
              

City, University of London Institutional Repository

Citation: Kaynak, E. (2024). Leveraging Learning Collectives: How Novice Outsiders 

Break into an Occupation. Organization Science, 35(3), pp. 948-973. doi: 
10.1287/orsc.2020.14214 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/31275/

Link to published version: https://doi.org/10.1287/orsc.2020.14214

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


 

 
 

Leveraging Learning Collectives: How Novice Outsiders Break into an Occupation 
 

 
Ece Kaynak 

Bayes Business School 
City, University of London 

Ece.kaynak@city.ac.uk 
 
 
 
 
Abstract  
 
Existing research depicts occupational learning as predominantly happening through formal education or 
situated learning, or a combination of the two. How career switchers might develop occupational skills 
outside of these established learning pathways is understudied. This paper examines how novice outsiders 
break into a skilled occupation by looking at the case of aspiring software developers attending coding 
bootcamps. Drawing on 17-months of fieldwork in the San Francisco Bay Area, I find that bootcamps did 
not resemble either schools or workplaces, the two institutions that facilitate occupational learning. Instead, 
bootcamps scaffolded learning collectives—groups composed of peers and near-peers who learn 
collaboratively and purposefully to reach a shared goal. Within learning collectives, aspirants progressed 
from novice outsiders to hirable software developers despite limited access to proximate experts to learn 
from or legitimate peripheral participation opportunities. Three scaffoldings facilitated learning at 
bootcamps: First, peer team structures turned what is normally a solitary activity—writing code—into a 
collaborative endeavor and facilitated peer to peer knowledge exchange. Second, near-peer role structures 
engaged recent graduates in teaching and mentorship relationships with novices so that aspirants could 
access knowledge quickly and easily. Third, bootcamps encouraged aspirants to self-learn by reaching out 
to the expertise of the broader occupational community. This third scaffolding prepared aspirants for 
learning beyond the bootcamp curriculum and socialized them for an occupation with high learning 
demands. The outcome of this process was that novices pursuing an alternative mode of occupational entry 
developed both occupational skills and new self-conceptions as software developers. 
	
Keywords: Occupations and professions, expertise, learning, careers, ethnography 
 
  



 1  

 
Acknowledgements 
 
I would like to thank Ruthanne Huising and three anonymous reviewers for their invaluable comments in 
developing this paper. Throughout this project, I gratefully acknowledge the support and guidance of 
Steve Barley, John-Paul Ferguson, Aruna Ranganathan, Melissa Valentine, Bob Sutton, and Hatim 
Rahman. I would also like to thank Arvind Karunakaran, Emily Truelove, Daisy Chung, Joelle Evans, 
Kate Kellogg, and Michel Anteby for their feedback. Previous versions of this paper were presented at the 
Academy of Management, Wharton People and Organizations Conference, Oxford Said Professional 
Service Firms Conference and emLyon Ethnography Workshop. I gratefully acknowledge a generous 
Cyber Initiative Grant from Stanford MediaX. Finally, I would like to thank my informants who were so 
generous with their time.  
 

  



 2  

Leveraging Learning Collectives: How Novice Outsiders Break into an Occupation 
 

The past few decades have seen significant changes in the nature of work and careers (Barley and 

Kunda 2001; Barley, Bechky and Miliken 2017). Changes of note include the computerization of work 

(Zuboff 1989; Levy and Murnane 2012); rise of virtual and remote working (Johns and Gratton 2013); 

proliferation of nonstandard employment relationships such as contract, part-time and gig work (Cappelli 

1999; Kalleberg 2000 and 2009; Barley and Kunda 2004; O’Mahony and Bechky 2006; Halpin & Smith, 

2017); algorithmic management of workers (Rahman 2021; Kellogg, Valentine, Christin 2020; Rosenblat 

2018); and boundaryless careers spanning different organizations and even different occupations (Arthur 

and Rousseau 1996; Bidwell and Briscoe 2010). While our understanding of work and careers evolve, our 

understanding of how people learn occupational skills and enter different lines of work has remained 

relatively unchanged.  

Entry into occupations is traditionally understood as a process of learning overseen by occupational 

incumbents (Van Maaneen 1973, 1978; Trice 1993; Anteby, Chan and DiBenigno 2016). In this process, 

novices learn both the task area of the occupation (Abbott 1988), as well as the particular behaviors, 

attitudes and worldviews shared by the occupational community (Van Maanen and Barley 1982). Learning 

happens through formal education (Moore 1976; Schleef 2006), or situated learning on the job (Lave and 

Wenger 1991; Brown and Duguid 1991), or a combination of the two (Pratt, Rockmann, and Kaufmann 

2006). This is the case not just for highly skilled occupations and professions (Becker, Geer, Hughes, 

Strauss 1961), but also for middle skill occupations and craft work (Van Maaneen, 1973; Riemer 1977; 

Fine 1996). Novices who pursue established occupational learning pathways are considered legitimate 

newcomers in the eyes of the occupational community and external audiences. 

However, in practice, we know that occupational learning does not always unfold 

unproblematically, or along established pathways. For example, not all situated learning opportunities are 

organized to ensure skill development. Novices can experience difficulty observing or partaking in 

professional practice, and fail to develop necessary skills (Lave and Wenger 1991; Bharatan, Swan, and 

sbrn702
Highlight

sbrn702
Sticky Note
Could you change this to: Zuboff 1988 please



 3  

Oborn 2022). For example, in his study of surgical residents trying to learn robotic surgery, Beane (2019) 

finds that the technological mediation of work limited novices’ access to professional practice and only a 

few opportunistic learners were able to develop robotic surgical skills by following shadow learning 

strategies. Developing occupational skills is also problematic for freelancers, who do not have employers 

to sponsor their learning (Barley and Kunda 2004). In their study of freelancers trying to expand their 

skillsets into new domains, O’Mahony and Bechky (2006) find that freelancers had to bluff about their 

existing skills and experience, and discount their rates in order to obtain stretchwork that would allow them 

to try their hands at a new technology and learn on the job. These studies challenge and add to our traditional 

understanding of occupational learning and skill development. Yet, in all of these cases, the learners in 

question are insiders to the occupational community within which they pursue alternative learning 

strategies. How outsiders might develop occupational skills in order to break into an occupation without 

following established learning pathways—without going back to school or obtaining situated learning 

opportunities—is understudied. This phenomenon deserves scholarly attention as more and more workers 

switch occupations in the course of their careers (Arthur 2008; Hall 2004; Baruch and Vardi 2016; Tolbert 

1996), and may not choose to or not be able to go back to school for several years, or obtain low-paid or 

unpaid internships, as these learning pathways are costly and time consuming. Little is known about the 

alternative learning strategies that career switchers pursue in these circumstances, especially when trying 

to enter a skilled occupation. This is despite the fact that under-institutionalized career transitions are 

becoming increasingly common in contemporary careers (Ibarra and Obodaru 2016; Demetry 2017 

Petriglieri, Ashford and Wrzesniewski 2019). 

I examine how novice outsiders break into a skilled occupation through a study of aspiring software 

developers attending coding bootcamps, which are relatively novel, short-term vocational training 

programs that promise to transform novices into hirable occupational entrants. My preliminary observations 

suggested that bootcamps did not resemble either of the two institutions that facilitate occupational learning: 

Schools, which are sites for formal education; or workplaces, which allow for legitimate peripheral 

participation opportunities (Becker et al. 1961; Moore 1976; Fine 1985; Anteby 2013; Schleef 2006). 



 4  

Bootcamps did not resemble schools because they offered minimal expert teaching. Bootcamps did not 

resemble or necessarily lead to legitimate peripheral participation opportunities either, because these 

internships and new graduate roles were reserved for newcomers pursuing established entry pathways into 

the occupation1. Given these challenges, how did aspiring occupational entrants develop necessary skills to 

become hirable software developers?  

To answer this question, I conducted 17-months of fieldwork in the San Francisco Bay Area, 

including 80 interviews and 8 months of nonparticipant observation at two coding bootcamps. I found that 

bootcamps scaffolded learning collectives, which I define as groups composed of peers and near-peers who 

learn collaboratively and purposefully to reach a shared goal. The term near-peer refers to learners who are 

several months ahead in their learning journey and who can therefore help and teach more junior learners, 

even though they are not yet experts themselves (Topping 1996; Whitman 1988). Within the learning 

collectives I studied, near-peers were aspirants who had recently completed the bootcamp curriculum and 

who stayed on to teach and hone their skills before applying to jobs. The goal shared by both novices and 

their near-peers was thus to progress from outsider to hirable software developer.  

Three scaffoldings enabled occupational learning at bootcamps: peer team structures, near-peer 

role structures, and encouragement to self-learn2. Peer team structures, in the form of pair programming 

and group projects, made coding a conversational and collaborative activity and facilitated knowledge 

exchange between peers. Near-peer role structures, in the form of near-peer instructor, teaching assistant 

and mentor roles, engaged recent graduates in teaching relationships with novices, thus allowing novices 

to access help quickly and easily. Finally, aspirants were encouraged to learn how to learn programming 

on their own by reaching out to the expertise of the broader occupational community. This final scaffolding 

socialized aspirants for an occupation with constant learning demands, and prepared them to continue 

 
1 At the time of fieldwork, a very limited number of apprenticeships were offered by tech companies for bootcamp 
graduates in an attempt to diversify their talent pipeline. However, these apprenticeships were so few in number that 
they did not constitute a normal stage of learning after bootcamp. The overwhelming majority of bootcamp 
graduates had to search for entry level software developer jobs in competition with formally trained engineers. 
2 I thank the anonymous reviewer who helped me coin the terms that describe the scaffoldings.	



 5  

building their expertise beyond the bootcamp curriculum1. The outcome of this learning process was that 

aspirants were able to develop both occupational skills and new self-conceptions as software developers. 

In what follows, I first provide an overview of the different conceptualizations found in the 

literature of how novices acquire occupational expertise: occupational socialization, situated learning, and 

shadow learning. I show how, in all of these prior conceptualizations, novices have insider access to 

proximate experts and other learning resources of the occupational community by virtue of pursuing an 

established learning pathway. This leaves unexplained how career switchers pursuing alternative learning 

pathways, and who therefore do not benefit from the same insider status, might develop occupational skills. 

After this review of the literature, I introduce my research setting before delving into the findings. 

 

HOW NOVICES ACQUIRE OCCUPATIONAL EXPERTISE 

Occupational Socialization  

One of the primary ways that expertise is organized in our society is through occupational 

communities (Abbott 1988, 1991). Occupational communities owe the reproduction of their task area 

expertise, as well as their common meaning systems, first and foremost to the particular ways in which new 

entrants to the occupation are trained and socialized (Van Maaneen 1973, 1978; Anteby, Chan and 

DiBenigno 2016). Studies of entry into skilled occupations and professions depict socialization as a long 

and elaborate process, a well-established pathway to membership guarded by occupational incumbents who 

control access to practice (Wilensky 1964; Abbott 1991; Freidson 1986). Abbot (1988: 84) notes, 

 
 
It is common to create rigid entry standards, coupling extensive education with 
several levels of examination prior to formal entry into the profession. This is part 
of a structure of control… It protects recruitment, controls professional numbers 
(and consequently professional rewards), and guarantees a minimum standard of 
professional ability. 
 

 



 6  

The occupational entry process for skilled occupations and professions thus involves a period of formal 

training, often coupled with a period of internship, apprenticeship or residency where learning continues 

on the job and becomes more relevant to actual practice (Trice 1993; Bailey and Barley 2011). 

In the course of occupational socialization, novices learn both the task domain of the occupation, 

as well as the patterns of thought and action that are shared by the occupational community (Van Maanen 

and Barley 1984; Michel 2011). Incumbents act as ‘socialization agents’ in this process (Van Maanen 1973; 

Saks and Gruman 2012, Ranganathan 2017). They transfer knowledge and model appropriate behaviors 

and attitudes (Anteby 2013). Novices emulate incumbents, who represent models for desirable future selves 

(Ibarra 1999). The interactions between novices and incumbents also provide feedback for novices on their 

progression from novice to expert (Pratt et al. 2006). Through such feedback, incumbents provide social 

validation for novices’ newly forming self-conceptions as members of the occupation (Ashforth, 2001). 

Novices are not merely passive recipients in the socialization process either. They actively engage in 

information seeking behaviors to understand the demands of their new role (Morrison 1993; Saks and 

Ashforth 1997). Through the transmission of knowledge and worldviews between incumbents and 

newcomers, new generations of occupational entrants reproduce the expertise that is the jurisdiction of their 

occupation (Van Maanen and Schein 1979; Fine 1985, 1996; Schleef 2006). 

Importantly, studies of occupational socialization all describe learning processes where novices 

have unproblematic access to proximate experts to learn from and emulate. Whether we are talking about 

the training of a doctor in the classroom and at the hospital (Becker et al. 1961), or the policeman at the 

academy and on patrol (Van Maanen 1973, 1978), the assumption is that novices have access to incumbents 

who sponsor their learning and socialization (Ranganathan 2017). It is thought that only through such close 

contact can incumbents shuffle newcomers through the cognitive and behavioral changes necessary to 

‘become’ a member of an occupation (Anteby et al. 2016).  

 

 

 



 7  

Situated Learning Through Legitimate Peripheral Participation 

A second stream of research that offers insight into how novices develop occupational expertise is 

the literature on situated learning. Situated learning refers to the process by which newcomers learn the 

expertise and ways of being of an occupational group by participating in their shared practice (Lave and 

Wenger 1991; Brown and Duguid 1991). The central idea is that learning and doing cannot be separated. 

Newcomers to an occupation learn relevant skills through participation as they work among incumbents 

within a community of practice (Wenger 1998). Novices initially partake in peripheral tasks and slowly 

acquire the necessary skills and knowledge that lead to mastery (Brown and Duguid 1991; Jordan 1989). 

Lave and Wenger (1991) proposed the term ‘legitimate peripheral participation’ to describe this relationship 

between novices and expert practice.  

Inspired by the model of craft apprenticeship, situated learning theory deemphasizes formal 

teaching, and instead highlights the importance of learning through imitation and through examples, or 

‘occasions of use,’ as practitioners communicate with each other in the course of shared practice (Jordan 

1989; Orr 1996). Situated learning theory argues that, for any given occupation, the primary site for learning 

is not the school but the workplace. For example, a medical intern or resident learns how to practice 

medicine by observing senior doctors at work. As the novice’s understanding and skill increases, they are 

invited to assist more and more in the core professional activity until they become experts themselves.  

Jordan (1989) explains that “the activities to which the apprentice is a witness and, by stages, a contributor, 

are organized around work to be done, and whatever teaching or learning may happen is coincidental to 

that overriding concern” (p. 933). Many occupations are either learned completely through situated learning 

(e.g. the crafts) or the entry process involves some period of situated learning following formal education 

(e.g. law enforcement, medicine, engineering). 

