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Abstract 

   The frequency-dependent mass, elastic and geometric stiffness matrices of an axially loaded 

Bernoulli-Euler beam are developed through rigorous application of symbolic computation. 

These three matrices are related to the corresponding dynamic stiffness matrix so that free 

vibration analysis of axially loaded beams and frameworks can be carried out in an exact 

manner by applying the Wittrick-Williams algorithm as solution technique. Representative 

results from the proposed theory are presented for different boundary conditions of beams and 

frameworks, carrying tensile and compressive loads. Comparative results from finite element 

method are also presented. The duality between the free vibration and buckling problems is 

captured in that when the compressive load in a beam or frame approaches its critical buckling 

load, the fundamental natural frequency tends to zero and thus, buckling can be thoughtfully 

interpreted as free vibration at zero frequency. The investigation has opened the possibility of 

including damping in free vibration analysis of beams and frameworks when applying the 

dynamic stiffness method. 
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1. Introduction 

 

  The original idea of frequency dependency of mass and stiffness matrices of structural 

elements for free vibration analysis was put forward by Przemieniecki [1] who formulated the 

frequency dependent mass and stiffness matrices of a beam and provided series expansions of 

the matrices by retaining two frequency dependent terms. Przemieniecki’s work was further 

developed by subsequent researchers who also relied on power series expansion of the mass 

and stiffness matrices and truncated the series at some convenient point. For instance, by using 

dynamic discretisation method, Downs [2] derived an equivalent mass matrix of a beam in the 

ascending power of the square of the frequency. He achieved this by formulating the 

deformation function in power series and he then illustrated his method by numerical results 

utilising eight segments in his dynamic discretisation model. By contrast, Melosh and Smith 

[3] made effective use of frequency-dependent mass and stiffness matrices of a bar element 

when they investigated the free vibration behaviour of pin-jointed frames as opposed to rigid-

jointed frames. Clearly their theory covered bar elements, but not beam elements. Fergusson 

and Pilkey [4] on the other hand, gave theoretical formulations for the frequency-dependent 

mass and stiffness matrices of a structural element for the general case and they showed how 

these matrices can be related to the dynamic stiffness matrix. They also showed that Taylor 

series expansion of a given order can be used to truncate the frequency dependent shape 

function leading to the frequency-dependent mass and stiffness matrices of the structural 

element and yet, sufficiently accurate results can be achieved. However, they did not 

demonstrate the application of their theory by numerical results. Paz and Dung [5] extended 

Przemieniecki’s work [1] by including the effect of an axial force so that both free vibration 

and buckling analysis of columns can be carried out. However, their investigation was entirely 

theoretical. They provided the expressions for the elements of the mass, stiffness and geometric 

matrices of beams using only first and second order terms, but without reporting any numerical 

results. Later Dumont and Oliveira [6] advanced the work of these earlier researchers 

significantly by extending the application of the frequency-dependent mass and stiffness 

matrices to response problems. They successfully solved the response problem of plane frames 

when subjected to arbitrary dynamic loads at some chosen nodes. However, as was the case 

with previous investigators, they also resorted to power series expansion of the frequency-

dependent mass and stiffness matrices of beam elements. Thus, all these attempts made so far 

had some form of truncation error or other. Clearly, these investigations did not produce exact 

explicit expressions for the individual terms of the frequency dependent mass, elastic, and 
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geometric stiffness matrices of a beam element. However, an exception to this trend occurred 

recently when Banerjee [7] derived explicit exact algebraic expressions for the elements of the 

frequency-dependent mass and stiffness matrices of a Bernoulli-Euler beam by using symbolic 

computation quite rigorously. The frequency-dependent mass and stiffness expressions in 

Banerjee’s work [7] included all the terms of the infinite series implicitly, and thus avoided 

any possible truncation error that was inevitably present in earlier works. However, the theory 

developed by Banerjee [7], significant though it was, did not include the effect of an important 

parameter which is that of an axial load that may be carried by the beam. It is well known that 

the effect of an axial load in a beam can be significant when predicting its vibration 

characteristics. This is particularly true when the beam carries too much of a compressive load. 

If the compressive load in a beam approaches its critical buckling load, the corresponding 

natural frequency will tend to zero, indicating a duality between the buckling and free vibration 

problems in the sense that buckling can be interpreted as free vibration at zero frequency. 

Obviously, the earlier theory developed by Banerjee [7] cannot be applied to an axially loaded 

beam and therefore, this paper attempts to fill this significant gap in the literature. This 

undeveloped research is carried out by deriving the frequency-dependent mass, elastic, and 

geometric stiffness matrices of the beam using symbolic computation extensively. As expected, 

the presence of an axial load in a beam increases the level of complexity of the problem, 

particularly when deriving explicit expressions for the elements of the frequency-dependent 

mass, elastic, and geometric stiffness matrices. The difficulty principally arises because of the 

lengthy algebraic expressions that are inevitably expected to appear in the derivation, which 

may become unwieldy and unmanageable. To circumvent this difficulty, symbolic computation 

which has now reached an advanced stage in its development, has been extensively used in this 

paper. This research might have been impossible without the symbolic computation tool. At 

this juncture, a brief review of the application of symbolic computation in structural 

engineering research is necessary.  

  Sathyamoorthy and Sirigiri [8] analysed box beam structures using symbolic computation 

techniques. Essentially, they manipulated the energy method and carried out various 

mathematical operations algebraically such as differentiation, integration, and matrix inversion 

to generate the force-displacement relationship of the box beam. The investigation is 

particularly relevant in determining the stiffness properties of aircraft wings for which the 

principal load carrying structural member is the torsion box [8]. Beltzer [9] demonstrated that 

considerable benefits can be achieved by applying symbolic computation when analysing 
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engineering structures. He showed that programming with symbolic manipulation code 

provides additional insights into both qualitative and quantitative aspects of engineering 

analysis with great reliability. Pavlovic [10] published a survey paper in which he reviewed the 

past applications of symbolic computation in structural engineering and mechanics. He 

highlighted potential possibilities of symbolic computing that lie ahead.  Following these 

advancements in symbolic computing, the author of this paper applied symbolic computation 

in his research on numerous occasions. For instance, he applied symbolic computation to carry 

out flutter analysis of aircraft wings [11], modal analysis of whole aircraft configuration [12] 

and free vibration analysis of axially loaded composite beams [13]. A significant piece of 

research by him and his colleagues in this respect, was the application of symbolic computation 

in Hamiltonian mechanics [14] to generate the governing differential equations of motion of 

complex dynamical systems. They automated the entire procedure of the variational method of 

Hamilton’s principle by symbolic computation which necessitated integration by parts 

algebraically to arrive at the governing differential equations of motion. Clearly such an 

approach is efficient, elegant, and importantly, less error prone.  

  The resulting frequency-dependent mass, elastic and geometric stiffness matrices of a beam 

developed in this paper are related to its dynamic stiffness matrix (DSM) which is finally 

applied through the implementation of the Wittrick-Williams algorithm [15] as solution 

technique to compute the natural frequencies of axially loaded beams and frameworks. The 

DSM was pioneered by Kolousek [16], which is essentially an exact method with many 

advantages over the conventional finite element method (FEM) when carrying out free 

vibration analysis of structures. This is well known and well-documented in the literature, but 

interested readers are referred to some selective papers [17-22] which demonstrate the 

superiority of DSM over FEM. For instance, one single structural element can be used in DSM 

to determine any number of its natural frequencies to any desired accuracy, which of course, is 

impossible in FEM. However, it should be recognised that FEM is without doubt a universal 

tool in structural analysis and design, which is capable of handling complex geometries and 

boundaries. Although FEM is an approximate and basically a numerical method, it is 

sufficiently general and has applications in many other fields, particularly being effective in 

solving multi-physics problems. FEM has been successfully applied to investigate beam 

vibration problems over many years, see for examples [23, 24]. It is also evident from recently 

published literature that investigators have benefitted enormously from FEM when developing 

advanced beam theories [25-28]. There are some excellent texts on FEM [29, 30]. 
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  The fundamental aspects and materials of this paper are organised as follows. Following this 

section on Introduction, Section 2 focuses on the derivation of shape functions for an axially 

loaded Bernoulli-Euler beam which is followed by Sections 3, 4 and 5 which describe in detail 

the developments of the frequency-dependent mass elastic and geometric stiffness matrices of 

the beam, respectively. The materials presented in Sections 2, 3, 4 and 5 were greatly dependent 

on symbolic computation which was carried out by REDUCE [31, 32]. It should be noted that 

frequency-dependent mass and stiffness matrices of a bar, undergoing axial deformation, are 

readily available in the literature [1, 7] for which no elaboration is needed, but they are needed 

to investigate the free vibration behaviour of frameworks. Section 6 primarily deals with the 

application aspects of the theory described in Sections 2-5. Also in Section 6, the importance 

of incorporating the frequency-dependent axial mass and stiffness matrices of a beam already 

available in the literature [1, 7] into the current theory is emphasised so that free vibration 

analysis of frameworks can be carried out. The section summarises briefly the equivalency 

between the frequency-dependent mass, elastic and geometric stiffness matrices and the 

dynamic stiffness matrix and explains the salient features of the Wittrick-Williams algorithm 

[15] as solution technique and how it can be applied to determine the natural frequencies. 

Section 7 discusses numerical results for four illustrative examples and some of the results are 

validated against published results and finite element analysis. The findings of the research are 

concluded in Section 8. 

2. Frequency-dependent exact shape functions for an axially loaded beam 

  The first step to develop the frequency-dependent mass, elastic and geometric stiffness 

matrices of an axially loaded beam is to derive its frequency-dependent shape functions which 

relates the bending displacement and bending rotation within the beam to its nodal 

displacements when the beam is undergoing free natural vibration. Figure 1 shows the 

coordinate system and notations for an axially loaded Bernoulli-Euler beam with bending 

rigidity EI, mass per unit length A where  is the density of material and A is the area of cross-

section, and L is the length of the beam. Note that node 1 of the beam is located at the origin O 

and node 2 is at the other end at a distance L from the origin, as shown in Fig. 1. A compressive 

axial load P as shown in the figure, is assumed to be positive, acting through the centroid of 

the cross-section, but P can be negative so that tension is included in the theory. 
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Fig. 1. Coordinate system and notation for an axially loaded Bernoulli-Euler beam. 

