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A B S T R A C T   

The use of periodical elliptically-based web (EBW) openings in high strength steel (HSS) beams has been 
increasingly popular in recent years mainly because of the high strength-to-weight ratio and the reduction in the 
floor height as a result of allowing different utility services to pass through the web openings. However, these 
sections are susceptible to web-post buckling (WPB) failure mode and therefore it is imperative that an accurate 
design tool is made available for prediction of the web-post buckling capacity. Therefore, the present paper aims 
to implement the power of various machine learning (ML) methods for prediction of the WPB capacity in HSS 
beams with (EBW) openings and to assess the performance of existing analytical design model. For this purpose, 
a numerical model is developed and validated with the aim of conducting a total of 10,764 web-post finite 
element models, considering S460, S690 and S960 steel grades. This data is employed to train and validate 
different ML algorithms including Artificial Neural Networks (ANN), Support Vector Machine Regression (SVR) 
and Gene Expression Programming (GEP). Finally, the paper proposes new design models for WPB resistance 
prediction. The results are discussed in detail, and they are compared with the numerical models and the existing 
analytical design method. The proposed design models based on the machine learning predictions are shown to 
be powerful, reliable and efficient design tools for capacity predictions of the WPB resistance of HSS beams with 
periodical (EBW) openings.   

1. Introduction 

Steel beams with periodical web openings (i.e., castellated, cellular 
and Angelinas) can be used in multi-story building designs, since they 
have many advantages such as the reduction in the structure’s self- 
weight and the floor height since as a result of allowing different util-
ity services to pass through the web openings [1,2]. The present study 
focuses on S460, S690, S960 grade high strength steel beams (HSS) 
beams comprising periodical elliptically-based web (EBW) openings. 
The manufacturing and castellation process include three main steps: 
thermal cutting, shifting and welding [3]. These procedures result in an 

increase in inertia about the strong axis leading to improve flexural 
stiffness. Different from circular and hexagonal shapes, the 
elliptically-based web openings benefit from the stress redistribution 
around the neutral axis leading to increase the bearing capacity of the 
beam [4]. 

Although steel beams with periodical (EBW) openings have many 
attractive characteristics, as exemplified previously, new buckling mode 
can be developed, depending mainly on the geometric characteristics of 
these beams. In this context, these structures can achieve the following 
buckling modes: local flange and web, lateral-torsional, lateral-distor-
tional and web-post (WPB) [5–9]. The present paper focuses on the 
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latter, WPB, which is a local failure mode characterized by S-shape 
double curvature owing to the horizontal shear stresses developed in the 
web-post region [10,11]. The key influential parameters that affect the 
WPB resistance are the web thickness, the web-post width and, the 
opening height [12,13]. 

The use of HSS (i.e. with yield stress (fy) is greater than 460 MPa) has 
been increasing in structural systems owing to the exceptional benefits, 
compared with normal strength, including higher strength/weight ratio, 
longer spans and lighter sections as well as less carbon footprint [4, 
14–17]. Mela and Heinisuo [18] reported that designing in HSS may 
achieve a 34 % savings in materials as function of lightweight structures 
meeting sustainability criteria [19–21]. Other HSS advantages can also 
be highlighted as greater corrosion resistance and consequently 
improving the durability and reducing costs associated with regular 
maintenance and inspections [22–24]. 

There are several studies focus on steel beams with (EBW) openings 
including normal strength steel [6,12,25–29] and high strength steel 
[4]. For normal strength steels, Tsavdaridis and D’Mello [26,27,29] and 
Tsavdaridis et al. [28] presented various optimization techniques 
considering several opening shapes (i.e. circular, elongated, elliptical, 
and hexagonal). These studies showed that the elliptically-based open-
ing shape presented greater resistance to plasticization mechanisms and 
lower deflections compared with other shapes. In Tsavdaridis and 
D’Mello [6] three-point bending tests were performed on steel beams 
comprising various web opening shapes. It was shown that steel beams 
with elliptically-based opening shape had greater WPB resistance when 
compared to the others one. Ferreira et al. [12] carried out a parametric 
study in web-post finite element models. In Shamass et al. [13], the 
capacity of WPB resistance in normal strength beams with EBW open-
ings was studied using Artificial Neural Network (ANN) model. The 
authors showed that geometrical parameters of the steel profile such as 
the web thickness and height had positive influence on the WPB ca-
pacity, while the geometrical parameters of the EBW opening including 
the radius, width and height had negative impact reflecting inverse 
relationship. Very limited research is presented on the HSS beams with 
EBW openings by Ferreira et al. [4]. In this paper, an analytical design 
approach was proposed for WPB capacity prediction based on the strut 
model given in Eurocode 3 (EC3) [30]. This procedure will be presented 
in Section 2 of this study. With the presentation of this background 
considering HSS steel beams with EBW opening, it is noted that the 
studies are scarce. 

Currently, machine learning (ML) algorithms are widely used in 
solving engineering problems of structural members, mainly for design 
and verification issues, considering steel beams with web openings [5, 
31,13,32–41]. 

