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Modern traceability technologies promise to improve supply chain management by simplifying recalls,

increasing visibility, or verifying sustainable supplier practices. Initiatives leading the implementation of

traceability technologies must choose the least-costly set of firms—or seed set—to target for early adoption.

Choosing this seed set is challenging because firms are part of supply chains interlinked in complex networks,

yielding an inherent supply chain effect : benefits obtained from traceability are conditional on technology

adoption by a subset of firms in a product’s supply chain. We prove that the problem of selecting the least-

costly seed set in a supply chain network is hard to solve and even approximate within a polylogarithmic

factor. Nevertheless, we provide a novel linear programming-based algorithm to identify the least-costly seed

set. The algorithm is fixed-parameter tractable in the supply chain network’s treewidth, which we show

to be low in real-world supply chain networks. The algorithm also enables us to derive easily-computable

bounds on the cost of selecting an optimal seed set. Finally, we leverage our algorithms to conduct large-scale

numerical experiments that provide insights into how the supply chain network structure influences diffusion.

These insights can help managers optimize their technology diffusion strategy.

Key words : supply chain traceability; sustainability; technology adoption; network diffusion;

computational complexity; fixed-parameter tractability; treewidth
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1. Introduction

Modern consumer goods supply chains form complex networks spanning dozens of countries and

actors. As a result, most firms cannot reliably trace the products they produce and source beyond

a few upstream and downstream supply chain tiers. This limited traceability—or ability to trace

the processing history, origin of materials, and final destination of products (ISO 2005)—has

several negative consequences. First, a lack of traceability is a major barrier to building sustainable,

disruption-resilient supply chains (The White House 2022), limits supply chain coordination, and

increases transaction costs (Wilson 2014). Second, firms lacking traceability are prone to extensive

recalls (Wowak et al. 2016), with adverse consequences (Lee 2022). Finally, customers increasingly

value traceability, so a lack of it can negatively affect demand (Retail Leader 2016).

1
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To counter this traceability deficiency, many firms are leading the development and deployment

of new traceability technologies, protocols, standards, and initiatives (henceforth technologies).
1

In the food industry, for instance, these traceability initiative leaders are typically large retailers

or processors (e.g., Walmart or Tyson Foods), often in collaboration with IT companies (e.g.,

IBM and its “Food Trust” traceability solution) or industry consortia (see Naidu and Irrera 2017,

Youngdahl and Hunsaker 2018, Haig 2020, Hiba 2023, for more examples). Similarly, in the fashion

industry, fast-growing IT companies (such as Textile Genesis) engage with large retail companies

(such as H&M, Lenzing, or Bestseller) to lead traceability initiatives (Ahmed and MacCarthy 2021).

Traceability initiative leaders aim to have all players in target supply chains adopt their traceability

technology or, more ambitiously, have their technology become the industry standard for specific

product categories. However, they often find disseminating their technology across supply chains

a daunting and “painfully complex” task (Saenz and Hinkel 2022).

This complexity is due to two key reasons. The first is a network effect unique to supply chain

technologies called the supply chain effect. To illustrate this effect, consider a producer of chocolate-

based products who wishes to use a traceability technology to trace the origins of its cocoa and

the final destination of its products. While traceability may benefit all players in the chocolate

supply chains (e.g., by improving the detection of supplier malpractice, increasing demand visibil-

ity, or enabling sustainability certifications), benefits are only obtained if products are traceable

throughout their entire supply chains. If a subset of firms in the supply chain does not adopt the

technology, the product produced by that supply chain is no longer fully traceable, and technology

adoption benefits are drastically diminished for all firms. Thus, the supply chain effect requires

most or even all firms involved in the product’s supply chain to adopt the traceability technol-

ogy for firms to benefit (see, e.g., Behnke and Janssen 2020, Sternberg et al. 2021). The second

reason is the complex structure of modern supply chains. Traceability initiative leaders interact

with thousands of firms in hundreds of partially overlapping supply chains, thus forming a supply

chain network. While these overlapping supply chains help alleviate the supply chain effect, they

complicate the design of traceability technology dissemination strategies.

Traceability initiative leaders often proactively engage with a set of early adopter firms in the

supply chain network to jumpstart technology diffusion. We refer to this set as the network’s

seed set. Engagement with the seed set is costly and usually includes pilot programs, subsidies,

or cost-sharing incentives. The leader’s goal is to have seed set firms adopt the technology and

then influence other firms into adopting it, triggering broad technology diffusion (World Economic

1
In a recent survey of 150 senior supply chain leaders, 68% identify traceability as a “very or extremely” important

issue (World Economic Forum 2021). The value of the traceability technology industry is estimated to grow to US$23
bn. by 2025 (Bhandalkar and Das 2019).
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Forum 2021, Saenz and Hinkel 2022). Engaging with the “best” seed set is a critical decision for

traceability leaders, and, to build an effective technology dissemination strategy, they must answer

a few vital managerial questions: (i) What is the lowest-cost seed set that ensures the whole network

eventually adopts the technology? (ii) How does the size of the seed set depend on the network

structure? and (iii) What are the different roles that seed set firms play in the diffusion process?

The existing network diffusion literature addresses these questions through various mathematical

models and frameworks (e.g. Rogers 2010). However, none of these models are tailored to supply

chain networks, nor the specificities of traceability technology. In particular, there is no research

on how the supply chain effect influences technology diffusion. Our paper aims to fill this gap by

introducing a new model which incorporates the supply chain effect and can be used to optimize

the dissemination of traceability technology in supply chain networks. This model enables us to

answer the strategic questions above and can guide the design of traceability technology diffusion

strategies. From a theoretical perspective, our framework extends and applies recent results from

Integer Programming to technology diffusion, building a new bridge between these two fields.

More specifically, our theoretical contributions are as follows. In Section 3, we introduce our new

technology diffusion model, the Supply Chain Traceability Model (SCTM), and formalize the seed

set selection problem (MIN -SCTM). In Section 4, we prove that MIN -SCTM is hard to solve

and approximate and that the supply chain effect drives this complexity. In light of this result, any

exact solution algorithm for MIN -SCTM must be parametrized by a structural parameter of the

network. We propose such an algorithm in Section 5, more specifically, a fixed-parameter tractable

(FPT) linear programming-based algorithm with parameter treewidth of the supply chain network.

This parameter measures how “tree-like” the network is and is low for real-world supply chains.

We further provide two approximation schemes for MIN -SCTM . One is a principled heuristic

that returns upper and lower bounds on the optimal cost, explicitly trading off accuracy with

computational time (Section 5). The other is a simple heuristic based on our managerial insights

(Section 6). These algorithms and heuristics collectively answer question (i) above.

We then conduct a series of large-scale numerical experiments using our optimization framework

to answer questions (ii) and (iii). In Section 6.1, we address (ii) and find that the Jaccard clustering

of a supply chain network is a crucial predictor of the seed set size. This measure can thus estimate

the effort required to disseminate a traceability technology. Section 6.2 examines (iii). We observe

two types of early adopter firms in the seed set: starter and helper firms. Starter firms are positioned

within supply chains that are made traceable early in the diffusion process and help “jumpstart”

diffusion. Conversely, helper firms are part of supply chains that become traceable at later stages of

the diffusion process. These firms help circumvent the supply chain effect and “transfer” diffusion

across different network parts. We show that the ratio of starter-to-helper nodes in the seed set
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has a non-linear relationship with a network’s modularity. Our insights can help managers tailor

their diffusion strategy to a supply chain network’s structure.

2. Literature Review

Most operations management papers on traceability technologies focus on the tools and IT infras-

tructure supporting traceability, ranging from RFID (Dutta et al. 2007, Heese 2007, Whang 2010)

to data management systems such as blockchain technology (Babich and Hilary 2020, Chod et al.

2020, Cui et al. 2023). In contrast, our paper abstracts away specific technological details and

focuses on diffusion across supply chains, an issue that affects all traceability technologies.

Our approach contributes to the network diffusion literature by building on the Linear Threshold

Model (LTM) (Granovetter 1978). In the LTM, a node in a network adopts an innovation (such as

a new technology) after a certain fraction of its neighbors have adopted the same innovation. The

model we develop, the SCTM, relates to the LTM in two ways. First, the SCTM is a generalization of

the LTM, allowing for interactions through hyperedges, not only direct neighbors. Thus, the SCTM

encodes the supply chain effect—where sets of firms in a supply chain must adopt the technology

for adoption benefits to become available—which the LTM cannot do directly. Second, as described

in Section 3.3, by introducing an auxiliary graph to our supply chain network hypergraph, one can

view the SCTM as a weighted generalization of the LTM on a highly structured graph. The auxiliary

graph enables us to relate our results to existing results for the target set selection (TSS) problem

in the LTM. For example, our hardness and inapproximability results for MIN -SCTM add to the

results on the hardness of TSS under additional structural assumptions (Kempe et al. 2003, Chen

2009). We also provide an extension of the dynamic programming-based fixed-parameter tractable

algorithm for TSS by Ben-Zwi et al. (2011) to our setting.

This paper also builds on recent results from the integer programming literature. Specifically,

Laurent (2009) and Bienstock and Muñoz (2018) show that binary linear programs are amenable

to linear programming reformulations that are FPT in the treewidth of a graph related to the

original formulation. We employ these results to derive an LP-based FPT algorithm for MIN -

SCTM . By doing so, we open up a new application area for these integer programming techniques

in network diffusion while providing an innovative approach to TSS in the LTM.
2
Namely, our

LP formulation overcomes the implementation difficulties of the existing dynamic programming

approach and provides a principled way for designing heuristics and obtaining managerial insights.

3. The Supply Chain Traceability Model (SCTM)

We introduce our model in Section 3.1 and show how it describes different supply chain relationships

in Section 3.2. In Section 3.3, we present an auxiliary graph that is key to solving MIN -SCTM .

2
While we do not apply our algorithm to this specific problem, we could easily extend our approach.



Blaettchen, Calmon, and Hall: Traceability Technology Adoption 5

4

3

5

6

7

8

9

1

2

Figure 1 Example of a hypergraph G with n= 9 and m= 4. Here, NF = {1, . . . ,9} and

E = {eblue, ered, egreen, eblack} with eblue = {1,3,6,8}, ered = {1,3,6,9}, egreen = {2,5,7,9}, eblack = {2,4,7,9}.

3.1. Model Description

Consider a hypergraph G with nodes NF = {1, . . . , n} and hyperedges
3
E = {e1, . . . , em}. Figure 1

provides an example. Nodes could represent firms and hyperedges subsets of firms collaborating to

produce a product (see Section 3.2). The size of ej is kj, and kj is upper-bounded by a constant k.

Without loss of generality, we assume G is connected—otherwise, we repeat our analysis on each

connected component independently.

State of the Network. Each node i ∈ NF has a state xit ∈ {0,1} at the end of period t ∈

{0,1,2, . . .}. A node in state 1 is said to be active or have adopted the technology. Once active, a

node remains in state 1 for all future periods. The state of the network at time t, given by St, is

the set of active nodes at the end of period t, that is St = {i∈NF ∶ xit = 1}.

Parameters of the Network. For each node i and hyperedge ej, there is a benefit rji provided

by ej to i. For each node i, there is also an adoption cost, ci, and a seeding cost, wi. Each hyperedge

ej has an adoption threshold θj, which is the minimum number of nodes in ej that need to be active

for ej to become active or traceable.

Activation Process and State Equation. In periods t ∈ {1,2, . . .}, a node i ∈NF in state 0

decides whether to become active and switch to state 1. Node i switches states if the adoption cost

ci is outweighed by the adoption benefit bi(St), computed in the following way. Consider the set of

all hyperedges ej that i belongs to and which are traceable after node i decides to become active. We

let the set of indexes of these hyperedges be Bi(St). Then, Bi(St)= {j ∶ i∈ ej, ∣St∩ ej∣≥ θj −1}.4

Each hyperedge ej with j ∈Bi(St) generates traceability benefit rji ≥ 0 for node i once the node

is active. Thus, the benefit i obtains from becoming active is bi(St) =∑j∈Bi(St) rji. We define the

activation process’s state equations, which we call the SCTM activation process, as

St+1 = St ∪ {i∈NF \St ∶ bi(St)≥ ci}, ∀t= 0,1, . . . .

Given a hypergraph G and some initial set S0 ⊆NF , this process is well-defined: A unique final set

of adopters S∞ ⊆NF exists and can be attained in a finite number of steps.

3
A hyperedge ej , j = 1, . . . ,m in hypergraph G is a subset of nodes in NF .

4
This definition comes from the following argument: Let j ∈ Bi(St). Then, i ∈ ej and ∑i′∈ej

xi′t ≥ θj . If i decides to

activate, then xit = 1. Therefore, ∑i′∈ej
xi′t =∑i′≠i,i′∈ej

xi′t + 1≥ θj , which is equivalent to ∣St ∩ ej∣≥ θj − 1.
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Activation Process Example. Figure 1 illustrates the activation process. We focus on the

network structure’s impact and set rji ≥ ci ∀i∈NF , ej ∈E. Let the initial set of active nodes that

have adopted the technology be S0 = {1,2,3,4,7} and assume we are in period t = 1. We further

assume that traceability benefits only kick in when all nodes in a hyperedge have adopted the

technology, that is, θj = 4 ∀ej ∈E. In the case of eblue, ered, and egreen, there are two active nodes,

so no node can obtain a benefit from these hyperedges by becoming active. However, hyperedge

eblack has three active nodes, with only Node 9 inactive. By becoming active, Node 9 ensures that

eblack is active or traceable and obtains benefits. In particular, B9(S0)= {j ∶ 9∈ ej, ∣S0∩ej∣≥ 3}=
{black} and b9(S0) = rblack,9. Because rblack,9 ≥ c9, Node 9 becomes active, and S1 = {1,2,3,4,7,9}.
In period t = 2, hyperedges ered and egreen are one node away from becoming active via Nodes 6,

respectively 5. Consider Node 6: B6(S1)= {j ∶ 6∈ ej, ∣S1∩ej∣≥ 3}= {red}, so its benefit is b6(S1)=
rred,6 ≥ c6. Similarly for Node 5: B5(S1) = {j ∶ 5 ∈ ej, ∣S1 ∩ ej∣ ≥ 3} = {green}, so the benefit is

b5(S1)= rgreen,5 ≥ c5. Both nodes become active, and S2 = {1,2,3,4,5,6,7,9}. This leaves Node 8 as

the only inactive node at the end of period t= 2. Since B8(S2)= {j ∶ 8∈ ej, ∣S2∩ej∣≥ 3}= {blue},
we have b8(S2)= rblue,8 ≥ c8 and Node 8 becomes active in period 3. Thus, S3 = S∞ =NF .

Decision. At time 0, the decision-maker chooses the initial set of adopters, or seed set S0 ⊆NF .

Other nodes are in state 0. The decision-maker could be, for example, a retail chain interested in

tracing the origins of a set of products it sells. We provide a detailed discussion in Section 3.2.

Problem Formulation. The decision-maker chooses the lowest-cost seed set S0 so all nodes

i∈NF eventually become active. We call this problem MIN -SCTM :

OPT = min
S0⊆NF

∑
i∈S0

wi

s.t. S∞ =NF

St+1 = St ∪ {i∈NF \St ∶ bi(St)≥ ci}, ∀t= 0,1, . . .

(1)

Here, given a budget constraint, we minimize the seed set cost to achieve a final set of adopters

rather than maximize the size of the final set of adopters. This is because the former is more

appealing in practice: network effects and economies of scale inherent to traceability technology

will eventually lead to a single industry-wide standard. For a decision-maker to reap benefits in

the long term, broad adoption is needed, even at a high initial cost. In addition, we constrain this

final set of adopters to be NF , as it leads to an upper bound on the seeding cost of any subset of

NF . Our results can be directly extended to any subset of NF .

Assumptions on the Parameters. We assume that all nodes can become active, that is,

∑j∶i∈ej
rji ≥ ci ∀i∈NF . We also assume that all values rji and ci are integers—values can be scaled

if they are initially rational. For a given i ∈NF , if the greatest common divisor gi of {rji}j and ci
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is larger than one, we consider benefits {rji/gi}j and cost ci/gi. This is a useful preprocessing step,

as the runtime of our subsequent algorithm will scale with the maximum of costs and benefits.

Moreover, we assume θj ∈ {2,3, . . . , kj}. If θj > kj, hyperedge ej never provides traceability benefits,

and we remove it from G. If θj = 1, traceability benefits prevail when just one node is active, so we

can remove the hyperedge and reduce the adoption cost of each node i∈ ej by the node’s benefit,

that is, ci ∶= ci − rji. Finally, we assume that ci > 0: If ci ≤ 0 for a node i, we can remove the node

and let θj ∶= θj −1 for all j with i∈ ej. If this leads to θj < 2, we repeat the previous simplification.

3.2. Model Discussion and Examples

We assume that G is a supply chain network. A node i ∈NF represents a firm, and a hyperedge

ej ∈E a supply chain, that is, a subset of firms collaborating to produce product j. Suppose G is

the supply chain network of a given product category (such as fruits, vegetables, or dairy). Then,

nodes may not be entire firms but rather divisions handling this product category. Thus, our model

allows for parts of firms to adopt traceability technology rather than firms in their entirety.

The benefit rji obtained by firm i if the supply chain of product j is traceable can correspond to

a guarantee of continuing or expanding demand for the product or other more intangible benefits

such as improved supply chain resiliency, better coordination, or lower quality costs. As traceabil-

ity benefits are manifold and take different forms at different supply chain stages, they can be

challenging to estimate, and traceability initiatives spend significant efforts on this task. Absent

detailed information on the value of rji for each firm, an initial estimate for rji can be obtained by

considering the total traceability benefits to a supply chain j (which are simpler to estimate than

the individual benefits) and prorating them to rji according to the value added by each firm.

The adoption threshold θj is the number of firms in hyperedge ej that must adopt the traceability

technology for product j to become traceable. We assume that all nodes in ej contribute equally to

this threshold, though, in practice, contributions may be unequal. We can extend our model to this

setting, but the notation and analysis become more complex, so we leave this to future research.

