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ABSTRACT

Spatial agent-based models are increasingly used to investigate the evolution of solid tumours sub-
ject to localised cell-cell interactions and microenvironmental heterogeneity. Here we present a
non-technical step by step guide to developing such a model from first principles, aimed at both
aspiring modellers and other biologists and oncologists who wish to understand the assumptions
and limitations of this approach. Stressing the importance of tailoring the model structure to that of
the biological system, we describe methods of increasing complexity, from the basic Eden growth
model up to off-lattice simulations with diffusible factors. We examine choices that unavoidably
arise in model design, such as implementation, parameterisation, visualisation, and reproducibility.
Each topic is illustrated with examples drawn from recent research studies and state of the art mod-
elling platforms. We emphasise the benefits of simpler models that aim to match the complexity of
the phenomena of interest, rather than that of the entire biological system.

Introduction

Cancer initiation, progression, and treatment responses are Darwinian evolutionary processes [l [2] that can be inves-
tigated using a wide range of mathematical and computational methods. Examples include evolutionary game theory
[3L 4], branching processes [, 6], and Moran processes [7, 8]. Yet while many tools have yielded important insights
into cancer evolution, the study of spatial aspects — especially important in carcinomas, constituting the majority of
humans cancers — often necessitates a spatially explicit approach, such as a spatial agent-based model.

An agent-based (or individual-based) model is a computational model of a system made up of autonomous, interacting
“agents”. Spatial agent-based models (SABMs) have long been used to study the evolution of spatially structured
communities because they can reveal how the processes of selection, drift, and gene flow depend on localised in-
teractions among agents (typically individual organisms) or between agents and their spatially varying environment.
As new technologies generate better spatial tumour data, SABMs are proving ever more useful in oncology. Typical
applications include understanding tumour development, inferring the effects of driver mutations, and predicting treat-
ment outcomes. For example in recent studies, Aif ef al. [9] used an SABM to investigate the evolutionary rescue of
drug-resistant tumour subclones; Saha et al. [10] used an SABM to investigate adaptive cancer therapy; and Bull and
Byrne [[11] used an SABM to simulate interactions between macrophages and tumour cells.

To support this burgeoning research field, here we present a seven-step guide to designing and implementing spatial
agent-based models in which the agents are locally-interacting tumour cells or cell subpopulations. Starting from the
simplest cellular automata, we discuss options for adding greater complexity and biological realism, such as multi-
level spatial structure and environmental heterogeneity. Based on our extensive experience of developing and using
SABMs [12} 13} [14} [15], we cover practical issues such as event scheduling, visualisation, and how to use SABMs
to infer parameter values from experimental or clinical data. Each topic is illustrated with examples from our own
demon-warlock modelling framework [14, [12]], other state of the art modelling platforms, and studies that have used
SABMs in cancer research. Whereas our focus is on tumour evolution, much of our advice applies equally to similar
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Figure 1: Some common neighbourhoods that govern the update rules for cellular automata and other agent-based
models in two dimensions (a) and three dimensions (b). A focal agent (cell) is shown in blue and its neighbourhood
sites in grey.

modelling methods used to study bacterial colonies, invasive species, and organismal development. The guide is
designed to be accessible for biologists and clinicians without specialist mathematical knowledge.

1 Spatial structure

Spatial structure determines the evolutionary balance between selection and drift, the nature of gene flow between
subpopulations, and the strength of ecological interactions. When a model fails to accurately represent the spatial
structure of a biological system, the model’s predictions and inferences for that system may be highly unreliable
[12} [16]. It follows that the parameters of spatial structure — such as the size of locally interacting cell communities
and the manner of cell dispersal — should be accorded the same importance as evolutionary parameters in model
design. Notwithstanding the trade-off between model simplicity and realism, spatial structure parameters should, as
far as possible, be derived or inferred from empirical data.

1.1 Stochastic cellular automata

Many of the simplest spatial agent-based models are cellular automata. A cellular automaton is a model that plays out
on a grid of sites in one or more dimensions. Each site is associated with one of a set of at least two possible states.
Each site also belongs to a subset of sites called a neighbourhood, of which some examples are shown in Figure[T} For
example, the von Neumann neighbourhood in two dimensions contains the nearest sites in the cardinal directions (up,
down, left and right). A cellular automaton sequentially updates itself according to a set of rules. The update rules for
a given site depend on its own current state and the states of the sites in its neighbourhood.

Whereas the update rules of many cellular automata are deterministic [17]], probabilistic rules are more appropriate for
modelling stochastic processes such as biological evolution. Because its next state depends only on its current state, a
stochastic cellular automaton is equivalent to a collection of locally interacting Markov chains.

In biological terms, each state corresponds a type of cancer cell or some other entity (such an immune cell or part
of the extracelluar matrix). Generally we will assume that the focal agents in our models are cancer cells and we
will use the terms “agent” and “cell” interchangeably where appropriate. A cellular automaton permits a cell’s event
probabilities (for example, its division, death, and dispersal rates) to depend on the number of neighbouring cells, thus
accounting for crowding or Allee effects. Event rates can also vary according to the types of the neighbouring cells,
for example to simulate cell competition or immune predation.

Models of asynchronous processes, such as cell division in a tumour, typically use asynchronous updating, meaning
that only one or a small number of sites are modified per update [18]]. In addition to being more realistic, asynchronous
updating is often necessary to prevent conflicts. For instance, if two cells are attempting to divide but only one space
is available for the two potential daughter cells then one must take priority.
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1.2 The Eden growth model

Among the simplest stochastic cellular automata is the Eden growth model. This model is typically implemented on a
two- or three-dimensional regular square grid with only two possible states: unoccupied (Sp) and occupied (.S1). With
each iteration, the update rule causes a site in the neighbourhood of an S site to switch from Sy to S7. In this way new
51 sites (cells) are added to the surface of a cluster. The Eden growth model on an n-dimensional grid self-organises
to resemble an n-dimensional ball with a non-trivial surface. The growth curve of the S; population approaches a
polynomial of degree n [19]].

