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Abstract

Optical-based navigation for space is a field growing in popularity due to the

appeal of efficient techniques such as Visual Simultaneous Localisation and

Mapping (VSLAM), which rely on automatic feature tracking with low-cost

hardware. However, low-level image processing algorithms have traditionally

been measured and tested for ground-based exploration scenarios. This paper

aims to fill the gap in the literature by analysing state-of-the-art local fea-

ture detectors and descriptors with a taylor-made synthetic dataset emulating

a Non-Cooperative Rendezvous (NCRV) with a complex spacecraft, featuring

variations in illumination, rotation, and scale. Furthermore, the performance

of the algorithms on the Long Wavelength Infrared (LWIR) is investigated as a

possible solution to the challenges inherent to on-orbit imaging in the visible,

such as diffuse light scattering and eclipse conditions. The Harris, GFTT, DoG,

Fast-Hessian, FAST, CenSurE detectors and the SIFT, SURF, LIOP, ORB,
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BRISK, FREAK descriptors are benchmarked for images of Envisat. It was

found that a combination of Fast-Hessian with BRISK was the most robust,

while still capable of running on a low resolution and acquisition rate setup.

For large baselines, the rate of false-positives increases, limiting their use in

model-based strategies.

Keywords: Benchmarking, Feature detectors, Feature descriptors,

Multispectral imaging, Space relative navigation

2010 MSC: 68T45

1. Introduction

In 2007, the number of catalogued space objects orbiting the Earth suddenly

grew by approximately 26% [1]. It has now been shown that this hike was due

to a major event in low Earth orbit which resulted in the exponentiation of

the number of fragmentation debris, a phenomenon which had been predicted5

as far back as 1978 by Kessler and Cour-Palais [2]. The “Kessler Syndrome”,

as it is designated, suggests that space debris can grow irrespective of newer

spacecraft launches simply due to cascading collisions between orbiting, most

likely derelict, spacecraft. Such a phenomenon is capable of precipitating the

arrival of a point of no return beyond which human intervention becomes futile,10

rendering space operations permanently unfeasible. However, the number of

Earth-orbiting debris had been steadily growing even before 2007. In fact,

they now outnumber active spacecraft by more than 5 to 1, inhabiting mainly

the orbits commonly targeted for launches, i.e. Low Earth Orbit (LEO) and

Geostationary Orbit (GEO) [3].15

A potential chain reaction trigger is the Envisat spacecraft: a sizeable space-

craft in LEO weighing over 8000 kg, launched on 1 March 2002 and non-functional

since 9 May 2012. The existence of such space objects justifies that debris mit-

igation strategies must be applied efficiently, whereas international rules state

that at least five large space objects per year must be de-orbited in order to20

ensure long-term space operations [4].
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One such mitigation strategy is termed Active Debris Removal (ADR),

where a chaser spacecraft is deployed to perform a Non-Cooperative Rendezvous

(NCRV) with the target object in order to capture and de-orbit it. The e.Deorbit

mission is set out to be the first ADR mission to be carried out by the Euro-25

pean Space Agency (ESA), demonstrating the removal of a large object from

its current orbit and performing a controlled re-entry into the atmosphere. As

one of the few ESA-owned debris in LEO, Envisat is a possible target for the

mission [5].

e.Deorbit is part of ESA’s CleanSpace initiative, which is focused on out-30

lining the required technology for this domain, including advanced Image Pro-

cessing (IP) for the relative navigation aspect of the rendezvous operations. A

smaller scale in-orbit demonstration mission using CubeSats to test IP algo-

rithms has been proposed: e.Inspector, as it is called, would visually inspect

Envisat to determine its tumbling rate and axis. This data could then be used35

for validation purposes to use with e.Deorbit [6]. Indeed, using low-power-low-

cost camera-based systems, two-dimensional features of the target image can

be identified and extracted to yield a relative navigation solution. As the space

environment may prove hostile to solutions in the visible wavelength due to il-

lumination, approaches to ADR in other spectra have been proposed, such as40

the Long Wavelength Infrared (LWIR), also known as thermal infrared [7].

Although studies comparing the general performance of IP algorithms in

the visible and in LWIR are present separately in the literature, benchmarks

performed in a space NCRV context are scarce. Furthermore, no LWIR IP com-

parisons for NCRV were found to exist, to the best of the authors’ knowledge.45

Therefore, the purpose of this paper is to benchmark the performance of IP

techniques adjusted towards multispectral camera setups than can be inserted

in ADR missions using affordable, low performance computing (Fig. 1).

The outline of the paper is as follows. Section 2 offers the motivation behind

the study, as well as a review of related work. Section 3 defines the theoretical50

aspects of the algorithms to benchmark and the figures of merit used herein.

Section 4 delineates the experimental setup. Section 5 illustrates the attained
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Our work

Visible LWIR

NCRV

Figure 1: The domain of the present paper. While literature exists on one or the intersection

of two domains represented by each circle, this study introduces a connection between all

three.

results and discusses them. Lastly, Section 6 concludes the paper.

2. Background and Related Works

2.1. The Camera as a Navigation Sensor55

The Attitude and Orbit Control System (AOCS) is a fundamental subsystem

of many spacecraft. Typically, space missions are designed with inertial naviga-

tion in mind, working in reference frames centred on the Sun or the Earth. For

instance, a geostationary satellite might be required to point an antenna accu-

rately at a target on the surface of the Earth, while simultaneously engaging in60

routine north-south station-keeping manoeuvres to prevent drifts in the orbit’s

inclination [8].

When dealing with a rendezvous manoeuvre, however, relative navigation

aspects must be considered. In this case, the scenario is commonly defined in

terms of an active spacecraft, termed the chaser, which attempts to approach65

another called the target. Inertial navigation is still needed, as the two bodies

typically start out in separate orbits at large distances; it is at a distance to the

target between 1 km and 100m that the professed proximity operations stage

4



commences and the switch must be made to the relative navigation on-board

sensors [9].70

Proximity operations usually rely on precise, active sensors, such as Light

Detection and Ranging (LIDAR). Although mature in the context of orbital

operations, this technology is not free from drawbacks: the operational range is

limited, allowing only for for close range rendezvous, and they are characterised

by a relatively high mass, power consumption, and cost. On the contrary, passive75

sensors such as cameras are witnessing an increase in popularity due to their

lighter frame and cheaper cost; as more efficient IP algorithms are developed,

camera-based navigation solutions for space are a promising technology [10].

Camera-based navigation strategies draw inspiration from two parallel, but

closely related, fields [11]: Structure-From-Motion (SFM) in computer vision,80

involving the joint estimation of camera motions and 3D structure, and Simul-

taneous Localisation and Mapping (SLAM) in robotics, consisting in navigating

a robot through an unknown environment while building a map of it. The union

of these two techniques is often termed Visual Simultaneous Localisation and

Mapping (VSLAM) [12]. Although a stereo setup yields scene depth informa-85

tion directly by triangulating features detected in each camera, it can also be

estimated using a monocular configuration fused with different sensors or the

assumption of pre-known information. VSLAM was shown to be applicable to

the relative navigation with a tumbling satellite by modelling the uncertainty

as originating from the moving “map” [13]. It is also important to mention90

an alternative technique for use when one is not interested in reconstructing

the scene per se, but rather the robot’s own ego-motion. This approach, Vi-

sual Odometry (VO), has been adopted for the navigation of Mars exploration

rovers [14]. Lastly, when the target is assumed to be known, an offline training

phase can be included in which its appearance is learned and condensed into95

a database to be matched on-the-go to the features detected during the actual

mission in order to solve for the relative pose. This is challenging as the dis-

cretisation of a 3D object into a 2D representation warrants a feature matching

process that is robust to large rotation, scale, and illumination baselines [15].
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Such a model-based approach is more arduous in the LWIR domain due to the100

extensive number of variables that influence the target’s thermal signature, and

hence its database representation. In this way, studies in the literature have

focused on the use of features that are invariant to an object’s thermal profile,

such as its contour edges [16].

With the recent increase of hardware acceleration capabilities in consumer-105

grade computers and consequent expansion of deep learning to computer vision

problems, Convolutional Neural Networks (CNNs) have demonstrated potential

in local feature detection and description applied to relative navigation in space

[17, 18]. However, these algorithms are often characterised by a supervised

selection of landmarks in the pre-training stage which is specific to the target,110

and therefore are outside of the scope of this paper.

2.2. Evaluating Image Processing Algorithms

Detection and matching of features is the fulcrum of navigation solutions

based on computer vision. A “feature” is purely a distinguishable part of an

image. In particular, Szeliski describes interest points as one of the fundamen-115

tal and most popular types of features [11]. These point features, or keypoints,

are the subject of the present study; however, different types of features exist

and are suitable for IP-based navigation, such as edges, circles, or even colours.

Nonetheless, for the context of this work, one shall assume features unequivo-

cally refer to interest points.120

The evaluation of feature detectors goes back to before the turn of the cen-

tury, when interest points were reduced to any point in an image for which

the signal changed two-dimensionally, encompassing the traditional “L-corners”,

“T-junctions”, and “Y-junctions”; a small image patch (the template) around

the detected corner would then be extracted and matched for in the target125

image using correlation [19]. By then, however, there was not yet a clear con-

sensus on how a proper evaluation framework should be set up. In fact, some

authors resorted to subjective visual inspection methods to evaluate the quality

of detection (e.g. [20]).
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A few years later, with the advent of algorithms capable of detecting in-130

variant features, such as SIFT [21], criteria such as repeatability and matching

scores became commonplace in evaluative frameworks. These concepts and oth-

ers are described in Section 3. These algorithms would automatically extract

a support region around the feature and encode it into a numerical descriptor,

allowing it to be matched without searching the whole image. Arguably, the135

most well-known examples in the computer vision literature are the studies by

Mikolajczyk and Schmid on detectors [22] and descriptors [23]. This change in

paradigm potentiated new developments in VSLAM; hence, the contemporary

studies included benchmarks regarding transformations that one would expect

to experience in that context, such as scale, rotation, illumination, among others140

[24].

