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Abstract
This is a personal assessment of the intellectual contribution of the Black-Scholes
model of option pricing. I argue that the real contribution of the paper is to
show that European options can be replicated exactly if the future variability
of the path of transaction prices is known. The continuous rebalancing and the
probabilistic setting of the original paper mask this insight.
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1 Introduction

It is fifty years since Fischer Black and Myron Scholes published the paper (Black and
Scholes, 1973) that revolutionized modern finance, prompting numerous conferences
and publications. This note is a personal reflection on the theoretical contribution of
their paper. It does not attempt to cover the impact of the paper on academics and
practitioners; for a brief and accessible account of this the reader may want to look at
MacKenzie (2023).

But first an issue of attribution. As Black himself makes clear in his account of
how they came up with the Black-Scholes formula (Black, 1989), Robert Merton also
made a substantial contribution to the work, and indeed published his own paper on
rational option pricing in the same year (Merton, 1973). In recognition of their work
on option pricing, Scholes and Merton shared the Nobel prize for economics in 1997.
Fischer Black would doubtless have won it with them but for having died in 1995.
While some people rightly refer to the model as the Black-Scholes-Merton model, 1
will follow the common usage (popularised indeed by Merton himself) of referring to
the model as Black-Scholes.



It was just ten years after the famous paper was published that I first heard of
Black and Scholes. I was doing an MBA at London Business School. It was my first
exposure to financial economics. I have been obsessed with their paper ever since. As
with any theory that has radically transformed a field of thought, it is different things
to different people: “a pioneering formula for the valuation of stock options ... [it] has
also generated new types of financial instruments and facilitated more efficient risk
management in society” (as in the Nobel prize citation), or “defective and unscientific”
and its use by traders a “myth” (Haug and Taleb, 2011).

My own questions about it ranged from the severely practical (should the interest
rate used in the formula be the short-term rate or the rate for the maturity of the
option? in calculating historic volatility should one work with returns or log returns,
actual returns or demeaned returns?) to the fundamental (if the replication strategy
works path by path, how could it derive from an assumption about the probability
distribution of paths?).

This is an account of my own grappling with the paper. I start with the formula
itself and its meaning, and go on to examine the dynamic arbitrage strategy that
underpins it. Dynamic arbitrage is radically different from the static arbitrages that
has long been familiar to practitioners. The theory of continuous time stochastic pro-
cesses which underpins dynamic arbitrage was entirely new to me. It is subtle and
beautiful, but I found it hard to believe that the elaborate machinery of equivalent
martingale measures was really necessary to deliver the option pricing results. I came
to believe that the real insights of option pricing are independent of probability the-
ory, and the function of the machinery is to disguise the assumption on which the
Black-Scholes result is based.

While my take on the paper is no doubt idiosyncratic, I do not lay claim to origi-
nality, and have not attempted to give credit to those who reached similar conclusions
well ahead of me. But the people to whom I should give credit are the many students,
and in particular practitioners, I have taught. For in looking back at my own intellec-
tual journey I realize how much my thinking has been influenced by teaching option
pricing theory and responding to my students’ questions.

2 The formula
The Black-Scholes formula, as set out in the original paper, is

w(z,t) = zN(dy) — ce” "IN (dy), (1)
where

di ={Inz/c+ (r+v2/2)(t* —t)} /oV/t* — 1,
dy ={Inz/c+ (r —v?/2)(t* —t)}Jo/t* —t. (2)
w is the price of the option, = the spot price of the asset, ¢ the strike price, r the

risk free interest rate, ¢ the current time, t* the time of expiry, v the volatility and
N(.) the cumulative standard normal distribution.



It can be argued that the formula is not very original; it does not go beyond what a
bright graduate student might have come up with at the time. Picture such a student
trying to value a call option on a non-dividend paying stock. They would naturally
start from the traditional approach to the valuation of risky cash flows, and value the
option as the discounted expectation of its pay-off. In algebra, using Black-Scholes’
notation,

w(z,t) = PV (Ei[w(ze, t")]) where w(z,t*) = max{z — ¢, 0}. (3)

x¢ is the spot price of the asset at the valuation date. x4~ is the (currently unknown)
spot price at the option expiration date t*. At expiration, the value of the option is
x4« — c if the spot price at maturity exceeds the strike price, and zero otherwise. E
is the conventional expectation operator — our student is no probabilist and knows
nothing about different measures - and PV is the present value operator.

To go further down this line of argument requires a choice of probability distribu-
tion for z4+. The normal distribution is one possibility but the student, being a bright
student, might worry that a normal distribution gives positive probability to negative
stock prices, and hence makes the zero strike call on the stock worth more than the
stock itself. The lognormal is a better choice. Like the normal, it has two parameters —
a growth rate g and a volatility v. Integrating the lognormal is not particularly hard,
so the student would have little trouble in writing down the formula for the expected
terminal value of the option.

The final step is the choice of discount rate to get the current price of the option.
With no very good theory, the student might simply leave the rate d to be chosen by
the user.

