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Abstract: Corner-supported modular steel sway frames (CMSFs) with rotary inter-9 

modular connections (IMCs) differed from traditional frames regarding their column 10 

discontinuities, beam groupings, and unique intra- and inter-modular connections, 11 

necessitating the investigation into their compressive performance to guarantee their 12 

safe and reliable application. This study investigated the compressive behavior of 13 

CMSFs with rotary IMCs using experimental tests, numerical modeling, and theoretical 14 

analysis. Three compression tests were conducted on sub-assembled CMSFs, 15 

considering varying floor and ceiling beam stiffnesses. The results showed that all 16 

frames experienced lateral sway, with upper columns at lower regions undergoing 17 

inward or outward elastic and plastic local buckling. RS1 (RS2) demonstrated 12% (3%) 18 

higher strength than RS3, and stiffness increased by 2% for RS1 compared to RS3. Pre-19 

and post-ultimate ductility of RS3 was 3% (13%) and 20% (37%) greater than RS1 20 

(RS2), indicating that increased rigidity with thicker beams enhanced strength and 21 

stiffness but resulted in reduced CMSFs' ductility. A finite element model (FEM) was 22 

generated, and its accuracy was verified using experimental load-shortening and failure 23 

outcomes, revealing an average prediction error of 0.3%, 9.1%, and 8.5% for 24 

compressive resistance, stiffness, and ductility index, respectively. Based on validated 25 

FEMs, a parametric study was conducted on 77 CMSFs to investigate the effects of 26 

varying beam and column sizes, lengths, beam gaps, and connecting plate thicknesses 27 

on compressive resistance, stiffness, and pre-and post-ultimate ductilities. Increasing 28 
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column and beam sizes from 150 to 200 mm and thicknesses from 6 to 8 mm enhanced 29 

strength and stiffness by up to 123% (55%) and 46% (10%), with pre-and post-ultimate 30 

ductility growing by 16% (113%) and 15% (19%). However, lengthening them from 31 

0.6 to 1.2 and 3 m decreased CMSFs' strength (stiffness) by up to 37% (5%) and 65% 32 

(71%), with no IMC failure. The sub-assembled CMSFs' buckling load was evaluated 33 

using theoretical models, considering members' stiffnesses and rotary IMC as pinned 34 

and semi-rigid. The average theory-to-FEM buckling load for pinned and semi-rigid 35 

IMC was 0.70 and 0.96, indicating that both models were conservative. However, 36 

considering IMC's rotational stiffness provided less scattering and a more realistic 37 

depiction of the CMSFs' buckling behavior than the pinned model. The study's findings 38 

and the accuracy of theoretical buckling models ensured they could conservatively 39 

design CMSFs under compressive loadings while considering their uniquenesses. 40 

Keywords: Compressive behaviors; Rotary inter-modular connections; Corner-41 

supported modular steel sway frames; Sub-assembled frame testing; Finite element 42 

parametric analysis; Theoretical buckling load models  43 
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1 Introduction 45 

Modular steel buildings (MSBs) utilize prefabricated modules interconnected with 46 

inter-modular connections (IMCs) to create efficient, high-quality, safe, and eco-47 

friendly structures [1,2]. They have emerged as successful alternatives to traditional 48 

steel buildings (TSBs) for various projects, such as COVID-19 hospitals [3], 29-story 49 

SOHO and Apex [4], and 32-story B2 towers [5]. The assembly, structural stability, 50 

and performance of MSBs rely significantly on intra- and inter-modular connections. 51 

Beam-column intra-modular connections are typically welded joints due to their higher 52 

capacity than fin-plate or bolted connections [2]. Meanwhile, IMCs transmit forces 53 

between modules [6]. Considerable investigation has been carried out on IMC designs 54 

and their mechanical performance under various loading conditions, leading to a 55 

comprehensive understanding of their advantages and limitations [4,5,7–11].  56 

Corner-supported modular steel units in MSBs provide a distinct load transfer path and 57 

superior offsite prefabrication compared to other modules [12,13]. Corner-supported 58 

modular steel sway frames (CMSFs), or non-sway frames, have been the primary focus 59 

of IMC research, with CMSFs capable of replicating nonlinear P-Delta effects, leading 60 

to significant bending moments in intra- and inter-modular connections and distinct 61 

structural responses compared to non-sway frames [14]. Extensive research has been 62 

conducted on tensile [15–18], shear [17,19–24], bending [21,25,26], and seismic 63 

performance [16,27–35] of welded [36–40], bolted [2,26,27,41–47], shear-keyed 64 

[24,29,54–63,34,64–71,35,48–53], pre- and post-tensioned [19,20,25,28,31,67,72,73], 65 

and automatic [16,18,23,30,50,74–76] IMCs. Depending on load capacity, resilience, 66 

installation convenience, and disassembly, each IMC type has pros and cons. For 67 

instance, welded IMCs are durable but susceptible to weld fractures or stress 68 

concentration [28]. Bolted IMCs are ductile but less resilient than welded joints and 69 
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require member openings, making them prone to gradual loosening or failure [7]. 70 

Shear-keyed IMCs are stiff and effective against lateral loads, but they can cause 71 

column shear stresses and require careful installation [51,77]. Pre- and post-tensioned 72 

IMCs are strong but may experience tension relaxation issues over time and require 73 

specialized equipment and expertise for installation [7,17]. Automatic IMCs are 74 

resilient and self-tightening but require high precision and are complex to install [30]. 75 

Besides, the low rotational stiffness of welded or cover-plate bolted IMCs hinders them 76 

from being used in high-rise MSB or earthquake-prone regions [33]. The inability to 77 

disassemble these IMCs prevents MSB reuse [15]. Rotary IMC eliminates the need for 78 

on-site welding or member opening, allowing for fast disassembly and the choice of 79 

alternative cross-sectional forms [2,17,26,41,42,78]. The complex design of rotary IMC 80 

demands specialized skills for precise alignment and compatibility with other modules, 81 

as well as load distribution, durability, and compliance with existing structures and 82 

design standards, all of which can affect the compressive behavior, stiffness, capacity, 83 

and ductility of the CMSFs depicted in Figs. 1 and 2. Understanding these factors is 84 

crucial for delivering secure and sustainable MSBs [2,26,41,42]. 85 

Despite extensive research on MSBs under various loads, existing practices, such as 86 

alignment charts [79] and simplified equations [80], may not accurately apply to the 87 

compressive design of CMSFs due to the semi-rigidity of IMCs, distinguishing them 88 

from regular frame systems in TSBs [81]. In MSBs, IMCs generate discontinuities and 89 

groupings of columns, beams, and IMCs, unlike traditional continuous columns 90 

attached to beams [82–84]. This distinction can lead to non-conservative or excessively 91 

conservative designs, posing stability risks for MSBs [85]. While conventional columns 92 

have been extensively studied, the compressive behavior of MSBs requires more 93 

attention. Some compressive tests on multi-column walls assumed homogeneous load 94 
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distribution and neglected the impact of adjacent modular units, IMCs, and complex 95 

joint zones [86–90]. Other studies developed theoretical buckling load models for the 96 

conservative design of single and grouped columns with shear-keyed IMCs but did not 97 

consider IMCs between adjacent modules [58,63,77,91,92]. A simplified analysis 98 

approach to compute column buckling length was proposed by Zhang [93], but its 99 

applicability to multi-story MSB columns is unclear. Several focused on stubs or non-100 

sway braced frames with specialized members or IMCs [15,91,92,94–96], but they did 101 

not account for the secondary moment effect, limiting their practicality for standard 102 

MSBs [97]. Sway and non-sway frames with corner IMCs have been examined by Li 103 

et al. [98,99], Farajian et al. [81], Zhai et al. [100], and Wang and Su [101], providing 104 

alignment charts for columns K-factors and simplified formulas following French rules 105 

[102]. However, these studies lacked experimental support for specific types of IMCs, 106 

ignored the rotational stiffness of vertical and horizontal IMCs and joint design, and 107 

relied on limited data for fitting, necessitating more precise and straightforward 108 

methodologies [100]. Moreover, some studies classified connections' strength and 109 

stiffness responses, gave design recommendations, and validated proposed systems, but 110 

they disregarded nonlinear analyses and structural post-buckling behavior under 111 

multiple limit states [103–105]. Since simplified connections and models cannot 112 

accurately determine the structural mechanism, MSB buckling length, and load 113 

calculations, they may produce inappropriate values [106]. Assuming rotary IMCs to 114 

be either pinned [38,107,108] or rigid [109] in CMSFs, like those used in TSBs 115 

[110,111], could lead to inaccurate predictions of the compressive response [15].  116 

A comprehensive examination of the compressive behavior of CMSFs considering the 117 

P-Delta effect, the relative stiffness of module members and IMCs was needed to 118 

develop accurate finite element models (FEMs) for replicating the actual behavior of 119 
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CMSFs [2,9,82–84,112]. Such analyses were required to focus on the nonlinear 120 

behavior of CMSFs. Thus, compressive testing, accurate modeling, analysis, and design 121 

were necessary to conservatively evaluate buckling load from semi-rigid to pinned 122 

boundaries, eliminating the need for charts to address the shortcomings and ensure the 123 

stability, integrity, and resilience of MSBs. Considering the compressive performance 124 

of these systems, specific types of IMCs [14], and the stability-relevant mechanical 125 

properties of IMCs [2], global stability and reliable design approaches needed to be 126 

investigated [106]. The objective of the current study was to contribute to this area by 127 

exploring the compressive behavior of CMSFs using rotary IMCs, as outlined in [26]. 128 

Three subassemblies representing framed exterior modules resembling sway frames 129 

were tested under compressive load [14]. Validated FEMs were used to evaluate the 130 

effects of parameter variation. The experimental and FEM results corroborated 131 

theoretical models assuming semi-rigid and pinned IMCs, enabling conservative 132 

predictions of the buckling loads of sub-assembled CMSFs and facilitating the design 133 

of cost-effective, secure, and sustainable MSBs. 134 

 135 
Fig. 1 Application of CMSFs with rotary IMC patent [113] in authors' 136 

designed MSB [114]  137 
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 138 
Fig. 2 Schematic diagram of assembling of CMSF with rotary IMC (IMC's 139 

components design details and specifics based on [2,26,41,42,78])  140 

2 Compression tests on CMSFs with rotary IMCs 141 

Compressive testing of sub-assembled CMSFs with rotary IMCs replicated the exterior 142 

sway frame, examining critical compression stresses that cause stability loss and initiate 143 

buckling. 144 

2.1 Specimens design 145 

Fig. 1 showed the application of rotary IMC modules in 5-story Ziya Shanglinyuan 146 