With the onset of binary descriptors, the focus of study began to include

the computational advantage these and others presented in the face of the more

traditional, already established, algorithms. One such notable study is the one

by Miksik and Mikolajczyk [25], which highlights the speed of FAST [26] for145

detection, and of BRISK [27] and ORB [28] for detection and description, in

the face of the classical DoG/SIFT and Fast-Hessian/SURF [29]. However,

like their preceding studies, the authors evaluate the methods on fixed, sparse

image sequences, each one benchmarking a different transform, such as the

Oxford dataset5, rather than application-specific data. There have been some150

publications focused on the latter, such as visual tracking for UAVs [30] and grid

map matching [31]; regarding space NCRV, the only reference in the literature

found by the authors was the study by Takeishi et al. [32] on the benchmarking

of the aforementioned IP algorithms for automatic landmark tracking on the

Itokawa asteroid in the context of the Hayabusa mission. In it, the authors155

analyse their performance on a tumbling target navigation dataset in the visible

wavelength, where they found that the algorithms suffer from low recalls in

terms of corresponding interest regions when the angle of the asteroid shifts

5http://www.robots.ox.ac.uk/~vgg/research/affine/.
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more than 20 deg and that the matching precision scores decline sharply after

10 deg.160

Studies in the LWIR are certainly fewer in number, but they have been the

object of recent study. Ricaurte et al. [33] evaluate the behaviour of classic

descriptors in a cross-modality outdoor dataset, finding that many of the algo-

rithms are actually more robust to changes in rotation and scaling in the LWIR

than in the visible. Johansson et al. [34], and more recently Mouats et al.165

[35], highlight the importance of experimenting with different combinations of

detectors and descriptors in the LWIR, as these often outperformed the native

setups.

3. Image Processing Benchmarking Framework

Each ADR application, or more generally rendezvous mission, using imaging170

systems must consider performance figures to assess the viability of the image

processing algorithms used. Feature detectors search an image for locations that

are probable to match well in other images, and feature descriptors convert each

region around the detected keypoint locations into a condensed vector that can

be matched against other descriptors [11]. This section analyses these figures175

of merit for the selected detectors and operating on the visible and thermal

infrared spectra in the devised scenario, and provides a theoretical background

for these algorithms.

3.1. Feature Detectors

The analysed detectors can be classified into two groups. The first group180

consists of corner detectors, i.e. algorithms that extract points defined as the

intersection of two edges. Conversely, the second group considers blob detec-

tors, which extract points taking into account a supporting neighbouring region.

This class of algorithms attempts to tackle many of the drawbacks of simple cor-

ner detectors, such as invariance to scale changes. The Laplacian of Gaussians185

(LoG) operator is often utilised to this end as the resulting function is sensi-

tive to corners and edges [36]. However, the LoG involves the computation of
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second-order derivatives which are both sensitive to noise and computationally

expensive.

Harris Corner Detector. Harris and Stephens [37] assembled their historically

influential computer vision algorithm from the mathematical formalisation of

Moravec’s work [38] through the minimisation of the auto-correlation function

that compares an image patch against itself shifted for small increments:

E(u) =
∑

i

w(xi) [I(xi + u)− I(xi)]
2
, (1)

where I is the intensity of the image, x = (x, y) is the pixel position vector in

I, u = (u, v) is the displacement vector, and w(x) is a weighting function. For

small variations in position u = ∆u, it is shown that Eq. (1) can be written

using a Taylor series approximation as

E(∆u) ≈ ∆u⊤A∆u, (2)

where A is the auto-correlation matrix:

A = w(x) ∗





I2x IxIy

IxIy I2y



 , (3)

with (∗) representing the convolution operator and Ix ≡ ∂I/∂x, Iy ≡ ∂I/∂y.

The matrix A contains the information on how stable the auto-correlation func-

tion is at a given point. Consider the two eigenvalues of A, (λ1, λ2). If both

eigenvalues are small, that translates into an approximately constant intensity

profile within a window. A small and a large eigenvalue are equivalent to a

unidirectional texture pattern, i.e. the surface of E(∆u) is flat along that direc-

tion. If the two eigenvalues are sufficiently large, it corresponds to a minimum

in E(∆u) and to a corner or other pattern that can be tracked reliably. Harris

and Stephens propose a corner response function given by

R = det(A)− k tr(A)2 = λ1λ2 − k(λ1 + λ2)
2, (4)

where k is an empirical constant. The region is then considered a corner based190

whether the size of the response R is greater than a given threshold.
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Good Features To Track. Shi and Tomasi [39] attempt to further improve Harris’

work by proposing a different measure to determine what are Good Features

To Track (GFTT). Since the larger uncertainty component in the location of a

matching patch is in the direction corresponding to the smallest eigenvalue, the

proposed corner response function is merely dependent on it:

R = min(λ1, λ2). (5)

Difference of Gaussians. Although invariant to rotation, corner detectors such

as Harris and GFTT employ a fixed window size which makes interest point

detection sensitive to scale changes. In his Scale Invariant Feature Transform

(SIFT) algorithm [21], Lowe makes use of scale-space filtering to tackle this195

issue. A Difference of Gaussians (DoG) is used to approximate the LoG; it is

obtained by computing the difference between two Gaussian blurs of the same

image with different standard deviations separated by a constant factor, i.e. σ

and kσ. Successive blurrings are done until the last layer is transformed with a

value of twice the initial σ. Once a complete octave is processed, this layer is200

down-sampled by a factor of 2, marking the start of the following octave. Once

all the DoG are found, the resulting structure is searched for extrema in space

(x) and scale (σ): each sample point is compared to its eight neighbours in the

current image and nine neighbours in the scale (Fig. 2). It is selected as a

potential feature if it is either larger or smaller than all of them.205

As a further refinement, each potential feature is subjected to a rejection

process based on a contrast threshold value. Additionally, in order to reject

edges, a process similar to the Harris corner detector is employed by computing

the 2× 2 Hessian matrix H of the difference image D at the location and scale

of the interest point

H(x, σ) =





Dxx(x, σ) Dxy(x, σ)

Dyx(x, σ) Dyy(x, σ)



 (6)

and submitting its ratio of principal curvatures to an edge threshold. The

quantities Dxx, etc., are the second-order derivatives of D, estimated by taking

differences of neighbouring sample points.
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Figure 2: The difference of Gaussian pyramid structure (adapted from [21]). Adjacent Gaus-

sian images are subtracted to produce the DoG images, each octave is characterised by down-

sampling the previous one by a factor of 2. Features are selected in the DoG images by

comparing a candidate point (purple) to its neighbours (orange) in scale and space.

Fast-Hessian. The Fast-Hessian detector was introduced as part of the Speeded-

Up Robust Features (SURF) algorithm [29], which aimed to provide a computa-210

tionally faster version of SIFT. The Fast-Hessian detector makes use of a further

approximation of the LoG by using box filters, which can be evaluated swiftly

independently of size using integral images. The box filters are used to compute

approximations to the derivatives Dxx, etc. For instance, 9× 9 box filters are

approximations for Gaussian second order derivatives with σ = 1.2. These ap-215

proximations are consequently used to produce an estimation of the determinant

of the hessian H, which is used as a threshold for candidate features.

Features from Accelerated Segment Test. The Features from Accelerated Seg-

ment Test (FAST) algorithm [26] was developed with the purpose of creating

a high-speed feature detector for real-time applications, such as SLAM. FAST220

first selects a pixel xi in the image as an interest point candidate. A circle
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of 16 pixels around xi and a threshold t are defined. If there exists a set of

n contiguous pixels in the circle which are all brighter than I(xi) + t or all

darker than I(xi) − t, then xi is classified as a corner. The detection process

is robustified through an offline machine learning stage, where a decision tree225

is built from alternative training images that is used in deciding which pixels

should be assessed first on the test images in order to exclude a large number of

non-corners, hence improving detection speed. The algorithm also makes use of

non-maximal suppression to avoid detecting multiple features adjacent to one

another. Bearing a greater resemblance to corner detectors rather than blob230

detectors, FAST is not natively scale- or rotation-invariant.

Centre Surround Extrema. For SIFT and SURF, responses are not computed

at all pixels for larger scales. At each successive octave, the sub-sampling is

increased, so the accuracy of features at larger scales is sacrificed. One solution

to tackle this problem in scale-space filtering is to approximate the LoG using bi-235

level centre-surround filters, as proposed for the CenSurE algorithm [40]. This

allows for the achievement of full spatial resolution at every scale.

Bi-level filters multiply the image intensity value by either −1 or 1. The

circular bi-level filter is shown to be the most faithful to the LoG, but the hardest

to compute. Other filter shapes can be computed briskly with integral images,240

with decreasing cost from octagon to hexagon to box filter. After computing the

filter responses, candidate features are subjected to a non-maximal suppression

over the scale space in a 3 × 3 × 3 neighbourhood. Lastly, the Harris measure

from Eq. (3) at the particular scale is used to filter out edge-like responses.

