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Privacy-Preserving Clinical Decision Support
System using Gaussian Kernel based Classification

Yogachandran Rahulamathavan, Member, IEEE, Suresh Veluru, Raphael C.-W Phan,
Jonathon A. Chambers, Fellow, IEEE, and Muttukrishnan Rajarajan, Senior Member, IEEE,

Abstract— A clinical decision support system forms a critical
capability to link health observations with health knowledge to
influence choices by clinicians for improved healthcare. Recent
trends towards remote outsourcing can be exploited to provide
efficient and accurate clinical decision support in healthcare. In
this scenario, clinicians can use the health knowledge located
in remote servers via the Internet to diagnose their patients.
However, the fact that these servers are third party and therefore
potentially not fully trusted raises possible privacy concerns.
In this paper, we propose a novel privacy-preserving protocol
for a clinical decision support system where the patients’ data
always remain in encrypted form during the diagnosis process.
Hence the server involved in the diagnosis process is not able to
learn any extra knowledge about the patient data and results.
Our experimental results on popular medical data sets from
UCI database demonstrate that the accuracy of the proposed
protocol is up to 97.21% and the privacy of patient data is not
compromised.

Index Terms— Pricacy, clinical decision support, encryption,
classification, support vector machine.

I. INTRODUCTION
A clinical decision support system is a computerized med-

ical diagnosis process for enhancing health-related decisions
and actions with pertinent, organized healthcare knowledge
and patient data to improve health and healthcare delivery
[1]. Artificial intelligence in machine learning together with
biomedical engineering revamp the available clinical data set
into healthcare knowledge to build the clinical decision support
system [2]–[5]. The current approach uses locally available
clinical data sets to build a clinical decision support system.
However, the accuracy of the system depends on the availabil-
ity of sufficient valid clinical data sets but these are not always
accessible. As an example, a particular general practitioner
(GP) surgery does not generally have sufficient number of
samples for all the diseases. Hence, making a correct diagnosis
using limited samples is unlikely to be successful.

The recent advances in remote outsourcing techniques (i.e.
cloud computing) can be exploited in healthcare to provide
efficient and accurate decision support as a service. This
service could be utilized by any clinicians in a flexible manner
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such as on-demand or pay-per use [6]. Within this context, let
us consider the following scenario: a third party server builds
a clinical decision support system using the existing clinical
data set (i.e. assume that the server has rich clinical data set
for a particular disease). Now clinicians, who want to verify
whether their patients are affected by that particular disease,
could send the patient data to the server via the Internet to
perform diagnosis based on the healthcare knowledge at the
server. This new notion overcomes the difficulties that would
be faced by the clinicians such as having to collect a large
number of samples (i.e. rich clinical data set), and requiring
high computational and storage resources to build their own
decision support system.

However, there is now a risk that the third party servers
are potentially untrusted servers. Hence, releasing the patient
data samples owned by the clinician or revealing the decision
to the untrusted server raises privacy concerns. This drawback
can affect the adoption of outsourcing techniques in healthcare
[7], [8]. Furthermore, the server may not wish to disclose the
features of the clinical decision support system even if it offers
the service to the clinicians. Hence, in this paper we propose
a privacy preserving clinical decision support system which
preserves the privacy of the patient data, the decision and the
server side clinical decision support system parameters, so that
the benefits of the emerging outsourcing technology can also
be enjoyed in healthcare sector.

In particular, we consider a decision support system devel-
oped using support vector machine (SVM), which is one of the
machine learning tools which has been widely used to predict
various diseases in biomedical engineering [9]–[11]. Typically,
using a SVM consists of two different phases namely training
and testing. During the training phase, a classifier will be
trained using features of the training data set belonging to
different classes. In the testing phase, any unlabeled data
sample can be classified and labeled to the corresponding
matched class using the trained classifier. In the current setting,
the available clinical data set can be used to train a classifier
and the trained classifier can be used as a clinical decision
support system during the testing phase to make the decision
for the patient data.

Depending on the separability of the available training data,
the SVM uses particular kernel functions such as linear and
non-linear kernels. If the number of features is larger than the
number of instances, it is not necessary to map the data into
higher dimensional space. It is because non-linear mapping
does not improve the performance. Since medical data sets,
in general, have less number of features than the number



Fig. 1. The overview of a privacy-preserving clinical decision support system.

of instances it is possible to get better classification results
with non-linear kernel based SVM. Polynomial and Gaussian
kernels are non-linear kernels. The polynomial kernel based
model is parametric while the Gaussian kernel based model
is non-parametric. In a way a non-parametric model means
that the complexity of the model is infinite, its complexity
grows with number of instances. In contrast a parametric
model’s size is fixed, so after a certain point, the model become
saturated, and giving more and more instances will not help.
It means that the accuracy is dependent on the chosen degree
of the polynomial. However, Gaussian kernel finds the best
polynomial function in the infinite dimension for the given data
set. Hence, we consider Gaussian kernel based classification
in this paper.

To the best of our knowledge, we present the first known
privacy-preserving clinical decision support system for a
Gaussian kernel based SVM. In order to preserve privacy,
we re-design the conventional Gaussian kernel based SVM
algorithm as an encrypted-domain algorithm using the Paillier
homomorphic encryption technique as one of its building
blocks [14]. Since Paillier encryption supports only integers
and the system variables are continuous and the Gaussian
kernel involves exponentiation of negative values, crucially
we develop a novel technique to scale the variables, which
overcomes these barriers without deteriorating the privacy and
performance.

In the system, as shown in Fig. 1, a clinician sends the
patient data sample in the encrypted format to the server over
the Internet. Then the server exploits the Paillier homomorphic
encryption properties to perform the operations directly on
the encrypted data, or if there are any operations that cannot
be handled by homomorphic properties, then there will be a
limited amount of interaction between the clinician and the
server based on two-party secure computation protocols [15].
We assume that both the parties will execute the protocol
correctly to maintain their reputation, hence we assume that
they will behave in a semi-honest manner, i.e. they are honest
but curious so privacy is a real issue.

