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Abstract

The overall objective of the thesis is to understand volatility and to derive implications 
for options pricing with particular reference to the Nikkei 225 index, which has not been 
widely researched. Our brief survey shows us that the volatility models including the 
GARCH family can be applied for forecasting the volatility of the Nikkei 225 index 
daily returns. In addition, forecasting power of volatility is much stronger when using 
implied volatility rather than using historical volatility and the GARCH estimates. We 
observe the smile effect and term structure of implied volatility in the Nikkei 225 
options market. From the perspective of the international linkage of the world major 
markets, both historical and implied volatilities spill over from one market to another. 
We can utilise those characteristics for two applications. One is that we can trade 
options by forecasting volatilities with volatility models. If our forecasts were higher 
than the implied volatility in the market, we would go short in some series of options 
with delta neutral hedging. If volatility has declined over the option period, we could 
capitalise the forecast with the option positions. Moreover, the information in the 
FTSE and S&P markets (historical and implied volatilities) is useful to forecast the 
Nikkei volatility, when we trade the Nikkei options. The other application is to 
evaluate option positions from the risk management point of view. Middle-office 
managers are concerned with profits and losses if the market and volatility move in a 
particular way. By using the information of smiles and term structures of implied 
volatilities, managers can evaluate their positions more accurately for risk management.
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1. Introduction and Overview

The overall objective of the thesis is to understand volatility and to derive 

implications for options pricing with particular reference to the Nikkei 225 index, 

which has not been widely researched.

As an option trader, one of the most important decisions for trading is to 

estimate volatility for any type of option pricing formula. Even though the 

Black-Scholes formula has been widely accepted, we know that historical 

volatility of the underlying asset return does not seem constant, but changing 

over time. On the other hand, we also observe that volatility figures implied in 

the option prices are affected by time to maturity (implied volatility term 

structure) and exercise price (smile effect).

Not only for trading but also for managing the risk of a financial 

institution, precise evaluation of financial products has become more important 

than ever, while derivative products have become more complicated. Many of 

the financial derivatives which are managed in financial institutions are option- 

related, and risk measurement and management for them are not so 

straightforward as for traditional financial instruments. The most difficult part 

of risk management for option related products is to estimate volatility, as 

described above. The middle office, measuring and managing risks for a whole 

institution, must be familiar with models of changing volatility, including term 

structure and smile effects.

In this thesis, we look carefully at both approaches to estimating volatility 

(historical and implied). We begin in Chapter 2 (Review of the Concepts and 

Models of Volatility), with a review of several methods for estimating volatility, 

including the historical volatility calculations that utilise extreme values such as
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high/low prices. Then the ARCH models, now the most widely recognised in 

finance, are applied for the Nikkei index. JP Morgan’s RiskMetrics™ is 

examined in comparison with GARCH, and, in the case of the Nikkei, we find 

that RiskMetrics can estimate the volatility as effectively as GARCH, even 

though RiskMetrics is very easy to implement.

In trading of options, which volatility estimate is most powerful? 

Chapter 3 (Forecasting Power of Volatility: Historical Data vs. the Market) 

examines whether forecasts of volatility from past data or from implied 

volatility are more accurate, using the Nikkei 225 index. In comparison of 

HV22 (22-day historical volatility), HV60 (60-day historical volatility), implied 

volatility (OTM, ATM, and ITM), and GARCH estimates, we find that GARCH 

has the smallest RMSE (root mean square error). Implied volatility 

overpredicts realised volatility, but implied volatility is a better forecast than 

simple historical volatility for the Nikkei 225 traded options. We also find that 

a combined forecast may be best: encompassing regressions suggest optimal 

weights of 80% implied volatility and 20% GARCH.

In Chapter 4 (Implied Volatility Shapes: the Nikkei 225 Case), we 

investigate the skewness of the smile. We find a left-skewed smile, and a 

time effect, ie., the shorter the time to maturity, the larger smile. We employ 

two different regression methods to find these effects, and find similar results by 

both ways.

Chapter 5 (Stock Return and Volatility Transmission: The Nikkei 225 and 

other major markets) investigate the linkage of the world markets. It is shown 

that the return and volatility on the Japanese stock market (Nikkei 225) are 

affected by the American (S&P 500) and British (FTSE 100) markets. In this
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chapter, a general model is developed which integrates return spillovers with 

volatility spillovers. We find that traders can utilise the quantitative results of 

spillovers in pricing of options, by watching the volatility of the market which 

has just closed.

If historical volatility spills over, how about implied volatilities and 

smiles? In Chapter 6 (Implied Volatilities and Skewness across the Index 

Options Markets: Comparison and Transmission), we examine three subjects, (1) 

transmission of implied volatility across time zones, (2) transmission of skewness 

across time zones, and (3) domestic influences on skewness. Across a three- 

zone world, a change in IV spills over to the next-opening market, but the shape 

of volatility smile does not: it is a local phenomenon.

We often observe that the implied volatility for short-term options is 

different from that for long-term options. How are they related to each other? 

Is the relationship predictable? In Chapter 7 (The Implied Volatility Term 

Structure: Cointegration of the Short- and Long-term Implied Volatilities), a 

cointegration analysis is applied to the term structure of implied volatilities for 

the Nikkei options on futures traded on SIMEX. We find that their 

relationships are potentially useful in risk management and in trading; it allows 

us to forecast the implied volatility level in the near future. We find that the 

short- and long-term volatilities are co-integrated, and that both short- and long-

term volatilities tend to correct any disturbance from equilibrium by changing 

their levels over time.

Although several papers derive the implied risk-neutral distribution for an 

asset by using the shape of implied volatility smile1, this approach is not very

1 For example, implied binomial tree is suggested by Rubinstein (1994).
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useful unless the shape is stable over time. In Chapter 8 (Stability of Implied 

Volatility Functions: A Test on the Nikkei Options), we examine the stability of 

the shape of implied volatility smile of the Nikkei 225 options, and find that the 

stability is not sufficient to be useful in forecasting option prices. This casts 

doubt on so-called “deterministic volatility function” models, such as implied 

binomial trees.

Finally, in Chapter 9, conclusions are given. Having examined several 

aspects of volatilities, we find some important characteristics of volatility of 

asset returns. Our brief survey shows us that the volatility models including the 

GARCH family can be applied for forecasting the volatility of the Nikkei 225 

index daily returns. In addition, forecasting power of volatility is much 

stronger when using implied volatility rather than using historical volatility and 

the GARCH estimates. We observe the smile effect and term structure of 

implied volatility in the Nikkei 225 options market. From the perspective of 

the international linkage of the world major markets, both historical and implied 

volatilities spill over from one market to another.

We can utilise those characteristics for two applications. One is that we 

can trade options by forecasting volatilities with volatility models. If our 

forecasts were higher than the implied volatility in the market, we would go 

short in some series of options with delta neutral hedging. If volatility has 

declined over the option period, we could capitalise the forecast with the option 

positions. Moreover, the information in the FTSE and S&P markets (historical 

and implied volatilities) is useful to forecast the Nikkei volatility, when we trade 

the Nikkei options. The other application is to evaluate option positions from 

the risk management point of view. Middle-office managers are concerned
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with profits and losses if the market and volatility move in a particular way. By 

using the information of smiles and term structures of implied volatilities, 

managers can evaluate their positions more accurately for risk management.
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2. Review of the Concepts and Models of Volatility

2.1. Introduction

Estimating volatility is becoming more important, not only for academics 

but also practitioners in the financial world. These days, more people are 

familiar with the word “volatility” as option contracts are traded more frequently. 

After Black and Scholes (1973) revealed their option pricing model, which 

includes volatility as an input, traders and users of options should have estimated 

volatility for “theoretical” prices to deal with the instruments everyday. It has 

been a challenge to find a appropriate volatility input into the Black-Scholes 

formula in order to evaluate options because volatility is unobservable.

We have two types of estimated volatilities, historical and implied. At 

the beginning stage of utilising the Black and Scholes option pricing model (B-S 

model), historical volatility (HV) was mainly calculated for input in order to 

derive theoretical option prices. Because the B-S model assumes a constant 

volatility, market participants calculated the standard deviation of past asset 

returns and used it as a forecast to be inputted into the B-S model. On the other 

hand, because option prices are available in the market, practitioners may also 

calculate implied volatility (IV) by inputting the observed price into B-S model 

to derive volatility. For price-following traders in the market, implied volatility 

is the most important indicator because it indicates the consensus volatility 

forecast of market participants.

The historical volatility calculation has been modified by Parkinson (1980) 

and Garman and Klass (1980). They expand the volatility calculation from 

close-to-close returns to more informative high-to-low, open-to-close, and close- 

to-next-open returns. Because they assume a constant variance for stationary
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return series, (which is considered incorrect these days), they calculate volatility 

as if trading continues in periods when the market is closed. This modification 

(Modified Garman-Klass and Modified Parkinson) leads to a rather high 

estimate of volatility compared with the classical close-to-close volatility 

estimator, as demonstrated in Figure 2.1. In the case of the Nikkei 225 as 

shown in Table 2.1, the close-to-next-open volatility is much smaller than the 

close-to-close volatility, therefore it seems unreasonable to expand the assumed 

measurement period of volatility from trading time to 24 hour trading by using 

the assumption of normally distributed returns for an asset.

Volatility has been investigated and analysed by many researchers and 

practitioners, after practitioners noticed that volatilities of assets do not seem 

constant, that is, the underlying asset returns are not stationary. For the 

purposes of options trading and return forecasting as well, researchers have 

started modelling volatility as a time series and forecasting volatility statistically. 

An early example of comprehensive volatility studies is Taylor (1986), who 

focused on squared returns on many kinds of asset and commodity prices in both 

cash and futures markets, and modelled volatility that is changing dynamically. 

GARCH models are one of the most popular volatility forecasting models in the 

financial society at this moment. In the seminal paper, Engle (1982) introduced 

autoregressive conditional heteroskedasticity (ARCH) to examine non-stationary 

economic data, the U.K. inflation rate being used as an example. The ARCH 

model has the disturbance term affecting conditional volatility in the next time 

period. Because there are many financial time series, which are non-stationary 

due to changing variance, the ARCH methodology is accepted widely by 

researchers in finance. Bollerslev (1986) generalised ARCH (GARCH) by
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adding the autoregressive conditional volatility term, which is now the most 

widely recognised ARCH model in finance. Engle (1993) summarised the 

recent volatility models including GARCH. Bollerslev, Chou, and Kroner 

(1992) also introduce GARCH models with detailed analysis for applications.

Stochastic volatility models1 have been used in several works such as 

Wiggins (1987) and Chesney and Scott (1989). In their studies, the mean 

reversion of volatility was assumed. This model is applied to the Nikkei 225 

later, but the estimates do not seem plausible in this paper. The daily variance, 

or daily squared return, may be unstable when we use a simple autoregression 

model for forecasting.

Recently, risk management has become more important than ever in 

financial institutions all over the world, and more practitioners are interested in 

volatility estimates and forecasts for asset prices to evaluate their position risks 

and values. JP Morgan’s RiskMetrics™ (Zangari (1995)) is one of the major 

methodologies accepted by risk management professionals, in which an 

exponential weighted moving average is used to estimate and forecast volatility 

of asset prices. Because their methodology is broadly accepted, it is 

worthwhile to double-check its ability to estimate and forecast volatility with 

special interest in this paper on the Nikkei index. The difference in methods 

for VaR (value at risk) calculation often leads to significantly different risk 

measurement results, as Beder (1995) explained.

The purpose of this paper is (1) to apply major volatility calculation 

methods to the Nikkei 225 index, and characterise and compare the methods and 

results, and (2) to review major volatility forecasting models with the Nikkei 225,

1 Taylor (1992) calls it ARV (autoregressive random variance model).

N. Kamiyama
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including stochastic volatility models, GARCH models, and the exponential 

smoothing model suggested by JP Morgan. It is interesting to examine whether 

the efforts to introduce more information such as high / low prices and the 24- 

hour-trading assumption, made by Garman and Klass and Parkinson, are useful 

or not for volatility calculation. In addition, for the purpose of forecasting, we 

will examine a GARCH model with the special interest in comparison to JP 

Morgan’s model.

In the next section, the methods for volatility calculation are explained. 

The classical method is compared to Garman and Klass’s, Parkinson’s, modified 

Garman and Klass’s, and modified Parkinson’s methods. Section 3 deals with 

stochastic volatility models for the Nikkei index. In Section 4, the 

ARCH/GARCH family is introduced. In addition, we compare exponential 

weighted moving average volatility (suggested by JP Morgan as RiskMetrics™) 

with GARCH in the case of Nikkei, and conclude that this simple method works 

rather well.

2.2. Volatility Calculation

2.2.1 Calculation Methods

Five methods are explained in this section. The most popular way of 

historical volatility calculation is to use close-to-close returns as shown in 

Equation (1).

« “ I ,=1

(1)

where,
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where,

/ =  a proportional day period when the market closed = .8125 = 19.5 / 

24 in Japan4.

The modified Garman-Klass method is as below.

.12(ln(9, - ln C 0)2 | .88 (^1
/  1 - / J  U

Note that the Parkinson method and others based upon high-low information 

require geometric Brownian motion (particularly normal distributions and a 

continuous price record), otherwise they are biased.

2.2.2 Data

The daily open, high, low, and close prices of the Nikkei 225 index are 

used from 30 March 1991 to 29 March 1996 to calculate daily returns. The 

monthly volatilities are calculated as standard deviation of daily returns over one 

calendar month. In total, there are 60 observations.

2.2.3 Comparison Results

Equations (4) and (5) are designed to allow for the discontinuous trading 

hours of the stock market. For example, the Japanese equity market is closed 

and not traded at night in Japan, even though some exceptions exist (for 

example, ADRs of Sony and some other major Japanese corporates are traded in 

U.S. trading hours). These two modifications above are designed to solve this 

problem to obtain the “correct” volatility observation as if trading continued at 

night.

However, it is not reasonable to consider that the close-to-close returns 

are similarly distributed to the close-to-next-open returns. As Ikeda (1989)

4 Trading hour is 4.5 hours (2 hours in the morning and 2.5 hours in the afternoon) a day in
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claimed, Garman and Klass’s and Parkinson’s modifications are based on the 

assumption of the same volatility distribution even though the market is closed. 

Table 2.1 shows the difference between close-to-close and close-to-next-open 

volatilities. In both squared log returns, i. e. (Log of closet / closen)2 and 

squared differences, i. e. (closet - closet.i)2 , close-to-close and close-to-next- 

open data are significantly different by a t test at the 95% confidence interval. 

As expected, close-to-next-open squared differences and returns are much 

smaller than close-to-close ones.

Table 2.2.a shows the descriptive statistics of the estimates of those five 

methods, and Table 2.2.b examines the differences between the results from the 

various high/low estimators and the simple close-to-close estimator (Equation 

(1)). The table shows RMSE (root mean square error) and ME (mean error), 

which are defined as below.

where X is volatility estimator, (e.g. Garman and Klass’s), and CC is the close- 

to-close estimator. Garman and Klass and Parkinson have negative ME 

relative to close-to-close volatility estimator. The results are consistent with 

Ikeda (1989), who also finds a downward bias of volatility estimates in the 

Japanese equity market by using those methods. Both methods include high- 

to-low and open-to-close, which are normally smaller returns because no price 

jump between close-to-next-open is taken into account. On the other hand, 

modified Garman and Klass and modified Parkinson have rather large RMSE

( 6)

(7)

Japan.
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and ME relative to the close-to-close volatility estimator. Both modified 

methods overestimate volatility because they take night time into consideration 

for volatility calculation. It is also shown in Figure 2.1. The modified 

Garman-Klass and modified Parkinson results are always higher than the close- 

to-close estimator over the sample period. The original Garman-Klass and 

Parkinson methods are lower than the close-to-close volatility in most of the 

months in the period.

True volatility is likely to be somewhere between classical and Garman 

and Klass’s and/or Parkinson’s methods. True volatility is anyway 

unobservable, but it is reasonable to conclude that we should use the classical 

volatility estimator for the purpose of historical volatility5, or realised 

(observed) volatility6 at this stage.

2.3. Stochastic Volatility Models

2.3.1 Stochastic Volatility Models

The most popular stochastic volatility model is a mean reverting model, 

which is explained in Taylor (1986). Equation (8a) shows a concept that the 

volatility at t eventually depends on the long-run volatility level (cf) and the 

dispersion of the volatility at t-1 from the long-run volatility - o t). 

a,  = a + a { c , - & )  + £, (8a)

5 As described in Appendix, the 245 days are used for calculation of all the annualised 
volatility hereafter.

Annualised Volatility = x/<72 • V245
6 Realised volatility means observed volatility in my terminology. However, Taylor (1994) 
means real (unobservable) volatility by realised volatility.
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Reformulating Equation (8a) into (8b), we can estimate a regression in which 

the intercept is (l -  a)o  and the slope coefficient is a . Therefore, the long-

term mean for volatility, c , may be estimated.

<7, = CH7,_, +(1 -a)<7 + £, (8b)

Second alternative to the above is to use an autoregressive moving 

average (ARMA(1,1)). Harvey (1989) suggests that this formulation is useful 

to find a local trend of a time series. The model adds a moving average item 

to Equation (8a) and is described as below;

a, -  o  = 0(<7m  -  a) + e, + d et_x (9)

An additional consideration, Taylor (1986), is to take the logarithm of 

volatility, which gives a stationary variable so that ln( a ) may be used as 

dependent variable in Equation (8).

ln(cr,) = a  + 0[ln(CT,_1) - a ]  + 077, (10)

The logarithm transformation is applied for both Equation (8) and (9).

2.3.2 Data

The closing prices of the Nikkei 225 index from 30 March 1991 to 29 

March 1996 are utilised to calculate the daily log returns (Rt). Then the daily

volatility at time t is defined as <7, = ^(R, -  m)2 , where m is the mean of the

daily log returns. The number of observation is 1,236.

2.3.3 Results

The results of Equations (8) and (9), and those transformed by Equation 

(10) are shown in Table 2.3. The ARMA (1, 0) and (1, 1) models have 

significant autoregressive coefficients, and give plausible volatility estimates 

around 16% annually. The result can be compared with the estimates of
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Parkinson (16.8%) and Garman and Klass (15.9%) methods in Table 2.2.a. 

The ARMA results are closer to the Parkinson’s and Garman and Klass’s 

estimates than the one of the Close-to-Close method. The R squared of ARMA 

(1, 1) is larger than the one of ARMA (1,0), being .096 and .025 respectively.

The ARMA model with logarithm of observed volatility has no significant 

autoregressive coefficient. The estimate of real volatility, 9.9% annually, is not 

plausible, compared with the average level of observed volatility for the Nikkei 

225 index. This result may indicate two possible problems; one is that the log 

transformation may eliminate the autoregressive nature of the data series, and the 

other is that the daily volatility specification and/or estimation method may 

include some problems. Even though we can not specify the potential 

problems, we may conclude that use of logarithm of observed volatility is not 

appropriate in an autoregressive volatility model in terms of daily volatility of 

the Nikkei.

2.4. GARCH Models

2.4.1 GARCH Models

The original GARCH model was introduced by Bollerslev (1986), shown 

as below;

y,  = £ ,

e , = V V £  CD
ht =(0 + a ■ e;_! + P ■ ht_x 
where,

y: conditional return 

e : disturbance 

h: conditional volatility
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model, Equation (12). As a result, the difference of one from another is subtle. 

The minimum of log of likelihood for the six is 3525.9 (ARCH(l)), and the 

maximum is 3589.2 (AR(1)-GARCH(1,1)-Mean)7.

The coefficients are stable within the six models and AlphaO, Alpha 1, and 

Betal are significant and strong. The other coefficients, including the 

coefficients of the lag returns for AR(1) of returns, are weak and mostly not 

significant. It therefore appears that GARCH(1, 1) is sufficient for estimating 

the returns and volatilities of the Nikkei, and it is not worthwhile to use more 

complicated models, such as GARCH(1, l)-in-Mean.

2.4.4 GARCH estimates vs. RiskMetrics’s EWMA estimates

The estimates from GARCH (1, l)8 are compared with exponentially 

weighted moving average (EWMA) estimates, which is formulated as below.

EWr = ?i-EWt_x + ( 1 -  X)-y;  (13)

where,

EW: exponentially weighted moving average volaitlity estimator 

A : decay factor, 0.94, which is used for daily data in RiskMetrics 

(Zangari (1995)) 

y,: daily log return at time t

For the purpose of comparison with RiskMetrics and GARCH, we set decay 

factor to be the same as the figure optimised by Zangari, i.e. 0.94, setting a 

tolerance level to 1% with 74 historical data points. This formulation 

(Equation (13)) enables us to calculate the volatility forecast in the recursive

7 Two times the difference has a chi-squared distribution in some circumstances. See Xu and 
Taylor (1995)). We need further research in order to compare the forcasting performance by 
both in- and out-of-sample error tests (i.e. RMSE), and/or other tests such as regression 
between each model estimates and observed (realised) data.
8 The estimated parameters are as shown in Table 2.4, GARCH(1, 1)
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manner, so that we can save much system resources in practice. The initial EW 

value is set as the variance of the 74-day returns prior to the comparison period.

Figure 2.2 shows the annualised daily volatility (estimated as square root 

of squared daily return), GARCH estimates, and EWMA estimates. The 

difference between the GARCH and EWMA estimates is rather small. The 

exponentially weighted moving average is easier to estimate than GARCH and 

as good in measuring volatility level, as tested for the Nikkei index.

Table 2.5 shows that EWMA is better than GARCH in both mean error 

and root mean square error. With 1,163 data points, EWMA (74 days) and 

GARCH forecast the volatility of the day, and the forecasts are compared with 

the daily squared returns. The mean error of EWMA is 5.0%, whereas the one 

of GARCH is 5.5% in an annualised term. In the RMSE analysis, 14.7% for 

EWMA is less than 15.7% for GARCH.

2.5. Summary

We compare historical volatilities including Garman and Klass (1980) and 

Parkinson (1980) in the case of the Nikkei 225 index, as shown in Figure 2.1. 

Table 2.1 shows that the variance of close-to-next-open returns is significantly 

different from the one of close-to-close returns, therefore, we consider that 

modified Garman and Klass and modified Parkinson methods tend to 

overestimate real volatility. Stochastic volatility models, or autoregressive 

volatility models are employed for the Nikkei index, but the estimates are not 

meaningful for practitioners. On the other hand, GARCH model can utilise to 

measure volatility for the Japanese equity market. JP Morgan’s exponential 

weighted moving average (EWMA) used for RiskMetrics™ is compared with 

GARCH, and we conclude that EWMA is as effective as GARCH to the Nikkei
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Table 2.1. Difference in Close-to-Close and Close-to-Next-Open Volatilities

Squared Log Returns = (In C, /C,_, )2
Close-to-Close Close-to-Open

Mean 0.000201053 3.58676e-6
Variance 1.93672e-7 2.03405e-11

#Observation 1236 1236
Degrees of Freedom 1235

t value 15.791
t value is for the test of difference of means (Close-to-Close vs. Close-to-open)

Squared Difference = (C, - C,, )2
Close-to-Close Close-to-Open

Mean 71651.698 1358.913
Variance 23214857098 3071537.6

Observation 1236 1236
Degrees of Freedom 1235

t value 16.236
t value is for the test of difference of means (Close-to-Close vs. Close-to-open)

Table 2.2.a Descriptive Statistics

C-to-C Parkinson Garman Mod.Par Mod.Gar
M ean 20.48% 16.82% 15.90% 35.41% 34.46%
S tanda rd  E rro r 1.08% 0.82% 0.75% 1.73% 1.62%
M edian 18.42% 15.58% 15.19% 32.80% 32.92%
S tanda rd
D ev ia tion

8.34% 6.35% 5.78% 13.36% 12.52%

V a ria n ce 0.007 0.004 0.003 0.018 0.016
K urtos is 0.219 0.227 0.389 0.227 0.390
S ke w n e ss 0.815 0.773 0.811 0.773 0.811
R ange 35.42% 27.43% 25.38% 57.69% 54.97%
M in im um 8.33% 7.03% 6.66% 14.84% 14.46%
M axim um 43.76% 34.46% 32.04% 72.53% 69.43%
O b s e rv a t io n 60 60 60 60 60

N.B.: EWMA (exponentially weighted moving average) is also calculated with 
the same data (monthly volatility of daily returns) of 60 observations. The 
mean is 21.04% and the standard deviation is 7.58%.

Page 26



 



 =  



N. Kamiyama

Annualised Volatility
(on Daily Returns Observed over One Month) 

The Nikkei 225 index
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Figure 2.1. Various Volatility Calculations
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Figure 2.2. Annualised Volatility (Observed) and Estimates (GARCH and EWMA)
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Appendix 2.1. Rolling GARCH estimates vs. RiskMetrics’s EWMA estimates

The five year rolling (daily) estimates from GARCH (1, 1) are compared 

with exponentially weighted moving average (EWMA) estimates, also calculated 

for a rolling five-year period daily. The formulation and optimised decay factor 

of 0.94 are set in the same manner of Equation (13).

The difference between the rolling GARCH and EWMA estimates is 

rather small. As Zangari (1995) claims, the exponentially weighted moving 

average is easier to estimate than GARCH and as good in forecasting volatility 

level, as tested for the Nikkei index.

Table A1 shows that EWMA is better than GARCH in both mean error 

and root mean square error. With 1,163 data points, rolling EWMA (74 days) 

and rolling GARCH (5 year) forecast the volatility of the day, and the forecasts 

are compared with the daily squared returns. The mean error of EWMA is 

5.0%, whereas the one of rolling GARCH is 5.5% in an annualised term. In the 

RMSE analysis, 14.7% for EWMA is less than 15.8% for rolling GARCH.

Table Al. Root Mean Square Error and Mean Error relative to Daily Squared 
Returns (SR)

X RMSE Mean Error (ME)
EWMA 14.7% 5.0%
Rolling GARCH 15.8% 5.5%

RMSE =
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Appendix 2.2. Number of Trading Days a Year

It is reasonable to set the number of trading days in Japan 245 days for volatility 

calculation. We have 104 weekend holidays (= 52 weeks x 2) and 14 to 17 

market-closing days. If a national holiday is on Saturday, the holiday is not

postponed. If it is on Sunday, the holiday is postponed to Monday.

January 2 national holidays and at most 2 market closing days
= 2 -4

February 1 national holidays = 1
March 1 national holidays = 1
April 1 national holidays = 1
May 3 national holidays = 3
June No national holidays = 0
July 1 national holidays = 1
August No national holidays = 0
September 2 national holidays = 2
October 1 national holidays = 1
November 2 national holidays = 2
December 1 national holidays and at most 1 market-closing day = 1 -2

Total = 15-18

Therefore, trading days are between 243 to 246 (in a leap year, 248) days. In

this paper, all the volatility is annualised with 245 days a year.

1 month means: 20 days 2 month means: 41 days
3 61 4 82
5 102 6 123
7 143 8 163
9 184 10 204
11 225 12 245

In order to annualise volatility, we calculate as following:

V * = Y - V i  ( A l )

where,

V* : annualised volatility 

V : daily volatility

t : number of days a year = 245 in Japan
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3. The Forecasting Power of Volatility: Historical Data vs. the Market

3.1. Introduction

Forecasting volatility is a major issue in options trading. Immediately 

following the discovery of the Black-Scholes (B-S) formula (Black and Scholes 

1973), market participants used the historical volatility (HV) as an input to the 

equation, based upon some arbitrary sample period. However, they soon also 

started to pay attention to the implied volatility (IV), because it was positioned to 

be a rational estimate of future volatility.

Several sophisticated volatility forecasts have been presented by using 

historical data. An early example is French, Schwert, and Stambaugh (1987), 

who examined the relation between stock returns and volatility. Engle (1982) 

introduced the ARCH paradigm and Bollerslev (1986) generalised the method 

(Generalized ARCH, or GARCH). Bollerslev, Chou, and Kroner (1992) have 

reviewed the ARCH family of models concisely. Nowadays, GARCH is one of 

major ways to forecast volatility for option pricing and also to evaluate option 

positions and portfolios. Many empirical studies for the Japanese stock market 

have been performed, such as Tokunaga, Iihara, and Kato (1993). In addition to 

the ARCH family, stochastic volatility (SV) is modeled and examined by Harvey 

and Shephard (1993). In the stochastic volatility context, volatility is not the 

variance of the one-step ahead error, but an unobserved variable, the change in 

which is treated as an independent variable of a stochastic system. Taylor (1994) 

compared ARCH with SV in the foreign exchange market (DM/$), and concluded 

that they gave similar estimates of the persistence of volatility shocks (25 - 30 

days of half-lives).