MSBs with dimensions of 8.5×3.0×3.0 m and 6.7×3.0×3.0 m [2,17,26,41,42,78] per 147 

GB50017-2017 [115], serving as a prototype for this study's engineering context and 148 

IMC designs. The IMC consisted of four components: a threaded nut, cover plate, 149 

connecting plate, and threaded bolt, whose installation procedures were depicted in Fig. 150 

2. To examine compressive behavior and failure response in CMSFs, three sub-151 

assembled exterior frames were designed, each incorporating unique roller supports on 152 

beam ends [14]. The objective of the testing was to gather empirical data for FEM 153 

validation, followed by parametric and theoretical research to develop buckling load 154 

models that incorporate rotary IMCs. The current study adopted sub-assembled 155 

specimens, so the outcomes were related to those in full-frame [14,16,28–31,116]. The 156 

Rotary IMC installation procedure in corner-supported MSBs (Prototype & Tests)
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lengths of columns and beams were determined using mid-length inflection points, 157 

which comprised half of their total lengths. While the semi-rigid behavior of rotary 158 

IMCs could affect the CMSF's inflection point, the specimen's design employed 159 

simplified pinned-ended assumptions, ignoring IMC rotational rigidity to achieve 160 

conservative results by underestimating capacity and stiffness. This offered a 161 

comprehensive understanding of the relationship between assumptions and actual 162 

behavior, highlighting the significance of joint rigidity when analyzing the compressive 163 

behavior of CMSF [14]. The welding seam for the columns and beams was located in 164 

the middle of the section, resulting in a butt joint created with groove welding. 165 

Following the prototype project, a 74 mm gap was maintained between floor beams 166 

(FBs) and ceiling beams (CBs) to allow for services [14].  167 

2.2 Specimens geometry 168 

Fig. 3(a,b) and Table 1 presented specimen geometry and component design details, 169 

while the IMC components' design details were from previous works [2,26,41,42,78], 170 

as depicted in Fig. 3(c). Due to the primary load-bearing member, the flexural stiffness 171 

of FBs was maintained higher than that of CBs; therefore, the cross-sectional depth of 172 

FBs (BFB) was greater than that of CBs (BCB). RS1 selected a thicker FB than CB, 173 

whereas RS2 and RS3 selected similar thicknesses [116]. The thickness of the ceiling 174 

beam (tCB) was increased to 8 mm in RS2, and the thickness of the floor beam (tFB) was 175 

decreased to 6 mm in RS3 relative to RS1. Various tFB and tCB were considered to 176 

examine the effect of beam and intra-modular connections on the compressive 177 

behaviors of CMSFs. All specimens were prepared with identical heights and widths of 178 

3375 and 1568 mm while maintaining the clear height and length of the upper and lower 179 

columns (Lc) at 1266 mm, and the floor (LFB) and ceiling (LCB) beams at 1192 mm. 180 

Adopted was the same 200×200×8 mm column measuring 200 mm in length (Dc), 200 181 
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mm in width (Bc), and 8 mm in thickness (tc). Cross-section width (DFB) and depth (BFB) 182 

of 150 and 200 mm for FBs and width (DCB) and depth (BCB) of 150 mm for CBs were 183 

selected. Meanwhile, members' cross-section sizes, columns height, and beam lengths 184 

(Lc, LFB, and LCB) were maintained. 185 

 186 

187 

 188 
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 189 
Fig. 3 Details of tested sub-assembled CMSFs with rotary IMCs  190 

2.3 Material properties 191 

GB/T228.1-2010 [117] was used to design steel coupons from the same material to 192 

analyze test results and generate FEM. Thickness measurements of 15 coupons, three 193 

for each of the five cross-sectional sizes of members, showed variations that notably 194 

affected strength, ductility, failure modes, and yield plateau, while stiffness remained 195 

constant. The mean values of the obtained parameters and thicknesses are detailed in 196 

Table 1. Additionally, Fig. 4(a~f) illustrates the test setup, failure modes, and tensile 197 

stress-strain curves of the coupons.  198 
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 200 
Fig. 4 Coupons' tensile testings outcomes 201 

2.4 Test setup  202 

Fig. 5(a,b) depicts the CMSF's compression testing setup. The specimens' upper and 203 

lower frame skeletons were connected with rotary IMC on the ground, as illustrated in 204 

Fig. 2, before being mounted on the setup following [2,17,26,41,42,78]. A 300t vertical 205 

hydraulic jack applied compressive force to the upper columns. Column roller supports 206 

were positioned above the jack to facilitate lateral movement of the jack and specimen, 207 

maintaining compressive force even during specimen shortening and lateral deflection. 208 

The jack's base was secured to a load sensor using a plate and threaded bolts to record 209 

reaction forces. The load sensor's top and bottom ends were anchored with a jack and 210 

knife-edge support through threaded bolts welded onto plates. The knife-edge support 211 

was welded to the bottom end of the plate to maintain flat support, transferring load 212 

instantly to the upper column while allowing rotation. This support enabled in-plane 213 

rotation while restricting out-of-plane rotation. On the ends of beams, roller supports 214 

were devised and installed to limit vertical translation while allowing lateral translation 215 

and in-plane rotation. At the lower column's base, a pin cell provided hinged support, 216 
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preventing in- and out-of-plane translation while allowing in-plane rotation. As a 217 

standard for column-end loadings, a similar testing technique was recommended in [14],  218 

as seen in [2,28,29,31,34,41,42,78,118]. A laser level was used to verify the specimen 219 

and load setup's straightness. Afterward, the jack was slightly pressed to maintain 220 

vertical alignment, measuring devices were attached, and formal testing was initiated. 221 

The loading was subdivided into preloading and formal loading, as per GB/T50344-222 

2019 [119]. The measuring devices' accuracy was confirmed by applying a 0.2Pu 223 

(CMSF's ultimate compressive resistance) preload. Specimens were held for two 224 

minutes after reaching preload before being completely unloaded for another two 225 

minutes, as depicted in Fig. 5(c) [120,121]. A combination of force and displacement-226 

controlled loadings was adopted, suitable for structures with unpredictable yield 227 

displacements [122]. After a force loading till yielding, displacement loading of 0.05 228 

mm/min was used until it dropped to 85% of Pu [123]. Once the load-shortening curves 229 

entered the nonlinear phase, displacement loading was initiated, determined by reaction 230 

forces registered by the load sensor and vertical shortening by LVDT.  231 

Strain gauges assess deformation and force transfer mechanisms [124]. As depicted in 232 

Fig. 6(a~c), strain gauges were mounted on upper columns (UCs), lower columns (LCs), 233 

FBs, CBs, and upper and lower corner fittings to evaluate local elastic or plastic 234 

buckling if it happened before or after material's yield [125]. At least one strain gauge 235 

was placed in potentially buckling-prone locations to ensure accurate assessment. 236 

Columns were susceptible to in- and out-of-plane local buckling near IMC; strain 237 

gauges on columns and corner fittings were positioned vertically along the height. 238 

Beams were allowed to rotate, and due to significant stress near the intra- and inter-239 

modular connections, strain gauges were placed up to 200 mm. While the FB and CB 240 

gap was small for working, no strain gauge was employed there. On RS1, there were 241 
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47, while on RS2 and RS3, there were 56 strain gauges. As illustrated in Fig. 6(d), eight 242 

horizontal linear variable differential transducers (LVDTs) were positioned vertically 243 

on LCs, UCs, and corner fittings identified by H1-H8 to measure the degree of lateral 244 

deflection, translation, sway, or buckling. A vertical LVDT V3 was mounted on a jack-245 

fixed knife-edge support to assess the specimens' end-shortening. Similarly, V1 and V2 246 

measured the vertical deflection of CBs and FBs near IMC. 247 

 248 

 249 
Fig. 5 Generalized compression testing setup of sub-assembled CMSFs with rotary 250 

IMCs. (1-Reaction frame; 2-Reaction beam; 3-Column roller support; 4; Vertical 251 

hydraulic jack; 5-Load sensor; 6-Knife-edge support; 7; CMSFs specimen with rotary 252 

IMCs; 8-Beams roller support; 9-Hinged support; 10-Pedestal; 11-Anchor bolt holes) 253 
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 254 

 255 
Fig. 6 Detailed location of strain gauges and LVDTs on CMSFs 256 

3 Experiment outcomes  257 

3.1 Failure modes 258 

Fig. 7(a~c) demonstrates the CMSF failure mechanisms detected in RS1, RS2, and RS3. 259 

As the lateral sway (Δc) indicated, all CMSFs exhibited in-plane translation, controlled 260 

by the horizontal translation of floor and ceiling beams, leading to frame instability in 261 

the same direction. While all CMSFs experienced the same failure, RS1 and RS3 262 

swayed in the direction of beams due to thinner beams compared to columns, but RS2 263 

exhibited failure in the opposite direction because beams and columns had the same 264 

thickness, preventing significant movement towards the beams. The CMSFs displayed 265 

distinct translations when subjected to compressive loads, particularly in the FBs and 266 
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CBs. As the applied load increased, lateral translation became more pronounced. While 267 

both beams moved in the same direction, there were noticeable variations, especially in 268 

the deflection of FBs. For instance, the deflection of FBs increased by 12% in RS1, 16% 269 

in RS2, and 15% in RS3. This indicates a significant increase in the in-plane translation 270 

of the CMSFs, especially with local column buckling. Additionally, the CB and FB 271 

translations were measured at nearly 16 mm and 18 mm in RS1, but these decreased by 272 