The student would finish with a model that looks like

w(z,t) = 2el DN (dy) — eI N(dy), (4)

where

:ln;v/c+ (g +0v2/2)(t* — 1)

d
! v\/t* —t ’
lnz/c+ (g —v2/2)(t* —t
4, _nafe+g— v/ 1) o)
vVttt —t

This looks very similar to the Black-Scholes formula, but in place of the risk-free
rate 7, it requires the asset growth rate g and the discount rate d; if d = g = r, the
two formulae are identical. The student’s formula would not only look quite similar to
Black Scholes; it would also give option valuations which are quite similar, at least for
short-dated options which are not very sensitive to the choice of rates. Our student
would deserve a respectable grade for their answer, but not a Nobel Prize.

Doing this kind of thought experiment is obviously open to the accusation that
most truths are obvious in retrospect. But in this case, it is not just hindsight. Black
and Scholes themselves refer to no fewer than six papers published since 1960 (and



there are several earlier papers) which contained similar formulae to theirs, but crit-
icises them because they (like our graduate student’s formula) “were not complete,
since they all involved one or more arbitrary parameters.” From the purely practical
perspective of valuing an individual option, the removal of the growth and discount
rate parameters and their replacement by the risk free rate is an improvement, but
still leaves the much bigger problem of estimating the volatility.

To my mind though, this entire line of criticism of the paper and the formula
itself misses the point. What is special and new about the formula is not the right
hand side of the equation, but the equal sign. The traditional valuation formula,
wy = PV (E; [we+]) is a near tautology (I say “near” because it does have the falsifiable
implication that two securities with identical cash flows trade at the same price). The
Black-Scholes valuation formula on the other hand is a valuation based on replication.
To make the point in more colloquial language, Black and Scholes show what the price
of the option must be, while all their predecessors merely showed what it ought to be
from some subjective viewpoint. So it is not the formula but the way that dynamic
replication works that is at the heart of the Black-Scholes theory.!

3 Simplifying the formula

But before looking at replication it is worth spending a little more time with the
algebra to see what intellectual juice one can extract from it.

Even if the formula is not the major contribution of the paper, it is the aspect
which immediately appeals to the MBA, to the consultant and to the practitioner.
The formula turns the follower of Black and Scholes into a kind of priest, able to
give a valuation that is both mysterious and authoritative. At a time in the 1970s
when few people could actually use the formula with ease,? its very complexity, and
its derivation using exotic tools from stochastic calculus made it appear particularly
powerful. Academics loved it.

In conjunction with the Miller-Modigliani theorems in corporate finance (1958 and
1963), and the Capital Asset Pricing Model (1961-66), the Black-Scholes Formula gave
Business School academics an intellectual dominance over practitioners which was
potent in securing funding, students and respect.

I found the vision of academic as priest disturbing. The function of academics is to
reveal not to hide, to question not to instruct. The Oxford English Dictionary notes
that the word formula is applied “to rules unintelligently or slavishly followed, to fet-
tering conventionalities of usage, to beliefs held or professed out of mere acquiescence
in tradition”, the very opposite of critical enlightenment. I wanted to unpack, simplify
and demystify the formula to better understand the underlying theory.

1Harrison and Pliska (1981) put the point rather more elegantly when they say “It can be argued that
the important and interesting, feature of the model ... is its completeness, not the fact that it yields the
explicit valuation formula ... for call options. ... (In the end, however, it is the explicit calculation which
give the subject its vitality.)”

2Calculators at the time were quite rudimentary. Most users of the formula had to look up tables of
the cumulative normal distribution by hand. More geeky people used nomograms, which are exotic looking
charts from which option values could be read off (Dimson, 1977)



By the standards of other equations in finance the formula is both complex and
opaque. It has many (six) inputs; it involves a function (V) that has to be approx-
imated numerically and looked up in tables; it is too complex to describe in words;
and its structure does not obviously relate to the logic on which it is founded.

The formula can be simplified. Self-evidently, the calendar date is irrelevant to the
option price. It must hold in exactly the same way when it was published in 1973 as
2500 years earlier when Thales of Miletus took out his famous call options on olive
presses® . So we can drop t and t*, and replace them with the length of time to
maturity, so reducing the number of inputs by one.

Less obviously, but much more significantly, the riskless interest rate r can be
dropped. It is only needed because Black and Scholes choose to do all their transactions
in the spot market and so need a bank account to carry forward cash flows to maturity.
But it is much simpler to do all the transactions in the forward market — where all
transactions (including the purchase of the call itself) are settled on one date - and
dispense with cash.

It is worth at this stage quoting Black and Scholes’ seven assumptions as stated in
their paper:

(a) The short-term interest rate is known and is constant through time.

(b) The stock price follows a random walk in continuous time with a variance rate
proportional to the square of the stock price. Thus the distribution of possible
stock prices at the end of any finite interval is lognormal. The variance rate of
the return on the stock is constant.

The stock pays no dividends or other distributions.

The option is ‘European,’ that is, it can only be exercised at maturity.

There are no transaction costs in buying or selling the stock or the option.

It is possible to borrow any fraction of the price of a security to buy it or to

hold it, at the short-term interest rate.

(g) There are no penalties to shortselling. A seller who does not own a security will
simply accept the price of the security from a buyer, and will agree to settle with
the buyer on some future date by paying him an amount equal to the price of
the security on that date.