1

________________________ N. Kamiyama
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The time-series behaviours of implied volatility itself has also been 

examined. Franks and Schwartz (1991) used an autoregressive model of implied 

volatility to forecast the one-step ahead weighted implied standard deviation 

(WISD). A recent study done by Resnick, Sheikh, and Song (1993) showed 

evidence to improve option pricing models by using expiration-specific WISDs. 

Harvey and Whaley (1992) also extended Franks and Schwarts (1991) and 

concluded that change in implied volatility is predictable, but no actual arbitrage 

is possible when transaction costs are considered. Their model is called implied 

volatility regression (IVR). Recently, volatility term structures and smile effects 

have been observed, especially after the crash in 1987. Xu and Taylor (1994) 

found that a term structure does exist in the foreign exchange option markets. 

Heynen, Kemna, and Vorst (1994) tested if any of the ARCH family can explain 

the term structure in Dutch index options.

There are many reports which compare historical volatility forecasts 

(including GARCH) with implied volatility to forecast realised volatility. An 

early example is Akgiray (1989), who found that GARCH was superior to HV. 

Day and Lewis (1992) compared the implied volatility of the S&P 100 options to 

GARCH and EGARCH, and found that the volatility forecasts by GARCH and 

EGARCH reflect incremental information relative to implied volatility. 

Lamoureux and Lastrapes (1993) found that realised volatility (RV) was 

positively related to implied volatility (IV), negatively related to historical 

volatility (HV), and not significantly related to GARCH forecasts. Their error 

analysis showed that IV tends to underestimate RV. Xu and Taylor (1995) found 

that, when IV is used, neither historical volatility nor a GARCH forecast has 

incremental forecasting power in forecasting currency volatility. Canina and
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Figlewski (1993) used an encompassing regression to examine the forecasting 

power of implied versus historical volatilities. Their result in the S&P 100 

options market is different from the perception normally held by the academic 

community (for example, Gemmill (1986)), because it shows that implied 

volatility has weaker power than historical volatility to forecast the future 

volatility. Figlewski (1994) also found that historical volatility with a long 

sample period gives a better forecast than one with a short sample period, 

although his main purpose was to forecast a long-term volatility. He also 

claimed that GARCH estimates are less accurate than the simple historical 

volatility. Noh, Engle, and Kane (1994) reported GARCH is better than the IVR 

modelled in Harvey and Whaley (1992), by simulating straddle trades in the S&P 

500 options on futures market.

The purpose of this chapter is to compare the forecasting power of HV, IV, 

and GARCH, using data on the Nikkei 225 index. Even though this article 

complements research by Lamoureux and Lastrapes (1993), essential differences 

are: (1) to use the Nikkei options rather than individual stock options on CBOE; 

(2) to analyse a range of option (3 moneyness) and forecast horizons (4 periods); 

and (3) to use two types of historical volatility (22 day and 60 day volatilities) for 

encompassing regression tests. By analysing 22-day and 60-day HVs, we are 

able to compare our results with those of Figlewski (1994), reaching a different 

conclusion.

In the next section, the methods undertaken are shown. Then Section 3 

explains the data used in this paper. The test results are analysed in Section 4 

and the conclusions are brought together in Section 5.

3,2. The Method
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We use the sample period of 12-Jun-89 to 06-May-94. For the initial 

condition, GARCH (1, 1) is estimated using the data from 06-Sep-85 to 11-Jun- 

89‘. In the sample period, daily rolling GARCH (introduced in Bollerslev 

(1986)) is applied as:

yt is return, m is a constant and £t is a disturbance term. et is heteroscedastic as 

shown in (lb) and (lc). In order to forecast volatility over the option period by 

GARCH, in addition to the recursive input to ht, £t.j2 is replaced by ht as well, 

because V(et) = E(et2) - (E(et))2 = E(et2) = ht when E(et) = 0. That is, the 

expected value of et is equal to ht. The GARCH parameters are estimated daily 

in the rolling manner to obtain the GARCH forecasts. Mean error (ME), mean 

absolute error (MAE), and root mean square error (RMSE) are examined from 12- 

Jun-89 to 06-May-94. The encompassing regression approach is used. 

Because of overlapping data of historical volatility, it is too complicated to 

explicitly show the correlation of the disturbance term. In order to obtain 

efficient estimates of the parameters, it is appropriate to use GMM, generalised 

method of moments2. One of the early examples of the encompassing regression 

method is in Hansen and Hodrick (1980). Fair and Shiller (1990) discuss 

encompassing tests and combination of forecasts. A recent example in stock 

returns is Canina and Figlewski (1993).

ME, MAE, and RMSE are defined as followed.

1 The Crash in 1987 period is not left out because the impact was not so large in Japan as in the American 
market.
2 The details of GMM implemented here is shown in Appendix B.

)>, = m  +  £ t

£, = V V £ , £~A(0,1) 

ht = a  +  / t e (1 2_ ,  +yh,_l

( l a )

( l b )

(lc)
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ME = j f ^ ( X , - R V t ) (2a)

MAE = ± - f j \Xl -RV,\  (2b)
N t=î

RMSE= U - X ( X ' - R V ' ) 2 (2c)

where,

X, ; forecast of volatility from IV, HV22, HV60, or GARCH,

RV; realised volatility during the option period from t

IV; implied volatilities (average of call and put by Near-/In-/Out-of-the-money) 

at t

HV22; 22-day historical volatility at t 

HV60; 60-day historical volatility at t 

GARCH; forecasted volatility using (1) at t 

The encompassing regression test is based upon:

RV, = a + b I V ,+ c H V 2 2 ,+ d H V 6 0  + e-GARCH,+e, (3 )3

The test gives us weights of importance among all the independent variables.

The tests are made with four combinations as below.

RV, =a0+b0 ■ IV, + c0 • GARCH, (4)

RV, = al +br IV,+cl HV22,+dl HV60, (5)

RV, = a2 +b2 ■ IV, + c2 • HV22, + d2 ■ GARCH, (6)

RV,=a,+ b3 ■ IV, + c3 ■ HV60 + d3 ■ GARCH, (7)

RV, = a4+b4- IV, +c4 • HV22, +d4 ■ HV60 + e4 ■ GARCH, (8)

3.3. The Data

3 The disturbance term of the equation may not be normally distributed because all the independent 
variables are censored (always larger than zero). Therefore, one should note that the t values are biased, 
when we interpret the regression results. We do not constrain coefficients to sum to one in this paper.
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The options were classified according to deepness in the money and time to 

maturity. The nearest-the-money contract was defined as at-the-money (ATM). 

In-the-money (ITM) and out-of-the-money (OTM) were chosen to be 500 yen on 

either side of the ATM options.

There were 1,209 business days during the out-of-sample period, and 157

data-missing days. The remaining 1,052 data are available.

Whole dataset 1,052 data
Subset (Shorter Days to Maturity) = 5 -2 5  days’ maturity 725 data
Subset (Longer Days to Maturity) = 2 0 -4 0  days’ maturity 586 data

The implied volatilities of puts and calls are averaged. IV is calculated 

with the generalised Black-Scholes formula, which is the extended version with 

the dividend yield input of Black and Scholes (1973). The Nikkei Index options 

are European-style contracts, so that there is no early-exercise premium and the 

Black-Scholes formula is appropriate. The daily 3-month CD rates are used as 

risk free interest rates. The dividend yield rate is assumed constant at 0.7%.

Historical volatility ( a ) is calculated as below.

cr2 = ------ ¿ ( ln R , — m)2
n -  1 pT

where,

m = - T \ n R ,
n ,=i

(9)

C, is Closing price of the Nikkei index, n = 22 (hv22) and n = 60 (hv60) are 

calculated. The 22 days are representative to one-month of trading days and the 

60 to three-months of trading. Realised Volatility (RV) is calculated over each
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option maturity period in the same way as HV, in which case n means the 

remaining days of option to expiry.

3.4. Test Results

3.4.1 Forecasting Errors

In Table 3.1.a, descriptive statistics are shown. Table 3.1.b gives the 

results for simple forecasting errors in terms of ME, MAE, and RMSE. There are 

three main points to be noted. (1) HV22 has the smallest error in terms of bias 

(ME) and in terms of MAE as well, and GARCH is the smallest in terms of 

RMSE. These results hold in shorter maturity subset, but IV (ATM) is best in 

the case of longer maturity subset. (2) IV gives the smallest RMSE for longer 

maturity subset. Among IVs, the at-the-money (ATM) forecasts have smaller 

RMSE than the out-of-the-money (OTM) or in-the-money (ITM) forecasts. (3) 

HV60 is inferior to HV22 in all respects. This result is different from that of 

Figlewski (1994), who claimed that the long-term historical volatility is a superior 

estimator to the short-term volatility.

3.4.2 Encompassing Regressions

In Table 3.2, the results of encompassing regression is shown. Four points 

are notably observed. (1) Positive weights are observed on IV and GARCH. 

HV22 has positive weights in Equations (6) and (9), but the positive weights are 

not significant in Equation (9) with GARCH. HV60 has a negative weight, 

which is significant in all the subsets. (2) The large coefficients of IV indicates 

that IV was the most important forecasting component. The coefficients (from 

0.6 to 1.0) have significant t values in all the subsets and models. (3) The 

constants of the regression results are not significant in most of the subsets. It 

seems no down/upward shift (bias) arises from this analysis. (4) The GARCH
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coefficients are not significant in 'full models' (Equation (9)) for the longer time to 

maturity.

In addition, Table 3.3 shows the supplemental results of encompassing 

regression comparing three of IV (at-, in-, and out-of-the-money)4. OTM 

implied volatilities are better than ATM and ITM.

3.4.3 Interpretations

Four points may help to interpret the results from the error analysis and 

encompassing regressions. Firstly, implied volatility was significantly upward 

biased5. This means that market participants may require a risk premium in 

options trading, as Lamoureux and Lastrapes (1993) suggested for stock options 

in the United States. The observed bias decreases as the days to maturity 

increase. The market participants may mean that market participants believe that 

the risk of a change in volatility is larger when the maturity is shorter. Canina 

and Figlewski (1993), who studied the S&P 100 index options at CBOE, found 

that IV was not superior to HV, which is opposite to the result shown here. 

Gemmill (1992) suggested transaction costs to explain this fact in the FTSE index 

options listed on LIFFE.

Secondly, IV has the largest weight among all the factors. The magnitude 

is between 0.60 and 0.95. However, this market is not informationally efficient, 

because GARCH and HV also have significant coefficients. Therefore, market 

participants do not seem to utilise all the historic information efficiently to set up 

option prices. In Equation (9), the regression based on all data, all the 

coefficients (except for HV22) are significant. Thirdly, the GARCH has a 

positive weight, and HV60 has a negative weight. Lamoureux and Lastrapes

4 There is col-linearity in this model, but we are able to see which IV most powerful forecast is.
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(1993) find that the GARCH forecast has no significant weight, and a large 

negative weight on HV. The historical information content in the sample 

variance (HV60) might be totally ignored as Lamoureux and Lastrapes 

mentioned. The alternative interpretation is an overreaction, which is also 

suggested by them. However, the HV22 has no significant weight in the ‘full 

model’ in the short options case, therefore, the participants do not seem to 

overreact to the recent information. Finally, the constants of the regression tests 

are not significant in most of the subsets, but the biases are observed as time to 

maturity becomes longer. On the other hand, the longer the time to maturity, the 

smaller the significance of GARCH. The reason seems to be that the GARCH 

(1,1) model assumes one day autoregressive conditional variance. The recursive 

one-step-ahead forecasts may cause a large amount of errors as the number of 

recursive operations increases, as Xu and Taylor (1995) have pointed out.

The OTM implied volatilities are better than ATM in encompassing 

regression with three different strike prices. The best forecasts by traders may be 

mostly influenced to OTM because they prefer to trade slightly OTM options to 

reduce costs (in absolute dollar amount) to control their risk exposures.

3.5. Conclusion

Figure 3.1 shows that the implied volatility tends to follow the realised 

volatility moderately well. However, it has an upward bias (as shown in Table 

3.1). Curiously, the coefficients of the long-term historical volatility such as 60- 

day volatility in the encompassing regression are significantly negative. Because 

the options analysed in this paper have 5-40 days to maturity, 60-day volatility is 

rather longer than the life of the options. This means that the too long cycle is 5

5 Note that the option price data were closing prices, therefore no bid-ask bias exists in average.
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drawn by the 60-day average compared with the realised volatility movement, as 

shown in Figure 3.2.

One can improve the forecast of future realised volatility by using both 

implied volatility and a GARCH historic estimate. However, the GARCH model 

can only forecast the short-maturity options significantly, because it requires one- 

step-ahead forecast in the time horizon of one day. Therefore, the GARCH result 

tends to overreact to a volatility shock when forecasting more than one day ahead. 

Figure 3.3 shows the overreacted errors. For example, the huge shock which can 

be observed in the 3rd quarter of 1990 causes a too large GARCH forecast.

It is very interesting to consider which error is most important from the 

trader’s point of view. HV22 has the smallest bias (ME) but the bias is not very 

important because negative and positive errors are offsetting. A trader would 

lose money if she made an error in forecasting volatility in either positive or 

negative manner. Therefore, a comparison band on bias is not good for the 

trading purpose. Mean absolute error (MAE) may be the best way to choose a 

single forecast from the candidates. As long as we assume that managers keep a 

delta neutral position, the profit/loss is generated from the difference between 

forecasted volatility and realised volatility, multiplied by its position vega6. 

Given a vega, we can estimate the profit/loss amount as MAE multiplied by vega. 

RMSE exaggerate the forecasting error from the realised volatility if we estimate 

the profit/loss in the manner mentioned above. In the RMSE calculation, a large 

error affects more than MAE because it is squared. Therefore, RMSE can not be 

an exact estimate of the profit/loss impact. However, RMSE may be a good 

indicator to choose a stable volatility forecast. RMSE pays more attention to a
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sporadic huge difference between a forecast and a realised volatility than MAE. 

HV22 is the best in MAE, but GARCH is the best in RMSE. IV is biased 

upward rather simply, therefore we may be able to adjust the level to the unbiased 

IV level to forecast the realised volatility. As one can see the encompassing 

regression, IV has the best forecasting power (the largest weight), if we recognise 

the bias in practice.

There is no reason to choose a single volatility forecast. The encompassing 

regression result suggests that a combination of several indicators including 

historical estimates can enhance volatility forecast. A forecast can be relied on 

IV in more than 75% in weight, and also on historic estimate such as GARCH in 

25%, especially in the case that the number of days to maturity is shorter than 10 

days. Although the appropriate weight is stable when the days to maturity is 

longer than 10, the more the number of days to maturity, the lower the 

significance. It is rational to forecast volatility by using a composition of several 

indicators.

Appendix 3.A shows another encompassing regression test to compare with 

Canina and Figlewski (1993). In the analysis above and the result of Appendix 

as well, one can find that IV is alway better than HV. The weight for IV is 

around one compared with that for HV which is around 0.5. We do not reject the 

hypothesis that the coefficient of IV is greater than zero, whereas Canina and 

Figlewski (1993) find the hypothesis is not significant.

The implication of all the results above for option practitioners is that IV is 

the best of all but two points should be added. One is that HV and GARCH 

analyses can improve the IV forecast. The other is that IV tends to be higher than 6

6 Vega is defined as a sensitivity of option’s price to a change in volatility. Mathematically, it is defined
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the volatility which is realised in the future. Using the encompassing regression 

coefficients, we can optimise the combination of all kinds of volatility estimates to 

predict real volatility which is occurring in the future.

as the first derivative of option pricing equation (such as Black-Scholes formula) in volatility.
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Figure 3.1. Realised Volatility and Implied Volatility
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Figure 3.2. Realised Volatility and Historical Volatility
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Figure 3.3. Realised Volatility and GARCH Forecast
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Table 3.l.a Descriptive Statistics (Annualised Volatilities)

Whole Sam ple RV IV-ATM IV-ITM IV-OTM HV22 HV60 GARCH
Mean 0.21290 0.25410 0.25794 0.25610 0.22213 0.23001 0.24490
Standard Deviation 0.11056 0.09346 0.09268 0.09466 0.10380 0.09047 0.07244
Variance 0.01222 0.00873 0.00859 0.00896 0.01077 0.00819 0.00525
Kurtosis 3.88254 0.27524 0.64964 0.54492 0.78474 -0.09651 7.18373
Skewness 1.45232 0.53654 0.63205 0.58471 0.83565 0.35436 1.61435
#Obs 1052 1052 1052 1052 1052 1052 1052

Shorter (5-25) RV IV-ATM IV-ITM IV-OTM HV22 HV60 GARCH
Mean 0.21193 0.26116 0.26623 0.26393 0.22652 0.23236 0.24736
Standard Deviation 0.11736 0.09833 0.09745 0.09954 0.10774 0.09247 0.07842
Variance 0.01377 0.00967 0.00950 0.00991 0.01161 0.00855 0.00615
Kurtosis 4.35875 0.19074 0.59865 0.48509 0.70938 -0.18811 7.07603
Skewness 1.61023 0.55804 0.65158 0.61856 0.88205 0.33628 1.64622
#Obs 696 696 696 696 696 696 696

Longer (20-40) RV IV-ATM IV-ITM IV-OTM HV22 HV60 GARCH
Mean 0.21587 0.24540 0.24711 0.24576 0.21725 0.22545 0.24244
Standard Deviation 0.10295 0.08879 0.08792 0.08948 0.10081 0.08950 0.06390
Variance 0.01060 0.00788 0.00773 0.00801 0.01016 0.00801 0.00408
Kurtosis 2.23083 0.08883 0.27851 0.09382 0.83367 0.00124 2.02337
Skewness 1.15772 0.48658 0.54017 0.47227 0.76820 0.38411 0.96206
#Obs 586 586 586 586 586 586 586

Table 3.1.b Analysis of Forecast Errors

- Whole Sample (1,052 data)
IV-ATM IV-ITM IV-OTM HV22 HV60 GARCH

ME 0.0412007 0.0450421 0.0432050 0.0092356 0.0171129 0.0320099
(SD) (0.0854356) (0.0858755) (0.0850500) (0.1011146) (0.1120616) (0.0891358)
MAE 0.0793892 0.0811320 0.0799841 0.0771192 0.0889883 0.0772479
RMSE 0.094815 0.096935 0.095359 0.10149 0.11331 0.094669

- Shorter Days to Maturity Subset (5-25 days) (696 data)
IV-ATM IV-ITM IV-OTM HV22 HV60 GARCH

ME 0.0492283 0.0542956 0.0520018 0.0145930 0.0204252 0.0354249
(SD) (0.0894328) (0.0897844) (0.0520018) (0.1073373) (0.1179410) (0.0948747)
MAE 0.0859906 0.0883379 0.0859646 0.0814035 0.0948441 0.0814150
RMSE 0.10203 0.10487 0.10176 0.10825 0.11961 0.10121

- Longer Days to Maturity Subset (20-40 days) (586 data)
IV-ATM IV-ITM IV-OTM HV22 HV60 GARCH

ME 0.0295292 0.0312434 0.0298957 0.0013798 0.0095839 0.0265746
(SD) (0.0808312) (0.0805698) (0.0811185) (0.0946217) (0.1053475) (0.0838309)
MAE 0.0716120 0.0718385 0.0718992 0.0734302 0.0818161 0.0730510

RMSE 0.085991 0.086351 0.086387 0.094551 0.10569 0.087874

ME = —  Y (X f -R V,)
N t t

MAE = — V  |X -  RV
w t r 1

R M S E = l j ± ( x , - R v,y-
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Table 3.2. Encompassing Regression Tests

Whole Sample

A. ATM - Whole data (1,052 data)
Eq

Adjusted
const

( t ; GMM)
IV

( t ; GMM)
HV22 

( t ; GMM)
HV60 

( t ; GMM)
GARCH 

( t ; GMM)
5

0.4453
-0.00750980

(-0.63)
0.620028
(5.80)***

" " 0.256664
(2.52)***

6
0.4760

0.035129
(2.58)

0.893208
(8.67)***

0.222083
(3.03)***

-0.428359
(-5.83)***

--

7
0.4487

-0.020315
(-1.50)

0.679224
(6.06)***

-0.151777
(-1.78)*

" 0.385196
(3.00)***

8
0.4828

0.00028471
(0.02)

0.836754
(7.09)***

— -0.374172
(-5.73)***

0.351390
(3.49)***

9
0.4830

0.021681
(0.52)

0.822498
(7.05)***

0.076641
(0.84)

-0.401165
(-5.42)***

0.293320
(2.34)***

b . n fM - Whole data (1,052 data)
Eq

Adjusted R^
const

( t ; GMM)
IV

( t ; GMM)
HV22 

( t ; GMM)
HV60 

( t ; GMM)
GARCH 

( t ; GMM)
5

0.4423
-0.013420

(-1.09)
0.597680
(5.50)***

" " 0.294609
(2.86)***

6
0.4649

0.031459
(2.21)

0.835063
(8.08)***

0.258351
(3.55)***

-0.397141
(-5.43)***

—

7
0.4446

-0.024774
(-1.75)

0.644903
(5.74)***

-0.128988
(-1.48)

— 0.408226
(3.08)***

8
0.4737

-0.00819829
(-0.67)

0.777400
(6.62)***

— -0.337295
(-5.24)***

0.400782
(3.90)***

9
0.4742

0.00019444
(0.01)

0.761762
(6.57)***

0.089674
(0.96)

-0.369560
(-5.06)***

0.331951
(2.57)***

C. OTM - Whole data (1,052 data)
Eq

Adjusted R“
const

( t ; GMM)
IV

( t ; GMM)
HV22 

( t ; GMM)
HV60 

( t ; GMM)
GARCH 

( t ; GMM)
5

0.4499
-0.00488471

(-0.41)
0.640136
(5.80)***

" — 0.219844
(2.00)**

6
0.4844

0.034640
(2.59)

0.910236
(8.92)***

0.202497
(2.75)***

-0.434061
(-5.92)***

--

7
0.4532

-0.017399
(-1.27)

0.698232
(6.10)***

-0.151058
(-1.77)*

-- 0.347203
(2.53)***

8
0.4886

0.00392512
(0.32)

0.861430 
(7.14)***

— -0.380220
(-5.81)***

0.309554
(2.83)***

9
0.4891

0.011531
(0.80)

0.846647
(711)***

0.083478
(0.91)

-0.409983
(-5.50)***

0.246195
(1.83)*

t values in brackets. *: 5%, **: 2.5%, ***: 1% significant
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D. ATM - Subset (5-25 days) (696 data)
Eq

Adjusted R^
const

( t ; GMM)
IV

( t ; GMM)
HV22 

( t ; GMM)
HV60 

( t ; GMM)
GARCH 

( t ; GMM)
5

0.4532
-0.013426

(-1.03)
0.658634
(4.95)***

— 0.215675
(1.81)***

6
0.4874

0.027151
(1.63)

0.915199
(7.77)***

0.233131
(2.71)***

-0.460681
(-5.31)***

7
0.4571

0.4571
(-1.78)

0.716805
(5.27)***

-0.051566
(-1.75)*

- 0.357375
(2.22)**

8
0.4926

-0.00398333
(-0.30)

0.860422 
(6.11)***

— -0.396080
(-5.24)***

0.336514
(2.76)***

9
0.4931

0.00411238
(0.26)

0.846425
(6.10)***

0.096892
(0.90)

-0.434786
(-4.93)***

0.266190
(1.76)*

E .n "M - Subset (5-25 days) (696 data)
Eq

Adjusted R^
const

( t ; GMM)
IV

( t ; GMM)
HV22 

( t ; GMM)
HV60 

( t ; GMM)
GARCH 

( t ; GMM)
5

0.4509
-0.020553

(-1.51)
0.636760
(4.74)***

— - 0.254538
(2.13)**

6
0.4761

0.021446
(1.22)

0.867369
(7.20)***

0.256064
(2.95)***

-0.423644
(-4.84)***

—

7
0.4545

-0.033106
(-2.12)

0.691292
(5.05)***

-0.161292
(-1.63)

— 0.394304
(2.51)***

8
0.4848

-0.013721
(-1.00)

0.805761
(5.75)***

— -0.362360
(-4.76)***

0.385410
(3.14)***

9
0.4850

-0.00638330
(-0.39)

0.792695
(5.72)***

0.085965
(0.78)

-0.396665
(-4.53)***

0.323308 
(2.11)**

F. OTM - Subset (5-25 days) (696 data)
Eq

Adjusted R-
const

( t ; GMM)
IV

( t ; GMM)
HV22 

( t ; GMM)
HV60 

( t ; GMM)
GARCH 

( t ; GMM)
5

0.4637
-0.011015 

(-0.87)
0.702969
(5.10)***

— — 0.151239
(1.16)

6
0.5021

0.024291
(1.49)

0.946214
(8.18)***

0.196626
(2.27)**

-0.458938
(-5.28)***

—

7
0.4679

-0.023419
(-1.63)

0.761490
(5.46)***

-0.170793
(-1.80)*

— 0.295348
(1.80)*

8
0.5043

-0.00068298
(-0.05)

0.904749
(6.29)***

— -0.399175
(-5.27)***

0.269134
(2.03)**

9
0.5048

0.00754932
(0.48)

0.891025
(6.29)***

0.099095
(0.92)

-0.439195
(-4.95)***

0.197341
(1.22)

t values in brackets. *: 5%, **: 2.5%, ***: 1% significant
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Longer Days to Maturity Subset

G. ATM - Subset (20-40 days) (586 data)
Eq

Adjusted R~
const

( t ; GMM)
IV

( t ; GMM)
HV22 

( t ; GMM)
HV60 

( t ; GMM)
GARCH 

( t ; GMM)
5

0.4292
0.012397

(0.65)
0.646265
(5.71)***

— — 0.185112
(1.32)

6
0.4592

0.045622
(3.13)

0.882500
(7.68)***

0.173236
(1.95)*

-0.372372
(-4.11)***

"

7
0.4297

0.001219
(0.06)

0.688187
(6.26)***

-0.100545
(-0.81)

0.278882
(1.41)

8
0.4605

0.015901
(0.87)

0.866266
(6.46)***

— -0.335490 
(-3 99)***

0.259955
(1.93)*

9
0.4605

0.025926
(1.12)

0.845058
(6.64)***

0.087954
(0.66)

-0.359072
(-3.92)***

0.183189
(0.93)

h . r fM - Subset (20-40 days) (586 data)
Eq

Adjusted R-
const

( t ; GMM)
IV

( t ; GMM)
HV22 

( t ; GMM)
HV60 

( t ; GMM)
GARCH 

( t ; GMM)
5

0.4295
0.00970581

(0.52)
0.653592
(5.96)***

— — 0.184176
(1.37)

6
0.4567

0.042515
(2.94)

0.845808 
(7 93)***

0.200426
(2.29)**

-0.351286
(-3.98)***

—

7
0.4291

0.00300025
(0.14)

0.675892
(6.42)***

-0.058688
(-0.47)

-- 0.241694
(1.22)

8
0.4559

0.011606
(0.65)

0.840646
(6.69)***

” -0.302184
(-3.70)***

0.266691
(2.08)**

9
0.4572

0.027015
(1.18)

0.813953
(6.85)***

0.132758
(0.98)

-0.340557
(-3.80)***

0.147059
(0.75)

I. 01fM - Subset (20-40 days) (586 data)
Eq

Adjusted R^
const

( t ; GMM)
IV

( t ; GMM)
HV22 

( t ; GMM)
HV60 

( t ; GMM)
GARCH 

( t ; GMM)
5

0.4281
0.013370

(0.69)
0.638429
(5.65)***

- — 0.188066
(1.33)

6
0.4622

0.047197
(3.23)

0.900476
(7.71)***

0.171128
(1.93)*

-0.398358
(.4.34)***

"

7
0.4287

0.00181221
(0.08)

0.682484
(6.19)***

-0.104855
(-0.86)

— 0.285039
(1.46)

8
0.4661

0.017990
(0.98)

0.885071
(6.47)***

— -0.361228
(-4.24)***

0.254904
(1.89)*

9
0.4634

0.028031
(1.22)

0.863830
(6.64)***

0.088394
(0.68)

-0.384511
(-4.12)***

0.177463
(0.07)

t values in brackets. *: 5%, **: 2.5%, ***: 1% significant
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Table 3.3. Encompassing Regression with Three Implied Volatilities

Whole Sample (1,052 data)
Eq Adj R2 const IV-ATM IV-ITM IV-OTM HV22 HV60 GARCH
5 0.4505 -0.0072062

(-0.59)
-0.09353
(-0.36)

0.20182
(1.54)

0.54376
(2.04)**

— — 0.21459
(1.94)*

6 0.4855 0.031337
(2.26)

-0.04187
(-0.17)

0.22234
(1.70)**

0.74749
(3.03)***

0.19558
(2.66)***

-0.43490
(-5.94)***

—

7 0.4542 -0.020735
(-1.48)

-0.04653
(-0.19)

0.21784
(1.67)*

0.54365
(2.09)**

-0.15853
(-1.86)*

— 0.34810
(2.55)***

8 0.4900 0.00096292
(0.08)

0.01838
(0.08)

0.22492
(1.70)*

0.63616
(2.58)***

— -0.38454
(-5.88)***

0.30532
(2.81)***

9 0.4902 0.00794725
(0.55)

0.00378
(0.02)

0.21891
(1.66)*

0.64258
(2.60)***

0.07525
(0.83)

-0.41104
(-5.52)***

0.24820
(1.86)*

t values by GMM in brackets. *: 5%, **: 2.5%, ***: 1% significant

Shorter Maturity Subset (696 data)
Eq Adj R2 const IV-ATM IV-ITM IV-OTM HV22 HV60 GARCH
5 0.4649 -0.013110

(-0.99)
-0.3446
(-1.15)

0.22079
(1.50)

0.83758
(2.66)***

" " 0.14232
(1.08)

6 0.5033 0.020637
(1.22)

-0.22852
(-0.80)

0.23947
(1.60)

0.95109
(3.39)***

0.18661
(2.14)**

-0.45652
(-5.24)***

—

7 0.4695 -0.026703
(-1.77)

-0.30012
(-1.03)

0.25169
(1.71)*

0.82591
(2.68)***

-0.17797
(-1.87)*

— 0.29243
(1.76)*

8 0.5058 -0.00391273
(-0.29)

-0.18102
(-0.65)

0.256187
(1.72)*

0.846722
(2.92)***

" -0.40248
(-5.31)***

0.262596
(1.97)**

9 0.5060 0.00361679
(0.23)

-0.18883
(-0.68)

0.243972
(1.64)

0.853295
(2.94)***

0.088109
(0.82)

-0.43750
(-4.93)***

0.198740
(1.23)

t values by GMM in brackets. *: 5%, **: 2.5%, ***: 1% significant

Longer Maturity Subset (586 data)
Eq Adj R2 const IV-ATM IV-ITM IV-OTM HV22 HV60 GARCH
5 0.4304 0.011991

(0.64)
0.215960 

(0.52)
0.339303 
(1.67)*

0.115518
(0.26)

" — 0.159399
(1.14)

6 0.4637 0.043286
(2.98)

-0.02944
(-0.07)

0.342230
(1.78)*

0.601722
(1.37)

0.162903
(1.83)*

-0.39048
(-4.30)***

—

7 0.4308 0.00143233
(0.07)

0.228340
(0.55)

0.323622
(1.59)

0.158209
(0.36)

-0.09614
(-0.77)

— 0.249276
(1.26)

8 0.4640 0.016907
(0.93)

0.006288
(0.02)

0.295515
(1.53)

0.602870
(1.38)

" -0.35452
(-4.21)***

0.231632
(1.73)*

9 0.4642 0.027625
(1.20)

-0.02069
(-0.05)

0.307823
(1.60)

0.595372
(1.36)

0.094428
(0.71)

-0.37957 
(-4.11)***

0.148458
(0.76)

t values by GMM in brackets. *: 5%, **: 2.5%, ***: 1% significant
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Appendix 3.A Historical and Implied Volatility

This Appendix shows the result of an encompassing regression which is 

comparable to Canina and Figlewski. It shows that implied volatility is a better 

forecast than historical volatility for the Nikkei 225 traded options, which is the 

opposite to Canina and Figlewski (1993).

