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Abstract

Mortality patterns experienced in closely related populations show similarities in
some aspects and differences in others. Indeed, if a decline in mortality rates
among low-mortality countries is observed, it is possible that populations experience
different trends through which this decline occurs. Observing mortality rates for
ages and over specific time windows, it is evident that the different interactions
between the variables age and time influence longevity trends. Therefore, to grasp
the complexity of the phenomenon, the similarities or differences in mortality need to
be analyzed by considering three dimensions: age, year, and country, simultaneously.
With this aim in mind, we propose applying a multidimensional latent clustering
approach to multipopulation mortality data in this paper. We investigate some
similarities between the mortality experience of different countries, searching for
latent structure across these groups. Starting from the observation units represented
by single countries, we nest them in higher-level units of clusters. We apply the
proposed model to the mortality rates of 20 developed countries using data from
1965 to 2019 from the Human Mortality Database. We present detailed results for
the lower mortality cluster, which collects ages from 50 to 60 among all countries of
the selected dataset and highlights different mortality trends between the countries.

Keywords: Latent Clustering, Multipopulation mortality data.

1 Introduction
In recent years, the demographic literature on multipopulation modelling of mortality rates
that identifies clusters of countries showing similar mortality trends has blossomed. Some

1



of these models are designed starting from synthetic summary measures of longevity, such
as life expectancy [Bohk-Ewald et al., 2017, Amin and Steinmetz, 2019, Levantesi et al.,
2022]) or life span inequality [Edwards and Tuljapurkar, 2005, Vaupel et al., 2011, Debón
et al., 2017]. Other contributions focus on clustering models of specific components of
mortality, such as the age-specific death rates [Léger and Mazzuco, 2021], or the mortality
improvement rates [Djeundje et al., 2022]. Piscopo and Resta [2014] introduce the use of
Self Organizing Maps (SOMs) in multidimensional mortality analysis. Piscopo and Resta
[2017] apply spectral biclustering to mortality datasets to capture the period, the age, and
the cohort effects. Dong et al. [2020] propose multi-population mortality forecasting using
tensor decomposition. Another strand of the literature collects contributions concerning
the clustering of populations by specific causes of death [Grigoriev and Pechholdová, 2017,
Nigri et al., 2022]. Cardillo et al. [2022] apply a tensor-based approach to the mortality
by cause of death.
While the demographic literature has focused on identifying common mortality trends
across countries and highlighting differences by looking for economic and social expla-
nations, the actuarial literature has explored models for the fitting and forecasting of
mortality rates by exploiting multi-population datasets. Starting from the Lee and Carter
[1992] model, which is considered a milestone to forecast mortality for a single country,
many extensions in the multipopulation setting have been proposed [Tuljapurkar et al.,
2000, D’Amato et al., 2014])to obtain coherent forecasts [Li and Lee, 2005, Hatzopoulos
and Haberman, 2013, D’Amato et al., 2019, Wu and Wang, 2019]. Thus, Lam and Wang
[2022] model joint mortality and forecast multiple subpopulations through multivariate
functional principal component analysis techniques. Tsai and Cheng [2021] implement
statistical clustering methods into mortality models in order to improve their forecasting
performance. Hatzopoulos and Haberman [2013] propose a fuzzy c-means cluster analysis
based on the main time trends to produce coherent mortality forecasts.
In the papers cited so far, the clustering of countries is made on the basis of mortality
trends, which take into account the evolution of mortality over time considering the
influence that all ages, or subsets of them, have on the chosen measures of mortality,
allowing for how they react overall to improvements in mortality. In this work, however, we
propose a different approach to mortality clustering and offer complementary information
to that provided by the existing literature. We propose a more specific level of clustering,
trying to identify groups of countries that show similarities in mortality at the same ages
and in the same years. In fact, it may happen that some countries, despite showing
similar mortality trends, differ in the behavior of individual ages in specific years. In
order to bring out these not directly observable characteristics, we introduce Latent Class
Clustering (LCC) techniques into the analysis of multipopulation mortality trends.
LCC is a mixture model for classifying individuals based on their responses to multiple
items. When existing subgroups in the data represent different populations, it is possible
to analyse the latent class structure across these groups. In multiple-group LCC models,
observation units (in our case, a single country) are nested within a higher-level unit (in
our case, the cluster of countries). The belief at the basis of LCC methodologies is that
there are one or more latent variables that explain the clustering. In the multipopulation
mortality setting, we observe groups (each country is a group of individuals with different
ages in different years). However, there could be some latent variables that we do not
observe directly (for example, socio-economic or political factors) that explain the coun-
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tries’ clustering. The LCC permits the identification of groups of countries that show
similar mortality for the same ages and in the same years, providing a three-dimensional
grouping: by age, year, and country. LCC results provide different information compared
to two-dimensional clustering: while with the latter approach, the groups of countries
show the same general trend in mortality over some time, the former approach captures
similar characteristics between countries that have the same mortality at certain ages and
in specific years.
In recent years, LCC techniques have been used in the epidemiological and clinical litera-
ture [Larsen et al., 2017, Santaolalla et al., 2019, Li et al., 2020, Luo et al., 2021] and in
the demographic literature [Larsen et al., 2017] to study mortality in relation to specific
causes of death, but its exploitation in the context of multipopulation models of mortality
trends appears to be new. The application of latent clustering in the medical sciences
has involved patients with a specific disease, with patients being categorized according
to specific and observable risk factors. Despite this, within each group of patients, the
course of the disease for some has been different than for others and the reason has been
attributed to the presence of latent factors that are not directly observable - this has
allowed the further clustering of the patients in order to explain the differences in the
reaction to the treatments. In this paper, we propose to adopt the same concept in the
context of the analysis of multipopulation mortality: we examine the mortality rates in
different population groups corresponding to different countries and classified also by age
and time variables. However, there are some specific features in the data that can only
be captured by nested groups and nesting could be explained by the presence of latent
variables not directly observable or not available to the researcher. This might involve,
for example, economic and social factors, or a more or less austere political environment.
The remainder of this paper is organized as follows. Section 2 is devoted to describing
the basic concepts of the LCC method. In Section 3 the technique previously described
is applied in the specific context of a multi-population analysis. Section 4 presents an
empirical application of LCC to mortality rates of a group of 20 developed countries from
the Human Mortality Database. Finally, concluding remarks are offered in Section 5.

