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Abstract: We propose generalizations of Calogero models that exhibit invariance with

respect to the infinite Weyl groups of affine, hyperbolic, and Lorentzian types. Our

approach involves deriving closed analytic formulas for the action of the associated Coxeter

elements of infinite order acting on arbitrary roots within their respective root spaces.

These formulas are then utilized in formulating the new type of Calogero models.

1. Introduction

Calogero models [1–3], along with their closely related generalisations to Calogero-Moser-

Sutherland models [4–6] and their PT -symmetric extensions [7] are known to be invariant

under the Weyl group related to finite semi-simple Lie algebras. This symmetry property,

combined with their Liouville integrability, is largely responsible for the exact solvability

of these systems in the classical as well as in their quantum theoretical versions. One may

for instance utilise directly the Weyl invariant polynomials as a starting point to set up

exactly solvable models [8–10] or in turn exploit the Weyl symmetry in the construction

of differential-difference (Dunkl) operators [11, 12] that can be used in the construction of

the orthogonal eigenstates in the quantum theory.

Here, we investigate generalisations of these models to make them invariant under

the action of Weyl groups of infinite order such as the affine, hyperbolic and Lorentzian

generalisations of the finite groups. Thus, we are seeking generalisations of the standard

Calogero Hamiltonians

H =
1

2
p2 +

∑
α∈∆g

cα

(α · q)2
=

1

2
p2 +

r∑
i=1

h∑
n=1

cin

[σn(γi) · q]
2 , (1.1)

where α are the roots in the root space ∆g ∈ Rℓ associated to the finite Lie algebra g

of rank r, cα and cin are some real coupling constants, σ is a Coxeter element, γi is a
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representative of the ith orbit and q = (q1, . . . , qℓ), p = (p1, . . . , pℓ) are the ℓ coordinates

and momenta of the system, respectively. Since the sum in the potential extends over the

entire root space, the invariance of the Hamiltonian under the Weyl group associated to g

is built-in by construction. The generalisation to hyperbolic algebras in form of the first

variant in (1.1) was recently proposed in [16]. Here we focus mainly on the second version

and propose a further generalisation to Lorentzian algebras.

Both variants of the Hamiltonian in (1.1) are equivalent. The first version is more

formal as it still involves the task of identifying the entire root system of g. This is made

explicit in the second formulation in which the entire root space of the r × h roots is

systematically generated from summing over r orbits generated by the Coxeter element σ

of order h action on some well-known representatives γi. In the finite dimensional case these

representatives can be chosen to be the simple roots dressed by plus-minus signs assigned

according to a bicoloured Dynkin diagram [13–15]. Thus, the challenge to generalise the

symmetry properties of these models to infinite Weyl groups consists in the first version

to listing systematically the entire infinite root spaces of the respective groups or in the

second version to finding closed formulae for infinite consecutive actions of the Coxeter

element on arbitrary roots together with the identification of the representatives γi of the

respective orbits. As we shall discuss below, the first version involved as many infinite

sums as the rank of the algebra over integers constrained by a Diophantine equation. The

second formulation only consists of a possibly finite sum over the orbit representatives and

only one infinite sum over powers of the Coxeter element.

So far only one attempt has been made to formulate such theories, namely for the

special case of the hyperbolic AE3-algebra [16], where the left variant of the Hamiltonian

in (1.1) was explored for that particular symmetry. Here we will explore both version and

also elaborate on their correspondence. In the first instance we will extend the action of the

repeated action of Coxeter elements to infinite order and derive closed analytical formulas

for some specific algebra, which can not be found in the literature. Subsequently we attempt

to carry out the sum over the entire orbits of these Coxeter elements to find simpler versions

of the invariant potentials. For Toda field theories, that require only simple roots of the

respective root spaces in their formulation, generalisations to Lorentzian and hyperbolic

types have recently been explored in [17]. Here we will largely adopt the notation from

there and [18–20]. In that context, the study of models based on extended Kac-Moody

algebras is partly motivated by the success of the systematic description of conformal and

massive Toda field theories in terms of finite dimensional and affine Kac-Moody algebras,

respectively. The extended versions of hyperbolic and Lorentzian type algebra appear to

provide a natural framework for a large class of nonintegrable theories. The particular

extensions to E10 and E11 ((E8)−1 and (E8)−2 in our notation) play a prominent role in

string/M-theory, see e.g. [21–24]. The mathematics developed here may also turn out to

be useful in that context.

Our manuscript is organised as follows: In section 2 we discuss in detail the infinite

dimensional Weyl group associated to the (A2)−2-Lorentzian Kac-Moody algebra, together

with their hyperbolic, affine and finite subalgebras. In particular we systematically derive

closed analytic formulas for the action of any power of the Coxeter elements of infinite order

– 2 –
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on arbitrary roots. In section 3 we discuss how invariants for these type of infinite Weyl

groups can be constructed by exploiting the possibility of the bicolouration, exemplified for

the (A2)−3-Lorentzian Kac-Moody algebra. We prove that the Kostant identity also holds

for these algebras, but integer exponents do not exist, although their analogues still add

up pairwise to π. In section 4 we use the properties of the infinite Weyl groups to propose

generalised versions of Calogero models invariant under Weyl groups of infinite order of

affine, hyperbolic and Lorentzian type. Our conclusions are stated in section 5.

