the smile effect of the
warrants on investment trusts market. The stronger smile effect, as time to
maturity becomes longer, implies that the term structure of implied volatilities is
also driven by the mean-reversion of asset prices.

The chapter is written as follows. In Section 2, the method undertaken is
explained. Section 3 describes the data utilised in this chapter, and the test
results are shown in Section 4. The conclusions are given in Section 5.

7.2. The Method

Firstly, stationarity is examined for two series of data, short- and long-
term implied volatilities. The Dickey-Fuller Test is employed and formulated
as below.

Ay, = Po + P\Ayt-\ + (a - 1)y, , + p2-dummy +u, (1)
where the weekend dummy is 1 if the data is just after weekend. The theory
behind this test is explained in many econometrics books such as Greene (1993).
Generally, y, would be stationary if Ia Iwas less than 1in the equation of;

» = a ta ytt t«i (@)
where , is a constant and a is a white noise term. This equation can be
transformed with consideration of the auto-regressive first difference of the
series. The t statistics which tell us whether a -1=0 can be utilised with the

critical value table provided by Dickey and Fuller (1983)1

1However, we should note that distribution of IV is non-normal, and the result is likely to

contain measurement error.
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Secondly, the cointegration test is examined. If two time series are
nonstationary and we assume an equilibrium relationship between the two, we
employ the cointegration test to show the existence of the long-term relationship,
proposed by Engle and Granger (1987). In the present context, we have:

Liv= /? o+ /? iSiv+wt 3)

where,

Liv: Long-term Implied Volatility

Siv: Short-term Implied Volatility
If the long-term equilibrium relationship exists between the long- and short-term
implied volatilities, the residual of the regression is stationary. The stationarity
is tested by the Engle-Granger test (EG test), that is:

Av, = (a - 1)vf, +u, 4)
where v, is a residual vector of the volatility regression (3). In the similar
manner to the unit root test as described above, the ordinary least square method
is employed to test if a -1 is equal to zero or not, with the Dickey-Fuller critical
value table for the t statistic of the coefficient.

Thirdly, the Error Correction Model (ECM) is examined. If two series
are cointegrated, an error from the equilibrium is corrected because the error
series is stationary. Assuming that the long-term volatility is dependent on the
short-term volatility as described in Equation (3), the equilibrium error is defined
as:

v,/ =Livt |—/? o q—P 1t Siv (5)

In ECM, the dispersion from the equilibrium is a dependent variable as

below.
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A Sivt= fi sotsiosi v,/ +3s o A Livti ()
ALivt= 4 o+ 1 mv.its 20 A Sivid (7
When the coefficient of the residual in the Siv equation (/? sO is negative, it
means that Siv corrects the error by changing its own level. When ;3. is

positive, Liv also corrects the error by changing its own level.
7.3. The Data

The Nikkei option on future and the underlying future settlement prices
data are provided from the Singapore International Monetary Exchange
(SIMEX). In order to calculate the implied volatilities, the daily three month
CD rates are used for all the maturity dates. The period examined is from 01
April 1992 to 28 April 1995 and the total number of the records is 748;
(originally 752, but the 4 extraordinary data are omitted).

The options to be examined here are screened as below. The short-term
option is defined as the option with the shortest maturity on the day, but the
options with less-than-5-day to maturity are omitted beforehand. The long-
term option is the option with the second longest time to maturity on the day;
(not the longest maturity option, as they are infrequently.  After the screening,
the short-term options have time to maturity within the range of 0.016 to 0.104
years (0.056 years average). The long-term options have time to maturity
within the range of 0.402 to 1.002 years (0.797 years average)2 From the short-
and long-term options, the near-the-money call and put options are chosen.
The near-the-money option is defined as the option with the smallest absolute

value of (underlying futures price - exercise price). The data are divided into 5

2 Note that we should be cautious to the result of this empirical work because the long-term

maturity has such a wide range.

Page 138



N. Kamiyama

subsets with similar numbers of records (approx. 150) in each subset. Detailed

information on the data is shown in Table 7.1.
The implied volatility is calculated by the Black’s options on futures

pricing formula. The formula is as below.

C=en(FuN(d{) - K- N(d2))
P=e"(K-N(-d2)- FwN(-dl))
where

\n(F/K) +r(a2/2)t

()

’
|

crvr
;2 =d\ ~ &4t
C: Call Price P: Put Price
F: Underlying future price K: Exercise Price

N( *): Normal distribution density function

a : Annual volatility
The implied volatilities of the near-the-money call and put of the day are
averaged, and the average is defined as the implied volatility of the trading day.
This way we set the short- and long-term volatilities of a specific trading day,
which are examined if they are cointegrated.
7.4. Test Results
Significant are these differences in the implied volatilities of short- and

long-term options. The short-term IV is in the range of 6.79% to 52.37% and

the mean is 23.51%. On the other hand, the long-term one is in the range of
11.34% to 33.58% and the mean is 20.86%. We employ the paired-sample t

test as below. We set the null hypothesis that the mean of the difference

between the short-term implied volatility (xo and the long-term implied

volatility (x2) equals zero. The t value is defined as:
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! ©)

x: the mean ofx, -x2

i denotes short-term implied volatility
> denotes long-term implied volatility
a : the standard deviation

n: the number of observation
The hypothesis of equality is rejected for the whole sample and sub-periods
except for Subset 4 (February to September 1994). Table 7.1 shows the t
values for the test. Then we conclude that the term structure does exist in the
Nikkei 225 options market at SIMEX.