Machine learning models can analyse large and intricate datasets, 
accommodating nonlinear relationships, and adapt to various com-
plexities in beam geometries. Furthermore, machine learning can pro-
vide more precise predictions, reducing the need for excessive 
overdesign and potentially resulting in cost savings without compro-
mising safety. The present work focuses on Artificial Neural Networks 
(ANN), Support Vector Machine Regression (SVR) and Gene Expression 
Programming (GEP) algorithms. The ANN has become one of the most 
popular ML algorithms, and it was invented by Rosenblatt [42]. An ANN 
model consists of interlinked nodes, like the human brain, displayed in 
three main layers including input, hidden, and output layers [43–45]. 
An ANN projected with more than three hidden layers is known as deep 
learning. The SVR was developed by Vapnik [46]. According to Tinoco 
et al. [47], the SVR implements nonlinear kernel function to find an 
optimal hyper-plane that most accurately fits the training data while 
enabling a certain margin of error [48,49]. The GEP was originally 
proposed by Ferreira [50] for solving complex mathematical problems. 
The GEP is constructed of different individuals known as chromosomes 
that form a simple expression tree (ETs) of several genes or “sub-ETs”. 
These genes are linked together by an assigned mathematical functions 
such as subtraction, addition, division, or multiplication [51]. A review 

of machine learning for structural engineering is found in Huu-Tai [52]. 
In this context, the present paper aims to develop machine learning 
techniques for predicting the WPB capacity of HSS beams with EBW 
openings. For this task, a database of 10,764 web-post finite element 
models, which are consider S460, S690 and S960 steel grades, is used to 
train ANN, SVR and GEP algorithms. The results are discussed in detail, 
and compared with the results from the numerical models and the 
analytical method proposed by Ferreira et al. [4]. 

2. Ferreira et al. based on EC3 calculations 

A new design approach was proposed by Ferreira et al. [4] to predict 
the WPB capacity of HSS beams with EBW openings. This approach is 
basically an extension of the previously developed model for normal 
strength steel beams [12]. The model considers the web-post effective 
length as a compressed bar. The procedure is based on EC3 [30] 
considering the buckling curve c, similar to that presented in SCI P355 
[53]. The methodology is described in Eqs. 1–10. 

leff = k
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(
s
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+ 0.21
(

w
do

)

− 0.004
(

do

tw

)

+ 0.49λ0 (9)  

VEC3 = σRktw(s − w) (10)  

In these expressions, do, R and w are the height, radius and width of the 
opening, respectively, s, λw, leff and tw are the web-post width, the web- 
post slenderness factor, the web-post effective length and the web 
thickness, respectively. H is the distance measured from the centres of 
flanges after castellation process, fcr,w is the critical stress in the web- 
post, λ0 and χ are a reduced slenderness factor and a reduction factor, 
respectively. 

3. Finite element method 

This section discusses the development of the numerical model 
conducted previously by Ferreira et al. [12] for steel beams with 
elliptically-based web openings using the ABAQUS software [54]. A 
similar approach of the previously validated model is employed in this 
study. The model demonstrated very good depiction of the experimental 
ultimate strength capacity with the mean and standard deviation are 1 
and 6.9 %, respectively. Similar observation is found in terms of the 
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load-mid span displacement curve, maximum loading capacity, failure 
mode and vertical shear resistance [12]. The validation was conducted 
for both the full and web-post models similar to that previously used in 
several research [4,9,55,11–13,56,57–60]. The development and vali-
dation of the numerical model is concisely presented herein. 

In order to conduct a robust numerical model, allowing for the 
identification of the failure mechanism of the WPB, full and single web- 
post models are established. The models are developed by performing a 
Buckling and post-buckling analyses with initial geometric imperfection 
of dg/500, (dg denotes for the beam height). This value was found to be 
appropriate for steel beams with periodical perforated web openings 
[56,12,13], given the complexity of estimating the geometric imper-
fection owing to the manufacturing and castellation process. Full and 
web-post models are discretised with S4R shell element and reduced 
integration [12,13,61,62]. Following the mesh sensitivity study, a 10 
mm element size is shown to be the most appropriate element size for all 
beams, providing an accurate predictions of the experimental results. 
The boundary conditions for both the full and web-post models are 
illustrated in Fig. 1a and b, respectively. The constitutive behaviour of 
steel in the beam model is represented using a multi-linear constitutive 
model [63,64]. A value of 200 GPa and 0.3 are taken for the Young’s 
modulus and Poisson’s ratio, respectively. 

3.1. Model validation 

The finite element model is validated using experimental tests re-
ported in Ref. [6], particularly specimens A1, A2, B1, B2 and B3. It is 
noteworthy to indicate that only normal steel beams is employed in the 
validation process given the scarce of the experimental tests on 
high-strength perforated steel beams with EBW openings. 

The validation results for the full and web-post models are presented 
in Fig. 2 and Table 1, respectively. Regarding the full models, the results 
are presented considering load-displacement relationships. The 
maximum and minimum relative errors of the test-to-finite element ratio 
were 0.8 % and − 5.1 %, respectively. Whereas, the results of the web- 
post models are shown by global shear. All models had the load- 
bearing capacity governed by web-post buckling, similar to the 
response observed in tests [6]. Based on the results presented in this 
section, it is possible to conclude that the FEM is validated and is capable 
of providing accurate predictions. 

3.2. Parametric study 

Building on the discussion presented previously, the web-post 
models can be used to study the WPB of perforated HSS beams with 

EBW openings. The parametric study includes a various range of the 
geometric parameters of the steel beam such as tf (flange thickness), bf 
(flange width), H, tw, do, w, R., as show in Fig. 3. To automate the pre- 
processing, processing and post-processing, a Python script is devel-
oped. At total, 10,764 web-post models are used considering three 
different HSS grades, S460, S690 and S960. The parameters investigated 
are shown in Fig. 4. 

4. Machine learning methods 

In this section, three machine learning models will be presented, 
considering Artificial Neural Network (ANN), Support Vector Machines 
(SVR) and Gene Expression Programming (GEP). 

4.1. Artificial Neural Network 

4.1.1. Neural network architecture 
In this study, a Multi-Layer Perceptron Network (MLPN) that solved 

an input-output fitting problem was employed to predict WPB load of 
the HSS beams with elliptical web opening. A typical neural network 
architecture with three neurones is presented in Fig. 5. In this paper, the 
ANN model is developed with a shallow structure consisting of a single 
hidden layer in order to promote generalization and avoid over fitting 
issues [65–68]. In this study, the input parameters used are do, H, R, tw, 
w and fy, while the output is the WPB load (VANN). The primary aim of 
the neural network is to allocate weights to the hidden layer neurons and 
introduce bias values in both the hidden and output layers. This process 
is crucial for establishing the connections between the input and output 
parameters. 

