
              

City, University of London Institutional Repository

Citation: Abdulsalam, M. (2023). Artificial Intelligence based Robotic Platforms for 

Autonomous Precision Agriculture. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/31615/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Artificial Intelligence based Robotic

Platforms for Autonomous Precision

Agriculture

Mahmoud Abdulsalam

Supervisor: Prof. Nabil Aouf

School of Science and Technology

City, University of London

This dissertation is submitted for the degree of

Doctor of Philosophy
October 2023





I would like to dedicate this thesis to Allah the Almighty, my lovely parents, Dr. & Mrs.

Abdulsalam, and my late aunty Ummu.





Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part

for consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and Acknowledgements.

Mahmoud Abdulsalam

October 2023





Acknowledgements

First and foremost, I would like to acknowledge the efforts and support of my supervisor, Prof.

Nabil Aouf. His commitment, discipline, expertise and motivation have been instrumental in

achieving all the goals of this research. I have indeed learned a lot from him, and I am truly

grateful for his guidance and the opportunities he has provided me.

I would also like to express my gratitude to Dr. Uthman for his unending support

throughout this journey. His mentorship, encouragement, and emotional support have made

this PhD journey easier. I am truly fortunate to know a person like him.

I would also like to appreciate all my colleagues and members of the RAMI group

for their contributions, whether big or small. They have played a significant role in the

completion of this research.

I extend my appreciation to my family members, Dr. Yidi, Mrs. Yidi, Halima, her

children, my lovely sister Aisha, her baby, Muhammad Thani and Ibrahim, for their immense

support of all kinds and their constant presence throughout my life. Their unwavering support

has undeniably played a vital role in uplifting and motivating me to tackle this PhD.

I would also like to express my profound gratitude to my friends, especially Marzuq and

Fatima, for their support and passion towards the success of this research. I appreciate them

for being real and believing in me. I appreciate other friends and family not listed.

Finally, a special thanks to the Petroleum Technology Development Fund (PTDF) for

the partial funding received for this research. It has been truly helpful and has ensured the

completion of this PhD.





Abstract

Robotic applications are continuously expanding into every aspect of human livelihood, it

becomes paramount to leverage this trend for precision agriculture. The agricultural sector

despite being an important sector for human is slowly evolving in terms of technology. Crude

and manual processes which are conventionally used for agriculture have severe economic

and social impacts. The inefficiencies and less productiveness of these methods results

to food wastage amidst food shortage, inconsistencies, time consumption, higher labour

expenses, and low yield. The world will benefit from automating the processes in agriculture.

In bid of addressing such, it becomes necessary to build on existing platforms and develop

intelligent autonomous vehicles for precision agriculture. This should include development

of intelligent drones for precision agriculture, development of intelligent ground robots for

precision agriculture, and other systems working cooperatively. To achieve this, we leverage

on Artificial Intelligence (AI) and mathematical methods to impact sufficient intelligence on

robotic platforms to make them suitable for precision agriculture.

This thesis explores the capabilities of AI for weed classification and detection, weed

relative position estimation, fruit 6D pose estimation and virtual reality for teleoperated

systems in fruit picking. Infestation of weeds diminishes the yield of crops in agriculture.

Deep learning is becoming a more popular approach for identifying weeds on farmlands.

However, precision agriculture requires that the object of interest (weed) is precisely classified

and detected to facilitate removal or spraying. An approach for this is presented and involves

cascading a classification network (ResNet-50) with a detection network (YOLO) for weed



classification and detection which we termed Fused-YOLO. Thus, weeds can precisely be

located and classified (type) within an image frame.

Inspired by the precision of this detection model, the work extends to presenting a novel

monocular vision-based approach for drones to detect multiple types of weeds and estimate

their positions autonomously for precision agriculture applications. A drone is subjected

to an elliptical trajectory while acquiring images from an onboard monecular camera. The

images are fed to the fused-YOLO model in real-time. The centre of the detection bounding

boxes is leveraged to be the centre of the detected object of interest (weeds). The centre

pixels are extracted and converted into world coordinates forming azimuth and elevation

angles from the target to the UAV and are effectively used in an estimation scheme that

adopts the Unscented Kalman Filteration to estimate the exact relative positions of the weeds.

The robustness of this algorithm allows for both indoor and outdoor implementation while

achieving a competitive result with affordable off-the-shelf sensors.

Artificial intelligence for autonomous 6D pose estimation has valuable contributions to

agricultural practices rallying around fruit picking, harvesting, remote operations and other

contact-related applications. Conventionally, Convolutional Neural Networks (CNNs) based

approaches are adopted for pose estimation. However, precision agriculture applications

are demanding on higher accuracy at lower computational costs for real-time applications.

Motivated by this, a novel architecture called Transpose is proposed based on transformers.

TransPose is an improved Transformer-based 6D pose estimation with a depth refinement.

More modalities often result in higher accuracy at the expense of computational cost. Trans-

pose takes in a single RGB image as input without extra modality. However, an innovative

light-weight depth estimation network architecture is incorporated into the model to estimate

depth from an RGB image using a feature pyramid with an up-sampling method. A trans-

former model having proven to be efficient, regress the 6D pose directly and also outputs

object patches. The depth and the patches are utilised to further refine the regressed 6D pose.

The performance of the model is extensively assessed and compared with state-of-the-art

methods. As part of this research, a first-ever fruit-oriented 6D pose dataset was acquired.

x



Lastly, a seamless teleoperation pipeline that interfaces virtual reality with robots for

precision agriculture tasks is proposed to pave the way for virtual agriculture. This utilises

the Transpose model to estimate the 6D pose of a fruit and render it in a virtual reality

environment. A robotic manipulator is which is then controlled from within the virtual reality

environment to pick/harvest the fruit while being guided by the Transpose AI model. The

robustness of the pipeline is tested over simulation and real-time implementation with a

physical robotic manipulator is also investigated.

xi
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Chapter 1
Introduction

This chapter introduces the reader to the research context that forms the inspiration

behind this thesis. It provides a background knowledge of precision agriculture which

includes the evolution of agricultural practices so far and the need for intelligent vehicles

in precision agriculture. This chapter gives an overview of the overall research, the

scope, and the research aim and objectives. Artificial intelligence as a tool for intelligent

robotics platforms is discussed while analysing the various applications of such tool in

the agriculture domain.

Chapter abstract

1.1 Motivation

The demand for food keeps getting higher by the day as the global population increases

while the availability diminishes. One in four people globally is moderately or severely

food insecure (Max and Hannah, 2013). Productivity is lost as a result of pests, weeds,

disease infestation, cost of labour, inefficiencies in processes, etc. Crop losses due to pests,

weeds and diseases are a major threat to the incomes of rural families and to food security

worldwide (Savary and Willocquet, 2014). Statistics show that pests, weeds and diseases can
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lead to high primary yield losses (26%) and even higher secondary yield losses (38%) (Cerda

et al., 2017).

Another challenge that bothers agriculture is the shortage of labour. Nowadays, the

shortage of labour for agriculture is growing as many people tend to move to white-collar

jobs. As a result, labour becomes scarce and expensive to seek. An alternative opted for

by most farmers involves the use of farm machinery. However, most farm machinery being

heavy types of equipment are powered by fossil fuels thereby releasing much carbon footprint

to the atmosphere. These carbons deplete the ozone layer and add to global warming through

greenhouse gases emission. They also come with an expensive price tag.

Pertinent to the listed problems, this research explores the gateway to intelligent vehicles

in a bid to increase crop yield while decreasing the labour deficit. Robotic platforms are

becoming more popular for military, medical, and space applications. This can be due to their

ability to perform efficiently and emit zero carbons into the atmosphere. Although robotics

in agriculture is still maturing, they can help address labour and productivity challenges

via precision agriculture. Unlike other robotics applications, most of agricultural activities

are complex and diverse in nature. Moreover, an optimal standalone platform is one which

can perform multiple agricultural activities. This can be very challenging due to the diverse

nature and different intricacies associated with each task. Thus, having a robotic platform

alone is insufficient to address agriculture’s challenges. An intelligent vehicle that is able

to classify, detect, and make decisions like humans can be explored as the solution to

those challenges. Complex farming processes like weed identification and removal, precise

harvesting etc require more than just a robotic platform. Artificial intelligence simulates

human-like intelligence in terms of learning and thinking. It involves learning patterns and

analysing datasets to implement tasks that normally involve human intelligence. Provided

these robotic platforms are intelligent, the activities that involves human intervention such as

classification, detection, and localisation in precision agriculture can be tackled efficiently

thereby increasing productivity and food security.
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1.2 Precision Agriculture

Agriculture can be defined as the science and art of cultivating the soil, including the allied

pursuits of gathering crops and rearing livestock; tillage, husbandry, and farming (in the

widest sense) (Harris and Fuller, 2014). An agricultural production system is the outcome of

a complex interaction of seed, water and agrochemicals including fertilizers and pesticides.

Therefore, careful management of all inputs is essential for the sustainability of such a

complex system (Dwivedi et al., 2017). Environmental degradation is more eminent these

days as the productivity of agriculture is enhanced without taking cognisance of the cost

to the environment. Common examples of agricultural-caused degradation include soil

degradation, tillage erosion, more dangerously, agriculture plastic waste and agrochemicals.

The data from (Mace et al., 2017) summarized in Fig. 1.1 suggests that at least 650 tonnes of

pesticides are used on crops yearly in the United Kingdom alone. 56% of these pesticides

are used as herbicides to treat weeds in the farms as in Fig. 1.2. Varying from general

weeds, broad-leaf weeds, town weeds, etc. A lot of volume of these environmentally harmful

chemicals are used to treat these weeds. As suggested by the data from (Mace et al., 2017),

an average of 450,000 hectares are covered in herbicides every year (see Fig. 1.3).

Fig. 1.1 Pesticides usage on crops in the United Kingdom.
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Fig. 1.2 Pesticides usage on crops according to type.

Fig. 1.3 Herbicide area coverage for weed treatment

To manage the excessive use of agrochemicals in the environment and other inefficient

practices, precision agriculture is introduced. The success of precision agriculture depends on

the accurate assessment of the variability, its management, and evaluation in the space-time

continuum in crop production (Dwivedi et al., 2017).

4



1.2 Precision Agriculture

Definition 1 Precision Agriculture

Precision Agriculture is the application of technologies and principles to manage

spatial and temporal variability associated with all aspects of agricultural production

for improving production and environmental quality.

Precision agriculture involves the adequate and optimum usage of resources based on

various parameters governing crop yield (Balaji et al., 2018). Precision agriculture has an

edge over conventional practices due to some of these advantages:

• Better decision making due to availability of record

• Minimize farm degradation

• Increase productivity and food security

• Reduced cost of production

• Improved Farm Management

• Scalability and Automation

As much as precision agriculture is important, executing it effectively is more important.

Although agriculture is a vast field, the scope can be narrowed to meaningful research which

is using artificial intelligent vehicles for autonomous vehicles in precision agriculture. In a

bid to elevate the agricultural sector and fit into the modern technological trend, there is a

need to address certain problems that are labour-intensive and costly. These activities are

generally done manually and hence allowing so much room for human error. It becomes

necessary to address such problems through precision agriculture. In fact, some countries

have already subscribed to this practice and are already experiencing substantial success

in production. The data provided by (Rajmane et al., 2020) which shows land distribution

and production is plotted in Fig. 1.4 and 1.5. It proves that developed countries that are

already subscribing to early precision agriculture are able to achieve more productivity than

under-developed and developing ones.
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Fig. 1.4 Comparison between countries based on land distribution

Fig. 1.5 Comparison between countries based on production

From this data, it is clear that developed countries such as the United States and Germany

lead production capability despite having fewer land distribution. This is due to the proper

implementation of precision agriculture. Whereas countries like Pakistan and India are lag-

ging mostly because of the conventional approach to agriculture. This analysis suggests that

even though the breakthrough in precision agriculture is not yet state-of-the-art, it is already

providing solutions with minimal inputs. The main aim of precision agriculture is to increase

agricultural profits with minimum inputs, reducing the wastage of fertilizers, herbicides and
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manpower (Rajmane et al., 2020). Robotics on the other hand aims at performing tasks with

the maximum possible efficiency using sensors. The introduction of robotics to agriculture

makes a perfect combination for precision agriculture. In this method, advanced and modern

technologies such as computer vision using cameras, Global Positioning System (GPS),

Artificial Intelligence (AI), remote sensing and most importantly robotics are introduced

to make farming more productive and precise. Robotics can easily be adopted in precision

agriculture in areas like site selection, soil preparation, field preparation, seeding and planting,

watering, fertilizer and pesticide application, weed removal and harvesting as suggested by

(Rajmane et al., 2020). Table 1.1 compares between conventional agriculture and precision

agriculture on common agricultural tasks.

1.3 Robots for Precision Agriculture

As forecasted by (Mahsa, 2020), the global market for agricultural robots is currently on

the rise as shown in Fig. 1.6. It becomes pertinent to explore this technological trend and

improve on existing solutions. Agricultural robots mainly comprise drones, Unmanned

Ground Vehicle (UGV)s and manipulators. Each can be used separately or cooperatively to

achieve maximum optimization and efficiency.

Fig. 1.6 Forcasted Market for Agricultural robots showing a continuous upward trend
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Table 1.1 Comparison between Conventional and Precision Agricultural Practices.

Conventional Agriculture Precision Agriculture

Site Selection

Done manually Done with drones and GPS systems

Soil Preparation

Done based on trial and error, previous Done with sensors like temperature sensor,

experience and expert hiring Humidity Sensor, Soil Moisture Sensor etc

Field Preparation (Planking and Ploughing)

Done with bullocks and tractors Done using Agricultural robot for auto-
matic ploughing

Seeding and planting

Done Manually with Hand tools Done using Precision drills, Broadcast
seeders, Seed drills, Air seeders, Robotic
planters

Watering

Done with Drip Irrigation systems or man-
ually

Done with Drip Irrigation using Internet of
Things

Fertilizer and Pesticide application

Done with Hand spray and manually UAVs and UAVs, Sprayers, GPS, Smart-
phone Applications, and Remote sensing is
used

Weed Removal

Using hand tools Advanced robots for weeding are used

Harvesting

Manual picking Robotic pick and place arm, Mechanical
harvesting, limb shaker, canopy shaker, Ab-
scission Chemical

Drones are important when it comes to monitoring, classification and detection. Their

ability to rise above ground level and have an aerial view of a field makes them the best choice

for several monitoring purposes by equipping them with the appropriate sensors for the task.

(Oré et al., 2020) work on Crop Growth Monitoring focuses on Accurate, high-resolution

maps for crop growth monitoring needed by precision agriculture. They utilized differential

synthetic aperture radar interferometry (DInSAR) and a drone to monitor the growth of

coffee, sugarcane and cone. This work obtained growth deficit maps with an accuracy down
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to 5cm and a spatial resolution of 1m. The work proves that agriculture can greatly benefit

from drones in applications like crop growth monitoring, detection and by extension used

for other agricultural tasks involving aerial vision. However, the complexity and resource

intensiveness of this approach makes it expensive to use. (Balaji et al., 2018) proposed a

multifunctional drone using cheap sensors by designing an Unmanned Aerial Vehicle (UAV)

for Crop, Weather Monitoring and Spraying Fertilizers and Pesticides. The work utilised a

hexacopter with Raspberry Pi, a water level sensor, a temperature and humidity sensor, and a

sprinkler. No evaluation of this system was made with regard to real-time implementation.

The results of this work were not published and hence do not give a basis for evaluation.

However, the work shows the possibility of using cheap drone setups and systems to achieve

autonomous farming in contrast to (Oré et al., 2020). (Thapa, 2021) gave an overview of

UAV applications and their potential for making agriculture smart, their current status, and

the scenario for application. The review highlighted that drone hardware implementations are

purely dependent on critical aspects like weight, range of flight, payload, configuration, and

their costs, research technologies, methods, systems, and limitations of the UAVs. This gets

to show that the type of drones used in agriculture solemnly depends on the tasks to be carried

out. This calls for an in-depth review on the types of drones currently in development. (Puri

et al., 2017) discussed the various types of UAV for precision farming in their work entitled

Agricultural drones: a modern breakthrough in precision agriculture. They highlighted the

importance of drones in agriculture for farm analysis, time-saving, higher agricultural yield,

Geographic Information Systems (GIS) mapping integration, and imaging of crop health

status. The agricultural drone available in the market discussed in their work is summarized

in table 1.2 below.
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Table 1.2 Agricultural Drones and their descriptions.

Drones Description

Honeycomb AgDrone System The AgDrone System is developed by the Honeycomb
Company and is regarded as the most sophisticated
drone for Agriculture. It can cover up to 600-800 acres
of őeld every hour while ŕying at 400 feet.

DJI Matrice 100 DJI Matrice 100 is regarded as the Best Quadcopter
based Drone for Agriculture with dual battery support,
which increases almost 40 minutes of ŕight times. This
drone has capabilities like GPS, Flight Controller, DJI
Lightbridge which is regarded as Advanced Flight Naviga-
tion System to do complex tasks and is easy to operate
in all environmental conditions.

DJI T600 Inspire 1 The DJI T600 Inspire Quadcopter is another powerful
Agriculture drone known for its fast charging. It specially
features 4K Video recording, individual ŕight and camera
control and provides easy navigational capabilities.

Agras MG-1- DJI Agras MG-1 ś DJI is the ultimate octocopter designed
for assisting farmers in spraying large areas of farmland
with pesticides, insecticides or Fertilizers. The unique
feature of this drone is that MG-1 is compatible to
carry up to 10KG of liquid payloads and can cover 4000-
6000m2 area in just 10 minutes which is regarded as
70 times faster as compared to manual spraying. MG-
1 has a fully sealed body and consists of an efficient,
integrated centrifugal cooling system to keep the air
ŕowing to each part of the Drone during ŕight time.
MG-1 is equipped with 4 nozzles for accurate spraying
of fertilizer in the őeld.

EBEE SQ- SenseFly The EBEE SQ is a High-Performance agriculture drone
designed for Crop Monitoring from planting to harvest
to assist farmers in better crop yield. This drone is fully
integrated and highly precise and has a multispectral
sensor capable of capturing data across four non-visible
bands together with RGB imagery in just a single ŕight.
It provides a larger coverage as compared to other quad-
copter drones and has automatic 3D ŕight planning. It
has compatibility with Pix4dmapper AG mapping soft-
ware to create Vegetation Index maps for crop őelds
and identify problem areas during ŕight.

10
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Although some of these drones are highly efficient for their specific type of tasks, they

are not capable of generalising to other tasks. Moreover, most of these drones are operated

manually. Automation can be achieved by allowing the robot to "think". This is possible

through AI. Now the question remains "What type of drone is suitable for agriculture?". The

data from (DataMIntelligence, 2020) suggests that most of the drones used in agricultural

practices are multi-rotor drones then followed by Fixed wing drone types. This can be seen

statistically in Fig. 1.7.

Fig. 1.7 Agricultural Drone Market by types

The basic necessities of a drone for precision agriculture include a frame, brushless

motors, Electronic Speed Control (ESC) modules, a control board, an Inertial Navigation

System (ESC), and a transmitter and receiver. Drones cannot function without sources

of information to communicate with the environment, these are sensors. As iterated by

(Daponte et al., 2019) in the case of precision agriculture, the sensors embedded in drones

include multispectral cameras, thermal cameras, RGB cameras and Light Detection and

Ranging (LiDAR) systems. Multispectral cameras are used for quantifying the state of the

monitored vegetation in terms of chlorophyll content, leaf water content, ground cover and

Leaf Area Index(LAI), and the Normalized Difference Vegetation Index (NDVI). Thermal

cameras have demonstrated a high potential for the detection of water stress in crops due to

the increased temperature of the stressed vegetation. LiDAR can be used to map the farm
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area and efficiently navigate robotic platforms in the farm. From the literature, it is fair to

conclude that most of the drones utilised for agriculture are multi-rotor. Thus, this work

utilises an affordable Parrot ARDrone and a custom-made drone equipped with the necessary

sensors to be discussed in the subsequent section.

The growing population demands a more sustainable agriculture practice. Following

the successes of ground robots for military and disaster applications, various research has

emerged on how to adopt such vehicles for agriculture practices. (Mueller-Sim et al.,

2017) in their work suggested The Robotanist: A Ground-Based Agricultural Robot for

High-Throughput Crop Phenotyping. This robot is capable of measuring the physiological

and morphological traits (phenotypes) of crops in outdoor test plots. These processes

are often labour-intensive and have too many inconsistencies. (Mueller-Sim et al., 2017)

presented a novel ground robot that is capable of navigating through row crops such as

maize autonomously. The robot is capable of measuring phenotypic information with the

aid of a modular array of non-contact sensors. The strength of the stalks is measured by

the robot by deploying a manipulator. (Grimstad et al., 2015a) developed a multipurpose

ground robotic platform. This platform is capable of performing activities like seeding,

harvesting and weeding. Their work entitled “the design of a low-cost, lightweight, and

highly versatile agricultural robot” is economically viable, has lightweight so as to operate

on soil without damaging the structure of the soil. It has some essential tools attached to it

including seeding tools, liming, weeding tools, and crop scouting tools. Ground robots can

perform energy-demanding tasks as portrayed by (Grimstad et al., 2015b). Tasks performed

by heavy machinery such as tractors can also be performed with light ground robots. This

robot named Thorvald is capable of performing common agricultural practices such as

seeding and crop monitoring. This platform was used by researchers working on cereal crop

phenotyping and the results obtained were generally fair. However, it could not match up

with the expectations of the researchers. (R Shamshiri et al., 2018) conducted research on

the developments in agricultural robotics. The work iterated the importance of robotics in

agriculture and highlighted some robots with their description summarised in table 1.3.
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Table 1.3 Agricultural Ground Robots and their Descriptions

Ground Robots Description

SWEEPER The system is made up of a collection of independent mobile
platforms equipped with a robot manipulator that holds an end-
effector and a fruit-grabbing device for harvesting.

BoniRob It is an integrated multipurpose farming robotic platform for row
crops weed control developed by interdisciplinary teams. It is
also capable of creating a detailed map of the őeld.

AgBot II It is an innovative ground robot prototype developed by the
Queensland University of Technology for several purposes such
as autonomous fertilizer application, weed detection and classiő-
cation, and mechanical or chemical weed control.

Autonome Roboter a research effort robot developed by Osnabrück University of
Applied Sciences for weed control.

Tertill It is powered by solar and fully autonomous. It is a compact
robot developed by Franklin Robotics for weed cutting.

Hortibot a robot developed by the University of Aarhus for transporting
and attaching a variety of weed detection and control tools such
as cameras, herbicide and spraying booms

Kongskilde Robotti a robotic platform equipped with a drive belt operating based on
the FroboMind software that can be connected to different mod-
ules and can be implemented for automated and semi-automated
mechanical weed control, precision seeding, furrow opening and
cleanings.

RIPPA Developed by the Australian Centre for őeld robotics at Sydney
University. It is a solar-powered Robot for Intelligent Perception
and Precision Applications.

Ladybird an autonomous multipurpose farm robot for surveillance, map-
ping, classiőcation and detection of different vegetables.

Wall-Ye a prototype vineyard robot for pruning, mapping, and possibly
harvesting the grapes

MARS They are mobile agricultural robot swarms. Small and stream-
lined mobile robot units that have minimum soil compaction
and energy consumption and aim at optimizing plant-speciőc
precision agriculture

Vine agent developed by the Universitat Politècnica de València. It is
equipped with advanced sensors and artiőcial intelligence to
monitor the őeld for plant health assessment.

HV-100 Nursery Bot A light weighted robot developed by Harvest Automation for
moving plants and potted trees in greenhouses and small orchards.

GRAPE Ground Robot for vineyard monitoring and Protection. It can
perform smart autonomous navigation, plant detection and health
monitoring, and manipulation of small objects.13
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Some complex tasks will require the fusion of both platforms (UAVs and UGVs) to

successfully implement the agricultural tasks intended. This approach becomes even more

useful when robots begin learning from each other and improve their performance over time

(R Shamshiri et al., 2018). In order to explore multi-platform cooperation, (Pretto et al.,

2020) proposed building an aerial-ground robotics system for precision farming. This setup

was designed to monitor crop density, weed pressure, and crop nitrogen nutrition status,

and to accurately classify and locate weeds. The researchers further introduced navigation

and mapping systems to address the specificity of the employed robots and the agricultural

environment, highlighting the collaborative modules enabling the UAVs and UGVs to collect

and share information in a unified environment model. The test was performed on different

crops and different fields. The concept was to use the UAV to monitor the farm while

communicating with the ground robot to perform selective spraying autonomously. Still

on the cooperation, (Potena et al., 2019) introduced the AgriColMap: an aerial-ground

collaborative 3D-Mapping for precision agriculture. AgriColMap is a novel map registration

pipeline that leverages a grid-based multi-modal environment representation, including a

vegetation index map and a Digital Surface Model. Maps built from both the aerial and ground

robot are collected, and the dominant coherent flows are selected using a voting scheme

and are used as point-to-point correspondences to infer a preliminary non-rigid alignment

between the maps. A final refinement is then performed by exploiting only meaningful parts

of the registered maps. (Tokekar et al., 2016) proposed a sensor planning for a symbiotic UAV

and UGV system for precision agriculture which also involves the collaboration of both UAVs

and UGVs. The idea was to use the UGV to deploy the UAV at carefully selected locations.

As the UAV is taking images, the UGV will take soil measurements nearby. The UAV can

then land on the UGV surface which will then take the UAV to the next deployment location.

Landing and ascending consume energy, leading to the problem of choosing how often to

land. To tackle this, they developed an algorithm that optimally decides how frequently the

UAV lands.

Summarily, All these field robots show that research is beginning to penetrate the agri-

culture sector. However, most of the robots mentioned are at the research stage and not
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yet deployable for large-scale commercial purposes while others are not affordable. Even

though the automation of agriculture is inevitable as food demand grows, there is still a

long way to go in making such platforms ready for market at an affordable price. Thus,

utilising affordable platforms with basic sensors yet equipping them with the required level

of intelligence can perhaps narrow the gap of automation for agriculture as targeted by this

thesis.

1.4 Research Objectives

Given the established background and the challenges listed in this introductory chapter, the

objective of this thesis can now be defined. The aim is to investigate the fusion of artificial

intelligence and robotic platforms so they can carry out farming operations autonomously.

Artificial intelligence techniques such as machine learning and computer vision are essential

in this journey. Fetching data from several sensors and processing via AI in a befitting way

will give rise to an intelligent system that can think and execute actions in a human-like

manner. Although farming operations are vast and dynamic in nature, their similarities are

tied to the techniques used in implementing them. After thorough investigation, this thesis

identifies three key elements that are common in the majority of the agricultural activities.

These elements are believed to be the backbone of the majority of agricultural activities. In

essence, making these elements intelligent will automatically make the agricultural activities

intelligent. These elements are: classification, detection and pose estimation. A simple case

study of perception-based inference can be that of weed removal. Weeds often result in low

yields in crops. The two major processes of weed control are identification (classification

and detection) and removal based on relative pose estimation. Manual processes are often

less efficient, labour intensive, and too much time wastage. However, adopting AI for this

task includes the following steps:

• Step 1: Detect the weed (AI for detection)

• Step 2: Classify the type of weed (AI for classification)
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• Step 3: Estimate the relative pose for removal (AI for pose estimation)

This example can extend to many other agricultural activities as shown in Fig. 1.8. These

three elements are the points that this thesis seeks to address using artificial intelligence.

Fig. 1.8 Other Agricultural Activities that Utilises the Three Elements (Classification, Detec-
tion and Pose Estimation).

By extension, tackling these elements using AI can provide a pathway to automation in

activities such as planting, weeding, harvesting, pest and disease control, crop monitoring,

irrigation, etc. Being the core activities in agriculture, this automation, in turn, tackles the

problem of sustainability, efficiency, cost, labour scarcity and productivity. In a nutshell, the

objectives of this research can be summarised as follows:

• To increase agricultural productivity by the adoption of affordable robotics platforms

equipped with AI tools for classification-related agricultural tasks in real-time deploy-

ment while possessing better accuracy.

• To increase agricultural productivity by the adoption of affordable robotics platforms

equipped with AI tools for detection-related agricultural tasks in real-time deployment

while possessing better accuracy.
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• To increase agricultural productivity by the adoption of affordable robotics platforms

equipped with AI tools for pose estimation-related agricultural tasks in real-time

deployment while possessing better accuracy.

