

City, University of London Institutional Repository

Citation: Gias, A. (2022). Model-based Resource Management for Fine-grained Services.

ACM SIGMETRICS Performance Evaluation Review, 50(3), pp. 28-31. doi:
10.1145/3579342.3579350

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/31221/

Link to published version: https://doi.org/10.1145/3579342.3579350

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Model-based Resource Management for Fine-grained
Services

Alim Ul Gias, University of Westminster

Homepage: https://sites.google.com/view/alimulgias/

Thesis: Model-based Resource Management for Fine-grained
Services

Advisor: Giuliano Casale, Imperial College London

Brief Biography: Alim Ul Gias is currently a Research
Associate at the Centre for Parallel Computing (CPC), Uni-
versity of Westminster. He completed his PhD from Impe-
rial College London in 2022. Before starting his PhD, Alim
was a lecturer at Institute of Information Technology (IIT),
University of Dhaka (DU). He completed his bachelor’s and
master’s program from the same institute. His current re-
search focuses on different Quality of Service (QoS) aspects
of cloud-native applications e.g., microservices. In particu-
lar, he aims to address the performance and resource man-
agement challenges concenrining the microservices architec-
ture.

Research Summary: The emergence of DevOps has chan-
ged the way modern distributed software systems are devel-
oped. Architectures decomposed in fine-grained services,
such as microservices or function-as-a-service (FaaS), are
now widespread across many organizations. From a resource
management perspective, although the systems built with
such architectures have many benefits, there are still re-
search challenges that need further attention. In this study,
we have focused on three such challenges, each concerning a
specific system resource: compute, memory, or storage.

Firstly, we focus on scaling the capacity of microservices
at runtime. Here, the challenge is to design an autoscaler
that can decide between vertical and horizontal scaling op-
tions to distribute the CPU capacity. Secondly, we focus
on estimating the required capacity of an on-premises FaaS
platform such that the service level agreements (SLAs) for
function response times are satisfied. The challenge here is
to address the cold start dilemma, i.e., that a cold start de-
lays a function response but reduces the memory consump-
tion. Thus, we must find a limit of cold starts such that the
memory-consumption remains in-check while satisfying the
SLAs. Finally, we focus on the storage management for dis-
tributed tracing targeted at microservices. The volume of
such traces generated in a data center can be in the scale of
tens of terabytes per day, but only a small fraction of these
traces is useful for troubleshooting. The objective then is to
sample only the useful traces.

The key to addressing all these challenges is first, model-

Copyright is held by author/owner(s).

ing the dynamics concerning the resources and subsequently,
leveraging the model in a resource controller. To address the
first challenge, we have developed an autoscaler ATOM that
leverages layered queueing network (LQN) models to take its
scaling decisions. For the second challenge, we have devel-
oped COCOA, a cold start aware capacity planner. COCOA
utilizes M/M/k setup and LQN models to assess the cold
start scenario and estimate the required capacity. Finally,
addressing the third challenge, we propose SampleHST, a
trace sampler that works under a storage budget constraint.
SampleHST relies on either bag of words or graph-based
models to represent a trace and groups similar traces using
online clustering to perform sampling.

We discuss the aforementioned contributions briefly in the
following sections. We also discuss how these contributions
amalgamate from a resource management perspective.

Auto-Scaling the Compute Capacity
In a microservice architecture, each of the services is light-

weight in nature allowing a fine-grained resource allocation.
For an instance, instead of allocating a single CPU core per
service, half a CPU core can be allocated. Controlling capac-
ity at this granularity reduces resource wastage compared to
traditional virtualization mechanisms. However, such com-
pute capacity allocation poses a dilemma when there is an
increase in the current workload of the system. In such a
case, the CPU capacity needs to be scaled automatically.
Typically there are two possible choices - increase the CPU
capacity of the container, which is referred as vertical scal-
ing, or add another replica of the service, which is referred
as horizontal scaling. This problem is more relevant when
the services are inter-dependent, e.g., the microservices ar-
chitecture, as the service communication pattern also have
an effect over the scaling decision. This is similar to the
well studied problem in queueing theory - one fast CPU
versus several slow CPUs [4]. This problem is applicable for
microservices as small fractions of CPU capacity can be al-
located and the capacity can be changed both horizontally
and vertically.