4.1.2. Setting up Artificial Neural Network 
The ANN initially categorizes the data into three groups. The training 

data (70 %) is utilized to train the model and refine it based on errors. 
Validation data (15 %) serves to evaluate the network’s generalization 
and halt the training when no further improvements are observed. The 
testing data (15 %) remains independent, having not been used in 
training or validation, and is employed to assess the model’s accuracy 
separately [69]. To address the high accuracy requirements for small to 
medium-sized problems, the Levenberg-Marquardt back-propagation 
training algorithm was selected [34,37,38]. 

All data variables were subjected to normalization using the map-
minmax method, which was employed to range the data from − 1 to 1. 
This process involved applying Eq. (11) to all inputs and outputs. 

Fig. 1. Discretization and boundary conditions.  
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xn
i =

(ymax − ymin)
(
xi − xmin

i

)

xmax
i − xmin

i
+ ymin (11)  

where xi and xn
i are the actual value for inputs or output and the cor-

responding normalized value respectively. The minimum and maximum 
values for the inputs or output are denoted as xmin

i and xmax
i , the ymin and 

ymax are taken by default as − 1 and +1 for each row of X, respectively. 
Table 2 summarizes the range of the data employed from the parametric 
study for he input and output parameters. 

In order to find the optimum number of neurons in the hidden layer, 

four ANN models were developed with 4, 6, 8 and 10 nuerons. The 
performance of these models is then assessed. The hyperbolic tangent 
transfer function [70] needed to predict the output parameter based 
normalized input values is given in as follows: 

Os =Bs
2 +

∑r

k=1
who

k,l.

(
2

1 + e− 2Hk
− 1

)

(12)  

Fig. 2. Load-displacement curves obtained from the numerical models and corresponding tests, considering full models.  
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Hk =Bk
1 +

∑q

j=1
wih

j,k. Ij (13)  

Where, Os and q denote the normalized output value and the number of 
input parameters; s and r are number of output parameters and the 
number of hidden neurons; wih

j,k is the weights of the connection between 
Ij and Hk; woh

k,l are the weights of the connection between Hk and Os; Bs
1 

and Bk
2 are the biases of sth output neuron and kth hidden neuron (Hk), 

respectively. 

4.1.3. Assessing accuracy of neural network output 
The accuracy of the ANN model is assessed by comparing the pre-

dicted values with the target values using different statistical measures 
including the coefficient of determination (R2), Root Mean Square Error 
(RMSE) and Mean Absolute Error (MAE). These measures are deter-
mined as follows 

R2 = 1 −

∑m

i=1
(yi − ŷi)

2

∑m

i=1
(yi − y)2

(14a)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1
(yi − ŷi)

2

√

(14b)  

MAE =
1
m

∑m

i=1
|yi − ŷi| (14c)  

where, m is the number of data point, yi and ŷi denote the ith actual and 
predicted output respectively, y represents the average of yi. To achieve 
excellent ANN model accuracy, the value of (R2) should be close to 1, 
and (RMSE) and (MAE) must be minimal. 

To further evaluate the model’s accuracy, the influence of each input 
parameter was examined using the Garson Algorithm and the Connec-
tion Weight Approach. The later considers raw connection weights, 
identifying for the direction and the contribution that inputs might have 
on the output [71]. A positive impact indicates that increasing the input 
parameter will increase the output parameter’s value, while a negative 
impact implies the opposite relationship. Eq. (15) outlines the calcula-
tion process for the Connection Weight Approach, where Inputx signifies 
importance, Hidden denotes the hidden-output connection weights and 
XY represents the input-hidden connection weights. 

The contributions of inputs are also calculated through Garson’s al-
gorithm. It worth noting that Garson’s algorithm does not identify the 
direction of the relationship between the input and output since it uses 
absolute values of connection weights, Eq. (16) illustrates the Garson 
Algorithm’s calculation process [72]. 

In these equations, the subscripts n, k and m refer to the output, input 
and hidden neurons, whereas o, h and I refer to output, hidden and input 
layers, respectively. Nh and Ni and denote the numbers of neurons in the 
hidden and input layers, respectively; w is connection weights. 

Inputx =
∑E

Y=A
HiddenXY (15)  

Ij =

∑m=Nh

m=1

⎛

⎜
⎜
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wih
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wih
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who
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⎞

⎟
⎟
⎠

∑k=Ni

k=1

⎡

⎢
⎢
⎣

∑m=Nh

m=1

⎛

⎜
⎜
⎝
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k=1
wih
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who
mn

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦

(16)  

4.2. Support Vector Machines 

4.2.1. Overview 
Support Vector Machine (SVM) is a machine learning method 

developed by Vapnik [46] and has gained popularity due to its 
outstanding performance [73]. It was initially implemented for classi-
fication purpose and known as Support Vector Classification (SVC), then 
used to handle regression problems under the name Support Vector 
Regression (SVR). The primary concern in SRV is to identify an optimal 
hyper plane that matches the training data while allowing a certain 
degree of error “ε”, as shown in Fig. 6. All predictions inside the 
ε-insensitive tube are expected to have a tolerable error relative to the 
target, while any deviation outside this tube is penalized [74]. Support 
vector is a subset of the training data that is crucial for determining and 
making accurate predictions. However, it’s important to note that hav-
ing more support vectors can improve accuracy but also increases 
computational time. 