Al. The Data

- The 774 data are used from 07-Sep-90 to 08-Nov-93. (The data is different 

from the data in the main part of this paper.)

- Subsets are defined by the number of days to expiry.

Subset 1 =5 -  25 days 533 data

Subset 2 = 10 - 30 days 539 data

Subset 3 = 15 - 35 days 504 data

Subset 4 = 20 - 40 days 421 data

A2. The Method

The regression test for rationality of a forecast is expressed as; 

o  = a +b ■ F(O) + u (Al)

where, F(<E>); the forecast of a  based on the information set d> 

w; regression residual

If the forecast is true, a = 0, and b = 1. Any significant deviation form these 

figures shows the fact that the forecast is biased and inefficient. The 

encompassing regression is used for analysing the relative information content of 

two different forecasts.

a  = a +b ■ Fx (O,) + c- F2(d>2) + u (A2)

The less informed forecast should have the parameter of 0.
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The GMM (Generalised Method of Moments) is used for analysing

overlapping time period of data^. The time series of forecast errors is serially 

dependent in this case, therefore the GMM is used to estimate the parameters 

efficiently in the heteroscedastic systems of a time series. If the system is known 

as a heteroscedastic, or an unobservable disturbance vector may be serially 

correlated and nonstationary, the GMM estimates efficient standard errors. The 

parameters are same as if estimated by the least square method, therefore GMM is 

good for estimating a heteroscedastic system with an unknown form.

A3. Test Results

rvt(z) = al +b{ Tv,,. + utJ (A3)

rv, ( t ) = a2 +b2 -hv22ti + «,,. (A4)

rv, ( t ) = a3 + ¿>3 • /zv60,,. + ut i (A5)

rv, (r) = a4 + b4 ■ ivtJ + c4 ■ hv22,, + w,,. (A6)

rv, ( t ) = a5 + b5 ■ ivt i + c5 ■ hv6 0 , +  « , (A7)

Those above are annualised.

yrv, (T) = a, + V  yivti + uti (A8)

yrv, ( t ) = a2 + b2 ■ yhv 22, ,. + ut i (A9)

yrv, (T) = a, + • y/*v 6 0 , +  m, (A 10)

yrv, ( r) = a4 + 64 • y / v , + c4 • y/zv22,,. + ur i (All)

yrv, (T) = a5 + b5 ■ yivtj + c5 • yhv 60,, + ut i (A 12)

When we see the result from the annual volatility based analysis, b5 is 

significantly positive and close to one. This means that implied volatility 7

7 See Appendix 3.B.
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contents a good deal of information on the future volatility compared with 

historical volatility, which has negative coefficient of c5.

It is possible to say that the negative coefficient means mean-reverting 

relationship between historical volatility and realised volatility. In this analysis, 

the time to maturity of options is shorter than 60 days, therefore, the 60-day 

historical volatility is likely to be smoother than the realised volatility.

A4. Conclusion

Using GMM to regress overlapping data, we conclude that implied 

volatility is a better forecast of volatility realised during option period. The 60- 

day historical volatility is negatively correlated to the realised volatility over the 

remaining life of options. Despite Canina and Figlewski (1993), the results shown 

above suggest that implied volatility is a better forecast of future volatility than 

historical volatility.
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A5. Tables

Daily Error Variance Analysis
rv = a 1 + b I * iv; Number of Days to Maturity

Whole data 5 -2 5 10 -3 0 15-35 2 0 -4 0
al -0.00006517 -0.00009729 -0.00007641 -0.00001521 3.2209 IE-06
SE 0.00003521 0.00004412 0.00004092 0.00002584 0.00002269
t -1.85 -2.21 -1.87 -0.59 0.14

bl 0.981582 1.049679 1.018698 0.833395 0.804593
SE 0.12947 0.15955 0.14816 0.10493 0.09605
t 7.58 6.58 6.88 7.94 8.38

RA2 0.3754 0.387 0.3712 0.3031 0.3236
N 774 531 539 504 421

= a2 + b2 * hv22; Number of Days to Maturity
Whole data 5 -2 5 1 0 -30 15-35 2 0 -4 0

a2 0.000095358 0.000092605 0.00011266 0.00010771 0.00010408
SE 0.00001469 0.00001914 0.00001444 0.00001395 0.0000151
t 6.49 4.84 7.8 7.72 6.89

b2 0.581318 0.589792 0.554459 0.549292 0.566243
SE 0.06797 0.08932 0.06507 0.06535 0.07219
t 8.55 6.6 8.52 8.41 7.84

RA2 0.1762 0.1567 0.1428 0.1935 0.2343
N 774 533 539 504 421

= a3 + b3 * hv60; Number of Days to Maturity
Whole data 5 - 25 1 0 -30 15-35 2 0 -4 0

a3 0.00011548 0.00010309 0.00012884 0.00013349 0.00014113
SE 0.00001268 0.00001745 0.00001275 0.00001178 0.00001188
t 9.11 5.91 10.1 11.33 11.88

b3 0.492035 0.541513 0.48433 0.443543 0.417231
SE 0.06269 0.08867 0.06334 0.05361 0.05135
t 7.85 6.11 7.65 8.27 8.13

RA2 0.0792 0.077 0.0626 0.0769 0.0851
N 774 533 539 504 421

Encompassing Regression (1) - Daily RV
rv = a4 + b4 * iv + c4 * hv22; Number of Days to Maturity

Whole data 5 - 25 10-30 15-35 2 0 -4 0
a4 -0.00006521 -0.00009626 -0.00007759 -0.00001417 6.51979E-06
SE 0.00003491 0.00004273 0.00003929 0.00002798 0.00002304
t -1.87 -2.25 -1.97 -0.51 0.28

b4 1.026624 1.112461 1.184867 0.808942 0.717486
SE 0.19593 0.21973 0.23168 0.17057 0.13943
t 5.24 5.06 5.11 4.74 5.15

c4 -0.054056 -0.08114 -0.200774 0.025704 0.089709
SE 0.1324 0.10975 0.12327 0.09734 0.09422
t -0.52 -0.74 -1.63 0.26 0.95

RA2 0.3761 0.3886 0.3801 0.3033 0.3257
N 774 533 539 504 421

= a5 + b5 * iv + c5 * hv60; Number of Days to Maturity
Whole data 5 -2 5 10-30 15-35 2 0 -4 0

a5 -0.00003191 -0.00005771 -0.00003648 4.50142E-06 0.000021174

SE 0.00002648 0.00003356 0.00002901 0.0000215 0.00001917
t -1.21 -1.72 -1.26 0.21 1.1

b5 1.264102 1.32002 1.31501 1 1.051831 1.045199
SE 0.17919 0.20894 0.20151 0.16335 0.16116
t 7.05 6.32 6.53 6.44 6.49

c5 -0.450985 -0.471 116 0.50404 -0.331103 -0.339825
SE 0.10428 0.12101 0.12238 0.09823 0.10247
t -4.32 -3.89 -4.12 -3.37 -3.32

RA2 0.4109 0.4196 0.4109 0.3251 0.351 1
N 774 533 539 504 421
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Annualised Volatility Analysis
yrv = al + b l * yiv; Number of Days to Maturity

Whole data 5 -2 5 10-30 15-35 2 0 -4 0
al 0.01154 -0.00178315 0.0069089 0.025125 0.032861
SE 0.01488 0.01901 0.01777 0.01417 0.01418
t 0.78 -0.09 0.39 1.77 2.32

bl 0.787665 0.81383 0.80712 0.750481 0.743559
SE 0.06064 0.07713 0.07213 0.0589 0.05891
t 12.99 10.55 11.19 12.74 12.62

RA2 0.3684 0.3724 0.3687 0.3518 0.3703
N 774 533 539 504 421

= a2 + b2 * yhv22; Number of Days to Maturity

Whole data 5 -2 5 10-30 15-35 2 0 -4 0

a2 0.088273 0.085014 0.093487 0.094563 0.093551
SE 0.0077979 0.0098621 0.009014 0.0091657 0.0099266
t 11.32 8.62 10.37 10.32 9.42

b2 0.568144 0.567325 0.561303 0.561114 0.574633
SE 0.03617 0.04665 0.0421 0.04245 0.04591
t 15.71 12.16 13.33 13.22 12.52

RA2 0.2616 0.2387 0.2374 0.2794 0.3111
N 774 533 539 504 421

= a3 + b3 * yhv60; Number of Days to Maturity
Whole data 5 -2 5 10-30 15-35 2 0 -4 0

a3 0.105752 0.101207 0.110527 0.112276 0.114334
SE 0.008896 0,01175 0.01032 0.0098432 0.01019
t 11.89 8.61 10.71 11.41 11.22

b3 0.474973 0.451178 0.472424 0.469243 0.470579
SE 0.03926 0.05257 0.04578 0.04343 0.04476
t 12.1 9.15 10.32 10.8 10.51

RA2 0.1309 0.1195 0.1197 0.1384 0.1549
N 774 533 539 504 421

Encompassing Regression (2) - Annualised RV
yrv = a4 + b4 * yiv + c4 * Number of Days to Maturity
yhv22; ________________________________________________________________________

Whole data 5 -2 5 10-30 15-35 2 0 -4 0
a4 0.012542 -0.00160091 0.00690902 0.028824 0.037059
SE 0.01529 0.0192 0.01858 0.01437 0.01364
t 0.82 -0.08 0.37 2.01 2.72

b4 0.698603 0.766371 0.807113 0.628892 0.575535
SE 0.10513 0.12301 0.13418 0.09556 0.0857
t 6.65 6.23 6.02 6.58 6.72

c4 0.096684 0.053679 7.7159E-06 0.122795 0.169862
SE 0.0639 0.07096 0.08268 0.06527 0.06584
t 1.51 0.76 0 1.88 2.58

RA2 0.3712 0.3733 0.3687 0.356 0.3786
N 774 533 539 504 421

= a5 + b5 * yiv + c5 * 
60;

Number of Days to Maturity

Whole data 5 -2 5 10-30 15-35 2 0 -4 0

a5 0.025001 0.015517 0.022773 0.034501 0.041226
SE 0.01309 0.0168 0.01523 0.0132 0.01324
t 1.91 0.92 1.5 2.61 3.11

b5 1.003351 1.045495 1.047841 0.928598 0.925407
SE 0.09399 0.1 1242 0.1 1245 0.09839 0.10476
t 10.67 9.3 9.32 9.44 8.83

c5 -0.289549 -0.326725 -0.331245 -0.233852 -0.229964
SE 0.06047 0.07427 0.07477 0.06653 0.07201
t -4.79 -4.4 -4.43 -3.52 -3.19

RA2 0.3894 0.3973 0.3948 0.3664 0.3852
N 774 533 539 504 421
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Appendix 3.B GMM, generalised method of moments

This Appendix shows how we implement the GMM for our analysis8. 

RVt = a + b IV t +cHV22,+d-HV60 + eGARCHt +£t (Bl)

Consider Equation Bl has the unobservable non-linear disturbance term of e

Note that we do not explicitly assume any autoregressive error term. For 

simplicity, Bl can be re-written as B2.

£, = q(RV, ,xt ,6) 
z, =Z(xt )

(B2)

where x is a vector of explanatory variables, 6 is a vector of the parameters, and

z is a vector of instruments. The desired condition is E(et ® z, ) = 0, that is, the 

expected crossproducts of the disturbance and functions of the observable 

variables are set to 0. The first moment of the crossproducts is:

1 n
mn=-'2,m(yt,xt,0)

n "  (B3)
m(yt,xl ,9) = q(y,,xt,6 )®  z,

where y is the dependent variable (RV), and n is number of observations. We 

estimate the parameters by minimising the objective function of:

S(d,V) = [nmn (0)]'V 1 [nmn (0)] (B4)

where the variance of moment function is defined as:

V = Cov{[nmn {9°)],[nmn (0°)]'), and 6° is the true parameter vector. The

parameters obtained in minimising the objective function are the GMM 

estimators. Note that the objective function of the ordinary least square method 

is r ’r /n ,  where r is the vector of residuals.

8 G M M  is c a lc u l a t e d  w i th  th e  S A S /E T S ®  s o f t w a r e  a n d  its  s p e c i f i c a t io n .
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4. Implied Volatility Shapes: the Nikkei 225 Case

4.1. Introduction

It is becoming known to many option practitioners that implied volatility 

shape (smile or exercise price effect) is a signal of the market participants’ view 

of the underlying asset return. One practical usage of the shape is to input the 

skewed volatility figure to evaluate an option into the Black-Scholes (B-S) 

formula. However, Black and Scholes (1973) assumes a constant volatility of an 

underlying asset return to formulate their pricing theory, therefore, inputting 

different volatilities to the B-S formula is not correct from the theoretical point of 

view.

These days, a tighter control on the derivatives products is desired by the 

managements of financial institutions world-wide and the financial regulators as 

well. Many banks and securities firms have introduced a risk management 

framework such as VaR (value-at-risk) originally implemented by Bankers Trust, 

and a table of parameters (ex. volatilities and correlations of asset prices) input for 

evaluation such as RiskMetrics suggested by J.P. Morgan. From the financial 

professional’s point of view, the pitfalls of the B-S formula should be corrected to 

grasp the exact risks and unrealised profit/loss of the position held.

Many works have been written to explain the smile effect within a context 

of stochastic volatility. Hull and White (1987) introduced stochastic volatility 

into option pricing, and showed the smile effect as overpricing of Black-Scholes 

model. Taylor and Xu (1994a) showed that the smile effect is the logical 

consequence of stochastic volatility, and that the empirical regression results are 

robust against the selection of maturities. In their paper, they examine the 

foreign exchange options listed on the Philadelphia Stock Exchange, set up the
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model which assumes a symmetric shape of smile depending on moneyness, and 

find that the magnitude of the smile is decreasing as the time to maturity becomes 

longer. Bates (1994) developed an American option pricing method which take 

jump risk and volatility risk into account as non-diversifiable risks. He found 

that the stochastic volatility-jump-diffusion specification improved the pricing 

model’s ability to fit actual option prices, especially in- and out-of-the-money 

short-term options which are assumed to have larger smile effects than long-term 

near-the-money options. Madan and Chang (1995) claim that the Black-Scholes 

option pricing framework is likely to overstate the value of a short call position, 

and understate the one of a short put position, compared with their pricing model 

using a variance-gamma process, which takes the skewness and kurtosis of asset 

returns into consideration and makes less errors than the Black-Scholes formula. 

They also conclude that a worst case definition by using the Black-Scholes 

formula may not be conservative enough.

Shimko (1991) used a polynomial fitting to estimate a shape of implied 

volatility by exercise price and apply the estimated shape for specifying a return 

distribution function without a priori parameters such as GARCH. Taylor and 

Xu (1994b) showed the theoretical background of the shapes of implied volatility 

when asset prices are correlated with volatility shocks, and made an empirical test 

on the S&P futures options. They relax the model of 1993, and allow the smile 

to be asymmetric1. Heynen (1994) showed the smile pattern on EOE Dutch index 

options. Even though Heynen’s model is simple and easy to handle, two

1 P ra c t i t i o n e r s  o f te n  c l a i m  th a t  o n e  c a n  o b s e r v e  s y m m e t r i c  s m i l e s  in  th e  f o r e ig n  e x c h a n g e  a n d  
c o m m o d i t y  m a rk e t s ,  a n d  a s y m m e t r i c  o n e s  in th e  e q u i ty  m a rk e t s .  T a y l o r  ( 1 9 8 6 )  e x a m i n e s  a 
v a r ie ty  o f  d a t a  s e r ie s  i n c lu d in g  s to c k  p r ic e s ,  in d ic e s ,  f o r e ig n  e x c h a n g e s ,  a n d  c o m m o d i t y  p r ic e s  
b o th  in c a s h  a n d  f u tu r e s  m a rk e t s ,  a n d  f in d s  th a t  m o s t  o f  th e  r e tu r n s  h a v e  n e a r ly  z e r o  s k e w n e s s  
a n d  a r e  a p p r o x im a te ly  s y m m e t r i c .  O n  th e  o th e r  h a n d ,  h e  f in d s  m o s t  o f  a l l  th e  t im e  s e r ie s  h a v e  

h ig h e r  k u r to s i s  th a n  3 .5 ,  w h ic h  is 3 .0  i f  n o r m a l ly  d i s t r ib u t e d .
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consideration should have been added on. Firstly, implied volatilities should be 

normalised by the overall level of volatility, and secondly, time to maturity effect 

should be included in the model. Rubinstein (1994) shows an optimisation 

method to specify a return distribution consistent with a smile for his implied 

binomial tree.

The purpose of this paper is to examine existence of an exercise effect or 

‘smile’ in the Nikkei 225 traded options market by using the modified Heynen, 

and Taylor and Xu methods, and observe the shape and characteristics, if any. 

Neither of these two models is a structural models, but they are mechanically 

fitted. If we find evidence from the models that the shape of implied volatility is 

smiling and/or skewed, it is reasonable to take the shape into consideration with 

the risk management framework and evaluation of positions held in banks. 

Figure 4.1 shows the average implied volatility relative to at-the-money options, 

for Nikkei 225 options contracts traded on the Osaka Security Exchange. The 

graph suggests that there is a rather symmetric smile in the options which are 

nearest to maturity (less than 10 days), but the smile becomes more skewed as 

maturity increases. As expected, it is the in-the-money options which have the 

highest volatilities. However, as maturity decreases, the shape becomes more 

like smile by increasing the implied volatility of out-of-the-money puts. We will 

estimate the shape and find the characteristics of the shape to avoid to 

over/underestimate of the risks and evaluation in the risk management framework 

built for a financial institution. We do not examine the stability of a “daily” 

volatility shape, as Dumas, Fleming, and Whaley (1995) have done for S&P 500 

options on futures contracts, but try to find the overall characteristics of the shape.
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This formulation does not impose symmetry or constrain the minimum volatility 

to be at-the-money. We include square root of time with inverse interaction to 

moneyness, so that a larger ‘smile’ is possible compared with a result of the 

adjusted ‘normalised’ Haynen method. From the view point of standard 

deviation, square root of time should be directly related to the shape of the curve.

We segregate the data into the groups by time to maturity and by type (calls 

and puts) to characterise the shape of the smile in depth, which is not mentioned 

by Taylor and Xu (1994b).

4.3. The Data

The raw data are Nikkei 225 option prices from the Osaka Exchange. 

There were 1,209 business days during the sample period (12-Jun-89 to 26-May- 

94). When put-call parity (c + x-e~n = p + S ) is significantly breached, the data 

are omitted. The condition of omitting is the ±150 point difference from the 

parity4. The mean of the errors in put-call parity5 is -4.37 (ATM puts and calls) 

with SD of 127.09. Data with less than one SD are kept to analyse.

IV is calculated in the generalised Black-Scholes formula, which is the 

extension version with the dividend yield input of Black and Scholes (1973). IV 

of puts and calls are averaged. The daily 3-month CD rates are used as risk free 

interest rates. The dividend yield rate is assumed constant as 0.7%.

Either data series of calls or puts may be biased. Gemmill (1995) reports 

the 2% put bias, i.e. the mean of put IV is 2% larger than the one of call IV, in the

4 T h e  e x a m p le  p r ic e  lev e l  o f  th e  ca l l  o p t io n  ( 2 4  d a y s  to  m a tu r i t y )  is 3 8 0  p o in t  w i th  2 0 , 5 0 0  
e x e r c i s e  p r ic e  w h e n  th e  in d e x  e q u a l s  2 0 , 4 4 2 .6  ( n e a r e s t - t h e - m o n e y ) ,  w h e r e  th e  d e l t a  is 
a p p r o x im a te ly  0 .4 6  a n d  IV  is r o u g h ly  2 1 %  a n n u a l ly .  ( C l o s i n g  lev e l  a s  o f  19 M a r c h  9 6 ,  A p r i l  
c o n t r a c t s  e x p i r i n g  o n  12 A p r i l  9 6 . )  T h e  s c r e e n i n g  ru le  o f  150 p o in t  to  o m i t  th e  p a r i ty -  
b r e a c h i n g  d a t a  is r a th e r  la rg e .
5 A n  e r r o r  in  p u t -c a l l  p a r i ty  (e )  is  d e f in e d  a s  b e lo w :  
e  =  S +  P  - C  - X  e x p  (- r  t )
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case of the FTSE 100 option contracts. In the case of the Nikkei 225 options 

traded on Osaka. The mean of the call IV is 25.86% in the annual term, and the 

one of the put IV is 25.35%. The call IV is significantly 0.51% larger than the 

put IV6.

There are 392 data-missing days. The remaining 817 days are available. 

The nearest-the-money contract is defined as at-the-money (ATM). In-the- 

money (ITM) is defined as ATM - 500 yen in calls and ATM + 500 yen in Puts. 

OTM is the exact converse. ATM, OTM, and ITM are combined within the 

option types (Call and Put), so that the number of data for regression analysis is 

tripled.

The contracts were quasi-American type (exerciseable every Friday) before 

May 92, and from June 92 contracts, the specification was changed into European. 

Regressions were initially conducted separately for the pre-June 1992 data (451 

days) and the post-May 1992 data (366 days). Because the results were not 

different, the whole period is reported here (817 days).

Whole data set 2,451 data
Subset 1 = 5 - 10 days 489 data
Subset 2 = 11 - 20 days 663 data
Subset 3 = 21 - 30 days 945 data
Subset 4 = 31 - 40 days 354 data

4.4. Test Results: Goodness of fit

In Table 4.1, the results of the original (but already normalised) (Equation 

lb) and the adjusted (time-considered) Heynen method (Equation lc) are shown. 

The R squareds (0.02 to 0.10) are lower than the ones in the Taylor and Xu results

6 H 0: T h e  m e a n  o f  c a l l  IV  ( x l )  is e q u a l  to  th e  o n e  o f  p u t  IV .  H A: T h e  m e a n  o f  ca l l  IV  (x 2 )  is 
n o t  e q u a l  to  th e  o n e  o f  p u t  IV .  R e j e c t  H 0 i f  z  <  - 1 .9 6  o r  z >  1.96, w h e r e  z  =  (x  1 - x 2 )  /  s q u a re  
ro o t  o f  ( v a r l  /  n l  +  v a r2  /  n 2 ) .  B e c a u s e  z =  2 .0 6 ,  th e  ca l l  IV  is s ig n i f i c a n t ly  b i a s e d  to  th e  p u t  
IV  b y  0 .5 1 % .
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(0.07 to 0.27). The R squareds are also lower than Heynen’s result for the Dutch 

equity index options, which are in the range of 0.30 to 0.70. The adjusted 

Heynen method improves the R squared compared with the original method, but 

the improvement is marginal. The estimated coefficients seem very sample- 

dependent. The instability is likely to be due to the multi-colinearity of those 

independent variables. The shape of the smile is plotted in Figure 4.2. The 

curvature of the shape is increasing as the time to maturity is decreasing in both 

calls and puts. The magnitude of the smile is more in puts than in calls in the 

sample period.

The result of the Taylor and Xu method is shown in Table 4.2. With the 

whole-data set, one can see the significant smile and skewness effects, which are 

shown graphically in Figure 4.3. The magnitude of the smile is more in puts 

than in calls, which is a similar result to the one of the normalised Haynen 

method. The R squared is higher, 0.07 to 0.27, than for Heynen’s method. The 

R squared is much lower than the Taylor and Xu’s result in the S&P options, 

which is in the range of 0.7 to 0.9. The subsets results are not stable. In the 11- 

20 days subset, most of all the t values are less than 2 in absolute term as they are 

also in the 21-30 days call subset. The reason for this instability is likely to be 

multi-collinearity of the formulation.

When we impose symmetry by taking out a,, a3, a,, and a7, R squareds are 

reduced from 0.1657 and 0.1975 to 0.1157 and 0.1699 of calls and puts, 

respectively.

4.4.1 S m ile  e ffec t

Page 66



N. Kamiyama

The Taylor and Xu model shows larger effects in smile than the normalised 

Heynen model in Figures 4.2 and 4.37. In comparing with actual plotting in 

Figure 4.1, the Taylor and Xu model seems to have too large curvature to estimate 

the real curve. It seems because the Taylor and Xu method has some more 

independent variables to make the curve more convex, so that the possible 

erroneous data around the deep-in- and -out-of-the-money positions may have a 

strong impact.

4.4.2 T im e effec t

The time effect is similar in both approaches. It is observed in both models 

that the shorter the maturity, the more the time effect in smile, as shown in 

Figures 4.2 and 4.3.

4.5. Conclusion

We find a smiling shape of implied volatility in the case of the Nikkei 225 

index options listed on the Osaka Security Exchange, by the fitting models 

originally introduced by Heynen (1994) and Taylor and Xu (1994b). We 

confirm the decreasing smile effect with increasing time to maturity. Gemmill 

and Thomas (1995) suggest that the decreasing smile effect in time is due to a 

series of mean-reverting asset prices. Their reasoning seems appropriate 

similarly for the Nikkei options. The magnitude of the smile in puts is larger 

than the one of calls in the results of both models, but no specific reason is found. 

It may be due to the erroneous data because of lack of market makers on the 

Exchange: prices are sometimes left as they were on a few days before, if no trade

7 N o te  th a t  th e  d e f in i t i o n s  o f  m o n e y n e s s ,  th a t  is ,  M ( E q u a t i o n  (1 ) )  a n d  N ( E q u a t i o n  (2 ) )  a re  
c o n v e r s e d  in  F ig u r e s  4 .2  a n d  4 .3 .
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occurs8. In conclusion, we characterise the smile, and time effects, all of which 

are basically the same as the results of Heynen (1994) and Taylor and Xu (1994b).