2. Weyl groups of the (A2)−2-Lorentzian Kac-Moody algebra

The essential tool in the study and classification of Lie algebras is the Cartan matrix K. It

encodes the structure of the algebras by capturing the information about their weight and

root systems, see e.g. [25,26]. In turn, this structures are inscribed into the corresponding

Dynkin diagrams. The Cartan matrix for the (A2)−2-Lorentzian Kac-Moody algebra and

the corresponding Dynkin diagram drawn in the usual conventions are

(A2)−2 :
α1

α2

•

•
@@

��
•
α0

•
α−1

•
α−2

Kij = 2
αi·αj

αj ·αj
=


2 −1 0 0 0

−1 2 −1 0 0

0 −1 2 −1 −1

0 0 −1 2 −1

0 0 −1 −1 2


ij

,

where we label rows and columns in the order −2,−1, 0, 1, 2. Being of Lorentzian type

we expect K to be nonsingular and to possess precisely one negative eigenvalue, see [18].

Indeed, the eigenvalues are

1, 3, 2 +
2√
3
cosλ± 2 sinλ, 2− 4√

3
cosλ < 0, λ =

1

3
arctan

(√
37

3
/3

)
. (2.1)

In order to reproduce K from the product of roots αi as specified, we need to re-define

the standard Euclidean inner product in the ∆(A2)−2
-root space. Here we choose a 3+4

dimensional representation for the (A2)−2-roots αi, i = −2, · · · , 2, in which the positive

definite part is taken in the standard three dimensional representation, see e.g. [25,26], and

the extensions are constructed following the prescription in [18, 19] by adding two copies

of the self-dual Lorentzian lattice Π1,1-lattice

α1 = (1,−1, 0; 0, 0, 0, 0) , α2 = (0, 1,−1; 0, 0, 0, 0) , (2.2)

α0 = (−1, 0, 1; 1, 0, 0, 0) , α−1 = (0, 0, 0;−1, 1, 0, 0) , α−2 = (0, 0, 0; 1, 0,−1, 1) .

The Lorentzian inner product for two 3+4 dimensional vectors x = (x1, . . . x7), y =

(y1, . . . y7) is then taken to be

x · y = x1y1 + x2y2 + x3y3 − x4y5 − x5y4 − x6y7 − x7y6. (2.3)

Demanding the length of an arbitrary root

α = pα−2 + qα−1 + lα0 +mα1 + nα2 ∈ ∆(A2)−2
, p, q, l,m, n ∈ Z, (2.4)

– 3 –
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to be 2, leads to the Diophantine equation

l2 − l(m+ n+ q) +m2 −mn+ n2 + p2 − pq + q2 = 1 ⇔ α · α = 2. (2.5)

For every simple root αi we define a Weyl reflection

σi(x) := x− (αi · x)αi, (2.6)

about the hyperplane orthogonal to the root through the origin. Since Weyl reflections

are orthogonal transformations, the inner product, α · α = σi(α) · σi(α), is preserved. The

symmetries of the Diophantine equation generated by the action of the Weyl reflections on

α in this manner are

σ−2(α) : p → q − p, σ−1(α) : q → l + p− q, σ0(α) : l → q +m+ n− l, (2.7)

σ1(α) : m → l + n−m, σ2(α) : n → l +m− n.

The composition of several different Weyl reflections can be used to define different types

of Coxeter elements corresponding to the various subgroups and orderings of the Weyl

reflections.

2.1 Finite dimensional Coxeter orbits

Coxeter elements σ are in general defined as products of Weyl reflections involving all

simple roots, i.e. σ :=
∏r

i=1 σi with αi being simple and r denoting the rank of the group.

Since Weyl reflections do no commute in general, different orderings in the product lead to

different Coxeter elements, although they are still in the same equivalence class and have

the same order. There are a number finite dimensional subgroups of the full Lorentzian

Coxeter group that lead to versions of Coxeter elements of finite order that we will be

briefly consider first for our example.

2.1.1 A2 Coxeter orbits of order 3

Commencing with the standard definition of an A2-Coxeter element in the form

σA2 := σ1σ2, (2.8)

we easily calculate with (2.7) its action on the generic (A2)−2 root α as defined in (2.4)

σA2(α) = pα−2 + qα−1 + lα0 + (2l − n)α1 + (l +m− n)α2,

σ2
A2(α) = pα−2 + qα−1 + lα0 + (l −m+ n)α1 + (2l −m)α2,

σ3
A2(α) = α. (2.9)

Orbits with similar structure and in particular the same order 3 arise when defining a

Coxeter element by means of the product of Weyl reflections associated to any other two

roots connected on the Dynkin diagram, e.g. σ̃A2 := σ−2σ−1, σ̂A2 := σ0σ1 or σ̄A2 := σ−1σ0.

