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Abstract

We consider a reallocation problem with priorities where each agent is
initially endowed with a house and is willing to exchange it but each house
has a priority ordering over the agents of the market. In this setting, it
is well known that there is no individually rational and stable mechanism.
As a result, the literature has introduced a modified stability notion called
µ0-stability. In contrast to college admission problems, in which priorities
are present but there is no initial endowment, we show that the ownership-
adjusted Deferred Acceptance mechanism identified in the literature is not
the only individually rational, strategy-proof and µ0-stable mechanism. By
introducing a new axiom called the independence of irrelevant agents and
using the standard axiom of unanimity, we show that the ownership-adjusted
Deferred Acceptance mechanism is the unique mechanism that is individually
rational, strategy-proof, µ0-stable, unanimous and independent of irrelevant
agents.
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1 Introduction

In many applied matching problems, indivisible resources have to be reallocated. In
theory, agents are initially endowed with an indivisible object (following the stan-
dard terminology in the literature, we call these objects houses), monetary transfers
are not allowed, and we use agents’ preferences for houses and the initial allocation
to determine a new allocation. In practice, we often encounter a situation where
priorities are defined to discriminate between agents. Example applications include
campus housing (Guillen and Kesten, 2012), reassignment of workers to positions
(Compte and Jehiel, 2008; Dur and Ünver, 2019), teacher assignment (Pereyra, 2013;
Combe, Tercieux, and Terrier, 2016) or school choice with a default option (e.g., a
neighborhood school). The problem can also occur if some or all of the houses are
initially unallocated and an initial allocation of the unallocated houses is gener-
ated by a lottery (Sönmez and Ünver, 2005) or as a second stage of an assignment
procedure, where an initial allocation is generated by a matching mechanism.

Ideally, a good reallocation mechanism should satisfy a combination of desirable
properties: a minimal requirement for any such mechanism should be individual
rationality (IR); i.e., each agent should be weakly better off after reallocation. Ad-
ditionally, the designer would like to achieve incentive compatibility in the sense of
strategy-proofness (SP), efficiency and some form of fairness. The Top Trading Cy-
cle (TTC) mechanism defined by Shapley and Scarf, 1974 and attributed to David
Gale is an IR, SP and Pareto efficient (PE) mechanism, and in fact the only such
mechanism (Ma, 1994). Given indivisibilities and the absence of monetary transfers,
fairness is generally harder to achieve. For example, minimal fairness requirements
such as the equal treatment of equals or envy-freeness will be violated by any re-
allocation mechanism. However, such solutions completely disregard the priority
rankings of the houses. Reallocation problems with priorities can be seen as hybrids
between the classical marriage problem (Gale and Shapley, 1962), where priorities
exist but there is no initial allocation, and housing market problems (Shapley and
Scarf, 1974), where there is an initial allocation but no priorities are defined. Then,
fairness can be understood in the sense that there is no justified envy; i.e., no agent
should prefer a house allocated to a lower priority agent to his allotment.

With initial endowments and priorities, it is well known that there is no matching
that is both IR and stable in the sense that no agent has justified envy. To ensure the
compatibility between the two notions of IR and stability, the concept of stability
has been relaxed to exclude blocking pairs caused by a house that is assigned to
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its initial owner. With this relaxed notion, which is called µ0-stability,
1 a simple

variation of the Deferred Acceptance (DA) mechanism has been identified: it starts
to simply rank the initial owners at the top of the priority ordering of their initial
house and runs the standard DA mechanism over these modified priorities. This
mechanism, which is called DA∗,2 is IR, SP and µ0-stable.

Our purpose is to give a normative justification for the use of the DA∗ mech-
anism by providing an axiomatic characterization of it. In a model without initial
endowments, the classic Deferred Acceptance (DA) mechanism is the unique IR
(individual rationality is now understood in the sense that applicants obtain an
assignment weakly preferred to being unmatched), SP and stable mechanism (see
Alcalde and Barberà (1994), Theorem 3). However, the DA∗ mechanism in the case
of initial endowments is not the only mechanism that is IR, SP and µ0-stable. For
example, the trivial mechanism that assigns each agent his initial house is IR, SP
and trivially µ0-stable since blocking pairs are not considered when each agent is
assigned his initial house. To rule out this trivial mechanism, one may require some
limited form of efficiency such as unanimity : a mechanism should assign each agent
his top choice whenever that is possible. We show that there are mechanisms other
than DA∗ that are IR, SP, µ0-stable and unanimous. However, these mechanisms
are problematic in the sense that the assignment can depend on “irrelevant” pref-
erence information. More specifically, an agent’s change of ranking of a house can
influence the allocation of the other houses, even though the allocation of the former
house has not changed. We introduce a new axiom called Independence of Irrelevant
Agents (IIAg) that rules out the possibility of irrelevant ranking information from
an agent influencing the allocation. We discuss how this axiom is related to but
different to the standard axiom of Irrelevance of Independent Alternatives (IIA) as
well as the monotonicity and the non-bossiness axioms from the social choice liter-
ature. In particular, we introduce a natural priority adjusted non-bossiness axiom
called Minimal Bossiness and show that it implies IIAg. Our main result shows
that in a reallocation problem with priorities, DA∗ is the unique IR, SP, µ0-stable,
unanimous and IIAg mechanism. This result also implies that DA∗ is the unique,
IR, SP, µ0-stable, unanimous and MB mechanism.

1This terminology is borrowed from Compte and Jehiel (2008). Pereyra (2013) called such
matchings acceptable matchings and Guillen and Kesten (2012) simply called them fair matchings.

2This terminology is borrowed from Combe, Tercieux, and Terrier (2016). Pereyra (2013)
called this mechanism the teacher proposing Deferred Acceptance algorithm. We used the former
terminology to highlight that this mechanism differs from the standard DA run over the primitive
priorities since the latter is not IR.
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Related literature. We build upon the classical housing market setting of Shap-
ley and Scarf (1974) where all of the agents are initially assigned to houses and are
willing to exchange them. Our characterization result can be trivially extended to
the case where there are initially vacant houses and unassigned agents, which was
introduced by Abdulkadiroglu and Sonmez (1999). We discuss this extension in the
conclusion. Moreover, we add the feature that each house now has a priority order-
ing over the agents, which makes the model closer to the standard marriage market
of Gale and Shapley (1962). The problem of allocating objects with priorities has
been extensively studied in the literature starting with Balinski and Sonmez (1999)
and extended later by the school choice literature (Abdulkadiroglu and Sonmez,
2003). The reallocation problem with priorities can be seen as a hybrid of the two
extensions.

Guillen and Kesten (2012) were the first to notice that the NH4 mechanism used
for off-campus housing reallocation at MIT is equivalent to DA∗. In their frame-
work, houses have a common priority over agents. These authors performed an
experiment to compare DA∗ with the TTC mechanism and found that the partic-
ipation under DA∗ is significantly higher. Still, these authors’ model differs from
ours since we allow houses to have different priority orderings over agents. Our goal
is also different, as we seek to provide a characterization of DA∗.