As many practitioners claim regarding the most of equity markets of the 

world, the lower the exercise price, the larger the volatility in the case of the 

Nikkei option contract, as shown in Figure 4.1. We find the existence and 

characteristics of the shape, and it seems reasonable to use this additional 

information by fitting a curve to the shape, and then measure risks and evaluate 

unrealised profit/loss of the derivatives positions. In order to correct the 

over/underestimate of the value of customised options such as exotic options, we 

should implement the assessment of the implied volatility shapes. The straight 

B-S formula application to the position evaluation and risk measurement is rather 

erroneous.

8 In  a n  o r d e r  d r iv e n  m a rk e t ,  w e  w o u ld  h a v e  n o  g o o d  o p t io n  p r ic e  r e f l e c t e d  b y  its  c u r r e n t  
u n d e r l y i n g  p r ice ,  b e c a u s e  n o  a s k -b id  q u o ta t io n  w o u l d  b e  a v a i l a b l e  u n le s s  th e r e  w a s  an  o rd e r .  
In  an  m a r k e t - m a k i n g  m a rk e t ,  a  m a rk e t  m a k e r  w o u ld  q u o te  its  c l o s in g  a s k -b id  q u o t a t i o n  fo r  
o f f i c ia l  r e c o rd s .
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(June 1989 to May 1994)

Relative IV 

1.15

1.05

-0.04
-0.01

0.01

Moneyness

0.04Days lo maturity 30

Figure 4.1. Implied Volatility, Maturity, and Moneyness (Nikkei options on Osaka Exchange)
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Figure 4.2. Normalised Heynen Methods: Implied Volatility Shape (Whole-data set) 

t = 0.02, 0.03, 0.04 (years to maturity of options)
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Figure 4.3. Taylor and Xu Methods: Implied Volatility Shape (Whole-data set) 

t = 0.02, 0.03, 0.04 (years to maturity of options)

CALL IV SMILE 
(Xu & Taylor)

M o n e y n e s s

PUT IV SMILE  
(Xu & Tay lor )
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Table 4.2. Taylor and Xu Method: Regression Results

CAL!
Whole data 5-10 days 11 -20 days 21-30 days 31-40 days

ao 1.012961 1.005444 1.018621 1.012816 1.016133
(332.82) (99.49) (174.32) (271.72) (192.87)

a l -0.636587 -0.163835 1.821932 3.304304 0.736984
(-2.83) (-0.10) (1.46) (1.96) (0.20)

a2 -14.120431 -34.505471 -9.759828 -88.461911 73.027677
(-2.31) (-0.75) (-0.29) (-1.77) (0.69)

a3 0.140646 0.077177 -0.363833 -0.911359 -0.186221
(3.58) (0.32) (-1.47) (-2.09) (-0.16)

a4 -0.675849 2.344110 -1.589984 18.054597 -25.854473
(-0.65) (0.35) (-0.24) (1.41) (-0.81)

a5 0.265651 0.050742 -0.174970 -0.922095 -0.341498
(5.15) (0.14) (-0.61) (-2.33) (-0.40)

a6 2.471363 7.798506 7.372611 20.361386 -21.794801
(1.51) (0.65) (0.85) (1.53) (-0.81)

a7 -0.045341 -0.015464 0.045397 0.270223 0.118129
(-5.09) (-0.29) (0.80) (2.65) (0.45)

a8 0.604737 -0.155298 -0.442631 -3.877498 7.584678
(2.22) (-0.09) (-0.26) (-1.14) (0.93)

R2 0.1657 0.1903 0.1150 0.2057 0.1398

PUT
Whole data 5-10 days 11-20 days 21-30 days 31 -40 days

ao 0.984261
(300.88)

0.985003
(83.57)

0.984847
(174.98)

0.982157
(267.73)

0.989209
(168.48)

a l -0.398272
(-1.65)

-1.838247
(-0.95)

-0.140207
(-0.12)

2.683898
(1.62)

1.548673
(0.37)

a2 48.465119
(7.39)

-26.290475
(-0.49)

72.435452
(2.27)

-108.309719
(-2.20)

-36.211018
(-0.31)

a3 0.134433
(3.18)

0.341881
(1.21)

0.066299
(0.28)

-0.663823
(-1.55)

-0.384714
(-0.30)

a4 -11.238766
(-10.07)

-0.493661
(-0.06)

-16.060243
(-2.53)

29.976169
(2.38)

14.326488
(0.40)

a5 0.167789
(3.02)

0.589377
(1.36)

0.096759
(0.35)

-0.441518
(-1.13)

-0.945019
(-0.99)

a6 -14.547056
(-8.28)

3.808385
(0.27)

-20.169724
(-2.40)

31.421651
(2.41)

30.922318
(1.03)

a7 -0.039491
(-4.13)

-0.099744
(-1.58)

-0.022370
(-0.41)

0.118891
(1.18)

0.279945
(0.96)

a8 3.573128
(12.21)

0.938234
(0.46)

4.714554
(2.84)

-8.511106
(-2.54)

-10.223053
(-1.12)

R2 0.1975 0.2773 0.0800 0.0716 0.0878

o x----= a0 + a,
<*F

M M 2 M M 2
—¡= + a2 —=■ + ci3 —r  + «4 ~ “  + as 
y/T yjT T T

M M 2
7 r ^  + a- l f 7 f

+ a 7
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To f  Ta F
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5. Stock Return and Volatility Transmission: The Nikkei 225 and 
other major markets

5.1. Introduction

Volatility forecasting is one of the most important topics for option users, 

traders, and other market participants in the international derivatives markets. 

This paper intends to provide an international perspective to forecasting short-run 

volatility by examining volatility transmission ("volatility spillover") while 

simultaneously considering return transmission ("contagion1" or "return 

spillover"), using the Nikkei 225, FTSE 100, and S&P 500 indices.

There are several papers examining return spillovers among the stock 

markets. King and Wadhwani (1990) focus on the return transmission from one 

market to another, concentrating on the crash of October 1987. They conclude 

that rational agents use price changes of the most recently traded market as 

material information, and this causes a contagion effect between the international 

equity markets. Becker, Finnerty, and Gupta (1990) tested the relation between 

the Japanese and the U.S. equity markets and found high correlation between the 

Open-to-Close return of the U.S. market and Japanese market returns, but a 

relatively small impact of the Japanese market on the U.S. market. Their 

analysis includes a consideration of local and common currencies in returns. 

Becker, Finnerty, and Tucker (1993) used the stock index futures prices of Japan, 

U.K., and U.S. to find that the "US performance has a large impact on the 

overnight returns in Japan and UK," and concluded that the US market is the 

dominant market of the world. Although their model only analysed return 

spillovers, they also performed a daily variance comparison and concluded that 

the US was also dominant from the volatility perspective. They correctly 

pointed out that some degree of risk to underestimate the Close-Open returns

1 " C o n ta g io n "  is e x p l a i n e d  in  K in g  a n d  W a d h w a n i  ( 1 9 9 0 )  a s  an  e f f e c t  w h i c h  o c c u r s  b e t w e e n  

m a rk e t s  "as  a  r e s u l t  o f  a t t e m p ts  b y  r a t i o n a l  a g e n t s  to  in f e r  i n f o r m a t i o n  f r o m  p r ic e  c h a n g e s  in 

o th e r  m a rk e ts . "  T h i s  p r o v id e s  a  c h a n n e l  th r o u g h  w h ic h  a  " m is ta k e "  in  o n e  m a r k e t  c a n  be 

t r a n s m i t t e d  to  o th e r  m a rk e ts . "
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exists in using the opening price data of the cash index, because the opening price 

of the cash index often includes last traded prices (i.e. last closing) of several 

constituent shares. The alternative is to use futures price data, but that has its 

own problem of roll-overs.2 Cheung and Kwan (1992) provided an interesting 

comparison of the Canadian market volatility when the US market is closed with 

the volatility when it is open. They conclude that the trading of the US market 

affects the Canadian market volatility level through information transmission. 

The contagion idea is also applicable to the intra- and inter-industry share price 

linkage: for example, Alii, Thapa, and Yung (1994) examined the US equity 

market in its way.

Since the ARCH paradigm was developed in the seminal work of Engle 

(1982) and its generalisation (GARCH) in Bollerslev (1986), much research has 

been performed with their methods to examine volatility in the financial markets. 

Bollerslev, Chou, and Kroner (1992) and Engle (1993) provide concise reviews of 

the ARCH family of models and their application to asset price movements. The 

GARCH model is a powerful tool to explain the fat-tailedness which prevails for 

most asset returns3.

The ARCH paradigm is introduced to examine volatility spillovers among 

the markets in the other papers. The GARCH concept and the world market 

spillovers in volatility are combined in Engle, Ito, and Lin (1990), who compare 

"Heat Wave" and "Meteor Shower" Hypotheses to examine the GARCH effects in 

the foreign exchange markets. They reject the hypothesis of the independence of 

the major market places of the world ("Heat Wave") and prefer the world-wide 

linkage model ("Meteor Shower") as the best representation. The well-presented

2 B e c k e r ,  F in n e r ty ,  a n d  T u c k e r  (1 9 9 3 )  ro l le d  o v e r  th e  f u tu r e s  at e v e r y  e x p i ry .  F r o m  th e  
N ik k e i  2 2 5  e x p e r i e n c e ,  e a r ly  r o l l - o v e r  o f te n  o c c u r s  in th e  O s a k a  S e c u r i t i e s  E x c h a n g e  a n d  
S i n g a p o r e  In te r n a t io n a l  M o n e ta r y  E x c h a n g e  ( S I M E X )  s e v e r a l  d a y s  p r i o r  to  th e  e x p i ry .  T h e  

r o l l - o v e r  d a y  is n o r m a l ly  d e f in e d  a s  th e  d a y  o n  w h ic h  th e  t r a d i n g  v o l u m e  o f  th e  n e x t  c o n t r a c t  
m o n th  e x c e e d s  th e  v o lu m e  o f  th e  c u r r e n t  c o n t r a c t  m o n th .  W h e n  th e  c o n t r a c t  is r o l l e d  o v e r ,  th e  

t r a d i n g  v o lu m e  o f  th e  n e a r e s t  c o n t r a c t  m o n th  d e c r e a s e s ,  a n d  th e  o p e n i n g  p r ic e  o f  th e  c o n t r a c t  
t e n d s  to  j u m p  f r o m  th e  la s t  c l o s in g  p r ic e .  T h i s  m a y  c a u s e  an  o v e r e s t i m a t e  o f  th e  p r i c e  c h a n g e  

o v e r n ig h t .
3 S e e ,  f o r  e x a m p le ,  T a y l o r  (1 9 8 6 ) .
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econometric background including the log-likelihood function specification is 

useful and this methodology is followed in our paper. Hamao, Masulis, and Ng 

(1990) use the ARCH type of model to analyse the volatility spillover between the 

three major equity markets of the world, with data of April 1985 to Mar 1988. 

Their specification of the model is slightly different from the one of Engle, Ito, 

and Lin. In Hamao, Masulis, and Ng, the conditional variance is a linear 

function of past squared errors of the market, with autoregression of the 

conditional variance, and the squared residuals of the other market which are 

derived from an MA(1)-GARCH(1,1)-M applied solely to the return series of the 

foreign market previously opened. Even though their GARCH formulation is 

not as comprehensive as the one of Engle, Ito, and Lin (1990) in terms of 

interdependent determination of volatility, their careful consideration of the 

decomposition of Close-to-Close return into Close-Open and Open-Close returns 

is very valuable in delineating the effect of time zone difference for each market. 

Susmel and Engle (1994) examine the hourly linkage4 in return and volatility and 

then show the spillover effects between the UK and US equity markets with 

consideration of timing of information transmission. In addition to using hourly 

data, they model asymmetry ('leverage effect') of the conditional variance as 

affected by the most recent market returns. Their detailed analysis succeeds in 

showing the precise timing and direction of the spillovers between two markets. 

A significant spillover is observed at the afternoon session of the London market, 

which tends to overreact to the opening of the New York market. They also find 

that both markets are efficient in using past information from the other market in 

both return and variance. However, they conclude that there is no volatility 

spillover between these markets. An hourly analysis for Japan is irrelevant 

because trading hours do not overlap with London or New York. Theodossiou 

and Lee (1993) expand the analysis of Hamao, Masulis, and Ng by using a 

multivariate GARCH-M model which enables them to observe any possible

4 E x a c t ly  s p e a k in g ,  th e y  d o  n o t  u s e  h o u r ly  r e tu r n s  b u t  h o u r ly  p r ic e s  to  se t  u p  s e v e ra l  t im e

s e g m e n t s .  T h e r e f o r e  th e  n u m b e r  o f  o b s e r v a t io n  is 5 5 3  f r o m  J a n u a r y  1987 to  F e b r u a r y  1989.
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interactions in the mean and volatility of returns among several markets. They 

examine Canadian and German markets in addition to the major three markets. 

The results for the mean spillover are not significant from Japan to U.S. and U.K., 

but the volatility spillover from U.S. to Japan is significant, (the coefficient is 

0.0470). Koutmos, Lee, and Theodossiou (1994) investigate ten major equity 

markets of the industrialised countries and find time-varying betas in relation to 

the world index and volatility persistence in a GARCH formulation.

Multi-factor ARCH models are suggested in King, Sentana, and Wadhwani 

(1994) regarding the international major equity markets and Mahien and 

Schotman (1994) in the foreign exchange markets. Their models contain not 

only price information (historical returns) but also macroeconomic data and/or 

other financial market data such as interest rates. Chung and Liu (1994) 

examine the Pacific rim equity markets to find the common stochastic trends in 

the long run, using co-integration analysis and factor loading matrices in the 

analysis of multivariate stock return. However, because of the limited 

availability of macroecomonic data such as GNP., multi-factor analysis can not be 

directly applied to daily market linkage and spillovers.

The purpose of this chapter is to examine the linkage of the three major 

equity markets of the world in order to help market participants forecast the 

volatility and return of the day from the view point of spillovers, with special 

interest in the Japanese market. For example, on a Japanese holiday, the S&P 

index might be declining steeply. How should a Nikkei trader respond? She 

would also like to know how much bid-ask spread should be increased when there 

is a volatility increase in the New York market. This chapter will provide a 

quantitative solution for traders to support their decision making in trading the 

Nikkei and other major markets.

The plan of this paper is as follows; four alternative types of model are 

introduced in section 2, including: Return regression, Contagion, GARCH, and 

General models. The data used for the analysis are specified and the basic
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autocorrelations are analysed in Section 3. In Section 4, the test results of these 

four types of model are examined, and the conclusions are drawn together in 

Section 5.

5.2. The Methods

Four different models are used to relate the stock markets. In the first, the 

return regression model, returns in one market are related to returns in the most 

recently closed other market and also related to this market's volatility. In the 

second, the contagion model of King and Wadhwani (1990), the independent 

variables are just returns, but at higher lags. In the third, GARCH model. 

spillovers of the other market volatility are shown. Finally, in the general model, 

return spillovers are combined with GARCH volatility spillovers.

5.2.1 Return Regression Model

This model explains returns of the markets by 1) autoregression, 2) the other

market return, and 3) volatility of the other market. The equation is:

Ru  = aj + bj ■ Rj t_, + Cj • Rj_lt + dj ■ VhU + ej ■ dummy (1)

where,

Rjt\ Rate of return - defined as:

In (C loset I C lo se t_ i) in Close-Close Return analysis 

In (C loset / Operif) in Open-Close Return analysis

Vj_i ,: Daily volatility of the Other Market - defined as ( Rj.i>t ~  mean of Rj.,it )2 

dummy. 1 if after weekends or missing dates, or 0 if not. 

j: the Market (ft, nk, or sp)

j-I: the Other Market (the market most recently closed before the Market)

Equation (1) is more general than the return regression analysis employed 

by Becker, Finnerty, and Tucker (1993), because it includes the effects of the 

autoregression of the market return and the daily volatility (defined as a squared 

excess return of the day) of the other market, as well as the returns of the other
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market. We also add the dummy variable for non-trading days (weekends). 

Note that this model examines only retum-to-return and volatility-to-retum 

transmission, therefore volatility-to-volatility transmission is omitted in this 

analysis.

Because of autocorrelation (see below), one can expect slightly positive 

coefficients for the lagged returns of the market (b{). We also expect positive

coefficients for the other market returns (c/), and the negative coefficients (due to 

risk) for the other market volatility (d/).

5.2.2 Contagion Model

King and Wadhwani (1990) examined the close-close returns with a moving 

average process as shown below.

R ,,= P , (2a>

where L = lag operator. The contagion coefficients, (3js, measure the effects of 

the price change on change in the other market. The MA(1) error process acts 

as the total news items of the market. We make two adjustments to the model, 

by adding: (i) a weekend dummy, and (ii) a mean return (drift). The full model 

with both dummy and intercept is:

Rj_t =l i j+Sj  ■ dummy + Pj ■ RM , + ( \ - 0jL)■ e j t (2b)

In this model, we do not have to add any coefficient for volatility-to-return 

spillover because the MA coefficients are products of the contagion coefficients5. 

The model focuses on the return-to-return and volatility-to-return spillovers only 

and no volatility-to-volatility spillover is considered.

Positive signs are expected of the coefficients of returns of the other 

markets (/}/), as found by King and Wadhwani (1990). The coefficients (6j) are

expected to be negative because the other market's effect is likely to be reduced by 

weekends.

5 See Appendix 5.1.
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5.2.3 GARCH Model with Volatility Spillovers

The GARCH (1,1) model can be shown as below:

y :j =  a j +  v j t + 5  . •dummy

hj t = cij + bj ■ hj t_{ +Cj -v2j , t - 1  + dj ■v2j_i t + e;. •dummy (3)

To optimise the parameters of Equation (3), the BHHH method6 is used to 

maximise the log likelihood function of;

Where, j  is nk, ft, or sp

and j+1 is the other market in the next time zone

The formulation of Equation (3) is the same as the one used by Engle, Ito, and Lin 

(1990) excluding weekend consideration, but slightly different from the 

specification of Hamao, Masulis, and Ng (1990). The latter use hyl t from the 

single-market GARCH result rather than v2J_] t in Equation (3). The models

described as Equation (3) explain volatility-to-volatility spillover only.

In the model shown as Equation (3), one can expect b[, ci, and d{ to be

positive, because the autoregression of the conditional volatility (of the market) 

and the squared errors (of the market and of the other market) should all be 

positively related to the conditional volatility of the market (from a practitioner's 

viewpoint). The coefficients of the weekend dummies (<5-) in the return equation

are expected to be negative.

5.2.4 General Model (GARCH with Return Spillovers)

The general model is a combination of the return contagion model and the 

GARCH volatility spillover model. Returns from the most recently closed 

market affect this market's returns, and the residuals of the recently closed market 

affect the conditional volatility of this market. Hence, we can combine

6 T h e  B e r n d t - H a l l - H a l l - H a u s m a n  m e th o d  is i n t r o d u c e d  in  B e rn d t ,  H a l l ,  H a l l ,  a n d  H a u s m a n  
(1974).

log Lj = £  -05  x (log hj t + ) (4)
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not for SP<—FT. The other peculiarity is the much larger impact of volatility (d 

coefficient) in the SP<— FT case. In addition, R squareds are lower than for the 

Close-Close analysis (in the range of 0.02 to 0.16). The FT<—NK combination 

has a particularly low R squared, 0.0192 compared with 0.14 in the Close-Close 

case result, and this is consistent with the market participants' recognition of only 

minor linkage between these markets.

5.4.2 Contagion Model of King and Wadhwani

In the model specification of this paper, the non-overlapping markets cases 

are examined only in Close-Close returns9 for comparison. Four results are 

observed in Table 5.5. a) All the coefficients of the other market returns are 

significantly positive and in the range of 0.11 to 0.44. The largest is the NKx— 

lag(SP) case, b) The moving average factor is negative only in the FT<—NK case, 

and positive in others, c) The weekend dummies are significant in the NK<— 

lag(FT) and NK<—lag(SP) cases, and d) the mean is not significantly different 

from zero. The standard errors and AICs10 have no strong direction in 

comparing the model with/without the mean. Therefore, the simplest King and 

Wadhwani model (Equation (2a)) is preferred to the model with the mean on the 

basis of parsimony.

These results are rather different from those of the return regression model. 

The most important spillover is from lag(SP) to NK (0.44), whereas it was only 

0.27 in the return regression model. This is probably because the contagion 

model does not explicitly separate the return effect and the volatility effect of the 

recently closed market. An interesting observation, in comparison with the

9 K in g  a n d  W a d h w a n i  (1 9 9 0 )  s p e c i f y  th e  m o d e l  f o r  e x a m i n i n g  n o n - o v e r l a p p i n g  t r a d i n g  h o u r s  

w i th  th e  C l o s e - C lo s e  r e tu rn s .  T h e y  u s e d  a  d i f f e r e n t  ty p e  o f  m o d e l  f o r  th e  o v e r l a p p i n g  m a rk e t  
r e l a t i o n s h i p s .  B e c a u s e  w e  fo c u s  o n  th e  N ik k e i ,  o n ly  th e  n o n - o v e r l a p p i n g  m o d e l  is e x a m i n e d  

in  th i s  p a p e r .
10 R  s q u a r e d  is n o t  u t i l i s e d  b e c a u s e  it w o u l d  b e  i n c r e a s e d  b y  i n c r e a s i n g  th e  o rd e r .  S e e  H a r v e y  
( 1 9 9 3 ) .  A I C  s t a n d s  f o r  A k a i k e ’s I n f o r m a t io n  C r i t e r io n ,  w h ic h  is d e f i n e d  a s  -2  l n ( m a x i m u m  

l ik e l i h o o d  +  2 ( n u m b e r  o f  p a r a m e te r s )  to  p e n a l i s e  th e  in c r e a s i n g  n u m b e r  o f  p a r a m e te r s .  S e e  
a n  e c o n o m e t r i c s  te x t  b o o k ,  ex .  J u d g e ,  G r i f f i th s ,  H i l l ,  L i i t k e p o h l ,  a n d  L e e  ( 1 9 8 4 )  f o r  d e ta i l .
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results of King and Wadhwani (1990), is that the effect of Nikkei on FT (FT«— 

NK: 0.24) (for January 87 to August 94) is as large as the one of the crash period 

(0.26) found by them (for July 87 to February 88). The effect of lag(SP) on 

Nikkei (0.45) is much larger than the one of the crash period (0.16). The NK«— 

lag(FT) case has a (3 (retum-to-retum spillover) of 0.22 that is larger than the one 

of the just-before-crash of 0.19. From these differences, one may be able to 

conclude that linkages among these markets became stronger in the testing period 

of 1987 to 1994, although we need to be aware that the sample period is different 

in this research from that of King and Wadhwani (1990).

5.4.3 GARCH Model with Volatility Spillovers

In Close-Close returns (Table 5.6), one can observe three points, a) There 

are significant spillover effects in volatility for the cases of NK^-lag(SP), FT«— 

NK, and NK«—lag(FT) but not for the SP«—NK case. These results are 

consistent with the ones in Hamao, Masulis, and Ng (1990). Of these, the FT«— 

NK spillover is largest (0.14). The NK«—lag(SP) case has only 0.02 spillover 

coefficient, b) The weekend dummies significantly affect all equations, except 

the SP«—NK return equation. Although the SP«—NK case should not have had 

any weekend effect by definition, the volatility dummy has a small but significant 

effect because the data are Close-Close returns.

Using Open-Close returns (Table 5.7), the results are familiar, a) The 

spillover effect in volatility in the cases of the NK«—lag(SP), FT«—NK, and NK«— 

lag(FT), but the SP«—NK case has no significant spillover coefficient. The 

largest coefficient is 0.104 in the NK«— lag(FT). It is expected that a large 

coefficient in the NK«—lag(SP) should exist, but the figure is 0.0367. b) The 

weekend dummy significantly affects all volatilities, but is not significant for 

most of the returns (the FT«—NK case is only an exception). This suggests that 

the weekend news in weekend New York may affect the NK volatility after the 

weekend. However there should be no weekend effect for SP«—NK and FT«—
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NK, because no weekend exists between the markets. The weekend effect even 

in the continuous market such as the FT<—NK in Open-Close prices means that 

the weekend effect is an own-market effect in the continuous market cases. The 

weekend dummies of SP<—NK (1.619e-5) and FT<— NK (1.238e-5) are smaller 

than NK<t-lag(SP) (1.693e-5) and NKe-lag(FT) (2.309e-5). This seems to 

imply that the weekend effect is largest for the Nikkei because that is the first 

market to reopen after the weekend.

This model is not comparable with the two models described so far: it is not 

formulated to show any effect of the recently traded market's return on the market 

return. Therefore, it is not comparable with the contagion model which 

formulates only return spillovers from the most recently traded markets. Also, 

this model does not include any effect of the recently traded market's volatility on 

the market return like the return regression model. The GARCH model 

formulates only the effect of volatility spillovers on the conditional volatility of 

the market.

5.4.4 General Model (GARCH with Return Spillovers)

There are four results of interest which can be found in Table 5.8. a) 

Compared with the GARCH spillover model in Table 5.7 (The Open-Close case), 

the function values (log L) are improved to some extent, b) The return spillover 

is observed in all the cases to be significant in the Close-Close and Open-Close 

cases. All the return coefficients are positive from 0.145 (SP<—NK) to 0.261 

(NK<—lag(SP)). c) The volatility spillover is observed significantly except for 

the SP<—NK case. All the volatility coefficients are positive from 0.0162 (NK<— 

lag(SP)) to 0.128 (FT<— NK). d) The weekend effect on volatility transmission is 

observed significantly in all the cases without exception. All the coefficients are 

positive from 0.0000177 (NK^lag(SP)) to 0.00003228 (FT^NK). The effects 

on return spillover are not significant except for the FT<—NK case (-0.002345).
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Comparing the results of the Open-Close and Close-Open cases: i) there are 

higher coefficients in the Open-Close case than in the Close-Open Case except for 

the FT<—NK case in the return spillovers. This means that the market 

participants materialise the news at the recently closed market not at the opening, 

but during trading time of the market, ii) Volatility spillovers in the Close-Open 

case are not significant except for the NK<—lag(FT) case, which means that 

volatility transmission is also realised during the trading hours.

5.5. Conclusion

We employed four different types of model to analyse return and volatility 

spillovers between the three major equity markets of the world. The return of 

the previously closed market affects the return of the next opening market in all 

the results of the models. The volatility of the previous market affects 

negatively the next market's returns and positively its conditional volatility.

Using the general model with Close-Close data, which we prefer, there are 

large and significant return spillovers from the S&P to the Nikkei return, 

approximately 26%, and from the FTSE to the Nikkei return, which is 

approximately 17%. The variance spillovers are significant but small from the 

FTSE to the Nikkei variance, approximately 6.5%, and from the S&P variance to 

the Nikkei, approximately 1.6%. The volatility spillover from the Nikkei to 

S&P is not significant, but to FT, it is significant and the coefficient is 

approximately 13%.

Table 5.9 gives a summary comparison of our result, with those by other 

researchers. The return spillovers are observed more than ones of King and 

Wadhwani (K&W). Just after the Crash in 1987, the interrelationship of the 

markets seemed confused (ex. 0.11 from Lag SP to NK, from Dec 87 to Feb 88 in 

K&W), but it increases later in all four market relationships (ex. 0.261 from Lag 

SP to NK, from Jan 87 to Aug 94 in the general model). Only the general model 

can decompose the return and volatility spillovers from Close to Close into Close-
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Open and Open-Close. Decomposition of Close-Close to Open-Close shows us 

that both return and volatility spillovers are mainly observed during the trading 

hours (Open-Close). Only the return from Nikkei to FTSE is transmitted at the 

opening of FTSE. The return and volatility spillovers are simultaneously 

modeled only in the general model and Theodossiou and Lee (T&L) model, but 

the T&L model does not find any significant return spillover with their weekly 

data, although we often experience the daily spillover between the markets. 

Hamao, Masulis, and Ng (E1M&N) find the significant volatility spillover from 

NK to SP in the period of 1985 to 1988, but the general model does not in the 

period of 1987 to 1994. It seems because SP was somehow affected by NK 

before the Crash in 1987, but the effect from NK to SP has become smaller after 

the event.

The implication for traders of the Nikkei 225 is to take account of the 

returns and volatilities of the FTSE 100 and S&P 500 indices to forecast the 

volatility of the Nikkei 225 on the next day. There are strong positive 

relationships for both return-to-return and volatility-to-volatility. Traders could 

utilise the quantitative results of spillovers in pricing of options.