2 Methodology: LCC
LCC is a statistical methodology for capturing similarities among observable data when
other unobservable categorical variables explain the segmentation of the dataset into
several latent classes or clusters. Therefore, LCC permits identifying latent subpopulations
within a dataset and analysing the responses to the observed variables, which are called
indicators. Data are attributed to the same cluster if they show similar patterns of
variations to the available indicators; these similarities are measured in scores calculated
through probability distributions, whose unknown parameters have to be estimated. In
this sense, LCC is used to capture latent heterogeneity in samples; for a detailed discussion,
see Hagenaars and McCutcheon [2002]. Unlike classical cluster analysis techniques, LCC
is a model-based clustering approach, in the sense that the analysis is based on the
hypothesis of the existence of a mixture of underlying probability distributions from which
the data are generated. The parameter estimation problem of these distributions is solved
through the maximum likelihood method. It follows that LCC is a probabilistic clustering
approach: each object is attributed to one cluster with a certain degree of uncertainty.
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This aspect makes LCC similar to fuzzy clustering, but in the latter case, the grades of
membership attributed to each object have to be estimated while, in the former case, each
grade is calculated after having estimated the model parameters. Consequently, unlike
fuzzy clustering, LCC allows the classification of other data belonging to the population
not present in the original dataset. In the following, we describe the methodological
framework for LCC.
Let zi be all explanatory variables called predictors for the single case i of the selected
dataset and let yi be the dependent variable or response or indicator corresponding to the
case i. The model assume that the dependent variable depends not only on the predictors
but also on one or more latent variables. Let x be a single latent variable with K categories,
called Latent Classes or Clusters. The LCC defines a general mixed probability structure
that describes the relationship between predictor, latent, and response variables as follows:

f(yi|zi) =
K∑

x=1
P (x|zi)f(yi|x, zi) (1)

that can be rewritten as
f(yi|Θ) =

K∑
x=1

πxfx(yi|Θx,zi) (2)

