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Abstract: The Internet of Things is perhaps a concept that the world cannot be imagined without
today, having become intertwined in our everyday lives in the domestic, corporate and industrial
spheres. However, irrespective of the convenience, ease and connectivity provided by the Internet of
Things, the security issues and attacks faced by this technological framework are equally alarming
and undeniable. In order to address these various security issues, researchers race against evolving
technology, trends and attacker expertise. Though much work has been carried out on network
security to date, it is still seen to be lagging in the field of Internet of Things networks. This study
surveys the latest trends used in security measures for threat detection, primarily focusing on the
machine learning and deep learning techniques applied to Internet of Things datasets. It aims
to provide an overview of the IoT datasets available today, trends in machine learning and deep
learning usage, and the efficiencies of these algorithms on a variety of relevant datasets. The results
of this comprehensive survey can serve as a guide and resource for identifying the various datasets,
experiments carried out and future research directions in this field.

Keywords: IoT; datasets; machine learning; cyberattack; intrusion detection; threat detection

1. Introduction

Technology is a rapidly evolving paradigm that is especially difficult to keep up
with in the field of computing. This can be mainly accredited to the advancements made
in semiconductor chips, which are continuously improved and exploited for research
purposes. Some of the most recent buzz terms that can be commonly heard and are of
relevance to this paper are machine learning (ML), federated learning (FL), blockchain and
Internet of Things (IoT). These technologies can be further combined with one another to
improve their individual outputs or efficiency and to generate an alternate byproduct or
result. For example, FL can be used to ensure or enhance data privacy in the IoT and ML
can be used to make automated predictions in IoT devices. On the other hand, blockchain
can be used to improve trust and transparency in data transactions in IoT networks.

IoT, which is the focus of this paper, is a term coined by Kevin Ashton in 1999 [1] but
only gained traction in 2013. Since 2017, IoT has grown tremendously and will continue
to do so at an even greater rate according to market and industry surveys [2-6]. IoT
has penetrated every sector of life, encompassing transportation, health, communication,
agriculture, homes, etc., with even traditional devices having become ‘smart’, e.g., smart
locks, smart cars, smart fridges, smart lights, smart speakers and smart watches. According
to [7], as of 2020, there was an equal number of IoT and non-IoT devices in the world,
and the amount of the former is estimated to triple by 2025. While making life easier, this
explosive growth has introduced many related concerns, such as the need for more speed,
storage, capabilities, efficiency, etc., which researchers are continually trying to address
and improve.
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One of the biggest growing concerns, however, is the security and privacy of users,
data, devices and the IoT network, which are often overlooked by both manufacturers and
consumers. Implementing failsafe systems can be a painstaking process, yet the failure
to do so can lead to serious repercussions for both individual users and companies. Cy-
bercrimes are very common and already impact existing home IoT networks. A recent
incident reported by the British Broadcasting Corporation (BBC), for instance, revealed how
a family became suspects to a cybercrime that involved child abuse, to the detriment of
their domestic life, income and mental health, the crime most likely having occurred via the
hacking of their Wireless Fidelity (Wi-Fi) router, whose default password settings had not
been changed [8]. Most cyberattacks commonly result from exploiting security vulnerabili-
ties, such as weak/default password usage, poor update management, insecure interfaces,
lack of user and data privacy, poor user awareness, lack of vendor standardization and
many more.

Numerous steps must be continually taken to ensure that cybersecurity is maintained.
These include the raising of user awareness/cyber education, security policy implemen-
tations, security software and tools (such as antivirus, firewalls, etc.) and, more recently,
automated measures using machine and deep learning (DL) techniques. Exhaustive re-
search has been carried out for conventional network and data security, but such work is
severely lacking in emerging fields such as IoT. For example, numerous datasets have been
generated and created by various studies and researchers on general-purpose networks,
the earliest of which—known as the DARPA (Defense Advanced Research Projects Agency)
dataset—dates back to 1998 [9]. Other datasets, found in [10-12], have been used to design
intrusion detection and prevention systems (IDSs and IPSs, respectively). With respect
to those widely used to train ML algorithms for IoT networks, older datasets, such as
Knowledge Discovery in Databases (KDD) and Network Security Laboratory Knowledge
Discovery in Databases (NSL-KDD), are believed to have shortcomings, e.g., there are
a large number of duplicate records that could skew the machine training and learning
process in the KDD dataset [13], and NSL-KDD, though an improvement over KDD, does
not include more recent attack classes and IoT network properties. UNSW-NB15 [14]
(by the University of New South Wales) and CIC-IDS2017 and CIC-IDS2018 [15] (by the
Canadian Institute for Cybersecurity) are the more recent datasets used for IoT ML train-
ing, but as these datasets are not primarily concerned with IoT networks attack detection
becomes limited.

IoT-specific datasets for the purpose of anomaly and attack detection have only been
created and studied by researchers in the last few years, with significant results emerging
from 2018. The objectives of this paper are primarily to:

e  Highlight IoT-specific datasets: identify and emphasize datasets specifically designed
or curated for IoT networks and applications and mainly for attack detection. These
datasets contain information from IoT devices and sensors captured during various
types of cyberattacks that are crucial for algorithm development and the evaluation of
attack detection in the IoT domain.

e Compare IoT-specific datasets: compare different IoT datasets tailored for attack
detection, considering their characteristics, attack scenarios and the diversity of attack
types represented. Typical datasets may include simulated attacks, real-world attack
traces and data from controlled IoT testbeds.

e  Explore the ML and DL techniques carried out on them: investigate the application of
ML and DL techniques to IoT-specific attack detection datasets, which may involve
anomaly detection, behavior analysis, pattern recognition and classification methods
to identify and mitigate various attacks targeting IoT systems.

e  Observe any other future trends of study: examine emerging trends in IoT attack
detection research and datasets.

e  Outline research gaps for future studies or improvements: identify research gaps
and propose improvements related to IoT attack detection datasets and methodolo-
gies. Potential areas of focus may include more realistic attack simulations, diverse
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data sources, addressing class imbalance in attack data and investigating the use of
federated learning for distributed attack detection in IoT environments.

2. Background Study
IoT Architecture and Threat Mapping

Before delving into the solutions to IoT threats, attacks and problem:s, it is important
to look at the various layers of the IoT architecture and the threats that are peculiar to
them. This can be a daunting task as there are numerous ways that architectures have been
classified according to layers [16,17] and domains [18-20], while some classifications are
specific to the industries in which such architectures are used [21-23], as shown in Figure 1.

‘ IoT Architecture I

|
I 1 1

[ Layer-Specific } [Domain-Speciﬁc] [Industry-Speciﬁc}

/ Three-Layer \ / Cloud IoT \ SmartThings

/ Four-Layer \ ( IIoT Cisco
—" Five-Layer \ —( Smart Cities 1 Azure
— Six-Layer | gde?,tl’élei m AWS
%y Seven-Layer \ —/ etc. — etc.
—/ Eight-Layer \

Figure 1. IoT architecture classifications.

Layer-specific architectures can feature between three and eight layers. In fact, there
could be multiple definitions and design specifications for an n-layer architecture. For
instance, [24-26] have all defined five-layer architectures differently; the differences concern
functionalities, the problems tackled, the technology considered or the methodology used.
Similarly, three-layer or four-layer architectures also have multiple versions. These three
architectures—of between three and five layers—are also found to be the most commonly
classified and referenced model types [21,27-29]. Domain-specific architectures focus on
a particular sector, e.g., cloud [18], industrial IoT (IIoT) [19], mobile devices [30], smart
cities [20], etc. Industry-specific architectures are those customized by companies or
businesses to suit their needs and services, e.g., the SmartThings architecture [31], the Cisco
reference model [32], the Azure IoT reference architecture [33], the AWS (Amazon Web
Services) IoT architecture [34], Google IoT Cloud Core [35], etc.