  The kinetic energy (T) and potential energy (V) of the beam in the usual notation can be 

expressed as  

𝑇 =
1

2
∫ 𝜌𝐴�̇�2𝑑𝑥

𝐿

0
;   𝑉 =

1

2
∫ 𝐸𝐼

𝐿

0
(𝑤′′)2𝑑𝑥 −

1

2
∫ 𝑃(𝑤′)2𝑑𝑥

𝐿

0
                (1) 

where w(x, t) is the bending or transverse deflection in the Z-direction and a prime and an over-

dot represent differentiation with respect to the length coordinate x and time t, respectively. 

    Hamilton’s principle states 

                                                      𝛿 ∫ (𝑇 − 𝑉)
𝑡2
𝑡1

𝑑𝑡 = 0         (2) 

where t1 and t2 are the time interval in the dynamic trajectory, and  is the usual variational 

operator.  

    The governing differential equation of motion for the axially loaded beam in free vibration 

can now be derived by substituting the kinetic energy (T) and the potential energy (V) 

expressions given by Eq. (1) into Eq. (2), and then using the  operator and integrating by parts, 

and finally collecting terms. In an earlier publication, the entire procedure to generate the 

governing differential equations of motion and natural boundary conditions for bar or beam 

type structures was automated by Banerjee et al [14] through the application of symbolic 

computation. In this way, the governing differential equation of the axially loaded Bernoulli-

Euler beam in free vibration is obtained as  

𝐸𝐼𝑤′′′′ + 𝑃𝑤′′ + 𝜌𝐴�̈� = 0                     (3) 
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  Assuming harmonic oscillation so that 𝑤(𝑥, 𝑡) = 𝑊𝑒𝑖𝜔𝑡 where W is the amplitude of bending 

or flexural vibration,  is the circular or angular frequency and 𝑖 = √−1, the above partial 

differential equation can be converted into the following ordinary differential equation. 

(𝐷4 + 𝑝2𝐷2 − 𝑏2)𝑊 = 0                     (4) 

where 

𝑝2 =
𝑃𝐿2

𝐸𝐼
;         𝑏2 =

𝜌𝐴𝜔2𝐿4

𝐸𝐼
;     𝐷 =

𝑑

𝑑𝜉
;      𝜉 =

𝑥

𝐿
                  (5) 

  The solution of the above governing differential equation, i.e., Eq. (4) for the amplitudes of 

bending displacement W(x) and bending rotation 𝜃(𝜉) =
1

𝐿
𝑊′(𝜉) can be obtained as 

𝑊(𝜉) = 𝐴1 cosh 𝛼𝜉 +𝐴2 sinh𝛼𝜉 + 𝐴3 cos 𝛽𝜉 + 𝐴4 sin 𝛽𝜉                 (6) 

𝜃(𝜉) =
1

𝐿
(𝐴1𝛼 sinh𝛼𝜉 + 𝐴2𝛼 cosh𝛼𝜉 − 𝐴3𝛽 sin 𝛽𝜉 +𝐴4𝛽 cos 𝛽𝜉)               (7) 

where 

𝛼2 =
1

2
(−𝑝2 + √𝑝4 + 4𝑏2);   𝛽2 =

1

2
(𝑝2 + √𝑝4 + 4𝑏2)                 (8) 

 

  Referring to Fig. 2, the end conditions (or boundary conditions) for W and  at nodes 1 and 2 

can now be applied to Eqs. (6) and (7) to eliminate the constants A1- A4 and then formulate the 

shape functions. 

  The end conditions are:  

At node 1 (x =0, i.e.,  = 0), W = W1 and  = 1                   (9) 

At node 2 (x = L, i.e.,  = 1), W = W2 and  = 2                (10) 

 

                                     W1                                                        W2 

                               1                                                                2              

                                       1                                                       2 

                             (x = 0,  =0)                                       (x = L,  = 1) 

                 Fig. 2. End conditions for the displacements of a beam in flexural motion. 
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  Substituting Eqs. (9) and (10) into Eqs. (6) and (7) gives the following matrix relationship 

[

𝑊1

𝜃1

𝑊2

𝜃2

] = [

1
0

  𝐶ℎ𝛼

𝛼𝑆ℎ𝛼/𝐿

0
𝛼/𝐿

   𝑆ℎ𝛼

   𝛼𝐶ℎ𝛼/𝐿
   

1
0

 
   𝐶𝛽   

−𝛽𝑆𝛽/𝐿

0
𝛽/𝐿
𝑆𝛽

   𝛽𝐶𝛽/𝐿

] [

𝐴1

𝐴2

𝐴3

𝐴4

]                            (11) 

or 

[

𝐴1

𝐴2

𝐴3

𝐴4

] = [

1
0

  𝐶ℎ𝛼

𝛼𝑆ℎ𝛼/𝐿

0
𝛼/𝐿

   𝑆ℎ𝛼

   𝛼𝐶ℎ𝛼/𝐿
   

1
0

 
   𝐶𝛽   

−𝛽𝑆𝛽/𝐿

0
𝛽/𝐿
𝑆𝛽

   𝛽𝐶𝛽/𝐿

]

−1

[

𝑊1

𝜃1

𝑊2

𝜃2

]                (12) 

where  

𝐶ℎ𝛼 = cosh𝛼 ;      𝑆ℎ𝛼 = sinh𝛼 ;     𝐶𝛽 = cos 𝛽 ;       𝑆𝛽 = sin𝛽                                             (13) 

 

  Now, Eq. (6) can be written in matrix form as 

[𝑊(𝜉)] = [cosh 𝛼𝜉 sinh 𝛼𝜉 cos 𝛽𝜉 sin 𝛽𝜉] [

𝐴1

𝐴2

𝐴3

𝐴4

]             (14) 

Substituting Eq. (12) into Eq. (14) gives 

[𝑊(𝜉)] = [cosh𝛼𝜉 sinh𝛼𝜉 cos𝛽𝜉 sin𝛽𝜉] [

1
0

  𝐶ℎ𝛼

𝛼𝑆ℎ𝛼/𝐿

0
𝛼/𝐿

   𝑆ℎ𝛼

  𝛼𝐶ℎ𝛼/𝐿
   

1
0

 
   𝐶𝛽   

−𝛽𝑆𝛽/𝐿

0
𝛽/𝐿
𝑆𝛽

   𝛽𝐶𝛽/𝐿

]

−1

[

𝑊1

𝜃1

𝑊2

𝜃2

]    (15) 

or 

[𝑊(𝜉)] = [𝑁1 𝑁2 𝑁3 𝑁4] [

𝑊1

𝜃1

𝑊2

𝜃2

]                  (16) 

i.e., 

𝛅 = 𝐍𝛅𝐍                  (17) 

where  is the shape function comprising N1, N2, N3 and N4 terms relating displacement W() 

within the element, i.e.,  to the nodal displacements, i.e., N which are W1, 1 (at node 1) and 

W2, 2 (at node 2). 
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  The task of generating the shape function in short, compact, and concise algebraic form by 

performing the matrix inversion and multiplication steps of Eq. (15) was somehow challenging. 

This undertaking was greatly assisted by the application of symbolic computation [31, 32]. 

Thus, the explicit expressions for the shape functions N1, N2, N3 and N4 were derived by 

extensive use of the symbolic computation package REDUCE [32]. These are given by 

              𝑁1 = −𝜇1𝛽 cosh𝛼𝜉 + 𝜇3𝛽 sinh𝛼𝜉 + 𝜇2 𝛼 cos𝛽𝜉 − 𝜇3 𝛼 sin𝛽𝜉                  (18) 

              𝑁2 = 𝐿(−𝜇4 cosh𝛼𝜉 + 𝜇2 sinh𝛼𝜉 + 𝜇4 cos𝛽𝜉 − 𝜇1 sin𝛽𝜉)               (19) 

              𝑁3 = −𝜇7𝛼𝛽 cosh𝛼𝜉 − 𝜇5 𝛽 sinh𝛼𝜉 + 𝜇7𝛼𝛽 cos𝛽𝜉 + 𝜇5𝛼 sin𝛽𝜉              (20) 

              𝑁4 = 𝐿(𝜇6 cosh𝛼𝜉 − 𝜇7𝛽 sinh𝛼𝜉 − 𝜇6 cos𝛽𝜉 + 𝜇7 𝛼 sin𝛽𝜉)              (21) 

where 

𝜇1 = (𝛼𝐶ℎ𝛼𝐶𝛽 + 𝛽𝑆ℎ𝛼𝑆𝛽 − 𝛼)/Δ                 (22) 

𝜇2 = (𝛼𝑆ℎ𝛼𝑆𝛽 − 𝛽𝐶ℎ𝛼𝐶𝛽 + 𝛽)/Δ                 (23) 

𝜇3 = (𝛼𝑆ℎ𝛼𝐶𝛽 + 𝛽𝐶ℎ𝛼𝑆𝛽)/Δ                  (24) 

𝜇4 = (𝛼𝐶ℎ𝛼𝑆𝛽 − 𝛽𝑆ℎ𝛼𝐶𝛽)/Δ                  (25) 

𝜇5 = (𝛼𝑆ℎ𝛼 + 𝛽𝑆𝛽)/Δ                   (26) 

𝜇6 = (𝛼 𝑆𝛽 −𝛽𝑆ℎ𝛼)/Δ                   (27) 

𝜇7 = (𝐶𝛽 −𝐶ℎ𝛼)/Δ                   (28) 

with  

 Δ = (𝛼2 − 𝛽2)𝑆ℎ𝛼𝑆𝛽 + 2𝛼𝛽(1 − 𝐶ℎ𝛼𝐶𝛽)                (29) 

  The frequency-dependent mass (m), elastic (kE) and geometric (kG) stiffness matrices can 

now be formulated as follows. 

3. Frequency-dependent mass matrix 

The frequency-dependent mass (m) matrix can now be formulated as follows [7]. 

𝐦 = ∫ 𝜌 𝑵𝑇 𝑵 𝑑𝑣
𝑉

= 𝜌𝐴𝐿 ∫ [

𝑁1

𝑁2

𝑁3

𝑁4

]
1

0
[𝑁1 𝑁2 𝑁3 𝑁4]𝑑𝜉 = [

 𝑚11  
𝑚21 
𝑚31 
𝑚41 

𝑚12
𝑚22
𝑚32

𝑚42

  𝑚13  
𝑚23
𝑚33

𝑚43

𝑚14
𝑚24
𝑚34

𝑚44

]         (30) 
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  Substituting the expressions for the shape functions N1, N2, N3 and N4 from Eqs. (18)-(21) into 

Eq. (30) and then carrying out the integration algebraically with the help of symbolic 

computation [32] made it possible after expending some concerted efforts to generate explicit 

expressions for each of the elements of the frequency-dependent mass matrix as follows.  