A key outcome of occupational learning and skill development is a change in one’s conception of 

self. Both occupational socialization and situated learning literatures, in fact, talk about changing self-

conceptions (e.g. Hughes 1958, 1971), or the development of ‘identities of mastery’ (Lave and Wenger 

1991), or identification with an occupation (e.g. Becker and Carper 1956) as an important aspect of learning. 



 8  

As novices observe incumbents, they learn not just how to do the work of the occupation, but how to think 

of themselves and conduct themselves as members of that occupation. By observing incumbents, novices 

learn what it means to be a carpenter, teacher, doctor, or policeman in society, and start to see themselves 

in that light (Hughes 1958). This change in one’s sense of self is a key part of the transition from layperson 

to occupational member (Van Maanen and Barley 1984; Ibarra 1999; Pratt et al. 2006). 

Similar to studies of socialization, situated learning theory argues that, for effective learning to take 

place, novices need unproblematic access to proximate incumbents. Novices are able to learn both tacit and 

esoteric knowledge through close observation of and participation in expert work. In fact, Lave and Wenger 

(1991) in their seminal book talk about the importance of access in situated learning, arguing that access is 

so fundamental to effective learning that “in a sense, all we have said so far is about access” (p.101) and 

without it, novices fail to learn (Marshall 1972). Contu and Willmott (2003), similarly point to the 

importance of power relations that can impact who has access to key learning opportunities. 

 

Shadow Learning  

What happens when access to key learning opportunities is obstructed? Recent studies have started 

to explore various unconventional learning strategies that novices employ, for example, to overcome 

barriers to legitimate peripheral participation opportunities. One such unconventional learning strategy 

involves norm- and policy-challenging shadow learning practices (Beane 2019). When robotic surgery, 

compared to open surgery, prevented surgical residents from working alongside incumbents for long 

periods of time and learning via participation in professional work, Beane (2019) finds that most surgical 

residents failed to learn robotic surgical skills. However, a few residents leveraged alternative learning 

resources within the occupational community, and managed to develop robotic surgical skills outside of 

their residency programs. These novices, Beane (2019) argues, acted opportunistically and in isolation, for 

example by going to work alongside a lower status attending physician who would be more willing to trust 

novices from a prestigious residency program to work the robotic surgery device, or by working with a 

superstar attending physician who ran multiple parallel surgeries and hence could not supervise residents 



 9  

as closely, giving them more access to the device. Successful learners also engaged in abstract rehearsal by 

using simulators, rather than learning from incumbents directly in the course of surgery. These shadow 

learning practices demonstrate that situated learning arrangements should not be conceived of as being 

tightly bounded, and that novices can potentially exercise agency and shape their own opportunities for 

legitimate peripheral participation. In a similar line of research. Bharatan and colleagues (2022) studied 

how newcomer navy cadets negotiated access to situated learning opportunities on merchant ships that 

would enable them to progress from cadets to officers, when such learning opportunities were not ordinarily 

offered to them as part of their everyday training. While the authors note that these learning practices were 

not necessarily counter-normative, they were nonetheless strategic and opportunistic, and allowed a small 

group of cadets to access learning opportunities beyond what was available to their broader newcomer 

cohort.   

 

Comparison of Different Conceptualizations of Occupational Learning 

Table-1 lays out some of the key similarities and differences between the different 

conceptualizations of occupational learning—occupational socialization, situated learning and shadow 

learning—that lead to entry into skilled occupations and professions.  

 

---Insert Table 1 Here---- 

 

In terms of the role of formal instruction, occupational socialization literature considers both formal 

education and on the job training as important aspects of learning. In fact, many studies of socialization 

trace novices from the classroom to the workplace (e.g. Van Maanen 1973; Fine 1985). Situated learning 

theory, on the other hand, deemphasizes formal instruction. However, in the case of skilled occupations, 

there is an underlying assumption that novices come from the same formal educational background, which 

is a prerequisite to access situated learning opportunities. A person cannot become a surgical resident 

without a degree in medicine, nor can a novice undertake clinical training in nursing without being part of 



 10  

a formal nursing program. This assumption of a shared educational background applies to shadow learning 

as well, since the concept is an extension of situated learning theory. 

In each of the three conceptualizations of occupational learning, novices are considered insiders to 

the occupational community from day one, albeit in a neophyte role. As legitimate newcomers, their 

learning is sponsored by incumbents. Socialization literature envisions a more active teaching role for 

incumbents, involving the explicit transfer of knowledge (Saks and Ashforth 1997), while situated learning 

assumes that learning takes place in the course of practice, without explicit teaching (Orr, 1996). However, 

in both cases, the status of insider implies that novices enjoy legitimate access to the learning resources of 

the occupational community. Shadow learning happens when access is obstructed. However, once again, 

due to their insider status, novices acting strategically and opportunistically can leverage alternative 

learning resources within their occupational community (e.g. opportunities to work alongside lower status 

experts, or in the operating rooms of superstar physicians, or by using a simulator device at the hospital) 

(Beane, 2019).  

Finally, the outcome of all three conceptualizations of occupational learning is that novices are 

given license to practice, sometimes even irrespective of skill development (e.g. Beane 2019), as a result 

of partaking in an established learning pathway designed and sponsored by occupational incumbents. These 

studies do not consider how novice outsiders might develop the necessary skills to move through the 

inclusion boundaries of an occupation without following established learning pathways. One way to 

investigate this phenomenon is to look at the case of career switchers who cannot afford to or chose not to 

go back to school or take internships or apprenticeships. Such noncodified career transitions call for 

alternative learning strategies that are understudied (Ibarra 2003; Ibarra and Obodaru 2016). Especially in 

the case of skilled occupations, we know very little about how aspirants might obtain expertise outside of 

an occupation’s established learning pathways. This paper investigates this ‘breaking in’ journey by 

analyzing the case of aspiring software developers attending coding bootcamps. 

 
 
 



 11  

RESEARCH SETTING AND METHODS 
 

 
Coding bootcamps offer a unique setting to study how novice outsiders break into a skilled 

occupation. Bootcamps emerged in 2011, during the second technology boom, as an alternative pathway 

for entering careers in software development. They are short term vocational training programs focusing 

on web application development, and sometimes mobile application development. The vast majority of 

learners at bootcamps have four-year college degrees in unrelated disciplines, and wish to switch careers 

into software development without going back to university. The idea and promise behind the bootcamp 

model of occupational entry is to transform novices with no background in programming into hirable 

occupational entrants through a short period of intense learning (Waguespack, Babb, and Yates 2018). In 

that sense, bootcamps resemble immersion-based language programs (Scott, Holzman, Ris and Biag 2017). 

The past decade has seen a proliferation of bootcamps not just for coding, but also for data science and 

UX/UI design, among other topics, in North America and other parts of the world.  

 

How Bootcamps Compare to Established Pathways for Occupational Learning 

While coding bootcamps and other nontraditional workforce development programs have been 

hailed by policymakers as a way to address the STEM skills gap in the United States (Caren, Bentz, Cataldi 

and Sanders, 2019) these new and expedited pathways for occupational learning remain controversial 

(Thayer and Ko, 2017). Bootcamps represent a stark contrast to computer science degree programs that are 

often considered the desired pathway for entry into careers in software development. Like other established 

pathways of entry into skilled occupations and professions, computer science (CS) degree programs involve 

the transmission of abstract, formalized knowledge from experts to novices. For the development of job 

specific skills, degree programs require or encourage summer internships, which are opportunities for 

legitimate peripheral participation in the occupational community. By the time a typical student graduates 

with a CS degree, she has not only accumulated a knowledge of basic engineering, computer science, and 

programming, but has also gained experience working alongside professional developers in industry. The 

sbrn702
Sticky Note
Please replace "Caren" with "Arbeit"

The citation for this reference is:
Arbeit, C. A., Bentz, A., Cataldi, E. F., and Sanders, H. (2019). Alternative and Independent: The Universe of Technology-Related “Bootcamps.” RTI Press Publication No. RR-0033-1902. Research Triangle Park, NC: RTI Press. https://doi.org/10.3768/rtipress.2019.rr.0033.1902

sbrn702
Highlight



 12  

credential received through this formal training is recognized by both employers and the occupational 

community. 

In contrast, coding bootcamps offer training in a very limited and specialized body of knowledge 

pertaining to full-stack web application development. The curriculum of a typical web development 

bootcamp covers programming fundamentals such as database modelling and object relational mapping, 

working with application programming interfaces, understanding the model-view-controller framework, 

and deploying applications on the web (Mulas, Paradi-Guilford, Allende Letona, and Dalphond 2017: 25). 

Computer science theory is covered only superficially for preparation for technical interviews. Learning at 

bootcamps is thus vocational, intended to help novices develop practical skills sufficient to become hirable 

junior occupational entrants. As one learner explained: 

 
It was the only time I have been educated in a way that was specifically targeted 
to being able to do a certain thing. They give you the exact skillset you need to be 
able to go out and do web development. There is some theory that goes along with 
it. They mix it in at certain times to try to increase your understanding. But three 
months is not really enough time to get a whole theoretical understanding of 
computer science, the logic behind it… [After bootcamp] it is a very specific set 
of skills that you are going to walk away with, as long as you stay on top of it. 
Hopefully the idea is that once you get a job, you’re going to learn most of what 
you do on the job (Clark, Aspirant, Digital Academy, Interview). 
 

  
My preliminary observations and interviews with aspiring developers like Clark revealed that 

bootcamps offered minimal formal, expert teaching. While most full-time bootcamps were 12-to-13-week 

long programs, only about 9 weeks involved coding instruction. The rest of the time was devoted to building 

projects and job search related activities. Moreover, most of the learning I observed at bootcamps happened 

not between experts and novices, but among peers, and between novices and their near-peers who were 

only a few months ahead in their learning journey. These near-peers were recent bootcamp graduates who 

stayed on to teach at bootcamp while they honed their software development skills before applying for jobs. 

Near-peer teaching is an established practice in higher education where advanced trainees teach more junior 

trainees (Topping 1996; Whitman 1988). While there is not a precise definition in the literature, in the 

context of medical education Bulte et al. (2007: 583), for example, define near-peer as “a trainee one or 



 13  

more years senior to another trainee.” Within the context of coding bootcamps, near-peers who completed 

the curriculum and who were thus several months ahead in their learning journey could assist more junior 

learners going through the curriculum. Whereas in formal educational settings near-peer teaching is used 

to supplement expert teaching, at bootcamps I found that it was not uncommon for near-peer teaching to 

replace expert teaching.  

Finally, upon completing bootcamp, aspirants did not receive a credential, degree or certificate, 

that was recognized by employers and the broader occupational community. It is important to note, of 

course, that software development has historically been a meritocratic occupation where skills are more 

important than credentials (Ensmenger 2010). A ‘self-taught developer’ is a legitimate occupational 

member category, and can command the respect of both their peers and employers. However, self-taught 

developers have professional experience to attest to their expertise, even though the learning process by 

which they initially obtained expertise and job opportunities is unknown. Aspiring developers at coding 

bootcamps not only did not have credentials, but they also lacked professional experience. Legitimate 

peripheral participation opportunities available to novices in the form of internships and new graduate roles 

were largely not available to aspirants, because these roles required candidates to be either students or recent 

graduates of CS or other relevant engineering degree programs. As a result, when novices coming from 

bootcamps entered the job market, they had neither the credentials nor the professional experience that are 

used in external labor markets to support one’s claim to being a legitimate job candidate. Despite these 

obstacles, I found that many of my informants progressed from being novice outsiders to hirable software 

developers, or were able to find other coding related employment. I explore how this learning occurred. 

 

Data Collection 

There was very little academic research on coding bootcamps when I embarked on this project 

(Arbeit, Bentz, Cataldi, and Sanders, 2019). I employed inductive, ethnographic research methods, which 

are particularly valuable for building theory about novel phenomena (Glaser and Strauss 1967; Strauss and 

Corbin 1990). My goal was to develop a grounded understanding of the bootcamp path of occupational 



 14  

entry from the eyes of career switchers (Spradley 1979). I was in the field for 17 months, from August 2016 

to December 2017. I spent 8 months of my fieldwork conducting nonparticipant observation at two coding 

bootcamps. I also conducted a total of 80 semi-structured interviews with bootcamp graduates, founders 

and bootcamp staff in the San Francisco Bay Area. I conducted another 30 interviews in the Midwest to be 

able to understand career switchers’ experiences in different regional labor markets. The data utilized in 

this paper are based on observations and interviews conducted in the San Francisco Bay Area. 

 

Non-participant Observation. I initially conducted observations at over 20 learn-to-code meetups 

organized by bootcamps and other learn-to-code organizations in the San Francisco Bay Area. These 

meetups gave me an understanding of the broader field of learn-to-code organizations, and enabled me to 

make contacts in the bootcamp industry. I visited the campuses of eight different bootcamps. I collected 

information on their program structures and curricula.  

  I first gained access to CodeCamp (pseudonym) which is one of the oldest bootcamps in the United 

States, and spent two to three days a week at their San Francisco campus from December 2016 to May 

2017, following two cohorts of students. CodeCamp was my primary field site, and where I conducted the 

majority of my observations. Afterwards, I sought a second field site in the Bay Area to assess if my 

observations were unique to CodeCamp, or if there were common learning processes in place across coding 

bootcamps (Bechky and O’Mahony, 2015). For my second field site, I gained access to DevHouse 

(pseudonym), which is another well-established bootcamp in the Bay Area, similar to CodeCamp in terms 

of age and size. Both bootcamps had several campuses across the United States. They were both in-person, 

full-time, 12-to-13-week long programs considered “immersive” learning experiences. The main difference 

between the two bootcamps was their selectivity and rigor, with DevHouse being the more selective and 

rigorous one. I spent 2 months observing learners at DevHouse, during July and August 2017. My data 

sources are summarized in Table-2. 

 

----Insert Table 2 Here---- 



 15  

I was able to measure student outcomes for the two bootcamps and found that DevHouse was more 

successful than CodeCamp in facilitating career transitions both in terms of time-to-job, and initial salary. 

However, the two bootcamps had similar curricula and very similar approaches to learning. In fact, I was 

surprised to find that both bootcamps provided the same three scaffoldings to facilitate learning. 

In terms of selection, both bootcamps had an admissions process that assessed the fit and aptitude 

of applicants, involving a coding test that aspirants were given materials to prepare for. DevHouse’s 

admissions process was known to be very selective, whereas CodeCamp was not considered a selective 

bootcamp. A number of my informants from CodeCamp mentioned that they had initially applied to 

DevHouse, but attended CodeCamp after failing to pass DevHouse’s interview and live coding challenge. 

DevHouse students were required to complete a total of three projects during their program, whereas 

CodeCamp students completed one. Overall, DevHouse was known in the industry as a more rigorous 

bootcamp. 

