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Parallel Trajectory Training of Recurrent Neural
Network Controllers with Levenberg–Marquardt and

Forward Accumulation Through Time in
Closed-loop Control Systems

Xingang Fu, Senior Member, IEEE, Jordan Sturtz, Eduardo Alonso, Letu Qingge, and Rajab Challoo

Abstract—This paper introduces a novel parallel trajectory
mechanism that combines Levenberg-Marquardt and Forward
Accumulation Through Time algorithms to train a recurrent
neural network controller in a closed-loop control system by dis-
tributing the calculation of trajectories across Central Processing
Unit (CPU) cores/workers depending on the computing platforms,
computing program languages, and software packages available.
Without loss of generality, the recurrent neural network con-
troller of a grid-connected converter for solar integration to a
power system was selected as the benchmark test closed-loop
control system. Two software packages were developed in Matlab
and C++ to verify and demonstrate the efficiency of the proposed
parallel training method. The training of the deep neural network
controller was migrated from a single workstation to both cloud
computing platforms and High-Performance Computing clusters.
The training results show excellent speed-up performance, which
significantly reduces the training time for a large number of
trajectories with high sampling frequency, and further demon-
strates the effectiveness and scalability of the proposed parallel
mechanism.

Index Terms—Parallel Trajectory Training, Recurrent Neural
Network Controller, Forward Accumulation Through Time, Lev-
enberg–Marquardt, Cloud Computing, High-Performance Com-
puting (HPC) Cluster

I. INTRODUCTION

THe Levenberg-Marquardt (LM) algorithm provides a
nice compromise between the speed of the second-order

Newton’s method and the guaranteed convergence of first-
order steepest descent method to solve nonlinear least squares
problems [1], [2]. Thus it is particularly suitable for training
small and medium-sized feed-forward Neural Networks (NNs)
[3].

However, the computation loads of the LM algorithm are
expensive due to the calculation needs of the Jacobian matrix,
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and researchers have explored ways to speed it up. For
instance, the block-diagonal matrix has been proposed to
approximate the Hessian matrix [4], [5], and, in [6], the for-
ward difference method was used to approximate the Jacobian
matrix by perturbing one parameter to produce a column,
instead of calculating the Jacobian matrix directly.

In addition, several mechanisms have been proposed to
parallelize the LM algorithm for NN training, appropriately
distributing computational and space requirements. For exam-
ple, the Single Program and Multiple Data (SPMD) strategy
divides training data into groups and each group is distributed
on one node in a cluster [7]. [8] also utilized the parallelization
of data sets by calculating the objective functions simulta-
neously. Relatedly, [9] and [10] distributed the computing
tasks/data points across parallel GPU multiprocessors to train
the LM algorithm in parallel. In [11], the parallel selection of
the damping parameter and multicore versions of the Basic-
Linear-Algebra-Subprograms (BLAS) were used in the LM
algorithm to increase computational efficiency. In any case,
with or without parallelization, the application of feed-forward
NNs is inherently limited due to their inability to identify and
process sequential partners in large data sets.

Recurrent Neural Networks (RNNs) are potentially more
powerful than feed-forward NNs thanks to their feedback
connections and memory gates [3]. Many algorithms have
been used for training RNNs such as Backpropagation
Through Time (BPTT) [12], Real-Time Recurrent Learning
(RTRL) [13], Extended Kalman Filters (EKF) [14], genetic
algorithms [15], and Expectation Maximization (EM) [16],
[17]. Notwithstanding their merits, they all suffer from serious
drawbacks: the BPTT algorithm may cause gradient exploding
and vanishing problems. The high computational cost of RTRL
makes it only appropriate for online training of small RNNs.
EKF is also computationally expensive since it requires many
matrix calculations at each estimation. Evolutionary methods
such as genetic algorithms have proved to be successful in
training RNNs by formulating the RNN cost function as a
nonlinear global optimization problem. However, they may get
stuck in local minima and show a low speed of convergence.
Finally, the application of EM to training neural networks is
limited by the complicated calculations in the expectation step
when the number of hidden neurons is large. Such deficiencies
have been an impediment to the application of RNNs to real-
life problems such as closed-loop control systems, that we take
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as our benchmark.
Although some research has shown the potential of training

RNNs using LM [18], [19], LM has not been used broadly
for this purpose. The Forward Accumulation Through Time
(FATT) algorithm was proposed to calculate the Jacobian
matrix efficiently and combined with the LM algorithm to
train an RNN controller applied to a power converter control
system, which produced excellent performance [20]. However,
training was based on a rather small number of trajectories
(e.g., 10 trajectories) and a relatively low sampling frequency
(e.g., 1000Hz) due to constraints in the computational power
and the memory size of the single workstation used in the
experiments.

