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Abstract

This thesis explores AdS3/CFT2 dualities in string theory using techniques from integra-
bility, and machine-learning applications in Lie algebras and in quantum integrability. In-
troductory chapters on string theory and holography, AdS3/CFT2, and machine-learning
are followed by 3 chapters, each presenting a different work of original research: protected
spectrum using Algebraic Bethe ansatz in AdS3 backgrounds, supervised learning tensor-
products of Lie algebra representations, and searching for quantum integrable models
using neural networks. We conclude with a discussion of ongoing and unpublished works.
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1 String theory and integrable holography

1.1 String theory and AdS/CFT

String theory has provided us with a lot of tools to understand physics beyond stan-
dard model and classical gravity. A major breakthrough in this regard came with
the AdS/CFT correspondence, which provided us a window to probe non-perturbative
regimes of a diverse array of QFTs by mapping them to weakly-coupled dual theories. In-
tegrability has been another highly useful theme in theoretical physics, that has enabled
very powerful non-perturbative computations within classical and quantum systems. In
the context of string theory, integrable structures were first discovered in the 4 dimen-
sional N = 4 super Yang-Mills (SYM) [1], which appears as gauge theory dual to strings
on AdS5 × S5. While investigating the one-loop spectrum of the dilatation operator, the
authors realised that the problem could be mapped to a spin chain Hamiltonian, and
solved using Bethe ansatz. Later, string theory in AdS5×S5 background has been shown
to be classically integrable [2] by exhibiting the zero curvature representation of the string
equations of motion [3]. Classical integrability of the string action allowed the construc-
tion of soliton solutions to the equations of motion, known as “giant magnons”(see [4]).
They were shown to satisfy the same dispersion relation as the spin chain magnons in
the dual gauge theory. An all-loop integrable S-matrix for these magnons in the de-
compactification limit of the string world-sheet were obtained in [5]. This matched the
S-matrix proposal from the gauge theory side, made earlier in [6, 7, 8]. It is assumed that
this integrability survives quantisation, at least in certain corners of the moduli space
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(e.g. planar limit of the dual CFT). Hence, the various tools developed in the context of
integrable spin chains, such as the Bethe ansatz, finite-gap equations and the quantum
spectral curve can be applied to string theory. This allows for huge improvement in com-
putability as it produces results exact to all orders of the string coupling α′. Using the
AdS/CFT correspondence this translates to computation exact to all orders in ’t Hooft
coupling λ of the dual CFT.

Besides AdS5, integrable holography has been explored extensively for AdS4, AdS3

backgrounds as well. In AdS4 case, the dual CFT is ABJM theory, and the integrability
picture follows closely with AdS5(see [9]). It is beyond the scope of this thesis. We shall
focus on AdS3 integrability in the following sections. Classical integrability of the su-
perstring action in AdS3/CFT2 backgrounds supported by pure Ramond-Ramond (RR)
flux was confirmed by working out the appropriate coset descriptions in [10, 11]. [11] fur-
ther proved semi-classical integrability in these backgrounds by constructing the relevant
finite-gap equations. The Lax representations were obtained for more general mixed-
flux backgrounds with both RR and Neveu-Schwarz-Neveu-Schwarz (NSNS) flux fields in
[12], and the corresponding finite-gap equations were worked out in [13]. Progress towards
quantum integrability was achieved with the construction of the all-loop S-matrices, ther-
modynamic Bethe ansatz (TBA) and quantum spectral curve. Relevant literature and
in-depth developments of these backgrounds will be discussed in the next section.

In this section, we shall review the fundamentals of superstring theory in 10-D space-
time and how the AdS/CFT conjecture arises from D-brane setups in this background.
Next, we outline the basics of classical and quantum integrability that are relevant for
our discussions. Following that, we write down the non-linear sigma model action for
the superstring, impose the lightcone gauge and κ symmetry, and explore the Lax re-
formulation of the classical equations of motion. We discuss the spectral curve and how
classical string configurations are realised as branch-cut solutions in the spectral plane.
Then we write down the quantum all-loop worldsheet S-matrices in AdS5 × S5 in terms
of suitable reparameterisation of the momentum of the scatterers. This will prepare us
for the AdS3 × S3 ×M4 backgrounds in the following section.

1.1.1 Superstring theory in 10 dimensions

String theory involves the study of 1-dimensional strings as the fundamental dynamical
objects modelling small-scale physics, instead of 0-dimensional point particles in QFTs.
As such we have world-sheets instead of worldlines for the fundamental objects, which
are parameterised by two real parameters (τ, σ), or one complex parameter z = τ + iσ
which is referred to as the worldsheet coordinates. The space-time (say M) coordinates
emerges as fields of the world-sheet (say Σ) coordinates

X i(τ, σ) : Σ→M, i = 1, . . . D (1.1)

where D denotes the dimensionality of the spacetimeM. There are two parameters rele-
vant to the study of fundamental strings: string tension T (∼ 1

α′ ), and string coupling gs.
The former characterises the energy quantum of vibrational modes of excitations along
the string, while the latter denotes the strength of string-string interactions. Perturbative
expansion in gs corresponds to a genus expansion of string worldsheet topologies. For
a fixed topology, one can further expand string theory amplitudes/correlators in terms
of expansion in inverse string tension/ Regge slope α′, which corresponds to a momen-
tum/derivative expansion in the low-energy effective action.
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Worldsheet conformal invariance and anomaly cancellation leads to strict constraints
on the spacetime dimensions that the strings can live in, alongwith conditions on the
strings themselves. If we assume supersymmetry, which is a symmetry between particles
of integer spins (bosons) and half-integer spins (fermions), there are 5 consistent theories:
type I, type IIA, type IIB, heterotic SO(32), and heterotic E8 × E8 all living in D = 10
spacetime dimensions. While type IIA, IIB theories only have closed oriented strings,
type I has both closed and open unoriented strings, and heterotic theories include a
hybrid of closed bosonic and superstrings. A web of dualities connect these different
theories to each other. Furthermore, they are realised as special limits in corners of the
moduli space of M-theory which lives in 11 dimensions. We shall focus our discussion on
type IIB string theory since that is the one relevant for our future sections.

In the Green-Schwarz (GS) formalism wherein spacetime supersymmetry is manifest,
type IIB string theory includes two superspace fermion fields θ1(τ, σ), θ2(τ, σ) alongwith
the bosonic fields Xm(τ, σ) mentioned earlier. These fermion fields are Majorana-Weyl
spinors of the same chirality. The low-energy (massless) spectrum of states include the
symmetric 2-tensor graviton GMN , antisymmetric 2-tensor Kalb-Ramond field BMN , and
a scalar dilaton field Φ. The expectation value of the scalar field dynamically fixed the
string coupling gs. Furthermore, we have higher form Ramond-Ramond (RR) flux-fields
of odd, even dimensions for type IIB, IIA respectively. In the low energy limit α′ → 0,
type II superstring theories give rise to supergravity with the above fields as the higher
mass modes are suppressed.

We can include open strings in type IIB string theory by introducing extended objects
known as Dirichlet branes. The open string end-points lie on the Dirichlet Dp branes,
with p denoting the space dimensionality of the brane. The Dp branes are themselves
dynamical objects in superstring theory, being solutions to supergravity equations. They
couple to the RR fields mentioned above. Since open strings stretch between Dp branes,
the distance between them affects the spectrum of open string states. The mass squared
of the open string sectors is proportional to the square of the brane separation. As a
result, when two Dp branes come together one ends up with many more massless non-
abelian open strings. The gauge symmetry sees an enhancement from U(1)×U(1) to U(2)
as the branes merge. More generally, stacking a bunch of N Dp branes on top of one
another leads to an enhancement of gauge symmetry from U(1)N to U(N).

1.1.2 AdS/CFT correspondence

AdS/CFT or the gauge-gravity correspondence has been a cornerstone in the development
of theoretical physics for over two decades. It was first conjectured by Maldacena in
[14] to arise at the low energy limit of type IIB string theory in ten dimensions. His
original proposal stated that the theory of closed strings propagating in the background
of AdS5 × S5, and the theory of N = 4 SYM in 3+1 dimensional flat spacetime are
dual to each other. Here, duality refers to different descriptions of the same physical
system. In the same work, similar such dualities were conjectured for other AdSd+1

string theories as well. We will focus on the 3D-2D version of this duality, where the
spacetime background is of the type AdS3×S3×M4 with M4 = T4, S3×S1. The specific
choice of the compact manifold M4 ensures that maximal supersymmetry is preserved
(in AdS3×M7 the maximum number of supercharges is 16). The central idea behind all
such constructions rely on engineering a specific brane setup.

Lets briefly review the setup for d = 4 before heading to d = 2 which is relevant
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for this work. There are different equivalent descriptions to account for the Dp branes:
via the open or closed string channels. In case of AdS5/CFT4, the brane construction
involves a stack of N D3 branes at the origin of the 10D flat spacetime. The world-volume
theory of open strings ending on these D3 branes is N = 4 SYM with gauge group SU(N).
At low energies, these open strings decouple from the closed strings propagating in the
background. Another way to account for the D3-branes is to consider their back-reaction
on the spacetime in which the closed strings propagate. This is the closed-string channel.
The geometry near the D3 branes gets drastically modified from the flat background to
a black p-brane with singularity at the origin. The supergravity metric is given by

ds2p−brane =
1√
f(r)

(−dt2 +
3∑

i=1

dx2i ) +
√
f(r)(dr2 + r2dΩ2

5) , f(r) = 1 +
R4

r4
, (1.2)

where dΩ2
5 is the metric on S5. The background further supports a constant 5-form RR

flux F5 such that ∫
S5
F5 = N (1.3)

In the low energy limit, the closed strings far away from the origin (where the D3
branes were located) become decoupled from the ones near the horizon. Thus, we are
lead to the equivalence conjecture:

type IIB strings in AdS5 × S5 ≡ N = 4 SYM in 4 dimensions (1.4)

This is a strong-weak duality which means that the strongly coupled regime on one
side is mapped to weakly coupled regime on the other side and vice-versa. This is reflected
in the mapping of the coupling parameters on both sides: Yang-Mills coupling (gYM),
and number of colours (N) respectively on the gauge theory side, to string coupling (gs),
and string tension (α′) respectively, on the gravity side

gs =
g2YM

4π
,

R4

α′2 = g2YMN, (1.5)

where R is the radius of curvature of the AdS5(see equation (1.2). For the supergravity
description to make sense on the string theory side, R needs to be much bigger than the
string length

√
α′. According to the above map, this corresponds to the limit where the

’t Hooft coupling g2YMN is large. So the dual CFT is strongly coupled when the string
theory simplifies. Conversely for weakly coupled regime in the CFT g2YMN << 1, the
gravity side becomes very stringy. This lack of control on at least one side of the duality
makes it very difficult to prove this duality, or even check for its validity. There is a
limit, however, in which one can check for its validity- the planar limit. It is a double
scaling limit, where the Yang-Mills coupling is vanishing, and number of colour charges
approaches infinity, while the ’t Hooft coupling λ is kept finite

gYM → 0 , N →∞ , λ ≡ g2YMN =
R4

α′2 = fixed (1.6)

In this large N regime, the dominant Feynman diagrams contributing to correlation
functions in the CFT are planar, i.e. they can be drawn in 2D without crossing. The
non-planar diagram contributions are suppressed as N−χ, where χ is the genus of the
Riemann surface corresponding to the diagram. By the above dictionary in (1.5), we can
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see that the large N expansion of the gauge theory is mapped to small gs expansion of
the string theory

1

N
=

(
4π

λ

)
gs (1.7)

The improvement in computational ability in this regime happens because of the
emergence of integrability. This enhancement of symmetries has been exploited to com-
pute (and match) all-loop exact quantities on both sides of the duality, e.g. anomalous
dimension of single-trace operators.

1.1.3 AdS3/CFT2

An analogous story to the above AdS5 case, also holds true in three dimensions [14].
However, there are two consistent choices of supergravity backgrounds in AdS3 preserv-
ing maximal supersymmetry (SUSY), distinguished by their compact seven dimensional
complement M7 (target spacetime being the Cartesian product AdS3 ×M7). The first
one is AdS3 × S3 × T4 and it arises from the near horizon limit of a system of N1 D1
branes and N5 D5 branes in type IIB string theory. The D5 branes are wrapped around
the T4, and has one remaining spatial direction which is non-compact. The D1 branes
are extended along the non-compact direction of the D5 branes. The orientation of the
branes is shown in table 1.

0 1 2 3 4 5 6 7 8 9
D1 x x
D5 x x x x x x

Table 1: D1-D5 system of branes. The numbers at the top label the spatial directions,
and the crosses indicate the coordinates spanned by the brane.

The AdS/CFT conjecture maps the closed string theory in this background to a dual
CFT with small N = (4, 4) supersymmetry. As in the 5d case, the duality arises from
the decoupling of the near horizon degrees of freedom from the asymptotic bulk. The
radius of the AdS3 and S3 are equal and is given in terms of the string coupling, string
tension, the number of D1,D5 branes (N1, N5 resp.), and the volume of T4 VT4 as follows

R =
gsα

′√N1N5√
v

, (1.8)

where v =
VT4

(2π)4α′2 is a parameter in the bulk metric, proportional to the volume of T4.
The resultant supergravity metric is

ds2 =
1√
f1f5

(−dt2 + dx21) +
√
f1f5(dr

2 + r2dΩ2
3) +

√
f1
f5

9∑
i=6

dx2i , (1.9)

where

f1(r) = 1 +
gsα

′N1

vr2
, f5(r) = 1 +

gsα
′N5

r2
. (1.10)

This has a non-trivial dilaton Φ as well as a 3-form RR field F (3)

Φ(r) =
1

2
log

f1(r)

f5(r)
, F (3) = −df−1

1 ∧ dt ∧ dx1 + 2α′N5ΩS3 (1.11)
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More generally, one can construct superstring backgrounds supported by a 3-form NSNS
flux alongwith the above mentioned 3-form RR flux. These supergravity backgrounds are
generated in the near-horizon limit of NS5-branes and fundamental strings, alongwith the
D1-D5 brane system. Overall, we have a one parameter family of mixed flux backgrounds
with non-trivial NSNS and RR fluxes

H(3) = 2qR2(Vol(AdS3) + Vol(S3)) , F (3) =
q̃

q
H(3) , q2 + q̃2 = 1 , (1.12)

with Vol(AdS3),Vol(S3) as the volume forms on AdS3, S3 respectively.
The second maximally supersymmetric background is AdS3 × S3 × S3 × S1 and it

arises from a D1-D5-D5′ system in type IIB. As in the previous setup, the first set of D5
branes share a common spatial direction with the D1 branes. The second stack of D5
branes, labelled D5′, share one spacelike coordinate with the common direction of D1,
and D5, while the remaining four spacelike directions are transverse to the ones occupied
by the first set of D5 branes. The configuration of the branes along the standard spatial
coordinates are listed in table 2

0 1 2 3 4 5 6 7 8 9
D1 x x
D5 x x x x x x
D5′ x x x x x x

Table 2: D1-D5-D5′ system of branes. The numbers at the top label the spatial directions,
and the crosses indicate the coordinates spanned by the brane.

The resultant geometry is AdS3 × S3 × S3 × R

ds2 = ds2AdS3
+ ds2S3+

+ ds2S3−
+ dw2 , (1.13)

where S3
± are used to distinguish the two 3-spheres. One should further compactify

R→ S1 to get the dual CFT. The radii of the two 3-spheres RS3+
, RS3−

are related to the
AdS3 radius RAdS3 as follows

1

R2
AdS3

=
1

R2
S3+

+
1

R2
S3−

. (1.14)

Due to this relation, we can write a one-parameter family of such backgrounds parame-
terised by α(or φ) as follows

α ≡ cos2 φ =
R2

AdS3

R2
S3+

, 1− α ≡ sin2 φ =
R2

AdS3

R2
S3−

, 0 < α < 1 . (1.15)

The above background has a non-trivial RR 3-form flux. Analogous to the T4 case, we
can generalise this brane system to end up with near-horizon geometries with both a
3-form NSNS and a 3-form RR flux field. One ends up with a 1-parameter family of
backgrounds with fluxes

H(3) = 2qR2(Vol(AdS3)+
1

cos2 φ
Vol(S3

+)+
1

sin2 φ
Vol(S3

−)) , F (3) =
q̃

q
H(3) , q2+q̃2 = 1 ,

(1.16)
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where Vol(AdS3),Vol(S3
+),Vol(S3

−) are the volume forms on AdS3, S3
+, S

3
− respectively.

The AdS/CFT conjecture maps the closed string theory in this background to a dual
CFT with large N = (4, 4) supersymmetry.
The dual CFT2 description is a much harder problem to solve in the above AdS3 back-
grounds than in AdS5 × S5. Firstly, the low energy effective gauge theory for the open
strings in not conformal. The dual CFT2 is supposed to emerge as an infra-red fixed
point of the renormalisation group flow from the gauge theory describing the open string
dynamics. In the case of AdS3× S3× S3× S1 one has the further complication of dealing
with compactification of R → S1. First attempts to find this dual theory was made in
[15].

The current algebra of the CFT dual to strings on AdS3 ×M7 for M7 = S3 × T4,
and S3 × S3 × S1 respectively, is (small, large respectively) N = (4, 4) SUSY with global
symmetry as psu(1, 1|2)2 and d(2, 1;α)2. Note the α here is the same parameter as defined
earlier in (1.15). It was argued in [14] that the dual CFT should arise in the infra-red
limit of renormalisation group flow along the Higgs branch (i.e. flow directions of the
superconformal field theory (SCFT) moduli space along which the hypermultiplets of
the free theory attain vacuum expectation value) of the above gauge theories. Another
approach to study the dual CFT2 comes from treating the D1 branes as instantons on the
D5 branes, and it has been argued that the integrable spin-chain picture arises in the limit
of vanishing instanton size. AdS3/CFT2 has another major difference with AdS5/CFT4:
the presence of a large moduli space. In AdS3 × S3 × T4, there is a 20 dimensional
moduli space, corresponding to vacuum expectation values for the massless scalars of the
theory. Of these, 16 parameterise the T4 degrees of freedom. Integrability only accesses
the zero-winding, zero-momentum sector along the T4. As such, these moduli do not
affect the spectrum in the integrable limit, while the remaining 4 do [16]. The duality
maps these 4d spaces on the two sides. Recently, there has been substantial development
in understanding this duality at a specific point of this enormous moduli space: called
the symmetric product orbifold point. The correspondence is between: string theory on
AdS3 × S3 × T4 with 1 unit of NSNS flux, and symmetric orbifold CFT SymN(T4) on
N copies of T4, where N = N1N5(for N1, N5 number of D1, D5 branes respectively).
More generally it is believed that for a generic point on the moduli space, the dual CFT
lies on the same conformal manifold as the symmetric product orbifold SymN(T4). It is
unclear how to identify points in the moduli space on both sides of the duality with each
other and how to find the planar limit (and hence integrability) amongst the degrees of
freedom of SymN(T4).

1.2 Integrability

In this section, we shall review the basics of classical and quantum integrability that are
relevant for our discussion in the context of string integrability in the later parts of the
section, as well as integrable spin chains in later sections.

1.2.1 Classical integrability

Here we will discuss the technology of integrability in classical mechanics and field the-
ories. A thorough review of these topics can be found in [17]. This will be useful when
discussing classical integrability of the GS superstring later in this section.

A Hamiltonian dynamical system with phase space coordinates (qµ, pµ) , µ = 1 . . . D,
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is said to be (Liouville) integrable if it has D independent integrals of motion F1, . . . FD in
involution, i.e. they mutually Poisson commute {Fµ, Fν} = 0 ∀µ ̸= ν. In such systems,
one can do a canonical change of coordinates to the action-angle pairs (ψµ, Fµ) , µ =
1 . . . D, such that the equations of motion reads

dψµ

dt
= const. ,

dFµ

dt
= 0 (1.17)

Integrating the above equations gives the time-evolution trajectories in the phase space.
This generalises to (1+1)-dimensional field theories via the Lax formalism. We call a
classical field theory integrable if the equations of motion can be reformulated in terms
of some pair of functions L(σ, τ, z),M(σ, τ, z), as a one parameter family of equations

∂τL(σ, τ, z)− ∂σM(σ, τ, z) + [L(σ, τ, z),M(σ, τ, z)] = 0 , ∀ z ∈ C , (1.18)

where the Lie bracket [A,B] is defined as the commutator of A,B

[A,B] = A ◦B − B ◦ A . (1.19)

We further require the following condition in order to have the conserved charges as
mutually Poisson commuting

{L1(σ, τ, u), L2(σ
′, τ, u′)} = [L1(σ, τ, u) + L2(σ

′, τ, u′), r12(u− u′)]δ(σ − σ′) (1.20)

where L1 = L⊗ I and L2 = I⊗ L and r12 ∈ g⊗ g. The charges can be constructed from
the monodromy matrix, defined as the path ordered exponential of the Lax-operator
L(σ, τ, z)

T (b, a; z) =
←−−−
P exp

(∫ b

a

dσL(σ, τ, z)

)
(1.21)

Assuming periodic boundary conditions along σ ∈ (0, 2π) direction, we get the following
conservation law for T (2π, 0; z) from its time evolution equation

∂τT (2π, 0; z) = [M(0, τ, z), T (2π, 0; z)]⇒ ∂τTrT (2π, 0; z)n = 0 ∀n ∈ N , z ∈ C . (1.22)

The local charges in involution can be obtained by expanding trace of the monodromy
matrix near generic point in the z−plane, commonly z = 0

TrT (2π, 0; z) =
∞∑
i=0

Qiz
i , ∂τQi = 0 , ∀ i (1.23)

1.2.2 Quantum integrability: spin chains and field theories

Next, lets look at how the above discussion can be extended to a quantum picture. For
finite dimensional quantum mechanics, the natural setting for integrable systems are spin
chains. A good reference on this topic is [18].

The Hilbert space of the spin chain is a L-fold tensor product V = V1 ⊗ ... ⊗ VL of
d-dimensional vector spaces Vi ∼ V = Cd. The Hamiltonian H of a spin chain with
nearest-neighbour interaction is a sum of two-site Hamiltonians Hi,i+1:

H =
L∑
i=1

Hi,i+1 , (1.24)
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where we assume periodic boundary conditions : HL,L+1 ≡ HL,1. The chrestomathic
example of the integrable spin-chain is spin-1/2 XYZ model :

H =
L∑
i=1

∑
α

JαSα
i S

α
i+1 , (1.25)

where α = {x, y, z} and Sα
i are Pauli matrices acting in the two-dimensional space Vi = C2

of i-th site. In particular case when Jx = Jy it reproduces XXZ model, while in the case
of three equal coupling constants Jx = Jy = Jz = J the Hamiltonian reduces to the
XXX spin chain. These famous magnet models are just a few examples of integrable spin
chains and now we turn to the general construction.

The central element for the whole construction and proof of quantum integrability is
the R-matrix operator Rij(u) which acts in the tensor product Vi ⊗ Vj of two spin sites
1 and satisfies the Yang-Baxter equation:

Rij(u− v)Rik(u)Rjk(v) = Rjk(v)Rik(u)Rij(u− v) (1.26)

where the operators on the left and right sides act in the tensor product Vi⊗Vj⊗Vk. The
R-matrix is assumed to be an analytic function of the spectral parameter u. Further, in
order to guarantee locality of the interaction in (1.24), it must reduce to the permutation
operator Pij when evaluated at u = 0, i.e.

Rij(0) = Pij . (1.27)

This condition will be referred to as regularity in the following sections. We next turn
to defining the monodromy matrix Ta(u). This matrix, denoted by Ta(u) ∈ End(Va ⊗∏L

i=1⊗iVi)×C, acts on the spin chain plus an auxiliary spin site labeled by a with Hilbert
space as Va ∼ Cd. It is defined as a product of R-matrices Ra,i(u) acting on the auxiliary
site and one of the spin chain sites and is given by

Ta(u) = Ra,L(u)Ra,L−1(u) . . . Ra,1(u) . (1.28)

The transfer matrix T (u) ∈ End(
∏L

i=1⊗iVi) × C is obtained by taking a trace over the
auxiliary vector space Va :

T (u) = tra(Ta(u)) . (1.29)

From the Yang-Baxter equation one can derive the following RT T relation constraining
monodromy matrix entries

R12(u− v)T1(u)T2(v) = T2(v)T1(u)R12(u− v) . (1.30)

This condition can be used to prove that the transfer matrices commute at different
values of the momenta

[T (u), T (v)] = 0 . (1.31)

1In general, the R-matrix is an analytic function of two complex arguments u, v, which can be viewed
as momenta of two particles at the two sites. Here, we shall exclusively focus our analysis to a restricted
class of R-matrices of difference form R(u, v) = R(u− v) depending only on a single complex argument
w = u− v.
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The above condition implies that the transfer matrix T (u) encodes all the commuting
charges Qi as series-expansion in u :

log T (u) =
∞∑
n=0

Qn+1
un

n!
. (1.32)

Hence we have 2

Qn+1 =
dn

dun
log T (u)|u=0 =

dn−1

dun−1

(
T−1(u)

d

du
T (u)

) ∣∣∣∣∣
u=0

. (1.33)

The Hamiltonian density Hi,i+1 introduced earlier in equation (1.24) can be generated
from the R-matrix using

Hi,i+1 = R−1
i,i+1(0)

d

du
Ri,i+1(u)|u=0 = Pi,i+1

d

du
Ri,i+1(u)|u=0 (1.34)

where Pi,i+1 is the permutation operator between sites i, i + 1. Also, we emphasize that
while the charges are conventionally computed in Equation (1.33) at u = 0, this com-
putation can equally well be done at generic values of u to extract mutually commuting
charges. The only difference is we no longer recover the Hamiltonian directly as one of
the commuting charges.

Given an integrable spin chain, the energy eigenvalues can be obtained by solving
a set of coupled polynomial equations known as Bethe equations. The corresponding
eigenstates can be obtained by using the formalism of algebraic Bethe ansatz (ABA). One
starts with an ansatz for the energy eigenstates, starting from a reference ground state
say |Ω⟩. Excited states are created by acting with B−operators, which are certain off-
diagonal entries of the monondromy matrix, when written out explicitly in the auxiliary
space representation. Then one uses the fundamental commutation relations (FCRs) to
obtain the algebraic conditions known as Bethe equations as requirements for the excited
states to be eigenstates of the transfer matrix. This in turn causes the obtained states
to be eigenstates of a tower of commuting charges, including the spin chain Hamiltonian.
Let us illustrate this through the concrete example of XXX spin-chain. Let us consider
a spin chain of size L, each site in spin-1

2
representation of SU(2) gauge group. The

R-matrix is given by

RXXX(u) = uI4×4 + iP4×4 , P4×4 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (1.35)

The spin-chain monodromy matrix, written in the basis of the spin- 1
2

auxiliary site, reads

T (u) =

(
A(u) B(u)
C(u) D(u)

)
(1.36)

where A(u), B(u), C(u), D(u) are matrices of size 2L×2L that act on the spin chain sites.
The resultant transfer matrix is T (u) = A(u) +D(u). The reference state for ABA is

|Ω⟩ = |↑⟩⊗L (1.37)

2In practice, numerically it’s more stable to work with the second formula on the right hand side than
the first.

13



The Bethe ansatz for the eigenstates generated on top of the above reference state is
given by

|{ui}Mi=1⟩ = B(u1)B(u2) . . . B(uM) |Ω⟩ (1.38)

where the set {uj}Mj=1, for integer 0 < M ⩽ L must satisfy the Bethe equations(
uj + i

2

uj − i
2

)L

=
M∏

k=1,̸=j

uj − uk + i

uj − uk − i
, j = 1 . . .M . (1.39)

This equation is obtained by using the FCRs for A − B, and D − B(which in turn are
obtained from the RTT relation) to commute the transfer matrix past the B-operators
in |Ψ⟩ and then using A(u) |Ω⟩ ∝ |Ω⟩ , D(u) |Ω⟩ ∝ |Ω⟩. Solving the above equation for
fixed M, gives us the energy eigenstates. The corresponding eigenvalue is

E(|{ui}Mi=1⟩) =
M∑
i=1

1

u2i + 1
4

. (1.40)

There is an interesting limit known as the thermodynamic limit where one takes L→∞,
M → ∞ while keeping M

L
= finite. In this limit, its natural to look at root densities

instead of roots, and the solutions (known as Bethe strings) to the Bethe equations show
up as finite-length cuts in the spectral-parameter complex plane.

Next, lets briefly review (1+1)D integrable quantum field theories (IQFTs). One can
define S-matrices for scattering of asymptotic states in the decompactification limit of
the spatial (σ) direction σ ∈ (−R,R) , R → ∞. Such a quantum field theory is said
to be integrable if the S-matrix satisfies the following properties: there is no particle
production/annihilation, the incoming momenta match the outgoing momenta upto per-
mutation, and the 3 → 3 and higher point S-matrices factorise into product of 2 → 2
ones. A corollary of the factorisation is the Yang-Baxter equation which constrains the
2 → 2 S-matrix entries Sγδ

αβ(pi, pj) where α, β label the incoming particles, while γ, δ
labels the outgoing ones and pi, pj label the momenta of the scatterers

Sβα
ij (p1, p2)S

nγ
βk (p1, p3)S

ml
αγ (p2, p3) = Sβγ

jk (p2, p3)S
αl
iγ (p1, p3)S

nm
αβ (p1, p2) (1.41)

This is the same relation as satisfied by the R-matrices in quantum spin chains. A natural
problem to study in IQFTs is the spectrum of states in finite volume, i.e. the σ endpoints
±R = finite. This can be done by starting from the asymptotic Bethe equations whose
solutions give the exact spectrum in the limit R → ∞. Picking a basis where the 2-
particle S-matrix is diagonal (so only the 2 in-state indices are sufficient), the Bethe
equations read

eipjR
∏
k ̸=j

Sαjαk
(pj, pk) = 1 , j = 1 . . .M (1.42)

One can account for exponentially suppressed corrections known as wrapping as de-
scribed by Luscher [19, 20]. Alternatively, one can solve the (much harder) mirror-
channel thermodynamic Bethe equations to get the exact spectrum at finite R. Going
to the mirror-channel involves double Wick rotating the space and time directions (σ, τ)
to (σ̄, τ̄) = (−iσ, iτ). This maps the finite volume IQFT to one at finite temperature
with decompactified spatial direction. Hence we can employ the technology of asymp-
totic Bethe ansatz mentioned above. A comprehensive review of mirror TBA and related
literature can be found in [21, 22].
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1.3 String theory in AdS and integrability

Thus far, we have reviewed AdS/CFT and integrability. This section will be focused on
connecting the two fields by looking at integrable structures within string theory and
AdS/CFT. [23] is a good reference for the topics we discuss here. Integrability be-
comes evident in the Green-Schwarz (GS) formalism for describing superstrings, wherein
spacetime SUSY is manifestly preserved (instead of world-sheet SUSY, as in Ramond-
Neveu-Schwarz (RNS) formalism). The RNS formalism is useful to study string theory
in AdS spacetime with pure NSNS flux. However, this formalism is not very helpful
when dealing with the D3 branes in AdS5 or the D1-D5 system of branes in AdS3, as
there is non-zero RR flux in such cases. Integrability comes to the rescue, at least in
the ’t Hooft (planar) limit N → ∞, gYM → 0, λ = g2YMN = finite. GS formalism is
the natural candidate to study string theory in pure RR background. It can be used
to study other backgrounds with NSNS flux, as well as a mix of both NSNS and RR
fluxes, but we cannot use world-sheet (WS) CFT techniques which comes handy in the
RNS formalism[24]. Also, GS superstring in AdS is integrable at the level of the classical
action. Assuming that integrability survives quantisation as suggested by [25], we can
work out results exact in the coupling parameters. We shall focus on AdS5/CFT4 in the
rest of this section, and leave the discussion of AdS3/CFT2 for the next section.

We shall begin with the GS action, go to the uniform light-cone gauge (necessary
generalisation of phase space light-cone gauge to curved backgrounds, as discussed below
equation (1.57)) and then fix κ-symmetry. The bosonic part of the GS action Sbos is
given by a nonlinear sigma model on a background with spacetime metric Gmn(X) and
B-field Bmn(X) as functions of spacetime coordinates XM , M = 0, . . . , 9

Sbos = −g
2

∫
d2σ(
√
−γγαβGMN(X) + ϵαβBMN(X))∂αX

M∂βX
N , g =

1

2πα′ (1.43)

where γαβ denotes the worldsheet (WS) metric in coordinates σα = (τ, σ). Lets as-
sume σ takes values in the range (−r, r). This action is invariant under WS coordinate
reparametrisation

σα → fα(τ, σ) (1.44)

as well as under WS scaling transformations

γαβ → Ω2(τ, σ)γαβ (1.45)

Using the above symmetry we shall set the determinant of the WS metric to -1. In order
to go to uniform light-cone gauge we re-write the above action in the first-order formalism

Sbos =

∫
d2σ

(
pMẊ

M +
γ01

γ00
C1 +

1

2gγ00
C2

)
, ẊM ≡ ∂0X

M , XM ′ ≡ ∂1X
M (1.46)

by introducing the momenta pM conjugate to the coordinates XM

pM ≡
δSbos

δXM
= −g

(
γ0βGMN∂βX

N +BMNX
N ′) . (1.47)

This first order action is complemented by the Virasoro constraints on the fields which
arise due to the two dimensional WS reparametrization ((σ, τ) → (f(σ, τ), g(σ, τ)), for
generic smooth functions f, g) invariance of the string action

C1 = pMX
M ′ , (1.48)
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C2 = GMNpMpN + g2GMNX
M ′XN ′ + 2gGMNpNBMOX

O′ + g2GMNBMOBNPX
O′XP ′ .