The three most popular options for the Eden growth model update rule can be labelled alphabetically:

* Available site-focussed: Choose at random an Sy site in the neighbourhood of an .S site, and switch it from
So to S7.

* Bond-focussed: Choose at random an \S; site with a probability proportional to the number of .Sy sites in its
neighbourhood, and then randomly choose an Sy neighbour and switch it to S.

* Cell-focussed: Choose at random an S; site with at least one .Sy site in its neighbourhood, and then randomly
choose an Sy neighbour and switch it to S .

Although these update rules result in similar large-scale patterns, they generate cluster surfaces with different micro-
scopic properties. Indentations in the model surface are more likely to be filled, and spikes are less likely to form,
under option C than under option B, and under option B than under option A. Hence option C generates the smoothest
surface and option A the roughest [20].

Variants of the Eden growth model have been used to investigate the evolution of paediatric glioma [21]], colon cancer
[22]], hepatocellular carcinoma [23], and non-small cell lung cancer [24]]. Many studies use a variant that includes
stochastic cell death. By opening up spaces for cell division, cell deaths increase clonal mixing within the tumour and
facilitate selection [23].

1.3 Other grid-based stochastic cellular automata

Other stochastic cellular automata can be more appropriate than the Eden growth model for modelling systems in
which state changes are not confined to the surface. Spatial branching processes are similar to Eden growth models
except that if a dividing cell has no space to divide then it can create space by budging other cells. An intermediate
model can be created by stipulating that only nearby cells can be budged, so as to simulate physical constraints on
cell division. Chkhaidze er al. [25]] recently used such a model to investigate how spatially constrained tumour
growth alters signatures of clonal selection and genetic drift in cancer genomic data. Good practice is to implement
budging along an approximately straight line between the dividing cell and the nearest empty site. If budging is
instead restricted to the cardinal directions or the cardinal and intercardinal directions then the simulated tumour will
self-organise into an approximate square or octahedron, rather than a more biologically plausible disc or ball.

Another option is to allow dividing cells to replace, rather than displace, their neighbours. In the voter model, the
update rule is such that, with a certain probability, a randomly selected site copies the state of a neighbouring site.
Biasses can be introduced by setting unequal copying probabilities, corresponding to differences in cell fitness. Simple
(linear) voter models satisfy a convenient property called coalescing duality, which means that their typical behaviour
can be explained through mathematical analysis [26]]. In a pioneering 1972 study, Williams and Bjerknes [27] used a
biassed voter model to simulate the spread of skin cancer through the basal epithelial layer.

The cellular Potts model (CPM), also known as the Glazier-Graner-Hogeweg model [28}[29]], more explicitly simulates
physical interactions among cells and between cells and their microenvironment. The model takes place on a lattice
and each cell is represented by multiple lattice sites (as opposed to only one lattice site, as in previously discussed
models), corresponding to the cell’s volume. Cells are deformable and can adhere to one another or to surrounding
empty sites (which might represent extracellular matrix or growth medium). Hamiltonian mechanics describe the
overall energy of the system depending on adhesion forces and resistance to changes in cell volume. A random lattice
site is chosen at each time step and its state is copied to a random neighbouring site. If the new configuration has lower
energy than the previous configuration then the change is always accepted; otherwise, the probability of accepting
the change depends on the Boltzmann temperature. The CPM has been used in numerous cancer studies, such as
for simulating tumour growth, invasion and evolution [30], or for investigating how cell compressibility, motility and
contact inhibition shape tumour cell clusters [31]]. The CompuCell3D modelling environment compucell provides an
efficient, flexible CPM implementation.

The biological lattice gas cellular automaton [32] excels instead at modelling cellular movement, and especially col-
lective migration, in a simple, computationally efficient, and physically correct fashion. The model must play out on
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a square or hexagonal lattice in 2 dimensions, or a cubic, dodecahedral or icosahedral lattice in 3 dimensions. States
incorporate cell velocities. For instance, consider a 2-dimensional square lattice in which each site contains 5 nodes:
one for each directional velocity and a resting node at the centre. A cell occupying any one of these nodes can divide
into other nodes on the same site. A cell can also reorient itself by moving between nodes on the same site, and can
move between sites according to its velocity, provided there is space to do so. This model has been used, for example,
to give insights into breast cancer invasion plasticity [33].

1.4 Multi-level spatial structures

An important limitation of all the aforementioned cellular automata is that their uniform spatial structures are in-
consistent with the biology of many tumour types. Various common cancers have glandular structures and grow via
individual cells or small cell clusters invading neighbouring tissue [34, 35]. Colorectal adenomas are also glandular
but grow through gland fission [36].

Inspired by classical population genetics models [37]], a simple, conventional way to account for multi-level spatial
structure in tumours is to assign cells to local subpopulations, called demes, located on a regular grid. Thus each grid
site is allowed to contain not only one but dozens, hundreds, or thousands of cells. The subpopulation size per deme
is prevented from exceeding a certain threshold — known as the deme’s carrying capacity — by decreasing cell division
rates or increasing death rates as the subpopulation size grows.

Deme-based models allow for more complicated modes of cell dispersal. As in the voter model, cells can be assigned
some probability of invading neighbouring demes, either individually or in clusters. The dispersal probability can also
be made to depend on the population of the deme being invaded, so that cells disperse more easily in less densely
populated regions near the tumour periphery. Alternatively, each occupied deme can be assigned a probability of
undergoing fission, resulting in some of its cells being moved to an unoccupied neighbouring deme. Depending on
the degree of budging allowed, the deme-level dynamics of the fission model can resemble an Eden growth model (no
budging of demes) or a spatial branching process (unlimited budging). Deme-based models additionally allow for the
explicit simulation of tissue invasion, such that a tumour can grow only via its cells invading demes that are initially
filled with normal cells [[12].

