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HyperReenact: One-Shot Reenactment via Jointly Learning to Refine and
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Figure 1: The proposed method, named HyperReenact, aims to synthesize realistic talking head sequences of a source
identity driven by a target facial pose (i.e., 3D head orientation and facial expression). Our method performs both self and
cross-subject reenactment and operates under the one-shot setting (i.e., using a single source frame). We demonstrate that
the proposed framework can effectively reenact the source faces without producing significant visual artifacts, even on the
challenging conditions of extreme head pose difference between the source and the target images (first row) and on cross-
subject reenactment (second row). We compare our method against several state-of-the-art works on neural face reenactment,
namely Fast BL [63], PIR [37], LSR [29], FD [9], LIA [54] and Rome [26].

Abstract

In this paper, we present our method for neural face
reenactment, called HyperReenact, that aims to generate
realistic talking head images of a source identity, driven
by a target facial pose. Existing state-of-the-art face reen-
actment methods train controllable generative models that
learn to synthesize realistic facial images, yet producing
reenacted faces that are prone to significant visual artifacts,
especially under the challenging condition of extreme head
pose changes, or requiring expensive few-shot fine-tuning
to better preserve the source identity characteristics. We
propose to address these limitations by leveraging the pho-
torealistic generation ability and the disentangled proper-
ties of a pretrained StyleGAN2 generator, by first inverting
the real images into its latent space and then using a hy-
pernetwork to perform: (i) refinement of the source iden-
tity characteristics and (ii) facial pose re-targeting, elimi-
nating this way the dependence on external editing meth-
ods that typically produce artifacts. Our method oper-
ates under the one-shot setting (i.e., using a single source
frame) and allows for cross-subject reenactment, without

requiring any subject-specific fine-tuning. We compare
our method both quantitatively and qualitatively against
several state-of-the-art techniques on the standard bench-
marks of VoxCeleb1 and VoxCeleb2, demonstrating the su-
periority of our approach in producing artifact-free im-
ages, exhibiting remarkable robustness even under extreme
head pose changes. We make the code and the pretrained
models publicly available at: https://github.com/
StelaBou/HyperReenact.

1. Introduction

The recent developments in deep learning and generative
models [24, 25] have led to remarkable progress in the field
of facial image synthesis and editing. Among the tasks that
have drawn benefit from this progress is neural face reen-
actment, that aims to synthesize photorealistic head avatars.
Specifically, given a source and a target image, the goal of
face reenactment is to generate a new image that conveys
the identity characteristics of the source face and the facial
pose (defined as the 3D head orientation and facial expres-
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sion) of the target face. The key objectives of this task are
three-fold: (i) creating realistic facial images that resemble
the real ones, (ii) preserving the source identity character-
istics, such as the facial shape, and (iii) faithfully transfer-
ring the target facial pose. This technology is an essential
component within numerous applications of augmented and
virtual reality, as well as arts and entertainment industries.
However, despite the recent advancements, most of the ex-
isting reenactment methods fail in producing realistic facial
images in the one-shot setting (i.e., using a single source
frame) or under extreme head pose movements (i.e., large
differences in the head pose of the source and the target).

The majority of the state-of-the-art methods in neural
face reenactment (e.g., [63, 29, 26]) train controllable mod-
els that learn to synthesize realistic images. However,
these methods are prone to severe visual artifacts, espe-
cially when the source and the target faces have large head
pose differences. Most of these methods rely on paired data
training (i.e., images of the same identity), limiting their
applicability in cross-subject reenactment. Several meth-
ods [64, 11, 29, 21] require expensive few-shot fine-tuning
(i.e., using multiple different views of the source face) in
order to faithfully preserve the source identity and appear-
ance. Another line of research leverages the exceptional
generation ability of pretrained generative adversarial net-
works (GANs) [9, 10, 62], achieving to effectively disentan-
gle the identity from the facial pose. However, these works
rely on external real image GAN inversion methods and,
thus, are bounded by their limitations, such as poor identity
reconstruction and image editability [47].

In this paper, we draw inspiration from recent works that
combine a GAN generator with a hypernetwork [18] for
real image inversion, namely HyperStyle [4] and HyperIn-
verter [14]. These methods use a hypernetwork [18], con-
ditioned on features derived from the original image and its
initial inversion, that learns to modify the weights of the
generator to obtain improved image reconstruction quality.
Subsequently, one can perform semantic editing of the re-
fined image in the latent space and produce the edited im-
age using the updated generator weights. In spite of their
high-quality reconstruction results, HyperStyle [4] and Hy-
perInverter [14] fail upon applying global editings on the
inverted images and, consequently, they are not practically
applicable to neural face reenactment.

In order to address the limitations of state-of-the-art
works, we tackle the neural face reenactment task by lever-
aging the photorealistic image generation and the disen-
tangled properties of a pretrained StyleGAN2 [25], along
with a hypernetwork [18]. We present a novel method that
performs both faithful identity reconstruction and effective
facial image editing by learning to update the weights of
a StyleGAN2 generator using a hypernetwork approach.
Specifically, our model effectively combines the appearance

features of a source image and the facial pose features of a
target image to create new facial images that preserve the
source identity and convey the target facial pose.

Overall, the main contributions of this paper can be sum-
marized as follows:

1. We present a novel framework for face reenact-
ment that leverages the adaptive nature of hypernet-
works [18] to alter the weights of a powerful Style-
GAN2 [25], so as to perform both: (i) refinement of
the source identity details and (ii) reenactment of the
source face in the target facial pose. To the best of our
knowledge, we are the first to show the effectiveness
of merging the steps of inversion refinement and facial
pose editing for robust and realistic face reenactment.

2. We demonstrate that our method is able to successfully
operate under one-shot settings (i.e. using a single
source frame) without requiring any fine-tuning, pre-
serving the source identity characteristics on both self
and cross-subject reenactment scenarios. This holds
true even in challenging cases where the source face is
partially self-occluded (i.e., in partial facial views due
to highly non-frontal head poses).

3. We show that our method achieves state-of-the-art re-
sults even on extreme head pose variations, generating
artifact-free images and exhibiting remarkable robust-
ness to large head pose shifts.

4. We conduct experiments on the standard benchmarks
of VoxCeleb1 and VoxCeleb2 [30, 12], performing
qualitative and quantitative comparisons with existing
state-of-the-art reenactment techniques. We show that
our proposed method achieves compelling results both
on identity preservation and facial pose transfer.