(1.49)
The above Virasoro constraints C1 = C2 = 0 can be simplified to

γ11GMNẊ
MXN ′ + γ01GMNẊ

MẊN = 0

γ00GMNẊ
MẊN − γ11GMNX

M ′XN ′ = 0 (1.50)

The fermionic fields θI couple with themselves and with the bosonic fields XM via the rest
of the GS action, which includes kinetic term for the fermions Skin and a Wess-Zumino
(WZ) term SWZ

SGS = Sbos + Skin + SWZ . (1.51)

The WZ term is responsible for restoring a local fermionic symmetry known as κ-
symmetry. This step is essential to reduce the fermionic degrees of freedom to the physical
ones. The above action can be re-formulated as a coset action on PSU(2, 2|4)/(SO(4, 1)×
SO(5)). The action written in terms of the one-form current A = −g−1dg ∈ su(2, 2|4),
which is constructed from the supergroup valued element g ∈ PSU(2, 2|4)

Scoset =

∫
d2σL , L = −g

2

(
γαβstr(A(2)

α A
(2)
β ) + κϵαβstr(A(1)

α A
(3)
β )
)
, κ ∈ R (1.52)

with a Z4 decomposition of A under an automorphism Ω of order 4 (equivalent to “minus
supertransposition”, Ω(M) = −KM stK−1 for some K ∈ su(2, 2|4))

A = A(0) + A(1) + A(2) + A(3) , Ω(A(k)) = ikA(k) (1.53)

The WZ level κ = ±1 due to κ-symmetry (local symmetry under right action by fermionic
element g→ g ◦ exp(ϵ(τ, σ)), see below equation (1.63)). The above action has a central
u(1) symmetry under A(2) → A(2) + c.i I, which we fix by imposing tr(A(2)) = 0. This
action has a gauge symmetry SO(4, 1)× SO(5) under

g→ gH , H ∈ SO(4, 1)× SO(5) , (1.54)

and global symmetry PSU(2, 2|4) under

G.g = g′H , G ∈ PSU(2, 2|4) , H ∈ SO(4, 1)× SO(5) . (1.55)

One nice choice for g suitable for working in the light-cone gauge is

g(XM ,Θ) = exp

(
itγ5

2
0

0 iϕγ5

2

)
exp

(
0 Θ

−Θ†Σ 0

)
exp

(
ziγi

2
0

0 iyiγi

2

)
, Σ =

(
I2 0
0 −I2

)
(1.56)

where we have assumed XM = {t, ϕ, zi, yi}, where {t, zi} , i = 1, 2, 3, 4 are the AdS5

coordinates and {ϕ, yi} , i = 1, 2, 3, 4 are the S5 coordinates, with t, ϕ being the AdS5

time and S5 equatorial angle respectively. By construction the above one-form A satisfies
the zero curvature condition

dA− A ∧ A = 0 ⇔ ∂αAβ − ∂βAα − [Aα, Aβ] = 0 . (1.57)

For light-cone gauge fixing the superstring action, let us first consider flat Minkowski
spacetime. In this case, we can impose light-cone gauge one of two ways. Either we impose
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conformal gauge for the WS metric γαβ = ηαβ followed by fixing the residual conformal
diffeomorphism by equating light-cone coordinate x+ with WS time. Alternatively, one
can rewrite the action in the first-order formalism(discussed below) and fixing x+ = τ ,
lightcone momentum p+ = δS

δẋ− = constant. Both approaches are equivalent for flat
space, but the former is not possible in AdS backgrounds due to absence of covariantly
constant null Killing vectors. As such, the only option is to work with the first-order
formalism. Below, we review the more general uniform light-cone gauge, that includes a
1-parameter family of interesting gauge choices. The light-cone coordinates x+, x−(and
conjugate momenta p−, p+ respectively) are defined as

x− = ϕ−t , x+ = (1−a)t+aϕ , p− = pϕ+pt , p+ = (1−a)pϕ−apt , a ∈ C (1.58)

The uniform light-cone gauge is fixed by imposing

x+ = τ + amσ , p+ = 1 , (1.59)

where m ∈ Z is the winding number for the string around the ϕ direction. Some preferred
choices of a include a = 0 for the temporal gauge, a = 1

2
for the usual light-cone gauge,

and a = 1 where the angular coordinate ϕ acts as WS time. Consistency of above gauge
choice fixes the end-points of σ to r = P+

2
, where P+ is the total light-cone momentum.

Solving the Virasoro constraints and substituting them into the action, we get the string
Hamiltonian H. The gauge choice means H is related to the target space-time energy E
and U(1) charge J as

H = E − J , H = −
∫
dσ p− , E = −

∫
dσ pt , J =

∫
dσ pϕ (1.60)

Integrating over the Virasoro constraint C1, one gets the level-matching condition for
physical states

∆x− =

∫ r

−r

dσx′− = 2πm , m ∈ Z (1.61)

This condition forces the total world-sheet momentum of physical states to be 2π times
the winding number m ∈ Z. One can use the above relation, alongwith the mapping
E ≡ ∆, the conformal dimension of operators in the dual CFT, to solve for them from
the spectrum of H. For the full GS superstring action in AdS5 × S5, imposing the
lightcone gauge is somewhat more difficult due to the non-trivial interactions between
the bosons and fermions affecting the expressions for the conjugate momenta. It is useful
to introduce a Lie-algebra valued auxiliary field Π into the coset Lagrangian, and gauge-
fix that instead.

Next, let us fix the κ-symmetry. This local supersymmetry is responsible for reducing
the independent fermion degrees of freedom by half. It was first discovered in [26] for
superparticles, extended to flat space superstring action in [27] and for general back-
grounds in [28]. As mentioned earlier below equation (1.53), κ symmetry transformation
is given by g → g ◦ exp(ϵ(τ, σ)). The one-form A in the coset action transforms under
infinitesimal local right multiplication by a fermionic element ϵ as

δϵA = −dϵ+ [A, ϵ] , ϵ = ϵ(1) + ϵ(3) (1.62)

where ϵ(i), i = 1, 3, refers to the Z4 grading. The coset action remains invariant under such
a right action, provided the WS metric is also varied suitably. Further, the invariance of
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the action requires Pαβ
± = 1

2
(γαβ ± κϵαβ) to be a projection operator which only happens

for κ = ±1. One common κ-gauge choice is to bring the odd-elements of su(2, 2|4) to the
form 

0 0 0 0 0 0 · ·
0 0 0 0 0 0 · ·
0 0 0 0 · · 0 0
0 0 0 0 · · 0 0
0 0 · · 0 0 0 0
0 0 · · 0 0 0 0
· · 0 0 0 0 0 0
· · 0 0 0 0 0 0


, (1.63)

thus reducing to 16 fermionic degrees of freedom.
Classical integrability, i.e. demanding a flat Lax connection, also fixes κ to be the

same values as κ-symmetry, κ = ±1. The Lax connection L(z) for AdS5×S5 superstring
is given by the following meromorphic function on the Riemann sphere parameterised by
z [2]

L(z) = A(0) + z−1A(1) +
z2 + z−2

2
A(2) +

(
z2 − z−2

2

)
⋆ A(2) + zA(3) , (1.64)

where ⋆ denotes the WS Hodge star. Provided κ = ±1, the flatness condition for L(τ, σ, z)
is satisfied due to the Maurer-Cartan equation for A(see equation (1.57))

∂αLβ − ∂βLα − [Lα, Lβ] = 0 , α, β ∈ (τ, σ) . (1.65)

Thus, we have the result that the GS superstring action on AdS5 × S5 is classically
integrable. The above Lax connection L depends on one complex spectral parameter
z. We can write down the monodromy matrix as path-ordered exponential of the above
Lax connection L along a closed path encircling the compact worldsheet direction. We
define quasimomenta pk(z) , k = 1, 2, . . . 8 as −i times logarithm of the eigenvalues of the
monodromy matrix. They are multi-valued on the z−plane and define the spectral curve.
Classical solutions to the string equations of motion [29, 30, 31, 32] can be characterized by
the analytic properties of the spectral curve like cuts and poles[33, 34, 35]. For instance,
the circular string solution in R× S3 corresponds to the following one-cut solution

p1 = p2 = −p3 = −p4 =
2πκz

z2 − 1
, (1.66)

p5 =
z

z2 − 1
K

(
1

z

)
,

p6 =
z

z2 − 1
K(z)−m,

p7 =
z

1− z2
K(z) +m,

p8 =
z

1− z2
K

(
1

z

)
, (1.67)

with K(z) =
√
m2z2 + J , where m, J are the mass and angular momentum along the

sphere. These classical solutions satisfy the finite gap equations, which arise in the
thermodynamic limit of the dual N = 4 SYM spin chain description. The spectral curve
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also captures quantum fluctuations as shifts in the quasimomenta around the classical
solutions perturbatively

pi(x)→ pi(x) + δijpj(x) . (1.68)

This can be used to calculate one-loop energy shift around generic classical solutions, as
discussed in the review [36] with further literature references.

One can further develop this integrability picture into a quantum version, by working
in the decompactification limit where one goes from the WS cylinder to the plane by
letting P+ = (1 − a)J + aE → ∞, while keeping string tension fixed. Finiteness of
H = E−J requires J →∞ as well. In this limit, we have well-defined asymptotic states
and WS S-matrix for their scattering. The S-matrix can be computed perturbatively as
1
g
-expansion in large tension regime g >> 1. This S-matrix factorises i.e. n→ n S-matrix

can be re-expressed as product of 2→ 2 S-matrices and are schematically of the form

e2ipkr
M∏
j ̸=k

S(pk, pj) = 1 . (1.69)

This is the hallmark of quantum integrability. As we shall see in the next sub-section,
the S-matrix is fully determined by the centrally extended psu(2|2)⊕ psu(2|2) symmetry
of the theory. The spectrum for H is calculated by solving the Bethe-Yang equations
in this limit, which involve the 2-particle S-matrices. The Bethe equations turn out to
admit a quantum spin-chain description, which in the weak-coupling limit of the dual
N = 4 SYM becomes the Heisenberg spin chain described in the previous sub-section.
Finite-size corrections can then be included (to go back to finite P+) by using TBA.

The lightcone string sigma model admits soliton solutions, such as the 1-soliton giant
magnon solution which satisfy the dispersion relation [4]

ωclassical(pWS) = E − J = 2g sin
pWS

2
, (1.70)

where the WS momentum pWS = 2 cos−1 v, for v velocity of the soliton. This dispersion
relation shows that the light-cone model is not Lorentz-invariant. Furthermore, it is
independent of the gauge-parameter a. This dispersion relation is classical, and gets
modified in the full quantum theory to [7]

ωquantum(pWS) =

√
1 + 4g2 sin2 pWS

2
(1.71)

This dispersion relation gets fixed by the symmetries of the quantum theory as we shall
see in the next sub-section.

Before we discuss the quantum theory, let us focus on the symmetry algebra of the
light-cone gauge-fixed model. For P+ = finite, we have the symmetry algebra A

A = psu(2|2)⊕ psu(2|2)⊕ Σ+ ⊕ Σ− (1.72)

where Σ+,Σ− are the lightcone directions with corresponding charges H,P+ respectively.
The symmetry algebra psu(2|2) ⊕ psu(2|2) arises from the elements of psu(2, 2|4) that
commute with Σ+. In the decompactification limit, we no longer have P+. However, we
have two new central charges C,C† for the off-shell theory that appear in the Poisson
bracket of odd elements with

C =
i
√
λ

4π
(eipWS − 1) . (1.73)

For the on-shell theory pWS = 0, we have vanishing C,C†.
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1.4 All-loop S-matrices

In this sub-section, we shall review the full quantum integrable model that arises in the
AdS5 × S5 superstring theory in the planar limit. A good review of this topic is in [37].
The full S-matrix SAdS5×S5 can be written as tensor-product of two identical copies of
S-matrices Ssu(2|2) acting on each centrally extended su(2|2)

SAdS5×S5 = Ssu(2|2) ⊗ Ssu(2|2) . (1.74)

So we can focus on a single copy of centrally-extended su(2|2) algebra and its representa-
tions. This algebra consists of rotation generators La

b, Rα
β, SUSY generators Qα

a, Q†
a
α

and central elements C,C†,H with Latin indices a, b, . . . taking values {1, 2} and Greek
indices α, β, . . . taking values {3, 4}. The fundamental excitations corresponding to the
asymptotic states transform in the fundamental representation of su(2|2) Vfund

Vfund = span(|ea⟩ , |eα⟩) , a = {1, 2} , α = {3, 4} , (1.75)

where |eM⟩ are the basis elements with M = 1, 2 being bosons, and M = 3, 4 being
fermions. The S-matrix can be fixed, upto a phase, by requiring it to commute with the
above symmetry generators L,R,Q,Q†. The 16 × 16 su(2|2) S-matrix in fundamental
representation can be written in terms of components

Ssu(2|2) = Skl
ij e

k
i ⊗ elj , i, j, k, l = 1, 2, 3, 4 , (1.76)

where eji is a 4× 4 matrix with 1 in the (i, j)th entry and zeros elsewhere. It is useful to
go to the Zhukovsky variables x± when solving for the S-matrix components. They are
related to the momentum variable p and the rapidity variables u as follows:

x±(u) = x(u± i

2
) , x(u) =

u

2
+

1

2

√
u2 − 2g2 , u(p) =

1

2
cot
(p

2

)√
1 + 8g2 sin2 p

2
(1.77)

For the S-matrix components Skl
ij (p1, p2) corresponding to in-states denoted by labels

i, j and out-states by k, l, we have

Saa
aa = A , Sαα

αα = D , Sab
ab =

A− B
2

, Sba
ab =

A+B

2
, Sαβ

αβ =
D − E

2
, Sβα

αβ =
D + E

2
,

Sαβ
ab = −ϵabϵ

αβ

2
C , Sab

αβ = −ϵ
abϵαβ

2
F , Saα

aα = G , Sαa
aα = H , Sαa

αa = K , Saα
αa = L .

(1.78)
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where

A = S0
x−2 − x+1
x+2 − x−1

η1η2
η̃1η̃2

,

B = −S0

(
x−2 − x+1
x−2 − x+1

+ 2
(x−1 − x+1 )(x−2 − x+2 )(x−2 + x+1 )

(x−1 − x+2 )(x−1 x
−
2 − x+1 x+2 )

)
η1η2
η̃1η̃2

,

C = S0
2ix−1 x

−
2 (x+1 − x+2 )η1η2

x+1 x
+
2 (x−1 − x+2 )(1− x−1 x−2 )

, D = −S0 ,

E = S0

(
1− 2

(x−1 − x+1 )(x−2 − x+2 )(x−1 + x+2 )

(x−1 − x+2 )(x−1 x
−
2 − x+1 x+2 )

)
,

F = S0
2i(x−1 − x+1 )(x−2 − x+2 )(x+1 − x+2 )

(x−1 − x+2 )(1− x+1 x+2 )η̃1η̃2
,

G = S0
x−2 − x−1
x+2 − x−1

η1
η̃1
, H = S0

x+2 − x−2
x−1 − x+2

η1
η̃2
,

K = S0
x+1 − x−1
x−1 − x+2

η2
η̃1
, L = S0

x+1 − x+2
x−1 − x+2

η2
η̃2

(1.79)

with x±i = x±(pi) satisfying the shortening conditions

x+ +
1

x+
− x− − 1

x−
=
i

g
,

x+

x−
= eip (1.80)

and

η1 = η(p1)e
ip2/2 , η2 = η(p2) , η̃1 = η(p1) , η̃2 = η(p2)e

ip1/2 , η(p) = eip/4
√
x− − x+ .

(1.81)
The dressing phase S0 satisfies unitarity and crossing constraints which we will present in
detail in the context of AdS3 backgrounds in the next section. Crossing symmetry refers
to the symmetry under scattering of a physical particle against a spurious bound state
of another particle and its antiparticle. Unitarity is the requirement for the S-matrix to
be unitary for real momenta. Solving these constraints [38], one ends up with

S0(p1, p2)
2 =

x−1 − x+2
x+1 − x−2

1− 1
x+
1 x−

2

1− 1
x−
1 x+

2

σ2(p1, p2) , (1.82)

where σ is called BES phase factor which has several interesting representations in terms
of asymptotic series (crs charge expansion), and the DHM double contour integral. Again,
we shall revisit these representations in the next section. One also has an infinite tower of
bound-states on top of the above mentioned fundamental excitations. They all have non-
trivial scattering matrices SPQ(P ⩾ 1, Q ⩾ 1 labelling the number of particles forming
each bound state), which go into the final construction of the (mirror)TBA equations.
We shall omit their discussion here as they are not actively used in our works, but shall
point to [39, 40, 41] for further discussion and relevant references.

2 Strings on AdS3 backgrounds

This section will review AdS3×M7 backgrounds preserving 16 supercharges, which appear
as near-horizon geometry of the brane-constructions in type IIB string theory discussed
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earlier in section (1.1.3). The resultant supergravity backgrounds are supported by RR
and NSNS 3-form fluxes. Integrability in these backgrounds, was first hinted from the
presence of giant magnon solutions in AdS3×S3×T4 [42, 43]. Another hint of integrability
came from the GKP spinning string solution [44]. As mentioned in the previous section,
classical integrability of the GS action was worked out in [10, 11, 12, 13]. Upto some
U(1) factors, the string action in AdS3 × S3 × T4 background with pure RR flux is
equivalent to the super-coset action on PSU(1, 1|2)2/(SO(1, 2) × SO(3)). On the other
hand, GS action on AdS3 × S3 × S3 × S1 with pure RR flux can be mapped to the
D(2, 1;α)2/(SO(1, 2) × SO(3) × SO(3))[45] super-coset action(again upto some U(1)
factors). Unlike strings in AdS5×S5(or AdS4×CP 3), there are massless modes (alongwith
massive ones) in the string spectrum which are harder to include in the semi-classical
picture. Major progress in this direction happened in [46] followed by [47], where the
authors managed to incorporate massless modes in the finite gap equations by imposing
a less restrictive Virasoro constraint. These massless modes are crucial in computation of
protected spectrum, as was first discussed in [48] and further refined in [49] and [50]. All-
loop S-matrices for the fundamental excitations were worked out for the massive modes
in AdS3×S3×S3×S1 in [51, 52], and for AdS3×S3×T4 in [53, 54]. The massless modes
were later included in [55, 56, 57](for AdS3× S3×T4) and [58](for AdS3× S3× S3× S1).
These works still had some undetermined overall factors in the S-matrix, which have
been identified for AdS3 × S3 ×T4 background with RR flux in [59]. TBA and quantum
spectral curve have also been constructed for this background in [60], [61] respectively.

In this section, we shall review the fundamentals of string theory in AdS3 × S3 ×M4

backgrounds with M4 = T4, S3×S1, and how classical and quantum integrability emerges
in these backgrounds. We will write down the gauge-fixed action, take its decompactifica-
tion limit, and work out the all-loop S-matrices for the scattering of the massive/massless
states and the Bethe equations for the spectrum of single-trace operators.

2.1 GS action and gauge-fixing

Let us begin with the light-cone gauge-fixing of the GS action and its decompactifica-
tion limit. The bosonic and GS actions were reviewed in the previous section in equa-
tion (1.43), (1.51). Explicitly, the terms Skin and SWZ written upto quadratic order in
fermions reads[62]

Skin = −i
∫
d2σγαβ ¯̃ΘI��Eα(δIJDβ +

1

48
σIJ
3 ��F��Eβ +

1

8
σIJ
1 ✚✚Hβ)Θ̃J (2.1)

SWZ = i

∫
d2σϵαβσIJ

1
¯̃ΘI��Eα(δJKDβ +

1

48
σJK
3 ��F��Eβ +

1

8
σJK
1 ✚✚Hβ)Θ̃K , (2.2)

where α, β ∈ {τ, σ}, I, J,K ∈ {1, 2}. The vielbeins EA
µ satisfy

EA
µE

B
ν ηAB = Gµν , ��Eα = ∂αX

µ
��Eµ , ��Eµ =

9∑
A=0

EA
µ ηABΓB (2.3)

while the background 3-form fluxes are given by

��F = FABCΓABC , ✚✚Hα = ∂αX
µ
✚✚Hµ , ✚✚Hµ = HµABΓAB . (2.4)

The main difference with respect to the AdS5 × S5 discussion, appears at the level of
gauge-fixing. We will discuss the lightcone gauge-fixing for AdS3 × S3 × S3 × S1, from
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which the AdS3 × S3 × T4 result can be obtained in the φ → 0 limit. We will broadly
follow [58, 63] for the rest of this sub-section.

The light-cone coordinates x± are defined as linear combination of the AdS3 time
coordinate t, and angular coordinates ϕ5, ϕ8, one from each S3

x+ = (1− a)t+ a
cosϑ

cosφ
ϕ5 + a

sinϑ

sinφ
ϕ8 , x− =

1

2
(−t+

cosϑ

cosφ
ϕ5 +

sinϑ

sinφ
ϕ8) (2.5)

where 0 ⩽ a ⩽ 1 and ϑ parametrizes 1-parameter family of null geodesics, which is forced
to be ϑ = φ for BPS state condition. We further define a transverse angular coordinate
ψ to the light-cone directions as follows

ψ = − sinϑ

cosφ
ϕ5 +

cosϑ

sinφ
ϕ8 (2.6)

Uniform light-cone gauge fixes x+ and p− as before

x+ = τ , p− = 1 (2.7)

in the zero winding sector. The worldsheet length 2R is related to the spin J and the
worldsheet Hamiltonian as

2R = J + aH (2.8)

The decompactification limit corresponds to P− =
∫
dσp− = 2R → ∞ as in the AdS5

case in last section. The lightcone energy H is given by

H = l + l̃ − J , J = (j1 + j̃1) cosϑ cosφ+ (j2 + j̃2) sinϑ sinφ (2.9)

where l, l̃ are AdS spins, ji, j̃i , i = 1, 2 are spins on the two S3. κ symmetry is fixed by
setting

(cosϑΓϕ5 + sinϑΓϕ8 + Γt)ΘI = 0 , I = 1, 2, (2.10)

where Γϕ5 ,Γϕ8 ,Γt are 10-dimensional Gamma matrices

Γt = −i σ1⊗σ2⊗σ3⊗ I⊗ I , Γϕ5 = σ1⊗σ1⊗ I⊗σ3⊗ I , Γ8 = σ1⊗σ3⊗ I⊗ I⊗σ3 (2.11)

where σi are the Pauli matrices. One can further expand the action in the decompact-
ification limit in a large-tension expansion (near-BMN expansion). This allows us to
determine the perturbative S-matrix.

Classical integrability of the AdS3 backgrounds can be proven by the Lax reformula-
tion of the string equations of motion via their coset descriptions. We will discuss the case
of AdS3×S3×S3×S1 where the coset is D(2, 1;α)×D(2, 1;α)/(SU(1, 1)×SU(2)×SU(2)),
as the AdS3 × S3 ×T4 can be realised in the limit of α→ 0. The left and right copies of
d(2, 1;α), i.e. Lie algebra for D(2, 1;α), can each be realised as 4× 4 matrices. The full
algebra is their direct sum leading to a 8 × 8 representation. The Z4 coset is generated
by acting with order 4 element Ω

Ω =

(
0 id

(−1)F 0

)
⇒ Ω4 = id (2.12)

and the general coset representative g(X,Θ) is obtained by exponentiating Lie algebra

elements, similar to equation (1.56). The Lie algebra d(2, 1;α), where α = cos2 φ =
R2

AdS

R2
S3+

,
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is generated by bosonic elements Sµ(µ = 0, 1, 2), Ln(n = 3, 4, 5) and Rṅ(ṅ = 6, 7, 8), plus
fermionic elements Qaαα̇(a, α, α̇ ∈ {+,−}). The bosonic elements generate sl(2,R) ⊕
su(2)⊕ su(2) algebra amongst themselves

[Sµ, Sν ] = ϵµνλS
λ , [Lm, Ln] = ϵmnpS

λ , [Rṁ, Rṅ] = ϵṁṅṗS
ṗ , (2.13)

while the supercharges satisfy (graded-)commutation relations

{Qaαα̇, Qbββ̇} = −i(ϵγµ)abϵαβϵα̇β̇Sµ − cos2 φϵab(ϵγ
m)αβϵα̇β̇Lm − sin2 φϵabϵαβ(ϵγṁ)α̇β̇Rṁ ,

(2.14)

[Sµ, Qaαα̇] = −1

2
Qbαα̇γ

b
µa , [Lm, Qaαα̇] = − i

2
Qaβα̇γ

β
mα , [Rṁ, Qaαα̇] = − i

2
Qaαβ̇γ

β̇
ṁα̇

(2.15)
Here, the vector indices are raised and lowered using ηµν = diag(− + +) , δmn , δṁṅ.
The two copies of d(2, 1;α) are distinguished using an additional label L,R. The Lax
representation proving classical integrability, is the same as in equation (1.64), as that
representation solely relies on the existence of the Z4 automorphism, and not the specifics
of the AdS background.

Light-cone gauge fixed Hamiltonian commutes with a sub-algebra of the full d(2, 1;α)2

su(1|1)2 ⊂ d(2, 1;α)2 (2.16)

Relaxing level-matching condition leads to the above off-shell algebra A extended by two
central charges C, C̄ which are related to the world-sheet momentum

A = psu(1|1)2c.e. (2.17)

The graded commutation relations amongst the supercharges QL,SL,QR,SR generating
this algebra is given by

{QL,SL} = HL, {QR,SR} = HR, {QL,QR} = C, {SL,SR} = C̄, (2.18)

with HL, HR, C, C̄ central elements. The algebra furthermore comes equipped with a
non-trivial coproduct of the form

∆(QL) = QL ⊗ 1 + e+
i
2
P ⊗QL, ∆(SL) = SL ⊗ 1 + e−

i
2
P ⊗ SL,

∆(QR) = QR ⊗ 1 + e+
i
2
P ⊗QR, ∆(SR) = SR ⊗ 1 + e−

i
2
P ⊗ SR,

(2.19)

where P is the world-sheet momentum. Near BMN analysis in [58] shows that the ex-
citations transform in short representation of the off-shell symmetry algebra A. One
assumes that it remains short at higher orders in order to use them to write down the
all-loop S-matrices and solve for the spectrum of excitations. Each of the representa-
tions is 2-dimensional, and transforms under one of the two copies of su(1|1), and has a
boson/fermion as the highest weight state. So we have 4 possible short representations
ρL,R, ρ̃L,R. These representations act on 2D graded vector spaces with basis states as

VρL,R
= {|ϕL,R⟩ , |ψL,R⟩} , Vρ̃L,R

= {|ψ̃L,R⟩ , |ϕ̃L,R⟩} (2.20)

There is an additional mass label m carried by these representations, that dictate the
value of the central charges H,M,C. The short representations ρL, labeled by momentum
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p, act as

QL |ϕL
p ⟩ = ηLp |ψL

p ⟩ , QR |ψL
p ⟩ = −

ηLp
x−Lp

e−ip/2 |ϕL
p ⟩ ,

SL |ψL
p ⟩ = ηLp e

−ip/2 |ϕL
p ⟩ , SR |ϕL

p ⟩ = −
ηLp
x+Lp
|ψL

p ⟩ ,
(2.21)

where

ηLp = e
ip
4

√
ih
2

(x−Lp − x
+
Lp) , (2.22)

h being the integrable-interaction coupling constant, which is a function of the moduli.
The representations ρ̃L act on Vρ̃L = {|ψ̃p⟩ , |ϕ̃p⟩} as

QL |ψ̃L
p ⟩ = ηp |ϕ̃L

p ⟩ , QR |ϕ̃p⟩ = −
ηLp
x−Lp

e−ip/2 |ψ̃L
p ⟩ ,

SL |ϕ̃p⟩ = ηLp e
−ip/2 |ψ̃L

p ⟩ , SR |ψ̃L
p ⟩ = −

ηLp
x+Lp
|ϕ̃L

p ⟩ ,
(2.23)

and are obtained from ρL by swapping the grading of the two excitations. The right
representations ρR, ρ̃R are obtained by swapping out L with R in the above functions
with

ηRp = e
ip
4

√
ih
2

(x−Rp − x
+
Rp) . (2.24)

The Zhukovski variables x±Lp, x
±
Rp are related to the momentum p through the relations

x+Lp
x−Lp

= eip, x+Lp +
1

x+Lp
− x−Lp −

1

x−Lp
=

2i(|m|+ −kp)

h
. (2.25)

x+Rp

x−Rp

= eip, x+Rp +
1

x+Rp

− x−Rp −
1

x−Rp

=
2i(|m| − −kp)

h
. (2.26)

which are solved in the physical region by

x±Lp =
(|m|+ −kp) +

√
(|m|+ −kp)2 + 4h2 sin2 p

2

2h sin p
2

e±
ip
2 , (2.27)

x±Rp =
(|m| − −kp) +

√
(|m| − −kp)2 + 4h2 sin2 p

2

2h sin p
2

e±
ip
2 . (2.28)

Above −k = k
2π
, k ∈ Z is the NSNS charge of the background and m is the mass of the

excitations.
Again comparing with the BMN analysis, we end up with a total of 8 exact repre-

sentations for fundamental modes: ρL, ρR for masses |m| = α, 1 − α, ρ̃L, ρ̃R for masses
|m| = 0, 1. The heaviest m = 1 modes are expected to be composite particles or bound
states, meaning their S-matrices would be either non-existent (composite scenario) or
redundant (bound-state scenario, fixed uniquely by others via fusion). The m = 0 repre-
sentations are special, since the L,R representations are isomorphic to the transpose of
each other. In the T4 limit α → 0, we end up with modes of two mass values 0 and 1,
which is compatible with the symmetry enhancement to psu(1|1)4c.e.. In the next subsec-
tion, we shall review the all-loop S-matrices for the scattering of the above excitations
and the crossing and unitarity constraints on overall phases that remain undetermined
by symmetries alone.
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2.2 All-loop S-matrices

The central charges impose conditions on the 2 → 2 scattering processes allowed. For
in-coming particles of momenta and masses pin1 , p

in
2 and min

1 ,m
in
2 and outgoing momenta

and masses pout1 , pout2 and mout
1 ,mout

2 , we have constraints

pin1 + pin2 = pout1 + pout2 , min
1 +min

2 = mout
1 +mout

2 , Ein
1 + Ein

2 = Eout
1 + Eout

2 (2.29)

where the energy of 1-particle states is given by

E(p) =

√
(m+ −kp)2 + 4h2 sin2 p

2
(2.30)

with m = |m|,−|m| for the left, right representations respectively. The above constraints
can be used to split the full S-matrix into smaller blocks of 4 types: same mass and
chirality, same mass but opposite chirality, different mass but same chirality, different
mass and opposite chirality. The S-matrices can be further sub-divided into overall
factors Σ for each block, known as dressing factor, and a matrix-part S that is fixed
entirely by the symmetries

S(p, q) =
⊕

m1,m2,α,β

Σαβ
m1,m2

Sαβ
m1,m2

, (2.31)

where m1,m2 ∈ {0, α, 1−α} and α, β ∈ {L,R}. For same chirality scattering, the matrix
part of the S-matrix is given by

SLL |ϕL
pϕ

L
q ⟩ = ALL

pq |ϕL
q ϕ

L
p ⟩ , SLL |ϕL

pψ
L
q ⟩ = BLL

pq |ψL
q ϕ

L
p ⟩+ CLL

pq |ϕL
q ψ

L
p ⟩ ,

SLL |ψL
p ψ

L
q ⟩ = FLL

pq |ψL
q ψ

L
p ⟩ , SLL |ψL

p ϕ
L
q ⟩ = DLL

pq |ϕL
q ψ

L
p ⟩+ ELL

pq |ψL
q ϕ

L
p ⟩ . (2.32)

We can rewrite S as a R-matrix by (graded-)permuting the out-states to yield

RLL(p, q) =


ALL

pq 0 0 0
0 BLL

pq ELL
pq 0

0 CLL
pq DLL

pq 0
0 0 0 −FLL

pq

 (2.33)

where the functions on the RHS are given by

ALL
pq = 1, BLL

pq =

(
x−Lp
x+p

)1/2
x+Lp − x

+
Lq

x−Lp − x
+
Lq

,

CLL
pq =

(
x−:p
x+Lp

x+Lq
x−Lq

)1/2
x−Lq − x

+
Lq

x−Lp − x
+
Lq

ηLp
ηLq
, DLL

pq =

(
x+Lq
x−Lq

)1/2
x−Lp − x

−
Lq

x−Lp − x
+
Lq

,

ELL
pq =

x−Lp − x
+
Lp

x−Lp − x
+
Lq

ηLq
ηLp
, FLL

pq = −

(
x−Lp
x+Lp

x+Lq
x−Lq

)1/2
x+Lp − x

−
Lq

x−Lp − x
+
Lq

.

(2.34)

Similarly for same chirality scattering of two ρ̃L particles, we have

RL̃L̃(p, q) =


ALL

pq 0 0 0
0 BLL

pq −ELL
pq 0

0 −CLL
pq DLL

pq 0
0 0 0 −FLL

pq

 (2.35)
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and for scattering of right particles of same chirality, we can swap L with R in the above
equations. We can also have scattering between the two different gradings within same
chirality, i.e. LL̃ or L̃L(same with R)

RLL̃(p, q) =


ALL

pq 0 0 0
0 BLL

pq ELL
pq 0

0 CLL
pq DLL

pq 0
0 0 0 −FLL

pq

 , RL̃L(p, q) =


ALL

pq 0 0 0
0 BLL

pq −ELL
pq 0

0 −CLL
pq DLL

pq 0
0 0 0 −FLL

pq


(2.36)

The right chirality matrices can again be obtained by switching L with R above. A
slightly different set of functions appear in the mixed chirality S-matrices.