At both bootcamps I introduced myself as a doctoral student. I was given access to the aspirant 

experience: I could come and go as I pleased and attend all events. I opted to be a nonparticipant observer 

because I realized early on that trying to learn to code myself would consume all of my attention and not 

allow for detailed observations and note taking. As an observer, I sat between rows of learners and observed 

them working alone and in pairs. I sat in on the lectures. I observed novices working in teams when they 

were building larger scale projects towards the end of their bootcamp experience. I joined them for lunch 

time activities, as well as several evening meetups. I attended panels where alumni gave talks to current 

students and advised them on their job search. I attended lectures relating to the job search process offered 

by career coaches at the bootcamps. These lectures covered topics such as how to build a resume, how to 

build an online presence, how to network through LinkedIn, and similar topics. I observed aspirants practice 

technical interviewing with each other or help improve each other’s resumes. I hung out in the alumni 

spaces at CodeCamp and DevHouse and engaged in countless informal conversations with job seekers. I 

attended several alumni events where job seekers broke into groups to commiserate over the job search 

process, share anecdotes as well as leads. I observed bootcamp graduates work on new projects together to 



 16  

improve their portfolios. Finally, I followed my informants to tech industry networking events, one job fair, 

and two hackathons. I tried to limit my observations to four to five hour episodes a day so as to be able to 

accurately record my observations. When days ran longer due to evening meetups or events, I recorded my 

observations the next day. 

 

Ethnographic Interviews. I conducted a total of 80 semi-structured interviews in the San Francisco Bay 

Area. Eleven of the interviews were with the founders and directors of different bootcamps and non-profit 

learn-to-code organizations. These interviews gave me an understanding of the industry dynamics, as well 

as the challenges facing bootcamps and their graduates in the job market. I then conducted 69 interviews 

with aspiring software developers who completed bootcamps. I recruited the majority of my interview 

participants (count=58) from my two main field sites. I interviewed 31 CodeCamp graduates and 27 

DevHouse graduates roughly 6 months after graduation. My goal in these interviews was to develop an in-

depth understanding of the occupational learning and career transition experience of my informants. I asked 

them about their backgrounds, how they decided to learn coding, how they decided to pursue a bootcamp 

training instead of a more established learning pathway, their experience at bootcamp, as well as their job 

search experience afterwards, and (if they were already employed) their adjustment to their first jobs. I 

expanded my sample with 11 interviews with graduates of five other bootcamps in the San Francisco Bay 

Area. I recruited these interviewees via LinkedIn or through the technology industry networking events I 

attended. These interviews were conducted anywhere between one month to two years after the informant 

had finished bootcamp. 

 

Backgrounds of Aspirants  

Most of the aspirants I met at bootcamps had recently decided to learn coding, tried their hands at 

it briefly to see if they liked the work and if they could do it, and applied to a bootcamp soon afterwards. 

At each bootcamp I visited there were a handful of CS graduates who were there to improve their coding 

skills, however they were a small minority and the bootcamp curriculum was not designed for them. The 



 17  

majority of aspirants were career switchers who had a 4-year college degree, who had worked for a few 

years and were pursuing a career change to obtain better jobs. Their educational backgrounds ranged from 

English to Mechanical Engineering, and their professional backgrounds ranged from low-wage service 

work to white collar professional work. A few of the learners in the cohorts I observed were recent college 

graduates from unrelated majors with no work experience. These recent graduates also considered 

themselves as career switchers because they were trying to move from one knowledge domain to another 

for the purposes of seeking employment. One near-peer instructor explained that in each cohort he oversaw, 

“the vast majority had basically never touched code in their life before bootcamp” (Luke, Aspirant, 

DevHouse, Interview). Another aspirant reflected on the diversity of his peers and the learning environment 

this created: 

 
Bootcamps attract a really diverse and interesting student body. There was a 
woman who used to be a nanny… There was a guy who worked at Wal-Mart, 
stocking shelves… There was a 55-year-old veteran who wanted to start his life 
over. There were other people who were English majors like me. (Dan, Aspirant, 
DevHouse, Interview) 
 

 
For an example of what student composition looked like at coding bootcamps, see Table-3 which 

shows the backgrounds of aspirants who graduated in February and March of 2017 from my two field sites. 

As can be seen, 84% of aspirants were complete outsiders trying to move through the inclusion boundaries 

of the occupation. My analysis centers on the experiences of these career switchers.  

 

----Insert Table 3 Here---- 

 

Format of Training 

At both CodeCamp and DevHouse, the curriculum was divided into two parts: a teaching 

curriculum which lasted roughly 2 months, and time for projects and interview preparation, which occupied 

the last three to four weeks of bootcamp. During the teaching phase, students followed a curriculum that 

walked them through learning basic algorithms, how to store and retrieve data from a database, how to use 



 18  

several backend and frontend languages to build full-stack web applications from scratch, and how to 

deploy these applications on the Internet. Bootcamps utilized a flipped classroom approach whereby 

students were given tutorials to watch, and readings and exercises to complete on their own the night before. 

The following day, classroom instruction time was spent answering questions, clarifying key concepts, and 

live coding parts of the assignment that were particularly important. At both CodeCamp and DevHouse 

lectures were brief; lasting less than an hour a day. The majority of the day was spent working on coding 

assignments in pairs. Students were paired with a different person from their class each day, and worked 

jointly on the day’s coding assignments. When aspirants needed help, they could ask questions to instructors 

and teaching assistants who were “on the floor” all day for the purpose of answering questions.   

At both CodeCamp and DevHouse formal hours were from 9:00am to 6:00pm, when everyone was 

required to be in the open office space. Many learners stayed into the late hours of the evening to finish up 

the day’s work, or to prepare for the next day, or to attend an evening meetup. Some came in on weekends 

to utilize the space for teamwork. Once the program was over, aspirants were encouraged to continue 

coming to bootcamp and use the area dedicated to alumni for their job search and interview preparation 

activities. This coworking space function that bootcamps offered their alumni was very useful for my 

research purposes, as it gave me access to informants during their job search journey, as well as meeting 

rooms where I could conduct interviews. 

 

Analytic Approach 

I analyzed my data using ATLAS.ti qualitative coding software, following the principles of 

inductive analysis and grounded theory building (Glaser and Strauss 1967; Strauss and Corbin 1990). I 

initially open-coded my field notes and interview transcripts to identify the range of themes present in my 

data. This process yielded 250 codes across more than 150 documents. The overarching themes that 

emerged were aspirants’ divergent career histories, the underlying motivations they had for wanting to learn 

coding and become software developers, their unconventional learning process, their constant self-

comparison to computer science graduates, and finally their strategies for finding jobs after bootcamp. With 



 19  

these themes in mind, I began iterating between my initial set of codes and existing literature. The learning 

processes I observed at bootcamps appeared as the most unique aspect of the bootcamp experience. Neither 

occupational socialization, situated learning nor shadow learning literatures predicted what I was seeing in 

my data. 

Since I could not find qualitative studies describing the learning and socialization process of 

software developers, I spoke to a member of faculty in the computer science department at my institution 

who is in charge of the introductory programming course to understand the learning dynamics within the 

occupation. I presented to him what I was seeing in my data and sought his opinion. I also shared my 

findings with practitioners, asking for their input. I read bootcamps related discussion threads on 

HackerNews, which is an online discussion forum used exclusively by the developer community, to 

understand what the broader occupational community thought about bootcamps as a way of training 

novices. After this process of comparing my findings with the literature, and with what is known about 

learning programming, I went back to my data with a fresh set of eyes. I reread my fieldnotes, as well as 

parts of my interview transcripts where aspirants described their learning process at DevHouse and 

CodeCamp.  

During my second pass through the data, I focused on the three major learning processes I observed 

at bootcamps that enabled breaking into software development: peer to peer learning, learning from near-

peers, and self-learning by reaching out to the broader occupational community. I aggregated various sub-

codes under these key learning processes. For example, initial codes such as ‘pair programming’ and ‘group 

project work’ were aggregated under ‘peer to peer learning’. Similarly ‘self-learning through 

documentations/tutorials/forums’ and ‘Googling’ were aggregated under the code ‘self-learning by 

reaching out to the broader occupational community’.  

At this stage of the analysis it became apparent that three scaffoldings that bootcamps put in place 

facilitated these occupational learning processes: Pair programming and group projects constituted peer 

team structures, and facilitated peer to peer learning. Near-peer role structures in the form of instructor, 

teaching assistant and mentor roles for recent graduates facilitated learning from near-peers. Finally, the 



 20  

instructional approach of bootcamps constituted encouragement to self-learn. The flipped classroom format 

during the teaching curriculum emphasized the primacy of self-learning over learning from an expert 

teacher. The constant socialization to become “self-sufficient”, and the expectation that aspirants should 

learn and implement new technologies for their final projects all constituted encouragement to self-learn. 

This second pass through the data also revealed that certain scaffoldings were more versus less 

important at different stages of the aspirants’ learning journey. Peer team scaffolds were important in 

facilitating peer to peer learning throughout the bootcamp experience. Near-peers role structures, on the 

other hand, were important during the teaching curriculum, but their importance waned towards the end of 

bootcamp when aspirants began learning technologies beyond the curriculum, and, as a result, beyond the 

expertise of their near-peers. At this stage, self-learning from documentations, tutorials, forums and other 

resources became predominant. 

The learning collective construct arose from this analysis to describe the aggregation of the three 

scaffoldings, and to emphasize the collaborative and peer and near-peer centered learning dynamics I 

observed at bootcamps. Whereas learning within formal educational institutions is led by teachers; and in 

situated learning environments learning happens as novices work alongside incumbents; learning at 

bootcamps was scaffolded as a collaborative activity undertaken by a group of peers, with the help of near-

peers, undergirded by self-learning. After this round of analysis, I shared my key findings, and my learning 

collective construct with five of my informants in the course of follow up conversations and solicited their 

feedback. These informants validated my depiction of bootcamps as learning collectives.  

In the presentation of my findings, I don’t compare but pool my data from CodeCamp and 

DevHouse because I observed the same scaffoldings in both settings (Bechky and O’Mahony, 2015). These 

two organizations operated very similarly, I later learned during one of my founder interviews, because 

they were both modeled after one bootcamp that was seen as the originator of the industry in the San 

Francisco Bay Area. I also use supplementary data from interviews with aspirants from other, similar 

bootcamps in the region.  

 



 21  

FINDINGS 

 
 Neither CodeCamp nor DevHouse resembled traditional educational institutions that are designed 

to facilitate the transmission of abstract knowledge between experts and novices. The two bootcamps 

housed few experts, and offered minimal formal teaching. The two bootcamps didn’t resemble or lead to 

internships or apprenticeships either, where newcomers could work side by side with incumbents and learn 

through legitimate peripheral participation. Instead, bootcamps scaffolded learning collectives. In what 

follows I first elaborate the concept of a learning collective, and how diverse groups of learners united by 

a shared purpose were motivated to collaborate with each other in learning programming. I then discuss the 

three scaffoldings that bootcamps provided for learning collectives, and how these facilitated occupational 

learning. I end by showing that, as an outcome of this learning process, aspirants not only developed 

occupational skills but they also formed new self-conceptions as software developers.  

 

Bootcamp as a Learning Collective 

 Bootcamps brought together diverse learners united by a shared aspiration to break into software 

development relatively quickly, without going back to school. This shared goal motivated aspirants to 

collaborate in learning, despite their divergent backgrounds and their lack of a common knowledgebase to 

build upon. One aspirant, comparing bootcamps to higher education, reflected on the consciousness he felt 

of a shared goal among his peers and how this created a collaborative community of learners: 

 
Compared to people in university with their parents paying their money, who are 
still a little amateur... most people at bootcamp were self-funding it. They had 
worked somewhere for a couple of years and they wanted to switch careers. 
Everyone was spending their own money, and they were working super hard. 
Everyone was very, very excited about learning the technology. Everyone was 
helping each other out. It was a very inclusive community of people trying to learn 
together. (George, Aspirant, CoderSpace, Interview) 
 

 
Compared to higher education settings where learners either don’t have an immediate concern 

about getting hired within the discipline they were studying, or where learners might have different interests 



 22  

and specializations, aspirants came to bootcamps with the purpose of breaking into software development. 

One aspirant explained, “In college you've got your buddies. You go out to career fairs, but you're not all 

necessarily in the same field, so you all go off and do different things.” (Carl, DevHouse). At CodeCamp 

and DevHouse, however, there was a strong collective sense that aspirants were going through a difficult 

learning journey together, working towards a prized goal. For the majority of aspirants, attending bootcamp 

was a high stakes career switching process that would lead to better jobs. Some had quit their jobs to be 

there. Many had moved from different cities or states. One aspirant explained how the high stakes 

environment also contributed to a sense of shared purpose:  

 
You are working with a lot of people who are passionate and exciting… There was 
a lot of pressure and worry about, ‘I quit my job for this. What’s going to happen 
if I’m not understanding a topic and I fail and then this is all for nothing?’… 
Everyone was pretty committed and kind of on the same page. (Armin, Aspirant, 
DevHouse, Interview)  

 
 
Aspirants worked in the same open office space throughout the day, and were available to each other for 

the purposes of collaborating on coding assignments and projects, building resumes and preparing for job 

interviews. Learning at bootcamps largely took place within this community of peers, with the help of near-

peers, through self-study. One aspirant noted that “the value in the program is largely contained in the peers 

you meet and the way they motivate you to accelerate your learning over, for example, self-study.” (Luke, 

Aspirant, DevHouse, Interview). I propose the term learning collective to describe these groups of peers 

and near-peers who learn together collaboratively and purposefully to reach a shared goal. In this context, 

the shared goal was to progress from novice to hirable software developer. In the following sections, I 

examine the three scaffoldings that bootcamps put in place to support learning collectives: peer team 

structures, near-peer role structures, and encouragement to self-learn. 

 
Peer Team Structures  
 

While a shared aspiration of breaking into software development motivated aspirants to collaborate 

in learning, this collaboration was made possible through peer team structures. At both CodeCamp and 



 23  

DevHouse, when aspirants were introduced to a new topic, it was followed by a coding assignment or small 

project to facilitate learning by doing. However, aspirants rarely worked by themselves. Bootcamps put in 

place two forms of peer team structures to facilitate collaboration and knowledge exchange between peers: 

a pair programming setup that was enforced early on at both CodeCamp and DevHouse, and team projects 

that were required towards the end of the bootcamp curriculum. Both of these scaffoldings supported peer 

to peer teaching and learning.  

