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Abstract
The valuation and planning of complex projects are becoming increasingly challeng-
ing with rising market uncertainty and the deregulation of many industries, which 
have also raised the need for efficient risk management. We take the perspective of 
a private firm interested in sequential capacity expansion of a project and develop a 
framework for measuring the downside risk of the serial project and optimising the 
sequence of the stages. Under general distributional assumptions for the duration of 
each stage, we present an accurate representation of the project’s net present value 
(NPV) distribution based on a Pearson curve fit, leading to closed-form expressions 
for the associated risk measures. We then assess the impact of duration variability 
on the value at risk and demonstrate its role in stochastic project scheduling. We also 
account for the trade-off between maximising the expected NPV and minimising the 
risk exposure, and obtain the optimal schedule for risk-averse decision-makers. It 
becomes obvious that both the duration variability of each stage and the decision-
makers’ risk preferences can significantly affect the optimal sequence of the stages 
and that high duration variability is not always undesirable, even for risk-averse 
decision-makers.

Keywords Decision analysis · Modularity · NPV distribution · Project scheduling · 
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1 Introduction

The deregulation of many industries poses a formidable challenge to private firms 
managing multi-stage projects, since the associated uncertainties over both future 
revenue streams and completion time of different stages (technological uncer-
tainty) complicate the assessment of risk. This, in turn, affects critical managerial 
decisions, such as project scheduling. Examples of such projects include the Eliz-
abeth line, London’s new railway, that was originally designed to deliver a series 
of stages between 2017 and 2019, yet was not fully operational until May 2023 
with an additional cost of £3 billion over the original budget (Tucker 2017; Keay 
2022). In addition, the High Speed 2 and the Heathrow expansion can be treated 
as serial projects, where each stage has an uncertain duration, cost and benefit 
(Edgington 2020; Thijssen 2021). More specifically, the former has a full network 
of 330 miles and will be executed in two phases. While its first phase (140 miles) 
is under construction and due for completion between 2029 and 2033, the second 
phase is split into three sub-phases with a target completion date between 2040 
and 2045. Similarly, the Heathrow expansion, which aims to increase capacity 
from about 80 to 142 million passengers per annum, will be delivered in four 
stages with Stage 1 to be completed by 2026 and all expansions by 2050 (https:// 
www. heath row. com/ compa ny/ about- heath row/ expan sion/ docum ents). Other 
examples include the development and capacity expansion of renewable energy 
projects, such as the Walney Extension and the Hornsea offshore wind farm 
(Vaughan 2019). The latter is planned to have a total capacity of up to 6 gigawatts 
and its construction has been split into four phases to be consecutively executed 
due to limited budget and workforce (https:// orsted. co. uk/ energy- solut ions/ offsh 
ore- wind/ our- wind- farms? gad= 1 & gclid= EAIaI QobCh MIwrW kxLex_ wIVDs 
XtCh1 XsA vEAAY ASAAE gLAc_D_ BwE).

While the traditional literature on project scheduling assumes discrete cash 
flows (Brucker et al. 1999; Herroelen and Leus 2005; Demeulemeester and Her-
roelen 2006), this is not suitable in the case of large infrastructure projects where 
revenues accrue continuously (Pogue 2004; Almond and Remer 1979; Tanchoco 
et  al. 1981; Remer and Nieto 1995). Additionally, as this literature focuses on 
maximising the net present value (NPV) or minimising the makespan of a pro-
ject under risk neutrality, the implications of attitudes towards risk remain an 
important open research direction. To address these disconnects, we develop a 
continuous-time framework in which we derive the probability distribution and 
risk measures of the NPV of a serial project as well as the optimal sequence of 
stages under economic and technological uncertainty. The former is modelled via 
a continuous-time stochastic process, while the latter by a generic probability dis-
tribution. We contribute in three ways. First, we derive an accurate approximation 
for the probability distribution of the NPV of a multi-stage capacity expansion 
using a Pearson curve fit, from which we can obtain the closed-form expression 
for the value at risk (VaR) and the conditional VaR (CVaR) of the project. Sec-
ond, we investigate the trade-off between expected NPV maximisation and risk 
minimisation, thereby deriving the solution to the optimal scheduling problem for 

https://www.heathrow.com/company/about-heathrow/expansion/documents
https://www.heathrow.com/company/about-heathrow/expansion/documents
https://orsted.co.uk/energy-solutions/offshore-wind/our-wind-farms?gad=1%20&gclid=EAIaIQobChMIwrWkxLex_wIVDsXtCh1XsA%20vEAAYASAAEgLAc_D_BwE
https://orsted.co.uk/energy-solutions/offshore-wind/our-wind-farms?gad=1%20&gclid=EAIaIQobChMIwrWkxLex_wIVDsXtCh1XsA%20vEAAYASAAEgLAc_D_BwE
https://orsted.co.uk/energy-solutions/offshore-wind/our-wind-farms?gad=1%20&gclid=EAIaIQobChMIwrWkxLex_wIVDsXtCh1XsA%20vEAAYASAAEgLAc_D_BwE
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risk-averse decision-makers. Third, we present the implications of economic and 
technological uncertainty on project scheduling and present managerial insights.

Our findings suggest that both the duration variability and the decision-makers’ 
risk preferences can affect the optimal sequence of stages of a serial project sig-
nificantly, and that their effect depends also on the expansion cost. More specifi-
cally, using a benchmark example (i.e. each stage with equal capacity size, cost and 
expected duration), we demonstrate that duration variability is undesirable if capac-
ity expansions are costly, in which case stages with lower duration variability must 
be executed first. However, contrary to the intuition that an increase in uncertainty 
entails greater downside risk, we find that a project with higher duration variability 
is not always associated with higher risk exposure, especially when the cost of each 
stage is relatively low.

We proceed by first discussing some related work in Sect. 2. In Sect. 3, we intro-
duce our model, the benchmark case of a single-stage capacity expansion, and 
the extension to a multi-stage project. In Sect. 4.1, we analyse the impact of dura-
tion variability on the project’s expected NPV and risk exposure using a bench-
mark example, while Sect. 4.2 provides a general model for obtaining the optimal 
sequence of stages under risk aversion. Section  5 presents numerical results and 
managerial insights into the stochastic project scheduling problem and Sect. 6 con-
cludes the paper offering directions for further research.