RLR(p, q) =


ALR

pq 0 0 FLR
pq

0 CLR
pq 0 0

0 0 DLR
pq 0

−BLR
pq 0 0 −ELR

pq

 , RRL(p, q) =


ALR

pq 0 0 FLR
pq

0 CLR
pq 0 0

0 0 DLR
pq 0

−BLR
pq 0 0 −ELR

pq


(2.37)

where the RHS functions is given by

ALR
pq = ζLRpq

(
x+Lp
x−Lp

)1/2 1− 1
x+
Lpx

−
Rq

1− 1
x−
Lpx

−
Rq

, BLR
pq = −2i

h

(
x−Lpx

+
Rq

x+p x
−
Rq

)1/2
ηLp η

R
q

x−Lpx
+
Rq

ζLRpq

1− 1
x−
Lpx

−
Lq

,

CLR
pq = ζLRpq , DLR

pq = ζLRpq

(
x+Lpx

+
Rq

x−Lpx
−
Rq

)1/2 1− 1
x+
Lpx

+
Rq

1− 1
x−
Lpx

−
Rq

,

ELR
pq = −ζLRpq

(
x+Rq

x−Rq

)1/2 1− 1
x−
Lpx

+
Rq

1− 1
x−
Lpx

−
Rq

, FLR
pq =

2i

h

(
x+Lpx

+
Rq

x−p x
−
Rq

)1/2
ηLp η

R
q

x+Lpx
+
Rq

ζLRpq

1− 1
x−
Lpx

−
Lq

.

(2.38)

where ζLRpq = e−i p+q
4

√√√√1− 1

x−
Lp

x−
Rq

1− 1

x+
Lp

x+
Rq

. The remaining choices of chiralities and grading, for in-

stance (LR̃), (L̃R), (L̃R̃) are given in terms of the same functions as in equation (2.38)(see
appendix G of [58]). Using the above R-matrices, one can go ahead and write down the
asymptotic Bethe equations and solve for the spectrum. Wrapping effects can then be
incorporated via Luscher corrections or solving the TBA for ground state and excited
states (using the contour deformation trick).

The dressing factors that come as overall functions outside the above matrix blocks,
have to satisfy physical constraints of crossing and unitarity. Braiding unitarity requires
the S-matrix S(p, q) defined in equation (2.31) to satisfy

S(p, q)S(q, p) = 1 (2.39)

which implies the associated dressing phases have to obey

ΣLL
m2,m1

(p2, p1)Σ
LL
m1,m2

(p1, p2) = 1 , ΣRR
m2,m1

(p2, p1)Σ
RR
m1,m2

(p1, p2) = 1 ,

ΣLR
m2,m1

(p2, p1)Σ
RL
m1,m2

(p1, p2) = 1 . (2.40)

We also impose reality for the S-matrix by requiring physical unitarity

S†(p, q)S(p, q) = 1 (2.41)
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which gives the dressing constraints

(ΣLL
m1,m2

(p1, p2))
⋆ΣLL

m1,m2
(p1, p2) = 1 , (ΣRR

m1,m2
(p1, p2))

⋆ΣRR
m1,m2

(p1, p2) = 1

(ΣLR
m1,m2

(p1, p2))
⋆ΣLR

m1,m2
(p1, p2) = 1 , (ΣRL

m1,m2
(p1, p2))

⋆ΣRL
m1,m2

(p1, p2) = 1 (2.42)

Furthermore, we have crossing constraints that relate the S-matrix in the physical region
on the spectral plane to other sheets accessible by crossing branch-cuts on the physical
sheet, commonly referred to as the crossed regions. Identifying the charge conjugation
matrix that transforms particles to anti-particles as C (see [58] for details), we get the
following identity for crossing

C1.St1(p̄, q).C−1
1 .S(p, q) = I , (2.43)

where C1 = C ⊗ I acts only on the first particle, and t1 refers to matrix transposition in
the first space. The Zhukovski variables corresponding to the crossed momenta can be
related to the physical ones as

x±L(p̄) =
1

x±R(p)
, x±R(p̄) =

1

x±L(p)
. (2.44)

One can similarly write a crossing equation for the second particle. Writing down the
crossing equations separately for each pair of chirality and extracting contributions from
the matrix parts, we are left with the following conditions for the dressing phases

ΣRL
m1,m2

(xR(p̄1), xL(p2))Σ
LL
m1,m2

(xL(p1), xL(p2)) = c(xL1, xL2) ,

ΣLL
m1,m2

(xL(p̄1), xL(p2))Σ
RL
m1,m2

(xR(p1), xL(p2)) = c̃(xR1, xL2) ,

ΣLR
m1,m2

(xL(p̄1), xR(p2))Σ
RR
m1,m2

(xR(p1), xR(p2)) = c(xR1, xR2) ,

ΣRR
m1,m2

(xR(p̄1), xR(p2))Σ
LR
m1,m2

(xL(p1), xR(p2)) = c̃(xL1, xR2) , (2.45)

where

c(x1, x2) =

(
x+1
x−1

)1/4(
x+2
x−2

)−1/4
x−1 − x−2
x+1 − x−2

√
x+1 − x+2
x−1 − x−2

,

c̃(x1, x2) =

(
x+1
x−1

)−1/4(
x+2
x−2

)−3/4
1− x−1 x+2
1− x−1 x−2

√√√√1− 1
x−
1 −x−

2

1− 1
x+
1 −x+

2

(2.46)

The all-loop Bethe ansatz equations for d(2, 1;α)2 using these S-matrices was first pro-
posed in [11]. The overall normalisations that reflect the correct bound-state pole struc-
ture and are consistent with DHM-type double poles still need to be identified in the con-
text of AdS3×S3×S3×S1. On the other hand, the crossing equations in AdS3×S3×T4

have been solved in pure RR backgrounds recently in [59]. For more general mixed flux
backgrounds, it is an active area of research right now.

2.2.1 AdS3 × S3 ×T4

Let us briefly review the AdS3 × S3 × T4 S-matrices and asymptotic Bethe equations.
This will be useful in setting up Algebraic Bethe ansatz for the computation of protected
states in section (4). As we discussed earlier, the AdS3 × S3 ×T4 S-matrices arise in the
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limits α→ 0, 1 of the AdS3× S3× S3× S1 S-matrices. The off-shell symmetry algebra A
is

A = psu(1|1)4c.e. ⊂ psu(1, 1|2)2 (2.47)

The psu(1|1)4c.e. S-matrices are obtained by tensoring two copies of the above psu(1|1)2c.e.
S-matrices

Spsu(1|1)4c.e. = Spsu(1|1)2c.e.⊗̌ Spsu(1|1)2c.e. , (2.48)

where ⊗̌ refers to the graded tensor-product operation. The full S-matrix can be sub-
divided into blocks: massive (S••), mixed-mass (S•◦), and massless (S◦◦)

S•• =

(
σ••
LLSLL⊗̌SLL σ̃••

RLSRL⊗̌SRL

σ̃••
LRSLR⊗̌SLR σ••

RRSRR⊗̌SRR

)
,

S◦◦ = σ◦◦Ssu(2) ⊗ (SLL⊗̌SLL) ,

S•◦ = [σ•◦
L (SLL ⊗ SLL̃)⊕2]⊕ [σ•◦

R (SRL ⊗ SRL̃)⊕2] ,

S◦• = [σ◦•
L (SLL ⊗ S L̃L)⊕2]⊕ [σ◦•

R (SLR ⊗ S L̃R)⊕2] , (2.49)

where SAB, A,B ∈ {L,R, L̃, R̃} are the different su(1|1)2c.e. S-matrices from last subsec-
tion, and Ssu(2) is the S-matrix of the Heisenberg spin chain, and σ••, σ̃•• are massive,
σ•◦, σ◦• are mixed-mass, and σ◦◦ is the massless dressing factor. σ•◦, σ◦• are related by
unitarity, thus leaving 4 undetermined functions that need to be solved using crossing
equations.

The Bethe equations in bosonic grading (see [64]) comprise of those for massive
momentum-carrying L, and R roots with rapidities x±k and x̄k

± respectively, and massless
roots with rapidities w±

k , plus auxiliary roots yI,k, I = 1, 3

(
x+k
x−k

)L

=

N2∏
j ̸=k

ν−1
k νj

x+k − x
−
j

x−k − x
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j

1− 1
x+
k x−

j

1− 1
x−
k x+

j

(σ••
kj)

2

N1∏
j

ν
1/2
k
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N3∏
j

ν
1/2
k
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×
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j

νj

1− 1
x+
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j

1− 1
x−
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j
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j

1− 1
x−
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j
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kj)

2
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j
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j

1− 1
x−
k z−j
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1/21− 1
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x−
k z+j

1/2
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kj)

2 (2.50)

(
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kj)

2

×
N0∏
j

ν
−1/2
k νj

x+k − z
−
j

x−k − z
+
j

1− 1
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(σ•◦
kj)

2 (2.51)
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1 =

N2∏
j=1

ν
−1/2
j

yI,k − x+j
yI,k − x−j

N2̄∏
j=1

ν
−1/2
j

1− 1
yI,k−x̄−

j

1− 1
yI,kx̄

−
j

N0∏
j=1

ν
−1/2
j

yI,k − z+j
yI,k − z−j

, I = 1, 3 (2.53)

where N2, N2̄, N0 are the number of massive L, massive R, and massless Bethe roots while
N1, N3 are the number of auxiliary roots. Physical states further satisfy level-matching
condition

1 =

N2∏
j=1

x+j
x−j

N2̄∏
j=1

x̄+j
x̄−j

N0∏
j=1

z+j
z−j

(2.54)

Solution to the above set of equation gives rise to a state with energy

D−J = N2 +N2̄ + ih

N2∑
k=1

(
1

x+k
− 1

x−k

)
+ ih

N2̄∑
k=1

(
1

x̄+k
− 1

x̄−k

)
+ ih

N0∑
k=1

(
1

z+k
− 1

z−k

)
(2.55)

In section 4, we will be using the above Bethe equations, especially the auxiliary
and massless Bethe equations. We will see how zero-momentum limit for the massless
modes affects the auxiliary roots. This will then allow us to generate protected states on
top of the BMN vacuum in AdS3 × S3 × T4 supported by mixed-flux, plus its orbifolds.
Derivation of the auxiliary Bethe equation is given in Appendix A.

3 Tools from machine learning: neural networks and

more

We shall discuss the fundamentals of neural networks in this section that will be relevant
for their applications in later sections. We begin with a dense neural networks, also
known as multi-layer perceptrons (MLPs), schematically displayed in Figure 1.

These networks consist of an input layer ain = (ain0 , a
in
1 , . . . a

in
n0

)T ∈ Rn0 , followed by a
series of fully connected layers known as hidden layers, and terminate in an output layer
aout = (aout0 , aout1 , . . . aoutnL+1

)T ∈ RnL+1 . Data is read in to the network at the input layer
and the output is collected at the output layer. There are L fully connected layers in
this network, where the ℓ-th layer contains nℓ neurons. Each neuron a

(l)
m in a l-th fully

connected layer receives inputs from all the neurons in the previous (l − 1)-th layer and
the output of the neuron is in turn fed as an input to neurons in the succeeding layer:
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ain1

ain2

ain3

Input Layer

aout1

aout2

Output Layer

a
(1)
1
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(1)
2

a
(1)
3

a
(1)
4

a
(1)
5

Hidden Layer

Figure 1: Multilayer Perceptron with one hidden layer L = 1 of width n1 = 5, input of
size n0 = 3 and output of size n2 = 2


a
(ℓ)
1

a
(ℓ)
2
...

a
(ℓ)
nℓ

 = h



w

(ℓ)
1,0 w

(ℓ)
1,1 . . . w

(ℓ)
1,nℓ−1

w
(ℓ)
2,0 w

(ℓ)
2,1 . . . w

(ℓ)
2,nℓ−1

...
...

. . .
...

w
(ℓ)
nℓ,0

w
(ℓ)
nℓ,1

. . . w
(ℓ)
nℓ,nℓ−1



a
(ℓ−1)
1

a
(ℓ−1)
2
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a
(ℓ−1)
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b
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1

b
(ℓ)
2
...

b
(ℓ)
nℓ


 , ℓ = 1, . . . L+ 1 ,

(3.1)
where w(l) ∈M(nl, nl−1,R) is a weight matrix, b(l) ∈ Rnl - bias vector, h(z) is in general a
non-linear, non-polynomial function known as the activation function acting component-
wise :

h


z1

z2
...
zn

 =


h (z1)

h (z2)
...

h (zn)

 . (3.2)

In (3.1) we also identify a(0) = ain and a(L+1) = aout with input and output layers respec-
tively. Introducing shorthand notation for the affine transformations in equation (3.1)
as A(ℓ)(a(ℓ−1)) ≡ w(ℓ)a(ℓ−1) + b(ℓ), the neural network aout(ain) : Rn0 → RnL+1 can be
expressed as compositions of affine transformations, and activation functions:

aout = h ◦ AL+1 ◦ h ◦ AL ◦ ... ◦ h ◦ A1 ◦ ain (3.3)

The output function of the neural network is tuned by tuning the weights and biases.
It is by now well established that such neural networks are a highly expressive frame-
work capable of approximation of extremely complex functions, and indeed there exists
a series of mathematical proofs which attest to their universal approximation property,
e.g. [65, 66, 67, 68, 69]. This property, along with the feature learning capability of deep
neural networks is the key driver to the automated search for R-matrices which we have
implemented here.

A natural generalisation of the MLPs involve removing some of the neuron connections
of the aforementioned dense network. This is called pruning and is usually done in
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larger networks. Such sparse networks tend to lead to better generalisation to unseen
datasets, while being harder/slower to train than MLPs. Besides the MLP, other popular
neural network (NN) architectures include the convolutional neural network (for natural
language processing and computer vision), the recurrent neural networks (for sequential
data), and transformers (for text-classification and generation). We shall avoid discussing
these in any detail since they are not used in our research works.

3.1 Supervised learning: loss functions

Supervised learning involves training the neural network on input-output dataset D =
{(x, y)}, where y is the target output for given input vector x. Training involves updating
the network weights and biases (symbolically represented below as θ) in order to fit the
above data D

fθ (x) ≈ y ∀ (x, y) ∈ D , (3.4)

by minimising some target loss-function L(D, fθ) which provides a measure of the dis-
crepancy between the actual and desired properties of the function f . For regression
tasks, a popular class of such loss-functions are the powers of absolute error

L(D, fθ) =
∑

(x,y)∈D

|y − fθ (x)|q , (3.5)

where q = 1 corresponds to the mean average error(MAE) or L1 loss, and q = 2 to the
mean square error(MSE) or L2 loss, respectively. Another popular choice is the log cosh
error

Llog−cosh(D, fθ) =
∑

(x,y)∈D

log(cosh(y − fθ)) . (3.6)

The network parameters θ get updated iteratively following gradient descent methods like
stochastic gradient descent. For classification tasks, i.e. when the output takes discrete
set of values (binary or multi-class), some popular choices of loss functions are the cross-
entropy loss Lc.e. and the hinge loss Lhinge. For binary classification with outputs 0 and
1, these are

Lc.e.(D, fθ) = −
∑

(x,y)∈D

(y log (fθ (x)) + (1− y) log (1− fθ (x))) , (3.7)

Lhinge(D, fθ) =
∑

(x,y)∈D

max(0, 1− (2y − 1)(2fθ (x)− 1)) . (3.8)

Evolution of training and test loss functions during training of the neural network
provides information about the degree of learning and ability to generalise to unseen
data. For small networks, one usually ends up with training losses that saturate at high
non-zero values due to under-fitting of the training data. On the other hand, using very
deep/big networks can lead to over-parameterisation, which is usually indicated by high
test losses. This is depicted in figure 2 of training and validation accuracy curves on a
image-classification task using a convolutional neural network known as LeNet [70] on
the CIFAR-10 dataset [71].

Aside from the NN architecture, hyperparameter-tuning plays an important role on
the evolution of the losses. We shall discuss this in the following sub-section on optimi-
sation algorithms.
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(a) Overfit training (b) Data-augmented training

Figure 2: Overfitting during training (for 10 epochs) remedied by enlarging the CIFAR-10
dataset using data-augmentation techniques. Here, we measure the training and valida-
tion accuracies in percentage.

3.2 Activation functions

Activation functions introduce non-linearity in the hypothesis space for the neural net-
work, and play a crucial role in feature learning. They are crucial in gradient propaga-
tion during back-propagation, and absence of vanishing or exploding gradient of these
functions is integral to effective training. Popular choices of activation functions for
classification tasks include sigmoid (binary) and softmax (multi-class) activations

σsigmoid(x) =
1

1 + e−x
(3.9)

σsoftmax(x⃗)i =
exi∑N
j=1 e

xj

(3.10)

while for regression tasks some popular options are tanh, (leaky)ReLU and swish activa-
tions

σtanh(x) = tanh(x) (3.11)

σrelu(x;α) = max(αx, x) , 0 ⩽ α ⩽ 1 (3.12)

σswish(x; β) = x× σsigmoid(βx) (3.13)

Note the ReLU activation becomes linear in the limit α = 1. We will compare their
relative performance on different experiments in the later sections.

3.3 Optimisation algorithms

Optimisation algorithms are key to the training of the network parameters to better
approximate the target function. Common algorithms include stochastic gradient descent
(SGD), stochastic gradient descent with momentum (SGDM), and adaptive learning
methods (AdaGrad, RMSProp, and ADAM). Stochastic gradient descent updates the
weights and biases after a forward pass of mini-batches of training data through the
network, by a term proportional to the gradient of the loss function with respect to the
corresponding parameter

∆θt+1 ≡ θt+1 − θt = −η ∂L
∂θt

(3.14)
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where the hyperparameter η is known as the learning rate. This protocol performs well to
find points with vanishing gradients. Stochastic gradient descent with momentum helps
to avoid being stuck on local minima and saddle points in SGD, by weighted-averaging
over previous gradient steps. This is done by introducing auxiliary momentum variables
πt for each of the physical weight and bias parameters θt and using update rule

∆πt+1 ≡ πt+1 − πt = −(1− β)πt −
∂L
∂θt

, ∆θt ≡ θt+1 − θt = ηπt+1 , (3.15)

where β ∈ (0, 1) is called the momentum parameter, with β = 0 realising the naive
SGD limit. Adaptive algorithms such as AdaGrad, RMSProp, and ADAM change the
learning rate η for each of the weight and bias parameters separately based on prior
training history. They use moving average estimates (mean and higher moments) for the
loss-gradients to inform these updates. We will mostly be employing ADAM optimizer
in our experiments. The corresponding update equations[72] for the network parameters
are

θt+1 = θt − α
m̂t+1√
v̂t+1 + ϵ

, (3.16)

where

m̂t+1 =
mt+1

1− βt+1
1

, mt+1 = β1mt + (1− β1)gt ,

v̂t+1 =
vt+1

1− βt+1
2

, vt+1 = β2vt + (1− β2)g2t , (3.17)

with gt = ∂L
∂θt

, hyperparameters α, β1, β2 ∈ [0, 1) and small regularisation paramater

ϵ << 1. Their default values are α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8. The default
initial values are m0 = v0 = 0. We get back SGDM in the limit β2 = 1 and SGD by
further setting β1 = 0.

There are interesting alternative optimisation algorithms that have been proposed
recently[73, 74]. One can use an energy functional to flow down the loss landscape along
constant-energy orbits. In this picture, the SGD is a friction-dominated energy-losing
trajectory. It is unclear as of now, which problems are better-suited to this kind of
approach versus aforementioned standard protocols.

In all the above protocols, finding the optimal hyperparameters for a given task that
efficiently minimises the losses during training is a bottleneck. Usually one selects them
by experimenting with a spread of values. However, there are interesting features and
possibilities that might be missed without exploring a big enough search space. For
instance, the catapult mechanism in overparametrised networks at super-critical learning
rate η > 1 in SGD and similar algorithms that leads to better generalisation than sub-
critical values η << 1. In our works, such issues have not been very visible - nonetheless
important to keep in mind.

3.4 Physics Inspired Neural Networks (PINNs)

PINNs are a special class of NN architectures wherein one uses custom loss functions to
drive the NN function approximator to desired solution of target optimisation problem.
One starts with a system of constraint equations Cj for a set of functions fi

Cj({fi}Ni=1) = 0 , (3.18)
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where fi can include fields as well as their space-time derivatives. One implements these
constraints/ equations of motions as loss terms

L =
∑
j

|Cj|aj , aj > 0 . (3.19)

Although this term is specifically used for solving differential and integral equations,
I am abusing it here to include functional equations as well. This method has been
successfully employed for well-known problems such as heat equation, Poisson equation,
and fluid dynamics [75, 76]. In more specialised settings, they have been employed to learn
about string field theory amplitudes by studying Strebel differentials [77], quasinormal
modes of near-extremal black holes [78], and time-dependent Schrodinger equations [79].
We employ a similar strategy to set up a search program for quantum integrable spin
chains in the function space modelling R-matrices.

3.5 Beyond MLPs and supervised learning

Unsupervised learning provides a complementary set of tools to discover features in
generic datasets. Unlike supervised learning, there is no apriori input-output form of
the data. The popular tools within this framework that were used in the research works
include K-means clustering and principal component analysis (PCA). K-means cluster-
ing is an algorithm to segregrate the dataset into finite number of distinct clusters by
optimising their distance from certain central points. One needs to specify the number of
clusters k beforehand for this method to work. The algorithm then finds central points
mi, such that the following distance is minimized

D =
∑
j

min
i

(||xj −mi||) (3.20)

where ||.|| is usually the L2 norm, and the sum on the RHS runs over all the dataset
points xj. One initialises the centers randomly, and clusters the dataset points by com-
puting their distances from each of the centers and choosing the minimal one. Then one
keeps updating the centers as the mean of the respective clusters, and re-evaluating the
cluster-assignment for the dataset points from the new centers. Iterating this process, we
get to the desired configuration of k centers that minimise D. Some popular generalisa-
tions/variations of this algorithm are K-means minibatch clustering, K-median cluster-
ing, and mean shift clustering, the last of which does not require us to fix the number of
clusters k apriori. Other standard methods of clustering include Gaussian expectation-
maximization, BIRCH and DBSCAN. One major problem that appears when using this
technique is known as the curse of dimensionality which happens when the feature space
grows in dimension. This refers to the fact that distances between points distributed
uniformly in some compact ball of say radius 1, grows as one increases the number of
dimensions, tending to 1 asymptotically. As we shall see in later sections, this issue does
not affect us since the solution spaces we encounter are relatively low-dimensional.

PCA is a feature-extraction technique from the dataset that allows one to identify
low-dimensional subspaces containing most of the useful information. One projects the
dataset from the full feature space to a few linear combinations of the basis vectors. This
is done by first computing the F × F covariance matrix C of the dataset {x⃗i}Ni=1 of size
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N , F being the feature space dimensionality, i.e. size of each vector x⃗i = (x1i , . . . x
F
i )T

C = ATA , Aij = xji −
1

N

N∑
k=1

xjk . (3.21)

Then we project the dataset along the eigendirections corresponding to the largest set of
m (fixed) eigenvalues. The value of m is set by requiring that the m largest eigenvalues
of the covariance matrix C, denoted by the ordered set {λi}Fi=1, add up to some threshold
fraction fth of the total sum of eigenvalues∑

i⩽m λi∑N
i=1 λi

⩾ fth (3.22)

This measure is known as maximum variance explained (MVE). PCA is a crucial tool
that people often use to bypass the curse of dimensionality, which refers to the issues
in training input datasets with too many feature dimensions. As part of the PhD work,
PCA has been used in the analysis of polytopes and their properties, but this topic is
not included in this thesis.

Reinforcement learning, although introduced naturally in the context of robotics,
games and strategies, has seen diverse applications in theoretical and mathematical
physics. Varying degrees of success have been achieved via the use of actor critic al-
gorithms like SAC and A3C, Trust Region Policy Optimisation (TRPO) and Proximal
Policy Optimisation (PPO) among others, in CFT bootstrap[80, 81, 82], string vacua
searches[83], knot theory[84], quantum computing and quantum error correction[85]. In
all these scenarios, one begins by posing a Markov decision problem (MDP), which is then
solved by optimising neural network components modelling the value and policy func-
tions. We shall not delve further into these topics since they are not used in the works
discussed in the upcoming sections, and instead are part of ongoing research directions.

4 Protected states in AdS3 backgrounds from inte-

grability

In this work [50], we write down the Algebraic Bethe Ansatz for string theory on AdS3×
S3 × T4 and AdS3 × S3 × K3 in its orbifold limits. We use it to determine the wave-
functions of protected closed strings in these backgrounds and prove that their energies
are protected to all orders in α′. We further apply the ABA to find the wave functions
of protected states of AdS3 × S3 × S3 × S1 and its Z2 orbifold. Our findings match
with protected spectrum calculations from supergravity, SymN orbifolds and apply to
the complete moduli space of these theories, excluding orbifold blow-up modes for which
further analysis is necessary. The author is the main contributor to the ABA analysis
from section 4.1-4.4, which is the central focus of the paper. This work builds upon the
previous work of the other collaborators in [49] where they argue for the presence of the
protected states in AdS3 × S3 × T4 and AdS3 × S3 × S3 × S1 backgrounds based on the
all-loop Bethe equations. We provide a novel formalism to understand these states as
wavefunctions using ABA and also construct these states on integrable orbifolds.

Integrability offers a novel way to prove non-renormalization theorems, since one
can show exactly in λ that certain BPS operators’ dimensions do not receive quantum
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corrections. In the planar limit, integrable AdS5 × S5 and AdS4 × CP3 backgrounds
have only one protected multiplet for each value of global charges3. Geometrically, this
corresponds to the supersymmetric light-ray, or Berenstein-Maldacena-Nastase (BMN)
geodesic [29], while in the gauge theory language protected operators are the (unique)
ferromagnetic groundstates of the Minahan-Zarembo spin-chains [1].4

The protected-spectrum of integrable AdS3/CFT2 backgrounds [10, 11, 12] is much
richer, with several multiplets for a given set of charges. In the integrable formulation,
these extra multiplets appear because the worldsheet theory has fermionic massless exci-
tations [48]. Such excitations have zero energy in the zero-momentum limit but are not
descendents of the BMN vacuum. Further, for each set of charges one can find solutions
of the exact Bethe equations [87, 64] with the correct multiplicities to match the super-
gravity and SymN orbifold calculations [88, 89]. Since integrability methods are exact in
α′, they give AdS3 × S3 ×M4 non-renormalization theorems for all half- and quarter-
BPS states of M4 = T4 and M4 = S3 × S1, respectively [87, 49]. These backgrounds
have a 20, respectively 2, dimensional moduli space on which integrability continues to
hold [16]. From this we can immediately conclude that half-, respectively quarter-BPS,
states are protected across the whole moduli space, matching in particular the Wess-
Zumino-Witten (WZW) point results [90, 89]. These findings are also in agreement with
the non-renormalization results [91] applicable to the M4 = T4 case.

As in other integrable models, Bethe equations (BEs) are valid in the large worldsheet
radius limit with generic states receiving wrapping corrections. These are especially
important when the theory has massless modes [92, 93]. It is known that protected states
do not receive wrapping corrections at leading-order [49] and it is likely that the argument
can be generalised to all orders of wrapping using the exact massless TBA [94, 95].

In this work we find the Bethe eigenvectors for massless low-magnon excitations using
the Algebraic Bethe Ansatz (ABA). Low-lying states in integrable field theories are anal-
ogous to conventional Minkowski spacetime string states with a few oscillator excitations
above the vacuum, for example

|v⟩ ≡
(
αi
p1

)† (
Sȧ
p2

)† (
α̃j
p3

)† |0⟩ . (4.1)

Each of the three magnons above sits in a short representation of the supersymmetry
algebra psu(1|1)4c.e. unbroken by the BMN vacuum.5 The indices i and ȧ are the usual
transverse 8v and 8c indices of the light-cone so(8) algebra [96], which now break-up into
several representations of the (abelian) bosonic subalgebra of psu(1|1)4c.e., depending on
the mass m of the magnon. The energy of the above state is the sum of the energies of
the individual magnons

E(v) = E(p1) + E(p2) + E(p3), (4.2)

each of which satisfies the exact dispersion relation dictated by the shortening condi-
tion [97, 57]

E(pi) =
√

(mi + −kpi)2 + 4h2 sin2 pi
2
. (4.3)

Above, 2π−k ∈ Z is the WZW level of the background and h encodes the strength of the
integrable interaction, and is a function of the RR charge and moduli values [16]. In the

3See the review [86] and references in it.
4In the case of planar N = 4 this is the tr

(
ZJ
)
family, while in ABJM theory it is tr

(
(AB)J

)
.

5The global symmetry of AdS3 × S3 × T4 is psu(1, 1|2)2 and the vacuum-preserving symmetry sub-
algebra is p(su(1|1)2)2. Since individual magnons do not satisfy the level-matching condition, they
transform in representations of a triple central extension of p(su(1|1)2)2, which we denote by psu(1|1)4c.e..
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large worldsheet radius limit, low-lying physical states are made from a few magnons just
like in flat space (4.1).6

Throughout this work we will only be interested in m = 0 states, since these are the
only states that can give rise to extra protected multiplets. 7 In the ABA a generic state
is constructed in two steps. Firstly, one considers states made of N0 massless magnons,
each a fermionic highest-weight state of a m = 0 psu(1|1)4c.e. module with momentum pi
(with i = 1, . . . , N0)

8 Such states are physical if they satisfy the momentum carrying BEs.
Secondly, one acts with so-called B operators, which play the role of raising operators
of the underlying Yangian algebra. They generate states whose constituent magnons
include descendants of the m = 0 psu(1|1)4c.e. modules. These descendants should be
thought of as further magnons on top of the N0 magnons, as introduced in the famous
nesting procedure (see [98] for a recent review). As such, they too carry momenta, which
for physical states are constrained by auxiliary BEs. The algebra psu(1|1)4c.e., has four
(fermionic) raising operators, but only two linear combinations of these act non-trivially
on the short magnon multiplets. We will label by N1 and N3 the number of times the
corresponding BI raising operators were used to produce a particular state and by yI,k
the corresponding auxiliary momenta (with I = 1, 3 and k = 1, . . . , NI).

For example, taking each of the three magnons in (4.1) to be massless, with the
fermionic magnon further chosen as highest-weight in psu(1|1)4c.e.

9, the state |v⟩ has N0 =
3 and N1 = N3 = 1, since each of the bosons is an psu(1|1)4c.e. descendant. It will be
convenient to write the state in terms of its Bethe roots as

|v⟩ ≡ |p⃗; y1; y3⟩ (4.4)

where p⃗ = (p1, p2, p3). If we had instead chosen the fermion to be lowest-weight, the state
would still have N0 = 3, but now it would have four auxiliary roots, with N1 = N3 = 2.
In flat space and in plane-wave backgrounds, the magnon S-matrix becomes the identity.
As a result, the momentum carrying BEs reduce to the familiar integrality requirement
on the momenta pi = ni

L
that follows from the periodicity of the worldsheet. The auxiliary

BEs on the other hand trivialise completely to 1 = 1. This is why auxiliary Bethe roots
don’t have a natural interpretation in the familiar flat space or plane-wave setting, their
multiplicity simply counting the number of times raising supercharges were used in any
given state.

The psu(1, 1|2)2 charges of the ABA states can be determined from Ni, pi and an
auxiliary integer parameter L related to the length of the worldsheet by the gauge-fixing

6For more energetic states or at smaller worldsheet radius, this flat spacetime magnon picture is less
useful.

7Extending the ABA to massive and mixed mass sectors is straightforward.
8As in any super-module, the highest-weight state can be chosen to be bosonic or fermionic, depending

on the choice of raising operators. In AdS/CFT, it is conventional to take the lightest m > 0 excitations
to be bosonic, in order to identify them with Hofman-Maldacena magnons. With this choice, the m = 0
highest weight states then have to be fermionic.

9This would be done by suitably restricting the 8v and 8c labels.
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condition

2DL = L+N1 +N3 −N0 +

N0∑
i=1

√
−k2p2i + 4h2 sin2 pi

2

2DR = L+

N0∑
i=1

√
−k2p2i + 4h2 sin2 pi

2

2JL = L+N1 +N3 −N0

2JR = L,

(4.5)

where D and J are, respectively, the sl(2) and su(2) Cartan generators of psu(1, 1|2)L ×
psu(1, 1|2)R. The AdS3 backgrounds considered in this work have small (4, 4) supercon-
formal symmetry. Protected states satisfy shortening conditions on both the left- and
right-moving parts of the algebra

DL = JL , DR = JR . (4.6)

Such half-BPS multiplets are often written in the following notation

(2DL + 1, 2DR + 1)
S

(4.7)

as, for example, reviewed in section 5.8 of [99].
In this work we use the ABA, to construct all such low-magnon number eigenvectors

and show how they organise themselves into psu(1|1)4c.e. multiplets. We then investigate
the pi −→ 0 limit of these Bethe eigenvectors in order to identify the protected states.
We show that in the strict pi = 0 limit all states become psu(1|1)4c.e. singlets and the
protected states are indeed made up of purely fermionic excitations, as anticipated in [48].
It is interesting to note that these protected states come from both highest-weight and
descendant states of the pi ̸= 0 modules. The construction of the eigenvectors provided
by the ABA allows us to straightforwardly generalise this analysis to AdS3×S3×T4/Zk,
in other words the orbifold limit of AdS3×S3×K3, and show that the protected spectrum
is again the same as found using supergravity and dual CFT2 methods [88].