Doing everything in the forward market not only reduces the number of inputs to the
formula, it also dispenses with assumptions (a) about the constancy of interest rates
and (c) about the absence of dividends. The diffusion assumption (b) needs to be
amended to refer to the dynamics of the forward price rather than the spot price. The
last three assumptions can be rolled up into the assumption of a frictionless forward
market. Assumption (d) is not really an assumption at all. So we see that the theory

3The source of the story of Thales and the olive presses — the impoverished philosopher knew from his
skills in astronomy that the next olive harvest would be very large, so he speculated by placing deposits
on many olive presses - comes from Aristotle’s Politics (Book 1, chapter XI in Aristotle and Lane (2016)).
Aristotle is writing some 200 years after Thales’ death, and describes the story as having been “attributed
to him on account of his reputation for wisdom”. Although Aristotle describes the transaction as “his
financial scheme, which involves a principle of universal application”, the principle he is referring to is not
in fact the use of options, but rather the exercise of monopoly power. The interpretation of the contract as
a call option assumes that Thales, having made the deposit on the olive presses, had no further obligation
if he chose not to use them.



is really based on just two assumptions: a frictionless forward market, and a forward
price that follows a diffusion process with constant volatility.

One possible objection to specializing Black Scholes to forward prices is that in
many cases forward markets do not exist. But the original Black-Scholes assumptions
(costless shorting, absence of transactions costs, zero dividends, borrowing and lending
at the same rate) themselves ensure both that forward contracts can be replicated
perfectly and that the dynamics of the synthetic forward price and the spot price are
identical. So nothing is lost and much is gained by transposing Black and Scholes from
the spot market to the forward market. In the rest of this paper, I will use price to
mean the forward price; when I need to refer to the spot price, I will do so explicitly.

The payoff from working in the forward market goes beyond the aesthetic pleasure
of simplifying the assumptions and reducing the number of variables in the formula. It
makes the wider application of the theory much more obvious and straightforward. The
extension of Black-Scholes to options on futures (Black, 1976), to rights to exchange
one risky asset for another (Margrabe, 1978) and to currency options (Garman and
Kohlhagen, 1983) all become trivial. It becomes self-evident that the right way to price
options on commodities (where spot and forward prices are not perfectly correlated)
is to start from the dynamics of the forward price. Given that one is forced to make
simplifying assumptions about the dynamics of prices in order to price options, much
better to do it about the object of interest (the forward price) than to derive the
dynamics by making more complex assumptions about the joint dynamics of spot
prices, storage costs and convenience yields.

I learnt much of this from lecturing. It would have been some time in the late
1980s when I was teaching a group of practitioners about option pricing. I remember
(with some embarrassment) fervently denouncing the common practice of using Black-
Scholes to value fixed income and interest rate options. It is logically inconsistent, I
argued to the class, to use a model that assumes constant interest rates to value options
on bonds whose volatility derives entirely from unexpected variation in interest rates.
It is absurd, I would continue, to use a Brownian diffusion process to model the price of
a default-free bond, when the bond’s future price at maturity is known with certainty.
It makes no sense, I would conclude, to treat the interest rate in a cap contract (where
the writer of the cap pays the other party the difference between the market rate and
some fixed rate, if positive) as if it is a price. My arguments fell on deaf ears; while
the practitioners were prepared to accept that I might be right, they would continue
to use this discredited methodology which served them well in practice. “I am sure
you are right in theory, Professor, but ...”.

Their scepticism made me rethink my own ideas, and understand why the inconsis-
tencies between theory and practice that I had identified were illusory — the constancy
of interest rates is irrelevant to Black-Scholes, and it is only the dynamics of the
forward price that matter.

Having got rid of the calendar time t*, and the interest rate r, it is worth noting
that the time to maturity now only occurs in conjunction with the volatility. The
formula can be written in terms of the total variance - the square of the volatility
multiplied by the period length — reducing the number of inputs to three. There is
a reason for doing this that goes beyond an obsession with reducing the number of



variables in the equation. It highlights the role of time in Black-Scholes. With interest
rates out of the way, the passage of time is measured only by volatility. The algebra
hints that the crucial assumption is not the constancy of volatility, but rather that the
total volatility of the price path is known. This turns out to be key to understanding
why the theory works.
We can now write a simplified version of the Black-Scholes formula (with refreshed
notation) as
C = N(d1)F — N(d2)K, (6)

where
InF/K+V/2
vV ’
dy =dy —VV. (7)

dq

C is the price of the option to buy the asset for an amount K at maturity. F is
the price of the asset, V' is the total variance (that is the variance of the log return of
the asset over the period) and N the cumulative standard normal distribution. Since
all prices in this equation are forward prices, there is no need for discounting.

The formula (it is effectively Black’s Formula) is still not simple, but it is less
cluttered than before. Interpreting it as a static equation, it hints that the option
resembles a leveraged position in the asset: the call option is like a holding of N(d;)
units of the first asset financed in part by borrowing N (d2) K. This is a valuable insight
when risk managing an option position. But it is the dynamic interpretation which is
more significant.