3.2. Feature Descriptors245

The present work considers three floating point type, or distribution-based,

descriptors and three binary type descriptors. Distribution-based descriptors

are called as such since they encode (in a floating point vector) how certain

elements of the support region to the feature point are distributed around it.

The second type of considered local feature descriptor differs from the previous250
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Table 1: Descriptors characteristics (adapted from [25]).

Descriptor Data Type # Elements Size [bytes] Matching Type

SIFT Floating point 128 512 Euclidean norm

SURF Floating point 64 256 Euclidean norm

LIOP Floating point 144 576 Euclidean norm

ORB Binary 256 32 Hamming norm

BRISK Binary 512 64 Hamming norm

FREAK Binary 512 64 Hamming norm

one in the sense that, instead of using a floating point vector representation, each

descriptor consists of a binary string. For each feature point, a binary descriptor

typically samples sets of pixel pairs (x1,x2)i, i ∈ n from the support patch, and

performs a simple intensity comparison, where the result is 1 if I(x1) < I(x2),

and 0 otherwise, generating an n-dimensional bit string.255

Using binary descriptors is advantageous as feature matching can be per-

formed with resort to the Hamming distance6, which provides better runtime

performance with respect to the Euclidean distance test used with floating point

descriptors: it consists only of applying the Exclusive-OR (XOR) logical oper-

ator followed by a bit count.260

Table 1 highlights the differences between the descriptor types. Note that

many of these algorithms were designed for detection as well as description.

Indeed, DoG and Fast-Hessian are part of SIFT and SURF, respectively, and

ORB and BRISK both use a FAST-based method for feature detection in their

original implementations.265

Scale Invariant Feature Transform. For the SIFT algorithm [21], each keypoint

is conferred an orientation by sampling the gradient magnitude and direction

6The Hamming distance between two strings of equal length is defined as the minimum

number of substitutions required to convert one into the other.
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(a) (b)

Figure 3: Distribution-based and binary description. (a, left) SIFT: the gradient magnitude

and orientation at each subregion are weighted by a Gaussian window (pink) and (a, right)

accumulated into a histogram (adapted from [21]). (b) BRISK: sampling locations (green)

and Gaussian kernels to smooth intensity values (pink) for n = 60 points and some pairwise

comparisons (purple) between them (adapted from [27]).

in a neighbourhood around it with a size dependant on the scale. The creation

of the descriptor itself starts with the computation of the gradient magnitudes

and orientations of a 16× 16 sample array around the location of the detected270

interest point. The orientations are computed with respect to the keypoint’s own

orientation in order to achieve rotation invariance. To avoid abrupt changes in

the descriptor, the computed quantities are weighted by a Gaussian window.

Then, the samples of each 4× 4 subregion are aggregated into an orientation

histogram, each orientation weighted by the corresponding magnitude. The275

descriptor is finally formed from a vector that holds the magnitudes of all the

orientation histogram entries. Each histogram has 8 bins, giving the descriptor

vector a size of 128 elements (Fig. 3a) .

Speeded-Up Robust Features. For SURF [29], the orientation of each extracted

region is assigned by computing instead the Haar wavelet responses [41] in a280

circular neighbourhood of radius equal to six times the scale, which are then

weighted with a Gaussian window centred at the feature point. The first step

in building the descriptor itself is defining a square region of size twenty times

the scale centred around the interest point and oriented along the previously

defined direction. This area is divided into smaller 4× 4 subregions, and for each285
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of them the Haar wavelet responses are again computed, in the horizontal and

vertical directions with respect to the orientation, and weighed with a Gaussian

function. The sum of the wavelet responses and of their absolute values are

stored in a four-dimensional descriptor vector for each subregion, making up for

a total of 64 elements. The sign of the Laplacian distinguishes bright blobs on290

dark backgrounds from the reverse situation and is therefore conserved to allow

for faster matching and an increase in performance.

Local Intensity Order Pattern. LIOP [42] is an algorithm for feature description

designed to grant not only invariance to rotation and scale but also to complex

illumination changes. As indicated by its name, it is based on order patterns, i.e.295

the order acquired by sorting the pixels of selected image patches by increasing

intensity. It operates on the principle that this relative order remains unaltered

in the case of monotonic intensity changes. First, the image is smoothed by

a Gaussian filter as the relative order is sensitive to noise. Then, the size of

each feature is normalised to a fixed diameter. The descriptor is constructed in300

an orientation-independent fashion, making it inherently invariant to rotation;

therefore, the local patch is not rotated according to the local orientation as in

SIFT. Afterwards, the overall intensity order is used to divide the local patch

into subregions labelled ordinal bins. A LIOP of each point is defined based on

the relationships among the intensities of its neighbouring sample points inside305

each bin. Lastly, the descriptor for the patch is constructed by concatenating

the LIOPs of each bin together.

Oriented FAST and Rotated BRIEF. Oriented FAST and Rotated BRIEF (ORB)

is a method supporting both feature detection and description [28]. It applies

a pyramidal representation of FAST for multi-scale feature detection combined310

with a Harris corner filter for edge rejection. An orientation is assigned to the

feature through the intensity centroid method—the assumption that a corner’s

intensity is offset from its centre, where the direction of the vector from the

interest point to this centroid yields the orientation. The feature description

procedure is based upon the Binary Robust Independent Elementary Features315
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(BRIEF) mechanism [43], i.e. the pixel pairs are sampled from an isotropic

Gaussian distribution. The original BRIEF algorithm is not rotation-invariant

though, so ORB first steers the computed descriptor according to the feature

orientation. However, this causes a loss of variance in each descriptor string,

which is undesirable as high variance makes a feature more discriminative since320

it responds distinctively to inputs. In order to recover from the loss of perfor-

mance of steered BRIEF, a greedy search algorithm is employed to look through

all possible binary tests to find sets that both have high variance and are un-

correlated, resulting in a description processed coined “rBRIEF”.

Binary Robust Invariant Scalable Keypoints. As ORB, Binary Robust Invari-325

ant Scalable Keypoints (BRISK) [27] also employs a scale-space modification of

FAST for feature detection. Likewise, the description process yields a binary

string and is based on pixel intensity comparison tests. The key concept of the

descriptor is the sampling pattern used: n locations equally spaced on circles

concentric with the interest point (Fig. 3b). Two subsets are defined in ac-330

cordance with two scale-proportional thresholds: one of short-distance pairings

and another of long-distance pairings. The gradients of the long-distance pairs

are used to compute the overall characteristic pattern direction of the feature.

After that, the pattern is rotated accordingly and the binary descriptor string

is assembled by performing all the short-distance intensity comparisons of pixel335

pairs. When sampling the image intensities for each pair, Gaussian smoothing

is applied with a standard deviation proportional to their distance.

There are three main distinctions between BRISK and ORB. Firstly, BRISK’s

uniform sampling pattern prevents accidental distortion of brightness compari-

son between pairs after Gaussian smoothing. Secondly, in BRISK a single point340

takes part in more comparisons, limiting the complexity the intensity values

look-up process. Lastly, the comparisons are restricted spatially such that the

brightness variations are only required to be locally consistent.

Fast Retina Keypoint. FREAK [44] is a binary feature description algorithm

which takes inspiration in the design of the human retina. The method adopts345
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the retinal sampling grid as the sampling pattern for the pixel intensity compar-

isons: it is a circular geometry where the density of points drops exponentially

from the centre outwards, mimicking the spatial distribution of ganglion cells in

the eye. These are segmented into four different areas; this is believed to result

in a body resource optimization, where a higher resolution is captured in the350

fovea (inner-most circle), while lower acuity images are formed in the perifovea

(outer-most circle). To match this biological model, the algorithm uses different

kernel sizes for the Gaussian smoothing of every sample point in each receptive

field, where these overlap for added redundancy leading to increased discrimina-

tive power. To determine which pairs of pixels to compare, the authors defend355

that a coarse-to-fine pair selection yield the largest variance and uncorrelation

between pairs, i.e. the first selected pairs compare sampling points in the outer

circles and the last pairs compare points in the inner circles. This is interestingly

consistent with modern understanding of the retina, where the perifoveal fields

are first used to estimate the location of a point of interest and the validation is360

then performed with the densely distributed foveal receptive fields. Effectively,

to describe a (even static) scene, the eye moves around with discontinuous indi-

vidual movements called saccades. As such, FREAK emulates this process by

parsing the computed descriptor in a way that the first 16 bytes represent coarse

information, which is applied as a triage in the matching process. This way, a365

cascade of comparisons is performed, accelerating the procedure even further.

For rotation-invariance, the orientation of the feature is estimated using local

gradients similarly to BRISK.

3.3. Performance Metrics

In order to evaluate the algorithms, the concept of correspondence is first

defined: two regions, a and b, each from a different image, are said to be cor-

respondences if the second region, when mapped to the first image, has an

overlap with the first region higher than a defined threshold (Fig. 4). Formally,
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Figure 4: The homography ground truth H maps the light green feature from frame I2 to

frame I1. The overlap area with the original purple feature from I1 is shown in pink. If the

amount of overlap is above a certain defined threshold, then the two features correspond.

the following condition must hold:

1−
RMa ∩R(HT MbH)

RMa ∪R(H⊤MbH)

< ε0, (7)

where RM represents the elliptic region defined by x⊤Mx = 1, with M being370

the 2× 2 symmetric matrix of ellipse coefficients, and ε0 is the overlap error

threshold. This mapping, the ground truth, can be given by a 3× 3 homography

matrix H, assuming a pinhole camera model and that the two related images

represent same planar surface in space.