2  Related work

Until the 1980s, the need to allow for uncertainty in decision-making was not par-
ticularly pronounced, as many industries were subject to state regulation. However, 
the deregulation of many industries in the 1980s exposed firms to various types 
of uncertainty. This, in turn, raised the importance of extending traditional capi-
tal budgeting techniques, such as the NPV rule, to account for uncertainty and risk 
assessment (Wiesemann and Kuhn 2015). In the real options literature, this appli-
cation potential has been exploited in decision-making under uncertainty by ana-
lysing the interaction between uncertainty in cash flows and managerial flexibility 
(McDonald and Siegel 1986; Dixit and Pindyck 1994; Trigeorgis 1996). A strand 
of this literature focuses on the sequential nature of investment decisions and the 
value creation of modularity (Gollier et al. 2005; Gamba and Fusari 2009; Baldwin 
et  al. 2000; Kort et  al. 2010; Chronopoulos et  al. 2017). However, the underlying 
methodology, which is based on dynamic programming, is not particularly suitable 
to address critical aspects of serial projects, e.g. scheduling, that require robust opti-
misation techniques.

Herroelen and Leus (2005) tackle the stochastic project scheduling problem 
framing it as a multi-stage decision process wherein project activities’ uncertainty 
is accounted for to prevent schedule disruptions. By allowing for uncertainty in 
projects’ makespans, costs and revenues, a generic reformulation of the stochas-
tic NPV maximisation problem is proposed by Sobel et  al. (2009) and an algo-
rithm is presented for identifying an optimal adaptive policy for project schedul-
ing. More recent examples in the same line of work, where various scheduling 
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policies and algorithms are developed and tested in a stochastic environment, 
include Wiesemann et  al. (2010), Liang et  al. (2019), Leyman and Vanhoucke 
(2017), Zheng et al. (2017), Ding and Zhu (2015). Although NPV-oriented mod-
els for stochastic project scheduling focus on the financial aspect of optimisation 
problems and provide significant flexibility in sequential decision processes, they 
tend to assume a risk-neutral decision-maker (Wiesemann and Kuhn 2015; Gut-
jahr 2015). However, for extreme values of duration and cash flow distributions, 
decision-making that is based only on the expected NPV and ignores attitudes 
towards risk may not be particularly accurate (Blau et al. 2000; Browning 2014; 
Chao et al. 2014; Rezaei et al. 2020).

The variance of a project’s revenues was often used to evaluate the risk of it 
(Markowitz 1968; Van Horne 1966), until the VaR was introduced as a more prac-
tical risk measure of the worst-case loss of an investment associated with a given 
probability. Nevertheless, despite its popularity, the VaR does not capture the shape 
of the tail of a loss distribution. To overcome the drawbacks of VaR while main-
taining its advantages, Rockafellar and Uryasev (2000) introduced a coherent risk 
measure, known as the CVaR, aiming at quantifying the expected losses occurring 
beyond the VaR. Literature addressing the stochastic project selection and sched-
uling problem, considering decision-makers’ risk preferences, includes Ke and Liu 
(2005), Beraldi et al. (2012), Huang and Zhao (2014), Wang and Ning (2018), who 
control the probability of occurrence of undesirable investment outcomes (e.g. a 
negative expected NPV or positive VaR) using a chance-constrained method. More-
over, the trade-off between risk minimisation and profit maximisation is commonly 
considered in mean-risk models (Colvin and Maravelias 2011; Chen et  al. 2012; 
Bozorgi-Amiri et al. 2013; Alonso-Ayuso et al. 2014; Dupačová and Kozmík 2015; 
Huang et al. 2016; Zhao et al. 2018, 2019). For example, Alonso-Ayuso et al. (2014) 
consider a stochastic copper extraction planning problem under both risk neutrality 
and risk aversion, and their results clearly indicate the advantage of involving risk 
measures, such as the VaR and CVaR, of a project in the decision-making process.

The unknown distribution and variability (variance) of a project’s makespan fur-
ther emphasise the need for risk measures that facilitate efficient risk management. 
While different probability distributions for modelling project duration are examined 
within the stochastic resource-constrained project scheduling problem (RCPSP), the 
high- and low-variability settings of the duration distribution are often distinguished 
(Ashtiani et al. 2011; Ballestin and Leus 2009; Fang et al. 2015). The reason is that 
the optimal scheduling rule that minimises the expected makespan of a project often 
changes with respect to the variance of the duration variables. For example, Chen 
et al. (2018) evaluate the efficiency of 17 priority rules and show that the optimal 
one for the deterministic RCPSP does not perform best for the stochastic RCPSP. 
Their results confirm that the performance of the priority rules depends on project 
characteristics, e.g. the resource demand and duration variability of each activity. 
Therefore, different scheduling rules could be chosen according to the amount of 
information on duration distributions that a decision-maker has. Similarly, we inves-
tigate the impact of duration variability on the NPV distribution and, more impor-
tantly, show how the optimal schedule of a serial project can be obtained for deci-
sion-makers with different risk preferences.
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A discrete and deterministic cash flow incurred at the start of each stage is not 
particularly relevant in the case of large infrastructure projects where revenues usu-
ally accrue continuously (Pogue 2004; Almond and Remer 1979; Tanchoco et  al. 
1981; Remer and Nieto 1995). For example, the annual average electricity price 
rise between 2004 and 2021 in UK is approximately 8% per year, from 4.16 pence 
per kilowatt hour (p/kWh) in 2004 to 15.08 p/kWh in 2019 (https:// www. gov. uk/ 
gover nment/ stati stical- data- sets/ gas- and- elect ricity- prices- in- the- non- domes tic- sec-
tor). This was followed by a dramatic increase to 20.86 p/kWh in 2022 due to high 
market volatility, which clearly demonstrates that the revenue stream of a project 
fluctuates with time and that price uncertainty should also be taken into account. In 
addition, Cui et al. (2020) study the unbiased estimation by Monte Carlo simulation 
of the expected present value of a cumulative cash flow over an infinite horizon, 
dependent on an underlying stochastic process such as a geometric Brownian motion 
or a Cox–Ingersoll–Ross process. Therefore, in this paper, we develop a continuous-
time framework for sequential capacity expansion under economic and technologi-
cal uncertainty and derive the project’s VaR and CVaR. Furthermore, we consider 
the trade-off between NPV maximisation and downside risk minimisation of a pro-
ject due to alternative scheduling options1. Our results indicate that both the dura-
tion variability and the risk preferences can have a significant effect on the optimal 
sequencing of a multi-stage project, and that this depends on the expansion cost of 
each stage. Interestingly, we also find that higher duration variability does not neces-
sarily imply higher risk exposure; differently from conventional intuition, it can be 
beneficial even for risk-averse decision-makers.