• To tackle the problem of robotics teleoperation by utilising a virtual environment

thus combining the above-mentioned for other activities like fruit picking in precision

agriculture (as a case study).

Remark 1 Research Questions

• Question 1: Can a robot perform autonomous classification for agricultural

applications in real-time? if yes how?

• Question 2: Can a robot perform autonomous detection for agricultural appli-

cations in real-time? if yes how?

• Question 3: Can a robot perform autonomous pose estimation for agricultural

applications in real-time? if yes how?

• Question 4: Can a robot perform be intelligently teleoperated from a virtual

environment for fruit picking? if yes how?
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Chapter 2
Theoretical Background

This chapter highlights the background knowledge of the tools and methods used in

this research. The fundamental theoretical background that this work builds upon

is discussed to familiarise the reader with the concepts behind this work. Camera

calibration as a tool for obtaining camera parameters is discussed. Basic principles

of artificial intelligence is briefly discussed including regularisation techniques and

datasets. The structure of the thesis is also highlighted in this chapter.

Chapter abstract

2.1 Camera Calibration

This work uses multiple camera sensors. To accurately utilise a camera sensor, the camera

needs to be calibrated. Geometric camera calibration, also known as camera resectioning,

determines a camera’s lens and sensor’s specifications. These attributes can be used to correct

lens distortion, measure an object’s size in world units, or localise a camera. Applications like

machine vision use these tasks to facilitate accurate classification, detection and localisation

of objects. This technique is also utilised in robots to facilitate navigation and 3-D scene

reconstruction. Intrinsic, extrinsic, and distortion coefficients are the camera parameters

obtained from calibration. The 3-D world points and the matching 2-D image points are re-
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quired to estimate the camera settings. These correspondences can be obtained by comparing

many pictures of a calibration pattern, such as a checkerboard. Thus, the camera parameters

are obtained by using the correspondences. The model proposed by Jean-Yves Bouguet is

the foundation of the pinhole calibration algorithm used in this work (Bouguet, 2004). The

model contains lens distortion and the pinhole camera model, respectively. Since an ideal

pinhole camera does not have a lens, the pinhole camera model does not take lens distortion

into consideration. A comprehensive algorithm of the camera model should incorporate

radial and tangential lens distortion in order to faithfully simulate a real camera. A pinhole

camera has a simple setup with a small aperture and no lens. When light passes through the

aperture, it projects an inverted on the other side of the camera. You can imagine the upright

image of the scene is on the virtual image plane, which is in front of the camera as seen in

Fig. 2.1.

Fig. 2.1 A Simple Pinhole Camera Model

The camera matrix is a 3× 4 matrix that represents the pinhole camera specifications.

The 3-D world scene is mapped into the image plane via this matrix. The extrinsic and

intrinsic parameters are used in the calibration procedure to compute the camera matrix. The

extrinsic parameters represent where the camera is located in the three-dimensional scene.

The camera’s optical centre and focal length are referred to as the intrinsic parameters. Thus,

3-D and 2-D conversions can be performed using equation 2.1
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and,

P = K
[

R t

]

(2.2)

where, W is the scale factor, [x,y,1]T is the image points, [X ,Y,Z,1]T is the world points.

P is the camera matrix. K is the intrinsics matrix. R and t are the rotation and translation

which are the extrinsic parameters. The intrinsic parameters can be used to map the camera

coordinates into the image plane using the intrinsic parameters. The world points can also be

transformed into camera coordinates using extrinsic parameters as shown in Fig. 2.2.

Fig. 2.2 Conversion from world plane to image plane

The calibration algorithm computes the camera matrix by utilising using the extrinsic

and intrinsic parameters. The extrinsic parameters represent a rigid transformation from a

3-D world coordinate system to a 3-D camera’s coordinate system. The intrinsic parameters

represent a projective transformation from the 3-D camera’s coordinates into the 2-D image
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coordinates. The extrinsic parameters encompass the rotation, R, and a translation, t. The

origin of the camera’s coordinate system is at its optical centre and its x and y-axis define the

image plane as seen in Fig. 2.3.

Fig. 2.3 Camera coordinate system

The optical centre, also known as the principal point, focal length, and skew coefficient

make up the intrinsic parameters. The camera intrinsic matrix, K, is denoted as:











fx s cx

0 fy cy

0 0 1











(2.3)

where (cx, cy) is the optical center, ( fx, fy) is the focal length in pixels and s represent

the pixel skew. Pixel skew refers to when the pixels in an image are not aligned properly,

resulting in a slanted or skewed appearance. Fig. 2.4 shows an illustration of pixel skew.

Fig. 2.4 Pixel Skew
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Remark 2 Basic camera parameters

[cx,cy] - optical center also known as principal points in pixels

( fx, fy) - Focal length in pixels

f x = F/px

f y = F/py

F - Focal length in world units, expressed in millimetres. (px, py) - Size of pixels in

world units

s = fxtanα

As earlier stated, the pinhole camera model does not account for distortion as represented

by the camera matrix. This is because a pinhole camera does not have any lens. However,

a real camera model has a lens, and thus distortion has to be accounted for. There are two

common types of distortion, the tangential and radial distortion. Tangential distortion occurs

when the image plane is not parallel with the lens. The tangential distortion coefficients

are utilised for the modelling of this distortion. Consider a distorted point denoted as

(xdistorted,ydistorted).

Also,

xdistorted = x+[2t1xy+ t2(r
2 +2x2)] (2.4)

ydistorted = y+[t1(r
2 +2y2)+2t2xy] (2.5)

where x and y are the undistorted pixel points which are in normalised image coordinates.

Normalised image coordinates are computed from the pixel coordinates by translating the

optical centre and dividing by the focal length which is both in pixels and resulting in a

dimensionless unit. Also, r2 = x2 + y2, t1 and t2 are the tangential distortion coefficients of

the camera lens.

Radial distortion is said to happen when light rays bend near the edges of the lens more

than they do at the optical centre. Smaller lens often results in greater distortion and vice-

versa. This type of distortion is modelled with the radial distortion coefficients. Consider a
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distorted point denoted as (xdistorted,ydistorted).

Also,

xdistorted = x(1+m1r2 +m2r4 +m3r6) (2.6)

ydistorted = y(1+m1r2 +m2r4 +m3r6) (2.7)

where x and y are the undistorted points and are dimensionless as in the case of tangential.

r2 = x2 + y2, m1, m2 and m3 are the radial distortion coefficients of the camera lens.

2.2 Artificial Intelligence

Artificial intelligence is becoming an established subject in science, technology, mathematics

and engineering disciplines. Although there are many definitions of what this subject might

be, the commonest and most relatable is the human-centric one, which is the ability to perform

tasks as humans and in fact better than humans do. However for systems to be referred to as

intelligent (Stuart and Peter, 2013) propose that they should pose some characteristics which

are Natural language processing for communication, representation of knowledge to store

what the system knows or learns, reasoning to use the stored information to answer questions

and provide new information, and the ability to recognize and extrapolate patterns to learn

novel information.

2.2.1 Machine Learning

Machine learning (ML) is a branch of artificial intelligence that automatically processes data.

The availability of voluminous datasets in the modern days makes it pertinent for machine

learning techniques to adapt and maximise the potential of such datasets.

Generally, ML can be categorised into two central types: supervised and unsupervised

learning (Kevin, 2012). The objective of a supervised type of learning is to learn the

relationship or map from the inputs to the outputs given labelled pairs. Unsupervised

learning, on the other hand, has the objective of recognising patterns in the input data in
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the absence of any labels or outputs for comparison. This type of learning is naturally

more applicable, just as in the case of humans that can learn by simple visual observation.

Nonetheless, this type of learning is not properly defined and thus encounters more frequent

challenges than the former. Moreover, computer vision is the closes machine analogue for

object perception and the robotics domain is also one discipline that utilises AI properly. The

flexibility of robotics platforms coupled together with the availability of small compact and

affordable cameras makes them the favourite candidate for computer vision applications.

Raw, rich information about the environment can easily be captured for input data in robotics

applications.

Normally, machine learning encompasses two stages. The first stage is the feature

extraction stage. This stage involves extracting discriminative and informative subsets from

supplied raw data. In the context of this work, relative pose estimation utilises the data from

a camera to obtain the relationship between the image points and the scene and thus requires

the extraction of meaningful features or points from the image. Also, weed classification

leverages the extraction of features from weed images captured with the camera. The second

stage rallies around selecting a befitting model to process the extracted features or points

to give the desired results. These models are often generated by the ability to minimise the

prediction error.

2.2.2 Deep learning

Artificial neural networks (ANNs) as part of deep learning is a branch of ML in which models

try to learn directly from the supplied raw input data. Inspired from biology of the brain’s

function (Goodfellow et al., 2016), the basic model is the Multilayer Perceptron (MLP)

(Christopher, 2006) to generate a vector of outputs y = [y1 . . .yK]
T , M linear combinations

of the elements of the input x = [x1 . . .xD] are established and the result is passed through a

nonlinear activation function h:

a j =
D

∑
i=1

W
(1)
j,i xi +b

(1)
j , j = 1, . . . ,M (2.8)
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z j = h(a j), (2.9)

Where Wj,i,b j are the network’s learnable parameters (weight and biases), and the

superscript (1) represents the first layer of the MLP. In the case of only one hidden layer,

through another linear combination, the output activations can be directly obtained from z j

ak =
D

∑
j=1

W
(2)
k, j z j +b

(2)
k ,k = 1, . . . ,K (2.10)

The output activations can be forwarded through another activation unit or taken as the

identity yk = ak depending on the nature of the responses as shown in Fig. 2.5.

Fig. 2.5 Diagram for a two-layer artificial neural network (ANN). The open nodes represent
input (x), hidden (z), and output (y) variables.

As more development continues in the optimisation of such models coupled together with

the invention of high computing capabilities mainly the graphics processing units (GPU),

models having larger depth i.e having a large number of hidden layers can be trained in a

shorter time frame. This gave rise to enormous research in the deep neural network (DNN)

field.

The training of the DNN is achieved as a minimisation of a scaler loss function Like

in classical ML, the training of a DNN is formulated in terms of minimising a scalar loss

function f (x,y,λ ), where λ is the set of network’s learnable parameters and the dependency
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on the inputs and outputs has been made explicitly. Since the model is nonlinear by design

(Eq. 2.9), the optimal λ can be achieved using iterative methods to search for critical

points in f with the gradient information. The simplest method is through gradient descent

(Christopher, 2006), by taking a small step in λ -space in the negative gradient direction.

λ (k+1) = λ (k)−αk∆λ f , (2.11)

where αk is the learning rate at time-step τ = τk. The gradient f with respect to the

weights for each layer can be obtained from local gradients of the respective layer by

using backpropagation (Rumelhart et al., 1985). Consider a unit j in one layer that sends

connections to k units in the next layer, the local gradient at unit j is obtained as:

δ f

δa j
= ∑

k

δ f

δak

δak

δa j
(2.12)

Due to the memory constraint of gradient-based parameter optimisation for voluminous

datasets, a minibatch B= {x(1), . . . ,x(m)} of m inputs at each step can be sampled from the

training data and utilised instead. Thus, the process results in a stochastic gradient descent

(SGD) and can be estimated as:

∆λ f ≈ 1
m

m

∑
i=1

∆λ f (x(i),y(i),λ ) (2.13)

Typically a model will require many epochs to train. One epoch will mean that the SGD

has processed all the mini-batches consisting of the entire datasets of inputs. A linear output

as portrayed in Eq. 2.10 allows the network to learn regression problems. More traditionally,

deep learning is often associated with classification problems. i.e. discrete and mutually

exclusive output. The sigmoid function can be utilized to model an output that obeys the

Bernoulli distribution. The softmax function is utilised to model categorical or generalised

Bernoulli distributions and is given by:
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so f tmax(a)k =
exp(ak)

∑l exp(al)
(2.14)

2.2.3 Activation Functions

The hyperbolic tangents and the sigmoid were the commonly used activation functions in the

early days of ANNs (Goodfellow et al., 2016) (see Fig. 2.6, left and middle respectively).

However, the sigmoid function is sensitive to inputs close to zero and thus is susceptible to

vanishing gradient problems in backpropagation and renders training difficult. The hyperbolic

tangents also depend on small activation inputs but are generally easier to train. Thus, modern-

day research works often choose the rectified linear unit (ReLU) as the default activation

function (see Fig. 2.6, right). It is defined as follows:

relu(x) = max(0,x) (2.15)

Fig. 2.6 Activation functions for ANN. left: Hyperbolic tangent function. middle: Sigmoid
function and right: Rectified linear unit.

The ReLU function gives an output of zero when the input is zero and has a linear

response input if the input is positive. Another advantage of the ReLU is sparse activation

which prevents overfitting and thus performs well with new examples. The hyperbolic

tangent functions and sigmoid saturates in both directions thus, the ReLU has better gradient

propagation when compared to them.
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Fig. 2.7 Comparison between the rectified linear unit (ReLU) activation function and the
leaky ReLU activation function. Leaky ReLU is plotted with different values of φ

Remark 3 Dying ReLU

As mentioned earlier, the ReLU has a superior advantage over the rest activation

functions. However, it faces a problem during backpropagation. This problem is

referred to as dying ReLU and regardless of the input, it has a nature of converging to

some states of inactivity. It happens when the network activations give an output of

zero value due to learning a large negative bias. Over the years, some solutions have

been proposed to mitigate this problem such as the leakyReLU (Maas et al., 2013)

that gives a small gradient when the unit is not active as seen in Fig. 2.7. Defined as

follows:

leakyrelu(x,φ) =











x if x > 0

φx otherwise
(2.16)

2.2.4 Convolutional Neural Networks

Image-based applications benefit from the end-to-end nature of DNNs due to the ability

to learn the optimal feature representation in an unsupervised way. An example of this

application is in DNN-based pose estimation method. The model is capable of understanding
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the nonlinearities between the input images and the 6-DOF pose estimations. The hidden

layers facilitate the linear combination between all the possible inputs and outputs. Thus,

each layer is referred to as a fully connected (FC) layer. Even for an average-resolution

image with fewer pixels, training an FC layer would require a very high computing power as

each pixel will be an input to the DNN, alternatively, a convolutional neural network (CNN)

can be used to process such types of image inputs (Le Cun et al., 1989).

A convolution operation is performed by sliding a 2D kernel K which is a relatively small

square matrix having an odd dimension across an image Īin that is 2D to produce an output

Īout that is also 2D as follows:

Īout
i, j = (Īin ×K)i, j = ∑

u
∑
v

Īin
i+u, j+vKu,v (2.17)

Fig. 2.8 shows a convolution operation of a 2D input image with a 2×2 kernel to yield the

desired output.

Fig. 2.8 A two-dimensional convolution process. An input image Īin is convolved with a
2×2 kernel K to produce an output image Īout . This illustration is only shown for the top
left 3×3 sub-matrix of Īin.

The convolutional layers have lesser memory requirements as compared with the FC layer.

This is due to a decrease in parameters and the sparse nature of the learnable parameters.
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Regardless of the input location of the parameters, the parameters can be learned considering

that the kernel is slid over the entire image. The resultant output plays the function of a feature

map, representing the location and intensity of localised features, which has the same impact

as looking for localised features in an image. In fact, CNNs are widely employed as feature

extraction front-ends, where more feature maps are generated while spatial information is

sequentially reduced. In this instance, the feature maps appear as images with multiple

channels obtained from the convolution and extending the 2D kernel to a 4D tensor κ having

a dimension of:

dimκ =Cin × (F ×F)×Cout (2.18)

where Cin is the number of input channels, Cout is the number of output channels (desired)

while assuming that the kernel is spatially square with a dimension of F ×F . Pooling

operations can be performed after the convolution for spatial reduction where bins are

generated by sub-dividing the feature map of spatial dimension Win to obtain an output of the

following dimension:

Wout =

[

Win −Q

Q

]

+1 (2.19)

Q is the pooling window size. The pooling operations usually take either the average or

maximum value of each bin. In most of the recent DNN models, increasing the stride S of

the convolution is preferred over pooling layers. The stride refers to the number of rows and

columns that are skipped while sliding the kernel. Thus, the spatial output size, in this case,

can be formulated as follows:

Wout =

[

Win −F +2P

S

]

+1 (2.20)

where P is the spatial padding that was applied to the input.

2.2.5 Transfer Learning

DNNs that result in sophisticated models may necessitate not only lengthy training time but

also larger training datasets. To overcome these two challenges, Transfer learning, which
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makes the assumption that some factors impacting the outcome of one task are relevant to

the outcome of another task is an approach that can be utilised. For CNN for instance, it

is expected that the multiple learned kernels will always converge to detect general visual

features. Even experimentally, it has been verified that tasks such as image classification

optimise the kernels of the beginning CNN layers towards a wider domain and broad features

such as edges and corners, while the kernels of the last or ending layers are more critical

in problem-specific shapes (Zeiler and Fergus, 2014). As a result, it is typical to use a

pre-existing CNN architecture as a model backbone, with the early layers trained on a broad

and general dataset up to a point. The final few layers or newly added layers can then

be trained from the ground up using smaller domain-specific data. The ImageNet dataset

consists of more than 14 million images that are manually classified into bins of more than

20,000 categories via crowd-sourcing. It is a dataset that is widely used in transfer learning

for visual tasks. The ImageNet Large Scale Visual Recognition Challenge (ILSVRC), whose

goal is to construct a ML pipeline to accurately classify images into 1000 different classes,

served as an inspiration for a lot of advancement in CNN architectural design. Since then,

new CNN architectures have participated in the challenge every year, leading to significant

advancements while showcasing new innovations, a notable example is the ResNet (He et al.,

2016a), which proposed residual connections allowing innovations that led to even deeper

architectures. Another example is GoogLeNet (Szegedy et al., 2015) which is associated

with a very deep architecture as well as parallel layers to detect features at different scales.

The majority of these cutting-edge DNN architectures are open-sourced, with pre-trained

ImageNet weights made available; this has aided the quick development in this field and

adoption of models like CNN front-ends.

2.3 Regularisation

The capacity of the model, also known as the number of learnable parameters in DNNs,

is an implicit hyperparameter. The potential for the DNN to make predictions accurately

increases with capacity. Overfitting, on the other hand, is when the network really stops
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learning and rather memorises the training data, making it impossible for it to generalise to

new, untested test data, and is caused by having too many parameters. Due to this factor, it

is common practice to periodically evaluate the network’s performance on a validation set

while it is being trained. A validation set is not utilised in training the model but rather is

used to simply shed light on the pipeline’s generalisation capabilities. Overfitting occurs

especially when the training error is substantially smaller than the validation error. On the

other hand, fewer parameters can lead to underfitting which results in both high validation

and training errors. Overfitting can be tackled by using fewer parameters, and early stopping,

which involves stopping the training process when the validation error begins to diverge

from the training error. Furthermore, regularisation techniques can be introduced, which

essentially adds noise to the learning process. Unless the training dataset comprises a very

large number of examples in millions, regularisation should generally always be incorporated

(Goodfellow et al., 2016). A few common regularisation techniques for DNNs are outlined

in this subsection.

2.3.1 Dropout

Dropout is the process of randomly removing units from a network by multiplying their

output value by zero (Hinton et al., 2012). For a very deep network, Dropout makes an

attempt to mimic the ML notion of bagging which means training K separate models for K

separate training data subsets. A binary mask is randomly sampled for each minibatch step

and applied to the hidden units of each layer with probability p. This probability is fixed and

used as a layer’s hyperparameter. Before the activation function, typical values for FC layers

are p = 0.5 while for convolutional layers are p ∈ [0.1,0.2].

2.3.2 Weight Decay

One of the pioneering regularisation techniques used in machine learning, even before ANNs,

is weight decay. It entails introducing a term into the loss function that is proportional to

the weights of each layer. L2 regularisation is a standard sort of weight decay that adds the
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squared sum of the weights only without biases as they are normally disregarded in weight

decay. Despite the lengthy existence of weight decay in the field of ML, different techniques

are often used in addition to or as a whole replacement for modern CNNs.

2.3.3 Batch Normalisation

In order to normalise the inputs to a layer, (Ioffe and Szegedy, 2015) computes the mean

µB and variance σ2
B

for each mini-batch m. The mean and variance of the complete dataset

are approximated throughout the training phase by calculating the moving average of each

per-batch {µB,σ
2
B
}, which is then utilised to normalise inputs. Overall, the batch norm was

designed to enhance DNN optimisation, however, it introduces noise into the system, which

may result in a regularising effect.

2.3.4 Image Augmentation

Image augmentation is a powerful regulariser that generates extra (augmented) data while

indirectly training a DNN on which features are crucial to learning. For example, in the case

of CNNs, the performance of a classifier could be increased simply by randomly rotating and

flipping the input image in-plane, boosting the robustness of classification and detection.

2.4 Datasets

A dataset is a collection of coherent ingredients that accurately depict the reality in which

the method wants to be verified and evaluated, rather than a collection of isolated, random

information elements. Datasets play an important role in the evaluation of an algorithm. An

ideal dataset samples information straight from that same reality. A good dataset also allows

for a fair evaluation of an algorithm’s performance as compared to other algorithms under

the same conditions (benchmarking). As interest in machine learning is increasing, so does

interest in raw data as these datasets are required for the training procedure of the models.

Thus, there is a need for more open-source datasets which should ideally be well structured,
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labelled and depict the clear ground truth of the scenario so that algorithms can be effectively

trained to detect, classify, estimate and evaluate.

In the context of this thesis, datasets are very crucial for the intelligence of robotics

platforms for agriculture. This work utilised both open-sourced and custom-made dataset to

teach the models and evaluate the outcome. For example, weed classification and detection

is a common problem in the precision agriculture domain and thus the availability of labelled

datasets for this purpose is heterogenous. Although weeds vary from one geographical region

to another, the aim is to prove the efficiency and performance of the models in general.

Shortage of dataset for other crucial activities such as fruit 6D pose estimation led to the

generation of a custom dataset that tallies with the purpose of this work. Along the thesis,

the dataset utilised for the experiments are elaborated upon.

2.5 Outline and Contributions

The structure of the thesis is presented as follows:

• Chapter 1 introduces this work while highlighting the research context and motivation

of this thesis.

• Chapter 2 provides a brief introduction on the theoretical background, and structure

of the thesis.

• Chapter 3 proposes the use of a novel artificial intelligence-based solution for weed

detection and classification on robotic platforms. This chapter aims to achieve real-time

detection and classification of weeds so that they can be precisely sprayed and removed

thereby avoiding the usage of large quantities of harmful chemicals in the environment.

• Chapter 4 presents a novel monocular vision-based approach for drones to detect

multiple types of weeds and estimate their positions autonomously for precision

agriculture applications. This chapter builds on the pipeline presented in Chapter 1 and

extends it to not only detection and classification but also relative position estimation.

This can reduce the labour deficit in the sense that a UAV can patrol over a large area
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and simultaneously detect and estimate the position of weeds. An extension of this is

to communicate the estimated positions to a ground robot which will then utilise such

positions to navigate and perform the required action on the weeds.

• Chapter 5 proposed TransPose, a novel improved Transformer-based 6D pose esti-

mation with a depth refinement module in the quest for better performance on 6D

pose estimation. This is a persistent problem, especially in precision agriculture. The

architecture incorporates an innovative lighter depth estimation network architecture

that estimates depth from an RGB image using the feature pyramid method to refine the

pose regressed from a transformer model. Another major contribution is tailoring the

pipeline for fruit picking applications by utilising a first-ever multi-modal custom-made

fruit dataset tailored specifically for fruit 6D pose estimation which is called "Fruity".

The result obtained competes with the state-of-the-art methods.

• Chapter 6 presents a method that utilises virtual reality as a tool for an immersive

experience in a 3D environment which allows users to visualise and interact with robots

in such environments. The pipeline proposed is a seamless teleoperation pipeline that

interfaces virtual reality with robots for precision agriculture tasks aiming at achieving

remote operations. This chapter builds on the work in Chapter 4 and incorporates it

into the framework to estimate the 6D pose of the target fruit in real-time and utilises

this information to render the target fruit in the virtual environment which is then

grasped or harvested. Another contribution of the pipeline is the flexibility it offers as

it has also been successfully deployed on other robotics platforms.

• Chapter 7 concludes this thesis while discussing the results and proposing future

works that can build on this thesis.
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Chapter 3
Deep Weed Detector/Classifier Network for

Precision Agriculture

This chapter discusses the development of an artificial intelligence-based solution

for weed detection and classification on robotic platforms. The productivity of crop

farming keeps diminishing at an alarming rate due to the infestation of weeds and

pests. Deep learning is becoming the approach for identifying weeds on farmlands.

However, training weed data sets with deep learning for classification alone trains the

whole image consisting of the weed and its background (soil) without categorically

telling which particular item in the image is a weed. This makes the adoption of this

classification approach for precision agriculture difficult. Thus, the chapter presents an

alternative approach, which involves incorporating a pre-trained network by adopting

the ResNet-50 framework and YOLO v2 object detector for weed detection/classification

on farmlands. Thus, weeds can precisely be located, identified (type) and eventually

sprayed with the appropriate herbicide or removed with the appropriate mechanism.

This sums up the weeding process in precision agriculture.

Chapter abstract
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3.1 Motivation

Weed control is an important issue in agriculture (Pusphavalli and Chandraleka, 2016a). The

conventional method used for weed control involves treating the entire field uniformly with

a single herbicide dose. Thereby, spraying the soil, crops, and weed in the same manner

(Lottes et al., 2017a). This approach is easier and faster. However, spraying the herbicide

uniformly might not necessarily work for every weed as there are different species. Also, a

large amount of chemicals is wasted on the soil as this spraying process is not targeted at

a particular weed. An important objective in weed management is discrimination between

weed species to control each specie using the appropriate herbicides. Efficiency is higher

if selective treatment is performed for each type of infestation instead of using a broadcast

herbicide on the whole surface.

Precision farming provides a new solution using a systematic approach for today’s

agricultural issues such as the need to balance productivity with environmental concerns

(Hakkim et al., 2016). Precision agriculture involves the adequate and optimum usage of

resources based on various parameters governing crop yield (Satish Kumar and Sudeep, 2007).

The Handbook of Precision Agriculture (Srinivasan, 2006) describes precision agriculture

as a holistic and environmentally friendly strategy in which farmers can vary input use and

cultivation methods – including the application of seeds, fertilizers, pesticides and water,

variety selection, planting, tillage, harvesting – to match varying soil and crop conditions

across a field.

3.2 Related Work

For more precise farming, robots can perform targeted weed treatment if they can specifically

locate the position of the unwanted plant and detect the type of weed. This will reduce by

a large margin the use of agrochemicals on farms and favour sustainable agriculture. Our

approach in this work is useful in the use of chemicals in the right quantity, in the right place

and at the right time. Several works have been done in this direction. The work of (Lottes

et al., 2018a) focused on weed detection using semantic segmentation using a sequenced
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approach. (Zheng et al., 2019a) suggested the merging of networks for Crop detection.

Weed detection performed by (Yu et al., 2019a) concluded on several networks for detection

of individual weeds peculiar to perennial ryegrass. (Pusphavalli and Chandraleka, 2016a)

worked on an automatic weed removal system using images. (Lottes et al., 2017a) did an

impressive work on UAV−Based crop and weed classification for smart farming. (Lottes

et al., 2018a, 2017a) generalized all weeds as ’weeds’ without categorically telling what

type. While (Zheng et al., 2019a) worked on crops, (Yu et al., 2019a) VGGNet have been

proven to have lower accuracy in the work of (Zheng et al., 2019a). Weed detection in

precision agriculture is beyond identifying weeds only, it should also extend to telling the

type of weed identified so that accurate and precise measures can be taken to remove the

weeds. Weeds have variable characteristics depending on the type of weed. Consequently,

not all herbicides can work on all weeds and also not all removal mechanisms can work

as some weeds have broad leaves and others have embryonic leaves. To be able to tell

specifically the type of weed detected will enhance precision and accuracy in removal leading

to appropriate measures taken. This chapter presents a novel approach that precisely detects

weed and extends to tell precisely what type of weed is detected. The aim is to develop deep

learning techniques to detect and classify four classes of weeds which are peculiar but not

limited to the corn plant. These weeds are bluegrass, chenopodium, circium and sedge. Deep

learning allows computational models that are composed of multiple processing layers to

learn representations of data with multiple levels of abstraction (LeCun et al., 2015) which

can be utilised to detect the intricate structures of weeds such as the patterns on the leaf, the

shape of the leaf, the surface areas and edges.