– 4 –
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2.1.2 A3 Coxeter orbits of order 4

A Coxeter element of order 4 can be constructed from three consecutive Weyl reflections as-

sociated to roots connected on the Dynkin diagram, thus corresponding to an A3-diagram.

For instance, defining

σA3 := σ−2σ0σ−1, (2.10)

we compute

σA3(α) = (l − q)α−2 + (l + p− q)α−1 + (m+ n+ p− q)α0 +mα1 + nα2,

σ2
A3(α) = (−l +m+ n)α−2 + (m+ n− q)α−1 + (m+ n− p)α0 +mα1 + nα2,

σ3
A3(α) = (q − p)α−2 + (−l +m+ n− p+ q)α−1 + (−l +m+ n+ q)α0 +mα1 + nα2,

σ4
A3(α) = α. (2.11)

Thus the Coxeter element σA3 has order 4.

2.1.3 A4 Coxeter orbits of order 5

Similarly, when defining a Coxeter element from four consecutive Weyl reflections associ-

ated to roots connected parts of the Dynkin diagram we obtain an A4-diagram. In this

manner we obtain one of finite order 5. For instance, defining

σA4 := σ−2σ0σ−1σ1, (2.12)

we compute

σA4(α) = (l − q)α−2 + (l + p− q)α−1 + (l −m+ 2n+ p− q)α0 + (l −m+ n)α1 + nα2,

σ2
A4(α) = (2n−m)α−2 + (l −m+ 2n− q)α−1 + (3n− q)α0 + (2n+ p− q)α1 + nα2,

σ3
A4(α) = (m+ n− l)α−2 + (3n− l)α−1 + (3n− p+ q − l)α0 + (2n− p)α1 + nα2,

σ4
A4(α) = (q − p)α−2 + (m+ n− p+ q − l)α−1 + (m+ n+ q − l)α0 + (2n+ q − l)α1 + nα2,

σ5
A4(α) = α. (2.13)

Hence σA4 has order 5.

2.1.4 A1 ⊗A2 Coxeter orbits of order 6

Naturally we may also define Coxeter elements associated to roots corresponding to dis-

connected Dynkin diagrams, which lead to direct product of the subgroups. For instance,

defining

σA12 := σ1σ−2σ−1, (2.14)

leads to orbits of order 6, associated to A1 ⊗A2. We compute

σA12(α) = (l − q)α−2 + (l + p− q)α−1 + lα0 + (l −m+ n)α1 + nα2,

σ2
A12(α) = (q − p)α−2 + (l − p)α−1 + lα0 +mα1 + nα2,

σ3
A12(α) = pα−2 + qα−1 + lα0 + (l −m+ n)α1 + nα2,

σ4
A12(α) = (l − q)α−2 + (l + p− q)α−1 + lα0 +mα1 + nα2,

σ5
A12(α) = (q − p)α−2 + (l − p)α−1 + lα0 + (l −m+ n)α1 + nα2,

σ6
A12(α) = α. (2.15)

– 5 –



Infinite Weyl groups with their associated Calogero models

The order 6 of this Coxeter element simply results from multiplying the two Coxeter num-

bers of A1 and A2, i.e. hA1 × hA2 = 2× 3.

2.2 Infinite dimensional (A2)0-affine Kac-Moody Coxeter orbits

We now come to the cases of our main interest, which is the construction of infinite Weyl

groups that consequently possess Coxeter elements of infinite order. The simplest example

for such a group is the affine extension of the A2 Lie algebra, see e.g. [27]. We will show

in detail how the generic formula for the action of an arbitrary power of the Coxeter

element on a root can be derived. Defining a specific Coxeter element for the (A2)0-affine

Kac-Moody algebra as

σa := σ0σ1σ2, (2.16)

we calculate its orbits. When acting consecutively with σa on the arbitrary root α in (2.4)

we compute

σa(α) = pα−2 + qα−1 + (2l +m− 2n+ q)α0 + (2l − n)α1 + (l +m− n)α2, (2.17)

σ2
a(α) = pα−2 + qα−1 + (4l − 3n+ 3q)α0 + (3l +m− 3n+ 2q)α1 + (3l − 2n+ q)α2.

For arbitrary powers we obtain

σk
a(α) := pα−2 + qα−1 +

2∑
ν=0

∑
µ=p,q,l,m,n

aµν (k)µαν , (2.18)

where the challenge is to determine the coefficients aµν (k) for any power k ∈ Z. When acting

with σ on the generic expressions in (2.18) we easily identify the recurrence relations that

need to be satisfied

aµ0 (k + 1) = aµ−1(k) + 2aµ0 (k) + aµ1 (k)− 2aµ2 (k), (2.19)

aµ1 (k + 1) = 2aµ0 (k)− aµ2 (k), (2.20)

aµ2 (k + 1) = aµ0 (k) + aµ1 (k)− aµ2 (k). (2.21)

Thus we may write these equations more compactly as

aµν (k + 1) = (Maµ(k))ν =
(
Mk+1aµ(0)