Table 5.3 shows the return spillover from FT to SP is the largest in 

coefficient and R squared. However, the trading time is overlapped (UK 

afternoon and US morning), and it should be noted that the relationship shown 

here between FT and SP is not causality from FT to SP but correlation to each 

other. The coefficient from NK to FT (0.23) includes the effect of the American 

news to both NK and FT, therefore the coefficient figure does not directly mean 

any causality from NK to FT. The coefficient from NK to SP is rather small 

(0.12), that is, NK does not dominant the SP market. Although the U.K. and 

Japanese markets have a strong interrelationship, this is probably explained by the 

similar relationship between the U.S. and each market. For example, the US 

dollar rates are often determined by the relative strength or weakness of the U.S.
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economy. Economic news in the U.S. may affect each market independently, 

and the U.K and Japanese markets tend to move in a similar direction as a result.
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Table 5.1. Data Summary: M e a n  a n d  C o r r é l a t i o n s  S t r u c tu r e  o f  R e t u m s

Means and Standard Deviations 
Close-Close Returns

#obs. Mean S.D.
Nikkei 1831 0.000055234 0.0148951
FTSE 1831 0.000350206 0.0103385
S&P 1831 0.000334364 0.0111833

Open-Close Returns
#obs. Mean S.D.

Nikkei 1831 -0.000382878 0.0137571
FTSE 1819 0.000205451 0.0078636
S&P 1832 0.000375642 0.0110009

Autocorrelations 
Close-Close returns

Lag 1 2 3 4 5 6 7 8 9 10
Nikkei
S.Cor 0.02125 -0.10961* ** 0.00443 0.04801* -0.02516 -0.04885* 0.03493 0.05535** 0.00491 -0.00019
(S.E.) -0.0233 -0.0234 -0.0234 -0.0234 -0.0234 -0.0234 -0.0234 -0.0234 -0.0234 -0.0234
P.Cor 0.02125 -0.11011** 0.00948 0.03606 -0.02605 -0.03914* 0.03164 0.04376* 0.01207 0.01241
FTSE
S.Cor 0.0608** 0.00389 0.03535 0.0939** 0.02844 -0.0053 -0.0321 0.02002 0.01977 0.02015
(S.E.) -0.0234 -0.0235 -0.0235 -0.0235 -0.0235 -0.0237 -0.0237 -0.0237 -0.0237 -0.0238
P.Cor 0.0608** 0.0002 0.03523 0.09006** 0.01773 -0.00928 0.02733 0.00696 0.01473 0.01761
S&P
S.Cor 0.019 -0.07925** -0.02463 -0.06486** 0.08916** -0.0193 -0.00854 -0.00125 -0.01749 -0.02764
(S.E.) -0.0234 -0.0234 -0.0235 -0.0235 -0.0236 -0.0238 -0.0238 -0.0238 -0.0238 -0.0238
P.Cor 0.019 -0.07964** -0.02164 -0.07077** 0.08901** -0.03522 0.00478 -0.00723 -0.00631 -0.04036*

Open-Close Returns
Lag 1 2 3 4 5 6 7 8 9 10

Nikkei
S.Cor 0.04733* 0.02543 0.03584 -0.02073 -0.03516 0.01127 0.04865* 0.01916 0.01367

0.08123**
(S.E.) -0.0234 -0.0234 -0.0236 -0.0236 -0.0236 -0.0236 -0.0237 -0.0237 -0.0237 -0.0237
P.Cor 0.04733* - 0.03387 0.0262 -0.01934 -0.02908 0.00973 0.04305* 0.01926 0.02018

0.08366**
FTSE
S.Cor 0.05385* 0.01916 -0.00443 0.02886 -0.02184 -0.01174 0.06681** -0.01045 0.00547

0.05554**
(S.E.) -0.0233 -0.0234 -0.0235 -0.0235 -0.0235 -0.0235 -0.0235 -0.0235 -0.0236 -0.0237
P.Cor - 0.05092* 0.02497 -0.00485 0.02618 -0.019 -0.01678 0.06678** -0.00082 -0.00267

0.05554**

S&P
S.Cor 0.01939 - -0.02773 - 0.09923** -0.02337 -0.01286 -0.01602 -0.02593 -0.02871

0.07538** 0.06364**
(S.E.) -0.0234 -0.0234 -0.0235 -0.0235 -0.0236 -0.0238 -0.0239 -0.0239 -0.0239 -0.0239
P.Cor 0.01939 - -0.02484 - 0.09879** -0.03922* 0.00105 -0.02132 -0.014 -0.04596*

0.07578** 0.06877**

Notes:
S.Cor: Sample autocorrelation
P.Cor: Partial autocorrelation

* = Significant at 5% level { C o r  /  ( ) > 1.645)
** = Significant at 1 % level { C o r / ( l / ^ f n  ) > 2.326)
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Table 5.2. ARCH Tests

Return on Nikkei
Order Q Q > prob L M L M > p ro b

1 83.3466 0.0001 89.2252 0.0001
2 102.496 0.0001 91.7172 0.0001
3 127.456 0.0001 107.452 0.0001
4 154.291 0.0001 118.143 0.0001
5 166.881 0.0001 120.226 0.0001
6 170.682 0.0001 120.268 0.0001
7 176.945 0.0001 121.660 0.0001
8 187.889 0.0001 124.852 0.0001
9 193.309 0.0001 125.285 0.0001
10 194.903 0.0001 125.286 0.0001

Return on FT
Order Q Q > prob L M L M > p ro b

1 668.886 0.0001 667.811 0.0001
2 806.306 0.0001 691 .740 0.0001
3 843.937 0.0001 696.638 0.0001
4 883.883 0.0001 707 .020 0.0001
5 904.668 0.0001 709.513 0.0001
6 910.161 0.0001 709.513 0.0001
7 913.643 0.0001 710.619 0.0001
8 922.301 0.0001 712.179 0.0001
9 929.502 0.0001 712.293 0.0001
10 940.763 0.0001 717.058 0.0001

R e t u r n  o n  S & P

O r d e r Q Q > prob L M L M > p ro b

1 20.1253 0.0001 20.0944 0.0001
2 60.7558 0.0001 55.2655 0.0001
3 71.0509 0.0001 59.4138 0.0001
4 71.5934 0.0001 59.7955 0.0001
5 106.547 0.0001 87.2228 0.0001
6 107.707 0.0001 87.2237 0.0001
7 107.843 0.0001 88.8118 0.0001
8 111.179 0.0001 90.2948 0.0001
9 112.742 0.0001 91 .6560 0.0001
10 112.860 0.0001 92.5552 0.0001

Q test: The probability to see the figure Q is 0.0001 under the null hypothesis of the 
returns which are serially independent.

LM test: same in the figure LM.
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T a b le  5 .3 . R e tu r n  R e g r e s s io n  M o d e l (E q u a t io n  (1 ))  

C lo s e -C lo s e  R e tu r n  ( N u m b e r  o f  th e  d a ta  u s e d  =  1 ,8 3 0 )

N o  D u m m y

FT<—N K SP<—F T SP<—N K N K <—la g (F T ) N K <—la g (S P )
a 0 .0 0 0 7 1 3 1 9

(3 .0 6 )* * *

0 .0 0 0 4 5 0 8 4

( 1 .8 8 )*

-1 .6 3 5 3 4 e -6

( -0 .0 1 )

- 0 .0 0 0 0 5 9 8 2

( -0 .1 7 )

0 .0 0 0 0 5 1 7 1

(0 .1 6 )

b - 0 .0 1 9 8 4 9

( -0 .8 8 )

-0 .1 6 0 7 0 2

(-6 .9 9 )* * *
0 .0 0 0 2 6 3 0

(0 .0 1 )
-0 .0 3 2 2 3 1

(-1 -3 1 )
- 0 .0 2 7 0 3 2

( - 1 .2 1 )

c 0 .2 3 2 9 1 8

(1 5 .2 5 )* * *

0 .4 7 0 2 8 6

(1 8 .9 5 )* * *
0 .1 2 0 7 5 2

(6 .6 0 )* * *
0 .2 3 2 5 4 3

(6 .2 3 )* * *
0 .3 9 0 9 6 8

(1 1 .5 1 )* * *

d -1 .6 7 5 2 2 8

( -6 .1 7 )* * *
-2 .1 2 3 5 7 3
(-4 .6 1 )* * *

1 .4 8 1 0 8 7
( 4 .6 7 )* * *

0 .3 1 5 7 1 3
(0 .4 8 )

-1 .0 3 1 9 3 3

( -3 .5 0 )* * *

R 2 0 .1 3 6 1 0 .2 0 0 1 0 .0 3 5 7 0 .0 2 2 4 0 .1 1 7 4

W ith  D u m m y

FT<—N K SP<—F T SP<—N K N K < - la g (F T ) N K <—la g (S P )
a 0 .0 0 0 8 7 3 2 2

(3 .3 1 )* * *

0 .0 0 0 3 7 5 9 5

(1 .3 7 )
0 .0 0 0 0 5 5 8 3 2

(0 .1 8 )
0 .0 0 0 8 1 7 3 8

(2 .0 4 )* *
0 .0 0 0 8 6 4 3 9

(2 .3 0 )* *
b - 0 .0 1 8 3 3 2

( -0 .8 1 )
-0 .1 6 0 8 4 9
( -7 .0 0 )* * *

0 .0 0 0 6 0 7 0 9
(0 .0 2 )

- 0 .0 3 1 5 7 8

( -1 .2 9 )

-0 .0 2 5 2 4 8
( -1 .1 4 )

c 0 .2 3 0 8 3 6

(1 5 .0 3 )* * *

0 .471  158 

(1 8 .9 5 )* * *

0.1 1 9 9 7 4  

(6 .5 2 )* * *
0 .2 3 5 3 8 4

(6 .3 4 )* * *

0 .3 8 7 0 5 4  

(1 1 .4 5 )* * *

d -1 .6 5 5 9 3 3

( -6 .0 9 )* * *
-2 .1 2 8 4 2 0
( -4 .6 2 )* * *

1 .4 8 7 8 3 9
(4 .6 8 )* * *

0 .2 8 2 1 1 8
(0 .4 3 )

-1 .0 5 6 6 9 7

( -3 .6 0 )* * *
e -0 .0 0 0 6 9 2 9 9

( -1 .3 0 )
0 .0 0 0 3 1 6 1 9

(0 .5 7 )
- 0 .0 0 0 2 4 8 3 8

( -0 .4 1 )
-0 .0 0 3 6 7 9 4 3

( -4 .5 7 )* * *
- 0 .0 0 3 4 0 7 4
( -4 .4 4 )* * *

R 2 0 .1 3 6 9 0 .2 0 0 2 0 .0 3 5 8 0 .0 3 3 5 0 .1 2 6 8

K ey s :

A<—B m e a n s  " M a rk e t  A  is a f f e c te d  b y  M a rk e t  B " 
a: in te rc e p t

b: a u to re g re s s io n  c o e f f ic ie n t  

c : re tu rn  on  th e  o th e r  m a rk e t c o e f f ic ie n t  

d : v o la ti l i ty  o f  th e  o th e r  m a rk e t  c o e f f ic ie n t  

e: w e e k e n d  d u m m y  c o e f f ic ie n t

t - v a lu e s  a re  in  b ra c k e ts

*: S ig n if ic a n t  a t 5% ( t>  1 .6 4 5 )

**: S ig n if ic a n t  a t 2 .5 %  ( t>  1 .9 6 0 )

* * * : S ig n if ic a n t  a t I %  o r  b e t te r  ( t> 2 .3 2 6 )
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T a b le  5 .4 . R e tu r n  R e g r e s s io n  M o d e l (E q u a t io n  (1 ))  

O p e n -C lo s e  R e tu r n  (N u m b e r  o f  th e  d a ta  u s e d  =  1 ,8 2 9 )

N o  D u m m y

F T < - N K SP<—F T S P f - N K N K <—la g (F T ) N K <—la g (S P )

a 0 .0 0 0 3 6 9 1 0

(1 .9 6 )* *

0 .0 0 1 0 2 0 2 4

(4 .0 2 )* * *

0 .0 0 0 1 5 9 3 7

(0 .6 0 )
0 .0 0 0 0 4 6 3 3

(0 .1 4 )
- 0 .0 0 0 2 9 1 7 0

( -0 .9 5 )

b -0 .0 8 1 7 4 1

( -3 .3 9 )* * *

0 .0 0 1 0 3 8 2 9

(0 .0 5 )

0 .0 2 1 0 2 1

(0 .8 1 )
0 .0 2 6 4 3 3

(1 .1 5 )
0 .0 1 6 2 7 0

(0 .7 3 )

c 0 .0 5 2 7 9 4

(3 .8 8 )* * *

0 .4 7 7 0 9 6

(1 5 .7 7 )* * *
0 .0 8 0 3 5 5
( 4 .1 4 )* * *

0 .3 0 7 4 8 8

(7 .6 0 )* * *
0 .2 7 6 4 0 9
(8 .6 3 )* * *

d - 0 .7 9 5 5 8 4

(-3 .5 0 )* * *

-1 2 .1 1 4 6 7 0

(-8 .2 5 )* * *
1 .1 7 6 8 2 5

( 3 .4 9 )* * *
-8 .2 1 9 3 7 3
( -4 .2 2 )* * *

-1 .5 9 3 1 7 9
(-5 .7 4 )* * *

R 2 0 .0 1 9 2 0 .1 6 1 8 0 .0 1 6 4 0 .0 4 6 0 0 .1 0 3 4

W ith  D u m m y

FT<—N K SP<—F T SP<—N K N K <—la g (F T ) N K <—la g (S P )

a 0 .0 0 0 3 7 4 9 4

(1 .7 6 )*

0 .0 0 1 0 8 2 4 8

(3 .8 0 )* * *
0 .0 0 0 2 2 2 2 8

(0 .7 4 )
0 .0 0 0 9 5 8 0 9

(2 .5 3 )* * *
0 .0 0 0 5 5 1 2 5

(1 .5 7 )

b -0 .0 8 0 6 7 5

( -3 .3 9 )* * *
0 .0 0 0 8 6 0 1 8

(0 .0 4 )
0 .0 2 1 2 5 5

(0 .8 2 )
0 .0 2 8 8 0 5

(1 .2 6 )

0 .0 1 8 9 9 7

(0 .8 6 )

c 0 .0 5 2 7 0 4

(3 .8 4 )* * *
0 .4 7 6 8 7 9

(1 5 .7 6 )* * *
0 .0 7 9 3 9 1
(4 .0 7 )* * *

0 .3 1 1 6 3 2

( 7 .7 5 )* * *
0 .2 7 2 2 4 9

(8 .5 5 )* * *

d -0 .7 9 5 3 7 6

( -3 .4 9 )* * *

-1 2 .1 0 4 0 4 3
(-8 .2 4 )* * *

1 .1 7 9 3 1 6

(3 .4 9 )* * *
- 8 .3 5 4 8 2 8
( -4 .3 2 )* * *

-1 .6 1 7 9 3 8

(-5 .8 6 )* * *

e - 0 .0 0 0 0 2 5 3 4

( -0 .0 6 )
-0 .0 0 2 6 9 8 5

(-0 .4 8 )
- 0 .0 0 0 2 6 8 5 9

( -0 .4 5 )
- 0 .0 0 3 7 8 0 0 9

(-5 .1 5 )* * *

-0 .0 0 3 5 2 0 6 1
( -4  9 4 )* * *

R 2 0 .0 1 9 2 0 .1 6 1 9 0 .0 1 6 5 0 .0 5 9 7 0 .1 1 5 3

K e y s :

A <r-B  m e a n s  " M a rk e t A  is a f f e c te d  b y  M a rk e t  B " 
a: in te rc e p t

b: a u to re g re s s io n  c o e f f ic ie n t  

c: re tu rn  o n  th e  o th e r  m a rk e t  c o e f f ic ie n t  
d: v o la t i l i ty  o f  th e  o th e r  m a rk e t  c o e f f ic ie n t  
e: w e e k e n d  d u m m y  c o e f f ic ie n t

t-v a lu e s  a r e  in  b r a c k e ts

*: S ig n if ic a n t  a t 5%
**: S ig n if ic a n t  a t 2 .5 %

* ** : S ig n if ic a n t  a t 1% o r  b e t te r
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T a b le  5 .5 . C o n ta g io n  M o d e l (C lo s e -C lo s e  R e tu r n )

N o  I n te r c e p t  N o  D u m m y  (E q u a t io n  (2 a ))

Regression dummy 3 0 SE/AIC
FTV-NK - 0.23735

(15.41)***
-0.05171

(-2.19)***
0.00970376
-11776.102

NK<—lag(FT) 0.21989
(6.24)***

0.02493
(1.01)

0.01473912
-10239.821

SP<—NK - 0.11875
(6.46)***

0.02409
(0.97)

0.01105862
-11297.491

NK«-lag(SP) - 0.44582
(15.02)***

0.02252
(0.95)

0.01405177
-10414.612

N o  I n te r c e p t  W ith  D u m m y  (E q u a t io n  (2 b ))
Regression dummy 3 9 SE/AIC
FT«—NK -0.0003896

(-0.83)
0.23620

(15.26)***
-0.05298

(-2.24)***
0.00970459
-11774.792

NK«-!ag(FT) -0.0028252
(-4.02)***

0.22454
(6.40)***

0.02414
(0.97)

0.01467837
-10253.94

SP<—NK 0.0002672
(0.50)

0.11964
(6.48)***

0.02479
(1.00)

0.01106088
-11295.744

NK«—lag(SP) -0.0026502
(-3.96)***

0.44568
(15.07)***

0.02152
(0.91)

0.01399577
-10428.228

W ith  I n te r c e p t  N o  D u m m y  (E q u a t io n  (2 b ))
Regression mean dummy 3 0 SE/ AIC
FT«—NK 0.0003376

(1.42)
“ 0.23730

(15.41)***
-0.05074

(-2.15)***
0.0097011 

-11776.111
NK«—lag(FT) -0.0000235

(-0.07)
- 0.21997

(6.23)***
0.02495
(1.01)

1.01474313
-10237.826

SP<—NK 0.0003278
(1.30)

0.11888 
(6.47)***

0.02524
(1.02)

1.01105653
-11297.185

NK«—lag(SP) -0.0000972
(-0.30)

- 0.44611 
(15.02)***

0.02261
(0.96)

1.01405526
-10412.703

W ith  I n te r c e p t  W ith  D u m m y  (E q u a t io n  (2 b ))
Regression mean dummy 3 0 SE / AIC
FT«—NK 0.0005495

(2.04)***
-0.0008915

(-1.68)*
0.23467

(15.16)***
-0.05205

(-2.20)***
0.00969622
-11776.952

NK<—lag(FT) 0.0008613
(2.24)***

-0.0037283
(-4.60)***

0.22446
(6.41)***

0.02761
(1.12)

0.01466237
-10256.933

SP«—NK 0.0003527
(1.21)

-0.0001048
(-0.17)

0.11856
(6.42)***

0.02514
(1.01)

0.01105947
-11295.214

NK«-lag(SP) 0.0007094
(1.93)*

-0.0033902
(-4.39)***

0.44404
(15.02)***

0.02398
(1.01)

0.01398544
-10429.933

N.B.) Rjt = H j +Ô j dummy + (5j- RH l + ( \ - 0 j L ) £ jt
(3 : R e tu rn  s p i l lo v e r  c o e f f ic ie n ts  

9 : M o v in g  a v e ra g e  c o e f f ic ie n ts  

S E : S ta n d a rd  e r r o r

A IC : A IC  (A k a ik e 's  In fo rm a t io n  C r i te r io n )  =  -2  lo g  L (cp) +  2 n 

A<—B m e a n s  " M a rk e t  A  is a f f e c te d  by  M a rk e t  B " 

t-v a lu e s  in b ra c k e ts

*: S ig n if ic a n t  a t 5 %  ** : S ig n if ic a n t  a t 2 .5 %  * * * : S ig n if ic a n t  a t  1% o r  b e t te r
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Table 5.9. Comparison Table

Market Method Return to Return Volatility to Volatility
C-C O-C C-0 C-C O-C C-0

NK to FT Return 0 2 3 *** 0.05*** q 3 9 *** — — —
Con 0.24*** — — — — —

Garch - — — 0.086*** 0.017*** --
Gen 0  2 3 *** 0.045* OHS*** 0.125*** 0.0159*** 0.00647

K&W 0.16 — — — — - -

HM&N — — — — 0.0185*** —
T&L -0.0358 - - 0 — —

NK to SP Return 0  i2 *** 0.08*** 0 . 0 1 — — —

Con 0  i 2 *** — — — — —

Garch - — — 0.000525 0.005171 —
Gen 0.145*** 0.124*** 0.00790 0.00734 0.001955 -0.02896

K&W 0.04 — — — — —

HM&N — — — — 0.0159*** —
T&L -0.0765 - — 0 — —

Lag SP to Return 0 2 9 *** 0  2 7 *** 0.105** -- -- —
NK

Con 0.45***
Garch — — — 0.0217*** 0.0367*** —
Gen 0  261*** Q 0.0767 0.0162*** 0.0223*** -1.6039

K&W 0 . 1  1 — — — — —
H M & N — — — — 0.0519*** —
T&L 0.0705 - — 0.0470* — —

Lag FT to R e tu rn 0.24*** 0.31*** -0.035*** — — —
NK

Con 0 .2 2 ***
Garch — — — 0.0517*** 0.104*** —
Gen 0.173*** 0.175*** 0.0051 0.065*** 0.0869*** 0.0223***

K&W 0.06 — — -- -- —
HM&N — — — — 0.0995*** --
T&L -0.018 - - 0 - -

R e tu rn R e tu rn  R e g re s s io n  M o d e l * * * : s ig n i f ic a n t  a t  1%

C o n C o n ta g io n  M o d e l **: s ig n i f ic a n t  a t 2 .5 %

G a rc h G A R C H  M o d e l *: s ig n i f ic a n t  a t  5 %

G en G e n e ra l  M o d e l 0 2 /0 1 /8 7 -3 1 /0 8 /9 4

K & W K in g  a n d  W a d h w a n i r e s u lts 0 1 /1 2 /8 7 -2 8 /0 2 /8 8

H M & N H a m a o , M a s u lis ,  a n d  N g  re s u lts 0 1 /0 4 /8 5 -3 1 /0 3 /8 8

T & L T h e o d o s s io u  a n d  L e e  re s u lts  (W e e k ly ) 1 1 /0 1 /8 0 -2 7 /1 2 /9 1

W ith  w e e k e n d  d u m m y  if  a v a i la b le
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Appendix

Appendix 5.1. King and Wadhwani Model with notations of this chapter

Return of the market is explained as the sum of the cumulative value of 

news term of the market and the one of the other market. Assuming two markets 

(j and j- 1 ) exist, we express this condition as follows;

R j - u  =  £ j - \ . t  + P j - i , j  1 ( A l )

Rj,l =£J,l +Pj,H -£j-„ (A2)

If we reformulate Equation (Al) as an equation of Ej.jj, £ j . j t can be replaced in 

Equation (A2), and the new equation is:

R JJ -  e i . t  + P j J - i ( R j - i , t  ~ P j j --I )

■r h , r + £ j . t - P j , j - i  ‘ P j . j -1 ' £ j , t - l

=  P j , H ■R H j + V - P j . J - l ’ P j . j - i L ) - £ j ,

Then, in the same: manner,

R j - u  -  P i - 1 ,j R j ,t - \  + ( l ~ P j - 1,r P j - u j -V-C j-u (AT)

R , „  =  P , H R m ,, 1 ■ P , M L)-£j ,, (A2')

Therefore, the MA coefficient is the product of the contagion coefficients.
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6. Implied Volatilities and Skewness across the Index Options 

Markets: Comparison and Transmission

6.1. Introduction

The linkage of the international equity markets has been examined by 

many academics and practitioners, especially after the crash in 1987. The 

spillover of returns and volatilities to the next-opening market interests not only 

finance-related persons but also regulators, including central bankers and 

governmental officers. Examples of works in this field are Becker, Finnerty, 

and Gupta (1990), King and Wadhwani (1990), and Hamao, Masulis, and Ng 

(1990). Kamiyama (1996) developed a general model which integrates both 

return and volatility spillovers, whereas previous papers concentrated on one or 

other of them. All of these focus on the returns and/or observed volatilities 

which affect each other, but few have examined if there is an implied volatility 

spillover among the major international equity index options markets.

Skewness of the implied volatility is observed in most of the index options 

markets of the world. For example, Bates (1991) concludes that the crash of 

1987 was expected by market participants in U.S. because negative skewness 

was observed during October 1986 to August 1987 in the S&P 500 futures 

options market. Gemmill (1995) examines the FTSE options market in pre- 

and post-crash periods to show whether market participants anticipated the crash 

and finds no such ability. Taylor and Xu (1994b) find evidence of the skewed 

shape of the implied volatility vs. exercise price of the S&P 500 options on 

futures from January 1988 to December 1992. Heynen (1994) analyses the 

implied volatility pattern of the Dutch index options market, and concludes that 

the pattern is significantly U-shaped.
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Skewness is set by option market participants and so reflects their 

behaviour. One hypothesis of this behaviour is that option markets participants 

only passively follow the index return of the day to buy and/or sell options so 

that implied volatility skewness is formed. If this were the case, skewness 

would be explained by index returns, but index returns on the next day would 

not be explained by skewness. The alternative hypothesis of this behaviour is 

that option-market participants rationally anticipate the next day return of the 

index and develop the appropriate implied volatility skewed shape. If this were 

true, the next day’s index returns would be influenced by the skewness of today.

Although there are many papers describing how skewness of implied 

volatility affects the pricing of options (ex. Bates (1994) and Madan and Chang 

(1995)), there are few papers which focus on the relationship between skewness 

and index returns. Gemmill (1995) finds that there was a small tendency for 

FTSE to be left skewed when the market had risen and right skewed when it had 

fallen. But Gemmill (1995) also finds that FTSE options traders had no 

premonition of the crash of 1987.

One purpose of this chapter is to examine the implied volatility 

transmission among the three major index options markets all over the world, 

including the Nikkei 225 options on futures listed on SIMEX (Singapore 

International Monetary Exchange), FTSE index options listed on LIFFE (London 

International Financial Futures Exchange), and S&P 500 options on futures 

listed on CME (Chicago Mercantile Exchange). Secondly, we compare these 

markets in terms of (domestic) index returns versus (domestic) implied volatility 

and skewness, both contemporaneously and with lags. In this way, we examine 

if the skewness is formed passively by options traders who follow the market
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direction, or option traders can rationally forecast the next day’s return of the 

index. The results may vary for the three markets.

The third issue in this chapter is the dependence of skewness among the 

three major index options markets, extending what Gemmill (1995) has done by 

examining three options markets. Index return spillover is observed by King 

and Wadhwani (1990) and volatility spillover is also found by Hamao, Masulis, 

and Ng (1990) in the GARCH methodology. How about spillovers in the 

skewness of implied volatility? If the skewness of an option market was 

subject to the day’s return of the index, skewness would spillover to the next- 

opening market because of the index return’s spillover.

The chapter is written as follows. In Section 2, the method undertaken is 

explained. Section 3 describes the data utilised in this chapter, and the test 

results are shown in Section 4. The conclusions are given in Section 5.

6.2. The Data

For the Japanese market, Nikkei option on future and the underlying future 

settlement price data have been provided from the Singapore International 

Monetary Exchange (SIMEX). In order to calculate the implied volatilities, 

daily three month CD rates are used for all the maturity dates. The nearest 

contract month is used for Nikkei, because that is the most heavily traded. We 

roll over the nearest contract when time to maturity becomes less than 5 days. 

For the British market, FTSE options data have been obtained from Gordon 

Gemmill of City University London, who collected originally from the Financial 

Times, the Stock Exchange Daily Official List, and London International 

Financial Futures Exchange (LIFFE). Three-month interest rates are used for 

implied volatility calculation, and the rates are obtained from Datastream by
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Gemmill. The second-month maturity options are analysed because they are 

the most liquid. For the U.S. market, S&P 500 options on futures price data 

have been provided by the Chicago Mercantile Exchange (CME). For the 

short-term interest rate, the 3-month T-Bill rate is used for any time to maturity. 

The contract month for the data analysed is the second-nearest contract month, 

because it is generally most liquid.

The period examined is from 01 April 1992 to 29 December 1995' and the 

total number of daily records of each is 891 for Nikkei, 945 for FTSE, and 928 

for S&P. Figure 3 shows the index levels of the three markets during the 

sample period (all the indices are set at 100 as of 01 April 1992). Figure 6.4 

shows the implied volatilities of the three markets.

Implied volatilities for American-type options on futures (Nikkei and 

S&P) are calculated with the method proposed by Barone-Adesi and Whaley 

(1987)2. The implied volatility calculations for the FTSE options are made 

with a dividend-adjusted binomial model, because this contract is based on the 

cash index.

