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Abstract

As the size and complexity of models and datasets grow, so does the need for communication-
efficient variants of stochastic gradient descent that can be deployed to perform parallel
model training. One popular communication-compression method for data-parallel SGD
is QSGD (Alistarh et al., 2017), which quantizes and encodes gradients to reduce com-
munication costs. The baseline variant of QSGD provides strong theoretical guarantees,
however, for practical purposes, the authors proposed a heuristic variant which we call
QSGDinf, which demonstrated impressive empirical gains for distributed training of large
neural networks. In this paper, we build on this work to propose a new gradient quantization
scheme, and show that it has both stronger theoretical guarantees than QSGD, and matches
and exceeds the empirical performance of the QSGDinf heuristic and of other compression
methods.
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1. Introduction

Deep learning is booming thanks to enormous datasets and very large models, leading to
the fact that the largest datasets and models can no longer be trained on a single machine.
One common solution to this problem is to use distributed systems for training. The most
common algorithms underlying deep learning are stochastic gradient descent (SGD) and
its variants, which led to a significant amount of research on building and understanding
distributed versions of SGD.

Implementations of SGD on distributed systems and data-parallel versions of SGD are
scalable and take advantage of multi-GPU systems. Data-parallel SGD, in particular, has
received significant attention due to its excellent scalability properties (Zinkevich et al., 2010;
Bekkerman et al., 2011; Recht et al., 2011; Dean et al., 2012; Coates et al., 2013; Chilimbi
et al., 2014; Li et al., 2014; Duchi et al., 2015; Xing et al., 2015; Zhang et al., 2015; Alistarh
et al., 2017). In data-parallel SGD, a large dataset is partitioned among K processors. These
processors work together to minimize an objective function. Each processor has access to
the current parameter vector of the model. At each SGD iteration, each processor computes
an updated stochastic gradient using its own local data. It then shares the gradient update
with its peers. The processors collect and aggregate stochastic gradients to compute the
updated parameter vector.

Increasing the number of processing machines reduces the computational costs signifi-
cantly. However, the communication costs to share and synchronize huge gradient vectors
and parameters increases dramatically as the size of the distributed systems grows. Commu-
nication costs may thwart the anticipated benefits of reducing computational costs. Indeed,
in practical scenarios, the communication time required to share stochastic gradients and
parameters is the main performance bottleneck (Recht et al., 2011; Li et al., 2014; Seide et al.,
2014; Strom, 2015; Alistarh et al., 2017). Reducing communication costs in data-parallel
SGD is an important problem.

One promising solution to the problem of reducing communication costs of data-parallel
SGD is gradient compression, e.g., through gradient quantization (Dean et al., 2012; Seide
et al., 2014; Sa et al., 2015; Gupta et al., 2015; Abadi et al., 2016; Zhou et al., 2018; Alistarh
et al., 2017; Wen et al., 2017; Bernstein et al., 2018). (This should not be confused with
weight quantization/sparsification, as studied by Wen et al. (2016); Hubara et al. (2016);
Park et al. (2017); Wen et al. (2017), which we do not discuss here.) Unlike full-precision
data-parallel SGD, where each processor is required to broadcast its local gradient in full-
precision, i.e., transmit and receive huge full-precision vectors at each iteration, quantization
requires each processor to transmit only a few communication bits per iteration for each
component of the stochastic gradient.

One popular such proposal for communication-compression is quantized SGD (QSGD),
due to Alistarh et al. (2017). In QSGD, stochastic gradient vectors are normalized to
have unit L2 norm, and then compressed by quantizing each element to a uniform grid of
quantization levels using a randomized method. While most lossy compression schemes do
not provide convergence guarantees, QSGD’s quantization scheme is designed to be unbiased,
which implies that the quantized stochastic gradient is itself a stochastic gradient, only with
higher variance determined by the dimension and number of quantization levels. As a result,
a number of theoretical guarantees are established for QSGD, including that it converges
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under standard assumptions. By changing the number of quantization levels, QSGD allows
the user to trade-off communication bandwidth and convergence time.

Despite their theoretical guarantees based on quantizing after L2 normalization, Alistarh
et al. opt to present empirical results using L∞ normalization. We call this variation QSGDinf.
While the empirical performance of QSGDinf is strong, their theoretical guarantees on the
number of bits transmitted no longer apply. Indeed, in our own empirical evaluation of
QSGD, we find the variance induced by quantization is substantial, and the performance is
far from that of SGD and QSGDinf.

Given the popularity of this scheme, it is natural to ask one can obtain guarantees as strong
as those of QSGD while matching the practical performance of the QSGDinf heuristic. In
this work, we answer this question in the affirmative by providing a new quantization scheme
which fits into QSGD in a way that allows us to establish stronger theoretical guarantees on
the variance, bandwidth, and cost to achieve a prescribed gap. Instead of QSGD’s uniform
quantization scheme, we use an unbiased nonuniform logarithmic scheme, reminiscent of
those introduced in telephony systems for audio compression (Cattermole, 1969). We call
the resulting algorithm nonuniformly quantized stochastic gradient descent (NUQSGD).
Like QSGD, NUQSGD is a quantized data-parallel SGD algorithm with strong theoretical
guarantees that allows the user to trade off communication costs with convergence speed.
Unlike QSGD, NUQSGD has strong empirical performance on deep models and large datasets,
matching that of QSGDinf. Beyond just the stronger theoretical guarantees, NUQSGD also
allows us to employ non-trivial coding to the quantized gradients, as its code-length guarantees
also hold in practice. Specifically, we provide a new efficient implementation for these schemes
using a modern computational framework (Pytorch), and benchmark it on classic large-scale
image classification tasks. Results showcase the practical performance of NUQSGD, which
can surpass that of QSGDinf and of SignSGD with Error Feedback (EF) (Karimireddy et al.,
2019) when employing gradient coding, both in terms of communication-compression and
end-to-end training time.

The intuition behind the nonuniform quantization scheme underlying NUQSGD is that,
after L2 normalization, many elements of the normalized stochastic gradient will be near-zero.
By concentrating quantization levels near zero, we are able to establish stronger bounds on
the excess variance. These bounds decrease rapidly as the number of quantization levels
increases. In fact, we provide a lower bound showing that our variance bound is tight w.r.t.
the model dimension. We establish convergence guarantees for NUQSGD under standard
assumptions for convex and nonconvex problems. Given the importance of momentum-based
methods, we establish convergence guarantees for communication-efficient variants of SGD
with momentum. We have derived a tight worst-case variance upper bound for a fixed set of
arbitrary levels, expressed as the solution to an integer program with quadratic constraints.
We can relax the program to obtain a quadratic program. A coarser analysis yields an upper
bound expressed as the solution to a linear program, which is more amenable to analysis.
Finally, by combining the variance bound with a bound on the expected code-length, we
obtain a bound on the total communication costs of achieving an expected suboptimality
gap. The resulting bound is stronger than the one provided by QSGD.

To study how quantization affects convergence on state-of-the-art deep models, we
compare NUQSGD, QSGD, QSGDinf, and EF-SignSGD focusing on training loss, variance,
and test accuracy on standard deep models and large datasets. Using the same number of
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bits per iteration, experimental results show that NUQSGD has smaller variance than QSGD,
as predicted. The smaller variance also translates to improved optimization performance, in
terms of both training loss and test accuracy. We also observe that NUQSGD matches the
performance of QSGDinf in terms of variance and loss/accuracy. Further, our distributed
implementation shows that the resulting algorithm considerably reduces communication cost
of distributed training, without adversely impacting accuracy. Our empirical results show
that NUQSGD can provide faster end-to-end parallel training relative to data-parallel SGD,
QSGD, and EF-SignSGD on the ImageNet dataset (Deng et al., 2009), in particular when
combined with non-trivial coding of the quantized gradients.

1.1 Summary of Contributions

• We propose a non-uniform gradient quantization method and establish strong theoretical
guarantees for its excess variance and communication costs. These bounds are strictly
stronger than those known for QSGD. In addition, we establish a lower bound on the
variance that shows our bound is tight.

• We proceed to establish stronger convergence guarantees for NUQSGD for convex and
nonconvex problems, under standard assumptions. We establish convergence guarantees
for communication-efficient variants of SGD with momentum.

• For generally spaced levels, we derive tight worst-case variance upper bounds expressed as
an integer quadratic program and present several relaxations of this bound.

• We demonstrate that NUQSGD has strong empirical performance on deep models and
large datasets, both in terms of accuracy and scalability. Thus, NUQSGD closes the gap
between the theoretical guarantees of QSGD and the empirical performance of QSGDinf.

1.2 Related Work

Seide et al. (2014) proposed SignSGD, an efficient heuristic scheme to reduce communication
costs drastically by quantizing each gradient component to two values. (This scheme is
sometimes also called 1bitSGD (Seide et al., 2014).) Bernstein et al. (2018) later provided
convergence guarantees for a variant of SignSGD. Note that the quantization employed by
SignSGD is not unbiased, and so a new analysis was required. As the number of levels is
fixed, SignSGD does not provide any trade-off between communication costs and convergence
speed. Karimireddy et al. (2019) proposed EF-SignSGD, which is an improved version of
SignSGD. We compare NUQSGD and EF-SignSGD empirically.

Sa et al. (2015) introduced Buckwild!, a lossy compressed SGD with convergence guaran-
tees. The authors provided bounds on the error probability of SGD, assuming convexity,
gradient sparsity, and unbiased quantizers.

Wen et al. (2017) proposed TernGrad, a stochastic quantization scheme with three levels.
TernGrad also significantly reduces communication costs and obtains reasonable accuracy
with a small degradation to performance compared to full-precision SGD. TernGrad can be
viewed as a special case of QSGDinf with three quantization levels.
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NUQSGD uses a logarithmic quantization scheme.1 Such schemes have long been
used, e.g. in telephony systems for audio compression (Cattermole, 1969). Logarithmic
quantization schemes have appeared in other contexts recently: Hou and Kwok (2018)
studied weight distributions of long short-term memory networks and proposed to use
logarithm quantization for network compression. Miyashita et al. (2016) and Lee et al.
(2017) proposed logarithmic encodings to represent weights and activations. Li and Sa (2019)
obtained dimension-free bounds for logarithmic quantization of weights. Zhang et al. (2017)
proposed a gradient compression scheme and introduced an optimal quantization scheme,
but for the setting where the points to be quantized are known in advance. As a result, their
scheme is not applicable to the communication setting of quantized data-parallel SGD.

2. Preliminaries: Data-parallel SGD and Convergence

We consider a high-dimensional machine learning model, parametrized by a vector w ∈ Rd.
Let Ω ⊆ Rd denote a closed and convex set. Our objective is to minimize f : Ω→ R, which
is an unknown, differentiable, and β-smooth function. The following summary is based on
(Alistarh et al., 2017).

Recall that a function f is β-smooth if, for all u,v ∈ Ω, we have ‖∇f(u)−∇f(v)‖ ≤
β‖u − v‖, where ‖ · ‖ denotes the Euclidean norm. Let (S,Σ, µ) be a probability space
(and let E denote expectation). Assume we have access to stochastic gradients of f , i.e.,
we have access to a function g : Ω× S → Rd such that, if s ∼ µ, then E[g(w, s)] = ∇f(w)
for all w ∈ Ω. In the rest of the paper, we let g(w) denote the stochastic gradient for
notational simplicity. The update rule for conventional full-precision projected SGD is
wt+1 = PΩ(wt − αg(wt)), where wt is the current parameter input, α is the learning rate,
and PΩ is the Euclidean projection onto Ω.