As we expected, two series of data, short- and long-term implied
volatilities are likely to be nonstationary and cointegrated to each other. There
is a long-time equilibrium between the two, and correction is made when a
dispersion occurs from the equilibrium. Table 7.2 shows that both the short-
and long-term volatility series are likely to be nonstationary, except for the short-
term volatility of the All-Data set for which a unit root hypothesis is rejected'.

Table 7.3 shows the EG test results. We find evidence that the short- and
long-term implied volatilities are cointegrated. The regression result between
the first difference of the residuals and the lagged residual is negative 1 % in the
All-Data set with the lower tail area of 0.0%. The lower tail areas in all the
subsets are less than 5% except for the Subset 2 (Nov 92 - Jun 93), so that the
short- and long-term implied volatilities are cointegrated in most.

The long-term relationship between the short- and the long-term implied

» Table 7.2 does not show either series is integrated, because Type II errors are common.
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volatilities is also observed in Table 7.3. In the All-Data set (Column 2), the
long-term volatility is explained 48% by the short-term one with the R squared
of 67%. Period 1 has high volatility (averaging 29.15% for long-term options
(Liv)). The result is that there is a weaker long-term volatilities in Subset 1
(see Table 7.3, Column 3). The R squared falls to s %, but there is still
significant cointegration. When the volatility is very low or high, participants
may lose the way to make decisions systematically. The long-run volatility
relationship between short- and long-term IV may be forgotten in such periods
tentatively.

Both the long- and short-term implied volatilities correct an error from the
equilibrium, as shown in Table 7.4. In the All-Data subset (Column 2), the
short-term volatility has a significant positive coefficient (0.463) for the residual
at t-1. However, the result is not consistent in other subsets, with a coefficient
significant at the 1% level in only one period. On the other hand, the long-term
implied volatility has significant negative coefficients for all the 4 subsets, with
a range from -0.545 to -0.339. From Equations (5), (+), and (7), both the
positive coefficients of the residual in the short-term volatility equation and the
negative coefficients in the long-term residual imply that the short- and long-
term volatilities move to correct any disturbance to their long-run equilibrium.

7.5. Conclusions

The relationship between the short- and long-term volatilities are stable in
the long-run. The direction and magnitude of the dispersion from the
equilibrium give us some information on the short-run movement of the
volatility levels and spreads. When the error from the equilibrium expands,

both the short- and long-term volatilities tend to revert so that the equilibrium
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level is re-established.

The reason why the short-term IV is significantly smaller than the long-
term IV and those are cointegrated may be due to the mean-reversion effects of
the underlying asset prices. Gemmill and Thomas (1995) examine the implied
volatility in the warrant markets on investment trusts in the U.K., and conclude
that the time effect of the smile (the lower the volatility, the longer time to
maturity) is because of the mean-reverting asset prices. On average, one can
observe the significantly larger IV in the short-term options than in the long-term
options in the case of the Nikkei 225 options on futures listed on SIMEX, as
shown in Table 7.1. The mean-reversion of an asset price pulls-in the tails of
the return distribution.

For practical purposes, there is an opportunity to trade the implied
volatility spread between the short- and long-term volatilities with the

information out of the error correction analysis.
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Figure 7.1. Short- and Long-term Volatilities
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HO: Average of Short-term IV = Average of Long-term IV

All data from 01-Apr-92 to 28-Apr-95

(748 records)

Short-term Options

Year to Maturity

Minimum 0.016
Maximum 0.104
Average 0.056

Difference in Average

Implied Volatility
6.79%
52.37%
23.51%

2.64%

Subset 1 from 01-Apr-92 to 13-Nov-92

Long-term Options

Year to Maturity Implied Volatility

0.402 11.34%

1.002 33.58%

0.797 20.86%
t= 13.649 Reject H,,

(148 records)

Short-term Options

Year to Maturity Implied Volatility

Long-term Options

Year to Maturity Implied Volatility

0.402 24.36%

0.808 33.58%

0.631 29.15%
t= 10.568 Reject H,,

(151 records)

Minimum 0.016 15.94%
Maximum 0.104 52.37%
Average 0.057 34.58%
Difference in Average 5.43%
Subset 2 from 16-Nov-92 to 30-Jun-93
Short-term Options

Y ear to Maturity Implied Volatility

Minimum 0.016 12.27%
Maximum 0.104 29.41%
Average 0.054 21.51%
Difference in Average 1.37%

Subset 3 from 01-Jul-93 to 08-Feb-94
records)

Short-term Options

Year to Maturity Implied Volatility

Minimum 0.016 6.79%

M aximum 0.104 44.33%
_________ Average 0.056 22.81%
Difference in Average 2.91%

Long-term Options

Year to Maturity Implied Volatility

0.498 17.70%
0.994 27.52%
0.789 20.14%
t=4.493 ~ RelJect H,,
(150
Long-term Options

Year to Maturity Implied Volatility

0.736 15.93%

0.994 26.79%

0.866 19.91%
t=6.860 Reject H,,

(149 records)

Subset 4 from 09-Feb-94 to 19-Sep-94

Short-term Options

Year to Maturity Implied Volatility

Minimum 0.016 10.14%
Maximum 0.104 42.81%
Avelfage 0.058 20.28%
Difference in Average 0.60%