It can be seen from these architectures that they all differ in their outlooks, designs,
functionalities and limitations. Furthermore, as IoT networks are highly distributed (span-
ning numerous networks and large coverage areas) and heterogenous (comprising different
components and technologies), often operating in real time with cloud or big data, they
need to be scalable to enable the growth of the networks and the integration of different
components without affecting the quality of service, while also complying with the required
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set standards and, at the same time, ensuring the privacy and security of data and users
involved in the communication process. All these factors make it difficult for researchers to
come up with a single standardized architecture that encompasses all the requirements and
functionalities that can be implemented without hampering the network’s performance.
Despite all their differences, however, most architectures have the basic elements of an IoT
system, which are: the things that constitute the physical devices of the network, such as
the IoT sensors; the network infrastructure, such as the routers; the cloud infrastructure
responsible for data management, storage and computation; and the application or soft-
ware end that provides the human—computer interaction. These are usually categorized as
a physical/perception/sensing layer, a network/transport layer, a middleware layer and
an application layer, respectively.

Previous studies have largely tried to map threats to these three (physical, network
and application) or four (physical, network, middleware and application) layers. For
instance, the studies [36—40] show different types of IoT attacks, categorization, effects
of the attacks and the existing countermeasures to help mitigate them. On the other
hand, [41] mapped various attacks according to the security features affected, i.e., confi-
dentiality, integrity, availability, accountability, auditability, privacy, trustworthiness and
non-repudiation. Different layers have different characteristics and functions which are
carried out and regulated by different protocols. The authors of [42,43] outlined the vulner-
abilities, attacks and countermeasures of protocols found in the different layers, and [44]
categorized emerging threats that could result from exploiting IoT device features based
on mobility, interdependence, diversity, myriad, ubiquity, constrained, diversity, intimacy
and unattended. The most efficient traditional and existing solutions implemented in IoT
networks today are perhaps encryption and cryptographic solutions, until they are cracked
and become outdated. Every layer can be secured with these means, e.g., Advanced Encryp-
tion Standard (AES) in the physical layer, Secure Sockets Layer (SSL) and Transport-Layer
Security (TLS) in the application layer, etc. [42,45]. However, as [46] demonstrated, the
AES-CCM (Advanced Encryption Standard Counter with Cipher Block Chaining Message
Authentication Code) encryption mechanism within Philips Hue smart lights can be ex-
ploited by a single malicious bulb to cause a cascading effect in a city that can result in a
power outage, for example, or other nefarious outcomes.

In addition to these traditional techniques, researchers have tried to explore more
dynamic solutions, such as ML, DL and FL, as routes to enhancing IoT network security.
However, to implement these techniques, datasets are needed to test and train against
certain attacks in a network, and, as stated earlier, until recently, datasets for general-
purpose networks were used to test and train IoT networks. As captured in Table 1,
datasets for IoT networks are still few in number. The remainder of this study looks at the
existing IoT datasets, their key characteristics, the ML and DL techniques applied to these
datasets and future prospects.

3. Research Methodology

The research methodology used in carrying out this systematic review followed the
guidelines set by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) [47]. The steps involved in the study are as follows:

e  Defining the research questions (RQs) the review addresses.

Outlining the information sources used to retrieve relevant information.
Determining the keywords used to perform search queries in the databases.
Filtering of information based on inclusion and exclusion criteria.
Representation of the results found in relation to the research questions defined.

3.1. Research Questions

This study looked into IoT-related datasets and the automatic attack detection tech-
niques used in relation to them. The research questions formulated for the purpose of this
survey were:
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e RQ1: What are the datasets created specifically for the study of IoT networks and
their security?
RQ2: Are there any similarities or differences among these datasets?
RQ3: What ML and DL techniques have been applied to these datasets for at-
tack detection?

e  RQ4: Are any other methods applied to these datasets for attack detection?

3.2. Information Sources

Electronic searches to retrieve relevant papers related to this study were conducted
on various databases. The databases selected have a large collection of articles and have a
high reputation in the scientific world. The databases used and their respective access links
are as follows:

ACM (Association for Computing Machinery) digital library (https://dlacm.org);
Elsevier (https://www.elsevier.com);

Google Scholar (https://scholar.google.com);

IEEE Xplore (Institute of Electrical and Electronics Engineers Explore) (https://www.
ieee.org);

ScienceDirect (https:/ /www.sciencedirect.com);

SpringerLink (https:/ /link.springer.com).

3.3. Keyword Search Queries

Search queries were formulated using various keywords to find answers relevant to
the research questions outlined above. Keywords were combined with Boolean operators to
form appropriate search queries to retrieve relevant answers to the research questions. The
search queries used are listed below and are numbered according to the research questions
answered for easier understanding.

RQ1: (IoT OR Internet of Things) AND (Datasets) OR (Attack Detection OR Security);
RQ2: (IoT OR Internet of Things) AND (Datasets) AND (Feature OR Feature Set);
RQ3: (ML OR Machine Learning) OR (DL OR Deep Learning) AND (IoT OR Internet
of Things) AND (Attack Detection);

e  RQ4: (FL OR Federated Learning) OR (Solutions OR Countermeasures) AND (IoT OR
Internet of Things) AND (Attack Detection OR Security).

3.4. Filtering Criteria

Inclusion and exclusion filtering criteria were formed to retain the papers most rele-
vant to this survey. The overall screening, elimination and selection process of articles is
illustrated in Figure 2.

Inclusion criteria:

e  Strict focus on IoT datasets: This study considers only research studies that exclusively
pertain to Internet of Things (IoT) datasets. Any datasets or studies related to non-IoT
datasets or general-purpose networks are deliberately excluded to maintain a clear
and specific focus on IoT-specific data.

e  Timeframe considered: The inclusion is limited to research articles published between
January 2018 and May 2023. Articles published before 2018 or after May 2023 are not
included so as to analyze recent developments and trends within a defined period.

e  Source from reputable databases: Selected articles are sourced from reputable databases,
such as academic journals and conference proceedings. Only articles that are already
published or in the process of being published (in press) are considered for inclusion.


https://dl.acm.org
https://www.elsevier.com
https://scholar.google.com
https://www.ieee.org
https://www.ieee.org
https://www.sciencedirect.com
https://link.springer.com
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Identification of studies via databases

Relevant records identified
from databases: (n = 453)

Identification

4

Records screened: Records excluded based on:
(n=453) duplication (n = 42)
%O Reports sought for Records excluded based on:
4 eligibility: I title (n = 86)
3 (n=411) abstract (n = 135)
Full-text reports assessed: Records excluded based on:
(n=190) content (n = 81)

{

Studies included in review:
for RQs (n=586)
rest of paper (n=53)

Included

Figure 2. Selection process of articles based on inclusion and exclusion criteria.

Exclusion criteria:

e  General-purpose networks for IoT security: Research studies using general-purpose
networks for IoT security analysis are excluded. The focus is solely on datasets and
studies directly related to IoT networks and applications.

e Removal of duplicate articles: Any duplicate articles, whether they have the same
content but different publication dates or are obtained from different search criteria or
databases, are eliminated to avoid repetition and maintain data integrity.

e  Articles not meeting the inclusion criteria: Articles that do not meet the specific
inclusion criteria are excluded from the study. This ensures that only relevant and
suitable studies related to IoT datasets are included in the analysis.

By applying these well-defined inclusion and exclusion criteria, the study aimed to
gather a focused and relevant set of research articles directly related to IoT datasets. This
approach ensured the accuracy and significance of the findings, providing valuable insights
into IoT-specific data and their applications.

