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Evolution during range expansions is an important feature of many biological systems including
tumours, microbial communities, and invasive species. A selective sweep is a fundamental process,
in which an advantageous mutation evades clonal interference and spreads through the population
to fixation. However, most theoretical investigations of selective sweeps have assumed constant
population size or have ignored spatial structure. Here we use mathematical modelling and analysis
to investigate selective sweep probabilities in populations that grow with constant radial expansion
speed. We derive probability distributions for the arrival time and location of the first surviving
mutant and hence find simple approximate and exact expressions for selective sweep probabilities
in one, two and three dimensions, which are independent of mutation rate. Namely, the selective
sweep probability is approximately (1− cwt/cm)d, where cwt and cm are the wildtype and mutant
radial expansion speeds, and d is the spatial dimension. Using agent-based simulations, we show
that our analytical results accurately predict selective sweep frequencies in the two-dimensional
spatial Moran process. We further compare our results with those obtained for alternative growth
laws. Parameterizing our model for human tumours, we find that selective sweeps are predicted
to be rare except during very early solid tumour growth, thus providing a general, pan-cancer
explanation for findings from recent sequencing studies.

I. INTRODUCTION

Range expansions abound across biological scales.
Evolution during cell population range expansions de-
termines the development and spatial heterogeneity of
biofilms [1], tumours [2], mosaicism [3], and normal
tissue [4]. At the species level, range expansions in-
fluenced human evolution [5] and are of growing im-
portance in the current era of climate change as organ-
isms are forced into new habitats [6, 7]. Range expan-
sions alter the course of evolution in distinct and of-
ten profound ways [8] that are not fully understood.
Recent theoretical investigations (for example, [9–12])
have typically assumed that proliferation is restricted
to the population boundary, precluding full selective
sweeps. Alternative modes of dispersal remain largely
unexplored.

Somatic evolution provides especially strong motiva-
tion for investigating selective sweeps during range ex-
pansions. Cancer results from an accumulation of mu-
tations that drive cells to proliferate uncontrollably and
to invade surrounding tissue [13]. Some of these are
clonal mutations that occur during tumourigenesis or
early tumour development [14, 15]. However, recent ad-
vances in multi-region and single-cell sequencing have
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revealed pervasive genetic intratumour heterogeneity
[16] and diverse modes of evolution [17, 18]. Although
fitter mutant clones arise throughout cancer progres-
sion they seldom if ever achieve selective sweeps, ex-
cept perhaps in very small tumours [15, 17].

With notable exceptions [19–21], mathematical stud-
ies of cancer initiation and early evolution have either
ignored spatial structure [22–24] or have relied on in-
tractable agent-based models [25–28]. The typical ob-
served pattern of very early fixation events followed by
branching or effectively neutral intratumour evolution
– which has important clinical implications [29] – has
eluded a general explanation.

Here we use mathematical analysis to explain why
beneficial mutations typically fixate only – if at all – in
the very early stages of range expansions. We focus
on a simple model with short-range dispersal through-
out the population. This model is relatively permissive
to selective sweeps and therefore yields useful upper
bounds on their prevalence. By solving our model we
derive exact and simple approximate expressions for
sweep probabilities in one, two and three dimensions.
We confirm the accuracy and robustness of our analyt-
ical results using extensive agent-based simulations of
a spatial Moran process, and we compare outcomes for
alternative growth laws. We discuss how these findings
shed light on the nature of evolution in range expan-
sions in general, and cancer development in particular.
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Figure 1. Illustration of the macroscopic model configuration.
A mutant population (blue) expands within the wildtype (or-
ange), represented by balls with radii xm and xwt and radial
expansion speeds cwt and cm, respectively. The mutant arose
at distance y from the centre of the wildtype.

II. MACROSCOPIC MODEL

We consider a wildtype population that begins at a
point at time t = 0 and expands spherically, such that
its radius xwt grows at constant speed cwt. Since we are
interested in selective sweeps, we consider only advan-
tageous mutations that spread within the wildtype at
constant speed cm > cwt. These mutations occur at per-
capita rate µ̃ (independent of location) and each mutant
survives with probability ρ. In our results, as the muta-
tion rate is always accompanied by the survival proba-
bility, it is enough to consider the compound parameter
µ = ρµ̃. For brevity, we will refer to this µ as the mu-
tation rate and imply that we consider only successful
mutations. Model variables are illustrated in Figure 1.

Various models link propagation speeds to fitness
values and migration rates. The most prominent for-
mula is the solution of a reaction-diffusion equation
associated with Fisher [30] and Kolmogorov [31]: c =

2
√

D∆r, where D is the diffusion coefficient and ∆r is
the difference in the local growth rate between wild-
type and mutant. More recent studies have sought to
refine and generalise this result [32–35]. Our methods
are compatible with any model that generates approxi-
mately constant speeds.

The first surviving mutation achieves a complete (or
“classic”) selective sweep only if it reaches every part of
the wildtype expansion front before a second mutant of
equal or greater fitness arises within the wildtype (Fig-
ure 2). Otherwise the outcome is clonal interference (or
possibly a soft selective sweep if the two mutations con-
fer the same trait). For simplicity, we neglect mutants
with fitness values between those of the wildtype and
the first mutant, which would slow the expansion of the

first mutant and so reduce rather than negate the selec-
tive sweep probability. Neither do we investigate the
case of a yet-fitter mutant achieving a selective sweep
after arising from the first.

The unconditional sweep probability is derived in
four steps. First, we introduce random variable X, the
radius of the wildtype population when the first mutant
arises, and we compute its probability density fX(x).
Second, we introduce the random variable Y to denote
the distance between the wildtype and mutant origins,
and we calculate its probability density function con-
ditioned on X, namely fY(y|X = x). Third, we de-
rive an expression for the conditional sweep probabil-
ity Pr(sweep|X = x, Y = y). Finally, we marginalize
out X and Y to obtain the unconditional sweep prob-
ability Pr(sweep). For brevity, we focus on the three-
dimensional case; analogous results in one and two di-
mensions are derived in Appendices C and D.

III. SWEEP PROBABILITY

A. Probability that no mutations occur

We start by deriving the probability that no mutations
occur before a given time. This result will be useful in
various parts of subsequent derivations.

Claim 1. Let N(t) denote the population size as a function of
time and µ denote the per capita mutation rate, conditional on
mutant survival. The probability that no successful mutants
arise during the time interval [0, t] is then given by

F(t) = e−µ
∫ t

0 N(t′) dt′ (1)

Proof. The number of successful mutations in the in-
finitesimal small time interval [t, t + dt] is given by
µN(t)dt. In other words, µN(t) is the rate at which suc-
cessful mutations arise. The probability F(t) that the
population acquires zero mutants at time t decreases at
this rate, such that

dF(t)
dt

= −µN(t)F(t).

This is a simple first order differential equation with
solution

F(t) = Ce−µ
∫ t

0 N(t′) dt′ .

We require C = 1 so that the probability is F = 1 for
vanishing population size N(t) = 0.

B. Arrival time of the first mutant

In the absence of mutants, the wildtype population in
three dimensions grows as Nwt =

4
3 πx3

wt =
4
3 π(cwtt)3.
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Figure 2. The two possible fates of the first mutant expansion (blue) within the wildtype population (orange). In the first
case, the mutant reaches every part of the wildtype boundary before further mutations arise in the wildtype, and so achieves a
selective sweep. Otherwise, a second (green) mutant arises in the wildtype population and generates clonal interference.

Applying Claim 1, we obtain the probability that no
mutations arise in the time interval [0, t]:

F(t) = e−µ
∫ t

0
4
3 π(cwtt′)3 dt′ = e−(t/κ)4

(2)

in terms of characteristic length of time κ = 4
√

3
µπc3

wt
.