2. Related work
Facial image editing Several recent methods [42, 46, 49, 6,
31, 32, 59, 2, 35] leverage the remarkable ability of mod-
ern pretrained GAN models (e.g., StyleGAN2 [25]) in pro-
ducing photorealistic facial images in order to edit various
facial attributes, such as head pose, facial expressions or
hair style. The key idea of such methods lies in learning to
manipulate the latent representations (in W , W+ or S la-
tent space) of a StyleGAN2 generator in order to generate
meaningful editings of different semantics on the synthetic
images. The existing unsupervised methods [51, 49] are
able to find disentangled directions that edit different se-
mantics on the facial images, albeit without providing any
controllability on the manipulation of the images. In order
to allow for explicit control over the image editing, several
approaches [2, 10, 46, 35, 48, 61] rely on external supervi-
sion from pretrained models, such as 3D Morphable Models



(3DMM) [8], or vision-language models [36]. Despite their
effectiveness in editing synthetic images, such methods fail
to manipulate effectively real images – i.e., having to per-
form editing in the non-native latent code provided by an
external GAN inversion method, as discussed below.
Real image inversion: GAN inversion methods [57, 47,
45] allow for encoding of real images into the latent space
of pretrained generators, which is required at the same time
to allow for semantic image editing. The main challenges
of real image inversion are to (i) faithfully reconstruct the
real images and (ii) enable facial image editing without
producing visual artifacts. This is typically referred to as
the “reconstruction-editability” trade-off. The existing in-
version methods mainly focus either on optimization-based
approaches, which require expensive iterative optimization
for each image, rendering them not-applicable for real-time
applications, or on encoder-based architectures.

Encoder-based methods [3, 38, 47, 52, 5] train encoders
that learn to predict the latent code that best reconstructs
the real image. While providing better semantic editing than
optimization-based approaches, encoder-based methods fail
in faithfully reconstructing real images (i.e., by missing cru-
cial identity details). In order to coordinate the trade-off
between reconstruction quality, editability, and inference
time, some recent works [4, 14] propose to optimize a hy-
pernetwork [18] that learns to update the weights of a pre-
trained GAN generator so as to refine any missing identity
details. HyperStyle [4] first inverts the real images into the
latent space of StyleGAN2 (W or W+) using a pretrained
encoder-based inversion method [47] and then trains a hy-
pernetwork that, given a pair of a real and an initial recon-
structed image, predicts an offset ∆ℓ for each layer of the
generator. Both HyperStyle [4] and HyperInverter [14] lead
in high quality reconstructions, albeit suffering from many
visual artifacts in the case of head pose editing.
Neural face reenactment A recent line of works focus on
learning disentangled representations for the identity and
the facial pose using facial landmarks [64, 63, 22, 19, 65].
However, such methods perform poorly on the challenging
task of cross-subject reenactment, since facial landmarks
preserve the facial shape and consequently the identity ge-
ometry of the target face. In order to mitigate the identity
leakage from the target face to the source face, several meth-
ods [28, 17, 46, 9, 15, 37, 26, 60] leverage the disentangled
properties of 3D Morphable Models (3DMM) [8, 16]. Xu
et al. [58] propose a unified architecture that learns to per-
form both face reenactment and swapping. Warping based
methods [55, 43, 53, 37, 15, 67, 62, 54] learn a motion field
between the source and target frames in order to synthesize
the reenacted faces. [15, 37] propose a two-stage architec-
ture that first generates a warped image using the learned
motion field and then refines the warped image to mini-
mize the visual artifacts caused by the warping operation.

Despite their realistic results in small pose variations, such
methods fail in the more challenging and realistic condition
of large head pose variations (i.e., under large differences
between the target and the source head pose).

A more recent line of works [9, 62, 10] propose the in-
corporation of the powerful pretrained StyleGAN2 model.
StyleHEAT [62] proposes to control the spatial features of
the pretrained StyleGAN2 generator using a learned mo-
tion field between the source and target frames. How-
ever, their method is trained on the HDTF dataset [67],
i.e., a video dataset with mostly frontal talking head videos,
leading to poor reenactment performance on more realistic
datasets, such as VoxCeleb [30, 12], which comprises of a
larger distribution on the existing head poses. Bounareli et
al. [9] propose to fine-tune a StyleGAN2 model (pretrained
on FFHQ [24]) on VoxCeleb1 dataset [30] and then learn
the linear directions that are responsible for controlling the
changes in the facial pose. For editing the real images, [9]
relies on the encoder-based inversion method of [47], which
results in visual artifacts on large head pose variations and
requires an additional optimization step [39] to refine the
missing identity details. Finally, [10] proposes to disen-
tangle the identity characteristics from the facial pose by
leveraging the disentangled properties of StyleGAN2’s style
space.

In this work, we also use the StyleGAN2 generator, pre-
trained on VoxCeleb [9], which allows for better generaliza-
tion on other existing video datasets [67, 40]. To the best of
our knowledge, we are the first to propose the optimization
of a hypernetwork [18] based reenactment module, merging
this way the steps of inversion refinement and facial pose
editing towards robust and realistic face reenactment.

3. Proposed method
In this section we present the proposed HyperReenact

framework for neural face reenactment. An overview of the
method is shown in Fig. 2. In a nutshell, the hypernetwork
H, guided by the source appearance (fapp) and target fa-
cial pose (fp) related features, learns to predict the offsets
∆θℓ, ℓ = 1, . . . , N , where N is the total number of the lay-
ers in the generator G. Then, given the initial latent code ws

and the updated weights θ̂ = θ ·(1+∆θ), the generator G is
able to generate an image that has the identity of the source
and the facial pose of the target face.

3.1. GAN Inversion

The generator of StyleGAN2 [25] takes as input random
latent codes z ∈ R512 sampled from the standard Gaussian
distribution, which are then fed to the mapping network to
get the intermediate latent codes w ∈ R512 (i.e., codes in
the W space). Most inversion methods (e.g., [1, 47]) in-
vert to W space or its extended W+ ⊆ RN×512 space,
where a different latent code is fed to each of the N layer



Source
Image      

StyleGAN
2Target

Image      

Appearance
Encoder

Reenactment
Module

(RM)

Re
en

ac
tm

en
t M

od
ul

e 
(R

M
)

Hypernetwork

Pose
Encoder

GAN
Inversion
Encoder

Reenacted Image

Figure 2: HyperReenact network architecture Given a source (Is) and a target (It) image, we first extract the source ap-
pearance features, fapp, and the target pose features, fp, using the appearance (Eapp) and the pose (Ep) encoders, respectively.
The Reenactment Module (RM) learns to effectively fuse these features, producing a feature map fr that serves as input into
each Reenactment Block (RB) of our hypernetwork module H. The predicted offsets, ∆θ, update the weights of the Style-
GAN2 generator G so that using the inverted latent code ws generates a new image Ir that conveys the identity characteristics
of the source face and the facial pose of the target face. We note that, during training, the encoders Eapp, and Ep, along with
the generator G are kept frozen, and we optimize only the Reenactment Module (RM) and the hypernetwork module H.

of the generator. Tov et al. [47] show that, using the W+

latent space for real image inversion, results in better recon-
struction quality. However, it can be challenging to edit the
real images using W+, in particular when altering the head
pose, as this can lead to severe visual artifacts (e.g., [9]).
In this work, in order to get an initial inverted latent code,
we use e4e [47], which inverts the real images into the W+

space. We note that we use an off-the-shelf inversion model,
trained on the VoxCeleb1 [30] dataset and provided by the
authors of [9], for the initial inversion step, while during
training the inversion encoder Ew is not updated (see Fig. 2).