 

Pair programming. During the early, teaching phase of the curriculum (roughly the first 2 months at 

CodeCamp and DevHouse), aspirants worked on coding assignments in pairs. Pair programming involves 

two developers sitting side-by-side at a single computer terminal and writing code together. In industry, 

pair programming as a technique is used to enhance code quality, because one developer can catch the 

mistake of his peer or suggest a more efficient way of writing a program. However, this is an expensive and 

rare practice, as it involves two engineers working on the same piece of code. At bootcamps, pair 

programming was used as a pedagogical tool to facilitate learning among peers. 

 It is important to note that coding as an activity is not naturally conversational or collaborative. It 

is in fact a solitary activity that requires deep concentration by a lone practitioner. There is collaboration at 

the macro scale as different branches of code written by individuals need to be merged. However, 

professional developers largely work alone3. Pair programming made the solitary activity of writing code a 

conversational, collaborative endeavor that facilitated learning among peers. Pair programming was utilized 

not only at my two field sites, but also at many of the other bootcamps I visited in the San Francisco Bay 

Area.  

 In a pair programming setup, one person (the driver) is in charge of typing the code, while the 

other person (the navigator) decides the overall direction of the work and dictates the driver what to type. 

 
3 In normal professional practice, conversation occurs when developers ask for help from each other, give updates to 
each other during coordination meetings, or in the course of code reviews. Coding itself is not a conversational 
activity. 



 24  

The driver and navigator, who are both novices in this case, discuss as they code, and take turns driving or 

navigating. Because of this conversational element, at any hour of the day a constant hum could be heard 

throughout the expansive open office space at both CodeCamp and DevHouse. Sometimes partners 

progressed in lock-step as they thought out loud. For example, I was observing Adam and Tim pair 

programming one day, working on an assignment that asked them to parse a CSV file using Ruby, which 

was the first coding language they learned. They needed to figure out how to search the file for people with 

the same email domain name.  

 
Tim and Adam are staring at the screen. Adam remains quiet for some time. 
Tim: What is your thinking right now? 
Adam explains. 
Tim: Okay, that sounds reasonable.  
Adam starts typing. Tim is following and approving.  
Adam: Do we delete most of this? [He selects a line of code with his cursor and 
looks at Tim] 
Tim: Yeah we can delete most of it… Can you go back to the debugger real quick? 
Adam opens the debugger and they read it together.  
Adam: This part is fine. 
Tim: Yeah 
 

 
 As can be seen in this short vignette, both aspirants were able to follow what the other was doing 

and offer suggestions as they tried to figure out how to solve a problem in their code. In other cases, one 

person could have a better grasp of the day’s topic than their partner, and this could create a temporary 

teacher-learner dynamic. One aspirant explained, 

 
The driver should not be typing anything that the navigator didn't navigate them to 
do, but there's obviously flexibility there. If I felt the person was not really 
competent or prepared for the day, I would usually talk more even if I was driving. 
For example, I’d say, ‘We need something that will do this.’ (Sal, Aspirant, 
DevHouse, Interview) 

 
 
 Aspirants at both DevHouse and CodeCamp were advised to help each other and teach each other 

when they noticed their partner was struggling with a topic. A career coach at DevHouse, for example, told 

a new cohort of aspirants to “practice being a patient teacher” to each other. He said,  

 



 25  

Sometimes the person you are working with will want to charge through the 
material. Sometimes it feels like your partner is not prepared, not getting stuff, and 
you feel like they’re holding you back… It is your job to make sure your partner 
understands what you are doing. If you are the one who is more comfortable with 
the material, practice being a patient teacher. Communicate your knowledge. 
(Chris, Staff, DevHouse, Fieldnotes) 

 
 
 This culture of sharing knowledge and of teaching each other was echoed at CodeCamp. One staff 

member explained to aspirants that the norm at CodeCamp was to collaborate in learning. She said, 

 
Our learning environment here is very different than a traditional school 
environment… In traditional education we learn to be competitive… Here we 
don’t compare ourselves to each other and we don’t compete. We have a 
collaborative learning environment where teaching each other is the norm. If you 
feel you know something, teach it to another person… We are all learning a new 
skill here. (Amy, Instructor, CodeCamp, Fieldnotes) 
 

 
 Socialized in this manner, aspirants learned to see each other as sources of knowledge. If they had 

knowledge that others lacked, they offered it voluntarily; and similarly, they didn’t shy away from asking 

help from their peers. Engaging in such a teaching/learning dynamic was viewed as being beneficial to both 

parties. The learner benefited from obtaining quick and easy access to knowledge from someone sitting 

close to them rather than struggling with the material on their own. The person in the teacher role, on the 

other hand, benefited from verbalizing and trying to explain what they knew. Many aspirants reported in 

interviews, without being prompted, that their comprehension improved when teaching, because it made 

them retrieve and communicate newly obtained information.  

 The norm of teaching one’s peers and learning from peers was first established in the course of 

pair programming, as this setup forced aspirants to work together on the same task in a conversational 

manner and explain to each other their thought processes. One aspirant explained how pair programming 

was beneficial in his learning journey because it enabled such knowledge exchange between peers at a time 

when both parties didn’t have a good grasp on the expertise: 

 
I think it is valuable especially earlier on, because for one, if you are behind, then 
you can then sit by your partner and he is teaching you. I mean they have Teaching 
Assistants but, you know, as far as how many there are versus students, it's good 



 26  

to let people teach each other. Plus, if I happen to be a little bit more on top of the 
material than my partner, then I'm basically teaching him or her, and that's great 
for me. That helps me learn better. You learn, I think, a lot better as you teach 
something. And maybe you think you know something and you think you're 
teaching but then they correct you. So that's helpful too. (Sam, Aspirant, 
DevHouse, Interview) 
 
 

 In the course of conversation, as aspirants worked on the same piece of code together, gaps in 

knowledge were exposed and addressed collectively. Aspirants worked in a constant stream of conversation 

which made them verbalize their knowledge, make connections between different pieces of information, 

and recognize and fix knowledge gaps and misunderstandings. I observed such an interactional, 

collaborative working style being established in the first two months as aspirants pair programmed every 

day. Afterwards, when aspirants stopped pair programming and moved on to building larger projects alone 

or in teams, the highly interactional working style continued. Aspirants continued to rely on their peers for 

quick access to knowledge. 

 

Group projects. A second peer team structure that facilitated peer to peer learning was the group projects 

that aspirants completed. For these projects, aspirants were asked to build web applications from the ground 

up. Some built projects that were based on novel ideas, while others built clones of popular web applications 

such as Facebook, Twitter or Soundcloud. During their group projects, aspirants continued the practice of 

talking through problems they faced and exchanging knowledge with their peers. Thus, the practice of 

assessing situations in terms of who has the required knowledge and either seeking or offering that 

information continued.  

 Aspirants took on a ‘teacher’ role towards their peers casually and situationally when the need 

arose, and stepped out of the role at the end of a teaching encounter (Goffman 1961; Bailey and Barley, 

2011). The below exchange shows how aspirants took on teaching roles towards one another depending on 

who was more comfortable with the topic at hand. I was observing four aspirants in the early weeks of 

bootcamp trying to plan how to build a short team project, an application similar to Wikipedia, using Ruby 

on Rails, which is a web application framework written in Ruby—a coding language that many bootcamps 

sbrn702
Highlight



 27  

taught novices as their first coding language due to its similarity to plain English. The group huddled around 

a whiteboard and decided that their first task was to decide how to organize the information that would be 

contained in the application’s database, using their knowledge of associations and Active Record, which is 

a tool that simplifies how a programmer works with the application’s database. James felt he understood 

the topic and, without hesitation, went up to the whiteboard and picked up the marker. He started writing 

down the associations, in other words the linkages between different classes of objects such as ‘user’, 

‘article’, and ‘article category’ that they would need in a Wiki application. After a few minutes of listing 

how these objects should be associated with each other, his friend Adam interfered, 

 
Adam: I think we’re at a good point with Active Record. Let’s go on to user stories 
[User stories are a method for representing the different ways in which a user can 
interact with the application] 
James: Okay. I’m not so good at that. Will someone else take the marker? 
While waiting for someone to step up, Adam started thinking out loud. 
Adam: As creator, I should be able to create or edit [a wiki entry].  
James is still at the whiteboard and, next to Creator, he writes down “create” and 
“edit”. Adam looks around, then defers to Kelly whom they know has prior 
experience with user stories. James encourages Kelly to speak up. 
James: Is this how we make user stories? 
Kelly, from where she is sitting, begins teaching. 
Kelly: One good example of a user story is user login. The way I like to do it is to 
do a wireframe. You get the routes out of the way too. 
(CodeCamp, Field notes) 
 

  
This episode of peer-to-peer teaching occurred when aspirants were building mini projects using material 

covered in the curriculum. They had all studied Active Record that week and were learning how to apply 

their knowledge through a short project building a wiki application. James took on a teacher role because 

he felt he had a better grasp on the topic. The team however had not learned how to create user stories 

before, and for that knowledge they relied on Kelly, who had worked as a Project Manager in her previous 

career and had some experience with user stories. Even though her knowledge was far from perfect, it was 

a starting point that the group could build on. 

 Group projects and pair programming were formal structures put in place to facilitate peer to peer 

learning in all of the bootcamps I visited. Individual bootcamps could also have more idiosyncratic ways 



 28  

of encouraging peer-to-peer teaching and learning. Two other bootcamps I visited, for example, encouraged 

aspirants to organize short lecture sessions to teach their peers a new technology they had learned. One 

bootcamp had a formal evening hour dedicated to such peer-to-peer teaching sessions.  

 Aspirants talked about the cognitive and emotional benefits of peer-to-peer teaching in interviews 

without being prompted. Besides the cognitive benefits of information retrieval, of making connections 

between different pieces of information, and having others affirm or fix your understanding, aspirants talked 

about how teaching one’s peers could be a source of motivation and a boost to confidence. As one aspirant 

put it, “[When you teach] you feel knowledgeable yourself, and by saying it out loud you realize how much 

you know” (Kim, Aspirant, CodeCamp, Field notes). 

 Reliance on peer-to-peer learning dynamics at coding bootcamps could benefit some learners more 

than others. Sometimes an aspirant who was ahead of her peers could find herself in an asymmetrical 

exchange relationship to the community, where she offered more help than she was able to get. One student 

at CodeCamp who was more knowledgeable when she started bootcamp, for example, realized that she 

quickly progressed ahead of her peers and found herself rarely in the learner role in these knowledge 

exchanges. She said, “Bootcamp helped me with confidence. At the bootcamp I helped a lot of people more 

than I was helped. So that made me feel, ‘Oh I do understand stuff...’” (Jill, Aspirant, CodeCamp, 

Interview). As this quote suggests, while Jill expressed benefiting from teaching her peers from an 

emotional perspective, she found herself in an asymmetrical exchange relationship. Another aspirant who 

completed an online, self-paced bootcamp where the community conversed through an online chatroom 

explained this asymmetry as happening between learners who progressed faster in the curriculum and left 

their peers behind:  

 
I definitely noticed that the further I got in the curriculum—even though we're 
finishing TechSpace I'm very much a beginner—as I got towards the end I became 
one of the experts. So, as you progress… the ability for other people to help me, 
the pool from which I could ask for help kept getting smaller, and smaller, and 
smaller. (Dathan, Aspirant, TechSpace, Interview). 

 
 



 29  

These quotes suggest there may be drawbacks to peer-to-peer learning for aspirants who outpace their peers, 

and find themselves disproportionately in teacher, as opposed to learner roles in knowledge exchanges. For 

questions that could not be resolved within peer-team structures, aspirants turned to their near-peers, who 

helped and taught novices in the roles of mentor, teaching assistant and instructor.  

 

Near-Peer Role Structures  

Another way in which CodeCamp and DevHouse supported and structured learning collectives was 

by creating near-peer role structures that put recent graduates in teaching and mentorship relationships with 

newcomers. Expert instruction, whether explicitly done or subsumed in the practice of work, is central to 

our traditional understanding of occupational learning. However, expert teaching played a minimal role 

within learning collectives. First of all, the flipped classroom format deemphasized teaching. Lectures every 

day were brief. Most of teaching happened as students asked questions to instructors and teaching assistants 

while working on coding assignment and projects. Moreover, many instructors and teaching assistants were 

not experts, but rather near-peers who had recently completed the bootcamp curriculum. I found that it was 

common practice in the bootcamp industry to hire recent graduates to fulfill teaching roles. These near-

peers were only several months ahead of the novices in question, but as a result of having gone through the 

curriculum, could teach newcomers even though they were not yet experts themselves. Near-peers’ reason 

for choosing to stay at bootcamp rather than starting their job search immediately was to start earning a 

salary while continuing to hone their skills as they helped more junior learners go through the curriculum. 

At DevHouse—which had very successful student outcomes—almost all instruction was delivered 

by near-peers. At CodeCamp, teaching staff included two full-time instructors and two part-time mentors 

who were professional programmers. The rest of the teaching staff consisted of half a dozen instructors and 

teaching assistants who were near-peers. Despite having more staff who could be called experts, 

CodeCamp’s student outcomes in terms of time to job and average starting salary were not as good as 

DevHouse, where near-peer instruction was the norm.  

The minimal role that formal, expert teaching played at bootcamps came up in interviews 



 30  

unsolicited. However, only occasionally was this presented as a disadvantage of the bootcamp environment. 

Students were socialized to think of software development as an occupation that required learning how to 

self-learn. At CodeCamp they were told by staff that, "this is not a school” and that “you are responsible 

for your own learning” (Fieldnotes). I was surprised to hear the same words repeated by a member of staff 

to a new cohort of aspirants at DevHouse. The staff member said, “Initially this place might feel like school. 

But it’s not. This is a career switching process… Part of what we are trying to cultivate in you is self-

reliance, which is so much a part of being a working engineer” (DevHouse, Fieldnotes). Socialized in this 

manner, aspirants normalized the minimal role that expert teaching played in their learning, and the fact 

that lectures were often delivered by near-peers. Laura summarized the teaching she received at Digital 

Academy, another reputable bootcamp, as follows: 

 
[At bootcamp] you are learning from other people who are learning themselves. 
There is not a lot of hands-on instruction from people who know what they are 
doing. If you need help you can get help, but you are getting help from people who 
went through the course three months ago. (Laura, Aspirant, Digital Academy, 
Interview) 
 

 
The people that Laura was getting help from were near-peer teaching assistants who spent the entire 

day answering questions “on the floor” (Fieldnotes), referring to the open office space where aspirants sat 

together, huddled around terminals. Laura went on to comment that the prevalence of near-peer teaching 

made the target expertise seem more achievable to her. She said, “It really helped solidify the idea that this 

isn't unobtainable knowledge. This is stuff you can figure out on you own. [The bootcamp will] give you 

the tools that you need to figure out how to do this on your own.” (Laura, Aspirant, Digital Academy, 

Interview) 

 The emphasis on learning among a group of peers with the assistance of near-peers, and self-

reliance in the learning process reduced Laura’s learning anxiety by making her view the target expertise 

as obtainable through a nontraditional learning pathway. Others treated near-peer teaching simply as a 

matter of fact. When I confronted one DevHouse graduate in a follow-up interview about the fact that most 

instruction was delivered by near-peers, he said, “I didn't even think of them as recent graduates, for the 



 31  

most part. They just were people who knew how to do this stuff that I was trying to do” (Sal, Aspirant, 

DevHouse, Interview).   