where πx = P (x|zi) is the prior probability to belong to cluster x given the observed
explanatory variables, Θ is the set of parameters of the explanatory variables, Θx,zi is
that of the mixture densities of yi given x and zi.
The assumption behind the LCC framework is to describe a model for f(yi|zi). According
to Eq.(2), the latent variable may be influenced by the explanatory variables, and the
indicators may be influenced by both latent and observed variables.
A particular distribution is chosen depending on the scale and the type of indicators.
When the variables are categorical, a multinomial distribution is assumed; when the
variables are continuous, the multivariate normal distribution is selected; and when the
variables are discrete, Poisson or binomial distributions are considered. The distribution of
latent variable x given the observed variables is assumed to come from a joint multinomial
distribution. We refer to Vermunt and Magidson [2016b] for a detailed description of the
formulations of all joint distributions and their parametrization according to a classic
GLM model. The wide choice of models for the joint distributions of indicators, latent and
observable variables allows for the management of variables of different types and scales in
a multidimensional space without having to proceed with data scaling or without having
to abandon dealing at the same time with continuous variables or discrete ones, ordinal
or cardinal [Vermunt and Magidson, 2016a]. This wide choice undoubtedly represents one
of the great advantages of LCC compared to other cluster methodologies.

Just to give an example, when the indicators are modelled with a Normal distribution
within latent classes with parameters µx and Σx, the clustering algorithm estimates
separately a set of parameters for each latent class, also allowing us to identify classes that
differ with respect to their means or variances so that the clusters might be homogeneous
with respect to the responses to the explanatory variables.
An extension of Eq.(2) is used when the indicators are continuous, nominal and ordinal
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variables with different scales:

f(yi|Θ) =
K∑

x=1
πx

J∏
j=1

fx(yij|Θjx) (3)

where j is the single indicator and J the total number of indicators.
Once the whole probability structure has been defined, the parameters must be estimated.
The two main methods used are the Maximum Likelihood (ML) and the Maximum
Posterior Method (MAP). The MAP is used to estimate the parameters and maximizes
the log-posterior distribution given by the sum of the log-likelihood function and the logs
of the prior distributions. For more details, please refer to Vermunt and Magidson [2016a].
Finally, once the parameters have been estimated, each object has to be allocated to the
cluster with the higher posterior class membership probability:

πx|yi =
πx

∏J
j=1 fx(yij|Θjx)∑K

x=1 πx
∏J

j=1 fx(yij|Θjx)
(4)

The most widely used classification method is the modal allocation, according to which
each data is assigned to the class with the highest scores, i.e., the highest posterior
probability. One of the advantages of LCC models is the ability to obtain an equation,
called a scoring equation, for calculating these posterior membership probabilities directly
from the observed variables.
The advantages of LCC over other clustering algorithms are many. Among these, one of
the main advantages comes from the fact that it is a statistical model-based clustering
model. Indeed if, on the one hand, the statistical hypotheses on mixed probability
distributions linking the observable variables to the dependent and latent variables make
the analyst’s choice subjective, on the other hand, they make it possible to identify
objective statistical criteria for determining the number of clusters or for the segmentation
of data among the various groups. Further, LCC permits the fitting of probabilistic
models to the data, in contrast to distance-based clustering methods, like the k-means,
which segments observations based on a dissimilarity criterion. Moreover, the flexibility
of the LCC permits incorporation in the analysis of many real-world circumstances,
like unequal covariance matrices between clusters, unequal numbers of observations in
clusters, or correlation between variables inside clusters. Regarding the number of selected
clusters, although a sphere of subjectivity is present in all clustering methods, for model-
based approaches, quantitative criteria like Bayesian Information Criterion (BIC) or the
Integrated Completed Likelihood (ICL) criterion are available. LCC, being a probabilistic
model, allows for statistical procedures for determining the number of clusters and provides
results which are stated in terms of probabilities and are more interpretable. For a more
detailed comparison of clustering methods, we refer to Xu [2013] and Eshghi et al. [2022].