We say the stochastic gradient has a second-moment upper boundB when E[‖g(w)‖2] ≤
B for all w ∈ Ω. Similarly, the stochastic gradient has a variance upper bound σ2 when
E[‖g(w)−∇f(w)‖2] ≤ σ2 for all w ∈ Ω. Note that a second-moment upper bound implies
a variance upper bound, because the stochastic gradient is unbiased.

We have classical convergence guarantees for conventional full-precision SGD given access
to stochastic gradients at each iteration:

Theorem 1 (Bubeck 2015, Theorem 6.3) Let f : Ω→ R denote a convex and β-smooth
function and let R2 , supw∈Ω ‖w−w0‖2. Suppose that the projected SGD update is executed
for T iterations with α = 1/(β + 1/γ) where γ = R

√
1/T/σ. Given repeated and independent

access to stochastic gradients with a variance upper bound σ2, projected SGD satisfies

E
[
f
( 1

T

T∑
t=0

wt

)]
− min

w∈Ω
f(w) ≤ R

√
σ2

T
+
βR2

2T
. (1)

Following (Alistarh et al., 2017), we consider data-parallel SGD, a synchronous distributed
framework consisting of K processors that partition a large dataset among themselves. This

1. After the completion of this work, we became aware of earlier, independent work by Horváth et al.
(2019), which introduces gradient quantization to exponentially spaced levels (powers of 1/2). They
devise variance bounds for Lp normalization. We obtain tighter variance bound for L2 normalization,
and extend our consideration to any arbitrary sequence of levels beyond powers of 1/2.
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Input: local data, local copy of the parameter vector wt, learning rate α, and K
1 for t = 1 to T do
2 for i = 1 to K do // each transmitter processor (in parallel)
3 Compute gi(wt) ; // stochastic gradient
4 Encode ci,t ← ENCODE

(
gi(wt)

)
;

5 Broadcast ci,t to all processors;

6 for l = 1 to K do // each receiver processor (in parallel)
7 for i = 1 to K do // each transmitter processor
8 Receive ci,t from processor i for each i;
9 Decode ĝi(wt)← DECODE

(
ci,t
)
;

10 Aggregate wt+1 ← PΩ(wt − α
K

∑K
i=1 ĝi(wt));

Algorithm 1: Data-parallel (synchronized) SGD.

framework models real-world systems with multiple GPU resources. Each processor keeps
a local copy of the parameter vector and has access to independent and private stochastic
gradients of f .

At each iteration, each processor computes its own stochastic gradient based on its
local data and then broadcasts it to all peers. Each processor receives and aggregates the
stochastic gradients from all peers to obtain the updated parameter vector. In detail, the
update rule for full-precision data-parallel SGD is wt+1 = PΩ(wt − α

K

∑K
l=1 gl(wt)) where

gl(wt) is the stochastic gradient computed and broadcasted by processor l. Provided that
gl(wt) is a stochastic gradient with a variance upper bound σ2 for all l, then 1

K

∑K
l=1 gl(wt)

is a stochastic gradient with a variance upper bound σ2

K . Thus, aggregation improves
convergence of SGD by reducing the first term of the upper bound in (1). Assume each
processor computes a mini-batch gradient of size J . Then, this update rule is essentially a
mini-batched update with size JK.

Data-parallel SGD is described in Algorithm 1. Full-precision data-parallel SGD is a
special case of Algorithm 1 with identity encoding and decoding mappings. Otherwise, the
decoded stochastic gradient ĝi(wt) is likely to be different from the original local stochastic
gradient gi(wt).

By Theorem 1, we have the following convergence guarantees for full-precision data-
parallel SGD:

Corollary 2 (Alistarh et al. 2017, Corollary 2.2) Let f , R, and γ be as defined in
Theorem 1 and let ε > 0. Suppose that the projected SGD update is executed for T iterations
with α = 1/(β +

√
K/γ) on K processors, each with access to independent stochastic gradients

of f with a second-moment bound B. The smallest T for the full-precision data-parallel SGD
that guarantees E

[
f( 1

T

∑T
t=0 wt)

]
−minw∈Ω f(w) ≤ ε is Tε = O

(
R2 max( B

Kε2
, β2ε)

)
.

3. Nonuniformly Quantized Stochastic Gradient Descent

Data-parallel SGD reduces computational costs significantly. However, the communication
costs of broadcasting stochastic gradients is the main performance bottleneck in large-scale
distributed systems. In order to reduce communication costs and accelerate training, Alistarh
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1
1/21/41/8

0

Figure 1: An example of nonuniform stochastic quantization with s = 3. The point between
the arrows represents the value of the normalized coordinate. It will be quantized to either
1/8 or 1/4. In this case, the point is closer to 1/4, and so will be more likely to be quantized
to 1/4. The probabilities are chosen so that the mean of the quantization is the unquantized
coordinate’s value.

et al. (2017) introduced a compression scheme that produces a compressed and unbiased
stochastic gradient, suitable for use in SGD.

At each iteration of QSGD, each processor broadcasts an encoding of its own compressed
stochastic gradient, decodes the stochastic gradients received from other processors, and
sums all the quantized vectors to produce a stochastic gradient. In order to compress the
gradients, every coordinate (with respect to the standard basis) of the stochastic gradient
is normalized by the Euclidean norm of the gradient and then stochastically quantized to
one of a small number quantization levels distributed uniformly in the unit interval. The
stochasticity of the quantization is necessary to not introduce bias.

Alistarh et al. (2017) give a simple argument that provides a lower bound on the number
of coordinates that are quantized to zero in expectation. Encoding these zeros efficiently
provides communication savings at each iteration. However, the cost of their scheme is
greatly increased variance in the gradient, and thus slower overall convergence. In order to
optimize overall performance, we must balance communication savings with variance.

By simple counting arguments, the distribution of the (normalized) coordinates cannot
be uniform. Indeed, this is the basis of the lower bound on the number of zeros. These
arguments make no assumptions on the data distribution, and rely entirely on the fact
that the quantities being quantized are the coordinates of a unit-norm vector. Uniform
quantization does not capture the properties of such vectors, leading to substantial gradient
variance.

3.1 Nonuniform Quantization

In this paper, we propose and study a new scheme to quantize normalized gradient vectors.
Instead of uniformly distributed quantization levels, as proposed by Alistarh et al. (2017),
we consider quantization levels that are nonuniformly distributed in the unit interval, as
depicted in Figure 1. In order to obtain a quantized gradient that is suitable for SGD, we
need the quantized gradient to remain unbiased. Alistarh et al. (2017) achieve this via a
randomized quantization scheme, which can be easily generalized to the case of nonuniform
quantization levels.

Using a carefully parametrized generalization of the unbiased quantization scheme
introduced by Alistarh et al., we can control both the cost of communication and the
variance of the gradient. Compared to a uniform quantization scheme, our scheme reduces
quantization error and variance by better matching the properties of normalized vectors. In
particular, by increasing the number of quantization levels near zero, we obtain a stronger
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variance bound. Empirically, our scheme also better matches the distribution of normalized
coordinates observed on real datasets and networks.

We now describe the nonuniform quantization scheme: Let s ∈ {1, 2, · · · } be the number of
internal quantization levels, and let L = (l0, l1, · · · , ls+1) denote the sequence of quantization
levels, where l0 = 0 < l1 < · · · < ls+1 = 1. For r ∈ [0, 1], let s̃(r) and p(r) satisfy
ls̃(r) ≤ r ≤ ls̃(r)+1 and r =

(
1−p(r)

)
ls̃(r)+p(r)ls̃(r)+1, respectively. Define τ(r) = ls̃(r)+1−ls̃(r).

Note that s̃(r) ∈ {0, 1, · · · , s}.

Definition 3 The nonuniform quantization of a vector v ∈ Rd is

Qs(v) , [Qs(v1), · · · , Qs(vd)]T where Qs(vi) = ‖v‖ · sign(vi) · hi(v, s) (2)

where, letting ri = |vi|/‖v‖, the hi(v, s)’s are independent random variables such that
hi(v, s) = ls̃(ri) with probability 1− p(ri) and hi(v, s) = ls̃(ri)+1 otherwise.

We note that the distribution of hi(v, s) satisfies E[hi(v, s)] = ri and achieves the
minimum variance over all distributions that satisfy E[hi(v, s)] = ri with support L. We
first focus on a special case of nonuniform quantization with L̂ = (0, 1/2s, · · · , 2s−1/2s, 1)
as the quantization levels. In Section 4.1, we extend our consideration to any arbitrary
sequence of levels.

The intuition behind this quantization scheme is that it is very unlikely to observe
large values of ri in the stochastic gradient vectors of machine learning models. Stochastic
gradients are observed to be dense vectors (Bernstein et al., 2018). Hence, it is natural to
use fine intervals for small ri values to reduce quantization error and control the variance.

After quantizing the stochastic gradient with a small number of discrete levels, each
processor must encode its local gradient into a binary string for broadcasting. We describe
this encoding in Appendix A.

4. Theoretical Guarantees

In this section, we provide theoretical guarantees for NUQSGD, giving variance and code-
length bounds, and using these in turn to compare NUQSGD and QSGD. Please note that
the proofs of Theorems 4, 5, and 13 are provided in Appendices B, C, and D respectively.

Theorem 4 (Variance bound) Let v ∈ Rd. The nonuniform quantization of v satisfies
E[Qs(v)] = v. Then we have

E[‖Qs(v)− v‖2] ≤ εQ‖v‖2 (3)

where εQ = (1/8 + 2−2s−2d)1{d < 22s+1}+ (2−s
√
d− 7/8)1{d ≥ 22s+1} and 1 denotes the

indicator function. Provided that s ≤ log(d)/2, then it also holds that E[‖Qs(v) − v‖2] ≤
ε̂Q‖v‖2 where ε̂Q = min{2−2s/4(d− 22s), 2−s

√
d− 22s}+O(s).

The result in Theorem 4 implies that if g(w) is a stochastic gradient with a second-
moment bound η, then Qs(g(w)) is a stochastic gradient with a variance upper bound εQη.
Note that the variance upper bound decreases with the number of quantization levels. In
the range of s = o(log(d)), ε̂Q decreases with s, which is because the first term in the upper
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bound decreases exponentially fast in s. To obtain ε̂Q, we establish upper bounds on the

number of coordinates of v falling into intervals defined by L̂. Our bound is tighter than
the bound of Horváth et al. (2019).

Theorem 5 (Code-length bound) Let v ∈ Rd. Provided d is large enough to ensure
22s +

√
d2s ≤ d/e, the expectation E[|ENCODE(v)|] of the number of communication bits

needed to transmit Qs(v) is bounded above by

NQ = C + 3ns,d + (1 + o(1))ns,d log
( d

ns,d

)
+ (1 + o(1))ns,d log log

(8(22s + d)

ns,d

)
(4)

where C = b− (1 + o(1)) and ns,d = 22s + 2s
√
d.2

Theorem 5 provides a bound on the expected number of communication bits to encode the
quantized stochastic gradient. Note that 22s +

√
d2s ≤ d/e is a mild assumption in practice.

As one would expect, the bound, (4), increases monotonically in d and s. In the sparse
case, if we choose s = o(log d) levels, then the upper bound on the expected code-length is

O
(
2s
√
d log

(√
d

2s

))
.

Combining the upper bounds above on the variance and code-length, Corollary 2 implies
the following guarantees for NUQSGD:

Theorem 6 (NUQSGD for smooth convex optimization) Let f and R be defined as
in Theorem 1, let εQ be defined as in Theorem 4, let ε > 0, B̂ = (1 + εQ)B, and let

γ > 0 be given by γ2 = R2/(B̂T ). With ENCODE and DECODE defined as in Ap-
pendix A, suppose that Algorithm 1 is executed for T iterations with a learning rate
α = 1/(β +

√
K/γ) on K processors, each with access to independent stochastic gradi-

ents of f with a second-moment bound B. Then Tε = O
(

max
(
B̂
Kε2

, β2ε
)
R2
)

iterations suffice

to guarantee E
[
f
(

1
T

∑T
t=0 wt

)]
−minw∈Ω f(w) ≤ ε. In addition, NUQSGD requires at most

NQ communication bits per iteration in expectation.