Subset 5 from 20 -Sep-94 to 28-Apr-95
Short-term Options

Year to Maturity Implied Volatility

Minimum 0.016 8.91%
Maximum 0.104 42.56%
Average 0.054 18.38%
Difference in Average 2.93%

Page 144

Long-term Options

Year to Maturity Implied Volatility

0.693 15.99%

0.986 24.59%

0.826 19.78%
t= 1.685 Accept Hn

(150 records)
Long-term Options

Year to Maturity Implied Volatility

0.712 11.34%

1.002 24.69%

0.869 15.45%
t=6.753 Reject H,,
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Table 7.2. Augmented Dickey-Fuller Test
Data Sets ~ Term a -1 t-statistics Lower tail area
All Data S -.037104 -3.589 .03073
Apr92-Apr95 L -.014495 -2.103 .61807*
Subset 1 S -.126357 -2.762 .22598*
Apr 92-Nov 92 L -.179840 -3.329 06534
Subset 2 S -.073056 -2.405 41843*
Nov 92-Jun 93 L -.074780 -3.181 .09193*
Subset 3 S -.036343 -1.417 .89689*
Jul 93-Feb 94 L -.045834 -1.709 .80633*
Subset 4 S -.063272 -2.149 .57785*
Feb 94-Sep 94 L -.016507 -0.759 .97860*
Subset 5 S -.038673 -1.578 .85274%*
Sep 94-Apr95 L -.067593 -1.950 .69348*
S: Short-term implied volatility
L: Long-term implied volatility
Ay, = Po + +(a - 1)y,-1 + Pi -dummy + u,
dummy: equals . if the data is after weekend.

Lower tail area: the probability to make an error if H(y( @ -1=0) is rejected.
* H, is rejected by the 5% confidence interval with the table
provided by Dickey and Fuller (1981)

Table 7.3. Cointegration Test Results
All Data  Subset 1  Subset2  Subset3  Subset4  Subset 5
Apr 92-Apr 95 Apr 92-Nov 92 Nov 92-Jun 93 Jul 93-Feb 94 Feb 94-Sep 94 Sep 94-Apr 95
Constant .095398 260233 171404 133877 137808 090851
(30.863) (28.894) (21.829) (43.676) (36.635) (33.736)
Siv 481748 090473 .140805 285055 293833 347720
(38.984)*  (3.534)* (3.925)*  (22.189)* (16.670)* (25.762)*
R squared .6707 .0788 0931 7664 .6509 8156
Residual - 111728  -241810  -.084939  -249876  -201500 -.396660
(-6.667) (-4.556) (-3.044) (-4.665) (-4.004) (-6.103)
Lower tail area .00712 27790 .00519 .03244 .00009

Liv = Constant + 8 Siv

t statistics in bracket.

*: significant at 5% or better

A residual,: is equal to ;3 residual,,

Lower tail area: the probability (provided by Dickey-Fuller) to make an error
if H,;( @ -1=0) is rejected.
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Table 7.4. Error Correction Model

Short-term Implied Volatility
All Data  Subset 1 ~ Subset2  Subset3  Subset4  Subset 5
Apr92-Apr 95 Apr92-Nov 92 Nov 92-Jun 93  Jul 93-Feb 94 Feb 94-Sep 94  Sep 94-Apr 95
Constant -,41655¢-3 - 1177e-2  -4282¢-3  ,5209¢-3  -8517e¢-3  .7919¢-4
PSS (-0.469) (-0.392) (-0.356) (0.286) (-0.481) (0.040)
Residual 463037 .398766 174937 373587 .543801 296656
P s, (6.030)***  (0.743) (0.372) (1.265) (1.956)* (1.126)
-.268263  ,860le-2  -.071412  -.892979 010782 -.289872
p s, (-2.594)***  (0.016) (-0.147)  (-3.143)***  (0.029) (-1.428)
R squared 0468 .0207 2173e-2 .0643 .0386 .0139

ASiv= [i s+ Os,- vi + /7 s A Liv,;

t statistics in bracket

* significant at 5%  (t>1.645)
**: significant at 2.5% (> 1.960)
*ix: significant at 1%  (£2.326)

Long-term Implied Volatility

All Data  Subset 1  Subset 2 Subset 3 Subset 4 Subset 5
Apr 92-Apr 95 Apr92-Nov 92 Nov 92-Jun 93  Jul 93-Feb 94 Feb 94-Sep 94 Sep 94-Apr 95
Constant .1497¢e-3 ,3433e-4  -7673e-3 2175¢-3 -,4286e-3  -,2429¢-4
£ 10 (-0.439) (0.032) (-1.902) (0.376) (-0.949) (-0.024)
Residual  -.339624  -368214 -.417763 -390600  -.380962  -.545333
Pn (-9.330)*** (-4.354)*** (-5.599)*** (-4.259)*** (-4.767)*** (-5.564)***
-109027  -41369¢-2 -,9225e¢-2  2422¢-3  -.070135  -.073793
P, (-5.619)***  (-0.139) (-0.311) (0.008)  (-2.446)*** (-1.754)*
R squared .1069 1199 1919 1415 1416 1786

ALiv= 210+ Ou evt,+ 9 s « A Siv,;

t statistics in bracket
*: significant at 5%

*%: significant at 2.5%

% significant at 1+ %
Where,
vii = Liv,.,— /? 1, Siv
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8. Stability of Implied Volatility Functions: A Test on the Nikkei
Options
8.1. Introduction

The shape of implied volatility smile has become an important issue in
evaluating options, because it violates the assumption of constant volatility
which indicates the Black-Scholes formula. Especially from the stand point of
risk management, the constant volatility assumption is too strong and
practitioners start using more sophisticated models including GARCH
(Generalised Autoregressive Conditional Heteroscedasticity) proposed by
Bollerslev (1986), and EWMA (Exponentially Weighted Moving Average)
proposed as a part of RiskMetrics by JP Morgan (Zangari (1995)). Even
though the GARCH and EWMA approaches do not have to assume constant
volatility, historical returns used in these methods are not directly linked with the
implied volatility shape of option markets.