3.3 Deep neural network for weed detection

For more precise farming, robots can perform targeted weed treatment if they can specifically

locate the position of the unwanted plant and detect the type of weed. This will reduce by a

large margin the use of agrochemicals on farms and favour sustainable agriculture as well as

making the task autonomous. Our approach in this work is useful in weed treatment with
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the right quantity, in the right place, and on the right target weed. we present this novel

approach that precisely detects weeds and by extension predicts what type of weed is detected

thus assigning a befitting bounding box to the detected weed. A dataset of various weeds

is acquired from open source. Weed species peculiar to corn are selected among all the

open-source data (Jiang et al., 2020). The dataset consists of four different classes namely

Cirsium setosum, Chenopodium album, bluegrass and sedge. The dataset was acquired using

a Canon PowerShot SX600 HS camera vertically above the weed to account for reflection.

Factors such as illumination and soil background situations are varied to provide a rich and

complete dataset. The dataset contains a total of 6000 weed images of size 800×600.

Fig. 3.1 Weed dataset samples. From left-right, Bluegrass, Chenopodium, Circium and Sedge
weed

The Bluegrass weed class is a type of weed that affects corn plants. It is one of the most

problematic weeds. Leaf blades are smooth with boat-shaped tips and are light green in

colour. The Chenopodium class of weed is a fast-growing weed with a width of about 1–3

inches and a length of 3–6 inches. Even though it is edible, it can also be weedy and act as a

parasite to the main crop. The circium setosum class is a perennial weed that grows up to

0.5m tall. The sedge class of weed is invasive in other types of turf grass and can be very

challenging in controlling.

To effectively train a deep network, images are resized to acceptable sizes. The sizes

depend on the dimension of the neural network’s input layer. Therefore, the images from the

dataset are directly resized to 224×224 to fit the input layer while avoiding edge padding.
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As with every detection model, ROIs are demarcated on the image dataset. This is often done

using an image labelling tool. MATLAB provides a friendly Graphical User Interface (GUI)

that allows users to select the ROI on an image in the form of a bounding box as shown in

Fig 3.2. The image dataset can simply be imported as a folder containing all the images

arranged serially. The classes are then defined and named. The bounding box operation

involves drawing a box around the Region of Interest (ROI) such that the ROI is contained

within. The bounding box information is exported in the form of a 1×4 vector containing

the x and y pixel coordinates of one corner, length and width of the bounding box. This

Matrix serves as the ground truth of the labelled object and can easily be exported to the

MATLAB workspace for utilisation by the network.

Fig. 3.2 MATLAB Image Labelling GUI demonstrating a labelling process of a weed. The
bounding box in yellow colour is drawn manually to enclose the ROI

3.4 Weed Detection Stages

The deep learning technique developed for weed detection/classification is composed of

three stages as shown in Fig. 3.3. These stages summarise the procedure of the deep

detector/classifier network. The stages can be itemised as follows:
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• Input stage

• Processing stage

• Output stage

Fig. 3.3 Block diagram of weed detection stages

The input stage consists of the processes associated with the image dataset of the four

classes of weeds. A total of 1000 images are sampled from each class of weed for training

and 200 images are allocated from each class for testing. The used images are of several

sizes, different visual appearances, different soil environments and different growth stages to

provide effective training.

The processing stage is subdivided into three sub-stages, namely: image processing, deep

learning image classification network and deep learning object detector network as seen

in Fig. 3.3. The image processing stage is important because we resize the image size to

an acceptable size that is compatible with our network. The acceptable size is 224 × 224.

Furthermore, the objects to be detected needs to be labelled on the image. The ROI pixel and

the bounding box information are stored. The images with their corresponding label now

serve as the input to the deep-learning image classification network.

The classification network adopts a deep learning technique to train images to classify

outputs into several classes. ResNet-50 is used as the classification network. A second
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network is incorporated into the overall model pipeline. This network develops a deep object

detection algorithm. Object detection is performed by isolating a certain object of interest

within the image and determining where they are located on the image. You Only Look Once

(YOLO) framework is imbibed for this purpose. Finally, the output stage consists of our

trained hybrid network. The deep weed classifier/detector network can classify and detect

the four classes of weeds.

3.5 ResNet-50 as a Weed Classifier Network

As reported in the work of (Zheng et al., 2019a), deep convolutional neural networks have

become the dominating approach for image classification. Many architectures such as VGG

(Simonyan and Zisserman, 2014a), Densenet (Huang et al., 2017) and SqueezeNet (Iandola

et al., 2016) have given very impressive performances in image classification. However,

adopting or developing a deep architecture to solve realistic problems requires that some

aspects should be taken into consideration such as the type or number of layers. A higher

number of parameters of these layers increases the complexity of the system and directly

influences the memory, the computation, the speed and the results of the system (Zheng et al.,

2019a).

SqueezeNet is a network developed by DeepScale and has an accuracy similar to that

of AlexNet. However, it is a CNN architecture that has 50 times fewer parameters and is

compressed to less than 0.5MB, or 510 times smaller than AlexNet without compression.

SqueezeNet was developed with ImageNet as a target dataset. DenseNet introduces direct

connections between any two layers with the same feature map size. It naturally scales to

hundreds of layers, while exhibiting no optimization difficulties (Huang et al., 2017).

The Visual Geometry Group (VGG) of Oxford presented the VGG-16 and VGG-19

(Simonyan and Zisserman, 2014a). VGG network requires an input of 224×224×3. VGG-

16 increases network depth by small convolution kernels for better capacity and makes a good

general performance. The VGG-19 is an extension of the VGG-16 where fully-connected

layers and pooling layers are added.
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The pre-trained deep learning network adopted in this work for the detection/classification

of weeds is the ResNet-50 network, which has a total of 177 layers. Deeper neural networks

are generally difficult to train. However, for ResNet-50, layers are explicitly reformulated

as learning residual functions connecting the layer’s input (He et al., 2016b). This means

that partial data of the input goes directly to the output without passing through the neural

network (Zheng et al., 2019a). This eases the training of deeper networks as some of the

original information is preserved. The network learns the differences between the input

and the output, or residual instead of learning the desired mapping directly. This residual

connection skips over some layers thereby letting the gradient flow through the network

easily. This arrangement allows the network to train deeper and the problem of gradient

dispersion in backpropagation is perhaps solved.

The residual block of ResNet-50 is defined as follows:

y = F (x,Wi)+x (3.1)

where x and y are the input and output feature maps of the residual block, Wi are the

weights of the block, and F is a sequence of convolutional layers followed by non-linear

activations. The addition of the input x and the output of F allows the network to bypass

some of the convolutional layers, making it easier for the network to learn the residual

mapping.

ResNet-18 and DenseNet-121 presented a very high accuracy of about 99.62% and

99.56% respectively in crop classification in the work of (Zheng et al., 2019a). Both networks

with accuracy above 99% could not outperform ResNet50 in crop classification. Indeed,

ResNet50 is the best-performing model achieving an average accuracy of 99.81% on the

CropDeep datasets (Zheng et al., 2019a). In our case, crops, plants and weeds have some

major similarities. Thus, this work is inspired to adopt this as a classification backbone.
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3.6 YOLO Framework for Weed Detection

YOLO is a single-stage object detection network. It has a fast detection speed and it is

trained by dense and regular sampling over locations, scales, and an end-to-end flow. YOLO

simplifies weed detection as a regression problem, which predicts the weed bounding box

and associate class probabilities without proposals generation (Redmon and Farhadi, 2017a).

A two-stage detector involves two stages as the name implies. A sparse set of candidate

object boxes are first generated. Then, they are further classified and regressed (Zheng

et al., 2019a). A common example of the two-stage object detector is the fast region-

based convolutional neural network (Fast R-CNN) (Girshick, 2015). The Fast R-CNN is an

advancement of the earliest object detector (R-CNN) (Girshick et al., 2014). The Fast R-

CNN combines bounding box regression and target classification to solve multitask detection

(Zheng et al., 2019a). A better two-staged object detector was proposed by the faster region-

based network (Faster R-CNN) combined with the region proposal network (RPN) (Ren et al.,

2015). The RPN utilises the intersection-over-union (IOU) (Nowozin, 2014) between the

object proposals and the ground truth to process the input image, predict the class probability

and bounding box of each crop region proposal (Zheng et al., 2019a). Two-stage detectors

are not suitable for the realistic application of weed detection due to their time consumption

and their inability to process large datasets. Also, after classification, post-processing is used

to refine the bounding boxes, eliminate duplicate detection and re-score the boxes based on

the scene (Girshick et al., 2014). These complex pipelines are slow and hard to optimize

because each component must be trained separately (Redmon et al., 2016a).

On the other hand, YOLO is computationally very efficient which makes it suitable for

realistic applications such as weed detection. According to (Redmon et al., 2016a), Fast

YOLO is the fastest general-purpose object detector in the literature and YOLO pushes the

state-of-the-art in real-time object detection. Hence the choice of YOLO as a weed detector.

Although there are many versions of YOLO, this work utilises mostly versions 2 and 4 due

to the availability and ease of utilisation.

To train the network, YOLO uses a loss function that penalizes incorrect predictions of

bounding boxes and object classes. The loss function includes terms for the confidence score,
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the bounding box coordinates, and the class probabilities. The final loss is the sum of the

losses for all predicted bounding boxes in the image.

3.7 ResNet-50 and YOLO Fusion

This fusion approach involves adopting the outcome of one of the layers from ResNet-50

as an input to YOLO version 2 (YOLOv2). A typical ResNet architecture is shown in Fig.

3.4. A network layer from the ResNet-50 is specified for feature extraction in YOLOv2.

The ReLU (activation49relu) layer of the ResNet-50 is utilised for the feature extraction

layer. This layer will now be the input of the YOLOv2. Any of the activation layers from

the ResNet-50 can be used as input to the Yolov2, except the fully connected layer. The

final layers of ResNet-50 consisting of the average pooling, Fully connected layer, soft-

max and classification layer as seen in Fig. 3.4 are truncated and merged with the YOLO

layers in Fig. 3.5 to give a new fused network architecture ResNet-50/YOLOv2 for weed

detection/classification which is displayed as in Fig. 3.6. The transform layer improves

the stability of the network by constraining the detected object location predictions. The

transform layer extracts the activations of the last convolutional layer and transforms the

bounding box predictions to fall within the bounds of the ground truth (Redmon et al., 2016b).

The output layer provides the refined bounding box locations of the target objects (weeds).

Thus, we obtain the final fused-YOLO pipeline as in Fig. 3.7.
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Fig. 3.4 ResNet-50 final layers architecture

Fig. 3.5 YOLOv2 architecture

Fig. 3.6 Fusion process using a layer from Resnet as input to YOLOv2
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Fig. 3.7 Final fused-YOLO Deep neural network architecture
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3.8 Algorithm Implementation and Testing

The main components associated with the execution of the developed algorithm can be

grouped into the following:

• Bounding Box estimation

• training of the deep network

• Estimation of the training loss

• Testing of the trained network

• Estimation of the Network’s precision and recall

3.8.1 Anchor Box estimation

An estimate of the anchor boxes of the labelled images is required to feed into the training

phase. Anchor boxes are a set of predefined bounding boxes of a certain height and width

to capture the scale and aspect ratio of the specific object class being detected. They are

typically chosen based on object sizes in the training datasets. The dataset being used is

a very large dataset containing up to 4000 images. There is a need of finding an optimal

number of Anchor boxes that will portray the structure of the whole bounding boxes. The

accuracy of this estimation is based on having a good mean IOU result. This is possible

by grouping the bounding boxes with similarities through a process called clustering. In

this work, the clustering method selected is called the K-medoids method. K-medoids is

based on medoids (which is a point that belongs to the dataset) calculated by minimizing the

absolute distance between the points and the selected centroid, rather than minimizing the

square distance. As a result, it is more robust to noise and outliers than the classical K-means

clustering method. K-means clustering can be achieved by initializing the cluster centroids.

Each data point is assigned to the closest centroid based on the Euclidean distance between

the centroid and the data point. The centroid of each cluster is updated by calculating the

mean of the data points in the cluster. The process is repeated until the optimal centroid is
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obtained. This can easily be detected by having an unchanging centroid. This can be denoted

mathematically as:

J =
k

∑
i=1

λ

∑
j=1

∥α j −Ci∥2 (3.2)

where J is the within-cluster sum of squares, k is the number of clusters, λ is the number

of data points assigned to cluster i, α j is the j-th data point, Ci is the centroid of cluster i,

and || · || denotes the Euclidean distance.

While K-medoids can be obtained by initializing the medoids randomly. Each data point

is assigned to the closest medoid based on a distance metric (Euclidean distance or Manhattan

distance). The total cost of swapping a non-medoid point is calculated for each medoid. The

point with the lowest cost is assigned to be the new medoid. As in the K-means, the process

is repeated until the optimal medoid is obtained. We can define it as follow:

J =
k

∑
i=1

λ

∑
j=1

d(α j,Mi) (3.3)

where J is the total distance between the data points and their medoids, k is the number of

clusters, λ is the number of data points assigned to medoid i, α j is the j-th data point, Mi is

the i-th medoid, and d(·, ·) is the euclidean distance metric used to measure the dissimilarity

between two points.

For this work, the K-medoid is utilised to obtain an optimum number of 7 points which

in this case is the anchor boxes with a mean IOU of about 83%.

3.8.2 Network training process

As stated earlier, the network comprises of two sub-networks. The feature extraction is

performed using a pretrained CNN (ResNet-50). The detection sub-network is composed

of fewer CNN layers and layers specific for YOLO v2. To train the network, several inputs

that parameterize a YOLO v2 network are required and they include: network input size,

anchor boxes and feature extraction network. The network input size needs to be specified

and typically the same size as the input images (224×224). A lower input size results to
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lesser training computational burden. The anchor boxes are determined using the methods

in 3.8.1. Next, the feature extraction layer is selected for the training. The activation layer

activation 40 relu is selected as the feature extraction layer. The layers after the activation

40 relu are replaced with the detection subnetwork. The feature extraction layer gives feature

maps that are downsampled by a factor of 16 as output.

After preparing the input in form of dataset, the training of the network commences

and trained over 1000 epochs with a learning rate of 0.001. A mini-batch size of 64 image

samples is selected. An epoch is a full training cycle where all of the training vectors are

used once to update the weights on the training set. The learning rate is a means to control

the adjustment of weights in the network along the gradient.

3.8.3 Estimation of training loss

The accuracy of the training is evaluated by inspecting the training loss for each iteration. It

is the Mean Squared Error (MSE) which is calculated as the summation of the localization

error, the confidence loss, and the classification loss. The localization error is the measure

of the error between the predicted bounding box and the ground truth box. The confidence

loss measures the confidence score error when an object is detected and the objectness error

when no object is detected. The classification loss measures the squared error between the

class conditional probabilities for each class.

3.8.4 Testing of the trained network

From the dataset, 200 images from each class were set aside for tests. The aim is to see

how correct the network is in identifying the various classes of weeds. The trained network

is used for the detection/classification of weeds through all the 200 images and a table of

detected bounding boxes and class labels is obtained.
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3.8.5 Estimation of Network’s precision and recall

Precision and recall are key factors in evaluating the overall performance of the trained

network. Precision is the ability of the detector/classifier to make correct classifications while

recall is the ability of the detector/classifier to find all relevant objects. The average precision

is a single number that incorporates both the precision and recall of a particular class. Both

Precision and recall are based on the ground truth. Mathematically, precision P is a ratio of

true positive instances to all positive instances of objects in the detector as seen in Eq. 3.4

while the ratio of true positive instances to the sum of true positives and false negatives in the

detector/classifier is the recall R as seen in Eq. 3.5.

P =
Tp

Tp +Tn
(3.4)

R =
Tp

Tp +Fn
(3.5)

where Tp = True positive , Tn = True negative and Fn = False negative

3.9 Experimental Results

The experimental results obtained can be grouped into:

• Training loss

• Precision and recall

• Detection/Classification of weeds using testing data

3.9.1 Training loss

From Fig. 3.8, the training loss per iteration of the network is observed to assess the success

of the network training phase. In total, the network went through 62,000 iterations. Sampling

the first 1000 iterations for observation, we can see the training loss significantly depreciating
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to around 0.4 within the first 300 iterations. As more iterations are carried out, the network

continues to learn more which makes the training loss keep diminishing through the next

iterations. We can notice the loss maintained below 1 from the 650th iteration onwards,

continuously having a maximum value of 0.8 and a minimum value below 0.2. This signifies

that the network is becoming more stable in learning and hence the training loss is reducing.

Fig. 3.8 Graph of training loss per iteration for the sampled 1000 iterations using fused
ResNet- YOLO pipeline

Compared with Fig. 3.9, it can be observed that the training loss across each iteration in

the fused ResNet-YOLO network is smooth and minimal whereas that of the fused faster-

RCNN is rough and unstable. Even though the fused faster-RCNN started the training with

quite a lesser loss as compared to the fused ResNet-YOLO, We can notice that even after the

650th iteration, the training loss still appreciates above 1.2 with some cases even up to 2 and

a minimum value above 0.2. In other words, the training loss of the fused faster-RCNN is

not as minimal as that of the fused ResNet-YOLO and signifies that the fused faster-RCNN

learns quite slowly and have encounter more losses which in turn will affect the overall

training accuracy of the network.

Thus, overall for weed classification and detection, It is worth mentioning at this point

that the fused Faster-RCNN network is a resource-intensive approach with a considerable

amount of time for training. The fused ResNet-YOLO on the other hand is not too demanding
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Fig. 3.9 Graph of training loss per iteration for the sampled 1000 iterations using fused
Faster-RCNN pipeline

on resources and trains with much ease as compared to the fused faster-RCNN. The overall

average training accuracy of the Fused ResNet-Yolo is about 99% (bluegrass 98.88%, sedge

98.52%, circium 99.11% and chenopodium 99.51%). While, the fused faster-RCNN obtained

an overall training accuracy of 95% (bluegrass 98.99%, sedge 89.20%, circium 94.88% and

chenopodium 99.72%).

3.9.2 Precision and recall

Fig. 3.10 shows the plot of the precision against the recall obtained from testing data. An

average precision of above 93% for each weed class except the sedge weed. The decline

in the precision of the sedge class is due to the dataset used in training. It was observed

that the sedge class is not properly mixed i.e. there is a higher percentage of about 97% of

fully grown sedge weed than infant sedge of about 3%. More so, the testing data contained

a very significant number of the infant sedge weed and thus the inability of the network to

detect them. Even as such, the network performed decently with about 81%. A fully stuffed

dataset with the appropriate ratio of the fully grown sedge weed and the infant sedge weed

will increase the precision to match that of other classes. This result depicts that the fused
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ResNet-YOLO is capable of classifying and detecting weed accurately as we can see in the

average precision of the individual weed classes performing very well.

Fig. 3.10 Graph of precision and recall using fused ResNet-YOLO Network

3.9.3 Detection of weeds using testing data

A total of about 800 test images are set aside for testing. The weed detection/classifier

network is used on all the images and the results obtained are summarized in table 3.1. For

this analysis, we define Correct classification/detection as a situation where a class of weeds

is identified correctly and a fitting bounding box is assigned. Misclassification in this case

is an instance when the Network predicts a wrong class for a particular known class of

weed while Misdetection is a situation where the correct class is identified as a weed but

an unfitting bounding box is assigned to the weed. There are also scenarios where both

conditions can occur. In Tab. 3.1, The first column shows the class of weed that is tested, the

second column shows the number of correct classifications or detection of weed observed in

the corresponding class and the third column shows the number of either misclassification or

misdetection in the class.

The classifier/Detector was unable to classify/detect 2 weeds from the bluegrass, 32 from

the sedge class. It obtained a 100% classification/detection in the Chenopodium and Circium
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Table 3.1 Table showing the detections made by the fused ResNet-YOLO on the test data

Weed Class Correct detection Misdetection/

Misclassification

Bluegrass 199 2

Chenopodium 200 0

Circium 200 0

Sedge 168 32

Fig. 3.11 Confusion Matrix Plot for ResNet-YOLO

class. The confusion matrix in Fig 3.11 analyses the true class versus the predicted class. It

can be observed that the Bluegrass class obtained 99% correct detection and 1% misdetection.

The Chenopodium and Circium classes both obtained a 100% correct detection with no

misdetection from the test data. Finally, the Sedge class obtained 84% correct detection and

16% misdetection. The detection distribution percentages for the fused ResNet-YOLO are

shown using a pie chart in Figs 3.12 - 3.15.

The classification/detection using the fused faster-RCNN is summarized in Tab. 3.2

using the same number of test data as in the case of the fused-YOLO. From the results,

we can observe that only 62 frames were correctly detected and classified using the fused

faster-RCNN model for the Bluegrass class with 138 frames from the class either misdetected
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Fig. 3.12 Detection Distribution for Bluegrass Class using fused ResNet-YOLO

Fig. 3.13 Detection Distribution for Chenopodium Class using fused ResNet-YOLO

Fig. 3.14 Detection Distribution for Circium Class using fused ResNet-YOLO

or misclassified. 25 frames from the Chenopodium class and 35 frames from the Circium

were correctly detected and classified. Misdetection and misclassification occurred in 175
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Fig. 3.15 Detection Distribution for Sedge Class using fused ResNet-YOLO

and 165 frames for Chenopodium and Circium classes respectively. Finally, the Sedge class

had the lowest correct detection with only about 12 frames correctly detected and classified

while 188 frames were either misdetected or misclassified.

Table 3.2 Table showing the detections made by the fused faster-RCNN on the test data

Weed Class Correct detection Misdetection/

Misclassification

Bluegrass 62 138

Chenopodium 25 175

Circium 35 165

Sedge 12 188

Similarly, the confusion matrix plot in Fig. 3.16 shows that the Bluegrass class obtained

31% correct detection and 69% misdetection. The Chenopodium class obtained a 12.5%

correct detection and 87.5% misdetection. The Circium class obtained a 17.5% correct

detection with 82.5% misdetection from the test data. Finally, the Sedge class obtained 6%

correct detection and 94% misdetection. The detection distribution for the fused faster-RCNN

is shown using a pie chart as shown in Figs 3.17 - 3.20.

Comparing individual class average precision from the fused faster-RCNN, we can see

that the fused ResNet-YOLO network outperforms the fused faster-RCNN in all the classes.

This goes to prove that our proposed fusion is more efficient for weed classification and

detection.
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Fig. 3.16 Confusion Matrix Plot for fused faster RCNN

Fig. 3.17 Detection Distribution for Bluegrass Class using fused faster-RCNN

Additional images of different classes of weed (parthenium, snakeweed and prickly

acacia) which contain neither of the weed classes used in training were added to test the

network’s accuracy and robustness. The result from this negative class in Fig. 3.21 is 100%

accurate as none of the weeds out of the 30 images was identified as a weed from the trained

classes.

The detection/classification samples of the four classes of weeds using the fused-YOLO

pipeline are displayed in Fig. 3.22. All four weeds were detected/classified accurately with

their corresponding labels(classes) displayed and bounding boxes. While Fig. 3.23 shows the
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Fig. 3.18 Detection Distribution for Chenopodium Class using fused faster-RCNN

Fig. 3.19 Detection Distribution for Circium Class using fused faster-RCNN

Fig. 3.20 Detection Distribution for Sedge Class using fused faster-RCNN

detection and classification using the fused faster-RCNN model. Comparing both figures, the

detection using the fused faster-RCNN is observed to have some irregularities as an image
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Fig. 3.21 True Negative Evaluation of the model using three different unknown classes
(parthenium, snakeweed and prickly acacia) across 30 frames

with a single weed can have many false detections. This will make the approach difficult for

weed detection in precision farming as the removal or spraying will not be reasonable if many

bounding boxes are associated with a single target. Thus, we rely on the fused ResNet-YOLO

network as the best solution for this purpose. We can mention that the detection time of the

fused-YOLO is approximately 0.45 seconds while that of the fused faster-RCNN is about 1

second. If it will take a system with the fused ResNet-YOLO network an hour to cumulatively

detect the weeds on a farm, the fused faster-RCNN will take about two hours as suggested by

this experiment.

Fig. 3.22 Sample detection using fused ResNet-YOLO Network
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Fig. 3.23 Sample detection using fused faster-RCNN Network

3.9.4 Detection Score of weeds using testing data

The detection Score is a metric that evaluates the performance of a detection network. It

measures the level of confidence that the model predicts the location and presence of the

object of interest. It can be represented as a numerical value from 1-100, where a higher

score indicates a more confident and accurate detection and vice-versa. Generally, we can

say:

Score = Pr(Ob j)× IOU(bb,Ob j) (3.6)

where Pr(Ob j) represents the probability that an object is present in the bounding

box, and IOU(bb,Ob j) represents the intersection over union (IOU) between the proposed

bounding box and the ground truth bounding box of the object which can be expressed as:

IOU(bb,Ob j) =
Area o f Intersection

Area o f Union
(3.7)

The sigmoid function is used to map the final score to a value between 0 and 1. Further-

more, the score can be obtained as a percentage.

Figs 3.24 - 3.27 shows the detection scores of the fused ResNet-YOLO model over 200

frames. The Chenopodium and Circium class obtained scores in the range of 80 - 100. The

Bluegrass and Sedge class occasionally obtained a score of 0 due to no detection in some

frames.
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Fig. 3.24 Detection Score for Bluegrass Weed Class across Frames using the fused ResNet-
YOLO

Fig. 3.25 Detection Score for Chenopodium Weed Class across Frames using the fused
ResNet-YOLO
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Fig. 3.26 Detection Score for Circium Weed Class across Frames using the fused ResNet-
YOLO

Fig. 3.27 Detection Score for Sedge Weed Class across Frames using the fused ResNet-
YOLO

64



3.9 Experimental Results

Figs. 3.28 - 3.31 shows the detection scores of the fused Faster-RCNN model over 200

frames. This model in most cases obtained a poor score across many frames and hence

proves that it is not suitable for weed detection.

Fig. 3.28 Detection Score for Bluegrass Weed Class across Frames using the fused Faster-
RCNN

Fig. 3.29 Detection Score for Chenopodium Weed Class across Frames using the fused
Faster-RCNN
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Fig. 3.30 Detection Score for Circium Weed Class across Frames using the fused Faster-
RCNN

Fig. 3.31 Detection Score for Sedge Weed Class across Frames using the fused Faster-RCNN
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3.10 Real-time Implementation of Network with UAV

Implementation of the proposed pipeline is performed using a cheap parrot drone with a

workstation. The computation is performed on the base station equipped with intel core i7

and Nvidia GPU. ROS version 1, kinetic distribution was used to communicate between

nodes. The flight controller was made on a separate node while the deep detection network

was exported and integrated as a node. The real-time implementation of the trained network

on the UAV can be summarised into the following:

• Neural Network Exportation

• Drone Camera Calibration

• Integration of Network into ROS

3.10.1 Neural Network Exportation

The trained neural network is exported using a MATLAB GUI. Since the UAV and ROS

accept a particular programming language (C++) for integration, it becomes paramount to

translate the framework from MATLAB language to C++. This is possible using a MATLAB

Coder interface shown in Fig. 3.32. The interface provides the user with the ability to

translate, test and verify the translated packages. This can be in the form of a static library,

dynamic library, or executable. The weights were translated as a static library to allow easy

integration with other components. Depending on the processing capabilities the MATLAB

Coder interface allows the user to select the target processor and thus compile the produced

packages in the respective environment for testing before deployment.

3.10.2 Drone Camera Calibration

The Drone’s camera requires calibration to correct distortion and perform proper detection

as seen in Fig. 3.33. Camera calibration is the process of estimating the parameters of an

image sensor (see section 2.1). The parameters which are both intrinsic and extrinsic can be
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Fig. 3.32 MATLAB Coder Interface

estimated by acquiring images of the checkerboard from different perspectives. A Matlab

GUIGUI is utilised to automatically estimate the camera parameters.