3.2. HyperReenact Architecture

The proposed HyperReenact aims to modify the weights
θ of the generator G to both lead to better reconstruction
(without any further optimization steps) and perform neu-
ral face reenactment eliminating any visual artifacts on the
generated images (Fig. 2). Given a pair of source and tar-
get images our framework first extracts the corresponding
appearance fapp and facial pose fp features. Specifically,
to encode the appearance of a face we use the ArcFace [13]
encoder Eapp. ArcFace is trained on the face recognition
task, as a result its features only capture the identity charac-
teristics of a face. We note that we extract the feature map
fapp of shape 512 × 7 × 7 picking the output of the last
convolutional layer of ArcFace. Similarly, to encode the
facial pose of a face we use the encoder Ep, which is a pre-
trained 3D shape model (DECA [16]). DECA is trained on

3D facial shape model reconstruction, hence the extracted
features only capture the facial pose, without taking into
consideration the appearance. We extract the feature map
fp of shape 2048 × 7 × 7, picking the output of the last
convolutional layer of Ep.

Our goal is to guide the hypernetwork with a feature map
that combines the appearance features from the source im-
age and the facial pose features from the target image. In-
spired by the Spatially-Adaptive Denormalization (SPADE)
module [33], we propose to blend the two feature maps,
fapp and fp, using the Reenactment Module (RM). As
shown in Fig. 2, the RM includes a 1 × 1 convolution to
project fp into the same channel size as fapp, obtaining f ′

p.
Then, for each feature map, we learn two modulation pa-
rameters, namely γ and β. The final combined feature map
fr with size 512× 7× 7 is calculated as:

fr = γapp ⊙ fapp + βapp + γp ⊙ f ′
p + βp, (1)

where ⊙ denotes the element-wise multiplication.
Our hypernetwork module follows a similar architecture

with the one in HyperStyle [4]. Specifically, it consists of
M ⊂ N Reenactment Blocks (RB), where M is the number
of layers we control and N is the total number of layers of
the generator. Each RB takes as input the combined feature
map fr and outputs an offset ∆θℓ of size Cout

ℓ ×Cin
ℓ ×1×1.

We then spatially repeat each offset by the kernel dimension
of each layer kℓ × kℓ, significantly reducing the number of
learnable parameters [4]. Finally, the updated weights for



each layer ℓ of the generator are computed as θ̂ℓ = θℓ · (1+
∆θℓ). We provide a detailed analysis on the architecture of
our hypernetwork module in the supplementary material.

3.3. Training Process

We train the proposed HyperReenact framework follow-
ing a curriculum learning (CL) scheme [7], where we grad-
ually increase the complexity of the training data. Specif-
ically, we first train our network on real image inversion,
where the source and target faces are the same. We fur-
ther train our model on the task of self reenactment, where
the source and target faces have the same identity but dif-
ferent facial pose. Finally, we continue training our model
on cross-subject reenactment, where the source and target
faces have different identity and facial pose. In Section 4.2,
we show that the proposed curriculum learning scheme im-
proves our results. We detail each training phase below.
Phase 1: Real image inversion On the first training phase,
the source (Is) and the target (It) images are the same to the
input image (I). Given the appearance and facial pose of the
input image I as well as the initial inverted latent code w,
we train our network to refine the missing identity details
between the real image and its initial reconstruction using
w. Our training objective during the inversion phase con-
sists of the following reconstruction loss terms:

L = λpixLpix + λlpipsLlpips + λidLid + λgLg, (2)

where Lpix is the ℓ1 pixel-wise loss and Llpips is the per-
ceptual loss [23] between the real I and the refined Î image.
Additionally, to further enhance the identity preservation
we calculate the identity loss Lid that computes the cosine
similarity of the features extracted using the ArcFace [13].
Finally, to allow for refinement of the eye gaze direction, we
calculate the gaze loss Lg , which is the L2 distance between
the gaze direction of the real image and the reconstructed
image Î, extracted using a gaze estimation method [66]. To
this end, our framework is able to refine the missing identity
details from the initial reconstructed images.
Phase 2: Self reenactment During the second training
phase, we train our model on self reenactment where the
identity of the input source and target images is the same
and the facial pose is different. Given the appearance of the
source image Is and the facial pose of the target image It,
the hypernetwork is trained to predict the offsets ∆θ so that
the reenacted image Ir has the identity of the source image
and the facial pose of the target image. The objective during
this phase is:

L = λpixLpix + λlpipsLlpips + λidLid + λshLsh + λgLg,
(3)

where Lpix, Llpips, Lid, and Lg denote the losses described
above, calculated between the target image It and the reen-
acted image Ir. In order to transfer the facial pose of the

target image, we calculate the shape loss Lsh, i.e., the ℓ1
distance of the 3D facial shapes extracted using [16] from
the target and the reenacted image.
Phase 3: Cross-subject reenactment To further enhance
our results on cross-subject reenactment, we propose to
fine-tune our model trained on self reenactment using cross-
subject image pairs. As cross-subject training is a challeng-
ing task, to ease the training process, we concurrently per-
form training for the tasks of self and cross-subject reenact-
ment, by letting half of the image pairs in each batch to cor-
respond to each task. Our training objective is the same as
the one defined in (3), however, for the cross-subject batch
samples we only calculate the identity Lid loss between the
source and the reenacted images and the shape loss Lsh be-
tween the target and the reenacted images.

4. Experiments
In this section, we provide the implementation details

and we present our quantitative and qualitative results and
comparisons with state-of-the-art methods. In Section 4.1,
we report results on self and cross-subject reenactment on
the VoxCeleb1 [30] dataset, and in Section 4.2, we provide
ablation studies to investigate the contribution of each de-
sign choice to the overall effectiveness of our method.
Implementation details We use the StyleGAN2 model [25]
and the e4e inversion model [47] trained on the VoxCeleb1
dataset provided by [9] and we train our model on the same
dataset with 256× 256 images. We note that the only train-
able modules of our method are the the Reenactment Mod-
ule (RM) and the hypernetwork H , while the encoders Ew,
Eapp, and Ep, along with the StyleGAN2 generator G are
kept frozen (Fig. 2). We also note that we learn offsets
for all the layers of the StyleGAN2 generator, except for
the “toRGB” layers that mainly change the texture and the
color of images [56] (please see the supplementary material
for more details). We first train our model on the task of
real image inversion with learning rate 2 ·10−4 and we con-
tinue on the task of self reenactment with the same learning
rate and a batch size of 16. We finally fine-tune our model
on cross-subject reenactment with a constant learning rate
of 10−4. We set λpix = 10.0, λlpips = 5.0, λid = 10.0,
λsh = 0.5 and λg = 2.0. All models are optimized with
Adam optimizer [27] and are implemented in PyTorch [34].