6.3. The Method

6.3.1.a Does implied volatility spillover?

The implied volatility (IV) transmission is examined as below.

IVnkJ= c  +  P \ • I V n U - 1 +  P  2 (la)

C +  P i ■ J V , + P 2 '' I V n k , t + P , I V , rJ_l (lb)

I V , , = c  +  P \ +  P i • w fiJ (lc)

where IV is implied volatility, A IV is a daily percent change in implied

1 The SIMEX contract began trading in April 1992, hence the starting data for the data.
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volatility, and t is time counted by day. By using Equations (la), (lb), and (lc), 

we examine how a level of IV of a market affects the next-opening market’s 

level of IV2 3. In other words, we examine if a high level of IV in a market spills 

over and makes the next-opening market’s IV higher.

A I V ^ c + 0 ,A/VV,-, + P 2 A / V ,  A/V,,.,., (Id)

A IVt =c+ P ,A I V , ^  +P2  A/V„, +P,  A (le)

A lV ,r.,= c+P, AIVW_, +P 2A/V,, (If)

By using Equations (Id), (le), and (10, we examine how a chanse in IV 

of a market affects the next-opening market’s change in IV4. This means that 

we examine if the large change in IV of a market leads a similar change in IV of 

the next-opening market.

6.3.1.b Does implied volatility depend on index return of the day?

We analyse the relationship between returns and implied volatilities as 

shown below.

IV xt = c + P i • re t x t + P 2 ■ sqret  xt (lg)

M V x t = c + j8  3 • re t x t + /} 4 • sqret  v , (lh)

where,

A IV = IV t/IVt.i - 1

2 Please see Appendix 6 .A.
' We employ the SUR (seemingly unrelated regression) process to solve these equations 
simultaneously because these three may have correlated disturbance terms. The objective 
function to be minimised is 

1 "

Sn = —2 ^q (y t ,xt ,6 ) Yj~'q{yt ,xt ,0), where the model, q, has dependent variables ofy„
n

independent variables of xh and the parameters of 6  . The cross-equation covariance matrix, 
2 , is estimated by OLS. The SAS/ETS software is used for the process.

4  The equations are also solved by SUR.
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c: Constant

x: Nikkei, FTSE, or S&P

ret. Log return of the cash index

sqret: squared return of the cash index

A IV is proportional change in skewness, which does not depend on the 

level of IV with respect to the effect from returns. A squared return may also 

be called a daily observed variance. If squared returns strongly affect implied 

volatility or change in implied volatility, participants may be considered to buy 

and/or sell options by watching observed index direction. The results must be 

compared with the relationship between returns and skewness in Section 3.3.

6.3.2 What is skewness?

Bates (1991) developed a skewness measure based upon interpolated 

option prices. In this chapter, we will use a measure based upon interpolated 

volatilities (Gemmill (1995)), which is:

<7, (+2 %) + d i j f - a ,  ( - 2 %)
skew, =

<7, (+2%) (2)

where,

dijf: the difference in implied volatility (IV) of at-the-money puts and at- 

the-money calls (= ATM Put IV — ATM Call IV), 

a : the implied volatility

(+x%): an exercise price which is x% above at-the-money price 

We interpolate implied volatilities by exercise price by using nearest-the-money 

(NTM) calls and puts, and OTM options (NTM+500 exercise price for calls and 

NTM-500 for puts), because normally we have no exact at-the-money options in 

any of three markets. In the same way, we interpolate ATM ±2% implied
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volatilities. See Figures 6.1.a and 6 . l.b for more details in calculating the 

skewness measure from observed NTM and OTM option implied volatilities. 

At-the-Money is defined as the day’s underlying futures price for Nikkei or S&P. 

For FTSE options, the forward price of the day for the option’s time to maturity 

is calculated, and at-the-money forward is used for analysis.

The “dijf' term is included to allow for difference between at-the-money 

put and call volatilities, as were found by Gemmill for the FTSE index options. 

In this chapter, we accept the risk free rates from outside of the pricing models, 

for example, 3-month CD rates in order to discount the Nikkei 225 options. If 

we would like to omit the dijf term, we needed to accept the “implied” risk-free 

rates which would be derived from the option prices which could make the 

implied volatilities of calls and puts exactly same. On the other hand, we could 

not find diff which may exits, if we accepted the “implied” risk-free rates.

Stationarity of IV and of skewness are examined with the Unit Root 

(Dickey-Fuller) test regression. The test is designed as shown below.

AIVx! = c  + 6 A I V x^  + f i - I V XJ_l (3a)

dskewx l = c + 9 ■ dskewxt_{ + [5 ■ skewx t_, (3b)

where dskew is a lagged difference (not a percent difference here). Over the 

sample period, it is likely that the IVs and skewness of all three markets are 

stationary (¡3 <1), although IV of FTSE has the relatively high level of lower tail 

area to make an error.

6.3.3 Is skewness dependent on index return of the day?

If option traders were passive to the market direction of the day to form 

the smile of implied volatility, we would observe significant coefficients from 

the regression models as shown below.
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s k e w x., = c + P , • retx , + p 2 sqre t x , (4)

A skew x , = c + p 3 • ret x, + P 4 • sqre t x , (5)

where,

A s&<?w = skewt / skewt.i - 1 

c: Constant

jc: Nikkei, FTSE, or S&P

ret: Log return of the cash index

sqref. squared return of the cash index

A skew is proportional change in skewness, which does not depend on the level 

of skew with respect to the effect from returns. A squared return may also be 

called a daily observed variance. If squared returns strongly affect skewness or 

change in skewness, participants may be considered to buy and/or sell options by 

watching observed volatility rather than index direction.

6.3.4 Can Skewness forecast the next-day index returns?

If option traders rationally forecast the returns of indices on the next day, 

we would find significant coefficients in the regression model as below.

r e t x . ,  = C +  P  1 • s k e w  x . , - \  (6)

If ¡3 i is significant, the skewness level directly affects the next-day return, that 

is, the traders change the shape of skewness directly affected by their forecast to 

the market. If no coefficient is significant, we may conclude that skewness 

does not influence subsequent returns.

6.3.5 How independent is skewness over the world?

Skewness may spill over across markets. Option traders may watch 

skewness of implied volatilities in the other markets to form their own skewed 

implied volatilities in their option market. This may be tested as follows:
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(7a)

(7b)

skewipJ=c + P l ■ skewspt_{ + p 2 ■skewflt + p 2-skewnkt (7c)

tekeM>nkt=c + P , ■ Askew n k , _ x + p 2 ■ Askew f i l _ x + /33 ■ Askew5pt_ { (7d)

Askewftt= c + (3{ ■ Askewft l_x + f i2 ■ Askewnkt +/33 ■ Askew s p l _ x (7e)

A s k e w ^ c  + P , ■ Askewspt_x +/32 ■ Askewfit + /J3 •Ajtew,,*, (7f)

Similar to the implied volatility transmission tests (Equations (la) to (If)), we 

examine the levels and changes in skewness, i.e. we test if market participants 

watch and react in the market either to the levels or changes in skewness in their

In Figure 6 .2.a, we plot the 20-day moving averages of skew to avoid too 

much noise from the data series. These moving averages may be considered as 

a measure of optimism / pessimism which is hypothesised to spread across 

markets.

6.4. Test Results

As a preliminary, Table 6.1 examines the difference between at-the-money 

put and call IVs. They are significantly different (5% level) for all the three 

indices. The FTSE options has a “call bias” in the sample period, although a 

put bias was reported by Gemmill (1995) for FTSE in the earlier sample period 

of July 1985 to December 1990. The Nikkei and S&P options have a “put 

bias” on the other hand. A bias in the skewness estimate due to the put/call 

difference is avoided by subtracting diff in Equation (2).

The skewness measures of the three markets are shown in Table 6.2 and

5  Equations (7a) to (7c) and Equations (7d) to (8 f) are solved by SUR.

own and other nation’s markets5.
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Figures 6 .2.a (20-day moving average) and 6.2.b (5-day average - step 5 days). 

All three skewness estimates are significantly negative (5% level). The S&P 

skewness is always negative over the sample period, even though the American 

equity market was bullish during this period. The S&P skewness is largest 

among three, although the reason is not clear. The U.S. traders may be more 

cautious to the down-side risks of the market after the Crash of 1987, than the 

participants of the other two. The Nikkei skewness is also negative in most of 

the period, whereas the FTSE occasionally shows positive skewness. FTSE has 

most volatile skewness movement, and S&P the least. From the figures, it can 

be expected that the skewness is autoregressive.

Tables 6 .3.a and 6.3.b show the results of the augmented Dickey-Fuller 

test. The Nikkei and S&P IVs are stationary, but it is of some risk to judge that 

the FTSE IV is stationary. All the skewness are stationary.

6.4.1.a Does implied volatility spillover?

Table 6.4 gives descriptive statistics on the implied volatility data series 

(average of ATM calls and puts) for the three markets. The mean IV of the 

Nikkei is the largest of the three (23%), the FTSE is the second (15%), and the 

S&P lowest (11%). As might be expected, the FTSE and S&P volatilities are 

highly correlated (0.53), the Nikkei and S&P somewhat (0.22), and the FTSE 

and Nikkei only slightly (0.11). Table 6 .5.a gives the regression results for 

transmission of the implied volatility levels (Equations (la) to (lc))6. The level 

of Nikkei implied volatility is independent of those in any other market. 

However, the S&P IV affects the FTSE IV a little (coefficient is 0.04), and both 

the Nikkei and FTSE IVs affect the S&P IV significantly, although the effects

6  The residual covariances are so low to be negligible (from 2.6485e-06 to 0.00001077).
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are small (coefficients are 0.006 and 0.032 respectively).

In the long run (as reflected by levels)7 8, there appears to be a small impact
Q

of one market’s IV on another. Durbin’s t-tests indicate that the regression 

results for Nikkei and S&P are suffered from serial correlation even with lagged 

dependent variables. However, the changes in implied volatility (reflecting 

short-run effects) (Table 6.5.b) are more interesting (Equations (Id) to (If))9. 

The change in S&P IV and Nikkei IV affect positively the next day’s change in 

the IV for FTSE (coefficient = 0.1026 and 0.048 respectively). The change in 

the FTSE IV affects the change in the S&P IV (coefficient = 0.3308), and in the 

Nikkei IV (coefficient = 0.1954). Table 6.5.b also indicates that IV is mean- 

reverting because all autoregression coefficients are negative.

From the results above, we conclude that long-term levels of IV are related 

for FTSE and S&P, but day-to-day changes are more closely related. When the 

IV of one market changes, the next-opening market’s IV is likely to change in 

the same direction. Options traders tend to react to the change rather than the 

level of the other market.

These results for spillovers of IV are different from the results for 

volatility spillovers found in Chapter 5, using equivalent regressions. Nikkei 

conditional variance (by GARCH) is explained 0.02 by the S&P variance (not 

significant for IV change), and FTSE variance is explained 0.13 by the Nikkei 

variance (0.048 for IV change). The spillovers from Nikkei to S&P are not 

significant in both the GARCH and IV results. Nikkei conditional variance is

7 See Appendix 6 .B for more detailed analysis by ECM (error correction model).
8  Durbins’s t-test consists of regressing the SUR residuals at t on the explanatory variable and 
the one at t- 1 and testing the significance of the estimate for coefficient of the residua! at t- i .
9  The covariances are also very low (from -8.1232e-06 to 0.0000628).
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significantly explained 0.07 by the FTSE variance, and the same direction of IV 

spillover is significantly observed (0.1954).

6.4.1.b Does implied volatility depend on index return of the day?

Table 6.5.c and 6.5.d show the results from Equations (lg) and (lh), 

respectively. We find rather low Durbin-Watson statistics for all three markets 

by using Equation (lg), as shown in Table 6.5.c. First differences (Equation 

(lh)) removes the autocorrelation of the original data series, and we find 

significant and strongly negative relationships in Table 6.5.d between changes in 

implied volatility and returns in all three markets. Also, there is a significant 

and strongly positive relationship between change in implied volatility and 

squared return in all three markets, which is no surprise.

This evidence supports the idea that the changes in implied volatilities are 

domestically determined by returns and volatilities of the underlying asset of the 

day. As returns fall in the underlying assets, so implied volatility increases in 

all three markets.

6.4.2 Is skewness dependent on index return of the day?

Table 6 .6 .a shows the regression results from estimating Equations (4) in 

which skewness is related to market return. We find low Durbin-Watson 

statistics for all three markets by using levels (Equation (4)), so those results are 

ignored.

Taking differences as in Equation (5) (Table 6 .6 .b), we find little 

relationship of skewness to returns, except for the S&P case, for which skewness 

becomes more negative when volatility (squared returns) rises. The result is 

consistent with the result for implied volatility as in Table 6.5.d. When the 

S&P index falls, the implied volatility rises and the smile becomes more left-
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skewed.

6.4.3 Can Skewness forecast the next-day index returns?

Table 6.7 shows the regression results from estimating Equation (6 ), 

which tests whether skewness anticipates next day’s returns. Only the FTSE 

index return is significantly dependent on the skewness level of the day before. 

The coefficient is positive but its size is small.

6.4.4 How independent is skewness over the world?

Tables 6 .8 .a and 6 .8 .b show the regression results of Equation (7a) to 

(7f)10. For all three markets, we find a strong and significant autocorrelation of 

the skewness, but very little else. Furthermore, Durbin’s t-tests indicate that all 

the three regression results are suffered from serial correlation even with lagged 

dependent variables. On the other hand, the changes in skewness have no 

significant interrelationship among the three markets. Thus, we conclude that 

no spillover of skewness exists among the three markets. Market participants 

do not seem to watch any movement of skewness of another market day by day. 

We also examine the 5-day average skewness series (Table 6.9), trying to reduce 

possible noise in the skewness measures. The data are gapped to avoid 

overlapping. The Durbin-Watson statistics indicate strong autocorrelation and 

then is no significant relationship among markets.

6.5. Conclusion

Implied volatilities are correlated among the three markets. The 

relationship between FTSE and S&P is rather strong. In testing both levels and 

changes, FTSE and S&P affect each other while Nikkei affects FTSE and FTSE 

affects Nikkei (slightly). The results differ from the GARCH analysis of

1 0  See Appendix 6 .B for more detailed analysis by ECM (error correction model).
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historical volatility spillover in Chapter 5 in terms of size of effect. The level 

of IV seems to depend mostly on the domestic market matters than what is 

happening in other markets.

We find strong and significantly negative relationships between changes in 

implied volatilities and market returns. The fact indicates that the traders’ 

reaction to the downward movement of the domestic market tends to be large 

increases of implied volatilities, and vice versa. The squared returns (observed 

volatilities) have positive correlations to the implied volatility shifts. Traders’ 

forecast seems constructed by the recent domestic market direction and volatility, 

so that implied volatilities are dependent on the underlying asset returns and 

volatilities strongly.

All markets have left-skewed volatility smiles. However, there is no 

relationship between skewness across markets (N.B. Appendix 6 .B shows a 

different result). Although a change in IV spills over, the subjective 

distribution of the underlying index of the market of a market is not affected by 

the one of a trader in any other market. Traders in these three markets do not 

seem concerned by the implied distribution formed in other options markets. 

However, we already know that returns spill over to each other. Because 

returns on the domestic markets affect changes in implied volatilities, the 

information contained in changes in skewness may be transferred implicitly in 

the returns from the other market, then traders forecast their own market return 

distribution seemingly domestically.

Skewness is not related to market returns, but in the U.K. only, market 

returns are slightly predicted by skewness. By nature, skewness does not mean 

the next-day return prediction, but means the predicted distribution of the
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underlying index returns as of options expiry.

Volatility smiles are local phenomena (N.B. Appendix 6 .B shows a 

different result). They change frequently but the changes are not caused by 

factors which have an international character. There are not waves of 

bullishness or bearishness which sweep across markets. Nevertheless, we still 

cannot explain the negative skewness of the volatility smiles observed and their 

frequent changes".

11  For Nikkei, we have also regressed put/call ratio (daily) to skewness, because the ratio is a 
bullishness measure of traders in options markets. The result is ambiguous yet. The ratio is 
negatively correlated to skewness, but Durbin-Watson statistic is 1.17, too low. The ratio is 
not significantly correlated to the first difference of skewness, although the coefficient is 
negative.
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Table 6.1. Difference in ATM implied volatilities between Calls and Puts

Nikkei FTSE S&P
Mean 0.015502614 -0.004875307 0.02279714

Standard Deviation 0.016978888 0.021998138 0.005105232
# of observation 891 947 928

95% confidence interval 
is between:

0.01661899 
and 0.01438624

-0.00347244 
and -0.00627817

0.02312603 
and 0.02246825

Mean is: more than 0 less than 0 more than 0

N.B. Difference is defined as Put IV minus Call IV.
FTSE is negatively biased (calls expensive), others positively.

Table 6.2. Skewness in the Markets

Nikkei FTSE S&P
Mean -0.06780685 -0.07986825 -0.21972618

Standard Deviation 0.081884986 0.04740339 0.057092702
# of observation 891 947 928

95% confidence interval -0.06219669 -0.07666382 -0.21604809
is between: and -0.07296468 and -0.08270983 and -0.22340427

&, (+2 %) + diff — o t ( - 2 %)
<7, (+2%)

Table 6.3.a Unit Root Test (H0: Implied volatility is stationary)

Nikkei FTSE S&P
6 -.055878

(-1.556)
-.010887
(-.326)

-.253322
(-7.743)

fi -.032233
(-3.483)

-.019316
(-3.024)

-.074355
(-4.757)

Lower tail area .04157 .12784 .00099
t values are in bracket.
A / V „ = c  + e - A / V , , _ 1 + / S - / V „ _ ,

Table 6.3.b Unit Root Test (Ho: Skewness is stationary)

Nikkei FTSE S&P
6 -.285256

(-7.657)
-.200678
(-5.921)

-.240527
(-7.225)

fi -.392192
(-10.394)

-.336490 
(-1 1.017)

-.105689
(-6.229)

Lower tail area . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1

t values are in bracket.
dskewx t = c + 6  ■ dskewx l + ß ■ skewx f_,

Lower tail area: the probability to make an error if H0:( ¡3 = a - 1  =0) is rejected
at the 5% confidence interval with the table provided by 
Dickey and Fuller (1981)
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5 2 .0 %

5 1 .0 %

5 0 .0 %
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>  4 9 .0 %
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F i g u r e  6.1. a  A T M  a n d  ± 2 %  I m p l i e d  V o l a t i l i t y  I n t e r p o l a t i o n :  E x a m p l e  A
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Exercise Prices

Figure 6.1. b ATM and ±2% Implied Volatility Interpolation: Example B
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Figure 6.2.a 20-day Moving Average Skewness for Three Markets
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Figure 6.2.b Skewness in the Three Markets
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Figure 6.3 Relative Price Movements of the Three Indexes
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Figure 6.4 Implied Volatilities of the Three Major Markets
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Table 6.1. Difference in ATM implied volatilities between Calls and Puts

Nikkei FTSE S&P
Mean 0.015502614 -0.004875307 0.02279714

Standard Deviation 0.016978888 0.021998138 0.005105232
# of observation 891 947 928

95% confidence interval 
is between:

0.01661899 
and 0.01438624

-0.00347244 
and -0.00627817

0.02312603 
and 0.02246825

Mean is: more than 0 less than 0 more than 0

N.B. Difference is defined as Put IV minus Call IV.
FTSE is negatively biased (calls expensive), others positively.

Table 6.2. Skewness in the Markets

Nikkei FTSE S&P
Mean -0.06780685 -0.07986825 -0.21972618

Standard Deviation 0.081884986 0.04740339 0.057092702
# of observation 891 947 928

95% confidence interval -0.06219669 -0.07666382 -0.21604809
is between: and -0.07296468 and -0.08270983 and -0.22340427

xTn , <J, (+2%) + diff -  a  ( - 2 %)
N.B. skew, = ---------------------------------

<7, (+2%)

Table 6.3.a Unit Root Test (H0: Implied volatility is stationary)

Nikkei FTSE S&P
6 -.055878

(-1.556)
-.010887
(-.326)

-.253322
(-7.743)

P -.032233
(-3.483)

-.019316
(-3.024)

-.074355
(-4.757)

Lower tail area .04157 .12784 .00099
t values are in brae cet.
A/v,., = c + e - i / v „ _ l +0-/v„_,

Table 6.3.b Unit Root Test (H0: Skewness is stationary)

Nikkei FTSE S&P
0 -.285256

(-7.657)
-.200678
(-5.921)

-.240527
(-7.225)

P -.392192
(-10.394)

-.336490 
(-11.017)

-.105689
(-6.229)

Lower tail area . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 1

t values are in bracket.
dskewx t = c + 9 ■ dskew( [_{ + ß ■ skewx

Lower tail area: the probability to make an error if Ho:( ¡3 -  a -1=0) is rejected
at the 5% confidence interval with the table provided by 
Dickey and Fuller (1981)
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Table 6.4. Implied Volatilities (at-the-money) across Markets

Nikkei (891 data) FTSE (947 data ) S&P (928 data)
Mean 0.2373991 0.1533680 0.1165869

Standard Deviation 0.0790239 0.0289856 0.0159479
Minimum 0.0931895 0.1072213 0.0847353
Maximum 0.5154700 0.2552574 0.1871148

Correlation to Nikkei — — —

to FTSE 0.11373 — —

to S&P 0.22851 0.53672 —

Table 6.5.a Transmission of Implied Volatility across Markets - SUR Results
■^'--^Dependent

IndependenT^^-^
Nikkei FTSE S&P

Constant 0.009960
(1.690)

0.0000056
(0.004)

0.009826
(4.939)

Nikkei 0.969702®
(99.434)***

-0.001764
(-0.693)

0.006214
(1.897)*

FTSE 0.029705
(0.961)

0.963932® 
(119.065)***

.032443
(3.079)***

S&P -0.072490
(-1.226)

0.048930
(3.168)***

0.858836®
(42.950)***

R squared 0.9342 0.9658 0.8050
Durbin’s t stat (-1.815)* (-0.378) (-5.191)***

N.B. @: autoregressive coefficient (lagged one period)
t values in bracket :*: 5%, **: 2.5%, ***: 1% significant

Table 6.5.b Transmission of Changes in Implied Volatility across Markets - SUR 
Results

''~~~~~^^Dependent 
Independent"" ___

A Nikkei A FTSE A S&P

Constant -0.003716
(-1.193)

-0.000637
(-0.514)

0.000823
(0.365)

A Nikkei -0.073360®
(-1.871)*

0.048415
(3.107)***

0.005871
(0.206)

A FTSE 0.195431
(2.003)**

-0.084574®
(-2.193)**

0.330880
(4.646)***

A S&P 0.010104
(0.196)

0.102680
(5.014)***

-0.291126®
(-7.751)***

R squared 0.0104 0.0546 0.0979
Durbin's t stat (0.439) (-0.206) (-0.711)

N.B. @: autoregressive coefficient (lagged one period)
t values in bracket 5%, **: 2.5%, ***: 1% significant
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Table 6.5.c Factors Determining IV
Nikkei FTSE S&P

Constant .225263
(79.743)

.150421
(150.334)

.115027
(199.391)

Returns -.215961
(-1 .2 1 2 )

-.217734
(-1.870)*

-.618633
(-7.037)***

Squared Returns 57.9391
(10.391)***

47.5969
(7.839)***

50.1706
(6.214)***

R squared .1160 .0627 .0852
F statistics 54.0899 30.8246 40.8688

Durbin-Watson stat .2533 .1412 .2433

Table 6.5.d Factors Determining Change in IV
A Nikkei A FTSE A S&P

Constant -.013135
(-5.096)

-.13865 le-2 
(-1.382)

-. 184837e-2 
(-0.907)

Returns -2.45998
(-15.137)***

-2.20653 
(-18.911)***

-5.32943
(-17.165)***

Squared Returns 49.2152
(9.673)***

29.2611 
(4.809)***

132.395
(4.643)***

R squared .2687 .2807 .2583
F statistics 151.429 179.747 152.752

Durbin-Watson stat 2.0641 2.2309 2.5342

Table 6.6.a Factors Determining Skewness
Nikkei FTSE S&P

Constant -.071650
(-22.791)

-.082185
(-51.083)

-.223336
(-102.521)

Returns .302671
(1.527)

-1.67226
(-8.932)***

.295998
(0.891)

Squared Returns 9.63756
(1.553)

56.0396
(5.740)***

101.027
(3.314)***

R squared ,6174e-2 .0954 .0138
F statistics 2.5597 48.5883 6.1617

Durbin-Watson stat 1.0495 .8515 .2505

Table 6.6.b Factors Determining Changes in Skewness
A Nikkei A FTSE A S&P

Constant -1.45213 -0.455168 .027579
(-0.892) (-0.971) (3.502)

Returns -12.5634 59.7632 -1.37605
(-0 . 1 2 2 ) (1.096) (1.146)

Squared Returns 1471.48 -313.541 -316.727
(0.458) (-0 . 1  1 0 ) (-2.874)***

R squared ,2645e-2 .1313e-2 .01 14
F statistics .1090 .6056 5.081

Durbin-Watson stat 1.9910 2.0086 2.3093
N.B. t values in bracket 5%, **: 2.5%, ***: 1% significant
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Table 6.7 Returns as a Function of Skewness on the Day Before
Nikkei FTSE S&P

Constant .564033e-03
(0.854)

-,147978e-03
(-0.282)

.424583e-03
(0.549)

Skew
(the day before)

.43437 le-02 
(0.695)

.759690e-02
(-1.335))

-,201861e-03
(-0.059)

R squared ,5865e-03 .1930e-02 .3991e-05
Durbin-Watson stat 1.9238 1.8284 1.9781

t values in bracket

Table 6.8.a Skewness across Markets - SUR Results
Nikkei FTSE S&P

Constant -0.044909
(-3.665)

-0.039795
(-6.351)

-0.030312
(-6.379)

Nikkei 0.440612®
(12.989)

0.003930
(0.232)

0.013072
(1.009)

FTSE -0.167529
(-2.703)***

0.559332®
(17.650)

-0.013487
(-0.567)

S&P 0.037128
(0.790)

-0.024058
(-1.007)

0.865390®
(47.186)

R squared 0.2007 0.3047 0.7554
Durbin’s t stat (-2.238)*** (-1.826)* (-5.544)***

N.B. @ marked for autocorrelation t values in bracket

Table 6.8.b Changes in Skewness across Markets - SUR Results
A Nikkei A FTSE A S&P

Constant -1.382691
(-0.736)

-0.639483
(-1.050)

0.024358
(2.763)

Nikkei -0.000513®
(-0.013)

-0.000020493
(-0 .0 0 2 ))

0.000056266
(0.305)

FTSE -0.001094
(-0.009)

0.000448® 
(0 . 0 1  1 )

0.000344
(0.605)

S&P -0.516591
(-0.063)

0.730023
(0.273)

-0.182533®
(-4.716)

R squared 0 . 0 0 0 0 0 . 0 0 0 1 0.0338
Durbin’s t stat (-0.007) (-0.008) (-0.152)

N.B. @ marked for autocorrelation t values in bracket
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Table 6.9. 5-dav Average of Skewness across Markets
Nikkei FTSE S&P

Constant -.044431 -.022324 -.214489
(-2.504) (-0.854) (-34.309)

Nikkei — .049348 .044887
(0.470) (0.678)

FTSE .045135 — .045949
(0.900) (1.005)

S&P .090993 .123383 —

(1.159) (1.082)
R squared . 0 1 2 0 .0077 .0079

Durbin-Watson stat 0.7440 0.9215 0.3261
N.B. t values in bracket *: 5%, **: 2.5%, ***: 1% significant

5-day average is calculated, if any of three markets is open.
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Appendix 6.A. Barone-Adesi and Whaley Model

This Appendix shows how American options on futures are priced, which 

was suggested by Barone-Adesi and Whaley (1987).

Black and Scholes (1973) may be adjusted for pricing options on futures 

easily as below (it is called Black’s model).

