
              

City, University of London Institutional Repository

Citation: Douglas, R. H. & Jeffery, G. (2014). The spectral transmission of ocular media 

suggests ultraviolet sensitivity is widespread among mammals. Proceedings of the Royal 
Society: Biological Sciences, 281(1780), 20132995. doi: 10.1098/rspb.2013.2995 

This is the unspecified version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/3180/

Link to published version: https://doi.org/10.1098/rspb.2013.2995

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


, 20132995, published 19 February 2014281 2014 Proc. R. Soc. B
 
R. H. Douglas and G. Jeffery
 
sensitivity is widespread among mammals
The spectral transmission of ocular media suggests ultraviolet
 
 

Supplementary data

tml 
http://rspb.royalsocietypublishing.org/content/suppl/2014/02/17/rspb.2013.2995.DC1.h

 "Data Supplement"

References
http://rspb.royalsocietypublishing.org/content/281/1780/20132995.full.html#ref-list-1

 This article cites 83 articles, 23 of which can be accessed free

This article is free to access

Subject collections
 (214 articles)neuroscience   �

 
Articles on similar topics can be found in the following collections

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

 http://rspb.royalsocietypublishing.org/subscriptions go to: Proc. R. Soc. BTo subscribe to 

 on February 20, 2014rspb.royalsocietypublishing.orgDownloaded from  on February 20, 2014rspb.royalsocietypublishing.orgDownloaded from 

http://rspb.royalsocietypublishing.org/content/suppl/2014/02/17/rspb.2013.2995.DC1.html 
http://rspb.royalsocietypublishing.org/content/suppl/2014/02/17/rspb.2013.2995.DC1.html 
http://rspb.royalsocietypublishing.org/content/281/1780/20132995.full.html#ref-list-1
http://rspb.royalsocietypublishing.org/content/281/1780/20132995.full.html#ref-list-1
http://rspb.royalsocietypublishing.org/cgi/collection/neuroscience
http://rspb.royalsocietypublishing.org/cgi/collection/neuroscience
http://rspb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royprsb;281/1780/20132995&return_type=article&return_url=http://rspb.royalsocietypublishing.org/content/281/1780/20132995.full.pdf?keytype=ref&ijkey=0z9zVxKahojJzVV
http://rspb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royprsb;281/1780/20132995&return_type=article&return_url=http://rspb.royalsocietypublishing.org/content/281/1780/20132995.full.pdf?keytype=ref&ijkey=0z9zVxKahojJzVV
http://rspb.royalsocietypublishing.org/subscriptions
http://rspb.royalsocietypublishing.org/subscriptions
http://rspb.royalsocietypublishing.org/
http://rspb.royalsocietypublishing.org/
http://rspb.royalsocietypublishing.org/
http://rspb.royalsocietypublishing.org/


 on February 20, 2014rspb.royalsocietypublishing.orgDownloaded from 
rspb.royalsocietypublishing.org
Research
Cite this article: Douglas RH, Jeffery G. 2014

The spectral transmission of ocular media

suggests ultraviolet sensitivity is widespread

among mammals. Proc. R. Soc. B 281:

20132995.

http://dx.doi.org/10.1098/rspb.2013.2995
Received: 15 November 2013

Accepted: 21 January 2014
Subject Areas:
neuroscience

Keywords:
vision, lens, transmission, mammal, ultraviolet

sensitivity, retina
Author for correspondence:
R. H. Douglas

e-mail: r.h.douglas@city.ac.uk
Electronic supplementary material is available

at http://dx.doi.org/10.1098/rspb.2013.2995 or

via http://rspb.royalsocietypublishing.org.
& 2014 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
The spectral transmission of ocular media
suggests ultraviolet sensitivity is
widespread among mammals

R. H. Douglas1 and G. Jeffery2

1Department of Optometry and Visual Science, City University London, Northampton Square,
London EC1V 0HB, UK
2Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK

Although ultraviolet (UV) sensitivity is widespread among animals it is con-

sidered rare in mammals, being restricted to the few species that have a

visual pigment maximally sensitive (lmax) below 400 nm. However, even ani-

mals without such a pigment will be UV-sensitive if they have ocular media

that transmit these wavelengths, as all visual pigments absorb significant

amounts of UV if the energy level is sufficient. Although it is known that

lenses of diurnal sciurid rodents, tree shrews and primates prevent UV from

reaching the retina, the degree of UV transmission by ocular media of most

other mammals without a visual pigment with lmax in the UV is unknown.