In this chapter, the behaviour of the volatility smile will be examined
because we may be able to use the information to improve option valuation and
to realise profit. The shape can be estimated as a function which may be linear
or quadratic. The shape may also be defined as skewness of the implied
volatility, as shown by Gemmill (1995). We need to know not only the shape
but also its stability in order to capitalise on the information contained in the
shape. If the shape were stable, we could use the information to take option
positions to realise profit over the period to maturity. On the other hand, if we
found that the shape changed systematically, we would be able to forecast its

evolution and take positions to gain returns.
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Shimko (1991) suggests curve-fitting to find the volatility function (i.e.
shape of implied volatility) and derive the probability distribution implied in the
option prices. In Appendix B, we show the implied probability at the end of
the Nikkei option contract on futures by deriving the volatility function with
Shimko’s method. In the example as of 08 February 1993, the underlying
futures price was 17,340, whereas the forecasted futures price implied in the
options as of the expiry date of 11 March 1993 was 16,867.39. If the shape of
implied volatility (therefore the estimated futures price at expiry) was stable over
time but any short-term dispersion is observed from the stable shape, we could
evaluate each option and buy cheap, sell expensive to capitalise on the effect.
As we will see later in this chapter, it does not seem so stable in a week to
capitalise on the smile and the forecasted futures price.

Rubinstein (1994) proposes the “implied binomial tree” approach for the
evolution of the smile. The approach requires us to input the implied
probability distribution to find the path of the underlying asset over the option
period. In Appendix C, we see the application of the approach to the Nikkei
225 options on futures. We find that the forecasted futures price implied in the
options was 17,881.13, whereas the underlying futures price was 17,435. As
described in the prior paragraph, if the shape of implied volatility was stable
over a week, the forecast implied in the option prices would enable us to take
positions for the period, i.e. to buy if cheaper is the price calculated on the
implied probability.

Kuwahara and Marsh (1994) examine Japanese warrants by implied
binomial tree. Taylor and Xu (1994a), Heynen (1994), and Kamiyama (1996)

examined the shapes of implied volatilities in the Philadelphia Exchange’s
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currency options, the Dutch equity index options on the European Options
Exchange, and the Nikkei 225 options, respectively.

Few tests of the stability of the implied volatility shape are found.
Dumas, Fleming, and Whaley (1995) show the empirical results to examine the
stability of implied volatility functions. They use a sample of S&P 500 index
options, during the sample period from June 1988 to December 1993. Four
different structural models are used in their research, one of which is the Black-
Scholes model (constant volatility), and others of which are quadratic curve
fitting models. They find that the stability of the estimated volatility function is
not stable in a week (the Black-Scholes model is better in error analysis), and
conclude that the implied binomial tree approach does not enable us to take
positions to capitalise on the smile effect

The purpose of this chapter is to examine the stability of implied volatility
functions in the case of the Nikkei 225 options on futures on SIMEX.
Although the basic concept of the testing is similar to Dumas, Fleming, and
Whaley (1995), we have three important differences (in addition to the market
which is examined). One is that we use the shape of the smile of implied
volatility as a linear function with respect to exercise price, while they use a
curve fitting function. The second point is that we examine the stability of
shape of the smile apart from the stability of implied volatility level, so that we
can segregate the stability of the shape of the smile from the overall stability of
the function. The final point is that we introduce a forecasting model for the

shape of the smile, and the model examines if it is worthwhile to forecast shape

1 S&P 500 index options are traded on the Chicago Board Option Exchange (CBOE). They

are European options.
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of the smile in order to trade options.

The paper is written as follows. Section 2 describes the data utilised in this
chapter. In Section 3, the method undertaken is explained, and the test results
are shown in Section 4. The conclusions are given in Section 5. In Appendix
s .A, the forecasting model for shape of the smile is explained in detail.
Appendix s .B shows the implied probability at the end of the Nikkei option
contract on futures by deriving the volatility function with Shimko’s method.
Rubinstein’s implied binomial tree approach is used in Appendix . .C in the case
of the Nikkei 225 options on futures.

8.2. The Data

The Nikkei option on future and the underlying future settlement price
data are provided by the Singapore International Monetary Exchange (SIMEX).
In order to calculate the implied volatilities, the daily three month CD rates are
used for all the maturity dates. The contract month is the nearest month for
Nikkei, because that contract is the most liquid. We roll over the nearest
contract when time to maturity becomes less than 5 days.

The period examined is from 0l April 1992 to 30 December 19952
including the in-sample period (total number of records is 891). We examine
the out-of-sample period from 04 January 1993 to 30 December 1995, and the
total number of daily records is 720.

Implied volatilities for options on futures are calculated with Black’s

options on futures pricing formula. The formula is as below.