33% and 31% in RS2 and increased to 79% and 81% for RS3. This suggests that the 273 

beams in RS3 demonstrated a more pronounced lateral movement than those in RS1 274 

and RS2, highlighting the significant influence of the beams' flexural rigidity on the 275 

failure position by affecting stress propagation, translation, and rotation. Moreover, 276 

non-rigid constraints permitted the upper and lower frame skeleton's slight gapping and 277 

rotation around the IMC. When local buckling occurred in the UC, the CMSF suffered 278 

an abrupt rise in in-plane translation. Because the CMSF could not sustain or transfer 279 

additional loads after buckling, the loading was halted for safety concerns. Local inward 280 

and outward buckling (IB/OB) at the base of the UC towards the IMC was the primary 281 

cause of failure. It occurred at a distance of 50-100 mm for RS1 and RS2 while 50-200 282 

mm for RS3 from the edge of the corner fitting, confirmed by the greater strain values 283 

in the UCs' lower regions. Buckling on the UCs bending side was more apparent than 284 

on the opposite. Similar failure modes and their concentration on column faces adjacent 285 

to column bending sides supported the absence of out-of-plane translation and rotation, 286 

indicating compressive behavior was controlled in-plane. Rotary IMC transmitted force 287 

to other members without localized failure, ensuring CMSF's safety and integrity. As 288 

shown in Fig. 11(a~c), comparing yield strain showed no location on beams or corner 289 

fittings yielded or buckled before achieving CMSF's ultimate compressive resistance. 290 

Similarly, most regions on the LCs did not yield; however, several areas on the UCs 291 
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did yield, indicating that the upper column was the primary load carrier. Except for 292 

portions in or opposite bending directions revealing local elastic buckling, other regions 293 

of UCs exhibited local plastic buckling in CMSFs.  294 

 295 

 296 
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 297 
Fig. 7 Failure modes of CMSF under compression (IB/OB, inward/outward buckling) 298 

Table 1 Design details and comparison of compression tests and FEMs of CMSFs with rotary IMC 
Item 

 

DFB 

(mm) 

BFB 

(mm) 

tFB 

(mm) 

LFB 

(m) 

DCB 

(mm) 

BCB 

(mm) 

tCB 

(mm) 

LCB 

(m) 

𝑃𝑢,𝑇𝑒𝑠𝑡 
(kN) 

𝐾𝑒,𝑇𝑒𝑠𝑡 
(kN/mm) 

𝛥𝑢,𝑇𝑒𝑠𝑡 
(mm) 

𝐷𝐼𝑇𝑒𝑠𝑡  
(Ratio) 

RS1 150 200 8 1.2 150 150 6 1.2 1397 343 6.1 1.8 

RS2 150 200 8 1.2 150 150 8 1.2 1279 321 5.4 1.4 

RS3 150 200 6 1.2 150 150 6 1.2 1244 339 6.2 2.3 

Item 

 
𝑃𝑢,𝑇𝑒𝑠𝑡 
(kN) 

𝑃𝑢,𝐹𝐸 

(kN) 

𝑃𝑢,𝑇𝑒𝑠𝑡
𝑃𝑢,𝐹𝐸

 
𝐾𝑒,𝑇𝑒𝑠𝑡 

(kN/mm) 

𝐾𝑒,𝐹𝐸 

(kN/mm) 

𝐾𝑒,𝑇𝑒𝑠𝑡
𝐾𝑒,𝑇𝑒𝑠𝑡

 
𝛥𝑢,𝑇𝑒𝑠𝑡 
(mm) 

𝛥𝑢,𝐹𝐸 

(mm) 

𝛥𝑢,𝑇𝑒𝑠𝑡
𝛥𝑢,𝐹𝐸

 
𝐷𝐼𝑇𝑒𝑠𝑡  
(Ratio) 

𝐷𝐼𝐹𝐸  

(Ratio) 

𝐷𝐼𝑇𝑒𝑠𝑡
𝐷𝐼𝐹𝐸

 

RS1 1397 1403 1.00 343 413 0.83 6.1 4.0 1.53 1.8 2.0 0.94 

RS2 1279 1256 1.02 321 342 0.94 5.4 4.6 1.17 1.4 2.0 0.70 

RS3 1244 1251 0.99 339 354 0.96 6.2 4.6 1.34 2.3 2.1 1.10 

Mean   1.00   0.91   1.35   0.91 

Cov   0.01   0.06   0.11   0.18 

Item 

 

Length 

(mm) 

Width 

(mm) 

Thickness 

(mm) 

fy 

(MPa) 

fu 

(MPa) 

δ 

(%) 

Es 

(GPa) 

Beam-1 150 150 6(5.37) 298 395 22.2 201 

Beam-2 150 150 8(7.33) 321 439 23.6 209 

Beam-3 150 200 6(5.54) 344 468 24.9 208 

Beam-4 150 200 8(7.30) 342 455 23.5 210 

Column 200 200 8(7.34) 380 434 22.7 206 

Corner fittings1 - - 16(15.80) 351 518 23.0 198 

IMC (ii, iii)1 - - - 360 580 34.0 206 

IMC (i, iv)1 - - - 360 610 16.0 206 

DFB, BFB, tFB, LFB; DCB, BCB, tCB, LCB; Pu, Test (Pu, FE), Ke, Test (Ke, FE), Δu, Test (Δu, FE), DITest (DIFE); 

and fy, fu, δ, Es represent the floor and ceiling beam's width, depth, thickness, length; ultimate 

compressive resistance, initial stiffness, ultimate shortening, post-ultimate ductility index via test 

(FEM); material yield strength, ultimate strength, percentage elongation, elastic modulus—Note:1 

Material properties obtained from [2]. The thickness values in the bracket represent the average 

measured thickness. 
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3.2 Load-shortening curves  299 

Fig. 17(a~c) demonstrates the CMSFs' load-shortening (P-Δ) curves, while Fig. 17(f) 300 

shows their generalized behavior, implying that all illustrations displayed elastic (I), 301 

inelastic (II), and recession (III). 'P' represents the compressive load, while 'Δ' indicates 302 

the shortening. The recession is a stage after the ultimate stage defined by a succeeding 303 

trough with a sharp decline in the load-carrying capacity that may extend to larger 304 

shortening [126–132]. These curves determine Pu, ultimate shortening (Δu), initial 305 

stiffness (Ke), and ductility index (DI) [133,134]. The load grows linearly with 306 

shortening during stage I until the yield strength (Py) is achieved. At the transition, the 307 

increase in capacity is characterized by a decrease in the stiffness of curves because of 308 

exceeding the bending stresses at UCs' multiple locations. During stage II, from Py until 309 

Pu, the curves acquire a parabolic shape; concurrently, local buckling appears on the 310 

UCs as an inward and outward pattern as the bending and P-Delta effect intensifies. 311 

RS1 (RS2)'s Pu values are 12% (3%) higher than RS3. Compared to RS3, Ke shows 312 

marginal fluctuation by rising to 2% for RS1. It indicates that increased rigidity with 313 

thicker beams enhances strength and stiffness. Meantime, as determined by strain 314 

values, local elastic buckling is found mainly in the bending direction, owing to bending 315 

stresses and P-Delta effects that appear to reduce column stiffness relative to other sides. 316 

Δu of RS3 is 3% (13%) greater than RS1 (RS2) due to the thinner beams, with RS2 317 

having the lowest value due to the thickest beams. Thicker beams reduce buckling strain 318 

and premature instability, diminishing CMSFs' ductility. Stage III is marked by 319 

decreased capacity, sharp deflection increase, and severe local buckling. Similarly, the 320 

DI can be compared at the post-ultimate stage. The DI represents the capacity of frame 321 

columns to undergo plastic deformation beyond the ultimate load, providing insight 322 

into their post-peak deformation capacity, structural stability, and the potential for 323 
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design improvements and strengthening techniques [77,91,92,123,133]. RS3 has more 324 

excellent post-ultimate ductility of 20% (37%) and a better recession stage than RS1 325 

(RS2), indicating that stiffer beams enable plastic deformation and improve the 326 

structure's ductility index by limiting stress transmission to other components. 327 

3.3 Load-strain curves 328 

Figs. 8(a~d), 9(a~h), and 10(a~h) depict load-strain curves and magnitudes on UCs 329 

and LCs, highlighting the strain amount, yield strain, and local buckling sites, while 330 

Fig. 11(a~c) shows the part-wise maximum absolute strain distribution on corner 331 

fittings, UCs, LCs, FBs, and CBs. The curves exhibit linear, nonlinear, and recession 332 

sections. As load increases, stress rises until local buckling is indicated by inversion, 333 

overturning, or abrupt decline in strain curves with exceptionally high values. Curves 334 

overturning before or near yield strain signify stresses below the yield strength, causing 335 

elastic buckling. Conversely, plastic buckling occurs with stresses surpassing yield. 336 

Post-yield overturning curves during the recession phase indicate severe local plastic 337 

buckling. Inward and outward buckling occurs in the upper column's lower region, 338 

while other members lack buckling or yielding, as indicated by lower strain values in 339 

upper and lower corner fittings, highlighting the absence of localized deformation in 340 

rotary IMCs. For instance, locations 2, 19, 20, 30, 43, and 44 in RS1, locations 2, 3, 24, 341 

36, 50, 51, and 52 in RS2, and locations 2, 3, 4, 23, 24, 25, 34, 35, 46, and 47 in RS3 342 

demonstrate the existence of local buckling on each face of UCs lower regions, which 343 

exhibits elastic and plastic local buckling. Portions of UCs experiencing bending 344 

stresses in or opposite directions of beams display elastic buckling. In contrast, adjacent 345 

sides of UCs not exposed to bending undergo plastic buckling. For instance, 19, 20, 43, 346 

and 44 in RS1, 50, 51, and 52 in RS2, and 23, 24, and 25 in RS3 display local elastic 347 

buckling, suggesting that bending and the P-Delta effect prevent UCs and other 348 
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members from yielding fully. This reveals that the CMSFs' instability is mainly driven 349 

by geometric instability, as opposed to IMCs or members' strength failure. 350 

 351 

 352 
Fig. 8 Load-strain curves at columns of RS1 353 
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 354 
Fig. 9 Load-strain curves at columns of RS2 355 
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 356 
Fig. 10 Load-strain curves at columns of RS3 357 
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 359 
Fig. 11 Part-wise maximum absolute strain distribution 360 
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3.4 Load-deflection curves  361 