In many cases, the relationship between inputs and the output is not 
linear in the original input space. Therefore, SVR employs the kernel 
trick to map the data into a higher-dimensional space where linearity 
can be achieved. This is accomplished using kernel functions (i.e. sig-
moid, polynomial and Radial Basis Function (RBF), to enable SVR to 
handle complex non-linear data. A general overview of the mathemat-
ical background of SVR is presented. Further information is available in 
Ref. [75]. 

The prediction model used in the SVR should be based on the 
following function: 

f (x)=wT φ(x) + b (17) 

By minimizing the subsequent objective function: 

min
w,b

1
2
‖w‖2 (18) 

Table 1 
WPB resistance, considering the web-post models.  

Model VTEST (kN) VFE (kN) VTEST/VFE 

A1 144.4 157 0.92 
A2 149 159 0.94 
B1 127.5 121 1.05 
B2 201.2 200.5 1.00 
B3 207.5 188 1.10   

Average 1.00   
S.D 6.93 %   
CoV 6.90 %  

Fig. 3. Geometrical parameters of perforated steel beams with EBW openings.  
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Subject to: yi − wTψ(xi) − b ≤ ε
wTψ(xi) + b − yi ≤ ε Here, w and b represent the param-

eters of the regression function, while φ(x) denotes a non-linear function 
that maps the input data into a higher-dimensional feature space 

In certain scenarios, the optimization problem could not be solved (i. 
e. Eq. (18)) due to the strict constraints, which means that all data points 
must be entirely within the ε-tube. Consequently, any violation beyond 
the margin makes it infeasible [75,76]. To address this challenge, Cortes 
and Vapnik [77] introduced the concept of a ‘soft margin,’ allowing for a 
degree of error tolerance within the model. This is achieved by intro-
ducing slack variables ξᵢ and ξ ′i, representing upper and lower training 
deviations, respectively, outside the ε-insensitive tube, as illustrated in 
Fig. 6. Consequently, the optimization problem can be reformulated as 
follows: 

min
w,b,ξi ,ξ′

i

1
2
‖w‖2

+ C
∑N

i=1

(
ξi + ξ′

i

)
(19) 

Subjected to: 
yi − wTψ(xi) − b ≤ ε + ξi

wTψ(xi) + b − yi ≤ ε + ξ′
i 

ξi, ξ′
i ≥ 0; i = 1,2,3…,N 

In this equation, C is a positive hyper parameter that provides 
excellent balance compromise between the flatness of the regression 
function f and the error tolerance ε [75,76]. These two hyper parameters 
must be optimized during the training process using well-established 

Fig. 4. Normal distribution considering number of models per parameter investigated.  

Fig. 5. A typical neural network architecture with three neurones.  
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tuning techniques like grid search or random search to achieve optimal 
performance for the SVR model. 

Alternatively, the optimization problem can be redefined using 
Lagrange multipliers αi and α∗

i as follows: 

max
αi ,α∗

i

∑N

i=1
yi
(
αi − α∗

i

)
− ε

∑N

i=1

(
αi +α∗

i

)

−
1
2
∑N

i,j=1

(
αi − α∗

i

)(
αj − α∗

j

)
φ(xi)

T φ
(
xj
)

(20) 

Subjected to: 
∑N

i=1(αi − α∗
i )= 0 αi,α′

i ∈ [0,C]; i = 1,2,3…,N 
The prediction model can be reformulated as follows: 

f (x)=
∑N

i=1

(
αi − α∗

i

)
φ(xi)

T
.φ(x) + b (21)  

where;w =
∑N

i=1(αi − α∗
i )φ(xi)

T 

The solution for the Lagrange multipliers (αi − α∗
i ) can be either zero 

or non-zero. The non-zero terms correspond to the support vectors, 
which play a fundamental role in defining the final regression function 
and can be re-expressed as: 

f (x)=
∑nSVs

k=1

(
αk − α∗

k

)
K(xk, x) + b (22)  

Where x is the input vector, xk represents the support vectors, nSVs is the 
number of support vectors, K(xk, x) = φ(xk)

T
.φ(x) represents the kernel 

function and b is the bias Eqs. (23 a-d) represent the main kernel func-
tion: 

Linear kernel: 

K(xk, x) = xT
k x (23-a) 

Polynomial kernel: 

K(xk, x) =
(
xT

k x + r
)d (23-b) 

RBF kernel: 

K(xk, x)= exp
(
− γ‖xk − x‖2) (23-c) 

Sigmoid kernel: 

K(xk, x)= tanh
(
γxT

k x+ r
)

(23-d) 

Where γ is a coefficient, r is an offset, and d indicates the degree of 
the polynomial kernel. This study exclusively employs the (RBF) kernel 
due to its proven success in numerous applications, as evidenced by Refs. 
[78–80]. 

4.2.2. Data preparation 
The SVR model is built using a total of 10,764 data points extracted 

from the parametric study utilizing the fitrsvm function from the Sta-
tistics and Machine Learning Toolbox in MATLAB [81]. The data are 
divided into three groups including training, validation and testing data. 
70 % of the data is set to train the SVR model, while 15 % of the data is 
allocated for validation purpose, and the remaining 15 % is reserved for 
testing with an unseen dataset. To address differences in units and 
quantity limits, both input and output data have been normalized in a 
range of − 1 to 1, using Eq. (11). The input parameters used are do, H, R, 
tw, w, and fy, while the output is the WPB load (VSVR). 