𝑚11 = 𝑚33 = 𝜌𝐴𝐿Φ1  

𝑚12 = 𝑚21 = −𝑚34 = −𝑚43 = 𝜌𝐴𝐿2Φ2  

𝑚13 = 𝑚31 = 𝜌𝐴𝐿Φ3  

𝑚14 = 𝑚41 = −𝑚23 = −𝑚32 = 𝜌𝐴𝐿2Φ4                                                                                (31) 

𝑚22 = 𝑚44 = 𝜌𝐴𝐿3Φ5  

𝑚24 = 𝑚42 = 𝜌𝐴𝐿3Φ6  

where 

Φ1 = −𝛼2𝜇5𝜇7𝐶𝛽
2 + (

𝛼2𝜆2

2𝛽
)𝐶𝛽𝑆𝛽 − (

2𝛼𝛽2𝛾2

𝛼1
)𝑆ℎ𝛼𝐶𝛽 + 𝛽2𝜇5𝜇7𝐶ℎ𝛼

2 − (
2𝛼2𝛽𝜆1

𝛼1
)𝐶ℎ𝛼𝑆𝛽 +

(
𝛽2𝛾1

2𝛼
)𝐶ℎ𝛼𝑆ℎ𝛼 − 2𝛼𝛽𝜇5𝜇7𝑆ℎ𝛼𝑆𝛽 + Λ1                    (32) 

Φ2 = (
𝛼𝛿2

2𝛽
)𝐶𝛽

2 +
𝛾5

𝛼1
𝐶ℎ𝛼𝐶𝛽 −

𝛼𝛿5

2𝛽
𝐶𝛽𝑆𝛽 −

𝛽2𝛽6

𝛼1
𝑆ℎ𝛼𝐶𝛽 −

𝛽𝛿2

2𝛼
𝐶ℎ𝛼

2 −
𝛽2𝛽3

𝛼1
𝐶ℎ𝛼𝑆𝛽 +

𝛽𝛿4

2𝛼
𝐶ℎ𝛼𝑆ℎ𝛼 +

(𝜇3𝜇4 +
𝛼𝛽𝛿1

𝛼1
) 𝑆ℎ𝛼𝑆𝛽 + Λ2                     (33) 

Φ3 =
𝛼2𝜁6

2𝛽
𝐶𝛽

2 −
𝛼𝛽𝛽5𝜇5

𝛼1
𝐶ℎ𝛼𝐶𝛽 +

𝛼2𝜁5

2𝛽
𝐶𝛽𝑆𝛽 −

𝛼𝛽

𝛼1
(𝛼𝛽2𝜇7 + 2𝛽𝜇3𝜇5)𝑆ℎ𝛼𝐶𝛽 −

𝛽2𝜉3

2𝛼
𝐶ℎ𝛼

2 +

𝛼𝛽

𝛼1
(2𝛼𝜇3𝜇5 − 𝛽𝛽2𝜇7)𝐶ℎ𝛼𝑆𝛽 +

𝛽2𝜉2

2𝛼
𝐶ℎ𝛼𝑆ℎ𝛼 +

𝛼𝛽

𝛼1
(𝛼1𝜇3𝜇7 − 𝛽1𝜇5)𝑆ℎ𝛼𝑆𝛽 + Λ3   (34) 

Φ4 = −
𝛼𝜉1

2𝛽
𝐶𝛽

2 −
𝛼𝛽𝛽5𝜇7

𝛼1
𝐶ℎ𝛼𝐶𝛽 +

𝛼𝜉4

2𝛽
𝐶𝛽𝑆𝛽 +

𝛼

𝛼1
(𝛽2𝜇6 − 2𝛽2𝜇3𝜇7)𝑆ℎ𝛼𝐶𝛽 +

𝛽𝜁3

2𝛼
𝐶ℎ𝛼

2 +
𝛽

𝛼1
(𝛽2𝜇6 +

2𝛼2𝜇3𝜇7)𝐶ℎ𝛼𝑆𝛽 −
𝛽𝜁2

2𝛼
𝐶ℎ𝛼𝑆ℎ𝛼 −

1

𝛼1
(𝛼𝛽𝛽1𝜇7 + 𝛼1𝜇3𝜇6)𝑆ℎ𝛼𝑆𝛽 + Λ4                (35) 

Φ5 =
𝛼𝜇6𝜇7

𝛽
𝐶𝛽

2 −
𝛾4

2𝛽
𝐶𝛽𝑆𝛽 +

2𝛼𝜆4

𝛼1
𝑆ℎ𝛼𝐶𝛽 −

𝛽𝜇6𝜇7

𝛼
𝐶ℎ𝛼

2 −
2𝛽𝛾3

𝛼1
𝐶ℎ𝛼𝑆𝛽 +

𝜆3

2𝛼
𝐶ℎ𝛼𝑆ℎ𝛼 + 2𝜇6𝜇7𝑆ℎ𝛼𝑆𝛽 + Λ5     (36) 

Φ6 = −
𝜉6

2𝛽
𝐶𝛽

2 −
𝛽5𝜇6

𝛼1
𝐶ℎ𝛼𝐶𝛽 +

𝜉5

2𝛽
𝐶𝛽𝑆𝛽 +

1

𝛼1
(2𝛼𝜇4𝜇6 − 𝛽𝛽2𝜇7)𝑆ℎ𝛼𝐶𝛽 +

𝜁4

2𝛼
𝐶ℎ𝛼

2 +
1

𝛼1
(𝛼𝛽2𝜇7 +

2𝛽𝜇4𝜇6)𝐶ℎ𝛼𝑆𝛽 −
𝜁1

2𝛼
𝐶ℎ𝛼𝑆ℎ𝛼 −

1

𝛼1
(𝛼1𝜇4𝜇7 + 𝛽1𝜇6)𝑆ℎ𝛼𝑆𝛽 + Λ6                 (37) 

where  
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𝛼1 = 𝛼2 + 𝛽2;     𝛼2 = 𝛼2 − 𝛽2;     𝛼3 = 𝛼4 + 𝛽4    

                                                                                                                                               (38) 

𝛼4 = 𝛼4 − 𝛽4;     𝛼5 = 3𝛼2 + 𝛽2;     𝛼6 = 𝛼2 + 3𝛽2 

 

 𝛽1 = 𝛼𝜇1 + 𝛽𝜇2;   𝛽2 = 𝛼𝜇2 + 𝛽𝜇1;   𝛽3 = 𝛼𝜇3 + 𝛽𝜇4 

                                                                                                                                               (39) 

  𝛽4 = 𝛼𝜇1 − 𝛽𝜇2;  𝛽5 = 𝛼𝜇2 − 𝛽𝜇1;   𝛽6 = 𝛼𝜇4 − 𝛽𝜇3  

 

𝛾1 = 𝛼2𝜇7
2 + 𝜇5

2;   𝛾2 = 𝛼2𝜇7
2 − 𝜇5

2;   𝛾3 = 𝛼2𝜇7
2 + 𝜇6

2 

                                                                                                                                               (40) 

𝛾4 = 𝛼2𝜇7
2 − 𝜇6

2;   𝛾5 = 𝛼2𝜇2
2 − 𝛽2𝜇1

2;   𝛾6 = 𝛼2𝜇2 − 𝛽2𝜇1 

 

𝜆1 = 𝛽2𝜇7
2 + 𝜇5

2;   𝜆2 = 𝛽2𝜇7
2 − 𝜇5

2;   𝜆3 = 𝛽2𝜇7
2 + 𝜇6

2;    𝜆4 = 𝛽2𝜇7
2 − 𝜇6

2                                 (41) 

 

 𝛿1 = 𝜇1
2 + 𝜇2

2;  𝛿2 = 𝜇1𝜇2 + 𝜇3𝜇4;   𝛿3 = 𝜇1𝜇3 + 𝜇2𝜇4    

                                                                                                                                               (42) 

 𝛿4 = 𝜇1𝜇4 + 𝜇2𝜇3;   𝛿5 = 𝜇1𝜇3 − 𝜇2𝜇4;   𝛿6 = 𝜇1𝜇4 − 𝜇2𝜇3 

 

 

𝜉1 = 𝛼𝜇2𝜇7 + 𝜇3𝜇6;  𝜉2 = 𝛼𝜇1𝜇7 − 𝜇3𝜇5;  𝜉3 = 𝛼𝜇3𝜇7 − 𝜇1𝜇5  

                                                                                                                                               (43) 

𝜉4 = 𝛼𝜇3𝜇7 − 𝜇2𝜇6;  𝜉5 = 𝛼𝜇1𝜇7 − 𝜇4𝜇6;   𝜉6 = 𝛼𝜇4𝜇7 + 𝜇1𝜇6 

 

𝜁1 = 𝛽𝜇2𝜇7 + 𝜇4𝜇6;  𝜁2 = 𝛽𝜇3𝜇7 + 𝜇1𝜇6;  𝜁3 = 𝛽𝜇1𝜇7 + 𝜇3𝜇6  

                                                                                                                                               (44) 

𝜁4 = 𝛽𝜇4𝜇7 + 𝜇2𝜇6;  𝜁5 = 𝛽𝜇2𝜇7 + 𝜇3𝜇5;  𝜁6 = 𝛽𝜇3𝜇7 − 𝜇2𝜇5;   𝜁7 = 𝛽𝜇2𝜇7 − 𝜇4𝜇6 

 

and 
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Λ1 = 𝛼2𝛽2𝜇7
2 +

𝛼2𝜇5

2
(𝜇5 + 2𝜇7)                  (45) 

Λ2 =
1

2𝛼𝛽𝛼1
(𝛼𝛼1𝛽

2𝛿6 + 𝛼2𝛼1𝛽𝛿3 − 𝛼1𝛼2𝛿2 − 2𝛼𝛽𝛾5)                        (46) 

Λ3 =
1

2𝛼𝛼1𝛽
(𝛼3𝛼6𝜇2𝜇5 + 𝛼2𝛼1𝛽

2𝛽2𝜇7 − 𝛼𝛼1𝛼2𝛽𝜇3𝜇5 − 𝛼𝛼1𝛼2𝛽𝜇3𝜇7 − 𝛼5𝛽
3𝜇1𝜇5)       (47) 

Λ4 =
1

2𝛼𝛽𝛼1
(𝛼3𝛼6𝜇2𝜇7 − 𝛼𝛼1𝛼2𝛽𝜇3𝜇7 − 𝛼2𝛼1𝛽𝜇2𝜇6 + 𝛼1𝛼2𝜇3𝜇6 − 𝛼𝛼1𝛽

2𝜇1𝜇6 −

𝛼5𝛽
3𝜇1𝜇7)                     (48) 

Λ5 = 𝜇6
2 +

𝛼2𝜇7(𝛼𝛽𝜇7−2𝜇6)

2𝛼𝛽
                     (49) 

Λ6 =
1

2𝛼𝛽𝛼1
(−𝛼𝛼1𝛽𝛽4𝜇7 + 𝛼1𝛼2𝜇4𝜇7 + 𝛼2𝛽1𝜇6 − 2𝛼𝛼1𝛽𝜇4𝜇6)    (50) 

 

4. Frequency-dependent elastic stiffness matrix 

 The frequency-dependent elastic stiffness matrix of an axially loaded beam follows from the 

procedure given by [7] 

𝐤𝐄(𝜔) = ∫ 𝐁T
𝑉

 𝐃 𝐁 𝑑𝑣 = 𝐸𝐼 ∫ 𝐁T𝐁
𝐿

0
𝑑𝑥 = 𝐸𝐼𝐿 ∫ 𝐁T𝐁d𝜉

1

0
               (51) 

where B matrix relates the strains within the element to nodal displacements, and D matrix 

defines the constitutive law, i.e., the stress-strain relationship and the integration is carried out 

throughout the volume of the element. For a beam element the D matrix is effectively the 

Young’s modulus E of the material and when the integration is carried out over the area of 

cross-section, the constant term EI appears outside the integration sign of Eq. (51). 