1.5 Aggregating agents

If the within-deme subpopulations can be assumed to be well-mixed then cells that belong to the same deme and
have the same phenotype and genotype can be modelled collectively, rather than as individual agents. This model
design not only improves computational efficiency but can also facilitate mathematical analysis. For example, when
cells disperse by invading neighbouring demes, the dynamics of the demon-warlock framework are approximately
equivalent to the well understood spatial Moran process. Cells can be randomly selected within a deme by sampling
from a hypergeometric distribution.

Even greater efficiency can be realised by not modelling inter-deme dynamics at all, and simply making the demes
themselves the model agents [38]139]. Although such coarse-graining enables the simulation of much larger tumours,
it comes at the cost of reduced precision. Care should be taken in translating between mutation rates per cell and
effective mutation rates per deme.

1.6 Off-lattice models

Instead of confining agents to a regular grid, we might instead locate them in continuous space. This structure is poten-
tially more realistic but also entails more parameters, more decisions to be made, and typically higher computational
costs [40]. To prevent multiple cells occupying the same space and to maintain tumour integrity, we now must model
the movement of cells in response to physical forces such as cellular adhesion and repulsion [41]. We may also choose
to model directed movement under the influence of diffusible factors (hapotaxis).

There are several practical ways to prevent cells overlapping in an off-lattice model, depending on how the agents
are implemented. Suppose we have spherical cells, each with fixed radius . We can then specify that when, as a
result of cell division or movement, the distance between two cells’ centres is less than 27, both cells will simply be
pushed in opposite directions. Alternatively, to account for cell deformation, we might implement repulsion only when
the distance between cell centres falls below some threshold value smaller than 27 [42]. Some modelling platforms
achieve greater realism and tractability by implementing adhesion and repulsion forces using functions rooted in
physics, which are beyond the scope of this guide (see documentation cited in the appendix).
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Neutral Mutation

Beneficial Mutation

Figure 2: The result of running an Eden growth model with nearly neutral mutations (top) and beneficial mutations
(bottom). Model produced in HAL using some in-built examples as a skeleton for the code. [49].

2  Mutation

Having chosen an appropriate spatial structure, we next will decide which cell phenotypes and genotypes to include
in our state space, and how to model mutations between these states. As ever, the goal is to balance model simplicity,
realism, and computational demands.

2.1 Defining phenotypes

A good part of the difficulty in designing a useful model stems from the fact that much of the experimental data
gathered by cancer biologists focusses on genetic mutations while the rules that govern the behaviour of the agents in an
SABM assume an understanding of the key cancer phenotypes. The most basic actions a tumour cell might perform at
any given time step are apoptosis/death, proliferation, and motility. These are often considered as simple probabilistic
events and often modelled in a exclusionary manner, so that if a cell is moving then it is neither proliferating nor dying.
The required probabilities can either be taken directly from experimental data (which is often hard to measure in vivo
and unrealistic in vitro) or calibrated with in vivo pre-clinical models.

Using hard-coded rules to model the phenotype of a tumor cell, while relatively simple, does not capture the flexibility
shown by biological cells in the mapping between genotype and phenotype. Gerlee and colleagues have instead
proposed capturing some of the complexity of this mapping by embedding neural networks inside each agent, so that
the phenotype emerges in a non-linear way as a result of the agent’s state and the different microenvironmental inputs
to which the agent is receptive [43].

2.2 Trait evolution versus population (epi)genetic models

Once phenotypes have been defined, the next step is to determine how these phenotypes will change as a result of
mutations. One option is to model mutations as phenotypic switches. Many studies consider models with only two
possible tumour cell states — mutated and unmutated — which differ in fitness [38]], degree of drug resistance [44], or
some other trait. Grow-or-go models assume that cells can reversibly switch between predominantly migratory and
predominantly proliferative phenotypes [45]. Other models examine the evolution of continuous traits, such as levels
of glycolysis and acid production [46].

If we are more interested in clonal dynamics then we can explicitly track changes to the (epi)genome. These mutations
are conventionally assigned to three groups according to how they affect cell fitness: driver mutations (which increase
cell fitness), passenger mutations (no effect), and deleterious mutations (negative effect). For simplicity, most studies
assume an infinite sites model [47]], such that no two mutations can occur at the same site. Finite sites models must be
parameterised based on observed mutation frequencies [48]].

2.3 Example: The Eden growth model with mutation

We can convert an Eden model into an evolutionary model by implementing mutation. The grid and neighbourhood
are defined as before but now we have multiple cell states S, .53, 53, ... and mutation rates between each pair of
distinct cell states. A simple option, assuming infinite sites, is to set all mutation rates to be zero except in the case
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of S; to S; + 1 forall i > 0, so that every S; cell has exactly 7 mutations. Let us assume that all these mutations are
drivers and their effects combine multiplicatively, such that each mutation increases the division rate by a factor of
1+ s, with s > 0. Assume also that mutation occurs only at the time of cell division, and the number of new mutations
per daughter cell is Poisson distributed. We then arrive at a reasonable toy model of spatial tumour evolution that can
be implemented in not much more than 100 lines of code, as we illustrate with an R script [50]. Figure[2]shows results
of implementing a similar model in the HAL platform [49].

2.4 Distributions of fitness effects

Modelling the evolution of a quantitative trait, such as cell division or death rate, leads to further design decisions. As
in our toy model, it can be wiser to draw mutation fitness effects from a probability distribution instead of setting them
all equal. To see why, consider a model of an expanding tumour that, in the absence of mutation, has radius growth
rate co, and in which the spread of mutants is not confined to the periphery (for example, a biassed voter model).
When a fitter mutant arises within the wildtype population, its long-term fate, in the absence of further mutation, will
be sensitive to its radius growth rate, c1. If ¢; < ¢o then the mutant will remain forever rare; if ¢; > ¢y then the mutant
is bound to take over the entire tumour; if ¢; = ¢y then the mutant will become relatively more abundant over time
without ever fully replacing the wildtype. Randomising the fitness effect randomises c¢; and so randomises mutant
fates. The demon-warlock framework draws each selection coefficient (relative increase in cell division rate) from an
exponential distribution.