This work is organised as follows. In Section 4.1 we review the protected spectrum of
closed strings on AdS3×S3×T4 and AdS3×S3×K3 in its orbifold limits. In Section 4.2
we review the general ABA construction and apply it to the AdS3 backgrounds of interest
in the present work. We end the section with a few examples of low-magnon number exci-
tations and discuss their representation-theoretic properties. In Section 4.3 we apply the
ABA methods to find the protected multiplets in AdS3×S3×T4. We demonstrate that, in
addition to taking the zero-momentum limit for momentum carrying roots, auxiliary roots
for protected states also need to take special values given in equation (4.73). The short
representations of the protected states follow from the number of momentum-carrying
and auxiliary roots of a given multiplet as described in equation (4.67). In Section 4.4,
we use the explicit expressions for the protected eigenstates found in Section 4.3 to de-
termine the spectrum of protected states in AdS3 × S3 × K3 orbifold backgrounds. In
Section 4.5 we briefly apply our ABA analysis to the AdS3 × S3 × S3 × S1 background
and its Z2 orbifold. Since none of the protected states involve auxiliary roots the analysis
is much simpler, essentially following from the results in [49], taking into account the
zero-momentum limit discussed in equation (4.68). Finally, we present our conclusions
and include four appendices to which the technical details of some of our results are
relegated. We also include a Mathematica notebook which generates explicit expressions
for wavefunctions of states with up to four magnons and their descendants.
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4.1 Protected Spectrum of AdS3 × S3 ×T4 and AdS3 × S3 ×K3

In this section we briefly review the spectrum of protected closed string states on AdS3×
S3×T4 and AdS3×S3×K3, originally found from Kaluza-Klein supergravity reductions
in [88]. In the planar limit, holographic backgrounds with more supersymmetry, such as
AdS5 × S5 or AdS4 × CP3 have a single family of half-BPS BMN vacua, labelled by an
integer L equal to the angular momentum and conformal dimension of the dual operator
e.g., tr

(
ZL
)

in N = 4 super-Yang-Mills theory. The corresponding string state is often
written as

|ZL⟩ . (4.8)

The backgrounds considered in this work have less supersymmetry and, as a result, have
multiple families of half-BPS vacua. Each family can be obtained by starting with the
BMN vacuum (4.8) and adding zero-momentum massless fermionic magnons [48].

In the case of AdS3 × S3 × T4, the protected multiplets organise themselves into a
family of Hodge diamonds labelled by L, which we write following [49] as10

|ZL⟩ (4.9a)

|ZLχȧ⟩ |ZLχ̃ȧ⟩ (4.9b)

ϵȧḃ |Z
Lχȧχḃ⟩ |ZLχȧχ̃ḃ⟩ ϵȧḃ |Z

Lχ̃ȧχ̃ḃ⟩ (4.9c)

ϵȧḃ |Z
Lχȧχḃχ̃ċ⟩ ϵȧḃ |Z

Lχȧχ̃ḃχ̃ċ⟩ (4.9d)

ϵȧḃϵċḋ |Z
Lχȧχḃχ̃ċχ̃ḋ⟩ (4.9e)

Above, the index ȧ = ± labels a 2 representation of the su(2)◦ algebra that is part of the
rotations which act on the decompactified T4

so(4) ∼ su(2)◦ ⊕ su(2)• . (4.10)

Upon compactification, it is useful to continue labeling the zero winding and zero mo-
mentum excitations in this way. In terms of the notation (4.7), these multiplets can be
written as

(L,L)1
S

(L,L+ 1)2
S

(L+ 1, L)2
S

(L,L+ 2)1
S

(L+ 1, L+ 1)1⊕3
S

(L+ 2, L)1
S

(L+ 1, L+ 2)2
S

(L+ 2, L+ 1)2
S

(L+ 2, L+ 2)1
S

(4.11)

with the superscripts denoting the su(2)◦ representation and for compactness we have
changed L→ L− 1. In other words, for each L, the multiplets organise themselves into
the Hodge diamond of T4

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

=

1
2 2

1 4 1
2 2

1

(4.12)

10Z, χȧ and χ̃ȧ respectively correspond to Φ++, χ+ȧ
R and χ+ȧ

L in [49].
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The appearance of the cohomology of T4 is to be expected given the conjectured con-
nection of the protected operators of the dual CFT2 to the SymN orbifold [14]. It is
well known that for such CFTs, the chiral ring of the theory is closely related to that of
the Hodge diamond of the seed theory, which in this case is T4 [100]. Because of this
structure, in this work we often express the protected spectrum of the theory in terms of
the Hodge diamond of the seed theory.

Turning to the AdS3×S3×K3 background, we blow down the K3 to an orbifold T/Zn

(n = 2, 3, 4, 6). The Zn orbifold action acts only on the su(2)◦ index as(
ωn 0
0 ω−1

n

)
, (4.13)

where ωn = e2πi/n. A simple way to see that this has to be the action of Zn is to note
that these orbifolds do not break any supersymmetry and the supercharges are singlets
of su(2)◦, but doublets of su(2)•. It is then clear that the states in equation (4.9b)
and (4.9d) are projected out in all Zn orbifolds. The states in equations (4.9a) and (4.9e)
on the other hand are always kept in all Zn orbifolds. All six states in equation (4.9c)
are additionally kept in the Z2 orbifold, while in Zn orbifolds with n > 2 only the four
states

|ZLχ+χ−⟩ , |ZLχ+χ̃−⟩ , |ZLχ−χ̃+⟩ , |ZLχ̃+χ̃−⟩ , (4.14)

are kept. In summary, for each L in the Z2 orbifold the untwisted sector Hodge numbers
h0,0 = h2,2 = h2,0 = h0,2 = 1 and h1,1 = 4 while in Zn>2 orbifolds we have from the
untwisted sector the Hodge numbers h0,0 = h2,2 = h2,0 = h0,2 = 1 and h1,1 = 2.

The twisted sectors’ Hodge numbers are well known (see for example [101])

• Z2 There are 16 identical twisted sectors. Each twisted sector is a blow-down of an
A1 two-cycle, giving a contribution to h1,1 = 16× 1 overall.

• Z3 There are 9 identical twisted sectors. Each twisted sector is a blow-down of an
A2 two cycle , giving a contribution to h1,1 = 9× 2 = 18 overall.

• Z4 There are 4 A3 fixed points and 6 A1 fixed points, giving a contribution to
h1,1 = 4× 3 + 6× 1 = 18 overall.

• Z6 There is one A5 fixed point and 4 A2 fixed points and 5 A1 fixed point, giving
a contribution to h1,1 = 1× 5 + 4× 2 + 5× 1 = 18 overall.

In the Z2 orbifold we therefore have the twisted sector Hodge numbers h1,1 = 16, while
in Zn>2 orbifolds we have h1,1 = 18. Adding the twisted and untwisted Hodge numbers
in all cases gives the standard K3 Hodge diamond of the seed theory

1
0 0

1 20 1
0 0

1

. (4.15)

The protected spectrum of the AdS3×S3×K3 theory is then a family of Hodge diamonds
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labelled by L
(L,L)

S

Ø Ø

(L,L+ 2)
S

(L+ 1, L+ 1)⊕20
S

(L+ 2, L)
S

Ø Ø

(L+ 2, L+ 2)
S

(4.16)

Since the orbifold action breaks su(2)◦, we have removed the representation-theoretic
superscript compared to equation (4.11), listing instead multiplicity in the superscript
where it is non-trivial.

4.2 Algebraic Bethe ansatz for AdS3 × S3 ×T4

In this section we present the Algebraic Bethe ansatz for strings on AdS3 × S3 × T4.
We shall summarise the general Bethe ansatz prescription for eigenstates in terms of
the transfer matrix in Section 4.2.2 and ABA construction of eigenstates using the mon-
odromy matrix in Section 4.2.3. We end with some examples of low-magnon states in
the massless sector of AdS3 × S3 × T4 in Section 4.2.4.

4.2.1 Massless representations of psu(1|1)4c.e.

The psu(1|1)2c.e. algebra, which tensor to give the full psu(1|1)4c.e. symmetry algebra, was
introduced earlier in equation (2.18). Throughout this section, we will use the two left
chirality families of short representations of psu(1|1)2c.e. ρL and ρ̃L. Since, the right chirality
representations do not show up in this discussion, we shall omit the L label on basis states,
and Zhukovski variables for the rest of this section for brevity.

The psu(1|1)4c.e. algebra is a tensor product of two commuting copies of psu(1|1)2c.e.,
and throughout this paper we will use the short representation ρpsu(1|1)4

ρpsu(1|1)4 = ρL ⊗ ρ̃L, (4.17)

which acts on Vp ≡ VρL ⊗ Vρ̃L whose basis elements we write as

|χ⟩ ≡ |ϕ⟩ |ψ̃⟩ , |T 2⟩ ≡ |ϕ⟩ |ϕ̃⟩ , |T 1⟩ ≡ |ψ⟩ |ψ̃⟩ , |χ̃⟩ ≡ |ψ⟩ |ϕ̃⟩ , (4.18)

in order to emphasize their connection to the massless worldsheet excitations that appear
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in the gauge-fixed Lagrangian [55, 56].11 In the basis (4.18), the supercharges act as12

Q1
L = −x+p S1

R = ηLp


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 , S1
L = −x−p Q1

R = e−
ip
2 ηLp


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 ,

Q2
L = −x+p S2

R = ηLp


0 0 0 0
1 0 0 0
0 0 0 0
0 0 −1 0

 , S2
L = −x−p Q2

R = e−
ip
2 ηLp


0 1 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

 .

(4.19)
The psu(1|1)4 R-matrix is the graded tensor product of the psu(1|1)2 R-matrices

Rpsu(1|1)4 = RLL

psu(1|1)2 ⊗RL̃L̃

psu(1|1)2 , , (4.20)

where RLL

psu(1|1)2 , R
L̃L̃

psu(1|1)2 are given by equations 2.33, 2.35. For the special case of pure

RR background (k = 0) and massless excitations the above R-matrices can be written in
a difference-form using relativistic γ variables [102]. We discuss the pure RR results in
those variables in Appendix C. In the remainder of this section, we use the R-matrix in
equation (4.20) to find the string spectrum using the Bethe Ansatz.

4.2.2 Bethe ansatz eigenstates

The spectrum of AdS3×S3×T4 can be obtained through a Bethe ansatz. In this work we
are mainly interested in protected states, which are built by adding fermionic zero modes
on top of BMN ground states. To understand how such protected states are obtained
we first review how to construct generic wave functions using the Bethe ansatz before
specialising to the protected states.13

The basic building block of the Bethe ansatz for the wave functions are asymptotic
states with well-separated excitations carrying momenta pi. We write such a state as

|Φα1
p1
· · ·ΦαN

pN
⟩ , (4.21)

where Φα represents any type of excitation. Note that there is an implied ordering of the
excitations, which can be highlighted by going to a position basis

|Φα1
p1
· · ·ΦαN

pN
⟩ =

∫
σ1≪···≪σN

dσ1 · · · dσN ei(p1σ1+···+pNσN ) |Φα1(σ1) · · ·ΦαN (σN)⟩ . (4.22)

In order to build a full eigenstate from such asymptotic states we make an ansatz where

11 The massless worldsheet excitations additionally all transform in the fundamental representation of
su(2)◦ and in total there are four bosons and four fermions in the massless sector. However, su(2)◦ does
not enter the Bethe equations or the R-matrix and we will drop the corresponding index (denoted by a

in [55, 56]) in this section to declutter the notation. This multiplicity will be important when counting
the number of protected states and so we will re-instate the su(2)◦ index in Section 4.3.

12This matches equation (3.35) of [57] with the phase ξ = 0.
13For more details in the AdS3/CFT2 context see for example reference [103].
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we sum over all orderings of the excitations14

|Ψ⟩ =
∑
τ∈SN

ψτ
α1···αN

(p⃗) |Φα1
pτ(1)
· · ·ΦαN

pτ(N)
⟩ , (4.23)

where we use p⃗ as a shorthand for p1, . . . , pN . The partial wave functions ψτ
α1···αN

(p⃗) are
related by the two-particle S matrix, which acts on two neighbouring excitations as15

S12 |Φα1
p1

Φα2
p2
⟩ = Sα1α2

β1β2
(p1, p2) |Φβ2

p2
Φβ1

p1
⟩ . (4.24)

For the wave function corresponding to a permutation τ we have relations of the form

ψτ
α1···αi+1αi···αN

(p⃗) = Sβiβi+1
αiαi+1

(pi, pi+1)ψ
(i i+1)◦τ
α1···βiβi+1···αN

(p⃗), (4.25)

where the wave function on the right-hand side corresponds to the composition of the
transposition (i i + 1) and τ . Since any permutation can be factored into a series of
transpositions of nearest neighbours all of the partial wave functions can be related
to each other in this way. Such a decomposition is in general not unique, but if the
two-particle S matrix satisfies the Yang-Baxter equation, all possible decompositions of
a permutation lead to the same wave function. This construction furthermore assumes
integrability, which implies that any interaction can be separated into distinct two-particle
interactions.

As an example of the above construction, let us consider the simplest case of a model
with a single type of bosonic excitation ϕ, and a state with two excitations (N = 2) with
momenta p1 and p2, with p1 > p2. We then have two possible orderings: the incoming
wavepacket

|ϕp1ϕp2⟩ =

∫
σ1≪σ2

dσ1dσ2 e
i(p1σ1+p2σ2) |ϕ(σ1)ϕ(σ2)⟩ , (4.26)

and the outgoing wavepacket

|ϕp2ϕp1⟩ =

∫
σ1≪σ2

dσ1dσ2 e
i(p2σ1+p1σ2) |ϕ(σ1)ϕ(σ2)⟩ . (4.27)

The state in equation (4.23) is now a sum over two terms

|Ψ2⟩ = ψe(p1, p2) |ϕp1ϕp2⟩+ ψ(12)(p1, p2) |ϕp2ϕp1⟩ , (4.28)

where e denotes the identity permutation. As in equation (4.25) the two wavefunctions
above are related by

ψ(12)(p1, p2) = S(p1, p2)ψ
e(p1, p2), (4.29)

where the S matrix is now replaced by the scattering phase S(p1, p2). Using this, the state
|Ψ⟩ is, up to an overall factor, just the sum over the incoming and outgoing components

|Ψ2⟩ = ψe(p1, p2)
(
|ϕp1ϕp2⟩+ S(p1, p2) |ϕp2ϕp1⟩

)
. (4.30)

14This ansatz does not give a complete description of the eigenstate, since we only consider excitations
that are well separated, and thus ignore any region where the excitations come close enough to each
other to interact. As we will see below, interactions are taken into account when we glue the different
regions together using the two-particle S matrix.

15The S matrix is related to the R matrix by the relation R = Π◦S, where Π is a (graded) permutation.
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The above wave functions describe the system on an infinite line. For a closed string
we want to impose periodic boundary conditions on a circle of some length L. To do
this it is useful to introduce the full spatial wave function Ψα1···αN

(σ1, . . . , σN) in terms
of which the state |Ψ⟩ can be written as

|Ψ⟩ =

∫
σ1≪···≪σN

dσ1 · · · dσN Ψα1···αN
(σ1, . . . , σN) |Φα1(σ1) · · ·ΦαN (σN)⟩ . (4.31)

Periodic boundary conditions then imply that

Ψα1···αN−1αN
(σ1, . . . , σN−1, σN) = Ψα2···αNα1(σ2, . . . , σN , σ1 + L). (4.32)

Expanding out the full wave function using equations (4.22) and (4.31), and repeatedly
using relation (4.25) so that all the partial wave functions are written in terms of the wave
function corresponding to the same permutation τ we find that demanding periodicity
gives a set of equations of the form

ψτ
a1···aN (p⃗) = −eipkLT b1···bN

a1···aN (pk|p⃗)ψτ
b1···bN (p⃗), k = 1, . . . N, (4.33)

where the matrix T is the transfer matrix, which we will discuss in more detail below.
For the simple N = 2 example with a single flavour of excitations, the full state can

be written as

|Ψ2⟩ =

∫
σ1≪σ2

dσ1dσ2 ψ
e(p1, p2)

(
ei(p1σ1+p2σ2) + S(p1, p2)e

i(p2σ1+p1σ2)
)
|ϕ(σ1)ϕ(σ2)⟩ , (4.34)

from which we identify the wave function

Ψ(σ1, σ2) = ψe(p1, p2)
(
ei(p1σ1+p2σ2) + S(p1, p2)e

i(p2σ1+p1σ2)
)
. (4.35)

Periodic boundary conditions now gives us that

Ψ(σ1, σ2) = Ψ(σ2, σ1 + L), (4.36)

which leads to the two conditions

ψe(p1, p2) = eip1LS(p1, p2)ψ
e(p1, p2), ψ(12)(p1, p2) = eip2LS(p2, p1)ψ

(12)(p1, p2).
(4.37)

Assuming that S(p, p) = −1 , this can be written as the constraint16

1 + eipkL
2∏

j=1

S(pk, pj) = 0, (4.38)

which for k = 1, 2 gives the quantisation conditions for the two momenta p1 and p2.
To solve the equations (4.33) we first need to diagonalise T . Once we have found the

eigenvalues and eigenvectors of T , equation (4.33) gives quantisation conditions on the
momenta pj. For a given set of momenta solving these Bethe equations, we can finally
reconstruct the full eigenstate by summing over all permutations of the momenta with
coefficient obtained from equation (4.25).

16In this simple example there is only a single flavour and hence T (p1|p1, p2) and T (p2|p1, p2) are just
numbers

T (p1|p1, p2) = S(p1, p1)S(p1, p2) = −S(p1, p2),

T (p2|p1, p2) = S(p2, p1)S(p2, p2) = −S(p2, p1) = −
1

S(p1, p2)
.
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4.2.3 The algebraic Bethe ansatz

There are many ways to diagonalise T . Here we will mainly focus on the algebraic Bethe
ansatz (ABA) construction, while in Appendix D we present a complementaty coordinate
Bethe ansatz construction. In the ABA in order to diagonalize T , one introduces a more
general object, the monodromy matrix M. To construct M we consider a state with
some number of physical excitations, and add to it an additional excitation, referred
to as an auxiliary excitation. The auxiliary excitation starts out to the left of all the
excitations, and we let it scatter once with physical excitation until it sits to the right of
all of them.

For concreteness we will now consider states consisting of massless AdS3 × S3 × T4

excitations. We take the auxiliary excitation to sit in a ρpsu(1|1)4 representation17 of
psu(1|1)4c.e.. Viewed as a linear map on the auxiliary space, the monodromy matrix
M can then be written as a 4 × 4 matrix whose entries are operators acting on the
physical excitations. Since the psu(1|1)4c.e. algebra is a direct product of two copies of the
psu(1|1)2c.e. algebra, the psu(1|1)4c.e. monodromy matrix can be written as a product of
two 2× 2 psu(1|1)2c.e. monodromy matrices.18 We denote the components of this smaller
matrix by

MI(p0) =

(
AI(p0) BI(p0)
CI(p0) DI(p0)

)
, (4.39)

where the index I = 1, 3 labels the two copies of psu(1|1)2c.e. and we have indicated the
dependence on the momentum p0 of the auxiliary excitations. The transfer matrix is the
supertrace of the monodromy matrix over the auxiliary space19

T I(p0) = str0MI(p0) . (4.40)

Using the Yang-Baxter equation one can show that the transfer matrix commutes with
itself for any value of the auxiliary momentum[

T I(p0), T I(p′0)
]

= 0 . (4.41)

In the Bethe equation (4.33) we need the eigenvalues of T I(p0) when the auxiliary mo-
mentum coincides with one of the physical momenta pi, but because of the above equation
we can diagonalise T for all auxiliary momenta simultaneously.

The simplest eigenvectors of T are states made of N0 psu(1|1)4c.e. highest-weight exci-
tations χ, since these all scatter diagonally

|χp1 · · ·χpN0
⟩ . (4.42)

Other eigenvectors are obtained by acting with NI BI operators with I = 1, 3, which
act as raising operators in the algebraic Bethe Ansatz. For example, given the above

17The transfer matrix obtained for any short representation has the same set of eigenvectors, and hence
the same final physical spectrum. It is convenient to pick the auxiliary excitations to be in a massive
representation even if all physical excitations are massless. With this choice, the descendent states arise
from auxiliary roots in the conventional fashion [6].

18As discussed in section 4.2.1 the massless excitations transform in the ρL ⊗ ρL̃ representation of
psu(1|1)4c.e., and hence in slightly different representations under the two copies of psu(1|1)2c.e.. It is
therefore also convenient to also pick the representations of two auxiliary spaces 1 and 3 to be massive
versions of the ρL and ρL̃. The spectra of the two transfer matrices will be almost the same up to some
fermion minus signs.

19Here, we have suppressed the dependence of T on the momenta p1, . . . , pN for brevity.
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reference state, we obtain a new state with N0 − 1 χ excitations and one T 1, by acting
with a single B1 operator

B1(y) |χp1 · · ·χpN0
⟩ , (4.43)

where now the argument of B1 is the auxiliary Zhukovski parameter y ≡ x−q for the
auxiliary momentum q.20 The other eigenstates can be built by acting with more creation
operators

|p⃗; y⃗1; y⃗3⟩ ≡ B1(y1,1) · · · B1(y1,N1)B3(y3,1) · · · B3(y3,N3) |χp1 · · ·χpN0
⟩ . (4.44)

where p⃗ = {p1, . . . , pN0} and y⃗I = {yI,1, . . . , yI,NI
} Acting with the two transfer matrices

on such a state gives

T 1(p0)T 3(p0) |p⃗; y⃗1; y⃗3⟩ = Λ1(p0|y⃗1|p⃗)Λ3(p0|y⃗3|p⃗) |p⃗; y⃗1; y⃗3⟩+ |X⟩ . (4.45)

The unwanted term |X⟩ is a linear combination of states with one less auxiliary root
than |p⃗; y⃗1; y⃗3⟩ on which a single BJ(p0) acts. These vanish provided the yI,k satisfy the
auxiliary Bethe equations

1 =

N0∏
j=1

√
x+j
x−j

yI,k − x−j
yI,k − x+j

, k = 1, . . . , NI , I = 1, 3 . (4.46)

The eigenvalue in equation (4.45) is given by

Λ1(p0|y⃗1|p⃗)Λ3(p0|y⃗3|p⃗) = −

(
1−

N0∏
i=1

√
x+i
x−i

x−0 − x−i
x−0 − x+i

)2 ∏
I=1,3

NI∏
j=1

x+0 − y−I,j
x−0 − y−1,j

√
x−0
x+0

. (4.47)

In the Bethe equation (4.33) ΛI is evaluated for p0 equal to one of the physical momenta
pi, in which case the above expression reduces to

Λ1(pk|y⃗1|p⃗)Λ3(pk|y⃗3|p⃗) = −
∏
I=1,3

NI∏
j=1

x+k − y
−
I,j

x−k − y
−
1,j

√
x−k
x+k

, (4.48)

since now x−0 = x−i for one of the i. Using the normalisation in the S matrix of [64], this
leads to the momentum carrying Bethe equation(

x+k
x−k

)L

=

N0∏
j=1
j ̸=k

√
x−k
x+k

x+j
x−j

x+k − x
−
j

x−k − x
+
j

(σ◦◦
kj)

2

N1∏
j=1

√
x+k
x−k

x−k − y1,j
x+k − y1,j

N3∏
j=1

√
x+k
x−k

x−k − y3,j
x+k − y3,j

. (4.49)

Above, σ◦◦
kj is the massless dressing factor [87].

20The S matrix, and hence also the monodromy matrix and transfer matrix, depend on the Zhukovski
parameters x±

q of the auxiliary excitation. However, the state generated by the action of B1(y) can
always be written in a form such that the x+

q dependence enters only in the overall normalisation of the
state, while the relative coefficients only depend explicitly on x−

q . For a state of the form

B1(y1) · · · B1(yN1
) |χp1

· · ·χpN0
⟩ ,

the x+
qi dependence is captured by a factor of the form

N1∏
i=1

√
x−
qi

x+
qi

ηqi∏
j<i Dqiqj

,

with η and D defined in equations (2.22) and (2.34), respectively. Since the normalisation of states is
not important in our discussion, we will write the argument of B as y = x−

q only, and drop the above
normalization factor when writing out explicit expressions for the action of B.
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4.2.4 Examples of unprotected AdS3 × S3 ×T4 states

We illustrate the above ABA construction by presenting a few examples of unprotected
AdS3×S3×T4 states made up of massless magnon excitations. To begin with we need to
study the solutions to the auxiliary Bethe equation (4.46). Since physical states satisfy
the level-matching constraint21

1 =

N0∏
j=1

x+j
x−j

, (4.50)

we can write (4.46) as

1 =

N0∏
j=1

yI,k − x−j
yI,k − x+j

. (4.51)

For level-matched states, this equation has two solutions independent of the x±j : yI,k →∞
or yI,k = 0. For these two solutions the action of the creation operators BI(y) on the
state is proportional to that of a supercharge, for example

B1(y ≫ 1) = −2i

h

1

y
Q1

L +O
( 1

y2

)
, B1(y ≪ 1) = +

2y

h
S1

R +O(y2) ,

B3(y ≫ 1) = +
2i

h

1

y
Q2

L +O
( 1

y2

)
, B3(y ≪ 1) = −2y

h
S2

R +O(y2) .
(4.52)

Hence, any state with an auxiliary root yI,k at 0 or ∞ is a descendent. In addition to
these two special solutions, the auxiliary Bethe equation has N0− 2 additional solutions,
which give rise to highest-weight states. Below we consider some simple examples.

Example 1: N0 = 2. We start with a reference state with N0 = 2, for which level-
matching means that the two excitations have momenta p2 = −p1

|χp1χp2⟩ . (4.53)

For N0 = 2 the only solutions to the auxiliary Bethe equations are located at 0 and ∞.
The BI(yI,k) are now proportional to raising supercharges of psu(1|1)4c.e. and acting with
them on the above eigenstate generates a long, 16-dimensional psu(1|1)4c.e. multiplet with
NI = 0, 1, 2. This matches the representation theory expectation, since each excitation
transforms in a short four-dimensional representation and the tensor product of two such
representations generically gives a single long 16-dimensional representation.

For example, acting with a single B1 operator on the highest-weight state we find

B1(y) |χp1χp2⟩ ∝
η1

y − x+1
|T 1

p1
χp2⟩ −

η2
y − x+2

y − x−1
y − x+1

√
x+1
x−1
|χp1T

1
p2
⟩ . (4.54)

At large y this reduces to

B1(∞) |χp1χp2⟩ ∝
η1
y
|T 1

p1
χp2⟩ −

η2
y

√
x+1
x−1
|χp1T

1
p2
⟩ , (4.55)

21The square-root branch cuts in (4.46) are chosen so that the level-matching constraint also implies∏N0

j=1

√
x+
j /x

−
j = 1.
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and for small y we get

B1(0) |χp1χp2⟩ ∝ −
η1
x+1
|T 1

p1
χp2⟩+

η2
x+2

√
x−1
x+1
|χp1T

1
p2
⟩ . (4.56)

Up to overall normalizations, these two expressions agree with the action on a level-
matched N0 = 2 state of the supercharges Q1

L and S1
R, respectively. This can be verified by

using the coproduct (2.19) together with the explicit expressions for the supersymmetry
generators given in equation (4.19).

As another example, consider acting with one B1 operator and one B3 operator to
find N1 = N3 = 1 states

B3(∞)B1(∞) |χχ⟩ ∝ |χχ̃⟩+ f 2
p |χ̃χ⟩ − fp |T 1T 2⟩+ fp |T 2T 1⟩ ,

B3(0)B1(∞) |χχ⟩ ∝ |χχ̃⟩ − |χ̃χ⟩ − fp |T 1T 2⟩ − 1

fp
|T 2T 1⟩ ,

B3(∞)B1(0) |χχ⟩ ∝ |χχ̃⟩ − |χ̃χ⟩+
1

fp
|T 1T 2⟩+ fp |T 2T 1⟩ ,

B3(0)B1(0) |χχ⟩ ∝ |χχ̃⟩+
1

f 2
p

|χ̃χ⟩+
1

fp
|T 1T 2⟩ − 1

fp
|T 2T 1⟩ ,

(4.57)

where
fp =

√
x−p x

+
p (4.58)

and we have suppressed the momenta pi of the two excitations for brevity. As expected
for descendants, these states can also be obtained by acting with supercharges22

Q2
LQ

1
L |χχ⟩ ∝ B3(∞)B1(∞) |χχ⟩ , S2

RQ
1
L |χχ⟩ ∝ B3(0)B1(∞) |χχ⟩ ,

Q2
LS

1
R |χχ⟩ ∝ B3(∞)B1(0) |χχ⟩ , S2

RS
1
R |χχ⟩ ∝ B3(0)B1(0) |χχ⟩ .

(4.59)

Example 2: N0 = 3. Next, consider three-magnon excitations. In addition to the
solutions y = 0 and y =∞, the auxiliary Bethe equation has the additional solution

y∗ =

∑
i<j x

+
i x

+
j −

∑
i<j x

−
i x

−
j∑

i x
+
i −

∑
i x

−
i

. (4.60)

In the pure RR case this reduces to y∗ = 1. There are now four highest weight states

|χp1χp2χp3⟩ , BI(y∗) |χp1χp2χp3⟩ , B1(y∗)B3(y∗) |χp1χp2χp3⟩ , (4.61)

where p1 + p2 + p3 = 0. Explicitly, we have for example

B1(y∗) |χp1χp2χp3⟩ ∝
η1

y∗ − x+1
|T 1

p1
χp2χp3⟩ −

η2
y∗ − x+2

y∗ − x−1
y∗ − x+1

√
x+1
x−1
|χp1T

1
p2
χp3⟩

+
η3

y∗ − x+3
y∗ − x−1
y∗ − x+1

y∗ − x−2
y∗ − x+2

√
x+1
x−1

x+2
x−2
|χp1χp2T

1
p3
⟩ .

(4.62)

22We label the supercharges of the two copies of psu(1|1)2c.e. as 1 and 2, but the corresponding auxiliary
roots as 1 and 3. The latter choice is motivated by the Dynkin diagram of psu(1, 1|2), which underlies
the structure of our Bethe equations as discussed in Figure 7 of [64].
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The remaining highest-weight state is obtained by acting with two BI(y∗) operators and
is given explicitly in equation (B.1) in Appendix B.

As in the N0 = 2 case, we can fill out the full representations by adding additional
roots at 0 and ∞, where the action of BI(y) reduces to that of a supercharge. For
example, for y =∞

B1(∞) |χp1χp2χp3⟩ ∝
η1
y
|T 1

p1
χp2χp3⟩ −

η2
y

√
x+1
x−1
|χp1T

1
p2
χp3⟩+

η3
y

√
x+1
x−1

x+2
x−2
|χp1χp2T

1
p3
⟩ ,

(4.63)
and we can check again that this state is a descendant

B1(∞) |χp1χp2χp3⟩ ∝ Q1
L |χp1χp2χp3⟩ . (4.64)

As before, this matches the representation theory of psu(1|1)4c.e., since the product of
three short representations can be generically decomposed into a sum of four long repre-
sentations, (2|2)⊗3 = (8|8)⊕4.

4.3 Protected states from Bethe ansatz wave functions

In this section we find the wave-functions of protected states in AdS3×S3×T4 using the
ABA constructed in the previous section. A generic unprotected ABA state of the form
discussed in the previous section is built from N0 momentum-carrying roots pk and NI

auxiliary roots yI,j
|p⃗; y⃗1; y⃗3⟩ , (4.65)

as introduced in equation (4.44). Protected states do not receive corrections to their
energies and since the dispersion relation (4.3) depends on the magnon momentum pk,
protected states come from zero-momentum magnons only. As we show below, the aux-
iliary roots yI,j also take special values for protected states yI,j = s± with s± defined
in equation (4.68). In order not to over-load the notation and to distinguish them from
unprotected states, we will label protected states by the number of momentum-carrying
and auxiliary roots

|N0, N1, N3⟩ ≡ |p⃗ = 0⃗; y⃗1 = s⃗±; y⃗3 = s⃗±⟩ . (4.66)

Since the charges of these states follow from equation (4.5), we can equivalently write
these states in the notation of equation (4.7)

|N0, N1, N3⟩ ≡ (L+N1 +N3 −N0 + 1, L+ 1)
S
. (4.67)

On the right-hand side above, we have re-introduced the L-dependence of the BMN
vacuum |0, 0, 0⟩ that is suppressed in equations like (4.66) for compactness.

4.3.1 Fermionic zero modes

In order to find the protected states, we send magnon momenta to zero. Since the massless
dispersion relation (4.3) has a cusp at p = 0 we get potentially different results if we send
p → 0 from above or below. For p = 0, the Zhukovski variables satisfy x+p = x−p and we
will denote by s+ or s− their value as p goes to zero from above or below

s+ ≡ lim
p→0+

x±p =
−k +

√
−k2 + h2

h
, s− ≡ lim

p→0−
x±p =

−k−
√
−k2 + h2

h
= − 1

s+
, (4.68)
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which become ±1 for −k = 0.
The simplest zero-momentum states have no auxiliary excitations and setting x± = s+

or x± = s− leads to the same state, hence denoting the corresponding excitation by χp=0 is
unambiguous. For example, a single excitation (N0 = 1) with zero momentum23 written
in the notation of equation (4.66) is

|1, 0, 0⟩ȧ = |χȧ
0⟩ , (4.69)

where we reintroduced the su(2)◦ index of χ, as discussed in footnote 11. Hence, the
N0 = 1 reference state gives an su(2)◦ doublet of protected states. Similarly, for N0 = 2
we have

|2, 0, 0⟩ȧḃ = |χȧ
0χ

ḃ
0⟩ . (4.70)

This is not yet a full physical state, since we still have to sum over all permutations of
the excitations as described in equation (4.35). At zero momentum, the S matrix reduces
to a graded permutation, so the full state is given by

ϵȧḃ |2, 0, 0⟩
ȧḃ = |χȧ

0χ
ḃ
0⟩ − |χḃ

0χ
ȧ
0⟩ . (4.71)

Hence, the N0 = 2 reference state give rise to a single protected state, which is an su(2)◦
singlet.