The rest of this paper is organized as follows: In Section
II, we describe the conventional SVM, i.e. the steps involved
in training the SVM and classification in the plain-domain.
Particular focus is placed on the Gaussian kernel method.
In Section III we first briefly describe one of the building
blocks i.e. homomorphic encryption, and show how SVM
classification can be extended to work in the encrypted-

domain. Hence, the patient data can remain encrypted even
when it is being processed by the server. In particular, the
novel technique for scaling variables without deteriorating the
performance and privacy is described in Section III.B. We
analyze the performance of thus encrypted-domain method in
Section IV. We review related works in Section V. Conclusions
are discussed in Section VI.

Notation. We use boldface upper and lower case letters for
matrices and vectors, respectively; (.)′ denotes the transpose
operator; ∥.∥2 the Euclidean norm; JmK the encryption of
message m; and sign(m) denotes sign of the number m. The
modular reduction operator is denoted by mod.

II. SUPPORT VECTOR MACHINE

SVMs have been widely used in machine learning for data
classification [16], [17]. They have high generalization ability
which provides high reliability in real-world applications such
as image processing, computer vision, text mining, natural
language processing, biomedical engineering and many more
[18]–[21]. The goal of a SVM is to separate classes by a
classification function, which is obtained by training with the
data samples. We describe the classification function of a
SVM in the following subsection. This classification function
is crucial to derive the privacy-preserving decision support
system proposed in Section III.

A. In Plain-Domain

We start with a training set of samples x̃i ∈ Rn, i =
1, . . . , N where each sample x̃i belongs to one of the two
classes denoted by a label yi ∈ {−1,+1}, i = 1, . . . , N .
Using these training data samples we can train a SVM to
classify an unlabelled test sample. Before training a SVM,
the training data need to be normalized. Normalization keeps
the numeric values of training samples on the same scale and
prevents samples with a large original scale from biasing the
solution. Let us denote the normalized training data samples
as xi ∈ Rn, i = 1, . . . , N where,

xi =
x̃i − x̄

σ2
, ∀i, (1)

where x̄ and σ are denote mean and standard deviation of
the training data samples. Depending on the separability of
the training data, this problem is further divided into either
a linear classification problem or a non-linear classification
problem.

1) Linear classification problem: The goal of linear clas-
sification is to obtain two parallel hyperplanes as shown in
Fig. 2, w′x + b = −1 and w′x + b = +1, where w and
b are classification parameters obtained during the training
process. Both hyperplanes separate the training data of the
two classes such that the distance between those hyperplanes
is maximized.

After the training stage we can classify an unlabelled test
sample, t̃ ∈ Rn. Before the classification, the test sample is
normalized similar to (1) as

t =
t̃− x̄

σ2
. (2)



Fig. 2. Training data samples for two different classes are denoted by +
and − signs.

Fig. 3. Non-linear classification problem converted into linear classification
problem after the kernel mapping.

Now the normalized test sample, t, can be substituted into the
following classification function

f(t) = sign(w′t+ b) = sign

(∑
s∈S

αsysx
′
st+ b

)
, (3)

where f(t) ∈ {−1,+1}, αi, i = 1, . . . , N are Lagrangian
variables [22] and xs, s = 1, . . . , N are support vectors. If
f(t) = +1 then the test sample t̃ belongs to the +ve class
else it belongs to the −ve class. Please note that a decision
function d(t) can be extracted from (3) as

d(t) = w′t+ b =
∑
s∈S

αsysx
′
st+ b, (4)

where w′x + b = 0 denotes the decision-hyperplane which
lies between the two hyperplanes (i.e. w′x + b = −1 and
w′x+ b = +1)

2) Non-linear classification problem: In the previous sec-
tion, we discussed the classification problem where the training
data samples were linearly separable. However, it has been
proven in the literature that a similar approach can be used
for a non-linear classification problem using kernel methods
[23]. Hence, the non-linear classification algorithm is formally
similar to the linear classification algorithms except that the
dot product between the data samples (i.e. x′

ixj) is replaced
by various non-linear kernel functions. These kernel functions
transform the non-linear classification problem into a linear
classification problem by mapping data samples into a higher
dimensional feature space (see Fig. 3). In this work we
consider only a Gaussian function as kernel, where the dot
product between the data samples xs and t in (3) and (4) can
be replaced as

x′
st ⇒ K(xs, t) = e−γ||xs−t||22 , (5)

where γ > 0. Hence, the classification function in (3) can be
modified as

f(t) = sign

(∑
s∈S

αsyse
−γ||xs−t||22 + b

)
︸ ︷︷ ︸

decision function

. (6)

Without encryption the server would use (6) to make a
decision on the basis of the patient data. We propose a new
technique to reformulate (6) in the next section which will
preserve the privacy of patient data, decision and server side
parameters without compromising the classification perfor-
mance.

III. PRIVACY PRESERVING DECISION SUPPORT SYSTEM

In this section, we develop an algorithm which utilizes the
healthcare knowledge available in the remote location via the
Internet while preserving privacy. Hence, we consider a client-
server scenario where the remote server uses (6) as a decision
making tool. As shown in Fig. 1, a clinician sends the patient
data, t, over the Internet and obtains support from server to
make a decision. However, the clinician is reluctant to reveal
the patient data or the decision to the server due to privacy
concerns. At the same time the server desires not to leak any
parameter values of the classification function as thus would
be a breach of privacy of the training clinical data samples
which relate to other patients. In this section we show how to
preserve the privacy of the patient data t and the decision from
the server and the server side parameters from the clinician.
First, let us explain the required building blocks in the next
section.