Pereyra (2013) also studied DA∗ in the context of teacher assignments. Our
model can be seen as a one-to-one version of his, i.e., where each school has only one
initially assigned teacher. This author’s focus is on the relaxation of the stability
notion in the presence of IR. He defines a matching as acceptable if it is IR, and
the only justified envies are the ones where a teacher prefers a school and has a
higher priority than an initial teacher of that school who is assigned to it (we call
these matchings µ0-stable). This author’s main result shows that an acceptable
matching minimizes the remaining blocking pairs in the sense of inclusion if and
only if it is the matching produced by the DA∗ mechanism. This property can be
seen as characterizing the DA∗ mechanism. In the same vein, an alternative to our
characterization is to require the mechanism to always return a µ0-optimal stable
matching, i.e., a µ0-stable matching that every agent prefers to any other µ0-stable
matching. In the standard setting without endowment, it is well known that this
property alone is enough to characterize DA, and it would be the same for DA∗

in our setting. Our characterization provides another approach that uses standard
axioms in the literature and allows us to clearly use the properties of IR, µ0-stable
and strategy-proof mechanisms. This update is important for two reasons. First, µ0-
optimal stability is not independent of the strategy-proofness axiom since it implies
this axiom. For this reason, the characterization of Alcalde and Barberà (1994)
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does not rely on this stability and proves that with the weaker axiom of strategy-
proofness, DA is still the only stable and SP mechanism. In our setting with an
initial endowment and priorities, the set of IR, SP and µ0-stable mechanisms is
not a singleton anymore, hence, understanding the structure of such mechanisms is
important. Our characterization and the related examples we provide help to reveal
how one can build different mechanisms in this class. Second, in many applications,
constrained efficiency is not the main policy objective. Policy makers may want to
trade off the welfare of agents with other objectives, such as distributional objectives
or the welfare of entities outside the model that are encoded into the priorities of the
objects. For instance, this scenario occurs if one considers teachers’ assignments,
which are discussed in Combe, Tercieux, and Terrier (2016), or tuition exchanges as
in Dur and Ünver (2019). Thus, a policymaker may be willing to only consider IR,
SP and µ0-stable mechanisms but select from among them a mechanism that respects
other desiderata. Our results help to clearly identify which necessary properties to
trade off when one picks different mechanisms in this class.

In the standard school choice setting, Balinski and Sonmez (1999) and Morrill
(2013) provided a characterizations of DA whenever the priority profile is fixed. As
we will discuss in the conclusion, our result can be interpreted as a characterization
of DA in a setting without outside options and a restriction on the priority domains:
agents do not have the outside option of being unmatched and the priority of houses
are unanimous, i.e. there exists a matching assigning each house to its top priority
agent. These two restrictions are motivated by the particular setting and applica-
tions of reassignment with priorities. Kesten and Kurino (2017) also considered the
absence of outside options in a school choice framework to revisit the non-existence
of strategy-proof mechanisms which Pareto-dominate the DA mechanism (Abdulka-
diroğlu, Pathak, and Roth, 2009). Even though they show that the non-existence
is still valid without outside option, they provide a maximal preference domain for
the agents which ensures the existence of such mechanism. The relevance of out-
side options depends on the particular application one has in mind. In the context
of teacher assignment, Combe, Tercieux, and Terrier (2016) report that newly re-
cruited teachers have to rank all the schools since they are required to have an
assignment at the end of the assignment procedure. Recently, Akbarpour, Kapor,
Neilson, Van Dijk, and Zimmerman (2020) show that, in school choice, students al-
ways prefer manipulable over strategy-proof mechanisms if and only if they have an
outside option and provide empirical evidences of such result. Priority restrictions
have also been studied in the literature. For instance, Ergin (2002a) showed that,
on a subdomain of priorities called “acyclic priorities”, the DA mechanism always
returns a Pareto-efficient matching. Up to our knowledge, we do not know any paper
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studying a joint restriction on both outside options and priorities.

In Section 2, we introduce the reallocation problem with priorities and the stan-
dard axioms of the literature. Then, in Section 3, we note that DA∗ is not the
only IR, µ0-stable and SP mechanism motivating the introduction of the standard
axiom of unanimity. We then provide an example to show that the DA∗ mechanism
is not the only IR, SP, µ0-stable and unanimous mechanism which motivates the
introduction of our new axiom of Independence of Irrelevant Agents. We finish the
section by providing our main characterization result for DA∗ and its proof. Sec-
tion 4 discusses the relation our new axiom to the literature and provides additional
results. Section 5 concludes and discusses extensions and further research.

2 Model and Definitions

A reallocation problem with priorities first starts with a standard housing market
problem as proposed by Shapley and Scarf (1974). Let I be a finite set of agents, and
let H be a finite set of houses such that |I| = |H|. Agents have strict preferences
over houses that are modeled by a linear order over H.3 We denote by P the set
of all profiles of strict preferences P = (Pi)i∈I such that for each i ∈ I, Pi is a
linear order over H. Following Guillen and Kesten (2012), the main departure from
the standard housing market problem is that each house h has a strict priority
ordering ≻h over agents, which is a linear order over I. We use standard notions:
for a set of houses H ′ ⊂ H and a preference profile P , we denote by P |H′ the profile
of linear orders over the subset H ′ implied by P . For a set of agents I ′ ⊂ I and
a preference profile P , we let PI′ be the restriction of P to the agents in I ′. For a
preference profile P and an agent i, P−i will be a shorthand notation for PI\{i}.

4

3A linear order over H is a binary relation Pi that is antisymmetric (for each h, h′ ∈ H with
h ̸= h′ if h Pi h

′ then we do not have h Pi h
′), transitive (for each h, h′, h′′ ∈ H, if h Pi h

′ and
h′ Pi h

′′, then h Pi h
′′), and complete (for each h, h′ ∈ H with h ̸= h′, h Pi h

′ or h′ Pi h). We write
h Ri h

′ if h Pi h
′ or h = h′. Hence, given h, h′ ∈ H, h Pi h

′ means that h is strictly preferred to h′;
h Ri h

′ means that h is weakly preferred to h′ where indifference between different houses is not
possible.

4 Our model follows the standard housing market setting, by assuming that there are as many
houses as agents (more generally, there could be more houses than agents) and being unassigned
is not an option. The absence of an outside option is assumed in Shapley and Scarf (1974) and the
following literature working on characterizations such as Ma (1994) or the more recent ones such
as Pycia and Ünver (2017). This assumption also has an impact for the existing characterization
results in allocation problems without initial ownership. For instance, under this assumption,
Svensson (1999) shows that Serial Dictatorship mechanisms are the only Pareto-efficient, strategy-
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A matching µ is a bijection between I and H so that µ(i) is the house assigned
to agent i. We will also interchangeably use µi and µ(i). We abuse notations and
denote by µ(h) the agent assigned to house h. Denote the set of all matchings by
M. We assume that there is an initial matching µ0 ∈ M that we may want
to improve upon through reallocation. A (reallocation) mechanism φ assigns a
matching to each preference profile, i.e., it is a mapping φ : P → M. φi(P ) (resp.
φh(P )) denotes the house (resp. the agent) assigned to agent i (resp. house h). We
are interested in designing mechanisms that have certain desirable properties. In
the context of reallocation, the existing rights should be respected by ensuring that
every agent is as least as well off as under their initial assignment. Formally,

Axiom (Individual Rationality). A mechanism φ is individually rational (IR) with
respect to the initial matching µ0 if for each P ∈ P and i ∈ I we have

φi(P )Ri µ0(i).
5

For a matching µ, a pair (i, h) ∈ I × H is called a blocking pair of µ if hPiµi

and i ≻h µ(h). A matching is ≻-stable if it does not have any blocking pair under
the priority profile ≻.6 A matching is ≻-optimal stable if it is the most preferred ≻-
stable matching for individuals. Individual rationality can in general be in conflict
with the priorities so that there could be no matching that is both IR and stable.
However, we can require a relaxed notion of stability:

Axiom (µ0-Stability). A matching µ is µ0-stable with respect to preferences R and
priorities ≻ if for each i ∈ I and h ∈ H we have the following: if hPi µ(i) and

proof and neutral mechanisms. Recently, Pycia and Unver (2021) have provided the full class of
such mechanisms when the outside options are introduced.
In addition, we impose that each agent is initially assigned a house. In the conclusion, we discuss

the implications of relaxing each of the two restrictions, the absence of an outside option and the
assumptions of an initial assignment for each agent.