Proof Let g(w) and ĝ(w) denote the full-precision and decoded stochastic gradients,
respectively. Then

E[‖ĝ(w)−∇f(w)‖2] ≤ E[‖g(w)−∇f(w)‖2] + E[‖ĝ(w)− g(w)‖2]. (5)

By Theorem 4, E[‖ĝ(w)−g(w)‖2] ≤ εQE[‖g(w)‖2]. By assumption, E[‖g(w)‖2] ≤ B. Noting
g(w) is unbiased, E[‖ĝ(w)−∇f(w)‖2] ≤ (1 + εQ)B. The result follows by Corollary 2.

In the following theorem, we show that for any given set of levels, there exists a
distribution of points with dimension d such that the variance is in Ω(

√
d), and so our bound

is tight in d.

Theorem 7 (Lower bound) Let d ∈ Z>0 and let (0, l1, · · · , ls, 1) denote an arbitrary
sequence of quantization levels. Provided d ≥ (2/l1)2, there exists a vector v ∈ Rd such that
the variance of unbiased quantization of v is lower bounded by ‖v‖2l1

√
d/2, i.e., the variance

is in Ω(
√
d).

2. In practice, we use standard 32-bit floating point encoding, i.e., b = 32.
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Proof The variance of Qs(v) for general sequence of quantization levels is given by

E[‖Qs(v)− v‖2] = ‖v‖2
d∑
i=1

σ2(ri).

If r ∈ [ls̃(r), ls̃(r)+1], the variance σ2(r) can be expressed as

σ2(r) = τ(r)2p(r)
(
1− p(r)

)
= (ls̃(r)+1 − r)(r − ls̃(r)). (6)

We consider v0 = [r, r, · · · , r]T for r 6= 0. The normalized coordinates is v̂0 = [1/
√
d, · · · , 1/

√
d]T .

Using (6) and noting 1/
√
d < l1, we have

σ2(r0) = 1/
√
d
(
l1 − 1/

√
d
)
≥ l1/(2

√
d). (7)

Summing variance of all coordinates and applying (7), the variance of Qs(v0) is lower
bounded by

E[‖Qs(v0)− v0‖2] = ‖v0‖2dσ2(r) ≥ ‖v0‖2l1
√
d/2. (8)

We can obtain convergence guarantees to various learning problems where we have
convergence guarantees for SGD under standard assumptions. On nonconvex problems,
(weaker) convergence guarantees can be established along the lines of, e.g., (Ghadimi and
Lan, 2013, Theorem 2.1). In particular, NUQSGD is guaranteed to converge to a local
minima for smooth general loss functions.

Theorem 8 (NUQSGD for smooth nonconvex optimization) Let f : Ω→ R denote
a possibly nonconvex and β-smooth function. Let w0 ∈ Ω denote an initial point, εQ be
defined as in Theorem 4, T ∈ Z>0, and f∗ = infw∈Ω f(w). Suppose that Algorithm 1 is
executed for T iterations with a learning rate α < 2/β on K processors, each with access
to independent stochastic gradients of f with a second-moment bound B. Then there exists
a random stopping time R ∈ {0, · · · , T} such that NUQSGD guarantees E[‖∇f(wR)‖2] ≤
β(f(w0)− f∗)/T + 2(1 + εQ)B/K.

4.1 Worst-case Variance Analysis

In this section, we first derive a tight worst-case variance upper bound by optimizing over
the distribution of normalized coordinates for an arbitrary sequence of levels, expressed as a
solution to an integer program with quadratic constraints. We then relax the program to
obtain a quadratically constrained quadratic program (QCQP). A coarser analysis yields an
upper bound expressed as a solution to a linear program (LP), which is more amenable to
analysis. We solve this LP analytically for the special case of s = 1 and show the optimal
level is at 1/2.

Then, for an exponentially spaced collection of levels of the form (0, ps, · · · , p2, p, 1) for
p ∈ (0, 1) and an integer number of levels, s, we write the expression of QCQP and solve it

10
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efficiently using standard solvers. We have a numerical method for finding the optimal value
of p that minimizes the worst-case variance, for any given s and d. Through the worst-case
analysis, we gain insight into the behaviour of the variance upper bound. We show that
our current scheme is nearly optimal (in the worst-case sense) in some cases. Using these
techniques we can obtain slightly tighter bounds numerically.

4.1.1 Generally Spaced Levels

Let L = (l0, l1, · · · , ls, ls+1) denote an arbitrary sequence of quantization levels where
l0 = 0 < l1 < · · · < ls+1 = 1. Recall that, for r ∈ [0, 1], we define s̃(r) and p(r) such that
they satisfy ls̃(r) ≤ r ≤ ls̃(r)+1 and r =

(
1 − p(r)

)
ls̃(r) + p(r)ls̃(r)+1, respectively. Define

τ(r) = ls̃(r)+1− ls̃(r). Note that s̃(r) ∈ {0, 1, · · · , s}. Then, hi(v, s)’s are defined in two cases
based on which quantization interval ri falls into:

1) If ri ∈ [0, l1], then

hi(v, s) =

{
0 with probability 1− p1(ri,L);
l1 otherwise

(9)

where p1

(
r,L
)

= r/l1.

2) If ri ∈ [lj−1, lj ] for j = 1, · · · , s+ 1, then

hi(v, s) =

{
lj−1 with probability 1− p2(ri,L);
lj otherwise

(10)

where p2

(
r,L
)

= (r − lj−1)/τj−1.

Let Sj denote the coordinates of vector v whose elements fall into the (j + 1)-th bin,
i.e., Sj , {i : ri ∈ [lj , lj+1]} for j = 0, · · · , s. Let dj , |Sj |.

Following Lemma 14 and steps in Theorem 4, we can show that

E[‖Qs(v)− v‖2] ≤ ‖v‖2(min{τ2
0 d0/4, τ0

√
d0}+

s∑
j=1

min{τ2
j dj/4, τj(

√
dj − ljdj)}). (11)

Theorem 9 (QCQP bound) Let v ∈ Rd. An upper bound on the nonuniform quantiza-
tion of v is given by εQP ‖v‖2 where εQP is the optimal value of the following QCQP:

Q1 : max
(d0,··· ,ds,z0,··· ,zs)

s∑
j=0

zj

subject to d− d0 − · · · − dj ≤ (1/lj+1)2, j = 0, · · · , s− 1,
s∑
j=0

dj ≤ d, z0 ≤ τ2
0 d0/4, z

2
0 ≤ τ2

0 d0,

zj ≤ τ2
j dj/4, z

2
j + τ2

j l
2
jd

2
j + 2τjljdjzj ≤ τ2

j dj , j = 1, · · · , s,
dj ≥ 0, j = 0, · · · , s.

11
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Proof Following Lemma 17, we have

d− d0 − d1 − · · · − dj ≤ (1/lj+1)2 (12)

for j = 0, · · · , s− 1.

The problem of optimizing (d0, · · · , ds) to maximize the variance upper bound (11)
subject to (12) is given by

R1 : max
(d0,··· ,ds)

s∑
j=0

min{τ2
j dj/4, τj(

√
dj − ljdj)}

subject to (12), j = 0, · · · , s− 1,
s∑
j=0

dj ≤ d, (13)

dj ∈ Z≥0, j = 0, · · · , s. (14)

Let zj , min{τ2
j dj , τj

√
dj} denote an auxiliary variable for j = 0, · · · , s. Problem R1

can be rewritten as

R2 : max
(d0,··· ,ds,z0,··· ,zs)

s∑
j=0

zj

subject to (12), (13), and (14),

z0 ≤ τ2
0 d0/4, z

2
0 ≤ τ2

0 d0,

zj ≤ τ2
j dj/4, z

2
j + τ2

j l
2
jd

2
j + 2τjljdjzj ≤ τ2

j dj , j = 1, · · · , s.
(15)

The variance optimization problem R2 is an integer nonconvex problem. We can obtain
an upper bound on the optimal objective of problem R2 by relaxing the integer constraint
as follows. The resulting QSQP is shown as follows:

Q1 : max
(d0,··· ,ds,z0,··· ,zs)

s∑
j=0

zj

subject to dj ≥ 0, j = 0, · · · , s, (16)

(12), (13), and (15).

Note that problem Q1 can be solved efficiently using standard standard interior point-based
solvers, e.g., CVX (Boyd and Vandenberghe, 2004).

In the following, we develop a coarser analysis that yields an upper bound expressed as
the optimal value to an LP.
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Figure 2: Optimal value of problem Q1 versus p ∈ [0, 1] for exponentially spaced collection
of levels of the form (0, ps, · · · , p2, p, 1).

Theorem 10 (LP bound) Let v ∈ Rd. An upper bound on the nonuniform quantization
of v is given by εLP ‖v‖2 where εLP is the optimal value of the following LP:

P1 : max
(d0,··· ,ds)

s∑
j=0

τ2
j dj/4

subject to d− d0 − · · · − dj ≤ (1/lj+1)2, j = 0, · · · , s− 1,
s∑
j=0

dj ≤ d,

dj ≥ 0, j = 0, · · · , s.

Proof The proof follows the steps in the proof of Theorem 9 for the problem of optimizing
(d0, · · · , ds) to maximize the following upper bound

E[‖Qs(v)− v‖2] ≤ ‖v‖2
s∑
j=0

τ2
j dj/4. (17)

The LP bound can be solved exactly in some simple cases. In Appendix E, we present
the optimal solution for the special case with s = 1.

4.1.2 Exponentially Spaced Levels

In this section, we focus on the special case of exponentially spaced collection of levels of
the form Lp = (0, ps, · · · , p2, p, 1) for p ∈ (0, 1) and an integer number of levels, s. In this
case, we have τ0 = ps and τj = (1− p)ps−j for j = 1, · · · , s.

For any given s and d, we can solve the corresponding quadratic and linear programs
efficiently to find the worst-case variance bound. As a bonus, we can find the optimal value
of p that minimizes the worst-case variance bound. In Figure 2, we show the numerical
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results obtained by solving QCQP Q1 with Lp versus p using CVX (Boyd and Vandenberghe,
2004). In Figure 2 (left), we fix d and vary s, while in Figure 2 (right), we fix s and vary
d. As expected, we note that the variance upper bound increases as d increases and the
variance upper bound decreases as s increases. We observe that our current scheme is nearly
optimal (in the worst-case sense) in some cases. Further, the optimal value of p shifts to the
right as d increases and shifts to the left as s increases.

4.2 NUQSGD with Momentum

We have convergence guarantees for NUQSGD with momentum along the lines of, e.g., (Yan
et al., 2018) where convergence guarantees for momentum-based methods are established
under standard assumptions.

The update rule for full-precision SGD with momentum is

yt+1 = wt − αg(wt)

ylt+1 = wt − lαg(wt)

wt+1 = yt+1 + µ
(
ylt+1 − ylt

) (18)

where wt is the current parameter input and µ ∈ [0, 1) is the momentum parameter (Yan
et al., 2018). Note that the heavy-ball method (Polyak, 1964) and Nesterov’s accelerated
gradient method (Nesterov, 1983) are obtained by substituting l = 0 and l = 1, respectively.