4.1. Comparison with state-of-the-art methods

We evaluate our method on the test set of the Vox-
Celeb1 [30] dataset and we provide additional quantitative
and qualitative results on the test set of the VoxCeleb2 [12]
dataset in the supplementary material. We compare our
framework with 10 state-of-the-art methods that have made
their source code and models publicly available, namely,
X2Face [55], FOMM [43], Neural [11], Fast BL [63],



Method Self Reenactment Cross-subject Reenactment User Pref.
(%)CSIM↑ LPIPS ↓ FID ↓ FVD ↓ APD↓ AED↓ CSIM↑ APD↓ AED↓

X2Face [55] 0.70 0.21 25.6 490 1.3 9.0 0.57 2.2 16.4 -
FOMM [43] 0.64 0.27 35.3 523 4.6 12.6 0.53 10.9 20.9 -
Neural [11] 0.40 0.42 127.0 617 1.2 8.8 0.34 1.8 15.3 -
Fast BL [63] 0.65 0.41 55.0 706 1.0 7.6 0.58 1.4 14.7 5.9
PIR [37] 0.69 0.23 50.5 545 1.9 9.7 0.61 2.4 15.4 1.1
LSR [29] 0.59 0.26 63.0 484 1.0 7.5 0.50 1.5 13.1 5.0
FD [9] 0.65 0.23 19.0 400 1.0 6.5 0.49 1.7 10.2 4.1
LIA [54] 0.64 0.26 31.7 510 4.7 11.4 0.57 2.8 15.7 5.9
Dual [21] 0.26 0.39 46.5 600 3.4 12.5 0.19 3.1 16.9 -
Rome [26] 0.69 0.43 39.2 800 1.5 5.6 0.63 1.2 8.8 10.2
Ours 0.71 0.23 27.1 480 0.5 5.1 0.68 0.5 9.3 67.8

Table 1: Quantitative results on self and cross-subject reenactment. For CSIM metric, higher is better (↑), while for the rest
of the metrics lower is better (↓). We note that the best and second best results are shown in bold and underline respectively.
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Figure 3: Qualitative results and comparisons on self (first 3 rows) and cross-subject reenactment (last 3 rows) on Vox-
Celeb1 [30]. Our method is able to faithfully preserve the identity characteristics and also effectively transfer the head pose,
the facial expression and the gaze direction of the target face without producing significant visual artifacts.

PIR [37], LSR [29], FD [9], LIA [54], Dual [21], and
Rome [26]. In the supplementary material, we provide
additional comparisons with StyleHEAT [62] and Style-
Mask [10]. We also note that regarding the methods of
Neural [11], LSR [29], FD [9] and Dual [21], we perform
one-shot fine-tuning on a single source frame from each test
video for fair comparisons against the proposed method.
Quantitative results We evaluate our method on two tasks,

namely, self reenactment and cross-subject reenactment.
For self reenactment, we calculate six different evaluation
metrics. Specifically, we measure the identity preservation
by calculating the cosine similarity (CSIM) of the features
extracted using the ArcFace face recognition network [13],
and the reconstruction quality using the Learned Percep-
tual Image Path Similarity (LPIPS) metric [23]. Addition-
ally, we calculate the Fréchet-Inception Distance (FID) [20]



to measure the quality of the reenacted images and the
Fréchet-Video Distance (FVD) [50, 44] to measure the
temporal consistency of the generated videos. Finally, to
evaluate the facial pose transfer, we calculate the Average
Pose Distance (APD) and the Average Expression Distance
(AED), similarly to [37]. All metrics for self reenactment
are calculated between the target and the reenacted images.
When evaluating our method on the task of cross-subject
reenactment, we calculate the CSIM metric between the
source and the reenacted images, and we also calculate the
APD and AED. In Table 1, we report results both on self
and on cross-subject reenactment. We note that for self
reenactment we report results on the test set of VoxCeleb1,
where the first extracted frame from each video is used as
the source frame and all other frames are used as the tar-
get ones. For cross-subject reenactment, we randomly se-
lect 35 video pairs from the test set of VoxCeleb1. In the
task of self reenactment, our method outperforms all other
techniques on identity preservation (CSIM), as well as on
pose (APD) and facial expression (AED) transfer, while on
LPIPS, FID and FVD metrics our method is among the best
results. In the more challenging task of cross-subject reen-
actment, our method outperforms all other techniques on
identity preservation and head pose transfer, while being
on-par with Rome [26] on expression transfer.

Moreover, we conduct a user study to further assess the
performance of the proposed method in comparison to state-
of-the-art works. Specifically, we present 20 randomly se-
lected image pairs, 10 of self and 10 of cross-subject reen-
actment, to 30 users and ask them to select the method that
best reenacts the source frame in terms of (i) identity preser-
vation, (ii) facial pose transfer, and (iii) image quality. We
note that we opt to include only the methods that exhibit
high performance on both quantitative and qualitative re-
sults. That is, we exclude X2Face [55] and FOMM [43],
since they lead to several visual artifacts (as shown in the
supplementary material). Similarly, we exclude Neural [11]
and Dual [21] due to their poor quantitative results. As
shown in Table 1, our method is by far the most preferable.

Finally, in order to evaluate the proposed method under
the challenging (and far more useful in real-world applica-
tions) condition of large variations between the head pose
of the source and target frames, we build a small bench-
mark set for the task of self reenactment, containing pairs of
images with large head pose differences. Specifically, from
each video of the VoxCeleb1 test set we select 5 image pairs
with head pose distance (measured as the average of the ab-
solute differences between the 3 Euler angles) larger than
15◦. We report results in Table 2. Our method outperforms
all other techniques on identity preservation and head pose
transfer, while ranking second and performing on par with
the method of Rome [26] on expression transfer.
Qualitative results In Fig. 3, we show qualitative com-

Method CSIM↑ APD↓ AED↓
X2Face [55] 0.45 3.1 12.1
FOMM [43] 0.44 3.2 12.7
Neural [11] 0.38 1.5 8.9
Fast BL [63] 0.44 1.5 9.0
PIR [37] 0.40 4.0 11.9
LSR [29] 0.48 1.4 8.5
FD [9] 0.34 2.7 10.4
LIA [54] 0.43 3.0 9.9
Dual [21] 0.23 4.9 12.6
Rome [26] 0.53 1.1 5.8
Ours 0.58 0.9 6.2

Table 2: Quantitative results on self reenactment using a
set of images with large head pose differences between the
source and target faces (subset of the VoxCeleb1 test set).

parisons on self and cross-subject reenactment. We note
that for better visualization we report results only with the
best performing methods, namely, Fast BL [63], PIR [37],
LSR [29], FD [9], LIA [54] and Rome [26]. On the
supplementary material we present additional comparisons
with all methods. As shown, our method is able to pro-
duce mostly artifact free images, successfully preserve the
source identity characteristics and faithfully transfer the tar-
get facial pose (i.e. head pose orientation, facial expression
and gaze direction), even on the challenging task of cross-
subject reenactment and on extreme head pose differences.