Nowadays, the availability of software packages to implement LCC makes the tool
attractive and easy to use [Haughton et al., 2009], so that its applications in various
research fields have proliferated, ranging from medicine to economics and the social
sciences [Kaplan, 2004].
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3 The LCC of a mortality dataset
The use of LCC appears appropriate in the context of mortality for the following reasons
that have guided our choice. First, the phenomenon of longevity trends is known to be very
complex, and mortality is known to be linked to multiple demographic and socio-economic
factors that are not always directly observable. Datasets in which mortality rates are
linked to different causes of death are not always available and comparable. Awareness
that there are latent variables in addition to observable ones such as age or time that
can influence trends in mortality can help improve our understanding of the phenomenon.
Moreover, in the mortality dataset, the analyst has to deal with different types of variables,
discrete variables such as age and year, continuous variables like the mortality rate, and
often also qualitative variables, like gender and country. As explained in Section 2, LCC
can deal with different types of data and create clusters working on combinations of
categorical and numeric data.
In contrast, most cluster algorithms can only deal with numeric variables. Another
advantage over the other algorithms is that LCC does not require any data scaling
procedure, and mortality datasets often present data with different measurement scales.
Furthermore, in the context of mortality, LCC is flexible and allows us to incorporate
different phenomena (e.g., predictor variables, covariates, direct or indirect effect inside
clusters, unequal covariance matrices...) depending on the objectives of the analysis; these
are elements which are not readily addressed with the other cluster algorithms. In the
following, we put the model described in Section 2 in the context of multi-population
mortality data.
Let mi

x,t be the central mortality rate for an individual aged a at time t belonging to
country c with

a = {a1, a2, ..., aω}

t = {t1, t2, ..., tT}

c = {c1, c2, ..., cN}.

In our case, we have one indicator m and three explanatory variables, of which age and
time are ordinal, and mortality rates are continuous, so we have to deal with a mixed
model with variables having different scales. In this model

zi = {a, t, c}.

The mortality rates are grouped in N population. With the LCC model, we look for a
latent structure among these groups and suppose there is a single latent variable x .
Starting from the observation units represented by a single country, we nest them in
higher-level units of clusters, considering both the variables age and time simultaneously.
The LCC is implemented through a two-step procedure. In the first step, we estimate the
parameters of the mixed probability structures through the MAP as described in Section
2:

f(mi|zi) =
K∑

x=1
πxfx(mi|Θx,zi) (5)
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In the second step, we allocate each object to the cluster with the higher posterior class
membership probability:

πx|mi =
πx

∏J
j=1 fx(mij|Θjx)∑K

x=1 πx
∏J

j=1 fx(mij|Θjx)
(6)

where j is the single indicator.

4 Numerical Application
In this section, we show the implementation of the LCC procedure to a mortality dataset,
the details of which are described in Section 4.1. The clustering object variable is the
mortality rate, the indicator variables are age and year, the grouping categorical variable is
country. Due to the specificity of the clustering algorithm, as noted above, no preliminary
data scaling is required (Vermunt and Magidson [2002]).

4.1 Data
In this paper, we implement the two-step cluster algorithm, as described in the previous
section, on mortality data available from the Human Mortality Database [2022]. We focus
the analysis on recent mortality trends, selecting data from 1965 to 2019. Having chosen
the time interval of the analysis, we exclude Germany from consideration because data for
the combined country are available only starting from 1990. Greece, which presents data
from 1971, is included because the number of missing years compared to other countries
is relatively low. Twenty countries with large populations and developed economies are
identified in this analysis. Moreover, we select mortality rates for single ages from 50 to
95 and by individual calendar year for the male population, noting that data at more
advanced ages are of reduced quality as the cases are less numerous and errors in the ages
recorded may be present. The complete dataset is listed in Table 1 and consists of 198168
entries.

4.2 Results
The LCC algorithm described in Section 3 is implemented with the software XlSTAT
provided by Addinsoft [2022]. The scoring Eq. 5 and the posterior probabilities in Eq.
6 are calculated under a multinomial logit model. Parameter estimation is carried out
through a two-step iterative algorithm, which begins using the Expectation Maximiza-
tion (EM) algorithm until either the maximum number of EM iterations (EMIt) or the
EM convergence tolerance criterion (EMT ) is reached. Then, a Newton Raphson (NR)
algorithm is used until the maximum number of NR iterations (NRIt ), or the overall
convergence tolerance criterion (NRT ) is reached. For more details see Vermunt and
Magidson [2016a].
We set EMIt = 250, NRIt = 50, EMT = NRT = 0.01.
The first step of any clustering procedure is choosing the number of clusters. Although the
literature proposes many identification and classification criteria, a subjective evaluation
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Country HMD label
1 Australia AUS
2 Austria AUT
3 Belgium BEL
4 Canada CAN
5 Switzerland CHE
6 Denmark DNK
7 Spain ESP
8 Finland FIN
9 France FRANCNP
10 United Kingdom GBRNP
11 Grece GRC
12 Ireland IRL
13 Italy ITA
14 Japan JPN
15 Netherlands NLD
16 Norway NOR
17 Portugal PRT
18 Sweden SWE
19 Taiwan TWN
20 United States of America USA

