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Abstract
The Ontology Alignment Evaluation Initiative (OAEI) aims at comparing ontology matching systems on
precisely defined test cases. These test cases can be based on ontologies of different levels of complexity
and use different evaluation modalities. The OAEI 2023 campaign offered 15 tracks and was attended by
16 participants. This paper is an overall presentation of that campaign.



1. Introduction

The Ontology Alignment Evaluation Initiative1 (OAEI) is a coordinated international initiative,
which organizes the evaluation of ontology matching systems [1, 2], and which has been run for
eighteen years now. The main goal of the OAEI is to compare systems and algorithms openly and
on the same basis to allow anyone to conclude the best ontology matching strategies. Furthermore,
the ambition is that, from such evaluations, developers can improve their systems and offer better
tools addressing the evolving application needs.

Two first events were organized in 2004: (i) the Information Interpretation and Integration
Conference (I3CON) held at the NIST Performance Metrics for Intelligent Systems (PerMIS)
workshop and (ii) the Ontology Alignment Contest held at the Evaluation of Ontology-based
Tools (EON) workshop of the annual International Semantic Web Conference (ISWC) [3]. Then,
a unique OAEI campaign occurred in 2005 at the workshop on Integrating Ontologies held in
conjunction with the International Conference on Knowledge Capture (K-Cap) [4]. From 2006
until the present, the OAEI campaigns were held at the Ontology Matching workshop, co-located
with ISWC [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], which this year took place
in Athens, Greece2.

Since 2011, we have been using an environment for automatically processing evaluations
which was developed within the SEALS (Semantic Evaluation At Large Scale) project3. SEALS
provided a software infrastructure for automatically executing evaluations and evaluation cam-
paigns for typical semantic web tools, including ontology matching. Since OAEI 2017, a novel
evaluation environment called HOBBIT (Section 2.1) was adopted for the HOBBIT Link Dis-
covery track, and later extended to enable the evaluation of other tracks. Some tracks are run
exclusively through SEALS and others through HOBBIT, but several allow participants to choose
their preferred platform. Since last year, the MELT framework [22] has been adopted to facilitate
the SEALS and HOBBIT wrapping and evaluation. This year, most tracks have adopted MELT
as their evaluation platform.

This paper synthesizes the 2023 evaluation campaign and introduces the results provided in the
participants’ papers. The remainder of the paper is organized as follows: in Section 2, we present
the overall evaluation methodology; in Section 3, we present the tracks and datasets; in Section 4
we present and discuss the results; and finally, Section 5 discusses the lessons learned.

OM 2023: The 18th International Workshop on Ontology Matching collocated with the 22nd International Semantic
Web Conference ISWC-2023 November 7th, 2023, Athens, Greece
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2. Methodology

2.1. Evaluation platforms

The OAEI evaluation was conducted in one of three alternative platforms: the SEALS client, the
HOBBIT platform, or the MELT framework. All of them have the goal of ensuring reproducibility
and comparability of the results across matching systems. As of this campaign, the use of the
SEALS client and packaging format is deprecated in favor of MELT, with the sole exception of
the Interactive Matching track, as simulated interactive matching is not yet supported by MELT.

The SEALS client was developed in 2011. It is a Java-based command line interface for
ontology matching evaluation, which requires system developers to implement an interface and
to wrap their tools in a predefined way, including all required libraries and resources.

The HOBBIT platform4 was introduced in 2017. It is a web interface for linked data and
ontology matching evaluation, which requires systems to be wrapped inside docker containers
and includes a SystemAdapter class, then being uploaded into the HOBBIT platform [23].

The MELT framework5 [22] was introduced in 2019 and is under active development. It
allows the development, evaluation, and packaging of matching systems for evaluation interfaces
like SEALS or HOBBIT. It further enables developers to use Python or any other programming
language in their matching systems, which beforehand had been a hurdle for OAEI participants.
The evaluation client6 allows organizers to evaluate packaged systems whereby multiple sub-
mission formats are supported (SEALS packages or matchers implemented as Web services).
Starting with this year, the MELT framework also supports the SSSOM [24] format. Therefore,
systems producing an alignment in the SSSOM format can be evaluated as well.

All platforms compute the standard evaluation metrics against the reference alignments: preci-
sion, recall, and F-measure. In test cases requiring different evaluation modalities, evaluation was
carried out a posteriori, using the alignments produced by the matching systems.

2.2. Submission formats

This year, three submission formats were allowed: (1) SEALS package, (2) HOBBIT, and (3)
MELT Web interface. With the increasing usage of other programming languages than Java and
increasing hardware requirements for matching systems, since 2021 the MELT Web interface was
introduced to address this issue. It mainly consists of a technology-independent HTTP interface7

which participants can implement as they wish. Alternatively, they can use the MELT framework
to assist them, as it can be used to wrap any matching system as docker container implementing
the HTTP interface. In 2023, 12 systems were submitted as MELT Web docker container, 3
systems were submitted as SEALS package, 1 system was uploaded to the HOBBIT platform,
and one system implemented the Web interface directly and provided hosting for the system.

In this year we also allowed to submit alignment files in addition to the executable system in
case it requires substantial hardware or software resources.

4https://project-hobbit.eu/outcomes/hobbit-platform/
5https://github.com/dwslab/melt
6https://dwslab.github.io/melt/matcher-evaluation/client
7https://dwslab.github.io/melt/matcher-packaging/web
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2.3. OAEI campaign phases

As in previous years, the OAEI 2023 campaign was divided into three phases: preparatory,
execution, and evaluation.

In the preparatory phase, the test cases were provided to participants in an initial assessment
period between June 30𝑡ℎ and July 31𝑠𝑡, 2023. The goal of this phase is to ensure that the test
cases make sense to participants, and give them the opportunity to provide feedback to organizers
on the test case as well as potentially report errors. At the end of this phase, the final test base
was frozen and released.

During the ensuing execution phase, participants test and potentially develop their matching
systems to automatically match the test cases. Participants can self-evaluate their results either
by comparing their output with the reference alignments or by using either of the evaluation
platforms. They can tune their systems with respect to the non-blind evaluation as long as they
respect the rules of the OAEI. Participants were required to register their systems by July 31𝑠𝑡

and make a preliminary evaluation by August 31𝑠𝑡. The execution phase was terminated on
September 30𝑡ℎ, 2023, at which date participants had to submit the (near) final versions of their
systems (SEALS-wrapped and/or HOBBIT-wrapped).

During the evaluation phase, systems were evaluated by all track organizers. In case minor
problems were found during the initial stages of this phase, they were reported to the developers,
who were given the opportunity to fix and resubmit their systems. Initial results were provided
directly to the participants, whereas final results for most tracks were published on the respective
OAEI web pages before the workshop.

3. Tracks and Test Cases

This year’s OAEI campaign consisted of 15 tracks, all of them including OWL ontologies while
only one also including SKOS thesauri, namely the Biodiversity and the Ecology track. They can
be grouped into:

– Schema matching tracks, which have as objective matching ontology classes and/or proper-
ties.

– Instance matching tracks, which have as objective matching ontology instances.

– Instance and schema matching tracks, which involve both of the above.

– Complex matching tracks, which have as objective finding complex correspondences
between ontology entities.

– Interactive tracks, which simulate user interaction to enable the benchmarking of interactive
matching algorithms.

The tracks are summarized in Table 1 and detailed in the following sections.



Table 1
Tracks in OAEI 2023.

test formalism relations confidence modalities language SEALS HOBBIT MELT
T-Box/Schema matching

anatomy OWL = [0 1] open EN
√ √

conference OWL =, <= [0 1] open+blind EN
√

multifarm OWL = [0 1] open+blind AR, CZ,
√

CN, DE,
EN, ES,
FR, IT,

NL, RU, PT
complex OWL = [0 1] open+blind EN, ES

√

food OWL =, <= [0 1] open EN
√

interactive OWL =, <= [0 1] open EN
√

bio-ML OWL =, <= [0 1] open EN
√

biodiv OWL/SKOS = [0 1] open EN
√

mse OWL =, <=, >= [0 1] open EN
√

crosswalks OWL = [0 1] open EN
√

common knowl. graph OWL = [0 1] open EN
√

Instance and schema matching
knowledge graph OWL = [0 1] open EN

√

Instance matching or link discovery
spimbench OWL = [0 1] open+blind EN

√

link discovery OWL = [0 1] open EN
√

pharmacogenomics OWL =, <, >,
Close, Related [0 1] open EN

√

3.1. Anatomy

The anatomy track comprises a single test case consisting of matching two fragments of biomedi-
cal ontologies which describe the human anatomy8 (3304 classes) and the anatomy of the mouse9

(2744 classes). The evaluation is based on a manually curated reference alignment. This dataset
has been used since 2007 with some improvements over the years [25].

Systems are evaluated with the standard parameters of precision, recall, F-measure. Addi-
tionally, recall+ is computed by excluding trivial correspondences (i.e., correspondences that
have the same normalized label). Alignments are also checked for coherence using the Pellet
reasoner. The evaluation was carried out on a machine with a 5 core CPU @ 1.80 GHz with
16GB allocated RAM, using the MELT framework. For some systems, the SEALS client has
been used. However, the evaluation parameters were computed a posteriori, after removing from
the alignments produced by the systems, correspondences expressing relations other than equiva-
lence, as well as trivial correspondences in the oboInOwl namespace (e.g., oboInOwl#Synonym
= oboInOwl#Synonym). The results obtained with the SEALS client vary in some cases by 0.5%
compared to the results presented in Section 4.2.

3.2. Conference

The conference track feature two test cases. The main test case is a suite of 21 matching tasks
corresponding to the pairwise combination of 7 moderately expressive ontologies describing the

8https://www.cancer.gov/cancertopics/cancerlibrary/terminologyresources
9http://www.informatics.jax.org/searches/AMA form.shtml
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domain of organizing conferences. The dataset and its usage are described in [26]. This year we
again run a second test case consisting of a suite of three tasks of matching DBpedia ontology
(filtered to the dbpedia namespace) and three ontologies from the conference domain.

For the main test case the track uses several reference alignments for evaluation: the old (and
not fully complete) manually curated open reference alignment, ra1; an extended, also manually
curated version of this alignment, ra2; a version of the latter corrected to resolve violations of
conservativity, rar2; and an uncertain version of ra1 produced through crowd-sourcing, where
the score of each correspondence is the fraction of people in the evaluation group that agree
with the correspondence. The latter reference was used in two evaluation modalities: discrete
and continuous evaluation. In the former, correspondences in the uncertain reference alignment
with a score of at least 0.5 are treated as correct whereas those with lower score are treated
as incorrect, and standard evaluation parameters are used to evaluated systems. In the latter,
weighted precision, recall and F-measure values are computed by taking into consideration the
actual scores of the uncertain reference, as well as the scores generated by the matching system.
For the sharp reference alignments (ra1, ra2 and rar2), the evaluation is based on the standard
parameters, as well the F0.5-measure and F2-measure and on conservativity and consistency
violations. Whereas F1 is the harmonic mean of precision and recall where both receive equal
weight, 𝐹2 gives higher weight to recall than precision and F0.5 gives higher weight to precision
higher than recall. The second test case contains open reference alignment and systems were
evaluated using the standard metrics.

Two baseline matchers are used to benchmark the systems: edna string edit distance matcher;
and StringEquiv string equivalence matcher as in the anatomy test case.