5In the literature of allocation with priorities but without initial assignment, a matching is
IR if each agent prefers his match to the outside option, usually denoted by ∅. As discussed in
Footnote 4, we follow the housing market literature by assuming that such outside option is not
available. Here, the initial house serves as outside option. This IR definition is the one used in
this literature, see for instance Ma (1995).

6Implicitly, stability also depends on the preference profile P but we omit it from the notations
since it will be clear from the context. Without an initial assignment, the standard definition
of stability also includes non-wastefulness which imposes that if an agent prefers a house to its
assigned one, then this house must be occupied. In our housing market context, because we do
not have any outside option, all matchings trivially respect this condition so that we omit it in the
definition.

7



i ≻h µ(h), then µ0(µ(h)) = h. Mechanism φ is µ0-stable if it assigns to each profile
P ∈ P a µ0-stable matching.

In other words, µ0-stability only allows blocking pairs if they are caused by an
agent staying at his initial house. For a priority profile ≻, let ≻∗ be the priority
profile where each initial agent is moved at the top of the priority ranking of his
initial house. The following lemma clarifies the link between µ0-stable matching
and ≻∗-stable matching for IR matchings. This will be clear once we describe the
Ownership-Adjusted Deferred Acceptance mechanism below.

Lemma 1. A matching µ is IR and µ0-stable if and only if it is ≻∗-stable.

Proof. We provide the proof using our notations and framework but the result is
equivalent to Lemma 1 in Pereyra (2013).

Assume that µ is not ≻∗-stable. Then there exists a blocking pair (i, h) where
hPiµ(i) and i ≻∗

h µ(h).7 If i = µ0(h), then µ would not be IR. If µ is IR, then
hPiµ(i)Riµ0(i) so that h ̸= µ0(i). But by construction of ≻∗

h, if i is not the initial
owner of h and i ≻∗

h µ(h), then agent µ(h) cannot be the initial owner of h either,
i.e. µ(h) ̸= µ0(h) ⇔ h ̸= µ0(µ(h)) so that µ is not µ0-stable.

Now assume that µ is IR but not µ0-stable. Then there exists (i, h) s.t. hPiµ(i),
i ≻h µ(h) := i′ and µ0(µ(h)) ̸= h so that i′ ̸= µ0(h). By construction of ≻∗, the
latter differs from ≻ only by moving initial owners from the priority of their initial
house so that if i ≻h i′ and i′ ̸= µ0(h) then i ≻∗

h i′ so that µ is not ≻∗-stable.

Finally, assume that µ is not IR but is µ0-stable, then there exists an agent i
s.t. h := µ0(i)Piµ(i) so that µ(h) ̸= i = µ0(h). But by construction of ≻∗, we have
that i ≻∗

h i′ for all i′ ̸= i, in particular i ≻∗
i µ(h) so that we conclude that µ is not

≻∗-stable.

Because of Lemma 1, the set of µ0-stable IR matchings has the same structure
as the set of ≻∗-stable matchings. This observation will be used in the proof of our
main characterization.

Additionally, we use the incentive compatibility property of strategy-proofness:

Axiom (Strategy-Proofness). A mechanism φ is strategy-proof if for agent i ∈ I
and profiles P, P ′ with P ′

−i = P−i we have

φi(P )Riφi(P
′).

7Note that in our setting without outside option, a matching is a bijection between I and H
so that a house is always assigned to an agent so µ(h) ∈ I.
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Deferred Acceptance is the unique IR, stable and strategy-proof mechanism in
the model without initial endowments (Alcalde and Barberà, 1994). The mechanism
can easily be adapted to respect initial ownership rights by treating owners as if they
have top priority in their initial houses. Formally, the ownership-adjusted De-
ferred Acceptance mechanism for preferences P , priorities ≻ and initial match-
ing µ0 proceeds in rounds where in each round the following steps are performed.

1. Each agent i applies to his favorite house according to Pi that has not previ-
ously rejected i.

2. Each house h definitely accepts µ0(h) if µ0(h) has applied to it. Otherwise,
the house tentatively accepts the highest priority agent according to ≻i among
the agents that have applied to it and rejects all other applicants.

We omit the priorities in our notations since the context will always be clear, and
we denote the final matching by DA∗(P ).

3 New axiom and main result

As in the setting without endowments, one might expect that DA∗ is the only IR,
µ0-stable and strategy-proof mechanism. However, there are many different indi-
vidually rational, µ0-stable and strategy-proof mechanisms. For example, one such
mechanism is the trivial mechanism that assigns each agent to his initial house in-
dependently of the submitted preferences. This is an important departure from the
case without endowment. This trivial mechanism is not very satisfactory and quite
inefficient. To rule it out, one may require a basic efficiency property. Ideally, a
mechanism is individually rational, strategy-proof, respecting of priorities (in the
sense of µ0-stability) and Pareto-efficient. Generally, these properties are incom-
patible (Ergin, 2002b). Thus, we have to content ourselves with a weaker notion
of efficiency. For each P ∈ P and i ∈ I, we denote by top(Pi) the highest ranked
house according to Pi. We call a profile P ∈ P unanimous if for i ̸= j we have
top(Pi) ̸= top(Pj). A mechanism is unanimous if it assign everyone their top house
for unanimous profiles.

Axiom (Unanimity). A mechanism φ is unanimous if for each unanimous profile
P we have φi(P ) = top(Pi).

By definition of DA∗, it is easy to see that it is an unanimous mechanism. One
can also easily see that the trivial mechanism mentioned earlier is not unanimous.
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But more surprisingly perhaps, there even exist IR, SP, µ0-stable and unanimous
mechanisms that differ from DA∗:

Example 1. Consider five agents I = {a, b, c, d, e}, five houses H = {ha, hb, hc, hd, he}
and an initial matching µ0 s.t. µ0(k) = hk for k ∈ I. Consider a priority relation
≻ such that we have the following:

≻ha : a b c d e

≻hb
: b a c d e

≻hc : c a b d e

≻hd
: d a b c e

≻he : e a b c d

We define φ as an IR, strategy-proof, µ0-stable and unanimous mechanism that is
not DA∗ with priorities ≻ as follows.

Denote by P ′ ⊆ P the set of preference profiles P such that

Pa : hb Pa ha Pa . . .

Pb : hc Pb hb Pb . . .

Pc : hb Pc ha Pc hc Pc . . .

Define a matching µ by

µ(a) = hb, µ(b) = hc, µ(c) = ha, µ(d) = hd, µ(e) = he.

φ(P ) :=

{
DA∗(P ), if P /∈ P ′,

µ, if P ∈ P ′.

The mechanism φ is unanimous since DA∗ is unanimous, and profiles in P ′ are not
unanimous since agents a and c both rank house hb first at these profiles. Moreover,
φ is µ0-stable, since DA∗ is µ0-stable and µ is a µ0-stable matching for each P ∈ P ′

(as d and e have lower priority than a, b and c at houses ha, hb and hc). For strategy-
proofness, note that by the strategy-proofness of DA∗, only a, b and c can possibly
manipulate φ. However, note that for each profile P ∈ P ′ we have φi(P ) = DA∗

i (P )
for i ∈ {a, b, c}. Thus, strategy-proofness follows from the strategy-proofness of DA∗.
Finally, note that φ ̸= DA∗. Indeed, we select a profile P ∈ P ′ such that
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Pd : he Pd hd Pd . . .

Pe : hd Pe he Pe . . .

In this case, DA∗(R) assigns he to d and hd to e, whereas φ(R) assigns hd to d and
he to e.