We examined lenses of 38 mammalian species from 25 families in nine

orders and observed large diversity in the degree of short-wavelength trans-

mission. All species whose lenses removed short wavelengths had retinae

specialized for high spatial resolution and relatively high cone numbers,

suggesting that UV removal is primarily linked to increased acuity. Other

mammals, however, such as hedgehogs, dogs, cats, ferrets and okapis had

lenses transmitting significant amounts of UVA (315–400 nm), suggesting

that they will be UV-sensitive even without a specific UV visual pigment.
1. Introduction
The range of wavelengths an animal perceives depends on the spectrum available

in the environment, the degree to which this is transmitted though the ocular

media and the visual pigments within the retina. The spectrum that humans

see during the day, using three cone visual pigments absorbing maximally

(lmax) at 420, 534 and 563 nm [1], spans approximately 400–700 nm. Adult

humans are insensitive to shorter, ultraviolet (UV) wavelengths as these are

absorbed by the lens [2–5] and hence never reach the retina.

The range of wavelengths visible to other animals is often very different

from that of man due largely to their possession of visual pigments absorbing

elsewhere in the spectrum. Many species, for example, possess visual pigments

with lmax below 400 nm, and the resultant UV-sensitivity is relatively wide-

spread among invertebrates [6–8], birds, fish, reptiles and amphibians [9,10].

Among mammals, such UV-sensitive visual pigments are relatively rare and

have only been described in some rodents [11–18], a mole [19], several marsu-

pials [20–23] and some bats [24–27]. Such animals have lenses that, unlike

those of humans, transmit short wavelengths well. UV sensitivity in mammals,

in comparison to other animals, is thus thought to be the exception.

Although visual pigments are usually characterized by their lmax, the wave-

length range absorbed by them is in fact broad and displays a secondary

absorption maximum in the UV (the cis-peak or b-band). Thus, all photo-

receptors can potentially absorb significant amounts of UV and any animal

with ocular media that are transparent to UV light will inevitably be sensitive

to these wavelengths even if they do not possess a visual pigment with lmax in

this part of the spectrum [9] (figure 1).
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Figure 1. The absorption spectra of the visual pigments of the ferret and the
spectral transmission of its lens. The absorption maxima of the visual
pigments (rods—505 nm; cones—430 and 558 nm) are taken from
Calderone & Jacobs [28] and the visual pigments templates of Govardovskii
et al. [29] (solid lines) have been fitted to them using the methods described
in Hart et al. [30]. The lens transmission (dotted line) is taken from this
study. As all the visual pigments absorb significant amounts of UV radiation
and the lens transmits in this part of the spectrum, the ferret is likely to
perceive such short wavelengths.
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Therefore, if the UV-absorbing lens of humans is removed

following cataract surgery or traumatic injury, and not replaced

by a UV-absorbing prosthetic, they report vivid and detailed

vision in the UV [6,31–33]. Similarly, despite the absence of a

visual pigment with lmax in the UV, the reindeer retina responds

electrophysiologically below 400 nm [34] and circadian rhythms

in the Syrian hamster can be entrained by wavelengths below

400 nm [35–40], simply because they both have lenses that trans-

mit significant amount of light below 400 nm rather than a visual

pigment with lmax in the UV. Likewise, a phyllostomid flower

bat with a UV-transparent lens is able to respond behaviourally

to UV even in scotopic conditions using the b-band of its rod

pigment [41]. A degree of UV sensitivity in the absence of a

photoreceptor absorbing maximally in this part of the spectrum

is therefore not infrequent.