3  Risk assessment of serial project

3.1  The model

We take the perspective of a private firm that considers the capacity expansion of 
a project sequentially in discrete stages. While the construction process takes a 
random but finite amount of time, the project has an infinite lifetime,2 accrues sto-
chastic revenues and is subject to technological uncertainty, reflected in the random 
duration of each stage. Given a probability space (Ω,F,ℙ) , the �-algebra Ft ⊂ F  
reflects the information available at time t ≥ 0 . Without being a real restriction, we 

1 Note that while the value of waiting due to economic uncertainty is not the focus of this paper, we pro-
vide a real options framework in A to investigate its impact on the risk assessment and optimal schedul-
ing of a two-stage project. A thorough study of the implications of discretion over timing is left for future 
work.
2 The assumptions of infinite lifetime and perpetual revenue stream are commonly made in the real 
options literature because they not only support analytical tractability, but are also key features of dif-
ferent projects (Dixit and Pindyck 1994). For example, in the electricity sector, power generation facili-
ties have an effective operation life of 30–50 years, while transmission facilities remain in service even 
longer. Hence, although the construction of a gas power plant or the installation of wind farm has a finite 
duration, its lifetime is significantly longer.

https://www.gov.uk/government/statistical-data-sets/gas-and-electricity-prices-in-the-non-domestic-sector
https://www.gov.uk/government/statistical-data-sets/gas-and-electricity-prices-in-the-non-domestic-sector
https://www.gov.uk/government/statistical-data-sets/gas-and-electricity-prices-in-the-non-domestic-sector
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assume, in light of Dixit and Pindyck (1994) and Cui et al. (2020), that the price (per 
unit flow of output) process for the project follows a geometric Brownian motion

where P is the initial price, 𝛼 > 0 the growth rate, 𝛽 > 0 the volatility, and W is a 
standard Brownian motion. Also, we denote by r > 𝛼 the subjective discount rate 
defined exogenously.3 Model (1) can be adapted to the users’ preferences and the 
requirements of their respective application, as our build-up is general in terms 
of underlying model assumptions. Also, the particular choice, as said in Cui et al. 
(2020), is a viable candidate in project management.

The project comprises n ∈ ℕ stages that are executed sequentially. For 
j ∈ {1, 2,… , n} , we denote by Dj > 0 the deterministic scale of each capacity 
expansion. Thus, PtDj is the instantaneous revenue of the project in stage j. Follow-
ing Huisman and Kort (2015), we assume a linear investment cost function, where a 
deterministic cost, Cj = cDj , is incurred at the beginning of each capacity expansion 
and c ≥ 0 represents the expansion cost per unit output. After the completion of 
stage j, the accumulated capacity is D�

j
=
∑j

k=0
Dk , where D0 ≥ 0 is the initial 

capacity.
The duration of each stage is denoted by �j and has a general, continuous proba-

bility distribution with cumulative distribution function (cdf) F�j
(t) and probability 

density function (pdf) f�j(t) . Assuming that {�j}nj=1 are independent (Steyn 2001; 
Chen et al. 2015), the completion time of stage j is given by Tj =

∑j

k=1
�k . Finally, 

we denote by V(⋅) the resulting NPV of a project with associated cdf GV (v) and pdf 
gV (v).

(1)dPt = �Ptdt + �PtdWt, P0 ≡ P,

∫ T1

0
e−rtPtD0dt

∫ ∞

T1

e−rtPtD
′
1dt · · ·

0

−cD1

T1 t

existing project’s cash flow cash flow after expansion 1

Fig. 1  Cash flow of single-stage capacity expansion taking place between time 0 and T1

3 Risk neutrality is commonly assumed in corporate finance, however it also relies on market complete-
ness. Hence, it may not be particularly relevant in our context of construction or capacity expansion in 
the absence of hedging instruments. For this, we use, instead, an exogenously defined (subjective) dis-
count rate.
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3.2  Single‑stage capacity expansion

We begin with the basic case of a project that is subject to a single capacity expan-
sion. As shown in Fig. 1, the expansion begins at time t = 0 , where a deterministic 
cost of cD1 is incurred. Subsequently, the firm receives an instantaneous revenue of 
PtD0 from time t = 0 until T1 , at which point the capacity of the project is expanded 
to D�

1
= D0 + D1 and the firm earns a perpetual stream of stochastic revenues PtD

′
1
.

We derive the NPV of the project by discounting the continuous cash flow over 
its lifetime. The discounted to time t = 0 expected NPV, V

(
P, T1

)
 , of this single-

stage expansion conditional on the makespan of the project can be formulated as4

The mean, variance, skewness and kurtosis of V
(
P, T1

)
 are given, respectively, by

where

and MT1
(�) = �

[
e�T1

]
 , � ∈ ℝ.

Proposition 1 The cdf and pdf of the NPV of a single-stage project are given by

for v ≥ PD0∕(r − �) − cD1.

(2)
V
(
P, T1

)
= �

[
∫

T1

0

e−rtPtD0dt + ∫
∞

T1

e−rtPtD
�
1
dt − C1

|||||
P, T1

]

=
PD0

r − �
+

PD1

r − �
e−(r−�)T1 − cD1.

(3)� = �
[
V
(
P, T1

)]
=

PD0

r − �
+

PD1

r − �
MT1

(� − r) − cD1,

(4)�2 = m2, � =
m3

m
3∕2

2

, � =
m4

m2
2

,

mk = �

[(
V
(
P, T1

)
− �

)k]
=

(
PD1

r − �

)k

�

[(
e−(r−�)T1 −MT1

(� − r)
)k]

(5)GV (v) = 1 − FT1

(
−

1

r − �
ln

(r − �)(v + cD1) − PD0

PD1

)
,

(6)
gV (v) =

1

(r − �)(v + cD1) − PD0

fT1
(
−

1

r − �
ln

(r − �)(v + cD1) − PD0

PD1

)
,

4 In what follows, we abbreviate the random variable “conditional expected NPV” in (2) to simply 
“NPV”, whereas the “expected NPV” is constant and is given by (3).
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Proof From (2), we have that

from which (5) follows for v ≥ PD0∕(r − �) − cD1 . The density function (6) follows 
from differentiating (5) with respect to v.   ◻

From Proposition 1, for a given probability distribution for �1 = T1 , we derive 
the distribution of V

(
P, T1

)
 . In turn, this facilitates the evaluation of the risk 

associated with the project by looking at the left tail of its NPV distribution. For 
example, consider VaRp(X) = −q+

p
(X) , where q+

p
(X) = inf{v ∈ ℝ ∶ ℙ(X ≤ v) > p} 

is the p-quantile of a random variable X, for p ∈ (0, 1) , while CVaRp(X) denotes 
the expectation of X given that it is larger than VaRp(X) . Given a closed-form 
expression for GV , we can also obtain the VaR and CVaR of the project NPV.

Proposition 2 For the NPV of the project at level p, we have that

Proof By definition of VaR, we have that

from which the final result follows. The CVaR follows by definition.   ◻

3.3  Multi‑stage project

In this section, we generalise to a multi-stage project and formulate its NPV, 
before moving on to scheduling these stages in Sect. 4. The stochastic cash flow 
stream of the multi-stage project is shown in Fig. 2.