)
ν
, (2.22)

involving the matrix and the vector

M =


1 0 0 0 0

0 1 0 0 0

0 1 2 1 −2

0 0 2 0 −1

0 0 1 1 −1

 , and aµ(k) = [aµ−2(k), a
µ
−1(k), a

µ
0 (k), a

µ
1 (k), a

µ
2 (k)], (2.23)

respectively. Taking as initial condition the root α as defined in (2.4), we have

ap−2(0) = aq−1(0) = al0(0) = am1 (0) = an2 (0) = 1, and aµν (0) = 0 otherwise, (2.24)

– 6 –
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so that the general solution is

aµν (k) = (Mk)νµ. (2.25)

In order to compute the powers of the matrix M we may assume that the coefficient

functions satisfy a recurrence relation of the general form

aµν (k + 1) =
N∑
i=1

cia
µ
ν (k + 1− i), (2.26)

with some constants ci ∈ C and N ∈ N that need to be determined. See for instance [28]

for a treatment of such type of recurrence relations and for general techniques to solve

them. Employing the matrix representation (2.23) we find for N = 4 indeed the following

recurrence relation to hold

aµν (k + 1) = 2aµν (k)− 2aµν (k − 2) + bµν (k − 3). (2.27)

The corresponding fourth order characteristic equation for this relation resulting from

aµν (k) ∼ xk is

x4 − 2x3 + 2x− 1 = 0. (2.28)

The four roots of this equation are found to be

λ1 = −1, λ2/3/4 = 1. (2.29)

As we have a threefold degenerate solution to the chracteristic equation, the general solution

to the recurrence relation (2.27) is

aµν (k) = c̃1(−1)k + c̃2 + c̃3k + c̃4k
2, (2.30)

where the constant coefficients c̃i, i = 1, . . . , 4 are determined from the explicit evaluation

of the lowest powers of the matrix in (2.25). In this manner we find the generic formula

σk
a(α) = pα−2 + qα−1 (2.31)

+

[
1

8

(
6k2 + 1

)
q +

1

4
(6k + 3)l − 1

4
(6k + 1)n+

m

2
+ (−1)k

2l − 4m+ 2n− q

8

]
α0

+

[
1

8

(
6k2 − 4k − 1

)
q +

1

4
(6k + 1)l − 1

4
(6k − 1)n+

m

2
− (−1)k

2l − 4m+ 2n− q

8

]
α1

+

[
1

8

(
6k2 − 8k + 1

)
q +

1

4
(6k − 1)l − 1

4
(6k − 3)n+

m

2
+ (−1)k

2l − 4m+ 2n− q

8

]
α2.

Thus, as expected, σa defined in equation (2.16) is a Coxeter element of infinite order.

2.3 Infinite dimensional (A2)−1-hyperbolic Kac-Moody Coxeter orbits

Besides affine extensions of finite dimensional algebras [27] also the hyperbolic algebras have

been fully classified [27, 29–33]. These algebras can be defined based on their connected

Dynkin diagrams, which exhibit the property that the removal of any node results in a

set of connected Dynkin diagrams, possibly disconnected, all of which are of finite type

– 7 –
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except for at most one which may be of affine type. This is easily checked to be true for

the Dynkin diagram at the beginning of section 2 with α−2 removed.

The simplest example for such an algebra is the extended affine A2-algebra, i.e. the

(A2)−1-hyperbolic Kac-Moody algebra for which we define a specific Coxeter element as

σh := σ−1σ0σ1σ2, (2.32)

and calculate its infinite dimensional orbits. Acting on the arbitrary (A2)−2 root α in (2.4)

we compute the first consecutive actions as

σh(α) = pα−2 + (2l +m− 2n+ p)α−1 + (2l +m− 2n+ q)α0 + (2l − n)α1 (2.33)

+(l +m− n)α2,

σ2
h(α) = pα−2 + (4l − 3n+ p+ 2q)α−1 + (6l +m− 5n+ p+ 2q)α0 (2.34)

+(3l +m− 3n+ 2q)α1 + (3l − 2n+ q)α2,

etc. For arbitrary powers we assume a similar expansion as in (2.18) of the previous section

σk
h(α) := pα−2 +

2∑
ν=−1

∑
µ=p,q,l,m,n

bµν (k)µαν , (2.35)

where bµν (k), k ∈ Z. Acting with σh on the generic expansion in (2.35) we identify the

recurrence relations to be satisfied by the coefficients bµν (k)

bµ−1(k + 1) = bµ−2(k) + 2bµ0 (k) + bµ1 (k)− 2bµ2 (k), (2.36)

bµ0 (k + 1) = bµ−1(k) + 2bµ0 (k) + bµ1 (k)− 2bµ2 (k), (2.37)

bµ1 (k + 1) = 2bµ0 (k)− bµ2 (k), (2.38)

bµ2 (k + 1) = bµ0 (k) + bµ1 (k)− bµ2 (k). (2.39)

Again we may cast the recurrence relations into matrix form as

bµν (k + 1) =
(
M̂bµ(k)

)
ν
=
(
M̂k+1bµ(0)