The spectral transmission of the ocular media (cornea, lens,

aqueous and vitreous humour) at short wavelengths is deter-

mined by their structural components, thickness and any

specific short-wave absorbing pigments they contain [42]. No

structure will transmit significant amounts of light below

about 300 nm owing to absorption by its nucleic acids and

structural protein components, for example aromatic amino

acids. With the exception of some fish corneas that absorb

blue/green light [43–45], most corneas are thin and unpig-

mented, transmitting UV radiation down to around 300 nm.

Aqueous and vitreous humours are similarly transparent.

Lens transmission, however, is very variable. In some species,

the lens lets through almost as much UV as the cornea, while

in others it can remove all UV and some of the blue, appearing

visibly yellow. Thus, although oil droplets in birds, for example,

prevent short wavelengths from reaching the outer segments of

some cones, and pigments such as the human macular pigment

absorb blue light, the lens is the filter that determines the cut-off

in the UV in almost all species (see the electronic supplementary

material, S1).

Unfortunately, detailed information about the spectral trans-

mission of most mammalian lenses is lacking. The only ones that

have been examined are those that seem obviously interesting.

At one extreme, the lenses of diurnal primates [5,46–49], tree

shrews [50,51] and sciurid rodents [12,39,52–58] are various
shades of yellow, removing all radiation below 420–470 nm.

At the other extreme, species with visual pigments with lmax

in the UV have lenses maximally transparent to UV radiation,

transmitting most light down to 320–340 nm [3,4,12,16,18,

19,23,25,36,37,59–64]. However, little is known about the wave-

lengths transmitted by the lenses of mammals between these

two extremes. Although the lenses of some have been reported

as containing no short-wavelength-absorbing pigment [54],

reliable quantitative transmission data from intact lenses are

only available only for the Syrian hamster (Mesocricetus auratus)
[35–39], pig (Sus scrofa) [4], rabbit (Oryctolagus cuniculus)
[3,65–68] and reindeer (Rangifer tarandus) [34].

Here, we examine the spectral transmission of the lenses of

38 mammalian species belonging to 25 families in nine orders,

most never examined before, and show a variety of degrees

of shortwave transmission. Perhaps surprisingly, many let

through significant amounts of shortwave radiation, suggesting

that a degree of UV sensitivity is widespread among mammals.
2. Material and methods
Animals were obtained from various sources such as abattoirs,

zoos, veterinary practices and scientific establishments (see

Acknowledgements). They had either been used for other scien-

tific procedures, sacrificed for food production, died naturally or

were put down owing to injury or illness. No animals were killed

specifically for this project. Eyes were obtained either immedi-

ately following death, or soon thereafter, and were either used

immediately or frozen dry for several days before thawing. Vari-

able numbers of lenses were available for each species and in

four species a range of lens sizes/ages were examined (see

table 1 for details).

Lenses, and usually corneas, were removed from the eye,

briefly rinsed in phosphate-buffered saline (PBS) and mounted

in purpose-built holders in air in front of an integrating sphere

within a Shimadzu 2101 UVPC spectrophotometer. Vitreous

humour was also removed from the eyes of some animals with

a syringe and placed in a standard quartz cuvette within the

same apparatus. Transmission at 700 nm was set to 100% and

ocular media scanned at 1 nm intervals from 300 to 700 nm.

To determine the effect of freezing on lens transmission, three

fresh bovine lenses were scanned soon after death, frozen in air at

2258C for 4 days, thawed and rescanned.

The pigments responsible for lens pigmentation were also

extracted and spectrally characterized for six species (see the

electronic supplementary material, S4).
3. Results
Although the cornea and vitreous humour were not exam-

ined in all species, when they were, in line with previous

observations [42], the lens always removed more short-

wavelength radiation than either the cornea or the vitreous

(see the electronic supplementary material, S1).

Freezing had no significant effect on lens transmission,

allowing data from both fresh and previously frozen lenses

to be compared (figure 2).