The practice of near peer teaching also served to make the learning collective model of occupational 

entry more cost effective and scalable. Since professional software developers command a high salary in 

the labor market, hiring many expert instructors was cost prohibitive. Instead, bootcamps hired large groups 

of near-peers who were present and accessible all day long in the roles of instructor, teaching assistants and 

mentors. Having a large group of constantly available near-peers allowed novices to access help quickly 

when they needed it, and not spend long periods of time “being stuck”, struggling with technical 

complexity. Remaining stuck for extended periods of time was seen as being demotivating when trying to 

learn a new skill. Aspirants were instructed by staff to ask for help and not remain stuck on the same 

problem for long. For example, at CodeCamp, aspirants were told by staff, “Don’t be stuck more than 10 

minutes, ask for help” (Field notes).  

 The amount of help aspirants were able to get from their near-peers varied between the teaching 

portion of bootcamp, and the last month devoted to projects. Near-peers were more knowledgeable and 

hence more helpful for subjects covered in the teaching curriculum. To be able to answer any question 

beyond the curriculum, however, near-peers would need to have come across that information through their 

own self-studying efforts. As a result of this limitation, I found that near-peer teaching waned towards the 

end of bootcamp, as aspirants started working on novel technology stacks for their projects. During this 

project phase of bootcamp, aspirants opted to learn new programming languages or frameworks that were 

in demand in the labor market. If a near-peer happened to study the same technology in their own time, 

they could offer assistance. However, this was not always the case. For example, one project team that I 

was observing at CodeCamp was trying to learn React, which is a front-end JavaScript library that they 

wanted to learn because it was in high demand in the labor market at the time. Nick and Cindy related how 

they could not get help from their teaching assistants because they had not studied React either. Eventually 

they got help from an alumni mentor who was volunteering at the bootcamp in the evening. This recent 

graduate was able to help Nick and Cindy because she had learned React at her job.  



 32  

 
I find Nick and Cindy in the morning, who are telling me how they overcame the 
“fear and despair”, as they put it, of trying to learn React.  
Nick: Well, I’m exaggerating a bit but, we are using React. And we had a very 
hard time trying to understand it. We were really bashing our heads. 
Cindy: We are trying to leverage a bunch of React and Redux. 
Interviewer: When did you start trying to learn React? 
Nick: Saturday. 
Cindy: We’re out of the really bad weeds right now, and we’re in the normal 
weeds. 
Interviewer: Could none of the instructors help? 
Nick: We’ve asked but no one really knows React. 
Interviewer: How about the graduates? 
Nick: The evening mentors have been super helpful. 
Cindy: Because they’re learning React at their jobs or for interviews. 
 

 
These two aspirants overcame the initial difficulty of understanding and working with a new 

technology by finding an alumni mentor who wasn’t a part of the regular teaching staff, but who was 

volunteering at the bootcamp after work. As can be seen from this example, due to the limitations of the 

teaching staff’s expertise, near-peer teaching waned towards the end of bootcamp. Overtime, aspirants 

began to rely more and more on their own ability to seek information and apply newly obtained information 

to their work. In the next section, I talk about the final scaffolding that supported learning at coding 

bootcamps: encouragement to self-learn.  

 

Encouragement to Self-Learn by Reaching out to the Expertise of the Occupational Community  

 Bootcamps encouraged and provided opportunities for self-learning as the third scaffolding of 

learning collectives, to push aspirants to learn beyond the bootcamp curriculum, and prepare them for 

careers in software development. During the teaching phase of bootcamp, both the flipped classroom 

format, and the minimal classroom teaching that was provided, encouraged self-learning. In the final three 

to four weeks of bootcamp when aspirants worked on their own projects, they were expected to fully rely 

on their self-learning skills as they learned and implemented new coding languages and frameworks of their 

choosing. Aspirants did this by reaching out to the expertise of the broader occupational community.  



 33  

 To access expertise beyond the bootcamp curriculum, aspirants learned to navigate a multitude of 

knowledge artefacts created and freely shared online by the broader occupational community of software 

developers. These knowledge artefacts included video tutorials, documentation, question and answer 

forums (e.g. Stack Overflow), blog posts, and public code repositories (e.g. GitHub). Documentation refers 

to users’ manuals for software tools, typically produced by the creators and maintainers of the tools. When 

learning a new technology, aspirants initially consulted these documentations. Aspiring developers also 

heavily utilized Stack Overflow, a question and answer forum that is the most widely used platform for 

accessing a crowdsourced body of programming knowledge (Vasilescu, Filkov, and Serebrenik 2013; Bosu, 

Corley, Heaton, Chatterji, Carver and Kraft 2013; Wang and Jiang 2013). Reading through discussion 

threads on this platform allowed aspirants to tap into conversations between professional programmers. In 

most cases, aspirants did not need to post a question themselves, but could access the expertise they needed 

by searching through existing question and answer threads. Aspirants also watched video tutorials produced 

by other developers when they needed to quickly learn how to accomplish a task. In the course of breaking 

into software development, aspirants learned how to search through and find needed information among 

these vast learning resources of the occupational community made freely available to interested outsiders 

like themselves.  

 For example, I observed Adam build an application that shows a user at any point in time what 

restaurants are open for the next two hours within a certain radius. For this simple coding project, Adam 

needed to learn how to implement Google Maps API (application programming interface), which would 

integrate his application with Google Maps. He first watched a video tutorial created by a developer 

advocate from Google to understand the basics of using the API. As he was working, he started searching 

Stack Overflow and other sources to find information on how to implement various features on the map 

such as dropping a pin on the location of the user. By the time he completed his Google Maps integration, 

Adam had accessed the expertise of multiple dispersed professionals and learned from them virtually and 

asynchronously in order to accomplish his task at hand.  



 34  

  Another aspirant described building projects as a process of “helping yourself” as opposed to 

getting help from near-peers at bootcamp. She said, “You basically don't get too much technical help at [the 

project] stage. You basically help yourself and, hopefully, you have learned to help yourself by that point” 

(Sam, Aspirant, DevHouse, Interview). Another aspirant said, “You're learning on your own and you are 

just looking up documentation a lot. You're looking up Stack Overflow and researching yourself”. (Oliver, 

Aspirant, DevHouse, Interview) 

 
 All of my informants interpreted their bootcamp experience as a process of “learning how to learn 

new technologies”. Aspirants considered this a key skill they developed at bootcamp. As Phil noted, “I 

think the biggest part [of bootcamp] was learning what to look for. Learning how to ask and how to get an 

answer” (Phil, Aspirant, CodeCamp, Field notes). Another aspirant explained how near-peers also guided 

him towards developing self-learning skills. He said, 

 
The process of learning [at bootcamp] was different. Problem solving, debugging, 
research skills... Whenever I'd ask a question, instead of just answering, [TAs] 
would be like, ‘Let's say I wasn't here. How would you figure this out?’ You start 
to figure out, I'm going to look at my code. I'm going to use the debugger. I'm 
going to go online. I'm going to go through all the steps in this process... You learn 
a lot more when you have to struggle through the process to figure it out. More 
than you would if someone was like, that's wrong because of this. (Clark, Aspirant, 
DevHouse, Interview) 
 

 
In the course of self-learning from online resources made available by the broader occupational community, 

aspirants cultivated a reliance on themselves as self-learners, and developed a relationship with the 

dispersed, virtual occupational community of software developers as the source of the expertise they sought. 

Matt explained, 

 
The biggest skill I learned [at bootcamp] is how to learn other coding languages. 
I’ve gotten really good at Googling problems. When you run into a problem, 99 
times out of a 100 someone else has run into the same problem. So when you 
Google your error message, you find a Stack Overflow entry or a tutorial... It’s 
amazing how many resources are available for free in tech. I am way less scared 
about striking out on my own [after bootcamp]. (Matt, Aspirant, CodeCamp, 
Fieldnotes) 
 



 35  

 
While striking out on one’s own after bootcamp implied self-reliance, this was made possible by cultivating 

a reliance on the broader occupational community for expertise, when one needed it.  Aspirants recognized 

this group of developers with whom they interacted virtually, and referred to ‘the developer community’ in 

their conversations: 

 
It is an incredible community. There are about 25 million people in the world who 
consider themselves to be in software development one way or the other. And these 
people learned through each other. For example, Stack Overflow–it’s all people 
helping each other figure things out. (Jim, Aspirant, CodeCamp, Interview) 
 

 
Aspirants talked both about a developer community at large, as well as the smaller user communities formed 

around particular technologies. One near-peer teaching assistant at DevHouse summarized the process of 

self-learning I observed at bootcamps, specifically referring to the creators of the knowledge artifacts that 

aspirants needed to consult in order to continue their self-learning journey. To a group of newcomers he 

said, 

 
Google and Stack Overflow are your friend. Learn your way around 
documentation and communities. These are way better than asking one person--
It’s a collection of people’s knowledge… If you think you need a tool, someone 
probably made it already, so first search online. You won’t need to handroll it [i.e. 
build it yourself] most of the time. (DevHouse, Fieldnotes) 
 

 
The communities that he was referring to were the smaller communicates of practice formed around 

particular technologies such as Ruby, Python or JavaScript that aspirants at bootcamps were trying to learn. 

These virtual groups of practitioners were the distant experts whom aspirants at bootcamp were 

asynchronously learning from when they read documentation, or searched through a Stack Overflow thread 

relating to that particular technology. While aspirants were self-learning and cultivating self-reliance, they 

were relying on the knowledge sharing practices of the occupational community they were trying to become 

a part of. Skill development within learning collectives was thus made possible by the organization of 

expertise in the target occupational community. Without the democratic knowledge sharing practices of the 

software development community, this mode of occupational learning would not be possible. 



 36  

 Table-4 summarizes the three scaffoldings bootcamps put in place, and how each scaffolding 

contributed to occupational learning, and to the learning collective as a whole. 

 

----Insert Table-4 Here---- 

 

Progression from Novice to Hirable Software Developer 
 
 The three scaffoldings facilitated occupational learning such that novices who were formerly 

outsiders to the occupational community could develop both occupational skills and new self-conceptions 

as software developers. In this section, I show how aspirants’ sense of self as builders and developers 

evolved hand in hand with their skill development. I also present job placement outcomes I calculated for 

the two cohorts of aspirants at my field sites.   

 
Aspirants experience change in self-conceptions. Over the course of several months, I observed aspirants 

enter bootcamp as laymen who were outsiders to the occupational community, with little familiarity with 

coding, and towards the end of the bootcamp experience slowly begin to refer to themselves as ‘builders’ 

and ‘developers’ as they learned how to relate to software and build increasingly complicated projects. 

Aspirants’ sense of progression from outsider to hirable software developer—albeit junior ones—depended 

on their ability to exercise skill, which was marked by success moments in the course of everyday work.  

 Software development practice lent itself to success moments that are sprinkled throughout the 

day when code works. Such success moments brought on a feeling of elation that was sometimes expressed 

out loud by aspirants and shared with their peers. The rest of the time was spent trying to figure out how to 

get code to work. My informants referred to this latter cognitive and emotive state as “being stuck”. All day 

long, aspirants cycled between being stuck, and experiencing success moments when code worked. This 

was the rhythm of practice among aspirants learning software development. The below excerpt shows one 

aspirant, Bill, sharing the pride and elation he felt when his code finally worked after he was stuck for a 

long time: 



 37  

 
Bill lifts his fist in the air and says, “I did it! I can go home now!” He holds up his 
computer, showing his friends the rendering of a Google maps on his screen. 
Aaron: Congrats man. What was the problem? 
Bill: I wasn’t giving it a height, because I wasn’t styling it or anything. So I gave 
it a height and it worked!  
Aaron: Oh yeah man, Google maps doesn’t work if you don’t give it a height and 
width.  
Bill [smiling, turns to me]: This is the reason to write code. This moment. 
Aaron: Yeah, that high is totally worth it.  
Bill: Today is the best day right now. I worked through all my errors too. So now 
it’s all good. Until the next thing.  
(DevHouse, Field notes) 
 

 
By “the next thing,” Bill was referring to the next time he would be stuck, which he expected to be soon. 

The elation that he expressed (“Today is the best day right now”), or the “high” as Aaron put it, was a 

common sentiment among aspiring developers that accompanied moments of success when code worked. 

As can be seen in this exchange, success moments were easily demarcated in the process of learning to 

code. Aspiring developers began to think of themselves as builders and developers as they experienced 

success moments in their work, ranging in complexity from writing simple programs that produced desired 

outputs to building a clone of a popular web application from scratch, to building their own projects and 

deploying these applications on the Internet for others to see and interact with. Seeing the fruits of their 

labor on the computer screen served as an undeniable manifestation of technical accomplishment. Over 

time, as aspiring developers experienced increasingly significant success moments, they began to think of 

themselves as ‘real developers’ and not just amateurs or outsiders.  

For example, I was observing two aspirants from DevHouse pair programming one day when they 

achieved a new success moment that made them feel like software developers for the first time. Roy and 

Alice were in the early weeks of bootcamp and were slowly progressing from working on small coding 

challenges to building simple web applications. On this day, they were trying to build a to-do list application 

and I observed them struggle to figure out how to connect the backend (or server side) of the application 

that held the database, with the frontend, which is the part that the user sees and interacts with in the browser. 