A. Homomorphic Encryption

One of the building blocks for our technique is homomor-
phic encryption. For concreteness and without loss of general-
ity, our descriptions are based on the Paillier cryptosystem [14]
although any other homomorphic encryption schemes could be
used. The Paillier cryptosystem is an additively homomorphic
public-key encryption scheme, whose provable semantic secu-
rity is based on the decisional composite residuosity problem:
it is mathematically intractable to decide whether an integer z
is an n-residue modulo n2 for some composite n, i.e. whether
there exists some y ∈ Z∗

n2 such that z = yn mod n2. Let
n = pq where p and q are two large prime numbers. A message
m ∈ Zn can be encrypted using the Paillier cryptosystem asJmK = gmrn mod n2 where g ∈ Z∗

n2 and r ∈ Z∗
n. The

Paillier cryptosystem is said to be an additively homomorphic
cryptosystem because for some given encryptions Jm1K andJm2K, the encryption Jm1 + m2K of the sum m1 + m2 in
the plain-domain and the encryption Jm1.αK of the product of
m1 with a constant α in the plain-domain can respectively be
computed efficiently in the encrypted-domain asJm1 +m2K = Jm1KJm2K, Jm1.αK = Jm1Kα. (7)

In the setting considered in this paper, the clinician dis-
tributes a public-key to the server while keeping his private-
key secret. The server is able to perform encryptions under



TABLE I
OVERVIEW OF VARIABLES WHICH ARE KNOWN TO CLINICIAN AND/OR TO

SERVER (KNOWN-X, UNKNOWN-X ).

Variables Known to Known to
(in plain-domain) Clinician Server
public− key X X
private− key X X

t X X
αs, ys, γ, xs, b X X

c1 X X
c2, c3, c4,s c5,s, c6,s X X

d1,s, d3 X X
d2,s X X

this public-key and exploits the homomorphic properties of the
Paillier cryptosystem to perform the required linear operations
in the encrypted-domain. However, only the clinician is able
to decrypt any encrypted messages using his corresponding
private-key.

B. Decision Support Function in the Encrypted-Domain

In (6), the server knows αs, ys, γ, xs, s ∈ S and b in
the plain-domain (refer to Table I for the other variables). The
clinician encrypts each element of the patient data using the
public-key and sends the encrypted data and the corresponding
public-key to the server. Note that because the encryption is
performed with the clinician’s public-key, no one including the
server could decrypt this to obtain the values of the elements
thus the patient data are protected against being revealed even
to the server taking part in this process. Since the server only
has the encrypted patient data, it has to compute (6) in the
encrypted-domain using homomorphic and two-party secure
computation properties.

Generally, the variables associated with (6) are continuous
data. Since the Paillier cryptosystem only supports integers,
all the variables in (6) will be quantized to the nearest integer
value during the computation in the encrypted-domain, which
will potentially lead to deterioration of performance [24], [25].
Hence, it is crucial to reformulate (6) into a form which
is suitable for encrypted-domain operations. To address this
issue, we propose a novel technique for scaling each variable
in (6) by a positive large number. More specifically, let us
multiply the decision function in (6) by c2e

c3 > 0 as

f(t) = sign

{
c2e

c3

[∑
s∈S

αsyse
−γ||xs−t||22 + b

]}
, (8)

where c2, c3 ∈ R+, hence, the solutions of (6) and (8) are
equal. Let us define the scaled decision function in (8) as

d(t) = c2e
c3

[∑
s∈S

αsyse
−γ||xs−t||22 + b

]
(9)

and since −γ||xs − t||22 = −γx′
sxs − γt′t+2γx′

st, it can be

modified as

d(t) = c2e
c3

[∑
s∈S

αsyse
−γx′

sxse−γt′t+2γx′
st + b

]
,

=
∑
s∈S

(c2αsyse
−γx′

sxs)(ec3e−γt′t+2γx′
st) + (c2e

c3b).

(10)

Let us define c3 = c4,s + c5,s + c6,s, where c4,s, c5,s, c6,s ∈
R+. Hence, (10) can be modified as

d(t) =
∑
s∈S

(c2αsyse
−γx′

sxsec4,s)× (ec5,sec6,s−γt′t+2γx′
st)

+ (c2e
c3b),

=
∑
s∈S

(c2αsyse
−γx′

sxsec3−c5,s−c6,s)

× (ec5,sec6,s−γt′t+2γx′
st) + (c2e

c3b), (11)

and we define

d1,s = (c2e
c3−c5,s−c6,s)αsyse

−γx′
sxs , s ∈ S, (12)

d2,s = (ec5,s)ec6,s−γt′t+2γx′
st, s ∈ S, (13)

d3 = (c2e
c3)b, (14)

so that (11) and (8) can be replaced as,

d(t) =
∑
s∈S

d1,sd2,s + d3, (15)

and
f(t) = sign {d(t)} . (16)

Note that, c2e
c3−c5,s−c6,s , c5,s and c2e

c3 have respectively
been used to scale the variables associated in (12), (13) and
(14). Variable c6,s in (13) has been used to mask the value
−γt′t + 2γx′

st. We generate fresh random values of c6,s in
the range of x′

sxs for different s values. This masking can
be used to preserve the privacy of variables computed by the
server. We explain this in detail later in this section. All the
variables associated in this section are given in Table I for
convenience.

Now the server needs to compute (15) followed by (16)
to complete the decision making process. The server knows
all the variables associated with (12) and (14) in the plain-
domain, hence it can easily compute (12) and (14) without
interacting with the clinician. In order to obtain the whole
decision function in (15), the server also needs to compute
(13). Since the patient data, t in (13), are available to the
server only in the encrypted-domain, the server cannot directly
compute (13) in the plain-domain. To proceed, the server needs
to normalize the patient data, then compute c5,s+c6,s−γt′t+
2γx′

st and finally the exponentiation. Let us explain each step
in the following subsections.