Consequentially, the repeatability score for a given pair of images is calcu-

lated as the ratio between the number of correspondences and the number of

total features presented in the reference image:

repeatability :=
C+

C
. (8)

A second type of testing performed is based on the matching score. This test

verifies how well the regions can be algorithmically matched, thus assessing the
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distinctiveness of the detected regions. To this end, a descriptor for the regions

is computed and the total matches M∗ provided by it are checked to see if

they agree with the correspondences obtained with H. If a matched pair is also

a correspondence, then it is deemed a correct match M+, contributing to the

matching score as

matching score :=
C+ ∩M∗

C
=

M+

C
. (9)

To put it in short, features are desired to be repeatable, i.e. the same features375

should be observed regardless of how the target is manipulated, but they should

also be distinctive enough so that they can be matched regardless of those

transforms.

To evaluate the performance of feature descriptors, the figures of recall and

precision are used. Recall is defined as the ratio of correct matches to the

number of correspondences between a pair of frames:

recall :=
M+

C+
. (10)

On the other hand, precision is the ratio of correct matches to the total number

of matches:

precision :=
M+

M∗
. (11)

This performance metric is occasionally represented as its complement, i.e.

1− precision, the ratio of false matches to the total matches. For the ideal380

case, the recall and the precision would both be close to 1, meaning that the

descriptor would return a great number of matches, all labelled correctly. A de-

scriptor with high recall and low precision would translate into a great number

of matches but many of them are false positives. Lastly, a descriptor with low

recall and high precision would mean a small number of returned matches, but385

most of them are correct.

Note that the definition of a match is dependent on the chosen strategy. Ref.

[23] defines three different ones. The first one is termed threshold-based match-

ing, where two regions are matched if the distance between their descriptors is

below a certain threshold µ. The second one is the Nearest Neighbour (NN)
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based matching: regions a and b are matched if the descriptor db is the nearest

neighbour to da and

NN = ‖db − da‖ < µ. (12)

For the scope of this study, the third and last concept of Nearest-Neighbour

Distance Ratio (NNDR) is used: two regions are a match if the ratio of the

distance to the first and to the second nearest neighbouring descriptors is below

a certain threshold µ:

NNDR =
‖db − da‖

‖dc − da‖
< µ, (13)

where db,dc are the first and second nearest neighbours to da, respectively.

While for threshold-based matching a descriptor can have several matches—and

several of them might be correct—for the NN and NNDR-based techniques,

a descriptor only has one match. The former strategy can be attractive for390

real-time applications due to low computational effort. However, setting the

threshold value µ proves to be a difficult task, as a fixed value may bias the

results towards a given region of interest, whereas for the other strategies, µ is

relative to each pair. Results from Refs. [23, 35] show that the NN strategy

results in high precision, as all matches below µ are rejected, diminishing the395

number of false matches; using NNDR improves the precision even further.

The performance of different descriptors is often compared by generating

for each one sets of recall and 1-precision values with varying values of µ. The

plotted points result in a Receiver Operating Characteristic (ROC) curve [11].

The larger the area under a descriptor’s ROC curve, the better its performance,400

providing an intuitive way to benchmark descriptors.

The average computation times per extracted and described feature are

benchmarked, respectively, for each detection and description algorithm. This

assumes a proportionality between the required time and the computation bur-

den, which can then be of interest to make an informed choice on the algorithm405

for a given application.
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4. Experimental Setup

In this section, the experimental setup arranged to evaluate the performance

of the IP algorithms is described. The generated datasets are delineated, and

details of the implementation of the algorithms are outlined.410

4.1. Dataset

A dataset comprised of synthetically generated computer images was specif-

ically designed for the proposed experiments. Two cameras were reproduced

using the Astos Camera Simulator software: (i) one operating on the visible

wavelength (0.39-0.70 µm), based on the mvBlueFOX-MLC 202b7 camera with415

a Field of View (FOV) of 51 deg × 40 deg; (ii) and one operating on the LWIR

wavelength (8-14 µm) based on the FLIR Tau28 camera with a scene tempera-

ture range from −40 ◦C to 160 ◦C, where the FOV was matched to the visible

camera to ensure the scene is imaged similarly. Both cameras had their resolu-

tion scaled down to 320 px× 256 px and acquisition rate set to 1Hz to run the420

image processing functions on a low performance hardware board. The gener-

ated images simulate a rendezvous approach with Envisat, capturing realistic

variations in illumination, rotation, and scale. Two mission scenarios are con-

sidered: (i) a “Hot Case”, where the spacecrafts are in a sunlit section of their

orbit; (ii) and a “Cold Case”, where they are in eclipse, under no direct illumi-425

nation from the Sun. This yields a total of four different imaging sequences for

the benchmarking of the IP algorithms, with 200 frames per sequence.

4.2. Ground Truth

To evaluate the proposed performance metrics (see Section 3.3), the ground

truth relating the changing of the scene between frames must be established.430

Generally, calibrating a 3D scene, or the motion of a 3D object as in the present

7https://www.matrix-vision.com/USB2.0-single-board-camera-mvbluefox-mlc.html.
8https://www.flir.co.uk/products/tau-2.
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case, would require the back-projection of the detected features into rays, com-

puting their intersection with a 3D mesh of the target, and transferring the

feature and its support region to a differently rotated and translated scene,

similarly to the work of Ref. [32], resulting in a highly complex and possibly435

time-consuming framework.

However, this can be greatly simplified by simulating a planar scene. This

is achieved by modeling a rendezvous approach such that the same facet of the

target is constantly visible. In this case, the ground truth can be computed just

from the dataset itself, without resorting to the Computer Aided Design (CAD)

model of the target, via a 3× 3 homography matrix H [45]. 2D points xi in one

frame are related to those x′
i in another frame as:

x′
i = Hxi, (14)

where the points xi = (x, y, 1)⊤, x′
i = (x′, y′, 1)⊤ are expressed in homogeneous

coordinates.

The homography matrices can be computed directly from feature point cor-

respondences between each frame (see, for example, Ref. [45]); however, a440

different approach is taken to avoid biasing the algorithms to be tested, simi-

larly to Ref. [35]. First, putative feature matches between the two frames are

obtained using a detector and descriptor not included in the benchmarks. This

work uses Accelerated KAZE (AKAZE)9 [46] features for this purpose. Then,

an initial homography Ĥ is estimated from these matches using RANdom SAm-445

ple Consensus (RANSAC) [47] to reject outliers. Finally, Ĥ is used to initialise

a forward additive Enhanced Correlation Coefficient (ECC) algorithm [48] to

compute a refined H. Figure 5 illustrates the ground truth computation for a

pair of frames in the dataset.

9Here, “kaze” is not an acronym, but the romanisation of the Japanese word “風”, meaning

“wind”, an allusion to the algorithm’s speed.
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(a) (b) (c) (d)

Figure 5: Homography H computation example for a pair of wide baseline frames. (a) Source

image. (b) Destination image. (c) Source image mapped to destination using H. (d) Differ-

ence image between destination and mapped source.

4.2.1. Planarity Assumption450

The facet of the spacecraft’s main body that is constantly observed by the

chaser is approximately flat (Fig. 5) and hence well modelled by a plane π

parallel to t2−t3 in the target frame (see the frames of reference defined in Fig.

6). This represents the dominant plane based on which the planar homography

in Eq. (14) is computed.455

The solar panel is not contained in this plane, meaning that Eq. (14) would

normally not model the ground truth adequately. However, for this particular

motion a valid planar assumption is upheld as follows. Since the motion of the

chaser is always parallel to π (Section 4.3), the only apparent transformation

experienced by the solar panel not explained by H is due to perspective projection460

(i.e. the dimension along t1 appears lengthier the closer the target is to the

camera). In the computation of the homography between consecutive frames,

due to the reduced motion the changes in the solar panel caused by perspective

projection are not observed, thus producing a stable H. When computing it for

larger baselines, the number of frames is limited so as to maximise the length465

of the sequence for benchmarking while minimising the perspective projection

deformations and hence keeping the stability of H. In this way, features detected
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Figure 6: Scenario specifications for dataset generation, centred in the chaser’s body frame

FB. The relative configurations of the target frame FT and of the LVLH frame are shown.

on both the main body and the solar panel can be accurately benchmarked

without violating the planarity assumption and the validity of the ground truth.

4.3. Orbital Dynamics470

A chaser spacecraft is assumed to approach the target with the translational

profile relative to the Local-Vertical-Local-Horizontal (LVLH) reference frame

illustrated in Fig. 6. The spin axis of the target in the target frame, FT , is

aligned with the +t1-axis, and the spin axis in the LVLH frame is aligned with

the +H-bar axis; the rotation rate is 3.5 deg /s. The chaser (FB−frame) assumes475

a constant orientation with regards to the target’s LVLH frame. The sequence

begins with the chaser in a hold point (“PH”) 100m away from the target. The

rendezvous sequence is performed through a forced translation H-bar approach

(“FT”) with the target until a stop point (“PS”) is reached at 20m distance,

after which the sequence ends.480

The current orbit of Envisat is estimated using the Two-Line Element (TLE)

data of 30th October 201710; the corresponding orbital elements are shown in

10TLE data obtained from NORAD Two-Line Element Sets Current Data at http://www.

24



Table 2: Envisat set of orbital elements at t = t0 for evaluation dataset generation.