4. Survey Findings
4.1. RQ1: What Are the Datasets Created Specifically for the Study of IoT Networks and
Their Security?

The survey addresses this research question by finding datasets that have been created
using IoT devices in either a simulated environment or a physical network. In most cases,
the IoT networks created are exposed to attacks and the network behavior is studied and
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analyzed under various attack conditions. Benign and attack data are collected and used to
train ML and DL algorithms to create intrusion detection systems (IDSs). Ten datasets were
found that are being studied and experimented on as part of this survey. Brief descriptions
of these datasets are given below, while details of their attack capabilities can be found
in Table 1.

1.

Bot-IoT [48] is a simulated dataset created to study and analyze network forensics
using ML and DL techniques. It is based on five IoT scenarios consisting of a weather
station, a smart fridge, motion-activated lights, a remotely activated garage door and
a smart thermostat. These simulated environments were exposed to three categories
of attacks: information gathering (port scans, operating system (OS) fingerprinting);
denial of service (Transmission Control Protocol (TCP), User Datagram Protocol
(UDP), Hypertext Transfer Protocol (HTTP) for both denial of service (DoS) and
distributed denial of service (DDoS)), and information theft (keylogging and data
theft), which are commonly exploited by botnets (bots). This dataset consists of more
than 72 million packet capture (PCAP) records. The distribution of attack records is
not uniform, however, with the information theft attacks having the least number
of records.

IoT Network Intrusion Dataset [49] (IocTNID) was created using two real devices:
a camera and a speaker. The dataset consists of reconnaissance, man-in-the-middle
(MiTM), DoS and Mirai attacks. All the attack packets except those of Mirai were
captured using the Nmap tool, while the Mirai attack packets were generated using
a laptop.

I0T-23 [50] is a dataset created using three physical IoT devices: a Philips HUE smart
Light Emitting Diode (LED) light, an Amazon Echo device and a Somfy smart door
lock. These devices were set up to model 20 different malware scenarios and 3 benign
scenarios (one for each device). Each malware scenario was exposed to a botnet
(bot) attack, such as Mirai, Gafgyt, Torii, etc. This dataset was manually analyzed to
provide benign and attack traffic features.

MedBIoT [51] is a dataset that tries to emulate a medium-sized network consisting of
80 simulated devices and 3 real devices. The devices used were a switch, a light bulb,
a lock and a fan. The setup was exposed to three types of botnets: Mirai, BASHLITE
and Torii. This dataset aims to provide data for intrusion detection of botnets.
MOQTT-IoT [52] is a dataset based on a publish/subscribe message protocol called
Message Queue Telemetry Transport (MQTT) used in the application/middleware
layer. It is based on a simulated setup comprising 12 IoT sensors in four different
attack scenarios (Table 1) and one benign scenario. This dataset was intended to be
used for intrusion detection using ML techniques.

MQTTset [53] is another dataset based on the MQTT communication protocol, in this
case aimed at aiding the application of ML techniques in MQTT networks. The setup
was simulated using eight different sensors of the following types: temperature, light,
humidity, carbon monoxide (CO) gas, motion, smoke, door and fan to exploit five
MQTT network attacks. This dataset removes features such as source and destination
IP (Internet Protocol) addresses, port addresses and communication times among
others that can be found in other datasets and focuses mainly on MQTT-based features.
N-BaloT [54]: The Network-based Detection of IoT (N-BaloT) dataset was created
using nine loT devices, namely, two doorbells, one thermostat, one baby monitor, four
security cameras and one webcam. These devices were of different makes and models.
The network setup was exposed to two types of botnet attacks: Mirai and BASHLITE.
Each of these botnets has other attacks, as specified in Table 1. This dataset comprises
both benign and attack traffic intended for the study and detection of botnet attacks.
ToN_IoT [55] is a dataset that aims at addressing the properties of both IoT and IloT
by collecting data from telemetric sources, operating systems and network data, hence
the name ToN_IoT. Nine types of attacks were studied on the seven types of sensors
specified in Table 1. This dataset explores the interaction of network elements across
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10.

the edge, fog and cloud layers and tries to provide data for intrusion detection in
large-scale IoT network scenarios.

Edge-IloTset [56]: This is another dataset that was created to study IoT and IloT
devices and networks. Its design architecture consists of seven layers and 12 IoT
(e.g., sound detection sensor, ultrasonic sensor, etc.) and IIoT devices (servo motor,
stepper motor, etc.) The testbed was tested with 15 attacks which were categorized
into 5 broad attack categories.

CICIoT2023 [57] is an IoT-based dataset that is the largest (as of 2023) in terms of the
number of devices used to set up the network topology and the number of attacks
studied. A total of 105 devices were used to design the testbed, and 33 attacks were
carried out on the network for data collection, which were broadly classified into
7 attack categories. These attacks were carried out on the IoT devices using other
IoT devices. This dataset also included Zigbee and Z-wave devices along with other
IoT devices.

Table 1. IoT datasets summary.

Normal X
Year Testbed Device Used Attacks Traffic Attack Traffic Network Packet
Setup Gen Tool Sim Tool Capture Tool
Gen Tool
5‘deV1ces . Information gathering
simulated: .
smart (service and OS
refrigerator, scanpmg), denial of . Hping3 [60], Tohark [66];
Bot-IoT smart garage service (TCP, UDE, Ostinato Nmap [61], Node-red features
58] 2018  Virtual door. weather HTTP DoS and TCP, software xprobe2 [62], [65] extracted with
g rnon; torin UDP, HTTP DDoS), [59] golden-eye [63], Argus [67]
8 information theft Metasploit [64] 8
system, smart kevl .
lights, smart  {<Y19BEE
thermostat
9 real devices BASHLITE (scan, junk,
of types: UDP flooding, TCP L.
doorbell, flooding, COMBO Binaries and
N-BaloT thermostat attack) and Mirai source code of
2018 Real L . N/A BASHLITE and N/A Wireshark [69]
[68] baby monitor, (scan, ack flooding, Mirai
security syn flooding, UDP res eé tivel
camera, flooding, UDP P y
webcam plain flooding)
Scanning (host, port,
. 0S), man-in-the- .
2 real devices: o Monitor mode
IoTNID . middle, DoS attacks, .
[49] 2019 Real V\I{1-F1 caril-r Mirai (UDP, ACK, N/A Nmap N/A of v:lire}iesstnft-
era, speake HTTP flooding, work adapte
brute force)
Mirai, Torii, Hide and
. Seek, Muhstik, Hakai, Zeek [71];
10T-23 3 physical: Internet Relay Chat Malware sample features
2020  Real speaker, light N/A . . N/A
[70] Botnet (IRCBot), in a Raspberry Pi extracted
bulb, door lock I . .
Hajime, Trojan, with Zeek
Kenjiro, Okiru, Gagfyt
MedBlIoT . I?’%;;EZ?L ’ Bo.t-ngt malware: Sc.ripts to I}\B/Ialsﬁi?tr:iource ;ZF;SETGT;P 7
[72] 2020 Mixed switch, light ,11\,/([) lrri?l’ BASHLITE and ;r(;lggil; codes, Torii Docker [73] extracted with
bulb, lock, fan sample Splunk [75]
Aggressive scan, UDP
MOQTT- 12 MQTT scan, Sparta Secure “Publish” Nm Virtual
IoT 2020  Virtual Sensors Shell (SSH) brute MQTT MQ?FII)"’-PWN [77] machines, tcpdump
[76] simulated force, MQTT command VLC [78]

brute-force attack
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Table 1. Cont.

