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Abstract

When interest lies in the progression of a disease rather than on a single outcome, non-
homogeneous multi-state Markov models constitute a natural and powerful modelling ap-
proach. Constant monitoring of a phenomenon of interest is often unfeasible, hence leading
to an intermittent observation scheme. This setting is challenging and existing models and
their implementations do not yet allow for flexible enough specifications that can fully exploit
the information contained in the data. To widen significantly the scope of multi-state Markov
models, we propose a closed-form expression for the local curvature information of a key
quantity, the transition probability matrix. Such development allows one to model any type of
multi-state Markov process, where the transition intensities are flexibly specified as functions
of additive predictors. Parameter estimation is carried out through a carefully structured, sta-
ble penalised likelihood approach. The methodology is exemplified via two case studies that
aim at modelling the onset of cardiac allograft vasculopathy, and cognitive decline. To sup-
port applicability and reproducibility, all developed tools are implemented in the R package

flexmsm.

Keywords: additive predictor; information matrix; longitudinal survival data; Markov model;

penalised log-likelihood; regression spline.

1 Introduction

With the increase in the availability of longitudinal survival data, continuous-time multi-state
Markov models have established themselves as powerful tools to model the progression of a phe-

nomenon, while accounting for background information recorded for each individual throughout
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the follow-up period; see Yiu et al. (2017), Williams et al. (2020) and Gorfine et al. (2021) for
some examples. In many applications, a non-homogeneous Markov process is assumed, i.e. the
risks of moving across states depend on the current state and on time. This is typically addressed
by employing parametric functional forms for the transition hazards, but some examples of more
flexible (e.g., spline-based) specifications can be found as well (e.g., Cook and Lawless, 2018;
Joly et al., 2002; Machado et al., 2021; Titman, 2011; Van Den Hout, 2017).

Constant monitoring of the progression of a phenomenon of interest is often not possible
since it may be too expensive or altogether not feasible due to the nature of the event of inter-
est. When this is the case, the process is only observed at a fixed set of times and is thus said to
be intermittently observed or interval-censored. The lack of knowledge of the times in which the
transitions occurred represents a methodological challenge. The literature on the subject is vast,
however existing computational methods for fitting non-homogeneous multi-state Markov models
in such setting are mainly based on the estimation approach developed by Kalbfleisch and Law-
less (1985), which relies on approximating the information matrix using the analytical score of
the log-likelihood. The advantage of this method is that, in principle, it permits a great degree of
generality by allowing for any number of states, forward and backward transitions, and any type
of functional form for the transition intensities. However, only simpler models are supported in
practice, with the most commonly used implementation provided via the R package msm (Jackson,
2022). Yet, convergence failures occur when the numbers of states and covariates increase; this
can be attributed to the absence of the analytical information matrix which would provide valu-
able exact curvature information exploitable in model fitting. Using the approach of Kalbfleisch
and Lawless (1985), Machado et al. (2021) presented a model that includes a smooth function of
the time variable, and provided a bespoke code for the simple and well-known three-state Illness-
Death Model (IDM). Alternatives, such as the pseudo-values based approach discussed in Sabathé
et al. (2020) or the semiparametric regression model proposed in Gu et al. (2022), also fall short
of the desired generality as they only support the IDM case, are limited in the functional forms
allowed for the transition intensities and/or fail to provide software.

To widen significantly the scope of non-homogeneous multi-state Markov models, we propose
an analytical expression for the local curvature information of the transition probability matrix.
This allows us to introduce a modelling framework which is general and flexible, and that is appli-
cable to far more complex empirical problems than those previously explorable in the literature.
Specifically, the proposal allows for any type of multi-state process, with several states and various
combinations of observation schemes (e.g., intermittent, exactly observed, censored), and for the
transition intensities to be flexibly modelled through additive predictors. Parameter estimation is
carried out by adapting to this context the stable and efficient estimation algorithm of Marra and
Radice (2020) which can fully exploit the newly derived analytical observed information matrix.
To allow for reproducible and transparent research, the framework is implemented in the R pack-

age flexmsm (Eletti et al., 2023) which is very easy and intuitive to use; for instance, time and



covariate effects of multi-state Markov models can be flexibly specified using the same syntax as
that for generalised additive models in R (Wood, 2017).

In Section 2, we introduce the mathematical setting of multi-state Markov models and de-
scribe the regression spline-based approach employed for modelling the transition intensities. The
penalised log-likelihood is presented in Section 3, while parameter estimation and how this is in-
tertwined with the problem of computing the transition probabilities from the transition intensities
are discussed in Section 4. This section also presents the newly derived analytical expression for
the local curvature information of the transition probability matrix; the proof is provided in the
Appendix. Section 5 describes how inference is carried out. Section 6 illustrates the potential of
the proposal via a classical study, based on the IDM, that aims at modelling the onset of cardiac
allograft vasculopathy, and a more complex one, about cognitive decline, which requires the use
of a five-state process with both forward and backward transitions as well as an absorbing death
state. Section 7 concludes the paper with some directions of future research. On-line Supple-
mentary Materials A, B and C provide details on the log-likelihood contributions, the R package
flexmsm and the algorithm employed for parameter estimation. Supplementary Material D il-
lustrates the empirical effectiveness of the proposal via two simulation studies. Supplementary

Material E contains a list of the mathematical symbols used and their meaning.

2 Multi-state processes with flexible transition intensities

Let {Z(t),t > 0} be a continuous-time Markov process, S = {1,2,...,C} its discrete state
space, where C' is the total number of states, and A = {(r,7’) | r # r' € S, 3 r — 1’} the set of
transitions. The transition intensity function, i.e. the instantaneous rate of transition to a state r’

for an individual who is currently in another state r, is defined as follows

P(Z(t+h)=1"| Z(t) =)
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g (t) bim - , r#ET
with ¢’ = 0 if r is an absorbing state and ¢'"" = — ¢ (t). The matrix with (r,r
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element given by ¢"")(t) for every 7,7’ € S is called transition intensity matrix or generator ma-

trix and can be denoted with Q(¢). Similarly, the transition probability matrix associated with the
time interval (¢,t') is defined as the matrix with (r,7’) element given by pU"") (¢, t') = P(Z(t') =
r" | Z(t) = r) and can be denoted with P(¢,#'). Here, we assume a time-dependent process as
opposed to the rather restrictive time-homogeneous process (i.e., Q(t) = Q V¢ > 0) often adopted
in the literature for mathematical convenience.

The intensity for transition » — »/, with r £ r/, is generally represented using the proportional
hazards specification, where the baseline intensity is typically specified using the exponential or

Gompertz distribution (Van Den Hout, 2017). A more flexible representation for the transition



intensity is
a"(t) = exp [0 (8, %3 87)] ()

where t, and x, are the time and the vector of characteristics for observation ¢ respectively, 30"
is the associated regression coefficient vector and 775 (tb, X,; B(’"’"/)) € R is an additive predictor,
discussed in detail in the following section, which includes a baseline smooth function of time and

several types of covariate effects.

2.1 Additive predictor

For simplicity, the dependence on covariates and parameters has been dropped when discussing
. (rr')
the construction of 1, 7.

An additive predictor allows for various types of covariate effects and is defined as

Ko
77(”) (”' + Z Sk ka t=1,...,n, (2)

where 7 is the sample size, ﬁéw) € R is an overall intercept, X;,, denotes the k" sub-vector of the
complete vector X, = (t,,x )" and the K ") functions s,(:r/) (Xx, ) represent effects which are cho-
sen according to the type of covariate(s) considered. For example, if we were interested in mod-
elling a time-dependent effect of the covariate age,, then X,;, would be the vector (age,, tL)T and

s,(:r,) (age,, t,) the corresponding joint effect. Each sé (Xx,) can be represented as a linear combi-

-
nation of J ™) known basis functions b( (x;a) = (b,(flr )(f(m), e b(TT(T)T/> (XkL)> and regression

T ! " ’
coefficients B\ = ( AL ,6kj(”,)) e R, that is s (%) = b (%) 7B (g

Wood, 2017). The above formulation implies that the vector of evaluations {s,(frl) (Xe1)s - - s (R }

th row is given by b{"" (~kL)T

can be written as 5((” ) ﬁ,(frl) where X(M s the design matrix whose ¢

for L = 1,...,7n. This allows the predictor in equation (2) to be written as 7("" BOW 1; +

X ,81" +...+ Xg((wf) B Ig,),) , where 1;; is an 7-dimensional vector made up of ones. This can
(')

also be represented in a more compact way as (") = X(W ) B, where X(M - 1,,X; ..., XXZLZ/))
/ / / T /
and B0 = <ﬁéw N By T 5%31) . Each B,Efr) has an associated quadratic penalty

(rr )B TP (”J) B,(:T,), used in fitting, whose role is to enforce specific properties on the k"
functlon, such as smoothness. Matrix D;;T/) only depends on the choice of the basis functions.
Smoothing parameter )\,(:T/) € [0, 00) has the crucial role of controlling the trade-off between fit
and smoothness and hence it determines the shape of the corresponding estimated smooth function.