3.3. Multifarm

The multifarm track [27] aims at evaluating the ability of matching systems to deal with ontologies
in different natural languages. This dataset results from the translation of 7 ontologies from the
conference track (cmt, conference, confOf, iasted, sigkdd, ekaw and edas) into 10 languages:
Arabic (ar), Chinese (cn), Czech (cz), Dutch (nl), French (fr), German (de), Italian (it), Portuguese
(pt), Russian (ru), and Spanish (es). The dataset is composed of 55 pairs of languages, with 49
matching tasks for each of them, taking into account the alignment direction (e.g. cmt𝑒𝑛 →edas𝑑𝑒
and cmt𝑑𝑒 →edas𝑒𝑛 are distinct matching tasks). While part of the dataset is openly available, all
matching tasks involving the edas and ekaw ontologies (resulting in 55× 24 matching tasks) are
used for blind evaluation.

We consider two test cases: i) those tasks where two different ontologies (cmt→edas, for
instance) have been translated into two different languages; and ii) those tasks where the same
ontology (cmt→cmt) has been translated into two different languages. For the tasks of type ii),
good results are not only related to the use of specific techniques for dealing with cross-lingual
ontologies, but also on the ability to exploit the identical structure of the ontologies. This year,
we report the results on different ontologies (i).

The reference alignments used in this track derive directly from the manually curated Confer-
ence ra1 reference alignments. In 2021, alignments have been manually evaluated by domain
experts. The evaluation is blind. The systems have been executed on a Ubuntu Linux machine
configured with 32GB of RAM running under a Intel Core CPU 2.00GHz x8 cores. The evalua-



tion was performed using the MELT platform. Every participating system was executed in its
standard setting and we compare precision, recall and F-measure as well as the computation time.

3.4. Complex Matching

The complex matching track is meant to evaluate the matchers based on their ability to gen-
erate complex alignments. A complex alignment is composed of complex correspondences
typically involving more than two ontology entities, such as 𝑜1:AcceptedPaper ≡ 𝑜2:Paper ⊓
𝑜2:hasDecision.𝑜2:Acceptance.

This year the track run with two data sets from the conference domain: Conference and
Populated Conference, as the other complex sub-tracks (Hydrography, GeoLink, Populated
GeoLink Populated Enslaved, and Taxon datasets) have been discontinued.

The Conference dataset comprises three ontologies: cmt, conference, and ekaw from the
conference dataset. The reference alignment was created as a consensus between experts. To
allow matchers which rely on instances to participate over the Conference complex track, the
Populated Conference data set is composed of 5 conference ontologies populated with more or
less common instances, resulting in 6 datasets: (6 versions on the repository: v0, v20, v40, v60,
v80 and v100). Details on the population and evaluation modalities are available10.

The systems have been executed on a Ubuntu Linux machine configured with 32GB of RAM
running under a Intel Core CPU 2.00GHz x8 processors.

3.5. Food

The Food Nutritional Composition track aims at finding alignments between food concepts
from CIQUAL11, the French food nutritional composition database, and food concepts from
SIREN12, the Scientific Information and Retrieval Exchange Network of the US Food and Drug
administration. Foods from both databases are described in LanguaL13, a well-known multilingual
thesaurus using faceted classification. LanguaL stands for “Langua aLimentaria” or “language of
food”; more than 40,000 foods used in food composition databases are described using LanguaL.

In [28], a method to provide OWL modelling of food concepts from both datasets, CIQUAL14

and SIREN 15, and a gold standard are presented.
The evaluation was performed using the MELT platform. Every participating system was

executed in its standard setting and we compare precision, recall and F-measure as well as the
computation time.

3.6. Interactive Matching

The interactive matching track aims to assess the performance of semi-automated matching
systems by simulating user interaction [29, 30, 31]. The evaluation thus focuses on how interaction

10https://framagit.org/IRIT UT2J/conference-dataset-population
11https://ciqual.anses.fr/
12http://langual.org/langual indexed datasets.asp
13https://www.langual.org/default.asp
14https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.15454/6CEYU3
15https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.15454/5LLGVY

https://framagit.org/IRIT_UT2J/conference-dataset-population
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with the user improves the matching results. Currently, this track does not evaluate the user
experience or the user interfaces of the systems [32, 30].

The interactive matching track is based on the datasets from the Anatomy and Conference tracks,
which have been previously described. It relies on the SEALS client’s Oracle class to simulate
user interactions. An interactive matching system can present a collection of correspondences
simultaneously to the oracle, telling the system whether that correspondence is correct or not.
If a system presents up to three correspondences together and each correspondence presented
has a mapped entity (i.e., class or property) in common with at least one other correspondence
presented, the oracle counts this as a single interaction, under the rationale that this corresponds
to a scenario where a user is asked to choose between conflicting candidate correspondences. To
simulate the possibility of user errors, the oracle can be set to reply with a given error probability
(randomly, from a uniform distribution). We evaluated systems with four different error rates: 0.0
(perfect user), 0.1, 0.2, and 0.3.

In addition to the standard evaluation parameters, we also compute the number of requests
made by the system, the total number of distinct correspondences asked, the number of positive
and negative answers from the oracle, the performance of the system according to the oracle (to
assess the impact of the oracle errors on the system) and finally, the performance of the oracle
itself (to assess how erroneous it was).

The evaluation was carried out on a server with 3.46 GHz (6 cores) and 8GB RAM allocated
to the matching systems. For systems requiring more RAM, the evaluation was carried out on a
computer with an AMD Ryzen 7 5700G 3.80 GHz CPU and 32GB RAM, with 10GB of max
heap space allocated to java.Each system was run ten times and the final result of a system for
each error rate represents the average of these runs. For the Conference dataset with the ra1
alignment, precision and recall correspond to the micro-average over all ontology pairs, whereas
the number of interactions is the total number of interactions for all the pairs.

3.7. Bio-ML

The Bio-ML track [33] incorporates both equivalence and subsumption ontology matching
(OM) tasks for biomedical ontologies, with ground truth (equivalence) mappings extracted
from Mondo [34] and UMLS [35] (see Table 2). Mondo aims to integrate disease concepts
worldwide, while UMLS is a meta-thesaurus for the biomedical domain. Based on techniques
(ontology pruning, subsumption mapping construction, negative candidate mapping generation,
etc.) proposed in [33], we introduced five OM pairs with their information reported in Table 3.
Each OM pair is accompanied with both equivalence and subsumption matching tasks; each
matching task has two data split settings, i.e., unsupervised setting with no training mappings,
and semi-supervised setting with 30% ground truth mappings for training/validation. In the 2023
edition, we made several significant updates:

– Logical module enrichment: we adopted locality-based logical modules [36] to enrich the
existing pruned ontologies to provide more contexts for alignment; the added entities are
annotated as “not used in alignment” and will be ignored in evaluation.

– Bio-LLM sub-track: To support more efficient evaluation of large language model-based
OM, we introduced a special sub-track called Bio-LLM [37], which consists of challenging



subsets of NCIT-DOID and SNOMED-FMA (Body) datasets, along with tailored evaluation
metrics.

– Simplified file structure and task settings: We also re-organised the structure of the dataset
files, and reduced the task settings such that the unsupervised and semi-supervised settings
share the same testing set for ranking evaluation.

For evaluation, in [33] we proposed both global matching and local ranking; the former aims
to evaluate the overall performance by computing Precision, Recall, and F1 metrics for the
output mappings against the reference mappings, while the latter aims to evaluate the ability to
distinguish the correct mapping out of several challenging negatives by ranking metrics Hits@K
and MRR. Note that subsumption mappings are inherently incomplete, so only local ranking
evaluation is applied for subsumption matching. For the special sub-track Bio-LLM introduced in
the 2023 edition, both matching and ranking metrics are used but they are tailored to the subsets,
along with an additional metric called rejection rate to examine if systems can reject all plausible
mappings for entities that actually have no alignment.

Table 2
Information of the source ontologies used for creating the OM datasets in Bio-ML.

Mapping Source Ontology Ontology Source & Version #Classes

Mondo

OMIM Mondo16 44,729
ORDO BioPortal, V3.2 14,886
NCIT BioPortal, V18.05d 140,144
DOID BioPortal, 2017-11-28 12,498

UMLS
SNOMED UMLS, US.2021.09.0117 358,222

FMA BioPortal, V4.14.0 104,523
NCIT BioPortal, V21.02d 163,842

Table 3
Information of each OM dataset in Bio-ML, where the numbers of equivalence and subsumption
reference mappings are reported in #Refs(≡) and #Refs (⊑), respectively.

Mapping Source Ontology Pair Category #Refs (≡) #Refs (⊑)

Mondo OMIM-ORDO Disease 3,721 103
NCIT-DOID Disease 4,684 3,339

UMLS
SNOMED-FMA Body 7,256 5,506
SNOMED-NCIT Pharm 5,803 4,225
SNOMED-NCIT Neoplas 3,804 213

We adopted a flexible way of evaluating participating systems. First, participants can freely
choose any tasks and settings they would like to attend. Second, for systems that have been
well-adapted to the MELT platform, we used MELT to produce the output mappings. Third,
for systems that have been implemented elsewhere and are not easy to be made compatible
with MELT, we used their source code. Fourth, we also allowed participants (with trust) to
directly upload output mappings if their systems had not been published and had not been made
compatible with MELT. In the final result tables, we used superscripts †, ‡, and * to indicate
16Created from OMIM texts by Mondo’s pipeline tool avaiable at: https://github.com/monarch-initiative/omim.
17Created by the official snomed-owl-toolkit available at: https://github.com/IHTSDO/snomed-owl-toolkit.

https://github.com/monarch-initiative/omim
https://github.com/IHTSDO/snomed-owl-toolkit


that the results came from MELT, source code implementation, and direct result submission,
respectively. All our evaluations were conducted with the DeepOnto18 [38] library on a local
machine with Intel Xeon Bronze 3204 CPU 1.90GHz x11 processors, 126GB RAM, and two
Quadro RTX 8000 GPUs. The GPUs were mainly used for training systems that involve deep
neural networks.

3.8. Biodiversity and Ecology

The biodiversity and ecology (biodiv) track is motivated by the GFBio19 (The German Federation
for Biological Data) alongside its successor NFDI4Biodiversity20 and the AquaDiva21 projects,
which aim at providing semantically enriched data management solutions for data capture,
annotation, indexing and search [39, 40, 41]. In this track, we aim to motivate ontology matching
systems to work on matching ontologies and thesauri used in the biodiversity and ecology
domains, available via the BiodivPortal ontology repository22. For the current edition, we kept
the matching task between the Environment Ontology (ENVO) and the Semantic Web for Earth
and Environment Technology Ontology (SWEET) as these two ontologies have frequent updates.

In 2021, we added a task to align two biological taxonomies with rather different but comple-
mentary scopes: the well-known NCBI taxonomy (NCBITAXON), and TAXREF-LD [42]. No
matching system was able to achieve this matching task due to the large size of the considered
taxonomies. To cope with this issue since last year edition, we split the large matching task into a
set of smaller, more manageable subtasks through the use of modularization [43]. We obtained
six groups corresponding to the kingdoms: Animalia, Bacteria, Chromista, Fungi, Plantae and
Protozoa, leading to six well balanced matching subtasks. In 2023, we partnered with the EcoPor-
tal project23 to include two new matching tasks involving important thesauri in environmental
sciences (originally developed in SKOS): finding alignments between the Macroalgae Traits
Thesaurus (MACROALGAE) and the Macrozoobenthos Traits Thesaurus (MACROZOOBEN-
THOS) and between the Fish Traits Thesaurus (FISH) and the Zooplankton Traits Thesaurus
(ZOOPLANKTON). Table 4 presents detailed information about the ontologies and thesauri used
in this year’s edition.