The NPV of a serial project with n ≥ 1 stages is given by the sum of the NPVs 
of the various capacity expansions, i.e.

GV (v) = ℙ

(
PD0

r − �
+

PD1

r − �
e−(r−�)T1 − cD1 ≤ v

)

= ℙ

(
T1 ≥ −

1

r − �
ln

(r − �)(v + cD1) − PD0

PD1

)
,

(7)
VaRp(V) = −

PD0

r − �
−

PD1

r − �
e
−(r−�)F−1

T1
(1−p)

+ cD1

and CVaRp(V) =
1

p ∫
p

0

VaRq(V)dq.

VaRp(V) = − inf{v ∈ ℝ ∶ ℙ(V ≤ v) > p}

= − inf

{
v ∈ ℝ ∶ 1 − FT1

(
−

1

r − 𝛼
ln

(r − 𝛼)(v + cD1) − PD0

PD1

)
> p

}

= − inf

{
v ∈ ℝ ∶ v >

PD0

r − 𝛼
+

PD1

r − 𝛼
e
−(r−𝛼)F−1

T1
(1−p)

− cD1

}
,
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where

corresponds to the increment of the NPV of the project’s cash flows due to the jth 
capacity expansion, for j ∈ {1, 2,… , n} ; also, T0 ≡ 0.

Expressions for the true NPV density and distribution functions are not available 
in closed form in the multi-stage case, however we can obtain very accurate analytical 
approximations; these can then be used to compute the risk measures of the sequential 
capacity expansion. To this end, we fit a Pearson curve type based on the first four 
moments of the true, but otherwise unknown, distribution of V(P,T1,… , Tn) . More 
specifically, the Pearson family of solutions gV (x) satisfies the differential equation

resulting in well-defined density functions. Solving Eq. (10) yields the general form 
of Pearson’s density function

(8)

V(P,T1,… , Tn) =

n∑
j=1

�

[
∫

Tj

Tj−1

e−rtPtD
�
j−1

dt − Cje
−rTj−1

|||||
P, Tj−1, Tj

]

+ �

[
∫

∞

Tn

e−rtPtD
�
n
dt
|||||
P, Tn

]

=

n∑
j=0

�

[
∫

∞

Tj

e−rtPtDjdt
|||||
P, Tj

]
−

n∑
j=1

cDje
−rTj−1

=
PD0

r − �
+

n∑
j=1

Vj(P,Tj−1, Tj),

(9)Vj(P,Tj−1, Tj) ≡ Vj =
PDj

r − �
e−(r−�)Tj − cDje

−rTj−1

(10)
d ln gV (x)

dx
= −

a + x

c0 + c1x + c2x
2

∫ T1

0
e−rtPtD0dt · · ·

∫ ∞

Tn

e−rtPtD
′
ndt

∫ T2

T1

e−rtPtD
′
1dt · · ·

0

−cD1

T1

−cD2

T2

−cD3

Tn t

existing project’s cash flow cash flow after expansion 1 cash flow after expansion n

Fig. 2  Cash flow of multi-stage project
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where C is the normalising constant and the parameters 
{
a, c0, c1, c2

}
 control the 

shape of the distribution. We estimate these based on the first four integer moments {
�1,�2,�3,�4

}
 as

where

are the variance, squared skewness and kurtosis, respectively. We can classify the 
Pearson distribution family types as in Johnson et al. (1994) which is standard in the 
literature. First, we select a family according to the �-criterion proposed by Elderton 
and Johnson (1969): given 

√
�  and � , we compute

We distinguish between the main types corresponding to 𝜂 < 0 (I), 0 < 𝜂 < 1 (IV) 
and 𝜂 > 1 (VI); and the transition types � = 0, � = 3 (normal), 𝜂 = 0, 𝜃 < 3 (II), 
� = ±∞ (III), � = 1 (V) and 𝜂 = 0, 𝜃 > 3 (VII). Then, we can approximate the NPV 
distribution accordingly. Important advantages of the Pearson fitting approach, as 
we will demonstrate next, are its excellent results for different skewness-kurtosis 
(�1∕2, �) levels (see also Brignone et  al. 2021), for varying number of stages and 
general assumptions for the distribution of �j . We feel that presenting more details 
about the proximity of distributions with shared moments is beyond the scope of 
this research; for more, see Akhiezer (1965,  Corollary 2.5.4), Lindsay and Basak 
(2000, Theorems 1, 2) and Kyriakou et al. (2023). Given the Pearson fitted cdf of the 
project’s NPV, GV (v) , the VaR and CVaR follow:

To illustrate the Pearson curve fit, we set P = 1 , r = 0.1 , � = 0.08 , � = 0.1 , c = 30 , 
D0 ≡ 0 and Dj = 10 for all j ∈ {1, 2,… , n} , and study the Pearson curve approxi-

(11)gV (x) = C
�
c0 + c1x + c2x

2
�− 1

2c2 exp

⎧
⎪⎪⎨⎪⎪⎩

�
c1 − 2ac2

�
arctan

�
c1+2c2x√
4c0c2−c

2
1

�

c2

�
4c0c2 − c2

1

⎫
⎪⎪⎬⎪⎪⎭

,

(12)

a = c1 =

√
��(� + 3)

10� − 12� − 18
, c0 =

(4� − 3�)�

10� − 12� − 18
, c2 =

2� − 3� − 6

10� − 12� − 18
,

(13)

� = �2 − �2
1
, � =

(
�3 − 3�1�2 + 2�3

1

)2
�3

, � =
�4 − 4�1�3 + 6�2

1
�2 − 3�4

1

�2

(14)� =
�(� + 3)2

4(4� − 3�)(2� − 3� − 6)
.

(15)VaRp(V) = −G−1
V
(p) and CVaRp(V) =

1

p ∫
p

0

VaRq(V)dq.
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mation for �j ∼ LogN(m, s) and �j ∼ Weibull(�, �).5 For the sake of comparison, we 
assume that they share the same mean and variance, e.g. em+

1

2
s2 = �Γ(1 + 1∕�) = 10 

and e2m+s2
(
es

2

− 1
)
= �2

[
Γ(1 + 2∕�) − (Γ(1 + 1∕�))2

]
= 28 , from which we obtain 

parameters m = 2.18 , s = 0.50 , � = 11.28 and � = 1.96 . We compare the density 
approximations with the true simulation estimates in Fig.  3. The top and bottom 
panels of Table 1 also report the true mean, variance, skewness, kurtosis, VaR0.05 
and CVaR0.05 of V(P,T1,… , Tn) , along with the values corresponding to the Pearson 
curve fit and the associated absolute percentage errors.