1) Normalizing the test sample: Before computing (13), the
server needs to normalize the patient data as in (2). Denote the
patient data at the clinician as t̃ = [t̃1, . . . , t̃n]

′. The clinician
scales each element of t̃ by c1 > 0 to avoid quantization errors
during the encryption. Then the clinician encrypts the scaled
patient data and sends Jc1t̃K =

[Jc1t̃1K, . . . , Jc1t̃nK]′ and the



Fig. 4. Privacy-preserving decision support system based on a SVM. The
clinician supplies patient data in the encrypted format to the server.

corresponding public-key to the server (see Fig. 4). Now the
server will obtain the scaled and normalized patient data in
the encrypted-domain using (2) and homomorphic properties
as Jc1tK = Jc1t̃− c1x̄

σ2
K = Jc1t̃

σ2
− c1x̄

σ2
K. (17)

Let us define a mean vector x̄ = [x̄1, . . . , x̄n]
′ and normalized

patient data as t = [t1, . . . , tn]
′. Hence, each element of (17)

is given by

Jc1tiK = Jc1t̃i
σ2

− c1x̄i

σ2
K, ∀i. (18)

Since the server knows the vector x̄, and scalars c1 (as-
suming both the server and clinician know c1) and σ in
the plain-domain, the server can easily compute the values
− c1x̄i

σ2 = (−1). c1x̄i

σ2 , ∀i and encrypt each of its components by
exploiting homomorphic properties J(−1). c1x̄i

σ2 K = J c1x̄i

σ2 K(−1),
∀i. Similarly, encryption of c1 t̃i

σ2 can be obtained as J c1 t̃i
σ2 K =Jc1t̃iK 1

σ2 , ∀i. Hence, the scaled and normalized value of the
patient data in (18) can be obtained in the encrypted-domain
as follows:

Jc1tiK = Jc1t̃i
σ2

− c1x̄i

σ2
K = Jc1t̃i

σ2
K.J−c1x̄i

σ2
K ∀i,

= Jc1t̃iK 1
σ2 .Jc1x̄i

σ2
K(−1),∀i. (19)

Note that every computation in (19) can be performed by the
server without interacting with the clinician. Now the server
can use the encrypted, normalized and scaled patient dataJc1tK = [Jc1t1K, . . . , Jc1tnK]′ , (20)

to compute (13).

2) Computing (c5,s + c6,s − γt′t+ 2γx′
st) in (13): To do

this, let us raise the power of (13) by c31 to yield

(d2,s)
c31 = ec

3
1(c5,s+c6,s−γt′t+2γx′

st), s ∈ S,

= ec
3
1c5,s+c31c6,s−c31γt

′t+2c31γx
′
st, s ∈ S,

= ec
3
1c5,s+c31c6,s+(2c21γxs)

′(c1t)−(c1γ)(c1t)
′(c1t), s ∈ S.

(21)

In (21), the server knows c1, c5,s, c6,s, γ and xs, s ∈ S
in the plain-domain. Hence, the server can compute the term

c31c5,s + c31c6,s in (21) in the plain-domain. Since c1t is
available at the server only in the encrypted-domain (i.e. (20)),
the server needs to exploit the homomorphic properties to
compute the term (2c21γxs)

′(c1t) in (21) in the encrypted-
domain. Let us define xs = [xs,1, . . . , xs,n]

′, s ∈ S. Now
the server computes the term (2c21γxs)

′(c1t) in (21) in the
encrypted-domain as

J(2c21γxs)
′(c1t)K = J n∑

i=1

(2c21γxs,i)(c1ti)K,
=

n∏
i=1

J(2c21γxs,i)(c1ti)K,
=

n∏
i=1

Jc1tiK2c21γxs,i . (22)

Unfortunately, the server cannot compute the term
−(c1γ)(c1t)

′(c1t) in (21) without interacting with the
clinician. Hence, the server additively blinds the scaled and
normalized patient data with uniformly distributed random
vector r = [r1, . . . , rn]

′ to obtain ĴtK = Jc1t+rK = Jc1tK.JrK.
Then the server sends ĴtK to the clinician. The clinician
decrypts the received ĴtK and obtains t̂ in the plain-domain.
Then the clinician calculates t̂′t̂ and encrypts and sends Ĵt′t̂K
back to the server. Now the server extracts J(c1t)′(c1t)K fromĴt′t̂K using homomorphic properties as follows:J(c1t)′(c1t)K = Ĵt′t̂− 2c1t

′r− r′rK,
= Ĵt′t̂KJ−2c1t

′rKJ−r′rK,
= Ĵt′t̂K.J−r′rK. n∏

i=1

Jc1tiK−2ri (23)

The server then computes J−(c1γ)(c1t)
′(c1t)K using (23) and

the scalar −c1γ asJ−(c1γ)(c1t)
′(c1t)K = J(c1t)′(c1t)K−c1γ . (24)

After obtaining all the terms, the server can compute the whole
term c31c5,s+c31c6,s+(2c21γxs)

′(c1t)−(c1γ)(c1t)
′(c1t) in (21)

in the encrypted-domain using the homomorphic properties asJc31c5,s + c31c6,s + (2c21γxs)
′(c1t)− (c1γ)(c1t)

′(c1t)K
= Jc31c5,s + c31c6,sK.J(2c21γxs)

′(c1t)K.J−(c1γ)(c1t)
′(c1t)K.

(25)

3) Exponentiation using secure two-party computations:
The only part left is exponentiation of c31c5,s + c31c6,s +
(2c21γxs)

′(c1t) − (c1γ)(c1t)
′(c1t) to obtain (21). Since (25)

is in the encrypted-domain, the server cannot do the expo-
nentiation as in (21) and thus will interact with the clinician
to complete this exponentiation. The server sends (25) to
the clinician, who decrypts and obtains c31c5,s + c31c6,s +
(2c21γxs)

′(c1t)− (c1γ)(c1t)
′(c1t). Then the clinician divides

the decrypted component by c31 and obtains c5,s + c6,s +
(2γxs)

′(t)− (γ)(t)′(t). It is worth noting that the values c5,s
and c6,s have been used as a scaling factor and masking factor,
respectively to protect (2γxs)

′(t)−(γ)(t)′(t). Note that c5,s+
c6,s < c3 and the range of c6,s must be the same as the range of
x′
ixj , ∀ i, j. Since the range c6,s is the same as the range of x′

st



(i.e. x′
sxs) the clinician cannot extract any useful information

from the decrypted c5,s+ c6,s+(2γxs)
′(t)− (γ)(t)′(t). Note

that for every component of (13) a fresh random value c6,s
must be generated.