Normal X
Year Testbed Device Used Attacks Traffic Gen Attack Traffic l\{etwork Packet
Setup Tool Gen Tool Sim Tool Capture Tool
10 simulated . .
devices: Flﬁofln%\ddég?l of MQTT-malaria
temperature, Service, [81],
li ) ) Publish flood, Slow
ight intensity, DoS against Internet IoT-Flock,
MQTT . humidity, CO . ToT-Flock Message Queuing Eclipse
set [79] 2020 Virtual gas, motion, of Thmgs [80] Telemetry ToT-Flock Mosquitto [83]
Environments .
smoke, door ) T Transport Security
opening/ Els owlTe), n;a ormed Assistant
closure and atﬁ’ brgte—. orce (MQTTSA) [82]
fan status authentication
Nmap, Nessus
. [85], Python script,
Zesri:;?iétfi?d e Scanning, DoS, DDosS, Metasploitable3,
p d rg ’ ransomware, bash scripts on NSX-
ToN éal’;%facl‘:gr/ backdoor, injection, JavaScript DVWA [86] and VMware Data logger on
ToT [_8 4] 2020  Mixed modbus ! cross-site scripting, in Security Shepherd [91] Node-RED
. password and Node-RED [87], CeWL 4 server, Zeek
motion light, in-th d Node-RED
thermostat man-in-the- (Custom Wor
ther ;1 . middle attacks List generator)
weather senso [88], Hydra [89],
Ettercap tool [90]
DoS/DDoS (TCP SYN,
UDP, HTTP, ICMP),
information gathering Hping3,
(port scan, OS Slowhttptest [93],
fingerprinting, Nmap, Netcat .
IloT 2022 Real and MITM (DNS and ARP ¢/ Nikto [95], N/A Tohark for
[92] HoT devices spoofing), injection Ettercap, XSSer feature
attack (XSS, SQL [96], SQLmap [97], extraction
injection, uploading CeWL, OpenSSL
attack), malware cryptography
(backdoor, password toolkit [98]
cracking,
ransomware)
Hping3,
udp-flood,
67 ToT devices 33 attacks in 7 slowloris, Wireshark,
CICIoT 38 Ziebee an d, categories (DDoS, golang-httpflood, tcpdump and
23[99] 2023  Real Z—wa%e DoS, Recon, N/A nmap, fping [100], N/A dpkt package
devices web-based, brute DVWA, remot3d for feature
force, spoofing, Mirai) [101], BeEF [102], extraction

hydra, Ettercap,
Mirai code

4.2. RQ2: Are There Any Similarities or Differences among These Datasets?

To address this research question, the IoT-related datasets found in the literature were
compared. It was observed that all the datasets surveyed in this study vary in respect to
the number and types of devices used in the setup; the type of setup, whether simulation,
real or mixed; the attacks the devices were exposed to, etc., as shown in Table 1. However,

there are similarities among them which are discussed below:

1.  Features: Bot-IoT is the earliest IoT dataset considered in this study and has been
utilized by a number of researchers to carry out ML techniques for intrusion detection
training. Even though this dataset employs the MQTT protocol, similar to the MQTT-
TIoT and MQTTset datasets, its feature set has no MQTT-based features, such as those
found in the latter two, which are the only datasets that contain MQTT-related features.
From Table 2, which shows the features common among the datasets studied, it can
be seen that N-BaloT and MedBIoT have 100 similar features to each other but have
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no common features with other datasets. Similarly, MQTT-IoT and MQTTset have
MQTT-related features that are not found in other datasets. Over 15 features common
to the ToN_IoT and IoT-23 datasets were also seen. The most common features found
amongst the datasets were the five-tuple network flow features (source/destination
IP address, source/destination port and protocol) and timestamps. A difference in
opinion and research carried out regarding these features has been observed. While
some studies, such as [79], removed common features like the source/destination IP
and port addresses, as well as communication times, from their MQTTset to allow
the identification of features independent of a particular connection/communication,
others, such as [103], used these features in the [oT Network Intrusion Dataset to carry
out ML training and testing for attack detection. These features, while important in
identifying a network flow, carrying out network configurations and troubleshooting,
could skew the ML training processes, leading to overfitting and the generation of high
prediction rates. Other features, such as sequence or identification numbers, found
in IoT-23, Bot-IoT, Edge-1loT and IoTNID, could have similar effects. Most datasets
have one or more of the three features (attack, category and subcategory labels) that
are used to tag a flow as benign, attack or type of attack. The attack label is used
to tag a traffic flow as either benign or attack traffic, which are sometimes denoted
as 0 and 1, respectively. On the other hand, the category and subcategory labels
are used in datasets where there are a number of different attack types and classes,
e.g., the category is used to indicate that a flow belongs to a DoS attack while the
subcategory indicates if it was a UDP, TCP, HTTP or ICMP (Internet Control Message
Protocol) DoS attack. These features are not used in the training process, however,
but to measure the performance of ML models. The category and subcategory labels
are useful for supervised learning where the model is trained for the detection of the
related attack class, while the label is useful for both supervised and unsupervised
learning. In datasets where the labels are not explicitly given, such as in N-BaloT,
MQTTset, etc., the PCAP or comma-separated values (CSV) files are collected and
organized separately for each type of attack or normal class for easy identification.

Attacks: This is another important characteristic of an IoT dataset, as this would
determine the type of attack an IDS would be able to detect when trained with
the particular dataset. Table 3 shows the types of attacks carried out in the test
environment to create the datasets. The attacks have been categorized to show the
layer of architecture they belong to. As IoT networks do not have a standardized
architecture yet, such as the Open Systems Interconnection (OSI) model used in a
conventional network, the attacks have been mapped to the OSI model depending
on the layer the attack exploits. For example, an application-layer attack targets
the highest layer of the OSI model, exploiting the application-level protocols and
services. Some of the attacks seen in this category were cross-site scripting (XSS), SQL
injection and HTTP DoS attacks. The most common form of transport-layer attacks
seen in these datasets were the TCP and UDP DDoS/DoS attacks which exploit the
weaknesses of transport-layer protocols to overwhelm the network resources. Other
layered attacks, such as ICMP flood /DoS attacks in the network layer, were observed,
while only ARP (Address Resolution Protocol) spoofing was seen in the datalink
layer. No physical layers have been studied in these datasets. Other malware or
botnet attacks are more difficult to classify as they can span multiple layers. Some
datasets, such as N-BaloT, IoT-23 and MedBIoT, contained traffic related to botnet
attacks only. The IoT_23 dataset contains the highest number of different botnets,
while Mirai and BASHLITE are the most common types seen across all the datasets.
DoS and reconnaissance attacks are the next most common attacks found in these
datasets. Attacks related to IoT protocols, such as MQTT attacks, were contained only
in the MQTT-IoT and MQTTset datasets. Attacks related to other IoT protocols, such
as Constrained Application Protocol (CoAP) attacks, have not been explored. It was
seen that as more datasets are created, the complexity in terms of the number devices
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or attacks explored increases. CICIDS23, which is the most recent IoT dataset in this
study has the highest number of attacks and devices explored.

3. Devices Used: Table 1 shows the types of devices used in the experimental setups
of the different datasets. It has been observed that there is a huge difference in
the number and types of devices chosen for each type of dataset, ranging from just
2 devices in IoTNID to 105 devices in CICIDS23. MedBIoT uses 83 devices in its setup,
of which 80 are virtual devices and 3 are physical devices. The MQTT-IoT dataset
simulates 12 MQTT sensors to study the MQTT features and attacks, while CICIoT23
incorporates ZigBee and Z-wave devices in its setup. ToN_IoT and Edge-IloT have
included the modbus protocol and motor sensors to allow these datasets to be used
for IloT studies.

Table 2. Feature comparison among IoT datasets.