Fig. 12(a~f) shows the load-deflection curves where the compressive load is denoted 362 

by P, and δ signifies the lateral deflection of the columns and the vertical and lateral 363 

deflections of the beams. They operate with linear and nonlinear stages, with a lengthy 364 

recession phase followed by a curve drop. This is because the failure of CMSFs is 365 

limited to bending and local buckling of UCs with sway. While the load increases, the 366 

deflection also rises, stabilizing when the ultimate capacity is reached, followed by a 367 

pause in load but deflection increments. The orderly increase in lateral deflection from 368 

LCs to UCs indicates the presence of CMSF sway, denoted by Δc. Simultaneously, the 369 

maximum deflection at the top of the UCs suggests CMSFs' instability due to local and 370 

global failure. Alternatively, non-identical deflections of FBs and CBs in vertical and 371 

lateral directions and their difference imply a degree of relative rotation between the 372 

upper and lower frame skeleton at IMCs, which cannot be simulated as rigid or pinned 373 

[30]. The varied stiffness decrement of each curve reveals that members act differently 374 

with the secondary moment amount they experience. RS3 exhibited a more notable 375 

nonlinear stage followed by more significant deflection than RS1 and RS2, indicating 376 

that less rigid beams translate more, enhancing CMSF flexibility and force distribution 377 

among members. The deflection curve supports test failure modes. Notably, the 378 

deflection difference between UC ends (H8 and H6) suggests local buckling initiation 379 

near H6, followed by increased top lateral deflection. 380 
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 381 
Fig. 12 Load-deflection curves at various parts of tested CMSFs 382 

4 Finite element analysis on CMSFs with rotary IMCs  383 

The test yielded valuable data but did not assess CMSF's overall instability and the 384 

influence of altering parameters. To create a reliable FEM, test failure modes and data 385 

from load-shortening curves were used. 386 

4.1 Formation of finite element model 387 

The finite element modeling and analysis were conducted with ABAQUS [135]. Elastic 388 

buckling was performed using the ABAQUS/Linear perturbation buckle-type solver 389 

and the subspace iteration approach to determine the buckling loads and modes. Then 390 

the nonlinear analysis adopted the ABAQUS/static Riks-type solver to determine the 391 
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and the von Mises yield criteria were adopted for all components utilizing the associated 393 

material properties listed in Table 1 [30]. The Poisson's ratio of 0.3 was adopted [78]. 394 

 395 

 396 
Fig. 13 Experimentally-verified FEM details of CMSFs with rotary IMCs  397 
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suitability of the element size was determined by a mesh convergence study that 401 

employed mesh A, B, and C and compared their results with test P-Δ curves, as depicted 402 

(a) Verified FEM details of CMSF with rotary IMC

P

13 mm

IMC

30 mm

25 mm
Corner fittings

Compression load

5 mm

25 mm

2
0

0
 m

m

UC

LC

CB

30 mm

FB

30 mm

 RP-1

Ux=Uy=Uz=0

URx=URz=0

Uy=Uz=0

URx=URz=0
Uy=0

URx=URz=0

RP-4

RP-3
2

0
0

 m
m

 RP-2

 
 

FB, CB

(b) Selected mesh details for FEM validation of CMSF

Mesh B

13 mm

CB

30 mm

FB

30 mm

UC &LC

Mid=30 mm 

Ends=5 mm 

H

UC 

&LC

60 mm

CB

60 mm

FB

60 mm

13 mm

Mesh C

H

CB

15 mm

FB

15 mm

13 mm

Mesh A

UC 

&LC

15 mm



 

27 

 

in Fig. 17(d). To accurately replicate local buckling, the column edges at 200 mm were 403 

densely meshed, whereas other parts were meshed uniformly. Additionally, the corners 404 

of columns and beams were partitioned at their thickness to create the structured mesh 405 

[68–71]. Types A and B assessed local buckling and deformation at the column ends 406 

more precisely than Type C, shown in supplementary Fig. B1(h). When mesh was 407 

raised from 15 to 30 and 60 mm, Pu (Ke) increased by up to 32% (6%) while Δu and DI 408 

by 11%. Mesh sizes significantly impacted failure modes and compressive behavior, 409 

revealing that Type B with 30 mm mesh yielded the closest results. This highlighted 410 

the importance of compressive tests on CMSFs with rotary IMCs to determine the 411 

proper mesh density. 412 

4.3 Loading and boundaries 413 

Reference nodes (RP-1~RP-4) on column and beam cross-sections with surface-based 414 

coupling constraints that limit translation and rotation provided loading and boundary 415 

conditions. Vertical translations of beams were constrained, whereas those of LCs were 416 

restricted in all directions. While UCs and beams had the freedom of in-plane 417 

translation, the out-of-plane translation and rotation of beams and columns were 418 

restrained. Compression force was applied on the UC as displacement-controlled 419 

loading to achieve shortening. Columns and beams were welded to corner fittings using 420 

"tie constraint" via surface-to-surface contact. The interaction between corner fittings, 421 

connecting plates, and IMC components was simulated as surface-to-surface with "hard 422 

contact" as normal while "finite sliding" as tangential behavior [48]. A friction 423 

coefficient of 0.3 was chosen, as shown in Figs. 17(e) and supplementary Fig. B1(i) 424 

[49,65]. All specimens used hot-rolled sections with low bending, welding deformation, 425 

and residual stresses; thus, the effects of bending, welding, and temperature residual 426 

stress were omitted in FEMs [136,137].  427 
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4.4 Initial imperfections 428 

The CMSFs' components might have imperfections before and after installation, which 429 

is difficult to measure by conventional methods [134]. Design standards prescribe 430 

imperfections between tc/500 to tc/200 and Lc/1000 to Lc/1996 [138]. However, for 431 

CMSFs, imperfections can be attributed to column thickness (tc), frame height (H), and 432 

eccentricity (e) [47,91,92,139]. This study selected height imperfection values of H/500, 433 

H/1000, H/1500, and H/2000; thickness imperfection values of tc/1000, tc/100, tc/10, tc, 434 

and 2tc; and load eccentricities of 0, Dc/70, Dc/35, Dc/14, 4Dc/14, 6Dc/14, 3.35Dc/7, and 435 

3.43Dc/7. Eigenvalue analysis yielded the buckling modes shown in Fig. 15(a~c). In 436 

addition to thickness or height imperfections, nonlinear Riks analysis applied load 437 

eccentricities per test failure mode depicted in Fig. 7(a~c), such as in the direction of 438 

beams for RS1 and RS3 and the opposite direction of beams for RS2. A comparison 439 

was made between the critical buckling loads and accompanying mode shapes and the 440 

loads at which failure occurred in the Riks analysis. Incorporating global stability 441 

parameters offered insights into individual buckling modes' contribution and 442 

highlighted local buckling's role in overall stability, improving CMSFs' stability 443 

assessment and understanding of buckling modes' interaction. The load corresponding 444 

to the first buckling mode was 1312.5 kN for RS1, which exhibited a compressive 445 

resistance of 1397 kN. To assure a reliable description of the structure's behavior, 446 

imperfections were introduced to the lowest buckling mode (Mode 1) for RS1, RS2, 447 

and RS3 [77]. The imperfection amplitude determined in Fig. 14(a~c) was utilized for 448 

all CMSFs and FEMs in Supplementary Table A1. Compared with test results, local 449 

imperfection of H/600 or 0.64tc and global imperfection of e=3.35Dc/7 yielded the 450 

closest results. The influence of increasing H or tc imperfection values on Pu (Ke) and 451 

Δu (DI) was non-apparent. Since in CMSFs, translation or rotation was allowed; thus 452 
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the eccentricity impact was significant, as depicted in failure modes in supplementary 453 

Fig. B1(j). 454 

 455 
Fig. 14 Influence of initial imperfections 456 

 457 
Fig. 15 First three buckling modes 458 

 459 
Fig. 16 Comparisons of Tests-to-FEM of CMSFs 460 
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4.5 Validations 461 

The average estimates for Pu, Ke, Δu, and DI made by the FEMs for three tests on RS1, 462 

RS2, and RS3 are shown in Figs. 16 and 17(a~c), and Table 1. The FEMs produced 463 

average modest prediction errors of 0.3%, 9.1%, and 8.5% for Pu, Ke, and DI but 464 

exhibited a significant scattering of 35% for Δu, principally brought on by FEM 465 

simplifications, soft supports, material modeling, and variations in imperfection. The 466 

developed FEM can adequately simulate CMSFs' deformed shapes with inward and 467 

outward LB at the UCs' lower area and sway, as depicted in Fig. 18(a~c), validating 468 

the FEMs' reliability to anticipate the CMSFs' compressive behaviors with rotary IMCs. 469 

 470 

 471 
Fig. 17 Load-shortening curves of CMSFs 472 
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 475 
Fig. 18 Test vs. FE-predicted failure modes 476 

5 Parametric analysis 477 

Data for 77 CMSFs was produced using validated FEM that maintained the rotary IMC 478 

and corner fittings dimensions, mesh B, local imperfection of H/600 or 0.64tc, and 479 

global imperfection of e=3.35Dc/7. The parametric analysis covered beam and column 480 

sizes, lengths, spacing, and plate thicknesses. Typical load-shortening and failure 481 

behaviors were classified in Figs. 19(a~g) and 20(a~f), showing similar patterns to the 482 

test results. Supplementary Figs. B1(a~j), B2(a~g), and B3(a~g), along with Table A1, 483 

offered detailed information about the specific parameters and their comprehensive 484 

impact on failure modes, Pu-Ke trends, Δu-DI trends, and the values of Pu, Ke, Δu, and 485 