We identify 1− F(t) = 1− Pr(T ≥ t) = Pr(T ≤ t) as
the cumulative distribution function for the arrival time
T of the first surviving mutant. The probability density
of T is then

fT(t) =
d(1− F(t))

dt
=

4t3

κ4 e−(
t
κ )

4
. (3)

With a change of variable, t = x
cwt

and dt = 1
cwt

dx,
we obtain the probability density of the radius of the
wildtype ball X at the time the first surviving mutant
arises, which reads

fX(x) =
4x3e−(x/θ)4

θ4 (4)

and is expressed in terms of the characteristic length

θ = 4
√

3cwt
πµ . Hence fX follows a Weibull distribution

with shape parameter 4 and scale parameter θ. The
expectation of the radius is

E[X] = Γ
(

5
4

)
θ ≈ 0.91 θ,

where Γ(x) =
∫ ∞

0 tx−1e−t dt is the gamma function. The
variance is

Var[X] =

(√
π

2
− Γ

(
5
4

)2
)

θ2 ≈ 0.065 θ2.

Hence the standard deviation of the wildtype radius X
is approximately 28% of its mean. Analogous calcula-
tions in one and two dimensions also yield Weibull dis-
tributions with shape parameter d + 1, where d is the
spatial dimension (see Appendices C and D). Results
for all three cases are illustrated in Figure 3A-C.

Next, we calculate the probability distribution for the
distance Y between the wildtype’s origin and the loca-
tion of the first surviving mutant, conditional on X = x.
The probability that a mutant arises at location y is pro-
portional to the size D(y) and the age a(y) of the cell
population at that location. We have

fY(y|X = x) dy ∝ D(y)a(y), (5)

where D(y) = 4πy2 dy is the number of cells in the in-
finitesimally thin shell at radius y and a(y) = x−y

cwt
is

the age of the population at distance y at the time the
first surviving mutant arises. After adding an indicator
function 1{y ≤ x} – to condition on the mutant aris-
ing inside the wildtype ball – and then normalizing we
obtain the final expression

fY(y|X = x) =
12y2(x− y)

x4 1{y ≤ x}. (6)

We calculate the unconditional probability density of
Y by marginalizing out X,

fY(y) =
∫ ∞

0
fY(y|x) fX(x) dx, (7)

giving us

fY(y) =
12y2

θ4

(
θΓ
(

1
4

,
y4

θ4

)
− yΓ

(
0,

y4

θ4

))
. (8)
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Here, Γ(a, z) =
∫ ∞

z ta−1e−t dt is the incomplete gamma
function. Again, we calculate the expectation

E[Y] =
(

3Γ
(

5
4

)
− 3

5
Γ
(

1
4

))
θ ≈ 0.54 θ

and the variance

Var[Y] =

(√
π

5
−
(

3Γ
(

5
4

)
− 3

5
Γ
(

1
4

))2
)

θ2

≈ 0.059 θ2.

Compared to fX , the distribution fY is shifted towards
zero and is more positively skewed. Again, similar re-
sults are obtained in one and two dimensions (see Ap-
pendices C and D), which are shown together in Figure
3A-C.

C. Conditional sweep probability

Here, we derive an expression for the conditional
sweep probability Pr(sweep|X = x, Y = y). As illus-
trated in Figure 2, we assume that the probability of
a selective sweep equals the probability that no addi-
tional mutants arise in the remaining wildtype popula-
tion after the first successful mutant starts expanding.
We can therefore apply Claim 1 to the remaining wild-
type population.

We introduce a new variable τ that measures time in
the same unit as t but has its origin τ = 0 when the first
mutant arises. Recall that t = 0 relates to the origin of
the wildtype. Thus, we have t = τ + x/cwt. Let ∆(τ)
denote the remaining wildtype population. Since both
populations expand spherically, we have

∆(τ) = Nwt − Nint, (9)

where Nwt =
4
3 πx3

wt is the volume of the wildtype ball,
and Nint is the volume of the intersection between the
wildtype and mutant balls. While the mutant is com-
pletely surrounded by the wildtype, we have simply
Nint = 4

3 πx3
m. After the mutant expands beyond the

wildtype ball, we must consider the intersection of the
two spheres. We write

∆(τ) = ∆(1)(τ)1{[0, τ1]}+ ∆(2)(τ)1{[τ1, τ2]} (10)

with

∆(1)(τ) =
4
3

πx3
wt −

4
3

πx3
m

=
4
3

π(x + cwtτ)
3 − 4

3
π(cmτ)3, (11)

∆(2)(τ) =
4
3

πx3
wt − Ns-s(xwt, xm)

=
4
3

π(x + cwtτ)
3 − Ns-s(x + cwtτ, cmτ), (12)

where Ns-s describes the intersection of two spheres
with radii xwt and xm (see Appendix B or Ref. [36]
for the formula). We substitute xwt = x + cwtτ and
xm = cmτ because we want to integrate over τ, x and y.
The time τ1 at which the mutant reaches the boundary
of the wildtype is determined by

τ1cm = (x− y) + τ1cwt ⇒ τ1 =
x− y

cm − cwt
. (13)

Furthermore, the time τ2 at which the mutant has en-
tirely replaced the wildtype is given by

τ2cm = (x + y) + τ1cwt ⇒ τ2 =
x + y

cm − cwt
. (14)

Using claim 1, the conditional sweep probability is then

Pr(sweep|X = x, Y = y) = e−µ
∫ ∞

0 ∆(τ) dτ . (15)

Although the integral of ∆(τ) fails to yield a simple
solution when the intersection formula Ns-s is inserted,
we can obtain a useful upper bound by using a simpli-
fying approximation. We note that, due to geometrical
symmetry, the time needed for a mutant to sweep the
entire wildtype (τ2 in Equation 14) is minimal when
y = 0. Therefore, instead of locating the emergence of
the first mutant according to the probability distribu-
tion fY(y) in eqn. 8, we can obtain an upper bound
on the sweep probability by assuming that the first mu-
tant arises at the centre of the wildtype population. We
thus approximate the conditional probability density by
a delta function at y = 0:

fY(y|X = x) = δ(y). (16)

It follows directly that the unconditional probability
distribution of Y is fY(y) = δ(y). With this simplifi-
cation, the time at which the mutant leaves the wild-
type and the time at which the mutant overtakes the
wildtype are the same (τ1 = τ2 = x

cm−cwt
) and the for-

mula for the remaining wildtype population is given by
∆(1)(τ) for the relevant time interval [0, τ1]. Solving the
integral in eqn. 15 we obtain

Pr(sweep|X = x, Y = 0) = e−(x/α)4
, (17)

where α = 4

√
3(cm−cwt)3

πµ(c2
wt−3cwtcm+3c2

m)
is a characteristic

length. As one might expect, this sweep probability de-
creases monotonically with the wildtype radius, mean-
ing that late-arriving mutants are less likely to sweep
(Figure 3D). In the analogous one-dimensional model,
we can derive the exact as well as the approximate con-
ditional sweep probabilities (Appendix C), while in two
and three dimensions we instead numerically evaluated
the integral in eqn. 15. We then marginalized out Y to
obtain exact results for Pr(sweep|X = x) that we com-
pared to the approximation Pr(sweep|X = x, Y = 0).
We find that, for biologically relevant parameter val-
ues, the exact solutions are remarkably close to the up-
per bounds obtained with the approximation of Equa-
tion 17 (Figure 3D).
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Figure 3. Analytical and numerical solutions of the macroscopic model. A.-C. Probability density of the wildtype population
radius at the time the first surviving mutant arises (dark curves) and the distance between the origins of the mutation and
wildtype expansions (light curves) in 1D (A), 2D (B) and 3D (C). D. Approximate and exact solutions for the sweep probability
conditioned on the wildtype population radius. E. Approximate and exact solutions for the unconditional sweep probability. F.
Approximate and exact solutions for the probability density of the wildtype population radius at the time the first surviving
mutant arises, conditioned on this mutant achieving a selective sweep. In all plots we use parameter values relevant to cancer
(see Section V): cwt = 0.15 cells per generation, µ̃ = 10−5 mutations per division, ρ = 0.23 and cm = 0.31 cells per generation
(except where varied). Formulas can be found in Table II.

D. Unconditional sweep probability

We now have all the necessary ingredients for the
unconditional sweep probability, which is obtained by
marginalizing out X and Y from the conditional sweep
probability,

Pr(sweep) =∫ ∞

0

∫ ∞

0
Pr(sweep|X = x, Y = y) fY(y|X = x) fX(x) dy dx

=
∫ ∞

0

∫ x

0
e−µ

∫ ∞
0 ∆(τ) dτ 12y2(x− y)

x4
4x3e−x4/θ4

θ4 dy dx.