To extend the LM training of RNNs to a large number of
trajectories with high sampling frequency and accelerate the
training process, this paper proposes a novel parallel trajectory
training mechanism. The key contributions include 1) the
introduction of a training mechanism tailored for RNNs with
error integral terms in closed-loop control systems, a solar mi-
croinverter system in particular; 2) the development of a paral-
lel LM and FATT algorithm designed for trajectory training of
RNNs; 3) implementation of a parallel approach that efficiently
distributes the FATT-based calculation of training trajectories
across Central Processing Unit (CPU) cores/workers, 4) valida-
tion conducted through implementations in two programming
languages: Matlab and C++; 5) comprehensive validation of
the implementations and performance comparison on both
cloud computing platforms and High-Performance Computing
(HPC) clusters.

The rest of the paper is organized as follows. Section
II introduces the RNN controllers in the benchmark test
closed-loop control system. The parallel trajectory training
algorithm of the RNN controllers is detailed in Section III.
Training results using cloud platforms are presented in Section
IV. Section V provides detailed implementation and training
results on HPC clusters. Finally, the paper concludes with a
summary of the main points in Section VI.

II. RNN CONTROLLERS IN A CLOSED-LOOP CONTROL
SYSTEM FOR A SOLAR INVERTER

A. A Closed-loop Control System: a Solar Microinverter

Typically, solar inverters consist of two components: the
DC-DC converter and the DC-AC inverter, as illustrated in the
case of the Texas Instruments (TI) Microinverter in Fig. 1 [21].
The PhotoVoltaic (PV) solar panels attach to the DC-DC
converter, while the DC-AC inverter maintains the voltage of
the DC Bus at its rated value while feeding controlled AC
current to the main power grid.

Fig. 2 further shows the schematic of a single-phase DC-
AC inverter block with the LCL filters, in which a DC-link
capacitor/DC bus is on the left, an LCL filter is placed in the
middle, and a single-phase voltage source, representing the
voltage at the Point of Common Coupling (PCC) of the AC
power grid system is on the right [22].
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1 Introduction
Energy from renewable sources, such as solar and wind, is gaining interest as the world’s power demand
increases and non-renewable resources are depleted. A large component of this demand is from
industries and houses connected to the electrical grid. Because of this, attempts are made to raise the
percentage of energy sourced from renewable sources into the grid. Photovoltaic (PV) energy sources
increase the renewable content because of their ubiquitous nature and extended life time due to an
absence of moving parts.

The PV panel is a non-linear DC source; an inverter must feed current into the grid, and a maximum
power tracking algorithm must maximize power from the panel. Therefore the key challenge in any PV
inverter system design is to feed a clean current into the grid while maintaining the maximum power point
of the panel. A typical PV grid-tied inverter consists of a string of PV panels connected to a single inverter
stage; these are called string inverters. This PV inverter architecture, however, suffers from partial shading
problems. An emerging architecture includes an inverter on each panel, as seen in Figure 1. The localized
MPPT at each panel improves the performance of the system under partial shading and unmatched panel
conditions. The Texas Instruments C2000 microcontroller family, with its enhanced peripheral set and
optimized CPU core for control tasks, is ideal for controlling the power conversion.

Figure 1. Grid Tied PV Inverter

This user guide presents an overview of the hardware and the detailed software implementation of a PV
micro inverter system, using the C2000 MCU on Texas Instrument’s solar micro inverter kit
(TMDSSOLARUINVKIT). All of the key features needed in PV inverter applications such as MPPT, closed
loop current control of inverter, and grid synchronization are implemented on the kit using the
TMS320F28035 Micro Controller.