DI. 486 

5.1 Beams sizes (DFB×BFB×tFB; DCB×BCB×tCB) 487 

Fig. 19(a) demonstrates how the compressive behavior of CMSFs is influenced by 488 

variations in floor and ceiling beam sizes, such as DFB, DCB, BFB, BCB, tFB, and tCB, 489 

ranging from 150 to 200 mm and 6 to 8 mm while maintaining their lengths. Increasing 490 

the beam sizes has a positive impact on the CMSFs' performance, enhancing Pu, Ke, Δu, 491 
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and DI, with improving Pu (Ke) by up to 46% (10%) and Δu (DI) by 15% (19%). This 492 

improves frames' compressive behavior and bending resistance. It can prevent 493 

premature buckling and improve ductility, allowing CMSFs to deform more before 494 

reaching capacity, as shown in Supplementary Fig. B1(a). 495 

5.2 Beams lengths (LFB; LCB) 496 

The compressive behavior of CMSFs can be influenced by floor and ceiling beam 497 

length variations, as shown in Fig. 19(b). The results indicate that increasing the beam 498 

lengths from 0.6 to 1.2 and 3 m for a given DFB, DCB, BFB, and BCB of 150 and 200 mm 499 

and tFB and tCB of 8 and 6 mm could harm the compressive performance of the CMSFs 500 

by impairing Pu (Ke) up to 37% (5%). The increased slenderness of longer beams 501 

reduces bending resistance and may cause premature buckling, preventing CMSFs from 502 

achieving full capacity. Supplementary Fig. B1(b) demonstrates that it might improve 503 

ductility by enhancing column-beam flexibility when adequately built. 504 

5.3 Columns lengths (Lc) 505 

The compression behavior of CMSFs can be affected by changes in the length of the 506 

columns, as depicted in Fig. 19(c). The findings demonstrate that elongating the 507 

columns from 0.6 to 1.2 and 3 m for a given LFB and LCB of 0.6, 1.2, and 3 m, DFB, DCB, 508 

BFB, and BCB of 150 and 200 mm, and tFB and tCB of 8 and 6 mm may harm the CMSFs' 509 

performance by decreasing their Pu (Ke) by up to 65% (71%). This occurs because 510 

longer columns become more slender, reducing their resistance to buckling and bending, 511 

which can increase deflection and bending stresses, limiting CMSFs' load-carrying 512 

capacity. However, redistribution of forces within the frame might improve the ductility, 513 

as demonstrated in Supplementary Fig. B1(c). 514 

5.4 Columns sizes (Dc×Bc) 515 

Changes in the size of the columns can impact the behavior of CMSFs when subjected 516 

to compression, as shown in Fig. 19(d). The results indicate that enhancing the cross-517 
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sectional sizes from 150 to 180, 200, and 210 mm for a given Lc, LFB, and LCB of 1.2, 518 

2.5, and 3.6 m and tc of 8 mm can improve the performance of CMSFs by increasing 519 

their Pu (Ke) up to 140% (116%) but may also have adverse effects by reducing Δu (DI) 520 

up to 41% (10%). Increasing Dc and Bc improves column buckling and bending 521 

resistance and decreases slenderness. As illustrated in Supplementary Fig. B1(d), 522 

increasing Dc/tc yields a wider cross-section, reducing CMSF buckling strain and 523 

ductility. 524 

5.5 Columns thickness (tc) 525 

In Fig. 19(e), column thickness affects CMSF compression behavior. The results show 526 

that increasing column cross-section thickness from 6 to 8 and 10 mm for Dc and Bc of 527 

150, 180, 200, and 210 mm can improve CMSF performance by raising their Pu (Ke) 528 

by up to 123% (55%) and Δu (DI) by up to 16% (113%). A decrease in Dc/tc reduces 529 

column slenderness and increases buckling and bending resistance. Thus, CMSFs can 530 

withstand more plastic deformation before failure, increasing their buckling strain and 531 

ductility, as depicted in Supplementary Fig. B1(e). 532 

5.6 Beams gap and connecting plate thickness  533 

Figs. 19(f, g) and B1(f, g) demonstrate that CMSF compressive behavior remained 534 

unaffected by increasing the beam gap from 20 to 74 and 133 mm and the connecting 535 

plate thickness from 5 to 15 and 30 mm. These factors can affect the frame's lateral 536 

rigidity, yet CMSF columns resist compressive stresses, indicating that rotary IMC can 537 

transmit compressive loads without localized failure to CMSFs, as depicted in 538 

Supplementary Figs. B1(f) and B1(g) [14,47].  539 
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 542 
Fig. 19 Influence of varying parameters on CMSFs' load-shortening curves 543 
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3.72 503.258 6.16516 605.513 5.09373 570.195 4.66322

4.30223 535.221 7.51602 609.31 6.06535 595.525 5.20848

4.82467 558.978 8.89762 594.609 7.05087 602.912 5.80648

5.56217 582.878 10.5229 567.951 8.1219 596.473 6.43114

6.69646 602.02 12.2852 538.786 9.31612 581.286 7.14912

7.02464 603.126 13.3773 522.36 10.5615 561.582 7.91003

7.35442 602.401 15.1097 498.548 11.9079 540.054 8.11446

7.86758 599.435 16.1336 485.669 13.3538 518.488 8.32672

8.6526 591.755 17.8498 465.969 14.9081 497.72 8.64979

9.48201 580.085 19.683 447.448 16.8425 474.351 9.15348

10.3537 566.328 21.6316 429.309 18.9279 452.431 9.77031

11.2757 551.51 23.5815 412.163 21.0716 432.535 10.0832

12.2861 535.521 25.6899 394.852 23.227 413.56 10.4044
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 545 

 546 
Fig. 20 CMSFs' typical failure modes against compressive loading 547 

6 Theoretical investigations on CMSFs with rotary IMCs 548 

The failure mechanism observed in CMSFs reveals both elastic and plastic local inward 549 

and outward buckling in the upper columns. This observation indicates noncompliance 550 

with EC3 Class 3 slenderness criteria, as elastic buckling is restricted, prohibiting 551 

complete cross-section yielding. Local buckling has a significant impact on member 552 

capacities, whether it is plastic or elastic [140]. Incorporating global strength while 553 

accounting for global stability parameters yields more conservative results than cross-554 

sectional strength assessments under these conditions [86]. Multiple studies 555 

demonstrate consistent design practices in which global strength prediction is utilized 556 

for member design, considering yield strength failure due to local buckling of Class 3 557 

columns [141,142]. Certain investigations include local buckling reduction factors for 558 

fixed-ended stubs [143], while others prefer member buckling strength as the primary 559 

design criterion [144]. Likewise, global buckling strength models are applied to simple-560 

supported, concentrically compressed members [140]. Notably, IS800 [145,146], NZS 561 

3404[147], EC3:1-1 [148], CSA S16-19 [149], AISC360-16 [150], and GB 50017-2017 562 

(a) SR-2 (b) SR-3

(c) SR-6 (d) SR-25

(e) SR-26 (f) SR-28

(a) SR-2 (b) SR-3
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[115] highlight the vitality of effective length factors in stability design, depending on 563 

the degree of elastic restraint at frame column ends. The unique characteristics of MSB 564 

discontinuous columns and IMCs introduce variability in their effective length factor 565 

and buckling load, governed by the relative joint and member bending stiffness ratio 566 

and the stiffness of IMCs [81]. Chen et al. [151] underscore that insufficient IMC 567 

stiffness can amplify MSB column slenderness, necessitating stability analysis for a 568 

conservative determination of critical buckling load. Thus, while assessing CMSF 569 

compressive behavior, the critical buckling load that causes the frame to buckle is the 570 

main focus. Buckling load equations for the tested sub-assembled CMSFs in Fig. 21(a) 571 

are determined. The derivation uses pinned and semi-rigid IMCs in three-story full-572 

scale models shown in Fig. 21(b). The stability functions presented in Eqns. 1 and 2 573 

[152], along with the buckling load equation in Eqn. 3 [106] are utilized. 574 

𝑆𝑖𝑖 =
(
𝜋

𝜇
)
2

−
𝜋

𝜇
sin

𝜋

𝜇

2 − 2 cos
𝜋

𝜇
−

𝜋

𝜇
sin

𝜋

𝜇

 ;  𝑆𝑖𝑗 =

𝜋

𝜇
sin

𝜋

𝜇
− (

𝜋

𝜇
)
2

cos
𝜋

𝜇

2 − 2 cos
𝜋

𝜇
−

𝜋

𝜇
sin

𝜋

𝜇

   for c1, c2, and c3 (1) 

𝑆𝑖𝑖 = 4  ;  𝑆𝑖𝑗 = 2   for b1, b2, b3, and b4 (2) 

𝑃𝑐𝑟 = [
𝜋2𝐸𝐼𝑐2

(2𝜇𝐿𝑐𝑡)
2⁄ ]  

 

(3) 

6.1 Pinned IMCs 575 

Following Chen et al.'s model [106], using the target column c2 shown in Fig. 21(c), 576 

the members' moments and their equilibrium at joints A, B, and sway are determined 577 

from Eqns. 4~8 as follows; 578 

(𝑀𝐴)𝑐2 = (
𝐸𝐼𝑐2

𝐿𝑐2
⁄ ) [𝑆𝑖𝑖𝜃𝐴 + 𝑆𝑖𝑗𝜃𝐵 − (𝑆𝑖𝑖 + 𝑆𝑖𝑗)

 𝑐
𝐿𝑐𝑡
⁄ ] (4) 

(𝑀𝐵)𝑐2 = (
𝐸𝐼𝑐2

𝐿𝑐2
⁄ ) [𝑆𝑖𝑗𝜃𝐴 + 𝑆𝑖𝑖𝜃𝐵 − (𝑆𝑖𝑖 + 𝑆𝑖𝑗)

 𝑐
𝐿𝑐𝑡
⁄ ] (5) 

(𝑀𝐴)𝑏2 = (
𝐸𝐼𝑏2

𝐿𝑏2
⁄ ) [4𝜃𝐴 + 2𝜃𝐵] = (

𝐸𝐼𝑏2
𝐿𝑏2
⁄ ) [6𝜃𝐴] (6) 

(𝑀𝐵)𝑏3 = (
𝐸𝐼𝑏3

𝐿𝑏3
⁄ ) [4𝜃𝐵 + 2𝜃𝐴] = (

𝐸𝐼𝑏3
𝐿𝑏3
⁄ ) [6𝜃𝐵] (7) 

(𝑀𝐴)𝑐2 + (𝑀𝐴)𝑏2 = 0; (𝑀𝐵)𝑐2 + (𝑀𝐵)𝑏3 = 0; (𝑀𝐴)𝑐2 + (𝑀𝐵)𝑐2 + 𝑃 𝑐= 0 (8) 