One obtains data-parallel SGD with momentum by taking Algorithm 1 and replacing
step 10 with (18). We first establish the convergence guarantees for convex optimization in
the following theorem.

Theorem 11 (NUQSGD with momentum for convex optimization) Let f : Rd →
R denote a convex function with ‖∇f(w)‖ ≤ V for all w. Let w0 denote an initial point,
w∗ = arg min f(w), ŵT = 1/T

∑T
t=0 wt, and εQ be defined as in Theorem 4.

Suppose that NUQSGD with momentum is executed for T iterations with a learning rate
α > 0 on K processors, each with access to independent stochastic gradients of f with a
second-moment bound B. Then NUQSGD with momentum satisfies

E[f(ŵT )]− min
w∈Ω

f(w) ≤ µ(f(w0)− f(w∗))

(1− µ)(T + 1)
+

(1− µ)‖w0 −w∗‖2

2α(T + 1)

+
α(1 + 2lµ)(V 2 + (1 + εQ)B/K)

2(1− µ)
.

(19)

On nonconvex problems, (weaker) convergence guarantees can be established for NUQSGD
with momentum. In particular, NUQSGD with momentum is guaranteed to converge to a
local minima for smooth general loss functions.

Theorem 12 (NUQSGD with momentum for smooth nonconvex optimization)
Let f : Rd → R denote a possibly nonconvex and β-smooth function with ‖∇f(w)‖ ≤ V
for all w. Let w0 denote an initial point, w∗ = arg min f(w), and εQ be defined as in
Theorem 4.

Suppose that NUQSGD with momentum is executed for T iterations with α = min{(1−
µ)/(2β), C/

√
T + 1} for some C > 0 on K processors, each with access to independent
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Figure 3: Variance upper bounds.

stochastic gradients of f with a second-moment bound B. Then NUQSGD with momentum
satisfies

min
t=0,··· ,T

E[‖∇f(wt)‖2] ≤ 2(f(w0)− f(w∗))(1− µ)

α(T + 1)
+

C

(1− µ)3
√
T + 1

Ṽ (20)

where Ṽ = β
(
µ2((1− µ)l − 1)2 + (1− µ)2

)
(V 2 + (1 + εQ)B/K).

In Appendices G and H, we extend our analysis to asynchronous and decentralized
settings.

4.3 NUQSGD vs QSGD and QSGDinf

How do QSGD and NUQSGD compare in terms of bounds on the expected number of
communication bits required to achieve a given suboptimality gap ε? The quantity that
controls our guarantee on the convergence speed in both algorithms is the variance upper
bound, which in turn is controlled by the quantization schemes. Note that the number
of quantization levels, s, is usually a small number in practice. On the other hand, the
dimension, d, can be very large, especially in overparameterized networks. In Figure 3, we
show that the quantization scheme underlying NUQSGD results in substantially smaller
variance upper bounds for plausible ranges of s and d. Note that these bounds do not make
any assumptions on the dataset or the structure of the network.

For any (nonrandom) number of iterations T , an upper bound, NA, holding uniformly
over iterations k ≤ T on the expected number of bits used by an algorithm A to communicate
the gradient on iteration k, yields an upper bound TNA, on the expected number of bits
communicated over T iterations by algorithm A. Taking T = TA,ε to be the (minimum)
number of iterations needed to guarantee an expected suboptimality gap of ε based on the
properties of A, we obtain an upper bound, ζA,ε = TA,εNA, on the expected number of bits
of communicated on a run expected to achieve a suboptimality gap of at most ε.

Theorem 13 (Expected number of communication bits) Provided that s = o(log(d))

and 2B̂
Kε2

> β
ε , ζNUQSGD,ε = O

(
1
ε2

√
d(d− 22s) log

(√
d

2s

))
and ζQSGD,ε = O( 1

ε2
d log

√
d).
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Figure 4: Training loss on CIFAR10 (left) and ImageNet (right) for ResNet models. QSGD,
QSGDinf, and NUQSGD are trained by simulating the quantization and dequantizing of
the gradients from 8-GPUs. On CIFAR10, SGD refers to the single-GPU training versus
on ImageNet it refers to 2-GPU setup in the original ResNet paper. SGD is shown to
highlight the significance of the gap between QSGD and QSGDinf. SuperSGD refers to
simulating full-precision distributed training without quantization. SuperSGD is impractical
in scenarios with limited bandwidth.
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Figure 5: Estimated normalized variance on CIFAR10 on the trajectory of single-GPU SGD.
Variance is measured for fixed model snapshots during training. Notice that the variance for
NUQSGD and QSGDinf is lower than SGD for almost all the training and it decreases after
the learning rate drops.

Focusing on the dominant terms in the expressions of overall number of communication
bits required to guarantee a suboptimality gap of ε, we observe that NUQSGD provides
slightly stronger guarantees. Note that our stronger guarantees come without any assumption
about the data.

In Appendix I, we show that there exist vectors for which the variance of quantization
under NUQSGD is guaranteed to be smaller than that under QSGDinf.

5. Experimental Evaluation

In this section, we examine the practical performance of NUQSGD in terms of both
convergence (accuracy) and speedup. The goal is to empirically examine whether NUQSGD
can provide the similar performance and accuracy compared to the QSGDinf heuristic, which
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has no theoretical compression guarantees.3 For this, we implement and test these three
methods (NUQSGD, QSGD, and QSGDinf), together with the distributed full-precision
SGD baseline, which we call SuperSGD. Additionally, we will compare practical performance
against a variant of SignSGD with EF (Karimireddy et al., 2019). We split our study across
two axes: first, we validate our theoretical analysis by examining the variance induced
by the methods, as well as their convergence in terms of loss/accuracy versus number of
samples processed. Second, we provide an efficient implementation of all four methods
in Pytorch using the Horovod communication back-end (Sergeev and Del Balso, 2018), a
communication back-end supporting Pytorch, Tensorflow and MXNet. We adapted Horovod
to efficiently support quantization and gradient coding, and examine speedup relative to
the full-precision baseline. Further, we examine the effect of quantization on training
performance by measuring loss, variance, accuracy, and speedup for ResNet models (He
et al., 2016) applied to ImageNet and CIFAR10 (Krizhevsky, 2009).

Convergence and Variance. Our first round of experiments examine the impact of
quantization on solution quality. We evaluate these methods on two image classification
datasets: ImageNet and CIFAR10. We train ResNet110 on CIFAR10 and ResNet18 on
ImageNet with mini-batch size 128 and base learning rate 0.1. In all experiments, momentum
and weight decay are set to 0.9 and 10−4, respectively. The bucket size (quantization
granularity) and the number of quantization bits are set to 8192 and 4, respectively. We
observed similar trends in experiments with various bucket sizes and number of bits per
entry. We simulate a scenario with k GPUs for all three quantization methods by estimating
the gradient from k independent mini-batches and aggregating them after quantization and
dequantization.

In Figure 4 (left and right), we show the training loss with 8 GPUs. We observe that
NUQSGD and QSGDinf have lower training loss compared to QSGD on ImageNet. We
observe a significant gap in training loss on CIFAR10, where the gap grows as training
proceeds. We also observed similar performance gaps in test accuracy (provided in Ap-
pendix J). In particular, unlike NUQSGD, QSGD does not achieve the test accuracy of
full-precision SGD. Figure 5 shows the mean normalized variance of the gradient (defined
formally in Appendix J) versus the training iterations, on the trajectory of single-GPU
SGD on CIFAR10. These observations validate our theoretical results that NUQSGD has
smaller variance for large models with small number of quantization bits, and support the
intuition that this can impact solution quality.

In Figure 6, we show the test accuracy for training ResNet110 on CIFAR10 and validation
accuracy for training ResNet34 on ImageNet from random initialization until convergence.
Similar to the training loss performance, we observe that NUQSGD and QSGDinf outperform
QSGD in terms of test accuracy in both experiments. In both experiments, unlike NUQSGD,
QSGD does not recover the test accuracy of SGD. The gap between NUQSGD and QSGD
on ImageNet is significant. We argue that this is achieved because NUQSGD and QSGDinf
have lower variance relative to QSGD. It turns out both training loss and generalization
error can benefit from the reduced variance.

3. We also provide a generic implementation in Horovod (Sergeev and Del Balso, 2018), a communication
back-end which can support a range of modern frameworks such as Tensorflow, Keras, Pytorch, and
MXNet.
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Figure 6: Accuracy on the hold-out set on CIFAR10 (left) and on ImageNet (right) for
training ResNet models from random initialization until convergence. For CIFAR10, the
hold-out set is the test set and for ImageNet, the hold-out set is the validation set.

Efficient Implementation and Speedup. To examine speedup behavior, we implemented
all quantization methods in Horovod (Sergeev and Del Balso, 2018). Doing so efficiently
requires non-trivial refactoring of this framework, since it does not support communication
compression—our framework will be open-sourced upon publication. For performance
reasons, our implementation diverges slightly from the theoretical analysis. First, the
Horovod framework applies “tensor fusion” to multiple layers, by merging the resulting
gradient tensors for more efficient transmission. This causes the gradients for different
layers to be quantized together, which can lead to loss of accuracy (due to e.g. different
normalization factors across the layers). We addressed this by tuning the way in which tensor
fusion is applied to the layers such that it minimizes the accuracy loss. Second, we noticed
that quantizing the gradients corresponding to the biases has an adverse effect on accuracy;
since the communication impact of biases is negligible, we transmit them at full precision.
We apply these steps to all methods. We implemented compression and de-compression via
efficient CUDA kernels.

Efficient Encoding. One of the advantages of NUQSGD is that it provides both good
practical accuracy, as well as bounds on the code-length of the transmitted gradients in
actual executions. This should be contrasted with QSGD (which provides such bounds, but,
as seen above, loses accuracy), and QSGDinf, whose analysis no longer implies any bounds
on the expected code-length. (The QSGD analysis is only performed for L2 normalization.)
We leverage this fact by employing Huffman coding on an initial sample of gradients, in
order to determine a non-trivial encoding of the integer levels sent. We then employ this
coding for the rest of the execution. This variant is called encoded NUQSGD.

Our baselines are full-precision SGD (SuperSGD), EF-SignSGD (Karimireddy et al.,
2019), and the QSGDinf heuristic, which we compare against the 4-bit and 8-bit NUQSGD
variants executing the same pattern. The implementation of the QSGDinf heuristic provides
virtually identical convergence numbers, and is sometimes omitted for visibility. QSGD yields
inferior convergence on this dataset and is therefore omitted. All variants are implemented
using a standard all-to-all reduction pattern. Figure 7 (left and right) shows the execution
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Figure 7: Scalability behavior for NUQSGD versus the full-precision baseline when training
ResNet34 (left) and ResNet50 (right) on ImageNet. Both experiments examine strong scaling,
splitting a global batch of size 256 onto the available GPUs, for 2, 4, and 8 nodes. Each
time bar is split into computation (bottom), encoding cost (middle), and transmission cost
(top). Notice the negative scalability of the SGD baseline in both scenarios. By contrast,
the 4-bit communication-compressed implementation achieves positive scaling, while the
8-bit variant stops scaling between 4 and 8 nodes due to the higher communication and
encoding costs, while the encoding variant offers further compression.
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Figure 8: End-to-end training time for ResNet50/ImageNet for NUQSGD and EF-SignSGD
(which diverges) versus the SuperSGD baseline.

time per epoch for ResNet34 and ResNet50 models on ImageNet, on a cluster machine with
8 NVIDIA 2080 Ti GPUs, for the hyper-parameter values quoted above.4

The results confirm the efficiency and scalability of the compressed variant, mainly
due to the reduced communication volume. We note that the overhead of compression
and decompression is less than 1% of the batch computation time for vanilla NUQSGD,

4. We use the following hardware: CPU information: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz, 24
cores. GPU2GPU Bandwidth: unidirectional 10GB/s, Bidirectional 15GB/s.
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Figure 9: Training loss (left) and Test accuracy (right) on CIFAR10 for ResNet110. We set
the ratio of compression for DGC to be roughly the same as NUQSGD. In particular, we
compare compression methods at compression ratio = 4/32, i.e., NUQSGD with 4 bits and
DGC at 12.5% compression. At this rate, both methods will have approximately the same
communication cost, i.e., comparison in simulation is representative of real-time performance.
We tune the learning rate and momentum for DGC and show its best performance.

and of < 4% for the gradient coding variant. We also note that the smallest reduction
times are obtained by encoded NUQSGD, which send on average approximately 2.7 bits per
component, a reduction of 67% over standard NUQSGD.