IoT Med MQTT-
N-BaloT NID IoT-23 BloT ToT

°
|Z

Edge-  CICIoT
IoT IToT 2023

=
Q
= 7

Common Features MQTTset

Source IP address
Destination IP address
Source port
Destination ports
Transport-layer
protocols

Timestamp

Total duration

Source bytes
Destination bytes
Service

Connection state
Missed bytes

Number of bytes per
source IP

Number of bytes per
destination IP
Number of packets per
source IP

Number of packets per
destination IP

MQTT message type
MQTT message length
User Name MQTT flag
Password MQTT flag
Will retain MQTT flag
Will flag MQTT flag
Clean MQTT flag
Reserved MQTT flag
All 100 of MedBIoT
features

Label/attack
Subcategory

Category

CANAA
LaNA

<
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Table 3. Attack distribution in IoT datasets.

Dataset

Attack

Bot-IoT

Information gathering (service and OS scanning)
TCP, UDP DoS/DDoS
HTTP DoS/DDoS, information theft (keylogging, data theft)

&

N-BaloT

BASHLITE /Mirai scan

Mirai (ack flooding, syn flooding, UDP flooding, UDP plain flooding), BASHLITE (junk,
UDP flooding, TCP flooding, COMBO attack)

BASHLITE COMBO attack

IoTNID

Scanning (host, port, OS)
Man-in-the-middle

DoS attacks, Mirai (UDP, ACK)
Mirai (HTTP flooding, brute force)

SN

IoT-23

Mirai, Torii, Hide and Seek, Mubhstik, Hakai, Internet Relay Chat Botnet (IRCBot), Hajime,
Trojan, Kenjiro, Okiru, Gagfyt

MedBIoT

Botnet malware: Mirai, BASHLITE and Torii

MQTT-IoT

Aggressive scan
UDP scan
Sparta Secure Shell (SSH) brute force, MQTT brute-force attack

AN

MQTTset

Flooding denial of service,
MQTT Publish flood, Slow DoS against Internet of Things Environments (SlowITe),
malformed data, brute-force authentication

ToN_IoT

scanning,
DoS, DDoS, and man-in-the-middle attacks
Ransomware, backdoor, injection, cross-site scripting, password

SN

Edge-IloT

DoS/DDoS (ICMP), MiTM (DNS spoofing)

MiTM (ARP spoofing),

DoS/DDoS (TCP SYN, UDP)

Information gathering (port scan, OS fingerprinting, vulnerability scan),

HTTP DoS/DDoS, injection attack (XSS, SQL injection, uploading attack), malware
(backdoor, password cracking, ransomware)

AN

CICIoT2023

ACK fragmentation, UDP flood, UDP plain flood, RSTFIN flood, PSHACK flood, TCP flood,
SYN flood, synonymous IP flood

ICMP flood, ICMP fragmentation, DNS spoofing, ping sweep, OS scan, vulnerability scan,
port scan, host discovery, GREIP flood, Greeth flood

SlowLoris, HTTP flood, SQL injection, command injection, backdoor malware, uploading
attack, XSS, browser hijacking, dictionary brute-force

ARP spoofing

v

A: application layer, N: network layer, T: transport layer, D: datalink layer, M: multiple layers.

4.3. RQ3: What ML and DL Techniques Have Been Applied to These Datasets for

Attack Detection?

These IoT datasets have been created to facilitate the study of the behavior of network
parameters under different attacks and to devise means of either detecting or preventing
attacks from occurring in a network. Table 4 shows the studies that have been undertaken
by researchers to explore the performances of different ML and DL techniques on the
available IoT datasets as either network intrusion detection or anomaly detection solutions.
Any IDS designed with these datasets will be signature-based, meaning the IDS will be
able to match the characteristics of a network flow with the attack flow it is trained with.
An anomaly detection solution, on the other hand, will be trained to detect any traffic that
deviates from the norm and alert the system. This has an added advantage in the sense
that attack traffic may be easily identifiable. However, it is unable to identify the type of

attack, which an IDS may be able to do.
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It can be seen from Table 4 that newer ML techniques, such as DL, are gaining promi-
nence. The advantage of DL algorithms, in comparison to ML algorithms, is that their
performances can be improved by modifying their underlying hyperparameters. However,
they can take longer [104] and have more processing overhead to train and test the model
than their counter-ML algorithms. For these reasons, researchers have adopted a similar
approach to DL as they have with ML, which is selecting the minimum and best features
of a dataset to train an algorithm, as shown in Table 5. It can be seen in [105], among
other studies, that the runtime is reduced with a smaller feature set without (significantly)
affecting the efficiency of the algorithm.

Some scientists, on the other hand, have tried to combine algorithms or create different
ones similar to ensemble techniques [103,106]. Overall, it was seen from [79,105] and [107],
for example, that tree-based algorithms, such as random trees (RTs), random forests (RFs),
etc., performed better on average compared to others. Algorithms like Naive Bayes (NB),
though faster, had poorer performance comparatively [84,108,109]. It was also observed
that the most commonly used ML algorithms were tree-based, while neural networks (NNs)
are the most common for DL algorithms. These results can be seen in Table 4. Furthermore,
Table 4 shows the accuracies of different algorithms according to different researchers.
However, some studies did not present the results as accuracy values but incorporated
other performance metrics, such as F-scores (or F1-scores).

Table 5 shows the various works that have been carried out using both the full feature
set and the best feature set of the IoT datasets. Different selection methods have been
explored, such as the use of ML /DL techniques by [105,115], deductive reasoning using
various filtering criteria by [111,112] and statistical methods by [58,110,116,118]. Various
numbers of best features have been selected by researchers, with some using as low as the
best two, three and four features. The performance of ML and DL algorithms are most
commonly evaluated using precision, accuracy, recall and F-measure metrics.

Despite various efforts, it was seen that some classes in the datasets did not yield
promising results. For example, [107] found the prediction of benign traffic in IoT-23 to be
poor, while [108] reported low precision rates for data theft and keylogging attack classes.
Understanding the reasons behind these outcomes is important so that the datasets can
be improved and newer ones without the same shortcomings can be generated in order to
yield better detection results.
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Table 4. ML and DL techniques used on IoT datasets.

Bsa:‘aiset Ref Technique Used Acc ML DL ii;z:;:;f;‘rming x(;ros:i-tl;e;forming
Adaptive Boosting (AdaBoost) 0.97
Iterative Dichotomiser 3 (ID3) 0.97
k-Nearest Neighbors (k-NN) 0.99
[105] Multilayer Perceptron (MLP) 0.84 KNN NB
NB 0.79
Quadratic Discriminant Analysis 0.87
(QDA)
RF 0.97
Bayes Networks 0.996
C4.5 (Decision Tree-Based Classifier) 0.9999
NB 0.7341
[109] PART (Partial Decision Tree) 0.9999 RT NB
RF 0.9999
RT 0.9999
REPT (Reduced Error Pruning Tree)  0.9999
Convolutional Neural Network
Bot-IoT (CNN)
Deep Auto Encoder
Deep Belief Network (DBN)
[10] Deep Boltzmann Machine (DBM) N/A CNN NB
Deep Neural Network (DNN)
Recurrent Neural Network (RNN)
Restricted Boltzmann Machine
(RBM)
Long Short-Term Memory (LSTM) 0.9974
[58] RNN 0.9974 Eigl (worst SVM (best time)
Support Vector Machine (SVM) 0.8837
Bayes Networks 0.9977
C45 0.5999 All performed extremely well and
[110] NB 0.9979 almost the same, but [110] considered
RE 0.9999 NB to be best as it took the least time
RT 0.9999
[111]] RF 1 - -
[112] Feedforward Neural Network >0.99 - -
CNN 0-9602 All are in the same range but recall and
[113] DNN 0.9576 Fl-scores for data theft attacks are much
RNN 0.9676 lower than others
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Table 4. Cont.