Table 1: Selected countries in the dataset
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N.Cl. LL BIC AIC Class.Error Entropy R2 ICL-BIC
2 -291474.46 584094.83 583160.91 0,018 0.939 588302.88
3 -271367.17 543934.31 542956.34 0.034 0.927 551836.96
4 -259950.04 521154.10 520132.07 0.047 0.918 532411.61
5 -252910.16 507128.39 506183.32 0.062 0.908 521796.82
6 -248216.91 497795.96 496811.82 0.076 0.898 515834.28
7 -245031.72 491479.62 490456.43 0.091 0.887 513095.26
8 -242951.89 487374.04 486311.79 0.100 0.883 511209.39
9 -240714.34 482952.98 481851.68 0.101 0.888 507095.96
10 -238517.08 478612.52 477472.17 0.101 0.892 503052.71

Table 2: The Information and Classification criteria

is likely to affect the final choice. Therefore, “clustering is in the eye of the beholder”
(Estivill-Castro [2002]), and the analyst must evaluate the interpretability of the clus-
ters and the population’s size. Table 2 shows the value of three information statistics
(the Log-Likelihood (LL), the BIC, and the AIC) and three classification statistics (the
Classification Error, the Entropy R2 and the ICL-BIC) for LCC models with the number
of clusters k = 1, 2, . . . , 10. As the number of clusters increases, the identification and
classification statistic values improve, except for the classification error, which, as expected,
is smallest in the case of a single cluster.
We set k = 10: this is a high enough number of clusters to differentiate the numerous
data points being worked on and is a value at which further increments do not lead to
significant increases in the values of the baseline statistics. Figure 1 shows the clustered
data under the three variables age, time, and country. Figures 2 and 3 represent the same
clustering in bidimensional Trellis plots.
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Figure 1: The Clusterized Mortality Rates

Trellis plots represent the interaction of each pair of variables in multivariate data.
Two variables are chosen to represent a common set of axes (repeated in each panel),
against which all combinations of two categorical variables called “conditioning variables”
are plotted. In Figure 2, on the y-axis, there are the ages; on the x-axis the countries
and, from one plot to another, the years vary. Figure 2 shows how different age groups
for all countries are classified into different clusters from one plot to another as the years
vary. For example, the first plot at the top left represents the group of individuals aged
between 50 and 60 during the first 9 years of the dataset. The color blue represents the
first cluster. As highlighted in the next section 4.3, for Finland and USA, during this
period, the individuals of the group do not fall into the low mortality cluster but they will
enter it only later; for this reason, the bar corresponding to these two counties does not
show the color blue, but the orange one. In Figure 3, on the y-axis, there are the years; on
the x-axis, the countries, and, from one plot to another, the ages vary. The first plot on
the top left represents the ages between 50 and 59: this group of individuals falls into the
first cluster (the blue one) for all years and almost all countries. Here, two orange bars are
highlighted, correspodning to Finland and USA, indicating that this group of individuals
belongs to a different cluster for the first few years. As highlighted in Subsection 4.3, the

10



50-59 group in these two countries falls into the cluster with low mortality with a time
delay.