The TMDSSOLARUINVKIT hardware consists of two stages: (1) an active clamp flyback converter with a
secondary voltage multiplier and (2) a DC-AC inverter. A block diagram of the kits is shown in Figure 2.

Figure 2. Micro Inverter Block Diagram
Fig. 1. TI Microinverter Block Diagram [21].
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Fig. 2. The schematic of a single-phase DC-AC inverter block with LCL
filters.

When using the d-q frame, the system state-space equation
of the DC-AC inverter block can be described by equation
(1) [23], which will be used for RNN training.
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(1)

where ωs is the angular frequency of the grid voltage, and all
other symbols are consistent with those shown in Fig. 2. id
and iq represent system states that need to be controlled. The
controller outputs will be vd1 and vq1. System parameters in
equation (1) can be obtained from the user guide or datasheet
of TI microinverter [21].

To train the RNN digital controller, the continuous state
space model in equation (1) must first be converted into an
equivalent discrete model using equation (2), either through a
zero-order or a first-order hold discrete equivalent mechanism
with a sampling time of Ts . For example, if the sampling
frequency equals 10000Hz, then Ts = 1/10000 = 0.1ms.

−−→
idqs(k + 1) = A

−−→
idqs(k) +B−−→udqs(k) (2)

in which, A stands for system matrix and B is the input matrix.
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B. The NN Controller in a Closed-loop Control System

A NN will be implemented in the Piccolo real-time digital
controller in Fig. 1 to regulate the currents (id and iq) to follow
the reference trajectories (id ref and iq ref ) in a closed-loop
control system, instead of conventional Proportional–Integral
(PI) controllers, as shown in Fig. 3.

System State 

Space Equations 

in d-q Domain

+

-

Input
Hidden

Output

Feedback signals

Reference 
signal 

trajectories
RNN controller

System 
outputs

System/Plant 

id_ref, iq_ref

id, iq

Fig. 3. The NN controller in a closed-loop control system. The system
equations serve as the feedback connections for the NN controller.

C. The RNN with Error Integral Inputs

The structure of the proposed NN controller is shown in
Fig. 4. The NN has two hidden layers, each with six neurons,
and one two-neuron layer that controls the outputs. The
selection of the number of neurons in each hidden layer was
conducted through trial and error tests. After implementing
many trial and error tests, 6 nodes in each hidden layer were
found to be able to generate good enough results in real-time
control. Further, the number of weights or neurons can be
further reduced through the dropout approach to better fit the
embedded real-time computing [24].
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Fig. 4. The NN controller with special tracking error integrals [25].

The input block of the NN takes the tracking error input
signals −→edq and their special error integral values −→sdq . To avoid
input saturation, −→edq and −→sdq are divided by constant gain
values, Gain and Gain2, respectively, and normalized by the
hyperbolic tangent function, whose values are limited in the
range [ -1, 1]. Specifically, −→edq is defined as −→edq(k) =

−→
idq(k)

-
−−−−→
idq ref (k) and −→sdq(k) is calculated by

−→sdq(k) =
∫ kTs

0

−→edq(t)dt ≈ Ts

k∑
j=1

−→edq(j − 1) +−→edq(j)
2

(3)

in which the trapezoid formula was used to compute the
integral term −→sdq(k) and −→edq(0)≡0. The special error integral
terms −→sdq will guarantee that there is no steady-state error for
step references [26].

The system equations (1) and (2) serve as the feedback
connections for the NN controller as seen in Fig. 3. Moreover,
the calculation of the error integration terms −→sdq(k) (3) has to
accumulate all past error terms −→edq(j) from j = 0 to j = k
and each past error term −→edq(j) computation will involve the
outputs of the NN controller in the corresponding past step j.
Thus, the proposed NN is a recurrent NN and will be denoted
as RNN thereafter.

Further, the RNN controller can be represented explicitly by
equation (4), where W1, W2, and W3 stand for the weights
of the input layer to the first hidden layer, second hidden
layer, and output layer, respectively. The bias for each layer
is incorporated into weights W1, W2, and W3.