4.2. Ablation studies

In this section, we report the results of the ablation stud-
ies we performed to assess the contribution of: (a) the pro-
posed curriculum learning (CL) scheme, (b) fine-tuning on
the task of cross-subject reenactment, and (c) the gaze loss.
Regarding (a), i.e. the contribution of the proposed cur-
riculum learning scheme (Section 3.3), we provide results
both on self and on cross-subject reenactment with our final
model trained using the curriculum learning (CL) scheme
and with a model trained directly on the task of self and
cross-subject reenactment. As shown in Table. 3, our model
trained with CL achieves better results on head pose (APD),
expression transfer (AED), and identity preservation on self
reenactment. This is also shown in Fig. 4, where using CL
leads to results less visual artifacts on the reenacted images.

For (b), we compare our method with and without train-
ing with cross-subject data. As shown in Table 4, when fine-
tuning our method with cross-subject data, our quantitative
results with respect to identity preservation (CSIM) are im-
proved especially on cross-subject reenactment. The effect
of cross-subject training on the identity preservation is also
shown in Fig. 5, where we eliminate the identity leakage



Method Self Reenactment Cross Reenactment
CSIM APD AED CSIM APD AED

w/o CL 0.69 0.7 6.7 0.72 0.6 11.6
w/ CL 0.71 0.5 5.1 0.68 0.5 9.3

Table 3: Quantitative results on self and cross-subject reen-
actment with and without using curriculum learning (CL).

Source Target w/o CL w/ CL

Figure 4: Qualitative results on self and cross-subject reen-
actment with and without using the proposed CL scheme.

Source Target w/o CSRT w/ CSRT

Figure 5: Qualitative results on cross-subject reenactment
with and without training with cross-subject data (CSRT).

from the target images into the reenacted ones.

Method CSIM↑
SR CR

w/o CSRT 0.69 0.53
w/ CSRT 0.71 0.68

Table 4: Quantitative results on self (SR) and cross-
subject (CR) reenactment with and without performing
cross-subject reenactment training (CSRT).

For (c), we perform experiments with and without using
the gaze loss Lg and we evaluate its contribution both quan-
titatively (Table 5) and qualitatively (Fig. 6). Specifically,
in Table 5 we calculate the Gaze Error, i.e., the ℓ2 distance
between the gaze direction of the real and the generated im-
ages on three different tasks, namely, real image inversion
(I), self reenactment (SR), and cross-subject reenactment

Source Target w/o w/

w/o w/Real Image Init. Inversion

Figure 6: Illustration of the impact of the gaze loss Lg on
the generated images, on the tasks of real image inversion
and self/cross-subject reenactment.

(CR). Moreover, in Fig. 6 we present examples of real im-
age inversion (first row) and self and cross-subject reenact-
ment (last two rows), with and without the gaze loss, where
we observe that using the gaze loss improves the faithful
reconstruction of the gaze direction of the target images.

Method Gaze Error ↓
I SR CR

w/o Lg 0.34 0.35 0.40
w/ Lg 0.24 0.25 0.31

Table 5: Ablation on the impact of gaze loss Lg . The gaze
error is calculated on real image inversion (I), self reenact-
ment (SR) and cross-subject reenactment (CR) tasks.

5. Conclusions
In this paper, we present HyperReenact, a method for

neural face reenactment that jointly learns to refine and
re-target the facial images using a pretrained StyleGAN2
model and a hypernetwork. We leverage the effectiveness of
hypernetworks on the real image inversion task and extend
their use for real image manipulation. Our method learns
to fuse the disentangled representations of source identity
and target facial pose, to effectively modify the weights of
the generator, performing both identity refinement and fa-
cial pose re-targeting. We show that our approach can suc-
cessfully reenact a source face, preserving the identity and
transferring the target facial pose. We also demonstrate that
our method can produce artifact-free images even on chal-
lenging cases of extreme head pose movements.
Acknowledgments: This work was supported by the EU
H2020 AI4Media No. 951911 project.



A. Supplementary Material
In this supplementary material, we first provide a de-

tailed analysis of the network architecture of the proposed
framework (HyperReenact) in Section A.1. In Section A.2,
we show results of two state-of-the-art inversion methods,
namely, HyperStyle [4] and HyperInverter [14], on real im-
age editing and compare our method against HyperStyle [4].
In Section A.3, we discuss the limitations of our method and
in Section A.4 we present comparisons against two meth-
ods, namely, StyleHEAT [62] and StyleMask [10], while
in Section A.6 we provide additional results of our method
on the VoxCeleb1 [30] and the VoxCeleb2 [12] datasets.
Finally, along with this report, please find attached an ex-
ternal video file that includes 10 randomly selected iden-
tities for self reenactment and 10 randomly selected pairs
for cross-subject reenactment (for both VoxCeleb1 [30] and
VoxCeleb2 [12] datasets).

A.1. Network architecture

In this section we provide details of the various com-
ponents of the proposed framework (HyperReenact). An
overview of HyperReenact is shown in Fig. 2 in the main
paper. More specifically, we propose to blend the appear-
ance feature map fapp of size 512 × 7 × 7 and the pose
feature map fp of size 2048× 7× 7 using the Reenactment
Module (RM), which is illustrated in Fig. 7. As shown, we
first project the fp using a convolutional layer (kernel=(1,1),
stride=1, pad=0) into the same channel size of fapp. Then
for each feature map we learn the two modulation param-
eters γ and β using convolutions with a kernel size of 1,
stride set to 1 and padding set to 0. The output feature map
fr of size 512× 7× 7, computed using Eq. 1 from the main
paper, is then fed into the different reenactment blocks of
the hypernetwork.