The overall penalty is defined as ,B(TT/)TSS"(C,/,.),) B, where SU" e , = diag(0, A\ 'D") . AZ?,E,)DgZ’ 2,))



and A07) = ()\(1”/), o ,/\gf:,z,,))T is the transition-specific overall smoothing parameter vector.
Note that smooth functions are subject to centering (identifiability) constraints which are imposed
as described in Wood (2017). Several definitions of basis functions and penalty terms are sup-
ported by flexmsm; these include thin plate, cubic and P-regression splines, tensor products,
Markov random fields, random effects, and Gaussian process smooths (see Wood (2017) for de-
tails).

An example of predictor specification is 7" = 8" + " (t,) + B sex,. Parametric
effects usually, but not exclusively, relate to binary and categorical variables such as sex,. The
spline representation introduced above thus simplifies to sgr/)(sexL) = ﬁéwl)sexb. No penalty is
typically assigned to parametric effects, hence the associated penalty is 0. However, there might
be instances where some form of regularisation is required in which case a suitable penalisation
scheme can be employed (e.g., Wood, 2017, Section 5.8). To explore a potentially nonlinear effect
of t,, s\""(t,) is specified as b\ (,)TB"", where b\ (t,) are cubic regression spline bases,

for example. In this case, the penalty is defined as

RN rr/ ) 82 rr’ ?
oy p ) = [ (S w)

1

where u; and U vy Are the locations of the first and last knots. For a smooth term in one dimen-
sion, such as sY” (t,), the specific choice of spline definition (e.g., thin plate, cubic) will not have
an impact on the estimated curve. As for Jl(w), or more generally J,S"T/), this is typically set to
10 since such value offers enough flexibility in most applications. However, analyses using larger
values can be attempted to assess the sensitivity of the results to J,E,TT,). Regarding the selection of
knots, these can be placed evenly throughout (or using the percentiles of) the values of the variable
the smooth term refers to. For a thin-plate regression spline only J,E”J) has to be chosen. See Wood
(2017) for a thorough discussion.

As mentioned previously, our framework poses no limits on the types of splines that can
be employed for specifying the transition intensities. For instance, as illustrated in Section 6.1,
two-dimensional splines can be used to incorporate time-dependent effects. This would take the
form of an interaction term involving, e.g., age, and the time variable through the smooth term
s,(;“’“') (age,,t,). Here we have two penalties, one for each of the arguments of the smooth function.
These are summed after being weighted by smoothing parameters, which serve the purpose of
controlling the trade-off between fit and smoothness in each of the two directions, thus allowing

for a great degree of flexibility (Wood, 2017, Section 5.6).



3 Penalised log-likelihood

Let N be the number of statistical units, n; the number of times the " unit is observed, 0 = ;5 <
tihn < --+ < ti, the follow-up times, zo, 21, - - ., Zin, the (possibly unobserved, i.e. censored)
states occupied, and 72 = S~ (n; — 1) the sample size. If L;;(8) is the likelihood contribution
for the j'* observation of the i unit and @ = {30 | (r,r') € A} the model parameter vector,

then the log-likelihood is

(0) = 5°5 log (L, (6)) 3

i=1 j=1

where we have

(
p(zij—lzij) (tij—1,tij), if z;; is a living state
tij
exp | [ qFi-r#i-0) (u)du} qFii—173)(t,5),  if 2z is an exactly observed living state
tij—1

Lij(0) = & o
;p(z”’lc) (tij—1,tij), if z;; is censored
c
S pEa19 () g ) (), if z;; is an exactly observed absorbing state
c=1
\ CF7Zij

That is, the likelihood contribution for a given observation will depend on the nature of the states
between which the transition occurred and the way in which it was observed. Supplementary Ma-
terial A provides details on each contribution type, whereas Supplementary Material B describes
the use of the R package f1lexmsm in such a general context.

To calibrate the trade-off between parsimony and complexity, we augment the objective func-

tion (3) with a quadratic penalty term. This results in the penalised log-likelihood
e
£,(6) = £(6) — 67,0, @

where Sy = diag ({Sg(i;),) | (r,1") € A}) which is a block diagonal matrix where each block is
(;(7;;)/)’ and X = {A(") | (r,r") € A} is the overall

multiple smoothing parameter vector. Both Sg\r(t,r)/) and A"") are defined for a generic transition

given by the transition-specific penalty matrix S

(r,r') in Section 2.1.

4 Stable estimation through exact local curvature information

Building a general and flexible multi-state Markov modelling framework hinges on the availability

of the analytical information matrix of the transition probability matrix, for which we propose a

6



version here. Parameter estimation is achieved by adapting to our setting the stable and efficient
approach proposed in Marra and Radice (2020), which combines a trust region algorithm with
automatic multiple smoothing parameter selection. The trust region method is known to perform
better than its line search counterparts and has certain optimal convergence properties as long as
the analytical observed information matrix is provided (Chapter 4, Nocedal and Wright, 2006).
As for the smoothing parameters, we employ a general and fast estimation framework which
removes the need for computationally expensive grid search-based methods and ad-hoc optimisers
(see Supplementary Material C for details). From (3), the w'" element of the gradient vector
g(0) and the (w,w’) element of the Hessian matrix H(@), for w,w’ = 1,..., W with W =
2 e (1 + ZKW} Jor )> are defined as

0)=> Z LZ-]-(O)*%LM-(B),

=1 j=1
0? 0 0
= L,;(0) — Lij(8)*——L;;(0)=——L;(0
89 ag ;;( 80“)8011}, z]( ) z]( ) 89w Z]( )agw, z]( ))7
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The quantities needed for parameter estimation are the C' x C' dimensional matrices P(t;;_1,%;;),
OP(tij—1,t;)/00, and O*P(t;j_1,1;;)]/ 00,00, for w,w' = 1,...,W. Given the transition in-
tensity matrix Q(¢), the transition probability matrix is the solution of the Kolmogorov forward
differential equations OP(¢,t")/0t' = P(t,t')Q(t’), which are not in general tractable. Kalbfleisch
and Lawless (1985) proposed analytical expressions for P(¢;;_1, ¢;;) and OP(t;;_1, t;;)/00., but not
for 0%P(t;j_1,;;)/ 06,00, which is needed to derive the observed information matrix. The next

section presents a closed-form expression for 9°P(t;;_1,t;;) /00,00,

4.1 Observed information matrix of the transition probability matrix

In the following, time-dependency of (1) is taken into account by employing the commonly
adopted piecewise-constant approximation approach. As for the time grid over which such ap-
proximation is defined, we let it coincide with the observation times of the dataset at hand; this
allows for satisfactory estimation of the model parameters at a contained computational cost (Van
Den Hout, 2017). Grids can be defined differently if required (e.g., Van den Hout and Matthews,
2008).

For each individual s = 1,..., N, let the observed follow-up times ¢,y < t;; < --- < t;,, define



the extremities of the intervals over which the transition intensities are assumed to be constant. The
convention is to assume that the transition intensities remain constant on the value taken in the left
extremity of each time interval. Then, fort € [¢;;,¢;;41), withj =0, 1, ..., n; — 1, making explicit

the dependence on the model parameters, we have Q(t; 8) = Q,(6) and

© 100
P(t, tije1) = P(tijer — tij) = exp(tij — £;)Q;(0)] = (fy ?f)QJ(O)] :
=0 '

&)

Computing the transition probability matrix and its derivatives entails calculating a number of ma-
trix exponentials and their derivatives. The eigendecomposition approach popularised by Kalbfleisch
and Lawless (1985) is appealing because it provides a closed-form solution for the power series
in (5) and for OP(t;;_1,t;;)/90.,. Theorem 4.1 gives the result for 9*P(¢;;_1,t;;) /00,00, . Note
that solving the power series for this quantity is a rather involved process because of matrix-
multiplication being non-commutative. However, the final expression is compact. For simplicity,

let us drop the dependence on ¢, j and 0 and define 6t = t;j11 — t;;.