The B matrix in terms of the shape functions N1, N2, N3 and N4 is given by [7] 

𝐁 =
1

𝐿2 [
𝑑2𝑁1

𝑑𝜉2

𝑑2𝑁2

𝑑𝜉2

𝑑2𝑁3

𝑑𝜉2

𝑑2𝑁4

𝑑𝜉2 ] =
1

𝐿2
[𝑁1

′′(𝜉),𝑁2
′′(𝜉),𝑁3

′′(𝜉), 𝑁4
′′(𝜉)]             (52) 

  Thus, the frequency-dependent elastic stiffness matrix of Eq (51) can be written as  

𝐤E =
𝐸𝐼

𝐿3 ∫

[
 
 
 
𝑁1

′′

𝑁2
′′

𝑁3
′′

𝑁4
′′]
 
 
 
[𝑁1

′′ 𝑁2
′′ 𝑁3

′′ 𝑁4
′′]

1

0
𝑑𝜉 =

[
 
 
 
 
𝑘11

𝐸

𝑘21
𝐸

𝑘31
𝐸

𝑘41
𝐸

𝑘12
𝐸

𝑘22
𝐸

𝑘32
𝐸

𝑘42
𝐸

𝑘13
𝐸

𝑘23
𝐸

𝑘33
𝐸

𝑘43
𝐸

𝑘14
𝐸

𝑘24
𝐸

𝑘34
𝐸

𝑘44
𝐸 ]

 
 
 
 

             (53) 
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  By extensive algebraic manipulation using symbolic computation [31, 32], the individual 

elements of the frequency dependent elastic stiffness matrices kE were generated in explicit 

algebraic form. The final expressions for the elements are given below in concise form. 

𝑘11
𝐸 (𝜔) = 𝑘33

𝐸 (𝜔) = (
𝐸𝐼

𝐿3
)Ψ1 

𝑘12
𝐸 (𝜔) = 𝑘21

𝐸 (𝜔) = −𝑘34
𝐸 (𝜔) = −𝑘43

𝐸 (𝜔) = (
𝐸𝐼

𝐿3
)Ψ2𝐿 

𝑘13
𝐸 (𝜔) = 𝑘31

𝐸 (𝜔) = (
𝐸𝐼

𝐿3
)Ψ3 

𝑘14
𝐸 (𝜔) = 𝑘41

𝐸 (𝜔) = −𝑘23
𝐸 (𝜔) = −𝑘32

𝐸 (𝜔) = (
𝐸𝐼

𝐿3)Ψ4𝐿                                  (54) 

𝑘22
𝐸 (𝜔) = 𝑘44

𝐸 (𝜔) = (
𝐸𝐼

𝐿3
)Ψ5𝐿

2 

𝑘24
𝐸 (𝜔) = 𝑘42

𝐸 (𝜔) = (
𝐸𝐼

𝐿3
)Ψ6𝐿

2 

where 

Ψ1 = −𝛼2𝛽4𝜇5𝜇7𝐶𝛽
2 +

𝛼2𝛽3𝜆2

2
𝐶𝛽𝑆𝛽 +

2𝛼3𝛽4𝛾2

𝛼1
𝑆ℎ𝛼𝐶𝛽 + 𝛼4𝛽2𝜇5𝜇7𝐶ℎ𝛼

2 +
2𝛼4𝛽3𝜆1

𝛼1
𝐶ℎ𝛼𝑆𝛽 +

𝛼3𝛽2𝛾1

2
𝐶ℎ𝛼𝑆ℎ𝛼 + 2𝛼3𝛽3𝜇5𝜇7𝑆ℎ𝛼𝑆𝛽 + Γ1                    (55) 

Ψ2 =
𝛼𝛽3𝛿2

2
𝐶𝛽

2 −
𝛼2𝛽2𝛾5

𝛼1
𝐶ℎ𝛼𝐶𝛽 −

𝛼𝛽3𝛿5

2
𝐶𝛽𝑆𝛽 +

𝛼2𝛽2𝛽2𝛽6

𝛼1
𝑆ℎ𝛼𝐶𝛽 −

𝛼3𝛽𝛿2

2
𝐶ℎ𝛼

2 +
𝛼2𝛽2𝛽2𝛽3

𝛼1
𝐶ℎ𝛼𝑆𝛽 +

𝛼3𝛽𝛿4

2
𝐶ℎ𝛼𝑆ℎ𝛼 −

𝛼2𝛽2

𝛼1
(𝛼1𝜇3𝜇4 + 𝛼𝛽𝛿1)𝑆ℎ𝛼𝑆𝛽 + Γ2                  (56) 

Ψ3 =
𝛼2𝛽3𝜁6

2
𝐶𝛽

2 +
𝛼3𝛽3𝛽5𝜇5

𝛼1
𝐶ℎ𝛼𝐶𝛽 +

𝛼2𝛽3𝜁5

2
𝐶𝛽𝑆𝛽 +

𝛼3𝛽3

𝛼1
(𝛼𝛽2𝜇7 + 2𝛽𝜇3𝜇5)𝑆ℎ𝛼𝐶𝛽 −

𝛼3𝛽2𝜉3

2
𝐶ℎ𝛼

2 +

𝛼3𝛽3

𝛼1
(𝛽𝛽2𝜇7 − 2𝛼𝜇3𝜇5)𝐶ℎ𝛼𝑆𝛽 +

𝛼3𝛽2𝜉2

2
𝐶ℎ𝛼𝑆ℎ𝛼 −

𝛼3𝛽3

𝛼1
(𝛼1𝜇3𝜇7 − 𝛽1𝜇5)𝑆ℎ𝛼𝑆𝛽 + Γ3              (57) 

Ψ4 = −
𝛼𝛽3𝜉1

2
𝐶𝛽

2 +
𝛼3𝛽3𝛽5𝜇7

𝛼1
𝐶ℎ𝛼𝐶𝛽 +

𝛼𝛽3𝜉4

2
𝐶𝛽𝑆𝛽 −

𝛼3𝛽2

𝛼1
(𝛽2𝜇6 − 2𝛽2𝜇3𝜇7)𝑆ℎ𝛼𝐶𝛽 +

𝛼3𝛽𝜁3

2
𝐶ℎ𝛼

2 −

𝛼2𝛽3

𝛼1
(𝛽2𝜇6 + 2𝛼2𝜇3𝜇7)𝐶ℎ𝛼𝑆𝛽 −

𝛼3𝛽𝜁2

2
𝐶ℎ𝛼𝑆ℎ𝛼 +

𝛼2𝛽2

𝛼1
(𝛼𝛽𝛽1𝜇7 + 𝛼1𝜇3𝜇6)𝑆ℎ𝛼𝑆𝛽 + Γ4              (58) 

Ψ5 = 𝛼𝛽3𝜇6𝜇7𝐶𝛽
2 −

𝛽3𝛾4

2
𝐶𝛽𝑆𝛽 −

2𝛼3𝛽2𝜆4

𝛼1
𝑆ℎ𝛼𝐶𝛽 − 𝛼3𝛽𝜇6𝜇7𝐶ℎ𝛼

2 +
2𝛼2𝛽3𝛾3

𝛼1
𝐶ℎ𝛼𝑆𝛽 +

𝛼3𝜆3

2
𝐶ℎ𝛼𝑆ℎ𝛼 −

2𝛼2𝛽2𝜇6𝜇7𝑆ℎ𝛼𝑆𝛽 + Γ5                      (59) 

Ψ6 = −
𝛽3𝜉6

2
𝐶𝛽

2 +
𝛼2𝛽2𝛽5𝜇6

𝛼1
𝐶ℎ𝛼𝐶𝛽 +

𝛽3𝜉5

2
𝐶𝛽𝑆𝛽 +

𝛼2𝛽2

𝛼1
(𝛽𝛽2𝜇7 − 2𝛼𝜇4𝜇6)𝑆ℎ𝛼𝐶𝛽 +

𝛼3𝜁4

2
𝐶ℎ𝛼

2 −

𝛼2𝛽2

𝛼1
(𝛼𝛽2𝜇7 + 2𝛽𝜇4𝜇6)𝐶ℎ𝛼𝑆𝛽 −

𝛼3𝜁1

2
𝐶ℎ𝛼𝑆ℎ𝛼 +

𝛼2𝛽2

𝛼1
(𝛼1𝜇4𝜇7 + 𝛽1𝜇6)𝑆ℎ𝛼𝑆𝛽 + Γ6              (60) 
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with 

Γ1 =
𝛼2𝛽2

2
(𝛼3𝜇7

2 − 𝛼2𝜇5
2 − 2𝛼2𝜇5𝜇7)                    (61) 

Γ2 =
𝛼𝛽

2𝛼1
(𝛼3𝛼1𝛿6 + 𝛼1𝛼2𝛿2 + 2𝛼𝛽𝛾5 + 𝛼1𝛽

3𝛿3)                  (62) 

Γ3 =
𝛼2𝛽2

2𝛼1
{𝛼1𝜇7(𝛼

3𝜇1 + 𝛽3𝜇2) + 𝛼1𝛼2𝜇3(𝜇5 + 𝜇7) − 𝛼2𝜇5𝛽1}                 (63) 

Γ4 =
𝛼𝛽

2𝛼1
{−𝛼1𝜇6(𝛼

3𝜇1 + 𝛽3𝜇2) − 𝛼𝛼2𝛽𝛽1𝜇7 + 𝛼1𝛼2(𝛼𝛽𝜇3𝜇7 − 𝜇3𝜇6)}               (64) 

Γ5 =
1

2
(𝛼3𝜇6

2 − 𝛼2𝛼2𝛽
2𝜇7

2 + 2𝛼𝛼2𝛽𝜇6𝜇7)                   (65) 

Γ6 =
1

2𝛼1
{𝛼𝛼1𝛽𝜇7(𝛼

3𝜇2 − 𝛽3𝜇1) − 𝛼1𝜇4𝜇6(𝛼
4 + 𝛽4) − 𝛼3𝛼6𝜇2𝜇6 + 𝛼5𝛽

3𝜇1𝜇6 − 𝛼𝛼1𝛼2𝛽𝜇4𝜇7}        (66) 

and the rest of the terms in Eqs. (55)- (66) have already been defined by Eqs. (38)-(44) in 

Section 3. 