4.2.2.1. Grid search. In this study, the grid search method with 10-fold 
cross-validation is employed to optimize hyper parameters for the RBF 
kernel, specifically C, ε and γ. While this tuning technique is exhaustive 
and computationally time-consuming, requiring substantial resources. 
Nevertheless, it remains widely adopted due to its established accuracy 
[82]. To optimize computational efficiency, a two-step grid search 
approach is implemented, following the practical guide [83]. The first 
step involves a coarse grid search with a large interval range and step 
size. The second step refines the search within the interval where the 
optimal hyper parameters are identified during the coarse grid search. 
The initial range considered for C spans from 10− 3 to 105, ε ranges from 
10− 9 to 10− 1, and γ varies from 10− 7 to 101, all with a step size of 1 in 
logarithmic scale. In the finer grid search, this step size is further 
reduced to 0.25. For each set of hyper parameters, a 10-fold 
cross-validation is applied, which involves partitioning the training 
dataset into 10 equal folds. In each iteration, one fold serves as the test 
set while the remaining nine folds are used for training, as depicted in 
Fig. 7. This operation is repeated for 10 iterations, for each hyper 

Table 2 
The range of the data employed from the parametric study for The range for the input and output parameters.   

H (mm) tw (mm) do(mm) w(mm) R(mm) f y (Mpa) V(kN)

Upper limit 1335.8 21.1 1202.3 781.5 360.7 960 4212.8 
Lower limit 213.4 4.8 138.7 34.7 13.9 460 48.7  

Fig. 6. ε-insensitive tube for linear SVR.  

Fig. 7. An illustration of the concept of 10-fold cross-validation.  
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parameter combination the average performance measures are 
collected. Subsequently, the combination that provides the lowest RMSE 
and the highest R2 is selected as the optimal solution. 

4.2.3. Accuracy assessment 
The performance of SVR model has been assessed using statistical 

key measures, including the coefficient of determination (R2), the Root 
Mean Square Error (RMSE) and the Mean Absolute Error (MAE), as 
expressed in Eqs. (14a), (14b) and (14c), respectively. The correlation 
between inputs and outputs is also assessed using Pearson’s method 
[84]. This provides a clear understanding of the strength and direction of 
the linear interdependence between inputs and their influence on the 
output. Pearson’s correlation coefficient (ρ) can be calculated as follows: 

ρ=

∑

i
(Xi − X)(Yi − Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

i
(Xi − X)2∑

i
(Yi − Y)2

√ (24)  

Where Xi and Yi represent the ith values of the variable X and Y, 
respectively, X and Y are the averages of the variables X and Y, 
respectively. Pearson’s correlation coefficient falls within the range of −
1 to 1. In other words, when ρ is equal to 1, it suggests a strong positive 
linear relationship between X and Y, implying that as X increases, Y 
increases. Conversely, when ρ is equal to − 1, it indicates a strong 
negative linear relationship, meaning that as X increases, Y decreases. 
When ρ is 0, it indicates no linear correlation between the two variables, 
X and Y. In this case, there is no consistent linear pattern between the 
variables, and they are considered uncorrelated. 

4.3. Gene Expression Programming (GEP) 

4.3.1. Overview 
GEP is an artificial intelligence-based technique that was originally 

developed by Ferreira [50] for solving complex mathematical problems. 

A GEP model is constructed of different individuals known as chromo-
somes that form a simple expression tree (ETs) of several genes or 
“sub-ETs”. These genes are linked together by an mathematical func-
tions such as subtraction, addition, division, or multiplication[50,84, 
85]. In this study, GeneXproTools 5.0 software was utilized to develop 
the GEP model. There are several parameters that need a careful cali-
bration in order to develop an optimal GEP model and these include the 
number of chromosomes (Nc), number of genes (Ng), and head size (Hs) 
[86,87] The calibration of these parameters require basically perform-
ing several trials by interchanging the main hyper-parameter settings in 
the software. Therefore, a systematic approach has been followed in this 
study for developing the best-fitted and most accurate predictive GEP 
model, as elaborated in Fig. 8. 

4.3.2. Data preparation and accuracy assessment 
A total of 10,764 data points generated from the parametric study is 

employed to train the GEP model. The data was categorised into training 
and validation data sets with proportion of 70 % and 30 %, respectively. 
Similar to the ANN and SVR model, the input parameters used are do, H, 
R, tw, w, and fy, while the output is the WPB load (VGEP). The model 
includes several trials to select the most appropriate values for the 
setting parameters (i.e. Nc, Ng, and Hs) and for the different linking 
functions (i.e. addition, multiplication and division). The range 
employed for the setting parameters are 30–160, 3–5, and 8–11 for Nc, 
Ng, and Hs, respectively. In total, nine models (T1- T9) were established 
to select the best-performed GEP model. The accuracy of the GEP model 
is assessed through comparing the predicted values with the corre-
sponding targeted values using the statistical measures including R2, 
RMSE and MAE presented previously in Eqs (14a), (14b) and (14c), 
respectively. 

5. Results and analysis 

A comprehensive analysis and discussion for the results of the 
various machine learning methods employed in this study is presented in 
this section. This includes a careful examination of the different pre-
dicted model in terms of the optimization, validation and accuracy. The 
results from the proposed machine learning methods are then compared 
with the corresponding targeted values from the numerical model and 
those calculated from the analytical expression proposed by Ferreira 
et al. [4]. 

5.1. Prediction-based ANN 

The accuracy data for all ANN models produced is presented in 
Table 3. The results show that there is a clear correlation between ac-
curacy and number of neurons until 8 neurons, at which some results 
stagnant and some decrease in the level of accuracy. The increase in 
neurons results in more complicated formula (which lacking behind 
practicality) and potentially yields ANN model to faces overtraining 
issue. The R2, MAE and RMSE for 8-neuron model with all data are 
0.9984, 17.33, and 27.17, respectively. In conclusion, given that the 
ANN model with eight neurons shows high level of accuracy with the 
influence of the inputs on the resistance is similar to what is physically 
expected. Hence, the model with 8-neurons is selected to be used in 
further analysis. A comparison of the predicted WPB resistance obtained 

Fig. 8. Flow chart of the GEP model.  