Dataset . Best-Performing  Worst-Performing
Used Ref Technique Used Acc ML DL Algorithm Algorithm
Decision Tree (DT) 0.88
Ensemble 0.87
Gaussian NB 0.73
IoTNID [103] Linear Discriminant Analysis (LDA) 0.70 DT LR and SVM
Logistic Regression (LR) 0.40
RF 0.84
SVM 0.40
Adaptive Boosting 0.87
Artificial Neural Network (ANN) 0.66
[107] NB 0.23 RF NB
RF 1
SVM 0.67
DNN 0.984
LSTM 0.991
[104] Ensemble RF
RF 0.893
Stacked or ensemble 0.997
Gradient Boost 0.9945
[114] MLP 0.9942 RF MLP
[oT-23 RF 0.9986
k-NN 0.9994
LR 0.9991
[115] RF LR
NB 0.9992
RF 1
RF -
REPT - O d
[106] g Pose AdaREPT
Adaboost + REPT (AdaREPT) - metho
Own proposed method -
Adaboost 1
DT 0.99 Almost all, but on
Extra Trees Classifier (ET) 1 further analysis
[116] by [116], DT and NB
k-NN 1 AdaBoost had the
NB 0.99 shortest times
RF 1
DT 0.9516
[72] k-NN 0.8706 RF k-NN
RF 0.9766
Med BloT DT 0.99 DT. ‘ ‘
ET 0.99 2-,3- and 4-class k-NN, especially in
[117] classification terms of
k-NN 0.89-0.97 performed using cpmputatlonal
RF 0.98-0.99 7 features time
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Table 4. Cont.

Dataset . Best-Performing  Worst-Performing
Used Ref Technique Used Acc ML DL Algorithm Algorithm
DT 0.9615
Gaussian NB 0.8557 SVM (Linear
Kk-NN 0.8957 Kernel); average
MOQTT- packet,
IoT [76] LR 0.9218 DT unidirectional,
RF 0.8845 bidirectional
accuracies
SVM (RBF Kernel) 0.9066 computed here
SVM (Linear Kernel) 0.8260
DT 0.9779
Gradient Boost 0.9911 All perform well; however, [79] shows
MLP 0.9468 that differences in results occur between
[79] balanced and unbalanced datasets, with
MOQTTset NB 0.9879 NB scoring the least compared to others
RF 0.9942 when a balanced dataset is used
Neural Network 0.9932
CNN 0.8977 All are in the same range but recall and
F1-scores for brute force, malformed and
[113] DNN 0.9006 flood attacks are much lower than for
RNN 0.8929 benign, DoS and SlowlITe classes
k-NN 0.9536 The authors of [79] combined different
[118] feature selection methods for
comparison. RF performed better than
RF 0.9985 k-NN in most cases
[68] Autoencoders (AEs) 1 N/A
DT 0.98
[119] > DT k-NN
k-NN >0.94
CNN
DT
k-NN
LR
N-BaloT [120] N/A CNN, DTand RF  RNN, LR
LSTM
NB
RF
RNN
[121] MLP-ANN N/A N/A N/A
DT 0.98-0.99 DT.
2.3 k-NN, especially in
ET 0.99 -, 0= and 9-class terms of
[117] classification € sot tional
k-NN 0.98-0.99 performed using computationa
time
RF 0.98-0.99 3 features
LR 0.9998
[122] LR Proposed ANN
Proposed ANN 0.964
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Table 4. Cont.

Bsa:‘aiset Ref Technique Used Acc ML DL l]izt)—:;:;frgrming x(;r;:i-tl;e;forming
Gradient Boost 0.94643
[114] MLP 0.97842 RF Gradient Boost
RF 0.98075
Classification and Regression Trees 077
(CARTs)
k-NN 0.72
LDA 0.62
[84] LR 0.61 CARTs NB
LSTM 0.68
NB 0.54
RF 0.71
SVM 0.60
[111]  RE g?faétii‘g N/A N/A
CNN 0.9887 All are in the same range but recall and
[113] DNN 0.9968 F1-scores for XSS are lower than other
RNN 0.9998 classes
AdaBoost 0.399
ToN_ IoT DT 0.934
k-NN 0.979
[123] LR 0777 XGB AdaBoost
NB 0.712
RF 0.937
SVM 0.780
Extreme Gradient Boosting (XGB) 0.983
Adaptive Boosting 0.5604
CatBoost 0.9934
DT 0.9917
ET 0-9936 Ensemble
[124] Gradient Boosting (GB) 0.9766 stacking (used 3 AdaBoost
k-NN 0.9459 of the best
classifiers)
RF 0.9875
XGB 0.9946
Ensemble Soft Voting 0.9947
Ensemble Stacking 0.9949
CNN 0.8847
[125] CNN+LSTM 0.8863 Own LSTM
LSTM 0.8815
Own proposed method 0.9057
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Table 4. Cont.

Dataset . Best-Performing  Worst-Performing
Used Ref Technique Used Acc ML DL Algorithm Algorithm
DNN 0.9467
DT 0.6711
[92] k-NN 0.7918 DNN DT
RF 0.8083
Edge-loT SVM 0.7761
CNN 0.9495
[25] _NN+ISTM 087 Own CNN + LSTM
LSTM 0.9445
Own proposed method 0.9496
Adaboost 0.6078
DNN 0.9861
CICIoT
2023 [99] LR 0.8023 RF Adaboost
Perceptron 0.8195
RF 0.9916
Table 5. Feature selection techniques explored on IoT datasets.
Dataset Used  Ref Evaluation Methods Used Number of Features Used Best Feature Selection Technique
Best 7, 13 and full set of
Precision, accuracy, recall, features; results for accuracy, .
[105] F-measure, processing time best and worst algorithms R Regressor algorithm
given for best 7 features
Accuracy, false-positive rate
[109] (FPR), precision, recall, time = Full set N/A
to build
Accuracy, true-positive rate
Bot-IoT [10] (TPR) Fl}']’R P Full set N/A
58] Ac.cu.racy,. precision, recall, Best 10 and full set Correlation coefficient with joint
training time, FPR entropy
Accuracy, precision, recall, Bijective soft method applied for
[110] time to build model Full set ML selection
[111] Area under the curve (AUC), Set of 4, 5, 6, 7 and 8 features Deductive filtering
F-measure
[112] Accuracy 29 features Deductive filtering
IoTNID [103] Precision, recall, F-measure 83 features extracted from [49] Shapiro-Wilk algorithm,

correlation
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Table 5. Cont.

Dataset Used  Ref Evaluation Methods Used Number of Features Used Best Feature Selection Technique
[107] Precision, recall, F-measure Full set -
Precision, recall, F1-score,
[104] FPR, Matthews correlation Full set N/A
coefficient (MCC), g-mean
F1, AUC, mean square error
ToT-23 [114] (MSE), Gini Full set N/A
[115] Precision, recall, F1-score Best 10 LR
[106] Precision, recall, F1-score Full set N/A
Best 40% and full set; accuracy  Information gain, Gini impurity,
[116] Precision, recall, F1-score values given for entire correlation measure, Pearson’s
feature set correlation, consistency measure
[72] Precision, recall, F1-score Full set N/A
Pearson’s correlation, Fisher score,
mutual information, Analysis of
MedBIoT Precision, recall, F1-score, Variance (ANOVA), Recursive
[117] accuracy, computational Multiple sets: 7 to 85 Feature Elimination (RFE),
time, performance achieved Sequential Forward Selection
(SFS), Sequential Backward
Selection (SBS)
MQTT-IoT [76] Precision, recall, F1-score Full set N/A
[79] Fl-s;core., training time, Full set N/A
testing times
MQTTset Precisi L1
[126] recision, recall, F1-score, Full set N/A
accuracy
Fisher’s score, Pearson’s
correlation coefficient, Sequential
[118] Accuracy, detection time Best 4, 10, 18, 20 and full set Forward Feature Selection,
Sequential Backward Feature
Elimination
[68] N/A Full set N/A
Best 2, 3, 10; accuracy results . ,
N-BaloT [119] F-score for any set of features Fisher’s score
[120] Precision, recall, F-score Full set N/A
[121] Precision, recall, F-score Full set N/A
Precision, recall, F1-score, Pearson’s correlation, Fisher’s
[117] accuracy, computational 3-68 score, mutual information,
time, performance achieved ANOVA, RFE, SFS, SBS
Precision, recall, F1-score,
[122] accuracy, FPR, loss 19 LR
[114] F1, AUC, MSE, Gini Full set N/A
[84] Precision, recall, F-score Full set N/A
[111] AUC, F-measure Set of 4, 5, 6, 7 and 8 features Deductive filtering
ToN_ IoT Recall sion. F1
[123] ecall, precision, Fl-score, 20 Chi-square
accuracy
[124] Recall, precision, F1-score, 2 Spearman rank correlation