For the valuation formula can be seen as a recipe for replicating and hence pric-
ing the option. A trader who starts with wealth C' raises further cash by borrowing
N(d2)K, and uses the money to buy N(d;) units of the asset. As time passes, as
remaining variance V' reduces and the price F' of the asset changes, N(d;), otherwise
known as the delta of the option, also changes. The recipe requires the trader to trade
continually to keep a long position in the asset equal to the current delta, buying the
asset as the price goes up, selling as it goes down. If the assumptions of the model hold,
this strategy - called delta hedging - will lead to the trader holding a position at matu-
rity t* whose value exactly matches the call option: whenever the asset is worth more
than the strike, so Fi~ > K and the call option is worth exercising (”in the money”),
the trader is long one unit of the asset, and short K. When the asset is below the
strike, and the option is not worth exercising (the call option is ”out of the money”),
the portfolio is empty. So for a price ¢ the trader can replicate the call option perfectly.

The step from replication to arbitrage based pricing is simple. If the price of the
option in the market is C* where C* > C, then the strategy of selling the option and
replicating it guarantees a profit of C™ — C. This is an arbitrage. If CT < C, buying
the option and reversing of the delta hedging strategy (swapping buying and selling)
locks in a profit of C — C™. To avoid arbitrage possibilities the price of the call option
must be exactly C.



4 The replication strategy

But before accepting too readily that Black and Scholes’ achievement is pricing by
replication, it is important to recognise that their dynamic replication only exists as
a theoretical construct and is not a practical reality.

Arbitrage or replication based pricing was of course familiar way before Black
and Scholes — traders have long understood triangular arbitrage in the currency mar-
kets (trading euro-yen rates against euro-dollar and yen-dollar rates), cash and carry
arbitrage (trading the forward euro-yen rate against the the spot rate), and put-call
arbitrage in the options market (trading the option to sell a euro for 100 yen - a put
option - against the corresponding call option, the right to buy a euro for 100 yen). But
these trades — call them traditional arbitrages - are very different from the dynamic
strategy in Black and Scholes:

® In a traditional arbitrage, the trade is well specified: the quantities to be bought or
sold are well-defined. In Black-Scholes the trading strategy is not a single strategy,
but a family of strategies which depend on the level of volatility. The arbitrage
only works if you use the right volatility parameter, but the level of volatility is not
known to the arbitrageur.

e A traditional arbitrage is practically feasible. It involves a finite number of discrete
trades - typically, setting up a portfolio initially and liquidating it at maturity -
and trading volumes are bounded. The Black-Scholes strategy requires continuous
trading and infinite trading volumes and is impossible to execute.

® In a traditional arbitrage, any shortfall between the theoretical profit from an arbi-
trage and the profits actually achieved can readily be quantified and explained. All
trades carry risk. Actual transaction prices differ from quoted prices; fees and com-
missions need to be paid; counter-parties default. These risks mean that arbitrageurs
rarely capture the full difference between theoretical value and market price. But in
a traditional arbitrage, the shortfall can be attributed to specific causes and prop-
erly quantified. In the case of option pricing, Black and Scholes theory provides no
obvious way of explaining, and therefore of understanding, any shortfall.

Black-Scholes option replication requires continuous rebalancing. In the presence
of any market friction - bid-ask spreads for example - this is impossible since trading
volume is unbounded. If the theory is to have any practical application, it cannot be
restricted to continuous trading but must also work with discrete rebalancing. But
Black Scholes arbitrage with discrete rebalancing is quite problematic as the following
thought experiment illustrates.

Consider a world where trading costs in the forward market are negligible, and
the price follows a constant volatility diffusion process. The volatility (known to the
arbitrageur) is 30%. The fair (Black-Scholes) price of a one year at the money call
is $12.00. The call is actually trading at $10.00. The arbitrageur buys the call and
delta hedges following the formula, rebalancing every day. At the end of the year, all
positions are liquidated and the arbitrageur finds that instead of making a profit of
$2, she has actually lost $2. She is understandably upset.

She consults a friendly academic in the hope that he can explain why an arbitrage
trade lost money. He asks for her trading records. He calculates the realized volatility



— that is the volatility calculated from the prices she actually traded at - and finds
that it was only 20%. The academic concludes that there is no great mystery here; the
arbitrageur had thought that volatility would be 30%, the market had believed that
it would be 25% and it actually turned out to be 20%. The option she bought was in
fact over-priced, not under-priced.

The arbitrageur does not accept this. She knows (divine revelation?) that she was
right, and that the data generating process was Brownian with volatility of 30%.
The fact that the realized volatility of the observed prices on the path was 20% does
not prove that she was wrong. The probability of a process with volatility of 30%
generating daily returns over a year with a realized volatility of 20% is small, but
it is not zero. She concludes that the theory is sound, her beliefs about volatility
were correct, and that the reason she lost money was that she failed to rebalance
continuously.

The arbitrageur is of course correct. The prices at which she traded could have
been generated by a Brownian process with volatility of 30% (think for example of
successive daily prices being linked to each other by Brownian bridges with a volatility
of 30%). If that were the case, and had she rebalanced continuously (as the theory
provided), she would have made her $2 (ignoring transaction costs).

This thought experiment suggests that the Black Scholes replication strategy is
immune to refutation even when it does not work. The strategy never fails because it is
never properly implemented, and it is never properly implemented because it requires
continuous trading, and that is impossible. On this reading, the replication strategy
is just a theoretical construct with limited practical application.