Theorem. Let Q = ATA™! be the eigendecomposition of the transition intensity matrix, which
is constant over the generic time interval of length 6t, with A the matrix of eigenvectors and

I' = diag[vyi, . . .,vy]| the diagonal matrix containing Y distinct eigenvalues. Then

0? ) _ . B
mp(ét) = AUy + Uy + Upr)A ™.

The (1, m) element of Uy is
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where Gl(;”) is the (1,1) element of matrix G*) = A’IWA and GZ%) is the (y,m) element of
/ 8 : v
matrix G = A~! aTQA. U, is obtained in the same way as U, but with w and w' swapped

wherever they appear.

The proof is provided in the Appendix.

Note that 9Q/d0,, and 9*Q/d0,,00,, are matrices whose (r,7’) elements are given, respec-
tively, by 9q")(t;;)/00, and 9?¢")(t;;)/00,00u for w,w' = 1,...,W. Further, the first
derivatives of the transition intensity matrix are already available from the computation of the
first derivatives of the transition probabilities, hence only second derivatives have to be computed
anew. Matrices A, A~" and I also need to be computed only once, when obtaining matrix P. In
fact, from Kalbfleisch and Lawless (1985), P(6t) = A diag [exp(y10t), ..., exp(7y6t)]A~" and
OP(5t)/96,, = AU,A ™" with the (I, m) element of U,, given by

e'ylét — e"/mat

G I#m

Ilm

U,[l,m] = Vi = Ym
Gglw)ewst&, l=m

Theorem (4.1) requires distinct eigenvalues. In practice, in the literature and our own extensive
experimentation, this has always been found to be the case for non-ill-defined problems. Regarding
the implementation of the algorithm, the number of operations grows quickly as n;, N, C'and W
increase. Specifically, Q (and its eigendecomposition), 9Q/d0,,, 9*°Q/d0,,00,,, P, OP/d0,, and
0?P /00,00, for w,w' = 1, ..., W, have to be computed Zf\il n; — N times and then combined.
To reduce computational cost, the proposed implementation exploited the upper-triangle form
of the above mentioned matrices and the presence of structural zero-values in them. We also
exploited parallel computing to obtain the log-likelihood, analytical score and information matrix
more quickly; the overall run-time of the algorithm can be cut by a factor proportional to the
number of cores in the user’s computer. Section 6.1 provides an example of the resulting difference
with the implementation provided by Machado et al. (2021) which was found to be an order of
magnitude slower than the R package f1exmsm.

5 Inference

To obtain confidence intervals, instead of using the classically derived frequentist covariance ma-
trix —H,; 1(t9)H(0)H; 1(8), we follow Wood et al. (2016) and employ the Bayesian large sample
approximation @ ~ N (6,Vy), where Vo = —H,(0) ! with 6 the estimated model parameter
and H,(0) = H(@) — S the penalised Hessian. Using Vg gives close to across-the-function
frequentist coverage probabilities because it accounts for both sampling variability and smooth-

ing bias, a feature that is particularly relevant at finite sample sizes and that is not shared by the

10



frequentist covariance matrix. Note that applying the Bayesian approach to the modelling frame-
work discussed in this paper follows the notion that penalisation in estimation implicitly assumes
that wiggly models are less likely than smoother ones, which translates into the following prior
specification for 8, fg oc exp {—BTS A0/ 2}.

Intervals for linear functions of the model coefficients, e.g. smooth components, are obtained
using the result just shown for 8. For nonlinear functions of the model coefficients, intervals can
be conveniently obtained by posterior simulation. For example, to derive the (1—«)100% intervals

for the (r, ') transition intensity, the following procedure is employed:

1. Draw n, random vectors @177 . Bsim™) from N (B0, V), where B0 is

the estimated model parameter.

2. Calculate ng;,, simulated realisations of the quantity of interest, such as q(”") (t). For fixed

x and ¢, one would obtain q") = (¢, .. g T using @) | Bmsimirr’)
respectively.
3. Using qg;;), calculate the lower, /2, and upper, 1 — «/2, quantiles.

A small value of ng;,, = 100 typically gives accurate results, whereas « is usually set to 0.05.
Note that the distribution of nonlinear functions of the model parameters need not be symmetric.
Intervals for the transition probabilities can be obtained by applying the above procedure to the Q
matrices and then deriving the corresponding P matrices, as explained in Section 4.1.

P-values for the terms in the model are obtained by using the results summarised in Wood
(2017, Section 6.12), which are based on —H,,(8) . Model building can be aided using tools such
as the Akaike information criterion (AIC, Akaike, 1998) and the Bayesian information criterion
(BIC, Schwarz, 1978). The AIC and BIC are defined as —2€(0) + 2edf and —2£(0) + log(n)edf,
respectively, where the log-likelihood is evaluated at the penalised parameter estimates, 7 is the

sample size and the effective degrees of freedom are given by edf = tr(O), with tr() the trace
function and O = \/—H(8) (—H,,(8))"" \/—H(#) (Marra and Radice, 2020).

6 Case studies

The proposal is illustrated through two case studies. The first one uses flexible IDMs to model the
onset of cardiac allograft vasculopathy (CAV), a deterioration of the arterial walls in heart trans-
plant patients. The second one aims at modelling cognitive decline in the English Longitudinal
Study of Ageing (ELSA) population through a flexible five-state model with both forward and
backward transitions as well as an absorbing death state.

11



6.1 CAV case study

The heart transplant monitoring data used here are openly accessible from the R package msm. The
dataset contains 2846 observations, relating to 622 patients, and is about angiographic (approxi-
mately yearly) examinations of heart transplant recipients where the grade of CAV (not present,
mild/moderate or severe) is recorded. The additional time event of death is also registered and
known exactly (within one day). It follows that the likelihood contributions involved here are
those relating to interval censored living states and to exactly observed absorbing states. Available
baseline covariates include age of the donor (dage) and primary diagnosis of ischaemic heart dis-
ease (IHD, pdiag) which are known to be major risk factors for CAV onset. In line with Machado
et al. (2021), we remove eight individuals for which the principal diagnosis is not known and ex-
clude observations which occurred beyond 15 years from the transplant. The resulting dataset
contains Zfil n; = 2803 observations of N = 614 patients. We consider flexible IDMs where the
states are (1) health (2) CAV onset (mild/moderate or severe) and (3) death. A diagram represent-
ing the process is displayed in Figure 1 while Table 1 reports the number of observations available
for each pair of states in the dataset. Note that the sum of these counts provides the sample size,
n = 2189.

Health | CAV
tate 1 tate 2
(state 1) (state 2) state | state 2 state 3
state 1 1314 223 136
state 2 0 411 105
state 3 0 0 0
Death Table 1: Number of observations for each pair of states in
(state 3) the CAV dataset.

Figure 1: Diagram of the possible IDM disease trajectories.

The most flexible IDM considered in the literature for the CAV case study is based on Machado
et al. (2021)

¢ (t;;) = exp [ ) 18 (t) + Badagey; + fspdiagy |, (6)

for (r,7") € {(1,2),(1,3),(2,3)}, where ¢ is the time since transplant, the smooth term is repre-
sented by a cubic regression spline with 10 basis functions and second order penalty, and (3, and
B3 are covariate effects which are constrained to be equal across the three transitions, hence the
lack of superscript. Model fitting was conducted using the bespoke R code provided by Machado
et al. (2021) which took 3.5 days to reach convergence, on a laptop with Windows 10, Intel 2.20
GHz core, 16 GB of RAM and eight cores. The resulting AIC was 2931.7. No justification was
provided for setting Béw) = [y and ﬁyr/) = (5 which may be too restrictive to estimate adequately
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the effects of dage and pdiag.
Using the proposed methodology, we considered the more general specification

¢ (tiy) = exp | B + s (k) + B dage, + 85 )pdiagi] ’ @

which produced an AIC of 2915.2. The run-time of flexmsm was 59 minutes. Using different
spline definitions and increasing Jl(”/) did not lead to tangible empirical differences.

Table 2 reports the effects for dage and pdiag, and their standard errors, resulting from
models (6) and (7). As the table shows, the constrained coefficients are, roughly speaking, the
averages of the respective unconstrained ones. In this case, setting restrictions does not allow one
to uncover the differing effects of the risk factors in the different trajectories. Specifically, the
model (7) results indicate that dage and pdiag increase the risks of moving from state 1 to state
2 and from state 1 to state 3, and that these variables do not play a role in the transition 2 — 3.