The spectral transmission of the lenses of some of the

species studied here had been examined previously; pig [4],

tree shrew (Tupaia glis) [50], rabbit [3,65–68], mouse (Mus mus-
culus) [3,4,63,64], brown rat (Rattus norvegicus) [3,4,12,36,37,60],

grey squirrel (Sciurus carolinensis) [54,58], prairie dog (Cynomys
ludovicianus) [55–56], flying squirrel (Glaucomys volans) [56],

marmoset (Callithrix jacchus) [49], squirrel monkey (Saimiri

http://rspb.royalsocietypublishing.org/
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Table 1. Summary of mammalian lenses examined ranked by the amount of UVA they transmit. ‘50%T’ is the wavelength at which the lens transmits 50% of
the incident illumination. ‘%UVA transmitted’ is a measure of the proportion of light between 315 and 400 nm that is transmitted by the lens (see the
electronic supplementary material, S2). For most species, lens transmission and axial diameter ( pathlength) varied little between individuals and averages are
shown. Where there were significant differences between individuals, ranges are given. Where the transmission of the lens varied with lens size/age, the % UVA
on the retina was calculated using specific ages/lens sizes as described in footnotes.

order family species
number of
lenses

pathlength
(mm)

50%T
(nm)

%UVA
transmitted

Rodentia Muridae mouse (Mus musculus) 29 1.9 – 2.8 313 – 337 81.4a

Rodentia Muridae black rat (Rattus rattus) 11 3.7 – 5.2 317 – 372 80.5b

Erinaceomorpha Erinaceidae hedgehog (Erinaceus

europaeus)

4 3.0 326 65.5

Carnivora Canidae dog (Canis lupus familiaris)

(labrador)

2 5.0 335 61.3

Chiroptera Pteropodidae Livingstone’s fruit bat

(Pteropus livingstonii)

4 5.0 – 6.0 332 – 422 60.8c

Carnivora Felidae cat (Felis catus) 6 7.0 345 58.9

Carnivora Mustelidae ferret (Mustela putorius furo) 4 3.9 344 56.1

Rodentia Muridae brown rat (Rattus norvegicus) 2 4.2 339 55.8

Artiodactyla Giraffidae okapi (Okapia johnstoni) 2 7.0 355 53.4

Artiodactyla Suidae pig (Sus scrofa) 5 5.5 375 43.6

Rodentia Caviidae guinea pig (Cavia porcellus) 11 3.7 377 34.6

Carnivora Ailuridae red panda (Ailurus fulgens) 1 5.8 386 30.2

Rodentia Sciuridae flying squirrel

(Glaucomys volans)

2 4.9 423 29.3

Chiroptera Pteropodidae Rodrigues flying fox

(Pteropus rodricensis)

1 4.8 388 28.1

Artiodactyla Cervidae reindeer (Rangifer tarandus) 5 10.1 384 26.5

Artiodactyla Cervidae pudú (Pudu puda) 2 7.0 386 25.0

Artiodactyla Bovidae cattle (Bos primigenius) 8 11.1 384 22.1

Artiodactyla Bovidae sheep (Ovis aries) 4 7.7 393 15.2

Rodentia Dasyproctidae agouti (Dasyprocta punctata) 1 6.1 406 15.0

Lagomorpha Leporidae rabbit (Oryctolagus cuniculus) 2 6.7 392 12.7

Artiodactyla Tragulidae java mouse deer

(Tragulus javanicus)

2 9.0 403 12.4

Artiodactyla Bovidae Arabian oryx (Oryx leucoryx) 1 10.3 400 8.5

Artiodactyla Camelidae alpaca (Vicugna pacos) 5 10.2 405 6.0

Perissodactyla Equidae horse (Equus ferus caballus) 1 12.0 416 4.6

Primates Cebidae squirrel monkey

(Saimiri sciureus sciureus)

2 4.6 420 2.8

Primates Lemuridae ring-tailed lémur

(Lemur catta)

1 6.5 425 2.0

Carnivora Herpestidae meerkat (Suricata suricatta) 3 2.4 – 3.4 420 – 436 1.7d

Primates Callitrichidae marmoset (Callithrix jacchus) 1 3.0 427 0.9

Artiodactyla Bovidae lowland anoa

(Bubalus depressicornis)