(18)

Evaluating the integral using the simplified model of
eqn. 16 and 17, we find

Pr(sweep) ≤
∫ ∞

0

∫ ∞

0
e−(

x
α )

4
δ(y)

4x3e−x4/θ4

θ4 dy dx

=

(
cm − cwt

cm

)3
. (19)

We thus arrive at a surprisingly simple formula that
is independent of the mutation rate. This result gen-
eralizes to analogous one- and two-dimensional mod-
els, with the exponent 3 replaced by the respective spa-
tial dimension (Appendices C and D). In each case,

the sweep probability increases monotonically with the
speed ratio cm/cwt and converges slowly to 1 (Figure
3E). The approximate expressions are close to the ex-
act solution in one dimension, and to numerical evalu-
ations of the integral in two and three dimensions.

The sweep probability is independent of the mutation
rate not only in the case where y = 0 but also in the
general case with fY(y|X = x) in eqn. 18. This follows
from a more general result:

Claim 2. Let a > 0. Let H(x, y), P(x, y) and Q(x, y) be
homogeneous functions in x and y with degrees h, p, q > 0
respectively and Q(x, y) 6= 0 for all x > 0 and y > 0. Then,
the integral

I =
∫ ∞

0

∫ x

0
e−aH(x,y) P(x, y)

Q(x, y)
dy dx (20)

is proportional to a
q−p−2

h .

Proof. See Appendix A.

Now we consider the particular functions

H(x, y) =
∫ ∞

0
∆(τ) dτ + x4 3cwt

π
, (21)

P(x, y) = 12y2(x− y)× 4x3, (22)

Q(x, y) = x4 3cwt

π
, (23)
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which are all independent of the mutation rate µ.
Clearly P(x, y) and Q(x, y) are homogeneous functions
of degree 6 and 4, respectively, and we also have

Claim 3. H(x, y) is homogeneous of degree 4.

Proof. See appendix B.

Combining these functions, we obtain the sweep
probability

Pr(sweep) = µ
∫ ∞

0

∫ x

0
e−µH(x,y) P(x, y)

Q(x, y)
dy dx. (24)

Applying claim 2 with a = µ then yields

Pr(sweep) ∝ µ1 × µ
4−6−2

4 = µ0 = 1. (25)

Applying claim 2 in the one- and the two-dimensional
cases also leads to results that are independent of the
mutation rate. This agrees with the exact analytical so-
lution for the unconditional sweep probability in one
dimension (Appendix C).

To gain intuition as to why the sweep probability is
independent of mutation rate, we note that increasing
the mutation rate will have two opposing effects. The
first surviving mutant is likely to arrive earlier and so
has less distance to travel to achieve a sweep. On the
other hand, a second mutant is more likely to arise in a
given volume of wildtype cells. In our model, these two
effects cancel each other out, whether we use the prob-
ability distribution of eqn. 6, eqn. 16, or indeed any
other probability distribution fY(y|X = x) that is ho-
mogeneous with degree 1. Nevertheless, independence
does not necessarily hold true when our assumptions
are varied. For instance, a time-dependent propagation
speed will generally lead to non-homogeneous func-
tions for N(t) and

∫ ∞
0 ∆(τ) dτ, which in turn will lead

to a more complicated relationship between the sweep
probability and the mutation rate.

E. Conditional arrival time of the first mutant

In biological systems where it is infeasible to track
evolutionary dynamics, selective sweeps must be in-
ferred from subsequent genetic data. For example, we
might observe a public mutation in a tumour and ask
when this mutation occurred. We can use our model
to find a probability distribution of the radius X at the
time the first mutant arose, given that we observe a se-
lective sweep, simply by applying Bayes’ theorem:

fX(x|sweep) =
Pr(sweep|X = x) fX(x)

Pr(sweep)
. (26)

Using the results from the simplified model, we find
that the conditional probability distribution is the
Weibull distribution

fX(x|sweep) dx =
4x3

β3θ4 e
− x4

β3θ4 dx (27)

where β = cm−cwt
cm

rescales the characteristic length scale
from eqn. 4. Similar results are obtained in one and two
dimensions and are together presented in Figure 3F.

IV. SIMULATIONS

A. An agent-based realisation of the two-dimensional
spatial Moran process

To gauge the robustness and generality of our predic-
tions, we measured the frequency of selective sweeps
in a two-dimensional agent-based model. We suppose
that the wildtype population invades a habitat initially
occupied by a resident competitor, which is a plau-
sible biological scenario for both invasive species [37]
and invasive tumours [27, 29]. Our agent-based model
thus has three types of individuals: resident, wildtype
invader, and mutant invader. Localised competition
between wildype and resident slows the wildtype ex-
pansion and creates potential for selective sweeps. We
implemented this model using the demon agent-based
modelling framework [38] within the warlock compu-
tational workflow [39], which facilitates running large
numbers of simulations on a high-performance com-
puting cluster. We have previously applied the same
framework to studying cancer evolution [27, 39]. Fur-
ther model details are given in Appendix G.

The agent-based simulations provide a useful test of
our results because, although the general setup is the
same, they differ in several ways from our macroscopic
model. Space in the simulations is divided into dis-
crete patches; the times between birth and dispersal
events are exponentially distributed random variables
(constituting another source of stochasticity); popula-
tion boundaries are rough, not smooth; and the ex-
pansion wave front is typically not sharp, and changes
shape as the wave progresses. Hence we would not ex-
pect perfect agreement between the results of the two
models.

B. Linking the microscopic and macroscopic models

Our agent-based model approximately resembles a
spatial death-birth Moran process (also known as the
stepping stone model) [40, 41]. Expansion speeds
in the spatial Moran process can in turn be ap-
proximated using the Fisher-Kolmogorov-Petrovsky-
Piscounov (FKPP) equation [34, 35], which predicts
that the mutant will expand within the wildtype with
constant radial expansion speed cm dependent on the
difference in their proliferation rates ∆rm = rm − rwt
[30, 31, 33].

To compare the results of our discrete-space sim-
ulations to our continuous-space macroscopic model,
we measured the propagation speeds of the wildtype
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A CB

Figure 4. Simulation results versus predictions from the macroscopic model. A. Probability density of the wildtype population
radius at the time the first surviving mutant arises. The histogram represents 1,000 simulations. B. Unconditional selective
sweep probability versus ratio of selective advantages. Each data point is computed from 1,000 simulations. C. Probability
density of the wildtype population radius at the time the first surviving mutant arises, conditioned on the mutant achieving
a selective sweep. The histogram consists of radii measured in simulations that resulted in a selective sweep, among a total
of 1,000 simulations. In all plots we use parameter values relevant to cancer (see Section V). For panels A and C, we use
rn = 0.91, rwt = 1 such that swt =

rwt−rn
rn

= 0.1 leading to speed cwt = 0.15 (see Appendix H). Also rm = 1.3, which implies
sm = rm−rwt

rwt
= 0.3 and hence cm = 0.31 (see Appendix H). The mutation rate is set to µ = 10−5 per division and the deme

carrying capacity is K = 16, leading to local survival probability ρ = 1−(rwt+sm)−1

1−(rwt+sm)−N ≈ 0.23. In B, varying rm from 1.1 to 3
corresponds to varying sm from 0.1 to 2. The correspondence between s and c is given in Table I.

within the resident, and of the mutant within the wild-
type (Table I). We did this by applying linear regression
to the linear phase of the effective radius growth curves
(the effective radius is the square root of the popula-
tion size over π). Further investigations of propagation
speeds in this model will be the subject of a further
study.

C. Simulation results

Given the considerable differences between the mod-
els, the probability density functions resulting from the
macroscopic and microscopic models are reassuringly
consistent. The radius at the time the first surviving
mutant arises is slightly lower in the simulations than in
our analytical model (Figure 4A shows a typical case).
This difference persists when conditioning on the mu-
tant achieving a selective sweep (Figure 4C). These off-
sets can likely be explained by discretization effects and
the fact that, in the simulations, the propagation front
needs to be established before the expansion can pro-
ceed. The sweep probabilities in simulations are never-
theless very close to our analytical predictions (Figure
4B).