Element Dimensions Symbol Value

Eccentricity - e 7.6112× 10−4

Semimajor axis km a 7.1427× 103

Inclination deg i 98.2156

Right ascension of the ascending node deg Ω 343.0760

Argument of periapsis deg ̟ 189.5264

True anomaly deg θ 3.0109

Table 2. This corresponds to a situation where the target spacecraft is in full

sunlight. To obtain the Cold Case trajectories, the true anomaly θ is altered.

4.4. Implementation485

4.4.1. Modelling

The orbital states of both chaser and target, the camera parameters, and a

3D CAD model of Envisat are used as inputs to the Astos Camera Simulator

to generate the dataset. The original textured model was obtained from the

free astronomy software Celestia11, a program which allows for the real-time 3D490

visualisation of space.

Visible Model. For use in the present study, the model was heavily modified

to guarantee a realistic simulation in the visible spectrum. This included re-

meshing the main body of the spacecraft to emulate a “crumpled” effect for the

Multi-Layer Insulation (MLI) to properly emulate the diffuse reflection of light,495

as well as adding reflective properties to the solar panel; the differences between

both models can be seen in Fig. 7. Additionally, an image of a laboratory

mock-up of Envisat is also included for a qualitative comparison.

celestrak.com/NORAD/elements (accessed October 2017).
11http://celestia.space.
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Thermal Model. The creation of thermal spacecraft model involved a different

procedure. A thermal testing campaign was performed using a scaled-down

replica of Envisat with surface coatings of similar types to those used in the real

spacecraft, from which the temperature and emissivity of each component were

obtained [7]. Two steady-state profiles were determined (Section 4.1). Then,

the CAD model was stripped of texture and the collected data was incorporated

as follows. First, the in-band radiance of each component was calculated by

integrating the spectral radiance, given by Planck’s law:

Lc(λ, Tc, ǫc) = ǫc

λ+δ
∫

λ−δ

2hc2

λ′5

1

ehc/(λ′kBTc) − 1
dλ′, (15)

where λ is the sampled wavelength; Tc, ǫc are the component’s temperature

and emissivity, respectively; kB is the Boltzmann constant; h is the Planck

constant; c is the speed of light in vacuum; and δ is a small neighbourhood

around λ. The LWIR band was sampled at λ = (8, 11 and 14) µm. The reader

is directed to Ref. [49] for details on the closed-form computation of the integral

in Eq. (15). Then, the computed radiances were normalised to [0, 1] according

to the modelled thermal camera’s scene temperature range, yielding a 3-tuple

analogous to the Red, Green, Blue (RGB) values in the visible. Due to this

normalisation step, the obtained values become insensitive to the choice of δ. It

was found that for the given band and range of temperatures, the solution was

stable for any δ < 1 µm. Each 3-tuple was logged in a material file to accompany

the mesh file as inputs to the camera simulator. Finally, the spectral response

coefficients γλ1
of the camera for each of the three sampled wavelengths are also

added as inputs; the software then rendered the single-channel thermal images

with intensity equal to

Ic = γλ1
Lcλ1

+ γλ2
Lcλ2

+ γλ3
Lcλ3

. (16)

The generation of synthetic thermal data according to the aforementioned

process entails some approximations, which are a reflection of the limitations500

of the software. Concretely, a fixed thermal signature for each sequence and
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(a) (b) (c)

Figure 7: Multispectral modelling of Envisat. (top) Visible. (bottom) LWIR. (a) Original

CAD mesh. (b) Modified mesh and materials running on the Astos engine. (c) Laboratory

mock-up.

the assignment of a solid colour to each component, instead of gradients, are

assumed. Nonetheless, this does not affect the validity of the presented results:

the first approximation is justified by the fact that the dataset considers short

duration sequences in thermal steady-state; the second approximation is upheld505

based on the distances between chaser and target and the low camera resolu-

tion. Figure 7 also features a synthetic image rendered by Astos on the LWIR

alongside a real thermal image of the mock-up as captured by a FLIR Tau2

in laboratory. Despite the different thermal signatures, it can be seen that the

representation of the target in both images is comparable.510
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4.5. Software and Hardware

The performance analysis framework was coded in the C++ programming

language. The OpenCV12 library, version 3, was used for computer vision and

image processing related functions.

The implementations of every detector and descriptor used are publicly avail-515

able from OpenCV, except for LIOP, where the author’s original open-source

code13 was used. The implementation of DoG+SIFT is based on the code of

Rob Hess14. Fast-Hessian+SURF, Harris, and GFTT are direct adaptations of

the original papers [29, 37, 39]. FAST, FREAK, BRISK, and ORB are ports

of the authors’ own implementations. Lastly, for CenSurE, the OpenCV imple-520

mentation is termed STAR and it is an altered version of the original algorithm

[40] for added computational stability and speed.

Issue 1.4 (August 2014) of the Astos Camera Simulator was used to generate

the dataset. The 3D visible and thermal models of the targets are input as

Wavefront .obj and .mtl files, along with a text file containing the 6D pose525

of the chaser and target at each time-step, specified either in the inertial or

relative frames. The simulator is also capable of automatically propagating

the objects’ trajectories in space given the initial orbital elements; however,

these have been generated manually in the present study for better control. A

separate configuration file is also supplied, specifying the Julian date for the530

start of the simulation, the frames of references used, the camera parameters,

and the graphical settings (reflections, light glare, shadows, etc.). The frames

are then rendered as imaged by the synthetic cameras with the placement of the

Earth, Sun, and Moon defined from their true ephemeris and the input date.

To verify the computing performance of the IP methods, these were imple-535

mented and tested on a Beaglebone Black (BBB) single-board computer with a

1GHz ARM Cortex-A8 processor and 512MB DDR3 RAM (Table 3).

12http://opencv.org.
13https://github.com/foelin/IntensityOrderFeature.
14http://robwhess.github.io/opensift/.
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Table 3: The BeagleBone(R) Black wireless single board computer. (a) Hardware properties.

(b) Image of the board.

Parameter Specification

System on a Chip (SoC) AM3358/9

CPU Cortex-A8 1GHz

Digital Signal Processor N/A

On-board storage 8 bit eMMC (run-

ning Ubuntu 16.04),

microSD card 3.3V

supported

Memory 512MB DDR3

Size 86.40mm×53.3mm

Power ratings 210–460mA at 5V

(a) (b)

5. Results and Analysis

In this section, the results of the adopted framework to determine the per-

formance of the algorithms on the multispectral dataset are delineated. The540

pipeline is based on the works of Refs. [22, 23, 35] with some modifications

given the nature of the dataset.

The first one refers to the considered dataset itself. Unlike common studies

which consider scenes where the detected features are distributed over the whole

image, for the images in the present dataset the background is featureless and545

the target may occupy a relatively small area. This imposes a limitation on the

number of features that can be extracted from each frame. Since it is desirable

to have a number of detections that is constant across frames and sequences for

a balanced basis of comparison, this implies adequately tuning the sensitivity

thresholds of each algorithm instead of relying on the default values. Samples550

of generated images and of detected features are illustrated in Figs. 8 and 9;

the number of plotted features is limited to 40 for clarity.

The second modification, also related to the dataset, considers the particular
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Examples of detected features (green) on hot case frames from the dataset. (left)

Visible wavelength. (right) LWIR. (a, b) DoG. (c, d) Fast-Hessian. (e, f) Harris.

case of the eclipse in the visible band. For this sequence, the target is barely

visible, as the only source of illumination is light reflected by the Earth’s atmo-555

sphere. This is illustrated in Fig. 10 (left), where it can be seen on the histogram

of image pixel intensities that the values are concentrated to the left of the spec-

trum, next to the largest bar representing the background. This has a limiting

effect on the number of features that can be detected, which is a problem since it

is intended to compare the IP algorithms under similar conditions. To enhance560

the visualisation of the target in these conditions, adaptive histogram equali-

sation is employed: the image is automatically divided into different sections

(the default in OpenCV is a tile size of 8× 8) and a histogram is computed for

each one. The pixel intensities in each histogram are then equalised, improving
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Examples of detected features (green) on hot case frames from the dataset. (left)

Visible wavelength. (right) LWIR. (a, b) GFTT. (c, d) FAST. (e, f) CenSurE.

the contrast and the edges (and hence, corners). To prevent overshooting that565

could amplify noise, the output contrast is limited, in what is called Contrast

Limited Adaptive Histogram Equalisation (CLAHE). After equalisation, bilin-

ear interpolation is used to cull artefacts on tile borders. The result is displayed

in Fig. 10 (right).

The last aspect concerns the implementation of the algorithms. Apart from570

differing internal mechanics, the computational code of each algorithm has been

developed by different authors. As such, the parameters used to tune each one

are not uniform. Consider, for example, the non-maximum suppression func-

tionality: the process of removing multiple interest points that were detected in

adjacent locations, leaving only the most distinctive ones. For Harris, GFTT575
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Figure 10: Effect of CLAHE on the visible cold case. (left) The original image, where

the foreground is virtually indistinguishable from the background. (right) The image after

application of CLAHE, where the intensity of the foreground pixels becomes more spread out

over the range of possible values, resulting in the enhancement of the target.

and CenSurE, it is possible to set the suppression window size as an input

parameter; for FAST it is only possible to toggle the functionality on or off;

whereas for DoG and Fast-Hessian it is not controllable at all. In general terms,

the smaller the suppression window, the more features are obtained, but the

less distinctive they will be. These differences in interface make it difficult,580

to guarantee that each processed sequence will have the same ratio of feature

number to feature distinctiveness. From the authors’ observations, turning off

non-maximum suppression on a feature detector, when given the option, leads

to a sharp drop in performance when compared to the others. Therefore, it is

ensured that non-maximum suppression is activated for a fair benchmark. An-585

other aspect to consider is the implementation performance of each algorithm.