Fig. 3.33 Example of Distorted and Undistorted Images from Drone Feed

A total of 27 images of the checkerboard pattern were acquired from different angles. The

dimensions of the squares of the checkerboard are known and inputted into the calibration

toolbox GUI. The dimension of the square was measured to be 27mm×27mm. Fig. 3.35
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Fig. 3.34 Matlab Calibration GUI

and 3.36 show the camera-centric and pattern-centric positions of the acquisition process

respectively.

Fig. 3.35 Camera Centric Positions

The calibration obtained an overall mean error of 0.13 pixels which is a good accuracy

(see Fig. 3.37). It essentially means that the reprojected pattern deviates from the original

pattern by 0.13 pixels which we can conclude as having a sub-pixel accuracy.
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Fig. 3.36 Pattern Centric Positions

Fig. 3.37 Reprojection Error of Camera Calibration

Finally, the camera parameters (both intrinsic and extrinsic parameters) are obtained and

used to rectify the images from the drone for effective detection using the trained model.

3.10.3 Integration of Fused-YOLO with ROS

The ROS interface allows users to integrate the network, control the drone and utilise the

sensors on the UAV as seen in Fig. 3.38.
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Fig. 3.38 ROS architecture Layout for Real time Test

The flight controller is made as a separate node while the deep detection network is made

on another. Images from the drone’s camera are obtained as a result of subscription to the

camera topic. Such images are fed as input to the deep network in the form of messages to

process and detect the weeds. The cmd_vel is the message that controls the velocity of the

drone and the nav_msg gives information about the current state of the drone. The Land

and take_off messages perform the landing and taking off of the drone respectively. The

image_raw message is the image from the drone’s camera. The network view message is

the output of the detector network which is an image with the detected weed and bounding

box. The driver node is the drone itself, the control node controls the flight of the drone, the

detection node encompasses the deep network model for detection, the display node displays

the output of the detection network and the GUI is a graphical user interface for issuing basic

commands. Thus, the ROS layout can be subdivided into the following nodes:

• Drone Driver Node

• Control Node

• Detection Node
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• Display/GUI Node

Drone Driver Node

The drone driver node provides a high-level interface between the sensors on the drone

and the ROS software. All the information from the sensors such as camera images, rotor

speed, altitude, odometry, battery level, IMU data, etc. can be accessed from this node. This

allows the user to access these messages in the form of a subscription, process the messages

and manipulate the messages in the form of publication to implement a desired outcome.

The Node allows users to implement tasks such as flight control, obstacle avoidance, path

planning, object detection and other algorithms that are based on sensor data. The drone

driver is available as open source (Monajjemi, 2014).

Control Node

The control node is important as it controls the flight of the drone. It takes in a goto message

from the GUI node which is essentially position coordinates relative to the current position

of the drone. The control node sends cmd_vel which are velocity messages to the drone

driver and receive a nav_msgs which is the current state of the drone as feedback to adjust

the controller accordingly. The drone is then able to move to the desired position. This node

is obtained open source as part of the tum ardrone package (Lesire-Cabaniols, 2014).

Detection Node

The detection node houses the deep network model. The node utilises the exported neural

network library to detect and classify weeds. Image frames in the form of image_raw

messages are received from the drone driver. The frames are used as input to the detection

network to detect and classify the object of interest by the network. The node gives an output

of frames with detected objects in the form of network_view messages. The summary of the

process of the detection node is shown in Fig. 3.39
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Fig. 3.39 Input-Output of Detection Node

Display/GUI Node

The display/GUI node has two components. The display component and the GUI component.

The display component shows the output frames from the detection network. It receives

frames in the form of network_view messages and then displays the frames so users can see

the detected object in real-time. The GUI component is a graphical interface that allows

users to execute commands in the form of messages. Messages such as taking off the drone

take_off, landing the drone land and moving/controlling the drone goto are published from

this node. Fig. 3.40 shows the graphical interface used in commanding the drone.

Fig. 3.40 GUI Node for commanding drone
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3.11 Conclusions and Future Work

This chapter aimed at contributing to innovative deep-learning technology for precision

farming by identifying, detecting, and classifying the various available weeds. From the

experimental results obtained, It can be justified that this approach will be 99% effective in

classifying weeds. Not limited to classification, this method can identify the ROI (weed) by

drawing a bounding box around it with the associated label displaying the specie of weed.

As precision agriculture involves precise inputs for precise outputs, the pipeline can reduce

the excessive use of harmful chemicals that damages the ecosystem on weed treatment by

precisely detecting and isolating the target from the background. This will facilitate the

application of UAVs and ground robots in weed detection and selective spraying/weeding

and hence contribute to precision agriculture and environmental sustainability. The pipeline

has been implemented in real-time using a parrot drone to detect weeds. The network

is light enough on the processor and did not suffer from significant latency during the

experiments. For future work, the accuracy of the pipeline can be improved while optimising

the computational burden. Also, a larger dataset containing more similar-looking species can

be acquired to further evaluate the robustness of the network.
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Chapter 4
Relative Position Estimation of Detected

Weeds

This chapter presents a novel monocular vision-based approach for drones to detect

multiple types of weeds and estimate their positions autonomously for precision agricul-

ture applications. Building on the previous Chapter, the success of the proposed model

for weed classification and detection in Chapter 3 inspired the model’s extension to

relative pose estimation. Images are acquired from a monocular camera mounted on the

UAV following a predefined elliptical trajectory. The detection/classification network

earlier proposed is complemented by a new estimation scheme adopting an Unscented

Kalman Filter (UKF) to estimate the exact location of the weeds. Bounding boxes are

assigned to the detected targets (weeds) such that the centre pixels of the bounding box

will represent the centre of the target. The centre pixels are extracted and converted into

world coordinates forming azimuth and elevation angles from the target to the UAV, and

the proposed estimation scheme is used to extract the positions of the weeds.

Chapter abstract
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4.1 Motivation

Re-iterating the importance of weed control, the productivity of agriculture is threatened by

the existence of weeds which are parasitic (Pusphavalli and Chandraleka, 2016b). Weeds are

unwanted plants that grow on the farmland and compete with the desired plants for water,

nutrients, space and sunlight. The losses in productivity reach 25% in Europe, but in the

less developed areas in Africa and Asia, almost half of the potential food yield is lost due to

weeds (Altieri et al., 1977). It is reported that lettuce yield is reduced over 50% due to weeds

(Lanini et al., 1991), wheat yield is reduced by 15% (Hodgson, 1968) and there is up to 71%

drop in seeded tomato yield (Monaco et al., 1981) due to weed infestation.

Conventionally, weeds are removed using crude tools and herbicides. However, these

processes are wasteful and dangerous to the environment since these herbicides are made

of harmful chemicals as earlier established. To efficiently remove weeds, there is a need

to carefully identify the weed, then localise its exact position, then finally apply the right

quantity of herbicides or deploy the appropriate tool for the weed removal. This gives rise to

the consideration of robotics platforms for weed removal. While some works have proposed

mechanical robotic tools (Bakker et al., 2006; Pusphavalli and Chandraleka, 2016b), others

proposed robotic sprayers to reach the objective (Gonzalez-de Soto et al., 2016; Malneršič

et al., 2016; Oberti et al., 2016; Tang et al., 2016).

Weeds can be identified using computer vision techniques (Herrera et al., 2014; Pus-

phavalli and Chandraleka, 2016b) and the adoption of deep neural networks for weed

detection is increasing (Lottes et al., 2017b; Yu et al., 2019b; Zheng et al., 2019b). To bridge

the gap between weed detection and precise weed removal, there is a need to address the

problem of identification and localisation of weeds.

Commercially available systems for smart weed detection and removal are generally

expensive. The availability of affordable off-the-shelf UAVs with essential sensors makes

it pertinent to exploit them for this research. The fusion of the information from several

sensors through a Robotics Operating System (ROS) (Quigley et al., 2009) framework makes

it possible to perform several complicated tasks through effective communication between

the sensors. Works such as navigation (Guimarães et al., 2016), path planning (Marin-Plaza
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et al., 2018) and localization of targets (Ruiz and Aouf, 2017) have been possible through

this setup. Thus, this can be extended to exploit an affordable platform for localizing and

estimating the relative position of weeds.

Recall from Chapter 3 that the proposed model is effective in efficient weed classification

and detection, this success drives the need to elevate the work to the next step which is

localisation. Localisation of the detected weed is important to facilitate the removal or

spraying of the weed. The process intelligently gives the robot an idea of the approximate

location where targeted weeds are situated.

A parrot drone platform is subjected to a predefined elliptic trajectory, and the stream

of images from a monocular camera mounted on it is acquired throughout its motion. The

stream of images is utilized to precisely detect the object of interest in the images using

the fused-YOLO network which is a cascaded ResNet-50 (He et al., 2016a) and YOLOv2

(Bochkovskiy et al., 2020). The detected weeds are then assigned to bounding boxes and

the centre pixels of the assigned bounding boxes are extracted. The centre pixel is assumed

to be the centre of the detected weed, and it is transformed from the image frame to world

coordinates. Azimuth and elevation angles of the target centre point with respect to the

UAV are extracted and later fused in the Unscented Kalman Filter (UKF) (Wan and Van

Der Merwe, 2000) to estimate the location of the weed. The contributions of this method are

twofold:

• Utilizing an affordable platform equipped with a monocular camera for accurate

multiple target position estimation.

• The extension of a Deep Neural Network (DNN) output beyond detection and identi-

fication but to novel relative position estimation such that, the information obtained

from the detection network (bounding boxes, ROI pixels) can be further processed to

achieve relative position estimation of the detected target.
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4.2 Related Work

Weed detection using feature extraction in image processing is the earliest technique used

to identify weeds with computer vision. Edge detection has been utilized as a technique for

weed detection (Gomez-Balderas et al., 2013; Paikekari et al., 2016). However, the main

plant and weed can not be effectively differentiated using edge detection only. Different

illumination conditions can be used to improve the detection using a colour model and split

component of grey images (Tang et al., 2016). A vertical projection method and a linear

scanning method are combined to quickly identify the centre line of the crop rows. However,

in this method, it is assumed that every plant detected outside the centre line of the crop rows

is a weed. This is not always the case as weeds can also grow along the center line. Machine

learning techniques provided results that perform better if weeds are not on the centre line of

the crop rows (Islam et al., 2021; Lottes et al., 2017b). Nevertheless, all these methods are

not capable of precisely detecting the exact specie of weed. These limitations prompted the

use of deep neural networks for weed detection and classification.

Weed detection was performed for perennial rye-grass with deep learning convolutional

neural network (Yu et al., 2019b). The work concluded that VGGNet (Simonyan and

Zisserman, 2014b) performed better with the rye-grass dataset. This performance can be

improved by capturing sequential information and combining RGB and Near Infrared (NIR)

images (Lottes et al., 2018b). The drawback to this work is again the lack of weed species

classification for accurate herbicide selection. Another work investigated the combination

of classification and detection for fruits (Zheng et al., 2019b). Similarly, in the previous

chapter, we combined a classification and detection network for weed detection. This way,

we can categorically tell the type of weed and identify a Region of Interest (ROI) for further

processing.

The accuracy of weed detection can be impacted by many factors such as variable lighting

conditions, sun angles, occluded and damaged plant leaves and changing morphological

or spectral properties of plant leaves at different growth stages (Liu and Bruch, 2020).

It becomes imperative to use a rich dataset for training with different conditions. The

conventional four steps in the procedure for using ground-based machine vision and imaging
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processing techniques in weed detection are pre-processing, segmentation, feature extraction

and classification (Wang et al., 2019a). We aim at extending this procedure to localising and

estimating the relative position of the weed.

The crowded literature on target localisation can be grouped according to the platform

used (Hou and Yu, 2014; Redding et al., 2006), or the sensors employed (Deneault et al., 2008;

Ruiz and Aouf, 2017) or the estimation model studied (Hosseinpoor et al., 2016; Redding

et al., 2006). The main aim for all is to maximize localisation accuracy and minimize the

time required. Few however seek to use small UAVs with affordable sensors to achieve high

performance. A combination of a 2D laser range finder with a monocular camera can be

used for the localisation (Hou and Yu, 2014). Although the maximum deviation recorded

using this method was about 13% from the actual measurement. This may be due to the

not-so-robust target detection process employed in the work. Edge detection and colour

detection were utilized to detect the only green circular target in the scene. In reality, there

can be many targets with seemingly similar features. Moreover, using this approach to detect

the target while in flight can cause target blurring. An alternative approach was presented

based on real-time kinematic positioning and thermal imagery (Hosseinpoor et al., 2016).

This approach is based on the assumption that as long as a ground rover and a base station

maintain at least 5 satellites in common, there can be an accurate prediction of the rover’s

location.

The first to exploit the combination of UAV state estimates with the image data to acquire

bearing measurements of the target and utilize them in the target localization is (Ponda et al.,

2009). In their work, a fixed-wing UAV was subjected to numerous trajectories to find the

optimal trajectory for target localization. The image data of the target are processed to obtain

bearing angles from the drone to the target, and an extended Kalman filter is used for position

estimation. Even though it is a simulation work, good estimation results were obtained after

50 measurements for a single target. Another work also attempted the estimation with a

fixed-wing UAV and using a Recursive Least Squares filter but suffered a wide error of

10.9m (Redding et al., 2006). To tackle the limitations of fixed-wing UAVs, particularly in
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manoeuvrability and altitude of flight, a quad-rotor can be utilised (Redding et al., 2006).

Accurate results were obtained after 30 seconds for a single target using this method.

4.3 Method for Relative Position Estimation of Detected

Weeds

The methodology we propose for relative position estimation of detected weeds can be

summarised as follows:

4.3.1 Problem Definition

To effectively provide a befitting solution for weed position estimation, the overall problem

has to be discussed. The problem is to estimate the exact position of the weed using a UAV

with no sophisticated sensors. An affordable platform equipped with a monocular camera

with no sufficient information such as depth being generated makes it difficult to estimate

the positions of weeds relative to the platform. The idea is to utilize the camera to detect a

target and utilise the detection bounding boxes to estimate the target’s position. To do so,

first, the platform identifies/detects and localises the target in the image frame. The trained

network is used for the target detection and some post-processing is performed to localise

the target in the image frame. Secondly, the information from bounding boxes is used to

estimate the centre position of the target in the image frame. Since the objective is to solve

with a monocular camera set-up, where the depth information is not readily at hand as in the

case of a stereo camera set-up, the bounding box’s centre pixels are converted to bearing

angles and afterwards into azimuth and elevation angles (further explained in section 4.3.2)

with respect to the UAV. Thus, the problem can be divided into

• Acquiring the images from a monocular camera and transferring them to the ground

station together with the position of the UAV.

• Detection and classification of the weed from a monocular camera.
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• Extracting the position of the weed in the image frame.

• Estimating the position of the weed in the world frame.

To have an accurate estimate of the world coordinates of the weed, measurements regarding

this information should be rich. The UAV is controlled to make a predefined ellipse trajectory.

The nature of the trajectory is an important factor in the estimation accuracy as the field

of view (FOV) varies from one point to another along the trajectory. Since the targets are

at a stationary position, the trajectory choice will be such that the FOV of the camera can

be limited to cover all the targets at each point along the trajectory so that updates can be

obtained from each target simultaneously. A constant trajectory altitude of 1m is selected.

The bearing angle measurements for the position of the weed are fused in a UKF framework.

4.3.2 Technical and Theoretical Approach

The solution is summarised in a process flow chart shown in Fig. 4.1. The process flow

encompasses mainly the data acquisition section, the ROS nodes on the ground station and

the output section. The input data acquisition section is the hardware that provides inputs

to the system. The image stream from the monocular camera mounted on the drone, the

ground truth positions of the UAV and the target (weed) measured by the tracking system

are the inputs to the process. The ROS nodes hosted on a ground station with core-i7

processing power are the main processing part of the system. Detection and classification of

the weed using a Deep Neural Network (Fused-YOLO), centre pixel extraction on the images,

calculating the bearing angles, fusing the bearing angles to estimate world coordinates of the

weed with UKF, and trajectory planning with drone driving tasks are performed on the ROS

nodes. The output section consists of the position coordinates of the estimated target (weed).

Unmanned Aerial Vehicle (UAV) and Tracking System

The UAV used is an affordable off-the-shelf Parrot AR drone. It is a six-degree-of-freedom

quadcopter with a miniaturised IMU, an ultrasonic sensor, a frontal camera with 720p sensor

and 93° lens, a downward/vertical camera with QVGA sensor with 64° lens, and 4 brushless
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Fig. 4.1 Process Flow of the Relative Position Estimation Pipeline

14.5-watt, 28.500 RPM in-runner type motors (Parrot, 2020). The tracking system is a set of

cameras with 1.3 MP resolution, +/- 0.30 mm 3D accuracy, 240 FPS native frame rate and

1000 FPS max frame rate which are used for tracking (Motive, 2020).

Drone Driver

The drone driver is a ROS package that consists of all the libraries of the parrot drone’s

sensors and inbuilt controllers. The drone driver is utilised to control the drone and also to

receive image feeds from the drone’s camera. The planar velocity references in UAV frame

V
(u)
x and V

(u)
y indicated with the superscript u are transferred from the reference position

derivatives defined in the ground frame indicated with the superscript g, namely Ẋ
(g)
d and

Ẏ
(g)
d in this drone driver ROS node as well:

(V
(u)
x (t),V

(u)
y (t)) = T u

g (Ẋ
(g)
d (t),Ẏ

(g)
d (t)) (4.1)

where T u
g is the reference frame transformation from ground frame to world frame.

82



4.3 Method for Relative Position Estimation of Detected Weeds

Trajectory Creator

This node provides the profile of the trajectory to be performed by the drone and updates

the drone driver with the necessary control parameters to follow this trajectory. An ellipse

trajectory is employed taking inspiration from the circular trajectory proposed for target

localisation (Gonzalez-de Soto et al., 2016). This is modified in this work to an ellipse so

that the neighbouring targets can fit into the field of view (FOV). The trajectory profile is

defined as follows:
X
(g)
d (t) = acos(ωt)

Y
(g)
d (t) = bsin(ωt)

(4.2)

Therefore,

Ẋ
(g)
d (t) =−aω sin(ωt)

Ẏ
(g)
d (t) = bω cos(ωt)

(4.3)

where a and b are radii in x and y axis, respectively. ω is the angular velocity and t is time.

Image Acquisition

This node receives image data from the drone driver and distributes it to the detection network

via an image transport link. Images are transported in the form of messages at a frequency of

up to 40Hz so they can effectively be utilised by the detection network. The drone’s camera

was calibrated beforehand and the parameters were obtained as explained in section 2.1.

Deep Network

Conventionally, approaches such as colour detection or edge detection are deployed for

detection and localisation problems (Mueggler et al., 2014; Ruiz and Aouf, 2017). However,

most often weeds have about 90% resemblance with the main plant. Taking this into consid-

eration, the previously proposed fused network in Chapter 3 is incorporated with extensions

to suit this peculiar problem. Recall that, the network is a cascade of a classification network

ResNet-50 and a detection network YOLO. A detection network is necessary since using

a classification network alone will classify the entire image as a weed which includes the
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region of interest and the background without categorically indicating the weed within the

image. The interest mainly lies with the bounding boxes in this case. So that the region of

interest within the image corresponds to the weed. The choice of the network is pertinent to

the accuracy obtained in fruit classification (Zheng et al., 2019b) and speed in weed detection

(Abdulsalam and Aouf, 2020). As earlier established, the architecture is 95-98% effective in

weed classification and detection. The network is trained with a dataset of 2000 images of

the weed. The deep neural network and its extension used for this work are shown in Fig.

3.7.

The input layers of the trained network are not compatible with the output coming from

the drone camera. An encoding-decoding operation is performed as shown in Fig. 4.2 to

remap and rearrange the pixels.

Fig. 4.2 Encoding-Decoding of images

The encoding-decoding process is done to re-arrange all the pixels from the drone camera

to fit into the input layer of the fused YOLO. The fused-YOLO receives images from the

image acquisition node as input, the targets/weeds are detected and a bounding box is

assigned for each weed detected as seen in Fig. 4.3.

Centre Pixel Extraction

After each detection, the centre pixel of the detection bounding box is extracted. It is assumed

that the centre of the bounding box coincides with the centre of the weed whose position

is to be estimated as in Fig. 4.3. This location in the image frame is converted to world
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Fig. 4.3 Bounding box extraction. l and u are the length and width of the bounding box
respectively. (x, y) represents the origin of the bounding box. (Cx, Cy) represents the target
centre.

coordinates as the geometric centre of the weed.

Cx = xp +
u

2

Cy = yp +
l

2

(4.4)

where Cx and Cy are the centre pixel coordinates, xp and yp are the origin points of the

bounding box, l and w are the length and width of the bounding box. All the variables are

updated with each detection made.

Calculation of Bearing Angles

Provided the frontal camera orientation and pointing axis is known, using the Parrot drone

on-board IMU and the odometry information, the centre pixels are converted to bearing

angles ( α1, α2, β1, β2,....) from the camera pointing axis to a vector that passes through the

targets and the focal point as shown in Fig. 4.4. Afterwards, these angles are converted into

the overall azimuth and elevation angles (σ1 and θ1, σ2 and θ2....) for each target as depicted

in Fig. 4.5 through a sequence of conversions (camera frame to drone’s body frame and to

the world frame) where r1,r2...rn are depths from drone to targets. From Fig. 4.4 and 4.5,
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we can deduce the following for targets 1 and 2:

tanσ1 =
rx1

ry1
, tanσ2 =

rx2

ry2
(4.5)

Also,

tanθ1 =
rz1

√

(rx1)2 +(ry1)2
, tanθ2 =

rz2
√

(rx2)2 +(ry2)2
(4.6)

Fig. 4.4 Image projection figure where α1, α2, β1, β2 represent the bearing angles from the
camera pointing axis to a vector that passes through the targets and the focal point.

Fig. 4.5 Obtained azimuth and elevation angles σ and θ for targets. r1,r2...rn are depths
from drone to targets expressed in rx,ry and rz directions.
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Unscented Kalman Filtering

The Unscented Kalman filter is a better estimator than the Extended Kalman Filter where the

state distribution is approximated by a Gaussian random variable and propagated analytically

through first-order linearization of the non-linear system. This can introduce errors and lead

to sub-optimal performance (Wan and Van Der Merwe, 2000). The UKF model constitutes

of firstly the time update step and then the measurement update step. The time update

encompasses the weight and the sigma points calculations. The measurement update utilises

the sigma points to generate covariance matrices and Kalman gain respectively (Ruiz and

Aouf, 2017).

As the drone follows a prescribed trajectory, different bearing measurements for the

position of the target are acquired and these measurements are fused in a UKF framework.

The nonlinearity in the azimuth and elevation measurements (σ and θ ) limits the performance

of the standard linear Kalman filters even for stationary targets such as weeds. The following

is the system’s dynamics:

Xk+1 = Φk+1,kXk +λk

Zk = h(Xk)+Mk

(4.7)

Here, Xk,Xk+1 ∈ R3 are the true target positions in ground fixed frame X = [X (g) Y (g) Z(g)]T

at time instants k and k+1, respectively. The output Zk = [σ , θ ]T ∈ [0,2π]× [0, π
2 ] is the

bearing angle at time k. h(Xk) is defined in (4.10). Φk+1,k is the state transition matrix of the

system from the time k to k+1. λk and Mk are the process and measurement noise, respec-

tively, which are uncorrelated to Gaussian white noises with zero means and covariances µk

and ψK , respectively, i.e., (λ ∼ N (0,µk) and Mk ∼ N (0,ψk)). The process model is a 3x3

identity matrix since the targets are stationary, therefore the process noise is a zero matrix:

φk,k−1 =











1 0 0

0 1 0

0 0 1











,µk =











0 0 0

0 0 0

0 0 0











(4.8)
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The measurement covariance matrix is:

ψk =





σ2
1 0

0 σ2
1



 (4.9)

From Fig. 4.6 we can deduce that: rnx = ax−bnx, rny = ay−bny and rnz = az−bnz. Also,

ak = [ax ay az]
T
k is the position of the UAV, bnk = [bnx bny bnz]

T
k are the targets positions and

rnk = [rnx rny rnz]
T
k are the relative vectors between the UAV and target.

Fig. 4.6 Vector representations of UAV’s and targets positions

The measurement model is based on the azimuth angle σ and the elevation θ which are

given for target n as follows:

Znk =





σn

θn



=





tan−1( rnx

rny
)

tan−1( rnz√
(rnx)2+(rny)2

)



 (4.10)

The time update: This process includes the calculation of the sigma points and their

weights and finally obtaining the time update equations after Cholesky decomposition. We
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define the weights as in (Ruiz and Aouf, 2017):

W1 =
ζ

n+ζ

Wi =
1

2(n+ζ )

(4.11)

where i = 1,2, ...n and n is the state vector dimension which is 3, and ζ is an arbitrary

constant assigned to be 0. The sigma points at time k can be calculated as:

Sk−1 = chol((n+ζ )Pk−1)

X(0) = x̂k−1

X(i) = x̂k−1 +S
(i)
k−1

(4.12)

Similarly,

X(i+n) = x̂k−1 −S
(i)
k−1

Xk−1 = [X(0)X(1)...X(2n)]
(4.13)

where i = 1,2, ...n. S(i) is the ith row vector of S and chol means Cholesky decomposition.

Finally, the time update equations will be:

X̂k̄ =
2n

∑
i=0

Wi f (Xi)

Pk̄ =
2n

∑
i=0

Wi{ f (Xi)− X̂k̄}{ f (Xi)− X̂k̄}T +µk

(4.14)

Measurement update: The augmented sigma points can be obtained as:

Sk̄ = chol((n+ζ )Pk−1)

X ¯(0) = x̂k̄

X ¯(i) = x̂k̄ +S
(i)
k

(4.15)
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Similarly,

X ¯(i+n) = x̂k̄ −S
(i)

k̄

Xk̄ = [X ¯(0)X ¯(1)...X ¯(2n)]
(4.16)

where i = 1,2, ...n.

ẑk̄ =
2n

∑
i=0

Wih(Xi) (4.17)

Finally the measurement covariance and the Kalman gain are calculated as:

Pz̄ =
2n

∑
i=0

Wi{h(Xi)− ẑk̄}{h(Xi)− ẑk̄}T +ψk

Gk = PxzP
−1
z

(4.18)

The final estimated state and it’s covariance are:

X̂k = X̂k̄ +Gk(zk − ẑk)

Pk = Pk̄ −GkPzG
T
k

(4.19)

The position of the targets in the ground frame is the output from the estimator.

4.4 Gazebo Simulation and Experimental Set-up

4.4.1 Gazebo Simulation

Gazebo is an open-source software for the simulation of robotics platforms. It allows users

to make and construct their simulation environment and depicts approximately how the

real-world scenario/result will look like. The dynamics of the robot parts are assigned to a

model depending on the behaviour intended for the part. It also supports the ROS plug-in. A

user can easily link written code mostly in C++ or Python to the gazebo environment. For

the simulation-level verification experiments, a Gazebo environment is used. A model of the

Parrot AR drone is developed in Gazebo (Engel et al., 2014), as demonstrated in Fig. 4.7.

The drone is equipped with all the sensors (monocular camera, rotors, ultrasonic sensors, etc)
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as in the real platform. The properties of the sensors are assigned to match real characteristics

as best as possible.

For this simulation, ROS is used together with Gazebo. In addition to the drone and

sensors model, the ROS nodes responsible for the detection and classification of the weed

using Deep Neural Network, centre pixel extraction on the images, calculating the bearing

angles, fusing the bearing angles to estimate world coordinates of the weed with UKF, and

the trajectory planning and drone driving behave as the same in the real-time. A typical scene

in Gazebo is presented in Fig. 4.7. The black dot-like object represents the target/weed.

Fig. 4.7 Gazebo environment set-up showing the drone and the targets. The black dot-like
objects labeled as targets represent the weeds

4.5 Experimental Set-up

The implementation experiment we conducted has a set-up of a drone shown in Fig 4.8, a

workstation, an optitrack tracking system 4.9, and the target to estimate(weed). Firstly, the

algorithm for the weed detection in Chapter 3 was converted to C++ from MATLAB with

the help of MATLAB coder similar to Section 3.10.1.