Strictly multiplicative fitness is best avoided in all but the smallest-scale models as it can lead to unrealistically high
fitness values. This is especially problematic if mutation is implemented at the point of cell division, which creates a
feedback loop in which lineage fitness grows at an ever increasing rate. A simple solution implemented in the demon-
warlock framework is diminishing returns epistasis. When the selection coefficient of a driver mutation is s, instead
of multiplying the division rate by 1 + s, we instead multiply by 1 + $(1 — b/bsn4z), Where b is the previous division
rate and by, 4, is an upper bound.

3 Event scheduling

The next step is to consider how to implement cell events algorithmically. Event scheduling can be the most important
factor in determining computational efficiency, especially in simpler grid-based models. The optimal choice strikes a
balance between efficiency, simplicity, and biological realism.

3.1 Gillespie’s algorithm

The Gillespie Stochastic Simulation Algorithm [51] is an especially simple and popular solution to event scheduling.
Event rates are assumed to depend only on the current state of the model and the time between events is exponentially
distributed (as in a Poisson process), such that two events cannot occur simultaneously. The steps of the algorithm are
as follows:

. Initialise the system.

. Set event rates (birth rates, death rates, dispersal rates, etc.).

. Randomly determine the next event such that P(event = E) = rate(E) /(rates)
. Implement the chosen event.

. Advance the timer by 6t ~ Exp(1/%(rates))

6. Repeat from step 2 until a stop condition is reached.

DN A W N =

This algorithm is more efficient than the event timer approach (see below) and is very easy to implement. In statistical
terms, the simulated sequence of events corresponds to a trajectory of a set of stochastic differential equations, called
the master equations. This means we have a good mathematical understanding of how the algorithm behaves.

Our toy Eden growth model [50] provides an example implementation of Gillespie’s algorithm. This model further
improves computational efficiency by keeping track of the cells that have space to divide, so that the next dividing cell
can be chosen from among this subset (which in n dimensions scales with the radius to the power of n — 1) rather than
from the entire cell population (which scales with the radius to the power of n). The drawback is that cells without
space to divide never undergo mutation, which may be an unjustifiable assumption in a serious research model.

Modifications of Gillespie’s algorithm, such as tau leaping [52], are even faster but less accurate. Tau leaping allows
multiple events to occur simultaneously, which may be problematic in a spatial model if the events affect multiple sites
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Figure 3: An example of using a binary tree to select an event (Event 3) from four options. Selected nodes are shown
in blue.

in close proximity (for example, if two cells are chosen to divide into the same empty site). Moreover, tau leaping
improves performance only when the system is dominated by a small number of large, homogeneous subpopulations,
which is typically not the case in SABMs.

3.2 Gillespie’s algorithm with phase-type distributions

A shortcoming of the Gillespie algorithm is that some events, such as cell division, are not true Poisson processes with
exponentially distributed waiting times. In effect, the Gillespie algorithm permits arbitrarily short cell cycles. Some
cells may divide several times while, in the same period, others with identical division rates fail to divide at all.

One way to achieve more realistic cell cycle periods without sacrificing very much computational efficiency is to
use a phase-type probability distribution, such as an Erlang distribution, constructed using a mixture of exponential
distributions. This entails executing the Gillespie algorithm as above except that when a cell is selected for division
it doesn’t necessarily divide immediately but instead changes its position in the cell cycle. Given a target probability
distribution for cell cycle periods, we can use an algorithm to choose transition rates such that the resulting phase-type
distribution has the same mean, variance, and skew as the target [53]]. For example, suppose that all cells begin in
division state 0. When a cell is selected (according to a state-dependent probability), its state is updated. When a state
3 cell is selected it divides and both progeny are reset to state 0 [54]. The method’s greater realism comes at the cost
of additional memory demands and longer execution time, compared to the basic Gillespie algorithm.

3.3 Random sampling with binary trees

When we have more than a handful of events to choose from it will be much more efficient to implement event
selection using a binary tree. Suppose, for example, that we have four possible events with rates pi, p2, p3 and py. If
we store the rate sums p; + pa, p3 + pa, and p; + p2 + p3 + ps then we can choose an event as follows. First we
generate a random number r from a uniform distribution between 0 and p; + p2 + p3 + p4, and we examine whether
r < p1 + p2. Supposing r is greater than p; + po, we then test whether it is less than p3. If so then we choose event 3;
otherwise event 4. Effectively, we have traversed a binary tree, beginning at the root node associated with the sum of
all event rates, and ending at a terminal node associated with a single event (Figure|3).

The binary tree method is efficient because both the number of steps needed to choose an event, and the number of
nodes that need updating following a change in an event rate, grow only with the logarithm of the number of possible
events. For example, we need only twenty steps to choose between one million possible events. As long as the cell
population keeps growing, there is little benefit to pruning nodes and it is easy to ensure that the tree remains balanced.
The rate sums together take up only as much computer memory as the individual rates. The main costs are in terms of
code development time and code complexity. Binary trees require careful implementation and error checking to ensure
that existing nodes are updated and, when required, new nodes are added after each model event. The demon model
implements binary trees and periodically recalculates event rate sums to prevent excessive accumulation of rounding
errors.
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3.4 Cell cycle timers

A less efficient alternative to using phase-type distributions is to draw inter-division times directly from a chosen
probability distribution. This approach enables more precise tracking and adjustment of individual cell cycles. An
algorithm used in recent studies [46l 44] is as follows:

1. Initially assign every cell ¢ a countdown timer set to time ¢; drawn from some probability distribution (de-
pendent on the cell’s phenotype).

2. Subtract 6t from every countdown timer, where 6t < ¢; for all 4.

3. For all cells ¢, in random order:
A. Implement cell death and dispersal events for ¢;
B. If 7 is alive, has space to divide, and ¢; < 0, then ¢ divides;
C. Assign each new cell a countdown timer, set to some random time dependent on the new cell’s phenotype.