1 8.0 478 0.6

Rodentia Sciuridae ground squirrel

(Urocitellus richardsonii)

2 3.1 462 0.6

Primates Cercopithecidae macaque (Macaca fascicularis) 5 3.3 424 0.5

(Continued.)
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Table 1. (Continued.)

order family species
number of
lenses

pathlength
(mm)

50%T
(nm)

%UVA
transmitted

Primates Atelidae red-faced spider monkey

(Ateles paniscus)

1 3.8 438 0.4

Primates Callitrichidae golden lion tamarin

(Leontopithecus rosalia)

1 3.0 441 0.4

Scandentia Tupaiidae Tree shrew (Tupaia glis) 1 3.2 435 0.3

Primates Lemuridae Alaotran gentle lemur

(Hapalemur alaotrensis)

1 5.9 425 0.3

Rodentia Sciuridae grey squirrel

(Sciurus carolinensis)

2 3.6 441 0

Rodentia Sciuridae prairie dog

(Cynomys ludovicianus)

7 3.6 463 0

Primates Cebidae capuchin (Cebus apella) 1 3.9 426 0
aAged 69 – 72 days with lens pathlength 2.2 mm.
bPathlength 3.8 mm.
cPathlength 5.0 mm.
dPathlength 3.4 mm.
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Figure 2. Average spectral transmission of three bovine lenses before (solid
line) and after (dashed line) four days of freezing.
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Figure 3. Representative average spectral transmission curves at short wave-
lengths of the lenses from 10 mammalian species. Most curves are the
averages of all available lenses. However, for the black rat and meerkat indi-
viduals of a variety of lens sizes were scanned; the data shown for the two
species are for young and old animals, respectively. From left to right at 50%
transmission they are (n, lens axial diameter in millimetres); young black rats
(2, 3.8), cat (6, 7.0), okapi (2, 7.0), cattle (8, 11.1), rabbit (2, 6.7), Arabian
oryx (1, 10.3), squirrel monkey (2, 4.6), Alaotran gentle lemur (1, 5.9), adult
meerkat (1, 3.4) and prairie dog (7, 3.6). All scans were zeroed at 700 nm.
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sciureus sciureus) [46] and macaque (Macaca fascicularis) [48]. Our

data for these species agreed with the previously published spec-

tra. They are presented here to validate our method, facilitate

direct comparison with novel data and allow further analysis.

The spectral transmission of representative lenses is shown in

figure 3 and equivalent scans for all species are shown in the elec-

tronic supplementary material, S3. The spectral properties of the

mammalian lenses examined ranged from those in young murid

rodents as well as juvenile hedgehogs, which transmitted large

amounts of UV radiation (50% transmission 310–320 nm), to

those of primates, sciurid rodents, meerkats and tree shrews

that were visibly yellow and prevented UV radiation from reach-

ing the retina (50% transmission 424–465 nm). All other

mammals had lenses whose spectral transmission lay between

these two extremes (table 1 and figure 3; also see the electronic

supplementary material, figure S3a–d).

The degree of UV radiation transmitted by the lens is

traditionally expressed as the wavelength of 50% transmission.

However, this measure can be misleading as the short-wave-

length cut-off is sometimes steep, but at other times gentle.

Thus, although the flying squirrel and the macaque both have

a similar wavelength of 50% transmission (423–424 nm), their
spectral characteristics at short wavelengths are in fact quite

different (see the electronic supplementary material, figure 3c).

A better indication of the potential for UV vision is given by

the proportion of UVA (315–400 nm) that is transmitted by the

lens (table 1; see the electronic supplementary material, S2).

For four species (Pteropus livingstonii, Rattus rattus, Mus mus-
culus and Suricata suricatta), lenses from a range of ages/sizes

were available and exhibited decreased short-wavelength trans-

mission in older/larger lenses. Data are shown only for the rat

and mouse (figure 4) as the largest number of differently sized

lenses were available for them. Similar trends were shown by

lesser numbers of Livingston’s bats (n ¼ 4) and meerkats (n ¼ 3).