 

5. Frequency-dependent geometric stiffness matrix 

  The geometric stiffness matrix of a beam of length L under the action of a compressive load 

P in terms of the shape functions N1, N2, N3 and N4, is given by  

 

𝐤G = −
𝑃

𝐿
∫

[
 
 
 
𝑁1

′

𝑁2
′

𝑁3
′

𝑁4
′]
 
 
 

1

0
[𝑁1

′ 𝑁2
′ 𝑁3

′ 𝑁4
′]𝑑𝜉 =

[
 
 
 
 
𝑘11

𝐺

𝑘21
𝐺

𝑘31
𝐺

𝑘41
𝐺

𝑘12
𝐺

𝑘22
𝐺

𝑘32
𝐺

𝑘42
𝐺

𝑘13
𝐺

𝑘23
𝐺

𝑘33
𝐺

𝑘43
𝐺

𝑘14
𝐺

𝑘24
𝐺

𝑘34
𝐺

𝑘44
𝐺 ]

 
 
 
 

             (67) 

 

 Note that the negative sign in front of Eq. (67) arises because compressive force has been taken 

to be positive in this paper. 

  Substituting the expressions for the shape functions from Eqs. (18)-(21) into Eq. (67) and 

performing the differentiation and integration algebraically through the application of symbolic 

computation [32], yielded the terms of the geometric stiffness matrix explicitly and concisely, 

as follows. 
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𝑘11
𝐺 = 𝑘33

𝐺 = −
𝑃

𝐿
Θ1 

𝑘12
𝐺 (𝜔) = 𝑘21

𝐺 (𝜔) = −𝑘34
𝐺 (𝜔) = −𝑘43

𝐺 (𝜔) = −
𝑃

𝐿
Θ2𝐿 

𝑘13
𝐺 (𝜔) = 𝑘31

𝐺 (𝜔) = −(
𝑃

𝐿
)Θ3 

𝑘14
𝐺 (𝜔) = 𝑘41

𝐺 (𝜔) = −𝑘23
𝐺 (𝜔) = −(

𝑃

𝐿
)Θ4𝐿                        (68) 

𝑘22
𝐺 (𝜔) = 𝑘44

𝐺 (𝜔) = −(
𝑃

𝐿
)Θ5𝐿

2 

𝑘24
𝐺 (𝜔) = 𝑘42

𝐺 (𝜔) = −(
𝑃

𝐿
)Θ6𝐿

2 

where 

Θ1 = 𝛼2𝛽2𝜇5𝜇7𝐶𝛽
2 − 2𝛼2𝛽2𝜇5𝜇7𝐶ℎ𝛼𝐶𝛽 −

𝛼2𝛽𝜆2

2
𝐶𝛽𝑆𝛽 −

2𝛼3𝛽2𝜆1

𝛼1
𝑆ℎ𝛼𝐶𝛽 + 𝛼2𝛽2𝜇5𝜇7𝐶ℎ𝛼

2 +

2𝛼2𝛽3𝛾2

𝛼1
𝐶ℎ𝛼𝑆𝛽 +

𝛼𝛽2𝛾1

2
𝐶ℎ𝛼𝑆ℎ𝛼 + Σ1                   (69) 

Θ2 = −
𝛼𝛽𝛿2

2
𝐶𝛽

2 +
𝛼𝛽

𝛼1
(𝛼1𝜇3𝜇4 + 𝛼𝛽𝛿1)𝐶ℎ𝛼𝐶𝛽 +

𝛼𝛽𝛿5

2
𝐶𝛽𝑆𝛽 −

𝛼𝛽𝛽2𝛽3

𝛼1
𝑆ℎ𝛼𝐶𝛽 −

𝛼𝛽𝛿2

2
𝐶ℎ𝛼

2 +

𝛼𝛽𝛽2𝛽6

𝛼1
𝐶ℎ𝛼𝑆𝛽 +

𝛼𝛽𝛿4

2
𝐶ℎ𝛼𝑆ℎ𝛼 −

𝛼𝛽𝛾5

𝛼1
𝑆ℎ𝛼𝑆𝛽 + Σ2                  (70) 

Θ3 = −
𝛼2𝛽𝜁6

2
𝐶𝛽

2 +
𝛼2𝛽2

𝛼1
(𝛼1𝜇3𝜇7 − 𝛽1𝜇5)𝐶ℎ𝛼𝐶𝛽 −

𝛼2𝛽𝜁5

2
𝐶𝛽𝑆𝛽 +

𝛼2𝛽2

𝛼1
(2𝛼𝜇3𝜇5 − 𝛽𝛽2𝜇7)𝑆ℎ𝛼𝐶𝛽 −

𝛼𝛽2𝜉3

2
𝐶ℎ𝛼

2 +
𝛼2𝛽2

𝛼1
(𝛼𝛽2𝜇7 + 2𝛽𝜇3𝜇5)𝐶ℎ𝛼𝑆𝛽 +

𝛼𝛽2𝜉2

2
𝐶ℎ𝛼𝑆ℎ𝛼 +

𝛼2𝛽2𝛽5𝜇5

𝛼1
𝑆ℎ𝛼𝑆𝛽 + Σ3             (71) 

Θ4 =
𝛼𝛽𝜉1

2
𝐶𝛽

2 −
𝛼𝛽

𝛼1
(𝛼1𝜇3𝜇6 + 𝛼𝛽𝛽1𝜇7)𝐶ℎ𝛼𝐶𝛽 −

𝛼𝛽𝜉4

2
𝐶𝛽𝑆𝛽 +

𝛼𝛽2

𝛼1
(2𝛼2𝜇3𝜇7 + 𝛽2𝜇6)𝑆ℎ𝛼𝐶𝛽 +

𝛼𝛽𝜁3

2
𝐶ℎ𝛼

2 +
𝛼2𝛽

𝛼1
(2𝛽2𝜇3𝜇7 − 𝛽2𝜇6)𝐶ℎ𝛼𝑆𝛽 −

𝛼𝛽𝜁2

2
𝐶ℎ𝛼𝑆ℎ𝛼 +

𝛼2𝛽2𝛽5𝜇7

𝛼1
𝑆ℎ𝛼𝑆𝛽 + Σ4              (72) 

Θ5 = −𝛼𝛽𝜇6𝜇7𝐶𝛽
2 + 2𝛼𝛽𝜇6𝜇7𝐶ℎ𝛼𝐶𝛽 +

𝛽𝛾4

2
𝐶𝛽𝑆𝛽 −

2𝛼𝛽2𝛾3

𝛼1
𝑆ℎ𝛼𝐶𝛽 − 𝛼𝛽𝜇6𝜇7𝐶ℎ𝛼

2 −
2𝛼2𝛽𝜆4

𝛼1
𝐶ℎ𝛼𝑆𝛽 +

𝛼𝜆3

2
𝐶ℎ𝛼𝑆ℎ𝛼 + Σ5                     (73) 

Θ6 =
𝛽𝜉6

2
𝐶𝛽

2 −
𝛼𝛽

𝛼1
(𝛼1𝜇4𝜇7 + 𝛽1𝜇6)𝐶ℎ𝛼𝐶𝛽 −

𝛽𝜉5

2
𝐶𝛽𝑆𝛽 +

𝛼𝛽

𝛼1
(𝛼𝛽2𝜇7 + 2𝛽𝜇4𝜇6)𝑆ℎ𝛼𝐶𝛽 +

𝛼𝜁4

2
𝐶ℎ𝛼

2 −
𝛼𝛽

𝛼1
(2𝛼𝜇4𝜇6 − 𝛽𝛽2𝜇7)𝐶ℎ𝛼𝑆𝛽 −

𝛼𝜁1

2
𝐶ℎ𝛼𝑆ℎ𝛼 +

𝛼𝛽𝛽5𝜇6

𝛼1
𝑆ℎ𝛼𝑆𝛽 + Σ6             (74) 

 

with 
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Σ1 =
𝛼2𝛽2

2
(2𝜇5

2 − 𝛼2𝜇7
2)                   (75) 

Σ2 =
𝛼𝛽

2𝛼1
(2𝛼1𝜇1𝜇2 + 𝛼1𝛽𝛿3 − 𝛼𝛼1𝛿6 − 2𝛼𝛽𝛿1)                (76) 

Σ3 = −
𝛼𝛽

2𝛼1
(𝛼𝛼1𝛽𝛽4𝜇7 + 𝛼2𝛽5𝜇5 + 2𝛼𝛼1𝛽𝜇3𝜇5)                (77) 

Σ4 =
𝛼𝛽

2𝛼1
(𝛼1𝛽4𝜇6 − 𝛼2𝛽5𝜇7 − 2𝛼𝛼1𝛽𝜇3𝜇7)                 (78) 

Σ5 = 𝛼2𝛽2𝜇7
2 −

𝛼2𝜇6
2

2
                     (79) 

Σ6 =
1

2𝛼1
(𝛼1𝛼2𝜇4𝜇6 − 𝛼𝛼1𝛽𝛽2𝜇7 − 𝛼2𝛽5𝜇6)                  (80) 

and the rest of the terms in Eqs. (69)- (80) have already been defined by Eqs. (38)-(44) in 

Section 3. 