3.9. Material Sciences and Engineering (MSE)

Data in Material Sciences and Engineering (MSE) can be characterized by scarcity, complexity,
and the presence of gaps. Therefore the MSE community aims for ontology-based data integration
via decentralized data management architectures. Several actors using different ontologies result
in the growing demand for automatic alignment of ontologies in the MSE domain.

The MSE track uses small to mid-sized ontologies common in the MSE field that are imple-
mented with and without upper-level ontologies. The ontologies follow heterogeneous design

18https://krr-oxford.github.io/DeepOnto/#/
19www.gfbio.org
20www.nfdi4biodiversity.org/en/
21www.aquadiva.uni-jena.de
22biodivportal.gfbio.org/
23ecoportal.lifewatch.eu/
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ecoportal.lifewatch.eu/


Table 4
Biodiversity and Ecology track ontologies and thesauri.

Ontology/Thesaurus Format Version Classes Instances
ENVO OWL 2021-05-19 6,566 44

SWEET OWL 2019-10-12 4,533 -
MACROALGAE SKOS 2018-10-02 - 109

MACROZOOBENTHOS SKOS 2023-07-11 (v1.1) - 128
FISH SKOS 2015-03-11 - 146

ZOOPLANKTON SKOS 2019-05-27 - 57
NCBITAXON Animalia OWL 2021-02-15 74729 -
TAXREF-LD Animalia OWL 2020-06-23 (v13.0) 73528 -
NCBITAXON Bacteria OWL 2021-02-15 326 -
TAXREF-LD Bacteria OWL 2020-06-23 (v13.0) 312 -

NCBITAXON Chromista OWL 2021-02-15 2344 -
TAXREF-LD Chromista OWL 2020-06-23 (v13.0) 2290 -

NCBITAXON Fungi OWL 2021-02-15 13149 -
TAXREF-LD Fungi OWL 2020-06-23 (v13.0) 12732 -

NCBITAXON Plantae OWL 2021-02-15 27013 -
TAXREF-LD Plantae OWL 2020-06-23 (v13.0) 26302 -

NCBITAXON Protozoa OWL 2021-02-15 538 -
TAXREF-LD Protozoa OWL 2020-06-23 (v13.0) 501 -

Table 5
The building blocks of the MSE track (MSE benchmark v1.1).

Inputs First Test Case Second Test Case Third Test Case
O1 Reduced MaterialInformation MaterialInformation MaterialInformation
O2 MatOnto MatOnto EMMO
R = , ⊂, ⊃ corresp. = corresp. = corresp.

resources Chemical Elements Dictionary (DICT), EMMO

principles with only partial overlap with each other. The current version v1.124 of the MSE
track includes three test cases summarized in Table 5, where each test case consists of two MSE
ontologies to be matched [ O1; O2] as well as one manual reference alignment R that can be
used for evaluation of the matching task. The benchmark also provides background knowledge
resources.

The MSE track makes use of three different MSE ontologies in total, in each of which
an ontology using an upper-level ontology is matched to one without an upper-level. The
MaterialInformation[44] domain ontology was designed without upper-level ontology and serves
as infrastructure for material information and knowledge exchange (545 classes, 98 properties,
and 411 individuals). Three out of eight submodules of the MaterialInformation were merged
to create the Reduced MaterialInformation (32 classes, 43 properties, and 17 individuals) for
more efficient creation of the manual reference alignment in the First Test Case, see Table 5.

24https://github.com/EngyNasr/MSE-Benchmark/releases/tag/v1.1
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The MatOnto Ontology v2.125 (847 classes, 96 properties and 131 individuals) bases on the
upper-level ontology bfo226. The Elementary Multiperspective Material Ontology (EMMO
v1.0.0-alpha2)27, is a standard representational ontology framework based on current materials
modeling and characterization knowledge incorporating an upper-, mid- and domain-level (451
classes, 35 properties). For every test case, a manual reference alignment R was created in close
cooperation with MSE domain experts.

The evaluation was performed using the MELT platform on a Windows 11 system with Intel
Core i7-1260P CPU @2.10GHz and 16 GB RAM. Every participating system was executed in its
standard setting, and we compared precision, recall, and F-measure as well as the computation
time. No background knowledge was used for evaluation.

3.10. Crosswalks Data Schema Matching

This track was introduced in 2022, aiming at evaluating the ability of systems to deal with
the schema metadata matching task, in particular, with a collection of crosswalks from fifteen
research data schemes to Schema.org [45, 46]. It is based on the work carried out by the Research
Data Alliance (RDA) Research Metadata Schemas Working Group. The collection serves as a
reference for data repositories when they develop their crosswalks, as well as an indication of
semantic interoperability among the schemas.

The dataset is composed of 15 source research metadata describing datasets that have been
aligned to Schema.org. The source schemas include discipline agnostic schemas Dublin Core,
Data Catalogue Vocabulary (DCAT), Data Catalogue Vocabulary - Application Profile (DCAT-
AP), Registry Interchange Format - Collections and Services (RIF-CS), DataCite Schema, Data-
verse; and discipline schemas ISO19115-1, EOSC/EDMI, Data Tag Suite (DATS), Bioschemas,
B2FIND, Data Documentation Initiative (DDI), European Clinical Research Infrastructure Net-
work (ECRIN), Space Physics Archive Search and Extract (SPASE); as well as CodeMeta for
software.

This year a subset of the 15 metadata schemas aligned to schema.org has been considered. This
subset corresponds to the set of schemas and vocabularies for which an OWL/RDFS serialization
is available. It involves Data Catalogue Vocabulary (DCAT-v3), Data Catalogue Vocabulary -
Application Profile (DCAT-AP), DataCity, Dublin Core (DC), and ISO19115-1 schemas (ISO).

Using as a reference the manually established correspondences, the evaluation here will be
based on the well-known measures of precision, recall, and F-measure. The systems have been
executed on a Ubuntu Linux machine configured with 32GB of RAM running under an Intel Core
CPU 2.00GHz x8 processors.

3.11. Common Knowledge Graphs

This track was introduced to OAEI in 2021, and it evaluates the ability of matching systems
to match the schema (classes) in large cross-domain knowledge graphs such as DBpedia [47],
YAGO [48] and NELL [49]. The dataset used for the evaluation is generated from DBpedia and

25https://raw.githubusercontent.com/iNovexIrad/MatOnto-Ontologies/master/matonto-release.ttl
26http://purl.obolibrary.org/obo/bfo/2.0/bfo.owl
27https://raw.githubusercontent.com/emmo-repo/EMMO/1.0.0-alpha2/emmo.owl
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Table 6
The number of classes and instances in the two common KGs benchmarks.

Dataset #Classes #Instances
DBpedia 138 631,461

NELL 134 1,184,377
YAGO 304 5,149,594

Wikidata 304 2,158,547

the Never-Ending Language Learner (NELL). While DBpedia is generated from structured data in
Wikipedia’s articles, NELL is an automatically generated knowledge graph with entities extracted
from large-scale text corpus shared on websites. The automatic extraction process is one of the
aspects that make common knowledge graphs different from ontologies, as they often result in
less well-formatted and cross-domain datasets. In addition to the NELL and DBpedia test case,
this year, we introduced a new test case for matching classes from YAGO and Wikidata [50]. The
numbers of entities in the four KG datasets are illustrated in Table 6.

The NELL and DBpedia benchmark [51] was human-annotated and verified by experts. This
gold standard is only a partial gold standard since not every class in each knowledge graph has
an equivalent class in the opposite one. To avoid over-penalizing matches that may discover
reasonable matches that are not included in the partial gold standard, our evaluation ignores
any predicted matches where neither of the classes in that pair exists in a true positive pair with
another class in the reference alignments. In terms of YAGO and Wikidata gold standard, it was
originally created [52] and expanded according to OAEI standard as part of [50].

With respect to the reference alignment, matching systems were evaluated using standard
precision, recall, and f-measure. The evaluation was carried out on a Linux virtual machine
with 128 GB of RAM and 16 vCPUs (2.4 GHz) processors. The evaluation was performed
using MELT for matchers wrapped using both SEALS, and the web packaging via Docker. As a
baseline, we utilize a simple string matcher which is available through MELT.

3.12. Knowledge Graph

The Knowledge Graph track was run for the fourth year. The task of the track is to match pairs
of knowledge graphs whose schema and instances have to be matched simultaneously. The
individual knowledge graphs are created by running the DBpedia extraction framework on eight
different Wikis from the Fandom Wiki hosting platform28 in the course of the DBkWik project
[53, 54]. They cover different topics (movies, games, comics, and books) and three Knowledge
Graph clusters sharing the same domain e.g., star trek, as shown in Table 7.

The evaluation is based on reference correspondences at both schema and instance levels.
While the schema-level correspondences were created by experts, the instance correspondences
were extracted from the wiki page itself. Due to the fact that not all interwiki links on a page
represent the same concept, a few restrictions were made: 1) only links in sections with a header
containing “link” are used, 2) all links are removed where the source page links to more than one
concept in another wiki (ensures the alignments are functional), 3) multiple links which point to

28https://www.wikia.com/
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Table 7
Characteristics of the Knowledge Graphs in the Knowledge Graph track and the sources they
were created from.

Source Hub Topic #Instances #Properties #Classes
Star Wars Wiki Movies Entertainment 145,033 700 269
The Old Republic Wiki Games Gaming 4,180 368 101
Star Wars Galaxies Wiki Games Gaming 9,634 148 67
Marvel Database Comics Comics 210,996 139 186
Marvel Cinematic Universe Movies Entertainment 17,187 147 55
Memory Alpha TV Entertainment 45,828 325 181
Star Trek Expanded Universe TV Entertainment 13,426 202 283
Memory Beta Books Entertainment 51,323 423 240

the same concept are also removed (ensures injectivity), 4) links to disambiguation pages were
manually checked and corrected. Since we do not have a correspondence for each instance, class,
and property in the graphs, this gold standard is only a partial gold standard.

The evaluation was executed on a virtual machine (VM) with 32GB of RAM and 16 vCPUs
(2.4 GHz), with Debian 9 operating system and Openjdk version 1.8.0 265. For evaluating all
possible submission formats, MELT framework is used. The corresponding code for evaluation
can be found on Github29.

The alignments were evaluated based on precision, recall, and f-measure for classes, properties,
and instances (each in isolation). The partial gold standard contained 1:1 correspondences, and
we further assume that in each knowledge graph, only one representation of the concept exists.
This means that if we have a correspondence in our gold standard, we count a correspondence to
a different concept as a false positive. The count of false negatives is only increased if we have a
1:1 correspondence and it is not found by a matcher.

As a baseline, we employed two simple string-matching approaches. The source code for these
matchers is publicly available30.

3.13. SPIMBENCH and Link Discovery

This year, only LogMap has participated in the SPIMBENCH and Link Discovery tracks. The
organizers then made the decision not to run these tracks this year.

3.14. Pharmacogenomics

The Pharmacogenomics track is a new track proposed for OAEI 2023 that focuses on matching
knowledge units from the pharmacogenomics domain. These units are 𝑛-ary tuples – so-called
“pharmacogenomic relationships” – and involve drugs, genetic factors, and phenotypes (see
Figure 1). A pharmacogenomic tuple states that patients being treated by the specified drugs
while having the specified genetic factors may experience the given phenotypes.

