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Abstract

This paper proposes FeSAD, a framework that will allow a machine learning classifier to detect evolutionary ran-
somware. Ransomware is a critical player in the malware space that causes hundreds of millions of dollars of damage
globally and evolves quickly. The evolution of ransomware in machine learning classifiers is often calculated as con-
cept drift. Concept drift is dangerous as changes in the behaviour of ransomware can easily lead to misclassifications,
and misclassification can harm individuals and businesses. Our proposed framework consists of a feature selection
layer, drift calibration layer and drift decision layer that allows a machine learning classifier to detect and classify
concept drift samples reliably. We evaluate the FeSAD framework in various concept drift scenarios and observe its
ability to detect drifting samples effectively. The FeSAD framework is also evaluated on its ability to extend the
lifespan of a classifier. The results obtained by this research show that FeSAD can successfully and reliably classify
ransomware and benign samples while under concept drift and can extend the time between retraining.

© 2011 Published by Elsevier Ltd.
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1. Introduction

Ransomware is a malware type that restricts a user’s access to their files by either locking the computing
device or encrypting its files. According to Symantec, the cost of ransomware attacks globally amounts to
damages running into the hundreds of millions of dollars [2], and BlackBlaze reports that the average cost
of a ransomware attack on a business is 1.85 million dollars [3]. Modern ransomware is particularly difficult
to deal with due to the usage of sophisticated encryption schemes that keep encryption and decryption keys
on a remote command and control server [4]. Modern ransomware users use techniques beyond encryption
to persuade victims to pay by threatening to dox victims and organizations that they successfully attack
[5]. An attacker will access sensitive information related to victims and use this information to leverage
victims into paying ransoms under the threat of having this information made public. The damaging effects
of ransomware and its rate of evolution and growth create the need for more robust detection solutions.
Machine learning ransomware detection systems are a popular solution to ransomware detection; however,
machine learning algorithms have limitations despite their strengths. This research focuses on Crypto-
Ransomware, which encrypts user files and asks for a ransom. [1]. We define machine learning algorithms as
fit for purpose as long as most samples classified benign or ransomware do not show abnormal levels of drift.
We define the lifespan of a machine-learning algorithm as the period between training and the threshold of
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abnormal drifting samples being exceeded. The drift calibration layer defines the abnormal drift threshold,
and the drift of every incoming test sample is recorded. Once the number of samples showing an abnormal
drift exceeds the set threshold, the algorithm is considered at the end of its lifespan, and the machine-learning
algorithm must be retrained. A high number of samples showing abnormal drift would indicate that the
machine learning algorithm is becoming less confident of its classifications and that a high proportion of
samples’ statistical properties are different from expected. The FeSAD framework aims to increase the
lifespan of a classifier by preparing it to classify samples that show drift and calibrating its drift thresholds
to account for the drift commonly seen from ransomware families from different distributions.

1.1. Motivation

The primary motivation for this research is the ransomware evolution rate that can lead to unsuccessful
detection [6]. Zero-day attacks are always on the rise [7], which are attacks for which there is no signature;
therefore, they will be unknown to detection systems. There are solutions for ransomware detection using
machine learning systems such as Ransomwall [8] and the adaptive system [9]. Ransomwall aims to maintain
a high detection rate using a multi-layer approach for detecting zero-day ransomware, and the adaptive
system described in [9] takes high rates of ransomware evolution into account when developing a pre-
encryption detection system for ransomware. The system proposed by Min et al. in [10] describes how
to defend a Solid State Drive (SSD) from ransomware encryption and uses a machine-learning system.
Machine learning systems have proven effective in detecting ransomware and achieving positive results
on zero-day variants; however, machine learning systems can be prone to concept drift. Concept drift
implies that the statistical properties that determine a sample class have changed, and this phenomenon can
represent ransomware evolution. Experiments show that the machine-learning approaches used in prominent
ransomware detection solutions are prone to degrade when faced with concept drift. The FeSA system [15]
discusses that zero-day ransomware does not necessarily equate to evolved ransomware due to the multitude
of infection vectors constituting a zero-day sample. Ransomware that is evolved behaves outside the scope
of what a classifier deems to be ransomware behavior, and the FeSAD framework aims to solve it. In the
context of the API call features we use; this implies that the ransomware’s API-based behavior has shifted in
a way that would make it more difficult for a classifier to identify it as ransomware correctly. In some cases,
classifiers may be able to identify zero-day samples because the sample’s behavior matches the behavioral
profile defined by the classifier as ransomware; however, the issues arise when ransomware samples appear
that do not match the classifier’s behavioral profile of ransomware.



1.2. Paper Contribution

The main contribution of this paper is the FeSAD framework, the FeSAD framework can detect ran-
somware under concept drift and effectively extend the lifespan of a machine learning detection system.

o FeSA Feature Selection: The FeSA layer generates feature sets using the FeSA feature selection
algorithm. The FeSA feature selection approach is proven to produce robust feature sets that show a
degree of resistance to concept drift.

o Drift Detection & Classification: The FeSAD framework derives a numeric value to quantify
concept drift and makes reliable classifications of samples showing concept drift.

1.8. Paper Organisation

The remainder of this paper is as follows: Section 2 covers related work. Section 3 covers our proposal.
Section 4 describes our experiments, and section 5 discusses the results of the experiments. Section 6
concludes and expands our work.

2. Background & Related Work

This section covers the related work of our research. We have explored related work covering concept
drift, ransomware detection, and malware detection with concept drift.

2.1. Ransomware Detection with Machine Learning

We observe that the systems designed in [11], [12], [13] and [14] provide machine learning-based detection
for ransomware, with Almoussa et al. and Qin et al. providing machine learning and (Application program-
ming interfaces) API solutions. It can be observed that API-based approaches can be considered effective
as both of these systems provide strong ransomware detection results. The API-based solution provided by
Sgandurra et al. has proven effective in detecting zero-day ransomware and early detection. Poudel et al.
developed a framework for the Analysis Framework that performs multi-level analysis on ransomware and
benign. The multi-level analysis involves analyzing binaries, assembly code, and function calls such as API
calls. The analysis framework uses a combination of binary, assembly, and API features to make an informed
decision on ransomware detection; the framework uses different machine learning classifiers. This research
has achieved strong results with detection rates over 90% for almost all machine learning algorithms. Ab-
bassi et al. propose an automated feature selection method for ransomware detection with machine learning
algorithms. The system proposed uses particle swarm optimization for a behavioral-based detection sys-
tem; this means the features used for ransomware detection are dynamic and taken during execution. The
approach proposed groups features together and performs feature selection based on the significance of a
group. The research by Ayub et al. uses I/O request packets to detect ransomware; I/O request packets
are a low-level I/O system operation that is relatively new in the ransomware research space (Ayub et al.,
2020). I/0O requests are requests between the user and the kernel mode. If the user requests a file to open,
the I/O service in the kernel mode carries out the task. The I/O logs are used with an ANN (Artificial
Neural Network) to detect ransomware. The ANN is tested with three different configurations to optimize
the detection rates for ransomware. The Al-based ransomware detection approach proposed by Alvee et al.
attempts to detect ransomware by converting ransomware binaries into 2-D greyscale images and using a
convolutional neural network to classify benign and ransomware images. This research discusses ransomware
detection in a substation setting and considers infection of this substation through three infection vectors.
The infection vectors are remote access, physical intrusion, devices, and the substation network. The main
issue with all of the research in ransomware detection with machine learning is that they need to address the
detection and adaption to concept drift. Concept drift in a malware detection system can be particularly
damaging due to the consequences of a ransomware attack. The omission of concept drift adaption and
detection is a weakness in the mentioned systems.



2.2. Concept Drift

Concept drift is best described as changes in P(xz,y). Since it is composed of the feature probability
component P(x) and class label conditional probability P(y|z), the change of the joint probability can
be better understood via the changes in either of these two components. As a concept can be split into
components, the reasoning behind concept drift can be divided into four different types.