If θj is unknown, one can set θj = kj, which implies that all firms in the supply chain of product j

must be active to obtain traceability benefits. This worst-case scenario is a natural assumption for

several traceability applications and provides an upper bound on the optimal seeding cost.

The adoption cost ci of the traceability technology by firm i can represent IT, auditing, and

training costs and all discounted future costs of operating the technology. If firms receive technology

adoption benefits independently of other firms’ adoption, we can consider ci as the adoption cost

net of such benefits. Our adoption process assumes that this cost is a one-time cost for each firm

and that, once the technology has been adopted by firm i, the technology is available for all other

products (if any) processed by firm i. Without detailed firm-level information on ci, one can set it

to reflect the size of i plus any fixed technology adoption costs.
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Decision-Makers. The most common decision-maker for (1) is a large firm wishing to make

products it processes traceable, i.e., it is a node of G. We refer to such a node as the network’s lead

firm.
5
Alternatively, the decision-maker can be a traceability initiative external to the supply chain

network, such as a large IT company or certification organization, or even a mixture of internal

and external players (Naidu and Irrera 2017, Youngdahl and Hunsaker 2018).

Our model can deal with both of these scenarios. If the decision-maker is an external initiative,

it can solve (1) directly to obtain the optimal seed set. If the decision-maker is internal to the

network, i.e., it is a lead firm, it can also solve (1) to obtain the optimal seed set. However, the

hypergraph G over which (1) is solved will be slightly different. The set NF of nodes will include

an additional node, corresponding to the lead firm, and this node will have both its seeding and

adoption costs set to zero.
6
To avoid having to distinguish between both cases for the remainder

of the paper, we note that solving (1) over G as defined this way is equivalent to solving (1) over a

slightly modified graph obtained by deleting the lead firm node from G and setting θj ∶= θj − 1 for

all hyperedges ej to which this node belongs (see Section 3.1). In other words, in settings where the

decision-maker is internal, one can modify the underlying hypergraph G to revert to the external

decision-maker case, so we do not need to distinguish between the two cases.

Assembly Networks and Aggregators. Our model can represent an assembly network, where

multiple inputs are needed to produce an output. An example is given in Figure 2a, with six nodes

and two hyperedges, eblue = {1,2,4,6} and ered = {3,5,6}. Here, Node 4 converts the inputs from

Nodes 1 and 2 into a single output. Thus, traceability benefits from eblue only kick in if both Nodes

1 and 2 (as well as 4) adopt, accounted for by θblue = 4: if only Nodes 1 and 4 have adopted, then

Node 6 will not get any benefits. This example can be generalized to more complex settings.

Power Dynamics in Supply Chain Networks. Hyperedges can also encode more intangible

relationships, such as power dynamics, where different firms within a supply chain may have asym-

metric abilities to influence technology adoption. For example, a large retailer such as Walmart

can have considerable influence over technology adopted by its suppliers (Nash 2018). Our model

can encode such dynamics through additional hyperedges:

Consider first the hypergraph in Figure 2a. Assuming that wi = wi′ ∀i, i
′
∈ NF , that rji ≥ ci,

∀i ∈NF , ej ∈E, and that θblue = 4 and θred = 3, then S0 = {1,2,4,5} is an optimal seed set. Now,

say that Node 6, upon adoption, forces Node 5 to adopt the same technology. We can model this

effect by introducing an additional hyperedge eblack = {5,6} in Figure 2b, with threshold θblack = 2,

benefits to Node 6 of zero (rblack,6 = 0), and benefits to Node 5 corresponding to its adoption costs

5
We assume we only have one lead firm, but our discussion can easily be adapted for multiple lead firms.

6
Through its role, the lead firm would have adopted the technology at the start of the diffusion process.
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Figure 2 Representing assembly networks and power dynamics using our model.
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(a) Hypergraph G.
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.

Figure 3 The supply chain network from Figure 1, as well as the associated auxiliary graph G
′
.

(rblack,5 = c5). If, for example, Node 5 adopts before Node 6, then the additional hyperedge has no

effect. If, however, Node 6 adopts at time t, while Node 5 has not adopted, then black ∈ B5(St).
But rblack,5 ≥ c5, so Node 5 will adopt. Thus, the seed set S0 = {1,2,4} with one less node is optimal.

Model Limitations. While SCTM can describe rich supply chain relationships, it has a few

limitations. For example, the model does not describe potential changes in supply chain relation-

ships and firms’ sourcing strategies due to technology adoption decisions. Furthermore, it assumes

firms act myopically in each period (a common assumption in network diffusion models) and does

not describe more sophisticated strategic games between firms. Enriching SCTM to model evolving

supply chain dynamics and strategic behavior could be a fruitful source of research and insights.

3.3. The Auxiliary Graph

A crucial construct for solving MIN -SCTM is the auxiliary graph G
′
= (N ′

,E
′) of hypergraph G,

which will help connect the SCTM to the linear threshold model (LTM). As mentioned in Section 2,

the LTM is a popular model of diffusion in networks where a node becomes active if the number

of active neighbors exceeds the node’s threshold (Kempe et al. 2003).

Define G
′
to be a bipartite graph with a node for each firm i ∈NF (“firm-node”) and a node

for each supply chain ej ∈E (“SC-node”, denoted with j). We let NSC be the set of SC-nodes, so

N
′
=NF ∪NSC . Each node i ∈NF (resp. j ∈NSC) has a threshold c

′
i = ci (resp. c

′
j = θj − 1). The

graph is weighted and directed. Edges in E
′
are added as follows: if i∈ ej in G, then (i, j)∈E

′
with

weight w
′
ij = 1 and (j, i) ∈ E

′
with weight w

′
ji = rji. Figure 3 recalls graph G from Figure 1 and

displays the corresponding auxiliary graph G
′
(without weights for legibility).
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(a) The SCTM activation process.
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(b) The LTM activation process.

Figure 4 Equivalence between the SCTM and LTM activation processes. Superscripts represent the period in

which a node becomes active.

We next define the activation process on G
′
: A (firm or SC) node i becomes active at time t

(x
′
it = 1) if the sum of the incoming edge weights from active nodes exceeds its threshold. In other

words, if i ∈ NF , i becomes active if ∑{(j,i)∈E′ ∶ j is active} rji ≥ ci. If j ∈ NSC , j becomes active if

∣{(i, j) ∈ E
′ ∶ i is active}∣ ≥ θj − 1. The activation process on the auxiliary graph can be viewed

as a weighted-edge version of the LTM, so we refer to it as the LTM activation process. In an

analogous way to the SCTM activation process on G, we define state equations, given a set S
′
0 ⊆N

′
:

S
′
t+1 = S

′
t ∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i∈N

′\S ′
t ∶ ∑

j∶(j,i)∈E′

w
′
jixjt ≥ c

′
i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, ∀t= 0,1, . . . ,

where S
′
t corresponds to the set of nodes active at time t in G

′
. As before, a unique final set of

adopters S
′
∞ is attained in a finite number of steps. Our first result shows that any SCTM activation

process on G can be replicated via an LTM activation process on G
′
:

Proposition 1. Let S0 = S
′
0 ⊆NF . Then, St = S

′
2t ∩NF ∀t= 0,1,2, . . ., and S∞ = S

′
∞ ∩NF .

Proofs for this section are in Appendix A. Figure 4 exemplifies the processes’ equivalence. In both

graphs, we start with the seed set S0 = S
′
0 = {1,2,3,4,7}. Under the SCTM, Node 9 becomes active

in t= 1 because it can make eblack active, Node 5 (resp. 6) in t= 2, because it can make egreen (resp.

ered) active, and Node 8 in t= 3, because it can make eblue active. Consider now the LTM: At time

t= 1, Node black corresponding to eblack has three incoming active neighbors, while its threshold is

three. Hence, it becomes active. With Node black active, Node 9 has one incoming active neighbor.

Because w
′
black,9 = rblack,9 ≥ c9 = c

′
9, it becomes active, and S

′
2 ∩NF = {1,2,3,4,7} = S1. Now, both

of the Nodes red and green have three incoming active neighbors, and, again, their thresholds

are three, so they become active at time t = 3, followed by Nodes 5 and 6 at time t = 4. Again,

S
′
4 ∩NF = {1,2,3,4,5,6,7}= S2. Repeating this one last time, we see that S

′
6 ∩NF =NF = S3.

Our next result formalizes the minimum cost seed set problem on the auxiliary graph.
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Corollary 1. Optimization problem (1) is equivalent to the optimization problem

OPT = min
S′
0⊆NF

∑
i∈S′

0

wi

s.t. S
′
∞ =N

′

S
′
t+1 = S

′
t ∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i∈N

′\S ′
t ∶ ∑

j∶(j,i)∈E′

w
′
jixjt ≥ c

′
i

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, ∀t= 0,1, . . .

(2)

Problem (2) has similarities with the target set selection (TSS) problem under the LTM, but

also several differences (see Section 2). In a nutshell, the LTM activation process we consider is a

weighted version of the regular LTM activation process. Moreover, the underlying graph in the TSS

problem is generic. Here, G
′
has some additional structure: It is bipartite and has constraints on

the nodes’ degrees and thresholds. Hence, one cannot leverage existing results from the literature

to show the problem’s hardness (see Section 4). However, one can typically adapt algorithms for

solving the TSS to (2) though they can be improved by leveraging the additional structure.

4. Computational Complexity

We turn to the computational complexity of MIN -SCTM . To isolate the effects of the graph’s

structure on the complexity of MIN -SCTM , we consider the simplest setting with trivial cost-

benefit analysis. Namely, we let rji = ci = 1 ∀i = 0, . . . , n, j = 1, . . . ,m. Thus, any node whose

activation would make a supply chain traceable will activate as the benefits will automatically

outweigh the costs. This simplified setting can also be of interest in its own right, for example, in

traceability systems that aim to restrict counterfeit drugs (see, e.g., Lock 2019). We further assume

that kj = k and θj = θ ∀j = 1, . . . ,m. We define the decision version of Problem (1) under these

assumptions and provide a full characterization of the difficulty of answering it.

Definition 1. DEC-SCTM is the decision version of MIN -SCTM , with simplified G:

Input: Integer h; hypergraph G as defined in Section 3 with benefits rji = 1, adoption costs ci = 1,

edges with kj = k and θj = θ, and rational seeding costs wi, for all i= 0, . . . , n, j = 1, . . . ,m.

Question: Is there a seed set S0 of cost ∑i∈S0
wi ≤ h leading to full (SCTM) activation of G?

Theorem 1. The hardness of answering DEC-SCTM depends on k and θ as follows:

θ / k k = 1 k = 2 k = 3 k ≥ 4

θ = 1 in P in P in P in P
θ = 2 in P in P in P
θ = 3 NP-hard NP-hard
θ ≥ 4 NP-hard

This section’s proofs are in Appendix B. The theorem states that if supply chains in G contain

three or more firms, and at least three are needed for traceability benefits, DEC-SCTM is hard

to answer. Then, if P ≠NP , there is no hope of a polynomial-time algorithm for MIN -SCTM .
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From a managerial perspective, Theorem 1 shows that optimizing technology dissemination

when the benefits to a firm only depend on one supplier’s or buyer’s adoption decision (θ ≤ 2) is

“easy” (in P). However, once the supply chain effect is in place and the benefits of a traceability

technology depend on adoption by second-tier suppliers and buyers (θ ≥ 3), there is a phase shift,

and optimization becomes complex (NP-hard).

Relationship to Hardness of Target Set Selection under the LTM. Due to the specific

weights and thresholds used in Theorem 1 and Corollary 1, Theorem 1 is equivalent to the following

result: The decision version of target set selection under the LTM is NP-hard if the underlying

graph G
′
is bipartite, with one set of nodes, NF , having threshold 1, and the other set of nodes,

NSC , having threshold θ − 1 ≤ k − 1 and degree k. TSS under the LTM remains NP-hard under

various assumptions on the graph and its thresholds (Chen 2009, Ben-Zwi et al. 2011, Centeno et al.

2011, Nichterlein et al. 2013, Chopin et al. 2014). However, none of the existing results cover our

specific case. Indeed, the proofs of these results rely on reductions from vertex cover and require the

construction of an instance where each node’s threshold and degree are equal. This reduction is not

feasible in our case due to our structural assumptions (nodes in NSC have degree k and threshold

θ−1≤ k−1), so we must resort to a more complex proof. Thus, Theorem 1 also contributes to the

LTM literature, more specifically, to understanding which problem structures make TSS hard to

solve. This is difficult to determine a priori. For example, TSS is fixed-parameter tractable with

respect to treewidth, which tends to be low for sparse graphs, and with respect to cluster edge

deletion number, which tends to be low for dense graphs (Chen 2009, Nichterlein et al. 2013).

Not only can we not answer DEC-SCTM in polynomial time if k ≥ θ ≥ 3, we cannot provide a

meaningful approximation of the true solution under a slightly stronger assumption than P ≠NP :

Proposition 2. For any k ≥ θ ≥ 3, there exists an α > 1 such that, unless NP ⊆

DTIME(npolylog(n)), the optimal value to (1) with rji = ci = 1 ∀i= 0, . . . , n, j = 1, . . . ,m cannot be

approximated in polynomial time within the ratio of O (αlog
1−ξ

n) for any fixed constant ξ > 0.

We have shown that MIN -SCTM is hard to solve or approximate when k ≥ θ ≥ 3, even if

the adoption costs are negligible compared to the traceability benefits. These results suggest that

complexity is not mainly driven by costs and benefits but rather by the structure of G and the

supply chain effect. Any hope of obtaining a polynomial-time algorithm for MIN -SCTM must

rely on assuming additional structure. We discuss this next.

5. An Exact Solution Algorithm for MIN-SCTM

We now provide a linear programming-based fixed-parameter tractable algorithm for MIN -SCTM

with respect to the treewidth of G. Precise definitions of these concepts are in Section 5.1, but
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at a high level, this means that the complexity of solving MIN -SCTM is significantly reduced

when the treewidth of the supply chain network is small. In light of this, Section 5.1 provides

evidence that real-world supply chain networks have small treewidth. Thus, solving MIN -SCTM

on real-world networks is not as hopeless as one may be led to believe by the results in Section 4.

Moving forward, Section 5.2 builds an integer programming formulation of MIN -SCTM that

exploits tree decompositions of G
′
. While the formulation allows for solving the problem in many

practical instances, we go further and leverage the formulation to derive an LP-based FPT algo-

rithm in Section 5.3. The techniques we use come from the integer programming literature and,

to our knowledge, have never been applied in the context of network diffusion. Finally, Section 5.4

introduces a hierarchy of LPs that directly trades off computational complexity and approximation

quality to obtain lower bounds on the optimal value of MIN -SCTM . We also use this hierarchy

of LPs to obtain upper bounds (and corresponding feasible sets).

5.1. Treewidth and FPT algorithms

We define the concept of treewidth (Bodlaender 1994), central to the rest of the paper.

Definition 2. Let G be a (hyper)graph with nodesN and (hyper)edges E. A tree decomposition

of G is a pair T = (T,{Xz}z∈T ), with tree T and bags Xz for each node z ∈ T , such that:

(a) ⋃z∈T Xz =N .

(b) If {i1, . . . , ih}∈N belong to (hyper)edge e∈E, there must be a set Xz with {i1, . . . , ih}∈Xz.

(c) If a node i ∈N appears in two distinct bags Xx and Xy, then it appears in all bags Xz such

that z is on the (unique) path between x and y in T .

The tree decomposition’s width is maxz∈T ∣Xz∣−1. The treewidth tw(G) ofG is simply the minimum

width over all tree decompositions of G.

A (hyper)graph G always admits a trivial tree decomposition with a single node T containing N ,

so tw(G)≤ n− 1. However, tw(G) is much smaller when G is “tree-like”—trees have treewidth 1.

Two graphs play important roles in our model: the original hypergraph G and the auxiliary

graph G
′
. Figure 5 displays a tree decomposition of G

′
from Figure 3b with treewidth two. The

uppermost bag contains Firm-node 9 and SC-nodes red and black. Following (b), as SC-node red

also appears in a bag at the bottom left, it must appear at the intermediate level on the left-hand

side. A natural question is how the treewidth of G and G
′
relate: this is the focus of our next result.

Proposition 3. Let G be a hypergraph as defined in Section 3.1 and let G
′
be its auxiliary graph

as defined in Section 3.3. Then, tw(G′)≤ tw(G)+ 1.

The proof of Proposition 3 is in Appendix C.1. Our analysis uses a tree decomposition of G
′
with

treewidth tw(G′)= ω
′
, so we related our results to tw(G)= ω using the upper bound on ω

′
.

Another central concept to our work is fixed-parameter tractability (Downey and Fellows 2012):
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Figure 5 Tree decomposition of the auxiliary graph in Figure 3b. Each bag in the tree corresponds to a set of

nodes from the auxiliary graph.

0.00 0.05 0.10 0.15 0.20 0.25

ω
′/n+m

0%

10%

20%

30%

F
re
q
u
en

cy

Figure 6 Histogram of ω
′

n+m
for 657 randomly generated supply chain networks based on Willems (2008).

Definition 3. A problem parameterized by θ is fixed-parameter tractable (FPT) with respect

to θ if it can be solved in f(θ)nO(1)
time, where the function f does not depend on n.

The algorithms we develop are fixed-parameter tractable in the treewidth of G. Thus, they are

particularly valuable in settings where the treewidth of the supply chain network is small. Data

from Willems (2008) provides evidence that supply chain networks have small treewidth. The data

represents 38 acyclic network structures gathered from companies in 22 industries, from which we

randomly generate 657 supply chain networks. The generation process details are in Appendix E.1.

Figure 6 displays upper bounds on the auxiliary graph treewidths
7
relative to the networks’ sizes

for this dataset. We focus on the auxiliary graph treewidth ω
′
, rather than the possibly larger

hypergraph treewidth ω, as our results (including Corollary 2) hold for ω
′
. We observe that ω

′
is

much smaller than the supply chain network size n+m. The mean (resp. median) treewidth is 9

(resp. 6), which is less than 3% of the mean size of 310 (resp. 151). More broadly, we note that the

supply chain management literature frequently assumes supply chain network graphs to be trees

(see, e.g., Graves and Willems 2000), which have a treewidth of one.