)
ν

(2.40)

involving the matrix and the vector

M̂ =


1 0 0 0 0

1 0 2 1 −2

0 1 2 1 −2

0 0 2 0 −1

0 0 1 1 −1

 , and bµ(k) = [bµ−2(k), b
µ
−1(k), b

µ
0 (k), b

µ
1 (k), b

µ
2 (k)], (2.41)

respectively. Taking α to be of the form (2.4) the initial conditions are

bp−2(0) = bcq−1(0) = bl0(0) = bm1 (0) = bn2 (0) = 1, and bµν (0) = 0 otherwise. (2.42)

As in the previous section we may consecutively calculate all the coefficients bµν (k) with

some given initial condition. We also assume here that these coefficients satisfy a linear

recurrence relation of the form

bµν (k + 1) =

N∑
i=1

cib
µ
ν (k + 1− i), (2.43)

– 8 –



Infinite Weyl groups with their associated Calogero models

with constants ci ∈ C and N ∈ N that need to be determined. For N = 5 we find that

indeed the following recurrence relation holds for all coefficients

bµν (k + 1) = 2bµν (k) + 2bµν (k − 1)− 2bµν (k − 2)− 2bµν (k − 3) + bµν (k − 4). (2.44)

Following the same procedure as in the previous section we determine the fifth order char-

acteristic polynomial for (2.44), by assuming bµν (k) ∼ xk. The characteristic equation then

reads

x5 − 2x4 − 2x3 + 2x2 + 2x− 1 = 0. (2.45)

We find three real and two complex roots to equation (2.45)

λ1 = 1, λ2/3 =
1

4

[
1 +

√
21±

√
2
√
21 + 6

]
, λ4/5 =

1

4

[
1−

√
21± i

√
2
√
21− 6

]
.

(2.46)

Thus according to the general theory of recurrence relations, see e.g. [28], the solution to

equation (2.44) can be cast into the form

bµν (k) = bνµ1λ
k
1 + bνµ2λ

k
2 + bνµ3λ

k
3 + bνµ4λ

k
4 + bνµ5λ

k
5, (2.47)

where the constant coefficients bνµi, i = 1, . . . , 5 are determined from the initial conditions

bµν (0) and the first four iterations that give bµν (1) . . . , b
µ
ν (4) for different ν and µ. To stress

the reality of these solutions we can equivalently express the coefficients as

bµν (k) = bνµ1 + b̂νµ2Λ
k
2 + b̂νµ3Λ

k
3 + b̂νµ4Λ

k
4 + b̂νµ5Λ

k
5, , (2.48)

where bνµ2/3 = b̂νµ3 ± b̂νµ2, b
ν
µ4/5 = (b̂νµ5 ∓ b̂νµ4)/2 and

Λk
2/3 =

1√
21

(λk
2 ∓ λk

3), Λk
4 =

1

2
√
21

i(λk
5 − λk

4) Λk
5 =

1

2
√
21

(λk
5 + λk

4). (2.49)

Using the initial values as stated above we find the solutions

bp−1 = Λk
3 − 2Λk

5 (2.50)

bq−1 =
1

2
[µ−(µ−Λ

k
3 + 2Λk

4) + µ+(Λ
k
2 + 2µ+Λ

k
5)] (2.51)

bl−1 =
1

2
[φ+Λ

k
2 + 3Λk

3 − 2φ−Λ
k
4 − 6Λk

5] (2.52)

bm−1 =
1

6
[
√
3µ3

−Λ
k
2 + 3Λk

3 + 2
√
3µ3

+Λ
k
4 − 6Λk

5] (2.53)

bn−1 = −µ+Λ
k
2 − Λk

3 − 2µ−Λ
k
4 + 2Λk

5 (2.54)

bp0 = −1− 1

2
µ+Λ

k
2 +

1

6
µ4
+Λ

k
3 − µ−Λ

k
4 −

1

3
µ4
−Λ

k
5 (2.55)

bq0 = µ+Λ
k
2 + 2µ−Λ

k
4 (2.56)

bl0 =
1

6
[µ2

+(
√
3φ−Λ

k
2 + 3Λk

3)− 2µ2
−(

√
3φ+Λ

k
4 − 3Λk

5)] (2.57)

bm0 = Λk
3 − 2Λk

5 (2.58)

bn0 = −1

2
µ3
+Λ

k
2 −

1

2
Λk
3 + µ3

−Λ
k
4 + Λk

5 (2.59)
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bp1 = −1 +
1

6
[−

√
21µ+Λ

k
2 + µ4

+Λ
k
3 + 2

√
21µ−Λ

k
4 − 2µ4

−Λ
k
5] (2.60)

bq1 =
1

2
φ+Λ

k
2 −

1

2
Λk
3 − φ−Λ

k
4 + Λk

5 (2.61)

bl1 = µ+Λ
k
2 + Λk

3 + 2µ−Λ
k
4 − 2Λk

5 (2.62)

bm1 = − 1

2
√
3
(µ−Λ

k
2 − 2µ+Λ

k
4) +

1

2
√
21

(θ2−Λ
k
3 + 2θ2+Λ

k
5) (2.63)