Two comments are in order. It is obvious from Fig. 3 and Table 1 that the approx-
imation of the NPV distribution by a Pearson curve fit is very accurate, regardless of 
the distribution of �j and the number of stages. While one can rely on Monte Carlo 
simulation estimates, using a Pearson approximation leads to an analytical expres-
sion that considerably reduces the computational effort and avoids unwanted simula-
tion error. In particular, for the accuracies reported in Table 1 based on 107 simula-
tion trials for the Monte Carlo estimates, we achieve a reduction in the computing 
time by a factor of 100 the least.

In addition, we recall that we have chosen the lognormal and Weibull parameter 
values for �j so that their mean and variance are matched. Nevertheless, the resulting 
variance, skewness and kurtosis of V(P,T1,… , Tn) vary significantly between the 
two distributions. This implies that the assumptions about the distribution and the 
higher moments of the duration variables can affect substantially the risk character-
istics of the NPV and, therefore, the valuation and planning of a project.

4  Optimal scheduling of serial project

4.1  Impact of duration variability on expected NPV and VaR

In this section, we investigate the optimal order in which the stages of a serial pro-
ject should be executed, as well as the factors affecting the NPV distribution and the 
downside risk of the project. Specifically, we study the impact of duration variability 
on the optimal sequence of a serial project and investigate the importance of risk 
considerations in stochastic project scheduling.

We start by showing how the expected NPV, � , and VaR of a project with single 
capacity expansion depend on the variance of its makespan, �1 , with the real-world 
example of the Hornsea offshore wind farm. More specifically, the construction (i.e. 
Stage 1) of the 1.2-gigawatt (GW) wind farm takes about three years with a cost 
around £4.2 billion (https:// orsted. co. uk/ energy- solut ions/ offsh ore- wind/ our- wind- 
farms? gad= 1& gclid= EAIaI QobCh MIwrW kxLex_ wIVDs XtCh1 XsA_ vEAAY 

5 Both the lognormal (Chen et al. 2018; Trietsch et al. 2012) and exponential distributions (Sobel et al. 
2009) are commonly used to model activity duration in the project management literature. Here, we use 
a Weibull distribution which generalises the exponential distribution with an extra parameter that offers 
added flexibility. More results related to other distributions we have looked at can be made available 
upon request.

https://orsted.co.uk/energy-solutions/offshore-wind/our-wind-farms?gad=1&gclid=EAIaIQobChMIwrWkxLex_wIVDsXtCh1XsA_vEAAYASAAEgLAc_D_BwE
https://orsted.co.uk/energy-solutions/offshore-wind/our-wind-farms?gad=1&gclid=EAIaIQobChMIwrWkxLex_wIVDsXtCh1XsA_vEAAYASAAEgLAc_D_BwE
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Fig. 3  Simulated and fitted Pearson pdf of NPV of n-stage capacity expansion for �j ∼ LogN(m, s) (left 
panel) and �j ∼ Weibull(�, �) (right panel) sharing same mean, 10, and variance, 28, with m = 2.18 , 
s = 0.50 , � = 11.28 and � = 1.96
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ASAAE gLAc_D_ BwE). Hence, we set D0 ≡ 0 GW, D1 = 1.2 GW, P = £0.2 bil-
lion per GW, r = 10% per year, � = 8% per year and � = 10% per year. Assuming 
that �1 ∼ LogN(m, s) , then for �[�1] = e

m+
1

2
s2 = τ we get that m = ln τ − s2∕2 . Thus, 

Var[�1] =
(
es

2

− 1
)
e2m+s

2

= τ2
(
es

2

− 1
)
 , which is increasing with s for given τ . For 

τ = 3 years, we present in Fig. 4 � as an increasing function of s for c = £2 billion 
and £4 billion per GW capacity installed. This implies that, for a fixed makespan 
expectation, a capacity expansion with higher duration variability is expected to be 
more profitable.

Of particular interest is the U-shaped 5%-quantile curve, from which we observe 
that the risk exposure of the expansion, VaR0.05(V) = −q+

0.05
(V) , is surprisingly low 

when the duration variance is large. This counter-intuitive result can be attributed 
to the VaRp of the project’s NPV, which is determined by the quantile of �1 (see 
Proposition 2); for lognormal �1 , the quantile as a function of s increases initially 
and then starts to decrease. For �[�1] = τ held fixed, the skewness of �1 given by �
es

2

+ 2
�√

es
2
− 1 increases in s, so that a higher duration variability implies a 

shorter makespan with increasing concentration around small values. This implies 
that high duration variability can benefit both risk-neutral and risk-averse decision-
makers; therefore, variance reduction is not always necessary, especially when the 
duration variability is moderate to high.

Next, we add one more stage and consider two capacity expansions of equal size 
and cost to demonstrate the implications of risk aversion for optimal scheduling. We 
assume that each stage of the project has the same expected duration τ but different 
duration variability s. Therefore, the question now arises: how should the firm deter-
mine the order of execution for each stage to achieve a higher (lower) project value 
(risk exposure)?

Assuming that �1 ∼ LogN(ln τ − 1∕2, 1) , �2 ∼ LogN(ln τ − s2∕2, s) and 
D1 = D2 = 1.2 GW, Fig.  5 illustrates how � and the 5%-quantile of the project 
depend on s, for each of the two possible ways of scheduling. As we are moving 
beyond the single-stage expansion, for the necessary computations we resort to 

Fig. 4  Expected NPV and 5%-quantile of single capacity expansion as function of duration variability s 
when �1 ∼ LogN

(
ln 3 − s2∕2, s

)
 , for c = 2 and 4

https://orsted.co.uk/energy-solutions/offshore-wind/our-wind-farms?gad=1&gclid=EAIaIQobChMIwrWkxLex_wIVDsXtCh1XsA_vEAAYASAAEgLAc_D_BwE
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the relevant expression in (15) based on the Pearson curve fit. Consistent with 
Fig. 4, we find that executing the stage with high duration variability first, that is, 
�2 for s > 1 (blue solid line) can result in larger expected NPV but only when c is 
small (e.g. c ≤ 2 ). As c increases, this strategy is no longer appropriate. Indeed, 
� eventually decreases with s as shown in the bottom right panel of Fig. 5. This 
happens because the discount factor of the project’s cost, �[e−r�2] , increases faster 
than that of the revenue, �[e−(r−�)�2] , as s rises. Consequently, duration variability 
is desirable for risk-neutral decision-makers when the cost is relatively low, as 
their preferences are independent of the risk associated with the schedule, but it 
can be harmful to the project’s value if capacity expansions are costly.