5.2. Binary Linear Programming Reformulations of MIN-SCTM

The goal of this section is to reformulate MIN -SCTM as a binary linear program (BiLP), that

is, an optimization problem of the following form:

min
x∈{0,1}n

c
T
x

s.t. Ax≥ b,
(3)

7
To compute a minimal tree decomposition, we use the Flow Cutter algorithm from the PACE 2017 Parameterized

Algorithms and Computational Experiments Challenge (Dell et al. 2018).
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where c∈Rn
,A∈Rm×n

, and b∈Rm
. The next result clarifies why this could be of interest.

Linear Programming Formulations of BiLPs. We first define an intersection graph:

Definition 4. The intersection graph of (3) is an undirected graph with a vertex for each

variable xi, i= 1, . . . , n and an edge for each pair (xi, xj) that feature in the same constraint.

Proposition 4 (Laurent 2009, Bienstock and Muñoz 2018). If the intersection graph of

(3) has treewidth ω, then there is an equivalent reformulation of (3) as a linear program with

O(2ωn) variables and constraints.

Since LPs with h variables and constraints can be solved in O(h2.5) time (Jiang et al. 2020), solving

this LP is an FPT algorithm for (3) with parameter treewidth of the BiLP’s intersection graph.

Thus, our goal moving forward is to reformulateMIN -SCTM as a BiLP, whose intersection graph’s

treewidth is upper-bounded by a function involving ω
′
. From Proposition 4, one can construct an

equivalent linear program, which constitutes our FPT algorithm for MIN -SCTM . As mentioned,

an LP approach of this type is new to the network diffusion literature.

A First BiLP Formulation of MIN-SCTM . Ackerman et al. (2010) provide a BiLP formu-

lation of the target set selection problem in the linear threshold model, which—to the best of our

knowledge—is the only such formulation in the literature. By virtue of Corollary 1, we adapt the

formulation in Ackerman et al. (2010) to our setting as follows. Let

EF,SC = {(i, j)∈E
′
∶ i∈NF , j ∈NSC} and ESC,F = {(j, i)∈E

′
∶ i∈NF , j ∈NSC}.

Proposition 5 (Adapted from Ackerman et al. 2010). Let G
′
= (N ′

,E
′) represent the

auxiliary graph of hypergraph G. Consider the following BiLP:

min ∑
i∈NF

wisi

s.t. ∑
{j ∣ (j,i)∈ESC,F }

rjiℓji ≥ ci(1− si), ∀i∈NF , (4a)

∑
{i ∣ (i,j)∈EF,SC}

ℓij ≥ θj − 1, ∀j ∈NSC , (4b)

ℓij + ℓji = 1, ∀i∈NF ,∀j ∈NSC , (4c)

ℓi1j1 + ℓj1i2 + ℓi2j2 + ℓj2i1 ≤ 3, ∀i1, i2 ∈NF , ∀j1, j2 ∈NSC , (4d)

si ∈ {0,1}, ∀i∈NF , ℓij, ℓji ∈ {0,1}, ∀i∈NF , ∀j ∈NSC .

The set S
∗
0 = {i∈NF ∶ s∗i = 1} is a solution to the problem MIN -SCTM on hypergraph G.

The proof of this and the following result are in Appendix C.1. The BiLP constructs a directed

acyclic graph (DAG) on N
′
, encoding the activation sequence of G

′
. In other words, there is an edge
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(ℓij = 1) between node i, j ∈N
′
if node i contributes to node j’s activation. The seed set nodes are

then simply the sources of the DAG and are encoded via the variables si, i∈NF . Constraints (4a)

and (4b) enforce that activation can only proceed as described in Section 3, whereas constraints

(4c) and (4d) ensure that the final graph is, respectively, directed and acyclic.

Although (4) solves MIN -SCTM , the treewidth of its intersection graph is at least nm − 1,

which precludes us from using Proposition 4 to derive an FPT algorithm from this BiLP.

Proposition 6. The treewidth of the intersection graph of (4) is at least equal to nm− 1.

Proposition 6 makes it clear that one cannot simply use any BiLP formulation of MIN -SCTM to

leverage Proposition 4: great care must be taken to formulate the BiLP appropriately.

A Second BiLP Formulation of MIN-SCTM . The next formulation is closely tied to a

tree decomposition T ′
= (T ′

,{X ′
z}z∈T ′) of G

′
with treewidth ω

′
. For the remainder of this section,

we assume wlog that T
′
is binary. That is, each node z ∈ T

′
has at most two children, c1(z) and

c2(z).8 To avoid the issues described in Proposition 6, we first replace constraints (4c) and (4d) by

constraints that are tree decomposition-dependent. We then obtain

min ∑
i∈NF

wisi

s.t. ∑
(j,i)∈ESC,F

rjiℓji ≥ ci(1− si), ∀i∈NF , (5a)

∑
(i,j)∈EF,SC

ℓij ≥ θj − 1, ∀j ∈NSC , (5b)

ℓij + ℓji = 1, ∀i, j ∈N
′
∩X

′
z,∀z ∈ T

′
, (5c)

ℓij + ℓjk + ℓki ≤ 2, ∀i, j, k ∈N
′
∩X

′
z,∀z ∈ T

′
, (5d)

si ∈ {0,1}, ∀i∈NF , ℓij, ℓji ∈ {0,1}, ∀i, j ∈N
′
∩X

′
z,∀z ∈ T

′
.

As it turns out, (5) and (4) are equivalent, which we formally state next.

Proposition 7. Problems (5) and (4) are equivalent. In particular, let (s∗i , ℓ∗ji, ℓ∗ij) be a solution

to (5). The set S
∗
0 = {i∈NF ∣ s∗i = 1} is a solution to the problem MIN -SCTM on hypergraph G.

The proof is in Appendix C.2. Although (4) and (5) are equivalent, (5) can have much fewer con-

straints than (4) if the treewidth of G
′
is small. To see this, note that (4) has O (n2

m
2) constraints,

driven by (4d), which makes the activation sequence acyclic. In contrast, since there always exists

a (binary) tree decomposition T
′
of G

′
with at most 4(n+m) bags (see Lemma 13.1.2. of Kloks

8
If T

′
is not binary, we choose an arbitrary node as the root and proceed top-down. If a node z has ñ > 2 children

c1(z), . . . , cñ(z), we create a new node z
′
with bag X

′
z′ =X

′
z and add z

′
and c1(z) as children of z and c2(z), . . . , cñ(z)

as children of z
′
, and repeat as necessary. This process returns a binary tree whose bags are exactly those in G

′
.
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1994) and since T
′
has bags of size at most ω+1, Formulation (5) has O ((n+m) ⋅ω3) constraints.

When ω is much smaller than m and n, (5) will be a much smaller optimization problem than (4).

This difference directly translates to a difference in solving time for (4) and (5). To illustrate, we

draw a sample of 150 supply chain networks with m+n ≥ 100 from the set of networks described

in Section 5.1, for which we can solve (4) and (5) within three hours using Gurobi (2022) on a

computing cluster with 24 cores. The average time for solving (5) on these instances is 50% less

than that for (4), even when accounting for the calculation time of the tree decomposition of G
′
.

When the decomposition is not accounted for, solving (5) takes 72% less time than solving (4) on

average. For several instances, we can solve (5) to optimality within three hours but not (4).

Despite the encouraging computational results, it is not clear that the treewidth of the inter-

section graph of (5) can be upper-bounded by a function of ω
′
. In fact, the intersection graph’s

treewidth can be as large as m + 1. To see this, suppose that i ∈ NF belongs to m supply

chains. Then, constraint (5b) leads to a clique of size m + 1 in the intersection graph, contain-

ing {ℓji}(j,i)∈ESC,F
and si. This implies that the treewidth is at least m+ 1, and we can still not

use Proposition 4 to derive an LP-based FPT algorithm. Hence, we next introduce new variables

representing partial sums of terms appearing in constraints (5a) and (5b). The idea is to replace

a constraint such as v + w + y + z ≥ x with three equivalent constraints x1 + x2 ≥ x, v + w ≥ x1,

y+z ≥ x2, leading to an intersection graph of smaller treewidth, at the expense of more constraints

and variables. This is similar in spirit to Bienstock and Muñoz (2018). However, our formulation

explicitly leverages the tree decomposition of G
′
as well as the specificities of our problem.

A Third (and Final) BiLP Formulation of MIN-SCTM . Before proceeding, we introduce

some new notation. For i ∈NF and j ∈NSC , we let J
i
= {j ∣ (j, i) ∈ ESC,F } and I

j
= {i ∣ (i, j) ∈

EF,SC} be the sets that appear in constraints (5a) and (5b). As mentioned above, our goal is to

group the variables appearing in these constraints into partial sums in an effective way. We do

this by leveraging T
′
, with the idea that variables that appear in the same partial sum should

have indices in the same bag in T
′
so that the resulting intersection graph has low treewidth. We

describe how to do this based on a constraint in (5a). Let i∈NF : we look for a partition of J
i
into

sets {J i
z} such that J

i
z ⊆X

′
z for z ∈ T

′
. We can then rewrite ∑j∈Ji rjiℓji =∑z (∑j∈Ji

z
rjiℓji), where

∑j∈Ji
z
rjiℓji are partial sums with the variables’ indices all belonging to the same bag.

Let T
′
i be the subtree of T

′
when restricted to bags containing i, z

i
0 an arbitrarily chosen root

node of T
′
i, and ∣T ′

i∣ the number of tree nodes in T
′
i. By construction, this tree’s bags contain all of

J
i
, which we next partition. We split tree nodes of T

′
i into two sets: a “useful” set T

G
i to build the

partition, and a “useless” set T
G̃
i to keep track of over-counting. Set T

G
i is obtained by sequentially

adding tree nodes from T
′
i while ensuring that the associated bag contains at least one j that is
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not already present in the bags of T
G
i . We stop when T

G
i contains all of J

i
in its bags. The set T

G̃
i

contains the remaining tree nodes of T
′
i. We are now ready to build our partition {J i

z}z∈TG
i

of Ji:

we arbitrarily number the bags {X ′
z}z∈TG

i
and let J

i
z =X

′
z ∩NSC for the first tree node. For other

tree nodes, we let J
i
z =X

′
z ∩NSC \ {j ∈ Ji ∣ j present in previous bags}. For constraints (5b), we

similarly define T
′
j as the subtree of T

′
when restricted to bags containing j, with z

j
0 an arbitrary

root of T
′
j and ∣T ′

j∣ the number of tree nodes in T
′
j. Within T

′
j, we construct analogous concepts

T
G
j and T

G̃
j , replacing J

i
by I

j
. We also let {Ijz}z∈TG

j
be the counterpart of {J i

z}z∈TG
j
. Letting

nu = ⌊log2(max{c1, . . . , cn}+ 1)⌋− 1 and nv = ⌊log2(max{θ1, . . . , θm}+ 1)⌋− 1, (6)

we can formulate our final BiLP. As this BiLP is quite cumbersome to write out, we place it

in Appendix C.2 as equation (10). Note that (10) is not precisely in the form of (3) to keep

the formulation legible. However, it can be obtained by appropriately substituting variables using

equations (10d), (10h), and (10i) in constraints (10d) and (10h). This reformulation is a common

technique for replacing integer variables with binary ones (see, e.g., Watters 1967). Furthermore,

we have not differentiated between nodes with different numbers of children in the constraints.

With a slight abuse of notation, we assume that if c1(z) =∅ and/or c2(z) =∅, the corresponding

sum is dropped. We now show two results regarding (10), with proofs in Appendix C.2. These

enable us to propose an LP-based FPT algorithm for MIN -SCTM in the next section.

Proposition 8. Optimization problems (5) and (10) are equivalent. In particular, let

(s∗i , ℓ∗ij, ur∗
iz , ũ

r∗
iz , v

r∗
jz , ṽ

r∗
jz ) be an optimal solution to (10). The set S

∗
0 = {i∈NF ∣ s∗i = 1} is a solution

to the MIN -SCTM problem on hypergraph G.

Proposition 9. Let ϑmax = max{maxi=1,...,n{ci},maxj=1,...,m{θj}− 1}. The treewidth of the

intersection graph of (10) is at most O(ω′2 +ω
′
log2(ϑmax)), where ω

′
is the treewidth of G

′
.

5.3. A Linear Programming FPT Algorithm for MIN-SCTM

We use Propositions 3, 8, and 9 to show one of our main results.

Theorem 2. Let G be a hypergraph with tw(G)= ω. Then, there is an equivalent reformulation

for MIN -SCTM as a linear program with a number of constraints and variables in

O (2ω
2

⋅ϑ
ω

max (n+ (n+m)ω3
+ 8 log2 (max{c1, . . . , cn}) (n+m)+ log2 (max{θ1, . . . , θm}) (n+m))) .

The proof of Theorem 2 can be found in Appendix C.2. Theorem 2 indicates that an LP reformu-

lation of MIN -SCTM with 2
O(ω2)

ϑ
O(ω)
max O(n+m) constraints and variables exists. Following Jiang

et al. (2020), we then have the following:

Corollary 2. There is a linear programming-based FPT algorithm for solving MIN -SCTM

with parameters ω and ϑmax, running in time at most 2
O(ω2)

ϑ
O(ω)
max O ((n+m)2.5) .
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Up to this point, we emphasized that our FPT algorithms are with respect to the treewidth ω.

Technically speaking, they are FPT algorithms with respect to the parameters ω and ϑmax. However,

one can reasonably assume a bound, independent of n and m, on ci and θj, for i = 1, . . . , n and

j = 1, . . . ,m, and so on ϑmax. This is because ci is a firm-dependent parameter that describes the

adoption costs. At the same time, θj is a “local” supply chain-dependent parameter, describing

interactions between a fixed set of firms that does not change as the network scales.
9
Under this

assumption, one can remove the dependency of the algorithm’s runtime on ϑmax.

We now present the construction of the LP that Corollary 2 relies on. This formulation differs

from the one in, e.g., Bienstock and Muñoz (2018). The main advantage of our formulation is that

one can easily use it to derive smaller LPs that provide good-quality lower bounds forMIN -SCTM

(see below for a detailed discussion). It is based on the tree decomposition of the intersection graph

of (10), which we denote by S = (S,{Wz}z∈S). We also let ωz = ∣Wz∣. Each bagWz contains variables

that we rename x
z
1, . . . , x

z
ωz
, which are subsets of the decision variables in (10). Furthermore, we

associate a set of lz constraints from (10) with each bag Wz: the constraints that only feature

variables in Wz. As these are linear in the decision variables, we can write them as g
l
∅+∑ωz

i=1 g
l
{xzi } ⋅

x
z
i ≥ 0 for l = 1, . . . , lz. We are ready to state our LP formulation of MIN -SCTM :

min
YS

∑
i

wiY{si}

s.t. Y∅ = 1, ∑
{S∈2Wz ∣ T⊆S}

(−1)∣S∣−∣T∣YS ≥ 0, ∀T∈ 2
Wz , ∀z ∈ S,

∑
{S∈2Wz ∣ T⊆S}

(−1)∣S∣−∣T∣ (gl∅YS +
ωz

∑
i=1

g
l
{xzi } ⋅Y{xzi }∪S)≥ 0, ∀T∈ 2

Wz , ∀l = 1, . . . , lz,∀z ∈ S,

(7)

where 2
Wz corresponds to all possible subsets of variables in Wz. For small values of ωz, (7) can be

solved exactly as commercial solvers allow for millions of variables and constraints. It can be the

case, however, that when ωz becomes larger, this problem becomes difficult to solve due to memory

constraints. One advantage of the LP approach is that it provides a principled way of deriving less

computationally-intense heuristics, as seen in Section 5.4.

Comparison to a Dynamic Programming-Based FPT Algorithms. We also propose a

dynamic programming (DP)-based FPT algorithm for MIN -SCTM in Appendix D, which is a

non-trivial generalization of an algorithm introduced by Ben-Zwi et al. (2011) for the target set

selection problem in the LTM. We derive an analogous statement to Corollary 2 for this algorithm

and show that its runtime is at most 2
O(ω log2(ω))

ϑ
O(ω)
max (n+m). Thus, theoretically, the DP-based

9
Such an assumption does not preclude MIN -SCTM from being a hard problem to solve and approximate as

evidenced in Section 4 where ϑmax is equal to 2.
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algorithm has a slightly lower run time than the LP-based algorithm.
10

However, it has the usual

caveat of being difficult to implement, requiring specific coding of the algorithmic procedure. Such

an ad-hoc approach typically does not optimize for memory or processing capabilities. In contrast,

widely available commercial solvers can solve linear programs with thousands of variables and

millions of constraints in a matter of minutes. One can further speed up the solving time by using

techniques such as set-up parallelization and warm-starting, which are tried-and-tested techniques

for LPs. Last but not least, unlike the DP-based algorithm, the LP-based algorithm allows us to

systematically derive good-quality lower and upper bounds on MIN -SCTM . We see this now.

5.4. Bounds from a Hierarchy of Linear Programs.

We now derive principled upper and lower bounds on the optimal value of MIN -SCTM .

Lower Bounds on the Optimal Value of MIN-SCTM . Any seed set leading to full activa-

tion of the graph directly implies an upper bound on the optimal value of MIN -SCTM . Obtaining

lower bounds, on the other hand, that go above and beyond the simple lower bound obtained

by considering the continuous relaxation of (10), or equivalently (5), can be trickier. Problem (7)

provides us with a process to generate increasingly powerful lower bounds via a hierarchy of LPs,

that is, a family {LPκ}κ=1,...,ω, where LPω is equal to (7) (i.e., LPω solves MIN -SCTM exactly)

and where the objective value of LPκ is an increasingly tight lower bound on the objective value

of (7) as κ grows. Recall the notation given in Section 5.3. The linear program LPκ is given thus:

min
YS

∑
i

wiY{si}

s.t. Y∅ = 1,

∑
{S∈2Wz ∣ T⊆S⊆U}

(−1)∣S∣−∣T∣YS ≥ 0, ∀T,U∈ 2
Wz ,T⊆U, ∣U∣=min{κ+ 1, n},∀z ∈ S,

∑
{S∈2Wz ∣ T⊆S⊆U}

(−1)∣S∣−∣T∣ (gl∅YS +
ωz

∑
i=1

g
l
{xzi } ⋅Y{xzi }∪S)≥ 0, ∀T,U∈ 2

Wz ,T⊆U, ∣U∣= κ,

∀l = 1, . . . , lz,∀z ∈ S.