- No Change In this scenario, both P(z) and P(y|z) remain the same and have not changed regarding how
they were when the model was initially trained. It might be useful to retrain on the most up-to-date
data regardless; however, this indicates no concept drift, and the model is stable.

- Feature Change In this scenario, P(x) has changed, but P(y|x) has remained the same; this means fea-
tures that may not have been important have now become important. The model can be reconstructed
in a scenario to fit these feature changes.

- Conditional Change In this scenario, P(z) has not changed, but P(y|z) has changed. In this scenario,
an expected error could go either way, so it is necessary to reconstruct the model. The issue with this
is that there may not be enough new data to reconstruct the model, leading to high variance. It is
possible to solve this problem through the weighted combination of new and old data.

- Dual Change Both P(z) and P(y|x) change. The expected error could increase, decrease or stay the
same depending on the combination of P(x) and P(y|x). It is necessary to retrain in this instance.

We have reviewed prominent work in malware detection with concept drift and have identified strengths that
we can use and weaknesses that we can improve on. Tsymbal et al. use a Heterogeneous Euclidean overlap
metric (HEOM) to detect concept drift in machine learning systems; this approach is highly adaptable
due to the Heterogeneous Euclidean overlap metric (HEOM) metric being able to handle categorical and
continuous data when measuring levels of concept drift [16]. The transcend system shown in [17] explicitly
addresses concept drift and the effect on machine learning malware solutions. The adaptive system proposal
in [19] demonstrates how ensemble machine learning systems can be useful for detecting drift; this study also
explores how different classifiers react to concept drift. Wilson et al. explore the Heterogeneous Euclidean
overlap metric (HEOM) and its effectiveness when measuring statistical differences between data instances.
The research proposed by Wilson et al. is used in [16] and is flexible and effective at determining whether
a sample does not fit a distribution. Tan et al. produced a system that uses the Wilcoxon Rank Sum
test [21] to determine whether a sample is displaying concept drift; this is an effective approach; however,
it relies on retraining once concept drift is detected. Singhal et al. use Heterogeneous Euclidean overlap
metric (HEOM) and gradient-boosted trees, Random Forests, and Deep Learning to detect concept drift in
the malicious website detection space; they ensure the system can be retrained quickly in the presence of
concept drift [22]. The transcendent system [23] builds on Transcend [17] and uses nonconformity values
to detect drifting samples, and this achieves promising results on malware and benign datasets spanning
five years; however, the solution to drifting samples is still to either pass the drifting sample to another
machine learning algorithm or hand over the sample to a specialist for manual analysis. EACD: Evolutionary
adaption to concept drift [24] proposes a method of coping with concept drift in non-stationary systems using
evolutionary algorithms; however, it uses a window and relies on immediate retraining. The work presented
in [25] breaks concept drift into three types: gradual, cyclical, and abrupt; not all research addressing
concept drift focuses on one type of concept drift. and standard deviation [29]. Nishida et al. propose a
Statistical test of equal proportions (STEPD)[30], which detects concept drift when there is a significant
difference between data in two different windows. The research proposed by Biffet et al. attempts to detect
drift using a sliding window that reduces in size when a drift is detected to capture the new concept more
efficiently [31].

Having reviewed prominent machine-learning ransomware detection and fundamental concept drift re-
search, we have identified key limitations and why they exist. Most current ransomware detection research
fails to address the effects of concept drift, and considering the speed at which new ransomware emerges,
it is highly probable that the evolution of ransomware will affect machine-learning detection solutions in
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the form of concept drift. Some current ransomware studies do include zero-day detection; however, the
work produced in [15] shows that a zero-day threat does not necessarily mean a sample that shows evolved
behavior; therefore, it is essential to distinguish zero-day and true behavioral evolution. Concept drift in a
ransomware detection system would suggest that the behavior patterns of ransomware have changed, making
it harder to classify ransomware and benign samples correctly. The current solutions to concept drift in
malware detection acknowledge the importance of concept drift detection and identifying when a model is
showing concept drift; however, these solutions focus on retraining and manual inspection of samples that
behave differently than expected. Current malware concept drift solutions do not acknowledge a window of
vulnerability between concept drift happening and the machine learning system being retrained, which leaves
a system entirely vulnerable to concept drift. In the context of ransomware and malware, the system will
encounter evolved samples and misclassify them due to their behavior being different from what is expected.
The limitations of current concept drift malware research allow too much room for misclassification.

3. FeSAD Framework Design

FeSA Layer
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Figure 1: FeSAD framework

The FeSAD framework, shown in Figure 1, will help a machine learning detection system for ransomware
to make accurate predictions under concept drift and is designed to prolong the period a detection system
can go without being retrained by taking concept drift into account. The FeSAD framework consists of
three central components: the FeSA layer, the Drift Calibration Layer, and the Drift Decision Layer. The
functions and flows of Figure 1 are described below.

o FeSA Layer: The FeSA (Feature Selection) layer generates feature sets using the FeSA feature
selection algorithm, and the best-performing feature set is identified for use in the following two
framework layers. The FeSA feature selection approach is proven to produce robust feature sets that
show a degree of resistance to concept drift. The base layer generates feature sets that flow onto
the evaluation. The genetic layer in Figure 1 takes the top-performing feature sets from the base
layer, and this flows to the selection process where pairs of strong feature sets are bred together; this
process is repeated until the performance of the generated offspring is no longer improving. The drift
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boundaries and values are calculated for the optimal and stored in the genetic layer. The drift values
calculated are fed into the Drift Calibration Layer. The robustness of the feature sets is judged by
their ability to reduce the performance degradation a classifier experiences due to concept drift. The
FeSA layer is modified in the FeSAD framework to use a modified similarity metric that identifies
potentially drifting samples in the training data set. The FeSA layer calculates the initial thresholds
for abnormal and normal samples based on the training data set.The FeSAD framework is equipped to
use different similarity metrics combined with prediction probabilities to measure concept drift; this
approach is different from something like the Nonconformity measure (NCM) used in Transcend as
it uses metrics derived from the underlying algorithm and statistical measures outside the underlying
algorithm. Approaches like the NCM (Jordaney et al., 2017) are effective; however, there is room to
add reliability, seeing as the underlying algorithm is degrading due to concept drift; therefore, it would
be logical not to derive all measures to combat drift from a degrading machine learning classifier as
the decisions made by the algorithms will inevitably be affected by the drift.

o Drift Calibration Layer: The drift calibration layer uses a calibration dataset to measure the shifts
in drift between the training and calibration set. Figure 1 shows the drift values that are calculated
flow to the drift calibration layer and the change in the drift between the training and calibration data.
The changes in drift are fed back to the optimal feature set and stored in the framework. The updated
drift values are then fed into the Drift Decision Layer. The calibration dataset is a dataset that contains
a different distribution of ransomware and benign samples; the ransomware in the calibration set is
expected to evolve from the training ransomware and, therefore, should present concept drift when
compared to the training data. The calibration layer analyses the drift observed in the calibration data
compared to the training set and adjusts the thresholds for abnormal drift. The updated thresholds
for drift are sent to the FeSA layer, and these thresholds are used in the drift decision layer. The main
difference between the Drift Calibration Layer and other current work is that the Drift Calibration
Layer aims to observe the changes in drift across different distributions to anticipate future drift; this
allows for the theoretical expansion of the lifespan of the classifier used by the FeSAD Framework.

e Drift Decision Layer: Figure 1 shows the drift decision layer uses the drift thresholds determined
using the drift calibration layer and the feature set produced by the FeSA layer to make decisions on
incoming test samples. The drift decision layer calculates whether a sample shows drift beyond what is
acceptable for benign or ransomware files. There is a user-set threshold for the proportion of samples
displaying abnormal or unacceptable drift the system can encounter before retraining must be carried
out.