𝜃𝐴(𝑆𝑖𝑖 + 6𝐺𝐶) + 𝜃𝐵(𝑆𝑖𝑗) +
 𝑐

𝐿𝑐𝑡
⁄ [−(𝑆𝑖𝑖 + 𝑆𝑖𝑗)] = 0 ;  𝐺𝐶 =

𝐸𝐼𝑏2
𝐿𝑏2
⁄

𝐸𝐼𝑐2
𝐿𝑐𝑡
⁄

 (9) 

𝜃𝐴(𝑆𝑖𝑗) + 𝜃𝐵(𝑆𝑖𝑖 + 6𝐺𝐷) +
 𝑐

𝐿𝑐𝑡
⁄ [−(𝑆𝑖𝑖 + 𝑆𝑖𝑗)] = 0; 𝐺𝐷 =

𝐸𝐼𝑏3
𝐿𝑏3
⁄

𝐸𝐼𝑐2
𝐿𝑐𝑡
⁄

 (10) 
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𝜃𝐴(𝑆𝑖𝑖 + 𝑆𝑖𝑗) + 𝜃𝐵(𝑆𝑖𝑖 + 𝑆𝑖𝑗)  −
 𝑐

𝐿𝑐𝑡
⁄ [2(𝑆𝑖𝑖 + 𝑆𝑖𝑗) − (

𝜋2
𝜇2⁄ )] = 0 

(11) 

where 𝑃 =
𝜋2𝐸𝐼𝑐2

𝜇2𝐿𝑐2
2. After solving Eqns. 9~11 using determinant, Eqn. 12 is obtained to 579 

calculate the buckling length (𝜇), which is then inserted in Eqn. 3 to obtain buckling 580 

load (𝑃𝑐𝑟/𝑃𝐷) of a sub-assembled CMSF with rotary IMC, assuming as a pinned IMC. 581 

(𝑆𝑖𝑖 + 6𝐺𝐶) [{(
𝜋2

𝜇2⁄ ) − 2(𝑆𝑖𝑖 + 𝑆𝑖𝑗)} × {𝑆𝑖𝑖 + 6𝐺𝐷} + (𝑆𝑖𝑖 + 𝑆𝑖𝑗)
2]

− (𝑆𝑖𝑗) [{𝑆𝑖𝑗} × {(
𝜋2

𝜇2⁄ ) − 2(𝑆𝑖𝑖 + 𝑆𝑖𝑗)} + (𝑆𝑖𝑖 + 𝑆𝑖𝑗)
2]

− (𝑆𝑖𝑖 + 𝑆𝑖𝑗)[(𝑆𝑖𝑗) × (𝑆𝑖𝑖 + 𝑆𝑖𝑗)  − (𝑆𝑖𝑖 + 𝑆𝑖𝑗)  × (𝑆𝑖𝑖 + 6𝐺𝐷)] = 0 

(12) 

6.2 Semi-rigid IMCs 582 

According to Li et al.'s model [99], CMSFs in Fig. 21(d) bend in double curvature, so 583 

beams' end rotations are equal, such as 𝜃𝐵 = 𝜃𝐺;  𝜃𝐶 = 𝜃𝐻;  𝜃𝐷 = 𝜃𝐼;  𝜃𝐸 = 𝜃𝐽 . Moreover, 584 

column end rotations are 𝜃𝐴 = 𝜃𝐶 −
𝑀𝐵

𝑅1𝑣
×

𝜃𝐷

𝜃𝐶
, 𝜃𝐵 = 𝜃𝐺 = 𝜃𝐶 −

𝑀𝐵

𝑅1𝑣
, 𝜃𝐸 = 𝜃𝐽 = 𝜃𝐷 −

𝑀𝐸

𝑅2𝑣
, and 585 

𝜃𝐹 = 𝜃𝐷 −
𝑀𝐸

𝑅2𝑣
×

𝜃𝐶

𝜃𝐷
. Using slope-deflection equations, the moments of the members are 586 

obtained with Eqns. 13~20 as follows; 587 

(𝑀𝐵𝐴)𝑐1 =
𝐸𝐼𝑐1

𝐿𝑐𝑡
⁄ [𝑆𝑖𝑖 (𝜃𝐶 −

𝑀𝐵

𝑅1𝑣
) + 𝑆𝑖𝑗 (𝜃𝐷 −

𝑀𝐵

𝑅1𝑣
×
𝜃𝐷
𝜃𝐶
) − (𝑆𝑖𝑖 + 𝑆𝑖𝑗)

 𝑐
𝐿𝑐𝑡
⁄ ] (13) 

(𝑀𝐶𝐷)𝑐2 =
𝐸𝐼𝑐2

𝐿𝑐𝑡
⁄ [𝑆𝑖𝑖𝜃𝐶 + 𝑆𝑖𝑗𝜃𝐷 − (𝑆𝑖𝑖 + 𝑆𝑖𝑗)

 𝑐
𝐿𝑐𝑡
⁄ ] (14) 

(𝑀𝐷𝐶)𝑐2 =
𝐸𝐼𝑐2

𝐿𝑐𝑡
⁄ [𝑆𝑖𝑖𝜃𝐷 + 𝑆𝑖𝑗𝜃𝐶 − (𝑆𝑖𝑖 + 𝑆𝑖𝑗)

 𝑐
𝐿𝑐𝑡
⁄ ] (15) 

(𝑀𝐸𝐹)𝑐3 =
𝐸𝐼𝑐3

𝐿𝑐𝑡
⁄ [𝑆𝑖𝑖 (𝜃𝐷 −

𝑀𝐸

𝑅2𝑣
) + 𝑆𝑖𝑗 (𝜃𝐶 −

𝑀𝐸

𝑅2𝑣
×
𝜃𝐶
𝜃𝐷
) − (𝑆𝑖𝑖 + 𝑆𝑖𝑗)

 𝑐
𝐿𝑐𝑡
⁄ ] (16) 

(𝑀𝐵𝐺)𝑏1 = 6(
𝐸𝐼𝑏1

𝐿𝑏1
⁄ ) 𝜃𝐵 = 6(

𝐸𝐼𝑏1
𝐿𝑏1
⁄ ) (𝜃𝐶 −

𝑀𝐵

𝑅1𝑣
) (17) 

(𝑀𝐶𝐻)𝑏2 = 6(
𝐸𝐼𝑏2

𝐿𝑏2
⁄ )𝜃𝐶  (18) 

(𝑀𝐷𝐼)𝑏3 = 6(
𝐸𝐼𝑏3

𝐿𝑏3
⁄ ) 𝜃𝐷 (19) 

(𝑀𝐸𝐽)𝑏4 = 6(
𝐸𝐼𝑏4

𝐿𝑏4
⁄ ) 𝜃𝐸 = 6 (

𝐸𝐼𝑏4
𝐿𝑏4
⁄ ) (𝜃𝐷 −

𝑀𝐸

𝑅2𝑣
) (20) 

Using c2 as the objective column, the equilibrium of moments at joints C, D, and sway 588 

can be calculated using Eqns. 21~23.  589 

(𝑀𝐵𝐴)𝑐1 + (𝑀𝐵𝐺)𝑏1 + (𝑀𝐶𝐻)𝑏2 + (𝑀𝐶𝐷)𝑐2 = 0 (21) 

(𝑀𝐸𝐹)𝑐3 + (𝑀𝐸𝐽)𝑏4 +
(𝑀𝐷𝐼)𝑏3 + (𝑀𝐷𝐶)𝑐2 = 0 (22) 

(𝑀𝐶𝐷)𝑐2 + (𝑀𝐷𝐶)𝑐2 + 𝑃 𝑐= 0 (23) 
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Eqn. 23 is used to determine  𝑐 𝐿𝑐𝑡
⁄ =

𝜇2(𝑆𝑖𝑖+𝑆𝑖𝑗)(𝜃𝐶+𝜃𝐷)

−𝜋2+2(𝑆𝑖𝑖+𝑆𝑖𝑗)𝜇
2  by substituting 𝑃 =

𝜋2𝐸𝐼𝑐2

𝜇2𝐿𝑐2
2 . By 590 

introducing  𝑐 𝐿𝑐𝑡
⁄ , Eqns. 13~20, relative beam-column stiffness ratios, i.e., 𝐺1𝑣 =591 

𝐸𝐼𝑏1
𝐿𝑏1
⁄

𝐸𝐼𝑐1
𝐿𝑐𝑡
⁄

, 𝐺2𝑣 =
𝐸𝐼𝑏2

𝐿𝑏2
⁄

𝐸𝐼𝑐2
𝐿𝑐𝑡
⁄

, 𝐺3𝑣 =
𝐸𝐼𝑏3

𝐿𝑏3
⁄

𝐸𝐼𝑐2
𝐿𝑐𝑡
⁄

, and 𝐺4𝑣 =
𝐸𝐼𝑏4

𝐿𝑏4
⁄

𝐸𝐼𝑐3
𝐿𝑐𝑡
⁄

, and IMC-to-column stiffness ratios, 592 

i.e.,  𝐽1𝑣 =
𝑅1𝑣

𝐸𝐼𝑐1
𝐿𝑐𝑡
⁄

, 𝐽2𝑣 =
𝑅1𝑣

𝐸𝐼𝑐2
𝐿𝑐𝑡
⁄

, 𝐽3𝑣 =
𝑅2𝑣

𝐸𝐼𝑐2
𝐿𝑐𝑡
⁄

, and 𝐽4𝑣 =
𝑅2𝑣

𝐸𝐼𝑐3
𝐿𝑐𝑡
⁄

 into Eqns. 21 and 22, Eqns. 593 

24 and 25 can be rearranged in the form of 𝜃𝐶
2
, 𝜃𝐷

2
, and 𝜃𝐶𝜃𝐷.  594 

𝜃𝐶
2 [(6𝐺1𝑣 + 𝑆𝑖𝑖)(6𝐺2𝑣 + 𝑆𝑖𝑖) + (6𝐺1𝑣𝐽2𝑣 + 6𝐺2𝑣𝐽1𝑣 + 𝑆𝑖𝑖𝐽2𝑣 + 𝑆𝑖𝑖𝐽1𝑣) −

𝜇2

−𝜋2+2(𝑆𝑖𝑖+𝑆𝑖𝑗)𝜇
2
(6𝐺1𝑣 + 𝑆𝑖𝑖 + 𝐽1𝑣 + 𝐽2𝑣)(𝑆𝑖𝑖 + 𝑆𝑖𝑗)