2The SIMEX contract began trading in April 1992, hence the starting data for the data.
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C=e-r{F-N(d{)-K-N (d2))

P=en{K-N(-d2)- FwN (-dXx))

where (1)
In(F/K) + (<72 /2)t

C: Call Price P: Put Price
F: Underlying future price K: Exercise Price

N( ¢ ): Normal distribution density function

a : Annual volatility
8.3. The Method

We examine the stability of the implied volatility functions specified
below over one- week periods testing with out-of-sample data, as Dumas,
Fleming, and Whaley (1995) have done. We employ four volatility functions,
illustrated in Picture 8.1. Model 1 is the Black-Scholes model where the
volatility is assumed constant. This takes no account of the volatility smile: the
implied volatility at any exercise price at time t is set at the at-the-money value
of 5 working days before (t-5).

(2)

for all j (exercise price) and k is near-the-money, where 7V is implied volatility,
and t is time in unit of a day. There is some degree of difference between
implied volatility of call and one of put at near-the-money. We would like to
be free from the difference in examining the errors, so that we use the implied
volatility of the near-the-money call at t-5 as the IV estimates of the near- and
out-of the money calls. Therefore, the mean error of the near-the-money call
(put) IV means the average change of the near-the-money call (put) IV in 5

business days.
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Maodel 2 assumcs thao there 5 a constant shape of smile: implied
wolatilities at time 1 are assumed to be the same as at time t-5.

.Irlll"r .I'-'= IV“__! [.3}

The implied volanlites of OTC call, NTM cafl, NTM put, and OTC put at ¢ are
exactly matched to the ones of OTC call, NTM call. NTM put, and OTC put at t-
¥ as cstimates, respectively,  Therefore, the mean ermmor of the call (put) TV
riieans the average change of lhe call {put) [V in 5 business days.

In Model 3, we keep the shape of smile (skewness) a1 1ime 1-5, but the
level is shitted as of time t. Here, we examine stability of the shape of smilc,
separalely from the implied volatlity level?,

WV, =c+skew - X

I’ ()

where,

=1V, —skew _, - X |

Model 3 is similar to Model 2, but the intercept 15 caloulated by the mmplicd
volatility level af e L{rather than gt bme 5],

Model 4 is also similar to Models 2 and 3, but the skew term is forecasted
by an autoregressive model:
(3

V. =ctakew, ..o &,

1wh|:r..:-,
IV,_g[+2%) + diff = IV,_g(~2%)
.:'EI_EI' +3'% — .:'i'f_j {—2%0
i the difference wm unplied wolatilicy (IV) of at-the-money puts and at-the-money
calls (= ATM Pul TV - ATM Call IV,
IV e implied volatility
(+x%): an exercise price which is % above at-the-money price
The “diff" term is mncloded o ollow for differcnee betwesn at-the-moeney put and <all
voluatilities, as wene found by Gemmili for the FTSE index options.  Pleaze also see Chapler 6
of this thesis.

ew, =

=
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wherz,

c= I?A.E_skfmforecasl.l—S g Xk,t

and sheWireeas,e 5 15 Torccasted skew at time t-5 {of which the forecasting madel
is explained in Appendix B.A).

The implied volatilities derived from the four models described above
are anputied ot Black's formula, then the thcorctical option values are
calculated. Forecasting performance is measured by ME (Mean Emor), MAE

(Mean Abselute Emor), and BRMSE (Koot Mean Squared Emor), as defined as

followed,
I. N
ME=FE:MP; -TH) (6]
4 =1
MAE =FIZ|MI-}—IP|I (7)
=l
1 N
RMSE:\/YV—Z(MP,—TP,): (8
=1

where M is market price of an option, and TP 1% the Black™s prce of an option
wiing forecasled implied volatility derived from the above models. We
conmpare emors across four options types; out-of-the-moncy calls, nearcst-the-
money calls, nearcst-the-money puts, and cot-of-the-money pots.
84, Test Resulis

Table 8.1 shows the results in terms of forecasting errors.  Model |
assumes a constant implied volatility. Bias is observed as ME (Mean Error).
The OTK call (C_COTM}) has a larze negative biss (that is, the market price is
undervalued according o the model}, and the OTM puc (P_OTM) has a large
positive biws (that is, the macket price is overvalued),  In the cbserved period,

the ME is consistent with the fact that implied volatility has a negative sloped
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smile with respect to exercise price. The average change in implied volatility
level is approximately -» points both in call and put.

Model 2 improves the issue above by taking account of the negatively
sloped smile observed at t-5. ME no longer indicates a negative bias (c.f.
Model 1). However, MAE (Mean Absolute Error) and RMSE (Root Mean
Squared Error) indicate that Model 2 does not improve the forecasts for all four
types of option. It means that assuming a stable level and skewness for
volatility is still not a very efficient procedure.

Model 3 which allows for a shift in the smile level of volatility shows
large improvements over Model 2, in MAE approximately by 25 to 47 points
and in RMSE approximately by 47 to s points in option price. However, it is
not better than Model 2 for ME in the out-of-the-money options. We can
conclude that instability of the implied volatility level is the more important
matter than instability of skewness.

Model 4 introduces a systematically forecasted shape of volatility as of 5
days before (rolling with the . months period of data as of t-5). There is a
small improvement in diagnostic errors both for OTM calls and puts. In both
MAE and RMSE, our forecasting model can reduce the errors from 2 to 4 points
in price.