The weights of the neural network are exported as a static library, A function format is

used to easily access the weights from a script. The target hardware to run the neural network
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Fig. 4.8 Parrot Drone

Fig. 4.9 Optitrack Tracking Camera

is a Central Processing Unit (CPU). Normally, the CPU will not support the neural network

without a supporting library called MKLDNN (Zarukin, 2014). The MKLDNN library is

linked so that the neural network can run on the CPU. Alternatively, the CUDA and CUDnn

libraries can be used with a GPU to run the network. Even after deploying the pipeline in

C++, it can not run straightaway. This is because the way MATLAB perceives an image

input differs from the deployment method in C++. To receive a continuous stream from the

drone camera, An encoding and decoding operation (see Fig. 4.2) must be executed to make

the C++ capable of understanding and interpreting the input image. Another problem to cater

for is integrating the Optitrack systems. The Parrot drone is designed as a wireless network

host likewise the Optitrack system. It is not possible to connect the workstation to the drone

and at the same instance connect to the optitracks to get position feedback. A solution used

is to alter the internal configuration of the drone to serve as a client to a network. This way,

a router can be used as a Local Network onto which the Optitrack, drone and workstation

can connect and interchange data as in Fig 4.10. Target devices can easily be queried by

switching between IP addresses.

An actual parrot drone shown in Fig 4.8 is subjected to a trajectory while the onboard

monocular camera is utilised to detect these weeds. The trajectory parameters are selected

such that the targets are covered in the FOV of the drone. A typical trajectory for four targets
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Fig. 4.10 Network Connection Set-up

is seen in Fig. 4.11 using a major axis radius a = 0.6m and minor axis radius b = 0.4m with a

height of 1m. The real-time experiment differs from the simulation. As for the simulation,

Fig. 4.11 Obtained trajectory using a major axis radius a = 0.6m and minor axis radius b =
0.4m.

mapping between the drone driver and the gazebo model is made to retrieve the ground truth

position of the drone. However, in the real-world experiment, mapping between the drone

and the real drone platform itself is made. The ground truth information received from the
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gazebo formally is replaced with the tracking system to obtain the ground truth position of

the weeds.

Connecting to the tracking system is not enough to establish a pipeline that receives

position updates, a supporting package is used to receive the broadcasted positions from the

tracking system so it can be used as a ROS topic and can be subscribed by any node. The

real-time experiment is carried out on i7 Core CPU. It took approximately 45 seconds to

complete the estimation which includes weed detection and localization as well. All the CPU

cores were utilized with an average utilisation factor of 90% while running the fused YOLO.

The frequency of the CPU was maintained at 2435MHz.

The tracking system while tracking the drone updates the workstation with the real-time

position of the drone. As per the measurement model in Eq. 4.10, It is required to vary r

to continuously obtain azimuth and elevation angles. An elliptic trajectory is maintained to

obtain a varying r to use for the estimation.

4.6 Results

For both simulation and experimental works, the initialisation of the filter was done arbitrarily,

however, the initial state estimate and its covariance are taken as follows:

X̂0 =
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,ζ = 0 (4.20)

Targets/weeds are placed at different ground truth positions. The drone is placed at

[x,y] = [0.00,0.00]m for simulations and experiments. For the simulations, the ground truth

is obtained from the Gazebo simulation environment. While in the experiments, both drone

and targets are placed within the volume of the tracking system so that feedback on the

ground truth positions can be received. The drone makes a trajectory within the volume

while estimating the relative position of the placed targets. The ground truth of targets during

the experiment is different from the simulation to accommodate the tracking range of the
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Optitrack system. This will not have any effect on the estimation but proves the robustness

of the estimation at different ground truth positions.

4.6.1 Simulation Results

The simulation results were analysed by comparing the estimated positions with the ground

truth position. Weeds were placed at ground truth positions [x,y] = [4.00,1.00], [3.50,0.50],

[3.00,0.00], [2.50,−0.50]m. For the longitudinal tests, the estimates of x component of the

ground truth i.e [x] = [4.00], [3.50], [3.00], [2.50]m are taken. In Fig. 4.12, the dashed lines

represent the ground truth position while the continuous lines represent the estimated position.

The results show the convergence of the estimator along the x-axis of the ground frame: the

estimated positions are obtained after 35 seconds of the estimation process which is decent

compared to the literature (Ponda et al., 2009; Ruiz and Aouf, 2017). Fig. 4.12 also shows

the changes in the estimation error with time. The error is measured as the absolute difference

between the ground truth position and the estimated position. The error approaches zero as

the estimator receives updates.

Fig. 4.12 Coordinate estimation and error (simulation tests along the x-axis). The dashed
lines represent the ground truth while the continuous lines are the estimations.

The 2D localisation of the weed is performed simultaneously. For the lateral tests, we

estimate the y component of the ground truth i.e. [y] = [1.00], [0.50], [0.00], [−0.50]m. The

results are demonstrated in Fig. 4.13. The performance of the proposed solution along the

lateral axis is satisfactory and gets better over time, as expected.
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Fig. 4.13 Coordinate estimation and error (simulation tests along the y-axis). The dashed
lines represent the ground truth while the continuous lines are the estimations.

To further verify the robustness of the estimator, the same experiment was conducted with

different ground truth positions. Table 4.1 presents the experiment scenario and the results.

The results prove the success of the position estimation with no sophisticated sensors in the

simulation environment. An average error of 0.066m was obtained along the x direction, and

0.082m along the y direction.

Table 4.1 Additional simulation results using YOLOv4 with targets placed at positions [x,y] =
[4.00,0.22], [3.00,0.036], [3.00, 0.50], [3.50,-0.36] and [2.80, -0.06]. The error of estimation
is the difference between the ground truth and the estimated positions.

Takes Ground Truth (x) Estimated (x) Error(x)

1 4.00 3.85 0.15

2 3.00 3.10 0.10

3 3.00 3.03 0.03

4 3.50 3.47 0.03

5 2.80 2.82 0.02

Takes Ground Truth (y) Estimated (y) Error(y)

1 0.22 0.127 0.093

2 0.036 0.025 0.011

3 0.50 0.610 0.11

4 -0.36 -0.51 0.15

5 -0.06 -0.016 0.044
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4.6.2 Experimental Results

The results from the experiments are presented under the following categories:

Detection Score

The accuracy of realtime detection has an effect on the overall estimation performance since

the centre of the bounding box of the detected weeds is assumed to match the geometric

centres of the targets. The detection score evaluates how well a bounding box is assigned to

a target Cb =Ct where Cb and Ct are the centres of the bounding box and target, respectively

so that the bounding box accurately covers the area of the target. (see Equ. 3.6). The

lowest detection score recorded for all the targets/weeds detected is 79% and the maximum

is 95%. Fig. 4.14 shows the detection scores with their frequencies. The frequency in this

context is defined as how many times a particular detection score was obtained throughout

the estimation.

Fig. 4.14 Detection score

Detection Deviation

The detection deviation is defined to indicate how much is the deviation in Cb ̸= Ct . It

provides a clear indication of the error that is introduced to the estimator due to misleading
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extraction of the centre position of the bounding box. It is defined as the difference between

the ideal detection score and the obtained detection score. For the experimental works, the

deviation score is limited to 21%, which means that up to 21% deviation in Cb from Ct

is considered tolerable for obtaining an accurate estimation. The histogram plot for the

deviation is shown in Fig. 4.15.

Fig. 4.15 Detection deviation

Position Estimation

As the drone follows its predefined elliptical trajectory, the depth, azimuth and elevation

angles vary continuously and the measurements are fused to estimate the positions of targets.

Weeds are placed at ground truth positions [x,y] = [5.00,1.00], [4.50,0.50], [4.00,0.00] ,

[3.80,−0.50]m. For the longitudinal tests, the estimates of the x component of the position

are taken as [x] = [5.00], [4.50], [4.00] , [3.80]m. The estimated positions and the position

estimation errors are shown in Fig. 4.16. For the lateral tests, the y component of the position

is estimated and the results are demonstrated in Fig. 4.17.

To show the robustness of the proposed scheme, a test is conducted where the Optitrack

can not sufficiently provide feedback to the drone for control. The fixed altitude assumption

is violated in these experiments, consequently, the estimator recorded a greater error in

these scenarios, as can be seen in Fig. 4.18. Targets were placed at a y coordinate [y] =
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Fig. 4.16 Coordinate estimation and error (experimental tests along the x-axis). The dashed
lines represent the ground truth while the continuous lines are the estimations.

Fig. 4.17 Coordinate estimation and error (experimental tests along the y-axis). The dashed
lines represent the ground truth while the continuous lines are the estimations.

[−0.60], [−1.00]m and the drone was placed at initial position [x,y] = [−1.00,0.00]m such

that not all updates will be received because of a limited tracking volume. In other words,

the drone can not be tracked at some points along the trajectory. Despite this disturbance, a

maximum error of 0.35m was experienced.

More experimental results were obtained by repeating the same experiment with different

ground truth positions to verify the robustness. Table 4.2 shows the obtained estimation with

the associated error. An average error of 0.056m was obtained along the x direction and

0.113m along the y direction.
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Fig. 4.18 Coordinate estimation and error (experimental tests along y-axis, insufficient
optitrack data case). The dashed lines represent the ground truth while the continuous lines
are the estimations.

Table 4.2 Additional experimental results using YOLOv4 with targets placed at positions
[x,y] = [4.62, 0.00], [4.43, 0.50], [5.12, -0.50], [3.89, 1.00] and [4.04, -1.00]. The error of
estimation is the difference between the ground truth and the estimated positions.

Takes Ground Truth (x) Estimated (x) Error(x)

1 4.62 4.57 0.03

2 4.43 4.45 0.03

3 5.12 5.19 0.07

4 3.89 3.77 0.10

5 4.04 4.09 0.05

Takes Ground Truth (y) Estimated (y) Error(y)

1 0.00 0.05 0.05

2 0.50 0.49 0.01

3 -0.50 -0.26 0.24

4 1.00 1.065 0.065

5 -1.00 -1.20 0.20

Depth Estimation

The depth, r, estimation from the UKF is compared with the depth measured using the

positions of the UAV and the target obtained with the Optitrack system. Since the UAV’s

height H is known, the depth will be equal to
√

(D)2 +(H)2, where D is the difference of
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the target’s position and the UAV’s position along the direction which of the camera frame.

Flying at a fixed height of 1m will reduce the depth to
√

(D)2 +1. Fig. 4.19 shows the

convergence of the estimated depth and the calculated depth. The calculated depth is not

constant as the drone is subjected to an elliptical trajectory thus, a varying elevation angle θ

will be received along the trajectory. It is observed that with time, the depth estimation gets

better and resembles the acceptable level.

Fig. 4.19 Depth estimation

The experimental results converge after 45 seconds while the simulation results converge

after 35 seconds. This is majorly due to the latency as the image updates are transported over

a network in the experimental setup. On the other hand, the simulation setup assumes an

ideal world with no update delay.

Detection Score Comparison

Our proposed pipeline for the relative pose estimation can be utilised with different YOLO

versions by simply substituting the detection end of the pipeline. This adds to the value of the

pipeline as it shows how flexible the pipeline can be adapted to other versions of YOLO. This

can be done by truncating the final layers of ResNet-50 and utilising the final activation layer

of the RestNet as the feature extraction of the preferred YOLO version as earlier explained

in Chapter 3 (see Fig 3.7). Provided a detection is made and a bounding box is assigned to

the target, the detected target’s position can be estimated. However, there can be a slight
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deviation in detection scores across different YOLO versions which prompted this analysis.

Recall that the detection score may have an effect on the estimation.

Newer versions of YOLO such as YOLOv4 may have better accuracy and Frames per

Second (FPS). However, these properties may not significantly increase the overall accuracy

of the estimation since the detection is performed at regular time steps. Nonetheless, the

most sensitive parameter is the detection score which can introduce errors to the estimation.

A better detection score will result in better estimation. We define the detection score as how

well the centre of the bounding box aligns with the centre pixels of the target. The detection

scores obtained using both YOLOv2 (Redmon et al., 2016b) and YOLOv4 are compared

across 45-time steps for each target as seen in Fig. 4.20 - 4.23. The overall Average Detection

Score (ADS) for the four targets using YOLOv4 is 87.505% while with YOLOv2 it is 86.5%.

Although both ADS fall within an acceptable range for this experiment, YOLOv4 is expected

to provide a slightly more accurate result than YOLOv2 since it has a better detection score.

Fig. 4.20 Detection score comparison between YOLOv2 and YOLOv4 for target 1
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Fig. 4.21 Detection score comparison between YOLOv2 and YOLOv4 for target 2

Fig. 4.22 Detection score comparison between YOLOv2 and YOLOv4 for target 3

Fig. 4.23 Detection score comparison between YOLOv2 and YOLOv4 for target 4
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Furthermore, the effect of the ADS on the estimation can be observed in Table 4.3. Targets

are placed at known ground truth positions and are tested us both versions of YOLO. It can

be observed that the YOLOv4 has a better estimation due to having a better ADS than the

YOLOv2. However, the difference is not much and we can conclude that the version YOLO

used does not significantly affect the estimation but can slightly improve the estimation based

on a better ADS.

Table 4.3 Additional experimental results comparing YOLOv2 (v2) and YOLOv4 (v4)
estimations with targets placed at Ground Truth positions (GT) [x,y] = [4.62, 0.00], [4.43,
0.50], [5.12, -0.50], [3.89, 1.00] and [4.04, -1.00].

Takes GT(x) Estimated v2 (x) Error v2 (x) Estimated v4 (x) Error v4(x)

1 4.62 4.58 0.04 4.57 0.03

2 4.43 4.45 0.03 4.45 0.03

3 5.12 5.21 0.09 5.19 0.07

4 3.89 3.78 0.11 3.77 0.10

5 4.04 4.09 0.05 4.09 0.05

Takes GT (y) Estimated v2 (y) Error v2 (y) Estimated v4 (y) Error v4(y)

1 0.00 0.06 0.06 0.05 0.05

2 0.50 0.49 0.01 0.49 0.01

3 -0.50 -0.23 0.27 -0.26 0.24

4 1.00 1.07 0.07 1.065 0.065

5 -1.00 -1.20 0.20 -1.20 0.20

Network Performance During Position Estimation

The performance of the proposed network during estimation is evaluated for both indoor and

outdoor scenarios. Three classes of weeds namely: Crassulaceae, Astroloba and Piperaceae

are used in the experiments. The obtained final training loss was 0.032 for the outdoor

training as seen in Fig 4.24. The outdoor validation in Fig. 4.25 shows the Average Precision

(AP) obtained for these weed classes. Crassulaceae obtained an AP of 0.8643, Astroloba

obtained an AP of 0.9362, and Piperaceae obtained an AP of 0.9432 across 443 frames.

Samples of the detection using the Fused-YOLO network are displayed in Fig. 4.26. The
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bounding boxes as seen in most cases are corresponding to the target’s centre which will

facilitate better position estimation.

Fig. 4.24 Training Loss per iteration for Fused-YOLO Network in an outdoor setting

Fig. 4.25 Precision/Recall results for Crassulaceae, Astrolobaand Piperaceae with their
respective AP in an outdoor setting

For the indoor setting, a final training loss of 0.0203 was obtained as shown in Fig. 4.27.

The validation results from Fig. 4.28 show the AP of Crassulaceae class at 0.8658, Astroloba

at 0.8973, while Piperaceae obtained an AP of 0.9133 evaluated across 315 frames.

Another experiment was conducted to estimate the positions of the different classes of

weeds concurrently. The different classes of weeds (Crassulaceae, Astroloba and Piperaceae)

were placed at ground truth positions at [x,y] = [2.7,0.2], [2.8,0.8] and [2.48,0.5] respectively.
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Fig. 4.26 Qualitative Result samples from Fused-YOLO Network in an outdoor setting

Fig. 4.27 Training Loss per iteration for Fused-YOLO Network in an indoor setting

Fig. 4.28 Precision/Recall results for Crassulaceae, Astrolobaand Piperaceae with their
respective AP in an indoor setting
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Fig. 4.29 Qualitative Result samples from Fused-YOLO Network in an indoor setting

The error obtained for each class is shown in Fig. 4.30. An error of [x,y] = [0.05m,0.055m]

was observed for Crassulaceae class while for Piperaceae and Astroloba classes, the errors

are found to be [x,y] = [0.025m,0.04m] and [x,y] = [0.042m,0.043m] respectively. These

results further validate that the proposed pipeline can effectively estimate the positions of

different classes (types) of weeds.

Fig. 4.30 Coordinate estimation [x,y] (experimental tests with different classes of weeds).
The dashed lines represent the ground truth while the continuous lines are the estimations.
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4.7 Conclusion and Future Work

This chapter discusses the implementation of relative position estimation for multiple targets

(weeds) by the combination of UKF with a deep neural network. It addresses the use of

sophisticated algorithms for position estimation and detection of weeds while presenting a

faster and more reliable result with good accuracy using affordable sensors. It extends to not

only using bounding boxes for detection but utilizing them for position estimation.

In the proposed solution for weed detection, an affordable UAV platform with a monocular

camera is used. Weeds are detected and classified using the trained neural network (similar to

the proposed one in Chapter 3) and the detection boxes are utilized to extract the centre of the

target using the image data from the UAV platform which performs an elliptic trajectory and

thus, forms the basis for the varying bearing angles for UKF estimation. The UKF utilizes

noisy azimuth and elevation angles to perform the estimation.

The simulation results converge after 35 seconds while the experimental results converge

after 45 seconds. The detection score is 87.5% on average. The overall average estimator

error is (x= 0.056m, y= 0.0703m). The proposed method is able to achieve multiple targets

(weed) position estimation with a lesser error margin using an off-the-shelf platform without

requiring any sophisticated or additional devices or sensors. The estimation error is measured

from the weed’s centre and most detectable weeds have a cross-section of up to or more

than 5-8cm. Thus, this gives a good margin for the localisation of the weeds. Also, these

positions are initially estimated positions, mechanical weeding arms or sprayers are usually

accompanied by a camera to perform visual servoing (post-processing) to fine-tune the exact

positions of the target and hence these results are satisfactory for this mission.

For future works, trajectory optimisation can be investigated for a better field of view so

more targets/weeds can be estimated at once. Cooperative estimation can be investigated

using multiple homogeneous and heterogeneous platforms for faster convergence of the

position estimator.
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Chapter 5
TransPose: A Transformer-based 6DoF

Object Pose Estimation Network with Depth

Refinement

The position estimation scheme proposed in Chapter 4 is limited to aerial platforms and

may be challenging especially if the problem requires more than 3-DoF pose estimation.

In this chapter, TransPose, an improved Transformer-based 6D pose estimation with

a depth refinement module is introduced. The architecture takes an RGB image as

input with no additional modalities (depth or thermal). The architecture encompasses

an innovative lighter depth estimation network architecture that estimates depth from

an RGB image using a feature pyramid. A transformer-based detection network with

additional prediction heads is proposed to directly regress the object’s centre and predict

the 6 DoF pose of the target. A novel depth refinement module is then used alongside the

predicted centres, poses and depth patches to refine the accuracy of the estimated 6-DoF

pose. Results are extensively compared with other state-of-the-art methods and analysed

for fruit-picking applications. As part of this work, the first-ever novel fruit dataset with

multiple modalities and tailored specifically for pose estimation is proposed.

Chapter abstract
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5.1 Motivation

Recall that this thesis discussed 2D relative position estimation [x,y] in Chapter 4. This

is achieved by subjecting a UAV to a trajectory. However, in some agriculture problems,

performing a trajectory for the relative position is not possible. These applications do not

have the luxury of space or manoeuvrability to easily conduct a trajectory and furthermore

estimate the position of the target. Also, the majority of agricultural activities will require

more than just the 2D position information. Thus, there is an urgent need for a system that

can estimate 6DoF relative pose (translation and rotation) without conducting a trajectory.

As demand for robotics manipulation application increases, accurate vision-based 6DoF

pose estimation becomes essential for autonomous operations. Convolutional Neural Net-

works (CNNs) based approaches for pose estimation have been previously introduced.

However, the quest for better performance still persists especially for accurate robotics

manipulation as is the case in the Agri-robotics domain.

Generally, 6DoF object pose estimation is a crucial topic to address especially in the

robotics domain. The ability to perceive the position of an object from a single RGB image

finds application in areas such as robotics for grasping tasks (Zhu et al., 2014), autonomous

driving (Menze and Geiger, 2015) and robotics for virtual and augmented reality applications

(Marchand et al., 2015). This problem, however, comes with several challenges such as

object appearance and texture, lighting conditions and object occlusion (Xiang et al., 2017).

Conventionally, the 6-DoF pose estimation problem is formulated as a feature mapping

problem where feature points of 3D objects are matched on 2D images (Collet et al., 2011;

Lowe, 1999; Rothganger et al., 2003). However, these methods are unable to detect features

on smooth objects with minimum or no texture. The introduction of additional modalities

such as depth data have been used to solve the problem of features on texture-less objects (Bo

et al., 2014; Brachmann et al., 2014; Hinterstoisser et al., 2012). However, this requires more

inputs in the form of RGB-D images. With the emergence of CNN, some research leveraged

this powerful tool as part of their pipeline to estimate 6-DoF poses (Wang et al., 2019b;

Xiang et al., 2017). Transformer-based models are emerging and proving to be more efficient

than CNNs (Carion et al., 2020; Dosovitskiy et al., 2020; Khan et al., 2022; Touvron et al.,
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2021). Thus, few pipelines adopting transformer-based models for 6-DoF pose estimation in

the quest for better accuracy (Amini et al., 2021; Beedu et al., 2022; Jantos et al., 2023) exist.

In this chapter, a novel 6DoF object pose estimation architecture is presented aiming at

improving the accuracy in comparison to the existing methods. TransPose: an improved

transformer-based 6-DoF pose estimation network with a novel depth refinement module

is introduced. The objective is to get better 3D translations and rotation estimates from a

single RGB image input. For initial estimations, Detection Transformer (DETR) framework

(Carion et al., 2020) is adapted to directly regress the centre of the target object. Furthermore,

an image patch of the target object is obtained so that translation and rotation can be directly

regressed by additional prediction heads on the DETR (Amini et al., 2021). Indeed, feed-

forward heads are added to regress the two components of the 6DoF pose (3D translation and

3D rotation). A novel depth refinement module is also introduced in our estimation pipeline

to increase the accuracy of the pose estimation.

The unavailability of a robust dataset for fruit pose estimation introduces a challenge for

AI-based fruit pose estimation and hinders development in this direction. This chapter by

extension proposes the first-ever and novel fruit dataset with multiple modalities to bridge

the dataset gap and perhaps facilitate development in the domain.

5.2 Related Work

Many methods have been proposed to tackle the problem of 6D object pose estimation.

Approaches that are non-learning-based rely heavily on object textures for pose estimation.

Scale-Invariant Feature Transform (SIFT) features (Lowe, 2004) and Speeded Up Robust

Features (SURF) (Bay et al., 2006) are common examples of the classical features used. The

SIFT algorithm as used by (Zhang et al., 2014) for pose estimation requires rich texture

information. This can be an issue if the objects are textureless. E. Miyake et al. (Miyake

et al., 2020) compensated the textureless nature of objects with the colour information to

improve the accuracy of the 6DoF pose estimation. The geometric information has also been

used to increase the accuracy of estimation (Zhang et al., 2018).
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Pose estimation methods that utilise local descriptors define and compute the global

descriptors offline. The local descriptor is then computed and matched online with the global

descriptor. Pose estimation using Iterative Closest Point (ICP), Oriented Fast and Rotated

Brief (ORB) (Rublee et al., 2011), Binary Robust Independent Elementary Features (BRIEF)

(Calonder et al., 2010) have been implemented in the past (Akizuki and Aoki, 2018; Guo

et al., 2019; Yu et al., 2018). However, these methods are computationally expensive and do

not perform well on reflective objects.

We can further group pose estimation methods into template-based methods and features-

based methods (Xiang et al., 2017). The advantage of the template-based methods is that

they can detect objects without enough textures. Each location of the input image is scanned

and matched with a constructed template of the object. The best match is selected based on a

similarity score that compares the matched locations (Cao et al., 2016; Hinterstoisser et al.,

2011, 2012). These types of methods cannot properly estimate occluded objects since the

similarity score will be low.

The feature-based methods utilize 2D-3D correspondences. Features are mapped from

the 2D images to the 3D models thereby estimating the 6D poses (Lowe, 1999; Rothganger

et al., 2003; Tulsiani and Malik, 2015). This approach handles occluded objects better.

However, this is at the expense of rich features in the form of enough texture. Some works

have proposed learning feature descriptors to solve the problem of objects with no texture

(Doumanoglou et al., 2016a; Wohlhart and Lepetit, 2015), while others regress directly from

the 2D image to obtain the 3D correspondence (Amini et al., 2021; Brachmann et al., 2014,

2016; Krull et al., 2015). Without sufficient refinement, these models can obtain relatively

low accuracy when dealing with symmetrical objects.

Convolutional Neural Network (CNN) architecture for pose estimation was introduced

by (Kendall et al., 2015) to regress 6D pose using RGB image. Limited by depth modality,

the task becomes difficult. In an attempt to address this problem, another method proposed

the prediction of depth from the 2D image and thus acquire the 3D position of the object

(Xiang et al., 2017). Estimating the rotation component can also be a problem using this

method due to non-linearity. (Liu et al., 2016; Su et al., 2015; Sundermeyer et al., 2018)
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separated the rotation component and treated it as a classification problem. This often

requires a post-refinement to obtain an accurate estimation. Methods that detect keypoints

to estimate 6D pose have been proposed to robustly and efficiently estimate 6D pose. (Rad

and Lepetit, 2017) utilised a segmentation technique to isolate the Region of Interest (ROI)

and further regressed the keypoints from the ROI. Similarly, (Tekin et al., 2018) utilised the

YOLO (Redmon and Farhadi, 2017b) framework for such. However, these methods in the

face of occlusion perform poorly. To address this problem, some methods obtain keypoints

through pixel-wise heatmaps (Oberweger et al., 2018; Pavlakos et al., 2017). Considering

that heatmaps are fixed-size, these methods suffer when the objects are truncated.

Some other methods have considered using models encompassing classical algorithms

such as the PnP algorithm to increase the accuracy of estimation (Hu et al., 2019; Peng

et al., 2019; Rad and Lepetit, 2017). Such models are weighty and hence not always suitable

for real-time platform deployment. Models such as the PoseCNN (Xiang et al., 2017) and

T6D-direct (Amini et al., 2021) are able to regress the 6D poses, however, a very large dataset

is required to train those models for better accuracy since they have no refinement module

to count on. Pose estimation using depth modality often involve the conversion of depth

image to point cloud and proceeds with the segmentation of object masks (Gao et al., 2021,

2020; Liu et al., 2022) adopted semantic segmentation from depth images and point clouds

to regress 6D poses. This is accompanied by computational burden due to the conversion to

point cloud and often requires a large dataset. In contrast, we utilised the raw depth modality

for the regressed pose refinement without converting to point cloud as presented further in

this paper.

A problem that can be envisaged in using models for pose estimation is the availability

of a robust dataset. Thus, on the pose estimation dataset, We will discuss the related works

under the following categories:

Fruit Datasets. The most used fruit dataset for classification problems is the Fruits 360

(Mureşan and Oltean, 2017). The dataset consists of 90,483 RGB images of different varieties

of fruits. A Logitech C920 camera was used to capture the fruits on a white background.
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Even though the dataset is rich in terms of the fruit variety, the dataset fails to capture multi-

ple modalities thereby restricting the dataset to only classification and detection problems.

Hence, 6D-pose estimation is not possible using this dataset. Additionally, images are of

size 100×100 thereby making it difficult to utilize the data for very detailed classification

problems. Additional modality becomes a necessity since the RGB camera can not provide

the optimal dataset for all the listed applications. More works in this regard were carried

out with the RGB-D setups (Lehnert et al., 2017; Tian et al., 2019; Tu et al., 2018; Wang

et al., 2017) while others exploited the combination of RGB with Near Infrared (NIR) images

(Gené-Mola et al., 2019; Sa et al., 2016). Even though these works have added an additional

modality, the problem of 3D fruit localisation of the detected fruit still persists since the 6D

poses of the camera and fruits are not readily provided as ground truths. Moreover, they

focus on a single fruit as a class hence reducing the diversity of these data.