Table 3 
Performance metrics of the ANN models.  

No. of Neurons R2 All data 

Training Validation Testing R2 MAE RMSE 

4 0.9959 0.9959 0.9957 0.9959 29.34 44.04 
6 0.9975 0.9973 0.9972 0.9974 22.42 34.75 
8 0.9984 0.9984 0.9986 0.9984 17.33 27.17 
10 0.9984 0.9984 0.9984 0.9984 17.74 27.51  
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from the ANN model (VANN) and the corresponding targeted values from 
the parametric study (VFE) is given in Fig. 15 (a). Overall, the results 
show that ANN is a powerful tool in accurately predicting the web-post 
buckling load of the HSS beams with elliptical web openings. 

Fig. 9 provides the impact of each input parameter using The 
Connection Weight Approach. All models show that as the opening 
height (do) and the opening radius (R) increases there is a negative 
impact on the web-post buckling capacity. On the other hand, there is a 
positive impact on the web-post buckling capacity with the increase in 
the distance between geometric centres of flanges (H), the web thickness 
(tw), opening width (w), and the yield stress (fy). This is in line with what 
it is expected to see from each parameter, as a thicker web leads to a 
slenderer web-post and increased resistance, aligning with expectations. 
Conversely, raising the opening height and radius reduces the tee sec-
tion’s height, resulting in reduced resistance. Additionally, as the height 
H increases, both the web-post’s slenderness and the tee section’s height 
increase, leading to higher vertical shear resistance. This holds true as 
long as the geometric ratios (do/H, w/do, and R/do) and web thickness 

remain constant. Finally, as the yield stress of the HSS increase the ca-
pacity of the beams also increase. The parameter with the largest posi-
tive impact on the web-post buckling capacity of HSS beams with 
elliptically-based openings was the beam’s height (H) and the param-
eter with the largest negative impact on the capacity was the opening 
height (do). 

The significance of the six input parameters in terms of its contri-
bution value to the output as determined from Garson algorithm is 
illustrated in Fig. 10. It can be observed that the beam’s height (H) and 
opening height (do) are the most significant parameters on the capacity. 
The percentage contribution of these parameters towards the ultimate 
capacity is 32.5 %, and 25.1 %, respectively. It is found that the opening 
radius (R) and opening width (w) have the lowest effect on the capacity, 
and percentage contribution of these parameters on the capacity is 3.8 % 
and 9.9 %, respectively. The web-thickness (tw) and yield stress (fy) of 
the HSS have intermediate effect on the capacity with percentage con-
tributions of 16.0 % and 12.6 %, respectively. 

The proposed ANN design formula for predicting the WPB capacity 
for HSS beams with elliptically-based web openings is giving in Eq. (25). 
It is indicated that normalization and demoralization of the inputs and 
the output, respectively, are necessary when Eq. (25) is used, as dis-
cussed previously in Eq. (11). The values of w1 (i, j), w2(i) and B1(i) 
corresponding to each neuron i are listed in Table 4. The value of the 
output bias B2 is equal to − 0.1398. 

(V)n =B2 +
∑n=8

i=1
W2

(
2

1 + e− 2Hi
− 1

)

(25)  

Hi =B1(i)+W1(i, 1)(H)n +W1(i, 2)(tw)n +W1(i, 3)(do)n +W1(i, 4)(w)n

+W1(i, 5)(R)n + W1(i, 6)
(
fy
)

n 

Fig. 9. Impact of input parameters- Connection Weight Approach.  

Fig. 10. Contribution (%) of input parameters to the resistance (8 neurons).  

Table 4 
The connection weight and the bias values.  

Neuron w1 (i,j) w2(i) B1(i) 

H tw do w R fy VANN 

1 − 7.681 2.351 4.945 1.966 − 0.208 0.151 − 0.436 − 1.411 
2 4.553 − 2.314 − 3.031 − 0.398 0.403 0.173 − 0.706 2.599 
3 − 3.874 − 2.553 3.535 3.009 1.265 − 5.126 − 0.017 1.422 
4 0.304 − 0.087 − 0.242 0.009 0.004 0.179 36.724 0.364 
5 0.240 − 0.215 − 0.139 − 0.018 0.004 0.145 − 21.815 0.246 
6 1.979 0.446 − 1.805 − 0.792 − 0.527 0.440 0.679 − 2.315 
7 − 0.569 0.875 0.480 − 0.909 − 0.293 0.125 − 1.345 − 1.932 
8 0.323 0.065 − 0.317 0.040 0.005 0.185 − 18.269 0.492  

Fig. 11. Pearson’s correlation matrix results for the present data.  
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The ANN model with its parameters has been implemented in user- 
friendly excel sheet. The user is prompted to enter the required input 
parameters within the range specified in Table 2 to ensure the accuracy 
of the results. The sheet can be found at: https://github.com/Rabee-Sh 
amass/Web-Post-Buckling-Resistance-Prediction-of-HSS-Beams-with- 
Elliptical-Web-Openings. 

5.2. Prediction-based SVR 

The correlation between the inputs and outputs implemented in the 
SVR model is shown in Fig. 11. There is a strong positive correlation 
between certain input variables, such as (w) and (R) with a coefficient of 
0.81, and between (H) and (w) with a coefficient of 0.83. Additionally, a 
strong correlation is found between (w) and (d0) with a coefficient of 
0.86. There are also correlations around 0.7 between (H) and (tw), (H)

and (R), and (R) and (d0). However, it’s important to note that no 

Fig. 12. Identification of hyper parameters through coarse grid search.  
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significant correlation is observed between (fy) and the remaining input 
variables. This is expected since the geometric parameters of the web- 
opening are not affected by the material property (fy). On the other 
hand, strong correlation coefficients are observed between certain in-
puts, particularly (tw), (H), and (d0), and the output (VSVR), with co-
efficients of 0.89, 0.63, and 0.51, respectively. This suggests that these 
inputs have a significant influence on the output variable. Conversely, 
(R) and (fy) appear to have a weak linear correlation and relatively less 
impact on (VSVR). These correlations collectively imply that the rela-
tionship between the inputs and output tends to be non-linear. There-
fore, it is important to consider the use of non-linear kernel functions 
such as RBF when employing the SVR model to accurately capture the 
non-linear patterns in the data. 