8.5. Conclusion

For the purpose of forecasting the option prices by using the implied
volatility function, we conclude that the function is not stable to forecast option
prices 5 days ahead, in the case of the Nikkei 225 options on futures. Although
it improves the forecast to introduce the shape of volatility, the error may be 39

to «s points in price, which is very serious if one trades in the market.
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We find that (1) it is good to assume a constant smile in comparing Model
2 with Model 1, (2) it would be even better if volatility level could be forecasted
perfectly when we compare Model 3 and Model 2 (we have not used any
volatility forecasting model in this chapter, which can be done in the future), and
(3) an autoregressive model for the smile is good for OTM calls and puts, but the

effect is rather small when Model 4 is compared to Model 3.
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Picture 8.1. Illustration of Four Models

Model 1. A constant volatility is assumed.

Model 4. The shape is forecasted by a time series model, and the level is changed.
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Figure 8.1. Implied Volatility of the Nikkei 225 Options on Futures
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930208

Figure 8.2.a The Curve-fitting as of 08 February 1993 - The Nikkei 225 Options on Futures
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const  3.310690004
Settle 17,340 Quadratic coeff(x)  -0.000347455

IBT 16,867.39 coeff(x 2) 9. 68871E-09
0.07

0.06

0.05

0.04

0.03

0.02

0.01

Figure 8.2.b Probability Distribution Implied in the Nikkei 225 Options on Futures as of 08 February 1993
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Figore 8.5 Standard Binomial Tree as of 05 February 1993 - The Nikkei 225 Options on Futures
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Figure 8.3.h  Implicd Binomial Tree - The Nikkei 225 Options on Futures
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Table 8.1. Error Analysis

MODEL 1

C_ OTM
C NTM
P NTM
P OTM

MODEL 2

C OT™M
C NTM
P NTM
P OTM

MODEL 3

C OT™M
C NTM
P NTM
P OTM

MODEL 4

C OTM
C NTM
P NTM
P OTM

-7.675
-2.014
-2.147
14.975

-3.676
-2.014
-2.147
-5.394

5.819
0.000
0.000
5.649

6.203

0.000

0.000

5.527

40.641
46.168
47.110
43.804

39.715
46.168
47.110
43.492

13213
0.003
0.003
14.069

11.346
0.003
0.003
11.929
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RMSE
61.397
67.299
68.539
63.233

RMSE
59.698
67.299
68.539
66.695

RMSE
18281
0.004
0.004
19.496

RMSE
14.692
0.004
0.004
16.441
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Appendix : .A. The forecasting model for skewness
We assume skewness is mean-reverting and formulate an autoregressive
model for forecasting skewness as below:
skew, - skewt 5- X(skew, 5- skewnea)+ et (A1)
In order to find the mean level of skew (i.e. skew”an) and the proportional
coefficient for reverting (i.e. A), Equation (Al) may be re-written in the form:
skewt = a +(1+ A)sskewt 5+ et (A2)
where skewnam=—a/ A, and skew is defined in footnote 2. The regression
result is in Table s .A.I.  The first regression is done for all the data available
from 03 April 1992 to 29 December 1995, in total 891 records. Because we
approximately take half a year for the regression and roll the half-year period at
any time of t, we take roughly ... records to regress on each day.
As shown in Table 8.A.1, the autocorrelation is significant in taking the 5

day lag. The coefficient (;3) is 0.41 with t-value of 13.3. This means that
skewness is mean-reverting in 5 days in the proportion ( A) of -0.59 (=0.41 - 1).
It is reasonable to use the result as the systematic forecasting of the shape of

implied volatilities.
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a

Period
Apr 92
- Dec 95
Jan 93
- Jun 93
Jul 93
- Dec 93
Jan 94
- Jun 94
Jul 94
- Dec 94
Jan 95
- Jun 95
Jul 95
- Dec 95

a
_ 11738¢-04
(-13.141)
-.686917¢-05
(-3.524)
-,505555¢-05
(-3.714)

. 144134e-04
(-7.936)
-,187985¢-04
(-6.830)
-261548¢-04
(-7.300)
-,973933¢-05
(-3.555)

fi
0.410060
(13.326)
0.288144
(3.012)
0.152906
(1.763)
-0.030947
(-0.348)
0.143994
(1.543)
0.384597
(4.597)
0.363632
(5.690)

skewt - skeW' 5= A(skewt 5- skewnan)+ e,

N. Kamiyama

Regression Results in Appendix A.

H=fi-) skew, R squared
-0.58994  0.285e-04  0.167281

-0.711856  0.23839e-04  0.089769
-0.847094 0.33063e-04  0.022016
-1.030947 -0.46586¢-03 .103422¢-02
-0.856006 0.13055¢-03 0.019148
-0.615403  0.68005e-04  0.150785
-0.636368 0.26783e-04  0.209724

t-value in bracket, and n = .. days
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Appendix 8.B. The Shimko's volatility function

The Black's formula o derive call option value can he shown as Below:

C=e™(F Nid,} - X - N(d,))

whers
IfFLxyr v
d=m Tl (B1)
1% Vs
d, =d, —v
'I.-'=4.'.F'l.|"?

where C is Call Price, Fis the underlying future price, and X is the exercise price,
N - ¥ is normal distribution density function and = 15 annualised volatlicy.
Breeden and Liteenberger (1978) show a peneralised option valuation

which can be differentiated by exercise price as followed:

O= 3[(5“ - X g FydF
X

C, =—Bl1-GiF )] (B2)
Cye = BlE(F )]

where B ois a discount factor, g is a distribution function, & is a cumulative
distribution function, £ is a random value of the underdying futures price, and
Cy and Cyy are the first dillerential and the sevond differcntial of call price with
rospeoct to oxCreise price.