The mechanism φ also satisfies other desirable properties that have been discussed
in the context of axiomatizations of the Deferred Acceptance mechanism. The mech-
anism is, for example, weakly Maskin monotonic in the sense of Kojima and Manea
(2010), and it is weakly Pareto efficient. However, the mechanism has an important
and less appealing feature: in the last preference profile that is considered in the
example where φ(P ) ̸= DA∗(P,≻), the mechanism φ does not allow agents d and
e to exchange their houses. However, if agent c reports the profile P ′

c : ha P ′
c hc,

then φ allows d and e to exchange houses under (P ′
c, P−c). Therefore, at profile P ,

mechanism φ forbids the exchange between d and e because of the preference profile
of c and his ranking of house hb. The exchange is forbidden even though this house
is not a part of the exchange between d and e, not even indirectly (as would be the
case if, for example, hb would be allocated to a different agent so that the original
recipient of hb could now be assigned hd or he). Thus, the assignment switches
based on the preference information of an agent that seems to be irrelevant for the
assignment of hd and he.

Based on the intuition of the mechanism in Example 1, let us define a new axiom.
Fix an agent i, a house h and two profiles Pi and P̃i. We say that profile P̃i moves
h in Pi if the comparison of any pairs of houses which do not include h does not
change. Formally, P̃i ̸= Pi and P̃i|H\{h} = Pi|H\{h}.

Axiom (Independence of Irrelevant Agents). A mechanism φ is Independent of
Irrelevant Agents (IIAg) if ∀i ∈ I, ∀h ∈ H, and P, P̃ ∈ P such that P̃−i = P−i, P̃i

moves h in Pi and φh(P ) ̸= i, we have

φh(P̃ ) = φh(P ) ⇒ φ(P̃ ) = φ(P ).

The axiom states that if an agent does not obtain a house and changes his
report by moving that house in his preferences but this change is irrelevant for the
allocation of that house, i.e., if it does not change the allocation of that house, then
the whole allocation must remain the same.

Remark 1. We briefly comment on the construction of IR SP and µ0-stable mech-
anisms. As mentioned, the constant mechanism trivially respects the three axioms.
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Example 1 also suggests an alternative: one can select a subset of agents (d and
e in Example 1) and always match them to their initial assignment while running
DA∗ for the remaining agents. One can check that in Example 1, this would in-
deed generate an IR, SP and µ0-stable mechanism. However, such procedure does
not always work. Indeed, the set of agents being kept at their initial matching can
still generate blocking pairs with other houses so that this procedure might generate
non µ0-stable matchings.8 This shows that the construction of IR, SP and µ0-stable
mechanisms heavily depends on the priority structure9 which makes it challenging to
give an explicit procedure and characterization of such mechanisms.

We discuss the relevance of IIAg and its connection to the literature in Section
4 below.

Before stating our main theorem, we discuss the combination of axioms. We are
interested in defining reasonable mechanisms that are IR, SP and µ0-stable. As we
have seen, one trivial solution is to consider the constant mechanism that always
retain agents at their initial allocation. Other constant mechanisms can be con-
structed where only a subset of agents are kept at their initial allocation. However,
to respect µ0-stability, the choice of such subset depends on the priority profile.10

Unanimity allows us to rule out such (semi) constant mechanisms. Intuitively, one
way to construct a new IR, SP, µ0-stable and unanimous mechanism is to force some
group of agents to stay at their initial allocation under some preference profiles when
they would otherwise move under DA∗, but to let them move under other preference
profiles, typically the unanimous ones.11 Intuitively, to maintain strategy-proofness
for these agents, the decision of whether to hold them at their initial allocation
cannot depend on their reported preferences. Thus, this decision must be taken by

8In Example 1, one can easily modify the priorities to make this procedure fail by ranking
either d or e first in one of the houses ha, hb or hc.

9One can easily show that the procedure mentioned above works only when the priority struc-
ture ranks the all the agents being kept at their initial matching below all other agents.

10For instance, in Example 1, the mechanism φ that always keep say agent a at his initial house
ha and runs DA∗ for the other agents produces is IR and SP mechanism but not µ0-stable. Indeed,
one can easily construct a profile of preferences where say agent c is assigned to house hb under φ
and where agent a would prefer house hb to ha. In that case, agent a would form a blocking pair
with hb, violating µ0-stability.

11Of course, one can also select another µ0-stable matching for these agents instead of keeping
them at their initial allocation. However, under some profile, strategy-proofness would force the
same mechanism to hold some of these agents to their initial allocations. Indeed, if for some agent
i and profile P , we have DA∗

i (P )Piφi(P )Piµ0(i), then by reporting the profile P ′
i that only ranks

DA∗
i (P ) above µ0(i), strategy-proofness would lead to DA∗

i (P
′
i , P−i)Piφi(P

′
i , P−i) = µ0(i). In a

way, our proof below will work with such a minimal example.

12



using the change in the preferences from another “irrelevant” agent, which is exactly
illustrated by our Example 1.

Thus, one may wonder what mechanism is left once we rule out such group
variations based on irrelevant agents. The answer to this question is exactly our
main result.

Theorem 1. A mechanism is IR, SP, µ0-stable, unanimous and independent of
irrelevant agents if and only if it is the DA∗ mechanism.

Proof. In the following, we fix a priority profile ≻ so that it is omitted from the
notations. As mentioned before, we denote by ≻∗ the priority profile obtained from
≻ by moving the initial agent of each house to the top of its priority ranking.

First, it is standard to show that DA∗ is IR, SP, µ0-stable and unanimous.12 We
show that DA∗ satisfies IIAg in Propositions 1 and 2 in Section 4 below.

For the other direction, let φ be an IR, SP, µ0-stable, unanimous, and IIAg
mechanism. Assume that φ ̸= DA∗. In the following, for each profile P , we denote
by

M(P ) :=
∑
i∈I

|{h : hPi µ0(i)}|

the number of houses ranked above the initial assignment. In addition, we denote
by

N(P ) :=
∑
i∈I

|{h : hPiDA∗
i (P )}|

the number of houses ranked above the DA∗ assignment at profile P . Let Q = {P ∈
P : φ(P ) ̸= DA∗(P )}. By assumption, because φ ̸= DA∗, Q is non empty. Now,
let P ∈ Q be a profile such that

1. for each P ′ ∈ Q, we have M(P ) ≤ M(P ′);

2. for each P ′ ∈ Q s.t. M(P ) = M(P ′), we have N(P ) ≤ N(P ′).

Note that because Q is non-empty and finite, such profile P must exist. Let µ :=
DA∗(P ) and ν := φ(P ).

We prove the result through a sequence of claims. The first claim states that for
the profile P , any agent who does not attain his DA∗-outcome under φ only ranks
his DA∗-outcome above his initial assignment. This claim only requires the axioms
of individual rationality, µ0-stability and strategy-proofness.

12See Guillen and Kesten (2012), Pereyra (2013) or Compte and Jehiel (2008).
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Claim 1. For each j ∈ N with µ(j) ̸= ν(j), only µ(j) is ranked above the initial
match, i.e.,

Pj : µ(j)Pj µ0(j) = ν(j) . . .

Proof. Suppose otherwise and let P ′
j : µ(j)P ′

j µ0(j) . . . and P ′ := (P ′
j , P−j). By

the strategy-proofness of DA∗, we have DA∗
j(P

′) = µ(j). Since DA∗(P ) is a stan-
dard DA run over the priorities ≻∗, it returns the ≻∗-optimal stable matching, i.e.,
DA∗(P ) returns the most preferred ≻∗-stable matching for the agents which, by
Lemma 1, is equivalent to the most preferred IR and µ0-stable matching for the
agents. In the following, we will simply refer to the matching in the previous argu-
ment as the µ0-optimal stable matching. By µ0-optimality of µ we have µ(j)Rjν(j).
By the strategy-proofness of φ, we have φj(P

′) = µ0(j) ̸= µ(j) = DA∗
j(P

′). How-
ever, this equation would imply P ′ ∈ Q and M(P ′) < M(P ), a contradiction
with the assumption onthe choice of P . Thus, j only ranks µ(j) above his initial
match.