The curve estimates for the s§” )(tij) (not reported here) were similar across the two models.

dage pdiag

1—2 0.023 (0.006) 0.414 (0.132)

1—3 0.040 (0.011) 0.341 (0.255)

2—3 —0.016 (0.009) 0.002 (0.178)
1—+2,1—-3,2—3 0.018 (0.004) 0.274 (0.096)

Table 2: Estimated covariate effects and related standard errors (between brackets) for donor age (dage) and prin-
cipal diagnosis of IHD (pdiag) obtained using the proposed model fitted by flexmsm (first three lines) and the
constrained model of Machado et al. (2021) fitted using the related bespoke R code.

Figure 2 shows the estimated transition intensities, and 95% intervals, when dage is equal to
26 years and pdiag is equal to 1 (i.e., the principal diagnosis is IHD). The risk of moving from
state 1 to state 2 increases until about 7 years since transplant; after that the situation is uncertain.
The risk for the transition 1 — 3 is fairly low and constant until about 10 years, after which it starts
increasing steeply. For transition 2 — 3, the risk increases overall. As expected, the intervals are
wide when the data are scarce. The same exercise can be repeated for different combinations of
dage and pdiag.

Estimated transition intensities provide valuable information about the risks of moving across
states. However, interpretation is more intuitive and easier when transition probabilities are con-
sidered. Setting dage = 26 and pdiag = 1 and assuming yearly piecewise constant tran-
sition intensities, the estimated five-year transition probabilities can be obtained by exploiting
the Chapman-Kolmogorov equations (Cox and Miller, 1977). These allow us to write f’(O, 5) =
P(0,1) x P(1,2) x --- x P(4,5), where the probabilities over each sub-interval are obtained us-
ing the corresponding transition intensity matrix, i.e. Q(t), fort = 0,1,...,4 respectively. The

resulting estimated transition probability matrix and 95% intervals (obtained through the method
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Figure 2: Estimated transition intensities obtained with £1lexmsm for ¢('?)(-), ¢*) () and ¢**)(-) (from left to
right) when dage = 26 and pdiag = 1, with 95% intervals derived as detailed in Section 5. The ‘rug plot’,
at the bottom of each graph, shows the empirical distribution of the transition times. Because we are dealing with
an intermittent observation scheme, the time intervals have been represented by plotting the right extremity of each
observed interval (the left extremity or mid-point could have been equivalently chosen). Recall that the aim of the
rug plot is to highlight regions where the occurrence of a specific transition is rare, hence explaining the width of the
intervals across sections.

detailed in Section 5) are

0.48 (0.42,0.53) 0.20 (0.24,0.34) 0.23 (0.19,0.29)
P0,5)= | 0 0.51 (0.35,0.63) 0.49 (0.37,0.64)
0 0 1

For instance, given a healthy starting point, there is a 29% chance of developing CAV five years
after the transplant procedure occurred. Similarly, there is a 23% chance of dying within the same
time frame, given the same starting point.

We also assessed the possible presence of nonlinear effects of dage. This was achieved by
replacing 3. dage,; with o) (dage;;) in model (7), where the smooth terms were represented
as for sY’”)(tij); the effects were found to be linear. Finally, to illustrate the generality of the

proposal, we considered the specification
) (4.} — (rr') | )y rr') (4 3 g 3 ) S diag..
q ( ZJ) eXp ﬂO + 51 ( l]) + So ( agezy) + S3 ( 1] agezy) + 64 p lagz] )

where sz(fr/) (t;j, dage;;) is a tensor product interaction between dage and time whose marginals
are cubic regression splines. Here, the main effects and their interaction are modelled separately,
thus leading to more flexibility in determining the complexity of the effects (Wood, 2017, Section
5.6.3). Figure 3 shows the results for transition 1 — 2. In the left panel, we report the estimated
transition intensity surface, which is a bivariate function of time and dage. This plot can be
read by sectioning the surface, with respect to either of the two arguments, and assessing how the

resulting curve varies with respect to the other covariate. In the right panel, we report two sections
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of the surface obtained by fixing dage at 26 and 56 years, along with their 95% confidence
intervals. The scarcity of data for the two sections helps explaining the wide confidence intervals,
particularly past a certain point. For this reason, we will focus the interpretation on the first few
years since the transplant took place. One can see that the risk of developing CAV is almost three
times higher with a 56 year old donor than it is with a 26 year old donor right after the transplant,

and remains higher overall in the following few years. This is in line with expectations that older
donors are associated with higher chances of disease occurrence.
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Figure 3: Left panel: estimated transition intensity surface, obtained with £ 1exmsm when including a time-dependent
effect of the donor age. Right panel: sections of the estimated transition intensity surface at dage = 26 (black) and
dage = 56 (grey), along with their respective 95% confidence intervals (black and grey dashed lines, respectively).

Supplementary Material D.1 discusses a simulation study based on the IDM. The results sup-

port the empirical effectiveness of the proposed modelling framework and the related implemen-
tation in flexmsm.

6.2 ELSA case study

The ELSA collects data from people aged over 50 to understand all aspects of ageing in England.
More than 18000 people have taken part in the study since it started in 2002, with the same
people re-interviewed every two years, hence giving rise to an intermittently observed scheme.
ELSA collects information on physical and mental health, wellbeing, finances and attitudes around
ageing, and tracks how these change over time. The data can be downloaded from the UK Data

Service by registering and accepting an End User Licence.

For this study, interest lies in assessing cognitive function in the older population. This is
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measured through the score obtained on a test in which participants are asked to remember words
in a delayed recall from a list of ten, with the score given by the number of words remembered. In
line with Machado et al. (2021), we use a random sample of N = 1000 individuals from the full
population, leading to 4597 observations, and create four score groups to obtain a five-state process
with the fifth state given by the occurrence of death (which is an exactly observed absorbing state).
The intermediate states are given by {10,9, 8,7}, {6,5}, {4, 3,2} and {1, 0} words remembered,
respectively. Both forward and backward transitions are allowed between the intermediate states
to account for possible improvements or fluctuations through the years in the cognitive function
of the participants. In fact, although interest lies mostly in cognitive decline, the opposite trend
is also observed as shown in Table 3. A diagram representing the assumed process is reported in
Figure 4. Further, 221 participants die during the observation period. The time scale is defined by

subtracting 49 years to the age of the individuals.

1 > >

(10-7 words) (6- 5words) (4- 2words) “ Owords) state 1 state 2 state 3 state 4 state 5

state | 225 194 58 5 11
\ / state2 209 600 384 54 46

state3 59 383 732 152 94

5 state 4 8 42 117 154 70

(death)

Table 3: Number of observations for each pair of states in

Figure 4: Diagram of the possible five-state the ELSA dataset.

process disease trajectories.

The most flexible five-state model considered in the literature for the ELSA data is based on
Machado et al. (2021)

exp |8+ 57 (1) for (r77) € {(1,2),(2,3), (2,5), (3,4),(3,5), (4,5)}

) (1) =
! exp [50 ] for (r,7') € {(1,5), (2, 1), (3,2), (4,3)}

where each smooth term is represented by a cubic regression spline with Jl(rr )

= 5 and second
order penalty, and upper bounds for the smoothing parameters were set at exp(20). The authors
justify the specifications for the q(”')(tij) and the other settings by arguing that the limited in-
formation across the age range is probably what causes algorithmic convergence failures in more
general models.

Using the proposed methodology, we considered the general specification
q(”’/)(tij) = exp ﬁéw/) + sﬁ”')(t,-j)] for (r,r') € A, (8)

with Jl(”) = 10 cubic regression spline bases instead. Figure 5 shows the estimated transition

intensities, and related 95% intervals, obtained with f1exmsm. As expected, the instantaneous
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risks of dying are overall smaller than the risks of experiencing further cognitive impairment. As
the starting stage reflects more advanced decline, the risk of transitioning to a worse stage becomes
a progressively flatter function of time. This shows that once the individuals in the population
reach a stage of cognitive impairment, they will typically stay there for the rest of the observation
period. Note that there is added value from having modelled the backward transitions through
smooth functions of time. For example, we find that the instantaneous chance of improving back
to state 3 from a state of cognitive impairment of level 4 decreases considerably faster through time
than that of returning to state 1 from state 2. This is in line with expectations as the intermediate
stages of cognitive health, i.e. stages 2 and 3, are by far the most frequently observed, with 72%
of the population that is still alive at the end of the observation period found in these categories.
The wide 95% intervals for transitions 1 — 5 and 2 — 5 can be explained by observing, from
Table 3, that these transitions are characterised by the lowest number of observations. Model (8)
is general in that no prior assumptions are made with regard to the way each transition depends
on time. Instead, they are all defined through flexible functional forms by means of splines. The
proposed estimation approach then suppresses any complexity not supported by the data, resulting
in final estimated shapes which may be either flat, linear or non-linear. This avoids the need for

setting manual constraints or enforcing ad-hoc fixes.
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Figure 5: Estimated transition intensities obtained with flexmsm with the 95% confidence intervals derived as
detailed in Section 5.