On the other hand, executing first the stage with lower duration vari-
ability, that is, �1 ∼ LogN(ln 3 − 1∕2, 1) , when the other stage has duration 
�2 ∼ LogN

(
ln 3 − s2∕2, s

)
 with s > 1 (purple dashed line), does not guarantee 

lower risk exposure, particularly when the cost of each expansion is low com-
pared to its revenues. Whereas this scheduling strategy can be quite safer if s 
is low-to-moderate, it performs poorly in terms of both the project’s value and 
risk exposure if s is large (magenta line appears above the purple line, despite 
the smaller variance of �1 and stage 1 being implemented first). Again, this 

Fig. 5  Expected NPV and 5%-quantile of two-stage project as function of duration variability s when 
�1 ∼ LogN(ln 3 − 1∕2, 1) and �2 ∼ LogN

(
ln 3 − s2∕2, s

)
 , and stage 2 is executed before stage 1 (solid 

lines) or vice versa (dashed lines)
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follows from the positively skewed distribution of �2 with increasing concentra-
tion around smaller values as s increases. In particular, the 95%-quantile linked 
to �2 becomes smaller if s > 1.67 , thus indicating that the firm should execute 
stage 2 first despite its increasing duration variability. However, if the capacity 
expansions are costly (e.g. c ≥ 4 ), then high duration variability becomes unde-
sirable as it always leads to lower expected NPV and higher risk. Therefore, the 
decision-maker should always execute stages with lower duration variability first 
(see the bottom right panel of Fig. 5).

Consequently, our results indicate that duration variability can affect signifi-
cantly the optimal sequence of stages for both risk-neutral and risk-averse decision-
makers; moreover, its impact depends on the level of expansion cost. Indeed, for 
all stages with same expected duration and capacity, risk-neutral decision-makers 
should always execute the stages with higher duration variability earlier if the cost 
is relatively low. However, under risk aversion, the optimal sequence of stages is 
less obvious as it depends on the trade-off between maximising the expected NPV 
and minimising the downside risk of a project. For example, a risk-averse decision-
maker may be willing to bear a slightly higher risk in exchange for a larger expected 
NPV, and vice versa. Moreover, this trade-off can be even more complicated due to 
the fact that high duration variability is not always harmful. Due to the technological 
uncertainty reflected in the makespan of a project, it is implied that risk considera-
tions have to be incorporated in stochastic project scheduling.

4.2  Risk management and optimal scheduling

To address the trade-off between the expected NPV and risk exposure of a serial 
project due to the different ways of scheduling, we incorporate risk measures, 
such as the VaR and CVaR, into the stochastic project scheduling problem. To this 
end, we define the symmetric group Sn on the set N = {1, 2,… , n} and � ∈ Sn a 
permutation of N (i.e. a bijection from N to N itself). In our context, a permuta-
tion � = (�(1),… ,�(n)) encompasses the sequence of stages of a serial project; for 
any j, k ∈ N , �(j) = k means that stage k is the jth term of the sequence. Also, we 
introduce � ∈ [0, 1] which reflects the risk appetite of a decision-maker, with large 
(small) � corresponding to high (low) risk aversion. Thus, the optimal sequence of 
stages �∗

�
 , which maximises a combination of the expected NPV and the risk meas-

ure of a serial project, can be formulated as

where

(16)�
∗
�
= argmax

�∈Sn

V(�),
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�(0) = �0 = 0 and R(⋅) is a risk measure such that a larger value of it implies higher 
risk. In particular, we consider R ∈ { VaRp, CVaRp} to account for the left tail of 
the NPV distribution of a project, which we evaluate based on (15). Given a p level 
of confidence, � controls the weights of the expected NPV and the risk exposure in 
this mean-risk model. A decision-maker is assumed to be risk-neutral if � = 0 , in 
which case the second part of (17) vanishes and (16) reduces to the expected NPV 
maximisation model. In the next section, we obtain the optimal schedule of a serial 
project under various combinations of duration variability and decision-maker’s risk 
appetite, and show how the results based on either the mean-VaR or mean-CVaR 
model differ.

(17)

V(�) = (1 − �)�

�
n�
j=1

PD�(j)

r − �
e−(r−�)

∑j

k=1
��(k) −

n�
j=1

cD�(j)e
−r

∑j−1

k=0
��(k)

�

− �R

�
n�
j=1

PD�(j)

r − �
e−(r−�)

∑j

k=1
��(k) −

n�
j=1

cD�(j)e
−r

∑j−1

k=0
��(k)

�
,

Table 2  Optimal schedule of two-stage project with duration variability s for decision-makers with risk 
appetite � obtained from mean-risk model (16), for R ≡ VaR0.05 and c = 3 (upper panel) or 2 (lower 
panel)

� = (1, 2) : execute stage 1 followed by stage 2; � = (2, 1) : execute stage 2 followed by stage 1

c = 3

Expected NPV � VaR0.05 Optimal Sequence �∗
�

� = (1, 2) � = (2, 1) � = (1, 2) � = (2, 1) � = 0 � = 0.25 � = 0.5 � = 0.75 � = 1

s = 0.5 15.6090 15.6858 −14.1864 −14.2613 (2, 1) (2, 1) (2, 1) (2, 1) (2, 1)
s = 1.5 15.6938 15.6031 −13.1931 −13.1262 (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)
s = 2.2 15.8407 15.6771 −13.2537 −13.2625 (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)
s = 3.0 16.0228 15.8501 −13.9066 −13.9731 (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)

c = 2

Expected NPV � VaR0.05 Optimal Sequence �∗
�

� = (1, 2) � = (2, 1) � = (1, 2) � = (2, 1) � = 0 � = 0.25 � = 0.5 � = 0.75 � = 1

s = 0.5 17.7423 17.7852 −15.8959 −16.2493 (2, 1) (2, 1) (2, 1) (2, 1) (2, 1)
s = 1.5 17.8268 17.7876 −15.0290 −14.8855 (1, 2) (1, 2) (1, 2) (1, 2) (1, 2)
s = 2.2 17.9748 17.9397 −15.0560 −15.1548 (1, 2) (1, 2) (2, 1) (2, 1) (2, 1)
s = 3.0 18.1547 18.1763 −15.6240 −16.1191 (2, 1) (2, 1) (2, 1) (2, 1) (2, 1)
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5  Project scheduling: numerical illustration

We revisit, first, the example in Fig. 5, where a firm considers scheduling the two 
phases of an offshore wind farm, each with capacity of 1.2 GW. The upper panel of 
Table 2 reports the expected NPV and VaR0.05 of the two-stage project for c = {2, 3} 
and s ∈ {0.5, 1.5, 2.2, 3} . The optimal sequences of stages for decision-makers with 
different attitudes towards risk are also obtained based on the mean-risk model 
(16)–(17) with R ≡ VaR0.05 . Consistent with the bottom right panel of Fig. 5, we 
have �∗

�
= (2, 1) if s < 1 and �∗

�
= (1, 2) if s > 1 , for any � ∈ [0, 1] . Therefore, our 

results indicate that decision-makers should always execute the stage with lower 
duration variability first when the cost of each stage is high.