After multiple trial and error attempts, they finally managed to get their code to work. Alice shouted in joy: 



 38  

 
Alice: We connected our frontend and backend!  
Roy: Which had never happened before! 
Alice: I’m pretty sure we just became software developers. Like this moment was 
it! (DevHouse, Field Notes) 
 

 
In this instance, and in many other such success moments, I observed aspirants express a change in their 

self-conceptions. Different success moments could produce the feeling of no longer being a layman, and of 

stepping into a new occupational domain. Jim described the first time he started feeling like a developer: 

 
I started feeling like a developer when we started dealing with databases and 
routing, and learning about concepts like RESTful routing as a best practice and 
the whole HTTP handshake and how to chain together web pages and then start to 
do that programmatically so you can write little programs that will generate your 
whole website for you and build out all these different pages. That's when it really 
clicked and I thought, ‘Oh wow, I can do this!’ All those little pieces that I've been 
learning now fit together into something that I can say, ‘Look, I built this. This is 
something I can do now!’ (Jim, Aspirant, CodeCamp, Interview, Emphasis added)  
 

 
Being able to “build” things, to create a web application, validated Jim’s sense of self as a developer. In 

William’s case, being able to quickly learn and work with new technologies reinforced his sense of 

progression from layman to software developer:  

 
[Before bootcamp] I thought the technology was unattainable by someone like me. 
I did not study Computer Science. I did not grow up with computers at hand. [At 
bootcamp] you are shown a new technology every two days. You have to get up-
to-speed quickly, within several hours, and then you have to learn how to navigate 
that technology to build stuff in it. I think that process of learning something 
quickly... not mastering it, but coming up to a real competency… Going through 
that a lot of times builds this mental muscle of, "I can build whatever I want." 
(William, Aspirant, Digital Academy, Interview) 
 

 
 Here William is describing his journey from being an outsider for whom the expertise was 

“unattainable,” to someone who feels he can learn and implement any web related technology in a short 

span of time. In this way, aspirants’ sense of self (‘who I am’) developed hand in hand with their skills 

(‘what I can do’) (Hughes 1958; Nelson and Irwin 2014). The projects that aspiring developers completed 

at bootcamp were particularly conducive to feeling like a ‘builder’ and ‘developer’ because aspirants built 



 39  

these applications from scratch. Whereas in a professional setting a developer might work on a large 

codebase, trying to maintain an existing software system and making only small modifications to it, the 

bottom-up project work that bootcamps asked from their students allowed aspirants to execute one or more 

web application ideas of their own. Building an application from the ground up allowed aspirants to feel 

like developers. Their projects were visible, tangible, interactive web applications that came alive on their 

computer screens. Sam, who loved playing video games, felt this pride when he was able to build a simple 

JavaScript game for the first time:  

 
Aside from the learning, I guess that the biggest thing [about the bootcamp 
experience] was being like ‘Wow I can't believe I actually can do these things!' 
With coding, there are these small pieces that you learn how to do, and then there 
is also the larger idea that I can take these small pieces and build them into 
something big and amazing. I'm a PC gamer. Now I could actually build – not 
those huge millions of dollar budget games but the smaller games, indie games – I 
could actually code those now! (Sam, Aspirant, DevHouse, Interview) 
 

 
In these success moments, aspiring developers felt they had a grasp on the expert practice they were trying 

to break into. Having technologies respond to them in the way they intended was a major accomplishment 

in their eyes (“I could actually code those now!”, or “I could build whatever I want!”). It was as a result 

of the accumulation of these success moments that aspirants felt comfortable calling themselves software 

developers as they entered the labor market in search of jobs where they could continue learning while 

working alongside professional programmers.  

  

Job Search Outcomes of Aspirants. Despite the short duration and unconventional nature of the 

occupational learning pathway that they pursued, my data show that a large portion of aspirants attending 

CodeCamp and DevHouse during the time of fieldwork found jobs in entry level software developer roles 

or in hybrid roles requiring coding skills. I gathered job placement data for two cohorts of students who 

graduated during February and March of 2017 from my two field sites. I excluded 13 aspirants who were 

not complete ‘outsiders’ to the target occupational community, either because they had a CS degree or 

because they had worked in IT related employment prior to bootcamp. After excluding these learners, I 



 40  

calculated job placement outcomes for the remaining 70 aspirants. These outcomes, which are broken down 

by bootcamp, duration of job search, and type of role, are summarized in Table-5.  

 

----Insert Table-5 Here---- 

 

Job placement outcomes differed by bootcamp. DevHouse was significantly more successful than 

CodeCamp. Six months after graduation 71% of DevHouse graduates and 46% of CodeCamp graduates 

had started programming related employment. Whereas DevHouse graduates were placed predominantly 

in software developer roles (69%), six months after graduation only 27% of CodeCamp graduates were 

working as software developers. Another 18% of CodeCamp graduates had started jobs in what my 

informants called “hybrid roles” that combined coding knowledge with other skillsets, such as Technical 

Support Engineer or Solutions Engineer. Hybrid roles were less desirable than Software Developer roles 

because they required less programming expertise and commanded lower salaries. Yet my informants still 

considered themselves successful when they accepted a hybrid role, because they could not have attained 

these jobs without knowing how to code, and because these jobs also came with significantly higher salary 

and benefits than their jobs before bootcamp. I therefor accept the emic definition of success, and consider 

transitions into hybrid roles also as a successful learning outcome.4 Nine months after graduation, 83% of 

DevHouse graduates were working as software developers and 2% were working in hybrid roles. Among 

CodeCamp graduates, 32% had become software developers and 27% had started work in hybrid roles. For 

another 23% of CodeCamp graduates, their transition into software development took more than a year. 

One way to interpret these results is to consider the fact that DevHouse was widely believed to be 

one of the most selective bootcamps in the United States, enrolling candidates that it believed had the 

highest aptitude for learning programming, whereas CodeCamp was considered almost “open access” (Staff 

 
4 Of the 11 aspirants in total who accepted hybrid roles after bootcamp, I observed three move into software developer roles over 
time. Four were promoted within their hybrid roles. One remained in a hybrid role without promotion. Two moved into Technical 
Program Management roles, and one dropped out of coding.  



 41  

member, CodeCamp, Fieldnotes). Therefore, it could be argued that these job placement outcomes reflect 

two ends of the spectrum in terms of what learners can hope to achieve by attending a coding bootcamp for 

the purposes of changing careers.  Another factor to consider when interpreting these results is the vastly 

different attitudes that the two bootcamps displayed once aspirants finished the program. DevHouse’s 

careers team encouraged students to obtain employment quickly after graduation by giving them deadlines 

and weekly targets for how many jobs they should apply to. CodeCamp applied no such pressure to its 

graduates. Career services were offered on demand and I observed many aspirants taking breaks after 

bootcamp, and taking time to improve their coding skills for several months before applying to jobs.  

 

DISCUSSION 

 

To sum up, aspirants trying to break into software development expertise by attending coding 

bootcamps learned the basics of programming and how to continue learning on their own while working 

amongst a community of peers and near-peers. The bootcamp curriculum that guided their learning was 

intense but short, and limited in focus. Aspirants studied the teaching materials on their own, were provided 

with brief lectures during their first two months of learning, and spent the majority of their time at bootcamp 

working on coding assignments with their peers, with the help of instructors and teaching assistants, many 

of whom were their near-peers. The three scaffoldings that facilitated this learning process were 1) peer 

team structures in the form of pair-programming and group projects, 2) near-peer role structures that 

engaged more advanced learners in teaching and mentorship relationships with more junior learners, and 

3) encouragement to self-learn, which undergirded the entire occupational learning process, and prepared 

aspirants for learning beyond the bootcamp curriculum.  

The concept of a learning collective is proposed in this paper to describe the collaborative, peer 

and near-peer focused learning environment at bootcamps that helped aspirants develop occupational skills. 

As a prerequisite to collaboration, aspirants shared an understanding that they were working towards a 

common, valued goal: breaking into a skilled occupation in a relatively short amount of time. Collaborative 



 42  

learning as a practice was established in the early stages of learning at bootcamps through peer team 

structures, and continued into aspirants’ job search process as they collaborated in preparing for behavioral 

and technical interviews.  

I found that being able to collaborate in the act of learning, exchanging information with peers, and 

receiving help from near-peers allowed aspirants to more easily overcome the difficulty associated with 

trying to break into a foreign and technically complex domain of expertise.  Compared to learning on one’s 

own, which is an established, albeit opaque mode of entry into the occupation of software development 

(Ensmenger 2010), this collaborative mode of learning enabled aspirants to access knowledge quickly and 

easily from other aspirants around them. Instead of ‘being stuck’ for long periods of time when they didn’t 

understand a concept, or the reason for an error in their code, aspirants could turn to a peer sitting next to 

them, or a near-peer teacher who could help them get ‘unstuck.’  

Besides the motivational benefits of not being stuck for long, of accessing help quickly and easily, 

being part of a learning collective gave aspirants opportunities to teach their peers what they knew, which 

improved comprehension. Both pair programming and group projects made coding a conversational, 

collaborative activity. Aspirants stepped into teaching roles towards their peers situationally, and in the 

course of teaching they retrieved information, made connections between different pieces of information, 

and addressed gaps in their knowledge that became apparent in the course of knowledge exchange. The 

potential benefits of peer to peer and near-peer teaching are widely recognized in the educational 

psychology literature (Whitman 1988; Topping 1996; Fiorella and Meyer, 2014; Rashid, Sobowale and 

Gore 2011). For the peer or near-peer acting as teacher, there is considerable evidence suggesting that 

teaching will help consolidate and improve their knowledge (Roscoe and Chi 2007&2008). The potential 

benefits for the learner in these exchanges are that they are learning from someone who can potentially 

better tailor their explanations to the learners’ needs as a result of being in the same position, or having 

been in the same position only recently (Lockspeiser, O’Sullivan, Teherani, Muller 2008). Bootcamps as 

learning collectives made extensive use of such peer and near-peer teaching dynamics.  



 43  

 Finally, while learning at bootcamps happened within a community of peers and near-peers, it was 

undergirded by self-learning. Aspirants learned how to learn programming themselves by navigating the 

vast resources made available online by the occupational community. So even though aspirants did not 

always have access to proximate experts they could consult, they were able to consult the expertise of the 

broader, virtually organized occupational community and learn from them. Thus, the organization of 

expertise and the norms of knowledge sharing within the target occupational community made the learning 

collective mode of occupational entry possible.  

 
 
Implications for Occupational Learning 

The main theoretical contribution that this study makes to our understanding of occupational 

learning is to show one process by which outsiders can obtain occupational expertise: by participating in 

learning collectives. Prior conceptualizations of how novices acquire occupational expertise predominantly 

describe cases where novices pursue the established learning pathways of an occupation, and by virtue of 

doing so, are granted insider status from the start of their learning journey (e.g. Becker et al. 1961; Van 

Maaneen, 1973; Pratt et al. 2006). Novice insiders’ learning is then sponsored by incumbents who make 

learning opportunities available to them (Schleef 2006; Ranganathan 2017). Learning is conceived as 

happening predominantly between incumbents and the novices whose occupational entry they are assisting. 

Even though peers and near-peers are mentioned in the description of occupational communities (Lave and 

Wenger, 1991), their role in teaching novices does not receive sufficient attention.   

Aspirants at bootcamps, in contrast, started their learning journey as outsiders pursuing a contested 

learning pathway and desiring to move through the inclusion boundaries of their target occupation. They 

did not enjoy the same level of access to experts and expert practice that novices who are insiders enjoy. 

As a result, their learning process differed from prior conceptualizations of occupational learning identified 

in the literature. Table-6 offers a comparison between skill development within learning collectives, and 

other conceptualizations of occupational learning found in the literature: occupational socialization, situated 

learning and shadow learning. 



 44  

 

----Insert Table 6 Here---- 

 

Whereas novices who are considered insiders to an occupational community learn from proximate 

incumbents who sponsor their learning, aspirants at bootcamps were primarily surrounded by other 

aspirants—their peers and near-peers—who were also trying to break into software development. When 

aspirants had questions, help often came from these peers and near-peers. The lack of access to proximate 

experts was not a function of the status or quality of the bootcamp either. DevHouse, which was a more 

successful bootcamp, had fewer expert teachers than CodeCamp. Given minimal access to proximate 

experts, aspirants at bootcamps acquired occupational expertise through engaging in knowledge exchange 

with their peers and near peers, and through self-learning from the knowledge resources made available by 

the occupational community.  

In terms of access to legitimate peripheral participation opportunities, which are an indispensable 

part of entry into skilled occupations (e.g. Brown and Duguid 1991), aspirants pursuing the bootcamp path 

of learning could not apply to new graduate positions or software engineering internships, because these 

roles were reserved for novices following the established learning pathways of the occupation. At the time 

of research, bootcamps were still a new industry and not considered a legitimate credential by most 

employers. As a result, workplaces did not commonly sponsor legitimate peripheral participation 

opportunities for aspirants pursuing the bootcamp path of learning. In order to obtain access to professional 

practice and the opportunity to learn from working with practitioners, bootcamp graduates needed to 

convince employers that they were professional developers in the first place. In other words, their initial 

admittance into professional practice had to be in the role of a ‘full participant’ (Lave and Wenger, 1991), 

which aspirants were granted only if they could demonstrate skill.  

The paradox of having to demonstrate skill in order to obtain opportunities for skill development, 

which is common in interorganizational careers (O’Mahony and Bechky 2006), plagued aspiring developers 

attending bootcamps. However, the paradox was more pronounced for aspirants attending bootcamps 



 45  

compared to the contractors that O’Mahony and Bechky (2006) studied. The contractors in their study 

engaged in stretchwork, in other words “work that largely fits with an individual’s previous work 

experience but introduces a small novel element" (O’Mahony and Bechky, 2006: 919), in order to extend 

their skills in a new direction. An example would be a Java developer learning C++ or, in a more extreme 

case, a front-end developer learning back-end development. These contractors were staying within the 

boundaries of their occupation when seeking stretchwork. Aspirants at bootcamps, on the other hand, were 

coming from diverse educational and professional backgrounds and trying to move from one domain of 

knowledge and associated practice into an unrelated domain. Without any formal education or professional 

experience to attest to their expertise, aspirants used only their projects to showcase their skills, and tried 

to obtain opportunities for further skill development in entry level roles. 

 These findings can generalize to a variety of other contexts. New organizing practices coupled with 

new technologies are not only changing the nature of work (Barley, Bechky, and Miliken 2017), they are 

also changing how people learn new skills and take on new occupational roles as they navigate their careers 

(Barley and Kunda 2004; Smith 2010; Halpin and Smith 2017). For contemporary workers, it is becoming 

increasingly common to cross not just organizational, but also occupational boundaries in the course of 

one’s career (Tolbert 1996). Many career switchers who are unable to go back to school or take on 

internships and apprenticeships may find themselves in the position of novice outsiders trying to break into 

an occupation. For people in this situation, learning collectives could facilitate entry into many skilled 

occupations where credentials are not a requirement to practice, and where the target expertise can be 

learned through self-study, in a DIY manner. These occupations have lower levels of social closure (Van 

Maanen and Barley 1984; Weeden 2002). Many skilled occupations today potentially could be entered via 

DIY learning. There are no formal educational requirements, other than having a four-year college degree 

in most cases, to entering UX research, UX design, data science, marketing, or some roles within finance, 

for example. If sufficient learning resources are shared by the target occupational community with 

interested outsiders, then learning collectives could be formed to utilize these resources and facilitate 

occupational learning. 