V. PARAMETER ESTIMATION

Our model has only three parameters: the mutation
rate conditional on survival, µ, and the wildtype and
mutant propagation speeds, cwt and cm. Here, we es-
timate these parameters for cancers such that we ob-
tain numerical estimates for the expectations that can
be compared to experimental observations.

To estimate the propagation speed, we follow a sim-
ilar procedure to Ref. [20] and [42]. Consider a tumor
that grows to volume V between 1 and 10 cm3 in time
T between 5 and 20 years. The propagation speed can
then be estimated by

c̃ =
r
T

=

3
√

3
4π V

T
,

which equates to between 1 and 40 µm per day. Given
that the diameter of a colon cancer cell is l ≈ 20 µm [43]
and the generation time (cell cycle time) is τG ≈ 4 days
[44], we can switch units to obtain c = c̃× τG/l, which
is between 0.15 and 7 cell diameters per generation.

The consensus in the literature is that the rate of ac-
quiring advantageous or “driver” mutations is of the
order of µ̃ = 10−5 per cell per generation [27, 42]. For
the survival probability, assuming a spatial Moran pro-
cess [35, 41] with a local population size of at least 10
cells and mutant relative fitness between 1.1 and 2, we
obtain a survival probability ρ between 0.09 and 0.5, in
agreement with a recently inferred value in colorectal
tumors [45].

These parameter values imply a typical length scale

θ = 4

√
3cwt

πµ
≈ 10 to 50 cells.

The expected values of X and Y are then E[X] = 10 to
50 cell diameters and E[Y] = 7 to 30 cell diameters.

Assuming cm is at most ten times cwt, we find that
the expected tumour radius when a selective sweep oc-
curred, given that a sweep did occur, is no more than 50
cells, corresponding to a population size N of no more
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than 400,000 cells. The time for the sweep to be com-
pleted is then τ2 ≈ 40 generations, at a population size
of approximately 800, 000 cells.

To examine the robustness of these results, we note
that the peak of the conditional sweep probability dis-
tribution in d dimensions (e.g. Equation 27 for d = 3)

is at Cθγ
d

d+1 , where C =
(

d
d+1

) 1
d+1 . It follows that, in

three dimensions, the radius that maximizes the sweep
probability is highly robust to varying µ or cwt. For ex-
ample, if we vary µ or cwt by a factor of 100 then the
peak radius will change by a factor of only 4

√
100 ≈ 3.

We conclude that sweeps are likely to occur only dur-
ing early tumour growth.

VI. DISCUSSION

Here we have used mathematical modelling and anal-
ysis to determine the expected frequency of “classic”
selective sweeps versus incomplete or soft sweeps dur-
ing range expansions. We find that this frequency is
generally expected to be low, even for mutations with
very high selection coefficients. Moreover, when the
wildtype and mutant radial expansion speeds are con-
stant, the sweep probability is independent of the mu-
tation rate and can be expressed solely in terms of those
speeds (which can in turn be related, through the FKPP
equation or other standard models, to the selection co-
efficient, dispersal rates, and other basic parameters).
An intuitive explanation for this finding is that if the
mutation rate is higher then, on the one hand, the first
advantageous mutation is likely to arise in a smaller
population – meaning that it has less distance to travel
to achieve a sweep – but, on the other hand, competing
mutations will also tend to arise sooner than in the case
of a lower mutation rate. These two effects exactly can-
cel out under the assumption of constant radial growth
speeds.

We make three arguments to justify our focus on
this particular model of range expansions. First, our
model corresponds to the continuum approximation of
standard mathematical models of range expansions and
spatial population genetics: the spatial Moran process
(or stepping stone model) and the biassed voter model
(which is equivalent to a spatial Moran process with
only one individual per deme, or to an Eden growth
model extended to allow local dispersal and competi-
tion throughout the population). These models are well
understood, intuitive, and easy to parameterise. Sec-
ond, because our model is relatively permissive to se-
lective sweeps, it provides useful upper bounds for se-
lective sweep probabilities in more complex scenarios.
Selective sweeps will be even less frequent when dis-
persal rates are higher near the boundary, or when the
wildtype radial expansion speed increases over time.
Third, in much the same way as the Moran and Wright-
Fisher processes are the most useful, tractable models of

evolution in constant-sized, non-spatial populations, so
the constant-radial-speed model yields the clearest rule
of thumb results for range expansions. For instance, if
the radial expansion speed at which a mutant spreads
within the wildtype population is twice the speed at
which the wildtype expands then the probability of
this mutant achieving a selective sweep can be approx-
imated simply as (1− 1/2)2 = 1/4 in two dimensions
and 1/8 in three dimensions.

Alternative models have been considered previously.
Antal and colleagues [20] used a macroscopic model
similar to ours to investigate the case in which mu-
tations arise only at the boundary of a range expan-
sion. Given that selective sweeps are then impossible,
the interesting outcome is when the mutant envelops
the wildtype. Ralph & Coop [46] and Martens and col-
leagues [19, 47] instead considered constant-sized pop-
ulations. They found that selective sweeps are likely
only if the population width is much smaller than a
characteristic length scale, which depends on the mu-
tation rate, the dispersal rate, the effective local pop-
ulation density, and the strength of selection. In Ap-
pendix E we compare our results to those of these prior
studies and consider other alternative growth laws.

In our model, a selective sweep can occur only if the
rate of spread of an advantageous mutation exceeds the
expansion speed of the wildtype population. This sce-
nario is plausible, for example, in the case of an inva-
sive species that is still adapting to its new conditions
and whose range expansion is slowed by the need to
modify its environment (niche construction) or by inter-
specific interactions [37]. When the invader must dis-
place a resident competitor (as in our agent-based sim-
ulations), the sweep probability can be approximated

via the FKPP solution as (1−
√

rm−rwt
rwt−rn

)d, where rm, rwt

and rn are the growth rates of mutant invader, wild-
type invader and resident populations respectively, and
d is the spatial dimension. This expression makes clear
that selective sweeps are most likely to occur in species
invading essentially linear habitats, such as coastlines.

Our three-dimensional results, though less applica-
ble to invasive species, are particularly relevant to un-
derstanding the general nature of solid tumour evolu-
tion. There are two ways in which tumours might ac-
quire the multiple clonal drivers (advantageous muta-
tions) observed in sequencing studies. The first route
is via sequential population bottlenecks. Suppose that
early tumour development comprises not one but sev-
eral successive range expansions. Growth repeatedly
stalls due to constraints such as hypoxia, immune con-
trol, and physical barriers. Driver mutations enable
subclones to escape these constraints and invade new
territory, each time purging genetic diversity so that
the final, prolonged expansion originates from a single
highly transformed cell. This episodic model is con-
ventional and has been particularly well characterised
in recent studies of colorectal cancer [48, 49] and breast
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cancer [50]. The second way to acquire clonal drivers is
via selective sweeps during the final range expansion.
Our results suggest that the first process is the more
important. Selective sweeps of even extremely strong
drivers are highly unlikely to occur in tumours contain-
ing more than a few hundred thousand cells, equiv-
alent to less than a cubic millimeter in volume. Per-
vasive genetic heterogeneity and parallel evolution are
therefore revealed to be straightforward consequences
of spatial structure, expected to be ubiquitous across
solid tumours, irrespective of mutation rate and degree
of genomic instability.
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Noble. Warlock: an automated computational work-
flow for simulating spatially structured tumour evolu-
tion. arXiv preprint arXiv:2301.07808, 2023.

[40] Richard Durrett, Jasmine Foo, and Kevin Leder. Spatial
moran models, ii: cancer initiation in spatially structured
tissue. Journal of mathematical biology, 72:1369–1400, 2016.

[41] Motoo Kimura and George H Weiss. The stepping stone
model of population structure and the decrease of ge-
netic correlation with distance. Genetics, 49(4):561, 1964.

[42] Ivana Bozic, Tibor Antal, Hisashi Ohtsuki, Hannah
Carter, Dewey Kim, Sining Chen, Rachel Karchin, Ken-
neth W Kinzler, Bert Vogelstein, and Martin A Nowak.
Accumulation of driver and passenger mutations during
tumor progression. Proceedings of the National Academy of
Sciences, 107(43):18545–18550, 2010.