R (−→edq,−→sdq,W1,W2,W3) =

tanh


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W1

tanh


ed
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sd
Gain2sq
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
−1
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−1


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
(4)

The outputs from the RNN multiplied by the gain value of
the Pulse-Width-Modulation (PWM) (kPWM ) will constitute
the control action −−→vdq1, which is expressed by

−−→vdq1 = kPWMR(−→edq,−→sdq,W1,W2,W3) (5)

III. PARALLEL TRAJECTORY TRAINING OF RNN
CONTROLLERS

A. Training Objective: Approximate Optimal Control

Adaptive Dynamic Programming (ADP) [27] methods that
combine incremental optimization techniques with parametric
structures that approximate optimal cost are typically used to
control a system. Specifically, a discrete-time ADP approach
based on the principle of Bellman’s optimality [28] uses a
discrete-time system model along with a performance index
or cost [29].

The Dynamic Programming (DP) cost function associated
with the RNN training is defined as:

Cdp=

∞∑
k=j

γk−jU(−→edq(k)) (6)

=

∞∑
k=j

γk−j
√
[id(k)−id ref (k)]2+[iq(k)−iq ref (k)]2

where j>0 is the starting point, 0<γ≤1 is a discount factor,
and U is the local cost or utility function. Depending on the
initial time j and the initial state

−→
idq(j), the function Cdp is

referred to as the cost-to-go of state
−→
idq(j) of the DP problem.

The training objective is to find an optimal RNN controller that
minimizes the DP cost Cdp by regulating

−→
idq .
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B. Trajectory Tracking

Fig. 5 demonstrates the reference trajectories for RNN
training, which contains 6 trajectories: 3 for id and 3 for
iq . The reference trajectories were generated randomly within
the system’s controllable range. This range can be determined
by the physical current/voltage ratings of solar inverters. For
demonstration purposes, the range was set as [-100, 100] in
Fig. 5. The reference id and iq values were set to change after
certain time steps, e.g. 100, which is a tunable parameter.
Normally, the control system needs time to reach its steady
state, the 100 time steps turned out to be a well-balanced
number in training the RNN controller for a solar inverter.
The total time steps/trajectory length was set to a certain
number, e.g. 1000 in Fig. 5, which is determined by training
duration and sampling time. For example, if the sampling
time Ts = 1ms and the training duration 1s are used, the
trajectory length will be 1s/Ts = 1000. The total number
of training trajectories can vary from 10 to several hundred.
Utilizing a large number of trajectories will significantly slow
down training, which is the reason for proposing the parallel
trajectory training algorithm for overcoming this challenge.
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Fig. 5. The reference trajectories for RNN training.

Fig. 6 shows the ideal tracking performance after the RNN
was well-trained. After training, an RNN controller will able
to regulate the system states id and iq to follow the reference
currents id ref and iq ref .

and no steady-state error. Fig. 5 demonstrates the suboptimal 
controller, Eq. (14), for GCC control, with L equal to 1, 3, 5,
7, and 9, respectively. As shown in Fig. 5, the controller can 
follow the reference current over exactly L time steps. 

Fig. 4 Ideal optimal controller for GCC 

Fig. 5 GCC suboptimal controller in L steps 

III.  NEURAL NETWORK VECTOR CONTROLLER AND PROPOSED 
FATT-LM TRAINING ALGORITHM

A.  GCC Neural Network Vector Controller  
The ideal optimal controller, Eq. (10), and suboptimal 

controller, Eq. (14), were deduced under the assumption that 
the exact GCC system parameters were known. In practice, the 
system parameters may deviate significantly from its nominal 
values. Particularly, the inductance of the grid filter could be 
affected by the temperature and grid voltage frequency. 
Changes in the system parameters will affect the performance
of both the ideal optimal and suboptimal controllers. Thus,
these controllers are not robust in practice. Therefore, a RNN 
vector controller is employed to approximate the ideal optimal 
controller. 

Fig. 7 depicts the overall RNN vector-control structure of 
the GCC current-loop, which combines the vector control 
technique with the DP-based neural network design. The 
neural network component shown in Fig. 7 is a fully 
connected multi-layer perceptron [26] with 2 hidden layers
having 6 nodes each, and 2 output nodes, with hyperbolic
tangent functions at all nodes, as detailed in Fig. 6. 