Figure 8 presents end-to-end speedup numbers (time versus accuracy) for ResNet50 on
ImageNet, executed on 4 GPUs, under the same hyperparameter settings as the full-precision
baseline, with bucket size 512. First, notice that all NUQSGD variants match the target
accuracy of the 32-bit model, with non-trivial speedup over the standard data-parallel
variant, directly proportional to the per-epoch speedup. The QSGDinf heuristic yields
similar accuracy and performance, and is therefore omitted. We found that unfortunately
EF-SignSGD does not converge under these standard hyperparameter settings. To address
this issue, we performed a non-trivial amount of hyperparameter tuning for this algorithm:
in particular, we found that the scaling factors and the bucket size must be carefully adjusted
for convergence on ImageNet. We were able to recover full accuracy with EF-SignSGD on
ResNet50, but at the cost of quantizing into buckets of size 64. In this setting, the algorithm
sends 32 bits of scaling data for every 64 entries, and the GPU implementation becomes
less efficient due to error computation and reduced parallelism. The end-to-end speedup of
this tuned variant is inferior to baseline 4-bit NUQSGD, and only slightly superior to that
of 8-bit NUQSGD. Please see Figure 18 in the Appendix J and the accompanying text for
details.

We therefore conclude that NUQSGD offers competitive or superior performance w.r.t.
QSGDinf and EF-SignSGD, while providing strong convergence guarantees, and that it
allows additional savings due to the fact that gradients can be encoded.

Comparison with DGC. In this section, we make a comparison with DGC (Lin et al.,
2018). DGC is essentially a sparsification method, which leverages momentum correction
and local gradient clipping to recover accuracy.

In Figure 9, we show simulation results to compare convergence and generalization of
DGC with those of NUQSGD and full-precision SGD. We set the ratio of compression for
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Figure 10: Test Accuracy on CIFAR10 (left) and CIFAR100 (right) for ResNet18. For
NUQSGD and SuperSGD, we use 8 GPUs. For NUQSGD, we use the same hyperparameters
that are tuned for the full-precision baseline. However, we tune hyperparameters for DGC
at 1% and 10% compression ratios.

DGC to be roughly the same as NUQSGD. In particular, we compare compression methods
at compression ratio = 4/32, i.e., NUQSGD with 4 bits and DGC at 12.5% compression.
At this rate, both methods will have approximately the same communication cost, i.e.,
comparison in simulation is representative of real-time performance. We show the results for
NUQSGD, DGC, and full-precision baselines on CIFAR10. We tune the learning rate and
momentum for DGC and show its best performance.

Our results show that by tuning DGC carefully, it can achieve full-precision performance
albeit some noisy curves at the beginning. On the other hand, NUQSGD provides com-
munication efficiency on the fly where practitioners can reuse the same hyperparameters
that are tuned for full-precision schemes. NUQSGD is also easier to implement efficiently
in practice. Furthermore, NUQSGD enjoys strong theoretical guarantees. Finally, we note
that NUQSGD can be used as the encoding function on top of DGC to further reduce its
communication costs. Hence, DGC and NUQSGD can be viewed as complementary methods
for practitioners. Additional simulation results are presented in Appendix J.

To further evaluate the performance of DGC over different numbers of GPUs, compression
ratios, and datasets, in Figure 10, we show validation accuracy when we train ResNet18 on
CIFAR10 and CIFAR100. For NUQ and the full-precision baseline (SuperSGD), we use 8
GPUs. For NUQSGD, we use the same hyperparameters that are tuned for the full-precision
baseline. However, we tune hyperparameters for DGC at 1% and 10% compression ratios.
We note that unlike NUQSGD, DGC’s performance degrades as we increase the number
of GPUs. We observe DGC is less stable for simpler datasets such as CIFAR10. In sum,
while NUQSGD offers lower peak compression relative to DGC, NUQSGD is more practical.
Additionally, NUQSGD offers strong theoretical guarantees relative to DGC.
Comparison with TernGrad and ATOMO. We ported the original ATOMO (Wang
et al., 2018) and TernGrad (Wen et al., 2017) code to our framework. In Table 1, we
present results of training ResNet20 on CIFAR10 on Google Cloud (4 nodes in a bandwidth-
constrained setting) under the standard training parameters. Our experiments show that
NUQSGD achieves slightly higher accuracy than ATOMO at a slightly higher compression
ratio. (We did not use Huffman coding here.) ATOMO’s time/step is high due to its
computation cost (we have used its original implementation, but further optimizations
might be possible). Unfortunately, TernGrad did not converge for the standard (sequential)
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Method Accuracy Time/step (s) Compression%

SuperSGD 91.5 205 100
NUQSGD (3bit) 90.94 85 9

ATOMO (rank=3) 90.5 297 17
TernGrad did not converge for standard hyperparameters

Table 1: Training ResNet20 on CIFAR-10 using on 4 nodes under standard training parame-
ters.

hyperparameters. Lin et al. (2018) showed that TernGrad loses accuracy at ImageNet scale.
Its average compression ratio (2 bits/entry) is similar to that of NUQSGD with Huffman
coding (approximately 2.4 bits/entry).

6. Conclusions

We study data-parallel and communication-efficient version of stochastic gradient descent.
Building on QSGD (Alistarh et al., 2017), we study a nonuniform quantization scheme.
We establish upper bounds on the variance of nonuniform quantization and the expected
code-length. The former decreases as the number of quantization levels increases, while the
latter increases with the number of quantization levels. Thus, this scheme provides a trade-off
between the communication efficiency and the convergence speed. We compare NUQSGD
and QSGD in terms of their variance bounds and the expected number of communication
bits required to meet a certain convergence error, and show that NUQSGD provides stronger
guarantees. Experimental results are consistent with our theoretical results and confirm
that NUQSGD matches the performance of QSGDinf when applied to practical deep models
and datasets including ImageNet. Thus, NUQSGD closes the gap between the theoretical
guarantees of QSGD and empirical performance of QSGDinf. One limitation of our study
which we aim to address in future work is that we focus on all-to-all reduction patterns,
which interact easily with communication compression. In particular, we aim to examine the
interaction between more complex reduction patterns, such as ring-based reductions (Hannun
et al., 2014), which may yield superior performance in bandwidth-bottlenecked settings, but
which interact with communication-compression in non-trivial ways, since they may lead a
gradient to be quantized at each reduction step.
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unified analysis of HOGWILD!-style algorithms. In Proc. Advances in Neural Information
Processing Systems (NIPS), 2015.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech DNNs. In Proc.
INTERSPEECH, 2014.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
TensorFlow. arXiv:1802.05799, 2018.

Nikko Strom. Scalable distributed DNN training using commodity GPU cloud computing.
In Proc. INTERSPEECH, 2015.

Hanlin Tang, Shaoduo Gan, Ce Zhang, Tong Zhang, and Ji Liu. Communication compression
for decentralized training. In Proc. Advances in Neural Information Processing Systems
(NIPS), 2018.

Hongyi Wang, Scott Sievert, Zachary Charles, Shengchao Liu, Stephen Wright, and Dimitris
Papailiopoulos. ATOMO: Communication-efficient learning via atomic sparsification. In
Proc. Advances in Neural Information Processing Systems (NIPS), 2018.

25



Ramezani-Kebrya, Faghri, Markov, Aksenov, Alistarh, and Roy

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured
sparsity in deep neural networks. In Proc. Advances in Neural Information Processing
Systems (NIPS), 2016.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
TernGrad: Ternary gradients to reduce communication in distributed deep learning. In
Proc. Advances in Neural Information Processing Systems (NIPS), 2017.

Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng,
Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed
machine learning on big data. IEEE transactions on Big Data, 1(2):49–67, 2015.

Yan Yan, Tianbao Yang, Zhe Li, Qihang Lin, and Yi Yang. A unified analysis of stochastic
momentum methods for deep learning. In Proc. International Joint Conference on Artificial
Intelligence (IJCAI), 2018.

Hantian Zhang, Jerry Li, Kaan Kara, Dan Alistarh, Ji Liu, and Ce Zhang. ZipML: Training
linear models with end-to-end low precision, and a little bit of deep learning. In Proc.
International Conference on Machine Learning (ICML), 2017.

Sixin Zhang, Anna Choromanska, and Yann LeCun. Deep learning with elastic averaging
SGD. In Proc. Advances in Neural Information Processing Systems (NIPS), 2015.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-
net: Training low bitwidth convolutional neural networks with low bitwidth gradients.
arXiv:1606.06160, 2018.

Martin A. Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. Parallelized stochastic
gradient descent. In Proc. Advances in Neural Information Processing Systems (NIPS),
2010.

26



NUQSGD

Encoding:
1 Place a 0 at the end of the string;
2 if N == 1 then
3 Stop;
4 else
5 Prepend binary(N) to the beginning ; // Let N ′ denote # bits prepended minus 1
6 Encode N ′ recursively;

Decoding:
7 Start with N = 1;
8 if the next bit == 0 then
9 Stop and return N ;

10 else
11 Read that bit plus N following bits and update N ;
Algorithm 2: Elias recursive coding produces a bit string encoding of positive integers.

A. Encoding

By inspection, the quantized gradient Qs(v) is determined by the tuple (‖v‖,ρ,h), where
‖v‖ is the norm of the gradient, ρ , [sign(v1), · · · , sign(vd)]

T is the vector of signs of the
coordinates vi’s, and h , [h1(v, s), · · · , hd(v, s)]T are the quantizations of the normalized
coordinates. We can describe the ENCODE function (for Algorithm 1) in terms of the
tuple (‖v‖,ρ,h) and an encoding/decoding scheme ERC : {1, 2, · · · } → {0, 1}∗ and ERC−1 :
{0, 1}∗ → {1, 2, · · · } for encoding/decoding positive integers.

The encoding, ENCODE(v), of a stochastic gradient is as follows: We first encode the
norm ‖v‖ using b bits where, in practice, we use standard 32-bit floating point encoding. We
then proceed in rounds, r = 0, 1, · · · . On round r, having transmitted all nonzero coordinates
up to and including tr, we transmit ERC(ir) where tr+1 = tr + ir is either (i) the index of
the first nonzero coordinate of h after tr (with t0 = 0) or (ii) the index of the last nonzero
coordinate. In the former case, we then transmit one bit encoding the sign ρtr+1 , transmit
ERC(log(2s+1htr+1)), and proceed to the next round. In the latter case, the encoding is
complete after transmitting ρtr+1 and ERC(log(2s+1htr+1)).

The DECODE function (for Algorithm 1) simply reads b bits to reconstruct ‖v‖. Using
ERC−1, it decodes the index of the first nonzero coordinate, reads the bit indicating the
sign, and then uses ERC−1 again to determines the quantization level of this first nonzero
coordinate. The process proceeds in rounds, mimicking the encoding process, finishing when
all coordinates have been decoded.