[43] Babita Shashni, Shinya Ariyasu, Reisa Takeda, Toshihiro
Suzuki, Shota Shiina, Kazunori Akimoto, Takuto Maeda,
Naoyuki Aikawa, Ryo Abe, Tomohiro Osaki, et al. Size-
based differentiation of cancer and normal cells by a par-
ticle size analyzer assisted by a cell-recognition pc soft-
ware. Biological and Pharmaceutical Bulletin, 41(4):487–503,
2018.

[44] Siân Jones, Wei-dong Chen, Giovanni Parmigiani, Frank
Diehl, Niko Beerenwinkel, Tibor Antal, Arne Traulsen,
Martin A Nowak, Christopher Siegel, Victor E Vel-
culescu, et al. Comparative lesion sequencing provides
insights into tumor evolution. Proceedings of the National
Academy of Sciences, 105(11):4283–4288, 2008.

[45] Benjamin Werner, Jack Case, Marc J Williams, Kete-
van Chkhaidze, Daniel Temko, Javier Fernández-Mateos,
George D Cresswell, Daniel Nichol, William Cross, In-
maculada Spiteri, et al. Measuring single cell divisions
in human tissues from multi-region sequencing data. Na-
ture communications, 11(1):1035, 2020.

[46] Peter Ralph and Graham Coop. Parallel adaptation: one
or many waves of advance of an advantageous allele?
Genetics, 186(2):647–668, 2010.

[47] Erik A Martens and Oskar Hallatschek. Interfering
waves of adaptation promote spatial mixing. Genetics,
189(3):1045–1060, 2011.

[48] Marc D Ryser, Diego Mallo, Allison Hall, Timothy Hard-
man, Lorraine M King, Sergei Tatishchev, Inmaculada C
Sorribes, Carlo C Maley, Jeffrey R Marks, E Shelley
Hwang, et al. Minimal barriers to invasion during hu-
man colorectal tumor growth. Nature communications,
11(1):1280, 2020.

[49] William Cross, Michal Kovac, Ville Mustonen, Daniel
Temko, Hayley Davis, Ann-Marie Baker, Sujata Biswas,
Roland Arnold, Laura Chegwidden, Chandler Gatenbee,
et al. The evolutionary landscape of colorectal tumorige-
nesis. Nature ecology & evolution, 2(10):1661–1672, 2018.

[50] Artem Lomakin, Jessica Svedlund, Carina Strell,
Milana Gataric, Artem Shmatko, Gleb Rukhovich,
Jun Sung Park, Young Seok Ju, Stefan Dentro, Vitalii
Kleshchevnikov, et al. Spatial genomics maps the struc-
ture, nature and evolution of cancer clones. Nature,
611(7936):594–602, 2022.

[51] Eric W Weisstein. Circle-circle intersec-
tion. from mathworld–a wolfram web re-
source. https://mathworld.wolfram.com/

Circle-CircleIntersection.html. Accessed:
22/11/2023.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 27, 2023. ; https://doi.org/10.1101/2023.11.27.568915doi: bioRxiv preprint 

https://mathworld.wolfram.com/Sphere-SphereIntersection.html
https://mathworld.wolfram.com/Sphere-SphereIntersection.html
https://github.com/robjohnnoble/demon model
https://mathworld.wolfram.com/Circle-CircleIntersection.html
https://mathworld.wolfram.com/Circle-CircleIntersection.html
https://doi.org/10.1101/2023.11.27.568915
http://creativecommons.org/licenses/by-nc/4.0/


11
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APPENDICES

Appendix A: Proof of claim 2

We show the relation by making the substitutions

x̂ = a1/hx and ŷ = a1/hy

such that

H(x̂, ŷ) = aH(x, y)

P(x̂, ŷ) = ap/hP(x, y)

Q(x̂, ŷ) = aq/hQ(x, y)

and

dx = a−1/hdx̂ and dy = a−1/hdŷ.

Inserting the substitutions in eqn. 20, we obtain

I =
∫ ∞

0

∫ x

0
e−aH(x,y) P(x, y)

Q(x, y)
dy dx

=
∫ ∞

0

∫ x̂

0
e−H(x̂,ŷ) a−p/hP(x̂, ŷ)

a−q/hQ(x̂, ŷ)
a−1/ha−1/h dŷ dx̂

= a−2/ha(q−p)/h
∫ ∞

0

∫ x̂

0
e−H(x̂,ŷ) P(x̂, ŷ)

Q(x̂, ŷ)
dŷ dx̂

The remaining integral is no longer dependent on pa-

rameter a and shows the desired scaling with a
q−p−2

h .

Appendix B: Proof of claim 3

We show that H(x, y) as given in eqn. 21 is homoge-
neous with degree h = 4. We first note that the second
term is a polynomial of degree 4 such that homogene-
ity is trivial. The sum of two homogeneous functions is
again homogeneous such that we need to show homo-
geneity only for the first term, which we can write out
as the sum of two integrals,∫ ∞

0
∆(τ) dτ =

∫ τ1

0
∆(1)(τ) dτ +

∫ τ2

τ1

∆(2)(τ) dτ, (B1)

which is specified by eqn. 11 - 14.
The first term is homogeneous in x and y with degree

h = 4. We take the integral as function of x and y, and
insert µx and µy,[∫ τ1

0
∆(1)(τ)dτ

]
(µx, µy)

=
∫ τ1

0

4
3

π((cwtτ + µx)3 − (cmτ)3)dτ, (B2)

where we note that also x and y in the integral bound-
ary τ1 are replaced such that τ1 = µx−µy

cm−cwt
. We now

substitute τ̂ = µaτ and obtain∫ τ̂1

0

4
3

π((cwtµ
−aτ̂ + µx)3 − (cmµ−aτ̂)3)(µ−a dτ̂), (B3)
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where τ̂1 = µx−µy
cm−cwt

× µa. We choose a = −1 such that

τ̂1 = x−y
cm−cwt

and

µ4
∫ τ̂1

0

4
3

π((cwtτ̂ + x)3 − (cmτ̂)3)dτ̂, (B4)

which proves the homogeneity of degree h = 4 for the
first term in eqn. B1.

After time τ1 and we need to use the intersection for-
mula for two spheres as stated in eqn. 12. We use
Ref. [36] to write the intersection volume of two spheres
with radii xwt and xm that are apart by distance y as

Ns-s =
π

12y
(xwt + xm + y)2

(y2 + 2yxm − 3x2
m + 2yxwt + 6xwtxm − 3x2

wt).
(B5)

We want to show that[∫ τ2

τ1

∆(2)(τ)dτ

]
(µx, µy)

= µ4
[∫ τ̂2

τ̂1

4
3

πx3
wt − Ns-sdτ̂

]
(x, y)

= µ4
[∫ τ2

τ1

4
3

πx3
wt − Ns-sdτ

]
(x, y).

(B6)

This can be done analogously to the previous calcu-
lation. In brief, we first replace xwt = x + cwtτ and
xm = cmτ in eqn. B5. Next, we write out the integral in
the first line of eqn. B6 and insert µx and µy for x and
y. Now, we use the same trick as before and substitute
τ̂ = µ−1τ. This way, the integration boundaries trans-
form back to τ̂1 = x−y

cm−cwt
and τ̂2 = x+y

cm−cwt
. The factor

µ4 will drop out and we find the desired homogene-
ity from eqn. B6. Finally, the homogeneity of H(x, y)
follows from the homogeneity of the single terms.