To achieve accurate prediction with the SVR model, the grid search 
technique with 10-fold cross-validation is applied, considering 729 
possible combinations of hyper parameters for coarse and refined grid 
search. Fig. 12 displays the variation of each considered hyper param-
eter during the coarse grid search as a function of R2 and RMSE, with the 
remaining two hyper parameters being set to their optimal values. The 
optimal combination of hyper-parameters, which results in the lowest 
RMSE and the highest R2 of 0.0048 and 0.9991 respectively, falls within 
the range of 101 to 103 for C and 10− 1 to 101 for γ. Therefore, a finer grid 

search with a step size of 0.25 in log scale is conducted within these 
intervals to identify the optimal combinations. 

However, both R2, and RMSE with respect to ε remain relatively 
stable from 10− 9 up to 10− 2. Fig. 13 demonstrates a strong relationship 
between ε and the percentage of support vectors. Specifically, as ε de-
creases (while keeping the other hyperparameters fixed), the number of 
support vectors increases, leading to a more complex model. Conse-
quently, a finer grid search with a 0.25 step size in log scale is employed 
in the interval from 10− 4 to 10− 2 and the optimal value for this hyper 
parameter is chosen to minimize RMSE, maximize R2, and reduce the 
number of support vectors. Hence, the best combination of hyper pa-
rameters obtained is (C,ε,γ) = (101.5,10− 2.75,100.5), with RMSE 0.0035 
(normalized value) of and an R2 of 0.9995. 

Fig. 15 (b) displays the predicted ultimate load capacity results with 
the SVR model (VSVR) compared to those obtained from the parametric 
study (VFE). Additionally, Table 5 provides the performance metrics for 
demoralised training, validation, and test data. The presented results 
indicate the SVR provides excellent depictions of the corresponding 
actual values, with an R2 of 99.97 % and RMSE of 11.72. Therefore, this 
model is considered to be a reliable choice for estimating the ultimate 
capacity, as it provides accurate predictions. 

5.3. Prediction-based GEP 

In order to achieve the best-performed GEP model with the highest 
R2 value and lowest RMSE and MAE values for both the training and 
validating datasets, a total of nine models (T1 to T9) were performed. 
Table 6 summarizes the primary setting parameters used in several 
models with their main statistical measures (i.e. RMSE, MAE and R2). It 
is clearly observed that the number of chromosomes (Nc) has significant 
influence on the accuracy of the model performance, while the other 
setting parameters, including the number of genes (Ng) and head size 
(Hs), have shown a negligible impact on the model performance. It is 
worth noting that in some scenarios the GEP does not account all the 
input variables (i.e. T1, T2, T5 and T9) and therefore only the models 
with 6 inputs were considered in the sensitivity analysis. In conclusion, 
model (T4) is found to provide the most accurate predictions with best 
performance measures for both training and validation datasets, and 
therefore it has been selected for further work. 

A comparison of the predicted web-post buckling resistance (VGEP) 
obtained from the GEP model and the corresponding targeted values 
from the parametric study (VFE) is shown in Fig. 15 (c). The statistical 

Fig. 13. The influence of ε on percentage of SVs and RMSE.  

Table 5 
Performance metrics of SVR model.  

Training Validation Testing All data 

R2 RMSE R2 RMSE R2 RMSE R2 RMSE MAE 

0.9999 7.43 0.9993 17.63 0.9993 18.63 0.9997 11.72 6.55  

Table 6 
Performance metrics of the GEP models.  

Models Setting Parameters GEP Modelling Results 

Nc Hs Ng Training dataset (70 %) Validation dataset (30 %) No. of used variables 

RMSE MAE R2 RMSE MAE R2 

T1 30 8 3 158.43 103.83 0.948 179.98 115.4 0.933 4 
T2 80 8 3 145.98 87.07 0.952 152.72 91.61 0.952 5 
T3 130 8 3 121.17 87.64 0.969 131.4 86.18 0.963 6 
T4 160 8 3 104.32 67.88 0.977 102.59 66.56 0.977 6 
T5 160 9 3 163.21 97.39 0.949 165.28 100.73 0.942 5 
T6 160 10 3 126.54 84.78 0.965 139.17 95.62 0.962 6 
T7 160 11 3 162.38 106.41 0.946 159.17 102.61 0.946 6 
T8 160 8 4 155.07 95.41 0.951 147.16 89.06 0.955 6 
T9 160 8 5 143.31 99.23 0.957 150.06 102.48 0.952 5  
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measures of R2, MAE, and RMSE values for this data are 0.977, 103.8, 
and 67.5, respectively. The closeness between these statistical values 
and those obtained individually for the training and validation datasets 
indicates the generalization performance of the model. 

The expression tree of the proposed GEP model is shown in Fig. 14. 

The notations d0, d1, d2, d3, d4, and d5 represent sequentially the input 
variables H, tw, d0,w,R, and fy. The constants involved in the model are 
as follows: C6 = 116.130 and C5 = 0.975 in the first gene (Sub-ET1), 
C9 = 1.025 in the second gene (Sub-ET2), and C1 = − 9.350 and C6 =

18.087 in the third gene (Sub-ET3). This tree, however, is simplified 

Fig. 14. Expression tree of the proposed GEP model.  