Our hypernetwork H consists of M < N Reenactment
Blocks (RB), where M is the number of generator layers
that we control and N is the total number of layers in the
generator. Each of those blocks takes as input the feature
map fr and outputs the corresponding offset ∆θℓ for the
weights of each layer of the generator. In Table 6 we report
the structure of StyleGAN2 generator trained on 256× 256
image resolution. From the blocks shown in Table 6 we
only modify the convolutional layers (Conv), as the ToRGB
layers mainly affect the colors of the generated images [56].
Hence, we propose to modify M = 13 layers.

In order to reduce the number of trainable parame-
ters, similarly to HyperStyle [4], we propose to use two
types of Reenactment Blocks, namely, the Shared Reenact-
ment Blocks and the Layer-specific Reenactment Blocks,
as shown in Fig. 7. We present an overview of the archi-
tecture of both blocks in Fig. 8. In both types of blocks,
the input feature map fr is first fed into a series of convolu-
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Figure 7: Illustration of the two learnable components of
our architecture, namely, the Reenactment Module (RM)
and the hypernetwork H. The RM module fuses appear-
ance features from the source face and pose features from
the target face and outputs the fused feature map fr, that
drives the hypernetwork H. The hypernetwork H consists
of multiple Reenactment Blocks with each one of them cor-
responding to a particular layer of the generator.

tional layers that process and down-sample the input into
the shape of 512 × 1 × 1. Regarding the Shared Reen-
actment Blocks, as shown on the top row of Fig. 8, the
down-sampled feature map is then flattened and fed into
a fully-connected layer. Afterwards, the two shared fully-
connected layers are used to calculate the output feature
map of shape Cout

ℓ × Cin
ℓ × 1 × 1, which is repeated

spatially so as to match the shape of the convolutional
kernels (Cout

ℓ × Cin
ℓ × kℓ × kℓ). Regarding the Layer-

specific Reenactment Blocks, as shown on the bottom row
of Fig. 8, after the series of down-sampling convolutional
layers, the computed feature map has a shape of 512×1×1.
This feature map, upon being flattened, is fed into a final
fully-connected layer which outputs a feature map of shape
Cout

ℓ ×Cin
ℓ ×1×1, which is then spatially repeated to have

a shape of Cout
ℓ × Cin

ℓ × kℓ × kℓ.
We provide in more detail the structure of the two Reen-

actment Blocks in Tables 7 and 8. Finally, in Table 9, we
report the StyleGAN2 layers that we propose to modify as
well as the type of the Reenactment Block that we use for
each layer. As shown in Table 9, we use the Shared Reenact-
ment Blocks for the first seven layers of the generator. As a
result, the parameters of two fully-connected layers across
all the Shared Reenactment Blocks, are common. For the
last six layers of the generator, we use the Layer-specific
Reenactment Blocks. We note that the use of the shared
layers reduces our trainable parameters from 1.2B to 300M.

A.2. Comparisons with HyperStyle

As discussed in the main paper, the proposed framework
draws inspiration from two state-of-the-art methods (for
the task of real image inversion), namely, HyperStyle [4]
and HyperInverter [14]. Specifically, similarly to [4, 14],
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Figure 8: Detailed architecture of the two types of Reenactment Blocks, namely the Shared Reenactment Block (top row)
and the Layer-specific Reenactment Block (bottom row).

Layer ℓ Index Layer ℓ Name Resolution Kernel Dim. Cout
ℓ ×Cin

ℓ × kℓ × kℓ

0 Conv1 4× 4 512× 512× 3× 3
1 ToRGB1 4× 4 3× 512× 1× 1
2 Conv2 8× 8 512× 512× 3× 3
3 Conv3 8× 8 512× 512× 3× 3
4 ToRGB2 8× 8 3× 512× 1× 1
5 Conv4 16× 16 512× 512× 3× 3
6 Conv5 16× 16 512× 512× 3× 3
7 ToRGB3 16× 16 3× 512× 1× 1
8 Conv6 32× 32 512× 512× 3× 3
9 Conv7 32× 32 512× 512× 3× 3

10 ToRGB4 32× 32 3× 512× 1× 1
11 Conv8 64× 64 256× 512× 3× 3
12 Conv9 64× 64 256× 256× 3× 3
13 ToRGB5 64× 64 3× 256× 1× 1
14 Conv10 128× 128 128× 256× 3× 3
15 Conv11 128× 128 128× 128× 3× 3
16 ToRGB6 128× 128 3× 128× 1× 1
17 Conv12 256× 256 64× 128× 3× 3
18 Conv13 256× 256 64× 64× 3× 3
19 ToRGB7 256× 256 3× 64× 1× 1

Table 6: Structure of StyleGAN2 generator trained on 256× 256 image resolution.



Layer Input shape Output shape
Conv2D

kernel=(3,3), stride=1, pad=1 B × 512× 7× 7 B × 128× 7× 7

LeakyReLU activation
slope=0.01 B × 128× 7× 7 B × 128× 7× 7

Conv2D
kernel=(3,3), stride=1, pad=0 B × 128× 7× 7 B × 128× 5× 5

LeakyReLU activation
slope=0.01 B × 128× 5× 5 B × 128× 5× 5

Conv2D
kernel=(3,3), stride=1, pad=0 B × 128× 5× 5 B × 128× 3× 3

LeakyReLU activation
slope=0.01 B × 128× 3× 3 B × 128× 3× 3

Conv2D
kernel=(3,3), stride=1, pad=0 B × 128× 3× 3 B × 512× 1× 1

LeakyReLU activation
slope=0.01 B × 512× 1× 1 B × 512× 1× 1

Flatten B × 512× 1× 1 B × 512
FC B × 512 B × 512

Shared FC B × 512 B × (512× 512)
Shared FC B × (512× 512) B × (512× 512)
Reshape B × (512× 512) B × 512× 512× 1× 1
Repeat B × 512× 512× 1× 1 B × 512× 512× 3× 3

Table 7: Architecture of the Shared Reenactment Blocks (B denotes the batch size).

Layer Input shape Output shape
Conv2D

kernel=(3,3), stride=1, pad=1 B × 512× 7× 7 B × 256× 7× 7

LeakyReLU activation
slope=0.01 B × 256× 7× 7 B × 256× 7× 7

Conv2D
kernel=(3,3), stride=1, pad=0 B × 256× 7× 7 B × 256× 5× 5

LeakyReLU activation
slope=0.01 B × 256× 5× 5 B × 256× 5× 5

Conv2D
kernel=(3,3), stride=1, pad=0 B × 256× 5× 5 B × 256× 3× 3

LeakyReLU activation
slope=0.01 B × 256× 3× 3 B × 256× 3× 3

Conv2D
kernel=(3,3), stride=1, pad=0 B × 256× 3× 3 B × 512× 1× 1

LeakyReLU activation
slope=0.01 B × 512× 1× 1 B × 512× 1× 1

Flatten B × 512× 1× 1 B × 512
FC B × 512 B × (Cout

ℓ × Cin
ℓ )

Reshape B × (Cout
ℓ × Cin

ℓ ) B × Cout
ℓ × Cin

ℓ × 1× 1
Repeat B × Cout

ℓ × Cin
ℓ × 1× 1 B × Cout

ℓ × Cin
ℓ × 3× 3

Table 8: Architecture of the Layer-specific Reenactment Blocks. The input on the block has a size of B×512×7×7, where
B is the batch size, while Cin

ℓ and Cout
ℓ are the input and output channels, respectively.