The remaining protected states carry auxiliary roots. But where should these roots
sit? If we take the auxiliary Bethe equation (4.46) and send all momenta to zero, we
find it is trivially satisfied for any y. Naively then we might conclude that acting with
BI(y) for any y gives a physical protected state. However, this cannot be correct, since
at y = 0, ∞ the BI(y) reduce to psu(1|1)4c.e. supercharges (see equation (4.52)), which by
definition annihilate all protected states. As we show below, there are natural values for
y to take for protected states.

To determine which value the auxiliary roots need to take, consider the N0 = 3 states
discussed in Section 4.2.4 in the limit p1 → 0, for which x±1 goes to either s+ or s− (see
equation (4.68)). In this limit the auxiliary root solution (4.60) becomes

y∗ = s± +
x+2 x

+
3 − x−2 x−3

x+2 + x+3 − x−2 − x−3
+O(p1) . (4.72)

Since the level-matching condition reduces to p2 + p3 = 0, for which x+2 x
+
3 − x−2 x−3 = 0,

the auxiliary root for p1 = 0 is
y∗ = s± . (4.73)

In other words, in this limit the auxiliary root takes the same value as the momentum-
carrying root

yI,1 = x+1 = x−1 = s± . (4.74)

For example, consider the highest-weight state in equation (4.62). Inserting y∗ = s±
and sending p1 → 0, we see that the coefficient of the first term on the right-hand side
of (4.62) diverges, since ηp1 = O(

√
p1), while the remaining two terms stay finite. For a

normalized state this means that we can neglect the latter terms in the limit, leading to

lim
p1→0
|p1, p2, p3; y1,1 = y∗⟩ = |0, p2, p3; s±⟩ ∝ |T 1

0χp2χ−p2⟩ . (4.75)

23Because of the level-matching constraint
∑

i pi = 0, for N0 = 1 we have to set p1 = 0.
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This is a highest-weight two-magnon state, similar to the state in equation (4.53), but
with an additional T 1

0 zero mode. While such bosonic zero modes will not play a role
in the protected spectrum, this example illustrates an important feature of the special
value of the auxiliary root y = s±: the operator B(s±) acts only on the corresponding
zero momentum site changing the highest weight state χp=0 to a ρpsu(1|1)4 descendant, in
this case T 1

p=0.
Similarly, if we considered the highest-weight state (B.1) in the p1 → 0 limit, we find

lim
p1→0
|p1, p2, p3; y1,1 = y∗; y3,1 = y∗⟩ = |0, p2,−p2; s±; s±⟩ ∝ |χ̃0χp2χ−p2⟩ . (4.76)

This too is a highest-weight two magnon state, similar to the state in equation (4.53),
now with an additional χ̃0 zero mode. As we discuss in the next subsection, sending
p2 → 0 will lead to further protected states.

The above examples illustrate how our ABA takes into account the further ground-
states which exist in AdS3 integrable backgrounds in addition to the BMN vacuum on
which the generic state (4.44) is constructed. For such a state, sending one of the momenta
pk to zero and setting one auxiliary root yI,j to s± leads to a state with N0 − 1 magnons
and NI − 1 auxiliary roots in the presence of a massless bosonic zero-mode, while setting
y1,j = y3,j = s± gives a state with N0− 1 magnons as well as N1− 1 and N3− 1 auxiliary
roots.

On the other hand, states whose auxiliary roots are not s± in a zero-momentum limit,
become states with N0 − 1 magnons, NI auxiliary roots and a χ0 zero-mode, which is
highest-weight in ρpsu(1|1)4(pk = 0). For example, consider the N0 = 3 descendant state
in equation (4.63). There, the first term is suppressed in the p1 → 0 limit by a factor√
p1, giving

lim
p1→0
|p1, p2, p3; y1,1 =∞⟩ = |0, p2, p3;∞⟩ ∝ −η2 |χ0T

1
p2
χp3⟩+ η3

√
x+2
x−2
|χ0χp2T

1
p3
⟩ , (4.77)

with p3 = −p2 due to level-matching. This state is a descendant of the highest-weight
state |χ0χp2χ−p2⟩ and in this way is similar to the N0 = 2 descendant in equation (4.55),
with an additional χ0 zero mode inserted. In the p2 → 0 limit, this state goes to zero
as expected for a psu(1|1)4c.e. descendant. This example illustrates the fact that, in the
zero-momentum limit, states whose auxiliary roots do not become s± will not give rise
to protected states. This example illustrates a second important feature of the massless
ABA: in the limit where one momentum goes to zero, the operator B(yI,j) for yI,j ̸= s±
acts on all sites except the zero momentum site.

From the above discussion, we conclude that protected states involving χ̃0 zero modes
have auxiliary roots at y = s± as p → 0±. For the N0 = 2 state (4.70), we can add at
most two auxiliary roots of each I-type24

|2, 2, 2⟩ȧḃ = B1(s+)B3(s+)B1(s−)B3(s−) |χȧ
0χ

ḃ
0⟩ ∼ |χ̃ȧ

0χ̃
ḃ
0⟩ , (4.78)

which leads to a single protected state

ϵȧḃ |2, 2, 2⟩
ȧḃ = ϵȧḃ |χ̃

ȧ
0χ̃

ḃ
0⟩ (4.79)

24Since we are only interested in fermionic zero modes we always turn on the auxiliary roots pairwise,
with one root of type 1 and one root of type 3 sitting at the same point.
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which is a singlet under su(2)◦ once we sum over all permutations of the excitations as
in equation (4.35). In equation (4.78), we have chosen a particular ordering of s+ and s−
in the arguments of the B operators as well as implicitly setting x±1 = s+ and x±2 = s−.
One can check that different choices of s± lead to the same protected states as long as
this is done consistently with equation (4.74).

More interesting is the case where we turn on one auxiliary root of each type. We
now have two possibilities25

B1(s+)B3(s+) |χȧχḃ⟩ ∼ |χ̃ȧχḃ⟩ or B1(s−)B3(s−) |χȧχḃ⟩ ∼ |χȧχ̃ḃ⟩ . (4.80)

These states are described by two distinct sets of Bethe roots, and at first sight we would
expect them to represent different states. However, summing over all permutations of
the excitations as in equation (4.35) gives

|χ̃ȧ
0χ

ḃ
0⟩ − |χḃ

0χ̃
ȧ
0⟩ or |χȧ

0χ̃
ḃ
0⟩ − |χ̃ḃ

0χ
ȧ
0⟩ , (4.81)

which are the same states. The protected states at this level can thus be decomposed
into a triplet and a singlet of su(2)◦. Hence, we find that two different solutions to the
Bethe equations can lead to the same physical protected state.

We end this subsection by noting that when performing explicit computations of how
the B(s±) operators act on states of the form (4.42) it is important to take an ordered
zero-momentum limit 0 ← |p1| < |p2| < . . . . This is because, as we discussed below
equation (4.76), one needs to re-normalize the eigenstates as each momentum reaches zero.
One can check that in the end different orderings lead to the same protected eigenstates,
but at intermediate stages of the calculation care must be taken with expressions involving
multiple B operators.

In the next subsection we summarize the complete set of protected states obtained
by picking an ordering of the B operators, as well as making particular choices for the
each zero-momentum Zhukovsky variable as discussed in equation (4.68) in a way that is
consistent with equation (4.74). We have checked that all other allowed choices lead to
the same physical protected eigenstates just as the N0 = 2 cases described above.

4.3.2 Protected states

In this sub-section, we write down the complete closed-string protected spectrum for
AdS3× S3×T4, using the ABA procedure described in detail above. As discussed there,
the Bethe equations’ solutions corresponding to these states are not unique, and for each
protected state we have the freedom to choose a useful way of taking the zero momentum
limit. All such choices lead to the same physical protected states. Below we make
one such choice and list the states ordered by the number of zero modes they contain.
Furthermore, we do not explicitly write down the sum over permutations of the zero
modes, as described in equation (4.35), for simplicity listing a single representative for
each state.26

N0 = 0

25Other combinations of B operators, such as B1(s+)B3(s−) would lead to states with two zero-
momentum bosons instead of fermions.

26For a state with only zero modes, the sum over permutations just gives the obvious fermionic minus
signs.
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Without any zero modes we have just the family of BMN ground states

|0, 0, 0⟩ , (4.82)

labelled by L with 2DL = 2DL = 2JL = 2JR = L, which are su(2)◦ singlets.
N0 = 1
The protected states with a single χȧ zero-mode were introduced in (4.69)

|1, 0, 0⟩ȧ = |χȧ
0⟩ , (4.83)

while those with a single χ̃ȧ zero-mode have two B operators

|1, 1, 1⟩ȧ = B1(s+)B3(s+) |1, 0, 0⟩ ∝ |χ̃ȧ
0⟩ . (4.84)

Both types of states are su(2)◦ doublets.
N0 = 2
Here we start with the reference state introduced in (4.71)

ϵȧḃ |2, 0, 0⟩
ȧḃ = ϵȧḃ |χ

ȧ
0+χ

ḃ
0−⟩ , (4.85)

which is a su(2)◦-singlet. Adding one set of B operators we have27

|2, 1, 1⟩ȧḃ = B1(s+)B3(s+) |2, 0, 0⟩ȧḃ ∝ |χ̃ȧ
0+χ

ḃ
0−⟩ , (4.86)

which is a triplet and a singlet under su(2)◦. With two sets of B operators we find

ϵȧḃ |2, 2, 2⟩
ȧḃ = ϵȧḃB

1(s+)B3(s+)B1(s−)B3(s−) |2, 0, 0⟩ȧḃ ∝ ϵȧḃ |χ̃
ȧ
0+χ̃

ḃ
0−⟩

ȧḃ
, (4.87)

which is a su(2)◦ singlet.
N0 = 3
With three fermions the reference state would take the form

|χȧ
0+χ

ḃ
0−χ

ċ
0−⟩ . (4.88)

However, since the fermions are doublets under su(2)◦, fermion statistics will kill the
corresponding full physical state. To get a non-vanishing state we need to include at
least one set of B operators

|3, 1, 1⟩ȧ = B1(s+)B3(s+)ϵḃċ |χ
ȧ
0+χ

ḃ
0−χ

ċ
0−⟩ ∝ ϵḃċ |χ̃

ȧ
0+χ

ḃ
0−χ

ċ
0−⟩ , (4.89)

We can also include two sets of B operators to get

|3, 2, 2⟩ȧ = B1(s+)B3(s+)B1(s−)B3(s−)ϵḃċ |χ
ȧ
0+χ

ḃ
0+χ

ċ
0−⟩ ∝ ϵḃċ |χ̃

ȧ
0+χ̃

ḃ
0−χ

ċ
0−⟩ . (4.90)

Both types of states are su(2)◦ doublets. A state with more than two sets of B operators
would again vanish because of fermion statistics.
N0 = 4
The four fermion zero momentum reference state

|χȧ
0+χ

ḃ
0+χ

ċ
0−χ

ḋ
0−⟩ , (4.91)

27In obtaining this state, it is important to first act with the B operators and then sum over permu-
tations, as described in equation (4.35).
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for which the full physical state vanishes due to Fermi statistics. To get a physical state
we now need to include two sets of B operators

|4, 2, 2⟩ = B1(s+)B3(s+)B1(s−)B3(s−)ϵȧḃϵċḋ |χ
ȧ
0+χ

ḃ
0+χ

ċ
0−χ

ḋ
0−⟩

∝ ϵȧḃϵċḋ |χ
ȧ
0+χ̃

ḃ
0+χ̃

ċ
0−χ

ḋ
0−⟩ ,

(4.92)

which is a su(2)◦ singlet.
Summary of protected states
The protected states found in this section are summarised below, where superscripts
indicate the su(2)◦ representations

|0, 0, 0⟩1

|1, 0, 0⟩2 |1, 1, 1⟩2

|2, 0, 0⟩1 |2, 1, 1⟩1⊕3 |2, 2, 2⟩1

|3, 1, 1⟩2 |3, 2, 2⟩2

|4, 2, 2⟩1

(4.93)

These states match the Hodge diamond of the seed T4 theory (4.12) and, since they
depend additionally on L through the BMN vacuum |0, 0, 0⟩ (see equation (4.67)), we
match the expected protected spectrum in (4.11).28

4.4 Protected states in AdS3 × S3 ×K3 orbifolds

In this section, we discuss the ABA spectrum of strings in AdS3 × S3 ×T4/Zn orbifolds,
with n = 2, 3, 4, 6. As reviewed in Section 4.1, Zn acts only on su(2)◦. Since the massive
sector is not charged under the su(2)◦ symmetry, there is no impact of the action of
the orbifold group on the massive ABA states, nor on the massive Bethe equations [54].
In particular, the massive excitation Z which generates the BMN-like vacuum |ZL⟩, is
invariant under the orbifold action.

On the other hand, massless modes transform as doublets under su(2)◦. Since we are
only considering states with zero winding and momentum on T4, the untwisted sector
states simply have to be invariant under the projection (4.13). In particular, protected
states listed in equation (4.93) survive the Zn>2 projections only if they are su(2)◦ singlets.
The n > 2 untwisted sector protected spectrum is

|0, 0, 0⟩
Ø Ø

|2, 0, 0⟩ |2, 1, 1⟩ |2, 2, 2⟩
Ø Ø

|4, 2, 2⟩

(4.94)

Compared to (4.93), we have dropped the superscript denoting the su(2)◦ representations,
since su(2)◦ is broken by the orbifold and each multiplet above has multiplicity one. For

28Recall that, as we have shown in this sub-section, (N0, N1 +N3) can only take the following values
(0, 0), (1, 0), (1, 2), (2, 0), (2, 2), (2, 4), (3, 2), (3, 4), (4, 4). Since L ∈ N+, we have additionally shifted L by
suitable discrete amounts when matching the two expressions.
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n = 2, the orbifold acts as a minus sign for each su(2)◦ doublet index and as a result all
four |2, 1, 1⟩ multiplets are Z2-invariant. The n = 2 untwisted sector protected spectrum
is

|0, 0, 0⟩
Ø Ø

|2, 0, 0⟩ |2, 1, 1⟩⊕4 |2, 2, 2⟩
Ø Ø

|4, 2, 2⟩

(4.95)

Next consider the twisted sectors. The massive ABA and Bethe equations remain
unchanged, since those excitations are su(2)◦ singlets. In fact, since the orbifold leaves the
psu(1|1)4c.e. symmetry invariant, only the massless momentum-carrying Bethe equations
change. The twisted-sector boundary conditions are implemented in the Bethe equations
by an additional phase(

x+k
x−k

)L

= e−iϕ0

N0∏
j=1
j ̸=k

√
x−k
x+k

x+j
x−j

x+k − x
−
j

x−k − x
+
j

(σ◦◦
kj)

2

N1∏
j=1

√
x+k
x−k

x−k − y1,j
x+k − y1,j

N3∏
j=1

√
x+k
x−k

x−k − y3,j
x+k − y3,j

.

(4.96)
where ϕ0 is

ϕ0 = ±2π

n
, (4.97)

with the sign choice determined by the value of the su(2)◦ index of the momentum-
carrying massless excitation in question. Because of this phase, in the zero momentum
limit, there are no N0 > 0 solutions to the above Bethe equation and only the BMN
vacuum state |0, 0, 0⟩ without any fermionic zero modes is protected in each twisted sec-
tor. As a result, the counting of pretected multiplets in the twisted sectors matches the
Hodge number counting reviewed in Section 4.1: there are 16, respectively 18, twisted
sector multiplets in the Z2, respectively Zn>2, orbifolds. Combining these with the un-
twisted sector states above, we match the Hodge diamond of the seed K3 theory (4.15).
Remembering the additional dependence on L through the BMN vacuum |0, 0, 0⟩ (see
equation (4.67)), we match the expected protected spectrum in (4.16).

4.5 Protected states in AdS3 × S3 × S3 × S1 and its orbifold

The ABA and Bethe equations for closed strings on AdS3 × S3 × S3 × S1 are based on
a single psu(1|1)2c.e. algebra. There are two massless ρL multiplets, with highest-weight
fermions denoted as χL and χR. There is now a single auxiliary variable y, whose Bethe
equation is the same as (4.46). The two massless momentum-carrying Bethe equations
are like equation (4.49), but with only a single auxiliary-root product. As already shown
in [49], the protected states come from the BMN vacuum with up to two fermionic zero
modes inserted

|ZL⟩ , |ZLχL⟩ , |ZLχR⟩ , |ZLχLχR⟩ , (4.98)

where, as in the T4 case, the Zhukovski variables can take either of the two values s+
in equation (4.68) to give the same physical state. Unlike the T4 case, here there are
no protected multiplets involving auxiliary roots. The spectrum found in this way [49]
agrees with the supergravity calculation and WZW point analysed in [89].
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When α = 1/2 the two S3s in the geometry have the same radius and one can
define a Z2 orbifold whose action swaps the two three-spheres and inverts the circle [104].
These authors showed that it is possible to extend the orbifold action in a way that
preserves N = (3, 3) super-conformal symmetry, whose global symmetry is osp(3|2) ⊂
osp(4|2) ≡ d(2, 1;α = 1

2
). The protected spectrum of this orbifold was found in [105].

The psu(1|1)2c.e. algebra used to construct the ABA of the unorbifolded background is
contained in the osp(3|2) symmetry of the orbifolded background. This suggests that the
orbifolded theory could also be integrable, with the same ABA as the parent theory, if
suitable integrability-preserving quasi-periodicity conditions for the twisted sectors can
be found. Further, since the psu(1|1)2c.e. algebra is invariant under the orbifold action so
too must be the psu(1|1)2c.e. supercurrents given in equations (2.38)–(2.41) of [58]. The
massless bosons are the S1 boson w and the difference of the great circles on the two S3s
ψ. The Z2 action on these is

w −→ −w , ψ −→ −ψ , (4.99)

and in order to preserve the supercurrents the orbifold must act as a

χL −→ −χL , χR −→ −χR (4.100)

on the massless fermions. The untwisted protected spectrum of AdS3× (S3×S3×S1)/Z2

follows immediately: the states

|ZLχL⟩ , |ZLχR⟩ , (4.101)

are projected out, while
|ZL⟩ , |ZLχLχR⟩ , (4.102)

survive the projection. The orbifold also has two twisted sectors, one each for the two
S1 fixed points. Each twisted sector’s ground state gives rise to a single protected state
for fixed L. This is to be be expected in the twisted ABA which does not contain any
zero-momentum massless fermions, much like in the case of the twisted sectors in T4/Zn

orbifolds. This protected spectrum agrees with the one found in [105] using supergravity
and WZW methods.

4.6 Conclusions and outlook

In this work, we have constructed the exact ABA for closed strings on AdS3 × S3 ×
T4 and AdS3 × S3 × K3 in its orbifold limits. The ABA is valid for these geometries
supported by any combination of NSNS and RR charges as well as any value of non-blow
up moduli since all such theories are integrable [16]. Because of the relatively low amount
of supersymmetry, these theories have multiple families of groundstates in addition to the
familiar BMN vacua. We have shown how generic closed string states can be constructed
in the ABA on top of each of these groundstates by inserting fermionic zero-modes. This
novel feature, not found in higher-dimensional integrable holographic models, relies on
the presence of massless momentum carrying roots, as well as new special points in the
auxiliary Bethe variables.

As we showed in equation (4.74), starting with a Bethe state containing a massless
momentum-carrying excitation at zero momentum x± = s±, we can create another state
by acting with a B operator with auxiliary root y = s±. This leads to an excited state on
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top of a different vacuum with other zero-modes inserted. Such a feature of the ABA is
unique for m = 0 momentum carrying excitations, because the zero-momentum limit in
equation (4.68) gives a finite answer only when m = 0. This should be contrasted with
adding auxiliary roots at ±∞ to a generic Bethe state [6]. In this more familiar case, the
resulting states are descendents in the same multiplet of the global superconformal alge-
bra, in contrast to the massless states with zero-momentum roots, which are in different
multiplets.

Using the ABA we constructed the explicit low-magnon number eigenstates and
showed how, in the zero-momentum limit, they give rise to protected half-BPS states in
these backgrounds. The protected spectrum was first found using supergravity Kaluza-
Klein reduction in [88] and we reproduce it with the ABA here. Our analysis proves
that such states are protected to all orders in α′ in the planar theory and amounts to a
non-renormalization theorem based on integrability. By constructing the explict wave-
functions of states, we were able to perform the T/Zn orbifolds in a straightforward way,
obtaining for the first time the protected spectrum of the AdS3 × S3 ×K3 theories from
exact integrable methods. Additionally, our wavefunction construction demonstrates ex-
plicitly that each protected state can be obtained from a number of distinct solutions of
the Bethe equations, as was anticipated in [49].

It is not clear to us whether integrability continues to hold away from the orbifold
limit of K3. While this would not affect the protected spectrum analysis, since blow-
up modes are moduli, a generic K3 has a complicted metric making the integrability of
string theory on it less likely. To test this, one might, for example, compute the magnon
dispersion relation or generalise the analysis of [106] in the presence of a few blow-up
mode insertions. At the same time, as the analysis in [16] showed, integrability is valid
across the whole moduli space of AdS3× S3×T4 theories. We might optimistically hope
for the same to be true for AdS3 × S3 ×K3.

We have also generalised our analysis of the protected string spectrum to the quarter-
BPS protected states for the AdS3 × S3 × S3 × S1 background and its Z2 orbifold. The
protected eigenstates are much simpler since they do not involve any auxiliary roots and
for the unorbifolded theory was already presented in [49].

It would be interesting to use these results to better understand the Thermodynamic
Bethe Ansatz (TBA) for these backgrounds, building on the massless TBA of the pure
RR theory found in [94]. The role of the auxiliary roots we have presented may help to
clarify how mixed-mass interactions can be incorporated into the TBA following also the
observations in [93].

5 Machine learning Lie structures and applications

to physics

In this work [107], we are motivated by the question of whether and how much one
can machine-learn the essential information about classical, and exceptional Lie algebras
as tabulated in standard texts such as Slansky [108]. Specifically, we address the two
fundamental problems in the representation theory of Lie algebras that is crucial to
physics – the tensor product decomposition and the branching rules to a sub-algebra –
and show that these salient structures are machine learnable. The author of the thesis is
responsible for implementing both experiments.

In particular we show that a relatively simple forward-feeding neural network can pre-
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dict to high accuracy and confidence, the number of irreducible representations (“irreps”)
that appear in a tensor product decomposition, which we refer to as the length of the
decomposition. Our findings for classical and exceptional algebras are summarized in Ta-
ble 3 . We subsequently show that a neural network can also predict with high accuracy,
the presence or absence of a given irreducible representation of a maximal sub-algebra
within an irreducible representation of a parent algebra. The neural network is capable
of predicting, for example, the presence of bi-fundamentals in SU(3)×SU(2) for a given
representation of SU(5) to an accuracy of 88% and a confidence of 0.735.

We remark that our classification problems were also addressed with various standard
classifiers, such as Naive Bayes, nearest neighbours and support vector machines. We
found that the NN with the architecture shown below in Fig. 4 significantly out-performed
them. For example, using Logistic Regression for the analysis of Table 4 for the Am

algebra yields a test accuracy of 0.823 and a confidence of 0.64. The results from support
vector machines are similar. This is in line with previous observations where NNs with
similar architures perform well for a variety of problems, such as the computation of
topological invariants of manifolds [109, 110], and finite graph invariants [111].

5.1 Tensor Products

Let us begin with a simple ML experiment. One of the most important computations for
Lie groups/algebras is the decomposition of the tensor product of two representations into
a direct sum of irreducible representations for a given group G: R1⊗R2 =

⊕
r∈ irreps

arRr,

where ar ∈ Z⩾0 are the multiplicity factors. To be concrete, let us first consider
Am = SU(m + 1). Every irreducible representation (“irrep”) of Am is specified by a
highest-weight vector v⃗, which is a rank m vector of non-negative integer components.
Throughout this section, we will use

v⃗ ≡ (v1, . . . , vr) (5.1)

to denote the weight vector for a Lie algebra of rank r. When the context is clear, an
integer with the vector over-script is understood to be a vector of the same integer entry,
e.g., 4⃗ = (4, 4, . . . , 4).

As the entries of v⃗ increase in magnitude, the dimension of the corresponding irrep
Rv⃗ can grow dramatically. For instance, for A3 = SU(4), dimRv⃗=(a,b,c) = 1

12
(a + 1)(b +

1)(c+ 1)(a+ b+ 2)(b+ c+ 2)(a+ b+ c+ 3). This makes the task of identifying the precise
irreps contained in a tensor decomposition rather laborious.

We start with two weight-vectors v⃗1, v⃗2. Their rank m is chosen randomly from
{1,2,...,8}. Then, we randomly generate a pair quinary vectors v⃗1, v⃗2 of rank m, and
compute their tensor decomposition into irreducible representations:

Rv⃗1 ⊗Rv⃗2 =
⊕

r ∈ irreps

arRr . (5.2)

This computation, although algorithmic, is non-trivial. Even the relatively simple ques-
tion of how many distinct irreps, along with their multiplicities, are there on the RHS or
what we call the length of a given tensor decomposition, is not immediately obvious just
by looking at the the vectors v⃗1 and v⃗2. For example,

R[0,1] ⊗R[2,1] = 8⊕ 10⊕ 27 ;

R[1,0,1] ⊗R[0,2,0] = 45⊕ 20′ ⊕ 175⊕ 45⊕ 15 . (5.3)
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It is difficult to see a priori that one decomposition would be of length 3 while the
other would be of length 5; and one needs to actually compute the respective tensor
decomposition to know the answer. It took several hours using LieART to perform
five thousands decompositions29. To get an idea of their distributions, we show the
histogram of the length: indeed there is a huge variation from 1 to over 350. A significant
improvement in the running time (from hours to a few minutes) can be attained by
capping off the maximum dimension of the irreps (say to 10,000). The distribution of
the lengths of the decompositions vs frequency histogram, is depicted in figure 3.

Figure 3: Distribution of the number of distinct irreps in the tensor decomposition of Rv⃗1 ⊗ Rv⃗2

for Am with randomized 1 ⩽ m ⩽ 8 and randomized ternary weight vectors v⃗1,2. The horizontal

axis denotes the length of Rv⃗1 ⊗Rv⃗2 and the vertical axis denotes the corresponding frequency.

Let us next consider a simple binary classification problem using the data generated
by LieART: can ML distinguish tensor decompositions of length ⩾ 70 and of length < 70?
The length 70 is chosen since it splits the data rather evenly into around five thousands
each. To uniformize the input vectors, for the rank m < 8, we also pad both v⃗1,2 to the
right with −1 (a meaningless number in this context) and stack them on top of each
other. Thus, our input is a 2 × 8 matrix with integer entries for 1 ≤ m ≤ 8. This step
is essential for using a single NN for learning data for Lie algebras of varying ranks (it
is for Am, 1 < m < 8 here). For the majority of our experiments, we use a feed-forward
neural network classifier built in Mathematica with the architecture shown in Figure 4.
We also reproduced these results with a similar 2-layer architecture on Keras, with selu

activated neurons to obtain similar accuracy and confidence. Finally, we need to ensure
that the last softmax is rounded to 0 or 1 according to our binary categories.

The results of our training and learning for Am are depicted in figure 5. The data
was partitioned into 64% training, 16% validation, and 20% test splits. The network
was trained on the training and validation sets and the test set was used purely for

29Care must be taken to find five thousands distinct pairs (v⃗1, v⃗2) amidst the randomizations so as not
to bias the input.

Figure 4: The neural network architecture. S is the softmax activation and D is a dropout
layer with probability 0.2. The hidden-layer neurons (1, 2) and (4, 5) are fully connected
and sigmoid activated.
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Figure 5: Loss-function (top), and error-rate (below) for training and validation for Am are plotted

against number of epochs.

evaluating the trained network. The plots show a steady lowering in both the error-rate
and loss-function as we increase the number of rounds of training and validation. We
achieved accuracy 0.969, confidence 0.930, 5% error rate, and 0.1 loss function within
one minute by training for 100 epochs using learning rate 10−3, ADAM optimizer; which
is excellent indeed. Throughout this work, we will use “accuracy” to mean percentage
agreement of predicted and actual values. In addition, in discrete classification problems
it is also important to have a measure of “confidence” so that false positives/negatives
can be noted. A widely used one is the so-called Matthews’ Phi-coefficient ϕ (essentially
a signed square-root of the chi-squared of the contingency table) [112], which is ≲ 1 for
predictions with good confidence.

The above experiment was also carried out with other classical, as well as exceptional
Lie algebras with comparable success. The results are given in table 3. We generated
the same data size as in the Am case, i.e. 5000, and used the same cap on the maximum
dimension of the irreps (10,000). In contrast, though the dimension cap for exceptional
groups was set to 120,000, it yielded far fewer data points. The lengths we split the
data-sets on were chosen to generate a balanced data-set in each case. The accuracy
of ML prediction was above .95 for each of these cases. The relatively lower accuracy

Group Data Size Splitting Length Accuracy Confidence
Am 5000 70 0.969 0.930
Bm 5000 40 0.959 0.878
Cm 5000 40 0.969 0.921
Dm 5000 35 0.965 0.908
G2 1275 110 0.946 0.891
E6 903 30 0.898 0.795

Table 3: The binary classification of product decomposition lengths. The splitting lengths
yield a balanced dataset.

for E6 is caused by the low number of points available at low dimensions due to its
relatively high rank: 903 data points below dimension of 120,000. Raising the dimension
cap would improve the machine-learning, bringing it up to par with others, however the
corresponding data generation using LieART would take days.

We also note that partitioning the data-sets at the ‘midpoint’ to generate balanced
data-sets as we have done above is by no means necessary. As an example, we explored
this classification problem for the Am algebras but now organizing the data into partitions

61



of varying lengths, viz. 20/80 through to 80/20. Here by a partition of length 20/80 we
mean that a ‘cutoff’ decomposition length was chosen such that 20% of the decomposition
lengths in the dataset are below this length, i.e. are denoted by the target variable Y = 0
and the remaining 80% are above, and hence denoted by Y = 1. In every case the
Matthews’ Phi-coefficient remains close to 1. In particular, for the 20/80 and 80/20
partition it is 0.98.

We can take this experiment one step further and train the neural net on low dimen-
sional tensor decomposition data, then test its performance on higher dimensional cases.
If successful this would immensely reduce the computation time. For example, obtaining
the length of decomposition for two A6 weight vectors v⃗1 = v⃗2 = (2, 2, 2, 2, 2, 2) by brute
force takes over 15 minutes on LieART while machine learning should estimate the length
in a matter of seconds.

We retrained the NN in figure 4 on the same data for the classical and G2 algebras
generated by LieART for the previous experiment. However, the training set is now
restricted to have both input weight vectors of dimension less than certain cut-off value,
here taken to be 2,000. The trained neural network was subsequently evaluated on the
test dataset consisting of input weight vectors of dimension ranging between 2,000 and
10,000. Our results are presented in Table 4 and Figure 6.

Group Train/Val Accuracy Test Accuracy Confidence
Am 0.974/0.957 0.961 0.907
Bm 0.972/0.963 0.957 0.845
Cm 0.969/0.970 0.892 0.792
Dm 0.971/0.940 0.956 0.817
G2 0.969/0.963 0.968 0.922
E6 0.963/0.947 0.875 0.751

Table 4: Training on low dimensional irreps, and testing on high dimensional ones.

Figure 6: Loss-function (top), and model accuracy (below) for training on Am irreps, plotted

against number of epochs.

5.2 Beyond Binary Classification

We now move beyond the simpler binary classification experiments done previously to
a multi-class classification task, with the aim of predicting a range for the length of
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the product decomposition as opposed to the over/under estimates obtained above. For
definiteness, let us take the Am data and classify it into five classes, depending on whether
the length of the product decomposition lies in the ranges 0 to 10, 10 to 25, 25 to 55, 55
to 115 and greater than 115. Figure 7 shows a histogram with the class populations, and
the training curves are displayed in Figure 8. The neural network reaches a ϕ-coefficient

Figure 7: Class Populations of length bins for Am irreps.

of 0.917 on the test set, and the confusion matrix (measuring the frequency of the truth
label against the predicted label) is given by

96 3 0 0 0
1 92 3 0 0
0 2 109 4 0
0 0 7 86 7
0 0 0 6 84

 (5.4)

5.3 Branching Rules

The next task on which we train our neural network of Figure 4 is to learn about the
branching rules for Lie algebras. Suppose we take a weight-vector of SU(5), and restrict
its entries from 0 to 4 (i.e., as quinary 4-vectors). Even though this may look rather
harmless, the dimension of the corresponding irrep ranges from 1 for 0⃗, to 9765625 for 4⃗.
When we decomposed these irreps of SU(5) to those of its maximal sub-algebra SU(3)×

Figure 8: Training curves for the quinary classification problem for Am, plotted against number of

epochs.
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Figure 9: Plot and fit of log of the time in seconds of the branching of irreps of SU(5) versus the

length of the weight-vector.

SU(2)×U(1), and found their explicit branching products, the time taken on LieART was
easily seen to be exponential30. In figure 9, we plot the log of the time taken in seconds,
versus the length of the weight-vector. The best fit is the line −5.54361 + 1.69186x. By
extrapolation, the single irrep of SU(5) corresponding to weight vector

−→
10 would take

over 20 years just to compute its branching products into SU(3)× SU(2)× U(1).
In the rest of this section, we shall show the efficacy of using ML to predict pres-

ence/absence of any given representation of the maximal sub-algebra in a given irrep of
SU(5) and G2 algebras. For concreteness, we look for bi-fundamental representations
of SU(3) × SU(2) (with arbitrary values of U(1) charges) in any given SU(5) irrep. In
the G2 case, we restrict ourselves to bi-fundamental representation of SU(2) × SU(2)
maximal sub-algebra.