 46  

The knowledge sharing practices of the target occupational community would therefore be an 

important factor affecting the success of occupational entry via learning collectives. While Internet native 

occupations such as programming appear to be at the forefront of peer-to-peer sharing of occupational 

expertise online (Wasko and Faraj 2000; Wasko and Teigland 2004; Vasilescu, Filkov, and Serebrenik 

2013; Schwartz 2018), many other occupations are migrating their expertise sharing practices to the 

Internet, in effect making them accessible to lay audiences and opening up pathways for DIY entry into 

occupations (Susskind and Susskind, 2015). In general, boundaries around professional expertise are 

becoming more permeable as “the new knowledge economy enables new ways of acquiring and sharing 

expertise that do not conform to professionalization theory” (Croidieu and Kim 2017: 3). Learning 

collectives can be thought of as a more structured and community supported version of DIY learning 

processes, as aspirants follow a shared curriculum and benefit from collaborative learning dynamics—

facilitated by peer team structures and near-peer role structures—to support and accelerate self-learning. 

Thus, any occupation that can be entered through DIY learning processes is an occupation that can be 

entered, potentially more easily, through leveraging learning collectives. 

 

Boundary Conditions and Directions for Future Research 

Several characteristics of software development practice and the occupational community 

surrounding it enabled the breaking in process that I observed at bootcamps. First of all, software 

development, despite being a skilled occupation, has many self-taught members (Ensmenger, 2010). 

Breaking into software development is much more acceptable than breaking into law, medicine or civil 

engineering where the lack of a degree would disqualify an aspirant from consideration completely (Abbott 

1988). Therefore, these findings could not generalize to job areas where credentials or licensing are a 

prerequisite for practice. 

Another factor that made software development expertise accessible to novice outsiders was the 

occupational community’s culture of knowledge sharing. Software developers, more so than many other 

occupational groups, share an ethos of open access to knowledge (Levy 1984; Rheingold 2000; Lakhani 



 47  

and von Hippel 2003; O'Mahony and Ferraro 2007). This was reflected in the abundance of knowledge 

artefacts such as tutorials, public code repositories, and knowledge sharing platforms like Stack OverFlow 

(Lakhani & von Hippel, 2003; Wang, Lo, and Jiang, 2013) that aspiring developers were able to access as 

amateurs and outsiders. Without such abundant resources that are designed for the use of not just seasoned 

practitioners but also beginners, it would be difficult for an occupational community to be amenable to DIY 

entry, or entry by leveraging learning collectives.  

Finally, the immateriality of software was another factor enabling the learning processes that I 

observed. Software as an object of practice could be inexpensively set up outside of a professional context. 

All that aspiring developers needed to practice coding and build projects was a personal computer and 

software programs to set up a development environment, and these they could download for free. Moreover, 

the immateriality of software meant that errors were relatively costless, and novices could engage in 

countless cycles of trial and error in their learning process. My findings may not generalize to other 

occupations where either the tools necessary for professional practice are expensive to setup, or errors are 

costly. 

Further studies are needed to understand the wider range of alternative learning processes that are 

occurring today within and at the borders of occupational communities, and what this means for expertise 

more broadly. Importantly, in the case of skilled occupations, further research is needed to investigate 

whether aspirants who break into a skilled occupation without following established learning pathways 

suffer any disadvantages later in their careers, or if they are able to overcome the shortcomings of their 

initial learning process and build on their expertise over time, either through self-study or through gaining 

experience on the job. If the latter were not possible, then it can be argued that the process of breaking into 

an occupation can lead to a subcategory of occupational members who are stuck in the lower tiers of their 

occupation, unable to progress in their careers. In the case of aspiring software developers attending coding 

bootcamps, the answer can be found by following aspirants five or ten years into their careers.  

Lastly, this study points to some implications for employers and practitioners. If employers are 

interested in developing alternative talent pipelines into programming and related jobs (e.g. Colby, Ma, 



 48  

Robinson, and Yee2016) then there appears to be a need for designing situated learning opportunities for 

this purpose. At the time this fieldwork took place, there were a very limited number of apprenticeships 

reserved for bootcamp graduates at technology companies. These apprenticeships were designed to 

accommodate what employers called ‘nontraditional job candidates’ to diversify their talent pipelines. 

Making such situated learning opportunities involving more mentorship a part of industry practice would 

be helpful in integrating aspirants coming from nontraditional backgrounds. Finally, employer tailored 

bootcamp programs can be another path forward, where employers communicate their hiring needs to 

bootcamps that in turn design tailored curricula to develop needed skillsets.  

 

 
 
  



 49  

Bibliography  
 
Abbott, A. 1988. The system of professions: An essay on the division of expert labor. Chicago: University 

of Chicago Press. 
Abbott, A. 1991. The Future of Professions: Occupation and Expertise in the Age of Organization. In P. S. 

Tolbert and S. R. Barley (Eds.), Research in the Sociology of Organizations, 8:17-42. JAI Press Inc.   
Anteby, M. 2013. Manufacturing Morals: The Values of Silence in Business School Education. Chicago, 

IL: University of Chicago Press 
Anteby, M., Chan, C. K., and DiBenigno, J. 2016. Three Lenses on Occupations and Professions in 

Organizations: Becoming, Doing, and Relating. The Academy of Management Annals, 10,(): 183-244. 
Arbeit, C. A., Bentz, A., Cataldi, E. F., and Sanders, H. 2019. Alternative and Independent: The Universe 

of Technology-Related Bootcamps. RTI Press. https://doi.org/10.3768/rtipress.2018.rr.0033.1902 
Arthur, M. B. 2008. Examining contemporary careers: A call for interdisciplinary inquiry. Human 

Relations, 61(2): 163-186 
Arthur, M. B., and Rousseau, D. M. 1996. The boundaryless career: A new employment principle for a new 

organizational era. New York: Oxford University Press. 
Ashforth, B. E. 2001. Role transitions in organizational life: An identity-based perspective. Mahwah, N.J: 

Lawrence Erlbaum Associates. 
Bailey, D. E. and Barley, S. R. 2011. Teaching-learning ecologies: Mapping the environment to structure 

through action. Organization Science, 22: 262-285. 
Barley, S.R., Bechky, B. A., and Miliken, F. J. 2017. The Changing Nature of Work: Careers, Identities 

and Work Lives in the 21st Century. Academy of Management Discoveries, 3(2): 111-115 
Barley, S. R. and Kunda, G. 2001. Bringing work back in. Organization Science, 12(1): 76–95  
Barley, S. R. and Kunda, G. 2004. Gurus, Hired Guns, and Warm Bodies: Itinerant Experts in a Knowledge 

Economy. Princeton: Princeton University Press. 
Baruch, Y. and Vardi, Y. 2016. A Fresh Look at the Dark Side of Contemporary Careers: Toward a Realistic 

Discourse. British Journal of Management, 27: 355–372  
Bharatan, I., Swan, J., and Oborn, E. 2022. Navigating Turbulent waters: Crafting learning trajectories in a 

changing work context. Human Relations. 75(6): 1084-1112 
Beane, M. 2018. Shadow Learning: Building Robotic Surgical Skill When Approved Means Fail. 

Administrative Science Quarterly.  64(1): 87-123 
Bechky, B.A. and O’Mahony, S., 2015. Leveraging comparative field data for theory generation. In K.D. 

Elsbach & R.M. Kramer (Eds), Handbook of qualitative organizational research: Innovative pathways 
and methods, pp.168-176. New York: Routledge 

Becker, H. S., and Carper, J. 1956. The Elements of Identification with an Occupation. American 
Sociological Review, 21(3): 341-348. 

Becker, H. S., Geer, B., Hughes, E. C., and Strauss, A. L. 1961. Boys in White: Student Culture in Medical 
School. Piscataway, NJ: Transaction. 

Bidwell, M.J., and Briscoe. F. 2010. The Dynamics of Interorganizational Careers. Organization Science. 
21(5): 1034-1053 

Bosu, A., Corley, C. S., Heaton, D., Chatterji, D., Carver, J. C., and Kraft, N. A. 2013. Building reputation 
in StackOverflow: An empirical investigation. IEEE Working Conference on Mining Software 
Repositories (MSR 2013). 89-92. 



 50  

Brown, J. S., and Duguid, P. 1991. Organizational learning and communities-of-practice: Toward a unified 
view of working, learning, and innovation. Organization Science, 2: 40–57 

Bulte, C., Betts, A., Garner, K., Durning, S. 2007. Student teaching: Views of student near-peer teachers 
and learners. Medical Teacher, 29(6):583–590. 

Cappelli, P. 1999. The new deal at work: Managing the market-driven workforce. Boston, Mass: Harvard 
Business School. 

Colby, S., Ma, H., Robinson, K., and Yee, L. 2016. What it will take to make the tech industry more diverse. 
Harvard Business Review. 03/15/2016 

Contu, A. and Willmott, H. 2003. Re-embedding Situatedness: The Importance of Power Relations in 
Learning Theory. Organizations Science. 14(3): 283-296 

Croidieu G., and Kim, P. H. 2017. Labor of Love: Amateurs and Lay-expertise Legitimation in the Early 
U.S. Radio Field. Administrative Science Quarterly. 63(1): 1-42. 

Demetry, D. 2017.  Pop-Up to Professional: Emerging Entrepreneurial Identity and Evolving Vocabularies 
of Motive. Academy of Management Discoveries, 3(2): 187-207. 

Ensmenger, N. 2010. The Computer Boys Take Over: Computers, Programmers, and the Politics of 
Technical Expertise. Cambridge, MA: MIT Press 

Fine, G. A. 1985. Occupational aesthetics: How trade school students learn to cook. Urban Life. 14: 3-32 
Fine, G. A. 1996. Justifying work: Occupational rhetorics as resources in restaurant kitchens. 

Administrative Science Quarterly. 41: 90-115 
Foirella, L. and Mayer, R. E. 2014. Role of expectations and explanations in learning by teaching. 

Contemporary Educational Psychology. 39(2): 75-85 
Freidson, E. 1970. Profession of Medicine: A Study of the Sociology of Applied Knowledge. New York: 

Dodd, Mead. 
Freidson, E. 1986. Professional powers: A study of the institutionalization of formal knowledge. Chicago, 

Illinois: Univ. of Chicago Press. 
Glaser, B. G., and Strauss, A. L. 1967. The discovery of grounded theory: Strategies for qualitative 

research. New York, NY: Aldine de Gruyter. 
Hall, D. T. 2004. Protean Career: A quarter-century journey. Journal of Vocational Behavior. 65: 1-13 
Halpin, B. W. and Smith, V. 2017. Employment Management Work: A Case Study of Theoretical 

Framework. Work and Occupations. 44(4): 339-375 
Hughes, E. C. 1958. Men and their work. London: Forgotten Books. 
Hughes, E. C. 1971. The sociological eye: Selected papers. Chicago: Aldine-Atherton 
Ibarra, H. 1999. Provisional selves: Experimenting with image and identity in professional adaptation. 

Administrative Science Quarterly, 44: 764–791. 
Ibarra, H. 2003. Working Identity: Unconventional Strategies for Reinventing Your Career. Cambridge, 

MA: Harvard Business School Press. 
Ibarra, H. and Obodaru, O. 2016. Betwixt and between identities: Liminal experience in contemporary 

careers. Research in Organizational Behavior. 36: 47–64 
Johns, T., and Gratton, L. 2013. The third wave of virtual work. Harvard Business Review, 91(1): 66. 
Jordan, B. 1989. Cosmopolitical obstetrics: Some insights from the training of traditional midwives. Social 

Science and Medicine, 28: 925–937 
Kalleberg, A. L. 2000. Nonstandard employment relations: Part-time, temporary and contract work. Annual 



 51  

Review of Sociology, 26: 341-365 
Kalleberg, A. L. 2009. Precarious work, insecure workers: Employment relations in transition. American 

Sociological Review, 74(1): 1–22 
Kellogg, K. C., Valentine, M. A., & Christin, A. 2020. Algorithms at work: The new contested terrain of 

control. Academy of Management Annals, 14(1): 366-410 
Lakhani, K. R., and von Hippel, E. 2003. How Open Source Software Works: "Free" User-to-User 

Assistance. Research Policy, 32(6): 923–943  
Lave, J., and Wenger, E. 1991. Situated Learning: Legitimate Peripheral Participation. Cambridge: 

Cambridge University Press. 
Levy, S. 1984. Hackers: Heroes of the Computer Revolution. New York: Dell Publications 
Lockspeiser, T., O’Sullivan, P., Teherani, A., Muller, J. 2008. Understanding the experience of being taught 

by peers: the value of social and cognitive congruence. Advances in Health Science Education, 13:361-
372. 

Marshall, H. M. 1972. Structural constraints on learning: Butchers’ apprentices. American Behavioral 
Scientist, 16: 35–44. 

Michel, A. 2011. Transcending Socialization: A Nine-Year Ethnography of the Body’s Role in 
Organizational Control and Knowledge Workers’ Transformation. Administrative Science Quarterly, 
56 (3): 325-368 

Moore, W. E. 1976. The Professions: Roles and Rules. New York: Russell Sage Foundation 
Morrison, E. W. 1993. Newcomer Information Seeking: Exploring types, modes, sources and outcomes. 

Academy of Management Journal, 36(3): 557-589. 
Mulas, Victor; Paradi-Guilford, Cecilia Maria; Allende Letona, Elene; Dalphond, Zhenia Viatchaninova. 

2017. Coding bootcamps: building future-proof skills through rapid skills training. World Bank Group. 
Washington, D.C. 

Nelson, A. J. and Irwin, J. 2013. Defining what we do all over again: Occupational identity, technological 
change and the librarian/Internet-search relationship. Academy of Management Journal.  

O’Mahony, S., and Bechky, B. 2006. Stretchwork: Managing the career progression paradox in external 
labor markets. Academy of Management Journal, 49: 918–941 

Orr, J. E. 1996. Talking about Machines: An Ethnography of a Modern Job. Ithaca: Cornell University 
Press 

Petriglieri, G., Petriglieri, J.L., and Wood, J.D. 2017. Fast tracks and inner journeys: Crafting portable 
selves for contemporary careers. Administrative Science Quarterly. 63(3): 479-525. 

Pratt, M. G., Rockmann, K. W., and Kaufmann, J. B. 2006. Constructing professional identity: The role of 
work and identity learning cycles in the customization of identity among medical residents. Academy 
of Management Journal, 49: 235–262. 

Rahman, H. A. 2021. The invisible cage: Workers' reactivity to opaque algorithmic evaluations. 
Administrative Science Quarterly, 66(4): 945-988. 

Ranganathan, A. 2017. Train Them to Retain Them: Work Readiness and the Retention of First-time 
Women Workers in India. Administrative Science Quarterly, 63(4): 879-909. 