If N(P ) = 0, then P is a unanimous profile, and by the unanimity of φ we have
φ(P ) = DA∗(P ). Thus, we may assume N(P ) > 0. Since N(P ) > 0, there is an
agent i ∈ I and house h ∈ H with hPi µ(i). In the following, we assume w.l.o.g.
that i is the agent with hPi µ(i) who has the highest priority for h among those
agents.

Claim 2. Let j ∈ I be the agent such that µ(j) = h. Then, µ(j) ̸= ν(j).

Proof. Suppose µ(j) = h = ν(j). Since hPiµ(i), we know that there there is at
least one agent k (for example, k = i) with hPkµ0(k). Among such agents, let
k be the agent with the lowest priority at h. By the individual rationality of µ,
we have µ0(k) ̸= h. Consider the profile P̃k where agent k moves h below µ0(k),
i.e., P̃k|H\{h} = P̃k|H\{h} and µ0(k) P̃k h. Let P̃ = (P̃k, P−k). Note that M(P̃ ) <
M(P ).

We will now show that DA∗(P̃ ) = DA∗(P ). First, note that P̃ is a mono-
tonic transformation of P at DA∗(P ), i.e., for each h′ ∈ H and ℓ ∈ I, we have
h′P̃ℓDA∗

ℓ(P ) ⇒ h′PℓDA∗
ℓ(P ). Note that the profile P̃k as we defined it for agent k

downgrades house h below µ0(k) so that it is indeed a monotonic transformation
at DA∗

k(P ). As shown by Kojima and Manea (2010), the DA mechanism, and thus
DA∗, is weakly Maskin monotonic. It means that all agents weakly prefer, according
to their preferences, the matching returned by DA∗ after a monotonic transforma-
tion of such preferences. Thus, it must be the case that for all agents, DA∗(P̃ ) is
weakly preferred to DA∗(P ) at profile P . Assume that DA∗(P̃ ) ̸= DA∗(P ). Then,

14



the matching DA∗(P̃ ) Pareto dominates the matching DA∗(P ) at profile P . More-
over, the assignment of house h has changed and there is an agent k′ := DA∗

h(P̃ ) ̸=
j = µ(h) who was rejected in favor of agent k at house h under DA∗(P ).13 Thus,
k ≻h k′ and hPk′DA∗

k′(P )Rk′µ0(k
′), contradicting the assumption that k has the

lowest priority at h among the agents who strictly prefer h to their initial house.
Thus, we have DA∗(P̃ ) = DA∗(P ).

Now note that, by construction of the profile P̃k, we have P̃k ̸= Pk and P̃k|H\{h} =

P̃k|H\{h} so that P̃k moves h in Pk. So using IIAg, we either have φh(P̃ ) ̸= φh(P )

or φ(P̃ ) = φ(P ). In both cases, φ(P̃ ) ̸= DA∗(P ) = DA∗(P̃ ) and therefore P̃ ∈ Q.
Since M(P̃ ) < M(P ) this is a contradiction with the assumption on the choice of
P .

Claim 3. For each k ̸= i, we have µ0(k)Rk µ(i), i.e., µ(i) is unacceptable or the
endowment for all other agents.

Proof. Suppose there is an agent k with µ(i)Pk µ0(k). Choose k to be the agent
with the lowest priority at µ(i) among such agents. Let P̃k be a profile such that
P̃k|H\{µ(i)} = Pk|H\{µ(i)} and µ0(k) P̃k µ(i). This profile is a monotonic transforma-

tion of Pk. Note that M(P̃ ) < M(P ). By Claim 1 applied to agent i and by the
assumption that hPi µ(i), we have µ(i) = ν(i). Using the same argument that we
used in Claim 2, we have DA∗(P̃ ) = DA∗(P ). As in Claim 2, we have that P̃k

moves h in Pk so that, because φ respects IIAg, applied to agent k and house µ(i),
either φ(P̃ ) = φ(P ) or φi(P̃ ) ̸= φi(P ) = ν(i) = µ(i). In both cases, we have
φ(P̃ ) ̸= DA∗(P̃ ) = DA∗(P ) and therefore P̃ ∈ Q. Since M(P̃ ) < M(P ) this is a
contradiction with the assumption on the choice of P .

Now, consider the preference

P ′
j : µ(i)R

′
j µ0(j) . . . ,

and let P ′ := (P ′
j , P−j).

Claim 4. Define the matching µ′ as follows:

µ′(i) = h, µ′(j) = µ(i), µ′(k) = µ(k) for k ̸= i, j.

Then, the matching µ′ is µ0-stable and individually rational under P ′.

13Using the terminology of Kesten (2010), agent k was an interrupter at house h. Agent k is an
interrupter at house h if while running DA∗(P ), he has been temporarily accepted at house h at
Step t and later rejected at t′ > t and there has been an agent k′ who has been rejected by house
h at a Step ℓ ∈ {t, t+ 1, . . . , t′ − 1}.
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Proof. Individual rationality for k ̸= i, j follows from the individual rationality of µ.
Individual rationality for j follows by the definition of P ′

j . Individual rationality for
i follows by the assumption that µ′(i) = hPi µ(i) and by the individual rationality
of µ.

Next, we show µ0-stability. First, consider agent i. Agent i and µ(i) do not block
µ′ because µ′(i) = hPi µ(i). Moreover, for h′ /∈ {µ(i), h} we have h′ = µ(k) = µ′(k)
for an agent k ̸= i, j. If i and h′ block µ′, then h′ Pi µ

′(i) = hPi µ(i) and both i
and h′ would also block µ under P , contradicting the µ0-stability of µ under P .
Thus, there is no blocking pair involving i. Because agent j obtains his top choice
in µ′, he cannot be involved in a blocking pair. Finally, we consider k ̸= i, j. By
Claim 3, we have µ0(k)R

′
k µ(i). Moreover, by the individual rationality of µ, we have

µ(k)R′
k µ0(k). Thus, µ

′(k) = µ(k)R′
k µ0(k)R

′
k µ(i) and k and µ(i) do not block µ′.

By assumption, i has highest priority for h among those agents who rank h strictly
above their assignment under µ. Thus, if hP ′

k µ(k) = µ(k), then either µ0(k) = h or
i ≻h k. The first possibility contradicts the individual rationality of µ under R. In
the second case, k and h do not block µ′. Thus, k and h do not block µ′. Finally, k
does not block µ′ with a house h′ ̸= h, µ(i) because otherwise k and h′ would block
µ under R.

By the construction of P ′
j , M(P ′) ≤ M(P ). Remember that because of Lemma

1, we know that DA∗ returns the most preferred IR and µ0-stable matching. As
µ′ is µ0-stable and individually rational for P ′, it is Pareto-dominated by DA∗(P ′).
Therefore, we have

N(P ′) ≤
∑
k∈I

|{h′ : h′ P ′
k µ

′(k)}| <
∑
k∈I

|{h′ : h′ Pk µ(k)}| = N(P ),

where the inequality in the middle is strict because µ′(i) = hPi µ(i). Thus,DA∗(P ′) =
φ(P ′) and φj(P

′) = µ(i). Next, let

P̃j : h P̃jµ(i) R̃j µ0(j).