Like Alistarh et al. (2017), we use Elias recursive coding (Elias, 1975, ERC) to encode
positive integers. ERC is simple and has several desirable properties, including the property
that the coding scheme assigns shorter codes to smaller values, which makes sense in our
scheme as they are more likely to occur. Elias coding is a universal lossless integer coding
scheme with a recursive encoding and decoding structure.

The Elias recursive coding scheme is summarized in Algorithm 2. For any positive integer
N , the following results are known for ERC (Alistarh et al., 2017):

1. |ERC(N)| ≤
(
1 + o(1)

)
logN + 1;

2. ERC(N) can be encoded and decoded in time O(|ERC(N)|);
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3. Decoding can be done without knowledge of an upper bound on N .

B. Proof of Theorem 4 (Variance Bound)

We first find a simple expression of the variance of Qs(v) for every arbitrary quantization
scheme in the following lemma:

Lemma 14 Let v ∈ Rd, L = (l0, l1, · · · , ls+1), and fix s ≥ 1. The variance of Qs(v) for
general sequence of quantization levels is given by

E[‖Qs(v)− v‖2] = ‖v‖2
d∑
i=1

τ2(ri)p(ri)
(
1− p(ri)

)
(21)

where ri = |vi|/‖v‖ and p(r), s̃(r), τ(r) are defined in Section 3.1.

Proof Noting the random quantization is i.i.d over elements of a stochastic gradient, we
can decompose E[‖Qs(v)− v‖2] as:

E[‖Qs(v)− v‖2] =
d∑
i=1

‖v‖2σ2(ri) (22)

where σ2(ri) = E[(hi(v, s) − ri)2]. Computing the variance of hi(v, s), we can show that
σ2(ri) = τ2(ri)p(ri)

(
1− p(ri)

)
.

In the following, we consider NUQSGD algorithm with L̂ = (0, 1/2s, · · · , 2s−1/2s, 1) as
the quantization levels. Then, hi(v, s)’s are defined in two cases based on which quantization
interval ri falls into:

1) If ri ∈ [0, 2−s], then

hi(v, s) =

{
0 with probability 1− p1(ri, s);
2−s otherwise

(23)

where p1

(
r, s
)

= 2sr.
2) If ri ∈ [2j−s, 2j+1−s] for j = 0, · · · , s− 1, then

hi(v, s) =

{
2j−s with probability 1− p2(ri, s);
2j+1−s otherwise

(24)

where p2

(
r, s
)

= 2s−jr − 1. Note that Qs(0) = 0.
Let Sj denote the coordinates of vector v whose elements fall into the (j + 1)-th bin,

i.e., S0 , {i : ri ∈ [0, 2−s]} and Sj+1 , {i : ri ∈ [2j−s, 2j+1−s]} for j = 0, · · · , s − 1. Let
dj , |Sj |. Applying the result of Lemma 14, we have

E[‖Qs(v)− v‖2] = ‖v‖2τ2
0

∑
i∈S0

p1(ri, s)(1− p1(ri, s))

+ ‖v‖2
s−1∑
j=0

τ2
j+1

∑
i∈Sj+1

p2(ri, s)
(
1− p2(ri, s)

) (25)
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where τj , lj+1 − lj for j ∈ {0, · · · , s}.
The variance of Qs(v) can be also expressed as

E[‖Qs(v)− v‖2] = ‖v‖2
( ∑
ri∈I0

(2−s − ri)ri +
s−1∑
j=0

∑
ri∈Ij+1

(2j+1−s − ri)(ri − 2j−s)
)
. (26)

where I0 , [0, 2−s] and Ij+1 , [2j−s, 2j+1−s] for j = 0, · · · , s− 1.
Inspired by the proof in (Horváth et al., 2019), we can find k that satisfies (2j+1−s −

r)(r − 2j−s) ≤ kr2 for r ∈ Ij+1. Expressing r = 2j−sθ, we can find k through solving

k = max
1≤θ≤2

(2− θ)(θ − 1)/θ2 = 1/8. (27)

Substituting (27) into (26), an upper bound on E[‖Qs(v)− v‖2] is given by

E[‖Qs(v)− v‖2] ≤ ‖v‖2(1/8 +
∑
ri∈I0

(2−s − ri)ri).

In the following, we derive three different bounds on
∑

ri∈I0(2−s − ri)ri, each gives us
an upper bound on E[‖Qs(v)− v‖2].

Lemma 15 Let p ∈ (0, 1) and r ∈ I0. Then we have r(2−s − r) ≤ Kp2
(−2+p)srp where

Kp =
( 1/p

2/p− 1

)(1/p− 1

2/p− 1

)(1−p)
. (28)

Proof We can find Kp through solving Kp = 2(2−p)s maxr∈I0 r(2
−s − r)/rp. Expressing the

optimization variable as r = 2−sθ1/p, Kp can be obtained by solving this problem:

Kp = max
0≤θ≤1

θ1/p−1 − θ2/p−1. (29)

We can solve (29) and obtain the optimal solution θ∗ =
(1/p−1

2/p−1

)p
. Substituting θ∗ into (29),

we obtain (28).

Note that using Hölder’s inequality, we have∑
ri∈I0

rpi =
∑
i∈S0

|vi|p

‖v‖p
≤
(‖v‖p
‖v‖

)p
≤ d1−p/2.

This gives us an upper bound on E[‖Qs(v)− v‖2]:

E[‖Qs(v)− v‖2] ≤ ‖v‖2(1/8 +Kp2
(−2+p)sd1−p/2).

Furthermore, note that r(2−s− r) ≤ 2−sr and r(2−s− r) ≤ 2−s(2−s− r) for r ∈ I0. This
leads to the following upper bound on E[‖Qs(v)− v‖2]:

E[‖Qs(v)− v‖2] ≤ ‖v‖2(1/8 + min(2−s
√
d, 2−2sd)).

The final upper bound is obtained using the following lemma.
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Lemma 16 Let r ∈ I0. Then we have r(2−s − r) ≤ K̂ sin
(
2sπr

)
where K̂ = 2−2s/π.

Proof We can find K̂ through solving K̂ = supr∈(0,2−s) r(2
−s − r)/ sin(2sπr). Expressing

the optimization variable as r = 2−sθ, K̂ can be obtained by solving this problem:

K̂ = 2−2s sup
0<θ<1

θ(1− θ)/ sin(πθ) = 2−2s/π. (30)

Finally an upper bound on E[‖Qs(v)− v‖2] is given by:

E[‖Qs(v)− v‖2] ≤ ‖v‖2
(

1/8 + 2−2s|S0|/π sin
(
2sπ/|S0|

∑
i∈S0

‖vi‖/‖v‖
))

≤ ‖v‖2
(
1/8 + 2−2sd/π

)
(31)

where the first inequality follows from Jensen’s inequality.
Combining these bounds, we have

E[‖Qs(v)− v‖2] ≤ εQ‖v‖2 (32)

where εQ = 1/8 + inf0<p<1Kp2
(−2+p)sd1−p/2 with Kp =

( 1/p
2/p−1

)(1/p−1
2/p−1

)(1−p)
.

Note that the optimal p to minimize εQ is obtained by minimizing:

Ξ(p) =
( 1/p

2/p− 1

)( 1/p

2/p− 1

)1−p
δ1−p

where δ =
√
d/2s.

Differentiating Ξ(p), the optimal p∗ is given by

p∗ =

{
δ−2
δ−1 , δ ≥ 2

0, δ < 2.
(33)

Substituting (33) into (32) gives (3).
For the second part of theorem, substituting τ0 = 2−s and τj = 2j−1−s for j ∈ {1, · · · , s}

into (25), we have

E[‖Qs(v)− v‖2] = ‖v‖22−2s
∑
i∈S0

p1(ri, s)(1− p1(ri, s))

+ ‖v‖2
s−1∑
j=0

22(j−s)
∑
i∈Sj+1

p2(ri, s)
(
1− p2(ri, s)

)
≤ ‖v‖22−2s

∑
i∈S0

p1(ri, s)

+ ‖v‖2
s−1∑
j=0

22(j−s)
∑
i∈Sj+1

p2(ri, s)

(34)
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We first note that
∑

i∈S0 p1(ri, s) ≤ d and
∑

i∈Sj+1
p2(ri, s) ≤ d for all j, i.e., an upper bound

on the variance of Qs(v) is given by E[‖Qs(v)− v‖2] ≤ ‖v‖2d/3(2−2s+1 + 1). Furthermore,
we have ∑

i∈S0

p1

(
ri, s

)
≤ min{d0, 2

s
√
d0} (35)

since

∑
i∈S0

|vi|
‖v‖ ≤

√
d0. Similarly, we have∑

i∈Sj+1

p2

(
ri, s

)
≤ min{dj+1, 2

(s−j)√dj+1}. (36)

Considering the variance expression (26), note that (2−s − r)ri ≤ 2−2s/4 for r ∈ I0 and
(2j+1−s − r)(r − 2j−s) ≤ 22j−2s/4 for r ∈ Ij+1 for all j. This gives us an upper bound:

E[‖Qs(v)− v‖2] ≤ ‖v‖2/4
(
2−2sd0 +

s−1∑
j=0

22j−2sdj+1

)
. (37)

Substituting the upper bounds in (35), (36), and (37) into (34), an upper bound on the
variance of Qs(v) is given by

E[‖Qs(v)− v‖2] ≤ min{2−2sd0/4, 2
−s
√
d0}‖v‖2

+

s−1∑
j=0

min{22(j−s)dj+1/4, 2
j−s√dj+1}‖v‖2.

(38)

The upper bound in (38) cannot be used directly as it depends on {d0, · · · , ds}. Note that
dj ’s depend on quantization intervals. In the following, we obtain an upper bound on
E[‖Qs(v) − v‖2], which depends only on d and s. To do so, we need to use this lemma
inspired by (Alistarh et al., 2017, Lemma A.5): Let ‖ · ‖0 count the number of nonzero
components.

Lemma 17 Let v ∈ Rd. The expected number of nonzeros in Qs(v) is bounded above by

E[‖Qs(v)‖0] ≤ 22s +
√
d02s.

Proof Note that d− d0 ≤ 22s since

(d− d0)2−2s ≤
∑
i 6∈S0

r2
i ≤ 1. (39)

For each i ∈ S0, Qs(vi) becomes zero with probability 1− 2sri, which results in

E[‖Qs(v)‖0] ≤ d− d0 +
∑
i∈S0

ri2
s

≤ 22s +
√
d02s. (40)
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Using a similar argument as in the proof of Lemma 17, we have

d− d0 − d1 − · · · − dj ≤ 22(s−j) (41)

for j = 0, 1, · · · , s− 1. Define bj , d− 22(s−j) for j = 0, · · · , s− 1. Then

b0 ≤ d0

b1 ≤ d1 + d0

...
...

bs−1 ≤ d0 + · · ·+ ds−1. (42)

Note that ds = d− d0 − · · · − ds−1.
We define

d̃0 , b0 = d− 22s

d̃1 , b1 − b0 = 3 · 22(s−1)

...
...

d̃s−1 , bs−1 − bs−2 = 12

d̃s , d− d̃0 − d̃1 − · · · − d̃s−1 = 4. (43)

Note that d̃0 ≤ d0, d̃1 + d̃0 ≤ d1 + d0, · · · , d̃s−1 + · · · + d̃0 ≤ ds−1 + · · · + d0, and
d̃s + · · ·+ d̃0 = ds + · · ·+ d0.

Noting that the coefficients of the additive terms in the upper bound in (38) are
monotonically increasing with j, we can find an upper bound on E[‖Qs(v) − v‖2] by
replacing (d0, · · · , ds) with (d̃0, · · · , d̃s) in (38), which completes the proof.