Now the clinician computes and encrypts
ec5,s+c6,s+(2γxs)

′(t)−(γ)(t)′(t) and returns it to the server.
The server has received (13) in the encrypted-domain (i.e.Jec5,s+c6,s+(2γxs)

′(t)−(γ)(t)′(t)K, s ∈ S), so it can compute
(15) in the encrypted-domain as

Jd(t)K = J∑
s∈S

d1,sd2,s + d3K = Jd3KJ∑
s∈S

d1,sd2,sK,
= Jd3K∏

s∈S

Jd1,sd2,sK = Jd3K∏
s∈S

Jd2,sKd1,s . (26)

In order to complete the classification, the server needs to
compute (16). Since d(t) is in the encrypted-domain (i.e. (26))
the server needs to obtain the sign of an encrypted-number to
complete this.

4) Obtaining the sign of an encrypted value: Let us denote
two strings yes and no to represent the decision. Assume that
if the sign of d(t) is positive then the decision for the given
patient data is yes and if the sign of d(t) is negative then the
decision for the given patient data is no. Since the server has
the value of d(t) in the encrypted-domain as in (26), we show
in this section how to obtain the decision for the patient data in
the encrypted-domain. Let us assume that | d(t) |< 10l, l ∈ Z
in the plain-domain. Note that since the training and test data
samples are normalized, the value of l can be determined using
the scale factor c2ec3 used in (8).

Now the server computes a new variable in the encrypted-
domain as JzK = J10l + d(t)K = J10lK.Jd(t)K. (27)

Since |d(t)| < 10l, the most significant digit of z is either 1
(i.e. if d(t) > 0) or 0 (i.e. if d(t) < 0). Let us denote the
most significant digit of z as z̃ ∈ {1, 0}. Hence, the decision
Dec, can be obtained as

Dec = z̃.(yes− no) + no. (28)

The most significant digit z̃ could be computed using the
following linear operation:

z̃ = 10−l.
[
z − (z mod 10l)

]
, (29)

where subtraction sets the least significant digits of z to 0
while the multiplication shifts the most significant digit down.
Since the z in (27) is in the encrypted-domain the server needs
to obtain the z̃ in (29) in the encrypted-domain. This can be
performed as follows:Jz̃K = J10−l.

[
z − (z mod 10l)

]K,
=

(JzK.Jz mod 10lK−1
)10−l

. (30)

However the z available at the server is encrypted, thus similar
to the process leading to the server being able to compute
(26), the server engages the clinician in a secure two-party
computation protocol to compute Jz mod 10lK.

The server blinds JzK using a uniformly distributed random

value r as JzrK = Jz + rK = JzK.JrK,
and this is sent to the clinician who decrypts JzrK and reduces
zr mod 10l. The result i.e., Jzr mod 10lK is then encrypted
and returned to the server who retrieves Jz mod 10lK as

Jz mod 10lK = Jz + r mod 10lK.Jr mod 10lK−1JλK10l ,
where λ ∈ {0, 1} is used to avoid underflow (i.e. λ = 0 if
z + r mod 10l > r mod 10l or λ = 1 if z + r mod 10l <
r mod 10l). The server knows z + r mod 10l in the plain-
domain while the clinician knows r mod 10l in the plain-
domain. Comparing two integers in encrypted-domain has
been widely studied in the literature [26]. Now the server can
compute Jz̃K using (30). The obtained Jz̃K can be used in (28)
to obtain the decision for the patient data in the encrypted-
domain, as follows:JDecK = Jz̃.(yes− no) + noK = Jz̃K(yes−no).JnoK. (31)

Now JDecK can be returned to the clinician who decrypts it
to find the decision of the patient data (see Fig. 4).

C. Information Leakage

In the proposed algorithm, the private key resides at clini-
cian side, hence it is not possible for the remote server who
participates in this classification operation to decrypt the test
sample or the classification result. However, the remote server
interacts with the clinician when the homomorphic properties
of Paillier cryptography are not sufficient to complete the
task. During the interaction any encrypted values sent by
the server could be decrypted by the clinician. It is possible
to formally analyse whether this interaction can reveal any
server side parameters to the clinician. The server first interacts
with the clinician to compute J(c1t)′(c1t)K from J(c1t)K (see
between (22) and (23)). If the server sends J(c1t)K without
any preprocessing then it may possible for the clinician to
infer the normalization parameters using (17). However, the
sever sends only ĴtK = Jc1t + rK, where the addition of
random variables r = [r1, . . . , rn]

′ makes it infeasible for the
clinician to extract any information about the normalization
parameters from t̂. Secondly, the server interacts with the
clinician to exponentiate the encrypted value as described in
Section III-B-3 where the server adds a random value c6,s
in c5,s + c6,s + (2γxs)

′(t) − (γ)(t)′(t) where the range of
c5,s is the same as the range of (γxs)

′(xs). Note that for
every support vector, c6,s is generated freshly. Hence, this
randomization makes it infeasible for the clinician to extract
any server side parameters. However, this interaction reveals
the number of support vectors used for classification. Since
there is no relation between size of the data set and the number
of support vectors used for classification, this leakage is not
a breach to privacy of the data set used in the training phase.
Finally, the server interacts with the clinician for modulo
reduction in order to obtain the sign of the decision function
d(t) (see between (27) and (31)). Since, d(t) is included in
z in (27), revealing z may leak the decision function value
to clinician. Hence, the server adds a random value r to z



TABLE II
SOME EXAMPLES OF NORMALIZED TRAINING SAMPLES OF THE WBC AND PID DATA SETS. THE FIRST FOUR SAMPLES ARE BENIGN WHILE THE LAST

FOUR SAMPLES ARE MALIGNANT.