Layer Index ℓ ℓ-th Layer
Name

RB Type

0 Conv1 Shared
2 Conv2 Shared
3 Conv3 Shared
5 Conv4 Shared
6 Conv5 Shared
8 Conv6 Shared
9 Conv7 Shared
11 Conv8 Layer-

specific
12 Conv9 Layer-

specific
14 Conv10 Layer-

specific
15 Conv11 Layer-

specific
17 Conv12 Layer-

specific
18 Conv13 Layer-

specific

Table 9: Convolutional layers of the StyleGAN2 generator
that we propose to modify, altering their weights using the
offsets computed by the hypernetwork.

we also incorporate a hypernetwork [18] in order to learn
how to effectively modify the weights of a pretrained Style-
GAN2 [25] generator. However, we note that [4, 14] aim at
the problem of real image inversion, not neural face reen-
actment.

Both HyperStyle [4] and HyperInverter [14] produce
high-quality results on real image inversion, however their
quality degenerates significantly when manipulating the in-
verted images, especially on head pose editing. In Fig. 9,
we show results of HyperStyle [4] (Fig. 9a) and Hyper-
Inverter [14] (Fig. 9b) on head pose editing using the the
CelebA dataset [24]. It is worth noting that, while both
methods excel on real image inversion (the inverted images
are inside the red boxes), they produce several visual arti-
facts on the edited images, which renders them unsuitable
for the task of real image reenactment. We note that we ob-
tain the edited images using the InterFaceGAN method [42]
to shift the latent codes.

To further compare our method with HyperStyle [4], in-
stead of simply editing the head pose as shown above, we
perform face reenactment using the learned directions from
the work of FD [9]. We note that FD learns the directions in
the W+ latent space of a StyleGAN2 model trained on the
VoxCeleb1 [30] dataset that are responsible for controlling

HyperstyleReal image

(a) HyperStyle [4].
HyperInverterReal image

(b) HyperInverter [14].

Figure 9: Real image inversion and editing results on
CelebA dataset [24] using HyperStyle [4] and HyperIn-
verter [14]. Inside the red boxes are the inverted images,
while on the right and left we show results of head pose
editing using the method of InterFaceGAN [42].

the facial pose. In order to test HyperStyle along with FD,
we train HyperStyle on the VoxCeleb1 dataset. We refer to
this pipeline as HyperStyle-FD. In Fig. 10 we show compar-
isons of our method against HyperStyle-FD. We note that
the reenacted images using HyperStyle-FD not only present
visual artifacts, but also look unnatural, especially when the
source and target images have large head pose differences.

A.3. Limitations

As shown in the main paper and in the additional exper-
imental results provided in this supplementary material, the
proposed HyperReenact, in contrast to several state-of-the-
art works, achieves to effectively reenact a source face given
a target facial pose, preserving the source identity character-
istics and producing artifact-free images, especially in the
cases where the target and the source faces differ largely
in head pose. Nevertheless, we observe that in cases where
the source facial images depict accessories such hats or eye-
glasses, the proposed method fails to reconstruct them in
detail. For instance, as shown in Fig. 11, our method can-
not fully reconstruct the style of the glasses in the example
of the first row. Similarly, regarding the examples of the
second and third row of Fig. 11, our method is not able to
reconstruct every detail on the hats. We attribute this to the
fact that such items are underrepresented on the VoxCeleb1
dataset and, as a result, our method is not able to learn how



HyperStyle-FDSource OursTarget

Figure 10: Qualitative comparisons against HyperStyle-FD.

Real image Inverted image

Figure 11: We observe that accessory items such as hats or
glasses are not fully reconstructed.

to reconstruct them. Additionally, we do not refine any de-
tails on the background of the generated images.

A.4. Comparisons with StyleHEAT [62] and Style-
Mask [10]

StyleHEAT StyleMaskSource OursTarget

Figure 12: Qualitative comparisons with StyleHEAT [62]
and StyleMask [10] on VoxCeleb dataset [30].

As discussed in Section 4, StyleHEAT [62] is trained on
the HDTF dataset [67], that consists of facial images ex-
hibiting only small roll angle variations and showing mostly
frontal views. Moreover, StyleMask [10] is a face reen-
actment method based on a pretrained StyleGAN2 model
trained on the FFHQ dataset, which learns to disentangle the
identity characteristics from the facial pose using the disen-
tangled properties of the style space S of StyleGAN2. Both
StyleHEAT and StyleMask require the input images to be
aligned, similarly to the FFHQ dataset [24]. In Fig. 12 and
in Table 10, we present qualitative and quantitative com-
parisons with StyleHEAT and StyleMask on the VoxCeleb1
dataset [30]. Clearly, StyleHEAT performs poorly by gen-
erating many visual artifacts when the source and target
images have large pose variations, while StyleMask is not
able to faithfully reconstruct the source identity character-
istics. For a fair comparison, we additionally compare on
the HDTF dataset [67] (where StyleHEAT has been trained
on). In Table 11, we provide quantitative results on the test
videos provided by the authors of StyleHEAT [62]. Finally,
Fig. 13 illustrates qualitative comparisons with both Style-
HEAT and StyleMask. As shown, our method evidently
outperforms both StyleHEAT and StyleMask, on identity
preservation and on facial pose transfer.

A.5. Benchmark with extreme head pose differences

We build a small benchmark in order to evaluate our
method on challenging cases where the source and target
faces have large head pose differences. Specifically, consid-
ering the VoxCeleb1 [30] test dataset, we pick 1000 pairs
of images with large head pose distance (measured as the
average of the absolute differences between the 3 Euler an-



Method CSIM↑ APD↓ AED↓
StyleHEAT [62] 0.45 8.6 12.9
StyleMask [10] 0.47 5.3 13.2
Ours 0.58 0.9 6.2

Table 10: Quantitative comparisons with StyleHEAT [62]
and StyleMask [10] on the small benchmark with large head
pose differences between the source and target faces.