C. Proof of Theorem 5 (Code-length Bound)

Let | · | denote the length of a binary string. In this section, we find an upper bound on
E[|ENCODE(v)], i.e., the expected number of communication bits per iteration. Recall
from Appendix A that the quantized gradient Qs(v) is determined by the tuple (‖v‖,ρ,h).
Write i1 < i2 < · · · < i‖h‖0 for the indices of the ‖h‖0 nonzero entries of h. Let i0 = 0.

The encoding produced by ENCODE(v) can be partitioned into two parts, R and E,
such that, for j = 1, . . . , ‖h‖0,

• R contains the codewords ERC(ij − ij−1) encoding the runs of zeros; and

• E contains the sign bits and codewords ERC(log{2s+1hij}) encoding the normalized
quantized coordinates.

Note that ‖[i1, i2− i1, · · · , i‖h‖0 − i‖h‖0−1]‖1 ≤ d. Thus, by (Alistarh et al., 2017, Lemma
A.3), the properties of Elias encoding imply that

|R| ≤ ‖h‖0 + (1 + o(1))‖h‖0 log
( d

‖h‖0

)
. (44)
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We now turn to bounding |E|. The following result in inspired by (Alistarh et al., 2017,
Lemma A.3).

Lemma 18 Fix a vector q such that ‖q‖pp ≤ P , let i1 < i2 < . . . i‖q‖0 be the indices of its

‖q‖0 nonzero entries, and assume each nonzero entry is of form of 2k, for some positive
integer k. Then

‖q‖0∑
j=1

|ERC(log(qij ))| ≤(1 + o(1)) log
(1

p

)
+ ‖q‖0

+ (1 + o(1))‖q‖0 log log
( P

‖q‖0

)
.

Proof Applying property (1) for ERC (end of Appendix A), we have

‖q‖0∑
j=1

|ERC(log(qij ))| ≤ (1 + o(1))

‖q‖0∑
j=1

log log qij + ‖q‖0

≤ (1 + o(1)) log
(1

p

)
+ ‖q‖0

+ (1 + o(1))

‖q‖0∑
j=1

log log qpij

≤ (1 + o(1)) log
(1

p

)
+ ‖q‖0

+ (1 + o(1))‖q‖0 log log
( P

‖q‖0
)

where the last bound is obtained by Jensen’s inequality.

Taking q = 2s+1h, we note that ‖q‖2 = 22s+2‖h‖2 and

‖h‖2 ≤
d∑
i=1

( vi
‖v‖

+
1

2s

)2

≤ 2

d∑
i=1

( v2
i

‖v‖2
+

1

22s

)
= 2
(
1 +

d

22s

)
. (45)

By Lemma 18 applied to q and the upper bound (45),

|E| ≤ −(1 + o(1)) + 2‖h‖0

+ (1 + o(1))‖h‖0 log log
(22s+2‖h‖2

‖h‖0

)
.

(46)

Combining (44) and (46), we obtain an upper bound on the expected code-length:

E[|ENCODE(v)|] ≤ N(‖h‖0) (47)
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where

N(‖h‖0) = b+ 3‖h‖0 + (1 + o(1))E
[
‖h‖0 log

( d

‖h‖0
)]

− (1 + o(1)) + (1 + o(1))E
[
‖h‖0 log log

(8(22s + d)

‖h‖0
)]
.

(48)

It is not difficult to show that, for all k > 0, g1(x) , x log
(
k
x

)
is concave. Note that g1

is an increasing function up to x = k/e.
Defining g2(x) , x log log

(
C
x

)
and taking the second derivative, we have

g′′2(x) = −
(
x ln(2) ln(C/x)

)−1
(

1 +
(

ln(C/x)
)−1
)
. (49)

Hence g2 is also concave on x < C. Furthermore, g2 is increasing up to some C/5 < x∗ < C/4.
We note that E[‖h‖0] ≤ 22s +

√
d2s following Lemma 17. By assumption 22s +

√
d2s ≤ d/e,

and so, Jensen’s inequality and (47) lead us to (4).

D. Proof of Theorem 13 (Expected Number of Communication Bits)

Assuming 2B̂
Kε2

> β
ε , then Tε = O

(
2B̂
Kε2

R2
)
. Ignoring all but terms depending on d and s, we

have Tε = O(B̂/ε2). Following Theorems 4 and 5 for NUQSGD, ζNUQSGD,ε = O(NQεQB/ε
2).

For QSGD, following the results of Alistarh et al. (2017), ζQSGD,ε = O(ÑQε̃QB/ε
2) where

ÑQ = 3(s2 + s
√
d) + (3

2 + o(1))(s2 + s
√
d) log

(
2(s2+d)

s2+
√
d

)
+ b and ε̃Q = min

(
d
s2
,
√
d
s

)
.

In overparameterized networks, where d ≥ 22s+1, we have εQ = 2−s
√
d− 22s +O(s) and

ε̃Q =
√
d/s. Furthermore, for sufficiently large d, NQ and ÑQ are given by O

(
2s
√
d log

(√
d

2s

))
and O

(
s
√
d log(

√
d)
)
, respectively.

E. Optimal Level for the Special Case with s = 1

Corollary 19 (Optimal level) For the special case with s = 1, the optimal level to mini-
mize the worst-case bound obtained from problem P1 is given by l∗1 = 1/2.

Proof For s = 1, problem P1 is given by

P0 : max
(d0,d1)

(τ2
0 d0 + τ2

1 d1)/4

subject to d− d0 ≤ (1/l1)2,

d0 + d1 ≤ d,
d0 ≥ 0, d1 ≥ 0.

Note that the objective of P0 is monotonically increasing in (d0, d1). It is not difficult to
verify that the optimal (d∗0, d

∗
1) is a corner point on the boundary line of the feasibility region

of P0. Geometrical representation shows that that candidates for an optimal solution are
(d− (1/l1)2, (1/l1)2) and (d, 0). Substituting into the objective of P0, the optimal value of
P0 is given by

ε∗LP = max{τ2
0 d, τ

2
0 d+ τ2

1 /τ
2
0 − 1}/4. (50)
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Finally, note that τ0 = τ1 = 1/2 minimizes the optimal value of P0 (50).

F. Lower Bound in the Regime of Large s

In the following theorem, we show that for exponentially spaced levels with p = 0.5, if s is
large enough, there exists a distribution of points such that the variance is in 1/8‖v‖2.

Theorem 20 (Lower bound for large s) Let d ∈ Z>0 and let (0, 2−s, · · · , 1/2, 1) denote
the sequence of quantization levels. Provided s ≥ log(

√
d), there exists a vector v ∈ Rd such

that the variance of unbiased quantization of v is given by ‖v‖2/8.

Proof Consider v0 = [r, r, · · · , r]T for r 6= 0. The normalized coordinates is v̂0 =
[1/
√
d, · · · , 1/

√
d]T . Suppose s is large enough such that 2j−s = 3

4
√
d

for some j = 0, · · · , s−1.

We can compute of the variance and obtain E[‖Qs(v)− v‖2] = ‖v‖2/8.

G. Asynchronous Variant of NUQSGD

Asynchronous parameter-server model is an important setting that provides additional
flexibility for distributed training of large models. In this section, we extend our consideration
to asynchronous variant of NUQSGD when a star-shaped parameter-server setting is used
for training. The star machine is a master processor, while other processors serve as workers.
The master aggregates stochastic gradients received from workers and updates the model
parameters. We consider a consistent scenario where workers cannot read the values of
model parameters during the update step. This is a valid model when computer clusters are
used for distributed training (Lian et al., 2015).

On smooth and possibly nonconvex problems in a consistent parameter-server setting,
we establish convergence guarantees for asynchronous variant of NUQSGD along the lines
of, e.g., (Lian et al., 2015, Theorem 1):

Theorem 21 (NUQSGD for asynchronous smooth nonconvex optimization) Let f :
Ω→ R denote a possibly nonconvex and β-smooth function. Let w0 ∈ Ω denote an initial
point, εQ be defined as in Theorem 4 and f∗ = infw∈Ω f(w). Suppose K workers each
compute an unbiased stochastic gradient with mini-batch size J and second-moment bound
B, compress the stochastic gradient using nonuniform quantization, and send to a master
processor for T iterations. Suppose the delay for model parameters used in evaluation of a
stochastic gradient at each iteration is upper bounded by τ . Provided that the sequence of
learning rates satisfies βJαt + 2β2J2ταt

∑τ
i=1 αt+i ≤ 1, for all t = 1, 2, · · · , we have

T∑
t=1

αtE[‖∇f(wt)‖2]∑T
t=1 αt

≤
2(f(w0)− f∗) + λ(1 + εQ)B/K

J
∑T

t=1 αt

where λ =
∑T

t=1

(
α2
tJβ + 2β2J2αt

∑t−1
i=t−τ α

2
i

)
.
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H. NUQSGD for Decentralized Training

In a networked distributed system, decentralized algorithms are deployed when either
processors cannot establish a fully connected topology due to communication barriers or
the network suffers from high latency. When the network is bandwidth-limited as well,
communication-efficient variants of decentralized parallel SGD is a promising solution to
tackle both high latency and limited bandwidth to train deep models in a networked
system (Tang et al., 2018). In this section, we show that NUQSGD can be integrated with
extrapolation compression decentralized parallel SGD (ECD-PSGD) proposed in (Tang
et al., 2018).6 In decentralized optimization, we consider the following problem

min
w∈Rd

F (w) =
1

K

K∑
i=1

fi(w)

where fi(w) = Eξ∼Di
[f(w; ξ)], Di is the local data distribution stored in processor i, and

f(w; ξ) is the loss of a model described by w on example (mini-batch) ξ.
At iteration t of D-PSGD, each computing processor computes its local stochastic

gradient, e.g., processor i computes gi(w
(i)
t ) with E

ξ
(i)
t ∼Di

[gi(w
(i)
t )] = ∇fi(w(i)

t ) where w
(i)
t

and ξ
(i)
t are the local parameter vector and samples on processor i, respectively. Processor

i then fetches its neighbours’ parameter vectors and updates its local parameter vector

using w
(i)
t+1/2 =

∑K
j=1Wi,jw

(j)
t where W ∈ RK×K is a symmetric doubly stochastic matrix,

i.e., W = W T and
∑K

j=1Wi,j = 1 for all i. Note that Wi,j ≥ 0 in general and Wi,j = 0
means that processors i and j are not connected. Finally, processor i updates its local

parameter vector using the update rule w
(i)
t+1 ← w

(i)
t+1/2 − αgi(w

(i)
t ). ECD-PSGD integrated

with NUQSGD is described in Algorithm 3.
In this section, we make the following assumptions:

• Given W , ρ < 1 where ρ denotes the second largest eigenvalue of W .

• The variance of local stochastic gradients are bounded. In particular, there are σ2, ζ2

such that for all w and i:

E[‖gi(w)−∇fi(w)‖2] ≤ σ2,

1

K

K∑
i=1

‖∇fi(w)−∇F (w)‖2 ≤ ζ2.