3.1. Data & Features

The data used was the Application Programming Interface (API) call data of ransomware and benign
files from 2013 to 2021. API calls are interfaces that allow the program to interact with an OS, and the API
call structure we use allows FeSAD to determine ransomware behavior at the early stages of execution. Once
an infection is detected, the system can be isolated, and the suspicious processes can be halted, preventing
the spread of the ransomware infection through the network. Each dataset was split by year; each dataset’s
year was unimportant, only that the data from each dataset were from different distributions. The datasets
were structured so that different prominent ransomware from different eras appeared in each dataset; this
meant that there would be a clear concept drift in every dataset relative to the dataset the machine learning
algorithm was trained on. The features are API-call features, the same as the API-call features used in the
FeSA layer [15]. The idea behind using API calls is that ransomware’s infection vectors, and pre-infection
behavior are likely to be changed; however, the experiments in [15] indicate that API-call patterns can be
identified as present in ransomware across different periods. API- calls can also be used as an effective last
resort if other vectors for detection have failed, as ransomware will have to interact with the OS during
its execution. API calls have proven effective in detecting ransomware infections in [14], [15] and [19]. We
split data into training, calibration, and testing sets. The training sets will initially train the underlying
machine-learning algorithm. The calibration datasets contain new ransomware and benign files outside the
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training distribution that will display concept drift; this data set calibrates how much concept drift the
system should expect. The testing set contains benign and ransomware samples that display concept drift,
and the system’s overall effectiveness is tested with the test set. The hooked API calls used in this system
are found in [41], which lists the Windows APIT calls used in Cuckoo Sandbox. Our dataset contains API
call and registry behavior data taken from ransomware and benign files from 2013 to 2021; this dataset was
created to capture the behavioral data for ransomware across nearly a decade. This dataset would capture
ransomware and its evolution from its early stages; this is the perfect way to simulate concept drift and gives
us an ideal way of testing the FeSAD framework. Our dataset contains 720 ransomware samples and 2000
benign file samples. The data set is split with 460 ransomware samples from 2013-2015, 65 from 2016-17,
65 from 2018, 65 from 2019 and 65 from 2020-2021. There are 900 benign files from 2013-2015 and 1100
from 2016-2021, split into the same yearly batches as the ransomware files but with 275 benign files in each
batch. Some test set configurations will contain evolved versions of ransomware families, which will also
appear in the training data. Table 1 shows a breakdown of the ransomware samples used in this dataset.



Table 1: Ransomware Families

Ransomware Year of Variant Origin Number of Samples
PGPCoder 2012 3
Reveton 2013 4
Kollah 2013 9
CryptoLocker 2013 15
Locker 2013 3
Critroni 2014 8
Kovter 2014 5
Matsnu 2014 11
CryptoWall 2014 15
TeslaCrypt 2015 29
Trojan-Ransom 2015 6
Locky 2016 30
Petya 2016 26
Chimera 2016 25
BadRabbit 2017 19
Cerber 2017 40
WannaCry 2017 19
GandCrab 2018 35
Ryuk 2018 28
Scarab 2018 24
WannaCry 2019 19
Stop 2019 29
SamSam 2019 31
Virlock 2019 17
Ralni 2019 19
Maze 2020 23
REvl 2020 32
Conti 2020 27
SunCrypt 2020 14
GandCrab 2020 32
Sodinokibi 2020 21
Dharma 2021 36
MedusaLocker 2021 25
Avaddon 2021 30




3.2. FeSA Layer

The FeSA layer [15] generates the feature sets for the FeSAD framework. The FeSA layer uses a modified
genetic algorithm to generate feature sets that are optimized to be effective in machine learning systems
that display concept drift. FeSA identifies the top features from a set of features that present the highest
information gain; FeSA includes these features in every feature set produced, meaning the optimal feature
set is attained faster. FeSA is shown to effectively maintain the accuracy of ransomware detection systems
when concept drift is present [15]. FeSA is an effective base for the FeSAD framework and consists of the
feature ranker, base layer, genetic layer, and FeSA updates.

3.2.1. Feature Ranker

The feature ranker uses information gain to identify the features that provide the distinguishable dif-
ference between the two classes, ransomware and benign. The FeSA layer enforces these features in every
feature set the feature set generation layer produces [15]. The idea behind the feature ranker is to ensure
the feature sets will be built on a solid base that can help achieve the highest accuracy and detection rate;
this approach also reduces the number of generations needed to reach an optimal solution.

3.2.2. Base Layer

The base layer generates the first set of feature sets. The base layer will generate a predefined number
of feature sets using features from a feature pool and the top features identified by the feature ranker. The
base layer will measure the average ransomware accuracy of all the feature sets generated; the feature sets
passed onto the genetic selection layer are the feature sets that yield detection and accuracy rates above the
measured average.

3.2.3. Genetic Layer

The genetic layer acts as a breeding mechanism and will breed high-performing feature sets together.
The parent feature sets are the highest-performing feature sets from the base layer. The child feature sets
are a combination of the high-performing feature sets. The breeding function uses uniform crossover to select
features from each parent feature set [15] and ensure the high information gain features are in every feature
set. The genetic selection layer will provide its optimal solution based on the feature sets’ performance and
the features’ overall feature gain in each feature set. The feature set with the combined highest average
detection, accuracy, and information gain is chosen as the optimal solution.

3.2.4. FeSA Updates

The FeSA layer yielded positive results shown in [15]. Using our genetic algorithm improved ransomware
detection rates quite dramatically, and these detection rates were higher than that of all the feature selection
algorithms FeSA was compared with. The main issue with the FeSA layer was that it tended to produce
feature sets that yielded a high false-positive rate despite maintaining a solid detection rate when faced with
concept drift. The FeSA layer was also a proactive measure, and despite being effective, it did not allow
the FeSAD framework to react to concept drift and relied on retraining once the system produced too many
incorrect predictions. FeSA could not react to concept drift, which meant it was not a complete solution
to concept drift in the ransomware detection space. Ultimately, there is a need to guarantee the lowest
possible false-negative rates; however, the high false-positive rate FeSA produced must also be addressed.
The solution to the false positives was found by tweaking the fitness function FeSA used, which was detection
rate and accuracy; this was altered to consider feature sets with above-average accuracy, detection rate, and
overall information gain of the feature set. The altered fitness function ensures that the features included in
the dataset will not introduce ambiguity. The updated feature ranker also eliminates features that provide no
use from the breeding pool; this means features that provide an information gain below a certain threshold.
By tuning the fitness function and feature ranker in the FeSA layer, we eliminated the high proportion
of false positives; however, the FeSA layer still needed to react and adapt to concept drift and further
extend the classifier’s lifespan, creating the need for FeSAD. As part of this update, FeSAD also measures
the drift for ransomware and benign in the feature set it generates to define thresholds for acceptable and
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unacceptable drift. The FeSA layer interacts with the Drift Calibration layer to tune its drift thresholds
for greater longevity and higher detection rates over time. The measurements for drift are explained in the
following section.

3.8. Drift Calibration Layer

We apply drift to measure the similarity between a sample and the samples of the class it is classified
into. The drift calculations are measured using a combination of a Heterogeneous Euclidean Overlap Metric
and the prediction probability of a sample. The drift calibration layer measures the drift in the base training
data and the increase in drift between the training data and calibration data to predict the increase in drift
the FeSAD framework can expect. The expected drift metrics produced in the drift calibration layer are
used to tune the expected drift and drift boundaries in the classifier produced in the FeSA layer.