6. Application of the frequency-dependent mass, elastic and geometric stiffness matrices 

  The above theory can now be applied either to an individual axially loaded beam or to a 

framework containing such beams when investing the free vibration characteristics. This can 

be achieved by utilizing the Wittrick-Williams algorithm [15] which is well-suited as a solution 

technique in exact free vibration analysis. However, when analysing a framework, the 

frequency-dependent mass and stiffness matrices in axial motion [1, 7] are needed which are 

given in Appendix A. Therefore, by using standard coordinate transformation, the frequency 

dependent mass, elastic and geometric stiffness matrices of each member in a frame can be 

assembled, prior to the application of the Wittrick-Williams algorithm, for the subsequent 

determination of the natural frequencies.  

  It should be noted that in the limiting case when the frequency  tends to zero, the frequency-

dependent mass, elastic and geometric stiffness matrices given in Sections 3, 4 and 5, converge 

to the corresponding frequency-independent mass, elastic and geometric stiffness matrices of 

the traditional FEM. However, in the expressions for the mass, elastic and geometric stiffness 

elements given in Eqs. (31)-(50), Eqs. (54)-(66), and Eqs. (68)-(80), the frequency  must not 

be set to exactly zero, but a small value e.g.,  = 10-5 rad/s can be used for practical problems 

so that numerical overflow or ill-conditioning can be avoided and yet the degenerate case of 

the frequency-independent mass, elastic and geometric stiffness matrices can be obtained. 

These matrices resulting from the degenerate case of the present theory by using a negligibly 

small frequency () were checked against the frequency-independent mass, elastic and 

geometric stiffness matrices which are generally utilised in FEM and available in the literature 

[1]. When validating some results by using FEM, these matrices were used (see Appendix B). 
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  The frequency-dependent mass, elastic and geometric stiffness matrices for an axially loaded 

beam m(), kE() and kG() derived in Sections 3, 4 and 5 can be related to its dynamic 

stiffness matrix kD() using the following relationship. 

𝐤𝐃(𝜔) = 𝐤𝐄(𝜔) + 𝐤𝐆(𝜔) − 𝜔2𝐦(𝜔)             (81) 

  Once the dynamic stiffness matrix of an axially loaded beam element is established using 

Eq. (81), the Wittrick-Williams algorithm as solution technique, can be applied to carry out 

the free vibration analysis.  For the general case of a frame, the frequency-dependent mass, 

elastic and geometric stiffness matrices for all individual elements in the frame, should be 

assembled using conventional transformation technique based on the orientation of the 

elements, as commonly employed in FEM. Thus, the overall frequency-dependent mass, 

elastic and geometric stiffness matrices M(), KE() and KG() and hence the overall master 

dynamic stiffness matrix KD() of the final structure can be obtained, as follows. 

𝐊𝐃(𝜔) = 𝐊𝐄(𝜔) + 𝐊𝐆(𝜔) − 𝜔2𝐌(𝜔)              (82) 

  As mentioned earlier, the best way to solve the eigen-value problem represented by Eq. (82) 

is to apply the well-established algorithm of Wittrick and Williams [15] to determine the 

natural frequencies and the subsequent mode shapes of the structure. The Wittrick-Williams 

algorithm has widespread coverage in the literature with literally hundreds of papers published 

on the subject, see for example [17-20]. In many ways, the dynamic stiffness method and the 

Wittrick-Williams algorithm are permanently entangled with each other, as evident from the 

literature [17-20]. The working principle of the algorithm is essentially based on two factors 

which govern the solution technique. These factors known as (i) the sign-count s{KD} and (ii) 

the j0 count, are briefly explained below.  

  If  denotes the circular (or angular) frequency of a vibrating structure, then according to the 

Wittrick-Williams algorithm, j, the number of natural frequencies passed, as  is increased 

from zero to , is given by 

 

j = j0 + s{KD}                              (83) 

 

where KD, the overall dynamic stiffness matrix of the final structure whose elements all depend 

on  is evaluated at  =   s{KD}, the sign count, is the number of negative elements on the 

leading diagonal of KD
  KD

 is the upper triangular matrix obtained by applying the usual 
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form of Gauss elimination to KD , and j0 is the number of natural frequencies of the structure 

still lying between   = 0 and  = when the displacement components to which KD 

corresponds are all zeros. (Note that the structure can still have natural frequencies when all its 

nodes are clamped, because exact member equations allow each individual member to displace 

between nodes with an infinite number of degrees of freedom, and hence an infinite number of 

natural frequencies between nodes.) Thus 

   mjj =0                              (84) 

where jm is the number of natural frequencies between   = 0 and  = for a component 

member with its ends fully clamped, while the summation extends over all members of the 

structure. The clamped-clamped natural frequencies of an individual member are given by the 

determinant of its dynamic stiffness matrix KD() given by Eq. (82). Thus, with the knowledge 

of Eqs. (83) and (84), it is possible to ascertain how many natural frequencies of a structure lie 

below an arbitrarily chosen trial frequency. This simple feature of the algorithm (coupled with 

the fact that successive trial frequencies can be chosen to bracket a natural frequency) can be 

used to converge upon any required natural frequency to any desired accuracy.  

 

7. Numerical results and discussion 

  The theory developed above was applied to a wide range of problems and it was ascertained 

that the frequency-dependent mass, elastic and geometric stiffness matrices give the same 

results that can be obtained by the conventional dynamic stiffness method which uses a single 

matrix containing the mass, elastic and geometric stiffness properties, rather than using them 

separately. Only selective results using some illustrative examples are presented here. The first 

example focuses on the free vibration behaviour of an axially loaded beam with clamped-free 

(C-F) pinned-pinned (P-P) and clamped-clamped (C-C) boundary conditions and under the 

action of both compressive and tensile loads. Deriving the frequency equation of the beam for 

each of the above boundary conditions, Amba-Rao [33] investigated the problem by 

considering only the compressive load, and his method is applicable to a single column and 

cannot be applied to frameworks. He presented results up to four significant figures for the 

fundamental natural frequency of the column in non-dimensional form for a range of 

compressive loads expressed as a fraction of the corresponding critical buckling load. For 

comparison purposes, matching results with compressive loads as well as additional results 

with tensile loads were computed using the present theory utilising frequency-dependent mass, 

elastic and geometric stiffness matrices and the Wittrick-Williams algorithm. The results are 
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shown in Table 1 for representative values of axial force ratios relative to the critical buckling 

load. The results for the compressive loads agreed very well (up to three to four significant 

figures) with those reported by Amba-Rao [33] and the results for the tensile loads were 

checked using the well-established computer program BUNVIS-RG [34] based on the dynamic 

stiffness method, and complete agreement of results was found. Note that when obtaining the 

results for the axial force ratio P/Pcr= 1, using the present theory, the axial load P was taken to 

be 99.9% of the critical buckling load Pcr, rather than 100%. This was necessary to avoid any 

numerical overflow or ill-conditioning in the computed results. The fundamental natural 

frequency converged very close to zero for P/Pcr= 0.999.  An illustration of the effect of the 

axial load and the subsequent trend of the fundamental natural frequency variation is shown in 

Fig. 3. The right-hand side of the figure which is for the compressive loads agreed with the one 

illustrated by Amba-Rao [33], within the plotting accuracy, whereas the left-hand side of the 

figure corresponding to tensile loads was further checked using BUNVIS-RG [34]. Clearly, as 

evident from Fig. 3, when the axial load approaches the critical buckling load, the fundamental 

natural frequency for each of the three boundary conditions tends to zero, indicating the duality 

between the vibration and buckling problems. 

Table 1 Fundamental natural frequency of an axially loaded beam for different boundary conditions. 

Boundary 

conditions 

Non-dimensional fundamental natural frequency (𝜔1√
𝜌𝐴𝐿4

𝐸𝐼
) 

P/Pcr 

-1.0 -0.8 -0.4 -0.2 0.0 0.2 0.4 0.8 1.0 

CF 4.8147 4.5946 4.1032 3.8245 3.5160 3.1682 2.7652 1.6237 0.000 

PP 13.958 13.241 11.678 10.812 9.8696 8.8276 7.6450 4.4138 0.000 

CC 31.249 29.709 26.327 24.439 22.373 20.073 17.442 10.148 0.000 
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Fig. 3. The effect of axial load on the fundamental natural frequency of a Bernoulli Euler 

beam for different boundary conditions.                     CC;                 PP;                   CF 

  The next example is a cantilever stepped beam comprising two parts, as shown in Fig. 4. The 

first part AB has a flexural rigidity EI and length aL where a is a constant and L is the total 

length of the beam whereas the second part BC has a flexural rigidity k2EI and length L(1-a). 

(Note that k2EI is taken as the flexural rigidity of the part BC only for convenience of presenting 

results.). The critical buckling load (Pcr) of the stepped beam was established for different 

values of a and k using the theory developed in Appendix C. For k =1 and 0 < a <1, numerical 

results for the critical buckling load Pcr of the stepped column given by the theory of Appendix 

C reduced to the degenerate case of a uniform cantilever column verifying that 𝑃𝑐𝑟 =
𝜋2𝐸𝐼

4𝐿2
 for 

k=1. Now, representative results for a=0.5 and 0.75, and k =1.5 and 2 are shown in Table 2. 

 

 

         P 

                                    aL 

                                                     L 

Fig. 4. A cantilever stepped beam under the action of a compressive axial load P 
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Table 2 Critical buckling load of a cantilever stepped column.  

a k 𝑃𝑐𝑟/(𝜋
2𝐸𝐼/4𝐿2) 

0.5 
1.5 1.8071 

2.0 2.4565 

0.75 
1.5 1.3426 

2.0 1.5114 

 

  Although the results given in non-dimensional form in Table 2 are useful in that they can be 

applied universally, regardless of specific numerical values for a, k, EI and L in any unit, it 

would be instructive to give some numerical results in dimensional form, particularly for those 

interested readers who wish to develop the current theory further and wish to check their own 

computer programs. Thus, the illustrative example of the stepped beam shown Fig. 4 is given 

the following numerical data. The beam is made of steel with Young’s modules E = 200 GPa 

and density  = 7850 kg/m3. Both parts AB and BC of the beam (see Fig. 4) are of solid circular 

cross-sections with diameters 0.02m and 0.0.03m, respectively, which gave k = 2.25. The 

length of the full beam L and the parameter a are set to 1.25m 0.5, respectively. Using the 

buckling theory given in Appendix C, the critical buckling load of the stepped beam was 

established at Pcr=6702.77 N.  Next, the first five natural frequencies were computed using the 

current theory for a range of compressive and tensile loads expressed as fractions of the critical 

buckling load Pcr. Representative results are shown in Table 3. As expected, the natural 

frequencies increase with tensile load whereas they diminish with compressive loads. 