By strategy-proofness applied to P ′ and (P̃j, P−j), we have φj(P̃j, P−j) ∈ {µ(i), h}.
By strategy-proofness applied to P and (P̃j, P−j) and by Claim 2, we have φj(P̃j, P−j) ̸=
h. Thus, φj(P̃j, P−j) = µ(i). Furthermore, note that DA∗

i (P̃j, P−j) = µ(i) =
DA∗

i (P ). Since φ(P̃j, P−j) is µ0-stable at (P̃j, P−j), it is Pareto-dominated by
DA∗(P̃j, P−j). Consequently, as ϕi(P̃j, P−j) ̸= µ(i), we have

µ(i) = DA∗
i (P̃j, P−j)Pi φi(P̃j, P−j),
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in particular, µ0(i) ̸= µ(i). Now, suppose i reports

P̃i : µ(i) P̃i µ0(i) . . .

By strategy-proofness, for (P̃j, P−j) and P̃ := (P̃i, P̃j, P−i,j), we have φi(P̃ ) = µ0(i).
By construction, M(P̃ ) ≤ M(P ). Moreover, by the construction of P̃ , µ is µ0-stable
and individually rational under P̃ . Since hPi µ(i) but µ(i) P̃i h, this fact implies

N(P̃ ) ≤
∑
k∈I

|{h : h P̃i µ(k)}| <
∑
k∈I

|{h : hPi µ(k)}| = N(P ).

As a result, φ(P̃ ) = DA∗(P̃ ). However, because φi(P̃ ) = µ0(i) and µ is a µ0-stable
matching and individually rational matching under P̃ , DA∗

i (P̃ ) = µ(i)P̃iµ0(i) =
φi(P̃ ). Therefore, we have a contradiction.

We conclude that φ = DA∗.

We conclude this section by showing that the axioms used in Theorem 1 are
independent.

Dropping IR. The standard DA (without modifying the priority structure) is an
SP, µ0-stable, unanimous and IIAg mechanism.

Dropping unanimity. The trivial mechanism that assigns every agent to his or
her initial house is IR, SP, µ0-stable and IIAg.

Dropping µ0-stability TTC is an IR, SP, and IIAg mechanism.

Dropping IIAg. The mechanism in Example 1 is IR, SP, µ0-stable and unani-
mous.

Dropping SP. Consider three agents I = {a, b, c}, three houses H = {ha, hb, hc}
and an initial matching µ0 s.t. µ0(k) = hk for k ∈ I. Consider the priority relation
≻ such that

≻ha : a c b
≻hb

: b a c
≻hc : c b a
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Now, let P∗ ⊂ R be the set of preference profiles R such that

Pa : hb Pa . . .
Pb : hc Pb . . .
Pc : hb Pc ha Pc hc Pc

Let φ be the mechanism defined as follows:

φ(P ) =

{
µ0 if P ∈ P∗

DA∗(P ) if P /∈ P∗

It is easy to see that φ is IR and µ0-stable. Since all of the profiles in P∗ are not
unanimous profiles and since φ is the DA∗ mechanism outside P∗, φ is a unanimous
mechanism. It is also easy to see that φ is not an SP mechanism. At any preference
profile P ∈ P , agent c can manipulate φ by reporting profile P ′

c : ha, hc, hb.

Here, we show that φ is IIAg. Since we know that DA∗ is IIAg, we only need to
check two cases. First, when an agent starts at a profile in P∗ and a deviation as
defined in the definition of IIAg would lead to a profile outside of P∗. Second, when
an agent starts at a profile outside of P∗ and a deviation as defined in the definition
of IIAg would lead to a profile inside of P∗. To begin, we take a profile P ∈ P∗ and
fix agent a.

� Assume that Pa : hb, ha, hc. If she moves down hb, then either the matching
stays at µ0 or b and c exchange their houses so that IIAg is trivially respected.
If she moves up hc so that P ′

a : hc, hb, ha, then note that the matching of
DA∗(P ′) assigns a to hb, b to hc and c to ha. Therefore, IIAg is respected
again.

� Assume that Pa : hb, hc, ha. We have seen that moving down hb or moving up
hc so that P ′

a : hc, hb, ha forces all of the agents to exchange their houses for
IIAg to be respected. If she moves down hb so that P ′

a : hc, ha, hb, then since
b ≻hc a, DA∗(P ′) allocates b in hc and c in hb and IIAg is still satisfied.

Now, we fix agent b.

� Assume that Pb : hc, hb, ha. By moving down hc, either the matching stays at
µ0 or a and c exchange their houses so that IIAg is respected. If she moves up
ha so that P ′

b : ha, hb, hc, then because c ≻ha b, DA∗(P ′) allocates b in hc and
c in hb, IIAg is still satisfied.
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� Assume that Pb : hc, ha, hb. By moving down hc or moving up ha such that
P ′
b : ha, hc, hb, because a ≻hb

c and c ≻ha b, DA∗(P ′) would assign a to hb, b to
hc and c to ha. Consequently, IIAg would be trivially respected. By reporting
P ′
b : ha, hb, hc, then b would stay at his initial house hb and so IIAg would be

respected whether a and c exchange their houses or not.

Consider agent c.

� Moving down hb or moving up ha would make everyone exchange their houses
with a assigned to hb, b assigned to hc and c assigned to ha for IIAg to be
respected.

� Moving down ha so that P ′
c : hb, hc, ha would make c stay at his initial house

since a ≻hb
c. In that case, IIAg is trivially respected independently of whether

a and b exchange their houses.

We conclude that by starting from any profile P ∈ P∗, IIAg is respected. Now, we
start with a profile P /∈ P∗ and fix agent a. We will make a change to P ′

a as defined
in the definition of IIAg so that the new profile P ′ ∈ R∗. In particular, at the initial
profile P , Pc = hb, ha, hc, agent b ranks house hc first in Pb and agent a does not
rank house hb first.

� Assume that Pa : ha, .... Then, a stays at his house ha. By moving down ha

or moving up hb, P
′
a : hb, . . . , φ(P

′) = µ0. So if b and c were also staying at
their initial houses under φ(P ), then IIAg would be trivially satisfied. If b and
c were exchanging their houses, the report P ′

a would make the assignment of
all houses except ha change so that IIAg would again be satisfied.

� Assume that Pa : hc, ha, hb. In that case, since b ≻c a, then φ(P ) = DA∗(P )
does not assign a to hc. Hence, a stays at hid initial house ha. Then, the same
argument as above applies.

� Assume that Pa : hc, hb, ha. In that case, one can check that φ(P ) = DA∗(P )
assigns a to hb, b to hc and c to ha. Since any change of preference profile from
Pa to P ′

a by agent a so that R′ ∈ P∗ would lead to φ(P ′) = µ0, again IIAg is
trivially satisfied.

Now, consider agent b and start at a profile P /∈ P∗ where Pc = hb, ha, hc, agent a
ranks hb first and agent b does not rank hc first.

� Assume that Pb : hb, .... Then, b stays at his initial house hb under φ(P ).
Thus, a similar argument to the above applies and IIAg is respected.
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� Assume that Pb : ha, hb, hc. One can check that φ(P ) = DA∗(P ) makes b stay
at his initial house hb so that IIAg is respected if the profile moves to P ′ ∈ P∗.

� Assume that Pb : ha, hc, hb. Again, one can check that all of the agents ex-
change their houses under DA∗, which implies that IIAg is trivially respected.

Lastly, consider agent c and start at a profile P /∈ P∗ where agent a ranks hb first
and agent b ranks hc first.

� Assume that Pc : hc, .... Then, c stays at his initial house hc under φ(P ). By
a similar argument to the above, IIAg is respected.

� Assume that Pc : ha, hc, hb or Pc : ha, hb, hc. In that case, all of the agents
exchange their houses under φ(P ) = DA∗(P ) and a is assigned to hb, b is
assigned to hc and c is assigned to ha. In that case, any change of prefer-
ences from Pa to P ′

a so that the new profile P ′ ∈ R∗ leads to φ(P ) = µ0.
Consequently, IIAg is trivially satisfied.