The eyes of the Alaotran gentle lemur and the ring-tailed

lemur, apart from containing a distinctly yellow coloured

http://rspb.royalsocietypublishing.org/
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Figure 4. Lens transmission as a function of lens size/age in rodents. (a) Spectral
transmission of 11 black rat (R. rattus) lenses ranging in axial length between
3.7 and 5.2 mm. (b) Wavelength of 50% transmission as a function of lens
size for all the lenses shown in (a). The data are fit by y ¼ 43.992x þ
149.68 (R2 ¼ 0.9062). The dashed line is an approximation of the relationship
expected if pathlength were the only factor affecting transmission. (c) Average
wavelength of 50% lens transmission (+1 s.d.) of mice (M. musculus) of
known age; 40 (n ¼ 3), 70 (n ¼ 8), 265 (n ¼ 4) and 564 (n ¼ 6) days.
The data are fit by y ¼ 0.0443x þ 311.1 (R2 ¼ 0.9634).
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lens, on dissection revealed a bright yellow substance within

the eye. Strepsirrhine primates are known to have yellow ribo-

flavin-based tapeta [69], which is almost certainly the source of

this pigmentation.

A pigment absorbing maximally at 357–369 nm was

extracted from the lenses of six species with yellow lenses

and identified as 3-hydroxykynurenine glucoside in two

(see the electronic supplementary material, S4).
4. Discussion
(a) Diversity of ultraviolet transmission by

mammalian lenses
As expected, the transmission of short wavelengths by the

mammalian lens varies considerably between species. At one
extreme, as has previously been reported, species with visual

pigments absorbing maximally in the UV–for example murid

rodents–transmit up to 80% of UVA radiation (figure 3 and

table 1; see also the electronic supplementary material, S3).

The most UV-transparent lens observed outside of such animals

belongs to the European Hedgehog (Erinaceus europeus; see the

electronic supplementary material, figure S3b). Interestingly,

preliminary evidence suggests that the closely related Southern

white-breasted hedgehog (Erinaceus concolor) may in fact pos-

sess a visual pigment with lmax below 400 nm (M. Glösmann

2013, personal communication). In stark contrast, the lenses of

mature diurnal primates, sciurid rodents, tree shrews and

meerkats contain a pigment absorbing maximally around

360–370 nm (see the electronic supplementary material, S4).

Consequently, they absorb all UV radiation and a considerable

amount of blue light, appearing visibly yellow (figure 3 and

table 1; see also the electronic supplementary material, S3).

Although it is well established that sciurid rodents and diurnal

primates have yellow lenses, we have expanded the number of

species within these orders known to have such lenses, and

their presence in meerkats is a novel observation.

However, most mammals appear to have lenses between

these two extremes that transmit variable amounts of short-

wave radiation (figure 3 and table 1; see also the electronic

supplementary material, S3). Relatively large lenses like those

of the horse (Equus ferus caballus), alpaca, oryx, anoa (Bubalus
depressicornis) and mouse deer remove the vast majority of

the UV, although as they remove little visible radiation, they

do not appear obviously yellow. On the other hand, animals

such as the cat, dog, ferret and okapi have lenses that transmit

only slightly less UVA than those of some murid rodents

(figure 3 and table 1; see also the electronic supplementary

material, S3).

As expected, species that are at least partially nocturnal

generally have lenses transmitting UV, while those that

are mainly diurnal prevent such wavelengths reaching the

retina. For example, while diurnal sciurid rodents have

yellow lenses that remove all UV, the nocturnal flying squirrel

has a clear lens [56] that transmits significant amounts of

UVA (table 1; see also the electronic supplementary material,

figure S3c). However, such a demarcation is not absolute and

some animals, like the okapi, can be exposed to relatively

high amounts of daylight while having lenses that transmit

relatively large amounts of UV.
(b) Lens transmission indicates that a degree of
ultraviolet sensitivity may be widespread among
mammals

Only species with UV-transparent lenses and a visual pig-

ment with lmax below 400 nm are usually considered UV

sensitive. However, as all visual pigments have a degree of

photosensitivity at such short wavelengths, an animal with

a lens transmitting UV radiation will inevitably be sensitive

in this part of the spectrum, even in the absence of a specific

UV-absorbing visual pigment.