If that were a fair summary, it is hard to see how the paper could have had such an
impact on the practice of finance. We need to look at the arbitrage strategy in more
detail.

5 The binomial model

The key to understanding why Black and Scholes does work in the real world comes
from a somewhat unexpected source — not an article in an academic journal but
rather from a chapter in a textbook. It happens to be one written by another Nobel
Prize winning economist, Bill Sharpe. In the first edition of Investments (Sharpe,
1978), published in 1978, just five years after the Black and Scholes paper, he sets
out the multi-period binomial model in order, as he puts it, “to make concrete some
further principles of option valuation”. He then describes “the somewhat formidable
but highly practical option valuation formula developed by Black and Scholes” but
does not attempt to derive it. The binomial model which Sharpe originated and Cox,
Ross and Rubinstein developed, is generally seen as a convenient way of explaining
the ideas behind the Black and Scholes model in a way that “requires only elementary
mathematics” (Cox et al., 1979).

As a model it appears highly artificial. Geometric Brownian paths look like real
price paths; binomial paths, with their clumsy sawtooth shape, look like cartoon rep-
resentations of price paths. Figure 1 illustrates the contrast.* Sharpe’s stock starts at

4There is actually a bit more to Figure 1. The binomial path has an annualized volatility of 30%, while
the Brownian path has a volatility of 20%. Despite this, the Brownian path is constructed to coincide with

9



Fig. 1 Sample price paths under binomial and Geometric Brownian motion

$110 $110
$105 $105
$100 $100
$95 $95
$90 $90
0 40 80 120 160 0 40 80 120 160
Time (days) Time (days)

The left hand graph shows a path from a seven period symmetric binomial tree with an absolute log return of
5% at each node. The right hand side shows a path from a Geometric Brownian process with an annualized

volatility of 20%, using a mesh of 0.2 days.

$100 and goes up or down 5% each period. At the end of the first period the stock is
worth either $95 or $105; it is not allowed to be $101 or $120. This is a handicap for
a model that attempts to represent the real world.

The standard interpretation of the binomial model is that is a fairy tale or parable
to explain a complex mathematical theory to poets. If students complain that the
binomial assumption is artificial, they are told that economic theories must be judged
by their predictions not by their assumptions. But this reply is not satisfactory. Option
pricing theory is not really economics — there are no agents, no equilibria — it is
mathematics. It says that a particular trading strategy will have a particular pay-off.
If we do not understand the assumptions, we can not know under what conditions the
Black-Scholes replication strategy works.

Furthermore, the insights of the binomial model are rather fragile. When 1 first
started thinking about these issues, I was prepared to go along with modelling the
price path as a process in discrete time, knowing that one can always make the time
divisions finer and, in the limit, (if limits are taken in the right way) obtain geometric
Brownian motion. But I did not like the binomial. I preferred the trinomial. I thought
it more pleasing aesthetically. As the binomial tree becomes finer, the size of price
change goes to zero, and the probability of a price change per unit time becomes
infinite. Most markets have a minimum tick size (for example most stocks on the New
York Stock Exchange are quoted to the nearest cent) - and prices move finitely often
per unit time. The trinomial can accommodate this. Prices can go up one tick, down
one tick or stay the same; as the period length used becomes shorter, the probability of
a price change per period becomes smaller, but the jump size remains finite. Whether
you share my preferences for the trinomial or not, one might think that it would
be harmless to indulge them, but that would be wrong. Arbitrage pricing works in
a binomial setting, but it does not work in a trinomial setting - the market is not
complete. This immediately arouses suspicion; what am I assenting to when I adopt

the binomial path at the nodes of the tree. It therefore exemplifies the thought experiment at the end of
the previous section.

10



the binomial model? How can I tell whether I am living in a binomial world, where
options can be priced by arbitrage, or in a trinomial world where they cannot be?

It turns out that there is a much better way of understanding the binomial model.
It does explain when and why option pricing theory works, and it makes the trinomial
question irrelevant. The interpretation of the binomial tree as a recipe rather than a
process became clear to me through my teaching.

The binomial model is a gift to teachers. Presenting it to students who have not
seen it before has a magic that is rare in teaching financial economics. The teacher sets
up the scenario: you, the student, are a trader who has sold a call option on a stock.
The stock costs $100 today. The call gives the holder the right to buy the stock for
$100 in three months’ time. Interest rates are zero (fewer pesky calculations) and there
are no dividends. The stock goes up or down by 5% each month; it follows the tree
shown in panel A. You sold the option for $3.75 - which is apparently the fair price.
In three months you will have to honor the option which may be worth somewhere
between nothing and $15.76.

You need to manage your risk. Fortunately, your grandmother has left you a recipe
for doing just that. The recipe is shown in panel B. It sets out the delta - how much
of the stock you need to hold - at each node. It fully specifies the trading strategy.
How well does the recipe work?

The first thing you need to do is buy 0.51 (as shown in the root node) units of
the stock for $51.00; you use the $3.75 you received for selling the option, and borrow
a further $47.25 to finance the purchase. A month later panel B shows that you will
need to increase the hedge to 0.75 or reduce it to 0.25 depending on whether the stock
rises or falls, increasing or reducing your debt accordingly.