Fea. 1 Fea. 2 Fea. 3 Fea. 4 Fea. 5 Fea. 6 Fea. 7 Fea. 8 Fea. 9
Sample 1 [WBC] -0.1243 0.1970 -0.6986 -0.7383 -0.6366 -0.5541 -0.6966 -0.1754 -0.6101
Sample 2 [WBC] -0.1196 0.1970 0.2823 0.2666 0.7585 1.6919 1.7700 -0.1754 -0.2827
Sample 3 [PID] -0.8443 -1.1227 -0.1551 0.5306 -0.6944 -0.6745 -0.3681 -0.1902 -
Sample 4 [PID] -0.8443 -0.9976 -0.1551 0.1544 0.1195 -0.4858 -0.9209 -1.0412 -

Sample 5 [WBC] -0.0967 1.2590 2.2442 2.2764 1.8048 1.6919 1.7700 2.2964 1.3543
Sample 6 [WBC] -0.0570 0.1970 -0.0447 -0.0684 0.0609 -0.5541 -0.1485 0.2365 0.3721
Sample 7 [PID] 0.6395 0.8478 0.1524 0.9067 -0.6944 0.2057 0.4612 1.4266 -
Sample 8 [PID] 1.2331 1.9425 -0.2576 -1.2874 -0.6944 -1.0894 0.5964 -0.1051 -

TABLE III
THE CLASSIFICATION RESULTS FOR THE WBC DATA SET FOR DIFFERENT VALUES OF γ IN THE PLAIN-DOMAIN.

WBC γ = 0.1 γ = 0.2 γ = 0.3 γ = 0.5 γ = 1 γ = 10 γ = 20 γ = 50
Benign (444) 436 435 435 435 435 433 433 433

(98.20%) (97.97%) (97.97%) (97.97%) (97.97%) (97.52%) (97.52%) (97.52%)
Malignant (237) 212 212 215 215 215 229 228 228

(89.45%) (89.45%) (90.72%) (90.72%) (90.72%) (96.62%) (90.20%) (90.20%)
Overall Accuracy (681) 648 647 650 650 650 662 661 661

(95.15%) (95.01%) (95.45%) (95.45%) (95.45%) (97.21%) (97.06%) (97.06%)

TABLE IV
THE CLASSIFICATION RESULTS FOR THE PID DATA SET FOR DIFFERENT VALUES OF γ IN THE PLAIN-DOMAIN.

PID γ = 0.1 γ = 1 γ = 5 γ = 10 γ = 15 γ = 20 γ = 25 γ = 30
Benign (500) 466 421 442 462 482 473 444 429

(93.20%) (84.20%) (88.40%) (92.40%) (96.40%) (94.60%) (88.80%) (85.80%)
Malignant (268) 106 166 204 230 239 227 230 218

(39.55%) (61.94%) (76.11%) (85.82%) (89.17%) (84.70%) (85.82%) (81.34%)
Overall Accuracy (768) 572 587 646 692 721 700 674 647

(74.48%) (76.43%) (84.11%) (90.10%) (93.88%) (91.15%) (87.76%) (84.24%)

before sending it to the clinician. Again this randomization
makes it infeasible for the clinician to extract any server side
information. Overall our proposed method not only preserves
the privacy of the patient information but also the server side
classification parameters.

IV. PERFORMANCE ANALYSIS

In this section we analyse the performance of the proposed
encrypted-domain algorithm. We compare the accuracy of
the proposed encrypted-domain method with the conventional
plain-domain method. For the experiment, we consider two
data sets from the UCI machine learning repository called the
Wisconsin Breast Cancer (WBC) and Puma Indian Diabetic
(PID) data sets [27]. The WBC data set contains 681 samples
where 444 samples are benign (non-cancerous) and 237 sam-
ples are malignant (cancerous) while PID data set contains 768
samples where 500 samples are malignant and 268 samples
are benign. The number of features for each sample in WBC
and PID data sets are nine and eight, respectively (excluding
class label attribute). Table II shows some examples of training
samples after normalization from the WBC and PID data sets.

For evaluation, we used a leave-one-out approach [28],
that is, one sample is removed from the data set and all

the remaining samples are used for training the SVM. The
removed sample will be used as patient data. This procedure
will be repeated for a different left out sample each time until
all the samples are used. In order to analyse the proposed
methods we first conduct an experiment in the plain-domain.
Later we do the same experiment in the encrypted-domain for
various scaling factors.

A. Experiments in the Plain-Domain

In all experiments, we assume that the training data are
not linearly separable and therefore we use a Gaussian kernel
method as in (6). Initially, we need to determine empirically an
appropriate value for γ in (6). Hence, we have obtained Table
III and Table IV for the WBC and PID data sets, respectively
in the plain-domain using the method described in Section II.
These tables show the classification accuracy for various γ
values. Let us explain the sixth result column (i.e. γ = 10)
in Table III. When γ = 10, the total number of correctly
classified benign samples is 433 out of 444 (97.52%) and that
of malignant samples is 229 out of 237 (90.72%). In total
662 samples were correctly classified out of 681 (97.21%).
Similarly, when γ = 15 for PID data set as in Table IV, the
total number of correctly classified benign samples is 482 out



of 500 (96.40%) and that of malignant samples is 239 out of
268 (89.17%). In total 721 samples were correctly classified
out of 768 (93.88%). Since γ = 10 for WBC data set and
γ = 15 for PID data set provide higher accuracy than other
values in this experiment, without loss of generality, we use
γ = 10 for WBC data set and γ = 15 for PID data set for the
experiments in the encrypted-domain. We also noticed that the
average numbers of support vectors used for WBC and PID
data sets are 205 and 535, respectively.

B. Experiments in the Encrypted-Domain

We have now evaluated our algorithm with 2048-bit key
size. We tested our proposed privacy-preserving algorithm in a
computer with 3.40 GHz processor and 8 GB of RAM running
on Windows 64-bit operating system. The algorithm is written
in C++ using GNU GMP library version 4.2.4. Both the server
and clinician were modeled as different threads of a single
program, which passes variables to each other.