The research objective, in this case, is to develop a method
that will scale the CPU capacity of microservices at runtime.
To be more specific, the scaler should be able to assess dif-
ferent scaling options and suggest the optimal one. This can
be further divided into two sub-goals.

• Modeling Microservices: The first goal will be to model
a microservices application using LQN [2], which is
already shown to be effective to model modern dis-
tributed systems [5]. The model should incorporate

the system dynamics of the application e.g., workload,
shared resources, multiple application layers and pro-
vide different performance metrics, such as throughput
and utilization, as the output.

• Optimal Scaling: The second goal is to provide optimal
scaling decisions for microservices. In particular, there
should be a controller that, using the LQN model, can
assess different combinations of vertical and horizon-
tal scaling configuration. Based on this assessment, it
should select an optimal configuration for the current
workload and eventually apply that on the system.

To address our first research objective, we have developed
ATOM, a model-driven autoscaler tailored for microservices.
We first demonstrate that if a service can be both verti-
cally and horizontally scaled, the workload characteristics
need to be taken into account to decide which one of the
two scaling actions is preferable. ATOM incorporates this
by leveraging layered queueing network models. It instan-
tiates and solves, at run-time, such models of the appli-
cation for different scaling configurations. Computational
optimization is used to dynamically control the number of
replicas for each microservice and its associated container
CPU share, overall achieving a fine-grained control of the
application capacity at run-time. Experimental results indi-
cate that for heavy workloads ATOM offers around 30-37%
higher throughput than baseline model-agnostic controllers
based on simple static rules. We also find that model-driven
reasoning reduces the number of actions needed to scale the
system as it reduces the number of bottleneck shifts that we
observe with model-agnostic controllers.

Capacity Planning considering Cold Starts
The functions in the FaaS platforms are usually imple-

mented as lightweight services. As a result, the services
have a quick start-up time. This opens-up the possibility
of only loading a function when there is a continuous de-
mand rather than always keeping it loaded in the memory.
Removing a function from the memory reduces the memory
consumption but this adds a latency delay for the upcoming
service request. This is known as the cold start problem [7].
Even though the functions are light-weight and have a low
start-up overhead, there can be cases when these cold start
delays affect the function response time significantly. This
poses a dilemma regarding installation of an on-premises
FaaS platform. If a function is kept in the memory indef-
initely, thus reducing cold starts, it increases the required
memory capacity. On the other hand, allowing cold starts
will affect the service-level-agreements (SLAs) for response
time. To solve this problem, the dynamics among the SLAs,
cold starts and memory consumption need to be assessed.
Striking a balance among these factors will ultimately reduce
the required memory capacity while satisfying the SLAs.

In this context, our research objective is to develop a ca-
pacity planning method that considers the trade-off between
latency delay and conservation of primary memory due to
cold starts. The method should identify a limit of cold starts
such that the SLAs are satisfied, while reasonably limiting
the memory consumption. This could be divided into the
following steps.

• Modeling Cold Starts: The first challenge is to model
the cold start scenario in a Function-as-a-Service (FaaS)
platform. To be particular, the model should be able

to estimate the response time considering a varying
degree of function cold start delays and service times.

• Capacity Planning: Once we have a model of the cold
start scenario, it needs to incorporated in a capac-
ity planner. For a FaaS-based system to be deployed,
with given function cold start delays and service times,
the planner should provide a deployment configuration
that includes the required CPU and memory capacity
that satisfy the SLAs for response time.