C = e~n(F ■ N(dx) -  K ■ N(d2))
P = e~n {K ■ N ( - d 2) -  F ■ N ( - d l))
where (Al)

, ln(F / K) + ( a 2 / 2)t
“ l ~ r-

(TVi
d2 = dt — (t V7

C: European-type Call Price P: European-type Put Price

F: Underlying future price K: Exercise Price

N( • ): Normal distribution density function 

a : Annual volatility

Because American option can be exercised if it is appropriate. If F was more 

than the price at which it is appropriate to exercise in terms of call options, call 

price would equal F -  X. When F* is defined as the boundary condition to 

exercise options, American-type options are priced as below:

F
c{F) C(F) + A2(— ) 

F
F - K

v 2 F < F 

F>  F*
(A2)

P(F) = 

where,

W  + A .Æ )
F

K - F

-(-
2  r

F > F 

F <  F**

n 2r , 4-2r/cr-
0 - A (—  - 0  +- -  e

12

(A3)

v, = 2  r
cr 1) / 2
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f

\ vi /

a 2 =
V V 2

dl(F) =

{î-TVM.iF**)]}

\n(F / K) + (r + o 2/2) ■ t 
o j t

The boundary condition is calculated by a numerical method. F* and F* 

should have relationships as follow:

F*CALL: F* -  AT = C(F*) + {1 -  N[d{ (F*)] }-

PUT: F - F "  = F(F**)-{1-A[if,(F**)]}

v 2

F*
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Appendix 6.B. Error Correction Model for the Long-run Relationship

In this Appendix, we examine if the implied volatility levels and their 

skewness of major markets spill over to one another. Although the basic 

results are shown in the chapter, we introduce an Error Correction Model (ECM) 

in order to examine a long-run relationship among six time series, that is, IV and 

skewness series of Nikkei, FTSE, and S&P.

Firstly, the cointegration test is examined. If we assume an equilibrium 

relationship between two time series, we employ the cointegration test to show 

the existence of the long-term relationship, proposed by Engle and Granger 

(1987). In the present context (implied volatility), we have:

IV fiJ= c+ P/t ~lVnkJ (Bla)

’V,r.rC+P„,-lVfJ (Bib)

IV«j=c + P « ' lvw -i (Blc)

where IVX, , is implied volatility of the x (Nikkei, FTSE, or S&P) market at time t. 

IV is replaced for Skew when we examine the skewness of the three markets. If 

a long-term equilibrium relationship exists between two markets out of the three, 

the residual of the regression will be stationary. Stationarity is tested by the 

Engle-Granger test (EG test), that is:

= (« -  l ) v (i,_, + uXJ (B2)

where v, is a residual vector of the volatility regression (B1). The ordinary least 

square method is employed to estimate if a - 1  is equal to zero or not, testing 

with the Dickey-Fuller critical value table for the t statistic of the coefficient.

Then, the Error Correction Model (ECM) is examined. If two series are 

cointegrated, an error from the equilibrium is corrected because the error series
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is stationary. Assuming that the implied volatility of one market is dependent on 

the implied volatility of the other market which has just closed, as described in 

Equations (Bla) to (Blc), the equilibrium error is defined as:

V.= t V . r c - P . - I V r .u - i  (B3)

In ECM, the dispersion from the equilibrium is a dependent variable (in 

the case of Nikkei and S&P as an example) as below.

^  IVnKt ~ @nk "I" bnk " Vf-/ + Cnk A IVSp,t-l (B4)

IVSp,t — ciSp + bSp • V[-i + cSp A IVnk,i (B5)

When the coefficient of the residual in the IV nk equation (bnk) is negative, it 

means that IVnk corrects the error by changing its own level. When bsp is 

positive, IVspJ also corrects the error by changing its own level (all the IVs are 

replaced for Skew in the case of examining skewness).

The EG test results are shown in Table B 1. There does not seem to be a 

long-run relationship in IV from Nikkei to FTSE. However, FTSE affects S&P 

in terms of the IV level. Also, S&P seems to be affected by Nikkei and the 

Nikkei by S&P in IV. Table B2 shows how the correction process occurs in 

each combination. FTSE and S&P are corrected to each other to their long-

term relationship. On the other hand, only S&P adjusts its IV level to the 

equilibrium while Nikkei ignores the S&P change in IV.

Table B3 is the EG test results for skewness. In contrast to the results in 

Section 4.4 in Chapter 5, there seems to be significant relationships among the 

skewness of the three markets. In all the combinations, the coefficients of 

residuals are significantly negative. The strongest relationship is from FTSE to 

S&P, shown as the coefficient of skewness (-.103522). The correction 

processes to the equilibrium level are shown in Table B4. Between Nikkei and
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FTSE, and between FTSE and S&P, skewness is corrected to each other. Both 

have negative coefficients of change in residuals. Between S&P and Nikkei, 

we have a confusing result because we have no correction from Nikkei to S&P 

under the equilibrium relationship from the S&P skewness at t-1 to the Nikkei 

skewness at t, but a significantly negative (coefficient is -.336211) correction 

from Nikkei to S&P under the equilibrium relationship from the Nikkei 

skewness at t to the S&P skewness at t.

In conclusion, we find significant relationships in IVs and skewness 

among the three markets in the long run (co-integrated), except for the 

relationship from the Nikkei to FTSE IVs. The correction processes in the 

short run are varied, but all the processes are significantly corrected to each 

other.
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Table Bl. Co-integration (EG) Test Results (Implied Volatility Level)

N ik k e i to  F T S E

c N K IV Fte s id u a l
.1 4 4 1 3 6
(4 6 .3 9 3 )

.0 3 9 7 2 7
(3 .2 0 2 )

- .0 2 0 0 9 8
( -3 .0 9 8 )

L o w e r  ta i l  a r e a  
.2 4 1 7 9

F T S E  to  S & P

C F T IV Fte s id u a l
.0 7 2 9 6 7
(3 0 .3 8 6 )

.2 8 5 1 3 2
(1 8 .5 0 0 )

- .1 4 3 2 4 6
( -7 .9 8 3 )

L o w e r  ta i l  a re a  

. 0 0 0 0 0

S & P  to  N ik k e i

C S P I V , , FR esiduai
. 1 1 1 1 1 0 1 .0 9 1 8 4 - .0 4 3 8 5 4 L o w e r  ta i l  a r e a
(5 .6 2 9 ) (6 .4 9 6 ) ( -4 .2 8 7 ) .0 1 1 9 2

N ik k e i to  S & P

C N K IV FR esiduai
.1 0 5 5 5 8
(6 3 .4 4 4 )

.0 4 4 8 8 4
(6 .7 5 8 )

- .1 1 9 7 5 9
( -7 .1 3 8 )

L o w e r  ta il  a r e a  
. 0 0 0 0 0

Table B2. Error Correction Model (ECM) Results (Implied Volatility Level)

N ik k e i vs. F T S E

A F T IV
C A R e s id u a l A  N K IV , R  s q u a re d

-. 1 4 6 8 9 9 e -3  
( -0 .7 4 1 )

- .0 5 8 1 9 2
( -1 .5 4 3 )

.0 2 9 4 9 5
( 3 .0 0 9 )* * *

.0 1 4 3

A N K IV
C A R e s id u a l A F T I V ,, R  s q u a re d

-. 14 2 3 3  le -2  
( -1 .9 0 7 )*

1 .4 7 7 0 5
(1 .9 4 9 )*

-1 .0 8 7 7 0
( -1 .4 4 8 )

.0 1 3 4

F T S E  vs. S & P

A S P IV

C A R e s id u a l A  F T IV , R  s q u a re d

-, 1 5 4 5 9 7 e -3  
( -0 .6 3 8 )

- .3 6 0 1 5 9
( -1 0 .3 2 3 )* * *

.2 4 9 5 2 5
(5 .7 6 1 )* * *

.1 3 1 9

A F T IV
C A R e s id u a l A S P I V , , R  s q u a re d

1 5 2 8 1 8 e-3  
( -0 .7 9 3 )

.1 4 9 0 6 7
(1 .7 6 8 )*

.2 6 4 0 8 0 e -2
(0 .0 3 2 )

.0 3 5 8

3 vs. N ik k e i

A  S P IV

C A R e s id u a l A N K IV , R  s q u a re d

1 5 0 169e-2  
( -1 .9 0 8 )

- .0 6 3 8 5 3
(-1 .7 3 7 )*

.0 2 1 7 7 4
(0 .1 9 4 )

.4 5 3 5 e -2

A N K IV

C A R e s id u a l A S P I V , , R  s q u a re d

- ,4 2 0 8 5 8 e -4
( -0 .1 5 1 )

.5 7 4 1 6 8 e -3
(0 .0 4 5 )

.0 1 6 9 7 4
(1 .2 4 2 )

.2 4 2 9 e -2

cei vs. S & P

A N K IV

C A R e s id u a l A S P I V , , R  s q u a re d

1 6 5 6 14e-2  
( -2 .1 6 3 )

- .1 1 8 4 2 4
( -0 .3 0 8 )

.1 4 3 5 0 1
(0 .3 8 9 )

,2 8 7 9 e -3

A S P IV

C A R e s id u a l A N K IV , R  s q u a re d

- .1 6 1 7 3 2 e -3  
( -0 .6 2 7 )

- .3 1 1 1 1 4
( -8 .4 2 3 )* * *

.0 1 6 3 7 1
(1 .2 8 6 )

.0971
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Table B3. Co-integration (EG) Test Results (Skewness)

Nikkei to FTSE
c N K  sk e w R e s id u a l

- .0 8 2 3 3 0

(-4 0 .4 2 6 )
- .0 4 4 6 4 8
( -2 .3 3 9 )

- .4 4 2 0 2 6
( -1 4 .4 8 8 7 )

L o w e r  ta i l  a r e a  

. 0 0 0 0 0

F T S E  to  S & P

C F T  sk e w R e s id u a l

- .2 2 7 9 8 2 - .1 0 3 5 2 2 - .1 3 7 3 6 9 L o w e r  ta il  a r e a
(-6 1 .6 8 1 ) ( -2 .6 0 6 ) ( -7 .9 6 6 ) . 0 0 0 0 0

5 to  N ik k e i

C S P  sk e w ,.. R e s id u a l

- .0 5 3 8 6 1 .0 6 2 0 0 1 - .5 5 8 0 2 6 L o w e r  ta i l  a r e a
( -4 .8 6 5 ) (1 .2 7 0 ) ( -1 6 .7 2 8 ) . 0 0 0 0 0

.kei to  S & P

C N K  sk e w R e s id u a l
- .2 1 7 4 2 1 .0 3 5 6 1 9 - .1 3 4 3 5 8 L o w e r  ta il  a r e a
(-8 5 .0 9 4 ) (1 .4 8 9 ) ( -7 .4 4 1 ) .0 0 0 0 0

Table B4. Error Correction Model (ECM) Results (Skewness) 

Nikkei vs. FTSE

A F T  sk e w

C A R e s id u a l A N K  sk e w , R  s q u a re d

-. 1 4 4 8 9 8 e -3  
( -0 .1 0 5 )

- .5 0 6 1 7 7
( -1 3 .3 2 3 )* * *

- .0 1 6 7 8 3
(1 .0 2 8 )

.1 9 7 6

A N K  sk e w

C A  R e s id u a l A  F T  skew,_i R  s q u a re d

-. 1 0 9 9 3 8 e -2  
( -0 .3 5 0 )

- .5 7 8 0 5 1
(-3 .1 7 1 )* * *

.3 2 4 9 9 4
(2 .0 0 8 )* *

.0 1 7 5

FTSE vs. S&P

A S P  sk e w

C A R e s id u a l A F T  sk e w , R  s q u a re d

- .4 6 8 9 9 6 e -3
( -0 .4 7 5 )

- .3 5 1 1 9 1
( -1 0 .2 3 9 )* * *

.7 4 0 0 1 6 e -0 2
(0 .3 2 6 )

.1171

A F T  sk e w
C A R e s id u a l A S P  sk e w ,.. R  s q u a re d

-. 1 9 7 1 5 5 e -3  
(0 .1 3 3 )

- .8 7 0 7 3 5
( -5 .1 4 9 )* * *

.8 1 4 6 7 8
(4 .9 1 9 )* * *

.0 3 1 0

i vs. N ik k e i

A S P  sk e w

C A  R e s id u a l A  N K  sk e w . R  s q u a re d

- .1 1 1 4 9 7 e-2  
( -0 .9 3 6 )

.2 4 1 7 6 5 e -2
(0 .1 1 8 )

.0 1 6 6 8 5
(0 .9 9 4 )

. 1 9 8 4 e-2

A N K  sk e w

C A R e s id u a l A S P  sk e w ,.| R  s q u a re d

-. 1 2 2 6 9 0 e -2  
( -0 .4 5 0 )

- .6 7 6 6 9 1
( -1 7 .9 0 2 )* * *

- .9 1 4 3 6 2
( -0 .0 9 8 )

.3 2 5 9

cei v s. S & P

A N K  sk e w

C A R e s id u a l A  S P  sk e w ,.| R  s q u a re d

.5 7 7 6 6 3 e -3
(0 .1 7 9 )

1 .69981
(4 .2 4 4 )* * *

-1 .7 2 6 1 7
( -4 .4 4 4 )* * *

.0 2 7 3

A S P  sk e w

C A  R e s id u a l A N K  sk e w , R  s q u a re d

- ,9 9 0 4 2 3 e -3
( -0 .9 0 9 )

- .3 3 6 2 1 1
( -8 .9 7 1 )* * *

.0 1 3 2 3 4

(1 .0 4 8 )
.1 0 8 5

S&
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7. The Implied Volatility Term Structure: Cointegration of the Short- 

and Long-term Implied Volatilities

7.1. Introduction

Implied volatility is usually derived from the Black-Scholes option pricing 

model which was originally described in the seminal paper, Black and Scholes 

(1973). These days, many market participants have noticed that a term 

structure of implied volatility exists, that is, different levels of implied volatility 

are observed for short- and long-term maturities. This fact implies that a 

constant volatility does not normally hold in the real world, and especially for 

practitioners, volatility of volatility is rather large for the short-term options. 

As shown in Table 7.1, short-term implied volatility for Nikkei options is in the 

range from 7% to 52% in the observation period, compared with the range of 

long-term implied volatility from 11% to 34%. For the risk management and 

evaluation purposes of trader, it is impossible to ignore the term structure of 

implied volatilities.

There are a few papers which focus on the implied volatility term structure 

analysis. Heynen, Kemna, and Vorst (1994) examined the term structure of 

implied volatilities in the Dutch equity index options market, and by utilising the 

GARCH frameworks to explain the term structure effect. Xu and Taylor 

(1994) used the Kalman Filtering to estimate the term structure of implied 

volatilities in the foreign exchange options-on-futures markets. Takezawa and 

Shiraishi (1995) tested the Tokyo Currency Option Market by using the similar 

volatility forecasting models to the model employed by Fleynen, Kemna, and 

Vorst (1994). They concluded that overreaction is observed in implied 

volatilities compared with all the mean-reverting, GARCH, and EGARCH
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forecasts.

Cointegration analysis has been utilised for many kinds of econometric 

research in the recent years, but no application seems exist for implied volatility 

yet. The classic paper in this area is Engle and Granger (1987), who show the 

framework of cointegration and error correction. For analysing the term 

structure of interest rates following Engle and Granger (1987), Bradley and 

Lumpkin (1992) find the cointegration of seven rates in the Treasury yield curve. 

A recent example of the methodology is performed by Hiraki and Takezawa 

(1995) for the term structure of the Japanese Yen-denominated interest rate swap 

market.

The purpose of this chapter is to prove the existence of the implied 

volatiity term structure and to examine the cointegrated relationship between the 

short- and long-term implied volatilities in the Nikkei index options on futures 

market, and derive any causality to drive each other when the volatility level 

dynamically changes. As Alexander (1994) points out, it is misleading to use 

simple correlation analysis to see the relationship of short-term implied volatility 

to long-term implied volatility, because that assumes a stable (or constant) 

correlation that is too simplified. A dynamic change in time series of implied 

volatilities can be captured by cointegration with greater accuracy than by 

correlation. In addition, the error correction model (ECM) associated with 

cointegration analysis provides a dynamic correction process and its direction. 

In employing cointegration and error correction model for the analysis of the 

implied volatility term structure, we obtain an accurate result in association of 

volatilities and their dynamic correction process.

The reason for the existence of the term structure is thought to be due to
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the mean-reversion of an underlying asset price. One possibility is that 

volatility is mean-reverting. The other is suggested by Gemmill and Thomas 

(1995) that the mean-reversion of the asset price leads the smile effect of the 

warrants on investment trusts market. The stronger smile effect, as time to 

maturity becomes longer, implies that the term structure of implied volatilities is 

also driven by the mean-reversion of asset prices.

The chapter is written as follows. In Section 2, the method undertaken is 

explained. Section 3 describes the data utilised in this chapter, and the test 

results are shown in Section 4. The conclusions are given in Section 5.

7.2. The Method

Firstly, stationarity is examined for two series of data, short- and long-

term implied volatilities. The Dickey-Fuller Test is employed and formulated 

as below.

Ay, = Po + P \ A y t-\ + (a  -  l)y,_, + p 2 -d u m m y  + u, ( 1 ) 

where the weekend dummy is 1 if the data is just after weekend. The theory 

behind this test is explained in many econometrics books such as Greene (1993). 

Generally, y, would be stationary if I a I was less than 1 in the equation of;

»  = a  + a  y t- t + «i (2)

where ¡ j  is a constant and a is a white noise term. This equation can be 

transformed with consideration of the auto-regressive first difference of the 

series. The t statistics which tell us whether a -1=0 can be utilised with the 

critical value table provided by Dickey and Fuller (1983)1.

1 However, we should note that distribution of IV is non-normal, and the result is likely to 

contain measurement error.

Page 136



N. Kainiyama

Secondly, the cointegration test is examined. If two time series are 

nonstationary and we assume an equilibrium relationship between the two, we 

employ the cointegration test to show the existence of the long-term relationship, 

proposed by Engle and Granger (1987). In the present context, we have:

Liv = /? o + /? i Siv + vt (3)

where,

Liv: Long-term Implied Volatility 

Siv: Short-term Implied Volatility

If the long-term equilibrium relationship exists between the long- and short-term 

implied volatilities, the residual of the regression is stationary. The stationarity 

is tested by the Engle-Granger test (EG test), that is:

Av, = (a -  1)vf_, + u, (4)

where v, is a residual vector of the volatility regression (3). In the similar 

manner to the unit root test as described above, the ordinary least square method 

is employed to test if a -1 is equal to zero or not, with the Dickey-Fuller critical 

value table for the t statistic of the coefficient.

Thirdly, the Error Correction Model (ECM) is examined. If two series 

are cointegrated, an error from the equilibrium is corrected because the error 

series is stationary. Assuming that the long-term volatility is dependent on the 

short-term volatility as described in Equation (3), the equilibrium error is defined 

as:

v,./ =Livt_|— /? 0 ,t-i — P l.t-i Siv (5)

In ECM, the dispersion from the equilibrium is a dependent variable as 

below.
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A Sivt = fi So + f i  Si '’ v,./ + [3 s2  • A Livt_i (6 )

A Livt = fi LO + f i  L I ■ V , . i  + f i  L2  ‘ A Sivt_i (7)

When the coefficient of the residual in the Siv equation (/? sO is negative, it 

means that Siv corrects the error by changing its own level. When ¡3 l i  is 

positive, Liv also corrects the error by changing its own level.

7 .3 .  T h e  D a t a

The Nikkei option on future and the underlying future settlement prices 

data are provided from the Singapore International Monetary Exchange 

(SIMEX). In order to calculate the implied volatilities, the daily three month 

CD rates are used for all the maturity dates. The period examined is from 01 

April 1992 to 28 April 1995 and the total number of the records is 748; 

(originally 752, but the 4 extraordinary data are omitted).

The options to be examined here are screened as below. The short-term 

option is defined as the option with the shortest maturity on the day, but the 

options with less-than-5-day to maturity are omitted beforehand. The long-

term option is the option with the second longest time to maturity on the day; 

(not the longest maturity option, as they are infrequently. After the screening, 

the short-term options have time to maturity within the range of 0.016 to 0.104 

years (0.056 years average). The long-term options have time to maturity 

within the range of 0.402 to 1.002 years (0.797 years average)2. From the short- 

and long-term options, the near-the-money call and put options are chosen. 

The near-the-money option is defined as the option with the smallest absolute 

value of (underlying futures price - exercise price). The data are divided into 5

2 N o te  th a t w e  s h o u ld  be  c a u t io u s  to  th e  r e s u l t  o f  th is  e m p ir ic a l  w o rk  b e c a u s e  th e  lo n g - te rm  

m a tu r i ty  h a s  su c h  a  w id e  ra n g e .
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subsets with similar numbers of records (approx. 150) in each subset. Detailed

information on the data is shown in Table 7.1.

The implied volatility is calculated by the Black’s options on futures

pricing formula. The formula is as below.

C = e~n(F ■ N(d{) -  K- N(d2))

P = e~" (K -N ( -d 2) -  F ■ N ( - d l))
where (8 )

, \n(F / K) + ( a 2 /2)t
0 . \  — r -

crVr
¿2 = d\ ~ &4t

C: Call Price P: Put Price

F: Underlying future price K: Exercise Price

N( • ): Normal distribution density function 

a : Annual volatility

The implied volatilities of the near-the-money call and put of the day are 

averaged, and the average is defined as the implied volatility of the trading day. 

This way we set the short- and long-term volatilities of a specific trading day, 

which are examined if they are cointegrated.

7.4. Test Results

Significant are these differences in the implied volatilities of short- and 

long-term options. The short-term IV is in the range of 6.79% to 52.37% and 

the mean is 23.51%. On the other hand, the long-term one is in the range of 

11.34% to 33.58% and the mean is 20.86%. We employ the paired-sample t 

test as below. We set the null hypothesis that the mean of the difference 

between the short-term implied volatility (x0  and the long-term implied 

volatility (x2) equals zero. The t value is defined as:
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t X
(9)

x: the mean of x, - x2

1 denotes short-term implied volatility

2  denotes long-term implied volatility

a : the standard deviation

n: the number of observation

The hypothesis of equality is rejected for the whole sample and sub-periods 

except for Subset 4 (February to September 1994). Table 7.1 shows the t 

values for the test. Then we conclude that the term structure does exist in the 

Nikkei 225 options market at SIMEX.

As we expected, two series of data, short- and long-term implied 

volatilities are likely to be nonstationary and cointegrated to each other. There 

is a long-time equilibrium between the two, and correction is made when a 

dispersion occurs from the equilibrium. Table 7.2 shows that both the short- 

and long-term volatility series are likely to be nonstationary, except for the short-

term volatility of the All-Data set for which a unit root hypothesis is rejected'.

Table 7.3 shows the EG test results. We find evidence that the short- and 

long-term implied volatilities are cointegrated. The regression result between 

the first difference of the residuals and the lagged residual is negative 1 1 % in the 

All-Data set with the lower tail area of 0.0%. The lower tail areas in all the 

subsets are less than 5% except for the Subset 2 (Nov 92 - Jun 93), so that the 

short- and long-term implied volatilities are cointegrated in most.

The long-term relationship between the short- and the long-term implied

3  Table 7.2 does not show either series is integrated, because Type II errors are common.
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volatilities is also observed in Table 7.3. In the All-Data set (Column 2), the 

long-term volatility is explained 48% by the short-term one with the R squared 

of 67%. Period 1 has high volatility (averaging 29.15% for long-term options 

(Liv)). The result is that there is a weaker long-term volatilities in Subset 1 

(see Table 7.3, Column 3). The R squared falls to 8 %, but there is still 

significant cointegration. When the volatility is very low or high, participants 

may lose the way to make decisions systematically. The long-run volatility 

relationship between short- and long-term IV may be forgotten in such periods 

tentatively.

Both the long- and short-term implied volatilities correct an error from the 

equilibrium, as shown in Table 7.4. In the All-Data subset (Column 2), the 

short-term volatility has a significant positive coefficient (0.463) for the residual 

at t-1. However, the result is not consistent in other subsets, with a coefficient 

significant at the 1% level in only one period. On the other hand, the long-term 

implied volatility has significant negative coefficients for all the 4 subsets, with 

a range from -0.545 to -0.339. From Equations (5), (6 ), and (7), both the 

positive coefficients of the residual in the short-term volatility equation and the 

negative coefficients in the long-term residual imply that the short- and long-

term volatilities move to correct any disturbance to their long-run equilibrium.

7.5. Conclusions

The relationship between the short- and long-term volatilities are stable in 

the long-run. The direction and magnitude of the dispersion from the 

equilibrium give us some information on the short-run movement of the 

volatility levels and spreads. When the error from the equilibrium expands, 

both the short- and long-term volatilities tend to revert so that the equilibrium
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level is re-established.

The reason why the short-term IV is significantly smaller than the long-

term IV and those are cointegrated may be due to the mean-reversion effects of 

the underlying asset prices. Gemmill and Thomas (1995) examine the implied 

volatility in the warrant markets on investment trusts in the U.K., and conclude 

that the time effect of the smile (the lower the volatility, the longer time to 

maturity) is because of the mean-reverting asset prices. On average, one can 

observe the significantly larger IV in the short-term options than in the long-term 

options in the case of the Nikkei 225 options on futures listed on SIMEX, as 

shown in Table 7.1. The mean-reversion of an asset price pulls-in the tails of 

the return distribution.