(8)

The objective value of (8) increases with κ. When κ= ω, it equals the solution to (7) (see Laurent

2003). The LP’s size also increases in κ, providing an explicit trade-off between accuracy and

computation time. Interestingly, when κ= 0, we obtain the simple lower bound mentioned above.

Proposition 10. When κ = 0, (8) is equivalent to (10), where the binary variables have been

replaced by continuous variables on [0,1].

10
Recall the definition of an FPT algorithm in Section 5.1. The quality of an FPT algorithm is based on how small

one can make f(ω), rather than the exponent of (n+m) (see, e.g., Lokshtanov et al. 2011). This is important here
as our LP-based algorithm is close to its DP counterpart for f(ω) but not as close for the exponent of (n+m).
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Experimentally, we compute lower bounds for a sample of 100 supply chain network instances

with m ≥ 50.
11

We measure the relative gap between the costs when solving LPκ, and an upper

bound obtained when attempting to solve (5) using Gurobi, as described in Section 5.2. When

κ = 0, the median gap (resp. IQR) between our lower bound and the upper bound is -51% (resp.

-62% – -42%). When κ = 1, the median gap dramatically improves to -19% (resp. -31% – -11%),

indicating that for small values of κ, we already obtain powerful lower bounds that considerably

outperform those that can be obtained from a simple relaxation.

Upper Bounds on the Optimal Value of MIN-SCTM . We can further leverage solutions

to (8) to obtain upper bounds on the optimal value of MIN -SCTM and corresponding feasible

seed sets. The most direct approach would be to sort nodes according to their score Y
∗
{si} from the

solution. We could then add them to the seed set one-by-one until the entire network activates.

However, this does not consider supply chain dependencies and has poor numerical performance.

Noting that activation proceeds along supply chains and that some seed nodes are only relevant

late in the activation process, our algorithm instead sequentially selects supply chains based on

their constituents’ scores. This sequential process is motivated by our insights in Section 6.2.

The heuristic, formalized in Algorithm 1, involves three steps. First, for fixed κ, it solves (8).

Second, it uses the optimal solution Y
∗
{si} ∈ [0,1], as a “score” for each firm i. The heuristic chooses

the (relevant) subset of nodes with the highest average score for each supply chain. Namely, suppose

a given supply chain requires h nodes for full activation and has inactive nodes I. Then, the

heuristic examines (∣I∣
h
) combinations of nodes in that supply chain and chooses the combination

with the highest average score as a candidate for the seed set. Finally, the heuristic compares the

average scores of candidate combinations across supply chains, greedily choosing the combination

(and, thus, the next supply chain to become active) with the highest average.

We apply our heuristic to the same 100 instances, using solutions to LP0 and LP1. This time, we

measure the relative gap between the resulting upper bound and either the previous lower bound

or the one obtained when attempting to solve (5) in Gurobi, whichever is higher. When κ= 0, the

median gap (resp. IQR) is 28% (resp. 21% – 42%). When κ = 1, the gap dramatically improves

to 12% (resp. 8% – 20%). Recall that the heuristic provides a feasible solution, so the choice of

κ = 1 already enables high-quality approximations to the optimal seed set. Increasing κ allows us

to improve upon those even more. In the case where we take κ = ω and (8) returns the optimal

solution Ys∗i
= s

∗
i , the heuristic always seems (empirically) to return the optimal solution.

11
We use a dataset similar to the Willems (2008) networks introduced in Appendix E.1. However, to make solving

more challenging, we only standardize rji = 1 and randomly vary wi, ci, and θj for all i∈NF , j ∈NSC .
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Algorithm 1: An LP relaxation-based upper bound.

Data: A hypergraph G= (NF ,E) as defined in Section 3.1.
Result: A feasible seed set S0 of G.

1 Initialize: S0 =∅; {Y ∗
si}i∈NF

← solution to LPκ applied to G;
2 while xi,∞ = 0 for some i∈NF , given S0 as seed set do
3 smax ← 0; Omax ←∅;
4 for ej ∈E do
5 I ← {i∈ ej ∶ xi,∞ = 0 given S0 as seed set};
6 h← θj − 1−∑i∈ej

xi,∞;

7 for O ∈ choose(I,h) do
8 s← 1

∣O∣ ∑i∈O Y
∗
si ;

9 if s≥ smax then
10 smax ← s; Omax ←O;

11 S0 ← S0 ∪Omax;

6. Managerial Insights and a Simple Heuristic for Solving MIN-SCTM

We now show how our optimization framework sheds light on two critical questions: How does the

size of the seed set depend on the network structure? and What are the different roles that seed

set firms play in the diffusion process? Answering these questions can help traceability initiative

leaders estimate the effort required to disseminate their technology and how to engage with different

firms in the supply chain network (World Economic Forum 2021, Sandoval et al. 2022).

Section 6.1 addresses the first question and finds that supply chain networks with a higher degree

of Jaccard clustering—a measure of how much overlap there is between firms’ neighborhoods

—tend to have larger seed set sizes. Section 6.2 addresses the second question and shows that

networks with intermediate levels of modularity—a measure of whether there are communities

in the network and how tightly knit these communities are (Newman 2006)—give rise to helper

nodes in the seed set. These nodes belong to supply chains that become traceable in later stages

of the diffusion process and “help” diffusion move between different network parts. Interestingly,

modularity and clustering frequently appear in supply chain network analyses (Perera et al. 2017).

While the LTM literature has studied the influence of modularity and clustering on network

diffusion, there is no consensus on the direction of that influence. For instance, Acemoglu et al.

(2011) suggest that network diffusion may be more widespread on networks with a smaller degree

of clustering, in contrast to the conclusions given in Centola et al. (2007) and Centola (2010).

Similarly, Shakarian and Paulo (2012) find that highly modular graphs tend to have a lower diffusion

rate, contradicting the conclusions of Nematzadeh et al. (2014). Our numerical experiments will

resolve these conflicts for traceability technology diffusion in supply chain networks.
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6.1. The Relationship Between Seed Set Size and Network Structure

We examine which structural characteristics of supply chain networks influence seed set size and

ultimately show that the higher the Jaccard clustering of a supply chain network (which is defined

below), the larger the seed set. Identifying the drivers of the seed set size has important practical

implications for managers. First, it can help them evaluate the effort required to disseminate a

technology in a particular network. For example, traceability initiative leaders (such as Walmart)

interested in increasing the traceability of a set of supply chain networks might, ceteris paribus,

prefer to focus on product categories or industries whose supply chain networks display low Jaccard

clustering. Second, firms interested in increasing their influence over their supply chain network

should not only consider costs and risks when expanding their supply chains. They should also

examine how their expansion strategy influences the network’s degree of clustering.

Jaccard clustering was introduced in Latapy et al. (2008) and is frequently used in hypergraph-

based models (e.g., Klamt et al. 2009). At a high level, this metric reflects whether the nodes in

G tend to belong to the same sets of hyperedges or not. Formally, let Ei be the set of hyperedges

that a node i is a part of, i.e., Ei = {j ∈NSC ∶ i ∈ ej} and denote by ∣Ei∣ its cardinality. Then, let
the neighborhood similarity between two nodes i and k of the hypergraph be the relative overlap

between Ei and Ek. Namely, ns(i, k) = ∣Ei∩Ek∣
∣Ei∪Ek∣

. This measure of set overlap, also known as the

Jaccard index (Jaccard 1912), is commonly used in network theory, machine learning, and biology.

If Ei and Ek overlap perfectly, then ns(i, k) = 1. Conversely, if Ei and Ek are very different—for

example if i belongs to many hyperedges that do not contain k—then ns(i, k) will be low. We

denote the set of nodes that share at least one hyperedge with i as the neighborhood of i, defined

as Ni = {i′ ∈NF ∶ ∣Ei∩Ek∣≥ 1}. The Jaccard clustering coefficient of i is the average neighborhood

similarity between i and its neighbors. Formally,

Ji =

∑k∈Ni
ns(i, k)

∣Ni∣
. (9)

If all nodes in the neighborhood of i only belong to a single hyperedge, i.e., all firms belong to a

single supply chain (to which i also belongs), then Ji = 1. Conversely, in a star graph with each node

sharing one hyperedge with the central node i, Ji converges to zero as the number of nodes grows.

To obtain a clustering measure for a hypergraph G, we compute the average clustering coefficient

of all its nodes: J =
1

n
∑i∈NF

Ji, which we denote as the Jaccard clustering of the network.

We illustrate this definition through the example in Figure 7. In Figure 7a, we have ns(1,5) =
ns(2,5) = ns(3,5) = ns(4,5) = 1/2 and ns(1,3) = ns(2,4) = 1. Thus, J5 =

1

2
and Ji =

1/2+1
2

= 0.75

for i ≠ 5, so J = 0.7. In Figure 7b, we have ns(1,2) = ns(1,3) = ns(2,4) = ns(3,4) = 1/2 while

ns(1,4) = 1. Thus, J1 = J4 =
2

3
and J2 = J3 =

1

2
, giving J = 0.5833. The Jaccard clustering of the
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Figure 7 Illustration of Jaccard clustering.
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Figure 8 Relationship between Jaccard clustering and the seed set size for different datasets. Colors vary with

the average length of supply chains in the networks, from 2 (light) to 8 (dark).

supply chain network in Figure 7a is higher than in Figure 7b since there are fewer overlaps between

the two supply chains and more firms that share the same neighborhoods.

The higher Jaccard clustering, the larger the seed set. Take Figure 7, assume that wi = ci = rij = 1

and θj = 3 for all i ∈NF , j ∈NSC , and recall that Figure 7a has higher clustering than Figure 7b.

Correspondingly, Figure 7a requires a larger percentage of firms to be seeded (60% vs. 50%). This

is because the two supply chains in Figure 7a have little overlap and, due to the supply chain effect,

activation from one does not entirely transfer to the other. More generally, the higher the Jaccard

clustering, the more likely there will be clusters of supply chains with limited overlap, and the

more difficult it will be for the diffusion process to enter regions of the network with non-traceable

supply chains without adding additional active firms from within that region. We use problem (5)

to further formalize this reasoning through an optimization lens in Appendix E.2.

We present several numerical experiments confirming that Jaccard clustering accurately predicts

seed set size and has more predictive power than alternative clustering metrics and other structural

network characteristics. Our experiments use three sets of supply chain networks, described in detail

in Appendix E.1, with more than 1,600 instances across them. The first set is derived from the

real-world supply chain networks in Willems (2008). The second set consists of randomly generated

networks with structural characteristics similar to supply chains found in practice. The third set

contains random networks used in Section 6.2. Our results are consistent across the three datasets.

We first analyze the relationship between Jaccard clustering and the percentage of total firms

in the seed set, depicted in Figure 8. As one would expect from the supply chain effect, the longer
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Table 1 Correlation coefficients between the percentage of seed nodes in the optimal solution and different

clustering metrics. The highest for each dataset is highlighted in bold.

Willems (2008) Random Modular

Jaccard clustering 0.7743 0.9114 0.9446
Projection clustering 0.7196 0.4819 0.4359
Projection clustering (weighted) 0.7081 0.3729 0.4482
Hourglass clustering 0.3265 0.5110 0.0950
Repetition of partners 0.2327 -0.8301 -0.8052

the length of the supply chains in the network, the more seed nodes are required. In addition,

Jaccard clustering is highly correlated with the percentage of firms in the seed set, especially when

considering supply chain networks with the same average supply chain length. This is clearly visible

in Figures 8b and 8c, where all supply chains have length five.

The relationship between Jaccard clustering and the percentage of firms in the seed set is further

confirmed by the correlation coefficient, which we compare to that of alternative clustering metrics
12

(see Appendix E.3 for definitions). In Table 1, we observe that Jaccard clustering is an excellent

predictor of seed set size, its performance surpassing other clustering metrics across all datasets.

Next, we create predictive models of the seed set percentage as a function of a large set of key

network measures, including various clustering metrics. Appendix E.3 states these metrics, and our

analysis is in Appendix E.4. When we use random forest models to predict the seed set percentage,

we achieve root mean square errors of 0.016–0.024 on unseen test data. Jaccard clustering is the

first- or second-most predictive variable on each dataset. We then conduct an experiment using a

penalized regression model and vary the penalty parameter. As we increase the penalty term, i.e.,

as we force the regression model to rely on fewer explanatory variables, the importance of Jaccard

clustering increases and consistently reaches the first position among different metrics.

Our results indicate that, for supply chain networks, the effect discussed in Acemoglu et al.

(2011), that higher clustering
13

leads to clusters that the diffusion process has trouble “entering”

unless there are active nodes, dominates the effect observed in Centola et al. (2007) and Centola

(2010), that nodes in highly-clustered networks share more neighbors and more opportunities for

diffusion. This is a consequence of the supply chain effect.

6.2. Two Kinds of Seed Set Firms: Starters and Helpers

We now investigate the different roles played by seed set nodes in the diffusion process. To illustrate

these different roles, consider the example in Figure 1. The seed set consists of Firms 1, 2, 3, 4,

12
In hypergraphs, there is no consensus on the definition of clustering. Jaccard clustering is perhaps not an immediate

choice as it requires two rounds of averaging to obtain a measure over graphs and does not reduce to the most common
graph clustering metric when applied to hypergraphs with hyperedges of size 2 (i.e., graphs).
13

We note that Acemoglu et al. (2011) uses a form of hourglass clustering.
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and 7. While these firms are active at the beginning of the diffusion process, the hyperedges (i.e.,

supply chains) they belong to become active at different times. Hyperedge eblack containing Firms

2, 4, and 7 becomes active in the first period of the diffusion process (as we have θblack = 4) while

hyperedges ered and eblue containing Firms 1 and 3 become active in the second and third periods,

respectively. This example highlights a pattern that we observe across instances of MIN -SCTM .

Namely, firms in the seed set can be of two types: firms that belong to hyperedges that become

active at the start of the diffusion process, or firms that belong to hyperedges that only become

active at later stages of the diffusion process. We refer to the former category as starter firms and

to the latter as helper firms because these firms “help” diffusion after the first period. Firms 2, 4,

and 7 in Figure 1 are starter firms, while 1 and 3 are helper firms.

From a managerial perspective, starter and helper firms play very different roles in the diffusion

process. Starter firms immediately lead to the traceability of a set of supply chains. Making these

supply chains (or, equivalently, the products they produce) traceable “jumpstarts” diffusion in the

network. Conversely, helper firms are targeted without the explicit intent to make their supply

chains traceable early in the diffusion process but to help keep the diffusion process “moving”

along the network. As a consequence, helper firms are strategically placed, typically at the juncture

between different network parts, as they “transfer” the activation process from one part to another.

Interestingly, the strategic importance of “helper” firms has been picked up on in the practitioner

literature (for example, World Economic Forum 2021 call them “alliance brokers”). To illustrate

the different roles played by the seed set firms, consider the example in Figure 9b. Seeding Firms

1 and 2 at the top of the network will not be enough to ensure that the four firms at the bottom

become active. One helper firm, such as 6, must be added to the seed set for diffusion to complete.

Managers may follow a strategy where starter firms are seeded at the beginning of the diffusion

process while helper firms are seeded as the diffusion process “approaches” their supply chains. For

the network in Figure 1, this would mean seeding Firms 2, 4, and 7 early on while seeding Firms

1 and 3 after eblack and egreen are active. Our IP formulation for MIN -SCTM outputs the order

in which hyperedges become active, which can be used to identify starter and helper firms.

We now examine how the supply chain network structure influences the seed set’s proportion of

starter and helper firms. Our main observation is that the proportion of starter firms in the seed set

is a V-shaped function of modularity. Given a set of groups of nodes within a network, modularity

measures how connected different groups are. Thus, a very modular graph has “tightly connected”

groups of nodes that are “loosely connected” with other groups. Introducing a modularity metric

for hypergraphs is the first step toward establishing this V-shaped relationship. Appendix E.3

discusses how we specialize the commonly-used definition in Newman (2006) to our setting.
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Figure 9 Illustration of modularity. The parameters are wi = ci = rij = 1 and θj = 3 for all i∈NF , j ∈NSC .

Consider the networks in Figure 9 to develop intuition around this relationship. When a supply

chain network has high modularity, there are near-disconnected groups in the network, and there

is little possibility for helper firms to transfer activation across groups. In Figure 9a, modularity is

the highest among the three networks (0.5), and we require four starter firms out of four seed firms

(e.g., 1, 2 and 5, 6). When modularity is intermediate, groups of nodes are somewhat connected,

and helper firms emerge to transfer activation across these groups. In Figure 9b, modularity is

intermediate (0.431), and we require two starter firms and one helper firm out of three seed firms

(e.g., 5, 6, and 4). Finally, when modularity is low, there are not many loosely-connected groups.

As a result, there is less of a need for helper firms to transfer activation across groups. In Figure

9c, modularity is the lowest (0.401), and both seed set firms are starter firms (e.g., 5, 6). In

consequence, the percentage of starters in the seed set is a V-shaped function of modularity.

To depict the emergence of helper firms, we randomly generate supply chain networks with vary-

ing modularity (see Appendix E.1). Simply put, we first generate a network with m̄ hyperedges,

which we duplicate to obtain two identical but disconnected groups of nodes. We then sequentially

add m̄ hyperedges across the groups, calculating the modularity, starter firms, and helper firms

of the resulting network each time we add a hyperedge. As the number of cross-group hyperedges

increases, the modularity of the overall supply chain network decreases. Figure 10 shows the per-

centage of starter firms in the seed set as a function of the network’s modularity. Each line of the

plot corresponds to an instance of this cross-group hyperedge addition process with a randomly

generated initial network and with the number of cross-group hyperedges varying from 0 to m̄.

On the left-hand side of the plots, there are m̄ cross-group hyperedges, and modularity is low,

so activation flows unhindered through the network, and the seed set consists primarily of starter

firms. On the right-hand side of the plots, there are zero cross-group hyperedges, and modularity is

high, so there are few or no helper firms since there is limited diffusion across the two network parts.