For the SU(5) branching, we use first 800 irreps of smallest dimension as input vectors
with binary output depending on presence/absence of a bi-fundamental rep of SU(3) ×
SU(2). The data was split into train/validation/test sets in the ratio 80/10/10. The
neural network reached a test accuracy of 0.899 and a confidence of 0.813. The next best
results were arrived at by a support vector classifier which reached an test accuracy of
0.838 and confidence of 0.677.

For the G2 branching, we used 400 weight input vectors with dimensions below 4.7 mil-
lion. Analogous to the SU(5) case, the output was binary, depending on presence/absence
of a bi-fundamental rep of SU(2)×SU(2). All classifiers, neural nets and otherwise, per-
formed at the level of blind guessing in this case, which is possibly due to the relatively
fewer input data as well as smaller number of features in the data.

5.4 Outlook

Given the ubiquity of Lie algebras and groups in physics, we conclude this section with
some comments about the vast possibilities in applications to physics of our results,
exemplifying with two which immediately come to mind.

In scattering processes, given a pair of incoming particles transforming under the
irreps of certain global symmetry group, the outgoing particles can be classified via their
tensor decompositions. The tensor decomposition prediction and extrapolation results in
section 5.1 thus allow us to efficiently estimate the number of distinct outgoing particles.

30Notice that as LieART is only capable of generating branching rule data for maximal subgroups,
here we will focus on this simplest set of branching training data to illustrate the capability of neural
network.

64



It would also be exciting to see if the NN upper bound estimate of the length of a given
decomposition can help LieART package to work out its explicit terms within significantly
shorter period.

Our choice of studying the branching of SU(5) into its maximal subgroup SU(3) ×
SU(2) × U(1) in section 5.3 was phenomenologically motivated. This hopefully can
lead to an useful algorithm for testing whether a field transforming under SU(5) GUT
gauge group can yield descendants transforming under standard model gauge groups
upon spontaneous symmetry breaking. We hope this will be useful for particle physics
model building purposes.

6 The R-mAtrIx Net

In this work [113], we demonstrate how neural networks and deep learning provide an
efficient way to numerically solve the Yang-Baxter equation for integrable quantum spin
chains. On an immediate front, we are motivated by recent interesting work on classical
integrable systems using machine learning [114, 115, 116, 117]. The approach taken in
the work [117] of learning classical Lax pairs for integrable systems by minimization of
the loss functions encoding a flatness condition has a particularly close parallel to our
approach. However, to the best of our knowledge, the present work is the first attempt
to apply machine learning to quantum integrability, the analysis of R-matrices and the
Yang-Baxter equation. The author of thesis is responsible for the implementation of
all the experiments including the design of architecture, hyperparameter tuning, and
extracting meaningful predictions.

Our analysis utilizes neural networks to construct an approximator for the R-matrix
and thereby solve functional Yang-Baxter equation while also allowing for the imposition
of additional constraints. We look into the sub-class of all possible R-matrices, namely
those that are regular and holomorphic, and incorporate the Yang-Baxter equation into
the loss function. Upon training for the given integrable Hamiltonian, we successfully
learn the corresponding R-matrix to a prescribed precision. Using spin chains with two-
dimensional space as a main playground we reproduce all R-matrices of difference form
which was recently classified in [118]. Moreover, this Solver can be turned into an Explorer
which scans the space (or a certain subspace) of all Hamiltonians looking for integrable
models, which in principle allows us to discover new integrable models inaccessible to
other methods. Below we provide the summary of the Neural Network and its training,
as well as an overview of the paper.

Summary of Neural Network and Training: The functional Yang-Baxter equation,
see Equation (1.26) below, is holomorphic in the spectral parameter u ∈ C and as such,
holds over the entire complex plane. In this paper, we shall restrict our training to the
interval Ω = (−1, 1) on the real line, but design our neural network so that it analytically
continues to a holomorphic function over the complex plane. Each entry into the R-matrix
is separately modeled by multi-layer perceptrons (MLP) with two hidden layers of 50
neurons each, taking as input parameters the variable u ∈ Ω. More details are available
in Section 6.2 and Appendix F. All the neurons are swish activated [119], except for the
output neurons which are linear activated. Training proceeds by optimizing the loss
functions that encode the Yang-Baxter equations (6.5), regularity (6.10), and constraints
on the form of the spin chain Hamiltonian, for instance via (6.11). Hermiticity of the
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Hamiltonian, if applicable, is imposed by the loss (6.13). Optimization is done using
Adam [72] with a starting learning rate of η = 10−3 which is annealed η = 10−8 in steps of
10−1 by monitoring the Yang-Baxter loss (6.5) on validation data for saturation. Adam’s
hyperparameters β1 and β2 are fixed to 0.9 and 0.999 respectively. In the following, we
will refer to this learning rate policy as the standard schedule. We apply this framework
to explore the space of R-matrices using the following strategies:

1. Exploration by Attraction: The Hamiltonian loss (6.11) is imposed by spec-
ifying target numerical values for the two-particle Hamiltonian, or some ansatz/
symmetries instead (like 6-vertex, 8-vertex, etc.). We also formally include here the
ultimate case of general search when no restrictions are imposed on the Hamiltonian
at all. This strategy is predominantly used in our Section 6.3.

2. Exploration by Repulsion: We can generate new solutions by repelling away
from an ansatz or a given spin chain. This requires us to activate the loss function
(6.15) for a few epochs in order to move from the specific Hamiltonian. This strategy
is employed in Section 6.4.

Further, we also have two schemes for initializing training.

1. Random initialization: We randomly initialize the weights of the neural network
using He initialization [120]. This samples the weights from either a uniform or a
normal distribution centered around 0 but with a variance that scales as the inverse
power of the layer width.

2. Warm-start: we use the weights and biases for an already learnt solution .

A brief overview of this section is as follows. In subsection 6.1, we review the classi-
fication program of 2-D spin chains of difference form through the boost automorphism
method [118]. Then we outline our methodology for learning the R-matrix given an ansatz
for the two-particle Hamiltonian in Section 6.2. We present our results in sections 6.3,
6.4. Section 6.3 focuses on hermitian XYZ and XXZ models (section 6.3.1), and proto-
type examples from the 14 gauge-inequivalent classes of models in [118](section 6.3.2).
The latter sub-section also contrasts training behaviour for integrable and non-integrable
models. Section 6.4 presents a preliminary search strategy for new models which we illus-
trate within a toy-model setting: rediscovering the two integrable subclasses of 6-vertex
Hamiltonians. Section 6.5 discusses ongoing and future research directions.

6.1 Reviewing two-dimensional R-matrices of difference form

We will illustrate the work of our neural network using two-dimensional spin chains as a
playground. The regular difference-form integrable models in this context have recently
been classified using the Boost operator in [118]. Here, we present a brief overview of
the methods and results of this paper. Boost automorphism method allows one to find
integrable Hamiltonians by reducing the problem to a set of algebraic equations. Let
us focus on a spin chains with two-dimensional space V = C2 and nearest-neighbour
Hamiltonian (1.24). One formally defines the boost operator B [121] as

B =
∞∑

a=−∞

aHa,a+1 , (6.1)
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which generates higher charges Qn, n ⩾ 3, from the Hamiltonian Q2 via action by
commutation:

Qr+1 = [B,Qr] . (6.2)

This was used in [118] to successfully classify all 2-dimensional integrable Hamiltonians
by solving the system of algebraic equations arising from imposing vanishing conditions
on commutators between Qi, upto some finite value of i. Surprisingly it turns out that
for the considered models, the vanishing of the first non-trivial commutator [Q2,Q3] = 0
is a sufficient condition to ensure the vanishing of all other commutators. Then making
an ansatz for the R-matrices and solving Yang-Baxter equation in the small u limit, the
authors constructed the corresponding R-matrices and confirmed the integrability of the
discovered Hamiltonians. The solutions can be organized into two classes: XYZ-type,
and non-XYZ type, distinguished by the non-zero entries appearing in the Hamiltonian.

HXYZ type =


a1 0 0 d1
0 b1 c1 0
0 c2 b2 0
d2 0 0 a2

 , Hnon−XYZ type =


a1 a2 a3 a4
0 b1 b3 b3
0 c1 c2 c3
0 0 0 d1

 . (6.3)

Generically, all non-zero entries would be complex valued. Hermiticity, for the actual
XYZ model and its XXZ and XXX limits, places additional constraints. Integrability
also imposes additional algebraic constraints between the non-zero entries, none of which
involve complex conjugation in contrast to hermiticity. Amongst the XYZ type models,
there are 8 distinct solutions each corresponding to some set of algebraic constraints
among the matrix elements of H. In particular, there is one 4-vertex model (H4v) which
is purely diagonal (see (E.1)). Next, there are two 6-vertex models (H6v,1, H6v,2) where
d1 and d2 are constrained to vanish, among other conditions (see (E.2), (E.4)). One of
these, namely H6v,1, is a non-hermitian generalisation of the XXZ model. There are also
two 7-vertex models (H7v,1, H7v,2) where only d2 vanishes (see (E.6), (E.8)), and three
8-vertex models (H8v,1, H8v,2, H8v,3) where all entries are non-zero (see (E.10), (E.13),
(E.17)). Here, H8v,1 is the non-hermitian generalization of the XYZ model. Among these
classes the Hamiltonians are distinguished by additional algebraic constraints on the non-
zero elements which we have enumerated in Appendix E. The corresponding R-matrices
for these models were obtained in [122]. The non-XYZ models are similarly divided into
6-classes with Hamiltonians Hclass−1 , . . . Hclass−6 which have been explicitly enumerated
in Equation (E.19). Among these, the class 1 and class 2 Hamiltonians have rank less
than four. For convenience, we also explicitly write down all of these R-matrices, both
for the XYZ type and non-XYZ type models, in Appendix E.

6.2 Machine Learning the R-Matrix

In this sub-section, we shall describe our proposed methodology for constructing R-
matrices R (u) by optimizing a neural network using appropriate loss functions. An
R-matrix has elements Rij (u) at least some of which are non-zero. In the following, we
shall focus solely on the Rij (u) which are not identically zero as functions of u. We
also restrict the training to the real values of spectral parameter u ∈ Ω = (−1, 1) and
exclusively use holomorphic activations function in order to guarantee the holomorphy of
the resulting R-matrix R (u). The matrix elements Rij (u) of this R-matrix are modeled
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by neural networks as

Rij (u) = aij (u) + i bij (u) : u rij

a
(1)
ij;1

a
(1)
ij;50

a
(2)
ij;1

a
(2)
ij;50

; rij = {aij, bij} . (6.4)

We have decomposed the matrix element Rij(u) into aij(u) + i bij(u) in order to learn
complex-valued functions Rij while training with real MLPs on the real interval Ω. In
this paper, purely for uniformity, we have modeled each such aij(u) and bij(u) using an
MLP containing two hidden layers of 50 neurons each and one linear activated output
neuron. We emphasize that the identification of aij(u) and bij(u) to real and imaginary
parts of Rij(u) is only valid over the real line, and these functions separately continue
into holomorphic functions over the complex plane whose sum Rij(u) is holomorphic
by construction. Now, Rij(u) is required to solve the the Yang-Baxter equation (1.26)
subject to (1.27). We may also place constraints on the corresponding two-particle H
given by (1.34). These criteria are encoded into loss functions which the R-matrix Rij(u)
aims to minimize by training. For example, in order to train Rij(u) to satisfy Yang-
Baxter equation (1.26) for all values of spectral parameter u from the set Ω ⊂ C we
introduce the following loss function :

LY BE = ||R12(u− v)R13(u)R23(v)−R23(v)R13(u)R12(u− v)|| , (6.5)

where ||...|| is a matrix norm defined as ||A|| =
n∑

α,β=1

|Aαβ| for an complex-valued n × n

matrix A. During the forward propagation we sample a mini-batch of u and v values, from
which the corresponding u− v is constructed. Along this paper, the spectral parameters
u and v run over the discrete set of 20000 points randomly chosen from the interval Ω.
31 The loss function LY BE is positive semi-definite, vanishing only when R (u) solves
the Yang-Baxter equation. In principle, one may imagine a scan across the space of all
functions in which case, solutions of the Yang-Baxter equation would minimize the loss
(6.5) to zero.

In practice of course, one cannot scan across the space of all functions and is restricted
to a hypothesis class. Here the hypothesis class is implicitly defined by the design of the
neural network, the choice of numbers of layers, number of neurons in each layer, as well
as the activation function. Varying the weights and biases of the neural network allows
us to scan across this hypothesis space. While in general the exact R-matrix may not
belong to this hypothesis class, and the loss function would then be strictly positive,
deep learning may allow us to approach the desired functions R → R to a high degree
of accuracy. In summary, if we restrict to a hypothesis class which does not include an
actual solution of the Yang-Baxter equation then

LY BE ⩾ ϵ = min
{w′,b′}

LY BE ({w′, b′}) > 0 , (6.6)

31The number of points used during the training bounds the precision which one can reach and in our
case it will be of order 10−4.
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where ideally ϵ would be small, indicating that we have obtained a good approximation
to the true solution. We expect that scanning across wider and wider hypothesis classes
would bring ϵ closer and closer to zero. Further, while the RTT equation (1.30) follows
from the Yang-Baxter equation (1.26), it can also be imposed separately as a loss function
on the network in order to improve the training :

LRTT = ||R12(u− v)T1(u)T2(v)− T2(v)T1(u)R12(u− v)|| . (6.7)

Next, we have constraints that must be imposed on the R-matrix at u = 0. Following
equation (1.27) and equation (1.34) in previous section, we require that 32

R (0) = P , P
d

du
R(u)|u=0 = H , (6.9)

where H is the two particle Hamiltonian. They both can be encoded in the loss function
as

Lreg = ||R (0)− P ||, (6.10)

LH = ||P d

du
R(u)|u=0 −H|| . (6.11)

Here, we should mention that we have some flexibility in the manner in which we im-
plement the Hamiltonian constraint LH . Firstly, one can fix the exact numerical values
for the entries of H and learn corresponding R-matrix. We will also consider extensions
of this loss function where we supply only algebraic constraints restricting the search
space for target Hamiltonians to those with certain symmetries or belonging to certain
gauge-equivalence classes. In general, such Hamiltonian constraints give us the requisite
control to converge to the different classes of integrable Hamiltonians, and we will name
such regime as a exploration by attraction.

In the same spirit, when working with the XYZ spin chain or its XXZ and XXX limits,
we also require that the two-particle Hamiltonian computed from R (u) is hermitian, i.e.,

H = H† , (6.12)

We impose this condition by means of the loss function

L† =
∣∣∣∣H −H†∣∣∣∣ , (6.13)

We shall therefore train our neural network with the loss function

L = LY BE + Lreg + λRTTLRTT + λHLH + λ†L† , (6.14)

32It is tempting to consider a variation of our method which involves residual learning a la the ResNet
family of networks [120]. As opposed to learning deviations from identity, which is typically the approach
adopted in the ResNet architecture, we may define

R (u) = P + R̃ (u) , (6.8)

where R̃ (u) is the target function of the neural network, which we design to identically output R̃ (0) = 0.
While this is possible in principle, in practice it turns out that since the neural network is learning a
function in the vicinity of P , which trivially minimizes the Yang-Baxter equation and all other constraints
imposed, it almost invariably collapses to the trivial solution and learns R̃ (u) = 0 across all u. It would
nonetheless be interesting to identify such architectures that successfully learn non-trivial R-matrices
and this is in progress.
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where putting the coefficients λα, for α = {RTT,H, †}, to zero removes the corresponding
loss term from being trained.

The loss function (6.14) produces a very complicated landscape and the NN should
approach its minimum during the training. Usually, this search is performed with gradient
based optimization methods. One might be skeptical about being stuck in some local
minimum instead of finding the global minimum of such complicated loss function in
a very high dimensional hypothesis space. However, recent analysis revealed that deep
NNs end up having all their local minima almost at the same value as the global one
[123], [124]. In other words, there are many different configurations of weights and
biases resulting into a function of similar accuracy as the one corresponding to the global
minimum. There are also many saddle points and some of them have big plateau and
just a small fraction of descendent directions, making them practically indistinguishable
from the local minima. However, most of their losses are close to the global minimum as
well. Those with significantly higher losses have a bigger number of descendent directions
and thus can be escaped during the learning [123], [124].

We find that the training converges to yield simultaneously low values for each of the
above losses as applicable. Further, while the hyper-parameters {λ} are tunable experi-
mentally, setting them all to 1 is a useful default. However, for fine-tuning the training
it is also useful to tune these parameters to reflect the specific task at hand. We provide
the requisite details in Sections 6.3, where we discuss specific training methodologies and
the corresponding results. We will also discuss there a new loss function

Lrepulsion = exp{(−||H −Ho||/σ)} , (6.15)

which is useful to fine-tune the training to access new integrable Hamiltonians H in the
neighbourhood of previously known integrable Hamiltonians Ho, we will call such regime
as a exploration by repulsion.

As a final observation on the choice of activation functions, we note that at the level
of the discussion above, any holomorphic activation function such as sigmoid, tanh, and
the sinh would suffice. In practice we find that the training converges faster and more
precisely using the swish activation [119]. This is given by

swish (z) = z σ (z) , σ (z) =
1

1 + e−z
. (6.16)

We have provided some comparison tests across activation functions in Appendix F.2.
In the following sub-sections, we present our results for learning R-matrices within

the restricted setting of two dimensional spin chains of difference form. Our analysis will
be divided into three parts. First, we will learn hermitian XYZ model and its well-known
XXZ and XXX limits, comparing our deep-learning results against the analytic plots.
Then we remove hermiticity and reproduce all 14 classes of solutions from [118]. The
last set of experiments demonstrates how our Neural Network in the Explorer mode can
search for Integrable models exploring the space of Hamiltonians.

6.3 Specific integrable spin chains

In this sub-section we look at specific physical models, by imposing tailored conditions
on the Hamiltonian derived from the training R-matrix. This includes constraints on the
Hamiltonian entries at u = 0, and hermiticity of the Hamiltonian.
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6.3.1 Hermitian models: XYZ spin chain and its isotropic limits

Imposing hermiticity on the 8-vertex Hamiltonian, we learn the classic XYZ integrable
spin chain and its symmetric XXZ limit. We start with the following 8-vertex model
ansatz for the R-matrix

R(u) =


a 0 0 d
0 b c 0
0 c b 0
d 0 0 a

 (6.17)

and impose the loss functions for YBE, hamiltonian constraint, regularity, and her-
miticity (see equation 6.14). The target Hamitonians comprise of a 2-parameter family
HXY Z(Jx, Jy, Jz) given by

HXY Z(Jx, Jy, Jz) = JxS
x
1S

x
2 + JyS

y
1S

y
2 + JzS

z
1S

z
2 =


Jz 0 0 Jx − Jy
0 −Jz 2 0
0 2 −Jz 0

Jx − Jy 0 0 Jz

 ,

(6.18)
where we have set Jx +Jy to be equal to 2. The symmetric limit of XXZ model is realised
for Jx = Jy = 1. A useful reparametrisation for these models is in terms of (η,m) [125]

Jx = 1 +

√
m sn (2η | m)

2
, Jy = 1−

√
m sn (2η | m)

2
, Jz = cn (2η | m) dn (2η | m)

(6.19)
The analytic solution for the XYZ R-matrix is given in terms of Jacobi elliptic functions
as

a(u) =
sn (2η + ωu | m)

sn (2η | m)
exp

(
−cn (2η | m) dn (2η | m)

2 sn (2η | m)
ωu

)
,

b(u) =
sn (ωu | m)

sn (2η | m)
exp

(
−cn (2η | m) dn (2η | m)

2 sn (2η | m)
ωu

)
,

c(u) = exp

(
−cn (2η | m) dn (2η | m)

2 sn (2η | m)
ωu

)
,

d(u) =
√
m sn (ωu | m) sn (2η + ωu | m) exp

(
−cn (2η | m) dn (2η | m)

2 sn (2η | m)
ωu

)
, (6.20)

where ω = 2 sn (2η | m), and m is the elliptic modular parameter33. Our model consis-
tently learns the R-matrices for the XYZ model for generic values of the free parameters
η,m. Figure 10 gives the time evolution of the different loss terms during training. Fig-
ure 11 plots the R-matrix component ratios with respect to R12 in terms of the spectral
parameter, and compares them with the corresponding analytic functions for a generic
choice of deformation parameters η = π

3
and m = 0.6. Letting m = 0, we recover the

XXZ models for generic values of η.

6.3.2 Two-dimensional classification

Here, we lift the hermiticity constraint on the Hamiltonian, thus allowing for more generic
integrable models. As we shall see below, the neural network successfully learns all the 14

33Usually, these expressions are written in terms of the elliptic modulus k instead of the modular
parameter m = k2, e.g. as in [122]. We have expressed them in terms of the modular parameter
following the implementation in both Python and Mathematica.
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Figure 10: The evolution of training losses for the XYZ model, shown on the log scale.
The losses tend to fall in a step-wise manner, which corresponds approximately to the
learning rate schedule the network is trained with.
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Figure 11: (a) XYZ R-matrix as ratios with respect to the (12) component for η =
π/3,m = 0.6, (b) Relative and absolute errors for R-matrix.
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Figure 12: (a) Predicted vs actual R-matrix component ratio w.r.t. R00 for XXZ-type
model with a1 = a2 = 0.3, b1 = 0.45, b2 = 0.6, c1 = 0.4, c2 = 0.25, (b) Absolute error
between predicted and actual R-matrix component ratios

classes[118] of difference-form integrable (not necessarily Hermitian) spin chain models
with 2-dimensional space at each site. The R-matrices corresponding to each of these
classes are written down explicitly in appendix E. Towards the end of this sub-section,
we also present results for learning solutions in generic gauge obtained by similarity
transformation of integrable Hamiltonians from the aforementioned 14 classes. We shall
discuss the results in two parts: XYZ type models, and non-XYZ type models.

The first set of Hamiltonians under consideration are generalisations of the XYZ
model (discussed in the previous sub-section), with at most 8 non-zero elements in its
Hamiltonian density

H8−vertex =


a1 0 0 d1
0 b1 c1 0
0 c2 b2 0
d2 0 0 a2

 (6.21)

where the coefficients can take generic complex values. The XYZ model corresponds to
the subset with a1 = a2, b1 = b2, c1 = c2, d1 = d2. As discussed in section 6.1, these models
can be further sub-divided into four, six, seven and eight vertex models. On the other
hand, there are 6 distinct classes of non-XYZ type solutions. Here we will discuss the
training results for one example each from the XYZ and non-XYZ type models, since the
training behaviour is similar within these two types. Rest of the models will be presented
in Appendix E. Figure 12 plots the R-matrix components as ratios with respect to R00

for a generic 6-vertex model with d1 = d2 = 0, and a1 = a2. The figure also includes
the absolute and relative errors with respect to the corresponding analytic R-matrix (see
equation (E.2)).
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Figure 13: (a) Predicted vs actual R-matrix components for the Hamiltonian of class-1,
with coefficients a1 = .5, a2 = .3, a3 = .9, a4 = 1.5, a5 = .4. Note here the R-matrices
are automatically normalised since R00 was fixed to the constant value of 1, (b) Absolute
error between predicted and actual R-matrix components

From the non-XYZ classes, we will focus on the following 5-vertex Hamiltonians

Hclass−1 =


0 a1 a2 0
0 a5 0 a3
0 0 −a5 a4
0 0 0 0

 (6.22)

For integrability, we require the additional condition

a1a3 = a2a4 . (6.23)

Training the Hamiltonian constraint (6.11) for generic values a1 = 0.5, a2 = 0.3, a3 =
0.9, a4 = 1.5, a5 = 0.4 satisfying the above integrability condition, we get over 99.9%
accuracy for training over ∼100 epochs. Figure 13 plots the trained R-matrix components
and absolute errors with respect to the analytic R-matrices in equation (E.20), for the
above choice of target Hamiltonian. We have also surveyed more general solutions beyond
the representative solutions of the 14 classes a la [118], by changing the gauge of the R-
matrix as well as the corresponding Hamiltonian. As noted earlier in section 1.2.2, we
can act with a 2× 2 similarity matrix Ω on the R-matrix :

R(u)→ RΩ(u) = (Ω⊗ Ω)R(u)(Ω−1 × Ω−1) (6.24)

H → HΩ = (Ω⊗ Ω)H(Ω−1 × Ω−1) (6.25)

If R(u) satisfies Yang-Baxter equation, so does RΩ(u). A generic similarity matrix Ω

Ω =

(
v11 v12
v21 v22

)
(6.26)

with non-zero off-diagonal entries v12, v21 ̸= 0, results in conjugated R-matrices and
Hamiltonians with all 16 non-zero entries. We trained 16-vertex Hamiltonians resulting
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from XYZ model in the general gauge and recovered the corresponding R-matrix with
a relative error of order O(0.1%). Generic XYZ type models, as well as non-XYZ type
models gave similar results for different gauges. Figure 14 plots the learnt R-matrix

components for XXZ model with η = π
3

conjugated by the matrix Ω =

(
0.4 0.5
−1.2 1

)
.

For comparison with analytic formulae, we normalised our results by taking ratios with
respect to a fixed component R00, i.e. we plot

Rij

R00
. As a result of starting from the XXZ

model, the R-matrix RXXZt in the general gauge has following highly symmetric form

RXXZg =


R00 R01 R01 R03

R10 R11 R12 −R01

R10 R12 R11 −R01

R30 −R10 −R10 R00

 (6.27)

Thus we only plot the entries R00, R01, R03, R10, R11, R12, R30. Since there exists overall
normalisation ambiguity, we should only compare ratio of R-matrix entries with the
analytic solution written in the same gauge.
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Figure 14: (a) Predicted R-matrix component ratios w.r.t. R00, for conjugated XXZ

model with η = π
3

and similarity matrix Ω =

(
0.4 0.5
−1.2 1

)
, (b) Absolute error between

predicted and actual R-matrix ratios

Next we discuss the difference in the training of integrable vs non-integrable models
with our neural network. We will focus on two representative examples : 6-vertex model
with Hamiltonian H6v,1, and class 4 models with Hamiltonian Hclass−4. Similar results
hold across all the 14 classes.

For 6-vertex models with Hamiltonians following equation (6.21) with d1 = d2 = 0,
generic values of the coefficients ai, bi, ci, di for i = 1, 2 leads to non-integrable models,
unless

a1 = a2 , a1 + a2 = b1 + b2 . (6.28)
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(a) Hamiltonian H6v,1 vs non-integrable. (b) Hamiltonian Hclass−4 vs non-integrable.

Figure 15: Comparing the training history of the Type XYZ and non-XYZ models against
corresponding non-integrable Hamiltonians. There is approximately an order of mag-
nitude difference between the Yang-Baxter losses for the integrable case vs the non-
integrable case after the training saturates, indicated by the gray region in the graph.
The step-wise drops in the loss functions approximately correspond to the learning rate
schedule. The presented Hamiltonians are the same as on Fig.16 and Fig.17

These are the models with Hamiltonian H6v,1, H6v,2 in appendix E. Figure 15a compares
the training for a generic Hamiltonian with coefficients satisfying none of the above
conditions against the training for H6v,1-type model. We see that while the Hamiltonian
constraint (6.11) saturates to similarly low values in both cases, the Yang-Baxter loss
saturates at approximately one order of magnitude higher. Similar behavior holds for
the non-XYZ type models as well. The training for a generic class-4 Hamiltonian with
coefficients a1 = 0.5, a2 = 0.3, a3 = 0.4, a4 = 0.9 (see Equation E.19) and a non-integrable
deformation is shown in Figure 15b.

One can further discriminate between integrable and non-integrable models by check-
ing the point-wise values of the Yang-Baxter losses in the two cases. Let us define the
metric

L̃ =
||R12(u− v)R13(u)R23(v)−R23(v)R13(u)R12(u− v)||

||R12(u− v)R13(u)R23(v)||
, (6.29)

which measures the relative error in the approximate solution of the Yang-Baxter equa-
tion. This metric is evaluated for the trained R-matrix for both integrable and non-
integrable models in Figure 16 (for H6v,1 model), and Figure 17 (for Hclass−4 model).
We see that the normalized error can be up to two orders of magnitude larger for the
non-integrable case. Note that irrespective of the choice of Hamiltonian, there are two
lines along u = v and v = 0 on which the Yang-Baxter equation is trivially satisfied, due
to regularity. This metric also can detect anomalous situations when the learned solution
once satisfied the Hamiltonian constraint at u = 0 quickly evolves to a true solution of
Yang-Baxter equation producing relatively small YB loss (6.5). In this case we will see
the big spike in (6.29) around zero which will indicate the fakeness of the found solution.

The above consideration shows that one can define the metrics which together indicate
the closeness of the given system to the integrable Hamiltonian. However, the final
conclusion in the binary form of “integrable/nonintegrable” regarding the given spin chain
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(a) H6v,1 (b) H6v,1 deformation

Figure 16: (a) The normalized Yang-Baxter error (6.29) plotted in the logarithmic scale
at the end of training for the Hamiltonian H6v,1 with a1 = 0.3, a2 = 0.3, b1 = 0.45, b2 =
0.6, c1 = 0.4, c2 = 0.25, and (b) its non-integrable deformation with a1 = −1.3, a2 = 1.3
and other parameters kept constant. In order to keep all three arguments appearing in
YB equation inside the same inteval |u|, |v|, |u−v| < 0.8 we cut out the area |u−v| > 0.8
with chess-pattern triangles.

(a) Hclass−4 (b) Hclass−4 deformation

Figure 17: (a) The normalized Yang-Baxter error (6.29) plotted in the logarithmic scale at
the end of training for the Hamiltonian Hclass−4 from (E.19), with a1 = 0.5, a2 = 0.3, a3 =
0.4, a4 = 0.9, (b) Non-integrable deformation with same Hamiltonian parameters as in
the integrable case, except for H13 = −0.9.
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can be made only asymptotically, namely increasing the number of neurons, density of
points and training time one can get the normalized YB loss (6.29) uniformly decreasing
to zero for integrable Hamiltonians while for nonintegrable case it will be bounded from
below by some positive value. Also let’s stress that such problem is specific for the solver
mode once we stick to a given Hamiltonian, while in the case of relaxed Hamiltonian
restrictions as we will see in the next section, the neural network moves to the true
solution of the Yang-Baxter equation.

6.4 Explorer: new from existing

Figure 18: Visualizing the Explorer scheme. We start with random initializations, marked
by lightning symbols, and perform solver learning represented by red curve arrows. Once
we reach an submanifold of integrable Hamiltonians, we explore it using repulsion to
identify new integrable models.

In this section we will present two kinds of experiments that illustrate how the neural
network presented above can be used to scan the landscape of two-dimensional spin-
chains for integrable models. The training schedule adopted in this section is visualized
in Figure 18 and relies essentially on two new ingredients which distinguish it from the
previous solver framework. These are warm-start and repulsion. We will illustrate each
by an example. In the first case we shall simply use warm-start, and in the second,
we shall combine warm-start with repulsion. Finally, we shall use unsupervised learning
methods such as t-SNE and Independent Component Analysis to identify distinct classes
of Hamiltonians within the set of integrable models thus discovered. Collectively, these
strategies make up our explorer framework.

The first key new ingredient is a warm-start initialization. As mentioned previously,
the standard solver framework of the previous section uses He initialization [120] to in-
stantiate the weights and biases of the neural network. In warm-start initialization, we
use the knowledge of integrable systems previously discovered by the neural network to
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(a) Evolution of Yang-Baxter Loss (b) Evolution of Hamiltonian Loss

Figure 19: The convergence to XYZ models from XXZ models trained with different
parameters. XXZ was trained for 50 epochs at η = π

3
and m = 0. Then, it was trained

for 5 more epochs at η = π
4

and η = π
6
, still with m = 0. After that, 5 non-zero values

of m were used for each XXZ model, and we trained for another 15 epochs. Loss spikes
occurred when the target hamiltonian values were reset. The final training was run in
parallel for convenience, but it can be run sequentially.

Figure 20: Time evolution of the Yang Baxter loss as the neural network explores the
space of integrable Hamiltonians of 6-vertex models H6v1,6v2 by repulsion. The loss evolves
together until the 50th epoch after which it fragments slightly as the training converges
to the two warm-start points on the 60th epoch. For the remaining epochs the losses
fragment completely as the neural network seeks out different new Hamiltonians and is
terminated when the loss reaches the neighborhood of 1 × 10−4.
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Figure 21: Clustering of Hamiltonians from the 2 classes of gauge-inequivalent 6-vertex
models obtained by Explorer using repulsion from solution at intersection of both classes.

Figure 22: The 6-vertex models learnt by exploration. The graph visualizes the obtained
Hamiltonians by plotting their values along the a1 + a2 − b1 − b2 and the a1 − a2 axes.
The models H6v,1 lie along the y-axis and the models H6v,2 along the x-axis with an error
margin of order 10−3 as shown in the telescoped inset plots.
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find new systems in its vicinity. The idea, at least intuitively, is that it should be possible
to find new integrable systems more efficiently than with the random initialization by
exploring the vicinity in weight-space of previously determined solutions using an itera-
tive procedure such as gradient-based optimization. On doing so, we find a significant
acceleration in training convergence, with new solutions being discovered typically in
about 5 epochs of training after warm-start initialization. For definiteness, we consider
the hermitian XYZ model discussed earlier in Section 6.3.1. This has a two-parameter
family of solutions, corresponding to independent choices for the parameters η and m of
the Jacobi elliptic function, as seen from Equation (6.20). The XXZ model is embedded
into this space as the m = 0 subspace of solutions.