Appendix C: Sweep probability in one dimension

We consider a population that is expanding in one
dimension in two directions. If xwt describes the length
from the origin of the population to the leading edge,
the total population size is N = 2xwt. We can follow
the same derivations as in section III B, and obtain the
probability density for the population radius X at the
time the first surviving mutant arises

fX(x) =
2xe−x2/θ2

1D

θ2
1D

, (C1)

with θ1D =
√

cwt
µ (incidentally note that, since π ≈ 3,

θ2
1D ≈ θ3

2D ≈ θ4
3D). Furthermore, we obtain the con-

ditional probability density for the location of the first

surviving mutant Y,

fY(y|X = x) =
2(x− y)

x2 1{y ≤ x}, (C2)

The unconditional probability density is

fY(y) =
2

θ1D
Γ

(
1
2

,
y2

θ2
1D

)
− 2y

θ2
1D

Γ

(
0,

y2

θ2
1D

)
(C3)

1. Results for the simplified model

We set fY(y|X = x) = δ(y). The conditional sweep is
then

Pr(sweep|X = x) = e−(x/α1D)
2
, (C4)

where α1D =
√

cm−cwt
µ .

The unconditional sweep probability is

Pr(sweep) =
cm − cwt

cm
. (C5)

The probability distribution of X given that we ob-
serve sweep

fX(X = x|sweep) =
2x

θ2
1Dβ

e
− x2

θ2
1Dβ (C6)

where β = cm−cwt
cm

.

2. Results for the full model

The conditional sweep is found to be

Pr(sweep|X = x, Y = y) = e(x2+y2)/α2
1D (C7)

where α1D =
√

cm−cwt
µ as in the simplified case. In the

first step, we marginalize out Y, which gives

Pr(sweep|X = x) =

√
π x

α1D
Erf
(

x
α1D

)
− 1 + e

−2 x2

α2
1D

x2/α2
1D

,

(C8)

where Erf(x) = 2√
π

∫ x
0 e−t2

dt is the Gaussian error
function.

The exact formula for the unconditional sweep prob-
ability is obtained by next marginalizing out X. The
result is

Pr(sweep) = β′
[

2cot−1(
√

1 + β′)√
1 + β′

+ ln
(

β′ + 1
β′ + 2

)]
,
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where β′ = cm−cwt
cwt

is the speed difference relative to the
wildtype speed. The two curves are very close to each
other and we see that the approximation is indeed an
upper bound. We also see that the full model yields an
expression independent of the mutation rate. An alter-
native approximate sweep probability can be derived as
the first-order Taylor expansion of the exact expression
at zero. The result is (π/2− log 2)β ≈ 0.88β, which is
more accurate than β when cm/cwt < 2.35.

The probability distribution of X given that we have
a sweep fX(x|sweep) can be obtained using Bayes’ the-
orem as in Section III E. We omit the inelegant result.

Appendix D: Sweep probability in two dimensions

1. Results for the simplified model

We consider a population that is expanding in two
dimensions as disks. If xwt is the radius of the popu-
lation, the total population size is N = πx2

wt. We can
follow the same derivations as in section III B, and ob-
tain the probability density for the population radius X
at the time the first surviving mutant arises

fX(x) =
3x2e−x3/θ3

2D

θ3
2D

, (D1)

with θ2D = 3
√

3cwt
πµ . Furthermore, we obtain the con-

ditional probability density for the location of the first
surviving mutant Y,

fY(y|X = x) =
6y(x− y)

x3 1{y ≤ x}, (D2)

The conditional sweep in the simplified model is

Pr(sweep|X = x) = e−(x/α2D)
3
, (D3)

where α2D = 3

√
3(cm−cwt)2

πµ(2cm−cwt)
and following section III C

the unconditional sweep probability is then

Pr(sweep) =
(

cm − cwt

cm

)2
(D4)

The probability distribution of X given that we ob-
serve sweep is

fX(X = x|sweep) =
3x2

θ3
2Dβ2

e
− x3

θ3
2Dβ2 , (D5)

where β = cm−cwt
cm

.

2. Full model formulation

In order to calculate the probability of a selective
sweep in a circular range expansion, we need to calcu-
late the remaining wildtype population once a mutant
has arisen. To do so, we need to calculate the intersec-
tion of two circles given that we know both radii xwt
and xm and the distance of the centers of the circles y.
In the simplified model, we had y = 0 such that the in-
tersection is simply given by the area of the inner disk.
However, we need a more general formula for the case
y 6= 0.

The intersecting area of two circles with radii xwt, xm
at distance y is given by [51]

Nc-c =x2
wt cos−1

(
y2 + x2

wt − x2
m

2yxwt

)
+x2

m cos−1
(

y2 + x2
m − x2

wt
2yxm

)
−1

2
(
(−y + xwt + xm)(y + xwt − xm)

(y− xwt + xm)(y + xwt + xm)
)1/2.

(D6)

As in the 3D case, we have the remaining wildtype
population given by two formulas as written in eqn. 10
with

∆(1)(τ) = πx2
wt − πx2

m

∆(2)(τ) = πx2
wt − Nc-c.

(D7)

The formulas for the time τ1 at which the mutant
leaves the wildtype and the time τ2 at which the mutant
has overtaken the wildtype remain the same as given in
eqn. 13 and 14.

We then need to replace xwt = x + cwtτ and xm =
cmτ.

The full integral that needs to be solved for the un-
conditional sweep probability reads

Pr(sweep) =
∫ ∞

0

∫ ∞

0
Pr(sweep|X = x, Y = y)

fY(y|X = x) fX(x) dy dx,

=
∫ ∞

0

∫ x

0
e−µ

∫ ∞
0 ∆(τ)dτ

6y(x− y)
x3

3x2e−x2/θ3
2D

θ3
2D

dy dx.
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3. Independence of the mutation rate

We apply claim 2 on the integral form of Pr(sweep)
by making the following definitions

H(x, y) =
∫ ∞

0
∆(τ)dτ + x3 3cwt

π
,

P(x, y) = 6y(x− y)× 3x2,

Q(x, y) = x3 π

3cwt
,

(D8)

which are homogeneous and have degrees h = 3, p = 4
and q = 3. The application of claim 2 yields

Pr(sweep) = µ×
∫ ∞

0

∫ x

0
e−aH(x,y) P(x, y)

Q(x, y)
dy dx

∝ µ× µ
3−4−2

3 = µ0,

(D9)

which proves independence in the two-dimensional
case. Note that the homogeneity over

∫ ∞
0 ∆(τ)dτ can

be shown in the same way with the same substitutions
as in appendix B. The independence of the mutation
rate is confirmed by simulations (Figure 5).

A

B

Figure 5. Simulation results of the unconditional sweep prob-
ability with mutation rate µ̃ = 10−6 (A) and µ̃ = 10−4 (B).
Parameters other than the mutation rate are as in Figure 4.

Appendix E: Alternative growth models

In our model of expanding population, we consid-
ered polynomial growth N(t) ∝ td with d = 1, 2, 3 de-
noting the spatial dimension. However, our method
to calculate the sweep probability works for arbitrary
N(t). Other relevant choices for the growth dynam-
ics might be a constant population size, exponential
growth or sigmoidal growth. For the case of cancer, sev-
eral relevant growth models are discussed in [52]. The
mathematics in the polynomial growth case are really
neat and competition is well defined by Kimura’s step-
ping stone model or the FKPP equation in the contin-
uum limit. However, thinking of the underlying micro-
scopic picture, interpretation of the results can become
unclear.

1. Constant population size

For constant population sizes, we immediately know
the wildtype radius at the moment the mutant arises
and at any other time point. This fixed radius x0 im-
plies fixed population size N0 = 4

3 πx3
0. The probability

distribution of X can be formally written as the delta
function

fX(x) = δ(x− x0). (E1)

Following the main text, we have the location of the
first mutant given by fY(y|X = x) dy ∝ D(y)a(y).
Assuming the population is constant from the begin-
ning of the observation, the cell ages are uniformly dis-
tributed. We write a(y) = a0, where a(y) is the age of
the population at location y at the moment the first mu-
tant arises, and a0 is constant. The density remains the
same D(y) = 4πy2 dy assuming a spherical population.
After considering the boundary and normalization, we
have

f (y|X = x) =
3y2

x3 1{y < x}. (E2)

Since the population radius of the wildtype is fixed, we
can drop the condition by replacing x with the constant
x0. This leads to

fY(y) = fY(y|X = x) =
3y2

x3
0

1{y < x0}. (E3)

Next, we calculate the sweep probability conditioned
on X and Y. We start by writing the remaining wildtype
population once a mutant arose and analogously to the
previous calculation introduce the time measure τ. We
have

∆(τ) = Nwt − Nint = N0 − Nint, (E4)

where the formula for the intersectional space Nint has
to be split in a similar fashion as in section III C. We
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keep the form of eqn. 10 and can adapt also eqn. 11 and
12 by replacing xwt by x0. The timings in the indicator
functions of 12 become τ1 = x0−y

cm
and τ2 = x0+y

cm
. Using

claim 1, we obtain the conditional sweep probability by

Pr(sweep|Y = y) = e
∫ ∞

0 ∆(τ) dτ . (E5)

Then, the unconditional sweep probability can be ob-
tained by the following integral

Pr(sweep) =
∫ ∞

0
Pr(sweep|Y = y) fY(y) dy. (E6)

The integrals can be evaluated numerically.
For analytical insight, let us assume again that the

mutant originates in the center of the wildtype popu-
lation, fY(y) = δ(y). The integrands simplify and we
obtain

Pr(sweep) = Pr(sweep|Y = 0) = e−
µπx4

0
cm . (E7)

Because the timing of the first mutation plays no role in
constant populations, our argumentation for the inde-
pendence of the mutation rate no longer hold, and we
obtain a sweep probability dependent on the mutation
rate.