6D Pose Datasets. The LineMOD Dataset (Hinterstoisser et al., 2013) is a well-known

dataset for 6D pose estimation. It consists of RGB-D images and poses of 15 objects. The

OCCLUSION dataset (Brachmann et al., 2014) has properties like the former but also ac-

counts for testing 6D poses of occluded objects. Another dataset with similar property is

the T-LESS Dataset (Hodan et al., 2017). This dataset is accompanied by 3D card models.

YCB-Video Dataset (Xiang et al., 2017), a popular dataset for 6D pose estimation consists

of household objects displayed in short videos. Other 6D pose estimation datasets are also

proposed (Doumanoglou et al., 2016b; Tejani et al., 2014; Xie et al., 2013). Although these

datasets are tailored for 6D-pose estimation, none of them is targeted towards the 6D-pose

estimation of fruits to facilitate fruit picking application in precision agriculture.

Other Multi-Modal Datasets. The KITTI dataset (Geiger et al., 2013) is a popular multi-

modal dataset having data from lidar, stereo and IMU sensors. Due to the richness of this

dataset, it has facilitated the emergence of state-of-art methods for 3D-object detection. The

H3D dataset (Patil et al., 2019) is another multi-modal dataset where objects are annotated

from multiple views as opposed to KITTI. Other significant multi-modal datasets have been
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proposed over the years (Choi et al., 2018; Geyer et al., 2020; Houston et al., 2021; Sun et al.,

2020; Zhu et al., 2020). However, the majority of the datasets are proposed for autonomous

driving and can barely find applications in fruit detection, fruit 6D-pose estimation and fruit

picking.

Platforms. In terms of platform, the majority of the indoor multi-modal datasets are acquired

with handheld methods (Dai et al., 2021; Lee et al., 2019). This does not account for more

dynamic movement and rich poses especially when applied to robotics platforms.

Summarily, the literature has shown that the early pose estimation methods suffer when the

objects are textureless. To compensate for that, other methods proposed using geometric

information to improve the prediction accuracy. However, these methods including using of

local and global descriptors proved to be computationally expensive and poorly predicted

the pose on reflective objects. Other challenges arise from other proposed methods. they

include pose estimation of occluded objects, symmetry of objects, object truncation, multiple

modalities and datasets.

5.3 TransPose Pipeline

TransPose architecture performs two interdependent tasks to obtain the final 6DoF pose of

the target object. As seen in Fig. 5.1, an RGB image is used as the input to the pipeline.

The input image is passed to the transformer network which has a ResNet-101 (He et al.,

2016a) backbone for features extraction. These features are then passed to the transformer

model consisting of a standard encoder and decoder setup (Vaswani et al., 2017). The model

is used to obtain an image patch by detecting the object and assigning a ROI to the detected

object. Also, the transformer is used to regress the initial pose of the object in the frame. The

second segment of the architecture is the depth estimation and refinement module. Upon the

completion of the transformer stage, the pose refinement using the pose is initiated. The depth

estimation network encompasses a feature pyramid network (FPN) (Lin et al., 2017) that
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Fig. 5.1 Overall network architecture that performs object detection, depth prediction and 6D
pose prediction.

takes in the same RGB image input as the transformer and gives an output of the estimated

depth image. The image patch obtained from the transformer model is used to isolate the

target on the depth image and hence obtain the depth of the target from the camera. The

depth is then used to compute other components of the translation and subsequently used to

refine the estimated 6D pose of the target. The following are the contributions proposed in

the TransPose pipeline:

• a novel pipeline for 6DoF object pose prediction that favourably compares with other

state-of-the-art methods

• As part of the pipeline, a lighter depth estimation network that utilizes a better up-

sampling method for depth prediction is proposed.

• Additional analyses are conducted with our own generated fruit dataset to facilitate an

evaluate 6D pose estimation performance for fruit picking applications.

• A first-ever novel fruit dataset with multiple modalities (thermal, depth, RGB) tailored

specifically for pose estimation.
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The pipeline for TransPose 6D object pose estimation can be divided into three main

parts:

• Detection and Regression Transformer (DRT)

• Depth Estimation Network (DEN)

• Refinement module for final 6D pose estimation.

5.3.1 Detection and Regression Transformer

This transformer is mainly adopted for object detection, image patch designation and ini-

tial relative 6DoF pose regression. The transformer architecture is inspired by Detection

Transformer DETR (Carion et al., 2020) and T6D-Direct (Amini et al., 2021). The model is

represented in Fig. 5.2.

Fig. 5.2 Transformer for detection, image patch and initial 6D pose regression.

An RGB image is used as the input of the model. A ResNet-101 is used as the CNN

backbone to extract features and create a vector which is used as an input to the transformer

encoder-decoder. Sets of predictions of size Nc are produced by the transformer encoder-

decoder. Prediction heads are added in the form of Feed Foward Networks (FFN) to regress

the pose and patch. We can further categorise the losses of the model as follows:
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Set Prediction Loss

The patch prediction in the form of ROI is obtained by assigning a bounding box around the

object of interest. From the input image through the decoder, the model produces a set of size

Nc of tuples with fixed cardinality, where Nc also corresponds to the maximum number of the

expected targets within the image. The content of each tuple is the image patch (left bottom

pixel coordinates, height and width), class label probabilities and 6D pose (translation and

rotation) of the predicted object. A bipartite matching is adopted to match the ground truth

and the predicted sets to obtain matching pairs. The model is then trained to minimise a loss

between the pairs.

Consider ground truth objects x1, x2, x3, ... xn, let’s assume Nc is more than the number of

objects in the image, bipartite matching is performed to match the ground truth x which is a

set of size Nc padded with no-object ( /0) with the predicted set x̂ of the same size. Essentially,

performing a permutation between the sets while minimizing the loss below.

ρ̂ = argmin
ρ∈ΘNc

Nc

∑
i

Lmatch(xi, x̂ρ(i)) (5.1)

Lmatch(xi, x̂ρ(i)) is the pair-wise match cost between the prediction at index ρ(i) and the

ground truth tuple xi.

Hungarian loss

After matching, the model is trained to minimise the Hungarian loss. The predicted patch is

denoted as γ̂ρ(i). Thus, the Hungarian loss is defined as (Amini et al., 2021):

Lhung(xi, x̂) =
Nc

∑
i
[λpose✶ci ̸= /0Lpose(Ri, ti, R̂ρ̂(i), t̂ρ̂(i))

−logP̂ρ(i)(ci)+✶ci ̸= /0Lpatch(γi, γ̂ρ̂(i))]

(5.2)

ρ̂ is the lowest cost from Eq.5.1, ci is the class probability and γi is a vector that defines

the ground truth image patch coordinates, height and width.
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Patch loss

The patch loss is a component of Eq. 5.2. The loss Lpatch(γi, γ̂ρ(i)) which combines l1 loss

and generalized IOU (Rezatofighi et al., 2019) is defined as follows:

Lpatch(γi, γ̂ρ(i)) = σ1Liou(γi, γ̂ρ(i))+σ2||γi − γ̂ρ(i)|| (5.3)

and,

Liou(γi, γ̂ρ(i)) = 1−
(

|(γi ∩ γ̂ρ(i)|
|(γi ∪ γ̂ρ(i)|

−
|L(γi, γ̂ρ(i))\γi ∪ γ̂ρ(i)|

|L(γi, γ̂ρ(i))|

)

(5.4)

σ1,σ2 ∈ R are hyperprameters. L(γi, γ̂ρ(i)) is the largest patch having the ground truth γi

and the predicted γ̂ρ(i).

Lpose(Ri, ti, R̂ρ̂(i), t̂ρ̂(i)) is the pose loss. The pose loss is subdivided into two components,

translation t and the Rotation R inspired by T6D-direct (Amini et al., 2021). conventional l2

loss is used to supervise the translation while ShapeMatch loss (Xiang et al., 2017) is used

for the rotation to cater for symmetrical objects.

Lpose(Ri, ti, R̂ρ(i), t̂ρ(i)) = LR(Ri, R̂ρ(i))+ ||ti − t̂ρ(i)|| (5.5)

LR =



























1
|K| ∑

y1∈K
min
y2∈K

||(Riy1 − R̂ρ(i)y2)|| if symmertic,

1
|K| ∑

y∈K
||(Riy− R̂ρ(i)y)|| otherwise.

(5.6)

K represents the 3D points set. Riand ti are the ground truth rotation and translation

respectively. While R̂ρ(i) and t̂ρ(i) are the predicted rotation and translation respectively.

5.3.2 Depth Estimation Network

The depth network is inspired by the FPN architecture (Lin et al., 2017). The motivation is

that FPNs are capable of extracting features at different scales. We adopt ResNet-101 as a

backbone for feature extraction, two 3×3 convolutional layers to process features and ReLU
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as an activation function for the layers as seen in Fig. 5.3. Additionally, a better lightweight

upsampling technique (Wang et al., 2019c) that covers a larger field of view and enables

the generation of adaptive kernels for better prediction is utilised. The depth images are

one-fourth of the original image’s size. The gradient of the depth map is obtained using a

Sobel filter. The depth loss adopted in the training of this network is l1 norm loss defined as

follows:

Ldepth =
1
n

n

∑
i=1

||di − d̂(i)|| (5.7)

where, di and d̂(i) are the ground truth depth and the predicted depth respectively.

Fig. 5.3 Proposed Depth estimation network using FPN

5.3.3 Refinement module for final 6DoF pose estimation.

The refinement module consists of the depth patch generation and final pose estimation

processes. The patch and the regressed 6D pose from the transformer alongside the depth

image are used as inputs for the refinement module as shown in Fig. 5.4.
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Fig. 5.4 Refinement module for final 6D pose estimation

The Patch which is the ROI obtained from the transformer is formulated as:

ψi = [Bopx,Bopy,Hop,Wop] (5.8)

where Bpx,Bpy represent the bottom left corner pixel coordinates of the patch respectively

and Hp,Wp are the Height and Width of the patch respectively, all with respect to the original

RGB image size So = (Wo ×Ho). Let’s represent the size of the depth image also as Sd =

(Wd ×Hd). where So ̸= Sd . Thus we can obtain our depth patch ψ j with respect to Sd from

Eq. 5.8 as:

ψ j = [Bd px,Bd py,Hd p,Wd p]

= ψi ×

















Wd

Wo
0 0 0

0 Hd

Ho
0 0

0 0 Hd

Ho
0

0 0 0 Wd

Wo

















(5.9)
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where Bd px,Bd py represent the bottom left pixel coordinates of the depth patch respectively

and Hd p,Wd p are the Height and Width of the depth patch respectively, all with respect to the

depth image size Sd . The depth patch now represents our depth ROI which is the object in

the depth image frame and thus we can obtain the depth tz1 from the camera to the target to

be the depth information at the centre pixel of the depth patch, The centre pixel coordinate

Cd = (Cdx,Cdy)
T can be obtained as follows:

Cdx = Bd px +
Wd p

2

Cdy = Bd py +
Hd p

2

(5.10)

The translation from the depth network model t1 utilises tz1 (which in this case is the

depth from the camera and can be seen as the translation in the z-axis ) to compute tx1 and

ty1 which are the translations in x and y axis to complete the translation (computed from

depth network) t1 = (tx1, ty1, tz1)
T . Assuming the camera matrix is known, tx1 and ty1 can be

obtained following the projection equation (see Section 2.1) of a pinhole camera model as

follows:




Cox

Coy



=





fx
tx1
tz1

+Px

fy
ty1
tz1

+Py



 (5.11)

where fx and fy represent the focal length of the camera, (Px,Py)
T is the principal point.

Co = (Cox,Coy)
T is the centroid of the object which can be obtained from the image patch

similar to Eq. 5.10 to be (Bopx +
Wop

2 ,Bopy +
Hop

2 )T assuming the centroid coincides with the

centre of the patch. Finally tx1 and ty1 can be obtained as:





tx1

ty1



=





(Cox−PPx)tz1
fx

(Coy−PPy)tz1
fy



 (5.12)

t1 = (tx1, ty1, tz1)
T (5.13)

Finally, we can obtain the final fusion-based object translation t as:

t = (w1 × t1)+(w2 × t2) (5.14)
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where the weights w1,w2 ≥ 0 such that w1 +w2 = 1. t1 is the computed translation from

the depth in equation. 5.13 and t2 is the regressed translation from the transformer model.

Note that w1 and w2 are selected depending on the performance of both the transformer and

depth model. The model with a lower loss will have a higher w and vice-versa.

5.4 Fruity Dataset

As part of this chapter, it is required to have a rich dataset so that the TransPose model can

be effectively trained. Unfortunately, the availability of datasets in the agricultural domain

is quite low compared to other domains like autonomous driving. Although the application

of robotic platforms for precision agriculture is gaining traction in modern research, the

demand for a complete fruit dataset is still not satisfied. Thus, the Fruity dataset is proposed.

Fruity is a multi-modal fruit dataset with a variety of use cases such as 6D-pose estimation,

fruit detection, fruit picking applications, etc. As far as we know at the time of writing this

thesis, this dataset is the first-ever multi-modal fruit dataset tailored specifically for fruit 6D

pose estimation in precision agriculture. The dataset is collected over a range of multiple

sensors consisting of an RGB-D camera, a thermal camera and an indoor tracking camera

for ground truth poses. Fruity features RGB images, stereo depth images, thermal images,

camera 6D-poses, fruit 6D-poses and relative 6D-poses between the cameras and fruits. The

classes of the dataset are commonly harvested fruits which include: apples, oranges, bananas,

avocados and lemons. It is also enriched with a clustered class to account for occlusion

scenarios. The dataset is recorded over multiple trajectories implemented with multiple

platforms encompassing a robotic manipulator and an Unmanned Aerial Vehicle (UAV).

5.4.1 Motivation for the Fruit Dataset

Precision agriculture is poised to be the solution to the global food shortage. Robotics

in agriculture is often considered to be a good form of precision agriculture. However,

the shortage of accurate and complete datasets is restricting the exploitation of robots in

agriculture. Detection and estimation of 6DoF poses find application in object grasping,
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Virtual Reality (VR), Augmented Reality (AR), and autonomous driving. However, the

availability of datasets has limited the exploitation of such tools for agriculture. Having a

single modality dataset introduces limitations that are associated with the sensing mechanism.

For example, RGB cameras are not usable for complex computer vision applications in low

illumination scenarios (Li et al., 2022). RGB Cameras are utilised for edge detection, colour-

based classifications and 2D localisation. However, using these images for 3D localisation

can be a challenging task (Caesar et al., 2020). Understanding this compromise, researchers

complement the weakness of one sensor with the strength of another thereby arriving at the

concept of multimodal sensoring. Even though datasets are collected peculiar to a given

application, it is pertinent that they are collected with completeness, accuracy, and richness

to facilitate the development and evaluation of newer innovations.

Over the years, many datasets have been collected for autonomous driving (Caesar et al.,

2020), pedestrian detection (Cong et al., 2022) and odometry (Li et al., 2022). However,

very few have been collected for fruit detection and picking. Thus, Fruity: A multi-modal

dataset for fruit recognition and 6D-Pose Estimation in precision agriculture is proposed.

This dataset can be utilized to facilitate and evaluate new innovative methods in fruit picking,

detection, and 3D localization. Fruity consists of 6 classes namely: apple, banana, orange,

avocado, lemon, and a fruit cluster class. The modalities of the dataset include a thermal

modality, RGB modality and a depth modality as seen in Fig. 5.5. Each class of the

dataset is accompanied by 6D poses of the fruits and the camera alongside the relative poses

between them. The dataset is acquired through different trajectories on multiple platforms. A

customised sensor rig is designed and constructed to house the sensors while being mounted

on the platforms. The data acquisition and synchronisation are possible through the ROS

framework (Quigley et al., 2009) as shown in Fig. 5.6.

The outputs of the system are the RGB, depth, and thermal images. The 6DoF poses of

the cameras and the targets are also obtained from the system. These poses are also used to

compute the relative poses between the camera and the target. The major contributions of

this dataset can be summarised as follows:
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Fig. 5.5 Figure showing the modalities of our dataset (RGB, Depth and Thermal) including
the 6D Pose and the robotic manipulator used for acquiring the dataset.

• A multi-modal indoor fruit dataset that encompasses data from modern sensors is

proposed. This is the first multi-modal fruit dataset that is tailored for 6D-pose

estimation in precision agriculture which finds application in autonomous fruit picking

and harvesting.

• The dataset is acquired over different trajectories implemented on multiple platforms

(manipulator and UAV) to provide a variety of 6D poses to facilitate effective training.

• A toolkit to easily manage and utilize the multi-modal dataset in the form of plug-and-

play codes as well as providing documentation on how to easily use this data for the

agriculture research community.

5.4.2 Acquisition Process

The acquisition process can be grouped into the following:

• Sensing hardware
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Fig. 5.6 Figure showing the overview of the dataset acquisition pipeline featuring RGB-
Camera, Thermal Camera and Tracking system to record data simultaneously via ROS

• Sensor interfacing

• Platforms

Sensing hardware

To collect data from moving platforms, it becomes necessary to house the sensors on a

befitting sensor rig to allow seamless data acquisition. We designed a CAD model of a sensor

rig peculiar to our application. The sensor rig is capable of carrying all the required cameras

(RGB-D and thermal) as seen in Fig. 5.7. It also has reflective markers onboard to allow

for tracking and retrieval of its ground truth 6D pose. The sensors used for the data capture

include an Intel RealSense D435i stereo camera, a FLIR vue pro thermal camera and an

optitrack tracking system. The expected outputs from these sensors are summarised in Table

5.1. The stereo camera provides the RGB image and the depth image. The thermal camera

provides the thermal information of the fruit and the tracking cameras are used to provide the

6DoF positions of the camera and the fruit.

126



5.4 Fruity Dataset

Fig. 5.7 Sensor Rig design drawing and CAD model

Table 5.1 Sensor specifications, types and outputs

- 1 2 3

Sensors 1 × RGBD Camera 1 × Thermal Camera 6 × Tracking Camera

Type Intel real sense D435i
stereo camera

FLIR Vue Pro ther-
mal camera

Optitrack motion
tracking system

Platform Used UAV, Manipulator, UAV, Manipulator, N/A

Handheld Handheld

Output 30Hz 8bit 640×480
RGB image

30Hz 16bit 640×480
Thermal image

3-dimensional trans-
lation

30Hz 16bit 640×480
depth image

- 3-dimensional rota-
tion

Sensor interfacing

ROS is used for the sensor interfacing. For a consistent dataset, we require all the data to be

synchronous and in real time. This is implemented by collecting all the data from the sensors

simultaneously as rostopics. Fig. 5.8 shows the interfacing of the sensors. The RGB-D

camera is connected to the workstation and accessed through the real sense camera package.
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This package collects the RGB and the depth data which are then published as rostopics. The

data is then subscribed and synchronised before outputting both images. The same pipeline

applies for the thermal camera but in this case, using a thermal camera package. The tracking

cameras are hosted on another PC running the Optitrack software. The 6D poses are collected

through a client package over wireless communication.

Fig. 5.8 ROS workflow with Node 1,2 and 3 representing the camera packages of our sensors.
Respective data are published in the form of ROS topics which are then utilised in a script to
synchronise and save the data

5.4.3 Platforms

The platforms used for the dataset collection are the Sawyer manipulator from Rethink

robotics, and a customized UAV shown in Fig. 5.9. The camera rig is also held at hand to

collect more data which is otherwise difficult to obtain from both platforms. Additionally,

the technique enriches the data with various forms of movement thereby constituting more

dynamic relative poses between the cameras and the fruit.
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Fig. 5.9 Figure showing the platforms used to implement the trajectories for data acquisition.
The Robotic Manipulator and UAV platforms are equipped with an RGB-D and thermal
camera which are housed in the sensor rig

The Dataset Collection Process

The images and 6D poses of the fruits are collected sequentially in the form of trajectories.

The platforms equipped with the required sensors are subjected to different trajectories. This

gives us a rich dataset with a variety of poses as there are many different relative poses

between the cameras and the fruits along each trajectory. The trajectories are determined

by the cameras’ FOV, and the freedom of the platforms’ joints. A definitive trajectory is

likely to have frames with no objects in sight which will not only confuse the network to be

trained but also add more frivolous volume to the dataset. Thus, the trajectories are intuitively

implemented to cater for these limitations. Frames are captured at 30Hz along the trajectory

while simultaneously recording the relative 6DoF pose. The 6DoF pose P is represented as

follows:

P = [Xt ,Yt ,Zt ,Xr,Yr,Zr,Wr]
T (5.15)

where Xt ,Yt ,Zt are the 3D-translation in X ,Y,Z while Xr,Yr,Zr,Wr are the quaternions.
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Collection on Manipulator

The Sawyer robotic manipulator is also used for the dataset collection. It has 7 degrees

of freedom with a payload capacity of up to 4kg. The 3D-printed sensor rig carrying the

camera setup is mounted as an end-effector to the manipulator. The trajectories are created

as waypoints on the Intera software as seen in Fig. 5.10.

Fig. 5.10 Intera Software GUI showing waypoints

The trajectories are such that the FOV and the manipulator restraints are not impacted. A

total of 5 trajectories are conducted with the manipulator. Fig. 5.11 shows the trajectories

and the 3D-translation profile in the X ,Y,Z direction of the manipulator. Fig. 5.12 shows the

quaternions of the trajectories.

Collection on UAV

For more dynamic and rich poses, UAV is utilised to collect data from more distinct poses.

The sensor rig is transferred to a UAV equipped with an onboard processing unit. The UAV

is manually controlled to perform trajectories such that the target fruit remains in the FOV of

our sensors. A total of 4 trajectories are conducted. Fig 5.13 shows the UAV’s 3D-translation

in X ,Y,Z direction with quaternion shown in Fig 5.14.
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Fig. 5.11 Figure showing the 3D-translation [Xt ,Yt ,Zt ] in X ,Y,Z direction of the manipulator’s
trajectories. Each trajectory is represented by a coloured line

Fig. 5.12 Figure showing the quaternion profile [Xr,Yr,Zr,Wr] of the manipulator’s trajectories.
Each trajectory is represented by a coloured line

Collection on Handheld Rig

The sensor rig is handheld to implement trajectories that are rather not possible on both the

manipulator and the UAV to provide more coverage and multiple poses. The trajectories
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Fig. 5.13 Figure showing the 3D-translation [Xt ,Yt ,Zt ] in X ,Y,Z direction of the UAV’s
trajectories. Each trajectory is represented by a coloured line

Fig. 5.14 Figure showing the quaternion profile [Xr,Yr,Zr,Wr] of the UAV’s trajectories. Each
trajectory is represented by a coloured line

are implemented by randomly moving through a space to cover the maximum possible area
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without influencing the FOV. A total of 6 trajectories are conducted. As seen in Fig 5.15 and

Fig. 5.16, more areas are covered thereby providing more 6D-pose.

Fig. 5.15 Figure showing the 3D-translation [Xt ,Yt ,Zt ] in X ,Y,Z direction of the handheld
trajectories. Each trajectory is represented by a coloured line

Fig. 5.16 Figure showing the quaternion profile [Xr,Yr,Zr,Wr] of the handheld trajectories.
Each trajectory is represented by a coloured line

133



TransPose: A Transformer-based 6DoF Object Pose Estimation Network with Depth
Refinement

5.4.4 Dataset Description and Distribution

A total of 31,195 images are collected which are distributed across the 3 modalities (RGB,

depth, and thermal). The camera 6D-pose, fruit 6D-pose, and the relative 6DoF-pose between

the camera and the fruit are also acquired. A cumulative total of 15 distinct trajectories

are implemented on 3 platforms to offer a variety of poses and images. Fig 5.17 shows the

distribution of the dataset. The apple class has a total of 1869 images for each modality

while the avocado class has 1900 for each modality. The banana, lemon, orange and cluster

classes have 1805, 1788, 1719, and 1984 images respectively for each modality. Each of the

captured images is accompanied by a 6D pose of the cameras, fruit, and the relative pose

between them.

Fig. 5.17 Figure showing the distribution of the dataset, each colour represents a modality in
the dataset

The dataset can be visualised in terms of distribution per class (apple, avocado, banana,

lemon, orange and cluster) and distribution per modality (RGB, depth and thermal) as shown

in Fig. 5.18 and 5.19 respectively. The general dataset distribution is shown in Fig. 5.20. It

can be observed from the figures that the images acquired has a balanced distribution. This
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will facilitate effective training of models since any particular class will not be favoured due

to having a higher contribution to the dataset.

Fig. 5.18 Figure showing the distribution of the dataset, each colour represents a modality in
the dataset

Fig. 5.19 Figure showing the distribution of the dataset, each colour represents a modality in
the dataset
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Fig. 5.20 Figure showing the distribution of the dataset, each colour represents a modality in
the dataset
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The Fruity dataset is compared with other fruit-related work/datasets available in Table

5.2. The dataset was compared based on modalities, classes, the platform used for dataset

acquisition and 6D pose Ground Truth (GT). Our dataset proves to be a more complete

dataset for fruit recognition and 6D-pose estimation.

Table 5.2 Comparison with other fruit datasets

Dataset Platform Class > 1 RGB Depth Thermal 6D-Pose

Fruit 360
(Mureşan and
Oltean, 2017)

X ✓ ✓ X X X

Sa et al. (Sa
et al., 2016)

X ✓ ✓ X X X

Kuang et al.
(Kuang et al.,
2018)

X ✓ ✓ X X X

Tu et al. (Tu
et al., 2018)

X X ✓ ✓ X X

Gene et al (Gené-
Mola et al.,
2019)

X X ✓ ✓ X X

Wang et. al
(Wang et al.,
2017)

X X ✓ ✓ X X

Tian et. al (Tian
et al., 2019)

X X ✓ ✓ X X

lehnert et. al
(Lehnert et al.,
2017)

Manipulator X ✓ ✓ X X

Ours UAV ✓ ✓ ✓ ✓ ✓

Manipulator

The qualitative result of the dataset is shown in Fig 5.21 for each modality captured at

different 6D-poses. The depth and thermal image are displayed in different colourmaps to

provide visual distinction between the modalities. However, the original images in the dataset

are in grayscale as in most conventional datasets.
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Fig. 5.21 Examples of Multi-Modal our dataset -top row from RGB-cameras, middle row
from depth cameras and bottom row from thermal cameras The sensor rig was utilised to
capture the individual fruit classes at different 6D-poses.
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Remark 4 Fruity Dataset

The Fruity dataset is acquired with a stereo camera, thermal camera, and tracking

camera to provide more modalities of the target (fruits). The dataset is collected on

different platforms in multiple trajectories to provide a variety of 6D poses to enrich

the dataset. The multiple modalities can enhance the performance of neural networks

in the detection and 6D pose estimation of fruits which can be applied to fruit picking.

Owing to the increase in demand for robotics in agriculture, the aim is to provide the

first fruit-based 6D pose estimation dataset to facilitate the use of artificial intelligence

in precision agriculture. The custom dataset is utilised to train and test the TransPose

pipeline for 6D pose estimation. Note that, the thermal modality was not utilised for

this work. It only enriches the dataset for users that would use the dataset in the future

for other related activities.

The popular YCB-Video dataset being a benchmark for 6D pose estimation (Xiang et al.,

2017) is also used so results can easily be compared with other methods. The dataset has

133,936 images of 640 × 480 resolutions. Each image is accompanied with bounding boxes

labels, depths, segmentation and 6D object pose annotations. Similar to (Xiang et al., 2017),

test was carried out on 2,949 key frames from 12 scenes.
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5.5 TransPose Evaluation Metrics

To evaluate the performance of the transpose model, some standard evaluation metrics are

utilised. Firstly, recall that the model also encompasses a depth network. the depth estimation

network is evaluated based on the abs-rel, sq-rel, RMSE and RMSElog proposed in (Eigen

et al., 2014) as follows:

abs−rel =
1
|T |

T

∑
i=1

|di − d̂i|
d̂i

(5.16)

sq−rel =
1
|T |

T

∑
i=1

||di − d̂i||2
d̂i

(5.17)

RMSE =

√

1
|T | ∑

i=1
||di − d̂i||2 (5.18)

RMSElog =

√

1
|T | ∑

i=1
||logdi − log d̂i||2 (5.19)

where T is the number of pixels in the test set.

For the overall pose estimation, the average distance (ADD) metric as suggested in

(Pavlakos et al., 2017) is used for evaluation. This metric calculates the mean pairwise

distance as follows:

ADD =
1
|K| ∑

y∈K

||(Ry + t)− (R̂y + t̂)|| (5.20)

where R and t are the ground truth rotation and translation respectively. R̂ and t̂ are the

predicted rotation and translation respectively. K is the set of 3D model points.