Figure 2: Trellis Plot by Age and Countries

Figure 3: Trellis Plot by Year and Countries

4.3 Discussion
In this section, we focus the discussion on cluster 1, which is the cluster with the lowest
mortality experience, and so it collects ages between 50 and 60. The cluster composition
is detailed in Table 3 for each individual value of the country, age, and year variables for
which the mortality rates fall within cluster 1. As can be seen from the results, going
from 1965 to 2019, the cluster collects progressively more advanced ages reflecting the
general progressive improvement of living conditions: while in the first years of the dataset,
the individuals with the lowest mortality are aged 50-51. Then, as the years pass, more
advanced ages are included in the cluster, so that, in the most recent years, individuals
aged between 50 and 60 are collected. Almost all counties are present in this cluster,
with individuals aged between 50 and 60 and years from 1965 to 2019, but with some
differences, reflecting different mortality trends between countries. In some countries,
older people enter the low mortality cluster earlier, for others they enter later. In the
following paragraphs, we describe some relevant pieces of evidence.
In most countries, we observe that in the years between 1965 and the early 1970s, the ages
falling into the cluster with the lowest mortality are between 50 and 52, while only in the
mid-1980s are ages up to 55 also included. More or less, starting from the 2000s, we are
witnessing a forward shift of the ages present in the cluster, up to including individuals
aged 58-60. Compared to this general trend, we highlight some essential differences
recorded between the two North American countries in the dataset, the USA, and Canada,
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in line with the findings found in the demographic literature for individual countries.
Although over the last century, life expectancy has improved in most high-income countries,
in recent decades, the United States and Denmark have experienced life expectancy
stagnation (Christensen et al. [2010],Bureau [2011]). As can be seen from Table 3, as
far as Denmark is concerned, until the end of the 1980s, only individuals aged between
50 and 53 were included in the low mortality cluster, with an evident lag compared to
other countries, and individuals aged 55 were included in the cluster 10 years later. The
phenomenon is even more pronounced in the USA, where individuals aged 50 fall into the
cluster with a six years’ delay (only starting from 1975) and those aged 55 only in the
90s. However, starting in the 2000s, while increases in life expectancy in Denmark have
resumed, the same phenomenon has not occurred in the USA. In particular, from 1995
and then more strongly after the 2000s, Denmark has experienced high rates of mortality
improvement for all ages [Andreev, 2002, Jarner et al., 2008]. The stagnation and the
subsequent recovery may affect mortality projections in Denmark: Djeundje et al. [2022]
have calibrated mortality improvement rates for the period 1965-2010 and then forecasted
them for 2011-2017 and demonstrated that the observed mortality improvements for
Denmark are higher than projected and by a greater margin than in other countries; a
possible explanation being that the period of stagnation affected the calibration phase.
Another emblematic case among the Scandinavian countries is that of Finland, which
despite its wealth, is characterized by high suicide rates [Holopainen et al., 2014, Partonen
et al., 2022, Statistics Finland, 2021]). As can be seen from Table 3, also for Finland,
individuals are included in the low mortality cluster with an evident time lag compared
to other countries.
As far as the USA is concerned, the literature is full of contributions that highlight the
mortality gap compared to other high-income countries [Berkman et al., 2011, Wilmoth
et al., 2011] and identify some of the causes (Nigri et al. [2022]), including the poor efficiency
of the health system and lifestyles and obesity linked to socio-economic differences [Preston
and Ho, 2009]. In contrast, the opposite situation occurs in neighboring Canada and
emerges strongly [Milligan and Schirle, 2021]. Compared to the USA, individuals in
Canada of all ages in the range 50-59 fall into a low mortality cluster 10 years earlier,
and Canada is the only country in the dataset that has individuals aged up to 59 in the
cluster for the last 20 years, placing it among the first countries for favourable longevity
trends. Figure 4 shows the low mortality clustering for USA and Canada.
At the end of this section, it must be emphasized that any reference to possible explanatory
causes of mortality (like the suicide rate in some Scandinavian countries and obesity in the
USA) has been made exclusively to show how the results obtained from the application of
the LCC are consistent with those of the cited literature. However, analysis of individual
causes of death is beyond the scope of this work due to the essence of latent clustering:
suggesting that there are factors that can explain mortality but are latent variables
unavailable to the analyst.

Cluster 1

AUS AUT BEL
Age Year Age Year Age Year
50-51 1965-75 50 1968,71 50 1965-67
50-52 1975-77 50-51 1967,70,72,75-76,78 50-51 1966,68-73
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50-53 1978-80 50-52 1965-66,69,73-74,77,79-82,84 50-52 1974-77,1979
50-54 1981-83 50-53 1983,85-87,89 50-53 1978,80-83
50-55 1984-87 50-54 1988 50-54 1984-86,88
50-56 1988-90 50-55 1990-94 50-55 1987-89
50-57 1991-94 50-56 1995-96,99 50-56 1990-94,97-99
50-58 1995 50-57 1997-98,2000-2003 50-57 1995-96,2000,02-03
50-59 1996-2005,2007-15 50-58 2004-08 50-58 2001,2004-2008
50-60 2006,2008-14,2016-19 50-59 2009-19 50-59 2009-19