We conclude that φ is an IR, µ0-stable, unanimous and IIAg mechanism that is not
strategy-proof.

4 Discussion of IIAg and additional results

Next we discuss the relation of the IIAg axiom to other classic axioms and afterwards
discuss which classical matching mechanisms (other than DA) satisfy it.

IIA, Monotonicity and IIAg. The Independence of Irrelevant Alternatives (IIA)
axiom was introduced by Arrow, 1951 in the context of social welfare functions which
must produce a ranking over alternatives based on the profile of rankings of agents.
Our setting is closer to the one of social choice functions which have to return an
unique alternative based on individuals’ rankings. In this context, the natural coun-
terpart of IIA is the invariance axiom famously called Maskin monotonicity.14 In
standard social choice theory, a mechanism is (Maskin) monotonic if whenever a
social choice µ is chosen by the mechanism and the preference profile of the agents
is P , then µ continues to be chosen at any profile P ′ where all of the agents rank

14The condition was initially called Strong Positive Association (SPA) by Muller and Satterth-
waite (1977) where they discuss how it can be seen as the natural counterpart of IIA for social
choice functions. Maskin (1999) used the same condition in the context of implementation calling
it monotonicity and pointing out its equivalence with SPA.
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µ weakly higher than under profile P .15 Our IIAg axiom restricts social choice in a
similar way. However, there are two important differences. We are not in a general
social choice model but in a private goods setting where agents have preferences only
over their final allocated houses and are indifferent between different matchings at
which they obtain the same house. Furthermore, we allow an agent to arbitrarily
change the ranking of house h, not only improve it. We also have an additional con-
dition that checks whether the assignment of the house has changed once it has been
upgraded. In the social choice context, the Maskin monotonicity axiom states that
once the choice has been made, the pieces of information of the houses ranked above
the choice by each agent (which have therefore been disregarded by the mechanism)
should not impact the initial choice that was made. Our IIAg axiom states that
whenever an agent change the ranking of a house that he is not assigned to and that
this change is irrelevant to determining the allocation of that house, then it should
not impact the overall assignment. Thus, the choice rule must remain consistent to
the matching it selected before the change of preferences of that agent.

Non-Bossiness and IIAg. Our IIAg axiom shares some similarities with another
important independence axiom: non-bossiness. The latter states that whenever an
agent changes his preference report from Pi to P ′

i , if his assignment stays the same
after this change (i.e. φi(P ) = φi(P

′
i , P−i)), then the whole matching should stay

the same (i.e. φ(P ) = φ(P ′
i , P−i)). For an extensive discussion of the axiom, one

can refer to Thomson (2016). Non-bossiness is a strong property which is often
incompatible with µ0-stability. However, we can relax the axiom so that it becomes
compatible with µ0-stablility. A minimal relaxation of non-bossiness that guarantees
this, needs to make sure that the axiom applies whenever the matchings chosen
under the two profiles P and (P ′

i , P−i) are µ
0-stable under the other profile.16 More

precisely, we define:

Axiom (Minimal Bossiness). A mechanism φ is Minimally Bossy (MB) if ∀i ∈ I,

15In standard social choice, agents have complete linear orderings over the set of alternatives,
which in our context would be equivalent to matchings.

16If a matching chosen under one of the two profiles fails to be µ0-stable under the other profile,
we cannot require non-bossiness to hold at these profiles, since imposing it would require us to
select a µ0-unstable matching at one profile. A stronger, asymmetric version of the axiom would
require that non-bossiness holds whenever the matching selected at P is µ0-stable under (P ′

i , P−i),
but not necessarily vice versa. This stronger version of the axiom, however, would be violated by
DA∗ or other unanimous and µ0-stable mechanisms, as it would require, for example, that the
same matching is selected even if the set of µ0-stable matchings enlarges through the preference
change of agent i.
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P, P̃ ∈ P with P̃−i = P−i such that φ(P̃ ) is µ0-stable under P and φ(P ) is µ0-stable
under P̃ :

φi(P̃ ) = φi(P ) ⇒ φ(P̃ ) = φ(P ).

It is straightforward to see that for strategy-proof mechanisms, MB implies IIAg.

Proposition 1. Let φ be a µ0-stable, SP and MB mechanism. Then it satisfies
IIAg.

Proof. Consider i ∈ I, h ∈ H, and P, P̃ ∈ P such that P̃−i = P−i, P̃i moves h in Pi

and φh(P ) ̸= i. By strategy-proofness of φ we have φi(P̃ ) = h or φi(P̃ ) = φi(P ).
In the first case, φh(P̃ ) ̸= φh(P ) and IIAg holds. In the second case, by minimal
bossiness we have φ(P̃ ) = φ(P ) or φ(P ) is not µ0-stable under P̃ or φ(P̃ ) is not
µ0-stable under P . In the first subcase, IIAg holds. In the second subcase, h and i
block φ(P ) under P̃ . In that case, if φh(P̃ ) = φh(P ) then, as φi(P̃ ) = φi(P ), i and h
also block φ(P̃ ) under P̃ which contradicts the µ0-stability of φ. If φh(P̃ ) ̸= φh(P ),
then IIAg holds. In the third subcase, i and h block φ(P̃ ) under P . In that case,
if φh(P̃ ) = φh(P ) then, as φi(P̃ ) = φi(P ), i and h also block φ(P ) under P which
contradicts the µ0-stability of φ. If φh(P̃ ) ̸= φh(P ), then IIAg holds.

Moreover, one can verify that DA∗ satisfies minimal-bossiness:

Proposition 2. DA∗ is minimally bossy.

Proof. Consider i ∈ I and P, P̃ ∈ P such that P̃−i = P−i. Suppose that DA∗
i (P̃ ) =

DA∗
i (P ), that DA∗(P̃ ) is µ0-stable under P and that DA∗(P ) is µ0-stable under P̃ .

Then, remember that, by Lemma 1, DA∗ returns the ≻∗- stable matching among µ0-
stable and IR matchings, DA∗(P̃ ) weakly Pareto dominates DA∗(P ) under P̃ and
DA∗(P ) weakly Pareto dominates DA∗(P̃ ) under P . Since P̃−i = P−i, this implies
that all agents j ̸= i receive the same assignment under DA∗(P ) and DA∗(P̃ ). Thus,
DA∗(P̃ ) = DA∗(P ).

Using Proposition 1 together with Theorem 1, we can immediately deduce the
following characterization:

Corollary 1. A mechanism is IR, SP, µ0-stable, unanimous and MB if and only if
it is the DA∗ mechanism.

We work with IIAg though for two reasons. IIAg is an axiom with normative
appeal even in a context without priorities whereas minimal bossiness is only well-
defined in conjunction with µ0-stability. Second minimal-bossiness is a (much) more
demanding notion that makes the characterization result arguably normatively less
convincing. The following example illustrates this:
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Example 2. Consider three agents I = {a, b, c}, three houses H = {ha, hb, hc} and
an initial matching µ0 s.t. µ0(k) = hk for k ∈ I. Consider a priority relation ≻
such that we have the following:

≻ha : a b c

≻hb
: b a c

≻hc : c a b

We define φ as an IR, strategy-proof, µ0-stable and IIAg mechanism that is not
minimally-bossy: Define P ′ to be the set of all profiles P where agent a has prefer-
ences

Pa : ha Pa hb Pa hc.

Define a mechanism

φ(P ) :=

{
DA∗(P ), if P /∈ P ′,

µ0, if P ∈ P ′.