On smooth and possibly nonconvex problems and under assumptions above, we establish
convergence guarantees for ECD-PSGD integrated with NUQSGD along the lines of, e.g.,
(Tang et al., 2018, Corollary 4):

Theorem 22 (NUQSGD for decentralized smooth nonconvex optimization) Let fi
denote a possibly nonconvex and β-smooth function for all i. Let εQ be defined as in

6. Similarly, NUQSGD can be integrated with difference compressions D-PSD (DCD-PSD). However, DCD-
PSD requires stringent constraints on stochastic compression scheme, which may fail under an aggressive
compression. Hence, we focus on ECD-PSGD in this paper.
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Input: local data, weight matrix W , initial parameter vector w
(i)
1 = w1, initial estimate

w̃
(i)
1 = w1, learning rate α, and K

1 for t = 1 to T do
2 for i = 1 to K do // each transmitter processor (in parallel)

3 Compute gi(w
(i)
t ) ; // local stochastic gradient

4 Compute w
(i)
t+1/2 =

∑K
j=1Wi,jw̃

(j)
t ; // neighbourhood weighted average

5 Update w
(i)
t+1 ← w

(i)
t+1/2 − αgi(w

(i)
t );

6 Compute z
(i)
t = (1− t/2)w

(i)
t + t/2w

(i)
t+1;

7 Encode c
(i)
t ← ENCODE

(
z
(i)
t

)
;

8 Broadcast c
(i)
t to connected neighbours;

9 Receive c
(j)
t from connected neighbours;

10 w̃
(j)
t+1 ← (1− 2/t)w̃

(j)
t + 2/tDECODE

(
c
(j)
t

)
; // update estimates for connected

neighbours

11 Aggregate wT ← 1/K
∑K

i=1 w
(i)
T ;

Algorithm 3: ECD-PSGD with NUQSGD.

Theorem 4. Suppose that Algorithm 3 is executed for T iterations with a learning rate
α < (12β/(1− ρ) +σ

√
T/K + ζ2/3T 1/3)−1 on K processors, each with access to independent

and local stochastic gradients with variance bound σ2. Then we have

1

T

T∑
t=1

E
[∥∥∥ K∑

i=1

∇fi(
∑K

i=1 w
(i)
t /K)

K

∥∥∥2]
.
σ(1 + (1 + εQ)R2 log(T )/K)√

KT
+

(1 + εQ)R2 log(T )

T

+ ζ2/3(1 + (1 + εQ)R2 log(T )/K)/T 2/3 + 1/T

where R2 = max1≤i≤K max1≤t≤T ‖z(i)
t ‖2.

I. NUQSGD vs QSGDinf

In this section, we show that there exist vectors for which the variance of quantization
under NUQSGD is guaranteed to be smaller than that under QSGDinf. Intuitively, with the
same communication budget, NUQSGD is guaranteed to outperform QSGDinf in terms of
variance for dense vectors with a unique dominant coordinate.

Theorem 23 (NUQSGD vs QSGDinf) Let v ∈ Rd be such that vi = 1 and vj = Θ(1/d)
for j 6= i. Provided that d and s are large enough to ensure K1

(d−1)
√

1+K2
2/(d−1)

< 2−s and

(1+K2
1/(d−1))K1(0.25K1/(d−1)+2−s) < K2(1/s−K1/(d−1)) for some K2 < K1 = o(d),

NUQSGD is guaranteed to have smaller variance than QSGDinf.

Proof Our proof argument is based on establishing a lower bound on the variance of QSGDinf
and an upper bound on the variance of NUQSGD. Denote the variance quantization of v using
QSGDinf and NUQSGD by ∆Qinf , E[‖QQinf

s (v)− v‖2] and ∆NUQ , E[‖QNUQ
s (v)− v‖2],

respectively. Note that ‖v‖∞ = 1. A lower bound on ∆Qinf is given by

∆Qinf ≥ K2(1/s−K1/(d− 1)). (51)
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We can bound the Eulidean norm of v as:√
1 +K2

2/(d− 1) ≤ ‖v‖ ≤
√

1 +K2
1/(d− 1).

Note that the assumption K1

(d−1)
√

1+K2
2/(d−1)

< 2−s implies that the normalized coordinates

vj/‖v‖ ∈ [0, 2−s] for j 6= i. Then an upper bound on ∆NUQ is given by

∆NUQ ≤
(

1 +
K2

1

d− 1

)(
0.5
(

1− 1√
1 +K2

1/(d− 1)

)
+

K12−s√
1 +K2

2/(d− 1)

)
≤
(

1 +
K2

1

d− 1

)
K1(0.25K1/(d− 1) + 2−s)

(52)

where we used
√

1 +K2
1/(d− 1) ≥ 1 + 0.5K2

1/(d− 1) in the second inequality.

J. Additional Experiments

In this section, we present further experimental results in a similar setting to Section 5.
We first measure the variance and normalized variance at fixed snapshots during training

by evaluating multiple gradient estimates using each quantization method (discussed in
Section 5). All methods are evaluated on the same trajectory traversed by the single-GPU
SGD. These plots answer this specific question: What would the variance of the first
gradient estimate be if one were to train using SGD for any number of iterations then
continue the optimization using another method? The entire future trajectory may change
by taking a single good or bad step. We can study the variance along any trajectory.
However, the trajectory of SGD is particularly interesting because it covers a subset of
points in the parameter space that is likely to be traversed by any first-order optimizer. For
multi-dimensional parameter space, we average the variance of each dimension.

Figure 11 (left), shows the variance of the gradient estimates on the trajectory of single-
GPU SGD on CIFAR10. We observe that QSGD has particularly high variance, while
QSGDinf and NUQSGD have lower variance than single-GPU SGD.

We also propose another measure of stochasticity, normalized variance, that is the
variance normalized by the norm of the gradient. The mean normalized variance can be
expressed as

Ei[VA[∂l(w; z)/∂wi]]

Ei[EA[(∂l(w; z)/∂wi)2]]

where l(w; z) denotes the loss of the model parametrized by w on sample z and subscript
A refers to randomness in the algorithm, e.g., randomness in sampling and quantization.
Normalized variance can be interpreted as the inverse of Signal to Noise Ratio (SNR) for
each dimension. We argue that the noise in optimization is more troubling when it is
significantly larger than the gradient. For sources of noise such as quantization that stay
constant during training, their negative impact might only be observed when the norm of
the gradient becomes small.

Figure 11 (right) shows the mean normalized variance of the gradient versus training
iteration. Observe that the normalized variance for QSGD stays relatively constant while
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Figure 11: Estimated variance (left) and normalized variance (right) on CIFAR10 on the
trajectory of single-GPU SGD. Variance is measured for fixed model snapshots during
training. Notice that the variance for NUQSGD and QSGDinf is lower than SGD for almost
all the training and it decreases after the learning rate drops. All methods except SGD
simulate training using 8 GPUs. SuperSGD applies no quantization to the gradients and
represents the lowest variance we could hope to achieve.
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Figure 12: Estimated normalized variance on CIFAR10 (left) and ImageNet (right). For
different methods, the variance is measured on their own trajectories. Note that the
normalized variance of NUQSGD and QSGDinf is lower than SGD for almost the entire
training. It decreases on CIFAR10 after the learning rate drops and does not grow as much
as SGD on ImageNet. Since the variance depends on the optimization trajectory, these
curves are not directly comparable. Rather the general trend should be studied.

the unnormalized variance of QSGD drops after the learning rate drops. It shows that the
quantization noise of QSGD can cause slower convergence at the end of the training than at
the beginning.

In Figure 12, we show the mean normalized variance of the gradient versus training
iteration on CIFAR10 and ImageNet. For different methods, the variance is measured on
their own trajectories. Since the variance depends on the optimization trajectory, these
curves are not directly comparable. Rather the general trend should be studied.

Comparison with DGC. In Figures 15 and 16, we make a comparison with DGC (Lin
et al., 2018).
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Figure 13: Comparison with SignSGD on CIFAR10. Training loss (left), training accuracy
(middle), and estimated variance (right) for training on 8-GPUs. Setting is similar to
Figure 4. SignSGD diverges with the standard learning rate for ResNets. We multiply the
standard learning rate schedule by the constant mLR.
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Figure 14: Comparison with TernGrad on CIFAR10. Training loss (left), training accuracy
(middle), and estimated variance (right) for training on 8-GPUs. Setting is similar to
Figure 4. The performance of TernGrad is inferior to NUQSGD.

ResNet152 Weak Scaling. In Figure 17, we present the weak scaling results for
ResNet152/ImageNet. Each of the GPUs receives a batch of size 8, and we therefore
scale up the global batch size by the number of nodes. The results exhibit the same superior
scaling behavior for NUQSGD relative to the uncompressed baseline.

EF-SignSGD Convergence. In Figure 18, we present a performance comparison for
NUQSGD variants (bucket size 512) and a convergent variant of EF-SignSGD with significant
levels of parameter tuning for convergence. We believe this to be the first experiment to show
convergence of the latter method at ImageNet scale, as the original paper only considers
the CIFAR dataset. For convergence, we have tuned the choice of scaling factor and the
granularity at which quantization is applied (bucket size). We have also considered learning
rate tuning, but that did not appear to prevent divergence in the early stages of training
for this model. We did not attempt warm start, since that would significantly decrease the
practicality of the algorithm. We have found that bucket size 64 is the highest at which the
algorithm will still converge on this model and dataset, and found 1-bit SGD scaling (Seide
et al., 2014), which consists of taking sums over positives and over negatives for each bucket,
to yield good results. The experiments are executed on a machine with 8 NVIDIA Titan
X GPUs, and batch size 256, and can be found in Figure 18. Under these hyperparameter
values the EF-SignSGD algorithm sends 128 bits per each bucket of 64 values (32 for each
scaling factor, and 64 for the signs), doubling its baseline communication cost. Moreover, the
GPU implementation is not as efficient, as error feedback must be computed and updated
at every step, and there is less parallelism to leverage inside each bucket. This explains the
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Figure 15: Estimated variance (left) and normalized variance (right) on CIFAR10 for
ResNet110. We set the ratio of compression for DGC to be roughly the same as NUQSGD.
In particular, we compare compression methods at compression ratio = 4/32, i.e., NUQSGD
with 4 bits and DGC at 12.5% compression. At this rate, both methods will have approx-
imately the same communication cost, i.e., comparison in simulation is representative of
real-time performance. We tune the learning rate and momentum for DGC and show its
best performance.
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Figure 16: Training accuracy (left) and validation loss (right) on CIFAR10 for ResNet110.
We set the ratio of compression for DGC to be roughly the same as NUQSGD. In particular,
we compare compression methods at compression ratio = 4/32, i.e., NUQSGD with 4 bits and
DGC at 12.5% compression. At this rate, both methods will have approximately the same
communication cost, i.e., comparison in simulation is representative of real-time performance.
We tune the learning rate and momentum for DGC and show its best performance.

fact that the end-to-end performance is in fact close to that of the 8-bit NUQSGD variant,
and inferior to 4-bit NUQSGD.
Comparison under Small Mini-batch Size. In Figures 19, 20, and 21, we show the
results when we train ResNet110 on CIFAR10 with mini-batch size 32 over 8 GPUs.

The number of quantization bits is set to 4. We observe a significant gap between
the variance and accuracy of QSGD with those of QSGDinf and NUQSGD. QSGDinf and
NUQSGD perform similarly and slightly outperform TernGrad in this setting.
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Figure 17: Scalability behavior for NUQSGD versus the full-precision baseline when training
ResNet152 on ImageNet.

Figure 18: End-to-end training time for ResNet50/ImageNet for NUQSGD and EF-SignSGD
versus the SGD baseline.
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Figure 19: Estimated variance (left) and normalized variance (right) on CIFAR10 for
ResNet110 with mini-batch size 32 over 8 GPUs. The number of quantization bits is set to
4.
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Figure 20: Training loss (left) and validation loss (right) on CIFAR10 for ResNet110 with
mini-batch size 32 over 8 GPUs. The number of quantization bits is set to 4.
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Figure 21: Training accuracy (left) and test accuracy (right) on CIFAR10 for ResNet110
with mini-batch size 32 over 8 GPUs. The number of quantization bits is set to 4.
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