4. Repeat from step two until a stop condition is reached.

How much this approach reduces computational efficiency will depend on other aspects of the model. It is likely
to be much slower than a well implemented Gillespie algorithm when applied to a simple grid-based model, due to
the additional burdens of updating every cell (Step 2) and shuffling all the cells (Step 3) at each small time step. In
an off-lattice model, where cells move much more frequently than they divide, and where a shuffling algorithm may
already be required to randomise the order in which cell positions are updated, the cost of updating cell division state
at the same time as position may be negligible.

4 Microenvironment

Whereas many SABM studies focus on the effects of spatial structure and cell-cell interactions, real tumours evolve
in a complex microenvironment that varies over space and time. This tumour microenvironment, comprising both
molecular elements, such as cytokines, and other (non-cancer) cells, constitutes the cancer ecosystem [S3] — a key
element of the selection process driving somatic evolution. Given a good rationale and sufficient parameterisaton data,
we may choose to extend our model by explicitly simulating microenvironmental factors in the form of agents (in the
case of immune cells or stromal cells) or diffusible factors (such as oxygen and drugs). Permitting cancer cells to
modify their selective environment creates potential for emergent complexity and niche construction [56, 57].

4.1 Hybrid cellular automata

Hybrid cellular automata (or HCA) have been used to model interactions between tumour cells and diffusible factors
for more than twenty years. As described in a pioneering 2001 paper by Patel and colleagues [58]], these models con-
sist of two interdependent components: stochastic cell events, and deterministic reaction-diffusion partial differential
equations. The latter component dictates how chemicals or other factors work their way through the system as they
are consumed and processed by cells. Local concentrations of diffusible factors contribute to the cell update rules.

Typically we assume that diffusible factor concentrations rapidly re-equilibriate following changes in the configuration
of cells. We can then numerically solve the equations to find the equilibrium concentrations either after every cell event
or, trading some accuracy for greater efficiency, after a relatively small number of cell events have occurred. Suitable
procedures for solving partial differential equations as initial value problems can readily be found in textbooks and
software libraries. These range from simple but inefficient algorithms based on the classical Gauss-Seidel method,
which require only a few dozen lines of code [59, 58| [15], to the highly sophisticated BioFVM solver [60], which is
specifically optimised for hybrid SABMs. Several SABM platforms include their own methods for solving reaction-
diffusion equations in two or three dimensions (see appendix).

4.2 Types of diffusible factor

To add biological realism, we might make cell division and death rates in our model depend on the local oxygen
and glucose concentrations as these factors diffuse through the tumour from the surrounding medium (in very small
tumours and tumour spheroids) or from point sources representing blood vessels (in larger, vascularised tumours). We
might also modify dispersal rates so that cells follow oxygen or glucose gradients. Potential adverse factors include
acid produced through tumour cell metabolism, and drugs that diffuse from blood vessels. Hybrid cellular automata
are especially suitable when the supply of an influential factor is highly variable over space or time, such as in the case
of intermittent drug treatment [61]].
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5 Parameterisation and inference

Although theoretical models can be valuable for generating hypotheses and providing proof of concept, if we want to
apply an SABM to studying a particular biological system then we must ensure that its influential parameter values are
set appropriately. Parameterisation should ideally be based on clinical or experimental data specific to the biological
system of interest; otherwise values can be estimated from studies of similar systems or theoretical considerations (for
instance, diffusion coefficients approximately correlate with molecular weight). Influential parameters might pertain
to the effects of mutations, drugs, oxygen and glucose; rates of chemical supply, diffusion, consumption and decay;
cell dispersal modes and rates; baseline cell death rates, crowding effects and the size of interacting cell communities.
Since calibrating SABMs is often computationally demanding, high-performance computation may be required to
generate the necessary resources to calibrate them properly.

5.1 Example: Hybrid cellular automaton for simulating a tumour spheroid

Bacevic and Noble et al [15] parameterised a HCA to mimic tumour spheroid evolution under drug treatment. In
spheroids the limiting factor for cell survival and proliferation is oxygen. Other diffusible factors such as glucose
were therefore omitted to simplify the model without compromising its usefulness. The oxygen concentration in
the medium and oxygen diffusion rates were drawn from previous studies [62, |63} 164], as were the mathematical
relationships between oxygen consumption rate, cell proliferation rate and local oxygen concentration [65} [66]. The
different maximum proliferation rates of drug-sensitive and resistant cells, reflecting a fitness cost of resistance, were
determined from new monolayer growth assays. Cells with insufficient oxygen supply were assumed to die.

Since oxygen effects alone fail to account for the extent of quiescence observed in tumour spheroids, Bacevic and
Noble et al implemented crowding effects by permitting cell budging only within a specified radius. New monolayer
growth assays revealed that the relationships between cell proliferation rate, death rate and drug dose could be well
approximated with piecewise linear functions. The drug’s impact on proliferation was further assumed to multiply the
oxygen effect, consistent with prior observations [65]. Drug consumption was also modelled using Michaelis-Menten
kinetics, with a diffusion rate chosen according to the drug’s molecular weight and an appropriately low consumption
rate. Thus parameterized, the SABM accurately predicted the outcomes of new tumour spheroid experiments [15].

5.2 Example: Hybrid cellular automaton of the bone ecosystem in cancer

Araujo and colleagues [67] developed a hybrid cellular automaton for which the goal was to capture the ecosystem
of the bone. A crude approximation of this ecosystem includes the bone itself, the myeloid-derived cells such as
osteoclasts that resorb bone, and the cells derived from messenchymal stem cells, such as osteoblasts, that deposit
new bone. Each of these cell types can be modelled as discrete agents regulated by diffusible factors — such as
TGF-, RANK ligand, and other factors embedded in the bone matrix — described by partial differential equations.
Parameterisation of the model is facilitated by the fact that non-cancerous cells have more predictable phenotypes, and
the model’s overall behaviour can be calibrated to ensure it recapitulates bone homeostasis. Araujo and colleagues thus
studied how bone metastatic prostate cancer cells could infiltrate the bone ecosystem, take advantage of it, and grow
[68]. They also investigated what prostate cancer cells in the primary tumour should be of concern to physicians, and
why conventional treatments that fail to disrupt tumour-ecosystem interactions also fail to provide long-term cancer
cures in bone metastatic prostate cancer [69].