One readily checks that φ is IR and µ0-stable. To check that φ is strategy-proof note
that agent a always obtains his DA∗ assignment under φ and that it does not depend
on agents b and c’s ranking whether the profile is in P ′ or not. The mechanism is
not minimally bossy, because at profile P where Pa is as above and

Pb : hc Pb hb Pb ha

Pc : hb Pb hc Pb ha

we have φ(P ) = µ0 but if agent a changes to

P ′
a : ha P ′

a hc P ′
a hb,

we have φ(P ′) = DA∗(P ′) ̸= µ0.
The mechanism is IIAg because for problems with only three agents any strategy-

proof mechanism satisfies IIAg: if an agent i moves a house h in her preferences
then by strategy-proofness φi(P̃ ) = φi(P ) or φi(P̃ ) = h. In the first case, φh(P̃ ) =
j = φh(P ) implies that the third agent k ̸= i, j also gets assigned the same house.
In the second case φh(P̃ ) = i ̸= φh(P ) and IIAg holds.
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IIAg and other mechanisms. Last, one may wonder whether standard mecha-
nisms of the literature respect the IIAg axiom, the following proposition gives the
answer for the three main ones studied in the school choice literature:

Proposition 3. The Deferred Acceptance and the Top Trading Cycles mechanisms
respect the IIAg axiom while the Immediate Acceptance mechanism17 does not.

Proof. For the DA mechanism, the part of the proof of Theorem 1 below showing
that DA∗ respects IIAg can be applied to show that DA respects IIAg. For the TTC
mechanism, recall that the mechanism is strategy-proof and non-bossy. Consider a
profile P and an agent i that under P̃i moves house h in Pi for a house h that he
was not assigned to under TTC(P ). By strategy-proofness at P̃i, i either obtains
house h or his previous assignment, TTCi(P̃ ) = h or TTCi(P̃ ) = TTCi(P ). In the
first case, house h is assigned differently. In the second case, by non-bossiness of
TTC, we have TTC(P̃ ) = TTC(P ). Thus, IIAg is satisfied.

For the Immediate Acceptance mechanism, the following example shows that
it does not respect IIAg: Consider three agents I = {a, b, c} and three houses
H = {ha, hb, hc}. Consider a priority relation ≻ such that we have the following:

≻ha : a c b

≻hb
: b c a

≻hc : c a b

Consider preference profiles P such that

Pa : ha Pa . . .

Pb : hc Pb hb Pb ha

Pc : ha Pc hc Pb hb

and preferences P̃c such that

P̃c : hc P̃c ha P̃b hb

The immediate acceptance mechanism for R assigns the matching:

µ(a) = ha, µ(b) = hc, µ(c) = hb.

17By Top Trading Cycle, we refer to the housing market original version as proposed by Shapley
and Scarf (1974). We do not give the formal definition of Immediate Acceptance which is well
known in the school choice literature, also called the Boston mechanism, but the reader can refer
to Abdulkadiroglu and Sonmez (2003).
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Note that the house ha is not assigned to agent c and that preferences P̃c are obtained
from Rc by changing the ranking of ha without changing the relative ranking of
the other two houses. With the changed preferences, the immediate acceptance
mechanism assigns the matching:

µ̃(a) = ha, µ̃(b) = hb, µ̃(c) = hc.

Thus, house ha is assigned in the same way but the overall matching has changed,
violating IIAg.

5 Conclusion and discussions

We study the problem of reallocation with priorities where agents initially own a
house and each house has a priority order over agents. We show that this problem
has distinct features from its counterparts, namely, the marriage problem and the
housing market problem. In particular, we show that the DA∗ mechanism, a natural
adaptation of the Deferred Acceptance to this context, is not the only individually
rational, strategy-proof and µ0-stable mechanism. Adding a simple efficiency re-
quirement such as unanimity does not rule out other mechanisms than DA∗. We
introduce a new axiom, called irrelevance of independent agents which states that
if an agent ranking of a house not assigned to him has no impact on the assignment
of that house, then a mechanism should keep the same matching that was selected
prior to that change. We discuss how this axiom is related to the standard axiom of
irrelevance of independent agents and the axiom of non-bossiness. In particular, we
show that a natural stability adapted variable of non-bossiness, that we call Minimal
Bossiness, implies our axiom of irrelevance of independent agents.

Extensions and assumptions. It is a natural question whether and how our re-
sults generalize to the house allocation model with existing tenants (Abdulkadiroglu
and Sonmez, 1999) in which some of the agents could initially be unassigned and
some houses could initially be vacant. All the arguments used in the proof of The-
orem 1 can be easily extended to this case so that our main characterization still
holds in this context.

As discussed in Footnote 4, our model imposes two assumptions: 1) the non-
availability of an outside option and 2) the existence of an initial matching. If one
relaxes the first one and naturally adapts the definitions of the model accordingly
then the proof of Alcalde and Barberà (1994) would still be valid and would show
that DA∗ is the unique IR, strategy-proof and µ0-stable mechanism. If one keeps the
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restriction that outside options are not available but assumes that there is no initial
matching, our main message remains: DA is not the only stable and strategy-proof
mechanism in that setting. Indeed, the ownership adjusted Deferred Acceptance
mechanism highlights that IR can be seen as a restriction on the priority profiles of
the houses: we only consider unanimous priority profiles, i.e. profiles where there
exists a matching giving each house its top priority agent. Thus, our characterization
perfectly applies to this school choice setting and it can be seen as a characterization
of the DA mechanism on the domain of unanimous priority profiles when outside
options are not available.

Future directions. Our paper highlights that the problem of reallocation with
priorities has distinct differences from its counterparts, namely, the marriage prob-
lem and the housing market problem. Thus, there is still significant research to
be done to study the specific properties of this problem. In our analysis, we take
the priority structure as given and study the properties of the µ0-stable mecha-
nism DA∗. We follow the path of the school choice literature (Abdulkadiroglu and
Sonmez, 2003). In such models, one can consider the priorities of one side of the
market, e.g., the schools or the houses, as fixed and provide a charaterization of
the DA mechanism, this is what Balinski and Sonmez (1999) or Morrill (2013) have
done. When priorities are not considered as preferences per se but as part of the
design of the mechanism, one can see the DA mechanism as a class of mechanisms,
where there is one for each profile of priorities. Kojima and Manea (2010) were
the first to propose two axiomatic characterizations of the DA mechanisms, and
they introduced the axioms of individually rational monotonicity and weak Maskin
monotonicity. Whereas these authors’ first results showed that the (student propos-
ing) DA with acceptant and substitutable choice functions is the only non-wasteful
and individually rational monotonic mechanism, their second characterization uses
the axioms of non-wastefulness, population monotonicity, and weak Maskin mono-
tonicity. Later, Ehlers and Klaus (2016) provided two characterizations of DA using
a set of standard axioms: unavailable-type-invariance, individual-rationality, weak
non-wastefulness, truncation-invariance, strategy-proofness and either population-
monotonicity or resource-monotonicity. It would be an interesting line of future
research to investigate whether it is possible to endogenize the priority structure of
DA∗ with a set of axioms. The key difficulty is that axioms such as population-
monotonicity or resource-monotonicity impose constraints when one adds only one
additional agent or one additional house. In our reallocation setting, agents are all
initially assigned to a house so that both a house and an agent would be added to
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the market, making comparative static results difficult. Moreover, non-wastefulness
has no applicability in our setting since all of houses are initially assigned and each
reassignment of resources is non-wasteful by definition.

Lastly, as we discussed above, our characterization can also be seen as a result
on a school choice model where one jointly restrict the domains of preference and
priority profiles. As mentioned in the Introduction, this joint restriction can be
motivated by important applications such as the assignment of teachers to schools.
This possibility of joint restrictions has not been studied so far and opens many
interesting research questions such as for instance the maximal joint domains on
which DA is the unique strategy-proof and stable mechanism.

References
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