Table 1 Binomial replication recipe

Month Month
0 1 2 3 0 1 2 3
$115.76
$110.25 1.00
$105.00 $104.74 0.75
$100.00 $99.75 0.51 0.47
$95.00 $94.76 0.25
$90.25 0.00
$85.74
A. Stock price B. Delta

I tell the students to trust their grandmothers. The strategy is perfect; whatever
happens over the next three months, they will be safe. I challenge the students to
prove me wrong. They can decide at each node whether the stock goes up or down.
As we arrive at each node, we calculate their cash and stock position (to increase the
drama I would probably use a four or five period tree). At first the students try to
frustrate the strategy by choosing paths which they think will be problematic, but
gradually they get convinced that the replication strategy works on every path.
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As T used the simulation in class, I would elaborate the story. The student would
be a portfolio manager; panel B would be a set of instructions for a trading desk which
had responsibility for doing the actual trades. This helpfully emphasises the precom-
mitment to the recipe. I worried about the credibility of the story. The instructions
are incomplete: how would/should the desk interpret them if the stock price after a
month was $101 or $120 rather than $95 or $105?

Then I had a moment of revelation. The trading desk does not have a clock or
a calendar. The traders observe the price feed. Rather than wait for one month and
hope that the price is $95 or $105, they trade when the price first hits $95 or $105. If
the price hits $105, they then wait until the price first hits $110.25 or $99.75 before
trading again. Trading in this way, they follow the instructions to the letter, and end
up replicating the option perfectly.

This transformed my understanding of the binomial. The binomial is not a Mickey
Mouse representation of a price path; it is a representation of a completely practical
trading strategy — trade only when the price moves to the next node in the tree. The
strategy works exactly as the theory requires; the replication is perfect. By the time
the trader reaches the last node, the portfolio consists of a long position in the asset
and a short position in the strike if the asset price is above the strike, and is empty if
it is below.

6 Realized variance

What could go wrong with the recipe? One problem is jumps. If in the first period the
market closes at $104.90 and then opens at $105.10, the share purchase required by
the recipe would be at a higher than planned price. To avoid the problem, I assume
that the price path is continuous.®

A more fundamental issue is that the last node of the tree is reached before the
call option matures. Suppose for example that the price reaches the last node of the
tree after just 2 months. If the price is below the strike, the hedge portfolio is empty,
and the trader is short a one month call with a strike of $100. If the price is above
$100, the hedge portfolio is a long forward contract which, when netted against the
short one month call, is a short one month (out of the money) put with a strike of
$100. The trader is left with an unhedged exposure.

It is also possible that the option matures and the price has not reached the last
node. In that case too the replication is not perfect, but any error will be in the trader’s
favour. The trader will be long an out of the money put or call with a strike of $100
and which expires when the last node is hit.

The replication is imperfect because the maturity of the option is fixed. But now
suppose that the option expiry date is not defined as a calendar date, but rather as
the time the last node is hit. In that case, the trader can replicate the call perfectly.

5Continuity is not quite the right word, though I will continue to use it. Prices that move discretely -
tick by tick - present no problem. The problem is jumps, when the price moves several ticks without any
opportunity to trade at intermediate prices. It is messy to deal with price processes that have jumps - in
a paper I wrote with Mark Britten-Jones (Britten-Jones and Neuberger, 1996) we showed how they can
be incorporated in the theory - and our conclusion can crudely be summarized as saying that jumps do
matter (replication is imperfect) but they do not matter very much unless the jumps are individually large
compared with the overall variance.
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By analogy with car rental agreements that charge by time and mileage, I decided to
call these options mileage options.

A general mileage call option contract has four parameters (K, u,d,n). K is the
strike. The option expires after n periods. The first period starts at the inception of
the option. A period ends when the forward price first reaches either uF or dF’, where
F is the beginning of period price. K, u and d are strictly positive real numbers with
d <1 < u, and n is an integer. The mileage option can be replicated perfectly and
therefore priced exactly using the binomial model. The only assumptions are price
continuity and frictionless markets.

We can simplify matters by restricting attention to symmetric trees where Inu =
—Ind = §, where 0 is a strictly positive number. The price of a mileage option increases
with n and ¢. It can readily be shown that the fair price is to all intents and purposes
a function of V* = né2. So the tree can be characterized by the pair (V*,d), where
the expected time to maturity, and hence the price of the mileage option depends
primarily on V*, and  measures the granularity of the tree.

It is useful to introduce a bit more notation. Let tg,%1... be the times that the
successive nodes of the tree are reached, with ¢ty being the root node. For simplicity,
restart the clock at the beginning so tg = 0. Let Fy, F}. .. be the corresponding forward
prices. 7 = t,, is the (random) time the last node is reached. V; is a step function
that is initialised at zero at time 0 and which increases by (In Fj/F j)2 as each node
is reached. So V; is the sum of squared log returns from the inception of the option.
Returns are calculated from transaction to transaction, rather than being based, as
more conventionally, on prices observed at fixed time intervals. It is natural to refer
to V; as the realized variance. Realized variance defined in this way is a property of a
path not of a process; it is a well-defined observable quantity, and not an estimate of
some parameter; and its value depends on the granularity of the tree.