Method CSIM↑ APD↓ AED↓
StyleHEAT [62] 0.72 1.1 7.5
StyleMask [10] 0.66 1.6 8.8
Ours 0.75 0.38 4.1

Table 11: Quantitative comparisons on self-reenactment
with StyleHEAT [62] and StyleMask [10] on HDTF
dataset [67]

StyleHEAT StyleMaskSource OursTarget

Figure 13: Qualitative comparisons with StyleHEAT [62]
and StyleMask [10] on HDTF dataset [67].

gles). In Fig. 15 we show the distribution of the absolute
pose differences for each Euler angle, namely yaw, pitch
and roll. This benchmark allows us to obtain deeper in-
sights on the behavior of reenactment methods on challeng-
ing conditions.

In Fig. 14, we show comparisons of our method against
the two state-of-the-art face reenactment methods, namely
Fast BL [63] and Rome [26], on image pairs selected from
the small benchmark described above. As shown, the source
and target images have extreme head pose differences which
makes it more challenging for face reenactment methods to
generate realistic images. Nevertheless, our method is able

Source OursTarget Fast BL Rome

Figure 14: Qualitative results on the small benchmark with
large head pose differences between the source and target
faces.

to synthesize realistic faces even on extreme head poses.
In Fig. 14 we highlight (red boxes) details on the human
faces, such as areas around the mouth and eyes, where our
method creates artifact free results, while Fast BL [63] and
Rome [26] generate blurry unrealistic images.

A.6. Additional quantitative/qualitative results

In this Section, we present additional quantitative and
qualitative results of the proposed method in comparison to
state-of-the-art works. We compare all methods in terms
of their inference time and their overall performance on
the two tasks, namely, self and cross-subject reenactment.
Specifically, in Table 12, we demonstrate the inference time
of each method while reenacting a video of 200 frames. To
help drawing connections between the inference time and
the performance of each method, we also report the perfor-
mance ranking in Table 12 (referred to as “Perf. Rank”).
Specifically, we consider the evaluation metrics that are re-
ported in Table 1 of the main paper, and rank all methods
with respect to each metric. Then, we average the ranking
positions across all metrics on both self and cross-subject
reenactment, for each method, to obtain its overall perfor-
mance ranking. In Fig. 16, we present a plot of the two
metrics (Inference time and Overall Performance Ranking).
We note that our method achieves the best overall perfor-
mance ranking, while also remaining competitive on the



Figure 15: Distribution of the absolute pose differences for each Euler angle (yaw, pitch and roll) in our small benchmark
dataset built from VoxCeleb1 test dataset.

inference time. Additionally, while the inference time of
X2Face [55] and FOMM [43] is low compared to the other
methods, as shown from the qualitative results they generate
images with several visual artifacts.

Moreover, we present further qualitative comparisons on
the VoxCeleb1 [30], as well as quantitative and qualitative
results on VoxCeleb2 [12]. Specifically, in Figs. 17 and 18
we show results on self reenactment, in Figs. 19 and 20 we
show results on cross-subject reenactment, and in Fig. 21
we report results on self reenactment on the benchmark with
extreme head pose differences described in Sect. A.5.

Additionally, we quantitatively compare our method on
the task of self reenactment on the VoxCeleb2 dataset [12]
with the 10 state-of-the-art methods, namely, X2Face [55],
FOMM [43], Neural [11], Fast BL [63], PIR [37], LSR [29],
FD [9], LIA [54], Dual [21], and Rome [26]. In Table. 13,
we present the quantitative results on self reenactment. As
shown, our method outperforms all other methods both on
identity preservation (CSIM) and on head pose (APD) and
expression (AED) transfer (similarly to Section 4.1).

Finally, in Figs. 22, 23, we demonstrate results of our
method, both on self and on cross-subject reenactment, on
additional video datasets, namely, FaceForensics [40], 300-
VW [41], and CelebV-HQ [68], showing that the proposed
method can generalise well on different video benchmarks.

A.7. Ethics consideration

Neural face reenactment methods allow for the creation
of realistic talking head sequences that resemble the real
ones. Consequently, besides being used for benevolent and
useful purposes, such as in video conferencing, film and
video production, arts, and education, we acknowledge that
face reenactment methods, such as the proposed one, can
also be misused towards malevolent purposes, such as deep-
fake fraud, that can harm individuals and can pose a greater
societal threat.

Method Inf. time (sec)↓ Perf. Rank ↓
X2Face [55] 11.0 3.5
FOMM [43] 11.0 6.3
Neural [11] 115.0 5.6
Fast BL [63] 61.0 4.0
PIR [37] 54.0 4.3
LSR [29] 110.0 4.2
FD [9] 40.0 2.7
LIA [54] 23.0 5.3
Dual [21] 23.0 6.9
Rome [26] 70.0 3.1
Ours 37.0 1.1

Table 12: Quantitative comparisons on inference time and
overall performance ranking (Perf. Rank) of all methods on
self and cross-subject reenactment tasks (inference time is
calculated while reenacting a video of 200 frames).

Method CSIM↑ APD↓ AED↓
X2Face [55] 0.60 2.4 10.6
FOMM [43] 0.57 5.1 13.6

Neural [11] 0.39 1.4 9.1
Fast BL [63] 0.57 1.1 8.6
PIR [37] 0.57 2.8 10.8
LSR [29] 0.61 1.0 7.5
FD [9] 0.59 1.3 7.3
LIA [54] 0.64 2.5 8.7
Dual [21] 0.15 3.7 12.7
Rome [26] 0.63 1.3 5.9
Ours 0.65 0.5 5.2

Table 13: Quantitative results on the task of self reenact-
ment on VoxCeleb2 dataset [12].
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Figure 16: Comparisons in terms of the overall performance ranking of each method (presented in Table 1 of the main paper)
and their inference time required to reenact a video of 200 frames. The arrows point towards the best results.
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Figure 17: Additional qualitative results and comparisons on self-reenactment on VoxCeleb1 dataset [30]. The first and
second columns show the source and target faces.
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Figure 18: Qualitative results and comparisons on self-reenactment on VoxCeleb2 dataset [12]. The first and second columns
show the source and target faces.

FDNeural Fast BLX2Face FOMM LSRPIR LIA Dual RomeSource OursTarget

Figure 19: Additional qualitative results and comparisons on cross-subject reenactment on VoxCeleb1 dataset [30]. The first
and second columns show the source and target faces.
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Figure 20: Qualitative results and comparisons on cross-subject reenactment on VoxCeleb2 dataset [12]. The first and second
columns show the source and target faces, which are from different identities.

FDNeural Fast BLX2Face FOMM LSRPIR LIA Dual RomeSource OursTarget

Figure 21: Additional qualitative results and comparisons on self reenactment using our small benchmark with image pairs
that have large head pose differences. We show that our method presents robust results with artifact-free images, compared
to the other state-of-the-art methods.
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Figure 22: Additional qualitative results of our method on other video datasets such as FaceForensics [40] and 300-VW [41].



Source OursTarget Source OursTarget

Figure 23: Additional qualitative results of our method on CelebV-HQ video dataset [68].
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