Average distance is calculated as the closest point distance for symmetrical objects as

follows:

ADD−S =
1
|K| ∑

y1∈K

min
y2∈K

||(Ry1 + t)− (R̂y2 + t̂)|| (5.21)

140



5.6 Training

5.6 Training

The model is initialised as in (Carion et al., 2020) with pre-trained weights. The model

utilises an input of image sized 640 × 480. The initial learning is set to 1.0−3 which is

eventually decayed and the batch size is set to 16. AdamW optimizer (Loshchilov and Hutter,

2017) is used for training. The hyperparameters for calculating Lpatch in Eq. 5.3, σ1 and

σ2 are set to 2 and 5. Also, the parameter λpose for calculating Lhungarian in Eq. 5.2 is set to

0.05. The cardinality or number of prediction queries Nc is set to 21.

5.7 Experimental Results

The results are presented in the following categories:

• Depth estimation results

• TransPose results

5.7.1 Depth estimation results

For the depth estimation network, the training loss and accuracy per iteration are shown in

Fig. 5.22. As the training proceeds, the training loss decreases thereby increasing the training

accuracy per iteration.

The results obtained for the depth evaluation using the metrics in Eq. 5.16, 5.17, Eq. 5.18

and Eq. 5.19 are presented in Table. 5.3.

The performance of the proposed network is compared with other methods on the KITTI

dataset and the custom fruit dataset. On the KITTI dataset, this method outperformed the

others in the sq-rel and RMSElog metric and compares very closely with (Kuznietsov et al.,

2017) in the abs-rel and RMSE metric. On the fruit dataset, this network outperforms the

others in abs-rel, sq-rel, and RMSElog metric and compares closely in the RMSE metric.

This comparison shows that it is sufficient to use this network for depth estimation as part of

the TransPose pipeline. It can also be observed that as the training progresses, the training

141



TransPose: A Transformer-based 6DoF Object Pose Estimation Network with Depth
Refinement

Fig. 5.22 Training loss and accuracy per iteration

Table 5.3 Depth estimation Network comparison with other methods

Evaluation Metric (lower is better)

Method KITTI Dataset

abs-rel sq-rel RMSE RMSElog

Make3D (Saxena et al., 2008) 0.280 3.012 8.734 0.361

Eigen et al (Eigen et al., 2014) 0.190 1.515 7.156 0.270

Liu et al (Liu et al., 2015) 0.217 1.841 6.986 0.289

Kuznietsov et al (Kuznietsov et al., 2017) 0.113 0.741 4.621 0.189

Ours 0.114 0.724 4.694 0.185

Custom Fruit Dataset

Eigen et al (Eigen et al., 2014) 0.0885 1.3000 4.2440 0.2115

Liu et al (Liu et al., 2015) 0.0755 1.0917 3.9290 0.1938

Kuznietsov et al (Kuznietsov et al., 2017) 0.0499 0.5350 2.6907 0.1427

Ours 0.0434 0.5153 2.5013 0.1342

loss keeps declining while the accuracy appreciates. This signifies that the network is learning

as the training proceeds. It is worth noting that we are not solemnly after a very high accuracy

depth estimation network as this comes at a computational cost and the depth estimation

network is just one part of the TransPose pipeline. Thus, a reasonable trade-off between

computational cost and accuracy can be established to satisfy both decent estimation and

future real-time implementation. Hence, the depth results are satisfactory for our purpose.
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The qualitative result is shown in Fig. 5.23. Samples from all the classes encompassing

their ground truths and the corresponding predictions are shown. A colour map is added to

the depth images for visualisation.

Further comparison with other methods is carried out across each class of fruit. Fig

5.24 shows the comparison of each class of the fruit dataset using the Abs-rel and sq-rel

metrics. From the results, the proposed depth network outperformed all the methods across

all the fruit classes. For the sq-rel, Our network performs better in the banana class and

slightly performs better in the other fruit classes. Similarly, Fig 5.25 compares the RMSE

and RMSElog of each class of the fruit dataset. The proposed network performs better on

the banana, orange and lemon class using the RMSE metric and compares with (Kuznietsov

et al., 2017) on the apple and avocado class. For the RMSElog, this network outperforms in

the apple, avocado, banana and lemon classes.

5.7.2 Pose Estimation results

A total of 20 test frames are sampled for the 6DoF pose estimation and compared to the ground

truth and predicted poses. The translation [tx, ty, tz]
T and the quaternion [Qx,Qy,Qz,Qw]

T

were compared for all fruit classes as shown from Fig 5.26 - 5.35. The ground truth poses

are plotted alongside the prediction to visualise the deviation between the two. The ground

truth is obtained as the relative pose provided between the camera and the fruits using the

tracking system which is represented by red on the figures. The prediction on the other hand

is the output from the TransPose model which is represented by green on the figures. It can

be observed that the proposed network prediction compares well with the ground truth pose

(translation and rotation) across all the fruit classes.
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Fig. 5.23 Qualitative results of the depth prediction network. The left column shows the
ground truth RGB Images of 5 classes. The middle column shows the ground truth depth
images of the corresponding RGB images. The right column shows the predicted depth
images from our network.
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Fig. 5.24 Abs-rel and sq-rel metric comparison with other methods in the literature. Each
fruit class with the corresponding evaluation metric is shown.

Fig. 5.25 RMSE and RMSElog metric comparison with other methods in literature. Each fruit
class with the corresponding evaluation metric is shown.
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Fig. 5.26 Translation [tx, ty, tz]
T across 20 frames for apple fruit class. Red is the ground truth

while green is the prediction.

Fig. 5.27 quaternion [Qx,Qy,Qz,Qw]
T across 20 frames for apple fruit class. Red is the

ground truth while green is the prediction.

Fig. 5.28 Translation [tx, ty, tz]
T across 20 frames for avocado fruit class. Red is the ground

truth while green is the prediction.
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Fig. 5.29 quaternion [Qx,Qy,Qz,Qw]
T across 20 frames for avocado fruit class. Red is the

ground truth while green is the prediction.

Fig. 5.30 Translation [tx, ty, tz]
T across 20 frames for banana fruit class. Red is the ground

truth while green is the prediction.

147



TransPose: A Transformer-based 6DoF Object Pose Estimation Network with Depth
Refinement

Fig. 5.31 quaternion [Qx,Qy,Qz,Qw]
T across 20 frames for banana fruit class. Red is the

ground truth while green is the prediction.

Fig. 5.32 Translation [tx, ty, tz]
T across 20 frames for lemon fruit class. Red is the ground

truth while green is the prediction.
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Fig. 5.33 quaternion [Qx,Qy,Qz,Qw]
T across 20 frames for lemon fruit class. Red is the

ground truth while green is the prediction.

Fig. 5.34 Translation [tx, ty, tz]
T across 20 frames for orange fruit class. Red is the ground

truth while green is the prediction.
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Fig. 5.35 quaternion [Qx,Qy,Qz,Qw]
T across 20 frames for orange fruit class. Red is the

ground truth while green is the prediction.

The qualitative result from some sample frames from the fruit dataset is shown in Fig

5.36. It shows different frames of different fruit classes with their respective bounding boxes.

Fig. 5.36 Qualitative samples from the fruit dataset across all the classes

Table 5.4 shows a detailed evaluation of some objects from the YCB dataset using the

metric in Eq. 5.20 and Eq. 5.21.
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Table 5.4 Pose estimation Comparison using various approaches on some objects from
YCB-V Dataset. Symmetrical objects are highlighted in red

ADD (Higher is better)

Object T6D-Direct PoseCNN TransPose

mug 72.1 57.7 75.7

tuna ősh can 59.0 70.4 60.2

sugar box 81.8 68.6 84.5

bowl 91.6 69.7 89.7

master chef can 61.5 50.9 63.4

tomato soup can 72.0 66.0 75.6

wood block 90.7 65.8 90.7

pudding box 72.7 62.9 78.3

banana 87.4 91.3 90.4

bleach cleanser 65.0 50.5 70.2

ADD-S (Higher is better)

mug 89.8 78.0 90.1

tuna ősh can 92.2 87.9 91.7

sugar box 90.3 84.3 93.1

bowl 91.6 69.7 92.3

master chef can 91.9 84.0 92.4

tomato soup can 88.9 80.9 90.8

wood block 90.7 65.8 90.6

pudding box 85.1 79.0 88.1

banana 93.8 85.9 94.5

bleach cleanser 83.0 71.9 84.3

Mean (ADD) 75.38 65.38 77.87

Mean (ADD-S) 88.50 80.44 91.52
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It can be observed that the TransPose model outperforms the other methods using the

ADD metric in all the objects except the tuna fish can, bowl, wood block and banana where

the network closely compares with the other methods. Similarly, using the ADD-S metric,

TransPose outperforms the other methods except for the objects tuna fish can and wood

block.

A similar comparison was conducted for the fruit dataset using the ADD and ADD-S

metrics and the results are summarised in Table 5.5.

Table 5.5 Pose estimation Comparison using various approaches on some objects from
YCB-V Dataset. Symmetrical objects are highlighted in red

ADD (Higher is better)

Object T6D-Direct PoseCNN TransPose

Apple 78.7 62.4 82.4

Avocado 81.3 71.4 82.6

Banana 90.4 76.6 92.4

Orange 71.4 59.7 79.3

Lemon 89.5 71.9 89.8

ADD-S (Higher is better)

Apple 87.5 73.2 89.7

Avocado 86.2 82.9 92.6

Banana 92.7 82.3 93.2

Orange 84.6 80.2 87.8

Lemon 91.5 83.6 94.3

Mean (ADD) 82.26 68.40 85.30

Mean (ADD-S) 89.73 78.74 90.79

The mean from Table 5.4 and Table 5.5 shows the overall performance of the TransPose

model across the sample objects. From the mean ADD and ADD-S, We can deduce that the

depth refinement module improves the performance of 6 DoF pose estimation.
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5.8 Conclusion and Future Work

This chapter proposed TransPose, an improved transformer-based 6DoF pose estimation

network that utilises a depth refinement module to improve the overall performance. In

contrast to other multi-modal networks that require two inputs, the TransPose network utilises

an RGB image for the 6D pose estimation and the depth refinement with the aid of a depth

estimation network. The 6D poses are directly regressed using the transformer network

and further refined with the depth network. The results of the depth network are compared

with other methods using the standard evaluation metrics. The performance of the depth

network satisfies the purpose of 6D pose refinement. The results obtained using the standard

evaluation metrics show a competitive outcome. Furthermore, A multi-modal fruit dataset

was specially curated purposely for 6D pose estimation which is the first of its kind. The

dataset encompasses an RGB image modality, depth image modality and 6D pose ground

truth obtained from a tracking system. Thus, TransPose results are also evaluated on the

fruit dataset to facilitate fruit-picking applications. TransPose solves the problem of pose

estimation even when the platform is not aerial as in Chapter 4. It furthermore addresses

the concerns of agricultural activities that require not only translation data but also rotation.

This work shows the possibilities of AI in simplifying the pose estimation problem that finds

applications in most agriculture activities (see Section 1.4) using a cheap monocular camera

as a tool. In the future, the dataset can be enriched with more fruit classes and also provide

more scenarios such as outdoor, leaves-occluded frames and trajectories. Also, the real-time

onboard deployment of TransPose in conjunction with a manipulator for real-time fruit

picking application can be explored by integrating the TransPose model into the pipeline.
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Chapter 6
A Virtual Reality Teleoperation Pipeline for

Precision Agriculture

Following the success of the TransPose model presented in Chapter 5, the idea of

robotics teleoperation from a virtual environment becomes possible. Virtual reality

as a tool provides an immersive experience in a 3D environment that allows users

to visualise and interact with robots in such environments. Users benefit from better

situational awareness to effectively perform remote tasks. In this chapter, we discuss a

seamless teleoperation pipeline that interfaces virtual reality with robots for precision

agriculture tasks. This pipeline allows users to visualise and control robots from a

virtual environment thereby giving a telepresence advantage to users. ROS is utilised

to accept data from a Unity gaming platform. The TransPose model is an essential

component of the pipeline and is incorporated into the framework to estimate the 6DoF

pose of the target fruit in real-time. We conducted an assessment of the 6DoF pose

application that estimates and manipulates the pose of fruit targets within a virtual

world. The goal is to mimic real-world actions to successfully grasp or harvest the fruit.

Chapter abstract
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6.1 Motivation

Industries are rapidly adopting robotic platforms to automate their processes. This is likened

to the ability of such platforms to perform tasks with high precision with a lesser completion

time. Tasks that are hazardous will require minimal physical involvement to minimise the

risk of injuries. However, some of these tasks will require a substantial level of interaction

especially if the environment is uncertain. Tasks such as military operations (Kot and Novák,

2018; Solanes et al., 2022), medical application (Guzmán Ortiz et al., 2021; Law et al., 2021;

Lim et al., 2021), disaster management (Habibian et al., 2021; Saputra et al., 2021; Sun

et al., 2021), space operation (Jia et al., 2022; Schuster et al., 2020; Yin et al., 2022) and

complex agricultural operations will not benefit greatly from a fully autonomous system

due to many uncertainties associated with the nature of the challenges. Tele-operated robots

with humans in the loop is a more suitable approach to such tasks as humans are often able

to assess the uncertainties in the environment and take the necessary actions. Agriculture

is a key sector to human survival. However, the continuous labour shortage has resulted

in the advent of robotic platforms to perform agricultural activities to ensure continuous

food supply. The activities such as irrigation (Aronson, 2013), harvesting (Wei et al., 2014),

seeding (Amrita et al., 2015), fertilizer application (Adamides et al., 2017), crop monitoring

(Ishibashi et al., 2013) and crop handling (Han et al., 2016) are common tasks that have

benefited from robotic approach. However, some tasks such as weeding and occluded crop

harvesting can be complex with many uncertainties in nature and will require more human

intervention and monitoring. Fig 6.1 shows the robotics platforms in both the real and virtual

worlds.

Teleoperation involves the controlling of a system remotely from a distant location over

some form of communication network. This increases human safety and provides the ability

to explore potentially dangerous or unknown locations. Conventionally, the robot perception

is obtained by streaming from a camera or creating a point cloud map to understand the

robot scene. However, this does not allow the user some privileges like having the sensation

of being in the scene to understand it properly. Telepresence gives a user the immersive

experience of actually being in the scene of action. In this chapter, we present a seamless
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Fig. 6.1 Figure showing the set-up of the platform (Franka robotic manipulator and Jackal
ground robot) in both Virtual and Real worlds.

teleoperation pipeline for virtual reality - robot interface applied to precision agriculture

which we call VitRob. The VitRob pipeline has the following contributions:

• It is a seamless virtual reality - robot teleoperation pipeline that leverages ROS and

allows users to control robots from a remote location.

• The pipeline allows users the benefit of telepresence in the form of a virtual world. This

gives an immersive experience to users for better scene understanding and visualisation.

• The pipeline allows flexibility for integration with other functionalities. We integrated

a 6DoF pose estimation nmodel for target detection and rendering.

6.2 Related Work

Automation of many tasks is nowadays easily implemented using Artificial Intelligence

(AI). However, some applications are too complex and uncertain to fully automate and

will often require humans in the loop. Robotics teleoperation is continuously evolving as
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researchers dwell into more adventurous and hazardous applications of robots. Research

such as space exploration (Chen et al., 2019), underwater world (Brantner and Khatib, 2021;

Sivčev et al., 2018), radioactive and aerial locations (Abi-Farraj et al., 2019; Bandala et al.,

2019; Isop et al., 2019; Suarez et al., 2020) can benefit from this human-robot interactions.

Some researchers have explored more intricate applications such as rescue missions (Kono

et al., 2019) and medical surgeries (Chen et al., 2020; Saracino et al., 2020; Yoon et al.,

2018). Many other contributions have been made to the implementation of human-robot

teleoperation (Girbés-Juan et al., 2022; Lu et al., 2017; Nicolis et al., 2018; Selvaggio et al.,

2018).

A new trend in teleoperation-based research is telepresence (Niemeyer et al., 2016). This

gives the user a feeling of being in the scene of action. This concept is facilitated by virtual

and augmented reality (Gorjup et al., 2019), haptic devices (Selvaggio et al., 2019), visual

interfaces(Yoon et al., 2018) or a mixture of them (Clark et al., 2019; Girbes-Juan et al.,

2020; Saracino et al., 2020).

In agriculture, the frequent change of environmental factors such as climate, farm terrain,

crop growth stages and morphology can cause many uncertainties while modelling an auto-

mated system. To effectively perform some tasks under such conditions, human intervention

is required at some point. Some works have been conducted to facilitate agricultural tasks

using teleoperation technique (Adamides et al., 2013, 2014, 2017; Bechar and Edan, 2003;

Godoy et al., 2010). This technique allows users to supervise the performance of complex

tasks in uncertain conditions from a comfortable remote area.

The mentioned methods for teleoperation in agriculture do not necessarily give the user an

immersive experience of the scene through virtual reality. As such, real-time understanding

of the scene is not fully perceived resulting in uncertainties and low efficiency in task

performance. Additionally, these methods are implemented strictly for a particular task and

do not easily generalise to other applications.
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6.3 VitRob Pipeline

The VitRob pipeline as seen in Fig 6.2 can be grouped into the following components:

• Virtual Environment

• Simulation Environment

• Real-time Environment

• TransPose

• ROS architecture

Fig. 6.2 Block Diagram showing the components of the VitRob pipeline and the connectivity
between the various worlds (virtual, simulation and real-world)

6.3.1 Virtual Environment

The Virtual environment workstation encompasses the VR headset, controllers and a computer

system. The user visualises the environment with the aid of an HTC Vive Pro headset (Vive,
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nd). It has a combined resolution of 4896×2448 pixels, 120◦ FOV and up to 120Hz refresh

frequency rate.

The Virtual environment is developed using the Unity Platform (Technologies, nd). This

allows us to model the robot and the accompanying sensors in the virtual world. Fig. 6.3

and 6.4 show the model of the robotic manipulator and the ground robot respectively. The

Manipulator environment encompasses the robotic manipulator model with an accompanying

end-effector and the target. The ground robot environment consists of the Jackal robot with

the accompanying sensor (camera) and also the camera stream output for visualising the

real-time robot camera feed. It is pertinent that the positions and dimensions of the modelled

objects should correspond to the real objects as this gives a better scene understanding. These

parameters such as robot pose, odometry, joints etc. can easily be updated through ROS

with the aid of the ROS-sharp library (Martin, 2018) by transmitting them over a wireless

network. The rendering of the objects then takes such parameters into consideration to render

an accurate scene.

Fig. 6.3 Virtual Reality Set-Up for the Robotic Manipulator

Fig. 6.4 Virtual Reality Set-Up for the Ground Robot
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Unlike other approaches that use a third-party controller, our pipeline uses the generic

VR headset controller. This way, the package will not depend on a third-party controller

implementation but rather a plug-and-play solution. The keys on the controller are mapped

to perform specific functions and thus the signals from the keys are transmitted wirelessly to

the ROS server which is then further remapped to implement the desired action.

VR Hardware Setup

The setup consists of a headset, two controllers, a link box, and a base station. The headset

shown in Fig. 6.5 is equipped with a Headset strap to hold the headset on the user’s head, a

tracking sensor to track the motion of the user, a camera lens to view the surroundings of the

user, an Earphone for audio, Status light to indicate the status of the headset, Lens distance

button to correct the lens distance, proximity sensor, and lenses to view the virtual world.

Fig. 6.5 VR headset and labeling

The VR controller shown in Fig. 6.6 has many buttons to accommodate multiple inputs

from the user. It has a menu button, a trackpad, a start button, a grip button, a trigger, and

motion sensors.

The VR link box in Fig. 6.7 is used to connect the headset to a computer. It is powered

through the power port with a power cable. The display port and the USB port are used to

convey audio and video from the computer to the VR headset.

The VR base station in Fig. 6.8 is used to tracking the motion of the headset and the

controllers. The front panel beams signals to the headset and tracks the movement of the

headset so that the same motion is replicated in the virtual world.
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Fig. 6.6 VR controller and labeling

Fig. 6.7 VR link box and labeling

Fig. 6.8 VR base station and labeling

6.3.2 Simulation Environment

The pipeline provides a simulation avenue through the simulation environment. This allows

users to test solutions before deploying them to real platforms and gives users a safety net to

prevent accidents and equipment misuse. A computer with a Gazebo simulation environment

(Gazebo, 2018) is utilised for this purpose. The model of both robots are shown in Fig. 6.9.

The Jackal robot and Panda robot package (Christoph, 2020; Mike, 2020) are obtainable as

open-source for development. The simulation equivalent of the intel real sense camera sensor

is attached to test the image transmission pipeline. The important published topics such as
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the odometry, robot base, joint positions and image topic are transmitted to the unity platform

over a WebSocket so that the virtual reality user can have access to them as seen in Fig. 6.12.

Fig. 6.9 Robotic Manipulator and Ground Robot Models in Gazebo Simulator

6.3.3 Real-time Environment

The physical robots (Jackal and Panda) are used for real-time teleoperation. The real-time

setup for both platforms (Jackal and Panda) are shown in Fig. 6.10 and 6.11. The Jackal

robot is a 4-wheeled portable and fast research ground vehicle. It has an Nvidia TX2 onboard

processor, IMU and GPS integrated. It also provides support to additional sensors so users

can easily utilise the system such as the intel real sense camera. The Panda manipulator is a 7

Degree Of Freedom robotic arm with a payload capacity of up to 3kg. All the robots served

as a client on the wireless network and were interfaced with the virtual environment via unity

by transmitting data through a WebSocket. The sensor data are published as rostopics on the

host platforms. Users are then able to subscribe to the topics from the virtual environment

workstation.

6.3.4 TransPose

TransPose is the transformer-based 6DoF pose estimation network earlier proposed in Chapter

5. The network is utilised in this pipeline to estimate the 6DoF pose of our target relative

to the base of the robot. The target is spawned with the corresponding relative pose in the

162



6.3 VitRob Pipeline

Fig. 6.10 Real-time Set-Up for the Robotic Manipulator

Fig. 6.11 Real-time Set-Up for the Ground Robot

virtual world so that the user can use the manipulator while visualising in the virtual world to

acquire the target.

6.3.5 ROS architecture

The interfacing of the robots and the virtual reality is possible through ROS. The summary of

the proposed architecture is shown in Fig. 6.12. The image topic is acquired from the camera

and is utilised as the input for the 6DoF pose estimation via the TransPose model. The image

and the estimated 6DoF pose are transmitted via the ROS bridge to the ROS sharp node

running on the Unity platform. These topics are then subscribed and the images are rendered

in real-time in the virtual world to allow the user to visualise the real scene of action. Due to

limited bandwidth, we transmit the compressed versions of the images to allow other node

instances to run smoothly and simultaneously.

The necessary data from the physical robots such as base, odometry, joints, and gripper

is acquired by utilising their individual ROS packages. The data are then transmitted in the

same manner to the virtual environment workstation. These data updates at a refresh rate
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of 40Hz and reflect on the robot spawned in the virtual world. These data are important for

accurate scene construction and re-construction to allow users to have an up-to-date real-time

situation.

Fig. 6.12 Figure showing the ROS architecture including the messages published and sub-
scribed to
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6.4 Results

The results obtained are presented in three categories:

• Unmanned Ground Vehicle (UGV) Motion

• Target Position Estimation

• Robotic Manipulator Motion

6.4.1 Unmanned Ground Vehicle (UGV) Motion

The UGV is tracked in the real world while operating from the virtual world. The ground

vehicle is navigated toward the target whose 6D pose is to be estimated. The experiment is

repeated for 5 different scenarios and the motions were recorded as shown in Fig. 6.13 - 6.20.

The scenarios are created by altering the initial position of the UGV and navigating it from

within the virtual environment using the controllers towards the target positions.

Scenario 1 The UGV is placed at position [X ,Y ] = [−0.08,0.38]. The UGV is then controlled

from the virtual environment to a destination position [X ,Y ] = [1.85,0.65].

Fig. 6.13 Scenario 1, UGV translation [X, Y] in the real world while controlling from the
virtual world to reach the target’s position
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Fig. 6.14 Scenario 1, UGV quaternion [X, Y, Z, W] in the real world while controlling from
the virtual world to reach the target’s position

Scenario 2 The UGV is placed at position [X ,Y ] = [1.48,−0.3]. The UGV is then

controlled from the virtual environment to a destination position [X ,Y ] = [−0.08,0.56].

Fig. 6.15 Scenario 2, UGV translation [X, Y] in the real world while controlling from the
virtual world to reach the target’s position
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Fig. 6.16 Scenario 2, UGV quaternion [X, Y, Z, W] in the real world while controlling from
the virtual world to reach the target’s position

Scenario 3 The UGV is placed at position [X ,Y ] = [0.8,−0.8]. The UGV is then

controlled from the virtual environment to a destination position [X ,Y ] = [−0.9,0.5].

Fig. 6.17 Scenario 3, UGV translation [X, Y] in the real world while controlling from the
virtual world to reach the target’s position
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Fig. 6.18 Scenario 3, UGV quaternion [X, Y, Z, W] in the real world while controlling from
the virtual world to reach the target’s position

Scenario 4 The UGV is placed at position [X ,Y ] = [1.05,1.45]. The UGV is then

controlled from the virtual environment to a destination position [X ,Y ] = [0.05,0.5].

Fig. 6.19 Scenario 4, UGV translation [X, Y] in the real world while controlling from the
virtual world to reach the target’s position
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Fig. 6.20 Scenario 4, UGV quaternion [X, Y, Z, W] in the real world while controlling from
the virtual world to reach the target’s position

Scenario 5 The UGV is placed at position [X ,Y ] = [−1.05,0.35]. The UGV is then

controlled from the virtual environment to a destination position [X ,Y ] = [0.65,−0.80].

Fig. 6.21 Scenario 5, UGV translation [X, Y] in the real world while controlling from the
virtual world to reach the target’s position
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Fig. 6.22 Scenario 5, UGV quaternion [X, Y, Z, W] in the real world while controlling from
the virtual world to reach the target’s position

These results show the corresponding commands issued in the virtual world indeed are

taking effect in the real world. The continued change of the position coordinates from the

plots shows that the platform is not fixed but rather in continuous motion in consonant with

the commands received. Since the ground truth of the destinations is known and mirrored in

the virtual world, the user can simply use the controllers to control the UGV to the desired

goal. Thus, we can deduce that the teleoperation of the UGV from within the virtual world

has been successfully achieved.

6.4.2 Target Position Estimation

Upon reaching the target, the TranPose neural network pipeline is utilised to estimate the

actual 6DoF pose of the target. The estimated pose is used to spawn the target in the virtual

world. This is essential because the Unity virtual environment uses the 6DoF pose to initialise

the target’s position in the virtual world. The target’s relative pose to the position of the

robotic manipulator is then used to grasp the target in the virtual world. The belief is that the

same action is being implemented in reality thus teleoperating the platform. The estimated

results for the 5 scenarios are presented in table 6.1.
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Table 6.1 Table showing the 6DoF pose (translation and quaternion) ground truth and
estimation of the target

Translation

Scenario Ground Truth Estimated

X Y Z - X Y Z -

1 -0.350 0.700 0.930 - -0.361 0.720 0.912 -

2 -0.550 0.750 0.930 - -0.581 0.780 0.93 -

3 0.500 0.920 0.930 - 0.493 0.924 0.931 -

4 0.450 1.200 0.930 - 0.450 1.180 0.940 -

5 0.400 0.520 0.930 - 0.400 0.518 0.913 -

Quaternion

Scenario Ground Truth Estimated

X Y Z W X Y Z W

1 0.035 -0.320 -0.045 -0.945 0.034 -0.330 0.044 -0.947

2 0.044 -0.580 -0.035 -0.825 0.046 -0.591 -0.037 -0.830

3 0.050 0.620 -0.050 -0.750 0.051 -0.610 -0.048 -0.750

4 0.025 0.800 -0.010 -0.610 0.030 0.799 -0.010 -0.620

5 0.060 0.600 -0.030 -0.820 0.060 0.580 -0.030 -0.830
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The errors in the estimations are shown in Fig. 6.23 - 6.29. The error is computed as the

absolute difference between the ground truth pose and the estimated pose.