bn1 = −1

6
τ−µ

3
+Λ

k
2 +

1

2
Λk
3 −

τ+µ
3
−

3
√
21

Λk
4 − Λk

5 (2.64)

bp2 = −1 +
1

6
[−µ2

+(φ+Λ
k
2 −

√
21Λk

3)− 2µ2
−(φ−Λ

k
4 +

√
21Λk

5)] (2.65)

bq2 = µ+Λ
k
2 − Λk

3 + 2Λk
5 +

2µ−√
21

Λk
4 (2.66)

bl2 =
1

2
φ+Λ

k
2 +

1

2
Λk
3 − φ−Λ

k
4 − Λk

5 (2.67)

bm2 = −
µ−

3
√
7
Λk
2 + Λk

3 +
2µ+√

3
Λk
4 − 2Λk

5 (2.68)

bn2 = − 1

126
[θ2+(µ

3
+Λ

k
2 − 3Λk

3) + 2θ2−(µ
3
−Λ

k
4 − 3Λk

5)] (2.69)

We abbreviated here some of the lengthy square root constants to achieve a more compact

presentation

µ± :=

√
1

2

(√
21± 3

)
, µ± :=

√
2
√
21± 3, (2.70)

θ± :=

√
1

2
(21±

√
21), τ± :=

√
25± 4

√
21. (2.71)

Evidently the Coxeter element σh as defined in (2.32) is of infinite order.

2.4 Infinite dimensional (A2)−2-Lorentzian Kac-Moody Coxeter orbits

Adding a further node to the (A2)−1-diagram at the α−1-node leads to a diagram that

no longer satisfies the classification criteria for a hyperbolic Kac-Moody algebra. This is

because when removing the α−2-node one is not left with a set of disconnected diagrams

of finite type except for at most one affine type. The diagram obtained by removing this

node is still of hyperbolic type. Thus the new diagram as depicted at the beginning of

section 2 is of a new type, referred to as Lorentzian. To characterise these diagrams it was

proposed in [18] to relax the defining criterion for the hyperbolic Kac-Moody algebra in

the sense that the required decomposition must not be obtained for all nodes but only for

at least one. Our (A2)−2-example clearly satisfies this requirement as it even holds for all

nodes except for the α−2-node.

We define a Coxeter element for this algebra in the usual manner by the product of

Weyl reflections associated to each simple root in a particular order

σL := σ−2σ−1σ0σ1σ2. (2.72)
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We calculate its orbits by acting with σL consecutively on the root α in (2.4), computing

σL(α) = (2l +m− 2n)α−2 + (2l +m− 2n+ p)α−1 + (2l +m− 2n+ q)α0 (2.73)

+(2l − n)α1 + (l +m− n)α2

σ2
L(α) = (4l − 3n+ 2q)α−2 + (6l +m− 5n+ 2q)α−1 + (6l +m− 5n+ p+ 2q)α0,(2.74)

+(3l +m− 3n+ 2q)α1 + (3l − 2n+ q)α2.

For arbitrary powers we make a similar assumption as in the previous sections

σk
L(α) :=

2∑
ν=−2

∑
µ=p,q,l,m,n

cµν (k)µαν , (2.75)

with unknown constants cµν (k), k ∈ Z. Acting with σL on the generic expressions in (2.75)

we easily identify the recurrence relations to be satisfied by the coefficients cµν (k)

cµ−2(k + 1) = 2cµ0 (k) + cµ1 (k)− 2cµ2 (k), (2.76)

cµ−1(k + 1) = cµ−2(k) + 2cµ0 (k) + cµ1 (k)− 2cµ2 (k), (2.77)

cµ0 (k + 1) = cµ−1(k) + 2cµ0 (k) + cµ1 (k)− 2cµ2 (k), (2.78)

cµ1 (k + 1) = 2cµ0 (k)− cµ2 (k), (2.79)

cµ2 (k + 1) = cµ0 (k) + cµ1 (k)− cµ2 (k). (2.80)

Also in this case a more compact form of the recurrence relations can be achieved in a

matrix formulation

cµν (k + 1) =
(
M̃cµ(k)

)
ν
=
(
M̃k+1cµ(0)

)
ν

(2.81)

involving the matrix and the vector

M̃ =


0 0 2 1 −2

1 0 2 1 −2

0 1 2 1 −2

0 0 2 0 −1

0 0 1 1 −1

 , and cµ(k) = [cµ−2(k), c
µ
−1(k), c

µ
0 (k), c

µ
1 (k), c

µ
2 (k)], (2.82)

respectively. With α in (2.4) the initial conditions are

cp−2(0) = cq−1(0) = cl0(0) = cm1 (0) = cn2 (0) = 1, and cµν (0) = 0 otherwise. (2.83)

We assume once more that these coefficients satisfy a linear recurrence relation of the form

cµν (k + 1) =
N∑
i=1

c̃ic
µ
ν (k + 1− i), (2.84)

with some constants c̃i ∈ R and N ∈ N that need to be determined. For N = 5 we find

that the following recurrence relation holds for all coefficients

cµν (k + 1) = cµν (k) + 3cµν (k − 1) + 3cµν (k − 2) + cµν (k − 3)− cµν (k − 4). (2.85)
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The fifth order characteristic equation for this relation resulting from cµν (k) ∼ xk is

x5 − x4 − 3x3 − 3x2 − x+ 1 = 0. (2.86)