5.1. Tuning of Benchmark Parameters

Firstly, the different parameters that have a potential influence on the algo-

rithms’ benchmarking setup is analysed. A pair of common frames from each

sequence, corresponding to an original image and a transformed one, is selected.590

The resulting data are averaged over all sequences for each feature detector and

plotted in Figs. 11a–11c.
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Figure 11: Repeatability scores as a function of different benchmark parameters. (a) Re-

peatability vs overlap error threshold. (b) Repeatability vs normalised region size. (c) Re-

peatability vs region density.

5.1.1. Accuracy of the Detectors

Fig. 11a illustrates the repeatability as a function of the overlap error thresh-

old for the two considered bands. As the overlap error, i.e. the requirement to595

qualify two regions as corresponding, is relaxed the repeatability score goes up.

For strict thresholds (10–20%), the three corner detectors demonstrate a null

repeatability, but become the highest-ranking ones as the threshold is relaxed.

This shows that these detectors are less accurate than the others for this type

of scenario. CenSurE exhibits a similar behaviour but does not change its or-600

der relative to the others, scoring below the remaining two blob detectors. An
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overlap error threshold of 30% is selected to ensure non-zero repeatability scores.

5.1.2. Normalised Region Size

Secondly, the effect of the choice on the normalised region size is studied; the

results are displayed in Fig. 11b. This test was conducted with a fixed overlap605

error threshold of 30%. The relative ordering of the feature detectors remains

the same, save for DoG: for the minimum considered radius, it ranks first in

repeatability score, but as soon as this parameter is increased, it is surpassed

by the corner detectors and begins to saturate beyond 12.5 px. Choosing a

normalised region size of 7.5 px will limit the bias in further evaluations.610

5.1.3. Region Density

For this test, the effect of increasing the number of features on the repeata-

bility of the detectors is considered. This is achievable by altering the tuning

parameters for each algorithm, allowing them to be compared when they output

a similar amount of interest points. This is plotted in Fig. 11c, where the over-615

lap error threshold and the normalised region size were set to 30% and 7.5 px,

respectively. It can be seen that the corner detectors (i.e. Harris, GFTT, and

FAST) tend to improve their repeatability scores when the number of features

is increased, whereas the opposite is observed for the blob detectors (i.e. DoG,

Fast-Hessian, and CenSurE). Note that the scores of DoG and CenSurE slightly620

increase towards the maximum considered number of detections, which indicates

that these algorithms could possibly be less robust to noise: the quality thresh-

old of the extracted features must be lowered to increase detections, which can

lead to more false positives.

5.2. Benchmarking of Feature Detectors625

For this test, the repeatability and number of correspondences obtained by

each detector for each full sequence is analysed. In addition, the matching

scores and number of matches is computed. This is done using the LIOP de-

scriptor. This descriptor was chosen as it is independent from all the detectors

considered. Since the goal is to study the performance of the different feature630
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extraction processes, this avoids any bias towards a specific detector, allowing

for the examination of the features’ distinctiveness regardless of the chosen de-

scriptor. For added comparison, the performance using the original descriptors

for DoG and Fast-Hessian (SIFT and SURF, respectively) is also showcased to

benchmark the full original algorithms and provide a baseline.635

An overlap error threshold of 30%, a normalised region size of 7.5 px, and a

fixed number of 75 extracted features for each detector are considered.

The benchmarks are plotted in Figs. 12–19. As in Ref. [35], two plots are

provided for each sequence: (i) the first benchmarks consecutive image trans-

forms, which is commonly done in SFM and VSLAM algorithms; in this case, a640

value pertaining to frame Ik in the plot is referent to the transformation between

frames Ik and Ik+1, while (ii) the second plot demonstrates the behaviour of

the detectors when faced with large image transformations, which is usually the

case encountered when applying model-based navigation strategies; the num-

ber “0” is used to represent the reference image (a frame from the middle of645

each sequence is chosen), whereas positive numbers represent transformations in

posterior frames with respect to that reference and negative numbers represent

those prior to it.

Visible Modality Hot Case. Figs. 12–13 showcase the performance of the detec-

tion algorithms for the approach sequence in the visible wavelength during a sun-650

light period. Harris, GFTT, and FAST achieve the highest repeatability scores.

However, in terms of matching scores, they are comparable to Fast-Hessian and

CenSurE, where the former actually outperforms the rest towards the end of

the sequence, showing a bias in favour of shorter target ranges. Conversely, the

correct matches when using GFTT and FAST actually decrease as the chaser655

nears the target, meaning that the high number of obtained correspondences

likely stems from accidental overlap. This could represent a problem when us-

ing these detectors with visible imagery at close proximity. CenSurE is the most

consistent algorithm throughout. Note from Fig. 12b that Fast-Hessian shows

a better performance when coupled with LIOP than when combined with its660
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Detector Performance: Successive Transformations, Visible, Hot
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Figure 12: Performance for rendezvous sequence: successive transformations, visible band,

hot case. (a) Repeatability and number of correspondences. (b) Matching score and number

of correct matches. The raw data is presented smoothed with markers added for readability.

The dashed lines show the results for DoG and Fast-Hessian with their original descriptor.

native descriptor. From Fig. 13 it can be seen that the detection algorithms

are in general less resilient to large image transformations. In spite of a high

repeatability for variations relatively close to the baseline, the number of correct

matches of the three corner detectors drops rapidly; for sufficiently large trans-

formations, they produce no correspondences at all. Interestingly, DoG when665

used with its native SIFT is shown to be the most robust in terms of matching

score for large variations, when it performed the worst for small variations.

Visible Modality Cold Case. Figs. 14–15 represent the results obtained for the

detectors in the visible eclipse case. Generally, the repeatability scores are

quite similar to the hot case both in trend and magnitude. In opposition, the670

matching scores are now seen to decrease with time; the exception is Fast-
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Detector Performance: Large Transformations, Visible, Hot
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Figure 13: Performance for rendezvous sequence: large transformations, visible band, hot

case. (a) Repeatability and number of correspondences. (b) Matching score and number

of correct matches. The dashed lines show the results for DoG and Fast-Hessian with their

original descriptor.

Hessian combined with LIOP, which remains consistent, and the same detector

use with SURF, which actually increases performance with time. The decreasing

number of matches when the correspondences are increasing indicates that as

the sequence progresses the features are becoming less distinctive to be correctly675

matched. In terms of large variations, the matching score decreases more sharply

than in the hot case; this could be explained by a decreased consistency in the

target pixels’ intensity values due to CLAHE between the reference and query

frames.
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Detector Performance: Successive Transformations, Visible, Cold

0 50 100 150 200

Frame

0

20

40

60

80

100

R
ep

ea
ta

b
il

it
y
 [

%
]

0 50 100 150 200

Frame

0

20

40

60

80

100

#
C

o
rr

es
p
o
n
d
en

ce
s

Harris

GFTT

DoG

F-Hess

FAST

CenSurE

(a)

0 50 100 150 200

Frame

0

20

40

60

80

100

M
at

ch
in

g
 S

co
re

 [
%

]

0 50 100 150 200

Frame

0

20

40

60

80

100

#
C

o
rr

ec
t 

M
at

ch
es

Harris+LIOP

GFTT+LIOP

DoG+LIOP

F-Hess+LIOP

FAST+LIOP

CenSurE+LIOP

SIFT

SURF

(b)

Figure 14: Performance for rendezvous sequence: successive transformations, visible band,

cold case. (a) Repeatability and number of correspondences. (b) Matching score and number

of correct matches. The raw data is presented smoothed with markers added for readability.

The dashed lines show the results for DoG and Fast-Hessian with their original descriptor.

Thermal Infrared Modality Hot Case. Figs. 16–17 show the results attained680

for the rendezvous sequence observed in the thermal infrared band during sun-

light. The algorithms suggest robustness in this modality with high repeatabil-

ity scores overall (notably in the case of the blob detectors: DoG, Fast-Hessian,

and CenSurE) and matching scores increasing with time. Note that FAST

shows significant declines in the matching score despite its high repeatability,685

illustrating lower feature distinctiveness when compared with the other corner

detectors. Fast-Hessian again scores one of the highest benchmarks in general.

From Fig. 17 the behaviour of the detectors is less consistent: FAST and DoG

outperform the other algorithms in medium transformations (up to ±10m and

±90 deg baselines) with respect to matching score, whereas Fast-Hessian pro-690
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Figure 15: Performance for rendezvous sequence: large transformations, visible band, cold

case. (a) Repeatability and number of correspondences. (b) Matching score and number

of correct matches. The dashed lines show the results for DoG and Fast-Hessian with their

original descriptor.

vides the best performance for larger variations.

Thermal Infrared Modality Cold Case. Figs. 18–19 illustrate the detector per-

formance for the thermal infrared during eclipse. For both consecutive and large

transformations, the number of correct matches is generally lower than for the

hot case in the same band; in spite of that, the repeatability scores are similar,695

which suggests that the cold case generates less distinctive features. This is

more noticeable in the case of FAST, whereas Fast-Hessian and CenSurE are

more impervious to the changes in temperature. It is however important to note
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Detector Performance: Successive Transformations, LWIR, Hot
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Figure 16: Performance for rendezvous sequence: successive transformations, thermal infrared

band, hot case. (a) Repeatability and number of correspondences. (b) Matching score and

number of correct matches. The raw data is presented smoothed with markers added for

readability. The dashed lines show the results for DoG and Fast-Hessian with their original

descriptor.

that Harris and GFTT recover greatly towards the end of the sequence in terms

of correct matches for successive transformations, outperforming the remaining700

detectors (Fig. 18b).