5.3 Parameter inference

Unknown parameter values can be inferred by combining an SABM with a statistical method. This is, in fact, often
the main objective of an SABM study. Approximate Bayesian computation is a popular approach that, in its simplest
form, infers the value of a parameter 6 as follows

From our data, calculate some summary statistic ftqqtq;

Set: =1,

Run the model using a candidate parameter value §; drawn from some prior distribution;

Calculate the summary statistic y; for the model output;

AR

If the difference between p; and figq¢, is less than a predefined tolerance then add 6; to the posterior distri-
bution;

*

Increment 7;

7. If 7 is less than some threshold then repeat from step 3.
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Although simple in principle, approximate Bayesian computation requires careful implementation. The accuracy and
precision of inferences depend on the choices of prior distributions, summary statistics, and tolerances, as well as the
number of iterations. Typically multiple parameter values cannot be precisely derived from prior data or models, in
which case each should be assigned a vague (high variance) prior distribution. Tolerance values should be tuned such
that neither too many nor too few candidate parameter values are accepted to the posterior distribution. Summary
statistics should capture features of the system that provide useful information about the parameters of interest. A
useful template is a 2010 study [70] in which Sottoriva and Tavaré inferred aspects of stem cell dynamics in the
colonic crypt by combining a cellular Potts model with approximate Bayesian computation, using a summary statistic
based on methylation patterns.

An alternative to this approach was recently outlined in [71]], in which the authors describe a novel method utilis-
ing neural networks to reduce both tumour images and SABM simulations to low-dimensional points. The distance
between these points acts as a quantitative measure of how the two differ. This enables direct comparison, and by
using parameter fitting algorithms to minimise the distance between the two sets of points, parameters can be estimate
directly from the images and the simulations.

5.4 Sensitivity analysis

Whatever the objective, an essential step in any modelling study is so examine, as far as is practical, how the results and
conclusions depend on uncertain aspects of the model. A common approach is to run a large number of model variants
with different combinations of plausible parameter values. Varying one parameter at a time can provide useful insight
into which parameters have the greatest impact on model output, with the shortcoming that non-linear interactions
between parameters are often neglected. A more sophisticated approach is to infer a multivariable “metamodel”
function — a model of the model — that approximately describes how the model’s parameters determine its outputs.

Since varying many parameters systematically on a continuous scale is infeasible, sampling methods such as Sobol se-
quencing [72] or Latin hypercube sampling [[73]] can be used to generate a set of near-randomly sampled combinations
of parameter values. Both methods were used in a recent SABM study of cancer cell response to ATR-inhibitors [22].
A recent introductory review explains specifically how to apply these methods to cancer ABMs [74]]. It is important to
note that thorough sensitivity analysis involves varying not only parameter values but also mathematical relationships,
aspects of spatial structure, and any other influential model components.

6 Visualisation

Having built and parameterised a model, we next require useful ways to visualise its output. Typical methods repre-
sent spatial information, multidimensional phenotypic information, or evolutionary dynamics. Representing all these
aspects in a single image is generally impossible.

6.1 Spatial plots

A spatial plot represents the state of an SABM at a moment in time. Producing a two-dimensional grid plot of a
two-dimensional on-lattice model is straightforward — we simply output the state of each site as a matrix of numbers
and input this matrix into a bitmap (or raster) plotting function in R, Python, MATLAB, or similar software, using
different colours to represent the different states (Figure [2). Our toy Eden growth model [50] provides an example
implementation. Diffusible factor concentrations can be shown outside the tumour using a colour gradient and inside
the tumour by adjusting brightness [[15]]. We can apply the same method to off-lattice models by specifying a grid and
assigning each grid square a value that summarises the states of all points within the square. Given multi-level spatial
structure, we can represent the most abundant state in each deme [12].

Ilustrating three-dimensional information is more technically demanding as we need to project the object onto a two-
dimensional plane, determine the visible surface, and add shading (as in Figure [dh). Suitable computational methods
include rasterisation and ray tracing, which can be performed in R and Python or using dedicated software, such as
POV-Ray. Further details can be found in the PhysiCell documentation (see appendix). A much simpler solution is to
plot only two-dimensional slices.

6.2 Visualising evolutionary dynamics

Muller plots represent subpopulation dynamics and phylogeny, while disregarding spatial information. The horizontal
axis represents time and the vertical axis corresponds to subpopulation frequency. Each subpopulation is depicted as a
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Figure 4: a) Plots of a 3D off-lattice ABM, produced in PhysiCell [75]], showing a cross-section of model states of a
hanging-drop spheroid growth simulation at different time points, using either a deterministic or a stochastic SABM.
Cells are coloured according to cell cycle position. Cells in the K cell cycle state are green, post-mitotic Ky cells are
magenta, quiescent cells are pale blue, apoptotic cells are red, and necrotic cells are brown. Cell nuclei are shown in
dark blue. b) Muller plot showing phylogenies and phenotype frequencies over time. ¢) Fish plot showing phylogenies
and phenotype population sizes over time. d) 2D grid plot corresponding to same simulation as the Muller and fish
plots in previous panels, with the same colour scheme, at the final time point. Plots b and ¢ were produced using the R
package ggmuller [76]]. Image a is reproduced from [[73]] under the terms of a Creative Commons Attribution License
and with the approval of Paul Macklin. Plots b-d are reproduced from [13] under the terms of a Creative Commons
Attribution License.

shaded area emerging from its immediate ancestor (Figure db). Fish plots are similar but show population size rather
than frequency (Figure ). Software packages for producing these plots include ggmuller [76] and EvoFreq [77].