We also quantified the effects of two commonly investigated risk factors: sex (0 for male
and 1 for female) and higherEdu (0 if the individual has had less than 10 years of education
and 1 otherwise) as extracted from the ELSA datasets. This was achieved by simply including
5§M’)sexij~ and B?(fr’)higherEduij in (8). We found, for example, that older people with a

higher level of education have better memory function, although this does not protect them from
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cognitive decline as they age (e.g., Cadar et al., 2017). Overall, the effect of sex was found not

to be significant.

Finally, in Figure 6, we present transition probability plots over 10 years for a 60 year old

male with less than 10 years of education. We observe, e.g., that for such individual with stage

2 cognitive health and higherEdu = 0, the probability of reaching stage 3 by the age of 65 is
approximately 40.3%, with 95% interval (33.3%,44.7%).
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Figure 6: Transition probabilities for a male individual with less than 10 years of education estimated between 11 and
21 years from their 49*" birthday, i.e. P(11, ) and ¢t € (11,21). The dashed lines represent the corresponding 95%

intervals.

Supplementary Material D.2 discusses a simulation study based on a five-state process. The re-

sults show our framework’s ability to recover the true underlying transition intensities in a context
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which strays from the traditionally explored IDM.

7 Discussion

We propose a general framework for multi-state Markov modelling that allows for different types
of process, with several states and various observation schemes, and that supports time-dependent
flexible transition intensities with any type of covariate effects. This is motivated by the interest
in modelling the evolution through time of diseases, with the aim of making statements on their
course given specific scenarios or risk factors. The degree of flexibility allowed for the specifica-
tion of the transition intensities determines the extent to which we can explore and describe the
different factors influencing the evolution of a disease. Previous methodological developments
have mainly focused on simple parametric forms and time-constant transition intensities, which
can be attributed to the lack of an estimation framework capable of supporting more realistic spec-
ifications. Attempts addressing this have not been backed by adequate estimation procedures and
software implementations.

The key development of the paper is the derivation of the local curvature information of a
crucial quantity, the transition probability matrix, which has not been attempted to date. Access to
this source of information has allowed us to introduce a modelling framework that has unlocked a
host of processes and specifications which were not previously attainable, as demonstrated via the
two case studies on cardiac allograft vasculopathy and cognitive decline. To support applicability
and reproducibility, we also introduced the R package flexmsm, which is easy and intuitive to
use.

Future work will look into further improving the run-time required for model fitting. We are
also interested in exploring transformations alternative to the exponential, to enhance the flexibility
allowed by the framework. Note that we have assumed a Markov process throughout. Checking
whether this property was appropriate for the data considered in this paper was outside of the scope
of this work. Future efforts will look into goodness-of-fit tests (e.g., Titman, 2009) as well as the
possibility of extending the current model to relax the Markov assumption. There is, however,
theoretical and empirical evidence that assuming the Markov property when the true underlying
process is non-Markov will still lead to a model that performs well and that has desirable properties
(Datta and Satten, 2001; NieBl et al., 2023). Finally, there are circumstances which give rise to
multiple dependent multi-state processes, such as the analysis of the evolution of a disease in
paired organ systems. In these cases, interest lies in jointly modelling the evolution through time of
these events, as the course of one is expected to affect the course of the others. Existing approaches
rely on very simple specifications for the marginal processes and restrictive dependence structures
among them. The framework proposed in this article will serve as the foundation for the flexible

modelling of joint multi-state processes.
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Appendix: Proof of the Theorem

From the definition of matrix exponential we have that

52 2 & (Qet)
3600 Y0t = 5555 ;

e

¢=2 > p=0 k=0
8Q K 8Q (—2—p—kK
e (m)eG)e ]

where we used the product rule to re-write the derivative of Q°. The first summation can be
re-written using the same considerations made in Kalbfleisch and Lawless (1985) to find the ex-
pression for the gradient. This gives the term AU,,,»A ™" reported in the theorem statement. The
second summation is made of two addends which are equivalent to each other except that w and
w’ are swapped, thus we will just show the derivation for the former. In particular, we observe that

from the eigendecomposition of Q
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where the quantity between brackets leads to the quantity called U,. in the theorem statement.

In fact, note that the (I, m)" element of the inmost term can be re-written as
Y
{I‘pG(w)I‘“G(w/)I‘C_Z_p_ﬁ}lm = Z G Gym o/ %’jyfn 2mpr
y=1

When we plug this back into the summation defining U, we need to distinguish a number of
cases (breaking up these cases is allowed by the property that, when the series converges, series of

sums or differences are equals to the sums or differences of series):

e Whenl=m=y
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through summation swap and change of indices. We then use the result known for the dif-

ference of the powers of two terms on the inmost summation, i.e. (7, — ) Z 0 7”" P =

vf 72’;”“ and then again on the resulting summations
Z -2 Fﬁz —VSH _ C-y~" ng 25
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which leads to the result above. The series can then be solved by recognising multiple times
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the power series expansion of the exponential

" w/ o) (5t< 1 ¢—1 -1 ¢-1 w w St 6t Y0t __ vyt
G o )Z_[(C v J ]:G< Gl ( e _emze )
gL
(=

ly yl

fy
— (! — Yy (=32 " M= (= w)?

e When!#mandy =1

IR RN () ) S 3
w K K w w’ +Kr_(—2—p—kK
ZF Gly Gém)fyl fyyfngl 2Pk = Gll Glm ZFZ Z f)/lp fY’rCn e
¢=2 > p=0 k=0 ¢=2 > p=0 k=0
00 -1 -1
B Ll (St 0 S it
U “im (! Y= (v — )2 Tm|>

with similar considerations to those of the previous point. Then, similarly to above
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with similar considerations to those of the previous point. We then obtain
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which is obtained by repeatedly applying the result known for the difference of the power
of two numbers. The series is then solved again by repeatedly recognising the power series

expansion of the exponential
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This concludes the proof of the theorem.
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Supplementary Material: ''A General Estimation
Framework for Multi-State Markov Processes with

Flexible Specification of the Transition Intensities"

A Log-likelihood contributions

This section follows Jackson et al. (2011). For a time-inhomogeneous Markov process, the likeli-

hood contribution for the j** observation of the i** unit can take any of the following forms

(
p(Zz‘j—m‘j)(tij_l, tij), if 2;; is a living state
tij
exp | [ qis=125-1) () du | ¢(#a-1%13) (tij), if z; is an exactly observed living state
tij—1
Li;(0) =4 ¢
le(zijflc) (tij_1,tij), if z;; is censored
=
c
3 plris-1e) (tij—1, tij)q(“ij ) (tij), if z;; is an exactly observed absorbing state
\C;é:Z}j
forvo =1,...,N, 7 =1,...,n;, with N the total number of statistical units and n,; the number

of observations for unit i and where pCFi—17) (¢, . t.:) = P(Z(ty;) = zij | Z(tij—1) = 2ij-1)-
In other words, each pair of consecutively observed states contributes one term to the likelihood.
Specifically, if a transition between two transient states is observed and the transition time is

interval-censored then the contribution is
Lij(0) = P(Z(ti;) = 2i5 | Z(tij—1) = zij-1),

If, due to the nature of the process, the transitions to some living states are exactly observed, the

contribution is

ti;
Lij(8) = exp [ [ ] =),

tij—1



since the process is known to have stayed in state z;;_; between ¢;;_; and ¢;; and then jumped from

state z;j_1 to state z;; at exactly 7;;. The first term can be explained by observing that

tij

tij
exp{ / q(zij‘l’z“‘l)(u)du} = exp [—/ Z q(zij‘lc)(u)du}

big=1 cgtzyyy

exp | = i a9y

tij—1

Y

c#2ij-1 €Xp [— fot”’l q#ii-10) (u)du}

which implies that no transition exiting state z;;_; has occurred at time ¢;; given that it had not
occurred by time ;;_; either.