3.3.1. HEOM (Heterogeneous Euclidean Overlap Metric)

The Heterogeneous Euclidean overlap metric (HEOM) is a distance metric designed to measure distances
between two data samples with both continuous and nominal attributes. The Heterogeneous Euclidean
overlap metric (HEOM) is used because it gives an insight into how close or far away a sample is from the
other samples it has been classified with, giving insight into how reliable a prediction may be. The flexibility
of HEOM allows the feature set to use continuous and nominal data if necessary [16]; however, it currently
uses only continuous features. The HEOM metric measures the distance between two values x and y given
an attribute a. The FeSAD framework uses a modified implementation of the Heterogeneous Euclidean
overlap metric (HEOM) metric to measure concept drift per sample and overall concept drift in a system.
The equation for the standard Heterogeneous Euclidean overlap metric (HEOM) calculations is shown in
Equation 1 and Equation 2.

dheom (T1,T2) = Zheomg(:cl,xz) (1)
a=1
Where
|x1a - -7;2a|
heomg(x1,22) = ——— 2
eomg (1, z2) range, (2)

The standard Heterogeneous Euclidean overlap metric (HEOM) equation measures the distance between
two samples x1 and x5 in relation to feature a, where m is the number of features. Equation 2 ensures that
there are no discrepancies due to large variances between the values for each feature by normalizing them
with range,. The Heterogeneous Euclidean overlap metric HEOM measurements for each sample are taken
as a ratio by measuring the HEOM distance of a sample from all other ransomware samples and all other
benign samples and dividing these two values. Equation 3 shows how the HEOM distance from ransomware
for a sample is calculated, and Equation 4 shows how the HEOM distance from benign samples is calculated.
In both cases, n represents the number of benign or ransomware samples the sample is compared to during
the calculation. The instance number is represented by i, or i, and is compared to another ransomware
instance j.

3.8.2. HEOM ratio calculation

The calculations for generating the HEOM ratio value for a sample are shown in Equation 5. The HEOM
ratio h; will be much smaller for ransomware than for benign samples due to how the ratio calculation is
constructed. The ratio value is calculated equally for both classes, so the HEOM ratio is relative to the
distance to ransomware for both benign and ransomware classes.
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n‘f d eom\Li,., Lj,
heomr _ Zz,j—l h . ( T J'r) (3)

ZZJ'ZI dheom (xilﬂ xjr)

heomy, = - (4)
heom,,

i = 5

heomy, (5)

3.3.8. Prediction Weights

A sample’s HEOM ratio can tell us how far or close to its classification, but it cannot provide 100%
accuracy as with any metric. A weight is introduced to the HEOM values to balance any uncertainty the
HEOM calculations introduce. The prediction probability has a strong rate of identifying incorrect samples,
as does the HEOM metric. Combining two high-performing metrics will add a layer of certainty to the drift
metric, with one of the metrics taking input from the underlying machine learning algorithm and the second
metric being the objective of the underlying algorithm. The weight for benign predictions is calculated by
dividing the probability of the benign prediction by the average probability of an incorrect benign prediction.
The introduction of the weights eliminates any false positives introduced by using the HEOM calculations
alone. The calculations used for generating the weights for ransomware, w,, and benign predictions, wy,
are shown in equation 6 and equation 7, respectively. For the weights added to the HEOM ratio, p; is the
probability of the prediction, p; . and p,, being the average probability of incorrect ransomware or benign
prediction respectively. The average incorrect prediction values are calculated by using the training set
generated by FeSA.

Di

Wy = — 6
= (6)
Di

Wy = — 7
= (7)

3.3.4. Weighted HEOM Calculation

The weighted HEOM combines a sample’s HEOM and prediction probability in our dataset. The
weighted HEOM measures drift, the average drift in our dataset, the expected drift, and the drift of individ-
ual test samples. The calculation for the weighted HEOM for a ransomware prediction is shown in Equation
8, and the calculation for the weighted HEOM of a benign prediction is shown in Equation 9. A logarithmic
value is used for both calculations to shrink the values into a distinguishable range. The calculations for
both values differ as the desired effect of the weight is different for both classifications.

hwy, = log(h; - wp) (8)

i

Wy

hwy, = log(—) (9)

Ransomware HEOMs are shrunk if the prediction weight is high; however, benign HEOMs increase if the
prediction weight is high; this is because the HEOM ratio is measured based on how far each sample is from
ransomware on average, meaning that benign weighted HEOMs hw, being higher than ransomware hwy,
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is desired. Low prediction weights would have the inverse effect on the HEOM values; ransomware HEOMs
would increase, and benign HEOMs would decrease.

Algorithm 1 shows how the weighted HEOM calculations are made. The HEOM distance values from
ransomware samples, heom,., and benign samples heom,, are calculated for each sample in the training
set, and a ratio value is calculated to generate h;. The weighted HEOM calculations are carried out for
correct ransomware and benign classifications in the training set, and the average weighted HEOM for both
correct benign and ransomware classifications are generated. Algorithm 1 has a computational complexity
of O(nlogn).

Algorithm 1 Weighted Calculations

Input: FeSA features ag,...,a;, - -
Output: Average Weighted HEOMs hw,.,, hwy

1: for Samples in training set z;....x,, do
2: Calculate HEOM value from Ransomware samples
Z" dheom (Tiya;)

i,j=1

c

3: heom, = -
4: Calculate HEOM value from Benign samples
En dh,eom(ri,xj)

5: heom;, = ==I=—
6: Calculate HEOM ratio for samples
7. h, = heom,
. 7 heomy
8: end for
9: for training ransomware samples x;...z,, do
10: Calculate Weighted HEOM
11: hw,, = log(L)
12: end for

13: for training benign samples do z;...z,

14: Calculate Weighted HEOM hwy,, = log(h; - w)

15: end for

16: Calculate average correct benign weighted HEOM only using the weighted HEOM of correct benign
predictions:

17: hwy, = Lﬁghwbi

18: Calculate average correct ransomware weighted HEOM only using the weighted HEOM of correct ran-
somware predictions:

- - hw,,
19: hw,, = &=—7"

20: return hw,, return huwy,

3.3.5. Expected Drift Threshold Generation

The FeSAD framework uses drift calculations that formally measure how far from an expected point a
value is; our drift values attempt to formalize and quantify concept drift in a machine learning detection
system. FeSA calculates the average weighted HEOMs for correct benign and ransomware classifications
during training. The average weighted HEOM for correct ransomware classifications is hu_JTC and the average
weighted HEOM for correct benign predictions is h’lZ)bC. The drift calculations measure the difference between
the average weighted HEOM in the training set and the weighted HEOM of an individual sample. The
weighted HEOM for a sample ¢ is represented with hw,, for ransomware and hws, for benign files. The
calculation for drift in a sample classified as ransomware is shown in Equation 10, and the calculation for
drift in a sample classified as benign is shown in Equation 11

D,, = hw,, — hw,, (10)
12
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Dy, = hwy, — hij)bc (11)

The calibration set shown in Figure 1 is used to calculate the expected drift in the system; the expected
drift is calculated to allow the system to know what changes in weighted HEOM values to expect. Expected
drift D, is calculated by taking the average drift in the calibration set and the average increase in drift f
in datasets from different ransomware distributions. The calculation for the average drift for ransomware in
the calibration set is shown in Equation 12, and the average benign drift for benign predictions is shown in
Equation 13.

Er _ Ei:l DTi (12)

(13)

Expected drift is calculated by combining the average drift in the calibration set and the average increase
in drift for ransomware f, and for benign files f, from different ransomware and benign distributions; this
is shown in equation 14 and equation 15 for expected drift in ransomware and benign samples, respectively.
The configurations for our calibration sets are shown in Table 4. The calibration dataset contains data from
a different distribution to the training dataset; an example would be the training data from 2013-2015, a
calibration set from 2018 data, and a test set of data from 2019.

D, =D, f, (14)

r

De, =Dy fo (15)

Algorithm 2 shows how the drift calculations in the training and calibration sets are carried out. The
drift for correct ransomware and benign classifications is calculated using the training set. The increase in
drift, f,, and f, for both correctly classified ransomware and benign files is calculated using the calibration
set. The expected drift for both benign and ransomware samples is calculated by combining the expected
drift calculated in the training set and the increase in drift noted in the calibration dataset. Algorithm 2
has a computational complexity of O(n).

3.8.6. Drift Thresholds

The drift thresholds represent levels of drift that require different courses of action; the drift calibration
layer allows the FeSAD framework to define what is classified as normal and abnormal drift. Normal drift
would require no action as it is within the levels of drift the framework expects. Abnormal drift is beyond
the standard threshold for drift; however, it is not beyond the maximum threshold. Abnormally drifting
samples are recorded, and too many abnormal samples suggest a need to retrain. The drift calibration layer
also defines drift boundaries; drift beyond the drift boundary would suggest a misclassification.