Similarly as for the hyperbolic case we find three real and two complex roots to this equation

λ1 = −1, λ2/3 =
1

2

(
3±

√
5
)
= ϕ±2, λ4/5 = ω±1, (2.87)

where ω is a third root of unity ω := exp(2πi/3) and ϕ is the golden ratio ϕ := (1+
√
5)/2

with negative inverse golden ratio ϕ̄ := (1 −
√
5)/2. Thus the general solution to the

recurrence relation (2.85) is

cµν (k) = c1λ
k
1 + c2λ

k
2 + c3λ

k
3 + c4λ

k
4 + c5λ

k
5, (2.88)

where the constant coefficients ci, i = 1, . . . , 5 are determined from the initial conditions

cµν (0) and the first four explicit iterations cµν (1) . . . , c
µ
ν (4) for different ν and µ. Performing

this calculation we find the solutions

c̃m−2(k) = L2k+2 + 10 sin

(
π

6
+

2πk

3

)
− 8(−1)k (2.89)

c̃n−2(k) = L2k − L2k+5 + 10 sin

(
2πk

3
− π

6

)
+ 4(−1)k, (2.90)

c̃p−2(k) = L2k+1 + 10
√
3 cos

(
2πk

3
− π

6

)
+ 4(−1)k, (2.91)

c̃m−1(k) = 2L2k + L2k+1 − 10 sin

(
2πk

3
− π

6

)
, (2.92)

c̃n−1(k) = −L2k − 8L2k+1 + 10 cos

(
2πk

3

)
, (2.93)

c̃p−1(k) = −L2k + 2L2k+1 + 10
√
3 sin

(
2πk

3

)
, (2.94)

c̃m0 (k) = 4 (L2k − 2) = F 2
k , (2.95)

c̃n0 (k) = 4 (L2k − 3L2k+1 + 1) = FkFk−1, (2.96)

c̃p0(k) = 4 (L2k−1 + 1) = Fk(Fk − 3Fk+1), (2.97)

c̃m1 (k) = 4L2k − L2k+1 +
10√
3
cos

(
2πk

3
+

π

6

)
+ 8(−1)k, (2.98)

c̃n1 (k) = 7L2k − 10L2k+1 −
10√
3
sin

(
2πk

3

)
− 4(−1)k, (2.99)

c̃p1(k) = 4L2k+1 − 5L2k + 10 cos

(
2πk

3

)
− 4(−1)k, (2.100)
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c̃m2 (k) = 5L2k − 2L2k+1 +
10√
3
sin

(
2πk

3

)
− 8(−1)k, (2.101)

c̃n2 (k) = −11L2k−1 +
10√
3
cos

(
π

6
− 2πk

3

)
+ 4(−1)k, (2.102)

c̃p2(k) = 5L2k+1 − 7L2k + 10 sin

(
π

6
+

2πk

3

)
+ 4(−1)k, (2.103)

c̃pν(k) = c̃qν(k − 1) = c̃lν(k − 2), (2.104)

where cµν (k) = 1/20c̃µν (k), Fn label the Fibonacci numbers with n ∈ N and Ln are Lukas

numbers Ln := ϕn+ ϕ̄
n
. The Coxeter element σL as defined in (2.72) is therefore of infinite

order.

Our next aim here is to utilise the mathematical structures discussed in this section in

the context of some physical models. In particular we will formulate Calogero type systems

that respect these infinite symmetries. An important question to address is whether the

models based on infinite dimensional root spaces are integrable? As in the finite case,

the existence and knowledge of the polynomial invariants largely facilitates to answer that

question. One may attempt to construct them from scratch, but there is an elegant way to

obtain them for Weyl groups associated to Dynkin diagrams that can be bicoloured [13–15],

that is to associate one of two colours to each node in the Dynkin diagram with no two

adjacent nodes of the same colour. Unfortunately a bicolouration is not possible for our

simple example of the (A2)−2-diagram. Therefore let us briefly discuss the structure of the

invariants for the (A3)−2-Lorentzian Kac-Moody algebra.

3. (A3)−2-Lorentzian Kac-Moody algebra

The Cartan matrixK for the (A3)−2-Lorentzian Kac-Moody algebra and the corresponding

Dynkin diagram are

(A3)−2 :
α1

α2

α3

◦
•

•
@@

��
◦
α0

•
α−1

◦
α−2

Kij = 2
αi·αj

αj ·αj
=



2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 −1

0 0 −1 2 −1 0

0 0 0 −1 2 −1

0 0 −1 0 −1 2


ij

.

Clearly this diagram is of Lorentzian type as for instance the removal of the α1-node leaves

us with the finite A5-diagram or the removal of the α2-node yields a finite D5-diagram.

However, the decomposition rule for the hyperbolic algebras is not satisfied, as the removal

of the α−2-node produces a diagram of hyperbolic type.