In the Semantic Web formalisms, only binary predicates exist. That is why pharmacogenomic
tuples are reified: tuples become individuals that are linked to their components with binary
29https://github.com/dwslab/melt/tree/master/examples/kgEvalCli
30http://oaei.ontologymatching.org/2019/results/knowledgegraph/kgBaselineMatchers.zip
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predicates (Figure 1(c)). Hence, the task of matching pharmacogenomic tuples is [55]:

– An instance matching task that aims at finding alignments between individuals representing
reified tuples;

– A structure-based matching task in which neighbors of reified tuples are compared to
conclude the potential alignment between tuples. Recall that no other information exist
about the tuples except their neighbors (e.g., no labels).

To illustrate, two tuples involving the same drugs, genetic factors, and phenotypes will thus be
connected to the same neighbors and are expected to be detected as identical.

Beside the arity of tuples, matchers need to face their potential incompleteness (e.g., missing
drugs) and heterogeneity (e.g., a gene version like CYP2C9*4 is more specific than the gene
itself CYP2C9, the phenotype hemorrhage is more specific than the phenotype vascular
disorders). Different types of alignments are thus expected to be identified between pharma-
cogenomic tuples, which is somehow unusual in an instance matching task. The Pharmacoge-
nomics track features the identification of identical tuples (=), equivalent tuples (Close), tuples
being more specific (<) or more general (>) than others, and tuples being related to some extent
(Related). See [55, 56] for a detailed definition of these different alignment types between
individuals.

To perform this alignment task, matchers can rely on additional background knowledge about
components of pharmacogenomic tuples. This knowledge includes ontology classes instanciated
by components of tuples (i.e. drugs, genetic factors, phenotypes) and their hierarchical organiza-
tion, partOf links between gene versions and genes, sameAs links between identical drugs,
genes, or phenotypes, and dependsOn links between complex phenotypes and their components
(e.g., “warfarin-induced bleeding” depends on “warfarin” and on “bleeding”).

To evaluate matchers and their scalability, the Pharmacogenomics track comprises three tasks
involving respectively 10, 50, and 100% of the 50,435 pharmacogenomic tuples represented
within the PGxLOD knowledge graph31 [57]. For each task, the selected pharmacogenomic
tuples are evenly split into two ontologies to match. To take into account the specificity of the
different alignment types that are expected, matchers are evaluated through two settings:

Fine-grained setting Only alignments of the exact type expected in the reference are con-
sidered correct. To illustrate, an output alignment (𝑒1,=, 𝑒2) where (𝑒1,Close, 𝑒2) was
expected will be considered as incorrect. Precision, Recall, and F1-score are computed for
each type of alignment.

Coarse-grained setting Any type of alignment between entities expected to be aligned will be
considered as correct. To illustrate, an output alignment (𝑒1,=, 𝑒2) where (𝑒1,Close, 𝑒2)
was expected will be considered as correct. Precision, Recall, and F1-score are computed
globally accordingly.

31https://pgxlod.loria.fr/
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{d1, . . . , d𝑘}

{gf1, . . . , gf𝑚}

{p1, . . . , p𝑙}

(a) Abstract relationship

{Codeine 25mg oral}

{CYP2D6*4}

{No effect}

(b) Example relationship

pgt1

warfarin

CYP2C9*4

bleeding

causes

causes causes

(c) Reified relationship

Figure 1: Graphical representation of an abstract (1(a)), an example (1(b)), and a reified (1(c))
pharmacogenomic relationships. The example relationship states that patients having the “*4”
version of the 𝐶𝑌 𝑃2𝐷6 gene will not experience the expected effect of codeine. gf stands for
genetic factor, d for drug and p for phenotype.

4. Results and Discussion

4.1. Participation

Following an initial period of growth, the number of OAEI participants has remained approxi-
mately constant since 2012, at slightly over 20. This year we count with 16 participating systems.
Table 8 lists the participants and the tracks in which they competed. It is worth mentioning that
the Bio-ML track has additional participants (e.g., BERTMap [58] and BERTSubs [59]) that are
not listed in Table 8. This is because they need training and validation which are not yet fully
supported by the OAEI evaluation platforms, and thus they were tested locally with Bio-ML
results reported, but without an OAEI system submission. Some matching systems participated
with different variants (Matcha and LogMap), whereas others were evaluated with different
configurations, as requested by developers (see test case sections for details). The following
sections summarize the results for each track.

4.2. Anatomy

The results for the Anatomy track are shown in Table 9. Of the 9 systems participating in the
Anatomy track, 8 achieved an F-measure higher than the StringEquiv baseline. Two systems were
first-time participants (SORBETMatcher, OLaLa). Long-term participating systems showed few
changes in comparison with previous years with respect to alignment quality (precision, recall,
F-measure, and recall+), size and run time. The exception were LogMapBio which increase in
F-measure (from 0.895 to 0.898) and Matcha increased in recall+ (from 0.817 to 0.818), in size
(from 1482 to 1484). In terms of run time, 5 out of 9 systems computed an alignment in less
than 100 seconds. LogMapLt remains the system with the shortest runtime. Regarding quality,
Matcha achieved the highest F-measure (0.941) and recall+ (0.818), but four other systems
obtained an F-measure above 0.88 (OLaLa, SORBETMatcher, LogMapBio, and LogMap) which
is at least as good as the best systems in OAEI 2007-2010. Like in previous years, there is no
significant correlation between the quality of the generated alignment and the run time. Two
systems produced coherent alignments (LogMapBio and LogMap).



Table 8
Participants and the status of their submissions.
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anatomy   #    #  #  # #  #  # 9
conference     #  #  #  # #     11

multifarm # # #  #  # #   # # # # # # 4
complex # # #  # G# # # # # G# # # # # # 3

food # # #  #  # # #  # #  # # # 4
interactive  # #  # # # # # # # # # # # # 2

bio-ML # G# # G# G# G# # # # # # G# G# # G# # 7
biodiv # # #  #   # # G# # #  # # # 5

mse # G# #  #  # # #  # # # # # # 4
common knowl. graph #  #  #    #  # #  # # # 7

crosswalks # # #     # #  # # # # # # 5
knowledge graph # # #  #  #  #  # #  #  # 6

spimbench # # #  # # # # # # # # # # # # 1
link discovery # # #  # # # # # # # # # # # # 1

pharmacogenomics # # # G# G# G# G# # # G# # # # # # # 5
total 3 5 1 15 4 12 4 4 1 10 1 1 7 1 4 1

Table 9
Anatomy results, ordered by F-measure. Runtime is measured in seconds; “size” is the number
of correspondences in the generated alignment.

System Runtime Size Precision F-measure Recall Recall+ Coherent
Matcha 54 1484 0.951 0.941 0.931 0.818 -
OLaLa 9259 1470 0.924 0.91 0.896 0.726 -
SORBETMatcher 4032 1470 0.923 0.909 0.895 0.724 -
LogMapBio 1945 1578 0.88 0.898 0.916 0.778

√

LogMap 10 1402 0.917 0.881 0.848 0.602
√

AMD 36 1282 0.938 0.86 0.794 0.461 -
ALIN 374 1159 0.984 0.852 0.752 0.501 -
LogMapLt 3 1147 0.962 0.828 0.728 0.288 -
StringEquiv - 946 0.997 0.766 0.622 0.000 -
LSMatch 16 1009 0.952 0.761 0.634 0.037 -

4.3. Conference

The conference evaluation results using the sharp reference alignment rar2 are shown in Table 10.
For the sake of brevity, only results with this reference alignment and considering both classes



and properties are shown. For more detailed evaluation results, please check the conference
track’s web page.

Table 10
The highest average F[0.5|1|2]-measure and their corresponding precision and recall for each
matcher with its F1-optimal threshold (ordered by F1-measure). Inc.Align. means the number of
incoherent alignments. Conser.V. means the total number of all conservative principle violations.
Consist.V. means the total number of all consistency principle violations.

System Prec. F0.5-m. F1-m. F2-m. Rec. Inc.Align. Conser.V. Consist.V.
GraphMatcher 0.71 0.72 0.74 0.76 0.77 8 172 85

SORBETMatcher 0.73 0.7 0.66 0.63 0.61 7 43 73
LogMap 0.76 0.71 0.64 0.59 0.56 0 2 0
Matcha 0.62 0.62 0.62 0.62 0.62 7 90 81
OLaLa 0.59 0.59 0.6 0.61 0.61 11 199 184
ALIN 0.82 0.7 0.57 0.48 0.44 0 2 0
edna 0.74 0.66 0.56 0.49 0.45

LogMapLt 0.68 0.62 0.56 0.5 0.47 0 21 0
AMD 0.82 0.68 0.55 0.46 0.41 1 2 6

LSMatch 0.83 0.69 0.55 0.46 0.41 3 97 18
StringEquiv 0.76 0.65 0.53 0.45 0.41
TOMATO 0.57 0.55 0.52 0.49 0.47 13 361 203

PropMatch 0.86 0.29 0.15 0.1 0.08 0 0 0

With regard to two baselines we can group tools according to system’s position: six systems
outperformed above both baselines (GraphMatcher, SORBETMatcher, LogMap, Matcha, ALIN,
and OLaLa); three systems performed better than StringEquiv baseline (LogMapLt, AMD, and
LSMatch), and two systems performed worse than both baselines (TOMATO, and PropMatch).
Four matchers (AMD, ALIN, LSMatch, and SORBETMatcher) do not match properties at all. On
the other side, PropMatch does not match classes at all, while it dominates in matching properties.
Naturally, this has a negative effect on their overall performance.

Several systems use reference alignments to a certain extent (GraphMatcher uses it in its 5-fold
cross-validation and TOMATO uses it in its sampling process) for their model learning, as has
happened with some ML-based systems in the past. These systems describe their usage in their
system papers.

The performance of all matching systems regarding their precision, recall and F1-measure is
plotted in Figure 2. Systems are represented as squares or triangles, whereas the baselines are
represented as circles.

The Conference evaluation results using the uncertain reference alignments are presented
in Table 11. Out of the 11 alignment systems, 6 (ALIN, AMD, LogMapLt, LSMatch, SOR-
BETMatcher, and TOMATO) use 1.0 as the confidence value for all matches they identify. The
remaining 5 systems (GraphMatcher, LogMap, Matcha, OLaLa, and PropMatch) have a wide
variation of confidence values.

When comparing the performance of the systems on uncertain reference alignments versus the
sharp versions, it is evident that in the discrete cases, all systems either performed at the same
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Figure 2: Precision/recall triangular graph for the conference test case. Dotted lines depict level
of precision/recall while values of F1-measure are depicted by areas bordered by corresponding
lines F1-measure=0.[5|6|7].
Table 11
F-measure, precision, and recall of the different matchers when evaluated using the sharp (ra1),
discrete uncertain and continuous uncertain metrics.

Sharp Discrete Continuous
System Prec F-ms Rec Prec F-ms Rec Prec F-ms Rec
ALIN 0.88 0.61 0.47 0.88 0.70 0.59 0.87 0.71 0.60
AMD 0.87 0.58 0.43 0.87 0.66 0.53 0.86 0.67 0.55

GraphMatcher 0.76 0.78 0.80 0.64 0.73 0.84 0.65 0.73 0.84
LogMap 0.81 0.68 0.58 0.81 0.70 0.62 0.80 0.66 0.57

LogMapLt 0.73 0.59 0.50 0.73 0.67 0.62 0.72 0.67 0.63
LSMatch 0.88 0.57 0.42 0.88 0.66 0.53 0.88 0.67 0.54
Matcha 0.70 0.67 0.64 0.62 0.68 0.76 0.64 0.69 0.74
OLaLa 0.56 0.61 0.66 0.58 0.65 0.75 0.57 0.63 0.70

PropMatch 0.83 0.15 0.08 0.76 0.16 0.09 0.73 0.13 0.07
SORBETMatcher 0.78 0.70 0.64 0.71 0.71 0.72 0.69 0.70 0.72

TOMATO 0.61 0.55 0.61 0.61 0.62 0.63 0.60 0.62 0.64

level as before or showed improvements in terms of F-measure. The changes in F-measure for
discrete cases ranged from 1 to 16 percent above those in the sharp reference alignment. Notably,
LSMatch exhibited the most significant performance surge at (16%), closely followed by ALIN
at (15%) and AMD at (14%). This substantial improvement was primarily driven by increased
recall, a result of having fewer ’controversial’ matches in the uncertain version of the reference
alignment.