CAN CHE DNK
Age Year Age Year Age Year
50-51 1965-68,70,72-73 50-52 1965-70 50-52 1967,72,75-76
50-52 1969,71,74-78 50-53 1971-72,75-76 50-53 65-66,68-71,73-74,77-82,84-88
50-53 1979-80 50-54 1973-74,1977-82 50-54 1983-89-91
50-54 1981-83 50-55 1983-1988 50-55 1992-93
50-55 1984-88 50-56 1989,91-92 50-56 1994-97,99
50-56 1989-90,92 50-57 1990-93 50-57 1998,2000-03
50-57 1991,93-94 50-58 1994-95 50-58 2004-07,09-10
50-58 1995-99 50-59 1997-2006,10,12 50-59 2008,12,19
50-59 2000-19 50-60 2007-19

ESP FIN FRATNP
Age Year Age Year Age Year
50-52 1966-70 50 1976,78 50 1965-69,71
50-53 1965,71-76 50-51 1979,82 50-51 1970-81
50-54 1977-81 50-52 1980,83-85 50-52 1982-86
50-55 1982-86,88,89 50-53 1986-88-89 50-53 1987-88
50-56 1987,90-92 50-54 1987,90-91 50-54 1989-90
50-57 1993-97 50-55 1993,95-96 50-55 1991-94
50-58 1998-2003 50-56 1992,94,98,99,01 50-56 1995-98
50-59 2004-2019 50-57 1997,02,03-05,07 50-57 1997-03

50-58 2000,06,09-11 50-58 2004-07,09,11-12
50-59 2012-2019 50-59 2008,10,13-19

GBRNP GR IRL
Age Year Age Year Age Year
50-51 1965-69 50-55 1981,83 50-51 65-67,69,73-74,76,78,80
50-52 1970-79 50-56 1982,84-85,87,88 50-52 68,70-72,73-74,76,78,80
50-53 1980-82 50-57 1986,89-94 50-53 1975,83-84,86,87
50-54 1983-87 50-58 1995-00,04,05,07,12,15,18 50-54 1985
50-55 1988-90 50,59 2001-03,08-11,13-14,16,17,19 50-55 1988,90,91
50-56 1991-94 50-56 1989-92,95,98
50-57 1995-98 50-57 1996-97,99-00
50-58 1999-02 50-58 2001-02,04
50-59 2003-19 50-59 2003,05-14,16

50-60 2015,17
ITA JPN NLD

Age Year Age Year Age Year
50-51 1965,69 50-51 1965 50-52 1965-66,69-72
50-52 1966-68,70-78 50-52 1966-69 50-53 1967-68,73,75-76
50-53 1979-83 50-53 1970-72 50-54 1974,77-80,82-83
50-54 1984-86 50-54 1973-76 50-55 1981,85-87
50-55 1987-89 50-55 1977-81,83 50-56 1988-93
50-56 1990-93 50-56 1982,84-89 50-57 1994-97
50-57 1994-96 50-57 1990-94 50-58 1998-01
50-58 1997-99 50-58 1995-97 50-59 2002-18
50-59 2000-13,15,17,18 50-59 1998-14,16,18 50-60 2019
50-60 2014,16,19 50-60 2015,17,19
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NOR PRT SWE
Age Year Age Year Age Year
50-53 1965-75,81 50-51 1965-71,73-77 50-53 1965,67
50-54 1976-80,82-83,87 50-52 1972,78-79,81 50-54 1966,68-79
50-55 1984-85 50-53 1980,82-85,87-88 50-55 1980-82,84-85
50-56 1986,88-92,95 50-54 1986,89,91-93 50-56 1983,88-88,91
50-57 1993 50-55 1990,94 50-57 1989-90,92
50-58 1994,96-98 50-56 1995-99 50-58 1993-95
50-59 1999-2009,11-14 50-57 2000-02 50-59 1996-06,08,10,12
50-60 2010,15-19 50-58 2003,05,06,17 50-60 2007,09,11,13-19

50-59 2004,07-16,18-19
TWN USA

Age Year Age Year
50-51 1970-73 50 1971-73
50-52 1974-77 50-51 1974-77
50-53 1978-84 50-52 1978-81
50-54 1985-94,96 50-53 1982-85
50-55 1995,97-98,2000 50-54 1986-90
50-56 1999,01-02,04-05 50-55 1991-95
50-57 2003,06-08 50-56 1996-2000
50-58 2009-2013,15,16,18,19 50-57 2001-06
50-59 2014,17 50-58 2007-19