To avoid neural network input saturation, the inputs are 
regulated to the range [-1, 1] using the hyperbolic tangent 

function, as shown in Fig. 6. The first 4 input nodes are 
tanh( / )dqe Gain



and tanh( / 2)dqs Gain


, where 

( ) ( ) ( )_dq dq dq refe k i k i k= −
  

(16) 
is referred to as the “error input term,” and 

0
( ) ( )skT

dq dqs k e t dt= ∫
 

(17) 

is referred to as the “integral term.” Unlike [6], this paper also 
proposes an RNN controller that achieves an improved input 
structure by using two error terms and two integral terms as
the network inputs, i.e., removing the d-q current inputs 
indicated by the blue dashed lines in Fig. 7. This network 
input scheme is particularly important when some network 
states cannot be measured, such as the rotor currents in the 
control of a squirrel-cage induction motor. This improvement 
also reduces the number of weights between the input layer 
and the first hidden layer and requires less calculation effort in 
the real control loop. 

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

l

sd

sq

ed

eq

1/Gain

1/Gain

1/Gain2

1/Gain2

Input Preprocess 

Output

V*d1

V*q1

Fig. 6 RNN controller structure  

B.  Define RNN controller function  
Based on the proposed RNN controller structure, the RNN 

can be denoted as ( ( ), ( ), )dq dqR e k s k w
  

, which is a function of

( )dqe k


, ( )dqs k


 and w


. If the RNN takes ( )dqi k


 as inputs, the 

function ( )R ⋅ can also be denoted as ( ( ), ( ), ( ), )dq dq dqR i k e k s k w
   

.

Thus, the control action ( )dqu k


 is expressed by 

1( ) ( ) ( ( ), ( ), )dq dq dq PWM dq dq dqu k v k v k R e k s k w v= − = −
      

 (18) 

where PWMk is the PWM gain, as explained in Section II.B. 

The converter output voltages 1dv and 1qv are 
proportional to the control voltage of the RNN output, as 
explained in Section II.B. Although Fig. 6 shows a feed-
forward network configuration, the controller is considered a
recurrent network because the feedback signal generated by 
the system in Eq. (5) acts as a recurrent network connection 
from the output of the system shown in Fig. 7 back to the
input.  

C.  Backpropagation Through Time (BPTT) 
Before defining the main algorithm of this paper, i.e., 

LM+FATT, we first review the BPTT method used in [6] for 
this GCC problem for the purpose of comparison, as discussed 
in Section IV. 
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Fig. 6. The idea tracking performance for RNN training.

C. LM Algorithm

If the performance error function is not a sum of squares,
then the LM weight update equation is not directly applicable.
To implement LM training, the cost function defined in (6)
needs to be rewritten in a Sum-Of-Squares form. Consider the

cost function Cdp with γ = 1, j = 1 and k = 1, · · · , N , then
it can be written in the form

Cdp=

N∑
k=1

U(−→edq(k))
defV (k)=

√
U(−→edq(k))⇐=============⇒Cdp=

N∑
k=1

V 2(k) (7)

and the gradient ∂Cdp

∂w can be written in a matrix product form

∂Cdp

∂−→w
=

N∑
k=1

V (k)
∂V (k)

∂−→w
= 2Jv(

−→w )TV (8)

where the Jacobian matrix Jv(
−→w ) is

Jv(w) =


∂V (1)
∂w1

· · · ∂V (1)
∂wM

...
. . .

...
∂V (N)
∂w1

· · · ∂V (N)
∂wM

 , V =

 V (1)
...

V (N)

 (9)

Therefore, the weight update using LM for an RNN controller
can be expressed as

△−→w = −[Jv(−→w )TJv(
−→w ) + µI]−1Jv(

−→w )TV (10)

D. FATT Algorithm

In order to calculate the Jacobian matrix Jv(
−→w ) efficiently,

FATT was used, which incorporates the procedures of un-
rolling the system, calculating the derivatives of the Jacobian
matrix, and calculating the DP cost into one single process for
each training epoch [20]. Fig. 7 illustrates the process of un-
rolling the trajectory in the forward path, and Alg. 1 specifies

FATT [18], where
−→
ϕ (k)=

k∑
j=1

−−→
idqs(j) and ∂

−−→
ϕdq(k)

∂−→w =
k∑

j=1

∂
−−→
idqs(j)

∂−→w .