We can now state what I regard as the fundamental insight of the Black and Scholes
paper: in the absence of jumps and market frictions, a European call option can be
priced by arbitrage if the realized variance over the life of the option is known.

Note that the concept of arbitrage here is similar to a traditional arbitrage

® the trading strategy is well specified;

® it is practically feasible, as it involves a finite number of discrete trades, and trading
volume is bounded;

® any shortfall between the theoretical profit and the profits actually achieved can
readily be quantified and explained in terms of price jumps, trading costs, failure of
trades, or whatever.

This formulation immediately raises the question: how can one know the realized
variance in advance? One answer is: because the option is a mileage option — so
the realized variance is known in advance by contractual definition. This is rather
unsatisfactory because nobody actually trades mileage options . But I would argue
that the interpretation is still useful insofar as mileage options are reasonably closely
related to conventional fixed maturity options, and a partial hedge for them.

The other, more standard, answer is that if one knows that the price follows geo-
metric Brownian motion (GBM), then one also knows the realized variance over any

13



fixed horizon. More precisely, given any process for generating price paths, the matu-
rity 7 of the mileage option (V*,4) is a random variable. If the process is GBM with
volatility o, E[r] = V*/02,% which is independent of the granularity. 7 has sampling
error, but the error is proportional to n=!/2 and therefore to §. As § tends to zero,
T converges to V*/a? with probability 1 — the mileage option and the time option
coincide.

To put the point another way, all the sophisticated infrastructure of continuous
time stochastic processes — the semi-martingales, the measure theory, Girsanov, Ito
and so on — is being used to hide or justify two propositions: that the price path is
continuous, and that the agent knows the quadratic variation of the price path. It is
a matter of taste, but it does not seem to me that going from “assuming you know
the realized variance” to “assuming the statistical process generating the price path
is GBM with known volatility” is a great advance. Indeed, I would go further and say
that the first formulation has the advantage that it focuses attention on the issues
that matter when applying Black and Scholes.

7 Insights from the mileage option approach

7.1 Implied volatility

The data generating process cannot be known. The mileage option approach highlights
the fact that a trader who has sold a conventional option with fixed maturity T for
some price C' can manage or reduce their risk by using the money received from the
sale of the option to replicate a mileage option with uncertain maturity 7, but is left
— inevitably — with exposure to realized variance risk as represented by the difference
7 — T. The higher C' is, the more nodes the trader can have for the mileage option,
the greater its maturity.

More specifically, if the trader fixes the granularity parameter §, then the option
price C determines the number of nodes n in the binomial tree, and hence the amount
of realized variance V* the trader can buy. Option traders normally think in terms
of volatility - the square root of variance per unit time - so one way of describing
the transaction is that the trader sells the conventional option on an implied volatility
of ™™P = /V*/T and constructs a mileage option which has a realized volatility of
oreal = \/V* /7. If the realized volatility is greater than the implied volatility, the
mileage option expires before the conventional option and the trader is exposed to loss;
conversely if the realized volatility is less than the implied volatility, the trader gains.

This definition of implied volatility is slightly difference from the standard Black-
Scholes implied volatility, but converges to it as § tends to zero.

7.2 Conditional volatility forecasts

The trader who sells a conventional option and creates a mileage option is subject to
volatility risk. But the risk depends also on where the price ends up. Suppose that

SThe distribution of 7 also depends on the drift of the diffusion process; the simple formulation here is
correct when the log price is a martingale - see Karlin and Taylor (1975), ch 7, theorem 5.1; choosing some
other drift parameter complicates the algebra but does not change the underlying argument.

14



realized volatility is higher than implied volatility, so 7 < T. Then if F, < K the
mileage option pays nothing, and the trader is fully exposed to the conventional option,
with payoff [Fr — K]*. If F, is far below K then the risk to the trader is small, but
if it is close to K, the trader’s exposure may be quite large. If F; > K the mileage
option pays F, — K, and the trader’s net exposure is [K — Fr]T. Again, it can be seen
that the exposure is greatest when F); is close to K.

Similar analysis applies when realized volatility is greater than implied volatility,
with the trader’s risk exposure being greatest when Frp is close to K, except that now
the risk is entirely on the upside.

This analysis suggests the trader will be most concerned about the realized volatil-
ity on paths that end up close to the strike. This provides a possible explanation for
the variation in implied volatility across exercise prices - the so-called smile - which
of course does not exist in a Black-Scholes world.

7.3 Transaction costs

The assumption of zero transaction costs is standard in arbitrage models. It is obvi-
ously unrealistic; in general, there is a spread between bid and ask prices. In traditional
arbitrage the presence of frictions is not a problem. It is straightforward — if somewhat
tedious - to do the analysis using different bid and ask prices rather than assuming a
single price. It means that the price of the replicated asset must lie in a range rather
than a single number if the market is to be arbitrage free.

As already observed, transaction costs are a serious problem for the Black-Scholes
model because the volume of trading is infinite. One advantage of the mileage option
approach is that transaction costs can be directly incorporated in the model. Instead
of there being just one price for the asset, there are two: a bid price at which the asset
can be sold and an ask price at which the asset can be bought. We assume the bid is no
higher than the ask, and both prices are continuous. Now consider the case of a trader
replicating a long call position.” The trader buys when the price hits an up-node and
sells when it hits a down-node. The instructions to the trading desk are modified as
follows: if the most recent transaction was done at price F' then the portfolio is to be
rebalanced when the bid price reaches Fe~% or the ask price reaches Fe®®. Provided
that the bid-ask spread is smaller than §, the instructions are coherent, all transactions
take place at node prices and the replication of the mileage option is perfect.