accuracy, MCC, AUC

coefficient
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Table 5. Cont.

Dataset Used  Ref Evaluation Methods Used Number of Features Used Best Feature Selection Technique
Recall, precision, F1-score,

Edge-IIoT [92] L 5 features important to each RF
accuracy, training time, attack class
validation time for
DL models

CICIoT 2023 [99] Accuracy, recall, precision, Full set N/A

Fl-score

4.4. RQ4: Any Other Methods Applied to These Datasets for Attack Detection?

It was observed that a different approach from the more traditional ML or DL is on
the rise now. Known as federated learning, FL allows participating devices (in this case
IoT devices or sensors) to retain their individual data (instead of sharing it with a server or
datacenter) and to collaboratively train a shared prediction model. This method promotes
privacy as node data are not exposed. Another advantage of this method is that data from
devices can be non-IID (independent and identically distributed), meaning the devices
could train the model at different times with different data sizes or parameters. This is a
huge advantage, as IoT sensors differ in terms of their characteristics and the amount of
information they gather.

An increasing number of studies using FL have been seen in the last two years. Seven
of the discussed datasets in this study have been explored by researchers using FL, as
shown in Table 6. It is more common to see the use of DL or neural networks (NNs) in FL
than traditional ML algorithms. This can be accredited to the fact that DL and NN models
are better at learning and computing complex patterns in data with the use of multiple
layers and deep architectures. This also reduces the need for manual feature engineering,
as DL and NN algorithms can automatically deduce important features in the data used.
A key difference between FL and ML is the use and transfer of models instead of data
between devices and the training/testing server that allows privacy preservation of data.
This is made possible with the use of transfer learning, where DL models can be pre-trained
and deployed on the IoT devices, thereby reducing the need to train models from scratch.
However, despite these benefits, DL algorithms are more resource-consuming compared
to ML algorithms, e.g., in terms of training time, memory consumption, computational
time, etc., which would add to the overheads of IoT devices, as they are usually limited
in resources.

It is important to devise means of achieving FL stability with a small number of
epochs (local model iterations on the IoT device) and rounds (global model iterations
between the IoT device and the server) to reduce the computational overhead on IoT
devices and the network performance. It can be seen from Table 6 that some studies have
up to 1000 rounds [127] and others up to 400 epochs [128]. Some others [129] deploy the
training data to edge devices for local model training. However, though this reduces the
burden on the IoT device, this approach could lead to data leakage through the sharing of
data to a third party. A balance between deploying light FL. models and achieving optimum
performance is key to exploring these solutions for IoT attack detection.
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Table 6. FL techniques used on IoT datasets.

Aggregation . No. of .
Ref Method No. of Clients Rounds Metrics ML/DL Data Dataset
Accuracy, CNN, DT,
[127] FedAvg 4 1000 precision, recall, ~ KNN, NN, - Bot-IoT
F1-score RNN, RF, SVM

Implements Low-Complexity Cyberattack Detection in IoT Edge Computing (LocKedge)
Shows complexity and CPU usage

Best client acc, Bot-IoT,

worst client acc CNN, DNN, IID and Edge-IIoT,
[92,113]  FedAvg 510,15 1,50 and global RNN non-1ID MQTTset,

model acc ToN_IoT

Compares FL performances on Bot-IoT, Edge-IloT, MQTTset and ToN_IoT datasets in terms of best/worst client and global
model accuracies

Accuracy, Bot-IoT
[129] FedAvg 5edge devices 8 precision, recall, =~ DNN Non-1ID N—Ban",l"
Fl-score
Compares centralized, distributed, localized and FL performances for zero-day attack
Shows training time, latency, memory required for the above methodologies
Shows the performances of five edge devices with the four methodologies used
Mini-batch avg, Accuracy, TNR,
[130] multi-epoch 8 1-30 TPR, F1, MLP, AE Non-IID N-BaloT
avg threshold

Studied the effects of all labels flipping attack, gradient factor attack, model cancelling attack using averaging, coordinate-wise
median, coordinate-wise trimmed mean
Showed computational and communication costs

CNN, LSTMV,
Multi-epoch Loss value, Gated
[151] aggregation i 30 accuracy Recurrent Unit N-BaloT
(GRU),
Shows loss value and training time of three MLs used for centralized and FL
1-23 clusters Arcecclll;focr% recall
[132] FedAvg acting as 50 P ’ . Non-IID IoT-23
clients Fl-score, loss
curve
Studies effect of clusters of trust between nodes and globally shared data
Accuracy, ..
[128] 2(51};;]3(: 1-5 nodes 400 Epochs  precision, recall, {I)Dex(}gl)smg AE Non-IID ToT-23
F1-score

Implements asynchronous FL using a delay compensated Adam (DC-Adam) approach
Shows loss function convergence for training data

Accuracy, Ensemble with
[133] FedAvg - 10 precision, recall, RE - MQTT-IoT
Fl1-score
Multiview FL using bidirectional features, unidirectional and packet features
Accuracy, recall,
[134] FedAvg, Fed+ 4,10 1-300 FPR, precision, LR - ToN_IoT
F1-score
Partitions data in basic (unbalanced), balanced and mixed scenarios using Shannon’s entropy
FedAvg, Accuracy, recall
[135] FedProx, 10 1-50 Y, recatl, DBN, DNN non-IID ToN_IoT
FedYogi FPR, precision,
g

Explores the effect of data heterogeneity with different aggregation methods
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5. Future Research Directions

Developing and utilizing IoT-based datasets for IoT-related solutions is a step in
the right direction, even though many IoT studies are still carried out on NSL-KDD, for
example, a generic non-IoT dataset created in 1999. Researchers have struggled in the past
to devise security measures for IoT networks using outdated datasets with deficiencies,
such as a lack of modern attacks, imbalanced attack classes and absence of IoT devices.
IoT networks are different from generic and conventional networks in a number of ways.
For example, different device sensors in the same network could have different functional
capabilities (complex, such as a TV, or simple, such as a door lock), different modes of
working (e.g., continuous stream from a camera or intermittent status update from a
light), etc.

With the release of new IoT-based datasets, it is hoped that they will help with the
study of IoT networks and the devising of stronger security measures. However, the
following considerations should be taken on board when designing and testing new IoT-
specific datasets.