E. Parallel Training Combination of LM and FATT Algorithms

Fig. 8 presents the proposed parallel training combination
of LM and FATT algorithms for training an RNN controller.
FATT* in Fig. 8 refers to a modified version of Alg. 1 that
only calculates the DP cost by eliminating lines 5-9 and 14-
15 to save computation time. The most time-consuming parts
include the DP cost calculation and the Jacobian matrix for
each trajectory, which is conducted by the FATT Algorithms.
To solve this challenge, the basic idea is to parallelize them
as follows: First, all training trajectories are divided into N
groups, each with a size from 1 to a number smaller than
the number of total trajectories. Then, the calculation of each
group of trajectories is allocated to one Worker or Central
Processing Unit (CPU) core. The detailed implementation will
depend on the specific programming language, platforms, etc.
For example, for the MATLAB implementation, the computing
unit will be one MATLAB worker, which corresponds to one
CPU core. For the C++ implementation, this single worker
could correspond to one CPU core or thread. For a fair
comparison, one single CPU core was also used in the C++
implementation. The implementation and comparison of both
cases will be detailed in Sections IV and V.

Fig. 8 also illustrates how the algorithm dynamically adjusts
µ. When µ increases, training is closer to a gradient descent
algorithm with a small learning rate, whereas when µ de-
creases, training approaches the Gauss-Newton method, which
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Fig. 7. Unrolling the forward path in the FATT algorithm for training an NN controller in a closed-control loop system.

Algorithm 1 FATT algorithm to calculate the Jacobian matrix
and to accumulate DP cost for one trajectory.

1: C ← 0,−→edq(0)← 0,−→sdq(0)← 0,∂
−−→
idqs(0)

∂−→w ← 0,∂
−−→
ϕdq(0)

∂−→w ← 0

2: {Calculate the Jacobian matrix Jv(
−→w )}

3: for k = 0 to N − 1 do
4: −−→vdq1(k)← kPWMR(−→edq(k),−→sdq(k),−→w )

5:
∂−→sdq(k)

∂−→w ← Ts

[
∂
−−→
ϕdq(k)

∂−→w − 1
2
∂
−→
idq(k)

∂−→w

]
6:

∂−−→vdq1(k)

∂−→w ←kPWM

[
∂R(k)
∂−→w + ∂R(k)

∂−→edq(k)
∂
−→
idq(k)

∂−→w + ∂R(k)
∂−→sdq(k)

∂−→sdq(k)
∂−→w

]
7:

∂
−−→
idqs(k+1)

∂−→w ← A
∂
−−→
idqs(k)

∂−→w +B
∂−−→udq(k+1)

∂−→w

8:
∂
−→
idq(k+1)

∂−→w ← the first two terms of ∂
−−→
idqs(k+1)

∂−→w

9:
∂
−−→
ϕdq(k+1)

∂−→w ← ∂
−−→
ϕdq(k)

∂−→w +
∂
−→
idq(k+1)

∂−→w

10:
−−→
idqs(k + 1)← A

−−→
idqs(k) +B−−→udqs(k)

11: −→edq(k + 1)← −→idq(k + 1)−−−−−→idq ref (k + 1)

12: −→sdq(k + 1)← −→sdq(k) + Ts

2 [−→edq(k) +−→edq(k + 1)]

13: C ← C + U(−→edq(k + 1)){accumulate DP cost}

14:
∂
−→
V (k+1)
∂−→w ← ∂

−→
V (k+1)

∂−→edq(k+1)

∂
−→
idq(k+1)

∂−→w

15: the (k + 1)th row of J(−→w )← ∂
−→
V (k+1)
∂−→w

16: end for
17: {On exit, the Jacobian matrix Jv(

−→w ) is finished for one
trajectory.}

provides faster convergence than gradient descent. There are
three stopping conditions used for training: 1) when the train-
ing epoch reaches a maximum acceptable value Epochmax;
2) when µ is larger than µmax; and 3) when the gradient
is smaller than the predefined minimum acceptable value
∥∂Cdp/∂

−→w ∥min.