Performing the same analysis in one and two dimen-
sions, we obtain

Pr(sweep) = e−
µx2

0
2cm in 1D

Pr(sweep) = e−
2µπx3

0
3cm in 2D

(E8)

a. Comparison with Ralph & Coop: Motivated by
parallel adaptation on the species level, Ralph & Coop
investigated selective sweeps in constant populations
using a very similar approach [46]. However, whereas
we assume spherical wildtype populations, Ralph &
Coop consider more general shapes. To derive a con-
crete expression, they ignore boundary effects and ob-
tain “the expected number of other mutations to arise
in an area of diameter a in the time it takes the wave to
cover that area”. Simplifying eqn. (4) in Ref. [46] and
keeping their notation, we have

2a3λ

v
in 1D and

πa3λ

v
in 2D. (E9)

The number of mutations arising in an area is a Poisson
process. Thus, we can interpret this number as mean
of a Poisson distribution. Then, the probability of a
selective sweep given by

P(k = 0) = e−
2a2λ

v in 1D,

P(k = 0) = e−
πa3λ

v in 2D.
(E10)

We identify v as the speed of the mutant cm, λ as the
local mutation rate conditioned on survival µ = µ̃ ∗ ρ

and a as the maximal travelled distance by the first mu-
tant, which is x0 in our simplified case. Finally, we find
the solution of Ralph & Coop (eqn. E10) to be identical
to our solution (eqn. E8) up to multiplication by a con-
stant. The main conclusion is that full selective sweeps
are highly unlikely for sufficiently large population ra-
dius x0.

b. Comparison with Martens et al.: Martens and col-
leagues investigated the likelihood of clonal interfer-
ence and its impact on the speed of evolution in spa-
tially structured constant-size populations [47], and
then studied the implications for understanding cancer
initiation [19]. Two modes of evolution are considered:
(i) acquisition via subsequent selective sweeps and (ii)
acquisition with parallel arising mutations which inter-
fere with each other. To distinguish between these two
modes, the authors compare the timescale for a surviv-
ing mutation to occur, tmut, and the timescale for a mu-
tation to sweep through the entire constant wildtype
population, tfix. Equating these two timescales leads to
a critical length of the wildtype population:

Lc =

(
c0

2s0µ

) 1
2

in 1D

Lc =

(
c0

2s0µ

) 1
3

in 2D.

(E11)

The authors argue that clonal interference is very likely
in populations of size L � Lc, whereas we should ex-
pect selective sweeps when L � Lc. To compare this
result with our model, we put eqn. E11 into eqn. E8.
Therefore, we match using c0 ↔ cm, 2sµ↔ ρµ̃ = µ and
x0 ↔ L leading to

Pr(sweep) = e
− x2

0
2L2

c in 1D

Pr(sweep) = e
−

πx3
0

3L3
c in 2D.

(E12)

Indeed, we have Pr(sweep) → 0 for x0 � Lc and
Pr(sweep) → 1 for x0 � Lc. We conclude that the
result of Martens et al. are in agreement with our result
for constant population sizes.

2. Exponential growth

We write the population size as N(t) = N0ert, and set
N0 = 1. Then applying claim 1, the probability that no
mutants occur until time t is given by

F(t) = e−µ
∫ t

0 ert′ dt′ = e−
µ
r (e

rt−1). (E13)

Dropping the−1 term, we obtain the same approximate
expression as Durrett [53]. We proceed to calculate the
probability distribution of T by

f (t) =
d(1− F(t))

dt
= µerte−

µ
r ert

, (E14)
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which agrees with eqn.(25) in Ref. [53]. Instead of ask-
ing for the radius, it is more intuitive to relate the pop-
ulation size of the wildtype at the arrival of the first
mutant. This way, we not need to assume spherical
growth. We write Nx = ert, such that t = 1

r ln(Nx).
After substitution, we have

fNx (Nx) =
µ

r
e−

µ
r Nx , (E15)

which is an exponential distribution. The probability
for the radius X can then be calculated by assuming
spherical growth starting from one cell, Nx = 4

3 πx + 1.
For mathematical convenience, we assume Nx = 4

3 πx
neglecting the first cell. The probability distribution of
X reads

fX(x) =
3x2

θ3
exp

e
− x3

θ3
exp , (E16)

with θexp = 3
√

3r
4πµ .

To derive fY(y), we assume spherical growth of the
wildtype. Thus, the number of cells at radius y is given
by D(y) = 4πy2 dy. The age at radius y at the time the
first mutant arises can be obtained by investigating the
increase of the radius over time. Starting from radius y,
the population grows to radius x in time a. Mathemati-
cally, we have Nx/Ny = ear leading to

a =
1
r

ln
(

Nx

Ny

)
=

1
r

ln
(

x3

y3

)
. (E17)

The conditional probability distribution of Y is propor-
tional to fY(y|X = x) dy ∝ D(y)a(y). After normaliza-
tion, we have

fY(y|X = x) =
9y2

x3 ln
(

x
y

)
1{y ≤ x}. (E18)

To obtain the unconditional probability for y, we can
marginalize out X:

fY(y) =
∫ ∞

0
fY(y|X = x) fX(x) dx. (E19)

The integral can be evaluated numerically.
As the mutant grows independently of the wildtype,

it can never reach fixation. Bozic and colleagues cal-
culated the probability distribution of the mutant fre-
quency α assuming a stochastic branching process [54].
Setting α = 1 in eqn. (7) leads immediately to proba-
bility 0, meaning that the mutant can never reach fre-
quency 1. Nevertheless, their formula allows us to con-
sider cases in which the mutant frequency is sufficiently
high as to be practically indistinguishable from clonal-
ity, given imperfect measurement.

3. Sigmoidal growth

We calculate the probability distribution for the time
the first mutant arises and outline the calculation for
the position it occurs assuming spherical expansion.
Among the various sigmoidal growth laws (e.g. logis-
tic, Gompertzian, and von Bertalanffy growth [52]), we
pick logistic growth as representative. Starting with a
single cell, the population growth over time can be writ-
ten as N(t) = K

1+Ke−rt . We apply claim 1, and obtain the
probability no mutation occur before time t,

F(t) = e−
µK
r ln

(
ert+K
K+1

)
. (E20)

We proceed to calculate the probability distribution of
the time T the first mutant occurs,

fT(t) =
µK(K + 1)

µK
r ert

(ert + K)
µK
r +1

. (E21)

The probability distribution for the population size
fNx (Nx) at the time the first mutant can be obtained
by substituting Nx = K

1+Ke−rt yielding

fNx (Nx) =
µ (K + 1)

µK
r (K− Nx)

µK
r −1

rK
2µK

r −1
. (E22)

Assuming the spherical growth the probability distri-
bution fX(x) for the radius can be obtained by substi-
tuting Nx = 4

3 πx3 where we again neglect the first cell.
We obtain

fX(x) =
µ (K + 1)

µK
r
(

K− 4πx3

3

) µK
r −1

4πx2

rK
2µK

r −1
. (E23)

To obtain the location at which the first mutant oc-
curs, we need the age distribution dependent on the
radius a(y). In logistic growth, we compute this to be

a(y) =
1
r

ln
((

K− Nx

Nx

)(
Ny

K− Ny

))
.