Species are ranked according to the amount of UVA trans-

mitted by the lens in table 1. A previous study has shown that

the reindeer, whose lens transmits 26.5% of UVA and which

does not have a visual pigment with lmax below 400 nm,

nevertheless responds electrophysiologically to 372 nm light

[34]. It therefore seems likely that species with similar or
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more UV lens transmission, such as cattle, pig, ferret, dog,

okapi and cat, for example, will also be sensitive at these

short wavelengths (table 1).

The realization that many mammals have some UV sensi-

tivity may be important for understanding aspects of their

behaviour as they could be responding to visual signals

undetectable to humans. It may also have implications for

the lighting conditions of captive and domestic species. On

the one hand, some UV may be required for normal behav-

iour, while on the other, excessive UV exposure might put

species with UV-transparent ocular media at increased risk

of retinal damage (see below).

(c) The nature of ultraviolet sensitivity without a lmax

at short wavelengths
It might be argued that UV perception not mediated by a

visual pigment with lmax in this part of the spectrum is in

some way not ‘real’ UV sensitivity. However, nobody ques-

tions a human’s ability to see red light with a wavelength

of 700 nm, despite the fact that our long-wavelength sensitive

cone absorbs maximally at wavelengths more than 100 nm

removed from this.

Although all visual pigments can absorb UV radiation, the

way the signals generated by the photoreceptors to such wave-

lengths are processed is not known. Thus, animals without a

visual pigment with lmax in the UV will probably be unable

to distinguish UV as a separate colour. Aphakic humans, for

example, report UV as appearing like a desaturated (whitish)

blue-violet [6].

The extent of UV sensitivity in animals with UV-transparent

ocular media but without a specific UV visual pigment is also

uncertain. However, it is probable that such animals will be

less sensitive at these wavelengths than species that do have

such a visual pigment, although the photopic sensitivity of

aphakic humans [6] and reindeer [34] to UV light is surprisingly

high. Such sensitivity will be influenced by several factors.

For example, as the absorptance spectrum of a visual pigment

is influenced by pigment density, the degree of UV sensitivity

will depend in part on the length of a species’ outer segments

and the presence of a tapetum (which would effectively double

the pathlength of the outer segment). Furthermore, the nature

of the interactions between the different photoreceptor types at

short wavelengths and the effectiveness of short wavelengths

at triggering the transduction cascade, neither of which are

known, will also influence the degree of shortwave sensitivity.

(d) Function of ultraviolet sensitivity in mammals
It is tempting to seek a specific function for UV sensitivity,

although similar questions are rarely asked about other

parts of the spectrum. The functions proposed include;

mate choice, ‘secret’ intraspecific communication, navigation,

prey detection and foraging. However, UV light is little

different from other parts of the spectrum and its perception

need have no specific function beyond simply extending the

spectral range of the animal and improving its sensitivity.

Indeed, although UV has a role to play in both foraging

and mate choice in birds, longer wavelengths have been

shown to be more important [70,71]. Although in some

instances, UV may have a specific function, such as increas-

ing the visibility of the white fur of predatory polar bears

within a snowy landscape for reindeer [34] or enhancing
the visibility of urine trails for rodents [15,16], UV is normally

just a part of a wider spectrum of wavelengths all of which

are important for an animal’s behaviour.

Perhaps, the reason why there is a tendency to attribute

some special importance to UV sensitivity is simply that

humans are not able to see it [72].

(e) What is the function of preventing ultraviolet
radiation from reaching the retina?

Shortwave-sensitive visual pigments come in two forms:

violet-sensitive or UV-sensitive (UVS). Molecular evidence

suggests the UVS visual pigments are the ancestral form

[73]. Logically therefore, UV-transmitting lenses are also

ancestral and animals must have been subjected to selective

pressure to lose both UVS visual pigments and UV lens trans-

mission. Therefore, rather than seeking a specific function for

UV vision in mammals, it might be more pertinent to ask,

what is the function of animals having lenses that prevent

short wavelengths reaching the retina? Blocking UV could

be either protective or an aid to spatial resolution [42].