Fig. 6.23 Error in Translation along X-axis

Fig. 6.24 Error in Translation along Y -axis

Fig. 6.25 Error in Translation along Z-axis
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The average error is computed as the mean of all the errors obtained across all the

scenarios. The average error obtained for the translation is 0.0098m, 0.0152m and 0.0092m

along X ,Y and Z axis respectively.

Fig. 6.26 Error in Quaternion Value X

Fig. 6.27 Error in Quaternion Value Y

Fig. 6.28 Error in Quaternion Value Z

The average error obtained for the quaternion values X ,Y,Z and W is 0.0018m, 0.0105m,

0.001m and 0.0058m respectively.
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Fig. 6.29 Error in Quaternion Value W

6.4.3 Robotic Manipulator Motion

Finally, the trajectories are implemented by the robotic manipulator to grasp the target. These

trajectories are observed and recorded so they can easily be evaluated. The trajectory is

manually implemented in the virtual world since the target’s 6DoF pose has already been

estimated by the camera and the target’s model has been spawned to the estimated location

in the virtual world. Thus, while performing the grasping in the virtual world, the same

manoeuvre is implemented in the real world. Fig. 6.30 - 6.39 show the trajectories for the 5

scenarios implemented for grasping the fruit.

Scenario 1 The end-effector is controlled from position [X ,Y,Z] = [0.1,0.55,1.0] from

the virtual environment to a destination position [X ,Y,Z] = [−0.35,0.70,0.9]. The plot in

Fig. 6.30 shows the trajectory profile being implemented in the real time environment. The

respective rotation profile throughout the motion are shown in Fig. 6.31.
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Fig. 6.30 Scenario 1, Manipulator’s translation [X, Y, Z] in the real world while controlling
from the virtual world to reach the target’s position

Fig. 6.31 Scenario 1, Manipulator’s quaternion [X, Y, Z, W] in the real world while controlling
from the virtual world to reach the target’s position

Scenario 2 The end-effector is controlled from position [X ,Y,Z] = [−0.2,0.8,0.92] from

the virtual environment to a destination position [X ,Y,Z] = [−0.59,0.70,0.92]. The plot in

Fig. 6.32 shows the trajectory profile being implemented in the real time environment. The

respective rotation profile throughout the motion are shown in Fig. 6.33.
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Fig. 6.32 Scenario 2, Manipulator’s translation [X, Y, Z] in the real world while controlling
from the virtual world to reach the target’s position

Fig. 6.33 Scenario 2, Manipulator’s quaternion [X, Y, Z, W] in the real world while controlling
from the virtual world to reach the target’s position

Scenario 3 The end-effector is controlled from position [X ,Y,Z] = [0.08,0.8,0.94] from

the virtual environment to a destination position [X ,Y,Z] = [0.45,0.87,0.94]. The plot in

Fig. 6.34 shows the trajectory profile being implemented in the real time environment. The

respective rotation profile throughout the motion are shown in Fig. 6.35.
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Fig. 6.34 Scenario 3, Manipulator’s translation [X, Y, Z] in the real world while controlling
from the virtual world to reach the target’s position

Fig. 6.35 Scenario 3, Manipulator’s quaternion [X, Y, Z, W] in the real world while controlling
from the virtual world to reach the target’s position

Scenario 4 The end-effector is controlled from position [X ,Y,Z] = [0.2,0.5,0.95] from

the virtual environment to a destination position [X ,Y,Z] = [0.45,1.19,0.95]. The plot in

Fig. 6.36 shows the trajectory profile being implemented in the real time environment. The

respective rotation profile throughout the motion are shown in Fig. 6.37.
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Fig. 6.36 Scenario 4, Manipulators translation [X, Y, Z] in the real world while controlling
from the virtual world to reach the target’s position

Fig. 6.37 Scenario 4, Manipulator’s quaternion [X, Y, Z, W] in the real world while controlling
from the virtual world to reach the target’s position

Scenario 5 The end-effector is controlled from position [X ,Y,Z] = [0.0,0.55,1.0] from

the virtual environment to a destination position [X ,Y,Z] = [0.45,0.52,0.92]. The plot in

Fig. 6.38 shows the trajectory profile being implemented in the real time environment. The

respective rotation profile throughout the motion are shown in Fig. 6.39.
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Fig. 6.38 Scenario 5, Manipulator’s translation [X, Y, Z] in the real world while controlling
from the virtual world to reach the target’s position

Fig. 6.39 Scenario 5, Manipulator’s quaternion [X, Y, Z, W] in the real world while controlling
from the virtual world to reach the target’s position

These trajectories show that the robotic manipulator is in motion and moves continuously

toward the target as intended by the user from the virtual environment. The tracking data

shows how the user implements the trajectory in the virtual world and thus reflects in reality

until the target is acquired.
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6.5 Conclusion and Future Work

VitRob Pipeline, A seamless teleoperation pipeline for an advanced virtual reality-robot inter-

face is proposed in this chapter. Although the pipeline is versatile, The chapter demonstrated

the effectiveness of this pipeline by performing simple fruit harvesting/grasping motions in

precision agriculture. The pipeline benefits users with an immersive experience in the form

of a virtual world which allows the user to take a better-informed decision from a remote

location. The transPose model earlier proposed in Chapter 5 is integrated to detect the fruit

and estimate the position. The results of the motions performed in the virtual world and the

Real world are observed and recorded. These motions executed from the virtual environment

accurately match the real-world motion with minimal latency.

In the future, a DNN model can be investigated to perform a continuous real-time

estimation while updating the virtual scene with little to no latency about sudden changes

in the environment. This will provide users with a better telepresence experience in real

time. Also, the collaboration between many platforms using this pipeline to simultaneously

execute commands in a multi-agent scenario with no latency can be investigated.
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Chapter 7
Conclusion

7.1 Overview

Agriculture has been a practice for humans since the existence of life. Humans always find

a way to cultivate their food for livelihood and survival. The continuous increase in food

demand as the world population grows is an important concern for the existence of human

life. Especially in the modern world where the population are opting for white-collar jobs.

Also, conventional crude tools are no longer efficient enough to meet the food demand. The

labour intensity, time consumption and weakness associated with these crude tools can not

be neglected amidst food scarcity.

As human evolves through time, so does their agricultural practices. In modern days,

mechanised farming is considered a major breakthrough in agriculture. It involves the use

of heavy machinery for agricultural practices such as planting, harvesting, tillage, weeding,

etc. Although this method provides a substantial level of efficiency as compared to the use

of crude tools, an argument surrounding the disadvantages of these machines can easily

invalidate their potential. To begin with, the cost of acquiring such machines is very high

and unaffordable to a common farmer. The negative environmental factors attached to these

machines are also damaging to the ecosystem. Due to their weight, they can cause soil

compaction and erosion. Most of the machines run on fossil fuels, releasing greenhouse

gases into the atmosphere and depleting the environment. They also tend to destroy the
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immediate habitat of wildlife. Another factor to take into consideration is the technical

know-how that is required to operate the machines. Since the machines are not equipped with

a level of intelligence to perform tasks autonomously, a lot of effort is put into learning and

operating these machines due to their complexity. Although agricultural activities are often

distinct from each other, some points of confluence established in this thesis (see Section

1.4) as the common backbone or key elements of agricultural activities are classification,

detection and pose estimation. The lack of these abilities is exhibited by the farm machines

and thus renders them incapacitated for automation and generalisation.

Robotic platforms are often more sustainable, green, and efficient platforms for many

applications ranging from medical, military, space and industrial activities. Robotics in

agriculture offers the following advantages over mechanised farming:

• Efficiency: Robotic platforms can cover a large field in a short time while working

round-the-clock.

• Precision: Due to their designs, they can perform tasks with high precision that can

not be achieved using crude tools and heavy machinery.

• Sustainability: Robotics platforms do not run on fossil fuel and thus do not emit

greenhouse gases. As they deal with precision, they reduce the wastage of harmful

chemicals such as pesticides, herbicides, and insecticides on the environment.

• Data-Driven: Robotic platforms are equipped with multiple sensors that gather data.

The data is used by the robot to implement tasks with high precision.

• Flexibility: A single robotics platform can be used for many agricultural tasks and can

be applied to many varieties of crops.

Although the advantages of robotics platforms over heavy machines have been established,

the notion of robots being able to tackle the three key elements (classify, detect and estimate

pose) has not yet been established. Artificial intelligence allows systems to perform tasks that

would have required human intelligence. They allow systems to reason and make decisions

based on patterns and previous experience. Equipping such algorithms into robotic platforms
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will make a great system that will tackle the three key elements thus automation. These

systems can be used autonomously to ease agricultural practices, enhance crop yield and

sustain the environment at an affordable cost.

The thesis leveraged the potential of artificial intelligence AI and explored how such a

tool can be used for precision agriculture. With AI for classification, detection, and Pose

estimation as focus, The work successfully investigated these elements and proffered state-

of-the-art methods to improve agricultural practices. Unmanned Aerial Vehicles (UAV),

Unmanned Ground vehicles (UGV) and robotic manipulators equipped with the required

affordable sensors were used to facilitate this research. From a conclusive point, the fusion

between AI and robotics platform have been proven possible for precision agricultural

practices in this thesis.

7.2 Summary and Discussion

The objectives of this thesis were established in Section 1.4 and further simplified into

research questions (see 1.4), which are now reviewed as the work concludes with an overview

of the novel contributions made by each Chapter and a discussion of potential future study.

The first contribution of this thesis is in the form of a deep network for weed classification

and detection in precision agriculture in Chapter 3. This work explored both classification

and detection by fusing a classification network (ResNet-50) and a detection model (YOLO)

which we name fused-YOLO. From experimental results, weed types are able to be classified

and assigned bounding boxes. The ability to isolate the object of interest (weed) with high

precision will allow other build-up applications such as selective spraying/weeding. Selective

spraying reduces the quantity of harmful chemicals that are released into the environment

since a target within the FOV can be isolated and sprayed rather than a blanket spraying.

Additionally, since not all types of chemicals work for every plant/weed, the proposed

model comes into play when identifying (type) and isolating (detection) the specie of the

intended target for selective spraying. From a sustainability point of view and as against

mechanised farming, the work addresses the emission of greenhouse gases by utilising a

183



Conclusion

UAV which is clean and sustainable. Another important contribution is the fusion of this

algorithm with an affordable drone to combat the issue of affordability. Moreover, the

solution offers a good level of flexibility in the sense that it can easily be deployed to other

platforms. Conclusively we can sufficiently imply that this work has addressed two research

Questions (see Section 1.4) which reads: Can a robot perform autonomous classification for

agricultural applications in real-time? if yes how?. and Can a robot perform autonomous

detection for agricultural applications in real-time? if yes how?.

Chapter 4 extends the fused-YOLO model to relative position estimation of multiple

weeds facilitated via UKF. The detection bounding boxes are utilised also to estimate the

position of the detected targets. The solution is fast and uses an affordable UAV platform

equipped with a monocular camera while providing a good estimation accuracy. To achieve

this, firstly, the weed is classified and detected by a drone using the fused-YOLO pipeline.

The detection bounding boxes are used to obtain the centre of the weed from the image

frame. The centres are converted to bearing angles relative to the drone and are further

used in a UKF estimation scheme to estimate the position of the detected target. This novel

UAV-integrated deep network detection and relative position estimation scheme exhibited a

fast converging time judging from the simulation and experimental results. Indeed, AI can

extend beyond classification and detection. It can also combine with other mathematical

tools like the UKF to perform other operations like target position estimation. Thus, a notable

contribution of this thesis is also the combination of both tools in a robotic platform to

facilitate precision agriculture through the pose estimation of detected weeds. A typical use

case is in the event of a very large farm that will rather be inefficient for a UGV to patrol.

This solution which is deployable on a UAV can simply fly over this large farm, detect the

weeds, estimates their positions and send these positions to the UGV. The UGV simply

navigates to that exact location as against patrolling the whole field thereby saving time and

resources. Overall, the chapter attempts to address the research question that reads "Can a

robot perform autonomous pose estimation for agricultural applications in real-time? if yes

how?" and has done that successfully.
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This thesis also contributes to the adoption of AI for 6DoF pose estimation in precision

agriculture. A novel pipeline based on a transformer model is proposed and termed Trans-

Pose. As elaborated in Chapter 5, TransPose is an improved transformer-based 6DoF pose

estimation network that utilises a depth refinement module to improve the overall perfor-

mance of the pose estimation. Unlike most 6DoF pose estimation pipelines that leverage

two multimodal inputs, TransPose leverages a single RGB image for the 6D pose estimation

and henceforth extracts depth information from the same RGB image using a lightweight

FPN. The depth refinement module utilises the estimated depth information to improve the

overall accuracy of the 6DoF pose estimation. Competitive results were obtained using

the standard evaluation metrics. Building upon the work in Chapter 4, challenges such as

movability, platform dynamics and availability of space may emanate while adopting the

proposed solution. Thus, the TransPose model addresses this concern by providing a solution

that estimates 6DoF poses with a single image frame using AI, i.e. the need for performing a

trajectory is completely eliminated. The application of this solution in precision agriculture

is very versatile making the solution a robust one. Any application in precision agriculture

involving relative contact between the platforms and the plants, crops etc (such as robots for

harvesting, robots for weed removal, robots for planting, robots for pruning etc) can benefit

from this solution. Again, this buttresses the assertion that indeed a robot can utilise AI for

pose estimation there by answering the third research question.

As part of this research, A novel multi-modal fruit dataset called Fruity was acquired for

6DoF pose estimation. AI for precision agriculture is gradually maturing yet the availability

of the dataset is still an issue. The Fruity dataset is another breakthrough contribution in

the precision agriculture community as the dataset is the first ever to specifically target

6DoF pose estimation of fruits. The dataset is acquired with a rig of sensors mounted on

multiple platforms (UAV and Robotic arm) and also handheld. Trajectories were performed

to facilitate the recording of the outputs in 3 modalities. This consists of depth, RGB and

thermal images. Additionally, the dataset provides the camera’s and target’s 6DoF poses

for each frame of the data capture. The dataset is envisaged to have use cases such as
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fruit classification, fruit detection, fruit 6DoF pose estimation and fruit picking/harvesting

application among others.

VitRob Pipeline, A seamless teleoperation pipeline for an advanced virtual reality-robot

interface is another contribution of this thesis. This pipeline justifies the application of

the earlier proposed TransPose for 6D pose estimation in fruit-picking applications for

precision agriculture. The pipeline allows users to remotely harvest/pick fruit from a virtual

environment with the aid of AI. The integrated TransPose pipeline detects and estimates the

6DoF pose of the target and renders it in the virtual environment. The user who is submerged

in a virtual environment is then able to remotely teleoperate with a robotic manipulator to

acquire the target. This novel pipeline for fruit picking/harvesting in precision agriculture

also provides an immersive experience that can benefit users with better situational awareness

due to telepresence capability through VR. The results of the motions performed in the virtual

world and the Real world were observed and recorded with low latency.

Through well-researched methods and several experiments, this thesis has explored the

possibilities of artificial intelligence (AI) on robotic platforms for precision agriculture.

Although artificial intelligence integration with robotic platforms for precision agriculture

can be very broad considering the numerous and versatile nature of agricultural activities,

the thesis has comprehensively curated some crucial and interesting applications for artificial

intelligence in precision agriculture. This is referred to in the thesis as the key elements.

These elements form the backbone for the majority of precision agricultural activities as

earlier established. Classification, detection, and pose estimation, are the elements forming

the bedrock of the activities. Thus, this research has adequately addressed these key elements

(and teleoperation) using artificial intelligence techniques and opened up more possibilities

for researchers to explore the precision agriculture domain.
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7.3 Future Work

This thesis proposed several methods of integrating AI in robotics platforms to facilitate

precision agriculture. However, some research gaps are required to be covered in order to

thoroughly enhance the exploitation of AI for precision agriculture. This section briefly

covers some potential gaps that may require further investigation or propositions that can

improve the methods presented in this thesis.

This thesis has utilised open sourced dataset as well as a novel custom-made dataset. The

models proposed in this thesis all rely on a dataset for functionality. However, the quest for

better accuracy can depend on the type and richness of the dataset used to train the models.

For example, the deep detector/classifier model’s accuracy proposed in Chapter 3 can be

improved by training the model with a larger dataset. As seen also in section 5.4.4 that

the richness of the dataset can influence the results, a well-distributed dataset with an even

spread can help the accuracy of the trained models. Also, the detector/classifier models can

be evaluated more with similar-looking species that have close characteristics to the used

weeds.

For the custom-acquired dataset, the method of acquisition can impact the quality of the

dataset. The dataset quality utilised can be enriched with more fruit classes with different

geometrical appearances. Although the model in Chapter 5 was utilised for indoor scenar-

ios, An evaluation can be conducted for outdoor scenarios which can be facilitated with

outdoor-oriented datasets. The outdoor dataset can have uncontrolled illumination, varying

backgrounds and leaves-occluded frames to make the evaluation even more interesting. The

custom dataset was acquired on a robotic manipulator and a drone. Other platforms such

as UGV can also be used to perform more intricate trajectories so as to cover more FOVs

thereby enriching the dataset with more platforms and thus more applications.

Chapter 4 extended the use of the detector/classifier model for target position estimation

by performing an elliptic trajectory. An elliptic trajectory was so chosen to cover a reasonable

FOV during the estimation. However, optimizing the trajectory for the estimation can result

in better FOV, and thus more targets can be estimated simultaneously. A study on the optimal

trajectory for each scenario can also be conducted to facilitate faster and more accurate
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convergence. In the case of a monocular sensor, a light network that predicts depth can be

incorporated into the pipeline. This will make the pipeline a more AI oriented technique and

additionally, may provide competitive estimation results. Otherwise, an affordable stereo

camera sensor can also be utilised to directly get the depth between the platform and the

target rather than the estimation-based depth but thus trading off affordability for time and

accuracy.

TransPose pipeline in Chapter 5 can benefit from a multi-perspective estimation setting

where multiple sensors are used to capture the frame of the target from different views.

Although this will likely increase the accuracy of the estimation model, the computational

burden may be substantially high. This is due to the fact that two inputs will be processed

simultaneously in real-time. The trade-off between speed and accuracy needs to be accounted

for. Hence, a high computation facility should be in place for the estimation.

The VR - robot interfacing can be faced with serious latency problems as more features

are added. The volume of data that needs to be exchanged simultaneously can be high for

real-time applications depending on the processor used. An investigation can be conducted

on how to compress the data and provide a more seamless communication channel while

optimising the data exchange. The pipeline can also be used to investigate collaborative

applications between many platforms.

Lastly, as this work targets sustainability, affordability, efficiency and automation vis-a-

vis precision agriculture, factors such as availability, security, risks, laws and locations can

be taken cognisance of in future developments.
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Pfaff, J., Schütz, C., et al. (2016). Selective spraying of grapevines for disease control
using a modular agricultural robot. Biosystems engineering, 146:203–215. DOI: https:
//doi.org/10.1016/j.biosystemseng.2015.12.004.

Oberweger, M., Rad, M., and Lepetit, V. (2018). Making deep heatmaps robust to partial
occlusions for 3d object pose estimation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 119–134. DOI: https://doi.org/10.48550/arXiv.1804.
03959.

Oré, G., Alcântara, M. S., Góes, J. A., Oliveira, L. P., Yepes, J., Teruel, B., Castro, V., Bins,
L. S., Castro, F., Luebeck, D., et al. (2020). Crop growth monitoring with drone-borne
dinsar. Remote Sensing, 12(4):615. DOI: https://doi.org/10.3390/rs12040615.

200



References

Paikekari, A., Ghule, V., Meshram, R., and Raskar, V. (2016). Weed detection using image
processing. International Research Journal of Engineering and Technology (IRJET),
3(3):1220–1222. DOI: https://doi.org/10.13140/RG.2.2.15116.64642.

Parrot (2020). Developer guide sdk 2.0. Accessed July 22, 2022. https://jpchanson.github.io/
ARdrone/ParrotDevGuide.pdf.

Patil, A., Malla, S., Gang, H., and Chen, Y.-T. (2019). The h3d dataset for full-surround
3d multi-object detection and tracking in crowded urban scenes. In 2019 International
Conference on Robotics and Automation (ICRA), pages 9552–9557. IEEE. DOI: https:
//doi.org/10.48550/arXiv.1903.01568.

Pavlakos, G., Zhou, X., Chan, A., Derpanis, K. G., and Daniilidis, K. (2017). 6-dof object
pose from semantic keypoints. In 2017 IEEE international conference on robotics and
automation (ICRA), pages 2011–2018. IEEE. DOI: https://doi.org/10.1109/ICRA.2017.
7989233.

Peng, S., Liu, Y., Huang, Q., Zhou, X., and Bao, H. (2019). Pvnet: Pixel-wise voting network
for 6dof pose estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4561–4570. DOI: https://doi.org/10.1109/TPAMI.2020.
3047388.

Ponda, S., Kolacinski, R., and Frazzoli, E. (2009). Trajectory optimization for target
localization using small unmanned aerial vehicles. In AIAA guidance, navigation, and
control conference, page 6015. DOI: https://doi.org/10.2514/6.2009-6015.

Potena, C., Khanna, R., Nieto, J., Siegwart, R., Nardi, D., and Pretto, A. (2019). Agricolmap:
Aerial-ground collaborative 3d mapping for precision farming. IEEE Robotics and Au-
tomation Letters, 4(2):1085–1092. DOI: https://doi.org/10.1109/LRA.2019.2894468.

Pretto, A., Aravecchia, S., Burgard, W., Chebrolu, N., Dornhege, C., Falck, T., Fleckenstein,
F., Fontenla, A., Imperoli, M., Khanna, R., et al. (2020). Building an aerial–ground
robotics system for precision farming: an adaptable solution. IEEE Robotics & Automation
Magazine, 28(3):29–49. DOI: https://doi.org/10.1109/MRA.2020.3012492.

Puri, V., Nayyar, A., and Raja, L. (2017). Agriculture drones: A modern breakthrough in
precision agriculture. Journal of Statistics and Management Systems, 20(4):507–518. DOI:
https://doi.org/10.1080/09720510.2017.1395171.

Pusphavalli, M. and Chandraleka, R. (2016a). Automatic weed removal system using machine
vision. International Journal of advanced Research in Electronics and Communication
Engineering, 5(3):503–506.

Pusphavalli, M. and Chandraleka, R. (2016b). Automatic weed removal system using machine
vision. International Journal of advanced Research in Electronics and Communication
Engineering (IJARECE), 5(3):503–506.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A. Y.,
et al. (2009). Ros: an open-source robot operating system. In ICRA workshop on open
source software, volume 3, page 5. Kobe, Japan.

201



References

R Shamshiri, R., Weltzien, C., Hameed, I. A., J Yule, I., E Grift, T., Balasundram, S. K.,
Pitonakova, L., Ahmad, D., and Chowdhary, G. (2018). Research and development in
agricultural robotics: A perspective of digital farming. DOI: https://doi.org/10.25165/j.
ijabe.20181104.4278.

Rad, M. and Lepetit, V. (2017). Bb8: A scalable, accurate, robust to partial occlusion method
for predicting the 3d poses of challenging objects without using depth. In Proceedings
of the IEEE international conference on computer vision, pages 3828–3836. DOI: https:
//doi.org/10.1109/ICCV.2017.413.

Rajmane, R., Gitay, N., Yadav, A., and Patil, A. (2020). Precision agriculture and
robotics. International Journal of Engineering Research. DOI: https://doi.org/10.17577/
IJERTV9IS010019.

Redding, J. D., McLain, T. W., Beard, R. W., and Taylor, C. N. (2006). Vision-based
target localization from a fixed-wing miniature air vehicle. In 2006 American Control
Conference, pages 6–pp. IEEE. DOI: https://doi.org/10.1109/ACC.2006.1657153.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016a). You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 779–788. DOI: https://doi.org/10.48550/arXiv.1506.02640.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016b). You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 779–788. DOI: https://doi.org/10.48550/arXiv.1506.02640.

Redmon, J. and Farhadi, A. (2017a). Yolo9000: better, faster, stronger. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7263–7271. DOI:
https://doi.org/10.1109/CVPR.2017.690.

Redmon, J. and Farhadi, A. (2017b). Yolo9000: better, faster, stronger. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7263–7271. DOI:
https://doi.org/10.1109/CVPR.2017.690.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing
systems, 28. DOI: https://doi.org/10.1109/TPAMI.2016.2577031.

Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., and Savarese, S. (2019). Gen-
eralized intersection over union: A metric and a loss for bounding box regression. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 658–666. DOI: https://doi.org/10.1109/CVPR.2019.00075.

Rothganger, F., Lazebnik, S., Schmid, C., and Ponce, J. (2003). 3d object modeling and
recognition using affine-invariant patches and multi-view spatial constraints. In 2003
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003.
Proceedings., volume 2, pages II–272. IEEE. DOI: https://doi.org/10.1109/CVPR.2003.
1211480.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). Orb: An efficient alternative
to sift or surf. In 2011 International conference on computer vision, pages 2564–2571.
IEEE. DOI: https://doi.org/10.1109/ICCV.2011.6126544.

202



References

Ruiz, J. A. D. and Aouf, N. (2017). Unscented kalman filter for vision based target localisation
with a quadrotor. ICINCO (2), 2. DOI: https://doi.org/10.5220/0006474404530458.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal representations
by error propagation. Technical report, California Univ San Diego La Jolla Inst for
Cognitive Science.

Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., and McCool, C. (2016). Deepfruits: A
fruit detection system using deep neural networks. sensors, 16(8):1222. DOI: https:
//doi.org/10.3390/s16081222.

Saputra, R. P., Rakicevic, N., Kuder, I., Bilsdorfer, J., Gough, A., Dakin, A., de Cocker, E.,
Rock, S., Harpin, R., and Kormushev, P. (2021). Resqbot 2.0: an improved design of a
mobile rescue robot with an inflatable neck securing device for safe casualty extraction.
Applied Sciences, 11(12):5414. DOI: https://doi.org/10.3390/app11125414.

Saracino, A., Oude-Vrielink, T. J., Menciassi, A., Sinibaldi, E., and Mylonas, G. P. (2020).
Haptic intracorporeal palpation using a cable-driven parallel robot: a user study. IEEE
Transactions on Biomedical Engineering, 67(12):3452–3463. DOI: https://doi.org/10.
1109/TBME.2020.2987646.

Satish Kumar, K. and Sudeep, C. (2007). Robots for precision agriculture. In Electronic
Proceedings of 13th National Conference on Mechanisms and Machines (NaCoMM07),
Bangalore, India, pages 12–13.

Savary, S. and Willocquet, L. (2014). Simulation modeling in botanical epidemiology and
crop loss analysis. Plant Health Instructor, (Online):147.

Saxena, A., Sun, M., and Ng, A. Y. (2008). Make3d: Learning 3d scene structure from
a single still image. IEEE transactions on pattern analysis and machine intelligence,
31(5):824–840. DOI: https://doi.org/10.1109/TPAMI.2008.132.

Schuster, M. J., Müller, M. G., Brunner, S. G., Lehner, H., Lehner, P., Sakagami, R.,
Dömel, A., Meyer, L., Vodermayer, B., Giubilato, R., et al. (2020). The arches space-
analogue demonstration mission: Towards heterogeneous teams of autonomous robots for
collaborative scientific sampling in planetary exploration. IEEE Robotics and Automation
Letters, 5(4):5315–5322. DOI: https://doi.org/10.1109/LRA.2020.3007468.

Selvaggio, M., Abi-Farraj, F., Pacchierotti, C., Giordano, P. R., and Siciliano, B. (2018).
Haptic-based shared-control methods for a dual-arm system. IEEE Robotics and Automa-
tion Letters, 3(4):4249–4256. DOI: https://doi.org/10.1109/LRA.2018.2864353.

Selvaggio, M., Moccia, R., Ficuciello, F., Siciliano, B., et al. (2019). Haptic-guided shared
control for needle grasping optimization in minimally invasive robotic surgery. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
3617–3623. IEEE. DOI: https://doi.org/10.1109/IROS40897.2019.8968109.

Simonyan, K. and Zisserman, A. (2014a). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556. DOI: https://doi.org/10.48550/arXiv.
1409.1556.

203



References

Simonyan, K. and Zisserman, A. (2014b). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556. DOI: https://doi.org/10.48550/arXiv.
1409.1556.
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