In contrast, systems with confidence values consistently set at 1.0 delivered very similar
performance, regardless of whether a discrete or continuous evaluation methodology was applied.
This was due to their proficiency in identifying matches with which experts had a high degree of
agreement, while the matches they missed were typically the more contentious ones. Notably,
GraphMatcher stood out by producing the highest F-measure under both continuous (73%) and
discrete (73%) evaluation methodologies. This indicates that the system’s confidence evaluation
effectively reflects the consensus among experts in this task. However, it’s worth noting that
GraphMatcher experienced relatively small drops in F-measure when transitioning from discrete
to continuous evaluation, primarily due to a decrease in precision.

In addition to the above findings, eight systems that participated this year were also part of the
previous year’s evaluation, allowing for some valuable comparisons over time. Among these, six
systems demonstrated remarkable stability in their F-measures when assessed against uncertain
reference alignments. However, two systems, Matcha and TOMATO, exhibited significant
improvements this year. Matcha’s F-measure jumped from (12%) in continuous and (14%) in
discrete last year to (63%) in continuous and (65%) in discrete this year, primarily due to an
increase in precision. Similarly, TOMATO saw a substantial increase in F-measure from (15%)
last year to (62%) this year, both in continuous and discrete evaluations. These improvements
mark significant progress for these two systems compared to the previous year.

OLaLa, PropMatch, and SORBETMatcher are three new systems participating this year.
OLaLa has shown notable performance improvements, with a (4%) increase in the discrete case
and a (2%) increase in the continuous case concerning F-measure when compared to the sharp
reference alignment. OLaLa’s F-measure has risen from (61%) to (65%) in the discrete case and
to (63%) in the continuous case. This improvement is primarily attributed to an increase in recall.

On the other hand, PropMatch and SORBETMatcher have demonstrated similar performance
in both discrete and continuous cases when compared to the sharp reference alignment in terms
of F-measure. Notably, PropMatch exhibits consistently lower precision and recall across the
three different versions of the reference alignment, primarily due to its narrow focus on property
matching.

4.4. Multifarm

This year, 4 systems have registered to participate in the Multifarm track:LSMatch-Multilingual,
LogMap, LogMapLt, and Matcha. The number of participating tools is stable with respect to the
last 4 campaigns (5 in 2022, 6 in 2021, 6 in 2020, 5 in 2019, 6 in 2018, 8 in 2017, 7 in 2016, 5 in
2015, 3 in 2014, 7 in 2013, and 7 in 2012). This year, we lost the participation of CIDER-LM.
The reader can refer to the OAEI papers for a detailed description of the strategies adopted by
each system.

The Multifarm evaluation results based on the blind dataset are presented in Table 12, demon-
strating the aggregated results for the matching tasks. They have been computed using the MELT
framework without applying any threshold to the results. They are measured in terms of macro
precision and recall. The results of non-specific systems are not reported here, as we could
observe in the last campaigns that they can have intermediate results in tests of type ii) (same
ontologies task) and poor performance in tests i) (different ontologies task).

The systems have been executed on a Ubuntu Linux machine configured with 32GB of RAM



Table 12
Multifarm aggregated results per matcher, for each type of matching task – different ontologies.
Time is measured in minutes.

Different ontologies (i)
System Time(Min) Prec. F-m. Rec.
Matcha 2 .37 .08 .04
LSMatch-Multilingual 46 .68 .47 .36
LogMap 9 .72 .44 .31
LogMapLt 227 .24 .038 .02

under an Intel Core CPU 2.00GHz x8 processors. All measurements are based on a single run. As
for each campaign, we observed large differences in the time required for a system to complete
the 55 x 24 matching tasks: LSMatch-Multilingual (46 min), LogMap (9 minutes), LogMapLt
(227 minutes), and Matcha(2 minutes). When we compare the times to last year’s campaign, we
can see that LogMap has a stable 9 min execution, whereas LogMapLt saw a decline in timing
from 175 min to 227 min, and LSMatch-Multilingual improved the timing from 69 min to 46
min. Since the other tools are participating for the first time, their timings are incomparable.
These measurements only indicate the time the systems require to finish the task in a common
environment. LSMatch-Multilingual outperforms all other systems in terms of F-measure (0.47)
and recall (0.36), and LogMap outperforms all other systems in terms of Precision (0.72).

It is seen that a similar number of systems have participated in the campaign through the years.
However, there is a dynamicity of the tools, such that, each year, participating tools vary. In 2023,
we had four systems participating in the campaign where 1 of them was a new system, and 3
were long-term participating systems. As observed in several campaigns, still, all systems still
privilege precision in detriment to recall (recall below 0.50), and the results are below the ones
obtained for the Conference’s original dataset.

4.5. Complex Matching

Unfortunately, this track has not attracted many participants in the last two years. This year,
MatchaC, LogMap and LogMapLt have been registered to participate. While LogMapLt and
LogMap are dedicated to generating simple correspondences, only LogMap was able to generate
non-empty alignments. MatchaC, the only system specifically designed to generate expressive
correspondences, had some problems dealing with the datasets and was not able to generate any
valid alignment.

4.6. Food

This is the second year of the track and five systems were registered: AMD, LogMap, LogMapLt,
OLaLa and Matcha. AMD encountered an error during launch, so evaluation results only available
for four of the matchers are presented in Table 13.

The test case food v2 evaluates matching systems regarding their capability to find “equal”
(=) and “subclass” relation (<) correspondences between the CIQUAL ontology and the SIREN
ontology. All evaluated systems compute the alignment in less than a minute except OLaLa.



Table 13
Food track results per matcher. Time is measured in seconds.

System Corresp. Precision Recall F1-measure Time(s)
“equal” (=) relation

OLaLa 1185 0.0337 0.5479 0.06359 73920
LogMap 15 0.1333 0.0274 0.0454 14
LogMapLt 15 0.1333 0.0274 0.0454 5
Matcha 335 0.0656 0.3013 0.1078 53

“subclass” relation (<) relation
LogMap 15 0 0 0 15
LogMapLt 15 0 0 0 6
Matcha 335 0 0 0 53

LogMapLt stands out for its very fast calculation time of 5s (resp. 6s) to find “equal” (resp.
“subclass” relation correspondences). Concerning “equal” (=) relation correspondences, LogMap
and LogMapLt have better precision than Matcha and OLaLa. However, LogMap’s recall is
20 (resp. 11 times) less than OLaLa’s (resp. Matcha’s) one. Matcha is the best-performing
participant in the FNC test case in terms of precision and F1-measure. None of the matching
systems are able to find “subclass” relation (<) correspondences.

4.7. Interactive matching

This year, two systems (ALIN, and LogMap) participated in the Interactive matching track. Their
results are shown in Table 14 and Figure 3 for both the Anatomy and Conference datasets.

The table includes the following information (column names within parentheses):

– The performance of the system: Precision (Prec.), Recall (Rec.), and F-measure (F-m.)
with respect to the fixed reference alignment, as well as Recall+ (Rec.+) for the Anatomy
task. To facilitate the assessment of the impact of user interactions, we also provide the
performance results from the original tracks, without interaction (line with Error NI).

– To ascertain the impact of the oracle errors, we provide the performance of the system with
respect to the oracle (i.e., the reference alignment as modified by the errors introduced
by the oracle: Precision oracle (Prec. oracle), Recall oracle (Rec. oracle) and F-measure
oracle (F-m. oracle). For a perfect oracle, these values match the actual performance of the
system.

– Total requests (Tot Reqs.) represents the number of distinct user interactions with the tool,
where each interaction can contain one to three conflicting correspondences, that could be
analyzed simultaneously by a user.

– Distinct correspondences (Dist. Mapps) counts the total number of correspondences for
which the oracle gave feedback to the user (regardless of whether they were submitted
simultaneously, or separately).



Table 14
Interactive matching results for the Anatomy and Conference datasets.

Tool Error Prec. Rec. F-m. Rec.+
Prec.
oracle

Rec.
oracle

F-m.
oracle

Tot.
Reqs.

Dist.
Mapps

Pos.
Prec.

Neg.
Prec.

Anatomy Dataset

ALIN

NI 0.983 0.726 0.835 0.438 – – – – – – –
0.0 0.987 0.92 0.952 0.787 0.987 0.92 0.952 514 1453 1.0 1.0
0.1 0.91 0.9 0.904 0.759 0.987 0.922 0.953 491 1390 0.666 0.975
0.2 0.846 0.883 0.864 0.73 0.988 0.924 0.955 476 1352 0.469 0.947
0.3 0.792 0.864 0.826 0.699 0.988 0.925 0.955 466 1329 0.342 0.912

LogMap

NI 0.915 0.848 0.88 0.602 – – – – – – –
0.0 0.988 0.846 0.912 0.595 0.988 0.846 0.912 388 1164 1.0 1.0
0.1 0.966 0.831 0.894 0.569 0.971 0.803 0.879 388 1164 0.75 0.967
0.2 0.952 0.822 0.882 0.549 0.951 0.764 0.847 388 1164 0.573 0.925
0.3 0.936 0.819 0.873 0.545 0.925 0.723 0.812 388 1164 0.43 0.876

Conference Dataset

ALIN

NI 0.874 0.456 0.599 – – – – – – – –
0.0 0.919 0.744 0.822 – 0.919 0.744 0.822 274 815 1.0 1.0
0.1 0.705 0.7 0.702 – 0.934 0.773 0.846 264 785 0.504 0.988
0.2 0.569 0.663 0.612 – 0.944 0.796 0.863 291 764 0.305 0.977
0.3 0.462 0.634 0.535 – 0.952 0.816 0.879 250 743 0.196 0.955

LogMap

NI 0.801 0.58 0.67 – – – – – – – –
0.0 0.886 0.61 0.723 – 0.886 0.61 0.723 82 246 1.0 1.0
0.1 0.851 0.599 0.703 – 0.862 0.577 0.691 82 246 0.703 0.983
0.2 0.824 0.592 0.689 – 0.841 0.551 0.666 82 246 0.526 0.952
0.3 0.793 0.581 0.671 – 0.804 0.519 0.631 82 246 0.36 0.897

NI stands for non-interactive, and refers to the results obtained by the matching system in the
original track.

– Finally, the performance of the oracle itself with respect to the errors it introduced can be
gauged through the positive precision (Pos. Prec.) and negative precision (Neg. Prec.),
which measure respectively the fraction of positive and negative answers given by the
oracle that are correct. For a perfect oracle, these values are equal to 1 (or 0, if no questions
were asked).

The figure shows the time intervals between the questions to the user/oracle for the different
systems and error rates. Different runs are depicted with different colors.