Rheingold, H. 2000. The virtual community: Home steading on the electronic frontier. MIT Press 
Riemer, J. W. 1977. Becoming a Journeyman Electrician: Some Implicit Indicators in the Apprenticeship 

Process. Sociology of Work and Occupations, 4(1): 87-98. 
Roscoe, R. D., and Chi, M. T. H. 2007. Understanding tutor learning: Knowledge building and knowledge-



 52  

telling in peer tutors’ explanations and questions. Review of Educational Research, 77(4), 534–574. 
Roscoe, R. D., and Chi, M. T. H. 2008. Tutoring learning: The role of explaining and responding to 

questions. Instructional Science, 36, 321–350. 
Rosenblat, A. 2018. Uberland: How Algorithms Are Rewriting the Rules of Work. University of California 

Press 
Saks, A. M., and Ashforth, B. E. 1997. Organizational Socialization: Making Sense of the Past and Present 

as a Prologue for the Future. Journal of Vocational Behavior, 51(2): 234-279. 
Saks, A. M., and Gruman, J. A. 2012. Getting newcomers on board: A review of socialization practices and 

introduction to socialization resources theory. In S. Schmidt (Ed.), The Oxford Handbook of 
Organizational Socialization: 27-55. New York : Oxford University Press 

Schleef, D. J. 2006. Managing elites: Professional socialization in law and business schools. Lanham: 
Rowman and Littlefield.  

Schwartz, D. 2018. Embedded in the Crowd: Creative Freelancers, Crowdsourced Work, and Occupational 
Community. Work and Occupations. 45(3): 247-282. 

Scott, W. R., Holzman, B., Ris, E. and Biag, M. 2017. The Changing Ecology of Higher Education in the 
San Francisco Bay Area. In W. R. Scott, and M. W. Kirst (Eds.), Higher Education and Silicon Valley: 
Connected but Conflicted. Baltimore: Johns Hopkins University Press 

Smith, V. 2010. Enhancing employability: Human, cultural, and social capital in an era of turbulent 
unpredictability. Human Relations, 63(2), 279–300 

Spradley, J. P. 1979. The Ethnographic Interview. New York: Holt, Rinehart and Winston 
Strauss, A., and Corbin, J. 1990. Basics of qualitative research: Grounded theory procedures and 

techniques. Newbury Park, CA: Sage Publications 
Susskind, R., and Susskind, D. 2015. The future of the professions: How technology will transform the work 

of human experts. Oxford, UK: Oxford University Press. 
Tolbert, P. S. 1996. Occupations, organizations, and boundaryless careers. In M. B. Arthur and D. M. 

Rousseau (Eds.), The boundaryless career: 331-349. NewYork, NY: Oxford University Press 
Topping, K. 1996. The effectiveness of peer tutoring in higher and further education: A typology and review 

of the literature. Higher Education. 32 (3): 321-345  
Trice, H. M. 1993. Occupational subcultures in the workplace. Ithaca, NY: ILR Press. 
Van Maanen, J. 1973. Observations on the making of policemen. Human Organization, 32(4): 407-418. 
Van Maanen, J. 1978. The asshole. In: Manning, Peter K. and Van Maanen, John, eds. Policing: A View 

from the Street. Los Angeles: Goodyear Press 
Van Maanen, J., and Barley, S. R. 1984. Occupational communities: Culture and control in organizations. 

Research In Organizational Behavior, 6: 287-365. 
Van Maanen, J., and Schein, E. H. 1979. Toward a theory of organizational socialization. In B.M. Staw 

(Ed.), Research in organizational behavior (Vol. 1, pp. 209-264). Greenwich, CT: JAI Press. 
Vasilescu, B., Filkov, V., and Serebrenik, A. 2013. StackOverflow and GitHub: Associations between 

software development and crowdsourced knowledge. Proceedings of the 2013 International Conference 
on Social Computing, pp. 188–195. 

Waguespack, L., Babb, J. S., and Yates, D. J. 2018. Triangulating coding bootcamps in IS education: 
Bootleg education or disruptive innovation? Information Systems Education Journal, 16(6): 48-58 

Wang, S., Lo, D., and Jiang, L. 2013. An Empirical study on developer interactions in StackOverflow. SAC 
'13 Proceedings of the 28th Annual ACM Symposium on Applied Computing, pp. 1019-1024  



 53  

Wasko, M., and Faraj, S. 2000. It Is What One Does: Why People Participate and Help Others in Electronic 
Communities of Practice. The Journal of Strategic Information Systems, 9, 155-173. 

Wasko, M. M. and R. Teigland. 2004. Public Goods or Virtual Commons? Applying Theories of Public 
Goods, Social Dilemmas, and Collective Action to Electronic Networks of Practice. The Journal of 
Information Technology Theory and Application, 6(1): 25-41 

Wenger, E. 1998. Communities of practice: Learning, meaning, and identity. Cambridge, U.K: Cambridge 
University Press. 

Whitman, N. A. 1988. Peer Teaching: To Teach Is to Learn Twice. ASHE-ERIC Higher Education Reports. 
Washington. 

Wood, D., Bruner, J. S., and Ross, G. 1976. The role of tutoring in problem solving. Journal of Child 
Psychiatry and Psychology. 17: 89-100. 

Wilensky, H. L. 1964. The Professionalization of Everyone? American Journal of Sociology, 70(2): 137-
158.  
  



 1  

Table 1. Comparison of different conceptualizations of occupational learning  
 

 
 
 
 
 

Occupational 
Socialization 

Situated 
Learning

Shadow 
Learning 

Role of the novice in 
relation to the 
occupational community

Insider Insider Insider

Role of formal instruction Formal instruction occurs 
during schooling

Access to legitimate 
peripheral participation 
opportunities

Full access Full access

Limited access. 
Organization of work and 

associated technologies 
hinders effective legitimate 

peripheral participation

Locus of learning

In the classroom, and 
during engagement with 

professional practice in the 
workplace

Engagement with 
professional practice 

in the workplace

Successful learners 
opportunistically create their 
own learning opportunities 

across different professional 
and informal spaces

Outcome of learning 
Occupational skill and 
identity development 

License to practice

Occupational skill and 
identity development 

License to practice

Only shadow learners 
develop necessary skills for 

robotic surgery      

Both successful and 
unsuccessful learners are 

licensed to practice 

Importance of formal instruction is downplayed. Novices 
learn on the job, working alongside incumbents. 

For skilled occupations, novices often share formal 
educational background



 1  

Table 2. Summary of data collection 
 

 
 
 
 
 
Table 3. Backgrounds of aspirants at DevHouse and CodeCamp 
 

 
  

Type Description 

31 CodeCamp graduates

27 DevHouse graduates

11 graduates of five other coding bootcamps 

11 bootcamp founders and directors

Observations at 20 learn-to-code meetups in the San Francisco Bay Area (Sept - Dec 2016)

Observations at CodeCamp (Dec 2016 - May 2017)

Observastions at DevHouse (July - Aug 2017)

Artifacts created by coding bootcamps and other learn-to-code organizations (informational 
brochures, syllabi, career guides etc.)

Blog entries created by bootcamp students / graduates about their learning journeys

Interviews

Ethnographic 
Observations

Archival Data

Career switcher 60 (72%)

New graduate (non-CS) career switcher 10 (12%)

New graduate (CS) 5 (6%)

Background in IT related work 8 (10%)

TOTAL 83 (100%)

Aspirant backgrounds



 1  

Table 4. How bootcamps scaffolded occupational learning  
 
 

 

Scaffolds Enabled Practices Examples Contribution to 
Occupational Learning

Contribution to 
the Learning Collective

Pair programming:
"Pair programming is amazing for learning things whether you are less knowledgable or more 
knowledgeable. If you know more, you get to explain to others. If you know less, you get to learn 
from the person who knows more.” (Kim, Aspirant, CodeCamp, Fieldnotes)

Brian and Jake are pairing for the day. They are talking amongst each other, trying to understand what 
a reducer does. There is some back and forth between them, then Brian says, "So the reducer decides 
what needs to be done and tells the store what to change."
Jake nods and says, "Makes sense".
Brian is the driver so he starts typing. Jake is following his code as he types. He says, "Don't forget we 
need to freeze state".
Brian says, "Oh right. I guess this is how we do it" and goes on to type “Object.freeze(state)" 
(DevHouse, Fieldnotes)

Tim points the curser to several lines of code and says, "I don't get what's going on here". Adam 
explains and says, "That’s my understanding.” (DevHouse, Fieldnotes)

Group projects:
"I didn’t know Python or Raspberry Pi until this (group) project… I actually started late with Python 
because I was trying to get the Raspberry Pi working. So when I started learning Python, the other 
guys had already been grappling with it, so I asked them. They showed me what they learned." (Phil, 
Aspirant, CodeCamp, Interview)

All group members are sitting in one room, trying to get the Ruby on Rails and React marriage 
working. Trevor is struggling with a problem and finds a possible solution on Stack Overflow. He 
announces to the group the error and the possible solution. One of his teammates says he’s not sure. 
Another teammate, Gary, says "I'm working on the same problem, give me a couple of minutes." 
Trevor waits for Gary to share what he learned. (CodeCamp, Fieldnotes)

Near-Peer 
Role 

Structures

Near-peers teach novices in 
formal instructional roles

"A lot of the teaching assistants had graduated from the previous cohort" (Scott, Aspirant, DevHouse, 
Interview)

"I think the precedence of [near-peers] served as encouragement that in just a couple weeks, a given 
student could go from learning the material for the first time to being in the role of teacher to students 
that started after them." (Jim, Aspirant, CodeCamp, Interview)

"[Before starting bootcamp] I was really wary of the whole idea that many people who teach are people 
who have gone through the program...But what was cool about it, was a lot of people who had stayed 
to TA really loved the teaching aspect of it...Maybe their first cohort, they're a little rusty, but (with 
every cohort), they are reiterating on it and learning more...The actual curriculum that you go through 
there is just sort of grilled into the TA's so much that they're masters of it." (Oliver, Aspirant, 
DevHouse, Interview)

Aspirants access 
knowledge quickly and 

easily

Time spent 'being stuck' is 
minimized and motivation 

is maintained

Learning from near-peers 
can reduce learning anxiety

Teaching improves 
comprehension 
for near-peer

Learning collective 
becomes more cost efficient 

and scalable

Peer Team 
Structures

Aspirants access 
knowledge quickly and 

easily

Time spent 'being stuck' is 
minimized and motivation 

is maintained

Teaching improves 
comprehension for aspirant 

in teacher role

Asking for help and 
teaching each other are 

normalized

Learning becomes a 
collaborative, community-

based activity

Aspirants collaborate on 
learning 

Aspirants situationally take 
on teacher role towards 

each other



 2  

 
Scaffolds Enabled Practices Examples Contribution to 

Occupational Learning
Contribution to 

the Learning Collective

Encouragement 
to Self-Learn

Aspirants teach themselves 
using knowledge resources 
created by the occupational 

community

"The way I usually describe the curriculum we went through to people not in the know is usually in the 
lines of, 'We didn't learn how to program. We learned how to learn how to program.'... The 
curriculum was much more focused on the pair programming and tackling the coding challenges of the 
day with minimal time learning directly from an instructor."  (Adam, Aspirant, CodeCamp, Interview)

"Strive towards independence...You will have support during the first two months, but you’ll get less 
and less support as time goes on. When you come across a bug, I know you might think I’ll ask a TA, 
they’ll see it faster than me. Don’t do that. Read documentation. Use Google and Stack Overflow." 
(Staff member, DevHouse, Fieldnotes)

"They want you to learn how to learn on your own because that’s how the industry is." (CodeCamp, 
Fieldnotes)

"If you have a problem, Google the issue first before asking a TA… You are in charge of yourself to a 
large extent. When you are on the job, in your new position, you’ll be given a codebase, you’ll be 
given a list of tickets to solve, and you’re just going to have to figure it out. That’s how the real world 
works. So flex those muscles now". (Staff member, DevHouse, Fieldnotes)

Aspirants continue to learn 
beyond the bootcamp 

curriculum 

Aspirants are socialized for 
an occupation with constant 

learning demands

Aspirants develop a 
relationship to the broader 
occupational community as 

a source of expertise

Learning collective is reliant 
on the knowledge sharing 

practices of the target 
occupational community



 1  

Table 5. Job search outcomes broken down by time to job, role, and bootcamp 
 
 
 

Duration of Job 
Search New Role DevHouse CodeCamp Total Number 

of Aspirants

< 6 months Software Developer 34 (69%) 6 (27%) 40 (57%)

Hybrid Role 1 (2%) 4 (18%) 5 (7%)

6-9 months Software Developer 7 (14%) 1 (5%) 8 (11%)

Hybrid Role 2 (9%) 2 (3%)

>9 - 12 months Software Developer 3 (6%) 3 (4%)

Hybrid Role 1 (2%) 2 (9%) 3 (4%)

>12 months Software Developer 1 (2%) 5 (23%) 6 (9%)

Hybrid Role 1 (2%) 1 (1%)

Did not accomplish career transition 1 (2%) 1 (2%) 2 (3%)

TOTAL 48 22 70*

*This number excludes the 5 computer science majors, and the 8 aspirants  who had prior experience in an IT 
related field



 1  

Table 6. How skill development within learning collectives compares to prior conceptualizations of occupational learning 
 

 

Occupational 
Socialization Situated Learning Shadow Learning Skill Development within

Learning Collectives

Role of the novice in relation 
to the occupational community Insider Insider Insider Outsider, aspiring to cross the inclusion 

boundaries of the occupation

Role of formal instruction Formal instruction occurs 
during schooling

Minimal formal instruction
 

Aspirants come from diverse educational 
backgrounds 

Access to legitimate peripheral 
participation opportunities Full access Full access

Limited access. Organization of 
work and associated technologies 

hinders effective legitimate 
peripheral participation

Very limited access. In vast majority of cases, 
aspirants need to get hired as 'full member' to 

access professional practice*

Locus of learning

In the classroom, and 
during engagement with 

professional practice 
in the workplace

Engagement with 
professional practice 

in the workplace

Successful learners 
opportunistically create their own 

learning opportunities across 
different professional and 

informal spaces

Learning happens at bootcamp and in other 
informal spaces through self-study and 

project work, in collaboration with peers and 
near-peers

Outcome of learning 
Occupational skill and 
identity development 

License to practice

Occupational skill and 
identity development 

License to practice

Only shadow learners develop 
necessary skills for robotic 

surgery      

Both successful and unsuccessful 
learners are licensed to practice 

Aspirants learn basic occupational skills, and 
how to continue learning

Aspirants experience change in identity

No license to practice necessary. Yet aspirants' 
lack of credentials and lack of professional 

experience make job search difficult. 
Aspirants need to demonstrate skills through 

projects to convince employers of their 
hirability

Importance of formal instruction is downplayed. Novices learn 
on the job, working alongside incumbents. 

For skilled occupations, novices generally share formal 
educational background

*Novices could potentially participate in open source software development projects, which would constitute a case of legitimate peripheral participation, but I did not observe any such cases. 
Also, at the time of fieldwork, a very limited number of apprenticeships designed for bootcamp graduates were offered by technology companies. Since these apprenticeships were rare and did not constitute a usual 
part of the breaking in experience of aspirants, I do not report on them in this paper.  