If the state occupied at a given time is unknown then it is said to be censored. In this case, the
contribution to the likelihood has to account for all the possible trajectories that may have occurred
from the last known occupied state to the current observation time. Therefore, the sum over the

various probabilities is taken, which will be null if the transition is not allowed. In particular,

C
Lij(8) = P(Z(tij) = c| Z(tij-1) = zij-1)-
=1
Finally, if the last observed state is an absorbing one then the time at which the transition
occurred is generally assumed to be known. In this case, one needs to account for the possibility
that the state occupied before the absorbing state is unknown and thus the contribution to the
likelihood is summed over the possible states occupied by the process. The information of the
exact observation time t;,,, is included through the transition intensity computed in that time. Here,

we have

C
Lij(0) = > pB19(ti; 1, 1;)¢" ) (k).
c=1
cF#2zij



B R package flexmsm

To support applicability and reproducibility, the proposed modelling framework has been imple-
mented in the R package f1exmsm. The package is straightforward to use, especially if the user
is already familiar with the syntax of generalised linear models and generalised additive models
(GAMs) in R. The key function is fmsm () , which carries out model fitting and inference, and is

exemplified with some of its main arguments in the following code snippet

out <- fmsm(formula = formula, data = df,
id = ID, state = state,
death = TRUE, living.exact = NULL, cens.state = -99,

sp.method = ’"perf’,
constraint = NULL, parallel = TRUE, ...)

where the user specifies the model through the argument formula asa 1ist () containing the
model specifications for the transition intensities, and the dataset has to be provided through the
argument data. This will always have at least three columns: the state column (whose name
is provided through the argument state), the column containing the unique IDs (whose name
is provided through the argument id) identifying each individual, and a column containing the
(intermittent) observation times. The arguments death, 1iving.exact and cens.state
allow the user to specify the observation type. If the last state in the process is an absorbing state
then the user must specify death = TRUE; if there are exactly observed living states then the
dataset must contain an additional column with TRUE (or 1) if the data point is exactly observed
and FALSE (or 0) otherwise; the name of this column must be passed through the argument
living.exact, which defaults to NULL. If there are any censored states then the user must
specify the code used to indicate this through the argument cens. state, which defaults to -
99. The sp.method argument specifies the method employed for multiple smoothing parameter
estimation (this can be set to ' perf’ or ' efs’). The argument constraint allows the user
to specify equality constraints on the covariates. The parallel argument allows the user to
exploit parallel computing, in Windows, for the likelihood, gradient and Hessian, thus cutting the
run-time of the algorithm by factor proportional to the number of cores on the computer.

The formulaisa list () object whose elements are the off-diagonal elements of the tran-
sition intensity matrix. The order of the elements is that given by reading the Q matrix from the
first row to the last and from left to right. The equation corresponding to each non-zero transition
intensity has to be specified with syntax similar to that used for GAMs, with the response given
by the time-to-event variable. Trivially, zero elements have to be specified with a 0. For instance,

we may consider the following model, with a smooth effect of time ¢ and two covariates z; and



X9, one included linearly and the other as a time-dependant flexible effect, for a transition » — »/

¢ (ti) = exp [@gw D sUT () + B i 4 55T (waig) + U (g, i)

This will be specified, in the correct position, as part of the list

formula <- list (...,
t ~ s(t) + x1 + s(x2), ti(t, x2), # r —> r’ trans.
.)

where . . . represent other possible transition-specific equations or Os for transitions not allowed
by the process. The model specified here is only an example and many types of effects are sup-
ported. For instance, as the above example shows, time-dependent effects are modelled by using
a tensor interaction function t i () on the covariate of interest and time.

Functions summary () and plot () can be used in the usual way to obtain post-estimation
summaries for each non-zero transition intensity and the plots of the smooths. In the example
above there is a two-dimensional spline, thus plot () will also automatically produce a three-
dimensional plot of the surface representing this time-dependent effect.

Function conv.check () allows the user to check the convergence of the fitted model by
providing information on whether the gradient is zero and the Hessian is positive definite. It also
provides information on the values taken by the Q matrix since, in practice, we have found that
particularly large values are red flags for ill-defined problems, for instance.

Prediction and plotting of the P and the Q matrices can be carried out through the functions

P.pred () and Q.pred (), respectively. For instance, the specification

P.hat <- P.pred(out, newdata = newdata, plot.P = TRUE
get.CI = TRUE, prob.lev = 0.05)

will provide an object P . hat containing the estimated transition probability matrix corresponding
to the time interval and profile of interest, specified through argument newdata. The interme-
diate transition probabilities corresponding to each sub-interval specified in newdata are also
provided. The 100(1 —prob. lev)% confidence intervals can be obtained by setting get .CI =
TRUE. When plot .P = TRUE the transition probabilities are also plotted as function of time
over the interval considered, otherwise the plots are suppressed. The analogous output can be
obtained for the Q matrix through function Q.pred () with similar syntax.

To exemplify the usage of the software, we report the code used to fit the models presented in

Section 6. We recall that the IDM specified in Section 6.1 is given by
q(TT/)(tU) = exp /Béﬂ“) ‘I’ SYT )(tU) + Bé’/"f )dagew + 5§T7“ )pdlag”] .

This can be fitted in the following way:



formula <- list(t ~ s(t, bs = "cr’, k

t ~ s(t, bs = 'cr’, k

10) + dage + pdiag,

10) + dage + pdiag,

t ~ s(t, bs = 'cr’, k = 10) + dage + pdiag,

.

fmsm.out <- fmsm(formula = formula, data = Data,
id = PTNUM, state = state, death = TRUE,
sp.method = 'perf’, parallel = TRUE)

Here bs = ’cr’ and k = 10 imply that the smooths of time are specified through cubic re-
gression splines with ten basis functions. We will omit this in the following to avoid redundancies.
To obtain the two-dimensional spline based model, it suffices to swap the formula reported

above with the following

formula <- list(t ~ s(t) + s(dage) + ti(t, dage) + pdiag, # 1-
t ~ s(t) + s(dage) + ti(t, dage) + pdiag, # 1-

’ 4+ 2-

t ~ s(t) + s(dage) + ti(t, dage) + pdiag, # 2-

0, # 3-

0) # 3-

For the five-state model described in Section 6.2, the first model explored was
" (ti;) = exp [ s ()

This can be implemented in the following way:

2

formula <— list( s(t) + sex + edu,

14

14
~ s(t) + sex + edu,

~ s(t) + sex + edu,

14

~ s(t) + sex + edu,

14

~ s(t) + sex + edu,

H= o S = = $= = S F= =
|

t
0
0
t
t
£t ~ s(t) + sex + edu,
0
t
0
t
t

~ s(t) + sex + edu,



t ~ s(t) + sex + edu, # 3-
0, # 4-
0, # 4-
t ~ s(t) + sex + edu, # 4-
t ~ s(t) + sex + edu, # 4-
0, # 5-
0, # 5-
0, # 5-
0) # 5-
fmsm.out <- fmsm(formula = formula, data = ELSA.df,

id = idauniqg, state = state, death = TRUE,
sp.method = "efs’)



C Parameter estimation

The algorithm employed for model fitting is characterised by two steps. In the first step, A is
held fixed at a vector of values and for a given 0!l where a is an iteration index, equation (4) is

maximised using

0l = 99 1 arg min £,(81), )

el <Ale]
where (,(614) = — {£,(6") + ¢Tg,(61) + LeTH,(019)e}, g,(617) = g(6) — 5,69, and
H,(0!) = H(0!") — S,. g(08l")) = 00(0)/00|g_gi and H(OIY) = 52((0) /00007 |y_gi are
given in Section 4, || - || denotes the Euclidean norm, and Al is the radius of the trust region

which is adjusted through the iterations. The first line of (9) uses a quadratic approximation of
—{, about 0l (the so-called model function) to choose the best e[*™! within the ball centered in
0l of radius A%, the trust-region. Throughout the iterations, a proposed solution is accepted or
rejected and the trust region adjusted (i.e., expanded or shrunken) based on the ratio between the
improvement in the objective function when going from 8? to 8] and that predicted by the
approximation. The use of the observed information matrix gives global convergence guarantees
due to Moré and Sorensen (1983). Importantly, convergence to a point satisfying the second-order
sufficient conditions (i.e., a local strict minimiser) is super-linear. Near the solution, the algo-
rithm proposals become asymptotically similar to Newton-Raphson steps, hence benefitting from
the resulting fast convergence rate. Trust region algorithms are also generally more stable and
faster compared to in-line search methods. See Nocedal and Wright (Chapter 4, 2006) for proofs
and further details. The starting values 6! are set automatically to small positive values, except
for the transition-specific intercepts which are given by the maximum likelihood estimates one
would obtain when assuming that the data represent the exact transition times of the correspond-
ing covariate-free time-homogeneous Markov process. Vector 81 can, alternatively, be provided
by the user. Importantly, through extensive experimentation, we have found that the algorithm is
not particularly sensitive to the choice of starting values.