The matching systems that participated in this track employ different user-interaction strategies.
While LogMap makes use of user interactions exclusively in the post-matching steps to filter
their candidate correspondences, ALIN can also add new candidate correspondences to its initial
set. LogMap requests feedback on only selected correspondences candidates (based on their
similarity patterns or their involvement in unsatisfiabilities). ALIN and LogMap can both ask the
oracle to analyze several conflicting correspondences simultaneously.

The performance of the systems usually improves when interacting with a perfect oracle in
comparison with no interaction. ALIN is the system that improves the most, because of its high



Figure 3: Time intervals between requests to the user/oracle for the Anatomy (top 4 plots)
and Conference (bottom 4 plots) datasets. Whiskers: Q1-1,5IQR, Q3+1,5IQR, IQR=Q3-Q1.
The labels under the system names show the average number of requests and the mean time
between the requests for the ten runs.



number of oracle requests, and its non-interactive performance was the lowest of the interactive
systems, and thus the easiest to improve.

Although system performance deteriorates when the error rate increases, there are still benefits
from the user interaction—some of the systems’ measures stay above their non-interactive values
even for the larger error rates. Naturally, the more a system relies on the oracle, the more its
performance tends to be affected by the oracle’s errors.

The impact of the oracle’s errors is linear for ALIN in most tasks, as the F-measure according
to the oracle remains approximately constant across all error rates. It is supra-linear for LogMap
in all datasets.

Another aspect that was assessed, was the response time of systems, i.e., the time between
requests. Two models for system response times are frequently used in the literature [60]:
Shneiderman and Seow take different approaches to categorize the response times taking a task-
centered view and a user-centered view respectively. According to task complexity, Shneiderman
defines response time in four categories: typing, mouse movement (50-150 ms), simple frequent
tasks (1 s), common tasks (2-4 s) and complex tasks (8-12 s). While Seow’s definition of response
time is based on the user expectations towards the execution of a task: instantaneous (100-200
ms), immediate (0.5-1 s), continuous (2-5 s), captive (7-10 s). Ontology alignment is a cognitively
demanding task and can fall into the third or fourth categories in both models. In this regard
the response times (request intervals as we call them above) observed in all datasets fall into the
tolerable and acceptable response times, and even into the first categories, in both models. The
request intervals for LogMap and ALIN stay at a few milliseconds for most datasets. It could be
the case, however, that a user would not be able to take advantage of these low response times
because the task complexity may result in higher user response time (i.e., the time the user needs
to respond to the system after the system is ready).

4.8. Bio-ML

Our results include five tables for equivalence matching, five tables for subsumption matching,
and two tables for Bio-LLM, where each table corresponds to an OM pair and includes results of
both the unsupervised and semi-supervised settings. For the full results, please refer to the OAEI
2023 Bio-ML website32.

Briefly, we have the following participants for equivalence matching: (i) machine learning-
based systems including BERTMap, BERTMapLt [58], AMD [61], Matcha, Matcha-DL [62],
OLala, and SORBETMatcher [63]; and (ii) traditional systems including LogMap, LogMapBio,
and LogMapLt [36]. For equivalence matching, top performing systems vary across different tasks,
with LogMapBio attaining the best F1 on 2 out of 5 unsupervised tasks, and AMD, BERTMap, and
SORBETMatcher attaining the best F1 on each of the remaining three, respectively. BERTMap
also attains the best ranking scores of all tasks, though most systems do not provide ranking
results in equivalence matching. For subsumption matching, all the participating systems are
machine learning-based, including BERTSubs (IC) [59], OWL2Vec*+RF [64], SORBETMatcher
[63], and Word2Vec+Random Forest (RF). SORBETMatcher attains the best MRR on 3 out of 5
subsumption tasks, while BERTSubs (IC) and OWL2Vec*+RF attain the best MRR on each of
32https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2023/, permanent link at Internet Wayback Machine, https://web.

archive.org/web/20231120093331/https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2023/

https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2023/
https://web.archive.org/web/20231120093331/https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2023/
https://web.archive.org/web/20231120093331/https://www.cs.ox.ac.uk/isg/projects/ConCur/oaei/2023/


the remaining two, respectively. Overall, the 2023 edition attracted more machine learning-based
participants, which matches the original purpose of Bio-ML, while LogMap variants are the only
symbolic participants.

4.9. Biodiversity and Ecology

This year, five matching systems (LogMap, LogMapLt, LogMapKG, Matcha and OLaLa) man-
aged to generate an output for all of the track tasks, except Matcha failed to achieve alignment for
the envo-sweet task. As in previous editions, we used precision, recall, and F-measure to evaluate
the performance of the participating systems. The results for the Biodiversity and Ecology track
are shown in Table 15.

In comparison to the previous year, a smaller number of systems succeeded in generating align-
ments for the track tasks. The results of the participating systems are comparable to last year in
terms of F-measure. In terms of run time, OLaLa took the longer. Regarding the ENVO-SWEET
task, only OLaLa and the LogMap family systems achieved it with a similar performance to last
year. The MACROALGAE-MACROZOOBENTHOS and FISH-ZOOPLANKTON matching
tasks involve resources developed in SKOS. For the transformation, we made use of a source
code directly derived from the AML ontology parsing module, kindly provided to us by its devel-
opers. The systems that did not perform well in this task did map a large number of dissimilar
concepts that happen to have similar URIs. All systems performed well on most NCBITAXON-
TAXREF-LD subtasks, with slightly the same levels of precision and recall. Overall, in this year’s
evaluation, the number of participating systems decreased and the performance of the successful
ones remained similar.

4.10. Material Sciences and Engineering (MSE)

This year four systems registered on the MSE track, each of which was used for evaluation with
the three test cases of the MSE benchmark. AMD produced errors and an empty alignment file, so
results are only available for three of the matchers: LogMap, LogMapLt, Matcha. The evaluation
results are shown in Table 16.

The first test case evaluates matching systems regarding their capability to find “equal” (=),
“superclass” (>) and “subclass” (<) correspondences between the mid-sized MatOnto and the
small-sized (since reduced) MaterialInformation ontology. None of the evaluated systems finds
correspondences other than “equal” (=). All evaluated systems compute the alignment in less
than a minute. In contrast to the results of 2022 Matcha performs the matching task almost as
quickly as LogMap, which stood out for its very fast calculation time. Apart from the runtime,
the results for LogMap and LogMapLt do not change in comparison to the evaluation in 2022.
LogMap presents a maximum precision value of 1.0, however since only one correspondence
was found by LogMap, the recall and hence the F1-measure is low (0.083). In direct comparison
to LogMap, LogMapLt calculates the alignment in around half the time and achieves much
lower precision (0.4) but due to a greater amount of correctly found correspondences, the
F1-measure is better - although still low with 0.143. Matcha finds 8 incorrect correspondences
and thus is the worst-performing participant in terms of precision in the first test case.
Investigating the reason for this low precision, Matcha appears to match classes with object



Table 15
Results for the Biodiversity & Ecology track.

System Time Number of Precision Recall F-measure
(HH:MM:SS) mappings

ENVO-SWEET task
LogMap 00:00:36 681 0.780 0.655 0.713
LogMapKG 00:00:28 677 0.781 0.657 0.714
LogMapLt 00:05:40 595 0.829 0.594 0.692
OLaLa 06:46:18 1081 0.484 0.650 0.555

MACROALGAE-MACROZOOBENTHOS task
LogMap 00:00:03 29 0.275 0.444 0.340
LogMapKG 00:00:04 29 0.275 0.444 0.340
LogMapLt 00:00:00 9 0.857 0.333 0.480
OLaLa 00:08:30 10 0.7 0.388 0.5
Matcha 00:00:07 45 0.2 0.5 0.285

FISH-ZOOPLANKTON task
LogMap 00:00:03 32 0.093 0.2 0.127
LogMapKG 00:00:04 55 0.218 0.8 0.342
LogMapLt 00:00:00 8 1.0 0.533 0.695
OLaLa 00:07:59 13 1.0 0.866 0.928
Matcha 00:00:11 47 0.276 0.866 0.419

NCBITAXON-TAXREFLD Animalia task
LogMap 00:00:43 72899 0.660 0.998 0.795
LogMapKG 00:11:32 72898 0.660 0.998 0.795
LogMapLt 00:00:43 72010 0.665 0.993 0.796
OLaLa 68:27:32 70821 0.679 0.998 0.808
Matcha 00:04:18 71008 0.674 0.993 0.803

NCBITAXON-TAXREFLD Bacteria task
LogMap 00:00:01 304 0.575 1.0 0.730
LogMapKG 00:00:01 304 0.575 1.0 0.730
LogMapLt 00:00:00 290 0.6 0.994 0.748
OLaLa 00:19:32 294 0.593 0.994 0.743
Matcha 00:00:14 300 0.58 0.994 0.732

NCBITAXON-TAXREFLD Chromista task
LogMap 00:00:04 2218 0.623 0.985 0.764
LogMapKG 00:00:01 2218 0.623 0.985 0.764
LogMapLt 00:00:01 2165 0.637 0.982 0.773
OLaLa 01:59:05 2173 0.634 0.981 0.771
Matcha 00:00:48 2213 0.624 0.984 0.764

NCBITAXON-TAXREFLD Fungi task
LogMap 00:00:39 12949 0.783 0.998 0.878
LogMapKG 00:00:40 12949 0.783 0.998 0.878
LogMapLt 00:00:07 12929 0.783 0.997 0.877
OLaLa 11:54:37 12549 0.807 0.996 0.891
Matcha 00:01:43 12925 0.785 0.998 0.879

NCBITAXON-TAXREFLD Plantae task
LogMap 00:01:44 26912 0.731 0.988 0.840
LogMapKG 00:01:36 26910 0.731 0.988 0.840
LogMapLt 00:00:17 26359 0.746 0.987 0.849
OLaLa 22:04:48 25667 0.769 0.991 0.866
Matcha 00:03:16 26597 0.741 0.989 0.847

NCBITAXON-TAXREFLD Protozoa task
LogMap 00:00:01 496 0.719 1.0 0.837
LogMapKG 00:00:01 496 0.719 1.0 0.837
LogMapLt 00:00:00 477 0.746 0.997 0.853
OLaLa 00:32:17 476 0.750 1.0 0.857
Matcha 00:00:44 493 0.724 1.0 0.840



Table 16
Results for the three test cases of the MSE track.

System Corresp. Precision Recall F1-Measure Time [s]
First Test Case

LogMap 1 1.000 0.043 0.083 20
LogMapLt 5 0.400 0.087 0.143 53
Matcha 11 0.273 0.130 0.176 28

Second Test Case
LogMap 67 0.881 0.195 0.320 6
LogMapLt 67 0.851 0.189 0.309 77
Matcha 87 0.756 0.219 0.339 15

Third Test Case
LogMap 56 0.946 0.841 0.891 25
LogMapLt 56 0.911 0.810 0.857 53
Matcha 59 0.949 0.889 0.918 23

properties, e.g. “Temperature” = “hasTemperature” as in 2022. Since the recall is the best of the
participating systems, Matcha turns out to be the best-performing system based on its F1-measure.

The second test case evaluates the matching systems to find correspondences between the
large-sized MaterialInformation and the mid-sized BFO-based MatOnto. Surprisingly, LogMap
performs the matching task significantly quicker than in the first test case and stands out for its
very fast computation time of only 6s at a high precision of 0.881. Apart from the runtime, the
results for LogMap and LogMapLt do not change in comparison to the evaluation in 2022. Since
LogMap found only 59 correct correspondences out of the 302 reference correspondences, the
recall is rather low, but the F1-measure is still the highest of the tested systems. LogMapLt
is significantly slower than LogMap but finds the same amount of correspondences with 2
additional false positives, so it achieves a slightly lower overall F1-measure than LogMap.
Matcha finds 6 wrong correspondences where classes are matched to object properties as in the
first test case. Matcha presents the lowest precision in this test case but the highest recall. Based
on its F1-measure, Matcha performs slightly better than the other systems in this test case.