Abnormal Drift. Abnormal drift is defined as a sample that is displaying drift beyond expected drift D,
or D.,. The FeSAD framework uses a drift factor metric that determines whether a test sample displays
abnormal or normal drift; it is shown in Equation 16 and Equation 17.
D;
Dy = —= 16
"= D (16)
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Algorithm 2 Drift Calculations in FeSA & Drift Calibration Layer

Input: Weighted HEOMs hw,_, hwy,, fr, f5
Output: Expected Drift, Dy, D.,

1: for All correct classifications in the training set do

2: Calculate drift for correct ransomware classifications:

3 D, = hw,, — hw,,

4: Calculate of drift for correct benign classifications:

5: Db,; = hwbi — hu;bc

6: end for

7. Calculate average drift in training set for benign files:

8: ljr = 7"':711 D”Z

9: Calculate average drift in training set for ransomware files:
10: .D_b = 72":1 Do

n
11: Change in ransomware drift calculated using the calibration set: f,

12: Change in benign drift calculated using the calibration set: fj
13: Calculate expected ransomware drift using: D., = D, - f,

14: Calculate expected benign drift using: D, = Dy - f

15: return D, return D,

D;
be = D : (17)
ey

If the Dy, value for a sample classified as ransomware is above 1, this would mean the sample is showing
abnormal drift for a ransomware classification; this is also the case for Dy, of a sample classified as benign.
The abnormal drift threshold is decided by the expected drift value D.. The expected drift value taking
drift from many different distributions allows the abnormal drift threshold boundary to identify true outliers
while not flagging samples that represent drift that can be expected. The threshold taking concept drift
into account should extend the time between retraining while flagging samples that display abnormal drift.
Once z number of samples have been identified as showing abnormal drift, the system needs to be retrained.
The user defines the z value.

Maximum Drift. FeSAD calculates the drift thresholds using the training and calibration sets. Dy, 4z is
a level of drift that a sample cannot exceed. Exceeding the D,,,, would suggest an incorrect prediction, so
a benign sample displaying drift beyond D,,,,, would be considered ransomware and vice versa for samples
classified as ransomware. D,,,, is defined as the point at which a sample, according to the weighted HEOM
metric, is closer to the opposite class it is classified as. An example of this scenario would be a sample
classified as benign but using weighted HEOM; the sample would be closer to ransomware than being
benign; therefore, its drift level should exceed D.pqz- Dmaz is calculated based on the training and incorrect
classifications in the calibration set. D, is calculated using the training set shown in equation 18. The
midpoint is defined and is Dy,q,. If the drift of a sample is beyond D, then it will have a Dy, greater
than 1; this is determined by equation 19.

D, = Wre = Moy, (18)
2
D;
D = 1
Jmaz = P — (19)
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3.4. Drift Decision Layer

The Drift Decision Layer uses the drift thresholds calculated using the FeSA and Drift Calibration Layer
to accurately and reliably classify samples showing concept drift. The FeSAD framework uses its drift
thresholds defined by the FeSA and calibration layer to identify samples that show abnormal drift beyond
D, or drift beyond the drifting boundary, Dy, ... The Drift Decision Layer keeps track of the abnormal
samples and will recommend retraining once the threshold, z, for abnormal drifting samples has been
reached. Algorithm 3 shows how the drift decision layer works when determining whether a classification
shows unacceptable drift. The expected drift values from algorithm 2 are used to determine whether a
sample is displaying abnormal drift or unacceptable drift. There is a defined threshold z for the amount of
abnormal or unacceptable samples the system can encounter before retraining is advised. Algorithm 3 has
a computational complexity of O(n?).

Algorithm 3 FeSAD Drift Decision Layer
Input: Expected Benign Drift D,,, Sample Drift D;, Max Drift D,,,,, max abnormal samples z
Output: Drift Max Factor Dy, .

: Abnormal count a

: Drift Factor Dy, =

. if be > 1 then
D;, = abnormal drift

1

2 b
3

4:

5: a=a+1

6

7

8

9

i
De,

: end if

: Drift Factor Max Dy, . = DDi

: if Dy . > 1 then
: D;, = unacceptable drift
10: a=a+1
11: end if
12: if a > z then
13: Retrain System
14: end if
15: return Dy,

4. Experimental Setup

The FeSAD framework is designed to aid a machine learning ransomware detection to maintain a high
level of detection rates under concept drift, extend the classification system’s lifespan, and lengthen the time
between retraining. The experiments are structured to simulate real-world concept drift in ransomware-,
by testing with samples from new ransomware families that display new behaviors, considered to be zero-
day to the system. Our results, shown in [15], demonstrate that our experiments use the random forest
as the underlying algorithm; the API-call features work best with the Random Forest. Table 2 shows the
performance metrics used throughout this paper.

4.1. Test Environment

Our test environment uses a Cuckoo Sandbox that allows for malware and behavioral analysis execution.
Cuckoo Sandbox generated the API call data for the ransomware and benign samples used in this research.
The WEKA API was used to carry out all machine learning-related experiments. WEKA is a machine-
learning platform that can be used for data analysis [39]. The WEKA API allows us to use the machine
learning algorithms on the WEKA platform and integrate them into our code. The WEKA API for Java
allowed us to integrate Machine Learning algorithms with the FeSAD framework. The WEKA API allowed
us to use the data and predictions taken from the machine learning algorithms and integrate them into the
predictions made by the FeSAD framework.
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Table 2: Performance Metrics

Metric Calculation
TPR (True Positive TP
Rate) / Recall (TP+FN)
False Positive Rate FP
(FPR) FP+TN
False Negative Rate
(FNR) 1-TPR
TP
Precision TP+FP
T
AUCLROC AUC — ROC = [/ TPR(FPR)dFPR

4.2. Dataset

Our experiments’ ransomware and benign data were gathered from 2013 to 2021. Having a large range
of data gives us data from different distributions that will simulate the effect of concept drift in a machine-
learning system. The base for the dataset used in our experiments is the dataset used in [15]; this dataset
was proven to contain concept drift due to the loss in average prediction probability when classifying samples
outside the training distribution. The experiments carried out for FeSA [15] show that the average prediction
probability for data trained and tested from 2013 to 15 was 0.94; however, when the Random Forest model
was tested on ransomware data from 2016 to 2017, the average prediction probability for a classification fell
to 0.74. The base dataset contained data from 2013 to 2019; we have added ransomware and benign data
from 2020 and 2021 to the updated dataset used in these experiments. The ransomware samples used in
the experiments were procured from hybrid analysis and virusshare.com.

4.8. Machine Learning Algorithm FExperiments

We have tested prominent machine learning algorithms with the API call features to understand what
algorithm works as a good starting point to run our experiment. The FeSAD framework is designed to work
with any underlying machine learning algorithm; however, the algorithm’s performance will also depend
on the feature set provided. Our experiments showed that the Random Forest algorithm was the most
stable, having tested its detection capabilities on ransomware spanning eight years. The underlying machine
learning algorithms tested were Logistic Regression, J48 Decision Trees, SVM, Bayesian Networks, GTB,
Multi-Layer Perceptrons, and Random Forests.

4.4. Concept Drift Experiments

4.4.1. Base Training

The FeSAD framework has been tested in scenarios that simulate concept drift, and its capabilities
to predict under concept drift have been evaluated. The FeSAD framework aims to predict reliably under
concept drift while prolonging the lifespan of a machine learning model. The focus of these experiments is not
on the year the data is from, as the ransomware behavior does not change uniformly year to year; the changes
in behavior seen could occur at any point, and they are structured to represent zero-day ransomware that
has evolved beyond the scope of the training set. Using a calibration set gives the training a new dimension
and allows the system to measure the drift that can occur and incorporate this into predictions of samples
that show concept drift. Naturally, we expect a machine-learning algorithm to be uncertain of samples that
display concept drift; however, incorporating drift with calibration allows the machine-learning system to
predict drifting samples confidently. The FeSA component of the framework produces the optimal feature
set, and the average weighted HEOM values in the training set are calculated.
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4.4.2. Calibration

The calibration datasets are used to expose the system to data that may differ from what it has been
trained on. An example of the calibration sets being used would be if the system is trained on the 2013-2015
data and calibrated using the 2016-2018 data. The variability observed in the calibration sets allows the
system to determine the abnormal and unacceptable drift threshold. If the system is not exposed to the
calibration sets, the drift values calculated from the training set alone will be limited and will not take drift
caused by a different distribution into account; the thresholds for abnormal drift will be too low. We use

the training and calibration sets to define the maximum tolerance for drift and the tolerance for abnormal
drift.