Table 3: Ages, Years and Countries in cluster 1

Figure 4: The Low Mortality Cluster in USA and Canada

The ability of the methodology used to discriminate between ages and countries over
the years can also be highlighted for other age groups beyond that of the main focus
of the work. The plot in the upper centre of Figure 3 relates to the second age group
that welcomes individuals between the ages of 60 and 69. In this plot, we still find some
parts in blue that relate to sixty-year-olds entering the cluster in recent years with low
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mortality. However, the blue bars in the plot are not all of the same length, demonstrating
the fact that there are differences between countries. For example, corresponding to the
first country in the dataset, Austria, the blue bar is the longest because age 60 enters the
low mortality cluster first (as shown in Table 3 above). In line with the dataset’s first
years, other colors emerge corresponding to other clusters for which higher mortality levels
are recorded for this same age group. The plot at the top right relates to the 70-79 age
group. In this plot, there are two clusters, the orange one and the red one; the former has
a relatively higher mortality level than the latter. Also, in this case, it is highlighted how,
over the years, individuals in this age group have experienced a reduction in mortality,
passing from the orange cluster to the red one, but in different years in the various
countries. However, Figure 3 shows that the discriminating capacity of the methodology
applied to the dataset considered is higher for the younger age groups and lower for the
more advanced ones. In particular, the bottom and central right plots relating to the
older age groups are mostly characterized by a single color; thus, individuals, for all the
countries considered and mostly in all years, fall into the same cluster. This evidence
shows that the proposed clustering methodology applied to the dataset considered is
useful in clustering mainly middle-aged individuals rather than particularly elderly ones.
Thus, it could serve as a complementary tool to other clustering methods presented in the
literature and also be useful in the case of ad hoc analyses, like, for example, the actuarial
applications that aim to design targeted welfare policies for assistance to the population
group in the early years of retirement, such as those relating to privatized health and
social care.
At the end of this section it should be specified that the first cluster includes individuals
with lower mortality does not mean that clusters are ordered in increasing mortality levels.
In the LCC, the clusters are sorted according to the proportional class assignment, i.e., to
each cluster is given a weight equal to the posterior membership probability of the entire
cluster. The fact that the first cluster coincides with the one with the lowest mortality
means that this class includes cases with the highest posterior probability as a whole.
Regarding the colors of the clusters, as we move from blue to red we are moving from
cluster with the highest posterior probability to the one with the lowest probability.

5 Conclusions
In this paper, we have proposed applying the Latent Cluster method to mortality data
in a multipopulation setting in order to cluster groups of the populations not only on
the basis of observable variables available in mortality databases but also on the basis of
latent factors that are not directly observable. The advantage of the proposed model is
that it allows a greater degree of depth in the analysis of the differences or similarities
of the mortality trends that have occurred in different countries. In fact, through latent
clustering, it is possible to cluster data under the triple dimensions of age, time, and
country, working simultaneously on variables of a quantitative and qualitative nature
and different measurement scales. Compared to the two-dimensional cluster models
proposed in the demographic literature, the Latent Clustering method allows us to have a
greater depth of detail in the analysis, managing to identify not only groups of countries
which have shown similar longevity trends, but countries which have shown, in the same
years and for the same ages, similar mortality trends. In this paper, we have focused on
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high-income countries and a lower mortality cluster of individuals aged 50-60. Further
research could be aimed at studying mortality clusters of more advanced ages.
The scope of the application of this new way of looking at mortality data could be multiple
and diverse, and could encompass both governmental interest in the identification of
appropriate welfare and assistance policies for the various population sub-groups and
private sector interest in the identification and pricing of ad hoc insurance and pension
products. Currently, most longevity indicators are summary indicators that summarize all
factors affecting longevity. However, more detailed information, such as social indicators
that can explain trends in mortality, would play a crucial role in designing appropriate
policies for governments to achieve their welfare goals. Unfortunately, their availability can
only sometimes be guaranteed. In these cases, an analysis by latent factors can improve
the degree of understanding of the phenomena that impact on mortality experience, even
though detailed datasets for specific social and economic variables or for specific causes of
death are not often available.
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