These different functions are by no means mutually exclusive

and both would explain the presence of UV-absorbing lenses

in mainly diurnal animals.

Removing short wavelengths, especially in long-lived

diurnal species, could protect the retina as the degree of reti-

nal light damage is considerably increased at shorter

wavelengths [74]. There is some experimental evidence for

such a function. For example, when the UV-absorbing

lenses of grey squirrels were removed, the retinae of these

eyes suffered more retinal damage than intact companion

eyes [75]. It has therefore been suggested that the reason noc-

turnal rodents, for example, can have UV-sensitive visual

pigments (and a UV-transparent lens) is that they are rela-

tively short-lived and habitually exposed to low light levels.

However, the lens cannot have a protective role in all species.

The reindeer, for example, lives in an extremely UV-rich

environment and can reach ages of up to 20 years, yet it

seems to suffer no ill effects from allowing UV to reach the

retina [34]. Similarly, some UV-sensitive parrots can live to

be over 50 years old with no apparent damage [76]. Either

species such as reindeer and parrots have mechanisms

to prevent the harmful effects of UV, or some species are

particularly sensitive to its deleterious consequences.

Short-wave absorbing filters will also increase image

quality as both the degree of Rayleigh scatter and chromatic

aberration are increased in this part of the spectrum [52],

although such a function is difficult to prove experimentally.

Interestingly, species such as diurnal primates and sciurid

rodents, whose lenses do remove short wavelengths, either

have a large proportion of cones (more than 20%) within

the retina and/or areas of very high cone density (more

than 100 000 cones mm22; see the electronic supplementary

material, table S5), which is consistent with a function of

such filters being to increase image quality. Interestingly,

the same argument has very recently been suggested to

account for the UV-absorbing ocular media of diurnal rap-

tors, which have extremely high visual acuity to facilitate

the capture of moving prey on the wing [77].

For species active that are at night, on the other hand,

the primary visual requirement is high absolute sensitivity

rather than spatial acuity, which will be facilitated by a

UV-transparent lens. Such animals generally have a lower
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proportion of cones in their retina and no areas of increased

cone density, but often have areas of increased rod density

consistent with maximizing absolute sensitivity (see the

electronic supplementary material, table S5).

( f ) Size(age)-related changes in lens transmission
It is not possible to characterize the spectral transmission of a

species’ lens by a single curve, as it will inevitably change as

a function of lens size. In some species, such as man, the lens

grows throughout life [78], and its size can be used to age the

animal [79]. In other species, lens growth levels off in older ani-

mals [80]. Generally, as shown by the four species in this study

for whom a range of lens sizes were available (P. livingstonii,
R. rattus, M. musculus and S. suricatta), the relative transmission

of short wavelengths decreases with increased lens size and

age (figure 4).

Some age-related change in lens transmission is an inevi-

table consequence of increased pathlength in older animals.

An approximate indication of the effect of lens size on

spectral transmission can be obtained by squaring the trans-

mission spectrum of a small lens to give a theoretical curve

for a lens twice the diameter [81,82]. For both the rat

(figure 4b) and mouse (data not shown), increased size is

insufficient to account for the decreased transmission

observed. The causes for the frequently described age-related

yellowing of the lens of primates [5,83] are complex [78] but

are in part the result of the attachment of the major
tryptophan-derived, short-wave absorbing lens pigment

(see the electronic supplementary material, S4) to lens pro-

teins [47,84]. The proximate causes of the decreased

shortwave transmission in other species, for example those

described here, that cannot be the result of a simple increase

in pathlength, are unclear.

It seems likely that such age-related changes in lens trans-

mission are the inevitable result of both increased lens size

and light exposure. Nonetheless, they might protect the

retina of older animals from the harmful UV radiation and,

for example, slow the rate of photoreceptor loss.
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