Together with the density of cells at radius y of the
sphere, D(y) = 4πy2dy, we can compute the location
of y conditioned on X as

fY(y|X = x) =
3y2

x3
M

ln
[(

x3
M−x3

x3

)(
y3

x3
M−y3

)]
ln
(

x3
M−x3

x3
M

) 1{y ≤ x},

(E24)

where we define xM to be the radius at which the pop-
ulation reaches the carrying capacity K determined by

K =
4πx3

M
3 .
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To obtain the unconditional probability for y, we can
marginalize out X,

fY(y) =
∫ ∞

0
fY(y|X = x) fX(x) dx. (E25)

The integral can be evaluated numerically.
Whereas sigmoidal growth functions include com-

petition, the interpretation of spatial competition is
still ambiguous and goes beyond the scope of this
manuscript.

4. Boundary driven growth without proliferation in the
interior

Antal and colleagues consider boundary-driven
growth [20], which has been studied extensively [10].
Whereas we assume turnover of the entire population,
Antal et al. consider turnover only at the boundary
and focus on the three-dimensional case. A full selec-
tive sweep is impossible in this model since individu-
als located away from the boundary neither proliferate
nor die. Instead, we can consider the probability that a
mutant will envelop the wildtype and thus become the
only proliferating population. Using this interpretation,
eqn. (17) in Ref. [20] provides us the unconditional
sweep probability,

P(N = 1) =
9 + β2

β2
2

1 + e3π/β
, (E26)

with β =
√

v2 − 1 where we identify v = cm
cwt

. The
unconditional sweep probability is independent of the
mutation rate, as in our case described in Section III D.
Furthermore, Antal et al. find similar expressions for
the arrival time of the first mutant fT(t) (eqn. 15 in [20])
and the conditional sweep probability Pr(sweep|X = x)
(eqn. 16 in [20]) and the size of the wildtype population
when the first mutant occurs (eqn. 25 in [20] provides
the cumulative density function).

5. Mixed models

There are two ways to mix models. First, we can as-
sume that the wildtype grows differently from the mu-
tant population. We have done this in section E 1 as-
suming that the wildtype is constant and the mutant
radius propagates with a constant radius. Second, the
growth of the population can be described by two dif-
ferent formulas applied for different time intervals. For
example, the exponential-linear model describes expo-
nential growth that goes over into linear growth [52].

As the number of models increases rapidly, we fo-
cus on the discussion of the basic models. In general,
our methods always lead to the formulation of the inte-
grals for the sweep probability as long as we have the

population growth as a function of time and other con-
stant parameters of the wildtype Nwt and the mutant
Nm. We therefore need to assume spherical growth of
the wildtype and the mutant. Solving the integrals can
become complicated, and might need to be performed
numerically. Furthermore, the interpretation of the re-
sults might be questionable.

Appendix F: Numerical integration

We computed numerical integrals using the MAT-
LAB function ’trapz’, with interval widths and integra-
tion ranges tailored according to the nature of fX(x).
For values of x close to 0 and beyond 2θ, fX(x) is negli-
gibly small and makes virtually no contribution to the
integral. Hence we set the lower and upper bound of
integration to 0.01θ and 3θ, respectively. We set interval
widths to 0.01θ. We used analagous values to calculate
Pr(sweep|X = x).

Appendix G: Agent-based simulations

Individuals in our agent-based model are subdivided
into well-mixed demes on a regular two-dimensional
grid. The demes have identical carrying capacities and
are initially filled with residents, except that a single
wildtype invader is introduced at the centre of the
grid. At each time step, an individual is chosen at
random to be replaced by two offspring, with proba-
bilities weighted by fitness. Each offspring then either
migrates, with probability m, to a neighbouring deme
in a randomly chosen direction, or remains in its par-
ent deme. Local density dependence is implemented
by imposing a relatively very high death rate whenever
a deme is above carrying capacity. Mutation is cou-
pled to wildtype reproduction. To improve computa-
tional efficiency, resident individuals are not permitted
to disperse; we verified with additional simulations (to
be published in a later study) that this asymmetry has
only a minor effect on the wildtype expansion speed.
Further model details have been published previously
[27, 39].

Appendix H: Speed selection correspondence

We make a correspondence of propagation speed and
selective advantage. We set the migration rate to m =
0.05 and the deme size to K = 16. Normal cells have
birth rate rn = 0.909090, wildtype cells have birth rate
rwt = 1.0 such that swt =

rwt−rn
rn

= 0.1. For the mutant,
we vary the birth rate rm from 1.1 to 3.0 giving us swt =
rwt−rn

rn
ranging from 0.1 to 2.0. The speed is measured 10

times and is then averaged. The standard deviation was
consistently below 2% of the mean and is neglected.
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The wildtype speed is cwt = 0.15. The mutant speeds
are presented in table I. The wildtype propagates faster
than the mutant when the selective advantage is the
same swt = sm = 0.100. The reason for this is that
normal cells cannot migrate whereas wildtype cells can,
which in return inhibits the growth of the mutants.

sm 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
cm 0.14 0.23 0.31 0.38 0.46 0.53 0.60 0.68 0.75 0.82

sm 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00
cm 0.89 0.96 1.03 1.11 1.17 1.24 1.31 1.39 1.46 1.52

Table I. Correspondence of selective advantage sm to the prop-
agation speed cm for the mutant population measured in our
simulations. We fixed the migration rate m = 0.05, the deme
size K = 16 and fitness of the wildtype rwt = 1.0.
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1D 2D 3D

fX(x) 2x
θ2

1D
e
− x2

θ2
1D 3x2

θ3
2D

e
− x3

θ3
2D 4x3

θ4 e−
x4

θ4

fY(y|X = x) 2(x−y)
x2 1{y ≤ x} 6y(x−y)

x3 1{y ≤ x} 12y2(x−y)
x4 1{y ≤ x}

fY(y) 2
θ1D

Γ
(

1
2 , y2

θ2
1D

)
− 2y

θ2
1D

Γ
(

0, y2

θ2
1D

)
3

2θ3
2D

(
3θ2

2DΓ
(

5
3 , y3

θ3
2D

)
12y2

θ4

(
θΓ
(

1
4 , y4

θ4

)
− yΓ

(
0, y4

θ4

))
−12θ2DyΓ

(
4
3 , y3

θ3
2D

)
+9y2e

− y3

θ3
2D + 2y2Γ

(
0, y3

θ3
2D

))

Pr(sweep|X = x, Y = y) e
x2+y2

α2
1D numerical evaluation numerical evaluation

Pr(sweep|X = x)
√

πνxErf (νx)− 1 + e−2ν2x2

ν2x2 numerical evaluation numerical evaluation

Pr(sweep|X = x, Y = 0) e−
(

x
α1D

)2

e−
(

x
α2D

)3

e−(
x
α )

4

Pr(sweep) [approx.] cm−cwt
cm

(
cm−cwt

cm

)2 (
cm−cwt

cm

)3

Pr(sweep) [exact] β′
[

2 cot−1 (
√

1+β′)√
1+β′

+ ln
(

β′+1
β′+2

)]
numerical evaluation numerical evaluation

fX(X = x|sweep) [approx.] 2x
θ2

1D β
e
− x2

θ2
1D β 3x2

θ3
2D β2 e

− x3

θ3
2D β2 4x3

θ4 β3 e
− x4

θ4 β3

fX(X = x|sweep) [exact] complicated expression numerical evaluation numerical evaluation

Table II. Summary of analytical results in 1D, 2D and 3D.

1D 2D 3D

θ
√

cwt
µ

3
√

3cwt
πµ

4
√

3cwt
πµ

α
√

cm−cwt
µ

3

√
3(cm−cwt)

2

πµ(2cm−cwt)
4

√
3(cm−cwt)

3

πµ(c2
wt−3cwtcm+3c2

m)

β cm−cwt
cm

β′ cm−cwt
cwt

Table III. Summary of compound parameters in 1D, 2D and
3D.
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