Cn the other hand, we can differentiate the Black™s formuola with respect to
eaercise price as below (see Shimka (199315

Cp = B[X v - N {d,)— Nid,)]
Coe = BLX v +00{1-X -d,-d,, W=d,,]

(B3)

whiere,

c"l_.(:~ | -I—'ﬁ“—d—‘]-
- v

iy =-:1'”|, '
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From Equations (B2) and (B3), we obtain G(F*) and g(F*) as follows:

G(F') =\+X-v'-N\d2)

Co . (B4)
g(F)=[v -X +v {\-X d2-d2x)-d 2x]-N (d2)

If we assume the volatility function as a quadratic curve, v can be
expressed as below:

v=rrVE= A + A X +A2X 2
V'= A, +242X (B5)
V"' = 2A,

We estimate Ao, Ai, and A. by regression and then v’ and v ” are calculated
and inserted into Equation (B4). In Figure s .2.a, we show the curve-fitting
result as of 08 February 1993, with 35 option prices including both calls and puts.
The time to maturity for all is 0.0849 year, with the maturity date of 11 March
1993. The underlying futures price is 17,340.

We now draw a graph of g(F*) as shown in Figure 8.2.b, as a probability
distribution function. The probability implied in option prices on the observed
date is flatter than normal, and fat-tailed. This fact is consistent to the shape of

implied volatility which smiles as shown in Figure s .2.a.
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Appendix : .C. Implied Binomial Tree
We use the optimisation method suggested by Rubinstein (1994) to find
risk neutral probability of each underlying price at the end node of the Nikkei
225 options on futures contract. The “prior guess” or initial input is given by

standard binomial tree, that is, the initial probability, P), is determined as below:

p; =[n\/j\(n-j)\Ip'j-(l-p'rj (C)
where n is the number of steps (n = 5), and p " is the upside probability in the
standard binomial tree. The objective function and constraints for optimisation
are shown as below:

nm¥.w - pF

J

subject to
£ B =1land B >0 (C2)

Cf<C <G where C, =" P/max[0, F. - Ki]

J
where 7 is discount factor (gs..z.,s¢s ) for a step (a constant risk-free rate is
assumed), £j is the underlying futures price at the j-th node of the maturity, and
C*and C/are bid and ask price of options, respectively. We can obtain P/ and
Fj simultaneously by optimising the objective.

Seeking for the implied binomial tree, we go backward from the terminal
node, at which we found Pj and Fj as above. Firstly, we find path probability,
Pemind at the terminal node. Using two probabilities, P+and P\ we calculate
the path probability backward to the second last node, where + denotes one node

up and — denotes one down from a specific point of the tree.
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[
n\/j\(n-j)\ (C3)
P=p++p~

)z

Secondly, we find local probability, p, defined as P+#P at each point. Finally,
we find implied binomial tree of the Nikkei 225 futures prices over the option
period. By using the calculation results so far, we calculate R on each point,

which is defined as:

R=[(\-p)R-+pRH/r

4
where Rj = F\/F )

The contract observed here was as of 05 February 1993, and expired on 11
February 1993 (time to maturity is 0.0164 year). The underlying futures price
was 17,435. We have 7 options to be examined which did not violate put-call
parity, 3 puts and 4 calls. The short-term interest rate of 3.24% (annualised)
was used over the period. The range of implied volatilities was from 33%
(annualised) of OTM call to 16% of ATM call on that day.

The result is shown in Figures - .3.a and 8.3.b.  Figure + .3.a is the normal
binomial tree as an initial input. Figure 8.3.b is the implied binomial tree. As
shown, the probability implied in the option prices at the moment of time was

skewed to the bullishness.
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9. Conclusions

We have two major reasons for measuring volatility of asset returns.
One is for trading: we can set up option positions to capitalise the forecasted
volatility, when the implied volatility is different from the forecasts and the
difference can cover the trading costs. The other is for risk management: we
can input a more accurate volatility for evaluation, so that we can obtain better
quality control of position values in derivatives.

What we have learnt from the empirical work here is 1) that volatility of
underlying asset return can be modelled and forecasted, - ) that implied volatility
has information which can be utilised, and 3) that there is some degree of
international linkage in volatility. Implications for traders are, therefore, 1)
that volatility forecasting by a statistical model such as GARCH is worthwhile,
. ) that the implied volatility level, smile, and term structure should all be
estimated to assess market conditions, and 3) that it is also worthwhile to
forecast volatility by using information about the volatility change in other
major markets. These conclusions will be reviewed in this chapter.

In Chapter 2, we have a review of estimates of historical volatilities
including the high/low methods of Garman and Klass (1980) and Parkinson
(1980). We find that modified Garman and Klass and modified Parkinson
methods tend to overestimate true volatility. It seems that the assumption of
Geometric Brownian motion (i.e. continuous price diffusion even when the
market is closed) does not hold. JP Morgan’s exponential weighted moving
average (EWMA) used for RiskMetrics™ is compared with GARCH, and we

conclude surprisingly that EWMA is as effective as GARCH for the Nikkei
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index.