As we mentioned in Section III-B, the scaling factors
c1, c2, c3 and c5,s have influence on the classification
accuracy in the encrypted-domain due to the fact that the
Paillier cryptosystem only encrypts integers. When we set
c1 = 1, c2 = 1, c3 = 0 and c5,s = 0, the classification
accuracy has reduced to 0%, which shows the importance of
the scaling factor in the encrypted-domain.

Scalar c1 is a linear scalar and has been used to scale
the patient data in (20). We noticed that each element of the
normalized training samples of the WBC and PID data sets
are in the range of ±10−4 (see Table II), hence, we have
chosen c1 = 104. Scalar c2 is also a linear scalar and it has
been used in (12) and (14). In order to get six decimal point
accuracy, we have chosen c2 = 106 in all the experiments.
Scalar c3 is an exponential scalar and used in (12) and (14).
The Paillier cryptosystem only encrypts integers in Zn, hence,
0 < c3 < loge(n). The scalar c5,s must be chosen such that
c5,s + c6,s < c3, where c6,s is a masking factor in the range
of x′

ixj ∀i, j. Next we obtain a classification accuracy for
different values of scaling factors.

Table V shows the accuracies in the encrypted-domain for
different values of c5,s when c3 = 10. The scalar c5,s can
take any value between 0 and c3 and is not necessarily an
integer. For the WBC data set, the classification accuracy in the
encrypted-domain is equal to the classification accuracy in the
plain-domain when 5 ≤ c5,s ≤ 9 (i.e. γ = 10 column in Table
III). Similarly, for the PID data set, the classification accuracy
in the encrypted-domain is equal to the classification accuracy
in the plain-domain when 7 ≤ c5,s ≤ 9 (i.e. γ = 15 column in
Table IV). However, the performance of the encrypted-domain
algorithm deteriorates when c5,s < 3 (c5,s < 5) for WBC data
set (PID data set) due to the quantization effect of the Paillier
encryption. Hence, the decision function becomes independent
of the patient data and provides infeasible results. Overall, the
proposed method does not degrade the classification accuracy
even when the classification is conducted in the encrypted-
domain for appropriate scaling factors.

TABLE V
CLASSIFICATION RESULTS FOR THE WBC AND PID DATA SETS IN THE

ENCRYPTED-DOMAIN WHEN c3 = 10.

WBC (γ = 10) c5,s = 0 c5,s = 2 c5,s = 5 c5,s = 9
Benign N/A N/A 433 433
(444) (97.52%) (97.52%)

Malignant 4 170 229 229
(237) (1.69%) (71.73%) (96.62%) (96.62%)

Overall 4 170 662 662
Accuracy (681) (0.58%) (24.92%) (97.21%) (97.21%)

PID (γ = 15) c5,s = 0 c5,s = 2 c5,s = 5 c5,s = 9
Benign N/A 71 452 482
(500) 14.20% 90.40% (96.4%)

Malignant 3 23 239 239
(268) (1.11%) (8.58%) (89.17%) (89.17%)

Overall 3 94 691 721
Accuracy (768) (0.39%) (12.23%) (89.97%) (93.88%)

C. Analysing the Factors Related to Accuracy

Equation (6) clearly shows that the classification function
only depends on the number of support vectors (i.e. |S|) and
the corresponding αs ∀s and b. Hence, after the training phase,
the classification task becomes independent of the size of the
data set.

In the encrypted-domain classification equation, d1,s ∀s
and d3 can be calculated by the server in the plain-domain.
Since the test sample, t, given to the server is in the en-
crypted format, d2,s ∀s need to be computed by the server
in the encrypted-domain by interacting with the clinician.
Hence, let us closely look at d2,s = ec5,sec6,s−γt′t+2γx′

st =
ec5,s+c6,s−γt′t+2γx′

st, where the server computes c5,s+ c6,s−
γt′t + 2γx′

st in the encrypted-domain. Since the Paillier
cryptography approximates the values to integers (floor values)
before encryption, it is crucial to scale the values in the test
sample t and support vectors xs. Scaler c1 has been used
to scale the test sample and c5,s has been used to scale the
c6,s − γt′t + 2γx′

st. Scaler c2 has been used to avoid the
approximation errors in d1,s and d3. Hence, classification er-
rors due to integer replacements during Paillier encryption are
solely dependent on choices of these scalars in the encrypted-
domain.

The choice of c1 depends on values in the test sample and
support vectors. Table II in the revised manuscript shows that
these values are in the range of ±10−4 and there was not
significant improvement in performance when we used more
than four decimal points. Hence, the error is dependent on
how many decimal points would be enough to get a good
accuracy. Which means if there is no significant increment in
performance then using more decimal points in values will
not be useful. Since there is no significant improvement in
performance beyond four decimal points c1 has chosen to be
104.

As shown in Section III-B-3, ec5,s has been used to scale
ec6,s−γt′t+2γx′

st. Hence, the classification error is dependent
on the value ec5,s too. Table VI depicts the required c5,s for
various decimal value accuracy (i.e. e2.3026 = 101).



TABLE VI
CONVERSION TABLE FOR c5,s .

c5,s 2.3026 4.6052 6.9078 9.2103 11.5129
Accuracy 101 102 103 104 105

In our experiment, there is no improvement in perfor-
mance beyond three decimal point accuracy for c5,s (i.e.
c5,s > 6.9). Similarly, c2 has been fixed to 106. Overall there
will not be significant improvement in accuracy even if we
increase these scalers beyond the values mentioned earlier.
However, from equations (6) and (8), it is obvious that the
accumulated error of the decision function (i.e. d(t)) due to
the wrong choice of c1 (i.e. if c1 = 102) is proportional
to the number of support vectors × edimension of data

and the accumulated error in the decision function due to
the wrong choice of c2 and c5,s being proportional to the
number of support vectors.