We now describe how the above strategy can be used to quickly generate the cluster
of XYZ R-matrices starting from a particular one which we choose from XXZ subclass.
We begin with pre-training our neural network using the solver mode of the previous
section, but with the learning rate of the Adam optimizer set to 10−3. The pre-training
is stopped when all losses saturate below O (10−3), which typically requires about 50
epochs of training. We carried out this pre-training setting arbitrary reference values of
η, but with m fixed to zero. The results shown here correspond to η = π

4
. The weights

thus obtained correspond to our warm-start values. Then we shift the target Hamiltonian
values to correspond to η → η + δη, where δη are randomly chosen O (10−1) numbers,
and m can take on non-zero values as well. We then retrain the model with a smaller
learning rate, 10−4 for a few epochs until all loss terms fall to O (10−4), which typically
takes about 5 epochs, upon which we update the target Hamiltonian by updating η
and m and continue training. This strategy generates about 10 XYZ models within the
same time-scale (i.e. about 100 to 200 epochs of training) as we earlier needed for a
single model. For best results, while we randomly update η, we systematically anneal
the modular parameter m to upwards of zero. A sample of this training is visualized in
Figure 19b.

Our next key new ingredient for the Explorer mode is repulsion, which is added to the
previous strategy of warm-start initialization. In principle, it should allow us to rediscover
all 14 classes of integrable spin chains. However, for sake of simplicity, we will illustrate
it now with a toy-model example and return to the general analysis later [126]. Namely,
we consider the class of 6-vertex Hamiltonians with unrestricted a1 and a2. It includes
both integrable 6-vertex classes H6v,1, H6v,2 (E.2, E.4) as well as nonintegrable models.
In order to mimic the general situation when all integrable classes intersect at zero, we
begin by pre-training the neural network to a Hamiltonian belonging to the intersection
of the classes H6v,1 and H6v,2, i.e. whose matrix element satisfy the constraints a1 = a2
and a1 + a2 = b1 + b2 simultaneously. The results mentioned in this work correspond to
setting

a1 = a2 =
b1 + b2

2
; b1 = 0.6, b2 = 0.8, c1 = 0.5, c2 = 0.9 . (6.30)

Having arrived at this model, we would like to navigate to neighboring models not by
specifying target values of the Hamiltonian, but by scanning the neighborhood of the
current model. To do so, we employ a two step strategy. First, we navigate to two34 new
6-vertex integrable Hamiltonians by random scanning the vicinity of the current model
without giving specific target values. We shall use these new models as our warm-start

34We stop the scanning once we found a representative from each of two classes because we know that
there are only two integrable families here. In general case one of course should generate sufficiently
many points in order to find all classes. We will return to this subtle point later in [126]
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points. From each of them, we navigate away by using the repulsion loss term (6.15) for
1 epoch, followed by training for another 5 epochs. Note in this step, we still train within
the restricted class of 6-vertex models by fixing the corresponding entries of the R-matrix
to zero. We repeat this schedule 25 times starting from either of the saved models. This
way, we generate fifty 6-vertex integrable Hamiltonians with over 1% accuracy35. The
training curve displaying how the Yang-Baxter loss evolves is shown in Figure 20.

The learnt models are classified into two classes using clusterisation methods as shown
in Figure 21. Figure 22 plots the trained models in terms of coordinates defined by the
integrability conditions of the Hamiltonians H6v,1, H6v,2. Models lying near the two axes
were classified correctly into the two classes in Figure 21 with 100% accuracy.

6.5 Conclusions and Future directions

In this work we constructed a neural network for solving the Yang-Baxter equation (1.26)
in various contexts. Firstly, it can learn the R-matrix corresponding to a given integrable
Hamiltonian or search for an integrable spin chain and the corresponding R-matrix from
a certain class specified by imposed symmetries or other restrictions. We refer to this as
the solver mode. Next, in the explorer mode, it can search for new integrable models by
scanning the space of Hamiltonians.

We demonstrated the use of our neural network on two-dimensional spin chains of
difference form. In the solver mode, the network successfully learns all fourteen distinct
classes of R-matrices identified in [118] upto accuracies of the order of 99.9 − 99.99%.
We demonstrated the work of the Explorer mode, restricting the search to the space of
spin chains containing both classes of 6-vertex models as well as nonintegrable Hamilto-
nians. Starting from the hamiltonian at the intersection of two classes , Explorer found
50 integrable Hamiltonians which after clusterisation clearly fall into two families corre-
sponding to two integrable classes of 6-vertex model. Working in the explorer mode, we
find that warm-starting our training from the vicinity of a previously learnt integrable
model greatly speeds up convergence, allowing us to identify typically about 50 new in-
tegrable models in the same time that random initialization takes to converge to a single
model.

The main focus of this work was creating the neural network architecture and demon-
strating its robustness in various solution generating frameworks using known integrable
models as a testing ground. However, we expect that this program can be extended
to various scenarios such as the exploration and classification of the space of integrable
Hamiltonians in dimensions greater than two. This would be of great interest since the
general classification of models is currently limited to two dimensions. Our experiments
with exploration and clustering are a promising starting point in this regard. In our setup
the strategy is quite straightforward [126]. Because all integrable families of Hamiltoni-
ans can be multiplied by arbitrary scalar, we should only scan the Hamiltonians on the
unit sphere which is compact. Scanning over sufficiently dense set of points on the sphere
will allow us to identify integrable Hamiltonians from various classes. Then we can use
the Explorer to reconstruct the whole corresponding families and perform clusterisation
in order to identify them. On another footing, it would also be interesting to extend
our study to R-matrices of non-difference form as these are particularly relevant to the
AdS/CFT correspondence [127, 54, 50, 128].

35If we further train the individual models for more epochs, we can improve the accuracy of the
obtained solution to similar levels as obtained in the examples presented in Section 6.3, 6.4
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While our network learns a numerical approximation to the R-matrix, it can also be
useful for the reconstruction of analytical solutions using symbolic regression [129, 130].
Alternately, one may try to use the learnt numerical solution for the reconstruction of
the symmetry algebra such as the Yangian and then arrive at the analytical solution.
Remarkably, machine learning is already proving helpful in the analysis of symmetry in
physical systems. In particular, one may verify the presence of a conjectured symmetry
or even automate its search using machine learning [131, 114, 115, 116, 132, 133, 134]. It
would be very interesting to explicate the interplay of our program in this broader line
of investigation.

In addition, the flexibility of our approach would also allow us to implement various
additional symmetries or other restrictions, both at the level of the R-matrix and the
Hamiltonian. It would therefore be very interesting to develop an ‘R-matrix bootstrap’
in the spirit of the two-dimensional S-matrix bootstrap and analyze the interplay between
various symmetries. For example, all 14 families of R-matrices considered in this work
satisfy the condition of braided unitarity and it would be interesting to rediscover them
from the use of braided unitarity and other symmetries without imposing the Yang-Baxter
condition, similar to how integrable two-dimensional S-matrices have been identified in
the S-matrix Bootstrap approach [135, 136, 137].

With mild modifications, we can adapt our architecture to the analysis of Yang-
Baxter equation for the integrable S-matrices in two dimensions. The only new feature
to implement is the analytic structure in the s-plane. It can be naturally realized with
the use of holomorphic networks.

Learning solutions for different classes with the same architecture, we noticed that
the number of epochs needed to reach the same precision varies for different classes while
being roughly the same for the Hamiltonians from the same classes. Thus, it would be
very tempting to use the training of losses to define the complexity of spin chains. Ideally,
we should be able to go beyond the class of integrable models and see that they sit at
the minima of complexity, matching common beliefs that the integrable models are the
“simplest” ones.

7 Summary and outlook

Let us conclude this thesis with a summary of the works presented here and outlook for
the ongoing research directions. Integrability and machine-learning are two sets of very
different tools that have seen applications across fields in physics and mathematics, both
in theory and in experiments. The goal of this thesis was to try to understand aspects of
AdS/CFT duality in certain 3-dimensional backgrounds using integrability techniques,
and to develop ML techniques to search for new integrable models. Besides these works,
we have also presented successful use of ML to learn properties of Lie algebras which are
ubiquitous in theoretical physics.

String theory in AdS backgrounds have provided a rich yet controlled playground to
probe quantum gravity. Integrability assists even further, allowing us to learn properties
of the theory that hold true across entire moduli spaces. Bringing these two together,
AdS3 backgrounds with 16 supersymmetries have been explored in the integrable limit,
wherein a lot of non-perturbative information has been obtained. Unlike in AdS5 and
AdS4 holographic dualities, AdS3 has massless modes of excitations, plus the dual CFTs
are not well-understood. Among other effects, the massless (fermionic) modes lead to a
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degeneracy of protected spectrum on top of the BMN vacuum, which is the ground state
encountered in AdS5 integrability. In section 4, we use algebraic Bethe ansatz to study
these states in various integrable AdS3 backgrounds. We start out by computing some
generic low-magnon massless states, which are generated by acting on the level-1 vacuum
|χ⊗N0⟩ with B1,B3 creation operators which are part of the two component psu(1|1)2c.e.
monodromy matricesMI , I = 1, 3. The transfer matrix eigenstates are obtained by solv-
ing the auxiliary Bethe equation for yI,k, I = 1, 3(while freezing the massless momentum
carrying roots z±k , which are determined by solving equations (2.53)). We then obtain the
protected states in mixed flux AdS3×S3×T4 backgrounds by taking the level-1 magnon-
momenta to zero and solving for the auxiliary Bethe roots, which themselves converge
to special values y = s±. We also compute the protected spectrum in AdS3 × S3 × K3

backgrounds, where K3 is realised as an orbifold of T4. Besides, we also compute the
protected spectrum in mixed-flux AdS3 × S3 × S3 × S1 and its Z2 orbifold.

Recently, the TBA equations have been worked out for ground state in AdS3×S3×T4

background with pure RR flux [128]. It would be interesting to verify that the contour-
deformation trick to access excited state TBA admits these protected states as singular
solutions, just as BMN vacuum is a singular solution to the ground state TBA. Our
analysis was done in mixed flux backgrounds, where the TBA is yet to be worked out. We
are currently working on understanding the dressing factors in mixed flux AdS3×S3×T4

backgrounds and preferred choice of spectral parameter to solve crossing equations for
the same.

A parallel yet complementary set of works involved understanding applicability of
modern machine-learning tools such as neural networks to assist computations in mathe-
matical physics, esp. quantum integrability. The works presented here include employing
NN for classification problems in Lie algebras like tensor product decomposition, and to
search for quantum integrable R-matrices by solving for Yang-Baxter equation. The
former work on Lie algebras showed the ability of NN to supervised learn tensor prod-
uct decomposition of very high-dimensional representation of Lie algebras to reasonably
high accuracies. Other similar works around supervised learning which have been omit-
ted from this thesis include probing properties of polytopes, and Hilbert series. In all
these scenarios, it would be interesting to see if one can generate new mathematical
conjectures for the properties that seem to be better amenable (i.e. high accuracy) to
machine-learning. The latter work on quantum integrability was the first of its kind,
showing how one could search for quantum integrable spin chain models using neural
networks. This work focused on 2-dimensional representations at the spin chain sites,
wherein all the models have been classified using analytic methods. We managed to
recover all the 14 distinct classes of regular difference-form integrable R-matrices with
extremely high precision ( 99% within a compact interval around the origin on the real
line in spectral parameter plane). Furthermore, we have presented a search algorithm to
look for new R-matrices by rediscovering the two distinct classes of 6-vertex integrable
Hamiltonians using K-means clustering. Currently, we are searching for new models in
higher dimensional setting of 9 × 9 and 16 × 16 R-matrices. For this, we are employing
modifications of the methods already discussed in section 6.3, plus employing new tools
like symbolic regression, and new NN architectures. We are also looking at improving
the accuracies by trying new optimisation tools like energy conserving descent. Besides
the higher dimensional searches, we are also looking at other similar applications such
as solving for boundary Yang-Baxter equations, generalised Yang-Baxter equations, etc.
Another interesting direction that we are actively trying to probe as an extension of this
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work, is to search for R-matrices of non-difference form, as well as non-regular R-matrices,
which appear for spin-chains that cease to be nearest neighbour type.

Overall, I believe the works presented here shine some light into the power of integra-
bility in string theory holography, and how modern tools of machine-learning can assist
and accelerate our understanding of this field and others in mathematical physics.

A Derivation of Bethe equations in Zhukovski vari-

ables

In this section, we derive the Bethe equations (4.46) , (4.49). We show this for a single
copy of psu(1|1)2c.e., labelled I = 1. The proof works the same way for the other copy of
psu(1|1)2c.e. (I = 3), and hence the full psu(1|1)4c.e.. The reference state for the psu(1|1)2c.e.
ABA is

|ϕp1 . . . ϕpN0
⟩ . (A.1)

The monodromy matrix M1 is defined as

M1(p0|p⃗) = RLL

0N(x±p0 , x
±
pN

) . . . RLL

01(x±p0 , x
±
p1

), (A.2)

with RLL given in equation (2.33). Above, the auxiliary space carries momentum p0 and
the sites of the physical sites carry momenta p⃗ = {pi}Ni=1.

The auxiliary Bethe equation arises from requiring that the extra term |X⟩ in the
eigenstate condition (4.45) vanish. In order to write these terms explicitly, we need to
use the RTT relation

RLL(x±p0 , x
±
p0′

)M1(p0|p⃗)M1(p′0|p⃗) =M1(p′0|p⃗)M1(p0|p⃗)RLL(x±p0 , x
±
p0′

) , (A.3)

where 0, 0′ label two auxiliary spaces with momenta p0, p0′ . The commutation relations
between operators (A1,B1), and (D1,B1) follow from (A.3) are

A1(p0|p⃗)B1(p0′ |p⃗) =
1

Dp0′p0

B1(p0′ |p⃗)A1(p0|p⃗)−
Ep0′p0

Dp0′p0

B1(p0|p⃗)A1(p0′ |p⃗),

D1(p0|p⃗)B1(p0′ |p⃗) = −
Fp0p0′

Dp0p0′

B1(p0′ |p⃗)D1(p0|p⃗) +
Cp0p0′

Dp0p0′

B1(p0|p⃗)D1(p0′ |p⃗) , (A.4)

where the coefficients in the right-hand side are entries of the R-matrix RLL in equa-
tion (2.33) . Subtracting the second equation from the first one in (A.4) and substituting
the coefficients from equation (2.34), we get

T 1(p0|p⃗)B1(p0′ |p⃗) =
x+0 − x−0′
x−0 − x−0′

√
x−0
x+0
B1(p0′ |p⃗)T 1(p0|p⃗)+

x−0′ − x
+
0′

x−0 − x−0′

√
x−0
x+0

η0
η0′
B1(p0|p⃗)T 1(p0′ |p⃗),

(A.5)
where x±0 , x

±
0′ depend on the auxiliary momenta p0, p0′ respectively via equation (2.27).

As discussed in section 4.2.3 (see footnote 17) it is simplest to keep the mass parameter
of the auxiliary variable non-zero.

The above FCR implies that |X⟩ can be expanded in the basis

|p0, ŷ1,i⟩ ≡ B1(p0)B1(y1,1) · · · B1(y1,i−1)B1(y1,i+1) · · · B1(y1,N1) |ϕp1 · · ·ϕpN0
⟩ (A.6)
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as

|X⟩ =

N1∑
i=1

Mi |p0, ŷ1,i⟩ . (A.7)

The coefficients Mi in equation (A.7) can be obtained by performing the following set
of steps. First, we commute B1(y1,i) through to the front of the string of B operators

by using the FCR B1(p)B1(q) = Fpq

Apq
B1(q)B1(p) which follows from the RTT relation in

equation (A.3). The next step involves commuting the transfer matrix T 1(p0) through
B1(y1,i) and picking up the contribution from the second term on the right-hand side of
equation (A.5) which involves swapping of the auxiliary parameters of T 1 and B1. Next,
we commute the T 1 through the rest of the B1 string of operators without any further
swapping of the auxiliary parameters, thus picking up contribution from the first term
on the right-hand side of equation (A.5). Finally, we act with the T 1 operator on the
pseudo-vacuum.

Following the above steps, we end up with the coefficient Mi of |p0, ŷ1,i⟩ in the expan-
sion of |X⟩ in equation (A.7) as

Mi =

(
i−1∏
j=1

Fq1,jq1,i

Aq1,jq1,i

)(
Cp0q1,i

Dp0q1,i

) N1∏
j ̸=i

(
−
Fq1,iq1,j

Dq1,iq1,j

)
Λ1

0(q1,i|p⃗) , (A.8)

where Λ1
0(q|p⃗) is the eigenvalue of the pseudo-vacuum |ϕp1 · · ·ϕpN0

⟩ under T 1(q|p⃗)

Λ1
0(q|p⃗) =

N0∏
i=1

Aqpi −
N0∏
i=1

Dqpi = 1−
N0∏
i=1

√
x+i
x−i

x−q − x−i
x−q − x+i

. (A.9)

The coefficients Mk will all be zero simultaneously only if Λ1
0(q1,i|p⃗) vanishes

Λ1
0(q1,i|p⃗) = 0, ∀ i = 1, 2, . . . , N1 . (A.10)

Re-labelling the Zhukovski variables x−q1,i = y1,i to match the convention in the main text,
we recover the auxiliary Bethe equation (4.46). Note, the auxiliary Zhukovski variables
x+q1,i can be obtained by using shortening condition in equation (2.25). However, this is

unnecessary for our purpose, as x+q1,i only show up as overall factors in the Bethe states
as discussed in footnote 20.

B N0 = 3, N1 = N3 = 1 state from equation (4.61)

Here, we write down explicitly the highest-weight Bethe state with three sites at level
N1 = N3 = 1, in terms of the basis kets

B1(y∗)B3(y∗) |χp1χp2χp3⟩ ∝ α2 |χ̃p1χp2χp3⟩+ β2 |χp1χ̃p2χp3⟩+ γ2 |χp1χp2χ̃p3⟩
− iαβ

(
|T 1

p1
T 2
p2
χp3⟩+ |T 2

p1
T 1
p2
χp3⟩

)
− iαγ

(
|T 1

p1
χp2T

2
p3
⟩ − |T 2

p1
χp2T

1
p3
⟩
)

− iβγ
(
|χp1T

1
p2
T 2
p3
⟩+ |χp1T

2
p2
T 1
p3
⟩
)
, (B.1)

where coefficients α , β , γ are

α =
η1

y∗ − x+1
, β =

η2
y∗ − x+2

Dq∗p1 , γ =
η3

y∗ − x+3
Dq∗p1Dq∗p2 , (B.2)

with y∗ = x−(q∗) defined in equation (4.60), and ηi , Dq∗p defined in equation (2.22), (2.34)
respectively.
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C Pure RR limit: relativistic ABA

In this appendix, we will discuss the pure RR limit of our results from the main text in
terms of a different spectral parameter γ. This alternate parameterisation manifests the
relativistic invariance present in the pure RR limit, and allows for compact expressions
for the Bethe wavefunctions to be written down. We shall review the psu(1|1)4c.e. ABA
in the relativistic variables and then compute the zero-momentum states that give rise
to the protected spectrum. The subtleties involved with the zero-momentum limit, as
discussed in the main text, are inherited by this alternate parameterisation.

The pure RR massless limit of the psu(1|1)2c.e. R-matrices from equation 2.33,2.35, in
relativistic variable γ, is of difference form

RLL

psu(1|1)2(γ1 − γ2) =


1 0 0 0
0 −b a 0
0 a b 0
0 0 0 −1

 , (C.1)

RL̃L̃

psu(1|1)2(γ1 − γ2) =


1 0 0 0
0 −b −a 0
0 −a b 0
0 0 0 −1

 , (C.2)

with a and b defined in terms of the difference of rapidities γ12 = γ1 − γ2

a(γ1, γ2) = a(γ1 − γ2) = sech
γ1 − γ2

2
≡ sech

γ12
2
,

b(γ1, γ2) = b(γ1 − γ2) = tanh
γ1 − γ2

2
≡ tanh

γ12
2
. (C.3)

The rapidity γ is related with momentum p as

γ = log tan
p

4
. (C.4)

Note the R-matrices in equation (C.1), (C.2) match those in equation 2.33,2.35 only when
both momenta p1(γ1) , p2(γ2) lie in the range between 0 and π. Although it is not going
to be sufficient to build the monodromy matrices for level-matched momenta (since we
are only considering positive momenta for the sites), it is a very similar setup. Later in
the section, we will modify this setup while considering level-matched Bethe states.

Following equation (4.20), the psu(1|1)4c.e. R-matrix is obtained by tensoring the above
two matrices RLL , RL̃L̃. If we ignore the level-matching condition for now, we can use the
the above two R-matrices to build monodromy matrices, and then perform the same steps
for ABA construction as in section 4.2.3 to get the transfer matrix eigenstates. The Bethe
states generated using the operators B1 and B3 (see equation (4.44)), are now labelled
by the Bethe roots in relativistic variables

|γ⃗; β⃗1; β⃗3⟩ ≡
N3∏
i=1

B3(β3,i)

N1∏
j=1

B1(β1,j) |χγ1 ..χγN0
⟩ , (C.5)

where γ⃗ = {γi}, β⃗I = {βI,j} are the momentum-carrying, and auxiliary rapidities. These
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auxiliary roots are constrained to satisfy the Bethe equations

e−iLpk = (−1)N0−1

N0∏
i ̸=k

S2(γkj)

N1∏
j=1

coth
β1,jk

2

N3∏
l=1

coth
β3,lk

2
,

1 =

N0∏
i=1

tanh
β1,ki

2
, k = 1, . . . , N1 ,

1 =

N0∏
i=1

tanh
β3,ki

2
, k = 1, . . . , N3 . (C.6)

Above, we have used the shorthand

βI,jk ≡ βI,j − γk, I = 1, 3 , (C.7)

and S(γ) is the famous Zamolodchikov sine-Gordon scalar factor [138], as shown in [94].
The proof follows from appendix A, with a change of variables.

In the rest of the section, we compute some of the Bethe states for a single psu(1|1)2c.e.
(with RLL as the R-matrix), both at generic and zero momentum. The protected states
are obtained by tensoring these Bethe states with ones coming from the other copy of
psu(1|1)2c.e. ABA (with RL̃L̃ as the R-matrix). To avoid repetition, we will omit this final
step since it works out the same way as in the Zhukovski variables (see section 4.3).

C.1 Level-matched psu(1|1)2c.e. ABA

Here, we modify the above setup to allow negative momenta for the sites. This will
allow us to impose level-matching for the low magnon solutions with N0 = 1, 2, 3, 4,
relevant for our protected states discussion. For two particles with mixed kinematics, i.e.
0 < p1 < π ,−π < p2 < 0, the R-matrix RLℓ

psu(1|1)2(γ1 − γ2) coming from equation (2.33),

again in difference form, is a slight modification of RLL

psu(1|1)2(γ1 − γ2)

RLℓ
psu(1|1)2(γ1 − γ2) =


1 0 0 0
0 −b −ia 0
0 −ia −b 0
0 0 0 1

 , (C.8)

where a, b are defined using equation (C.3), and the rapidity γ2, for negative values of
momentum −π < p2 < 0, is defined as

γ2 ≡ log tan
p2 + 2π

4
. (C.9)

RLℓ (where ℓ denotes L with world-sheet right kinematics) shows up whenever we consider
a site with negative momentum pi < 0. The monodromy matrix is a product of R-
matrices, each of which is either RLL or RLℓ depending on the momenta at the sites

M(γ0|γ⃗) = R
LqN0
0N0

(γ0 − γN0)R
LqN0−1

0N0−1 (γ0 − γN0−1) . . . R
Lq1
01 (γ0 − γ1) , (C.10)

where qi = L , ℓ for momentum pi(γi) > 0 or < 0.
The B operator generating the transfer matrix eigenstates on top of the pseudovacuum

is B1(γ0) from equation (4.39). The auxiliary Bethe equation satisfied by the auxiliary
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roots γ0 = β, for system with k particles in mixed kinematics, is slightly modified with
respect to equation (C.6) (which holds for all sites with positive momenta) by an overall
factor of (−1)k

N0∏
i=1

b(β − γi) = (−1)k . (C.11)

For N0 ⩾ 2, this equation has two common solutions at β = − iπ
2
, iπ

2
which translate

to y = 0,∞ respectively in Zhukovski variable. Expanding the B operator near these
values of rapidity β, it behaves as supercharges of the psu(1|1)2c.e. algebra (similar to
equation (4.52)). Thus, the highest weight Bethe states of the psu(1|1)2c.e. algebra are
the ones without any roots at β = ± iπ

2
. The momentum-carrying Bethe equation does

not see any modification in its form w.r.t equation (C.6), upto the dressing phase which
may get modified. It will still be of difference form in the appropriate variables since the
R-matrix is. We leave its further investigation for future works, as it is irrelevant for our
discussion here36.

C.1.1 N0 = 1

For a single site with rapidity γ1, the auxiliary root γ0 = β satisfying the level-1 Bethe
equation (C.11) gives

b(β − γ1) = 1 (C.12)

which is solved for
β =∞. (C.13)

Thus the two Bethe states at generic rapidity γ1 are

|ϕγ1⟩ , B1(∞) |ϕγ1⟩ ∝ |ψγ1⟩ . (C.14)

Note, the above states are not level-matched for generic γ1. The zero-momentum limit

p→ 0+ ⇒ γ1 → −∞ (C.15)

is special, since the auxiliary Bethe equation is trivially satisfied for all values of β.
Following the discussion from section 4.3, we pick the auxiliary Bethe root β → −∞ in
this limit. Thus, the zero-momentum 1-magnon Bethe states are

|ϕ−∞⟩ , B1(−∞) |ϕ−∞⟩ ∝ |ψ−∞⟩ . (C.16)

Taking tensor product of the above states with ones from the other psu(1|1)2c.e. we recover
states in equation (4.83) , (4.84).

C.1.2 N0 = 2

States with two sites satisfy the level-matching condition 0 < p1 = −p2 < π . Using
equation (C.10), the monodromy matrix is

M = RLℓ(γ0 − γ2)RLL(γ0 − γ1), γ2 = −γ1 = γ. (C.17)

36It will be a reduction of the known phase from [53].
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The auxiliary Bethe equation for the rapidity γ0 = β is obtained by substituting k =
1 , N = 2 in equation (C.11)

2∏
i=1

b(β − γi) = −1 , (C.18)

with solutions at

β = ± iπ
2
. (C.19)

The corresponding Bethe eigenstates are

|ϕγϕ−γ⟩ ,
B1( iπ

2
) |ϕγϕ−γ⟩ ∝ |ϕγψγ⟩+ |ψγϕγ⟩ ,

B1(− iπ
2

) |ϕγϕ−γ⟩ ∝ |ϕγψγ⟩ − |ψγϕγ⟩ ,
B1( iπ

2
)B1(− iπ

2
) |ϕγϕ−γ⟩ ∝ |ψγψ−γ⟩ .

(C.20)

These states organise into a long (2|2)-dimensional multiplet of the psu(1|1)2c.e. algebra.
Next, we look at the zero-momentum limit. Following the discussion in section 4.3,

the auxiliary roots are located at rapidities β = ±∞. The Bethe states at these roots are

lim
γ→−∞

|ϕγϕ−γ⟩ ∝ |ϕ−∞ϕ∞⟩ ,

lim
γ→−∞

B1(∞) |ϕγϕ−γ⟩ ∝ |ψ−∞ϕ∞⟩ ,

lim
γ→−∞

B1(−∞) |ϕγϕ−γ⟩ ∝ |ϕ−∞ψ∞⟩ ,

lim
γ→−∞

B1(−∞)B1(∞) |ϕγϕ−γ⟩ ∝ |ψ−∞ψ∞⟩ ,

(C.21)

Since the auxiliaries generating the Bethe states are at ±∞ (and not at ±iπ
2
), these states

are no longer generated by the action of the supercharges and each of the four states are
highest weight states of the SUSY algebra.

C.1.3 N0 = 3

The level-matched rapidities γi(pi) for three sites satisfy can be chosen as

γ1 = log tan
p1
4
, γ2 = log tan

p2
4
, γ3 = log tan

p3 + 2π

4
, (C.22)

with

γ3 = log
sinh −γ1−γ2

2

cosh γ1−γ2
2

. (C.23)

In other words by selecting p1 > p2 > 0 and p3 < 0. With this choice, the monodromy
matrix in relativistic variables is a product of two RLL and one RLℓ

M(γ0|γ⃗) = RLℓ(γ0 − γ3)RLL(γ0 − γ2)RLL(γ0 − γ1) . (C.24)

The auxiliary Bethe root β satisfies the Bethe equation

3∏
i=1

b(β − γi) = −1 , (C.25)
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which has solutions

β = −∞ ,± iπ
2
. (C.26)

Dropping the γi subscripts for brevity, and introducing shorthand

γ±i ≡ γi ±
iπ

2
(C.27)

the corresponding N1 = 1 Bethe states are

B1(−∞) |ϕϕϕ⟩ ∝ ie−
γ3
2 |ϕϕψ⟩+ e−

γ2
2 |ϕψϕ⟩ − e−

γ1
2 |ψϕϕ⟩ ,

B1( iπ
2

) |ϕϕϕ⟩ ∝ i sech
(

γ−
1

2

)
|ϕϕψ⟩ − sech

(
γ−
2

2

)
e−

ip2
2 |ϕψϕ⟩ − sech

(
γ−
3

2

)
e−

ip3
2 |ψϕϕ⟩ ,

B1(− iπ
2

) |ϕϕϕ⟩ ∝ i sech
(

γ+
1

2

)
|ϕϕψ⟩ − sech

(
γ+
2

2

)
e

ip2
2 |ϕψϕ⟩ − sech

(
γ+
3

2

)
e

ip3
2 |ψϕϕ⟩ .

(C.28)
The N1 = 2 Bethe states are

B1( iπ
2

)B1(−∞) |ϕϕϕ⟩ ∝ sech
(

γ−
1

2

)
|ϕψψ⟩+ sech

(
γ−
2

2

)
e

ip1
2 |ψϕψ⟩+ i sech

(
γ−
3

2

)
e−

ip3
2 |ψψϕ⟩

B1(−iπ
2

)B1(−∞) |ϕϕϕ⟩ ∝ sech
(

γ+
1

2

)
|ϕψψ⟩+ sech

(
γ+
2

2

)
e

−ip1
2 |ψϕψ⟩+ i sech

(
γ+
3

2

)
e

ip3
2 |ψψϕ⟩

B1( iπ
2

)B1(− iπ
2

) |ϕϕϕ⟩ ∝ e−
γ1
2 |ϕψψ⟩+ e−

γ2
2 |ψϕψ⟩+ ie−

γ3
2 |ψψϕ⟩

(C.29)

while the N1 = 3 state is

B1( iπ
2

)B1(− iπ
2

)B1(−∞) |ϕϕϕ⟩ ∝ |ψψψ⟩ . (C.30)

Care needs to be taken in the normalisation of states generated by B1( iπ
2

)B1(− iπ
2

),
since naively, this product is zero for generic values of rapidities γi. Such zeros did not
arise in the main text, because we kept the auxiliary variable in a massive representa-
tion and we dropped y+-dependent normalisation factors (see footnote 20 for details).
Normalising the states carefully by removing overall factors of the type mentioned in
footnote 20 gives the correct non-vanishing eigenstates of the transfer matrix.

In the zero-momentum limit of the above N0 = 3 Bethe states the magnon rapidities
approach γ1 → −∞, and γ2 = −γ3 → −∞, while the auxiliary roots end up at β = −∞,
−∞ ,+∞.

C.1.4 N0 = 4

For N0 = 4 sites with two positive and two negative momenta (labelled a, i respectively),
the level-matched rapidities γi(pi) satisfy

γa = log tan
pa
4
, γi = log tan

pi + 2π

4
, s.t. γ4 = log

−eγ1 − eγ2 − eγ3 + eγ1+γ2+γ3

1− eγ1+γ2 − eγ2+γ3 − eγ1+γ3
,

(C.31)
with a = 1, 2, and i = 3, 4. The monodromy matrix is

M(γ0|γ⃗) = RLℓ(γ0 − γ4)RLℓ(γ0 − γ3)RLL(γ0 − γ2)RLL(γ0 − γ1) . (C.32)

The auxiliary Bethe equation and its solutions for level-matched rapidities are

4∏
i=1

b(β − γi) = 1 ⇒ β = ± iπ
2
,±∞ . (C.33)
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Using these we generate 1, 4, 6, 4, and 1 Bethe states with 0, 1, 2, 3, and 4 auxiliary roots
that span the 16 dimensional space of states. As in the N0 = 3 case, there are spurious
zeroes one needs to take care of, arising from the product of B operators at iπ

2
, − iπ

2
.

The zero-momentum limit is approached by taking γ1 = −γ3 = −∞, followed by
γ2 = −γ4 = −∞. The four auxiliary roots acting on the zero modes are at β =
−∞ ,−∞ ,+∞ ,+∞.

D Coordinate Bethe ansatz

Here we will briefly discuss how the coordinate Bethe ansatz can be used to obtain the
wave functions we found using the algebraic Bethe ansatz in the above text. The con-
struction we present here is based on the derivation presented in [103, 64] but formulated
in a language similar to the free fermion construction of [139].