In the middle of the plots, there are some cross-group hyperedges, and modularity is intermediate.

Helper firms emerge to “help” transfer the diffusion process across the two network parts. Thus,
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Figure 10 Starter firm percentage for varying numbers of connecting hyperedges on otherwise identical

two-part networks, as described in Appendix E.1. Each line corresponds to different starting network.

the percentage of starter firms in the seed set decreases. Note that other network metrics heavily

correlated with modularity, such as graph density, would describe the same effect.

Our insights indicate that traceability initiative leaders should be mindful of the modularity of

their supply chain networks when searching for helper firms to target. If the network’s modularity

is intermediate, helper firms at the juncture of loosely connected network parts are likely needed

to ensure broad technology diffusion. These firms help circumvent the supply chain effect and can

be targeted later in the diffusion process.

6.3. A Simple Heuristic

We use the insights derived in Sections 6.1 and 6.2 to propose a simple seeding heuristic for

managers. This heuristic first computes a score for each combination of firms that, when active, lead

to a supply chain becoming active: the score includes the model parameters and Jaccard clustering.

Once these scores have been computed, the heuristic seeds the set of firms with the highest score

and lets diffusion propagate until it stops. It then repeats this process on the remaining non-active

parts of the graph. By proceeding sequentially, the heuristic mimics the strategy mentioned in

Section 6.2 of first seeding starter firms and then seeding helper firms as diffusion propagates.

The heuristic follows Algorithm 1, but instead of scores derived from an LP, it scores a node’s

Jaccard clustering. Specifically, in the heuristic, Line 8 of the algorithm becomes

s←
1

∣O∣
(∑i∈O Ji) (∑i∈O ci)
(∑i∈Owi) (∑i∈O rji)

.

Note that computing this score is simple and does not require any optimization software.

When comparing the heuristic to a lower bound, as in Section 5.4, the median gap (resp. IQR) is

19% (resp. 13% – 28%). In comparison, when paths are chosen randomly (but the choice of nodes

within paths is still optimized based on wi), the gap is 44% (resp. 25% – 76%).
14

The heuristic

14
The median gap is 94% (resp. 74% – 137%) when nodes within paths are also chosen at random. When supply

chain effects are ignored, and random selection is by node instead of by path, the gap is 135% (resp. 95% – 245%).
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even outperforms the upper bound from Section 5.4 with κ = 0. However, it performs worse than

the upper bound when κ= 1 and, naturally, even worse as κ grows further. Hence, the heuristic is

a starting point for managers who desire a quick estimate of the cost of seeding or the companies

to seed. When more computation time and an optimization solver are available, the principled

heuristics providing upper and lower bounds from Section 5.4 are preferable.

7. Conclusion

Modern traceability technologies can alleviate supply chain risks, improve sustainability, reduce

transaction costs, and enhance demand. However, the benefits of such technologies are only

unlocked when subsets of firms in a supply chain adopt the technologies, a phenomenon we refer to

as the supply chain effect. This effect has profound implications for companies leading traceability

initiatives that often struggle to design a dissemination strategy for their technology (World Eco-

nomic Forum 2021). Successful traceability technology dissemination strategies must address a few

key questions:(i) What is the lowest-cost seed set that ensures the whole network eventually adopts

the technology? (ii) How does the size of the seed set depend on the network structure? and (iii)

What are the different roles that seed set firms play in the diffusion process? While the technology

diffusion literature offers several network models and optimization frameworks to address these

questions, they cannot be readily applied to supply chain networks due to the supply chain effect.

To address the questions above, we contribute to the technology diffusion literature by intro-

ducing the Supply Chain Traceability Model as a new framework incorporating the supply chain

effect. We then define MIN -SCTM , the problem of finding the minimum cost seed set of nodes

that guarantees diffusion throughout the network, which can be viewed as the optimization for-

mulation of question (i). We prove that MIN -SCTM is not just NP-hard; it is inapproximable in

polynomial time, even when all supply chains in the network only contain three firms and when the

cost-benefit analysis is trivial. This result indicates that the supply chain effect and the network’s

intricate structure are the two drivers of MIN -SCTM ’s complexity. Thus, any effective procedure

for solving MIN -SCTM must take advantage of particular network structures.

Therefore, we design an LP-based FPT algorithm for MIN -SCTM with parameter treewidth

of the supply chain network. The use of treewidth is practice-driven: the treewidth of publicly

available supply chain networks is often an order of magnitude smaller than the network size. The

approach we use to design our FPT algorithm is based on recent integer programming techniques

that are new to the technology diffusion literature. Specifically, we show how to bound the treewidth

of the intersection graph of an integer programming formulation of MIN -SCTM by the treewidth

of the network where technology diffusion occurs. The resulting FPT algorithm is an explicit LP

formulation of this integer program that can be solved using existing optimization solvers. Our
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procedure also outputs a hierarchy of approximations of MIN -SCTM with an explicit tradeoff

between the accuracy of the solution and the time taken to compute it. In short, our optimization

framework answers question (i) by introducing algorithms that solve large instances of MIN -

SCTM to near-optimality within reasonable computational time and that are easy to implement.

We further employ our optimization framework to address questions (ii) and (iii) and obtain

several new managerial insights. For the relationship between the network structure and the seed

set size, we observe that a supply chain network with high Jaccard clustering tends to have a large

optimal seed set. This result contrasts with existing and conflicting results in the network diffusion

literature. While higher clustering might facilitate diffusion due to neighborhood overlaps (leading

to smaller seed sets), it also makes it more difficult for the diffusion process to enter tightly-knit

“clusters” of firms (leading to larger seed sets). In supply chain networks, the latter phenomenon

dominates due to the supply chain effect: If firms tend to be in the same supply chains, more firms

are needed in the seed set. As for the different roles played by seed set firms, we observe that

networks with an intermediate degree of modularity require “helper” firms, i.e., firms that help

transfer diffusion between different parts of the network. These firms are part of supply chains that

only activate in later stages of the diffusion process and can thus be targeted later. Collectively, our

insights can help managers shape their technology diffusion strategy, for example, by indicating

which product categories (and corresponding supply chain networks) tend to require smaller seed

sets and which networks are more likely to need helper firms to promote diffusion.

A promising future research direction is to extend SCTM to address the limitations discussed

in Section 3.2. In particular, assuming that firms engage in strategic games or adjust sourcing

decisions based on their technology adoption could lead to interesting new results. Another excit-

ing research direction is to explore the connections between integer programming techniques and

network diffusion problems. For instance, examining LP formulations for seed set selection that

depend on other graph parameters (beyond treewidth) might produce new approaches and insights.

More broadly, the optimization-based tool set and analysis we develop might be helpful for other

problems requiring the coordination of multiple firms in supply chains, such as adopting sustainable

supply chain practices. Consider, for example, circular economy initiatives. A supply chain can

only really be “circular” if all companies in the supply chain adopt a consistent set of practices

and technologies. We speculate that the tools and approaches introduced in this paper can assist

with designing new sustainable supply chain strategies.
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Appendix A: Results Linked to the Model Definition

This section contains the proofs of all results contained in Section 3.

Proof of Proposition 1 As S
′
0 ⊆ NF and the graph is bipartite, S

′
2t+1\S ′

2t ⊆ NSC and S
′
2t+2\S ′

2t+1 ⊆ NF .

In other words, SC-nodes activate in odd time periods and firm-nodes activate in even time periods. In

particular, at time 2t+ 1, the nodes added are

{j ∈NSC\S2t ∶ ∣{(i, j)∈E
′
∶ i is active}∣≥ θj − 1}= ⋃

i∈S2t∩NF

Bi(S ′
2t ∩NF ).

In light of this, at time 2t+ 2, the nodes added are

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i∈NF\S2t+1 ∶ ∑

(j,i)∈E′ ∶ j is active

rji ≥ ci

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i∈NF\S2t+1 ∶ ∑

j∈Bi(S′
2t∩NF )

rji ≥ ci

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

From this and the fact that no firm nodes are added at time 2t+ 1, it follows that

S
′
2t+2 ∩NF = (S ′

2t ∩NF )∪
⎧⎪⎪⎪⎨⎪⎪⎪⎩
i∈NF\S2t ∶ ∑

j∈Bi(S′
2t∩NF )

rji ≥ ci

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

As S0 = S
′
0, we get the state equations of the SCTM activation process, so S

′
2t ∩NF = St, ∀t. □

Proof of Corollary 1 This is an immediate consequence of Proposition 1 and the fact that if S∞ =NF ,

then it must be the case that S
′
∞ =N

′
, by virtue of ∣{i∈NF ∶ i∈ ej}∣= kj ≥ θj for all j ∈NSC . □

Appendix B: Computational Complexity Results

B.1. Definition of Building Blocks Used in the Proofs

The proofs in this section require similar hypergraph structures with edges of size kj = 3 and thresholds

θj = 3. These “building blocks” BU (resp. CU,V ) consist of 3 (resp. 5) nodes and are defined in Figure 11 in

gray (resp. blue). CU,V

L,R
−−→BV denotes that links CU,V

L
−→BV and CU,V

R
−→BV exist.

1U 2U 3U

1U,V 2U,V 3U,V

4U,V 5U,V

(a) BU ↔ CU,V with 7 hyperedges

(BU active ⇔ CU,V active).

1U,V 2U,V 3U,V

4U,V 5U,V

1V 2V 3V

(b) CU,V

L
−→ BV with 5 hyperedges

(CU,V active ⇒ BV requires 1V or

3V to activate).

1U,V 2U,V 3U,V

4U,V 5U,V

1V 2V 3V

(c) CU,V

R
−→ BV with 5 hyperedges

(CU,V active ⇒ BV requires 1V or

2V to activate).

Figure 11 Construction of building blocks.
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Figure 12 Linkage of building blocks for incoming edges.

B.2. NP-Hardness of MIN-SCTM (Theorem 1)

Lemma 1. DEC-SCTM is NP-hard when k = 3 and θ = 3.

Proof. Let DEC-LTM be the following decision problem:

Input: A directed graph G
′
= (N ′

,E
′) with weights w

′
ij ∀(i, j)∈E

′
and thresholds c

′
i ∀i∈N

′
, and h

′
∈N.

Question: Is there a seed set of size less than or equal h
′
leading to full activation of G in the LTM sense?

15

DEC-LTM is NP-hard, even if w
′
ij = 1 ∀(i, j) ∈E

′
and c

′
i = ∣Ni∣ ∀i ∈N

′
(see Kempe et al. 2003, Proof of

Theorem 2.7), which we assume. Wlog, we also assume that ∣Ni∣ > 0 for i ∈N
′
(if a node has no incoming

edges, its benefit is equal to 0, as is its threshold. It will thus always activate by itself and would never be

part of a minimal seed set). We construct a reduction from DEC-LTM to DEC-SCTM .

Construction of the reduction. We use the building blocks from Appendix B.1 to build G from G
′
,

indexing blocks BU and CU,V using sets of nodes in N
′
, i.e., U,V ⊆N

′
. For any node i in N

′
, add a block Bi to

G. Recursively split its set of incoming neighborsNi into two sets of equal size (if ∣Ni∣ is even), or into two sets
of size differing by one (if ∣Ni∣ is odd). In other words, Ni =N 0

i ∪N 1
i = {N 0,0

i ∪N 0,1
i }∪ {N 1,0

i ∪N 1,1
i }= . . .,

stopping when the sets in the decomposition contain one element. Add corresponding blocks BN0
i
, BN1

i
, BN0,0

i
,

BN0,1
i

, BN1,0
i

, BN1,1
i

, . . . to G, except when ∣N x
i ∣= 1. Further, add blocks CN0

i ,{i}, CN1
i ,{i}, CN0,0

i ,N0
i
, CN0,1

i ,N0
i
,

CN1,0
i ,N1

i
, CN1,1

i ,N1
i
. . . to G and link the blocks as follows: CN0

i ,{i}
L
−→ B{i}, CN1

i ,{i}
R
−→ B{i}, BN0

i
↔ CN0

i ,{i},

BN1
i
↔ CN1

i ,{i}, . . .. This is illustrated in Figure 12. If a block already exists (e.g., if incoming neighbors

overlap), use the existing one. Finally, add a block B0 and blocks C{i},0 ∀i ∈ N with B{i} ↔ C{i},0 and

C{i},0
L,R
−−→ B0. As constructed, G is a hypergraph with edges of size k = 3. Furthermore, we assume that

rji = 1, ci = 1, θj = 3, and wi = 1 for i= 1, . . . , n and j = 1, . . . ,m, and we let h= h
′ + 1.

This construction is polynomial in ∣N ′∣ as the number of blocks is polynomial in ∣N ′∣. Indeed, as ∣Ni∣ ≤
∣N ′∣− 1 ∀i∈N , there are at most ⌈log2(∣N ′∣− 1)⌉ recursive splits on Ni, which implies that the number of

sets N 0
i ,N

1
i , . . . generated for node i is at most equal to 2

1 + 2
2 + . . .+ 2

⌈log2(∣N ′∣−1)⌉
≤ 8(∣N ′∣− 1).

Moreover, the LTM activation process in G
′
can be replicated via SCTM activation in G by equating

active nodes i in G
′
with active blocks B{i} in G and assuming that no other nodes are initially active in G.

We can then show that a node ia activates in G
′
if and only if block B{ia} activates in its entirety in G. To

see this, note that each block B{i} only appears in two places in G: exactly once at the root of a tree such

as the one given in Figure 12 and possibly many times as a leaf of trees of this type, associated to other

blocks B{j}. When B{i} is at the root of a tree, it activates if all of the leaves of the tree (corresponding

15
Recall that a node activates in the LTM sense if the sum of its incoming edge weights from active nodes exceeds

its threshold; see Section 3.3.
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to blocks B{j}, j ∈Ni) activate. If it is a leaf, it will not activate through this particular tree if the root of

the tree activates, nor if any other leaves activate. From this, we prove the statement: if node ia is active

in G
′
, then all incoming neighbors j ∈Nia of ia are active. This implies that blocks B{j}, j ∈Nia are fully

active, which leads from our previous discussion, to activation of B{ia}. Conversely, if B{ia} activates with

only blocks B{i}, i ∈N
′
having initially been activated, then it must be the case that all blocks in the tree

rooted at B{ia} became active at some point, which can only happen if all of its leaves B{j}, j ∈Nia were

fully activated. By equivalence, this means that in G
′
, nodes j ∈Nia are active, and so ia would activate.

DEC-LTM with (G′
, h

′) answers YES if and only if DEC-SCTM with (G,h) answers YES.

“Only if”: Take a seed set S
′
0 in the LTM of size h

′
leading to full activation. For each i ∈ S

′
0, add the

corresponding node 5{i},0 to the seed set S0 of the SCTM. Finally, take any one of the nodes in S
′
0, say j,

and add the node 1{j},0 to S0, such that ∣S0∣= h+1. Clearly, the block C{j},0 fully activates, then, block B0,

then each block C{i},0 with i∈ S0. Next, B{i} activates for all i∈ S0. Each other block B{j} with j ∉ S0 only

activates if all incoming nodes are fully activated. Hence, activation proceeds exactly as under the LTM and

full activation eventually occurs under the SCTM.

“If”: Assume NO for DEC-LTM and YES for DEC-SCTM . Let S0 be an activating seed set for G of

size h. If there is a node j ∈ S0∩ (CNx
i ,Ny

i
∪BNx

i
) for some N x

i that is not a singleton, then there is another

activating seed set S̃0, ∣S̃0∣ ≤ ∣S0∣, without j, but with 2{i} or 3{i}. Consider a block associated with i ∈N
′

that contains a node j ∈ S̃0. Once it is active, the block B0 fully activates, which in turn implies that any

other such block can be activated with only the node 5{i},0. The first block needs to have two nodes for any

activation to occur and the seed set to be minimal. Assume this block is associated with node j ∈N
′
. We

can replace the seed nodes in this block with the nodes 4{j},0 and 5{j},0 wlog. We then know from before that

a set S
′
0 = {i∣5{i},0 ∈ S̃0} (of size ≤ h− 1= h

′
) leads to full activation in the LTM, giving a contradiction. □

Proof of Theorem 1. Lemma 1 shows that DEC-SCTM is hard when (k = 3, θ = 3). We first show that

the cases θ = 1 and θ = 2 are in P. If θ = 1, then it is easy to see that all firms will adopt at the first time

step so the seed set can be taken to be empty. If θ = 2, then one need only seed the node of lowest cost. This

will lead to all supply chains it belongs to activating, which will in turn lead to all supply chains connected

to those supply chains to activate. Connectivity of G thus ensures full activation.

We now show that if DEC-SCTM is hard for fixed k and θ = k and θ ≤ k, then DEC-SCTM remains hard

for k+ 1 and θ+ 1= k+ 1. To do this, let G be the graph over which DEC-SCTM is hard with fixed k and

fixed h. We let G̃ be G, except that we add the same additional node ι, to each hyperedge ej ∈G. Note that

the size of each hyperedge is now k+ 1. We further let the cost to seed of the additional node be wι = 1 for

all i∈N , let the edge threshold be k+ 1, and take h̃= h+ 1. One can check that S0∪ {ι} is a seed set of size

less than or equal to h̃ leading to full activation of G̃ if and only if S0 is a seed set of size less than equal

to h leading to full activation of G, which implies the result. Similarly, we can show that if DEC-SCTM

is hard for fixed k and θ, then DEC-SCTM remains hard for k+ 1 and θ. This involves building the same

graph as G̃ above, except that we do not add {ι} to the seed set and we let h̃= h. Thus, for any (θ, k) such

that θ ≤ k, one can proceed from the case (k = 3, θ = 3) to (k, θ) by applying successively the operations

(k, θ = k)↦ (k+ 1, θ+ 1= k+ 1) and (k, θ)↦ (k+ 1, θ) as described above. □
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B.3. Hardness of Approximation of MIN-SCTM (Proposition 2)

Proof of Proposition 2. We proceed as before using a reduction from the LTM on a graph G
′
where all

nodes have a threshold c
′
i ≤ 2 and all edges have weight w

′
ij = 1. Below, we will show that for any G

′
with

∣N ′∣ = n
′
nodes and LTM activation, we can create, in polynomial time, a hypergraph G with rji = 1, ci = 1,

k = 3, θ = 3, activating via the SCTM , with the following properties: (i) the number of nodes is n≤ (n′)β for

a constant 1 ≤ β <∞; (ii) if OPTLTM is the size of the minimum seed set for G
′
, and S

∗
0 is a minimum size

seed set of G with OPT = ∣S∗
0 ∣ , then OPT =OPTLTM + 1.