6.3 Phenotype space plots

In a phenotype space plot, the axes correspond to continuous traits such as cell fitness, metabolic type, and degree of
drug resistance, and each point represents a cell. We can visualize phenotypic evolution by animating phenotype space
plots from a series of time points. Robertson-Tessi and colleagues pioneered the use of these plots in cancer research
in their 2015 study of the effects of metabolic heterogeneity on tumour growth [46].

7 Reproducibility

Reproducibility is a cornerstone of the scientific method. A reproducible modelling study not only allows others to
easily regenerate its results but also permits further data processing, downstream analysis of generated data, generation
of summary statistics, ease of production for visual representations or plots, and even adaptation of the existing model
for novel purposes.

7.1 Principles of reproducible research
Gundersen [78] describes three categories of reproducibility:

* Outcome reproducibility: The reproduction experiment’s result matches the original. If the same analysis of
the result is performed, the same conclusions can be drawn, and the original hypothesis is supported by both
experiments.

* Analysis reproducibility: The reproduction experiment’s result differs from the original, but if the same
analysis method is used, the interpretation of the results still matches the original.

* Interpretation reproducibility: The reproduction experiment’s outcomes and the analysis of said outcomes
both differ, but the interpretation matches the original interpretation.

Computational modelling studies should typically aim for the highest standard of outcome reproducibility. If care is
taken to construct a well-packaged computational study in a controlled digital environment, then in principle, given

11



A seven-step guide to spatial, agent-based modelling of tumour evolution

a suitable machine, the study should be easily reproduced exactly. This entails not only comprehensively explaining
methods, results, analyses, and interpretation, but also sharing the model code and scripts used at every step of pre-
processing and analysis, providing a detailed description of how to execute the code, and sharing any associated data
and parameterisation and configuration files.

In their outline of best practices to observe throughout a computational research project, Sandve and colleagues [79]]
advocate tracking how every result is produced and reporting intermediate results as well as final outcomes. To make
code easier to reproduce, one should catalogue the versions of software used at every point, record the seeds used in
any random number generation, and implement version control [[80]. Manual data manipulation should be avoided in
favour of using automated methods to reformat and process raw data files. The raw data used to produce summary
data plots should be easily accessible to facilitate easy plot reproduction and to allow readers to check individual data
points. Textual descriptions of methods and results should link to the associated raw data and code so that a reader can
easily follow all the steps leading to interpretations. Lastly, modellers are highly encouraged to share each full study,
ideally with a dedicated public server. One such research-oriented database is zenodo [81]], where scientists may freely
upload their research output permanently as a citeable piece of software.

7.2 Workflow managers, package managers and containers

A complex computational model will often require multiple steps to be carried out in sequence. If a high-performance
computing (HPC) cluster is required to run the model efficiently — as is typical for complex models — it is essential to
utilise a workflow manager to properly orchestrate the steps [82]. Open-source workflow managers allow researchers
to package a model into a reproducible, cross-platform workflow. Nextflow [83] and Snakemake [84] are among the
most popular workflow managers with several published pipelines [85, [86L |87, [88]], strong community support, and
extensive documentation, giving users flexibility when designing their own custom pipelines. Snakemake is based
on Python, a popular language among computational biologists and bioinformaticians. Nextflow uses the Java-based
language Groovy, which has a Python-style structure and is relatively easy to for Python users to learn. Both also
enable automatic parallelisation for HPC clusters, which can be essential for complex SABMs or for running multiple
instances of smaller models simultaneously.

Another option is to utilise container technologies, considered by many to be the gold standard in computational re-
search. These are less computationally demanding than running an application on a computer directly or using a virtual
machine and so permit faster deployment, patching, and scaling. Containers also allow users to deploy the application
on multiple operating systems or machines without reformatting, and will run the application the same way no matter
where they are deployed [89]. Docker [90] is a popular container design platform which permits packaging applica-
tions into distribution-independent containers. Another option, Bioconda [91]], enables easy dependency management,
and can be deployed inside a container.

7.3 Extendable modelling platforms

For many research projects, the easiest option can be to build on an existing open-source agent-based modelling
platform (see appendix for a brief guide). Some of these platforms — such as Chaste [92], CompuCell3D [93]], HAL
[49] and PhysiCell [75] — excel in simulating off-lattice cell populations in complex microenvironments. Others, such
as demon [94] (which has an automated computational workflow, Warlock [14]), J-SPACE [95] and SMITH [96]],
focus on efficient modelling of evolutionary dynamics. Several are modular platforms, which facilitate reproducibility
by making it easy to create and share extensions of the generic software. Nevertheless, even the most flexible platform
is necessarily based on certain fundamental assumptions, structures, and algorithms. If we want to create an especially
innovative model, requiring several novel components that pre-existing modelling platforms lack, then we might find
it best to start from scratch. In principle, specialist rather than generalist models permit greater optimisation in terms
of memory demands and execution time.

7.4 FAIR principles in data management

As the volume of publicly available research data has been growing exponentially in recent decades [97], proper
digital data management and annotation is recognized as an essential step in computational research — crucial for
research reproducibility. Most notably, the FAIR principles have become a cornerstone in modern data management,
particularly in the realms of scientific and research data [98]]. FAIR is an acronym that encapsulates a set of guiding
principles: Findable, Accessible, Interoperable, and Reusable. To be FAIR, data must first be Findable, meaning that it
is easy for both humans and machines to discover, thanks to comprehensive metadata and proper indexing. Data should
be Accessible, ensuring that access rights and permissions are clear and well-defined, thus minimizing barriers to entry.
Interoperable data is structured in a way that allows integration with other datasets by adhering to common standards,

12



A seven-step guide to spatial, agent-based modelling of tumour evolution

formats, and vocabularies. Lastly, data should be Reusable, with thorough documentation, contextual information, and
availability in a format that facilitates easy replication and reuse. Altogether, the FAIR principles serve as a framework
for enhancing data sharing, management, and collaboration, ultimately driving scientific progress and fostering open
science initiatives. Major organisations that have embraced FAIR guidelines include the European Open Science Cloud
[99], the European Life-Science Infrastructure for Biological Information [[100], the US National Institutes of Health
[101], and the Global Alliance for Genomics and Health [[102].