The third test case evaluates matching systems to find correspondences between the large-sized
MaterialInformation and the mid-sized EMMO. All evaluated systems compute the alignments
in under one minute. Apart from the runtime, the results for LogMap and LogMapLt do not
change in comparison to the evaluation in 2022. All of the systems present high precision values.
LogMap computes 3 false positives, LogMapLt computes 5 false positives and Matcha 3 false
positives. At the same time Matcha computes with 56 the highest number of true positives, which
results in the best precision of the tested systems. Since it has the highest number of correctly
found correspondences, the recall and the F1-measure are the highest of the evaluated systems in
the third test case at the fastest computation time.

In summary, LogMap stands out for its very fast computing speed with very high precision at



the same time. LogMapLt is significantly slower in every test case and almost constantly shows
worse results - only in the first test case the recall of LogMapLt is higher than for LogMap. In
our opinion, LogMap is definitely recommended for MSE applications where high precision is
demanded. In comparison to that, LogMapLt does not appear to bring any decisive advantage
over LogMap.

Matcha in its current implementation is not recommended for MSE applications since it
matches classes to properties.

A-LIOn produces moderate results but does not bring any advantage over LogMap. Further-
more, A-LIOn produces errors while reasoning on EMMO. The latter is the only one of the MSE
ontologies used with a significant proportion of essential axioms. According to the annotations in
EMMO, this ontology exclusively can be inferred with the FaCT++ reasoner. That might be a
cause for the occurring reasoning errors of A-LIOn and bad results in the third test case.

None of the evaluated matcher finds all reference correspondences correctly and none of the
matchers.

4.11. Common Knowledge Graphs

We evaluated all the participating systems that were packaged as SEALS packages or as web
services using Docker (even those not registered to participate on this new track). However, not
all systems were able to complete the task, as some systems finished with an empty alignment
file. Here, we include the results of 7 systems that were able to finish the task within the 24-hour
time limit with a non-empty alignment file: LogMap, OLaLa, Matcha, LogMapLt, LogMapKG,
LsMatch, and AMD.

Table 17 shows the aggregated results on the two datasets for systems that produced non-empty
alignment files. The size column indicates the total number of class alignments discovered
by each system. While the majority of the systems discovered alignments at both schema and
instance levels, we have only evaluated class alignments, as the two gold standard does not
include any instance-level ground truth. Further, Not all systems were able to handle the original
dataset versions (i.e., those with all annotated instances). In terms of the NELL-DBpedia test
case, LogMap, OLaLa, Matcha, and AMD were able to generate results when applied to the
full-size dataset. While on the YAGO-Wikidata dataset, which is large-scale compared to the
first dataset, only OLaLa, Matcha, and AMD were able to generate alignments with the original
dataset. Other systems either fail to complete the task within the allocated 24-hour time limit
such as LogMapLt and LsMatch, or produce an empty alignment file such as LogMap (only on
the YagoWikidata dataset). LogMapKG on the other hand tends to only align instances when it is
applied to full-size datasets. Similar to the 2022 evaluation results, AMD does generate schema
alignments but in the wrong format, therefore, they can not be evaluated.

The resulted alignment files from all the participating systems are available to download on the
track’s result webpage33. On the Nell-DBpedia dataset, all systems were able to outperform the
basic string matcher, in terms of f-measure, except for LogMapLt. On the YagoWikidata dataset,
two systems were not able to outperform the baseline, which are LogMapLt and LsMatch. This
year saw the return of different matchers and the introduction of a new one, OLaLa. While most

33https://oaei.ontologymatching.org/2023/results/commonKG/index.html

https://oaei.ontologymatching.org/2023/results/commonKG/index.html


Table 17
Results for the Common Knowledge Graphs track.

Matcher Size Precision Recall F1 measure Time Dataset Size
Nell-DBpedia

LogMap 105 0.99 0.80 0.88 00:03:17 original
OLaLa 120 1.0 0.92 0.96 00:07:07 original

LogMapLt 77 1.00 0.60 0.75 00:26:19 small
LogMapKG 104 0.98 0.80 0.88 00:00:00 small

AMD 102 0.00 0.00 0.00 00:00:23 original
LsMatch 101 0.96 0.75 0.84 00:00:52 small
Matcha 114 0.99 0.87 0.93 00:01:53 original

String Baseline 78 1.00 0.60 0.75 00:00:37 original
Yago-Wikidata

LogMap 233 1.00 0.76 0.86 00:00:26 small
OLaLa 209 1.0 0.68 0.81 00:03:56 original

LogMapLt 211 1.00 0.70 0.81 00:54:13 small
LogMapKG 232 1.00 0.76 0.83 00:00:10 small

AMD 125 0.00 0.00 0.00 00:29:04 original
LsMatch 196 0.97 0.63 0.76 00:02:33 small
Matcha 274 0.99 0.90 0.94 00:07:16 original

String Baseline 212 1.00 0.70 0.82 00:00:02 original

matchers demonstrated similar performance to previous evaluations, Matcha notably improved its
results on both datasets. Matcha also showcased the ability to function with the original datasets,
a capability it lacked in the 2022 evaluation. OLaLa outperformed all other matchers in the
Nell-DBpedia task, whereas Matcha excelled on the larger dataset, Yago-Wikidata. Furthermore,
all matching processes were completed in less than an hour, as indicated in the runtime column.
Lastly, the dataset size column specifies whether a system operated on the original dataset or
solely on the smaller version.

4.12. Crosswalks Data Schema Matching

All the systems registered to OAEI 2023 were run besides the fact that only LogMap has
been registered to participate in all tracks and no system has been specifically registered to the
Crosswalks task.

This year, as introduced above, we have used the schemes for which an OWL/RDFS serializa-
tion is available, as OAEI matching systems are used to the format. However, this does not reflect
the reality of the field, as schemes are not usually exposed in such a structured format. This opens
the possibility of providing a dedicated task next year.

Table 18 shows the results for the systems that have generated correspondences. While
generating a few number of correct correspondences, precision is higher with respect to recall for



Table 18
Results for the Crosswalks task.

Correct Output Expected Precision Recall
LogMap

datacity 0 3 34 0.00 0.00
iso 0 4 42 0.00 0.00
dcat3 1 12 42 0.08 0.02
dcterms 0 1 32 0.00 0.00
dcat-ap 0 2 34 0.00 0.00

1 22 184 0.02 0.00
LogMapBio

datacity 0 0 34 0.00 0.00
iso 0 0 42 0.00 0.00
dcat3 1 12 42 0.08 0.02
dcterms 1 1 32 1.00 0.03
dcat-ap 0 2 34 0.00 0.00

2 15 184 0.22 0.01
LogMapKG

datacity 0 0 34 0.00 0.00
iso 0 4 42 0.00 0.00
dcat 3 1 12 42 0.08 0.02
dcterms 0 1 32 0.00 0.00
dcat-ap 0 2 34 0.00 0.00

1 19 184 0.02 0.00
LogMapLt

datacity 0 4 34 0.00 0.00
iso 1 14 42 0.07 0.02
dcat3 4 41 42 0.10 0.10
dcterms 1 3 32 0.33 0.03
dcat-ap 0 4 34 0.00 0.00

6 66 184 0.10 0.03
Matcha

datacity 0 5 34 0.00 0.00
iso 1 10 42 0.10 0.02
dcat3 4 44 42 0.09 0.10
dcterms 1 1 32 1.00 0.03
dcat-ap 0 0 34 0.00 0.00

6 60 184 0.24 0.03

all systems. Most of the generated correspondences still involve properties where labels are equal,
for instance: https://schema.org/distribution and http://www.w3.org/ns/dcat#distribution. In terms
of F-measure, Matcha and LogMapLt have the best and similar performance. With respect to the
pairs, a higher number of correspondences has been generated for the pairs involving DCAT-v3.
LogMapLt and Matcha are the systems that are able to deal with a higher number of matching
pairs.

In 2022, this track ran for the first time. Last year, similar to this year, only Matcha, LogMap
and LogMapLt were able to generate non-empty alignments, with LogMapLt being able to
generate a higher number of correspondences. In terms of precision, Matcha and LogMapLt had
a higher precision in detriment of recall.



This task mostly deals with the properties of metadata schemes. Still, dealing with properties
is a challenging task.

4.13. Knowledge Graph

This year we evaluated all participants with the MELT framework to include all possible sub-
mission formats i.e. SEALS, and Web format. First, all systems are evaluated on a very small
matching task34 (even those not registered for the track). This revealed that not all systems were
able to handle the task, and in the end, 6 matchers can provide results for at least one test case.

Similar to the previous years, some systems like AMD need a post-processing step of the
resulting alignment file to be able to parse it. The reason is that the KGs in the knowledge graph
track contain special characters, e.g. ampersand. These characters need to be encoded in order to
parse these XML-formatted files correctly. The resulting alignments are available for download
35.

Table 19 shows the results for all systems divided into class, property, instance, and overall
results. This also includes the number of tasks in which they were able to generate a non-empty
alignment (#tasks) and the average number of generated correspondences (size). We report the
macro averaged precision, F-measure, and recall results, where we do not distinguish empty
and erroneous (or not generated) alignments. The values in parentheses show the results when
considering only nonempty alignments.

This year’s best overall system is the baseline using the alternative labels (0.84 F-measure).
The highest recall is again achieved by Matcha (0.84). It returns more correspondences than all
others (263,822.2 on average) but is only able to match instances in this track. Detailed results
for each test case can be found on the OAEI results page of the track36.

Property matches are still not created by all systems. LogMap, Matcha, and SOR-
BETMatcher do not return any of those mappings. One reason might be that the proper-
ties are typed as rdf:Property and not distinguished into owl:ObjectProperty or
owl:DatatypeProperty. OLaLa reaches the best score with 0.83 F-Measure.

Regarding runtime, Matcha (14:30:03) and LogMapLt (64:48:07) were the slowest systems. In
comparison to last year, the runtimes increased quite a lot and the systems should focus more
on scalable solutions. Besides the baselines (which need around 12 minutes for all test cases)
LogMap (00:56:43) and SORBETMatcher (00:21:53) were the fastest systems.

For further analysis of the results, we also provide an online dashboard37 generated with
MELT[65]. It allows us to inspect the results on a correspondence level. Due to the large amount
of these correspondences, it can take some time to load the full dashboard.

4.14. Pharmacogenomics

For this first year of the Pharmacogenomics track, 2 systems registered, namely LogMap and
Matcha. The evaluation was performed using the MELT framework. Unfortunately, none

34http://oaei.ontologymatching.org/2019/results/knowledgegraph/small test.zip
35http://oaei.ontologymatching.org/2023/results/knowledgegraph/knowledgegraph-alignments.zip
36http://oaei.ontologymatching.org/2023/results/knowledgegraph/index.html
37http://oaei.ontologymatching.org/2023/results/knowledgegraph/knowledge graph dashboard.html

http://oaei.ontologymatching.org/2019/results/knowledgegraph/small_test.zip
http://oaei.ontologymatching.org/2023/results/knowledgegraph/knowledgegraph-alignments.zip
http://oaei.ontologymatching.org/2023/results/knowledgegraph/index.html
http://oaei.ontologymatching.org/2023/results/knowledgegraph/knowledge_graph_dashboard.html


Table 19
Knowledge Graph track results, divided into class, property, and instance performance. For
matchers that were not capable of completing all tasks, the numbers in parentheses denote the
performance when only averaging across tasks that were completed.