5.2.1. Discussion

Despite being imaged in two different modalities, the simulated sequences

feature a common relative motion. Therefore, some similarities in the results

are expected. The repeatability trend for the successive transformations, in705

particular, is similar for all four sequences: corner detectors tend to be the

most robust and for blob detectors the score tends to increase with the inverse

of the distance to the target. For large transformations, the repeatability of
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Detector Performance: Large Transformations, LWIR, Hot
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Figure 17: Performance for rendezvous sequence: large transformations, thermal infrared

band, hot case. (a) Repeatability and number of correspondences. (b) matching score and

number of correct matches. The dashed lines show the results for DoG and Fast-Hessian with

their original descriptor

corner detectors drops to zero after a certain point, whereas blob detectors

are resilient. The same cannot be said about the matching scores, however:710

despite scoring generally lower than the repeatability, they vary in trend and

relative ranking between sequences. This highlights the importance in using

descriptors to compute matches instead of relying on the geometry overlap only,

and implies different degrees of distinctiveness in extracted features depending

on the detector, wavelength, and illumination condition considered.715

Despite their high repeatability, corner detectors are are often equalled or

even surpassed by the blob detectors in terms of matching score. Despite high
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Figure 18: Performance for rendezvous sequence: successive transformations, thermal infrared

band, cold case. (a) Repeatability and number of correspondences. (b) Matching score and

number of correct matches. The raw data is presented smoothed with markers added for

readability. The dashed lines show the results for DoG and Fast-Hessian with their original

descriptor.

repeatability, FAST is one of the least distinctive algorithms across all tests.

Fast-Hessian performs well in terms of matching scores in most cases despite

average repeatability; the exception is the visible cold case, where there is a720

generalised loss of performance, but it still maintains a good ranking in relative

terms. This suggests an extraction of quite distinctive features, which confirms

what was stated in the LWIR analysis of Ref. [35] and extends the conclusions

to the visible spectrum. This is an important finding as it is desirable to have a

detector that works well in both spectra. DoG shows low scores for successive725

transformations regardless of the wavelength and illumination, but seems to

perform worse on the LWIR cold case. On the other hand, its performance is
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Figure 19: Performance for rendezvous sequence: large transformations, thermal infrared

band, cold case. (a) Repeatability and number of correspondences. (b) Matching score and

number of correct matches. The dashed lines show the results for DoG and Fast-Hessian with

their original descriptor.

comparable to the other blob detectors when dealing with large transformations.

It performs better with SIFT than with LIOP in every situation, whereas Fast-

Hessian usually performs better with LIOP than SURF, the exception for the730

latter being the visible cold case. This reiterates the importance of testing

detectors and descriptors separately to avoid any cause of bias.

In the benchmarking of successive transforms, corner detectors are shown to

lose in performance when the target is closer on the visible. This could signify

that they are more sensitive to noise inherent to the MLI, for example, as their735

matching scores are better on the textureless LWIR. In the latter case, the actual
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corners are better defined and impervious to illumination changes. On the same

note, performance is generally better for the LWIR sequences: for the hot cases,

CenSurE and Fast-Hessian, in particular, are comparable to the visible case,

but the former performs better than its visible counterpart in the end of the740

sequence where the latter does so in the beginning of it. In the visible eclipse

sequence, the efficiency of the algorithms is greatly diminished. This finding

suggests that an artificial solution such as CLAHE to tackle the cold case is not

a feasible solution. It does allow for the detection of more features, but these

are not distinctive enough to guarantee an acceptable matching score. The use745

of a thermal infrared camera is a better approach in this case according to the

results.

Regarding the benchmarking of large transformations, the results show a

quasi-symmetrical pattern around the baseline. The matching scores are gen-

erally biased towards the right, meaning that larger scales (shorter distances750

between chaser and target) are favourable. This is a judicious hypothesis since,

due to the low resolution of the dataset, bigger distances quickly translate into

less details. On the other hand, there is a bias towards the left in repeatabil-

ity, which is explained by the fact that smaller scales with a constant region

sizee lead to more overlaps. The lack of scale invariance in the corner detectors755

is evident from the abrupt decline of the associated number of matches when

varying the distance to the target. In general, the performance of the detectors

is quite low for large baselines as opposed to successive transformations, which

can make their use difficult in model-based pose estimation pipelines.

5.3. Benchmarking of Feature Descriptors760

For this test, the performance of the descriptors is assessed. To this end,

a comparison is done using the same feature detector for all the descriptors in

order to reduce the influence of the former on the results. Similar settings as

in the previous experiments were used, i.e. an error threshold of 30% and a

fixed number of 75 extracted features. The regions are not normalised in the765

computation of the descriptors.
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The efficiency of the algorithms is evaluated by computing their ROC, or

recall/1 − precision, curves. For each of the four sequences, and similarly to

Ref. [35], two sets of results are shown: the first representing a descriptor

benchmark for short (sucessive) and large image transformations using the DoG770

detector; and the second repeats the same experiment using Fast-Hessian. This

allows insight into if and how different detector-descriptor combinations affect

the outcomes. These are plotted in Figs. 20–23.

However, a different procedure is adopted regarding which frames from the

dataset are used. Ref. [35] considers only the matching between features from775

two frames (one pair with a short baseline, another pair with a large one) for

this test. This is because the authors benchmark image transform variations in

an isolated way, i.e. one test for rotation variation, one for scale change, and

so on. In the case of the present paper, the used datasets have in common a

fixed trajectory where more than one transform is present. Since the aim is to780

assess the performance for the whole rendezvous manoeuvre, the ROC curves

are computed using the average values for every pair of frames; in particular,

for the large transformations set, the reference used is a frame located at the

middle point of the sequence, i.e. when the target is 60m away from the chaser,

and the test includes variations in the range of ±20m/±175 deg relative to the785

reference.

As mentioned in Section 3, a NNDR-based matching strategy is considered.

Visible Modality Hot Case. Fig. 20 illustrates the attained ROC curves for the

visible modality during the sunlight period. It can be seen that the performance

of the descriptors depends on the feature detection algorithm used: Fast-Hessian790

features are shown to yield better precision. It can also be seen that the perfor-

mance of the algorithms is degraded for large transformations comparatively to

sequential ones.

It is interesting to note that SIFT performs better with Fast-Hessian features

(Fig. 20c) than with DoG features (Fig. 20a) in the case of short transforma-795

tions. However, the opposite is true for large transformations (Figs. 20b and
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Figure 20: Descriptor ROC curves for the visible band, hot case. (a, b) DoG features

with small and large transformations. (c, d) Fast-Hessian features with small and large

transformations.

20d). Indeed, when DoG features are used, SIFT performs best, followed by

ORB and BRISK. For small transformations, the performance of the three de-

scriptors are comparable, whereas for large transformations, BRISK obtains the

best results if 1− precision < 0.35 but SIFT dominates for values above that.800

For Fast-Hessian features, BRISK, FREAK, and LIOP give the best results

in the case of small variations; in the case of large variations the performance

of the latter one degrades considerably, which seems to agree with the observa-

tions of Ref. [35] regarding the monotonic intensity changes of LIOP’s rotation

invariant sampling not holding for large angles. Overall the results obtained for805

SURF are sub-par, showing that combining a feature detector with a non-native
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Figure 21: Descriptor ROC curves for the visible band, cold case. (a, b) DoG features

with small and large transformations. (c, d) Fast-Hessian features with small and large

transformations.

descriptor can yield better results.

Visible Modality Cold Case. Fig. 21 shows the descriptors’ performance for the

visible in eclipse. The algorithms are affected by the low illumination case more

than the sunlit scenario for this spectrum. The precision can be shown to be810

relatively lower, particularly for larger variations, which means the descriptors

incur more frequently in false matches. The relative ranking of the algorithms is

similar to the previous case, save for small variations computed on Fast-Hessian

features, where SIFT shows the best performance (close to FREAK and BRISK)

and LIOP performs the worst. This is in agreement with the plot of Fig. 14,815

where there is a drop in the matching score of Fast-Hessian + LIOP, but it still
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Figure 22: Descriptor ROC curves for the thermal infrared band, hot case. (a, b) DoG

features with small and large transformations. (c, d) Fast-Hessian features with small and

large transformations

remains higher than that of SIFT.

Thermal Infrared Modality Hot Case. Here, the descriptors are compared for the

case of the thermal infrared imaging of the sequence during sunlight conditions;

the results are shown in Fig. 22. The performance computed on DoG features820

follows the same trend as for the visible case, albeit with a yielded precision

lower than the eclipse case.

On the other hand, when using Fast-Hessian features the descriptors perform

better than both visible cases. For short transform variations, FREAK obtains

the higher score, but as in the analogous visible case, it behaves quite similarly825

to BRISK, SIFT, and LIOP. With respect to larger transformations, FREAK
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Figure 23: Descriptor ROC curves for the thermal infrared band, cold case. (a, b) DoG

features with small and large transformations. (c, d) Fast-Hessian features with small and

large transformations.

performs best by a large margin. The other algorithms are also less affected by

these variations than in the visible case. This means that, for the same relative

motion, the descriptors are more affected by the dynamic effects present in the

visible modality—such as textural noise, glare, shadows—than by a textureless830

scene.