Table 3 Natural frequencies of stepped beam carrying tensile and compressive loads 

Natural 

Frequency 

Number 

(i)  

Natural frequency i (rad/s) 

P/Pcr 

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 

1 141.837 135.864 129.275 121.906 113.515 103.736 91.9559 77.0060 55.9705 

2 474.235 463.052 451.479 439.491 427.066 414.181 400.818 386.963 372.613 

3 1299.33 1288.79 1278.12 1267.33 1256.41 1245.37 1234.20 1222.90 1211.47 

4 2335.06 2325.70 2316.31 2306.90 2297.44 2287.96 2278.45 2268.90 2259.32 

5 4011.65 4001.87 3992.07 3982.23 3972.36 3962.46 3952.53 3942.56 3932.56 
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  The variation of the fundamental natural frequency of the cantilever stepped beam for a range 

of tensile and compressive loads is shown in Fig. 5. Clearly, the figure shows very similar trend 

observed for a uniformed beam (see Fig. 3). The fundamental natural frequency of the stepped 

cantilever beam reduces with compressive load and eventually becomes zero when buckling 

load is reached, i.e. when P/Pcr = 1, as shown in Fig. 5. 

 

Fig. 5. Variation of the fundamental natural frequency (1) of stepped beam against the axial 

load ratio (P/Pcr).  

 

  To validate the accuracy of the present theory, the stepped beam of Fig. 4 was further 

investigated by using FEM which relies on frequency-independent mass, elastic, and geometric 

stiffness matrices (see Appendix B). In the FEM analysis, 2, 4 and 10 element idealisations of 

the stepped beam were used to determine its natural frequencies. In the 2-element idealisation, 

each part of the beam (AB and BC) was treated as a single element whereas in the 4 and 10 

element idealisations, each of the two parts was divided into 2 and 5 elements of equal lengths, 

respectively. Clearly, only 2 elements were needed in the present theory to achieve any desired 

accuracy because unlike FEM, the present theory is exact and thus, further discretisation of the 

stepped beam was unnecessary to improve the accuracy. The first five natural frequencies of 

the stepped beam using the present theory and the FEM are shown in Table 4 when both tensile 

and compressive forces in the stepped beam was set to 50% of its critical buckling load Pcr. 
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Table 4 Comparative results using finite element method for natural frequencies of stepped 

cantilever beam of Fig. 4 (N = Number of elements used in the finite element method) 

 

Natural 

Frequency 

Number (i) 

Natural frequency i (rad/s) 

P = 0.5Pcr P = -0.5Pcr 

Current 

Theory 

Finite Element Method  Current 

theory 

Finite Element Method 

N=2 N=4 N=10 N=2 N=4 N=10 

1 84.990 85.012 84.993 84.990 132.66 133.03 132.68 132.66 

2 393.95 396.92 394.42 393.96 457.32 460.16 457.88 457.33 

3 1228.6 1568.8 1237.4 1228.9 1283.5 1618.7 1293.0 1283.9 

4 2273.7 3535.0 2311.6 2275.8 2321.0 3603.6 2356.0 2323.2 

5 3947.5 7374.7 4563.3 3958.8 3996.5 7374.7 4610.9 4008.2 

 

  As can be seen from Table 4, when 2-element idealisation was used (N=2), FEM gave 

practically good results for the first two natural frequencies, but unacceptably poor results were 

generated by FEM for the 3rd, 4th and 5th natural frequencies. The accuracy of the 3rd and 4th 

natural frequency improved considerably when 4 elements were used, but the 5th natural 

frequency was not so accurate. However, when the number of element (N) was increased to 10 

in the FEM analysis, almost comparable results with the present theory was achieved, as can 

be seen in Table 4.  Although the first five natural frequencies computed using FEM for N=10 

agreed very well with those obtained from the present theory, it should nevertheless, be noted 

that in the much higher frequency range, FEM results are expected to be considerably less 

accurate and perhaps FEM might become unreliable. This is against the background that modal 

analysis in the high frequency range which is often required as an important prerequisite in the 

statistical energy analysis (SEA) method. It is well-known that he modal density of structures 

in the high frequency range is usually very high [35-38]. Furthermore, the need for high 

frequency vibration analysis of classical structures like beams with great accuracy is significant 

when carrying out energy flow analysis [39, 40]. For such applications, the traditional FEM 

which is generally most effective within low and medium frequency range, may be totally 

inadequate. 
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  The next set of results was computed for a portal frame shown in Fig. 6 for which the free 

vibration behaviour was investigated by Doyle [41] who by developing an approximate 

modification of the stiffness and carry-over factor for the axial load arrived at the frequency 

equation of the portal frame. The portal frame used by Doyle [41] is of single bay and single 

storey with each of the two columns (stanchions) has a length L and the beam has a length 1.5L.  

The flexural rigidity EI was taken to be constant throughout for all three members which were 

assumed to be in-extensional, i.e., their axial or extensional rigidity (EA) considered to be 

infinite. From a computational point of view, when analysing the portal frame using the present 

theory, the axial rigidity (EA) for all three members was set to a very large number to make 

them inextensible so that results become directly comparable with those of Doyle [41]. 

                                            P                                                P 

 

 

 

 

                                                                 1.5L 

                                                Fig. 6. A Portal frame.  

  To be consistent with the results presented by Doyle [41], the fundamental natural frequency 

of the portal frame shown in Fig. 6 was computed for a wide range of the ratio R = P/Pe where 

P is the applied compressive load and Pe is the Euler load given by 𝑃𝑒 =
𝜋2𝐸𝐼

𝐿2 . It is intriguingly 

fascinating to note that by retaining only the first order terms, Doyle [41] managed to derive a 

linear relationship between the non-dimensional fundamental natural frequency �̅�1 = 𝜔1√
𝜌𝐴𝐿4

𝐸𝐼
 

of the portal frame and the load ratio P/Pe. The relationship is approximate, but nevertheless, 

very useful to provide some practical estimate of the fundamental natural frequency. The 

relationship is given by (see Doyle’s equation (36)) 

𝑅

0.61
+

�̅�1

7.015
= 1                (84) 

 

L 



25 
 

  Doyle [41] plotted �̅�1 against P/Pe  and showed the linear relationship by a straight line joining 

the coordinates (7.015,0) and (0.61, 0) in his graph, see his Fig. 4. (Note that there is a 

typographical error in Doyle’s figure in that the horizonal axis should be labelled P/Pe instead 

of P.) By applying the exact theory of this paper, the plot of �̅�1 against P/Pe is shown in Fig. 7 

alongside the graph of Doyle [41]. For the portal frame analysed, Doyle’s relationship between 

the fundamental natural frequency (�̅�1) and the load ratio (P/Pe) appears to have worked 

reasonably well for lower values of P/Pe ratio, but the error increases for larger values of the 

ratio P/Pe as evident from Fig. 7. 

 

Fig. 7. The effect of loading on the fundamental natural frequency of portal frame. 

                                  Current theory,                                        Doyle [41] 
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  The final illustrative example is that of a plane frame shown in Fig. 8 with its principal 

dimensions.  The node at A is fully fixed, i.e., built-in whereas node at B has a roller support 

which prevents horizonal motion but allows vertical motion and rotation. The rest of the nodes 

are free. Each of the nine members of the frame has the same bending rigidity EI =5×106 Nm2, 

axial rigidity EA = 9×108 N and mass per unit length A = 35 kg/m. The horizontal members 

AC, BD, CE and DF carry a compressive axial force of 4EI/l2 , the diagonal members BC and 

CF carry a tensile axial force of 5EI/l2 , where l is the length of the member concerned, and the 

vertical members AB, CD and EF are unloaded. The first five natural frequencies of the frame 

were computed applying the frequency dependent mass, elastic and geometric stiffness 

matrices developed in this paper. These natural frequencies were also computed by using the 

commercial FEM software ABAQUS [42]. When computing the FEM results using ABAQUS, 

9, 20, 35, 70 and 140 element idealisations were used. In the 9-element idealisation, each 

member (beam) of the frame was a single element. Then, each member was split into several 

elements of equal lengths so that the total number of elements used (N) in the analysis were 20, 

30, 70 and 140, respectively. For N=20, each of the horizonal members (AC, CE, BD and DF) 

were divided into 2 elements, each of the vertical members (AB, CD and EF) were divided into 

2 elements and each of the diagonal members (BC and CF) were divided into 3 elements. The 

corresponding numbers for the discretisation of the horizontal, vertical and diagonal members 

were 4, 3 and 5 for N=35; 8, 6 and 10 for N=70; and 16, 12 and 20 for N=140. respectively. 

The first five natural frequencies of the frame using the present theory and ABAQUS [42] are 

shown in Table 5.  

 

 

 

 

 

 

 

                                    4m                            4m 

 

Fig. 8. A plane frame comprising axially loaded and unloaded beams for free vibration analysis 

using frequency-dependent mass, elastic, and geometric stiffness matrices. 
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Table 5 Natural frequencies of plane frame using current theory and ABAQUS [42]  

(N = Number of elements used in ABAQUS) 

Natural  

Frequency 

Number (i) 

Natural Frequencies i (rad/s) 

Current 

Theory 

ABAQUS Results 

N=9 N=20 N=35 N=70 N=140 

1 159.03 166.34 160.85 160.69 160.67 160.67 

2 259.26 376.60 270.57 269.90 269.81 269.81 

3 297.59 395.73 313.04 311.66 311.53 311.52 

4 324.49 526.14 362.51 360.22 360.00 360.00 

5 406.47 603.68 428.76 424.27 423.94 423.93 

 

  The results of Table 5 indicate that 9-element idealisation in ABAQUS (N=9) gives 4.6% 

error in the fundamental natural frequency when compared with the exact result of the current 

theory which also used 9 elements in the analysis, but the errors incurred in the 2nd, 3rd, 4th and 

5th natural frequencies using ABAQUS are 45.3%, 33%, 62% and 48.5%, respectively. This is 

unacceptably bad. When 20-element idealisation was used the errors in the five natural 

frequencies diminished to 1.14%, 4.36, 5.22%, 11.7% and 5.48%, respectively. As expected, 

with increasing number of elements, the results gradually converged towards exact results of 

the current theory, and N=140 gave sufficiently close results, seeTable 5. Clearly in the high 

frequency range, finite element results will be considerably less accurate and may not be 

suitable for statistical energy analysis [35-38]. The exact results of Table 5 have been further 

validated by the computer program BUNVIS-RG [34] based on the dynamic stiffness method. 