IV. AMAZON EC2 CLOUD TRAINING PERFORMANCE

A. Amazon EC2 cloud

Amazon EC2 cloud was utilized as the test cloud platform.
The cloud cluster was configured and connected to Amazon
EC2. For the Amazon EC2 cluster, the region is selected as US
East (N. Virginia). The worker machine type is General Pur-
pose (m5.24×large, 48 core), which supports 48 workers per
machine. The headnode machine type is Standard (c5d.×large,
2core,1×100NVMe). It is noted that the m5.24×large type
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Fig. 8. The proposed parallel LM+FATT trajectory training algorithm for an
RNN controller. µmax stands for maximum µ, and βde and βin signify the
decreasing and increasing factors, respectively.

instance uses up to 3.1 GHz Intel Xeon Platinum Processor,
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however, the specific CPU processor number is not provided
by Amazon EC2 [30].

B. MATLAB Implementation and Speedup Performance

Matlab [31] was first used to develop the training program
and validate the proposed parallel training algorithm. Matlab
Online running version R2022b was used. For the two parallel
computing parts described in Fig. 8, two parfor-loop structures
were used to execute for-loop iterations in parallel on workers
in a parallel pool. To execute the parfor-loop, Matlab starts
a parallel pool with one worker per physical CPU core, not
CPU thread. A parallel pool with 48 workers was used.

To test whether training is successful or not, the current
tracking performance in the closed-loop control was per-
formed. Fig. 9 shows the current tracking performance after
the RNN controller was well-trained. The current id and iq can
track their reference currents id ref and iq ref very well only
with some slight oscillations at the beginning of the reference
change.
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Fig. 9. The tracking performance in a closed-loop after successful RNN
training.

Fig. 10 shows the running time comparison on different
numbers of Matlab workers and trajectories. The horizontal
axis represents the number of CPU cores/Matlab workers,
while the vertical axis stands for the average running time.
To test the performance of the proposed approach, all in-
puts across all runs and any randomness inherent in the
code were fixed. The test program was run with trajecto-
ries in {10, 20, 30, ...100} and with Matlab workers from
{1, 2, 3, ...48}. When the number of Matlab workers equals
1, no parallel computing was used. For each running case, the
program was repeated 10 times, and the average running time
was calculated to remove possible variations of the running
time in each run for a fair comparison. Regardless of the
number of trajectories used in the experiment, a consistent
trend emerges: as the number of CPU cores/Matlab workers
increases to a certain threshold, the average running time
stabilizes and cannot be further reduced.

The speedup is defined as the ratio of serial execution
time over parallel execution time, which is speedup =
Serial Execution T ime/Parallel Execution T ime. Fig. 11
shows the speedup comparison across different numbers of
Matlab workers. The horizontal axis represents the number
of CPU cores/Matlab workers and the vertical axis stands
for the speedup. Figs. 10 and 11 clearly show an excellent,

although nonlinear speedup performance. When the number
of Matlab workers surpasses the number of trajectories, no
speedup benefits can be further achieved and the running
time is slightly longer due to communication loads between
Matlab workers. The trend was observed in all number of
trajectories. Compared to nonparallel training, the parallel
approach achieves a least 4 times speedup. When the number
of trajectories increases, the speedup becomes even more
significant.
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Fig. 10. Average running time across Matlab workers on Amazon EC2 Cloud.
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Fig. 11. Speedup across Matlab workers on Amazon EC2 Cloud.

V. HPC CLUSTER TRAINING PERFORMANCE

A. HPC Cluster Platform

The selected HPC platform is a cluster consisting of four
Non-Uniform Memory Access (NUMA) system [32] compute
nodes running the AlmaLinux distribution of the Linux oper-
ating system [33]. The CPU of each compute node is Intel(R)
Xeon(R) Platinum 8180M CPU. Each compute node contains
2 sockets, one 28-core CPU per socket, and 2 threads per
CPU core, providing a total of 2 ∗ 28 = 56 CPU cores and
56 ∗ 2 = 112 threads. See Fig. 12 for an illustration of the
HPC architecture.