D. Communication Complexity

The communication cost of the proposed algorithm highly
depends on the size of Paillier cryptography; in our imple-
mentation the size of a encrypted sample is 2048 bits long.
Sending an encrypted test sample with N number of features
consumes 2.048N Kbits of bandwidth in the communication
channel. In the proposed algorithm, the server interacts with
the clinician for three times. During the second interaction (i.e.
for exponentiation) the server sends |S| number of encrypted
values (i.e. equal to the total number of support vectors)
while in the first and last interaction the server sends only
one value. Hence, the communication cost for our algorithm
is upper-bounded by the second interaction which requires
2.048|S| Kbits of bandwidth. Since the number of support
vectors should be less than the size of the data set, the worse
case bandwidth requirement for both WBC and PID data sets
are 0.174MB and 0.197MB, respectively.

E. Computation Complexity

We measure the computation complexity in terms of average
runtime required for the proposed algorithm when the size of
the security parameter N = 2048. The average times required
for WBC and PID data sets are 41 and 92 seconds respectively.
It is noted that the average time is increasing linearly, with the
number of support vectors used for classification.

V. RELATED WORK

In general, data classification is a combination of two
phases: training phase and testing phase. The first phase,
training a classifier, requires a large collection of data. There
are various organizations publish their customers data for
research and monetary purposes. Publishing a person specific
data set (e.g. data related to patients of a cancer hospital) may
reveal individuals identity and breach the privacy of patients.
However, there are various privacy preserving techniques (i.e.
anonymization techniques and data perturbation techniques)
have been well studied in literature to preserve the privacy of
individuals in the data sets ( [29]–[31] and references there in).

However, the proposed work in this paper considers the privacy
in the second phase of the data classification task, where
clinicians only require to send the test data of their patient
to the remote server where classifier is already established.
Since the proposed method preserve the privacy of training
data set, it is possible for any organization with large data
to provide a classification as a service to anybody through
the Internet rather than anonymize and publish the data set in
plain-domain. Hence, our method is different from the data
anonymization and data perturbation based methods.

A SVM has been used in bio medical engineering to
diagnose various diseases in the plain-domain ( [9]–[11] and
references therein). Note that, any algorithm in the plain-
domain cannot be used to provide decision support via the
Internet due to the privacy issue. Recently, Mathew and
Obradovic proposed a privacy preserving framework for clin-
ical decision support using a decision tree based machine
learning technique [32]. The work in [32] supports prevention
of personally identifiable information leakage. However, the
authors in [32] only considered the privacy of the training data
set by assuming that the training data is available from more
than one location. In our work, we are not only preserving the
privacy of the training data set but also the patient data and
the result. Moreover, the algorithm developed for the decision
tree cannot be directly extended to a SVM.

Let us review some of the privacy-preserving SVM algo-
rithms developed in the data mining literature. The majority of
works in datamining were developed for the distributed setting
[33]–[36]. More specifically, in [33]–[36], the researchers
assumed that different parties hold parts of the training data
sets. Hence, they developed protocols to securely train a
common classifier without each party needing to disclose its
own training data to other parties. After the training each party
holds part of the classification parameters and support vectors.
In order to classify a new data, each party has to be involved
equally to compute part of the kernel matrix and then all
parties together or the trusted third party will classify the new
data. The works in [34]–[36] exploited the secure multi-party
integer summation to cooperatively compute the kernel matrix.
Basically, each party generates the Gramm matrix using scalar
products of the training and new data samples. This Gramm
matrix is later revealed to the trusted third party who will
compute the kernel matrix and then classify the new data.
Revealing the Gramm matrix may leak the private data and
therefore privacy cannot be entirely preserved.

The work in [33] proposed for the first time a strongly
privacy-enhanced protocol for a polynomial kernel based SVM
using cryptographic primitives where the authors assumed that
the training data are distributed. Hence, to preserve privacy,
they developed a protocol to perform secure kernel sharing,
prediction and training using secret sharing and homomorphic
encryption techniques. At the end of the training each party
will hold a share of the secret. In the testing phase all parties
collaboratively perform the classification using their shared
secrets. At the end of the protocol each party will hold a
share of the predicted class label. Since the work is based
on secret sharing, all the parties must be involved in every
operation of calculating the kernel values and predicting the



class. Hence, it is suitable only for the distributed scenario and
not for the client-server model considered in this paper. In the
client-server model, the client just sends the new data in the
encrypted-domain and is minimally involved in interactions
with the server during the classification process. Moreover,
the method developed in [33] considered only the polynomial
kernel and so it cannot be modified directly to work with the
Gaussian kernel based SVM considered in this paper as these
kernel functions are of different forms.

The recent work in [37] discusses the issue of releasing
the trained SVM classifier without violating the privacy of
support vectors. While the Gaussian kernel was considered,
a Taylor series was exploited to approximate the infinite
dimension of the Gaussian kernel into finite dimension and
adhere negligible performance loss. Since this works purely
in the plain-domain, it cannot be modified to the clinician-
server scenario considered in this paper.

VI. CONCLUSIONS

In this paper we have proposed a privacy-preserving deci-
sion support system using a Gaussian kernel based support
vector machine. Since the proposed algorithm is a potential
application of emerging outsourcing techniques such as cloud
computing technology, rich clinical data sets (or healthcare
knowledge) available in remote locations could be used by
any clinicians via the Internet without compromising privacy,
thereby enhancing the decision making ability of healthcare
professionals. We have exploited the homomorphic properties
of the Paillier cryptosystem within our algorithm where the
cryptosystem only encrypts integer values. Hence, we pro-
posed a novel technique to scale the continuous variables
involved in the process without compromising the performance
and privacy. To validate the performance, we have evaluated
our method on two medical data sets and the results showed
that the accuracy is up to 97.21%. Importantly, the benefit of
our encrypted-domain method is that patient data need not be
revealed to the remote server as they can remain in encrypted
form at all times, even during the diagnosis process.
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