Given the construction, assume that for all α > 1 there is an algorithm approximating MIN -SCTM

with result OPT
′
such that OPT

′
= OPT ⋅ O(αlog

1−ξ
n) for some ξ > 0. Clearly, OPT

′
is an upper-

bound on OPTLTM . Moreover, OPT
′
= (OPTLTM + 1) ⋅ O(αlog

1−ξ
n) < OPTLTM ⋅ O(αlog

1−ξ
n) < OPTLTM ⋅

O(αβ
1−ξ

log
1−ξ

n
′

)=OPTLTM ⋅O((αβ
1−ξ

)
log

1−ξ
n
′

). As α > 1, let α = 2
1

β1−ξ . We then have a direct contradiction

to the result that there is no polynomial-time approximation algorithm with output OPT
′
and OPT

′
<

OPTLTM ⋅O(2log
1−ξ

n
′

) for any ξ > 0 (cf. Corollary 4.1 in Chen 2009). The case where k ≥ θ ≥ 3 can be obtained

in a similar fashion using the extension operations given in the proof of Theorem 1.

A note on the complexity class. Assume instead that OPT
′
= OPT ⋅ O(2log

1−ξ
n). Then, OPT

′
<

OPTLTM ⋅O (2β
1−ξ

log
1−ξ

n
′

). To establish a contradiction, we require that there is a constant M > 0 such that

M ⋅2β
1−ξ

log
1−ξ

n
′

≤ 2
log

1−ξ
n
′

. This is equivalent to M ≤ 2
log

1−ξ
n
′(1−β

1−ξ)
. However, unless β = 1, 1−β

1−ξ
< 0, and

the right-hand side tends to zero as n goes to infinity. But because M > 0, this does not hold. The same issue

arises in the sequence of proofs leading up to Corollary 4.1 in Chen (2009), where a reduction is created

to a graph with a higher number of nodes at each step (that is, β > 1). This is of no consequence for the

complexity class that we apply here, however, as we can replace 2 by some α ∈ (1,2) in each step.

Construction of the reduction. Let G
′
= (N ′

,E
′), ∣N ′∣= n

′
be a directed graph, activated via the LTM.

Assume that all nodes have a threshold c
′
i ∈ {1,2} and all edges have weight w

′
ij = 1. We proceed with a

similar construction of a hypergraph G = (N,E) with k = 3, as in the proof of Theorem 1. For each i ∈N
′
,

define block B{i}. Either (i) node i has a threshold of 1, then for each (directed) edge (j, i)∈E
′
, construct a

block C{j},{i}, as well as the linkages B{j} ↔ C{j},{i}
L,R
−−→B{i}. Alternatively, (ii) it has a threshold of 2. Say

the set of incoming neighbors is Ni. Then, construct block B{j,j′} for any pair (j, j ′)∈N 2
i . There are (∣Ni∣

2
)≤

(n−1
2
)≤ n

2
such pairs. For each pair, construct blocks C{j},{j,j′}, C{j′},{j,j′}, and C{j,j′},{i}, as well as the following

linkages: B{j} ↔C{j},{j,j′}
L
−→B{j,j′}, B{j′} ↔C{j},{j,j′}

R
−→B{j,j′}, and B{j,j′} ↔C{j,j′},{i}

L,R
−−→B{i}. As before, we

add a block B0 and the corresponding blocks C{i},0 for all i∈N with connections B{i} ↔C{i},0
L,R
−−→B0. The

construction is, again, polynomial in n
′
. Moreover, following the same steps as before, one can show that the

solution to MIN -LTM on graph G
′
is OPTLTM if and only if the solution to MIN -SCTM on graph G is

OPT =OPTLTM + 1. Note that n≤ (n′)β for a constant 1≤ β <∞. □

Appendix C: Results Regarding the Linear Programming-Based FPT Algorithm

C.1. Proof of Propositions 3, 5, and 6

Proof of Proposition 3 This follows from Courcelle (2015, Lemma 14), the definition of G
′
, noting that

(i, j)∈E
′
if and only if (j, i)∈E

′
, and considering the undirected version of G

′
. □
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The proof of Proposition 5 follows that given in Ackerman et al. (2010) with some small modifications

linked to the specificities of G
′
(e.g., its bipartiteness, the fact that its edges are weighted, etc.).

Proof of Proposition 5 Due to Corollary 1, we show that any feasible solution for (2) is feasible for (4)

and vice-versa, and that the objective functions are equivalent.

Let S
′
0 ∪ NF be a feasible solution to (2). We construct the following solution to (4): we let si = 1 if

i ∈ S
′
0 and si = 0 if not, and we let ℓij = 1 (resp. ℓji = 1) if i ∈NF precedes j ∈NSC (resp. j ∈NSC precedes

i ∈NF ) in terms of activation. We show that this solution is feasible, constraint-by-constraint. Constraint

(4a) trivially holds if i ∈ S0. If i ∉ S0, then si = 0. As S0 leads to full activation of G
′
, there must be some t

such that ∑{(j,i)∈ESC,F s.t. j∈St} ri,j ≥ ci. By construction, the relevant variables ℓji must be set to 1. Hence,

∑{(j,i)∈ESC,F } ri,jℓji ≥ ci and (4a) holds. A similar argument can be used to show that (4b) holds. Constraint

(4c) also holds as i cannot simultaneously activate j and j activate i. Likewise, if (4d) were violated, then

ℓi1j1 + ℓj1i2 + ℓi2j2 + ℓj2i1 = 4, which would imply that i1 activates j1, which activates i2, which activates j2,

which activates i1, once again. This is not possible as i1 is already activated. Thus (4d) holds. Finally, the

objective function of (4) is equal to the weight of the seed set, which is identical to that of (2).

We now consider a feasible solution to (4). To set {ℓij , ℓji}, we can associate a directed acyclic graph on

N
′
with an edge from i ∈NF (resp. j ∈NSC) to j ∈NSC (resp. i ∈NF ) if ℓij = 1 (resp. ℓji = 1). The graph

is directed (constraint (4c)) and acyclic (constraint (4d)), as G
′
is bipartite. Thus, we are able to define a

topological ordering on the nodes in N
′
. We let S

′
0 = {i∈NF ∣ si = 1}. Consider t≥ 1. We define:

S
′
2t = S

′
2t−1 ∪ {i∈NF\S ′

2t−1 ∣ ℓji = 1⇒ j ∈ S
′
2t−1,∀j ∈ {j ∣ (j, i)∈NSC,F }}

and

S
′
2t+1 = S

′
2t ∪ {j ∈NSC\S ′

2t ∣ ℓij = 1⇒ i∈ S
′
2t,∀i∈ {i ∣ (i, j)∈NF,SC}}.

As {ℓij , ℓji} define a topological ordering on N
′
, we have S

′
∞ =N

′
. Furthermore, for i∈ S

′
2t\S ′

2t−1, we have:

ci ≤ ∑
{j∣(j,i)∈ESC,F }

rjiℓji = ∑
{j∣(j,i)∈ESC,F∩ℓji=1}

rjiℓji = ∑
{j∣(j,i)∈ESC,F∩S′

2t−1}
rji = ∑

{j ∣ (j,i)∈ESC,F }
rjixj(2t),

where the first inequality is due to (4a) and the second equality is due to the definition of S
′
2t. A similar set

of inequalities can be derived for j ∈ S
′
2t+1\S ′

2t, and thus the activation process defined in this way is exactly

that given in (2). As the objectives of (2) and (4) are equivalent, this concludes the proof. □

Proof of Proposition 6 Constraint (4d) enforces that ℓi1j1 and ℓi2j2 are connected in the intersection

graph of (4) for any i1, i2 ∈ NF and j1, j2 ∈ NSC . There are n ×m pairs (i, j) ∈ NF ×NSC and all of the

corresponding nm variables ℓij are connected: this creates a clique in the intersection graph of (4) of size

nm. As the treewidth of a clique is nm − 1 and the treewidth of any subgraph of the intersection graph

lower-bounds the treewidth of the intersection graph, the result follows. □

C.2. Formulation of the Final BiLP and Proofs of Propositions 7–9 and Theorem 2

Proof of Proposition 7. The two objective functions are identical, so it suffices to show that (4) and (5)

are equivalent. First, let ({ℓ̃ij , ℓ̃ji}i∈NF ,j∈NSC
,{s̃i}i∈NF

) be a feasible solution to (4). Define a solution to (5):

set si = s̃i for i = 1, . . . ,NF and ℓij = ℓ̃ij (resp. ℓji = ℓ̃ji) for any ℓij (resp. ℓji) present in (5) with i ∈NF and
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j ∈NSC . Recall that the variables {ℓ̃ij}ij from (4) define a DAG and that this DAG is connected. For any

pair (i, j)∈X
′
z for some z, with i, j ∈NF or i, j ∈NSC , we set ℓij = 1 (resp. ℓij = 0) if there exists a directed

path from i to j (resp. from j to i) in the DAG. If neither exists, we assign either 0 or 1 to ℓij only ensuring

that ℓij + ℓji = 1. It is easy to see that a solution to (5) thus defined satisfies constraints (5a) through (5c).

Now consider constraint (5d) and suppose that i∈NF , j ∈NF , and k ∈NSC wlog (other cases can be treated

in the same way). If ℓjk = ℓki = 1, then this means that ℓ̃jk = ℓ̃ki = 1 and the DAG defined by (ℓ̃ij)ij contains

a directed path from j to i. This implies that ℓji = 1 and ℓij = 0 and, thus, constraint (5d) holds. If either ℓjk

or ℓki ≠ 1, then the constraint trivially holds. This shows the implication.

Now, suppose we have a feasible solution to (5). For each bag X
′
z, we can draw a directed graph with

nodes in X
′
z and an edge from node i to node j in X

′
z if ℓij = 1. As the constraint (5d) precludes cycles from

forming, these graphs are all DAGs. Thus, each bag gives rise to a partial ordering of the nodes it contains.

One can then consider a partial ordering on all nodes (as each node appears in at least one bag) obtained by

taking the union of the partial orders across bags. Indeed, if two nodes are ordered in a specific way in one

bag, the presence of the {ℓij} will enforce the same ordering in any other bag where they both appear. Then,

from the order-extension principle, one can define a total order on all nodes in NF ∪NSC which is consistent

with this partial order. That is, one can extend {ℓi,j}i,j∈N ′∪X ′
z ,z∈T

′ to a sequence {ℓij}i,j∈N ′ in such a way that

this latter set represents a DAG. By taking as our solution to (4) the appropriate subset {ℓij , ℓji}i∈NF ,j∈NSC

of the aforementioned sequence combined with the {si} given by (5), we obtain a feasible solution to (4) as

the no-cycle constraint of (4d) is guaranteed to hold by acyclicity of the DAG. □

Formulation of the Final BiLP.

min ∑
i∈NF

wisi

s.t. ∀i∈NF ∶ ∑
j∈Ji

z

rjiℓji ≥ uiz, ∀z ∈ T
G
i , 0≥ uiz, ∀z ∈ T

G̃

i (10a)

uiz + ũic1(z) + ũic2(z) ≥ ũiz, ∀z ≠ z0 ∈ T
′
i, (10b)

ũizi0
+ ũic1(zi0) + ũic2(zi0) ≥ ci(1− si), (10c)

uiz =

nu

∑
τ=0

2
τ
u
τ
iz and ũiz =

nu

∑
τ=0

2
τ
ũ
τ
iz, ∀z ∈ T

′
i, (10d)

∀j ∈NSC ∶ ∑
i∈I

j
z

ℓij ≥ vjz, ∀z ∈ T
G

j , 0≥ vjz, ∀z ∈ T
G̃

j , (10e)

vjz + ṽjc1(z) + ṽjc2(z) ≥ ṽjz, ∀z ≠ z0 ∈ T
′
j , (10f)

ṽjzj0 + ṽjc1(zj0) + ṽjc2(zj0) ≥ θj − 1, (10g)

vjz =

nv

∑
τ=0

2
τ
v
τ
jz and ṽjz =

nv

∑
τ=0

2
τ
ṽ
τ
jz, ∀z ∈ T

′
j , (10h)

∀z ∈ T
′
∶ ℓij + ℓji = 1, ∀i, j ∈X

′
z ∩N

′
, (10i)

ℓij + ℓjk + ℓki ≤ 2, ∀i, j, k ∈X
′
z ∩N

′
, (10j)

si ∈ {0,1}, ∀i∈NF , ℓij ∈ {0,1}, ∀i, j ∈N
′
∩X

′
z,∀z ∈ T

′
,
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u
τ
iz (resp. ũ

τ
iz)∈ {0,1}, ∀τ,∀i∈NF ,∀z ∈ T

′
(resp. ∀z ∈ T

′\ ⋃
i∈NF

z
0
i ),

v
τ
jz (resp. ṽ

τ
jz)∈ {0,1}, ∀τ,∀j ∈NSC ,∀z ∈ T

′
(resp. ∀z ∈ T

′\ ⋃
j∈NSC

z
0
j ).

Proof of Proposition 8. First, note that (10) is equivalent to the following integer linear program (ILP):

min ∑
i∈NF

wisi

s.t. ∀i∈NF ∶ ∑
j∈Ji

z

rjiℓji ≥ uiz, ∀z ∈ T
G
i , 0≥ uiz, ∀z ∈ T

G̃
i (11a)

uiz + ũic1(z) + ũic2(z) ≥ ũiz, ∀z ≠ z0 ∈ T
′
i, ũizi0

+ ũic1(zi0) + ũic2(zi0) ≥ ci(1− si), (11b)

∀j ∈NSC ∶ ∑
i∈I

j
z

ℓij ≥ vjz, ∀z ∈ T
G
j , 0≥ vjz, ∀z ∈ T

G̃
j , (11c)

vjz + ṽjc1(z) + ṽjc2(z) ≥ ṽjz, ∀z ≠ z0 ∈ T
′
j , ṽjzj0 + ṽjc1(zj0) + ṽjc2(zj0) ≥ θj − 1, (11d)

∀z ∈ T
′
∶ ℓij + ℓji = 1, ∀i, j ∈X

′
z ∩N

′
, (11e)

ℓij + ℓjk + ℓki ≤ 2, ∀i, j, k ∈X
′
z ∩N

′
, (11f)

si ∈ {0,1}, ∀i∈NF , ℓij ∈ {0,1}, ∀i, j ∈N
′
∩X

′
z,∀z ∈ T

′
,

uiz (resp. ũiz)∈ {0, . . . , cmax} ∀i∈NF , ∀z ∈ T
′
(resp. ∀z ∈ T

′\∪i∈NF
zi0)

vjz (resp. ṽjz)∈ {0, . . . , θmax} ∀j ∈NSC , ∀z ∈ T
′
(resp. ∀z ∈ T

′\∪j∈NSC
zj0),

where cmax =max{c1, . . . , cn} and θmax =max{θ1, . . . , θm}− 1. Simply note that ∑nu

τ=0 u
τ
iz (resp. ũ

τ
iz) is the

binary formulation of uiz (resp. ũiz), and ∑nv

τ=0 v
τ
jz (resp. ṽ

τ
jz) is the binary formulation of vjz (resp. ṽjz).

We now show that the ILP (11) is equivalent to (5). By virtue of Proposition 7 and the above, the result

follows. Assume that constraints (11a) and (11b) hold. By iteratively using constraint (11b) as we go up

the tree T
′
i from the leaves to the roots, we obtain that ∑z∈T ′

i
uiz ≥ ci(1− si). Now, using (11a), it follows

that ∑z∈TG
i
∑j∈Ji

z
rjiℓji ≥ ci(1− si). As the sets {J i

z}z∈TG
i

partition Ji = {j ∣ (j, i) ∈ESC,F }, we obtain (5a).

Conversely, if (5a) holds, then we can simply set uiz =min{cmax,∑j∈Ji
z
rjiℓji} if z ∈ T

G
i , or uiz = 0 if z ∈ T

G̃
i ,

and ũiz =min{cmax, uiz + ũic1(z) + ũic2(z)}. Then, (11a) and (11b) hold.

Likewise, assume that constraints (11c) and (11d) hold. By iteratively using constraint (11d) as we go up

the tree T
′
j from the leaves to the roots, we obtain that ∑z∈T ′

j
vjz ≥ θj − 1. Now, using (11c), it follows that

∑z∈TG
j
∑i∈I

j
z
ℓij ≥ θj − 1. As the sets {Ij

z}z∈TG
j

partition Ij = {i ∣ (j, i) ∈ESC,F }, we obtain (5b). Conversely,

if (5b) holds, then we can simply set vjz = min{θmax,∑i∈I
j
z
ℓij} if z ∈ T

G
j , or vjz = 0 if z ∈ T

G̃
j , and ṽjz =

min{θmax, vjz + ṽjc1(z)+ ṽjc2(z)}. Then, (11c) and (11d) hold. As the remaining constraints and the objectives

are the same, (11) and (5) are equivalent. □

Proof of Proposition 9. Recall that T ′
= (T ′

,{X ′
z}z∈T ′) is the tree decomposition of G

′
, where we assume

that each node z has no more than two children. We build a tree decomposition S = (S,{Wz}z∈S) from T ′
,

where S = T
′
and each bag Wz contains variables from (10) instead of nodes. We then show that such a tree

decomposition is in fact a valid tree decomposition of the intersection graph of (10) and that its width is

upper-bounded by O(ω′2 +ω
′
log2(ϑmax)). This proves the result. We now specify the bags {Wz}z∈S:

1. Let z ∈ S and let X
′
z be the corresponding bag of nodes in T

′
. Then, Wz =⋃i,j∈N ′∩X ′

z
{ℓji}.
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2. For each i∈NF , consider T
′
i in T

′
with an arbitrary root node. For each node z in T

′
i:

(a) If z is the root node, add variables {uτ
iz}τ=0,...,nu

and si, as well as the variables also present in its

children’s nodes, {ũτ
ic1(z)}τ=0,...,nu

and {ũτ
ic2(z)}τ=0,...,nu

, to Wz.