In the second step, at 811, there are two options to estimate the smoothing parameter vector:
the stable and efficient multiple smoothing parameter approach adopted by Marra and Radice
(2020), and the generalised Fellner-Schall method of Wood and Fasiolo (2017). Both techniques
can be employed for fitting penalised likelihood-based models, and require the availability of the

analytical score and information matrix. In the former, the following problem is solved
At — arg min (Mt — QletIMI+|2 — 5 4 2tr(Ole ). (10)
A

The idea is to estimate A so that the complexity of the smooth terms not supported by the data is
suppressed. This is formalised as E (|| um — piml|?) = E (||[M — OM||?) — 72+ 2tr(O), where M =



pu + € v = /~H(0)6. ¢ = /~H(8) g(6). 0 = /~H(6) (-H(6) +Sx)' \/~H(0).
and tr(O) is defined in Section 5 of the main paper. It can be proved that (10) is approximately
equivalent to the AIC with number of parameters given by tr(Q). Iteration (10) is implemented via
the routine by Wood (2004), which is based on the Newton method and can evaluate in an efficient
and stable manner the terms in (10), their scores and Hessians, with respect to log(\).

The approach proposed in Wood and Fasiolo (2017) is based on a different principle. The start-
ing point is the well established stance that smoothing penalties can be viewed as resulting from
improper Gaussian prior distributions on the spline coefficients. This is also the Bayesian view-
point taken for the inferential result discussed in Section 5, and implies the following improper

joint log-density, where the dependence on the smoothing parameter has been made explicit,

1ogz49;x)::e(@)—-%eTsA94-%qogysAy

The idea is to develop an update for A that maximises the restricted marginal likelihood L(\),
obtained integrating 6 out of the likelihood L(8; A). It is, however, more computationally efficient

and equally theoretically founded to maximise the log Laplace approximation
U P | 1 A
lra(A) = £(8) — 50780 + 7 log[Sx| — 7 log| — H(6) + 8],

where 6 = arg maxy L(6; \) for a given X. At 1+, the update for the k" element of A("™") for
all (r,7") € Ais
A=Ald] }

tr{SMi]W
)[a+1] _ )\l(crr)[a} » k A= (11)

)\](:T/

A oS A ’
o7 ( o ) 0
0N, 7 Ia=aldl
with k = 1,..., K™, The two steps, (9) and either (10) or (11), are iterated until the algorithm
la+11y_g(glal
satisfies the stopping rule W < le — 07, and convergence 1s assessed by checking

that the maximum of the absolute value of the gradient vector is numerically equivalent to 0 and
that the observed information matrix is positive definite. In practice, we found the two smoothing
methods to yield similar smooth term estimates.

As with any estimation algorithm, convergence failures may occur. With multi-state models,
we mainly found this to be the case when the information provided by the data is insufficient to
support the model specified. For instance, when a transition is characterised by a low number
of observations, empirical identification of a non-trivial model may not possible. And this tends
to be independent of the starting values and of the smoothing method chosen. Such pathological
behaviour can often already be spotted in the first few iterations of the optimisation algorithm,

with the proposed estimates leading to very large transition intensity values (> 10°).



D Simulation study

To exemplify the empirical effectiveness of the proposed approach in recovering the true values of
key quantities of interest (e.g., transition intensity curves), we carried out two simulation studies.
The first one replicates that designed in Machado et al. (2021) and uses an IDM set-up. The second
study is about a five-state Markov process and serves to illustrate the performance of the proposal

in a setting that is more complex than those supported by the methods available in the literature.

D.1 1IDM based simulation

We consider a progressive IDM, assuming a different time-dependent shape for each of the three
allowed transitions. The time-to-events relating to transition 1 — 2 are simulated from a log-
normal distribution with location 1.25 and scale 1. This implies that the hazard increases first and
then decreases at a later time. For 1 — 3, an exponential distribution with rate exp(—2.5) is em-
ployed. For 2 — 3, we assume a strictly increasing hazard by simulating the time-to-events from
a conditional Gompertz distribution with rate exp(—2.5) and shape 0.1. For this transition, we
have to condition on the event that the individual transitions to state 2 to ensure that the simulated
time is larger than the 1 — 2 transition time. As in Machado et al. (2021), we simulate N = 500
trajectories (i.e., individuals) M = 100 times. Tests with larger M confirmed the results reported
below, thus we kept M = 100 to retain the comparability with Machado et al. (2021).

More specifically, let T}, = T, represent the time of the transition to state r’ conditional on
being in state r at time w > 0. If the state at u is 1 then the time of transition to the next state can
be obtained by taking 7' = min{T}s, T13}. If T = T}, then the next state is 2, otherwise the next
state is 3. If the state is 2 then the time of the next state is 753. Censoring needs to be imposed to
render the data intermittently observed; we assume a yearly time-grid spanning over 15 years, i.e.
(tio, tir, - ., min{t;5, T13}) = (0,1, ..., min{t;5,T13}) fori = 1,..., N. The reader is referred
to Van Den Hout (2017) for further details on how to simulate intermittently-observed multi-state
survival data. The transition intensities are specified as ¢ () = exp |8V + sgwl)(t)] for
(r,r") € {(1,2),(1,3),(2,3)}, where sﬁ”"’)(t) is represented using a cubic regression spline with
J™) = 10 and second order penalty.

In line with Machado et al. (2021), Figure 7 shows the estimated median and true hazards as
well as all the M estimated hazards. Note that the large variation observed towards the end of the
study time is due to scarceness of data at later years. Overall, the plots show that the proposed
approach is able to recover well the true transition intensity curves for each allowed transition, and
that the performance is similar across the two methods. The discrepancy between fitted median
and true hazards for transition 1 — 2 is due to definition of interval censoring adopted in the
simulation study: the sampling design implies that the living states are observed at intervals of

one year; for the first two years after baseline, this design does not work well.
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Figure 7: True (black), estimated (grey, M = 100 replicates) and median estimated (white) hazard functions for
transitions 1 — 2 (left), 1 — 3 (middle) and 2 — 3 (right) obtained by flexmsm (top row) and Machado et al.
(2021) (bottom row).

We also evaluated our approach on the transition probability scale. In particular, Table 4 re-
ports the true, average and median ten-year estimated transition probabilities, where the average

is taken over the M simulations. The biases are also reported and are defined as Bias""(t) =

1 /M / / / .
v ( 3 (0, 10) — pm(0, 10)) , where p(")(0, 10) denotes the estimated ten-year prob-
v=1

ability of transitioning from state r to state 1’ for the v*" simulated dataset. Our methodology
recovers well the true ten-year transition probabilities and consistently outperforms the approach
of Machado et al. (2021).

True flexmsm M. et al. (2021)

Mean Bias | Mean Bias
pY(0,10) = 0.065 | 0.063 —0.002 | 0.060  0.004
pU1?(0,10) = 0.231 | 0.232  0.001 | 0.222  0.009
p1%(0,10) = 0.704 | 0.705  0.001 | 0.718 —0.014
p?2(0,10) = 0.245 | 0.242 —0.003 | 0.231  0.014
p®¥(0,10) = 0.755 | 0.758  0.003 | 0.769 —0.014

Table 4: Ten-year true and average estimated transition probabilities, and bias for M = 100 replicates.
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Finally, we explored the effect that the length of the gap occurring between two successive
observations has on estimation performance; it is known that when such gap is large, identifiability
issues may arise. To this end, we additionally considered two-, three-, four- and five-yearly time-
grids. As expected, the performance deteriorated as the gap increased, with reasonable results (not

reported here, but available upon request) still attainable for two- and three-yearly time-grids.
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D.2 Five-state process based simulation

We consider a progressive five-state survival process with an absorbing state, and seven transitions
whose parameters were chosen to produce intensities similar to those found in the ELSA case
study described in Section 6.2. In particular, we simulate the time-to-events from (conditional)
Gompertz distributions with rates and shapes provided for each transition in Table 5. We simulate
N = 500 trajectories M = 100 times, which are observed for 40 semesters. An intermittently
observation scheme is imposed by assuming that individuals are visited every 4 semesters. The
time is then brought back to the year scale. This gives counts of pairs of consecutively observed

states that are similar to those found in the ELSA case study.

1—2 1—5 2—3 25 3—4 3—9 4—5
rate  exp(—2.25) exp(—5) exp(—2.20) exp(—5) exp(—2) exp(—5H) exp(—3)
shape 0.06 0.02 0.05 0.09 0.01 0.02 0.04

Table 5: Rates and shapes for the (conditional) Gompertz distributions generating the transition times in the five-state
process based simulation.