Next, we examine whether the aforementioned scheduling strategy is still optimal 
if the expansion cost is lower, e.g. c = 2 . The lower panel of Table 2 confirms that 
both the duration variability of each capacity expansion and the decision-makers’ 
risk preferences can affect significantly the optimal schedule of a project in this 
case. Taking � = 0.5 as an example, we obtain �∗

0.5
= (2, 1) if s < 1 or s > 2.14 , 

whereas �∗
0.5

= (1, 2) if 1 < s < 2.14 . This implies that a risk-averse decision-maker 
with � = 0.5 may choose to reduce the risk exposure of the project by a significant 
amount without foregoing too much revenue when s > 2.14.

Aiming to shed more light on the results, we present in Fig. 6 the scenarios in 
which a schedule � optimises a mean-risk model. The left plot illustrates the dif-
ference between the mean-VaR model (17) with � = (2, 1) and � = (1, 2) , i.e. 
ΔV = V((2, 1)) − V((1, 2)) , for different combinations of duration variability s and 
risk preference � : positive differences mean �∗

�
= (2, 1) ; negative differences cor-

respond to �∗
�
= (1, 2) ; intersections between the surface and the xy-plane refer to 

transitioning optimal results. Indeed, for c = 2 , it can be observed that decision-
makers prefer to execute stage 2 first if s > 2.76.

By analogy, the right plot shows the results corresponding to R ≡ CVaR0.05 in 
(17). Here, we observe that a risk-averse decision-maker is more likely to execute 
stage 1 first, when the duration variability of stage 2 is of a moderate level, i.e. 

Fig. 6  Left panel: difference between mean-VaR model with schedule � = (2, 1) and � = (1, 2) for vary-
ing duration variability s and risk preference � when c = 2 . Right panel: same as left based, instead, on 
mean-CVaR model
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1 < s < 3.72. , still larger than that of stage 1. This can be attributed to CVaR being 
a more conservative risk measure than VaR, rendering a same expected NPV less 
attractive to decision-makers. Similar (unreported) results are obtained for p < 0.05.

Next, the upper and lower panels of Table 3 show examples of the optimal sched-
ule of three-stage and four-stage capacity expansions, respectively. As the number 
of stages increases, the optimal sequence of stages becomes more ambiguous. How-
ever, we can still observe that risk-averse decision-makers prefer to execute stages 
with lower duration variability first if the capacity expansions are very costly (e.g. 
c = 6 or 8). On the other hand, if the cost of each stage is relatively low (e.g. c = 2 ), 
it can be optimal for decision-makers to execute the stage with the highest duration 
variability first (shaded grid), which is also consistent with our previous results. Fur-
thermore, we take a closer look at the two schedules that appear most frequently in 
Table 3 for each panel: � = (3, 1, 2) and � = (1, 2, 3) for n = 3 ; � = (4, 1, 2, 3) and 
� = (1, 2, 3, 4) for n = 4 . We present in the upper and lower panels of Fig.  7 the 
expected NPV and 5%-quantile of the three-stage and four-stage project, respec-
tively. Results suggest that, for projects with more stages, duration variability is still 

Fig. 7  Expected NPV and 5%-quantile of three-stage project (upper panel) as function of duration var-
iability s for schedule � = (3, 1, 2) (solid lines) and � = (1, 2, 3) (dashed lines); and of four-stage pro-
ject (lower panel) as function of duration variability s for schedule � = (4, 1, 2, 3) (solid lines) and 
� = (1, 2, 3, 4) (dashed lines)
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undesirable when the cost is high, while it can be beneficial if the cost is low due to 
higher expected NPV and lower risk exposure.

In summary, the managerial insights of our results are threefold. First, for stages 
with equal size and expected duration, duration variability is unwanted when capac-
ity expansions are costly, as this leads to lower expected NPV and higher risk of 
the project. Therefore, in this case, it is optimal for decision-makers (with any risk 
preference) to execute the stages with lower duration variability first. Second, we 
find that a project with higher duration variability can have larger expected NPV and 
is not always associated with worse downside risk if the expansion cost is relatively 
low. This suggests that, although variance reduction may be beneficial for schedul-
ing a (resource-constrained) project with the aim of minimising its makespan, it can 
be harmful to the project financially. Finally, we demonstrate that the optimal sched-
ule under risk aversion depends not only on decision-makers’ risk preferences, but 
also on the level of duration variability and the cost of each stage.

6  Concluding discussion

In this paper, we develop a risk assessment and optimal scheduling framework for 
sequential capacity expansion under output price and technological uncertainty. 
We derive analytically the distribution, VaR and CVaR of the project’s NPV. Our 
work showcases the potentially positive impact of duration variability on scheduling 
stochastic projects, emphasising the importance of risk considerations. Through a 
mean-risk model, we explore the trade-off between maximising expected NPV and 
minimising downside risk in serial projects, providing optimal investment strategies 
for risk-averse decision-makers.

We show that both the duration variability and the decision-makers’ risk pref-
erences can significantly affect the optimal sequence of stages of a serial project 
and that this also depends on the capacity expansion cost. More specifically, if the 
expansion cost of each stage is high, the duration variability is detrimental to a pro-
ject’s NPV and risk exposure. Hence, decision-makers should prioritise the execu-
tion of stages with lower duration variability. However, if the cost is relatively low, 
it can be optimal for risk-neutral decision-makers to execute the stages with higher 
duration variability first due to larger expected NPV. Taking also into account the 
decision-makers’ attitudes towards risk, we find that executing stages with lower 
duration variability earlier does not guarantee lower risk exposure. In contrast to the 
intuition that increasing uncertainty entails greater risk exposure, our results suggest 
that higher duration variability may not lead to higher downside risk. Instead, it can 
be beneficial not only for risk-neutral but also for risk-averse decision-makers.

This counter-intuitive result of non-monotonic relationship between the VaR of a 
project’s NPV and its duration variability arises when the skewness of the duration 
increases with respect to its variance. Indeed, in such a case, high duration vari-
ability implies shorter makespan with increasing concentration around small val-
ues and that the project is expected to have larger profit and lower risk exposure (if 
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expansion cost is low). Consequently, investing in variance reduction is only recom-
mended when the duration variability of each stage is low. However, if the skew-
ness of the duration distribution decreases with growing variance or the project is 
particularly costly, high duration variability can cause an opposite effect, which is 
unfavourable for both risk-neutral and risk-averse decision-makers.