4.4.3. Test

We test the system on data that the system has not been exposed to, for example, the 2019-2021 data.
The system measures the drift of each sample in the test set and will determine whether they are showing
abnormal or unacceptable drift. The framework is tested to determine whether the system can accurately
classify samples showing concept drift and whether it extends the time between retraining. The system
must be retrained once the threshold for abnormal drift samples is exceeded.

5. Results & Discussion

This section explains and discusses our results. The FeSAD framework is built using the WEKA API
tool for Java, and an in-house developed concept drift measurement system that evaluates the drift of each
sample the detection system classifies.

5.1. Machine Learning Experiments

We tested machine-learning approaches used by prominent ransomware research with the API call fea-
tures to understand the most robust approaches against concept drift. The underlying machine learning
algorithms tested were Logistic Regression, J48 Decision Trees, SVM, Bayesian Networks, GTB, Multi-Layer
Perceptrons, and Random Forests. The FeSAD framework is designed to work with any underlying machine
learning algorithm; however, the algorithm’s performance will also depend on the feature set provided. Table
3 shows the results of the experiments that test the approaches of prominent ransomware research and how
these algorithms react to concept drift. Table 3 shows the base performance of each algorithm when the
system is not exposed to evolved samples that will not show concept drift, and the detection drop-off for each
algorithm represents the average reduction in detection rate when the algorithm is exposed to ransomware
outside the training distribution that shows concept drift. Our experiments showed that the Random Forest
algorithm used by Poudel et al. was the most stable. The experiments show that the Random Forest [34] is
the most consistent algorithm for ransomware detection with our chosen feature set. Random Forests also
show the best overall accuracy and balance high detection rate and overall accuracy.

5.1.1. Machine Learning Algorithm Experimental Configuration

We used algorithms and approaches used by prominent ransomware research; however, we have also
tried to adapt these approaches to the API-call feature set we use. This approach ensured that the most
optimized algorithm would be used as the underlying algorithm for the FeSAD framework. We have trained
each classifier on data from 2013-2015, and these classifiers have been tested against data from 2016-2017,
2018, 2019, and 2020-2021. We observe the average drop-off in detection rate across the test datasets, which
is shown in Table 3. The drop-off in detection is not uniform as time progresses, and the results in Table 4
suggest that each new batch of ransomware displays a different degree of concept drift.

Random Forests: The random forests used an unlimited depth approach with 100 trees in the forest;
the random forest achieved high detection rates of 95.9% on the same distribution test set with a low
false-positive rate of 4.5%. The detection drop-off was 11% when exposed to ransomware and benign files
displaying concept drift.
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Logistic Regression: Logistic regression used conjugated descent and achieved a detection rate of
89.2%; its accuracy was low compared to the better-performing algorithms tested. When exposed to concept
drift, the detection rate drop-off was 14%, which means initial detection and degradation over time makes
this classifier unsuitable as a base classifier for FeSAD.

SVM: SVM could not achieve strong results; we attempted to use linear, polynomial, sigmoid, and
radial basis kernels. None of the kernel configurations could achieve strong base or concept drift results.

J-48 Decision Trees: The J48 decision tree was used with a confidence factor of 0.25 and an unlimited
depth. It achieved strong detection and accuracy results but had a relatively high false-positive rate of 7.2%.
The detection drop-off was 12%, marginally higher than the random forests.

GTB: The gradient-boosted trees used a J-48 decision tree as its base algorithm and a Z-Max of 3.0.
The gradient-boosted trees achieved the same drop-off in detection as the random forests but were weaker in
initial and false-positive rates. The gradient-boosted tree attempts to improve the performance of the base
tree over multiple iterations, and it does not provide enough additional performance over the J-48 decision
tree to justify its use.

Bayesian Networks: The Bayesian network was configured with a simple estimator and a K2 search
algorithm. The Bayesian network achieved a strong detection rate of 93.2%; however, its overall accuracy
was weak, generating a large volume of false positives at 16.2%. The detection drop-off under concept drift
was 11%, but the low overall accuracy made the Bayesian networks unsuitable.

Multi-Layer Perceptron 2 Hidden Layers:The multi-layer perceptron is a back-propagated neural
network and uses two hidden layers. The Multi-Layer Perceptron achieved strong accuracy results; however,
the ransomware detection 89.2% was not on par with the stronger classifiers tested. In addition to low
detection rates, the drop-off in detection under concept drift was 18%.

Deep Learning: This approach used stochastic gradient descent, the Adam updater, and an SGD bias
updater. The WEKA Deep Learning for Java library configuration contained various configuration options,
and this combination yielded the best results. The number of hidden layers was 10. The deep learning
approach was the most resource-intensive and seemed infeasible when using a breeding process like the
FeSA layer unless the fitness function was changed, so detection and accuracy were not required. The deep
learning approach achieved a low accuracy of 88.1% despite having the highest detection rate of 96%. The
detection drop-off was 15%; therefore, the deep learning approach was not as well rounded as the Random
Forests despite having a higher detection rate.
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Table 3: Machine Learning Experiments

Algorithms

Performance Statistics

Random Forest [34]

Detection: 95.9%

Accuracy: 95.5%

FPR: 4.5%

Precision: 0.955

Recall: 0.955

Average Detection Drop-off:

11%

Logistic Regression [14]

Detection: 89.6%

Accuracy: 86.2%

FPR: 13%

Precision: 0.871

Recall: 0.869

Average Detection Drop-off:

14%

SVM [36]

Detection: 20.8%

Accuracy: 60.9%

FPR: 40.8%

Precision: 0.716

Recall: 0.609

Average Detection Drop-off:

9%

J48 Decision Trees [37]

Detection: 92.3%

Accuracy: 92.9%

FPR: 7.2%

Precision:0.928

Recall: 0.928

Average Detection Drop-off:

12%

Gradient Boosted Trees
8]

Detection: 93.5%

Accuracy: 91.2%

FPR: 8.7%

Precision: 0.913

Recall: 0.912

Average Detection Drop-off:

12%

Bayesian Networks [38]

Detection: 92.9%
Accuracy: 83.7%
FPR: 16.0%

Precision: 0.905
Recall: 0.905
Average Detection Drop-off:

11%

Multi-Layer Perceptron
(32]

Detection: 89.2%

Accuracy: 94.3%

FPR: 10.0%

Precision: 0.902

Recall: 0.898

Average Detection Drop-off:

18%

Deep Learning [33]

Detection: 96.0%

Accuracy: 88.1%

FPR: 11.6%

Precision: 0.891

Recall: 0.881

Average Detection Drop-off:

15%
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Table 4: Experimental Results under Concept 20
Drift
Test Detection Using Only | Detection with FeSAD Drift Calibra-
Batch Setup Detection Without FeSAD .
FeSA Layer tion
Number
Detection: 73.6% .
. Detection Drop: 22.7% Detection: 93.2% Detection: 97.3%
Train: 2013-15 FPR: 2.1%
1 Test: 2016 FPR: 19.7% FPR: 7.4% Precision: 0.978
. . Precision: 0.788 Precision: 0.926
Calibration: 2017-18 AUC: 0.770 AUC: 0.929 AUC: 0.976
T T Unexpected Drift Reduction: 50%
Detection: 90.6% . Detection: 100.0%
Train: 2013-15 Detection Drop:5% ?;?:?tol(é;: 98.7% FPR: 0%
2 Test: 2018 FPR: 8.0% Preci.si(‘)n'o 0.991 Precision: 1.0
Calibration: 2016-17 Precision: 0.918 AUC: 0 9{)1 ’ AUC: 1.0
AUC: 0.913 t Unexpected Drift Reduction: 41.5%
Detection: 85.2% . Detection: 92.3%
Train: 2013-15 Detection Drop: 11.1% ?Sﬁ.ctgl(;;: 88.3% FPR: 3.4%
3 Test: 2019 FPR: 12.0% Preci.si(.)n-o 0.916 Precision: 0.967
Calibration: 2017-18 Precision: 0.876 AUC: 0 961 ’ AUC: 0.945
AUC: 0.866 T Unexpected Drift Reduction: 52.3%
Detection: 82.8% . Detection: 90.0%
Train: 2013-15 Detection Drop: 13.6% P]?;tRef‘tI‘g;‘;wa% FPR: 5.0%
4 Test: 2020-21 FPR: 8.0% Precision: %895 Precision: 0.947
Calibration: 2018-19 Precision: 0.859 AUC: 0 85;8 ’ AUC: 0.925
AUC: 0.874 T Unexpected Drift Reduction: 62%
Detection: 86.6% . Detection: 96.8%
Train: 2013-18 Detection Drop: 9.8% ?Sﬁ?g“;‘; 89.9% FPR: 7.1%
5 Test: 2019 FPR: 12.0% Preci‘sic.)n-o 0.907 Precision: 0.931
Calibration: 2020-21 Precision: 0.898 Recall: 0 904 AUC: 0.949
AUC: 0.873 T Unexpected Drift Reduction: 50%
Detection: 90.4% Detection: 91.1% Detection: 94.1%
Train: 2013-18 Detection Drop: 5.8% FPR: 7 1(7' e FPR: 5.1%
6 Test: 2020-21 FPR: 5.0% Procision: 0.944 Precision: 0.927
Calibration: 2019 Precision: 0.947 AUC: 0 9i2 ’ AUC: 0.945
AUC: 0.923 e Unexpected Drift Reduction: 48%

5.2. Concept Drift Experiments

Table 4

The results in Table 4 demonstrate FeSAD performance on data displaying concept drift.
compares the detection rate achieved by the feature set chosen by FeSA to the detection rates FeSAD
achieves by using the calibration set and considering concept drift. Table 4 also demonstrates the reduction
rate in unexpected drift in the testing data. An abnormal sample is defined as a sample that demonstrates
drift beyond what is expected if a sample does display concept drift. The structure of the experiments has
the system initially observe the training data, define thresholds for abnormal and unacceptable drift, and
then classify test samples. The initial experiments did not expose FeSAD to a calibration dataset outside the
distribution of the training set. The parameters for drift are decided based on the training data alone, and
we observe how many samples are classified as abnormal. The system must be retrained once the number
of observed abnormal samples is reached. The number of abnormal observations or proportion of abnormal
observations per defined batch of test samples determines whether the system is still considered fit for
purpose. A large proportion of abnormal observations would mean a shift in concept; the model will be less
certain in its predictions and will need retraining. Table 4 shows a reduction rate in abnormal observations;
this metric is measured in the concept drift experiments. Section 2.6.1 shows the formulas used to apply
the expected drift from calibration sets to the base expected drift from the training set. We observe that
considering the drift from the calibration and training sets means the system has a wider understanding of the
drift it can expect in test samples. With the abnormal drift parameters altered according to expected drift,
the average reduction in abnormal observations across all experiments is 50.6%; this leads us to conclude
that the FeSAD framework can help increase the periods between retraining as the lower the proportion of
abnormal samples, the lesser the need to retrain.

20




Table 5: Navarra University Dataset with Concept Drift

21

Fes.ﬁlD Rand Logistic J48 Bayesian Deep
Rom: andom Regres- SVM [36] | Decision GTB[8] Net- MLP[32] Learn-
andom | Forest [34] R .
F. " sion [14] Trees [37] works[38] ing[33]
ores
Detection: | Detection: | Detection: | Detection: | Detection: | Detection: | Detection: | Detection: | Detection:
99.9% 99.5% 87.0% 86.6% 96.6% 95.3% 99.9% 10% 88.9%
Tested on FPR: FPR: 0.4% FPR: FPR: FPR: 2.8% | FPR: 3.8% | FPR: 0.2% FPR: FPR: 8.9%
Training 0.4% . 10.4% 10.8% . . . 69.3% .
Lo Precision: Precision: Precision: Precision: Precision:
Dls‘f“bu' Precision: 0.998 Precision: Precision: 0.985 0.984 0.996 Precision: 0.952
tion 0.998 0.955 0.954 0.617
AUC: AUC: AUC: AUC: AUC: 0.90
AUC: 0.995 AUC: AUC: 0.969 0.958 0.999 AUC:
0.997 0.883 0.881 0.2035
Detection: | Detection: Detection: Detection: Detection: Detection: Detection: Detection: Detection:
94.3% 89.5% 45.6% 50.9% 78.1% 86.0% 92.1% 0.00% 50.0%
Tested on FPR: FPR: FPR: FPR: FPR: FPR: FPR: 0.9% FPR: FPR: 0.5%
7 D 0.8% 10.5% 54.3% 49.1% 21.9% 14.0% 99.9%
ero-Lay Precision: Precision:
DleEI‘lbu- Precision: Precision: Precision: Precision: Precision: Precision: 0.994 Precision: 0.999
tion 0.943 0.999 0.999 0.991 0.998 0.994 0.0
AUC: AUC:
AUC: AUC: AUC: AUC: AUC: AUC: 0.956 AUC: 0.01 0.748
0.968 0.895 0.467 0.509 0.781 0.860

The results presented in Table 5 are from a dataset built by researchers from the University of Navarra.
Berrueta et al. have constructed a ransomware dataset from 70 different ransomware strains from 2015 to
2019; this dataset used network traffic based on a file-sharing system and 1/0O features for ransomware and
benign files collected between 2015 and 2019. This dataset is conveniently set up for zero-day testing, with
the testing set comprising exclusively of data the training set will not contain. The Navarra University
contains network traffic data from 70 strains of ransomware and 2500 hours of network data from benign
files. The Navarra University dataset is designed to evaluate ransomware detection systems and contains
ransomware spanning four years, so it fits our purposes and tests the FeSAD framework with network data.
The Navarra University dataset contains 3867 ransomware behavioral samples and 11159 benign behavioral
in its training set and 114 ransomware behavioral samples and 14000 benign behavioral samples in its zero-
day test set. We have used the algorithms used in prominent ransomware research to compare with FeSAD
and how the detection metrics compare when the classifiers are presented with the zero-day data most
likely to contain concept drift. We observe that most of the tested algorithms perform well through 10-
fold cross-validation except the Multi-Layer Perceptron, which seems unable to classify ransomware based
on the I/O and network features. Based on the initial training and test, the highest performers are the
Random Forest, J48 Decision Tree, Gradient Tree Boosting, and the Bayesian Network; however, every
algorithm faces a significant performance drop-off. The Logistic Regression, SVM, MLP, and Deep-Learning
approaches experience a significant drop-off, with detection rates falling to around 50%. The Bayesian
Network and Random Forest show the least degradation out of the tested algorithms besides FeSAD. The
Random Forest without FeSAD achieves a detection rate of 89.5% on the zero-day data without FeSAD,
and FeSAD combined with the Random Forest achieves a detection rate of 94.3%.
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Figure 2: Unexpected Drift Drop-off Rates

5.3. Discussion

The results achieved by FeSA [15] have been improved, as shown in Table 4; the FeSA layer used
a genetic algorithm to generate optimal feature sets for ransomware detection when concept drift was
involved. The FeSAD framework’s first objective was to improve the detection results obtained in the FeSA
layer consistently; this has been achieved as shown in Figure 3; FeSAD demonstrates consistently stronger
detection results than the base FeSA layer.