Thermal Infrared Modality Cold Case. Lastly, Fig. 23 illustrates the bench-

marking of the descriptors in the eclipse case for the thermal infrared sequence.

As in the visible case, the algorithms are more affected by these transformations

than in the hot case.835

When DoG features are used, the descriptors perform worse than in the
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visible cold case. The precision attained by the algorithms is quite low, which

is in line with the observations from Subsection 5.2 regarding the low number

of correct matches for this detector in the thermal infrared modality.

Conversely, descriptors computed on Fast-Hessian features in this scenario840

are actually comparable to the performance attained for the visible hot case; for

small transformations, LIOP achieves the best performance, however it is again

degraded in the case of larger transform variations.

5.3.1. Discussion

The presented results suggest that the performance of the descriptors is845

dependent on the feature they are applied on, regardless of descriptor type. Fast-

Hessian performs better in general both in terms of recall and precision scores,

regardless of the modality, although the gap is narrower in the benchmarking of

large transformations. As theorised by Ref. [35], a possible explanation for this

could be the fact that Fast-Hessian usually extracts larger blobs than DoG, so a850

larger support area is considered in the computation of the descriptor, capturing

in principle a larger signal variation. In can be seen by inspecting Fig. 8 that

this is also the case for the analysed dataset.

Overall, SIFT as a whole obtained very good scores. However, its perfor-

mance is degraded substantially in the case of large transformations (particularly855

on Fast-Hessian features).

LIOP was shown to perform better when computed on Fast-Hessian features,

both on the visible, and as reported in Ref. [35] on the LWIR. It can be ranked

amongst the best descriptors when used with this type of feature for successive

transformations. The exception is the visible cold case, where it is ranked last.860

Furthermore, when considering large transforms, its performance declines, which

is in line with the analysis made for the detectors in Section 5.2.

Overall, BRISK and FREAK are ranked among the best descriptors for all

cases.
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Table 4: Average detection times per fea-

ture.

Detector Time [ms] Speed-up

FAST 0.0261 814

CenSurE 1.3189 16

Harris 1.4248 15

GFTT 1.4933 14

F-Hess 2.6338 8

DoG 21.2249 1

Table 5: Average description times per

feature.

Descriptor Time [ms] Speed-up

ORB 0.1627 103

BRISK 0.2057 81

SURF 0.7676 22

SIFT 9.4847 2

LIOP 14.5418 1

FREAK 16.7328 1

5.4. Computation Times865

In this subsection, the IP algorithms are benchmarked in terms of their com-

putational performance. These tests are ran on the single board computer setup,

allowing for the examination of their real-time capacity on a low performance

embedded system. The recorded benchmarks account only for the core tasks of

detection or description. All values are averaged between the four sequences for870

each algorithm.

Table 4 portrays the average extraction time per feature for each detector.

This type of analysis is useful in shifting awareness towards the computation

time, which can be limiting depending on the application, and is particularly im-

portant for those involving low performance computing. DoG scores the slowest875

detection time, at 21.2ms per feature. To better compare their performance, in

addition to the absolute computation times, the relative speed-up factors with

respect to the heaviest algorithm are also displayed. FAST is the quickest al-

gorithm to run, being almost three orders of magnitude swifter than DoG. As

expected, CenSurE is faster than Fast-Hessian, which is in turn faster than DoG.880

Surprisingly, GFTT is recorded having a higher execution time than Harris.

Fig. 24 displays the average computation times of the detectors per frame.

DoG is the clear outlier, being the only detector that does not fit in the com-

putational budget of 1Hz. In addition, the average execution time per frame

for CLAHE in the case of the visible cold case sequence are also shown (in red).885
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Figure 24: Comparison of average feature detection times per frame.

This function does not depend on the detector and the mean execution time was

19.22ms, accounting for less than 2% of the allocated budget. Note, however,

that the average detection time per frame of FAST was 1.9ms, which is faster

than the preprocessing step by a factor of 10.

Analogously, Table 5 shows the benchmarked computation times for the de-890

scriptors averaged per feature. While the list is topped by two of the binary

descriptors, FREAK is actually the slowest algorithm, costing 16.7ms per fea-

ture on average. The high computation time is unusual for a binary descriptor

and contradicts the findings in the literature. LIOP is similar in performance,

while SIFT is two times faster. Surprisingly, the performance of SURF is in the895

same order of magnitude as ORB and BRISK.

Fig. 25 illustrates the average computation times of the descriptors per

frame. The matching times are represented in purple. As expected, the match-

ing times for the binary descriptors are the fastest, scoring and average of 2.5ms

per frame (75 features). ORB features are the fastest to be matched at an aver-900

age of 1.9ms per frame. The distribution-based descriptors are on average one

order of magnitude slower in terms of matching speed, at 24ms; SURF features

are the fastest of the kind, scoring 14.5ms on average.
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Figure 25: Comparison of average feature description and matching times per frame.

5.4.1. FREAK Results

Given that the previous experiments recorded abnormally high execution905

times for the FREAK descriptor, the benchmarks are repeated, this time on

a desktop workstation with an Intel(R) Core(TM) i7-6700 processor (x64) at

3.40GHz. Fig. 26 compares the speed-up times for the six descriptors and two

processors relative to the heaviest test run. It can be seen that the relative rank-

ing of the algorithm changes for the x64 processor, where FREAK totals as the910

third fastest descriptor. It is almost two orders of magnitude faster than LIOP,

whereas the execution times are identical on the ARM processor. The relative

ranking of the distribution-based descriptors is the same on both processors,

and they maintain approximately the same proportions in terms of runtime.

However, BRISK is the fastest running descriptor for the x64 processor, being915

243% faster than ORB; for the ARM processor it was 21% slower. This seems

to suggest implementation issues in the case of the binary descriptors, i.e. the

algorithms are optimised differently depending on the architecture.

6. Conclusion

In this paper, several state-of-the-art feature detectors and descriptors have920

been benchmarked in the context of an ADR application. To this end, a novel
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dataset was created using a realistic camera simulator for space scenarios, fea-

turing a rendezvous with the defunct spacecraft Envisat. This dataset encom-

passes two different trajectories, one during a sunlight period and one during

eclipse, imaged in two different modalities, the visible and the LWIR, yielding925

four different scenarios. The performance of the IP algorithms has then been

benchmarked for these scenarios, providing a multispectral evaluation of the

low-level processes in computer vision required for a further integration in a

vision-based navigation system.

The presented benchmarks have shown that features in the LWIR domain are930

generally more repeatable than in the visible. In terms of matching score, the

difference between the two modalities is smaller when the target appears small in

the FOV of the camera, and greater at shorter distances in favour of the LWIR,

meaning that the shadows and noise in the visible become more noticeable

and the algorithms become more sensitive, which could be a limitation of this935

modality for short ranges. Conversely, this could mean an advantage of using

LWIR imaging as a way to bypass the difficulties of optical navigation relative

to a complex spacecraft bearing non-imaging-friendly components such as MLI.

In terms of the analysis of feature descriptors, it was found that the perfor-
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mance depends on the type of feature used: when DoG features were used, the940

performance is better on the visible, but the performance became better on the

LWIR with Fast-Hessian features. The latter were shown to be larger in radius

than the former, hence capturing a larger support region.

The results also shown the advantage of thermal imaging in eclipse sequences.

Using visible imaging, all detectors have shown a decline in matching score, and945

the benchmarking of the descriptors resulted in a lower number of matches

and elevated false positives. Regardless of the sequence, the IP algorithms

have performed substantially worse when testing large baseline transformations,

which could hinder the development of model-based visual navigation pipelines

when only feature points are used.950

With respect to computation times, it was found that, for a fixed number of

75 features per frame, only one of the detectors (DoG) and two of the descriptors

(LIOP, FREAK) exceed the computation budget of 1000ms. FAST has shown

the largest speedup factor (814) with respect to the traditional DoG, and in

general the corner detectors were faster to compute than the blob detectors. As955

expected, the binary descriptors (ORB, BRISK) demonstrated lower running

times with respect to SURF, SIFT, LIOP; the exception was FREAK, although

its large processing time was subsequently shown to be related to its current

OpenCV implementation in the ARM architecture.

The benchmarks have additionally provided an interesting insight into the960

state-of-the-art baseline algorithms such as SIFT and SURF. The latter, for

instance, provided higher scores with Fast-Hessian features than with its na-

tive detector, DoG. In general, the results have motivated combining different

detectors and descriptors to boost performance. Overall, a combination of Fast-

Hessian with FREAK is capable of providing adequate performance for a vision-965

based navigation in the context of ADR. However, it is currently compromised

by its current implementation in the low-performance ARM processor. Fast-

Hessian + BRISK offers similar performance and is computationally efficient,

as it was shown to run inside the boundaries of the considered low acquisition

frame-rate, taking up slightly over 20% of the computational budget, leaving970
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the remaining 80% open for the relative pose estimation taks. Furthermore, the

benchmark of Fast-Hessian + BRISK is comparable in both spectra, meaning

it could potentially be used for a multispectral navigation algorithm, analysing

a frame of each modality per cycle, and it would still perform the detection and

description tasks in less than half of the budget with lower memory usage.975

Given the conducted analysis, it should be noted that other detector/descriptor

combinations that comply with the hardware requirements are possible. Rec-

ommendations include additional experimentation with algorithms besides the

ones tested herein, e.g. ORB with its native descriptor. A potential direc-

tion for future work would involve an investigation of the improvement of the980

performance of IP algorithms for model-based navigation.
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