The transition intensities are specified as ¢""") (¢) = exp [B(()M/) + s (t)] for

(r,r) € {(1,2),(1,5),(2,3),(2,5), (3,4), (3,5), (4,5)}, where s\""(t) is represented using a

cubic regression spline with J{® = 10 and second order penalty.
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Figure 8: True (black) and median estimated (dashed) hazard functions for each transition in the simulated five-state
process.

In Figure 8, we report the median estimated transition intensities obtained for the M simula-
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tions with our framework, alongside the true curve q(”"/) (1), for each of the seven allowed transi-

tions. Overall, the proposed approach recovers adequately the true transition intensity curves.

True Mean Bias
p1(0,10) = 0.229 | 0.192  -0.037
p1(0,10) = 0.318 | 0.300 -0.018
p¥(0,10) = 0.230 | 0.255 0.025
p(0,10) = 0.121 | 0.137  0.016
p(1%)(0,10) = 0.102 | 0.116  0.014
p?2(0,10) = 0.222 | 0.186 -0.036
p?¥(0,10) = 0.330 | 0.333  0.003
p#(0,10) = 0.294 | 0.299  0.006
p?(0,10) = 0.154 | 0.181 0.027
p©¥(0,10) = 0.225 | 0.222 -0.003
p®(0,10) = 0.508 | 0.481 -0.027
pB(0,10) = 0.267 | 0.297  0.03
p49(0,10) = 0.549 | 0.527 -0.021

(0, 10)

=0.451 | 0473 0.021

Table 6: Ten-year true, average and median transition probabilities for our framework. The order is that found when
reading the transition probability matrix row-wise.

As done for the three-state simulated process, we also evaluate our approach on the transition
probabilities scale. In Table 6, we report the true and average ten-year estimated transition prob-
abilities, where the average is taken over the M simulations, and the corresponding biases. The
method is able to recover the true ten-year transition probabilities reasonably well, exhibiting con-
sistently small biases. This is reassuring considering the multi-state process adopted here, which

is more involved and complex that those commonly explored and used in the literature.
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E List of symbols

Covariates and functions or longer terms
* age, covariate in model
« Bias"")(t) bias relating to the r — 7 transition at time ¢ in the simulation study
* dage;; covariate in CAV model
* pdiag;; covariate in CAV model
¢ sex, covariate in model
* sex;; covariate in ELSA model
* higherEdu,; covariate in ELSA model
* edf for effective degrees of freedom
* tr(+) trace function

* 1, vector of 1s of length n.

Latin letters

* ¢ estimation algorithm iteration index.

* A matrix of eigenvectors.

» A set of allowed transitions

. bg’”/)(im) bases function vector for the k' term in the (r, ') transition intensity.

* cindexing for likelihood contributions (censored state contribution and for exactly observed

absorbing state).
* ( total number of states.
* d, difference of knots in the construction of the cubic regression spline.
. D,(:T/) penalty matrix for the k" term in the (r,7’) transition intensity.
* e vector in the Taylor approximation.

» [£ expectation function.
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fo prior on the model parameter 6.
G the (I,m) element of G
G the (I,m) element of G,

g(0) gradient vector.

G™) matrix needed for the closed form expression of 9P (transformation of first derivative

of Q matrix).

G™"") matrix needed for the closed form expression of 9*P (transformation of second

derivative of Q matrix).

h infinitesimal time in the limit-based definition of the transition intensity.

H(6) hessian matrix.

H,,(0) penalised hessian matrix.

¢ indexing for the statistical units when defining the likelihood. Here . = 1,..., N.
7 indexing for the observations of a specific statistical unit.

J ,5”"/) number of basis functions for the £ term in (r, ') transition intensity.

k indexing for overall covariate/parameter vector, with k = 1,..., K",

(rr’)

K (") total number of terms in additive predictor 1, (;, x;; 37"")), excluding the intercept.

[ indexing for the (I, m) element of the matrices needed for the closed form expression of
0?P.

¢4 log Laplace approximation of L(\).

¢(8) model log-likelihood.

(,(0) penalised log-likelihood.

?p(H) second order approximation of the model log-likelihood.
L;;(0) likelihood contribution for j*" observation of i*" individual.
L(0; \) joint log density (used to explain efs smoothing approach).

L(A) joint log density when integrating out 8 (used to explain efs smoothing approach).
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m indexing for the (I, m) element of the matrices needed for the closed form expression of
0?P.

M number of simulations in the simulation study.

M matrix appearing in the update of the smoothing parameter.

N total number of statistical units.

7 total number of observations in the dataset.

n; number of observations for the " statistical unit withi = 1,..., N.
Neim NUMber of simulations used to obtain confidence intervals.

O quantity appearing in the smoothing parameter update and edf definition.
pU™')(t, ') transition probabilities referring to time interval (¢, t').

p®r)(t,t') the v simulated transition probability referring to time interval (¢,t'), with

v=1,....,.M.
P(t,t') transition probability matrix referring to time interval (¢,t’).

~

P(t,t") estimated transition probability matrix referring to time interval (¢, ).
¢ (t) transition intensity at time ¢.

q™sm) the n  simulated transition intensity (for confidence interval construction).
Q(#) transition intensity matrix at time .

Q(t) estimated transition intensity matrix at time ¢.

Q,(0) transition intensity matrix at the 4 observation of a generic individual.
7 starting state.

r’ arrival state.

R real numbers set.

") (%;,,) k™ smooth for the (r,r’) transition intensity.

S state space of process.

S(TT/)

() penalty term for the (r, ') transition intensity.

S overall penalty term.
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t and t’ generic time.

tijwithi=1,...,Nandj=1,...,n; is the j' observed time for the i'" statistical unit.
t; used as shorthand of ¢;; for the generic statistical unit (i.e. when dropping 7 for simplicity).
0t time interval in the definition of the closed form expression of P

T, time of the » — 7/ transition

T4, time of the r — r’ transition conditional on being in state 7 at time u

u integration variable when integrating transition intensity.

u,, knot for the example in the (cubic regression) smooth of time.

.« 62

U, one of the matrices of the closed form expression of WP.

: 0
U,, one of the matrices of the closed form expression of WP'

82

00,00,

U, one of the matrices of the closed form expression of P.

Vy estimated negative inverse penalised Hessian.

w and w’ indexing for gradient vector and Hessian, with w,w' =1,... W,
W total number of parameters

X; covariate vector (without time).

X, overall covariate vector (with time).

X, is the k" sub-vector of the overall covariate vector z;.

(")

X,  the design matrix corresponding to the &' term in the (r,r’) transition intensity.

X" overall design matrix for the (r, ') transition intensity.
y indexing of the eigenvalues.
Y number of eigenvalues.

ziywithi=1,...,Nandj=1,...,n;is the j' state occupied by the i"" statistical unit.

Z(t) multi-state process.
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Greek letters

* « confidence level.

« B\ intercept parameter for (r,7) transition intensity.

. ,8,2” ) parameter vector for the k" term in the (r, ) transition intensity. Its length is J,i” ),
’ .. . . . (rr') !

+ B0) parameter vector for (r,7’) transition intensity. Its length is Zle J,ﬁ’”’” ),

¢ B estimated parameter vector of 3.

o Brsimr) the nt  simulated parameter vector for the (r,7') transition intensity.

* v, the y" eigenvalue, withy = 1,...,Y.

* T matrix of eigenvalues.

* 0t time interval in the definition of the closed form expression of the transition probability

matrix (and its derivatives).
+ Al radius of the trust region at the a'* iteration.
* € quantity appearing in the smoothing parameter update.
* ( indexing for the series representing the exponential.
. r]f”/)(t“ x,; B0)) additive predictor.
« nU"") overall additive predictor for the (r, ') transition intensity.
* 0 overall parameter vector.
* 6 estimated overall parameter vector.
» 0! overall parameter vector at the a'” iteration of the estimation algorithm.
*  indexing of the observations when defining the additive predictor. Here s = 1, ..., n.
* « indexing for the summations appearing in the proof of the 9*P expression.
. )\,(:T,) smoothing parameter for the k" term in the (7, 7’) transition intensity.
+ AU") smoothing parameter vector in the (r,7') transition intensity. It’s length is K ("),
* X overall smoothing parameter vector.
* iy and fiy quantity appearing in the smoothing parameter update.

* v indexing for simulated probabilities to compute the bias in the simulation study.

* p indexing for the summations appearing in the proof of the 9?P expression.
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