2
] + 𝜃𝐷

2 [𝑆𝑖𝑗
2 −

𝜇2

−𝜋2+2(𝑆𝑖𝑖+𝑆𝑖𝑗)𝜇
2 𝑆𝑖𝑗(𝑆𝑖𝑖 + 𝑆𝑖𝑗)

2
] + 𝜃𝐶𝜃𝐷 [𝑆𝑖𝑗(𝐽2𝑣 + 𝐽1𝑣 + 6𝐺2𝑣 + 2𝑆𝑖𝑖 + 6𝐺1𝑣) −

𝜇2

−𝜋2+2(𝑆𝑖𝑖+𝑆𝑖𝑗)𝜇
2
(6𝐺1𝑣 + 𝑆𝑖𝑖 + 𝐽1𝑣 + 𝐽2𝑣)(𝑆𝑖𝑖 + 𝑆𝑖𝑗)

2
−

𝜇2

−𝜋2+2(𝑆𝑖𝑖+𝑆𝑖𝑗)𝜇
2 𝑆𝑖𝑗(𝑆𝑖𝑖 +

𝑆𝑖𝑗)
2
] = 0  

(24) 

𝜃𝐷
2 [(6𝐺3𝑣 + 𝑆𝑖𝑖)(6𝐺4𝑣 + 𝑆𝑖𝑖) + (6𝐺4𝑣𝐽3𝑣 + 6𝐺3𝑣𝐽4𝑣 + 𝑆𝑖𝑖𝐽4𝑣 + 𝑆𝑖𝑖𝐽3𝑣) −

𝜇2

−𝜋2+2(𝑆𝑖𝑖+𝑆𝑖𝑗)𝜇
2
(6𝐺4𝑣 + 𝑆𝑖𝑖 + 𝐽4𝑣 + 𝐽3𝑣)(𝑆𝑖𝑖 + 𝑆𝑖𝑗)

2
] + 𝜃𝐶

2 [𝑆𝑖𝑗
2 −

𝜇2

−𝜋2+2(𝑆𝑖𝑖+𝑆𝑖𝑗)𝜇
2 𝑆𝑖𝑗(𝑆𝑖𝑖 + 𝑆𝑖𝑗)

2
] + 𝜃𝐶𝜃𝐷 [𝑆𝑖𝑗(𝐽3𝑣 + 𝐽4𝑣 + 6𝐺3𝑣 + 2𝑆𝑖𝑖 + 6𝐺4𝑣) −

𝜇2

−𝜋2+2(𝑆𝑖𝑖+𝑆𝑖𝑗)𝜇
2
(6𝐺4𝑣 + 𝑆𝑖𝑖 + 𝐽4𝑣 + 𝐽3𝑣)(𝑆𝑖𝑖 + 𝑆𝑖𝑗)

2
−

𝜇2

−𝜋2+2(𝑆𝑖𝑖+𝑆𝑖𝑗)𝜇
2 𝑆𝑖𝑗(𝑆𝑖𝑖 +

𝑆𝑖𝑗)
2
] = 0   

(25) 

 

(𝜃𝐶 + 𝛽1𝜃𝐷)(𝛽2𝜃𝐶 + 𝛽3𝜃𝐷) = 0; (𝛽4𝜃𝐶 + 𝜃𝐷)(𝛽5𝜃𝐶 + 𝛽6𝜃𝐷) = 0 

 

(26) 

Eqn. 26 is a simplified representation of Eqns. 24 and 25, having four general solutions, 595 

i.e., |
1 𝛽1
𝛽4 1

| = 0; |
1 𝛽1
𝛽5 𝛽6

| = 0; |
𝛽2 𝛽3
𝛽4 1

| = 0; |
𝛽2 𝛽3
𝛽5 𝛽6

| = 0. Eqns. 27~30 provide simplified 596 

expressions resulting from solving these general solutions' determinants. The minimum 597 

buckling load (𝑃𝑐𝑟/𝑆𝑅) of a sub-assembled CMSF with a rotary IMC, assuming as a 598 

semi-rigid IMC, can be obtained by inserting the buckling length (𝜇) calculated from 599 

the maximum value obtained from Eqns. 27~30 into Eqn. 3. 600 

1 − [
2[𝑆𝑖𝑗

2−𝐷]

[𝑆𝑖𝑗(𝐸)−𝐶−𝐷]+√[𝑆𝑖𝑗(𝐸)−𝐶−𝐷]
2
−4[𝑆𝑖𝑗

2−𝐷][𝐴+𝐵−𝐶]

] [
2[𝑆𝑖𝑗

2−𝐼]

[𝑆𝑖𝑗𝐽−𝐻−𝐼]+√[𝑆𝑖𝑗𝐽−𝐻−𝐼]
2
−4[𝐹+𝐺−𝐻][𝑆𝑖𝑗

2−𝐼]

] = 0 (27) 601 
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[𝐹 + 𝐺 − 𝐻] − [
2[𝑆𝑖𝑗

2−𝐷]

[𝑆𝑖𝑗(𝐸)−𝐶−𝐷]+√[𝑆𝑖𝑗(𝐸)−𝐶−𝐷]
2
−4[𝑆𝑖𝑗

2−𝐷][𝐴+𝐵−𝐶]

] [
[𝑆𝑖𝑗𝐽−𝐻−𝐼]+√[𝑆𝑖𝑗𝐽−𝐻−𝐼]

2
−4[𝐹+𝐺−𝐻][𝑆𝑖𝑗

2−𝐼]

2
] =602 

0                   (28) 603 

[𝐴 + 𝐵 − 𝐶] − [
[𝑆𝑖𝑗(𝐸)−𝐶−𝐷]+√[𝑆𝑖𝑗(𝐸)−𝐶−𝐷]

2
−4[𝑆𝑖𝑗

2−𝐷][𝐴+𝐵−𝐶]

2
] [

2[𝑆𝑖𝑗
2−𝐼]

[𝑆𝑖𝑗𝐽−𝐻−𝐼]+√[𝑆𝑖𝑗𝐽−𝐻−𝐼]
2
−4[𝐹+𝐺−𝐻][𝑆𝑖𝑗

2−𝐼]

] =604 

0                   (29) 605 
[𝐴 + 𝐵 − 𝐶][𝐹 + 𝐺 − 𝐻] −606 

[
[𝑆𝑖𝑗(𝐸)−𝐶−𝐷]+√[𝑆𝑖𝑗(𝐸)−𝐶−𝐷]

2
−4[𝑆𝑖𝑗

2−𝐷][𝐴+𝐵−𝐶]

2
] [

[𝑆𝑖𝑗𝐽−𝐻−𝐼]+√[𝑆𝑖𝑗𝐽−𝐻−𝐼]
2
−4[𝐹+𝐺−𝐻][𝑆𝑖𝑗

2−𝐼]

2
] = 0    (30) 607 

Coefficients A, B, C, D, E, F, G, and H in Eqns. 27~30 are derived from Eqns. 31~34, 608 

which are defined in Eqns. 24 and 25 for 𝜃𝐶
2

, 𝜃𝐷
2

, and 𝜃𝐶𝜃𝐷 . The rotational 609 

stiffnesses of rotary IMCs are 𝑅1𝑣 = 𝑅2𝑣 =2391.49 kNm/rad, as reported in [26]. 610 

𝐴 = (6𝐺1𝑣 + 𝑆𝑖𝑖)(6𝐺2𝑣 + 𝑆𝑖𝑖);  𝐵 = (6𝐺1𝑣𝐽2𝑣 + 6𝐺2𝑣𝐽1𝑣 + 𝑆𝑖𝑖𝐽2𝑣 + 𝑆𝑖𝑖𝐽1𝑣) (31) 

𝐶 =
𝜇2(6𝐺1𝑣 + 𝑆𝑖𝑖 + 𝐽1𝑣 + 𝐽2𝑣)(𝑆𝑖𝑖 + 𝑆𝑖𝑗)

2

−𝜋2 + 2(𝑆𝑖𝑖 + 𝑆𝑖𝑗)𝜇
2

;  𝐷 =
𝜇2𝑆𝑖𝑗(𝑆𝑖𝑖 + 𝑆𝑖𝑗)

2

−𝜋2 + 2(𝑆𝑖𝑖 + 𝑆𝑖𝑗)𝜇
2
 (32) 

𝐸 = (𝐽2𝑣 + 𝐽1𝑣 + 6𝐺2𝑣 + 2𝑆𝑖𝑖 + 6𝐺1𝑣);  𝐹 = (6𝐺3𝑣 + 𝑆𝑖𝑖)(6𝐺4𝑣 + 𝑆𝑖𝑖) (33) 

𝐺 = (6𝐺4𝑣𝐽3𝑣 + 6𝐺3𝑣𝐽4𝑣 + 𝑆𝑖𝑖𝐽4𝑣 + 𝑆𝑖𝑖𝐽3𝑣);  𝐻 =
𝜇2(6𝐺4𝑣 + 𝑆𝑖𝑖 + 𝐽4𝑣 + 𝐽3𝑣)(𝑆𝑖𝑖 + 𝑆𝑖𝑗)

2

−𝜋2 + 2(𝑆𝑖𝑖 + 𝑆𝑖𝑗)𝜇
2

 (34) 

6.3 Validations 611 

Fig. 22 and Table 2 compare FEMs' buckling loads (𝑃𝑐𝑟/𝐹𝐸 ) to theoretical ones 612 

(𝑃𝑐𝑟/𝑃𝐷 and 𝑃𝑐𝑟/𝑆𝑅). The average (Covs) prediction ratios with 𝑃𝑐𝑟/𝑃𝐷 and 𝑃𝑐𝑟/𝑆𝑅 613 

are 0.70(0.17) and 0.96(0.09), offering averagely conservative results. However, 614 