(b) If z is not a leaf and not the root, add variables {uτ
iz}τ=0,...,nu

and {ũτ
iz}τ=0,...,nu

, as well as the

variables also present in its children’s nodes, {ũτ
ic1(z)}τ=0,...,nu

and {ũτ
ic2(z)}τ=0,...,nu

, to Wz.

(c) If z is a leaf, add variables {uτ
iz}τ=0,...,nu

and {ũτ
iz}τ=0,...,nu

to Wz.

3. Likewise, for each j ∈NSC , consider T
′
j . For each node z in T

′
j :

(a) If z is the root node, add variables {vτ
jz}τ=0,...,nv

, as well as the variables also present in its children’s

nodes, {ṽτ
jc1(z)}τ=0,...,nv

and {ṽτ
jc2(z)}τ=0,...,nv

, to Wz.

(b) If z is not a leaf and not the root, add variables {vjz}τ=0,...,nv
and {ṽjz}τ=0,...,nv

, as well as the

variables also present in its children’s nodes, {ṽτ
jc1(z)}τ=0,...,nv

and {ṽτ
jc2(z)}τ=0,...,nv

, to Wz.

(c) If z is a leaf, add variables {vτ
jz}τ=0,...,nv

and {ṽτ
jz}τ=0,...,nv

to Wz.

We now show that S as constructed is a valid tree decomposition for the intersection graph of (10). To do

this, we need to prove three points. First, all variables involved in the optimization problem appear in at least

one of the bags {Wz}z∈S. This is straightforward to check. Second, if a variable appears in two distinct bags,

then it appears in all bags in-between. We proceed by groups of variables. The variables si,{uτ
iz}τ ,{vτ

jz}τ
each only appear in one bag, thus this trivially holds for them. The variables {ũτ

iz}τ and {ṽτ
jz}τ appear in

two bags, however, these are parent/children combinations, so the property holds. This leaves variables ℓji.

Suppose that ℓji appears in bag Wz1 and Wz2 and that there is at least one bag between Wz1 and Wz2 .

The assumption implies that j, i ∈X
′
z1

and j, i ∈X
′
z2
. As T is a tree decomposition, it follows that j and i

appear in all bags between X
′
z1

and X
′
z2
, thus ℓji also appears in all bags between Wz1 and Wz2 . Third, if

a group of variables appears in a constraint, then this group appears in at least one bag of S, because the

group forms a clique in the intersection graph. We proceed constraint by constraint. For constraint (10a),

by construction, j ∈ J
i
z ⊆ X

′
z for z ∈ T

G
i , thus i, j ∈ X

′
z, and ℓji ∈ Wz. Furthermore, from Step 2b in the

construction of S, {uτ
iz}τ ∈Wz. For constraints (10b) and (10c), this is straightforward from steps 2a and

2b. A similar reasoning applies to constraints (10e), (10f), and (10g). For constraints (10j), this follows from

step 1. Thus, S is a valid tree decomposition for the intersection graph of (10).

We now upper-bound the treewidth by looking at the size of each one of the bags {Wz}z∈S. Consider the
algorithm to build S and recall that ω

′
is the treewidth of G

′
, and thus the maximum size of X

′
z for all z ∈ T.

Step 1 only occurs once and at the end of it, Wz contains at most ω
′2
nodes. Then, for each node z ∈ T

′
,

steps 2-3 happen at most a combined ω
′
times as X

′
z contains at most ω

′
nodes. Thus, z appears in at most

ω
′
trees T

′
i or T

′
j . During Step 2 (resp. Step 3), a maximum of 4 sets of variables are added to the node,

with each set having size at most max{nu, nv}, where nu, nv are as defined in (6). Thus, at the end of the

construction of S, Wz contains at most ω
′2 + 4max{nu, nv} ⋅ω′

=O(ω′2 +ω
′
log2(ϑmax)) nodes. □

Proof of Theorem 2. From Proposition 8, we have that (10) solves MIN -SCTM . From Proposition 9,

the intersection graph of (10) has treewidth at most O(ω′2 + ω
′
log2(ϑmax)). We now count the variables

appearing in (10). Recall that T
′
has at most 4(n+m) bags. We have that (10) has n variables si, at most

4(n+m) ⋅ω′3
variables ℓij , at most 3 ⋅nu ⋅ 4(n+m) variables {uτ

iz} and {ũτ
iz}, and at most 3 ⋅nv ⋅ 4(n+m)

variables {vτ
jz} and {ṽτ

jz}. From Propositions 3 and 4, we obtain the result. □
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C.3. Proof of Proposition 10

Proof of Proposition 10. When κ= 0, (8) reads:

min
YS

∑
i

wiY{si}

s.t. Y∅ = 1

∀z ∈ S ∶ Y∅ −Y{xs
i } ≥ 0, Y{xs

i } ≥ 0, ∀i= 1, . . . , ωz

g
l
∅Y∅ +

ωz

∑
i=1

g
l
{xz

i } ⋅Y{xz
i } ≥ 0, ∀l = 1, . . . , lz,

By definition of an intersection graph, all constraints of (10) are associated to at least one node z ∈ S. The

result follows. □

Appendix D: A Dynamic Programming-Based FPT Algorithm

Corollary 1 shows that if we can solve (2) for G
′
, we can solve MIN -SCTM for G. The algorithm introduced

by Ben-Zwi et al. (2011) is an FPT algorithm (with parameter ω
′
) for target set selection under the LTM,

assuming thresholds are bounded. Thus, we show how to generalize the algorithm to our setting, taking into

consideration the characteristics of the auxiliary graph G
′
: (i) edges are weighted, (ii) only certain types of

nodes (the firm-nodes) can be part of the seed set, (iii) the objective is minimizing costs rather than number

of nodes in the seed set, and (iii) we are interested in structural assumptions on G more so than G
′
.

The algorithm first computes a tree decomposition of G
′
with treewidth ω

′
and of a specific type:

Definition 5 (Nice tree decomposition). Let G
′
= (N ′

,E
′). A tree decomposition T ′

= (T ′
, (X ′

z)z∈Z)
of G

′
with treewidth ω

′
is nice if and only if T

′
is rooted at some node z̃, ∣X ′

z∣= ω
′+1 ∀z ∈ T

′
, and all nodes

are of exactly one of the following types: (a) leaf nodes, (b) replace nodes (z has exactly one child, z0, and

there are u, v ∈N
′
, u ≠ v, such that X

′
z \X ′

z0
= {u} and X

′
z0
\X ′

z = {v}), and (c) join nodes (z has exactly

two children, z0 and z1, and X
′
z =X

′
z0
=X

′
z1
).

An example of a nice tree decomposition is given in Figure 13.

Before any formal results, we provide high-level intuition as to how the algorithm works. Assume a nice

tree decomposition T ′
= (T ′

, (X ′
z)z∈Z) of G

′
with treewidth ω

′
. Possibly overlapping subgraphs of G

′
are

created from the leafs of T
′
, each containing at most ω

′
nodes. Moving up one level in the tree corresponds to

growing the subgraphs constructed at the previous level, either by adding nodes or merging two subgraphs.

When we get to the root node, the subgraph considered is the complete graph G
′
. The key property of the

subgraphs constructed via this process is that each one only interacts with its complement in G
′
via a set

of boundary nodes, which is of size at most ω
′
. In other words, if there exists an edge between node i in the

subgraph and a node outside of the subgraph, then it must be that i belongs to the boundary nodes, and

there cannot be more than ω such nodes. The minimum cost seed set for G
′
is then obtained recursively

using these subgraphs. First, the minimum cost seed sets for the subgraphs corresponding to the leafs are

found through enumeration (which is exponential in ω
′
but not necessarily in n). Then, as we go up the tree,

the algorithm uses the previously established minimum cost seed sets for smaller subgraphs to obtain that

of the larger subgraph. The computational effort is limited because nodes in the smaller subgraph that are

not part of the boundary are not affected by any nodes that may enter the subgraph. Thus, we can focus on
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1 3 6 8 2 9 4 7 5

blue red black green

(a) Rearranged auxiliary graph G
′
from Figure 4b.
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(b) Nice tree decomposition T of G
′
.

Figure 13 Example of a nice tree decomposition. Let rji = ci = θj = 1 for all nodes i and hyperedges ej .

nodes in the boundary. As we reach the root node, the relevant subgraph is all of G
′
, allowing us to derive

a minimum cost seed set for the full auxiliary graph and, thus, the original graph G.

Lemma 2. Assume an auxiliary graph G
′
as defined in Section 3.3, as well as the LTM activation process.

Algorithm 2 applied to G
′
returns a minimum cost seed set.

Proof. We introduce some notation. Consider a subtree in T
′
rooted at a node z0. Define with G

z0
=

(N z0 ,E
z0) the subgraph of G

′
induced by ⋃z∈subtree(z0)X

′
z. Nodes in X

′
z0

may be connected to nodes in

G
′
outside of G

z0 , but other nodes in G
z0 cannot be connected to those outside. Thus, denote X

′
z0

as the

boundary of z0 (it may include unconnected nodes, due to the requirement that ∣X ′
z∣= ω

′+ 1). For example,

in Figures 13b (resp. Figure 13a), the dashed line indicates the subtree rooted at {green, black,7} (resp. the

associated subgraph). Nodes black and green, which are in the boundary, connect to nodes 2 and 9 outside

of the dashed line. The boundary may include additional nodes such as 7 due to ∣X ′
z∣ = ω

′ + 1. Node 4, on

the other hand, is not in the boundary and cannot connect to nodes outside of the dashed line. Moving

upwards in the tree from z0 to a replace node zR, a node v ∈X
′
z0

is replaced by a node u to arrive at the

new boundary X
′
zR
. By construction, node v cannot share edges with any of the nodes outside G

z0 . Say, we

move from {green, black,7} to {green, black,2}. In the boundary, Node 7 is replaced by Node 2, and Node

7 does indeed not share edges with nodes outside of the subgraph induced by black, green, 2, 4, and 5.

Next, let c̃∈ {0, . . . , ϑmax}ω
′+1

and ã∈ {0, . . . , ω′+1}ω
′+1

be threshold and activation vectors, where ϑmax =

max{maxi=1,...,n{ci},maxj=1,...,m{θj}− 1}. We arbitrarily assign a one-to-one mapping from the root node

boundary to these vectors, denoting with c̃(i′) (resp. ã(i′)) the mapping from i
′
in the boundary. Define
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Algorithm 2: Algorithmic solution to minimum cost seed set problem.

Data: Auxiliary graph G
′
with tw(G′)= ω

′
.

Result: Minimum cost seed set (S ′
0)∗ of G

′
.

1 Initialization: Compute a nice tree decomposition T ′
= (T ′

,{X ′
z}z∈T ′) of G

′
, rooted at z̃

with width ω
′
; C̃ ← {0, . . . , ϑmax}ω

′+1
; Ã← {0, . . . , ω′ + 1}ω

′+1
; red← 0

ω
′+1

;

2 for z ∈ T
′
where z is a leaf node do

3 for c̃∈ C̃ do

4 for ã∈ Ã do
5 S

z
0[c̃, ã]← compute minimum cost seed set through enumeration;

6 while z ∈ T
′
has not been traversed, but all its child nodes have do

7 if z is a replace node with child z0 then

8 G
z
0 = (Gz

0,E
z
0)←G

z
; E

z
0 ←E

z
0 \ {(u, i′), (i′, u) ∶ i′ ∈X

′
z};

9 for c̃∈ C̃ do

10 c← c̃; c(v)← c
′
v;

11 for ã∈ Ã do

12 Â← {a∈ Ã ∶ a(i′)= ã(i′) ∀i
′
≠ v}; a∗

← argmina∈Â C (Sz0
0 [c, a]);

13 S
z
0[c̃, ã]←

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S
z0
0 [c, a∗] if c̃(u)= 0

S
z0
0 [c, a∗]∪ {u} if c̃(u)≠ 0, u is a firm-node

{i′ ∈N
′ ∶ i

′
is a firm-node} otherwise.

;

14 for e1 = (u, i′)∈ {(u, i′) ∶ i′ ∈X
′
z} and e2 = (i′, u) do

15 E
z
0 ←E

z
0 ∪ {e1, e2}; Sz

′

0 ← S
z
0 ;

16 for c̃∈ C̃ do

17 c̃
u
← c̃; c̃

i
′

← c̃; c̃
u(u)←max{c̃(u)−w

′
i′,u,0}; c̃

i
′

(i′)←max{c̃(i′)−w
′
u,i′ ,0};

18 for ã∈ Ã do

19 S
z
0[c̃, ã]←

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S
z
′

0 [c̃, ã] if ã(i′)= ã(u)
S

z
′

0 [c̃u, ã] if ã(i′)< ã(u)
S

z
′

0 [c̃i
′

, ã] if ã(i′)> ã(u)
;

20 if z is a join node with children z0 and z1 then

21 for ã∈ Ã do

22 for i
′
∈X

′
z do

23 red(i′)←∑{j′∈Xz ∶ (j′,i′)∈E′ and ã(j′)<ã(i′)}w
′
j′,i′ ;

24 for c̃∈ C̃ do

25 (c̃z0 , c̃z1)← argmin{c̃z
′
0 ,c̃

z′1 ∶ c̃
z′0+c̃z

′
1=c̃+red}

C (Sz0
0 [c̃z

′
0 , ã]∪S

z1
0 [c̃z

′
1 , ã]);

26 S
z
0[c̃, ã]← S

z0
0 [c̃z0 , ã]∪S

z1
0 [c̃z1 , ã];

27 (S ′
0)∗ ← S

z̃
0[c, a], with c

∗(i′)= c
′
i′ ∀i

′
∈X

′
z̃ and a= argminã∈Ã C (S z̃

0[c∗, ã]);

mappings for other boundaries recursively: (i) if v replaces u, v is mapped to the same index and the mapping

remains unchanged otherwise; and (ii) if a node has two children, boundary and mapping remain unchanged.
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Finally, for any z ∈ T
′
, we define a matrix S

z
0 with rows indexed by the vectors c̃ and columns indexed by

the vectors ã. The size of the matrix is [(ϑmax+1) ⋅(ω′+2)]ω
′+1

= [ϑmax ⋅ω
′]O(ω′)

. Each entry is a set of nodes

in G
′
and matrices will be computed recursively bottom-up. The last matrix to be computed (corresponding

to the root node z̃) gives us the minimum cost seed set of G
′
, (S ′

0)∗. For any set S
z
0[c̃, ã], we define its cost

by C (Sz
0[c̃, ã])=∑i′∈Sz

0 [c̃,ã]wi, where wi is the cost of adding node i∈NF to the seed set.

Algorithm 2 assumes a nice tree decomposition T ′
of G

′
. It is based on Ben-Zwi et al. (2011), but adapted

to reflect the specificities of G
′
. For each leaf node z, each c̃, and each ã, we compute a “minimum cost seed

set” (Lines 2–5 in Algorithm 2) based on the subgraph G
z
and assuming that a node i

′
∈X

′
z (i) has threshold

c̃(i′); (ii) can activate only if all nodes j
′
∈X

′
z with ã(j ′) < ã(i′) are already active and if all j

′
∈X

′
z with

ã(j ′) = ã(i′) activate at the same time; and (iii) can only be part of the seed set if it is a firm-node. For

example, let z0 = {4, black,7}, c̃= (1,1,0), and ã= (2,1,0). Node 7 has a threshold of 0. It also has the lowest

value in the activation vector. Hence, Node 7 activates for any seed set. Node black has a threshold of 1.

However, there is an edge (7, black) with w
′
7,black = 1 and Node black has a lower value in the activation vector

than Node 4. Once Node 7 is active, Node black also activates. Thereafter, Node 4 can also activate. It follows

that the minimum cost seed set is ∅. Assume, instead, that c̃= (1,1,3), and ã= (2,1,0). Node 7 still has to

activate first. However, its threshold is 3, so it must be part of the seed set. With Node 7 in the seed set, the

remainder of the activation process is unchanged, so the minimum cost seed set is {7}. Finally, assume that

c̃= (1,1,3), and ã= (2,0,1). Node black has to activate first, but SC-nodes cannot be added to the seed set.

Hence, no such minimum cost seed set exists, and we adopt the convention of equating the minimum cost

seed set to the entire set of node-nodes. That is, S
z0
0 [(1,1,3), (2,0,1)]= {i′ ∈N

′ ∶ i
′
is a firm-node}.

Next, we recursively generate S
z
0 for all other nodes z ∈ T

′
. If z is a replace node (Lines 7–19 in Algorithm

2) with child z0, the subgraph G
z
of G

′
has exactly one more node than G

z0 , node u. Node u replaces

node v in the boundary, mapped to entry iv in both activation and threshold vectors. For each ã, define set

Â = {a ∈ {0, . . . , ω′ + 1}ω ∶ a(i′) = ã(i′) ∀i
′
≠ v} grouping all activation vectors that differ only in entry iv.

For example, if z0 = {4, black,7}, z = {green, black,7}, then u = green and v = 4. Moreover, if ã = (2,1,0),
then Â= {(0,1,0), (1,1,0), (2,1,0), (3,1,0)}. Then, for each c̃, construct intermediary sets S

z
0[c̃, ã] to remove

dependencies on v and introducing the node u (Lines 9–13 in Algorithm 2). We define them thus: (i) if

c̃(u) = 0, then S
z
0[c̃, ã] = S

z0
0 [c, a] where c(i′) = c̃(i′), i′ ≠ v, c(v) = c

′
v, and a = argmina∈Â C (Sz0

0 [c, a]), (ii) if

c̃(u)> 0 and u is a firm-node, then S
z
0[c̃, ã]= S

z0
0 [c, a]∪ {u} with a and c as before, (iii) if c̃(u)> 0 and u is

a SC-node, then S
z
0 = {i′ ∈N

′ ∶ i
′
is a firm-node}. In the previous example, if ã = (2,1,0) and c̃ = (0,1,3),

then c= (1,1,3) and S
z
0[(2,1,0), (0,1,3)] is the least costly of the following seed sets: {4,7} (corresponding

to a= (0,1,0)), {4,7} (corresponding to a= (1,1,0)), {7} (corresponding to a= (2,1,0)), {7} (corresponding

to a= (3,1,0)). As c̃(green)= 0, it follows that S
z
0[(2,1,0), (0,1,3)]= {7}.