Fig. 15. Comparison between ANN, SVR, GEP and Ferreira et al. [4] based on EC3 predictions with finite element models.  
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mathematically in Eq. (26). This expression can be used straightforward 
for prediction of the WPB of the HSS steel beam with elliptically-based 
web openings without the need for normalising the inputs, reflecting a 
more practical design tool. It should be mentioned that the unite for the 
geometric inputs parameters (H,tw,do,w and R) is in mm, whereas fy and 
VGEP are in MPa and kN, respectively. The expression tree is usually read 
from left to right and from bottom to up. This process is done individ-
ually for each gene (Sub-ETs) in the tree. After that, the transformed sub- 
equations are linked together using the linking function in the model 
(Addition) to obtain the GEP equation. To simplify the result equation 
for direct use of prediction, the notations (d0 to d5) were expressed in 
the equation with their corresponding variables, whereas the constant 
values are substituted numerically. 

VGEP =
̅̅̅̅̅
d0

3
√

(
119.107
R − H

)

tw
2 +

[ln(tw)]
4 ̅̅̅̅

fy
√

1.0062
(

d0
H

)+
(d0 − 18.087)2

− fy(
wH

− 9.350tw

) (26)  

5.4. Comparison between ANN, SVR, GEP and Ferreira et al. based on 
EC3 calculations 

Fig. 15 shows the comparison of the WPB predictions of the different 
machine learning methods (i.e. ANN, SVR and GEP), as well as the 
procedure proposed by Ferreira et al. [4]based on EC3, and the corre-
sponding targeted values from the FE models. For the ANN model 
(Fig. 15a), it was found that the values of mean, standard deviation, and 
coefficient of variation equal to 1.00, 4.06 % e 4.06 %, respectively, 
considering VANN/VFE ratio. The maximum and minimum relative error 
values (VANN/VFE-1) were equal to 25 % and − 30 %, respectively. 
Regarding the statistical analysis of SVR model (Fig. 15b), the mean, 
standard deviation, and coefficient of variation were equal to 1.00, 1.81 
% and 1.81 %, respectively, considering VSVR/VFE ratio. The maximum 
and minimum relative error values (VSVR/VFE-1) were equal to 24 % and 
− 10 %, respectively. Fig. 15c shows the results of GEP model, and it was 
verified values of mean, standard deviation, and coefficient of variation 
were equal to 0.96, 20.41 % and 21.27 %, respectively, considering 
VGEP/VFE ratio. The GEP model presented values equal to 49 % and 
− 241 %, considering the maximum and minimum relative errors 
(VGEP/VFE-1), respectively. The model proposed by Ferreira et al. [4] is 
shown in Fig. 15d. The mean, standard deviation, and coefficient of 
variation were equal to 1.02, 8.47 % and 8.29 %, respectively, consid-
ering VEC3/VFE ratio. The maximum and minimum relative errors 
(VEC3/VFE-1) were found equal to 61 % and 23 %, respectively. Table 7 
shows all the results of statistical analyses. Based on the presented re-
sults and discussion, it can be noted that the ANN and SVR model offers 
the most accurate predictions with the least relative errors. Although, 
the GEP model exhibits more conservative predictions with lower level 
of accuracy, their predictions are relatively similar to the analytical 
model proposed by Ferreira et al. [4] based on EC3 approach. In addi-
tion, one of the key advantages for GEP is that it offers a more practical 
and straightforward design equation with a very simple mathematical 
functions (i.e. addition, multiplication and division) with no require-
ment for normalization of the inputs. 

6. Conclusions 

This paper has provided a thorough investigation of the WPB resis-
tance for HSS beams with elliptically-based web opening. For this pur-
pose, a numerical model was developed and validated, and then a 
comprehensive parametric study has been conducted including various 
influential parameters, resulting in a total of 10,764 data points. A 
various machine learning methods were developed, trained and vali-
dated using the data generated from the parametric study, and these 
include Artificial Neural Networks (ANN), Support Vector Machine 
Regression (SVR) and Gene Expression Programming (GEP) algorithms. 
The development and the assessment of the performance of these models 
were presented. A comparison of the predictions of the different ma-
chine learning methods and the corresponding targeted values obtained 
from the FE model was conducted. The performance of the analytical 
model proposed by Ferreira et al. [4] was also assessed. The proposed 
machine learning methods are shown to be a powerful, reliable and 
efficient design tools for predicting the WPB resistance of HSS beams 
with periodical elliptically-based openings. A summary of the key 
findings and conclusions are presented as follows:  

• The predictions of the ANN model shows excellent depiction of the 
corresponding actual values with the R2, MAE and RMSE values are 
0.9984, 17.33, and 27.17, respectively.  

• The ANN model is further validated through the evaluation of the 
impact of each input parameter that has on the WPB resistance using 
the Garson Algorithm and the Connection Weight Approach. The 
impact of these inputs is found to be as physically expected.  

• The SVR model provides excellent predictions of the corresponding 
targeted values, exhibiting outstanding accuracy with R2, MAE and 
RMSE values are 0.9997, 11.72, and 6.55, respectively.  

• The results of the GEP model indicates a sufficient level of accuracy 
R2, MAE, and RMSE values for this data are 0.977, 103.8, and 67.5, 
respectively.  

• Similar to the GEP model, the analytical model proposed by Ferreira 
et al. [4] reflects acceptable and sufficient level of accuracy with R2, 
MAE and RMSE values are 0.9816, 59.3, and 100.2, respectively.  

• Based on the presented results, the ANN and SVR model offers the 
most accurate predictions with the least relative errors.  

• Although, the GEP model and the analytical approach proposed by 
Ferreira et al. [4] provide less accurate predictions compared with 
ANN and SVR, they offer more practical and straightforward design 
equations with a very simple mathematical functions. 
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