It does not mean that transaction costs have no impact. The effect of transaction
costs is to shorten the life of the mileage option. To quantify the effect, assume that
the mid price follows a GBM with volatility o, and that log bid and ask prices are
lower or higher than the log mid-price by an amount s. The price change (that is
the absolute log return) between successive portfolio rebalancing as measured by the
actual transaction cost is still §, But the change in the mid-price is either § (when the
trade at the beginning and end of the period have the same sign) or 6 — 2s (when a
buy is followed by a sell, or vice versa). The average time between successive nodes
goes down from 6%/02 to §(0 — 2s)/0?. The effect of transaction costs is to reduce

"The analysis assumes that the claim being replicated is convex. The replication of a concave payoff - for
example, a short option position - is discussed later.
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the expected maturity of the mileage option from V*/o? to (V*/o?)(1 — 2s/4), which
corresponds to increasing the realized volatility from o to o/+/1 — 2s/0.

Transaction costs limit how fine a tree the trader will want to use. In a world with
no transaction costs, the maturity of a mileage option is subject to two types of risk:
volatility risk, because volatility is not known in advance; and sampling risk, because
the price path is observed a finite number of times. The sampling risk can be reduced
by using a finer tree (lower J, greater n). In a GBM world there is no volatility risk,
so all risk can be removed by using an infinitely fine tree. But in reality volatility risk
is substantial (as shown by the difference between implied and realized volatility, for
example Christensen and Prabhala (1998)) and the reduction in risk from having a
finer tree are likely to be largely exhausted once n exceeds say 30. In the presence
of transaction costs, the finer tree has a shorter life, and the extra cost of hedging a
conventional option is large when s is significant relative to §.

The choice of § therefore reflects a trade-off. The trader selling an option is exposed
to uncertainty about the future level of volatility and the delta hedging strategies we
have examined can do nothing about volatility risk. But he is also exposed to sampling
risk which he can reduce by using a finer tree. The cost of doing this however is that
he faces higher transaction costs which include the probability of losing money.

If the trader is buying an underpriced option and hedging by replicating a short
position in a mileage option, strategy involves selling when the underlying rises and
buying when it falls. The impact of transaction costs is to reduce the realized volatility.
Thus transaction costs generate a bid-ask spread in volatility that depends both on
the level of transaction costs in the underlying and the granularity of the tree used
for option replication.

7.4 Short dated options

GBM is self-similar — the process is the same (apart from scale) whatever the hori-
zon. The Black Scholes theory should apply equally whatever the term of the option.
But there do seem to be significant difficulties in applying the theory to short-dated
options. “A review of the finance literature reveals that options with less than 10
days to maturity are largely ignored (e.g., Bakshi, Cao,and Chen 1997). The appar-
ent reason for this neglect seems to be that the options market becomes structurally
unstable for maturities of less than 10 days.” (Arnold et al., 2007). The mileage option
approach, with its granularity, does provide some insight here.

A crude numerical example may illustrate the point. Take an asset whose volatility
is expected to be 20%. Suppose also that the asset has a bid-ask spread of 10 basis
points, and that there is a demand for call options on the asset on an implied volatility
of 22%. As we have seen, transaction costs increase realized volatility; to give any
opportunity for profit, the trader needs to keep realized volatility below 22%. This
implies in turn that 6 > 0.6%.%

To keep sampling error down, the trader wants n, the number of nodes, to be at
least 30. These requirements can all be accommodated provided that the maturity of
the option is at least 3020.0062/0.222 = 0.022 years which is about 8 calendar days.

8With o = 20%, 8 = 0.6% and s = 0.05%, o/~/1 — 25/6 = 22%.
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For shorter maturity options, hedging is either expensive (because of the need to use
a finer grid) or risky (because of the small number of nodes).

8 Conclusion

As I suggested at the beginning of this paper, Black-Scholes means different things to
different people. My focus has always been quite a narrow one — seeing how the paper
manages to solve the specific problem of valuing a single European call option on one
asset. I have explained that the central insight, in my view, is the relationship between
option value and realized variance. I see the stochastic process assumptions essentially
as a device to pretend that the hedger knows the realized variance in advance. I have
suggested that the focus on realized variance and the granularity of measurement is
helpful in grappling with the application of the theory to practice.

But I do want to acknowledge that the influence of the Black Scholes paper has
been much wider than this narrow focus implies. By showing how the mathematics
of continuous time stochastic processes can be used to solve the call option valuation
problem, it paved the way for the development of financial engineering, and the tools
to manage portfolios of derivatives. This does require a reliance on formal modelling
which cannot readily be reduced to simple discrete trading strategies, as in the single
risky asset case. The extended reach of the theory, which has enabled the enormous
growth of activity in the derivatives market, has also led to the accumulation of imper-
fectly understood assumptions which, from time to time, have caused users to face
losses on a scale which the theory failed to predict.
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