For practical purposes, there is an opportunity to trade the implied 

volatility spread between the short- and long-term volatilities with the 

information out of the error correction analysis.
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15.00%
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Figure 7.1. Short- and Long-term Volatilities

Page 143



Table 7.1. Data Summary
H0: Average of Short-term IV = Average of Long-term IV

j. K am iyam a

All data from 01-Apr-92 to 28-Apr-95___________ ____________(748 records)
S h o r t- te rm O p tio n s L o n g - te rm  O p tio n s

Y ear to M aturity Im plied  V olatility Y ear to M aturity Im plied  V olatility
M in im u m 0 .0 1 6 6 .7 9 % 0 .4 0 2 1 1 .3 4 %
M a x im u m 0 .1 0 4 5 2 .3 7 % 1 .0 0 2 3 3 .5 8 %

A v e ra g e 0 .0 5 6 2 3 .5 1 % 0 .7 9 7 2 0 .8 6 %

D if fe re n c e  in  A v e ra g e 2 .6 4 % t =  1 3 .6 4 9 R e je c t  H„

Subset 1 from 01-Apr-92 to 13-Nov-92_______________________(148 records)
S h o r t- te rm O p tio n s L o n g - te rm O p tio n s

Y ear to M aturity Im plied  V olatility Y ear to M atu rity Im plied  V olatility
M in im u m 0 .0 1 6 1 5 .9 4 % 0 .4 0 2 2 4 .3 6 %
M a x im u m 0 .1 0 4 5 2 .3 7 % 0 .8 0 8 3 3 .5 8 %

A v e ra g e 0 .0 5 7 3 4 .5 8 % 0 .6 3 1 2 9 .1 5 %

D if fe re n c e  in A v e ra g e 5 .4 3 % t =  1 0 .5 6 8 R e je c t  H„

Subset 2 from 16-Nov-92 to 30-Jun-93_______________________ (151 records)
S h o r t- te rm O p tio n s L o n g - te rm O p tio n s
Y ear to M aturity Im plied  V olatility Y ear to M aturity Im plied  V olatility

M in im u m 0 .0 1 6 1 2 .2 7 % 0 .4 9 8 1 7 .7 0 %
M a x im u m 0 .1 0 4 2 9 .4 1 % 0 .9 9 4 2 7 .5 2 %
A v e ra g e 0 .0 5 4 2 1 .5 1 % 0 .7 8 9 2 0 .1 4 %

D if fe re n c e  in A v e ra g e_______2_____________ 1 .37% t =  4 .4 9 3 _____ R eJe c t  H „_____
Subset 3 from 01-Jul-93 to 08-Feb-94 (150
records)______________

S h o r t- te rm  O p tio n s L o n g - te r m O p tio n s
Y ear to M aturity Im plied  V olatility Y ear to  M aturity Im plied  V olatility

M in im u m 0 .0 1 6 6 .7 9 % 0 .7 3 6 1 5 .9 3 %
M a x im u m 0 .1 0 4 4 4 .3 3 % 0 .9 9 4 2 6 .7 9 %

A v e ra g e-------------------^_______ 0 .0 5 6 2 2 .8 1 % 0 .8 6 6 1 9 .9 1 %

D if fe re n c e  in  A v e ra g e 2 .9 1 % t =  6 .8 6 0 R e je c t  H„

Subset 4 from 09-Feb-94 to 19-Sep-94___________ ____________ (149 records)
S h o r t - te rm O p tio n s L o n g - te r m  O p tio n s

Y ear to M aturity Im plied  V olatility Y ear to M aturity Im plied  V olatility
M in im u m 0 .0 1 6 1 0 .1 4 % 0 .6 9 3 1 5 .9 9 %
M a x im u m 0 .1 0 4 4 2 .8 1 % 0 .9 8 6 2 4 .5 9 %

A v e ra g e__________ I_2______ 0 .0 5 8 2 0 .2 8 % 0 .8 2 6 1 9 .7 8 %

D if fe re n c e  in A v e ra g e 0 .6 0 % t =  1 .685 A c c e p t  H n

S u b s e t  5  f r o m  2 0 - S e p - 9 4  to  2 8 - A p r - 9 5 ( 1 5 0  r e c o r d s )

S h o r t- te rm O p tio n s L o n g - te rm O p tio n s
Y ear to M aturity Im plied  V olatility Y ear to M aturity Im plied  V olatility

M in im u m 0 .0 1 6 8 .9 1 % 0 .7 1 2 1 1 .34%

M a x im u m 0 .1 0 4 4 2 .5 6 % 1 .0 0 2 2 4 .6 9 %

A v e ra g e 0 .0 5 4 1 8 .3 8 % 0 .8 6 9 1 5 .4 5 %

D if fe re n c e  in  A v e ra g e 2 .9 3 % t =  6 .7 5 3 R e je c t  H„
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Table 7.2. Augmented Dickey-Fuller Test

Data Sets Term a -1 t-statistics Lower tail area
All Data s -.037104 -3.589 .03073

Apr 92-Apr 95 L -.014495 -2.103 .61807*
Subset 1 S -.126357 -2.762 .22598*

Apr 92-Nov 92 L -.179840 -3.329 .06534*
Subset 2 S -.073056 -2.405 .41843*

Nov 92-Jun 93 L -.074780 -3.181 .09193*
Subset 3 S -.036343 -1.417 .89689*

Jul 93-Feb 94 L -.045834 -1.709 .80633*
Subset 4 S -.063272 -2.149 .57785*

Feb 94-Sep 94 L -.016507 -0.759 .97860*
Subset 5 S -.038673 -1.578 .85274*

Sep 94-Apr 95 L -.067593 -1.950 .69348*

S: Short-term implied volatility
L: Long-term implied volatility

Ay, = Po + + (a  -  l)y,-i  + P i  - d u mmy  + u,
dummy: equals 1 if the data is after weekend.
Lower tail area: the probability to make an error if H():( a -1=0) is rejected.
*: H„ is rejected by the 5% confidence interval with the table

provided by Dickey and Fuller (1981)

Table 7.3. Cointegration Test Results

All Data
Apr 92-Apr 95

Subset 1
Apr 92-Nov 92

Subset 2
Nov 92-Jun 93

Subset 3 
Jul 93-Feb 94

Subset 4
Feb 94-Sep 94

Subset 5 
Sep 94-Apr 95

Constant .095398
(30.863)

.260233
(28.894)

.171404
(21.829)

.133877
(43.676)

.137808
(36.635)

.090851
(33.736)

Siv .481748
(38.984)*

.090473
(3.534)*

.140805
(3.925)*

.285055
(22.189)*

.293833
(16.670)*

.347720
(25.762)*

R squared .6707 .0788 .0931 .7664 .6509 .8156
Residual

Lower tail area

-.111728
(-6.667)

. 0 0 0 0 1

-.241810
(-4.556)
.00712

-.084939
(-3.044)
.27790

-.249876
(-4.665)
.00519

-.201500
(-4.004)
.03244

-.396660
(-6.103)
.00009

Liv = Constant + ß  Siv

t statistics in bracket.
*: significant at 5% or better
A residual,: is equal to ¡3 residual,,
Lower tail area: the probability (provided by Dickey-Fuller) to make an error

if H„:( a -1=0) is rejected.
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Table 7.4. Error Correction Model

Short-term Implied Volatility
All Data

Apr 92-Apr 95
Subset 1

Apr 92-Nov 92
Subset 2

Nov 92-Jun 93
Subset 3 

Jul 93-Feb 94
Subset 4

Feb 94-Sep 94
Subset 5 

Sep 94-Apr 95
Constant

P So
-,41655e-3

(-0.469)
-. 1177e-2 
(-0.392)

-,4282e-3
(-0.356)

,5209e-3
(0.286)

-,8517e-3
(-0.481)

.7919e-4
(0.040)

Residual
P s,

.463037
(6.030)***

.398766
(0.743)

.174937
(0.372)

.373587
(1.265)

.543801
(1.956)*

.296656
(1.126)

p s,
-.268263

(-2.594)***
,8601e-2
(0.016)

-.071412
(-0.147)

-.892979
(-3.143)***

.010782
(0.029)

-.289872
(-1.428)

R squared .0468 .0207 .2173e-2 .0643 .0386 .0139

A Siv = [i s0 + /9 s,- v(i + /? s2 • A Liv, ;

t statistics in bracket 
*: significant at 5% (t> 1.645)
**: significant at 2.5% (t> 1.960)
***: significant at 1 % (t>2.326)

Long-term Implied Volatility
All Data

Apr 92-Apr 95
Subset 1

Apr 92-Nov 92
Subset 2

Nov 92-Jun 93
Subset 3

Jul 93-Feb 94
Subset 4

Feb 94-Sep 94
Subset 5

Sep 94-Apr 95
Constant

/?P  1.0

. 1497e-3 
(-0.439)

,3433e-4
(0.032)

-,7673e-3
(-1.902)

.2175e-3 
(0.376)

-,4286e-3
(-0.949)

-,2429e-4
(-0.024)

Residual
P n

-.339624
(-9.330)***

-.368214
(-4.354)***

-.417763
(-5.599)***

-.390600
(-4.259)***

-.380962
(-4.767)***

-.545333
(-5.564)***

P „
-.109027

(-5.619)***
-,41369e-2

(-0.139)
-,9225e-2 
(-0.311)

.2422e-3
(0.008)

-.070135
(-2.446)***

-.073793
(-1.754)*

R squared .1069 .1199 .1919 .1415 .1416 .1786

A Liv = /? L0+ /9 u • vt_,+ /9 s2 • A Siv,.;

t statistics in bracket 
*: significant at 5%
**: significant at 2.5% 
***: significant at 1 %

Where,

vr-i = Liv,.,— /? i.,, Siv
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8. Stability of Implied Volatility Functions: A Test on the Nikkei 

Options

8.1. Introduction

The shape of implied volatility smile has become an important issue in 

evaluating options, because it violates the assumption of constant volatility 

which indicates the Black-Scholes formula. Especially from the stand point of 

risk management, the constant volatility assumption is too strong and 

practitioners start using more sophisticated models including GARCH 

(Generalised Autoregressive Conditional Heteroscedasticity) proposed by 

Bollerslev (1986), and EWMA (Exponentially Weighted Moving Average) 

proposed as a part of RiskMetrics by JP Morgan (Zangari (1995)). Even 

though the GARCH and EWMA approaches do not have to assume constant 

volatility, historical returns used in these methods are not directly linked with the 

implied volatility shape of option markets.

In this chapter, the behaviour of the volatility smile will be examined 

because we may be able to use the information to improve option valuation and 

to realise profit. The shape can be estimated as a function which may be linear 

or quadratic. The shape may also be defined as skewness of the implied 

volatility, as shown by Gemmill (1995). We need to know not only the shape 

but also its stability in order to capitalise on the information contained in the 

shape. If the shape were stable, we could use the information to take option 

positions to realise profit over the period to maturity. On the other hand, if we 

found that the shape changed systematically, we would be able to forecast its 

evolution and take positions to gain returns.
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Shimko (1991) suggests curve-fitting to find the volatility function (i.e. 

shape of implied volatility) and derive the probability distribution implied in the 

option prices. In Appendix B, we show the implied probability at the end of 

the Nikkei option contract on futures by deriving the volatility function with 

Shimko’s method. In the example as of 08 February 1993, the underlying 

futures price was 17,340, whereas the forecasted futures price implied in the 

options as of the expiry date of 11 March 1993 was 16,867.39. If the shape of 

implied volatility (therefore the estimated futures price at expiry) was stable over 

time but any short-term dispersion is observed from the stable shape, we could 

evaluate each option and buy cheap, sell expensive to capitalise on the effect. 

As we will see later in this chapter, it does not seem so stable in a week to 

capitalise on the smile and the forecasted futures price.

Rubinstein (1994) proposes the “implied binomial tree” approach for the 

evolution of the smile. The approach requires us to input the implied 

probability distribution to find the path of the underlying asset over the option 

period. In Appendix C, we see the application of the approach to the Nikkei 

225 options on futures. We find that the forecasted futures price implied in the 

options was 17,881.13, whereas the underlying futures price was 17,435. As 

described in the prior paragraph, if the shape of implied volatility was stable 

over a week, the forecast implied in the option prices would enable us to take 

positions for the period, i.e. to buy if cheaper is the price calculated on the 

implied probability.

Kuwahara and Marsh (1994) examine Japanese warrants by implied 

binomial tree. Taylor and Xu (1994a), Heynen (1994), and Kamiyama (1996) 

examined the shapes of implied volatilities in the Philadelphia Exchange’s
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currency options, the Dutch equity index options on the European Options 

Exchange, and the Nikkei 225 options, respectively.

Few tests of the stability of the implied volatility shape are found. 

Dumas, Fleming, and Whaley (1995) show the empirical results to examine the 

stability of implied volatility functions. They use a sample of S&P 500 index 

options1 during the sample period from June 1988 to December 1993. Four 

different structural models are used in their research, one of which is the Black- 

Scholes model (constant volatility), and others of which are quadratic curve 

fitting models. They find that the stability of the estimated volatility function is 

not stable in a week (the Black-Scholes model is better in error analysis), and 

conclude that the implied binomial tree approach does not enable us to take 

positions to capitalise on the smile effect

The purpose of this chapter is to examine the stability of implied volatility 

functions in the case of the Nikkei 225 options on futures on SIMEX. 

Although the basic concept of the testing is similar to Dumas, Fleming, and 

Whaley (1995), we have three important differences (in addition to the market 

which is examined). One is that we use the shape of the smile of implied 

volatility as a linear function with respect to exercise price, while they use a 

curve fitting function. The second point is that we examine the stability of 

shape of the smile apart from the stability of implied volatility level, so that we 

can segregate the stability of the shape of the smile from the overall stability of 

the function. The final point is that we introduce a forecasting model for the 

shape of the smile, and the model examines if it is worthwhile to forecast shape

1 S&P 500 index options are traded on the Chicago Board Option Exchange (CBOE). They 
are European options.
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of the smile in order to trade options.

The paper is written as follows. Section 2 describes the data utilised in this 

chapter. In Section 3, the method undertaken is explained, and the test results 

are shown in Section 4. The conclusions are given in Section 5. In Appendix 

8 .A, the forecasting model for shape of the smile is explained in detail. 

Appendix 8 .B shows the implied probability at the end of the Nikkei option 

contract on futures by deriving the volatility function with Shimko’s method. 

Rubinstein’s implied binomial tree approach is used in Appendix 8 .C in the case 

of the Nikkei 225 options on futures.

8.2. The Data

The Nikkei option on future and the underlying future settlement price 

data are provided by the Singapore International Monetary Exchange (SIMEX). 

In order to calculate the implied volatilities, the daily three month CD rates are 

used for all the maturity dates. The contract month is the nearest month for 

Nikkei, because that contract is the most liquid. We roll over the nearest 

contract when time to maturity becomes less than 5 days.

The period examined is from 01 April 1992 to 30 December 19952, 

including the in-sample period (total number of records is 891). We examine 

the out-of-sample period from 04 January 1993 to 30 December 1995, and the 

total number of daily records is 720.

Implied volatilities for options on futures are calculated with Black’s 

options on futures pricing formula. The formula is as below.

2 T h e  S IM E X  c o n tra c t  b e g a n  tr a d in g  in A p ri l 1 9 9 2 , h e n c e  th e  s ta r t in g  d a ta  fo r  th e  d a ta .
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C = e-r,{F -N (d{) - K - N ( d 2))
P = e~n{K- N (-d 2) -  F ■ N (-d x))
where ( 1)

ln(F / K) + (<72 !2)t

C: Call Price P: Put Price

F: Underlying future price K: Exercise Price 

N( • ): Normal distribution density function 

a : Annual volatility

8.3. The Method

We examine the stability of the implied volatility functions specified 

below over one- week periods testing with out-of-sample data, as Dumas, 

Fleming, and Whaley (1995) have done. We employ four volatility functions, 

illustrated in Picture 8.1. Model 1 is the Black-Scholes model where the 

volatility is assumed constant. This takes no account of the volatility smile: the 

implied volatility at any exercise price at time t is set at the at-the-money value 

of 5 working days before (t-5).

for all j (exercise price) and k is near-the-money, where IV is implied volatility, 

and t is time in unit of a day. There is some degree of difference between 

implied volatility of call and one of put at near-the-money. We would like to 

be free from the difference in examining the errors, so that we use the implied 

volatility of the near-the-money call at t-5 as the IV estimates of the near- and 

out-of the money calls. Therefore, the mean error of the near-the-money call 

(put) IV means the average change of the near-the-money call (put) IV in 5 

business days.

(2)
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smile with respect to exercise price. The average change in implied volatility 

level is approximately - 2  points both in call and put.

Model 2 improves the issue above by taking account of the negatively 

sloped smile observed at t-5. ME no longer indicates a negative bias (c.f. 

Model 1). However, MAE (Mean Absolute Error) and RMSE (Root Mean 

Squared Error) indicate that Model 2 does not improve the forecasts for all four 

types of option. It means that assuming a stable level and skewness for 

volatility is still not a very efficient procedure.

Model 3 which allows for a shift in the smile level of volatility shows 

large improvements over Model 2, in MAE approximately by 25 to 47 points 

and in RMSE approximately by 47 to 6 8  points in option price. However, it is 

not better than Model 2 for ME in the out-of-the-money options. We can 

conclude that instability of the implied volatility level is the more important 

matter than instability of skewness.

Model 4 introduces a systematically forecasted shape of volatility as of 5 

days before (rolling with the 6  months period of data as of t-5). There is a 

small improvement in diagnostic errors both for OTM calls and puts. In both 

MAE and RMSE, our forecasting model can reduce the errors from 2 to 4 points 

in price.

8 .5 .  C o n c l u s i o n

For the purpose of forecasting the option prices by using the implied 

volatility function, we conclude that the function is not stable to forecast option 

prices 5 days ahead, in the case of the Nikkei 225 options on futures. Although 

it improves the forecast to introduce the shape of volatility, the error may be 39 

to 6 8  points in price, which is very serious if one trades in the market.
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We find that (1) it is good to assume a constant smile in comparing Model 

2 with Model 1, (2) it would be even better if volatility level could be forecasted 

perfectly when we compare Model 3 and Model 2 (we have not used any 

volatility forecasting model in this chapter, which can be done in the future), and 

(3) an autoregressive model for the smile is good for OTM calls and puts, but the 

effect is rather small when Model 4 is compared to Model 3.
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Picture 8.1. Illustration of Four Models

! J .  r\ai:n»..'tliia

Model 1. A constant volatility is assumed.

Model 4. The shape is forecasted by a time series model, and the level is changed.
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Figure 8.1. Implied Volatility of the Nikkei 225 Options on Futures
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930208

Figure 8.2.a The Curve-fitting as of 08 February 1993 - The Nikkei 225 Options on Futures
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Settle 17,340 Quadratic
const 

coeff(x)
3.310690004
-0.000347455

IBT 16,867.39 coeff(x 2) 9.68871E-09

0.07
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0.01

Figure 8.2.b Probability Distribution Implied in the Nikkei 225 Options on Futures as of 08 February 1993

Page 159



. 

. 

. . 

. . 

. 

. 

. 

. 

. 

 

. . 

. 

. 

. 

. 



N. Kamiyama

Table 8.1. Error Analysis

MODEL 1

ME MAE RMSE
C_OTM -7.675 40.641 61.397
C_NTM -2.014 46.168 67.299
P_NTM -2.147 47.110 68.539
P_OTM 14.975 43.804 63.233

MODEL 2

ME MAE RMSE
C_OTM -3.676 39.715 59.698
C_NTM -2.014 46.168 67.299
P_NTM -2.147 47.110 68.539
P_OTM -5.394 43.492 66.695

MODEL 3

ME MAE RMSE
C_OTM 5.819 13.213 18.281
C_NTM 0.000 0.003 0.004
P_NTM 0.000 0.003 0.004
P_OTM 5.649 14.069 19.496

MODEL 4

ME MAE RMSE
C_OTM 6.203 11.346 14.692
C_NTM 0 . 0 0 0 0.003 0.004
P_NTM 0 . 0 0 0 0.003 0.004
P_OTM 5.527 11.929 16.441
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Appendix 8 .A. The forecasting model for skewness

We assume skewness is mean-reverting and formulate an autoregressive 

model for forecasting skewness as below:

skew, -  skewt_5 -  X(skew,_5 -  skewmean) + e t (A 1)

In order to find the mean level of skew (i.e. skew^an) and the proportional 

coefficient for reverting (i.e. A ), Equation (Al) may be re-written in the form: 

skewt = a  + (1 + A.) • skewt_5 + e t (A2)

where skew mean =— a / A , and skew is defined in footnote 2. The regression 

result is in Table 8 .A.I. The first regression is done for all the data available 

from 03 April 1992 to 29 December 1995, in total 891 records. Because we 

approximately take half a year for the regression and roll the half-year period at 

any time of t, we take roughly 1 0 0  records to regress on each day.

As shown in Table 8.A.1, the autocorrelation is significant in taking the 5 

day lag. The coefficient ( ¡3) is 0.41 with t-value of 13.3. This means that 

skewness is mean-reverting in 5 days in the proportion ( A ) of -0.59 (= 0.41 - 1). 

It is reasonable to use the result as the systematic forecasting of the shape of 

implied volatilities.
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Table 8.A.I. Regression Results in Appendix A.

Period a fi H = fi- 1 ) skew
m en n R squared

a Apr 92 
- Dec 95

-. 11738e-04 
(-13.141)

0.410060
(13.326)

-0.58994 0.285e-04 0.167281

b Jan 93 
- Jun 93

-.686917e-05
(-3.524)

0.288144
(3.012)

-0.711856 0.23839e-04 0.089769

c Jul 93 
- Dec 93

-,505555e-05
(-3.714)

0.152906
(1.763)

-0.847094 0.33063e-04 0.022016

d Jan 94 
- Jun 94

-. 144134e-04 
(-7.936)

-0.030947
(-0.348)

-1.030947 -0.46586e-03 .103422e-02

e Jul 94 
- Dec 94

-,187985e-04
(-6.830)

0.143994
(1.543)

-0.856006 0.13055e-03 0.019148

f Jan 95 
- Jun 95

-,261548e-04
(-7.300)

0.384597
(4.597)

-0.615403 0.68005e-04 0.150785

g Jul 95 
- Dec 95

-,973933e-05
(-5.555)

0.363632
(5.690)

-0.636368 0.26783e-04 0.209724

skewt -  skeW'_5 = A(skewt_5 -  skewmean ) + e, t-value in bracket, and n = 1 2 0  days
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From Equations (B2) and (B3), we obtain G(F*) and g(F*) as follows: 

G(F' ) = \ + X - v ' - N \ d 2)
. . .  . (B4)

g(F ) = [v -X + v { \ - X  d2 -d2x) - d 2x]-N (d2)

If we assume the volatility function as a quadratic curve, v can be

expressed as below:

v = rrVF = A0 + A, X + A2 X 2
v' = A, + 2A2X (B5)
v" = 2 A,

We estimate Ao, Ai, and A2  by regression and then v ’ and v ” are calculated 

and inserted into Equation (B4). In Figure 8 .2.a, we show the curve-fitting 

result as of 08 February 1993, with 35 option prices including both calls and puts. 

The time to maturity for all is 0.0849 year, with the maturity date of 11 March 

1993. The underlying futures price is 17,340.

We now draw a graph of g(F*) as shown in Figure 8.2.b, as a probability 

distribution function. The probability implied in option prices on the observed 

date is flatter than normal, and fat-tailed. This fact is consistent to the shape of 

implied volatility which smiles as shown in Figure 8 .2.a.
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Appendix 8 .C. Implied Binomial Tree

We use the optimisation method suggested by Rubinstein (1994) to find 

risk neutral probability of each underlying price at the end node of the Nikkei 

225 options on futures contract. The “prior guess” or initial input is given by 

standard binomial tree, that is, the initial probability, P),  is determined as below:

p; = [ n \ / j \ ( n - j ) \ ] p ' j - ( l - p ' r j (Cl)

where n is the number of steps (n = 5), and p ’ is the upside probability in the 

standard binomial tree. The objective function and constraints for optimisation 

are shown as below:

minZ w - pF
j

subject to

£  Pj = 1 and Pj > 0 (C2)

Cf < C, < C- where C, = ^  P] max[0, F. -  Ki ]
j

where r is discount factor (g 3 2 4 % x l / 3 6 5  ) for a step (a constant risk-free rate is 

assumed), Fj is the underlying futures price at the j-th node of the maturity, and 

C* and C1 are bid and ask price of options, respectively. We can obtain Pj and 

Fj simultaneously by optimising the objective.

Seeking for the implied binomial tree, we go backward from the terminal 

node, at which we found Pj and Fj as above. Firstly, we find path probability, 

Pterminal at the terminal node. Using two probabilities, P+ and P\ we calculate 

the path probability backward to the second last node, where + denotes one node 

up and — denotes one down from a specific point of the tree.
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p, _____ l____
n\/j\(n - j ) \ (C 3)

P = p + + p~

Secondly, we find local probability, p, defined as P+/P at each point. Finally, 

we find implied binomial tree of the Nikkei 225 futures prices over the option 

period. By using the calculation results so far, we calculate R on each point, 

which is defined as:

The contract observed here was as of 05 February 1993, and expired on 11 

February 1993 (time to maturity is 0.0164 year). The underlying futures price 

was 17,435. We have 7 options to be examined which did not violate put-call 

parity, 3 puts and 4 calls. The short-term interest rate of 3.24% (annualised) 

was used over the period. The range of implied volatilities was from 33% 

(annualised) of OTM call to 16% of ATM call on that day.

The result is shown in Figures 8 .3.a and 8.3.b. Figure 8 .3.a is the normal 

binomial tree as an initial input. Figure 8.3.b is the implied binomial tree. As 

shown, the probability implied in the option prices at the moment of time was 

skewed to the bullishness.

R = [ ( \ - p ) R - + p R +]/r 
where Rj = F\ /F

(C4)
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9. Conclusions

We have two major reasons for measuring volatility of asset returns. 

One is for trading: we can set up option positions to capitalise the forecasted 

volatility, when the implied volatility is different from the forecasts and the 

difference can cover the trading costs. The other is for risk management: we 

can input a more accurate volatility for evaluation, so that we can obtain better 

quality control of position values in derivatives.

What we have learnt from the empirical work here is 1) that volatility of 

underlying asset return can be modelled and forecasted, 2 ) that implied volatility 

has information which can be utilised, and 3) that there is some degree of 

international linkage in volatility. Implications for traders are, therefore, 1) 

that volatility forecasting by a statistical model such as GARCH is worthwhile, 

2 ) that the implied volatility level, smile, and term structure should all be 

estimated to assess market conditions, and 3) that it is also worthwhile to 

forecast volatility by using information about the volatility change in other 

major markets. These conclusions will be reviewed in this chapter.

In Chapter 2, we have a review of estimates of historical volatilities 

including the high/low methods of Garman and Klass (1980) and Parkinson 

(1980). We find that modified Garman and Klass and modified Parkinson 

methods tend to overestimate true volatility. It seems that the assumption of 

Geometric Brownian motion (i.e. continuous price diffusion even when the 

market is closed) does not hold. JP Morgan’s exponential weighted moving 

average (EWMA) used for RiskMetrics™ is compared with GARCH, and we 

conclude surprisingly that EWMA is as effective as GARCH for the Nikkei
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index.

Chapter 3 examines whether forecasts of volatility from past data or 

from implied volatility are more accurate, using the Nikkei 225 index. In 

comparison, GARCH provides the best forecast among major volatility 

indicators (in terms of RMSE) including historical and implied volatilities. In 

addition, a combination of several indicators, including historical estimates, can 

enhance the volatility forecast. In order to forecast volatility, the suggested 

weights of the combination are 80% implied volatility and 2 0 % historical 

estimates. The shorter the time to maturity, the more important the historic 

(GARCH) estimates, because the GARCH model produces recursive one-day 

ahead estimates. We find that implied volatility tends to overpredict realised 

volatility, while Lamoureux and Lastrapes (1993) found the opposite for several 

individual stock options on NYSE. Also, implied volatility is a better forecast 

than simple historical volatility in our study, which is the opposite of the finding 

of Canina and Figlewski (1993) for the case of S&P 100 options.

In Chapter 4, Heynen’s (1994) and Taylor and Xu’s (1994) volatility 

smile models are fitted to Nikkei 225 options. We confirm that there is a 

skewed smile in the implied volatility and the steepness of the smile increases as 

the time to maturity decreases. To evaluate option positions, it is necessary to 

know that 1 ) volatility for a specific time to maturity should be varied by 

exercise price (smile effect) and 2 ) the effect changes with time (time effect).

In Chapter 5, we find that the return and volatility on the Japanese stock 

market (Nikkei 225) are affected by the other equity markets, such as the 

American (S&P 500) and British (FTSE 100). Our general model integrates
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two approaches, i.e., return spillovers and volatility spillovers in the context of 

GARCH. Return spillovers are comparatively large; for example the Nikkei 

return is explained 17% by the FTSE and 26% by the S&P return, independently. 

Volatility spillovers to Japan are significant but rather small; Nikkei conditional 

variance is explained 7% by the FTSE and 2% by the S&P variance respectively, 

so the major part of volatility is explained by purely own-market effects 

(GARCH). On the other hand, the Japanese market seems to have very little 

influence on the others, both with respect to return and to volatility. The 

practical implication is that a Nikkei option trader should take account of 

movements in both FTSE and S&P in order to forecast the Nikkei return and 

volatility on the next day.

We examine three subjects in Chapter 6 , (1) transmission of implied 

volatility (IV) across time zones (2) transmission of skewness across time zones, 

and (3) domestic influences on skewness. We find that IV spills over, but 

skewness seems to be a domestic phenomenon. A change in IV spills over to 

the next-opening market across a three-zone world. The IV of the S&P 

significantly affects Nikkei and FTSE IVs (whether considered in levels or 

changes in levels). On the other hand, there are three results in terms of 

skewness of implied volatility. The first is that spillovers of skewness are 

minor and only significant in relation to UK and US effects on Japan. Secondly, 

skewness is related to same-day returns in UK and Japan. Thirdly, next-day 

returns are positively related to skewness in the UK, and negatively in the US.

In Chapter 7, a cointegration analysis is applied to the term structure of 

implied volatilities for the Nikkei options on futures traded on SIMEX. 

Cointegration provides an accurate analysis for the association of
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volatilities (short- and long-term) and their correction process. We find that the 

short- and long-term volatilities are co-integrated, and that both short- and long-

term volatilities tend to correct the disturbance from the equilibrium relationship 

by changing their levels over time. The implication is that mean-reversion of 

an asset price makes the volatility expectation vary with maturity and the 

dispersion is corrected over time as the asset price reverts to the mean.

By using the shape of implied volatility smile, the implied risk-neutral 

distribution for an asset may be derived. However, this approach is not very 

useful unless the shape is stable over time. In Chapter 8 , we find that the 

stability is not sufficient to be useful in forecasting option prices in the case of 

the Nikkei options on futures in SIMEX, confirming the results of Dumas, 

Fleming, and Whaley (1995) for S&P options.

There are several areas that deserve further research. We have not 

explicitly tested or compared the forecasting performances among the GARCH 

family or between GARCH and SV models. For example, EGARCH 

(exponential GARCH), is not examined in this thesis, but may be better than 

simple GARCH for the stock return and volatility because the volatility of stock 

returns seems asymmetric (Nelson (1991)). Taylor (1994) compared GARCH 

and SV with foreign exchange data. We have not examined the persistence of 

volatility shocks in the Nikkei daily returns, that may be measured by a + ¡3 in 

the GARCH estimates1. If the volatility shock is always nearly one, as shown 

in Table 2.4 in Chapter 2 - Page 28, IGARCH (Integrated GARCH). proposed by 

Engle and Bollerslev (1986), may be appropriate to forecast the Nikkei volatility.

1 See Equation ( 11 ) in Chapter 2 - Page 21. For example, Watanabe ( 1997) shows why a +
/? means persistence of volatility shock.
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The implied volatility transmission could be examined with more high- 

frequency data, such as tick-by-tick price data, so that we can avoid overlapping 

of market opening periods. The overlapping trading hours are approximately 

half a day between U.K. and U.S.A.. The traders in the afternoon in U.K. may 

be highly affected by the market direction and volatility of U.S.A.. In such a 

case, spillovers from/to U.K. would be segregated at noon.

There may be more important factors to explain volatility changes, for 

example, open interest and trading volumes, which could be driving forces that 

have not been included in this thesis. Above all, more research is needed on 

the way in which prices are determined in financial markets, since the 

distribution of prices which we observe is the result of human behaviour.
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