Hence, our study holds significant implications for investment under techno-
logical uncertainty when the true distribution of a project’s makespan is unknown. 
Neglecting or underestimating this uncertainty can lead to inappropriate project 
scheduling and, therefore, lower NPV or greater downside risk. Directions for future 
research may include studying potential effects of the volatility of the price dynam-
ics on the risk measures of the project, or the development of a real options frame-
work to allow for discretion over investment timing (Heydari and Siddiqui 2010; 
Jeon 2021).6 The objective would be to investigate how the managerial flexibility 
influences the distribution of the NPV and the risk measures of a serial project. 
Also, a computational comparison of different approximation methods and an algo-
rithmic study on more elaborated project scheduling models taking risk aversion 
into account can also be meaningful extensions of this work.

Appendix A. The case of managerial investment flexibility

In what follows, we develop a real options framework which incorporates the firm’s 
discretion over investment timing. In this case, the firm is not obligated to invest 
immediately in the next capacity expansion after each stage is completed. Instead, 
it has the option to delay the next investment while waiting for more favourable 
price conditions (refer also to Heydari and Siddiqui (2010) for a study of the optimal 
interruption policy of multiple-exercise interruptible load contracts).

We denote by Ti =
∑i

j=1
(wj + �j) the completion time of stage i, which now 

includes both waiting times {wj}
i
j=1

 and construction times {�j}ij=1 of all stages up to 
i. Let P(i) be the investment threshold of stage i and P(i)∗ the optimal investment 
threshold. Hence, wi is the random first-passage time of the price process through 
the investment threshold from below, i.e. wi = inf

{
t ≥ 0 ∶ PTi−1+t

≥ P(i)
}
.

Figure 8 illustrates the cash flows of a single-stage capacity expansion when the 
firm has discretion over investment timing. We assume that the initial output price of 
the project is too low to justify immediate investment; therefore, the firm must defer 
it.

The firm’s expected option value is determined via backward induction. There-
fore, we first assume that the project is already active and accrues stochastic rev-
enues. The conditional expected NPV of the project is given by

(18)V
(
P, �1

)
=

PD0

r − �
+

PD1

r − �
e−(r−�)�1 − cD1.

6 We do provide a real options framework in A for risk assessment and optimal scheduling of a two-
stage project, granting the firm the flexibility to postpone the investment before each stage.
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Moving backwards, we assume that the initial output price is too low to justify 
immediate investment, so the firm must wait for a period of time, w1 . The firm’s 
optimisation objective is

where S is the set of stopping times of the filtration generated by the price pro-
cess. Note that the last equality follows from the stochastic discount factor 
�[e−rw1 |P] = (

P∕P(1)
)� ( (Dixit and Pindyck 1994,  p. 315)), with 𝜌 > 1 the posi-

tive root of �2x(x − 1)∕2 + �x − r = 0 . By applying the first-order necessary condi-
tion (FONC) to the unconstrained optimisation problem (19), we obtain the optimal 
investment threshold of the first capacity expansion:

(19)

F
(
P, 𝜏1

)
= sup

w1∈S

�

[
∫

w1+𝜏1

0

e−rtPtD0dt + ∫
∞

w1+𝜏1

e−rtPtD
�
1
dt − C1e

−rw1

|||||
P, 𝜏1

]

= sup
w1∈S

�

[
∫

∞

0

e−rtPtD0dt
||||P
]

+ �

[(
∫

∞

𝜏1

e−rtPw1+t
D1dt − cD1

)
e−rw1

|||||
P, 𝜏1

]

= max
P(1)>P

PD0

r − 𝛼
+
(

P

P(1)

)𝜌
(
P(1)D1

r − 𝛼
e−(r−𝛼)𝜏1 − cD1

)
,

∫ T1

0
e−rtPtD0dt

∫ ∞

T1

e−rtPtD
′
1dt · · ·

0

−cD1

T1 t

existing project’s cash flow cash flow after expansion 1

w1 τ1

Fig. 8  Single-stage capacity expansion

∫ T1

0
e−rtPtD0dt

∫ T2

T1

e−rtPtD
′
1dt

∫ ∞

T2

e−rtPtD
′
2dt · · ·

0

−cD1 −cD2

T1 T2 t

existing project’s cash flow cash flow after expansion 1 cash flow after expansion 2

w1 τ1 w2 τ2

Fig. 9  Two-stage capacity expansion
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We now consider the two-stage capacity expansion as illustrated in Fig. 9.
Starting with the second capacity expansion, we first consider the case that 

once the construction of the first stage is completed at T1 , the price process is 
high enough for immediate investment, i.e. P(2) = PT1+w2

≤ PT1
 . The conditional 

expected NPV of the second expansion (discounted to time T1 = w1 + �1 ) is given 
by

Next, if P(2) > PT1
 , that is, the firm cannot invest directly in the second stage and 

must wait, the maximised value of the option to invest in the second stage is given 
by

The optimal investment threshold of the second expansion is then

Working backwards to the first stage, if it is still optimal to wait, i.e. P(1)∗ ≥ P , the 
maximised option value of the first capacity expansion is

where the conditional expectation of the option value of the second expansion, given 
the information at time T1 , depends on whether or not the second stage is executed 
immediately, i.e. whether or not P(2)∗ ≤ PT1

:

(20)P(1)∗ =
�

� − 1
c(r − �)e(r−�)�1 .

(21)V
(
PT1

, �2
)
=

PT1
D2

r − �
e−(r−�)�2 − cD2.

(22)
F(2)

(
PT1

, 𝜏2
)
= sup

w2∈S

�

[
∫

∞

w2+𝜏2

e−rtPT1+t
D2dt − C2e

−rw2

|||||
PT1

, 𝜏2

]

= max
P(2)>PT1

(
PT1

P(2)

)𝜌(
P(2)D2

r − 𝛼
e−(r−𝛼)𝜏2 − cD2

)
.

(23)P(2)∗ =
�

� − 1
c(r − �)e(r−�)�2 .

(24)

F(1)
(
P, 𝜏1, 𝜏2

)

= sup
w1∈S

�

[
∫

∞

w1+𝜏1

e−rtPtD1dt − C1e
−rw1 + e−rT1�

[
F(2)

(
PT1

, 𝜏2
)|||PT1

, 𝜏2

]|||||
P, 𝜏1, 𝜏2

]

= max
P(1)>P

(
P(1)D1

r − 𝛼
e−(r−𝛼)𝜏1 − cD1 + e−r𝜏1�

[
F(2)

(
PT1

, 𝜏2
)|||PT1

, 𝜏2

])(
P

P(1)

)𝜌

,
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In Table 4, we present the optimal scheduling of a two-stage project when the firm 
has the option to delay the investment for each stage. Our results confirm that exe-
cuting the stage with higher duration variability is not always harmful.

We note that, while the generalised multi-stage problem does not admit an analyt-
ical solution, it is, nevertheless, possible to solve it numerically to obtain the optimal 
scheduling of the serial project.
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