𝑃𝑐𝑟/𝑃𝐷  underestimates findings across a wider range, but 𝑃𝑐𝑟/𝑆𝑅  minimizes 615 

dispersion and produces more accurate results. Despite this, it is still important to 616 

account for safety factors due to minor overestimates caused by uncertainties associated 617 

with inflection points, semi-rigid behavior, and rotational stiffness. Results indicate that 618 

the buckling load prediction of sub-assembled CMSFs could be accurately anticipated 619 

by considering rotary IMC's rotational stiffness of 𝑅1𝑣 = 𝑅2𝑣 =2391.49 kNm/rad [26]. 620 

Alternately, presuming rotary IMC as pinned could not reflect CMSFs' actual 621 

compressive behavior and could lead to an uneconomical design. Using pinned 622 

assumptions to estimate the buckling load yields conservative values that do not 623 
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account for IMCs and apply to all CMSFs. However, sub-assembled CMSF forecasts 624 

are more accurate when IMCs are considered semi-rigid. In worst-case scenarios, these 625 

equations' conservative nature can impact CMSF design standards. When the other 626 

forces acting are small, or the frame has significant rigidity against deformations, these 627 

equations can be used to design the dimensions of the members and predict the buckling 628 

lengths and loads for CMSF, considering the stiffnesses of its members and IMCs under 629 

axial compressions. However, the findings are limited to specific models and require 630 

further validation. The outcomes do not apply to non-sway or special frames with 631 

welded IMCs or shear-keyed columns. The study's exterior-frame findings can be used 632 

to design middle or inner CMSFs by modifying the number of frames. 633 

 634 
Fig. 21 Theoretical buckling load sub-assembled models; Chen et al.'s model [106] 635 

for pinned and Li et al.'s model [99] for semi-rigid CMSFs 636 

L
c=

L
ct

/2
=

1
2
6

6
 m

m
2

3
4

2
3

4

L
ct
=

3
0
1

5
 m

m

L
c=

L
ct

/2
=

1
2
6

6
 m

m

15 mm plate

LFB=LFBT /2=1192 mm

LCB=LCBT /2=1192 mm

G
a

p
=

7
4

 m
m

(a) Test sub-assembled 

model

2
4

1
.5

m
m

2
5

3
2

 m
m

4
8

3
 m

m
2

5
3

2
 m

m
4

8
3

 m
m

2
5

3
2

 m
m

2
4

1
.5

 m
m

L
ct
=

3
0

1
5

 m
m

L
ct
=

3
0
1

5
 m

m
L

ct
=

3
0

1
5

 m
m

LCBT=2384 mm

Test sub-

assembled model

LFBT=2384 mm

(b) Three-story 

model

P
Δc

FB=b1

CB=b2

FB=b3

CB=b4

c1

c2

c3

P

θB

A

B

θA

θB

θA

θA

θB

(c) Pinned CMSF 

model

P

FB=b1

CB=b2

FB=b3

CB=b4

c1

c2

c3

P

θA

C

D

θB

θB

θF

θG

θI

A

B

E

F

θC θH

θD

θJθE

G

H

I

J

(d) Semi-rigid CFSM 

model

LCBT= Lb2 or Lb4

LFBT= Lb1 or Lb3 

Δc
Δc Δc

Δc Δc

LFBT =LCBT=

Lb1=Lb2=Lb3=Lb4 

Scaled model on 

inflection point 
Full-scale model



 

42 

 

  637 
Fig. 22 Comparison of Theory-to-FEM  638 

Table 2 Comparison of CMSFs' buckling load via tests-validated FEMs, 

parametric studies, and theoretical models 
Test 

specimen 

(#) 

𝑃𝑐𝑟/𝐹𝐸 

(kN) 

𝑃𝑐𝑟/𝑃𝐷 

(kN) 

𝑃𝑐𝑟/𝑆𝑅 

(kN) 

𝑃𝑐𝑟/𝑃𝐷

𝑃𝑐𝑟/𝐹𝐸
 

𝑃𝑐𝑟/𝑆𝑅

𝑃𝑐𝑟/𝐹𝐸
 

RS1 1312.5 939.4 1248.3 0.72 0.95 

RS2 1342.4 1019.4 1336.6 0.76 1.00 

RS3 1241.3 885.6 1234.4 0.71 0.99 

Mean    0.73 0.98 

Cov    0.03 0.02 

FEM (#) 𝑃𝑐𝑟/𝐹𝐸 

(kN) 

𝑃𝑐𝑟/𝑃𝐷 

(kN) 

𝑃𝑐𝑟/𝑆𝑅 

(kN) 

𝑃𝑐𝑟/𝑃𝐷

𝑃𝑐𝑟/𝐹𝐸
 

𝑃𝑐𝑟/𝑆𝑅

𝑃𝑐𝑟/𝐹𝐸
 

SR-1 1304.2 783.6 1210.4 0.60 0.93 

SR-2 1321.4 849.9 1302.9 0.64 0.99 

SR-3 1514.2 1155.2 1496.1 0.76 0.99 

SR-4 1522.0 1228.2 1587.5 0.81 1.04 

SR-5 1670.5 1272.4 1659.8 0.76 0.99 

SR-6 1670.0 1343.3 1665.1 0.80 1.00 

SR-7 1529.9 1157.5 1579.4 0.76 1.03 

SR-8 958.9 390.6 932.3 0.41 0.97 

SR-9 1888.8 1506.3 1742.0 0.80 0.92 

SR-10 1322.0 664.5 1111.9 0.50 0.84 

SR-11 1796.5 1599.1 1802.8 0.89 1.00 

SR-12 1269.2 770.9 1281.5 0.61 1.01 

SR-13 3337.8 1650.7 3386.2 0.49 1.01 

SR-26 1353.1 1203.5 801.0 0.89 0.59 

SR-28 1829.2 1002.9 1743.4 0.55 0.95 

SR-40 1349.1 880.5 1397.5 0.65 1.04 

SR-42 1701.8 1019.6 1796.1 0.60 1.06 

SR-47 1110.8 801.0 1003.0 0.72 0.90 

SR-48 1042.1 801.0 1003.0 0.77 0.96 

SR-49 1336.7 939.4 1248.3 0.70 0.93 

SR-50 1373.3 939.4 1248.3 0.68 0.91 

SR-51 1330.3 1093.8 1376.1 0.82 1.03 

SR-52 1372.4 1093.8 1376.1 0.80 1.00 

Mean    0.70 0.96 

Cov    0.18 0.10 

𝑃𝑐𝑟/𝐹𝐸 , 𝑃𝑐𝑟/𝑃𝐷 , and 𝑃𝑐𝑟/𝑆𝑅  define the buckling load of sub-

assembled CMSFs with rotary IMC obtained through experimentally-

validated FEMs and theoretical models with pinned and semi-rigid IMCs. 

FE represents the FEM, PD denotes the pinned IMC model, and SR 

defines the semi-rigid IMC model. 
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7 Conclusions 639 

This study comprehensively investigated the compressive behaviors of CMSFs with 640 

rotary IMC through sub-assembled tests, parametric FEMs, and theoretical buckling 641 

load models. The research yielded the following key findings: 642 

1. The load-shortening behaviors of CMSFs displayed elastic, inelastic, and 643 

recessional characteristics. Local buckling occurred on the upper columns 644 

initiated from the bending sides to the adjacent faces, resulting in a reduction in 645 

capacity, amplified buckling, and apparent sway of the CMSFs. 646 

2. All CMSFs experienced the same failure mode, but the beams' rigidity 647 

influenced the direction of sway. Frames and columns tended to sway towards 648 

the beams when thinner while bending occurred in the opposite direction when 649 

beams were more rigid. 650 

3. The strain curves revealed that only the upper columns had local buckling, either 651 

inward or outward, occurring similarly on opposite sides and oppositely on 652 

neighboring sides. Elastic buckling developed on columns opposite the bending 653 

direction, while plastic buckling occurred on adjacent sides. No failure, 654 

buckling, or yielding was noticed in other members and IMCs. 655 

4. Increasing the cross-sectional sizes of beams and columns improved the 656 

compressive resistance and rigidity of CMSFs while lengthening members 657 

impaired them. Greater member rigidity reduced buckling strain and ductility, 658 

causing premature instability. 659 

5. The FEM with a mesh of 30 mm, local imperfection of H/600 or 0.64tc, and 660 

global imperfection of e=3.35Dc/7 accurately simulated CMSFs' compression 661 

behavior with average prediction errors of 0.3% for Pu. 662 
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6. The mean (Cov) theory-to-FEM buckling load for pinned and semi-rigid 663 

CMSFs was 0.70(0.17) and 0.96(0.09), indicating that the semi-rigid model 664 

provided more precise outcomes with reduced scatter and can accurately predict 665 

CMSFs' compressive behavior with rotary IMC. 666 

8 Design recommendations and future research  667 

The extensive research into the compressive behavior of CMSFs with rotary IMCs 668 

holds substantial significance for the structural integrity and stability of MSBs, 669 

providing valuable insights into modular frame failure modes and capacity. As the 670 

results indicate, incorporating rotary IMCs into structural designs necessitates 671 

considering the rotational stiffness and behavioral characteristics [17,26]. Meeting 672 

performance requirements demand structural members with an appropriate size and 673 

stiffness. Parametric studies show that increasing column and beam cross-sectional 674 

sizes and thicknesses improves strength; hence, using IMCs with superior geometrical 675 

designs could enhance capacity. Moreover, FEMs and theoretical calculations have 676 

been verified with experimental and numerical data to estimate buckling loads and 677 

failure mechanisms accurately. The complexity and unexpected behavior of IMCs 678 

makes designing and analyzing with pinned and rigid assumptions difficult. However, 679 

the theoretical models presented in this study provide a systematic classification scheme 680 

for pinned and semi-rigid IMCs, enabling interconnection behavior prediction and 681 

modular system reliability improvement. Effectively regulating relative stiffnesses 682 

based on these models can result in conservative and cost-effective design choices. 683 

Future studies could examine different IMC types' performance to understand their 684 

distinct characteristics, potential advantages in multiple applications, and applicability 685 

of design models. Using grouped columns, beams, and horizontal and vertical IMCs, 686 

middle and interior CMSFs can be studied in modular frame systems. Simplified FEMs 687 
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using rotary IMCs spring models could help design multi-story building systems more 688 

precisely and efficiently. Such study is essential to MSB development and practical 689 

efficacy and safety. 690 
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