Given c̃ and ã, S
z
0[c̃, ã] reflects the minimum cost seed set to activate the subgraph G

z
minus any edges

between node u and other nodes in the boundary. We iteratively refine the intermediary sets while adding

these edges to the subgraph (Lines 14–19 in Algorithm 2). Choose one such edge, (u, i′), and the corresponding

edge (i′, u) and copy the entries of matrix S
z
0 to a new matrix S

z
′

0 . For any ã and c̃, there are three options: (i)

if ã(u)< ã(i′), node u has to activate before node i
′
. Once u is active, it contributes w

′
i′,u towards activation of
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i
′
. Hence, update S

z
0[c̃, ã]= S

z
′

0 [c̃i
′

, ã], where c̃i
′

is identical to c̃, except in entry i
′
: c̃

i
′

(i′)=max{c̃(i′)−w
′
u,i′ ,0}.

(ii) if ã(u) > ã(i′), u has to activate after i
′
. Once i

′
is active, it contributes a benefit of w

′
i′,u towards

activation of u. Hence, update S
z
0[c̃, ã] = S

z
′

0 [c̃u, ã], where c̃
u
is identical to c̃, except in entry u: c̃

u(u) =
max{c̃(u)−w

′
u,i′ ,0}. (iii) if ã(u)= ã(i′), the nodes have to activate simultaneously, so they cannot influence

each other. Thus, S
z
0[c̃, ã]= S

z
′

0 [c̃, ã]. In the previous example, add the edges (green,7) and (7, green) with

w
′
green,7 =w

′
7,green = 1, and assume again that ã= (2,1,0) and c̃= (0,1,3). Then, ã(green)= 2> 0= ã(7) and

we consider c̃
green

= (0,1,3). The latter vector is unchanged because the threshold in the second entry is

already 0, so S
z
0[(0,1,3), (2,1,0)]= S

z
′

0 [(0,1,3), (2,1,0)]. If, however, ã= (0,1,2), then we need to consider

the threshold vector c̃
7
= (0,1,2) to account for the fact that 7 always activates after green. In this case,

S
z
0[(0,1,3), (0,1,2)]= S

z
′

0 [(0,1,2), (0,1,2)]. Revise S
z
′

0 = S
z
0 and repeat for all edges.

If z is a join node (Lines 20–26 in Algorithm 2) with children z0 and z1, G
z
= G

z0 ∪G
z1 (there are no

edges between nodes of the two subgraphs outside the boundary). Fix ã and c̃. A node i
′
∈X

′
z may benefit

from activations in both subgraphs G
z0 and G

z1 . For example, consider the join node with z = (red, black,9)
in Figure 13 and take ã = (2,0,1) (i.e., black has to activate first, followed by 9, then red) and c̃ = (1,0,2)
(i.e., c̃red = 1, c̃black = 0, c̃9 = 2). In this case, the minimum cost seed set for the subgraph in G

′
associated

with the left-hand subtree is {9}: black activates due to its threshold, red activates as 9 is active and then

1, 3 and 6 activate, followed by blue and finally 8. Following a similar reasoning, a minimum cost seed set

for the subgraph in G
′
associated to the right-hand subtree is {5}. However, while G

′
does activate if {5,9}

is active, this is not the smallest seed set, which is given by {9}. Thus, we construct S
z
0[c̃, ã] to account for

synergies. For each i
′
∈X

′
z, we define the following weight reduction which avoids double-counting: red(i′)=

∑{j′∈X ′
z ∶ (j′,i′)∈E′ and ã(j′)<ã(i′)}w

′
i′,j′ . We then take S

z
0[c̃, ã]= S

z0
0 [c̃z0 , ã]∪S

z1
0 [c̃z1 , ã], where

(c̃z0 , c̃z1)= arg min
f,g∈{0,...,k−1}ω

C (Sz0
0 [f, ã]∪S

z1
0 [g, ã])

s.t. f(i′)+ g(i′)= c̃(i′)+ red(i′) for all i
′
∈X

′
z.

For example, if X
′
z0
=X

′
z1
= {green, black,7}, ã= (2,1,0), and c̃= (0,1,3), then red(black)= 1, red(green)=

1, and red(7) = 0. It follows that S
z
0[(0,1,3), (2,1,0)] is based on the union of seed sets corresponding to

the threshold vectors (c̃z0 , c̃z1)= argmin{f,g ∶ f+g=(1,2,3)} C (Sz0
0 [f, (2,1,0)]∪S

z1
0 [g, (2,1,0)]).

Proceed until the root note z̃. To obtain (S ′
0)∗, take the threshold vector c

∗
corresponding to the actual

thresholds, that is c
∗(i′) = c

′
i′ ∀i

′
∈X

′
z̃. As the optimal seed set induces an activation sequence ã, (S ′

0)∗ =

S
z̃
0[c∗, a∗], with a

∗
= argminã S

z̃
0[c∗, ã]. □

Lemma 3. Assume an auxiliary graph G
′
as defined in Section 3.3 with treewidth tw(G′) = ω

′
. Algorithm

2 applied to G
′
runs in [ϑmax ⋅ω

′]O(ω′)(n+m) time.

Proof. The decomposition of G
′
into a minimal tree requires time exponential in ω

′
but linear time when

ω
′
is bounded (Bodlaender 1996) and, given an arbitrary tree decomposition, one can always construct a

a nice tree decomposition of the same width in linear time. (Ben-Zwi et al. 2011). Moreover, G
′
contains

n+m nodes, so a nice tree decomposition of width ω
′
exists with at most (ω′ + 1) ⋅ (n+m) nodes. Hence,

the number of entries of any S
z
0 is bounded by [ϑmaxω

′]O(ω′)
.
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Table 2 Means and standard deviations of key statistics of each data set employed.

Willems (2008) Random Modular

n
152.54 24.23 29.91
(178.38) (0.77) (0.38)

m
157.33 27.54 54.57
(337.27) (10.27) (19.32)

k
5.34 5.0 5.0
(1.98) (0.0) (0.0)

ω
′ 8.96 9.62 14.85

(9.02) (2.72) (4.25)

The number of computations for each entry of a leaf node is 2
ω
′+1

(Lines 2–5 in Algorithm 2). The number

of computations for each entry of a replace node is determined by comparing all ω
′ + 2 activation options

of v (Lines 8–13 in Algorithm 2) and iterating through each of at most ω
′
edges that u shares with other

nodes in the boundary (Lines 14–19 in Algorithm 2). The number of computations for each entry of a join

node is determined by comparing combinations of thresholds of the boundaries, which is upper-bounded by

a constant factor of ϑ
ω
′+1

max . It follows that the maximum number of computations required for Algorithm 2 is

in [ϑmaxω
′]O(ω′) (n+m). □

We can now state and proof the main result regarding the DP algorithm:

Theorem 3. Let G be a hypergraph as defined in Section 3. Assume that tw(G)= ω. Then, MIN -SCTM

can be solved exactly via a dynamic program in [ϑmax ⋅ω]O(ω)(n+m) time.

Proof of Theorem 3. From Lemma 2, we know that Algorithm 2 provides a minimum cost seed set for

auxiliary graph G
′
, assuming the LTM activation process. Meanwhile, Line 13 of the algorithm ensures that

the seed set contains only nodes i∈NF and the assumption on how seed set costs are computed ensures that

these nodes are weighted with wi. It follows from Proposition 1 that the seed set identified is also a solution

to MIN -SCTM . Combined with Lemma 3, the fact that constructing G
′
from G requires a constant factor

of n+m operations, and Proposition 3 (ω
′
≤ ω+ 1), the result follows. □

From this, we can directly derive a corollary corresponding to Corollary 2:

Corollary 3. There is a dynamic programming-based FPT algorithm for solving MIN -SCTM with

parameter ω and ϑmax, running in time at most 2
O(ω log2(ω))

ϑ
O(ω)
max (n+m).

Appendix E: Description of data and measures for numerical experiments

E.1. Description of supply chain network data sets

We generate three datasets of supply chain networks, with key statistics summarized in Table 2. We discuss

the generation processes below. In all cases, we let ci = rji = 1, θj = kj , and wi ∼N(1,0.1) for all i ∈NF , j ∈

NSC . Standardization allows us to remove (predictable) effects of costs and benefits while focusing on the

effects of graph structures. At the same time, perturbing wi enables us to obtain unique solutions even in

networks with repetitive structures.
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Willems (2008) networks. The original data set represents 38 acyclic networks of companies in 22

industries. While the data contains information about direct connections between nodes, it does not specify

which sets of nodes belong to which supply chains (i.e., we do not have access to the hyperedges of G). To

circumvent this difficulty, we randomly generate the hyperedges of the graph using the observable edges in

the following way: We consider all possible paths between nodes in the first and the last tier, that is, nodes

with no incoming, respectively, no outgoing edges. We then assume for each path with probability 0.05, 0.25,

or 0.5 that it is a supply chain and remove nodes not part of any supply chain. We repeat this generation

process ten times for each network-probability combination and remove networks with less than 15 remaining

nodes, as well as those for which we cannot find a seed set guaranteed to be within 5% of the minimum cost

within two hours using Gurobi. This results in a total of 657 supply chain networks.

Random networks. We fix five tiers and the following configurations of nodes per tier: (5,5,5,5,5),
(2,6,9,6,2), and (2,2,4,7,10), where the value at index l represents the number of nodes at tier l. We also

fix a number of supply chains m∈ {20,40}. Each node and supply chain is randomly assigned a value drawn

from the uniform distribution on (0,1). Then, at each tier, we identify the h ∈ {1,2, . . . ,6} nodes whose

assigned value is closest to that of the supply chain. Of those nodes, we randomly choose one to be part

of the supply chain. We repeat the generation process if a supply chain with the same nodes already exists

and remove nodes that belong to no supply chain after all have been generated. The instance is discarded if

more than 10% of the generated nodes have been removed. We repeat the entire process 20 times for each

parameter combination and discard networks for which we cannot find a seed set guaranteed to be within

5% of the minimum cost within two hours using Gurobi. This results in 525 supply chain networks.

Random modular networks. We fix the node-tier structure (3,3,3,3,3) and generate m ∈

{5,10,15,20,25,30} distinct supply chains by randomly selecting one node of each tier to be part of the

supply chain. We copy the resulting network and obtain two disconnected (but identical) hypergraphs. We

then generate m “connecting” supply chains, that is, supply chains that contain one node of each tier from

either of the two originally disconnected hypergraphs. We keep track of each supply chain network generated

in this process (one for each additional connecting supply chain). We repeat this process four times for each

initial parameter combination. Nodes that do not belong to any supply chains are removed; if more than

10% of the generated nodes have been removed, the instance is discarded. This results in 434 supply chain

networks. Based on how we generate the networks, they have comparatively high treewidth, so Gurobi is

frequently unable to identify a useful lower bound. Hence, we take the solutions obtained by Gurobi after

three hours of run time and experiment with different improvement heuristics. As we cannot identify a single

instance in which an improvement is found, we assume the solutions found using Gurobi are sufficiently close

to optimal. Note that these networks are designed to obtain varying degrees of modularity (see Appendix

E.3) while keeping other structural measures largely constant.

E.2. The relationship between Jaccard clustering and IP (5)

We make explicit the connection between Jaccard clustering and the integer program given in (5). Consider

a firm-node i in G
′
and let k be a firm-node sharing a supply chain j ∈NSC with i. As i and j (resp. j and k)
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are neighbors in G
′
, i and j (resp. j and k) necessarily appear in the same bag in the tree decomposition of

G
′
. If i, j and j, k appear in different bags, then j must appear in all intermediate bags, by definition of a tree

decomposition. Thus, in a setting where i and k share many supply chains, i.e., the numerator of NS(i, k)
is high, the minimal tree decomposition will likely place i and k, together with all shared supply chains j,

in the same bag to minimize treewidth. If i, j, k are all in the same bag in the tree decomposition of G
′
, then

constraint (4d) now applies to the three nodes, i.e., we need ℓij + ℓjk + ℓki ≤ 2. For this constraint to hold, at

least one of ℓji, ℓjk, ℓki needs to be equal to zero. If this is either ℓji or ℓjk, then constraints (5a) and (5b)

become harder to meet, unless we set si or sk to 1, that is, we add i or k to the seed set. This phenomenon is

further exacerbated in the setting where the denominator of NS(i, k) is low. In this case, i and k belong to

few supply chains in total, which makes constraint (5b) harder to satisfy as the sum over all supply chains

that i (resp. k) belongs to only contains few terms. This, in turn, also pushes the seed set to be larger.

E.3. Description of network measures and parameters

We consider the following previously defined measures: the number of nodes n, the number of supply chains

m, the maximum number of nodes per supply chain k, the treewidth of the auxiliary graph ω
′
, and the

clustering metric J . In addition, we also define the following measures:

Alternative clustering metrics. First, projection clustering. We consider the (non-bipartite) projection

ofG
′
onto firm-nodes and use the traditional definition of clustering for graphs. More specifically, we construct

a graph G
′′
from the n firm-nodes, with an edge between two firm-nodes if they have at least one supply

chain in common. The standard clustering coefficient is defined, for example, in Latapy et al. (2008), and we

take the average over all nodes of the projection. Second, projection clustering (weighted) follows the same

principles, but each edge in G
′′
is weighted by the number of supply chains the nodes of the edge shave

in common. Third, hourglass clustering. On non-bipartite graphs, the clustering coefficient of a node can

equivalently be defined as the number of triangles containing the node divided by the number of triplets

containing the node with at least two edges. To extend this idea to bipartite graphs, one can divide the

number of fully connected quadruplets by the number of quadruplets with at least three links (Latapy et al.

2008). We employ this extension and consider both the average ratio across firm-nodes and the total ratio

throughout the graph. Finally, repetition of partners. This measures how many firm-nodes, on average, a

given firm-node shares supply chains with.

Modularity. A commonly used definition is provided by Newman (2006): given a partition of n nodes of

a graph H into z groups P = (p1, . . . , pz), the modularity of H is Q=
1

2η
∑ij (Aij −

ηiηj

2η
) δ(pi, pj), where η is

the sum of all edge weights in the graph, ηi is the sum of the weights of the edges attached to node i, A is

the (weighted) adjacency matrix of H, and δ(pi, pj) is equal to 1 if pi = pj (that is, i and j are in the same

community) and 0 otherwise. This definition has no direct extension for hypergraphs and does not apply to

bipartite graphs (such as our auxiliary graph). Hence, we use the weighted projection of G
′
onto firm-nodes,

denoted by G
′′
, as in the case of projection clustering (weighted) to compute modularity. The graph G

′′
is

non-bipartite but keeps most of the relevant information about linkages between nodes. We then use the

commonly applied Clauset-Newman-Moore greedy modularity maximization algorithm to find the partition

leading to the largest Q (Clauset et al. 2004).
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(b) Relative rank of J ’s coefficient

Figure 14 Elastic net regression on the Willems (2008) networks with an L1-ratio of 0.8 and varying penalty

coefficient. The black (resp. gray) lines indicate the value of the left-hand (resp. right-hand) axes.

Other relevant measures from the supply chain and network literature. For our predictive models,

we identify accessibility and interconnectedness as important measures for supply chain networks (Bellamy

et al. 2014). Accessibility refers to the information centrality of nodes, that is, the length of paths ending at a

given node. Interconnectedness, meanwhile, refers to the number of shared relationships between connections

of a node. As the measures directly relate to diffusion and are defined for undirected graphs, we seek to apply

them to the auxiliary graph G
′
. However, they are not well-defined for bipartite graphs, so we consider them

on the (weighted) projection G
′′
.

Finally, we compute all measures from Perera et al. (2017, Table 4) on a modified version of G, where

directed edges connect nodes in subsequent tiers sharing a supply chain. The authors summarize key supply

chain network measures from the empirical literature. We omit clustering and modularity, which are already

specified. As we deal with a directed graph, we compute assortativity based on all in/out degree combinations.

This leads to eleven measures, to which we add the average number of supply chains of a firm.

E.4. Predictive models of the seed set size

We first use a random forest regression to predict the inverse logit function of the percentage of seed nodes

in the optimal solution on the measures introduced in Appendix E.3. In particular, we select 80% of the

instances of a dataset for training and choose hyperparameters by applying 5-fold cross-validation on 100

randomly chosen combinations. We then evaluate the best model identified by computing the root mean

square errors (RMSE) for the remaining 20% of instances between the actual and predicted percentage of

seed nodes. RMSEs are 0.021, 0.024, and 0.016 for the three datasets. Unlike the case of linear regression,

the importance of each regressor in a random forest can only be computed indirectly by calculating and

weighing the Shapley values of the different decision trees for a subset of data. We use the Python package

shap for this task (Lundberg and Lee 2017), finding that J has the highest importance among clustering

metrics for all networks and either the highest or second-highest importance among all regressors.

To gain more insight into the importance of Jaccard clustering compared to other variables, we introduce

an elastic net regression on the same variables, i.e., a regression combining L1-norm (“Lasso”) and L2-norm

(“Ridge”) penalty terms, and vary the regression’s regularization penalty coefficient on a logarithmic scale.

Figure 14 depicts the results for the Willems (2008) networks. The results for other datasets are omitted
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for brevity but show the same patterns. In particular, any model with good explanatory power (before the

RMSE increases steeply) puts a high weight on J . As we increase the penalty, i.e., requiring the model to have

fewer explanatory variables, J becomes more important. In Figure 14a, we consider the coefficient obtained

for each variable during the regression and plot in black the coefficient corresponding to J divided by the

sum of all (absolute) coefficients. As can be seen, this ratio increases to a third. In Figure 14b, we observe

that the relative rank (in black) of the absolute value of the coefficient of J increases to 1. The two curves

then drop suddenly, but only when we have reached a penalty value that generates a highly biased model

(as seen from the “explosion” of the RMSE in gray). Our results are consistent for all relative weights of L1

and L2, as long as the L1 term is high enough to ensure convergence, i.e., in the range L1

L1+L2
∈ [0.5,1.0].
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