Our results show that the FeSAD framework can improve a machine learning system’s detection rates
under concept drift. Figure 3 shows that taking concept drift into account when making a prediction increases
the rates of correct predictions for ransomware and, as Table 4 shows, a reduction in the false-positive rate.
Figure 2 shows the reduction rate for abnormal instances detected during all of the test runs for the system.
Test batches 1, 2, 3, and 4 shown in Table 4 give the best representation of FeSAD’s ability to maintain
a high detection rate despite being exposed to data showing concept drift. We trained the Random Forest
on data from 2013-2015 and tested in separately on test data sets from 2016 to 2021. Using calibration
sets, the system trained on 2013-2015 data to maintain detection rates above 90% for data from various
distributions. Test batches 5 and 6 in Table 4 show that using calibration sets with an expanded training
set keeps detection rates at a 95% average. The results presented in this section also indicate that API calls
effectively detect ransomware from different distributions. API calls give an insight into the behavior of a
program during early execution; evidently, ransomware consistently uses similar API call patterns over time
despite showing concept drift.

The results in Table 4 also show that the occurrence of abnormal samples reduces by 50% on average by
using the FeSAD framework’s approach of using calibration datasets outside the training set’s distribution to
prepare the system for drift. Abnormal samples are defined in section 5.2. The FeSAD framework calculates
the initial drift boundary and expected drift using the training set; therefore, we compare the number of
samples that show unexpected drift using the drift boundary and expected drift on the training set first. The
FeSAD framework calibrates the expected drift threshold and drift boundary based on the calibration set.
The reduction in the unexpected drift reduction rate is calculated by comparing the number of test samples
that show unexpected drift or drift beyond the drift boundary using initial drift boundaries calculated by
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Figure 3: FeSA vs FeSAD Detection Rates

the FeSA layer and the test samples that show unexpected drift using the boundaries calculated by the drift
calibration layer. The FeSAD framework defined in Figure 1 will retrain a classifier if too many samples
drift beyond what is expected. The average reduction of 50% shows that a detection system’s lifespan
can be extended significantly with FeSAD. The FeSAD framework shows the ability to measure drift and
compensate for it accurately; however, there will be cases where retraining will be unavoidable. Test batch
2 shows a situation where the reduction rate of abnormal samples is lower than the 50% average due to the
high volume of ransomware samples showing abnormal levels of concept drift. Despite test batch 2 retaining
a high detection rate, the classifier is less sure of its predictions, and samples show statistical drift at a
higher-than-expected volume. It would be safest to retrain a system when there is a high level of drift to
avoid a sudden drop-off in detection. The ransomware samples from test batch 2 are from 2018, and this
batch of ransomware displayed more abnormal behavior than the other test batches despite maintaining
high detection rates.

The structure of the experiments is designed to ensure that the FeSAD framework can withstand concept
drift and the differing degrees of concept drift that ransomware could pose. Each dataset represents a level
of concept drift that could co-occur, as our observations show that ransomware does not evolve linearly.
The year of each test dataset does not mean that we would ideally realistically expect a detection system
to go untrained for 2-3 years; however, the test structure is required to prove the robustness of the FeSAD
framework and the fact that it can accurately classify ransomware from different eras. Test batches 1, 2,
and 3 use training data from 2013-15, but with calibration datasets from different ransomware distributions,
maintaining a detection rate above 90% for data up to ransomware from 2020-21. The results in Table 4
also show that without FeSAD, the underlying algorithms would need retraining faster; test batches 1, 3,
and 4 show the drop-off in the detection rates of the classifier trained on 2013-15 data without FeSAD or
any feature reduction. The results in Table 4 show that the lifespan of a classifier can be extended by the
fact that, with FeSAD, a classifier maintains strong detection rates on ransomware data several years ahead
of the training data; test batches 1 to 4 accurately demonstrate this. Without the FeSAD framework, the
ransomware detection system trained in 2013-15 would not be effective on the ransomware data from 2016
onwards; however, with FeSAD, the drop-off in detection rate is slowed significantly. Based on the results
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shown in Table 4, using a calibration data set in addition to a training set allows the FeSAD framework to
extend the lifespan of its underlying machine learning algorithm by factoring in the level of concept drift to
expect from a different distribution of ransomware.

5.4. Ablation Study Results

Table 6: Ablation Study

Case Study | Settings Result
Random Depth: 5 Detection: 71.9%
Forest Depth: 10 Detection: 93.0%
Depth Depth: 15 Detection: 91.8%
p Depth: Unlimited Detection: 90.6%
Algorithm: FeSA Detection: 95.6%
Algorithm: Best First Detection: 87.4%
Feature Algorithm: Evolution Detection: 92.3%
Selection Algor}thm: Genetic Detect}on: 86.7%
Algorithm: Harmony Detection: 88.8%
Algorithm: Greedy Detection: 73.7%

Drift Metric Removed: | Detection Loss: 6.5%

Prediction Probability False Positive: +7.0%
Drift Met- | Drift Metric Removed: | Detection Loss: 4.8%
ric Altered HEOM Ratio False Positive: +6.2%

Drift Metric Removed: | Detection Loss: 9.3%
HEOM Weights Removed False Positive: +8.4%

FeSA Ver- Detection: +1.2%

FeSA Version: 2 eps
sion False Positive: -6.0%

The results of the ablation study explore how altering or removing components of the FeSAD system
affects system performance. The optimal depth of the random forest was 15, as going deeper than this figure
only reduced detection and increased false positives. Increasing the depth beyond 10 harmed the detection
rate as there was a drop in detection rate of 1.2% when increasing to a depth of 15; however, the false positive
rate was reduced by close to 8% . The FeSAD system was expected to easily compensate for the reduction in
detection rate by increasing the tree depth. We have extensively tested different feature selection algorithms
against the FeSA layer, and the detailed results of these tests can be found in [15], where we justify the
use of the genetic algorithm in the FeSA layer and why it is effective in a concept drift scenario. Table 6
also shows the results of removing different components of the drift calculations; the performance statistics
for the FeSAD system with and without the drift calibration and decision layers are included in Table 5.
Table 6 shows that removing any components for drift calculation negatively affects detection rates and false
positives, reinforcing the necessity for each component. The HEOM and weights derived from the prediction
probability give a partial picture when used independently; however, when combined, they give a complete
picture of whether a sample is misclassified. The combined metrics used to derive drift help significantly
reduce the rate of benign files classified as ransomware and maintain a high ransomware detection rate.
The final case study explored in the ablation study analyses the effect of the FeSA updates; we observe
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a significant reduction in false positives with a slight increase in detection rate with the new FeSA layer
configuration described in section 3.2.4.

6. Conclusion & Future Work

In conclusion, the FeSAD framework has proven effective in detecting ransomware that shows concept
drift; the approach the system also takes successfully extends the lifespan of a machine learning system. Our
experiments allowed us to test the system in the most realistic and versatile way possible. The system is also
exposed to a range of benign files that display various behaviors, some resembling behavior patterns close to
ransomware. The FeSAD framework provides valuable insight into ransomware behavioral patterns and the
changes that occur in these behavioral patterns. The FeSAD framework could be used differently to integrate
directly into its underlying algorithms. It may be useful to integrate the drift data taken from the FeSAD
directly into machine learning algorithms as features and then measure the differences between performance;
it would be helpful to view how a machine learning classifier processes drift data without FeSAD being used
as an independent framework that aids the classifier. The theory behind the FeSAD framework could be
expanded to be tested on other types of malware, not just ransomware. The FeSAD framework’s primary
application is for ransomware, and the feature sets and calibrations work mainly to maximize ransomware
detection; however, it can be changed and tuned to work for other types of malware. Other types of malware
could be detected if the approach to feature selection is altered and the type of features gathered are tuned
to adapt to the malware type in question. The FeSAD framework’s drift boundaries could be refined and
tuned beyond the midpoint between the two distributions. The use of probabilities from the underlying
classifiers could also be calibrated to ensure further reliability; this is in the context of tuning prediction
probabilities instead of using default thresholds of 0.5 for binary classification. Overall, there are aspects of
the conformal evaluator, such as its retrain and performance thresholds, which could be integrated into the
FeSAD framework, and values like credibility and confidence could be used in place of a similarity metric
according to the FeSAD framework.
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