For simplicity we will restrict ourselves to a system with psu(1|1)2c.e. symmetry and
consider excitations transforming in the ρL representation, so that we have a boson ϕ
and a fermion ψ. As in the algebraic Bethe ansatz, our starting point is a reference state
where all excitations are of highest weight in their representations

|ϕp1 · · ·ϕpK ⟩ . (D.1)

As in equation (4.23), this state can be made into an energy eigenstate by summing over
all the permutations of the momenta by repeatedly acting with the S matrix

|Ψ(σ1, . . . , σK)⟩ =
∑
τ∈SK

ei(pτ1σ1+···+pτKσK)Sτ |ϕp1 · · ·ϕpK ⟩ . (D.2)

Here Sτ is a component of the full K-particle S matrix which permutes the momenta
pk → pτk . Factorised scattering implies that this S matrix can be written as a product
of two-particle S matrices, which have the action (see section 4.2.1)

S |ϕpϕq⟩ = Apq |ϕqϕp⟩ . (D.3)

We impose periodicity through the condition

|Ψ(σ1, . . . , σK)⟩ = |Ψ(σ2, . . . , σK , σ1 + L)⟩ , (D.4)

Collecting terms with the same exponential prefactor, we can compare for example the
term coming from the trivial permutation on the left-hand side, with the term coming
from the cyclic permutation (K · · · 21) on the right-hand side, as illustrated in figure 23.
The above equality then leads to the condition

eip1L
∏
j ̸=1

Ap1pj = 1. (D.5)

In order to describe state which also contain ψ excitations we introduce the creation
operator Qy which acts by

Qy |ϕp⟩ =
ηp

y − x+p
|ψp⟩ , Qy |ψp⟩ = 0, (D.6)
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σ1 σ2 σ3 σ4 σ5 ··· σK σ1+L

1 2 3 4 5 ··· KIdentity

2 3 4 5 ··· K 1(K · · · 21)

Figure 23: The two configurations used to derive equation (D.5) from equation (D.4).
The circled numbers represent the excitations ϕp1 , ϕp2 , . . . , ϕpK . To find equation (D.5)
we pick out the identity permutation, as in the middle line of the figure, from the state
on the left-hand side of (D.4), and the permutation (K · · · 21), as in the last line of the
figure, from the state on the right-hand side.

with the coproduct

∆(Qy) = Qy ⊗ 1 +

√
x+p
x−p

y − x−p
y − x+p

⊗Qy. (D.7)

The operator Qy interpolates between the supercharges QL (for y = ∞) and Q̄R (for
y = 0), as can be seen from equations (2.19) and (2.21), and satisfies the relations37

[Qy,Si,i+1] = 0, {Qy1 ,Qy2} = 0. (D.8)

The first relation above in particular means that

Si,i+1Qy |ϕp1 · · ·ϕpiϕpi+1
· · ·ϕK⟩ = Apipi+1

Qy |ϕp1 · · ·ϕpi+1
ϕpi · · ·ϕK⟩ . (D.9)

We can now build excited states by acting with some number of Qy on |Ψ(σ1, . . . , σK)⟩.
Since Qy commutes with the two-particle S matrix it does not matter if we act with it
before or after summing over all permutations.

Adding excitations to the reference state changes the quantisation condition on the
momenta pi. We consider the same types of terms as above, with a trivial permutation
on one side and the permutation (K · · · 21) on the other side. Let us first look at a
term where no Qy operator acts on ϕp1 . On the right hand side the Qys do not have to
commute through ϕp1 which means we have an extra phase

∏
i

√
x−p1
x+p1

yi − x+p1
yi − x−p1

, (D.10)

as illustrated in figure 24a. Hence we find that periodicity implies the condition

eip1L
∏
j ̸=1

Ap1pj

∏
i

√
x−p1
x+p1

x+p1 − yi
x−p1 − yi

= 1. (D.11)

Now consider a term where Qy1 acts on ϕp1 . The extra factor on the right hand side then
takes the form

∏
i ̸=1

√
x−p1
x+p1

yi − x+p1
yi − x−p1

∏
j ̸=1

√
x+pj
x−pj

y1 − x+pj
y1 − x−pj

=
∏
i

√
x−p1
x+p1

yi − x+p1
yi − x−p1

∏
j

√
x+pj
x−pj

y1 − x+pj
y1 − x−pj

(D.12)

37Here Si,i+1 is the two-particle S matrix acting on any two neighbouring excitations.

93



1 2 3 4 5 ··· K

D11D21 D12D22 D23 D24

Q1 Q2

2 3 4 5 ··· K 1

D12D22 D23 D24

Q1 Q2

Extra phase:∏
i

D−1(yi, x
±
1 )

(a) Extra phase for creation operators not acting on ϕp1 .

1 2 3 4 5 ··· KQ1

2 3 4 5 ··· K 1

D12 D13 D14 D15 D1K

Q1

Extra phase:∏
j ̸=1

D(y1, x
±
j )

(b) Extra phase for creation operators acting on ϕp1 .

Figure 24: Illustration of the extra phases in the nested Bethe equations (D.14). The
circled numbers represent the excitations ϕp1 , ϕp2 , . . . , ϕpK and the symbols Qi represent
the creation operator Qyi which acts on the following excitation to the right, as indicated
by the thick red circles. Commuting the operator Qyi through the excitation ϕpj gives a

factor Dij =
√
x+j /x

−
j (yi − x−j )/(yi − x+j ).

where the first product has the same origin as in the previous case (for all Qyi with
i ̸= 1), and the second factor comes from commuting Qy1 through all ϕpj with j ̸= 1, see
figure 24b. Compatibility of the resulting equations for p1 then imposes the additional
constraint

1 =
∏
j

√
x+pj
x−pj

y1 − x+pj
y1 − x−pj

. (D.13)

Above we have considered the momentum p1 and the auxiliary parameter y1, but the
same conditions of course apply for any other parameters and we find that the Bethe
equations take the form

eipkL =
∏
j ̸=1

A−1
pkpj

∏
j

√
x+pk
x−pk

x−pk − yj
x+pk − yj

, 1 =
∏
j

√
x+pj
x−pj

yk − x+pj
yk − x−pj

. (D.14)

These equations exactly match the psu(1|1)2c.e. subsector (i.e., setting N3 = 0) of the
Bethe equations (4.49), and (4.46).

It is now straight forward to obtain wave functions of excited states. For example,
the action of a single Qy operator on reference states with two and three excitations are
given by

Qy |ϕp1ϕp2⟩ =
η1

y − x+1
|ψp1ϕp2⟩+

η2
y − x+2

y − x−1
y − x+1

√
x+1
x−1
|ϕp1ψp2⟩ , (D.15)
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and

Qy |ϕp1ϕp2ϕp3⟩ =
η1

y − x+1
|ψp1ϕp2ϕp3⟩+

η2
y − x+2

y − x−1
y − x+1

√
x+1
x−1
|ϕp1ψp2ϕp3⟩

+
η3

y − x+3
y − x−1
y − x+1

y − x−2
y − x+2

√
x+1
x−1

x+2
x−2
|ϕp1ϕp2ψp3⟩ .

(D.16)

Comparing these expressions with equations (4.54) and (4.62) we see that the states
obtained using the Qy operator exactly match those obtained using the B operator, up
to normalisation.38 Similarly, we can check that the two formulation lead to identical
wave functions also for states with longer reference states and more creation operators.39

E 2D integrable difference form spin chain classifi-

cation

In this sub-section, we list our trained results for each of the 14 gauge-inequivalent inte-
grable Hamiltonian classes of difference form and the corresponding R-matrices. Amongst
the XYZ type models, the simplest solution is a diagonal 4-vertex model with Hamilto-
nians and R-matrices as follows:

H4v =


a1 0 0 0
0 b1 0 0
0 0 b2 0
0 0 0 a2

 ↔ R4v(u) =


ea1u 0 0 0

0 0 eb2u 0
0 eb1u 0 0
0 0 0 ea2u

 (E.1)

Figure 25 plots the training curve for R-matrix components as ratios with respect to
(00) component, against the analytic functions for parameters a1 = 0.9, b1 = 0.4, b2 =
0.6, a2 = 0.75.

In 6-vertex models, we have two distinct classes depending on whether the Hamilto-
nian entries H00 and H33 are equal or not. In the first case, the R-matrix R6v,1(u) and
its associated Hamiltonian H6v,1 are given by

H6v,1 =


a1 0 0 0
0 b1 c1 0
0 c2 b2 0
0 0 0 a1

 ↔ R6v,1(u) =


R00

6v,1(u) 0 0 0
0 R11

6v,1(u) R12
6v,1(u) 0

0 R21
6v,1(u) R22

6v,1(u) 0
0 0 0 R33

6v,1(u)


(E.2)

38The extra signs in equations (4.54) and (4.62) compared to equations (D.15) and (D.16) appear
because the psu(1|1)4c.e. highest weight excitation χ is a fermion, while we here consider reference states
with a bosonic excitation ϕ.

39The difference in normalisation of a general state is exactly given by the factor discussed in foot-
note 20 on page 47.
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Figure 25: (a) 4-vertex model, with H2 parameters a1 = 0.9, b1 = 0.4, b2 = 0.6, a2 = 0.75,
(b) errors

where

R00
6v,1(u) = R33

6v,1(u) = e(b1+b2)u/2(cosh (ωu) +
2a1 − b1 − b2

2ω
sinh (ωu))

R11
6v,1(u) =

c2
ω
e(b1+b2)u/2 sinh (ωu)

R12
6v,1(u) = eb2u

R21
6v,1(u) = eb1u

R22
6v,1(u) =

c1
ω
e(b1+b2)u/2 sinh (ωu) , ω =

√
(2a1 − b1 − b2)2 − 4c1c2

2
(E.3)

Figure 12 gives a representative training vs actual plot for this class.
For the case H00 ̸= H33, the R-matrix R6v,2(u) is given by

H6v,2 =


a1 0 0 0
0 b1 c1 0
0 c2 b2 0
0 0 0 a2

 ↔ R6v,2(u) =


R00

6v,2(u) 0 0 0
0 R11

6v,2(u) R12
6v,2(u) 0

0 R21
6v,2(u) R22

6v,2(u) 0
0 0 0 R33

6v,2(u)


(E.4)

where a2 = b1 + b2 − a1 and

R00
6v,2(u) = e(a1+a2)u/2(cosh (ωu) +

a1 − a2
2ω

sinh (ωu))

R11
6v,2(u) =

c2
ω
e(a1+a2)u/2 sinh (ωu)

R12
6v,2(u) = eb2u

R21
6v,2(u) = eb1u

R22
6v,2(u) =

c1
ω
e(a1+a2)u/2 sinh (ωu)

R33
6v,2(u) = e(a1+a2)u/2(cosh (ωu)− a1 − a2

2ω
sinh (ωu)) , ω =

√
(a1 − a2)2 − 4c1c2

2
(E.5)
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Figure 26 gives a representative training vs actual plot for Hamiltonian parameters a1 =
1., a2 = 0.2, b1 = 0.45, b2 = 0.75, c1 = 0.4, c2 = 0.6. Next we have the 7-vertex models,
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Figure 26: (a) 6-vertex model with Hamiltonian of type H6v,2, with parameters a1 =
1, a2 = 0.2, b1 = 0.45, b2 = 0.75, c1 = 0.4, c2 = 0.6, (b)errors

which consists of two classes of solution distinguished by the Hamiltonian entries H00,
H33 being equal or not. In the first case, we have

H7v,1 =


a1 0 0 d1
0 a1 + b1 c1 0
0 −c1 a1 − b1 0
0 0 0 a1

↔ R7v,1(u) =


R00

7v,1(u) 0 0 R03
7v,1(u)

0 R11
7v,1(u) R12

7v,1(u) 0
0 R21

7v,1(u) R22
7v,1(u) 0

0 0 0 R33
7v,1(u)


(E.6)

where

R00
7v,1(u) = R33

7v,1(u) = ea1u cosh (c1u)

R11
7v,1(u) = −R22

7v,1(u) = ea1u sinh (c1u)

R12
7v,1(u) = e(a1−b1)u

R21
7v,1(u) = e(a1+b1)u

R03
7v,1(u) = − d1

2b1
(e(a1−b1)u − e(a1+b1)u) (E.7)

Figure 27 plots the predicted R-matrix components as ratios with respect to the (12)
component against the above analytic results, and their differences for a generic choice
of parameters a1 = 1, b1 = 0.45, c1 = 0.6, d1 = 0.75.
In the second case for H00 ̸= H33, we have

H7v,2 =


a1 0 0 d1
0 a1 − c2 c1 0
0 c2 a1 − c1 0
0 0 0 a2

↔ R7v,2(u) =


R00

7v,2(u) 0 0 R03
7v,1(u)

0 R11
7v,2(u) R12

7v,1(u) 0
0 R21

7v,2(u) R22
7v,1(u) 0

0 0 0 R33
7v,1(u)


(E.8)
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Figure 27: (a) 7-vertex model with Hamiltonian of type H7v,1, with parameters a1 =
1, b1 = 0.45, c1 = 0.6, d1 = 0.75, (b)errors

where a2 = a1 − c1 − c2 and

R00
7v,2(u) =

e(a1−
c1+c2

2
)u

c1 − c2
((c1 − c2) cosh (

c1 − c2
2

u) + (c1 + c2) sinh (
c1 − c2

2
u))

R11
7v,2(u) =

2c2
c1 − c2

e(a1−
c1+c2

2
)u sinh (

c1 − c2
2

u)

R22
7v,2(u) =

2c1
c1 − c2

e(a1−
c1+c2

2
)u sinh (

c1 − c2
2

u)

R12
7v,2(u) = e(a1−c1)u

R21
7v,2(u) = e(a1+c2)u

R03
7v,2(u) =

2d1
c1 − c2

e(a1−
c1+c2

2
)u sinh (

c1 − c2
2

u)

R33
7v,2(u) =

e(a1−
c1+c2

2
)u

c1 − c2
((c1 − c2) cosh (

c1 − c2
2

u)− (c1 + c2) sinh (
c1 − c2

2
u)) (E.9)

Figure 28 plots the predicted R-matrix components as ratios with respect to the (12)
component against the above analytic results, and their differences for a generic choice
of parameters a1 = 1, c1 = 0.45, c2 = 0.75, d1 = 0.5.

8-vertex models have 3 gauge-inequivalent classes labelled H8v,i, i = 1, 2, 3. One of
these models, namely H8v,1, is a generalisation of the XYZ model

H8v,1 =


a1 0 0 d1
0 b1 c1 0
0 c1 b1 0
d2 0 0 a1

 ↔ R8v,1(u) =


R00

8v,1(u) 0 0 R03
8v,1(u)

0 R11
8v,1(u) R12

8v,1(u) 0
0 R21

8v,1(u) R22
8v,1(u) 0

R30
8v,1(u) 0 0 R33

8v,1(u)


(E.10)
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Figure 28: (a) 7-vertex model with Hamiltonian of type H7v,2, with parameters a1 =
1, c1 = 0.45, c2 = 0.75, d1 = 0.5, (b)errors

where

R00
8v,1(u) = R33

8v,1(u) =
sn(u+ 2η,m)

sn(2η,m)
eb1u

R11
8v,1(u) = R22

8v,1(u) =
sn(u,m)

sn(2η,m)
eb1u

R12
8v,1(u) = R21

8v,1(u) = eb1u

R03
8v,1(u) =

√
d1
d2

√
m sn(u+ 2η,m)sn(u,m)eb1u

R30
8v,1(u) =

√
d2
d1

√
m sn(u+ 2η,m)sn(u,m)eb1u (E.11)

with Hamiltonian coefficients given by

a1 = b1 +
cn(2η,m)dn(2η,m)

sn(2η,m)
, c1 =

1

sn(2η,m)
,

d1 =
√
mδ1 sn(2η,m) , d2 =

√
mδ2 sn(2η,m) (E.12)

for free parameters b1, η,m, δ1, δ2. Figure 29 plots the predicted R-matrix components as
ratios with respect to the (12) component against the above analytic results, and their
differences for a generic choice of parameters b1 = 0.4, η = 0.8,m = 0.5, δ1 = 1.3, δ2 = 0.7.

The second class of 8-vertex XYZ-type solution has Hamiltonian H8v,2 and R-matrix
R8v,2(u) defined as follows

H8v,2 =


a1 0 0 d1
0 b1 c1 0
0 c1 b1 0
d2 0 0 2b1 − a1

↔ R8v,2(u) =


R00

8v,2(u) 0 0 R03
8v,2(u)

0 R11
8v,2(u) R12

8v,2(u) 0
0 R21

8v,2(u) R22
8v,2(u) 0

R30
8v,2(u) 0 0 R33

8v,2(u)


(E.13)
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Figure 29: (a) 8-vertex model with Hamiltonian of type H8v,1, with parameters b1 =
0.4, η = 0.8,m = 0.5, δ1 = 1.3, δ2 = 0.7, (b)errors

where

R00
8v,2(u) = (

cn(u,m)

dn(u,m)
+

sn(u,m)cn(2η,m)

sn(2η,m)
)eb1u

R11
8v,2(u) = R22

8v,1(u) =
sn(u,m)

sn(2η,m)
eb1u

R12
8v,2(u) = R21

8v,1(u) = eb1u

R03
8v,2(u) =

δ1
β1

sn(u,m)cn(u,m)

dn(u,m)sn(2η,m)
eb1u

R30
8v,2(u) =

δ2
β1

sn(u,m)cn(u,m)

dn(u,m)sn(2η,m)
eb1u

R33
8v,2(u) = (

cn(u,m)

dn(u,m)
− sn(u,m)cn(2η,m)

sn(2η,m)
)eb1u (E.14)

with the Hamiltonian coefficients given by

a1 = b1 +
cn(2η,m)

sn(2η,m)
, c1 =

1

sn(2η,m)
, d1 =

δ1
β1sn(2η,m)

, d2 =
δ2

β1sn(2η,m)
(E.15)

m =
δ1δ2

α2
1 − β2

1

, cn(2η,m) =
α1

β1
, sn(2η,m) =

√
1− α2

1

β2
1

(E.16)

for free parameters b1, α1, β1, δ1, δ2. Figure 30 plots the predicted R-matrix components
as ratios with respect to the (12) component against the above analytic results, and their
differences for a generic choice of parameters b1 = 0.4, α1 = 0.5, β1 = 0.7, δ1 = 0.3, δ2 =
0.2.
The third class of 8-vertex XYZ-type solution has Hamiltonian H8v,3 and R-matrix
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Figure 30: (a) 8-vertex model with Hamiltonian of type H8v,2, with parameters b1 =
0.4, α1 = 0.5, β1 = 0.7, δ1 = 0.3, δ2 = 0.2, (b)errors

R8v,3(u) defined as follows

H8v,3 =


a1 0 0 d1
0 a1 −b1 0
0 b1 a1 0
d2 0 0 a1

↔ R8v,3(u) =


R00

8v,3(u) 0 0 R03
8v,3(u)

0 R11
8v,3(u) R12

8v,3(u) 0
0 R21

8v,3(u) R22
8v,3(u) 0

R30
8v,3(u) 0 0 R33

8v,3(u)


(E.17)

where

R00
8v,3(u) = R33

8v,1(u) =
cosh (b1u)

cos (
√
d1d2u)

ea1u

R11
8v,3(u) = −R22

8v,1(u) =
sinh (b1u)

cos (
√
d1d2u)

ea1u

R12
8v,3(u) = R21

8v,1(u) = ea1u

R03
8v,3(u) =

√
d1
d2
ea1u tan (

√
d1d2u)

R30
8v,1(u) =

√
d2
d1
ea1u tan (

√
d1d2u) (E.18)

Figure 31 plots the predicted R-matrix components as ratios with respect to the (12)
component against the above analytic results, and their differences for a generic choice
of parameters a1 = 1, b1 = −0.45, d1 = 0.6, d2 = 0.75.

For non-XYZ type models, the 6 gauge-inequivalent Hamiltonians are of the form

Hclass−1 =


0 a1 a2 0
0 a5 0 a3
0 0 −a5 a4
0 0 0 0

 , Hclass−2 =


0 a2 a3 − a2 a5
0 a1 0 a4
0 0 −a1 a3 − a4
0 0 0 0

 ,
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Figure 31: (a) 8-vertex model with Hamiltonian of type H8v,3, with parameters a1 =
1, b1 = −0.45, d1 = 0.6, d2 = 0.75, (b)errors

Hclass−3 =


−a1 (2a1 − a2)a3 (2a1 + a2)a3 0

0 a1 − a2 0 0
0 0 a1 + a2 0
0 0 0 −a1

 , Hclass−4 =


a1 a2 a2 a3
0 −a1 0 a4
0 0 −a1 a4
0 0 0 a1



Hclass−5 =


a1 a2 −a2 0
0 −a1 2a1 a3
0 2a1 −a1 −a3
0 0 0 a1

 , Hclass−6 =


a1 a2 a2 0
0 −a1 2a1 −a2
0 2a1 −a1 −a2
0 0 0 a1

 (E.19)

Corresponding R-matrices are

Rclass−1(u) =


1 a1(ea5u−1)

a5

a2(ea5u−1)
a5

(a1a3+a2a4)

a25
(cosh (a5u)− 1)

0 0 e−a5u a4(1−e−a5u)
a5

0 ea5u 0 a3(1−e−a5u)
a5

0 0 0 1

 (E.20)

Rclass−2(u) = uP (
a1

sinh(a1u)
+Hclass−5 +

tanh(a1u)

a1
H2

class−5) , P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


(E.21)

Rclass−3(u) =


e−a1u a3(e

(a1−a2)u − e−a1u) a3(e
(a1+a2)u − e−a1u) 0

0 0 e(a1+a2)u 0
0 e(a1−a2)u 0 0
0 0 0 e−a1u

 (E.22)

Rclass−4(u) =


ea1u a2 sinh (a1u)

a1

a2 sinh (a1u)
a1

ea1u(a2a4+a1a3 coth (a1u)) sinh
2 (a1u)

a21

0 0 e−a1u a4 sinh (a1u)
a1

0 e−a1u 0 a4 sinh (a1u)
a1

0 0 0 ea1u

 (E.23)
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Rclass−5(u) = (1− a1u)


2a1u+ 1 a2u −a2u a2a3u

2

0 2a1u 1 −a3u
0 1 2a1u a3u
0 0 0 2a1u+ 1

 (E.24)

Rclass−6(u) = (1− a1u)


2a1u+ 1 a2u(2a1u+ 1) a2u(2a1u+ 1) −a22u2(2a1u+ 1)

0 2a1u 1 −a2u(2a1u+ 1)
0 1 2a1u −a2u(2a1u+ 1)
0 0 0 2a1u+ 1


(E.25)

In the class-2 solution above, the non-zero R-matrix components are explicitly given
by

R00
class−2(u) = R33

class−2(u) =
a1u

sinhu

R01
class−2(u) = a2u(1 + tanh (

a1u

2
)) ,

R02
class−2(u) = (a2 − a3)u(−1 + tanh (

a1u

2
))

R03
class−2(u) = a5u(1 +

((a4 − a3)(a2 − a3) + a2a4) tanh a1u
2

a1a5
)

R12
class−2(u) = a1u(−1 +

1

sinh(a1u)
+ tanh

a1u

2
)

R13
class−2(u) = (a4 − a3)u(−1 + tanh (

a1u

2
))

R21
class−2(u) = a1u(1 +

1

sinh(a1u)
+ tanh

a1u

2
)

R23
class−2(u) = a4u(1 + tanh (

a1u

2
)) (E.26)

Amongst the above non-XYZ type models, we have already looked into the training for
Class 1 model in section 6.3. Figure 32, 33, 34 plot the training vs actual R-matrix
components for classes 2,3,4, class 5, and class 6 respectively, with generic Hamiltonian
parameters. Also we note that allowing for complex parameters results in generically
complex R-matrices. We compare the predictions against the actual formulae by taking
ratios with respect to the real part of the (00) component for classes 2-5, and (12)
component for class 6.

F Designing the Neural Network

We begin with an overview of the architecture of our neural network solver, as well as
details of the hyperparameters with which the network is trained. Our starting point is
the close analogy between our problem of machine learning R-matrices by imposing con-
straints and the design of the Siamese Neural Networks [140, 141]. These were designed
to function in settings where the canonical supervised learning approach of (3.5), (3.6)
for classification becomes infeasible due to the large number of target classes {y} and the
paucity of training examples {xα} corresponding to each class yα. In such a situation,
one may instead define a similarity relation

xα1 ∼ xα2 ⇐⇒ y (xα1) = y (xα2) , (F.1)
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Figure 32: (a,b) class 2, with H2 parameters a1 = −0.6, a2 = 0.381 + 0.123 i, a3 =
0.447 i, a4 = 0.7 i, a5 = −0.3 i: real and imaginary parts, (c,d) class 3, with H2 pa-
rameters a1 = 1, a2 = 0.5, a3 = 0.7: real and imaginary parts, (e,f) class 4, with H2

parameters a1 = 0.5, a2 = −0.5 i, a3 = 0.5, a4 = −0.5: real and imaginary parts
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Figure 33: (a,b) class 5, with H2 parameters a1 = −0.5, a2 = −0.5 i, a3 = −0.5 i: real
and imaginary parts
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Figure 34: (a,b) class 6, with H2 parameters a1 = −0.4, a2 = −0.6 i: real and imaginary
parts
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x1
x2 ϕ (x)

d (xa, xb) ≈ 0

ϕ

Figure 35: Visualizing the map ϕ which is learnt by the Siamese architecture. The points
x1 and x3 are similar to each other while x2 is dissimilar to both of them.

and train the neural network to learn a function ϕ (x) : RD → Rd such that the Euclidean
distance between representatives ϕ (x) of two input vectors x1, x2 that are similar to each
other is small, while the distance between dissimilar data is large. Schematically,

d (xa, xb) = |ϕ (xa)− ϕ (xb)|2 ≈ 0 ⇐⇒ xa ∼ xb . (F.2)

This is visualized in Figure 35.
There are many loss functions by which such networks may be trained, see for example

[140, 141, 142, 143]. For definiteness, we mention the contrastive loss function of [140,
141], given by

L = Y d (x1, x2) + (1− Y ) max (ro − d (x1, x2) , 0) , (F.3)

where Y = 1 if x1 ∼ x2 and Y = 0 otherwise. Clearly this loss function causes the network
to learn a function ϕ such that similar inputs x are clustered together while dissimilar
inputs are pushed at least a distance ro apart. This therefore realizes our naive criterion
for ϕ laid out in Equation (F.2). We also see very explicitly that the loss function in
Equation (F.3) does not directly depend on the values y in contrast to Equation (3.5).
Instead, the network is trained to learn a function ϕ (x) which obeys a property which is
not given point-wise for each input x but instead is expressed as a non-linear constraint
(F.2) on ϕ (x) evaluated at two points x1 and x2.

F.1 The Neural Network Architecture and Forward Propaga-
tion

We now provide some more details about our implementation of R (u) and the training
done to converge to solutions of the Yang-Baxter equation (1.26) consistent with addi-
tional requirements such as regularity (1.27). As already mentioned in Section 6.2, each
matrix element Rij is decomposed into the sum aij + i bij which are individually modeled
by MLPs. In principle each MLP is independent of the rest and can be individually de-
signed. We shall however take all MLPs to contain two hidden layers of 50 neurons each,
followed by a single output neuron which is linear activated 40. The possible activations

40One might also construct an alternate formulation of the neural network where a single MLP of the
kind shown in Figure 1 accepts a real input u and outputs all the requisite real scalar functions that
comprise R (u). So far we have observed that such a network does not perform as well as our current
formulation of independent neural networks for each real function. Nonetheless, it is possible that this
formulation may eventually prove competitive with our current one and the question remains under
investigation currently.
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Figure 36: Visualizing the forward propagation of the neural network R (u). This has
a very strong parallel to Figure 35, with the function R (u) playing the role of the map
ϕ. The only difference is that R (u) also has additional constraints on R (0) and R′ (0)
which are unique to our problem.

for the hidden layers are compared in Appendix F.2 below. To proceed further, note that
our loss function involves a term (6.5) which takes arguments R (u), R (v) and R (u− v)
where u, v are valued in Ω. This clearly has a very strong parallel with the Siamese
Networks introduced above. At least intuitively, one may regard our problem as training
a ‘triplet’ of identical neural networks R to optimize the loss function (6.5). In addition
however, we also have to train the function on loss functions such as (6.10) and (6.11).
These constraints, along with the Siamese schematic shown in Figure 35 motivate our
design visualized in Figure 36. During the forward propagation we sample a minibatch of
u and v values, from which the corresponding u−v is constructed. Next, the R matrix is
constructed at u, v and u− v via Equation (6.4). We also evaluate R (0) and R′ (0) thus
completing the forward propagation. Next, we compute the losses (6.5), (6.10) and (6.11)
as well as possibly (6.13). The loss function is trained on by using the Adam optimizer
[72], with an initial learning rate η of 10−3 which is annealed to 10−8 in steps of 10−1 by
monitoring the saturation in the Yang-Baxter loss computed for the validation set over
5-10 epochs. The effect of this annealing in the learning rate is also visible in the training
histories in Figures 10 and 37 where the step-wise falls in the losses correspond to the
drops in the learning rate. Across the board, training converges in about 100 epochs and
is terminated by early stopping.

F.2 Comparing different activation functions

We now turn to a brief comparison of the performance of different activation functions
with the above set up. Again for uniformity, we will use one activation throughout for
all the MLPs aij and bij, but for the output neuron which is linearly activated. We
then compared the performance of this neural network architecture while learning the
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Activation Final Yang-Baxter Loss Final Hamiltonian Loss Saturation Epoch

sigmoid 2.5× 10−3 6.12× 10−7 150
tanh 1.90× 10−4 5.25× 10−7 125
swish 6.49× 10−5 1.51× 10−7 75
elu 2.75× 10−4 5.63× 10−7 100
relu 5.52× 10−4 4.63× 10−7 100

Table 5: Performance of different activation functions on learning the Hamiltonian (F.4).
The saturation epoch is the approximate epoch after which the model did not train
further. The final values of the Yang-Baxter and Hamiltonian losses after saturation is
also mentioned. We observed that the swish activation converges sooner and to lower
losses. This is stable across multiple runs. See also Figure 37.

Hamiltonian

H6v,1 =


0.3 0 0 0
0 0.45 0.4 0
0 0.25 0.6 0
0 0 0 0.3

 , (F.4)

which is 6-vertex Type 1 in the classification of [118], see Equation (E.2) above. The
neural network was trained with the loss functions (6.5), (6.11) and (6.10) and setting
λH and λreg to 1 each. The training was carried out for 200 epochs on observing that
the networks did not perform better on training for longer. Further, we set a batch
size of 16 and optimized using Adam with a starting learning rate of 10−3 which was
annealed to 10−8 using the saturation in the Yang-Baxter loss over the validation set
as the criterion as mentioned above. We conducted this training using the activations
sigmoid, tanh, swish, all of which are holomorphic, as well as elu and relu. The last
two are not holomorphic but have been included for completeness. The evolution of the
Yang-Baxter and the Hamiltonian loss for all these activations is shown in Figure 37
and Table 5. On the whole, we see that the swish activation tends to outperform the
others quite significantly. While these are the results of a single run, we found that the
result is consistent across several runs and tasks, leading us to adopt the swish activation
uniformly across the board for all the analyses shown in this work.
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(a) (b)

Figure 37: The evolution of the Yang-Baxter loss (left) and the Hamiltonian loss (right)
for a variety of activation functions when training for 200 epochs. The swish activation
tends to outperform the others. The precise numbers are given in Table 5.
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[11] O. Ohlsson Sax and B. Stefański, jr. Integrability, spin-chains and the AdS3/CFT2

correspondence. JHEP, 1108:029, 2011.

[12] Alessandra Cagnazzo and Konstantin Zarembo. B-field in AdS3/CFT2 correspon-
dence and integrability. JHEP, 1211:133, 2012.

[13] Andrei Babichenko, Amit Dekel, and Olof Ohlsson Sax. Finite-gap equations for
strings on AdS3 × S3 × T4 with mixed 3-form flux. JHEP, 1411:122, 2014.

[14] Juan Martin Maldacena. The large N limit of superconformal field theories and
supergravity. Adv. Theor. Math. Phys., 2:231–252, 1998.

[15] Sergei Gukov, Emil Martinec, Gregory W. Moore, and Andrew Strominger. The
search for a holographic dual to AdS3 × S3 × S3 × S1. Adv. Theor. Math. Phys.,
9:435–525, 2005.

[16] Olof Ohlsson Sax and Bogdan Stefański, jr. Closed strings and moduli in
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[62] Mirjam Cvetič, Hong Lü, C. N. Pope, and K. S. Stelle. T-duality in the Green-
Schwarz formalism, and the massless/massive IIA duality map. Nucl. Phys.,
B573:149–176, 2000.

[63] Andrea Dei and Alessandro Sfondrini. Integrable S matrix, mirror TBA and spec-
trum for the stringy AdS3 × S3 × S3 × S1 WZW model. JHEP, 02:072, 2019.

[64] Riccardo Borsato, Olof Ohlsson Sax, Alessandro Sfondrini, Bogdan Stefański, jr.,
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jr. On the spectrum of AdS3×S3×T4 strings with Ramond-Ramond flux. J. Phys.,
A49(41):41LT03, 2016.

[88] Jan de Boer. Six-dimensional supergravity on S3 × AdS3 and 2d conformal field
theory. Nucl. Phys., B548:139–166, 1999.

[89] Lorenz Eberhardt, Matthias R. Gaberdiel, Rajesh Gopakumar, and Wei Li. BPS
spectrum on AdS3 × S3 × S3 × S1. JHEP, 03:124, 2017.

[90] Atish Dabholkar and Ari Pakman. Exact chiral ring of AdS3/CFT2. Adv. Theor.
Math. Phys., 13(2):409–462, 2009.

[91] Marco Baggio, Jan de Boer, and Kyriakos Papadodimas. A non-renormalization
theorem for chiral primary 3-point functions. JHEP, 07:137, 2012.

[92] Michael C. Abbott and Inês Aniceto. Massless Lüscher terms and the limitations
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