Feature Identification, Selection and Extraction: It is important that researchers iden-
tify the unique features of IoT traffic that distinguish it from that of general-purpose
networks. It is also important to understand if features that can uniquely identify a par-
ticular flow (e.g., source IP address, destination IP address, transmission time logs, etc.)
are relevant and should be included in the feature set of a dataset, as stated in [79]. This
raises the question that if, for instance, one of such features, such as IP address, has a high
dependance value, then could that lead to some benign traffic with an IP of a malicious
traffic flow being identified as malicious? Or, if an IP address that is recognized as benign
traffic is used by an attacker, could that malicious traffic be wrongly classified as benign?
The numbers of devices seen in these IoT datasets are generally small, except in MedBloT
and CICIDS2023. This could lead to misclassification if training models map certain IP ad-
dresses to certain attack classes when trained on these datasets and tested within different
test environments. It is therefore essential to identify features that should be dropped for
training in order to avoid overfitting or misleading results.

Relationship between IoT Attacks and Architectural Layers: Similarly, it is important
to explore and deduce relationships between the various attacks that occur in the different
architectural layers (e.g., application, network and physical layers) of an IoT system and the
distinguishing characteristics or features of these attacks. This knowledge would be useful
in designing IDSs based on the dependent features for more accurate and targeted results.
Also, it is important to understand the cascading effects and behaviors of interconnected
IoT devices in a network under attack, if and how attacks migrate between layers, features
that could be used to detect such attacks, if such features change as the attack progresses to
a different layer and the subsequent damages that can be caused in such a network.

Performance Evaluation and System Requirements: Different researchers have tried
to reduce the training and testing times of datasets by selecting features of utmost im-
portance without hampering the performances and efficiencies of the ML /DL algorithms
used. Some of these deductions were made by using statistical methods, such as correlation
coefficients, entropy, Fisher’s score, information gain, etc., as shown in Table 5. Others
were made by manual deductions and reasoning, as seen in [79,111,112], while others, such
as [105] and [115], used ML algorithms to select features. As these datasets are relatively
new, they have not been fully explored yet. However, it is important to determine key
features and the attacks they are related to so as to improve the efficiencies of IDS. Also,
finding features that can interrelate and adapt with other datasets will be useful in develop-
ing scalable IDSs for real-world implementations. The performances of training models are
usually seen to be evaluated in terms of accuracy, recall, precision, F-score, etc. It is equally
important to understand the system requirements for implementing such a model for attack
detection in terms of the memory required, time taken, energy consumed, etc., especially in
an IoT network where hubs and devices have limited resources and capabilities.



Sensors 2023, 23, 7191

23 of 29

Standardization of Datasets: It can be seen from the datasets studied in this paper
that, though they differ in the various ways identified, botnets and DoS attacks are the
more popular kind of attacks addressed in the datasets. This may be accredited to the
fact that these attacks result in colossal damage when successful. However, there is a
need to build standard and unified datasets that can be used to design IDSs with a wider
attack set across different IoT platforms made up of a varied number of devices. The
authors of [136-138] have tried to do this, where [136] combined non-IoT and IoT datasets,
while [137,138] combined multiple IoT datasets. Additionally, it was further observed
that when datasets with numerous attacks are created, the attack flows for the respective
attacks are not evenly distributed, e.g., the number of flows for information theft in [58];
the XSS, fingerprinting, port scan and SQL injection attacks in [92] are much lower than
other attack flows contained in the respective datasets. This led to insufficient training of
the ML models and poor prediction results for the attacks seen in [58] and [92]. Similarly, a
huge percentage of misclassification can be seen in [99], where attacks such as brute-force,
reconnaissance, spoofing and web attacks have fewer data compared to the DoS/DDoS
attacks, for example. Although, the overall predictions of attacks using these datasets are
high, a class-by-class investigation of attack prediction shows low results for certain classes.
It is therefore important to create datasets with an optimum number of data flows for each
type of traffic classification to allow proper training and testing of ML /DL models.

Exploring IoT Protocols and Technologies: In datasets such as MQTTset and MQTT-
IoT based on MQTT, an application-layer protocol was seen. However, other application-
layer protocols related to IoT, such as CoAP, XMPP (Extensible Messaging and Presence
Protocol) or AMQP (Advanced Message Queuing Protocol), are still lacking today. It is also
important to explore other IoT-related technologies, such as 6LoWPAN (IPv6 over Low-
Power Wireless Personal Area Networks), BLE (Bluetooth Low Energy), Zigbee, Z-wave
and NFC (near field communication), for example, to enable attack detection in networks
using these technologies. It was observed that CICIDS2023 included Zigbee and Z-wave
devices in its experimental setup along with other IoT devices. However, it is not clear how
these devices differ in their behavior when infected or under attack, e.g., are there features
that could be used to show that a Zigbee device is under attack and not a Z-wave device or
vice versa? It is imperative to understand how or if devices or technologies are affected
differently to one another when infected with attacks and, in turn, what unique features can
be used to train ML or DL algorithms to detect attacks in networks with devices operating
on different protocols, e.g., what MQTT or CoAP features are affected in an MQTT or CoAP
setting, respectively, or are there network features that could show that a Bluetooth device
is under attack in a network consisting of other types of devices, etc. It is therefore vital
to not only have IoT datasets that are more complex in terms of size, number of devices,
technology, attack detection capabilities and protocols in the future, but to also understand
how these differences can be identified and used to design better and more efficient IDSs.

Privacy and Federated Learning in IoT Security: Privacy is a security element that is
often overlooked and even less understood by consumers. It is essential to start focusing
on this area with the latest trend of FL as it allows the data of individual devices and
communication to remain private and secure during the training and testing process.
Table 6 shows some of the studies that have explored this technique using existing IoT
datasets. Others, such as [139], have designed their IoT networks with IoT sensors for
anomaly detection using FL. It was seen from Table 6 in this review that DL techniques
are applied in FL attack detection, which are more resource-intensive and computationally
demanding compared to ML techniques. Table 4 shows that using ML for attack detection
gave high accuracies in numerous studies. It is therefore important for researchers to justify
the use and implementation of DL in IoT networks where resources are constrained and
to develop lighter means for such deployments. It is also essential to understand how FL
in IoT networks consisting of varied numbers and types of devices can be implemented
efficiently, e.g., identifying how a simple device (e.g., a smart bulb/switch) and a more
complex device (e.g., a smart camera/TV) participate in an FL setting, when and how the
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FL training takes place in such devices according to their capabilities without affecting the
performance of the device or network, and the features important to the type of device and
also the attack for efficient FL training and attack detection. In addition to the usual attacks
that devices and networks are affected by, FL is vulnerable to additional attacks, such as
poisoning attacks, model inversion attacks, Byzantine attacks, etc. It is therefore essential
to devise means of deploying FL in a robust and feasible manner while moving forward in
this field.

6. Conclusions

This review has provided a foundation for understanding the current state and poten-
tial trajectory of data-driven attack detection trends in IoT research. The variations within
the range of IoT-related datasets studied demonstrate that momentum is building in this
area. However, the analysis provided indicates that there is still a need for the refinement
of the development of such datasets in order to address their shortcomings with respect
to feature engineering, IoT protocols, system requirements and efficiencies of detection
models. Further, evolving trends, such as privacy-preserving techniques that employ the
use of FL, demonstrate that IoT networks provide fertile ground for future experimentation
in developing security solutions. Adapting to changing technology and understanding
the IoT network better will help researchers and cybersecurity personnel in implementing
robust solutions against attacks. However, it is important to remember that IoT sensors
are usually limited in their functionalities, memory and computational capabilities. It is
therefore necessary to provide solutions that are scalable and with little added overhead.
For example, DL algorithms have the capability of selecting the best features and providing
better detection results; however, they require more processing power compared to ML
algorithms. Also, implementing FL on networks with simple IoT sensors (e.g., smart bulbs)
may not be feasible, as bulbs do not have the resources to store and train local models.
Hence, it is vital to keep all these considerations in mind while working towards better
security solutions.
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