B. MATLAB Implementation and Speedup Performance

The HPC is configured to use Slurm to manage job schedul-
ing [34]. The Matlab cluster configuration supports up to
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Fig. 12. The schematic of the HPC Cluster architecture.

28*2=56 computational CPU cores. For a fair comparison with
results running on Amazon EC2 Cloud, the maximum number
of Matlab workers was also set to 48.

Fig. 13 shows the running time comparison across different
numbers of Matlab workers and trajectories. Fig. 14 shows the
speedup comparison across different numbers of Matlab work-
ers. Figs. 13 and 14 show slightly better speedup performance
running on the HPC cluster than Figs. 10 and 11 running
on Amazon EC2 Cloud. For example, the maximum speedup
running on the HPC cluster is 6 times compared to only 5
times speedup on the Amazon EC2 Cloud for 10-trajectory
training.
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Fig. 13. Average running time across Matlab workers on the HPC cluster.
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Fig. 14. Speedup across Matlab workers on the HPC cluster.

C. C++ Implementation and Speedup Performance

The c++17 standard [35] and the compiler g++ [36] were
used to develop the training program. An important third-party
package used in the training program is the C++ package
Armadillo, which is a fast linear algebra library to perform
linear algebra computations [37], [38]. Armadillo relies on
BLAS [39] and Linear Algebra PACKage (LAPACK) [40].
BLAS is a specification of low-level routines for performing
basic linear algebra operations. The training program used
OpenBLAS, which is an open-source implementation in For-
tran of this software specification [41]. The configuration of an
implementation of BLAS is paramount since it can be tuned to
particular architectures to improve performance. LAPACK is
a software library of more complex linear algebra operations
also written in Fortran.

The OpenMPI implementation of the Message Passing
Interface (MPI) standard [42] was utilized to parallelize the
workload among the available worker nodes. An advantage
of the Open MPI framework is that programs are scalable to
larger and more powerful clusters. To parallelize the workload,
the MPI program has a sequential part and parallel parts as
illustrated in Fig. 8. The master process in the MPI program
handles the sequential parts and sends messages to each
worker process to manage its parallel part of the workload.

Fig. 15 shows the running time comparison across different
numbers of workers. The horizontal axis represents the number
of CPU cores/workers, while the vertical axis stands for the
average running time. Fig. 16 shows the speedup compar-
ison on different numbers of workers. The horizontal axis
represents the number of CPU cores/workers and the vertical
axis stands for the speedup. Compared with Figs. 13 and 14,
the parallel version of the C++ program (Figs. 15 and 16)
runs faster than the Matlab version on the HPC cluster. For
example, the maximum speedup of the C++ version is around
8 times compared to the 6 times speedup of the corresponding
Matlab version for 10-trajectory training. Overall, among the
three implementations: the C++ version on the HPC cluster,
the Matlab version on the HPC cluster, and the Matlab version
on the cloud, the C++ version on the HPC cluster achieves the
best results. The next one is the Matlab version on the HPC
cluster, while the Matlab version on the cloud is the slowest
one.
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Fig. 15. Average running time across workers on the HPC cluster.



8

0 5 10 15 20 25 30 35 40 45 50

the number of CPU cores/workers

0

2

4

6

8

10

12

14

16

18

20
S

pe
ed

up

10-trajectory
20-trajectory
30-trajectory
40-trajectory
50-trajectory
60-trajectory
70-trajectory
80-trajectory
90-trajectory
100-trajectory

Fig. 16. Speedup across workers on the HPC cluster.

VI. CONCLUSION

This paper investigated how to use parallel computing to
accelerate the LM algorithm for training an RNN controller in
a closed-loop control system. The proposed parallel trajectory
training algorithm incorporates LM and FATT algorithms. The
training programs were implemented using both Matlab and
C++. The developed programs were tested on two computing
platforms, namely the Amazon EC2 Cloud and an HPC cluster.
Performance comparison results show that the parallel training
algorithm can provide a significant speedup compared to
its non-parallelized counterparts. Specifically, the C++ im-
plementation achieves better speedup than the corresponding
MATLAB implementation. The program running on HPC
clusters can further yield even better speedup than that on
cloud platforms. The significant speedup performance makes
it suitable to train RNN controllers with a large number of
trajectories and long-duration trajectories.
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