To address our second research objective, we propose a
novel approach, COCOA, to size an on-premises FaaS plat-
form. We have initially investigated the similarity of this
problem with the hit rate improvement problem in TTL
caches and concluded that solutions for TTL cache, although
potentially applicable, lead to over-provisioning in FaaS.
COCOA addresses this over-provisioning problem. It uses
a queueing-based approach, leveraging M/M/k setup class
of models [3] and LQN, to assess the effect of cold starts on
the function response times and sets the function idle peri-
ods to values such that the cold starts remain tolerable from
the perspective of service level agreements (SLAs). Fur-
thermore, it considers different memory consumption values
depending on whether the function is idle or in execution.
Based on this assessment, COCOA estimates the required
CPU and memory capacity to serve the expected workload.
Using an event-driven FaaS simulator, FaasSim, we have de-
veloped, we show that COCOA can reduce over-provisioning
by over 70% in some workloads, while satisfying the SLAs
for response time.

Trace Sampling with Storage Constraint
In a microservice ecosystem, the services are typically

deployed and managed independently. These services are
not necessarily deployed in a single server. Furthermore, as
all these services can be scaled individually, they can have
multiple replicas spanning across multiple servers, making a
highly decentralized architecture. This independent deploy-
ing and scaling of the microservices, spanning across multi-
ple servers, creates a problem from the perspective of main-
tenance. In particular, keeping the logs of a request work-
flow becomes difficult. Distributed tracing is an approach
developed primarily to aid in this scenario. It profiles the
user requests spanning across multiple microservices. For
a data center hosting microservices in the scale of tens of
thousands, the volume of traces generated could easily be in
the scale of terabytes per day. To store this traces for future
troubleshooting requires a large storage capacity. However,
only a small fraction of these traces are helpful for such
purposes. This opens up the possibility of reducing storage
requirement by saving only the interesting traces in terms
of, for example, identifying QoS violations. The challenge is
to identify those interesting traces and sample according to
a storage budget.

The research objective, in this context, is focused on sav-
ing distributed traces with a storage budget. Here, we aim
to develop a trace sampler, with a limitation on the per-
centage of traces it can sample, that primarily focuses to
save the interesting or anomalous traces. This involves two
major challenges.

• Anomaly Detection from Trace Stream: The first chal-
lenge is to differentiate the interesting or anomalous
traces from the normal ones. This will initially require

Queueing Model

(ATOM &

COCOA)
 1. Track Network Traffic (ATOM)

 2. Produce Traces (SampleHST)

 1. Assess Scaling Options (ATOM)

 2. Assess Cold Starts (COCOA)

 3. Characterize Traces (SampleHST)

 1. Generate Scaling Config (ATOM)

 2. Suggest Required Capacity (COCOA)

 3. Make Sampling Decisions (SampleHST)Service List & Attributes

(ATOM & COCOA)

 1. Scale Services (ATOM)

 2. Deploy Services (COCOA)

 3. Save/Discard Traces (SampleHST)

Queueing Model

(ATOM &

COCOA)
 1. Track Network Traffic (ATOM)

 2. Produce Traces (SampleHST)

 1. Assess Scaling Options (ATOM)

 2. Assess Cold Starts (COCOA)

 3. Characterize Traces (SampleHST)

 1. Generate Scaling Config (ATOM)

 2. Suggest Required Capacity (COCOA)

 3. Make Sampling Decisions (SampleHST)Service List & Attributes

(ATOM & COCOA)

 1. Scale Services (ATOM)

 2. Deploy Services (COCOA)

 3. Save/Discard Traces (SampleHST)

Trace Attributes

(SampleHST)

ServicesServices ServersServersServers

1. Compute (ATOM)

2. Memory (COCOA)

3. Storage (SampleHST)

Analyze

Knowledge-base

Monitor Plan

Execute

Resources

Figure 1: A bird’s eye view of the research contributions from a resource management perspective. The contributions i.e.,
ATOM, COCOA and SampleHST are presented as a sequence of different management tasks such as Monitor, Analyze, Plan
and Execute. The focus of each contribution is on one of the following resources: Compute, Memory and Storage. The tasks
leverage different artefacts such as queueing models, service attributes, trace attributes, etc. to achieve their objective.

a trace model and after that a classifier that will detect
the anomalies in an unsupervised manner.

• Trace Sampler: The second challenge is to transform
this anomaly detection process to a trace sampler. This
requires to characterize the traces such the the anoma-
lous and normal traces form distinct groups and de-
pending on the budget, the traces will be sampled.