Discussion

Having surveyed the numerous choices that arise in any SABM project, we are faced with a problem: how can we
choose the most appropriate model? In tumour evolution research, unlike in much of physics and engineering, there
is no standard approach. Rather we must tailor a model to each research question by considering which components,
events and interactions must be included, how far each aspect can be parameterised with available data, and the limits
of our computational resources. It is essential to build on a sound understanding of the biological system and of the
questions that matter to biologists and clinicians. Ideally this knowledge should come through close collaboration with
empirical researchers throughout the model development process.

A general principle is that model complexity should match the complexity only of the phenomena of interest. We need
not employ an off-lattice hybrid SABM if a simple cellular automaton with only a few basic update rules can demon-
strate the same principle. Attempting to represent every component of a biological system is not only computationally
impractical but also risks overfitting and hinders explainability. Simpler models have many merits. They are easier to
falsify and have fewer sources of potential error. They reduce researcher degrees of freedom and curb the tweaking
of parameters to support a pet hypothesis. They are more mathematically tractable and easier to analyse. Perhaps
most importantly, a simple model has wider applicability and can be more readily generalised, adapted or extended to
answer new questions. More complicated models should be preferred only if the biological system is especially well
understood or if simpler models have been tested and shown to be inadequate.

Model design remains a challenge for even the most experienced researchers. One of the nine overarching themes in
a recent review of key questions concerning the ecology and evolution of cancer [L03] was that we do not yet know
which mathematical and computational models are the most useful. In another recent survey of cancer adaptive therapy
modelling [104], four of the eleven key open questions were related to identifying appropriate mathematical models.
When it comes to SABMs, the main limitations are twofold. First, we typically lack sufficient data to design and
parameterise SABMs of large tumours. Second, routinely simulating much more than a few million individual cells
(corresponding to no more than half a cubic centimetre of tumour) is computationally impractical. To some extent,
these problems have technological solutions. Multi-region sequencing, spatial multi-omics, digital pathology, and
other modern methods are producing ever more detailed spatial tumour data. Accessible computing power continues
to grow. But progress will also depend on developing smarter models.

Instead of drawing conclusions from a single SABM, we might do better to consider ensembles of models with diverse
structures, algorithms, and underlying assumptions. Much as in hurricane forecasting [[105]], we can be more confident
when many models converge on the same prediction. Another important direction is to develop coarse-grained models
that can simulate tumour evolution as accurately as cell-level SABMs but with much greater computational efficiency.
Rather than cell division, death, mutation and dispersal rates, coarse-grained models depend on macroscopic param-
eters such as the arrival rate of consequential clones, clonal expansion speeds, and large-scale microenvironmental
heterogeneity. A potential way forward is to combine mathematical analysis of the relevant stochastic processes to de-
termine appropriate approximations, and machine learning methods to infer the parameter values. SABMs capable of
accurately simulating the evolution of entire tumours could have wide-ranging applications, not least in patient-specific
clinical forecasting.
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Appendix: Agent-based modelling platforms

Cell-based Chaste

The cell-based version of Chaste [92] is a highly sophisticated, multiscale computational framework for modelling
cell populations. Chaste permits both on- and off-lattice models and has built-in code for simulation of specific
biological systems, such as cancer development within colonic crypts. Chaste has its own ODE and PDE solver, called
SUNDIALS [106].

CompuCell3D

CompuCell3D [93] is a general-purpose platform for implementing tissue development models, including the Glazier-
Graner-Hogeweg (or cellular Potts) model that its developers pioneered. Its bespoke CC3D-Bionetsolver package
solves ODEs and PDEs using a finite element method. CompuCell3D has been used in dozens of studies of cancer
and morphogenesis.
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Demon

Demon [94] specializes in simulating intratumour population genetics. Its multi-scale spatial structure makes it es-
pecially well suited to studying the evolution of glandular tumours. Demon can be configured to implement mathe-
matically tractable models such as the Eden growth model, biassed voter model, spatial Moran process, and spatial
branching processes. An automated computational workflow called warlock [[14] facilitates running demon simula-
tions in parallel on a high-performance computing cluster.

HAL

HAL [49] is a generic and highly customisable platform comprised of modular components which allow for multiple
grids to operate simultaneously, each performing different tasks. For example, one grid might handle cell-cell interac-
tions while another implements oxygen diffusion. HAL has multiple ODE and PDE solvers to suit different modelling
needs. It also includes several pre-built model templates.

J-SPACE

J-SPACE [93] is a modelling platform designed specifically for phylogenetic modelling. It simulates cancer evolution
on a grid (or some other graph) and generates synthetic reads from next-generation sequencing platforms. A primary
goal of J-SPACE is to help researchers assess the impact of incomplete data or experimental error on downstream
bioinformatics pipelines.

PhysiCell

PhysiCell [[75] is a flexible framework that can implement physics-based off-lattice models of large numbers of cells in
dynamic tissue microenvironments, with dynamic cell-cycle state tracking. PhysiCell uses a custom-built, open-source
package for ODE and PDE solving, called BioFVM [60]. Potential functions are used to describe cell-cell interactions
including adhesion, repulsion, and cell-matrix interactions [42].

SMITH

SMITH [96] implements a branching process with quasi-spatial constraints that separate the tumour into a proliferating
shell and a static core. By simulating the dynamics of clones rather than individual cells, SMITH is able to simulate
the evolution of a tumour up to a billion cells in only a few minutes on a standard desktop PC. This computational
speed comes at the cost of the model’s strong simplifying assumptions.

Morpheus

Morpheus [107] is a highly accessible open-source platform in which users can develop multi-scale, multicellular
systems which couple ODEs, PDEs and cellular Potts models, with automatic scheduling. Rather than coding models
manually, users can describe the model in biological and mathematical terms in Morpheus’ GUI, and utilise provided
tools for visualisation and parameter estimation.
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