System Time tracks Size Prec. F-m. Rec.
class performance

BaselineAltLabel 00:11:37 5 16.4 1.00 (1.00) 0.71 (0.71) 0.59 (0.59)
BaselineLabel 00:11:27 5 16.4 1.00 (1.00) 0.71 (0.71) 0.59 (0.59)
LogMap 00:56:43 5 19.4 0.93 (0.93) 0.80 (0.80) 0.71 (0.71)
LogMapLt 64:48:07 4 23.0 0.80 (1.00) 0.55 (0.69) 0.43 (0.54)
LSMatch 04:47:07 5 23.6 0.97 (0.97) 0.74 (0.74) 0.64 (0.64)
Matcha 14:30:03 5 0.0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
OLaLa 02:55:06 5 18.6 0.98 (0.98) 0.68 (0.68) 0.53 (0.53)
SORBETMatcher 00:21:53 5 22.4 0.93 (0.93) 0.80 (0.80) 0.73 (0.73)

property performance
BaselineAltLabel 00:11:37 5 47.8 0.99 (0.99) 0.76 (0.76) 0.66 (0.66)
BaselineLabel 00:11:27 5 47.8 0.99 (0.99) 0.76 (0.76) 0.66 (0.66)
LogMap 00:56:43 5 0.0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
LogMapLt 64:48:07 4 0.0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
LSMatch 04:47:07 5 85.6 0.73 (0.73) 0.71 (0.71) 0.69 (0.69)
Matcha 14:30:03 5 0.0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
OLaLa 02:55:06 5 73.6 0.86 (0.86) 0.83 (0.83) 0.81 (0.81)
SORBETMatcher 00:21:53 5 0.0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

instance performance
BaselineAltLabel 00:11:37 5 4674.8 0.89 (0.89) 0.84 (0.84) 0.80 (0.80)
BaselineLabel 00:11:27 5 3641.8 0.95 (0.95) 0.80 (0.80) 0.71 (0.71)
LogMap 00:56:43 5 4012.4 0.90 (0.90) 0.78 (0.78) 0.69 (0.69)
LogMapLt 64:48:07 4 6653.8 0.73 (0.91) 0.67 (0.84) 0.62 (0.78)
LSMatch 04:47:07 5 5872.2 0.66 (0.66) 0.59 (0.59) 0.60 (0.60)
Matcha 14:30:03 5 263822.2 0.55 (0.55) 0.63 (0.63) 0.86 (0.86)
OLaLa 02:55:06 5 0.0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
SORBETMatcher 00:21:53 5 0.0 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

overall performance
BaselineAltLabel 00:11:37 5 4739.0 0.89 (0.89) 0.84 (0.84) 0.80 (0.80)
BaselineLabel 00:11:27 5 3706.0 0.95 (0.95) 0.80 (0.80) 0.71 (0.71)
LogMap 00:56:43 5 4031.8 0.90 (0.90) 0.77 (0.77) 0.68 (0.68)
LogMapLt 64:48:07 4 6676.8 0.73 (0.92) 0.66 (0.83) 0.61 (0.76)
LSMatch 04:47:07 5 5981.4 0.66 (0.66) 0.60 (0.60) 0.61 (0.61)
Matcha 14:30:03 5 263822.2 0.55 (0.55) 0.62 (0.62) 0.84 (0.84)
OLaLa 02:55:06 5 92.2 0.88 (0.88) 0.03 (0.03) 0.02 (0.02)
SORBETMatcher 00:21:53 5 22.4 0.93 (0.93) 0.01 (0.01) 0.00 (0.00)

of these systems successfully produced alignments between reified 𝑛-ary tuples representing
pharmacogenomic knowledge units. Some configurations of the two systems output some
alignments between other entities (e.g., components of pharmacogenomic tuples) but not between
the 𝑛-ary tuples themselves.



5. Conclusions and Lessons Learned

As in previous campaigns, in 2023, we witnessed a healthy mix of new and returning systems,
with an imbalanced participation in the tracks.

The schema matching tracks gather the highest number of participants; however still little
substantial progress in terms of the quality of the results or run time of top matching systems. As
already reported last year, we observe a performance plateau being reached by existing strategies
and algorithms. It is also true that established matching systems tend to focus more on new tracks
and datasets than on improving their performance in long-standing tracks, whereas new systems
typically struggle to compete with established ones.

According to the Conference track, there are more systems with the ability to match properties
(7 in 2023 vs. 5 in 2022). Several ML-based systems used reference alignments for training to a
certain extent (explained in their system papers). It has already happened in the past. It calls for a
discussion and perhaps more ML-based tracks.

Since the creation of the Material Sciences and Engineering track, a large amount of new
ontologies have been developed and utilized in various MSE applications. In contrast to the early
development stages of this track, those ontologies are now easily accessible on the Matportal38.
In the future, the MSE track should be updated with the currently most used top and mid-level
MSE ontologies, which include the BWMD-mid39, the MSEO40, the PMDco41, the prov-o42 and
IOF-mat43. In the OntoCommons-project44 alignments of frequently used ontologies of the MSE
application area are produced and will be used to further improve the MSE benchmark based on
the project results. Apart from also considering frequently used domain and application ontologies,
also multi-ontology matching, knowledge graph matching, e.g. using the AluTrace-data45, and
the usage of background knowledge should be considered in future OAEI campaigns.

With respect to the cross-lingual version of the Conference, the Multifarm track still attracts
too few number of participants. Despite this fact, this year new participants came up with
alternative strategies (i.e., deep learning) with respect to the last campaigns.

In the Food track, none of the evaluated matchers finds all reference correspondences correctly.
LogMapLt stands out for its very fast computing speed. Matcha obtains the best results for
the FNC application. The usage of background knowledge available in CIQUAL and SIREN
ontologies in terms of food description based on FoodON concepts should be considered in future
OAEI campaigns.

The Bio-ML track incorporated significant updates and attracted several new machine learning-
based participants. However, the number of symbolic participants decreased. The best-performing
systems are not consistent across tasks and settings, demonstrating the diversity of our datasets. It
is also worth noting that SORBETMatcher is the only system can participate in both equivalence

38https://matportal.org/
39https://matportal.org/ontologies/BWMD-MID
40https://matportal.org/ontologies/MSEO
41https://github.com/materialdigital/core-ontology/
42https://www.ebi.ac.uk/ols/ontologies/prov
43https://industrialontologies.org/working-groups/the-material-science-and-engineering-mse-working-group-wg/
44https://ontocommons.eu
45https://github.com/Mat-O-Lab/AluTraceProject

https://matportal.org/
https://matportal.org/ontologies/BWMD-MID
https://matportal.org/ontologies/MSEO
https://github.com/materialdigital/core-ontology/
https://www.ebi.ac.uk/ols/ontologies/prov
https://industrialontologies.org/working-groups/the-material-science-and-engineering-mse-working-group-wg/
https://ontocommons.eu
https://github.com/Mat-O-Lab/AluTraceProject


and subsumption matching.
In the Biodiversity and Ecology track, none of the systems was able to detect manual mappings

created by domain experts and requiring biodiversity domain-specific knowledge. In this year’s
edition, we confirmed the inability of most systems to handle SKOS natively, as well as very
large ontologies. Additionally, some systems did not perform well on the thesauri tasks because
those contained concepts with similar URIs that were, in fact, completely different.

The Interactive matching track also witnessed a small number of participants. Two systems
participated this year. This is puzzling considering that this track is based on the Anatomy and
Conference test cases, and those tracks had 9 and 11 participants, respectively. The process of
programmatically querying the Oracle class used to simulate user interactions is simple enough
that it should not be a deterrent for participation, but perhaps we should look at facilitating the
process further in future OAEI editions by providing implementation examples.

The Complex matching track tackles a challenge task that attracts too few number of par-
ticipants. This year, no system was able to complete the task. As several sub-tracks have been
discontinued, the track is limited to the conference domain. This track welcomes new organizers.

The Crosswalks Data Schema Matching track involves different schema formats and ways
of representing schema properties. This opens the possibility of creating a dedicated task relying
on other formats than OWL/RDF.

Automatic instance-matching benchmark generation algorithms have been gaining popularity,
as evidenced by the fact that they are used in all three instance-matching tracks of this OAEI
edition. One aspect that has not been addressed in such algorithms is that, if the transformation is
too extreme, the correspondence may be unrealistic and impossible to detect even by humans. As
such, we argue that human-in-the-loop techniques can be exploited to do a preventive quality-
checking of generated correspondences and refine the set of correspondences included in the final
reference alignment.

In the Knowledge graph track, the overall best scores are still unbeaten. Furthermore, the
proportion of matchers not able to produce property alignments is high. This might change next
year with new and improved systems.

In the Common knowledge graphs track, which challenges matching systems to map the
schema of large-scale, automatically constructed, and cross-domain knowledge graphs. The
number of participants is similar to last year, with a new system participating and former systems
adapting their approaches to scale up to the task size. However, with some systems only being
able to produce alignments when applied to smaller versions of the KG datasets, we still look
forward to having more participants in the next OAEI campaign.

For the first year of the Pharmacogenomics track, participation was limited with only 2 sys-
tems registered. Unfortunately, none of the participating systems were able to output alignments
between the targeted reified 𝑛-ary tuples. We will investigate whether this originates from the
absence of labels for tuples and the only presence of structural information or if other aspects
are detrimental (e.g., arity, background domain knowledge that must be considered to produce
most alignments). These results highlight the interest in considering domain-specific problems to
design new methods like [56, 66] or enrich existing ones. Recall that the track features different
types of alignments between individuals, which is a specificity of the considered alignment task.
This raises the question of whether such a granular matching setting could be generalized to other
instance matching tasks. Since the alignment task in this track is structure-based, it is particularly



well-adapted to approaches relying on Graph Neural Networks that learn embeddings of nodes to
align on the basis of their neighborhoods [66]. All these reasons motivate to propose again the
track in the next editions of OAEI and adapt it to evaluate Machine Learning-based matchers. We
hope that the growing awareness about this track and its specificity will attract additional systems.

Like in previous OAEI editions, most participants provided a description of their systems and
their experience in the evaluation, in the form of OAEI system papers. These papers, like the
present one, have not been peer-reviewed. However, they are full contributions to this evaluation
exercise, reflecting the effort and insight of matching systems developers, and providing details
about those systems and the algorithms they implement.

As each year, fruitful discussions at the Ontology Matching Workshop point out different
directions for future improvements in OAEI. This year, with a higher number of systems relying
on Large Language Models, there was a discussion on the specific requirements and alternative
ways for gathering the alignments generated by such resource-consuming systems. It has also
been highlighted the need to push the adoption of SSSOM [24] (this year MELT has incorporated
the format but still few systems have adopted it), as a way for delivering richer alignments in
terms of metadata and justifications [67]. As already mentioned before, there were also some
interrogations on the stability reached in some (open)-schema matching tasks (in particular
Anatomy and Conference tracks) as the performance has been quite stable for several years. This
requires a further analysis of the difficult parts of the matching task. Last but not least, new
tracks addressing more application/use-oriented tasks should be addressed and they are more than
welcome.

The Ontology Alignment Evaluation Initiative will strive to remain a reference to the ontology
matching community by improving both the test cases and the testing methodology to better
reflect actual needs, as well as to promote progress in this field. More information can be found
at: http://oaei.ontologymatching.org.
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