To address our final research objective, we propose Sam-
pleHST, a novel trace sampler for distributed tracing with
a storage budget constraint. SampleHST is tailored to work
on a stream of trace data and taking the sampling decision
in an unsupervised manner. Depending on the definition of
interesting traces, SampleHST uses either a Bag of Words
(BoW) or a Graph model to represent a trace. This rep-
resentation is then passed to a forest of Half Space Trees
(HSTs) [6] for characterizing the trace with a mass score,
which indicates the observed frequency of traces of similar
types. These mass scores are used to cluster the traces us-
ing an online method based on a variant of the mean shift
algorithm [1]. Finally, the association of each trace with a
cluster, where certain clusters are prioritized over the others,
is used to take the sampling decision. We have compared the
performance of SampleHST with recently suggested meth-
ods using data reported in literature and produced in a data
center. Depending on the properties of the experiment, we
set the evaluation criteria using either precision, recall or
F1-Score. The experiments demonstrate that SampleHST

produces 1.2× to 19× better results than the recent meth-
ods.

Resource Managment Perspective
Although these contributions address a wide range of re-

search challenges, in principle, they can be considered as
a sequence of resource management tasks, such as moni-
tor, analyze, plan and execute, which work on a shared
knowledge-base. Most of these tasks are required for all
the contributions i.e., ATOM, COCOA and SampleHST.
For example, all of them need to analyze a wide range of
data by leveraging artefacts like a queueing model or the
trace structure. In the case of ATOM and COCOA, the
analysis involves assessing the scaling scenarios and the ef-
fect of cold starts. In the case of SampleHST, the analysis
phase focuses on trace characterization such that the traces
indicate anomalous system behaviors. We present the the-
sis contributions from this resource management perspective
in Fig. 1. Note that, all the tasks are not associated with
all the contributions. Here, COCOA is not associated with
the monitor task as it focuses on capacity planning, rather
than runtime management, which does not require an active
monitoring component.

Representative Papers:

[1] ATOM: Model-Driven Autoscaling for Microservices
(Accepted in ICDCS 2019) with G. Casale and M.
Woodside

[2] COCOA: Cold Start Aware Capacity Planning for Function-
as-a-Service Platforms (Accepted in MASCOTS 2020)
with G. Casale

[3] SampleHST: Efficient On-the-Fly Selection of Distributed
Traces (Submitted in NOMS 2023) with Y. Gao, M.
Sheldon, J. A. Perusqúıa, O. O’Brien and G. Casale

1. REFERENCES
[1] Baruah, R. D., and Angelov, P. Evolving local

means method for clustering of streaming data. In
Proceedings of the International Conference on Fuzzy
Systems (2012), IEEE, pp. 1–8.

[2] Franks, G., Al-Omari, T., Woodside, M., Das, O.,
and Derisavi, S. Enhanced Modeling and Solution of
Layered Queueing Networks. IEEE Transactions on
Software Engineering 35, 2 (2008), 148–161.

[3] Gandhi, A., Doroudi, S., Harchol-Balter, M.,
and Scheller-Wolf, A. Exact Analysis of the
M/M/k/setup Class of Markov Chains via Recursive
Renewal Reward. In Proceedings of the SIGMETRICS
(2013), ACM, pp. 153–166.

[4] Harchol-Balter, M. Performance Modeling and
Design of Computer Systems: Queueing Theory in
Action. Cambridge Univ. Press, 2013.

[5] Shoaib, Y., and Das, O. Web application
performance modeling using layered queueing networks.
Electronic Notes in Theoretical Computer Science 275
(2011), 123–142.

[6] Ting, K. M., Zhou, G.-T., Liu, F. T., and Tan,
S. C. Mass estimation. Machine Learning 90, 1 (2013),
127–160.

[7] Wang, L., Li, M., Zhang, Y., Ristenpart, T., and
Swift, M. Peeking Behind the Curtains of Serverless
Platforms. In Proceedings of the USENIX Annual
Technical Conference (ATC) (2018), USENIX,
pp. 133–146.

	References