 

8. Conclusions 

  Through rigorous application of symbolic computation, the frequency-dependent mass, 

elastic, and geometric stiffness matrices of an axially loaded Bernoulli-Euler beam have been 

derived and their relationship with the corresponding dynamic stiffness matrix has been 

established. The investigation allows exact free vibration analysis of axially loaded beams and 

frameworks, but importantly, it paves the way for the inclusion of damping, e.g., proportional 

or modal damping, in exact free vibration analysis of such structures using the dynamic 

stiffness method, which has not been possible before. Several illustrative examples by applying 

the Wittrick-Williams algorithm are given to demonstrate the capability of the theory which 

has been verified by finite element results. 



28 
 

Acknowledgement 

The author is grateful to EPSRC, UK for an earlier grant (GR/R21875/01) and to Leverhulme 

Trust, UK for a recent grant (EM-2019-061) which made this work possible. The author 

thankfully appreciates the help given by Professor Alfonso Pagani, Department of Mechanical 

and Aerospace Engineering, Polytechnic of Turin, Italy (who was his former PhD student at 

City, University of London) when computing the ABAQUS results. 

 

Appendix A: Frequency-dependent mass and stiffness matrices of a beam in axial motion 

  The frequency-dependent mass and stiffness matrices of a beam in axial motion are available 

in the literature [1, 7] and therefore, the details of their derivation are not given here, but the 

final results for the two matrices ma() and ka() of the beam with axial rigidity EA, mass per 

unit length A and length L, are given below. Note that these matrices in axial motion can be 

combined with the corresponding matrices in flexural motion derived in Sections 3-5. 

𝐦𝐚(𝜔) == [
𝑚11

𝑎 𝑚12
𝑎

𝑚21
𝑎 𝑚22

𝑎 ]                 (A1) 

𝐤𝐚(𝜔) =  [
𝑘11

𝑎 𝑘12
𝑎

𝑘21
𝑎 𝑘22

𝑎 ]                 (A2) 

where 

𝑚11
𝑎 (𝜔) = 𝑚22

𝑎 (𝜔) =
𝜌𝐴𝐿𝑐

2𝜔
cosec

𝜔

𝑐
(
𝜔

𝑐
cosec

𝜔

𝑐
− cos

𝜔

𝑐
)             (A3) 

                               𝑚12
𝑎 (𝜔) = 𝑚21

𝑎 (𝜔) =  
𝜌𝐴𝐿𝑐

2𝜔
cosec

𝜔

𝑐
(1 −

𝜔

𝑐
cot

𝜔

𝑐
)             (A4) 

𝑘11
𝑎 (𝜔) = 𝑘22

𝑎 (𝜔) =
𝐸𝐴𝜔

2𝐿𝑐
cosec

𝜔

𝑐
(
𝜔

𝑐
cosec

𝜔

𝑐
+ cos

𝜔

𝑐
)             (A5) 

                         𝑘12
𝑎 (𝜔) = 𝑘21

𝑎 (𝜔) = −
𝐸𝐴𝜔

2𝐿𝑐
cosec

𝜔

𝑐
(1 +

𝜔

𝑐
cot

𝜔

𝑐
)                                    (A6) 

with c given by 

𝑐2 =
𝐸𝐴

𝜌𝐴𝐿2
                   (A7) 
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Appendix B: Frequency-independent mass, elastic and geometric stiffness matrices 

  Referring to Fig.1, the frequency-independent mass (m0), elastic (𝐤𝟎
𝐄) and geometric (𝐤𝟎

𝐆)  

stiffness matrices for a beam that are generally used in the finite element method are given in 

the usual notation by [1] 

𝐦𝟎 =
𝜌𝐴𝐿

420
[

156   
22𝐿
54

−13𝐿

22𝐿 
4𝐿2

13𝐿
−3𝐿2

  54  
13𝐿
156

−22𝐿

 

 −13𝐿
−3𝐿2

−22𝐿
4𝐿2

]                   (B1) 

𝐤𝟎
𝐄 =

𝐸𝐼

𝐿3 [

12
6𝐿

−12
6𝐿

  

  6𝐿  

 
4𝐿2 
−6𝐿
2𝐿2   

−12
−6𝐿
  12
−6𝐿

  

   6𝐿
2𝐿2

 
−6𝐿
4𝐿2

];  𝐤𝟎
𝐆 = −

𝑃

𝐿

[
 
 
 
 
 
 

 

  
6

5
𝐿

10

−
6

5
𝐿

10

     
𝐿

10

     

2

15
𝐿2

−
𝐿

10

−
𝐿2

30

    −
6

5

    

−
𝐿

10
6

5

−
𝐿

10

   
𝐿

10

     

−
𝐿2

30

−
𝐿

10
2

15
𝐿2

]
 
 
 
 
 
 

             (B2) 

The corresponding frequency-independent mass and stiffness matrices in axial motion (i.e., 

those for a bar element) given below are to be incorporated into Eqs. (B1)-(B2) so that 

frameworks can be analysed for their free vibration characteristics.  

𝐦𝟎
𝐀 =

𝜌𝐴𝐿

6
[
2   
1  

1
2
];  𝐤𝟎

𝐀 =
𝐸𝐴

𝐿
[

1
−1

 
−1
   1

]               (B3) 

 

  The computation of natural frequencies for a frame is generally achieved by assembling the 

element mass, elastic and geometric stiffness matrices in the frame in global or datum 

coordinates by using standard coordinate transformation technique and then applying the usual 

eigen solution procedure employed in the finite element method for the equation KE +KG 

−2M=0 where KE, KG, and M are respectively the overall elastic and geometric stiffness and 

mass matrices of the complete frame. 
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Appendix C: Critical buckling load of a stepped cantilever column 

  The critical buckling load of the stepped cantilever column shown in Fig. 4 is determined 

theoretically in this appendix. The deflected shape of the column is shown below in Fig. C1. 

The co-ordinate system (XY) which is fixed at the origin O at the tip is allowed to move 

vertically up and down, but its rotation and horizontal movements are not allowed. 

 

              Y 

 

 

            y1                      y2 

                                                             X 

   aL 

                                   L 

 

Fig. C1. Deflected shape of the stepped beam shown in Fig. 4. 

 

  Let the flexural displacements of the column in the two parts AB and BC at some given points 

be, respectively y1 and y2.  Now, these are considered separately, allowing two separate slopes. 

 The governing differential equation for the first part AB, i.e., along the left section is given by  

Bending moment:  𝑀 = 𝑃𝑦1 = −𝐸𝐼
𝑑2𝑦1

𝑑𝑥2                  (C1) 

The solution in the usual form is obtained as 

𝑦1 = 𝐴1 sin 𝜆𝑥 + 𝐵1 cos 𝜆𝑥                (C2) 

where 

𝜆 = √
𝑃

𝐸𝐼
                  (C3) 

The bending moment at x =0 implies 𝑦1
′′(0) = 0 which from Eq. (C2) gives 

B1=0                   (C4) 

A 

0 

B C 
EI 

k2 EI 
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Thus, from Eq. (C2) 

𝑦1 = 𝐴1 sin 𝜆𝑥                 (C5) 

The governing differential equation for the for the second part BC along the right section is 

given by 

Bending moment:  𝑀 = 𝑃𝑦2 = −𝑘2𝐸𝐼
𝑑2𝑦2

𝑑𝑥2                  (C6) 

  The solution is 

𝑦2 = 𝐴2 sin
𝜆𝑥

𝑘
+ 𝐵2 cos

𝜆𝑥

𝑘
                (C7) 

  The slope at the cantilever end (x = L) is zero means 𝑦2
′(𝐿) = 0 which from Eq. (C7) gives 

𝐴2 = 𝐵2 tan
𝜆𝐿

𝑘
                  (C8) 

Thus, from Eq. (C7) 

𝑦2 = 𝐵2 (tan
𝜆𝐿

𝑘
sin

𝜆𝑥

𝑘
+ cos

𝜆𝑥

𝑘
)               (C9) 

Now, at x = aL, y1 must be equal to y2 and 𝑦1
′  and 𝑦2

′  also be equal to satisfy the continuity 

conditions for displacement and slope at B (see Fig. C1). These continuity conditions give 

𝐴1 sin 𝜆𝑎𝐿 = 𝐵2 (tan
𝜆𝐿

𝑘
sin

𝜆𝑎𝐿

𝑘
+ cos

𝜆𝑎𝐿

𝑘
)            (C10) 

and 

𝐴1𝜆 cos 𝜆𝑎𝐿 = 𝐵2
𝜆

𝑘
(tan

𝜆𝐿

𝑘
cos

𝜆𝑎𝐿

𝑘
− sin

𝜆𝑎𝐿

𝑘
)           (C11) 

Equations (C10) and (C11) can be written in the following matrix form 

[
sin 𝜆𝑎𝐿 − (tan

𝜆𝐿

𝑘
sin

𝜆𝑎𝐿

𝑘
+ cos

𝜆𝑎𝐿

𝑘
)

𝜆 cos 𝜆𝑎𝐿 −
𝜆

𝑘
(tan

𝜆𝐿

𝑘
cos

𝜆𝑎𝐿

𝑘
− sin

𝜆𝑎𝐿

𝑘
)
] [

𝐴1

𝐵2
] = 0          (C12) 

For a non-trivial solution, the 2×2 determinant of the above matrix must be zero, yielding the 

following buckling equation  

tan 𝜆𝑎𝐿 =
𝑘(tan

𝜆𝐿

𝑘
sin

𝜆𝑎𝐿

𝑘
+cos

𝜆𝑎𝐿

𝑘
)

(tan
𝜆𝐿

𝑘
cos

𝜆𝑎𝐿

𝑘
−sin

𝜆𝑎𝐿

𝑘
)

            (C13) 
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  For different values of the combination of a and k, Eq. (C13) can be solved to determine L 

through an iterative process so that the critical buckling load Pcr can be obtained with the help 

of Eq. (C3). 

  The degenerate case for a uniform cantilever column can be obtained by substituting k = 1 

and a = 0 in Eq. (C13) to give 

0 =
1

tan𝜆𝐿
               (C14) 

or 

tan 𝜆𝐿 = ∞ = tan
𝜋

2
              (C15) 

or  

𝜆2 =
𝜋2

4𝐿2               (C16) 

Substituting  from Eq. (C3) into Eq. (C16) yields the critical buckling load 𝑃𝑐𝑟 =
𝜋2𝐸𝐼

4𝐿2  which 

is the well-known result for a cantilever column that can be found in standard texts. 
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