Chapter 3 examines whether forecasts of volatility from past data or
from implied volatility are more accurate, using the Nikkei 225 index. In
comparison, GARCH provides the best forecast among major volatility
indicators (in terms of RMSE) including historical and implied volatilities. In
addition, a combination of several indicators, including historical estimates, can
enhance the volatility forecast. In order to forecast volatility, the suggested
weights of the combination are 80% implied volatility and -. % historical
estimates. The shorter the time to maturity, the more important the historic
(GARCH) estimates, because the GARCH model produces recursive one-day
ahead estimates. We find that implied volatility tends to overpredict realised
volatility, while Lamoureux and Lastrapes (1993) found the opposite for several
individual stock options on NYSE. Also, implied volatility is a better forecast
than simple historical volatility in our study, which is the opposite of the finding
of Canina and Figlewski (1993) for the case of S&P 100 options.

In Chapter 4, Heynen’s (1994) and Taylor and Xu’s (1994) volatility
smile models are fitted to Nikkei 225 options. We confirm that there is a
skewed smile in the implied volatility and the steepness of the smile increases as
the time to maturity decreases. To evaluate option positions, it is necessary to
know that ) volatility for a specific time to maturity should be varied by
exercise price (smile effect) and . ) the effect changes with time (time effect).

In Chapter 5, we find that the return and volatility on the Japanese stock
market (Nikkei 225) are affected by the other equity markets, such as the

American (S&P 500) and British (FTSE 100). Our general model integrates
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two approaches, i.e., return spillovers and volatility spillovers in the context of
GARCH. Return spillovers are comparatively large; for example the Nikkei
return is explained 17% by the FTSE and 26% by the S&P return, independently.
Volatility spillovers to Japan are significant but rather small; Nikkei conditional
variance is explained 7% by the FTSE and 2% by the S&P variance respectively,
so the major part of volatility is explained by purely own-market effects
(GARCH). On the other hand, the Japanese market seems to have very little
influence on the others, both with respect to return and to volatility. The
practical implication is that a Nikkei option trader should take account of
movements in both FTSE and S&P in order to forecast the Nikkei return and
volatility on the next day.

We examine three subjects in Chapter ., (1) transmission of implied
volatility (IV) across time zones (2) transmission of skewness across time zones,
and (3) domestic influences on skewness. We find that IV spills over, but
skewness seems to be a domestic phenomenon. A change in IV spills over to
the next-opening market across a three-zone world. The IV of the S&P
significantly affects Nikkei and FTSE IVs (whether considered in levels or
changes in levels). On the other hand, there are three results in terms of
skewness of implied volatility. The first is that spillovers of skewness are
minor and only significant in relation to UK and US effects on Japan. Secondly,
skewness is related to same-day returns in UK and Japan. Thirdly, next-day
returns are positively related to skewness in the UK, and negatively in the US.

In Chapter 7, a cointegration analysis is applied to the term structure of
implied volatilities for the Nikkei options on futures traded on SIMEX.

Cointegration  provides  an accurate analysis for the association of
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volatilities (short- and long-term) and their correction process. We find that the
short- and long-term volatilities are co-integrated, and that both short- and long-
term volatilities tend to correct the disturbance from the equilibrium relationship
by changing their levels over time. The implication is that mean-reversion of
an asset price makes the volatility expectation vary with maturity and the
dispersion is corrected over time as the asset price reverts to the mean.

By using the shape of implied volatility smile, the implied risk-neutral
distribution for an asset may be derived. However, this approach is not very
useful unless the shape is stable over time. In Chapter s, we find that the
stability is not sufficient to be useful in forecasting option prices in the case of
the Nikkei options on futures in SIMEX, confirming the results of Dumas,
Fleming, and Whaley (1995) for S&P options.

There are several areas that deserve further research. We have not
explicitly tested or compared the forecasting performances among the GARCH
family or between GARCH and SV models. For example, EGARCH
(exponential GARCH), is not examined in this thesis, but may be better than
simple GARCH for the stock return and volatility because the volatility of stock
returns seems asymmetric (Nelson (1991)). Taylor (1994) compared GARCH
and SV with foreign exchange data. We have not examined the persistence of

volatility shocks in the Nikkei daily returns, that may be measured by a +;3 in

the GARCH estimatesl. If the volatility shock is always nearly one, as shown
in Table 2.4 in Chapter 2 - Page 28, IGARCH (Integrated GARCH). proposed by

Engle and Bollerslev (1986), may be appropriate to forecast the Nikkei volatility.

1 See Equation ( 11) in Chapter 2 - Page 21.  For example, Watanabe ( 1997) shows why a +
/7 means persistence of volatility shock.
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The implied volatility transmission could be examined with more high-
frequency data, such as tick-by-tick price data, so that we can avoid overlapping
of market opening periods. The overlapping trading hours are approximately
half a day between UK. and U.S.A.. The traders in the afternoon in U.K. may
be highly affected by the market direction and volatility of U.S.A.. In such a
case, spillovers from/to U.K. would be segregated at noon.

There may be more important factors to explain volatility changes, for
example, open interest and trading volumes, which could be driving forces that
have not been included in this thesis. Above all, more research is needed on
the way in which prices are determined in financial markets, since the

distribution of prices which we observe is the result of human behaviour.
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