As indicated in the Dynkin diagram, by the use of ◦ and • for the vertices, the major

difference compared to the (A2)−2-case is that this version allows for a bicolouration. This

fact can be exploited in a technical manner as will be seen below. In close analogy to the

discussion in the previous section we choose a 4+4 dimensional standard representation for
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the (A3)−2-roots αi, i = −2, · · · , 3,

α1 = (1,−1, 0, 0; 0, 0, 0, 0) , α2 = (0, 1,−1, 0; 0, 0, 0, 0) , α3 = (0, 0, 1,−1, 0; 0, 0, 0, 0) ,

α0 = (−1, 0, 0, 1; 1, 0, 0, 0) , α−1 = (0, 0, 0, 0;−1, 1, 0, 0) , α−2 = (0, 0, 0, 0; 1, 0,−1, 1) ,

with Lorentzian inner product

x · y = x1y1 + x2y2 + x3y3 + x4y4 − x5y6 − x6y5 − x7y8 − x8y7, (3.1)

for arbitrary 4+4 dimensional vectors x = (x1, . . . x8), y = (y1, . . . y8). Demanding the

length of a generic root

α = pα−2 + qα−1 + lα0 +mα1 + nα2 + rα3, p, q, l,m, n, r ∈ Z, (3.2)

to be 2, leads now to the slightly modified Diophantine equation when compared to the

previous sections

l2 − lm− lq − lr +m2 −mn+ n2 − nr + p2 − pq + q2 + r2 = 1 ⇔ α · α = 2. (3.3)

The Weyl reflections are defined in the same manner as in equation (2.6) with the additional

map σ3 associated to the root α3. The symmetries of the Diophantine equation (3.3) are

now generated by the Weyl reflections as

σ−2(α) : p → q − p, σ−1(α) : q → l + p− q, σ0(α) : l → q +m+ r − l, (3.4)

σ1(α) : m → l + n−m, σ2(α) : n → m+ r − n, σ3(α) : r → l + n− r.

Using the notations from [15] we can now use the bicolouration to define to specific ele-

ments consisting of commuting Weyl reflections whose mutual product makes up a Coxeter

element

σ+ := σ−1σ1σ3, σ− := σ−2σ0σ2, σL′ := σ−σ+. (3.5)

We verify now that the Kostant identity [34] established originally for semi-simple algebras

also holds for the (A3)−2-root space

(σ− + σ+)αi =
3∑

j=−2

(
2δij −K(3+i)(3+j)

)
αj , i = −2, · · · , 3. (3.6)

Using this relation, together with σ−1
L′ = σ+σ− one readily derives a relation between the

eigensystems of the Cartan matrix and the Coxeter element. Defining the vectors

q+i := ζi4α1 + ζi6α3 + ζi2α−1, and q−i := ζi5α2 + ζi3α0 + ζi1α−2, (3.7)

where ζ = (v1, · · · , v6) is the matrix with columns corresponding to the eigenvectors of the

Cartan matrix

Kvj = λjvj , (3.8)

– 14 –



Infinite Weyl groups with their associated Calogero models

we can explicitly define the eigenvectors of the Coxeter element as

qj = eiθj/2q−j + e−iθj/2q+j . (3.9)

The eigenvalue equation then reads

σqj = ei2θjqj , (3.10)

where the eigenvalues of the Cartan matrix in (3.8) and those of the Coxeter element in

(3.10) are related as

λj = 2− 2 cos θj . (3.11)

We notice that there is no equivalent quantity corresponding to the integer exponents

labelling angles θj in the finite dimensional case, however, they still add up pairwise to π

θj + θ7−j = π, j = 1, · · · , 6. (3.12)

Concretely we have

θ1 = arcsec

(
−2√
3 +

√
3

)
= π − θ6, θ2 = arcsec

(
−

√
2 +

2√
3

)
π − θ5, θ3 =

π

2
= θ4.

(3.13)

It is clear from these values that the order of the Coxeter element can not be finite, as we

expect. Finite order σh = 1 with h ∈ N would correspond hθi = nπ, with n ∈ Z, for which
there is no solution.

3.1 Invariants and integrability

Let us now address the question of whether one can build solvable physical models that

respect an (A3)−2-symmetry. In many model, such as those with Calogero type potentials,

this requirement relates to the existence of invariants of the Weyl group. One may either

use the invariants directly to construct a solvable model [8–10] or identify them within a

given model to establish its integrability [11,12].

Thus to each vector x =
∑6

i=1 xiαi−3 ∈ R8 we associate a polynomials P (x1, · · · , x6)
that remains invariant under the action of the Weyl group W

P (ω−1(x)) = P (x′) = P (x) (3.14)

for all ω ∈ W with ω−1(x) → x′. The transformation of the components xi are simply

obtained from (3.4) with the replacements p → x1, q → x2, l → x3,m → x4, n → x5, r →
x6. It is then easy to verify that there is no (A3)−2 polynomial invariant of order 1. At

order 2 we find the standard invariant

I2(x1, · · · , x6) =
6∑

i=1

x2i +
6∑

i,j=1

Kijxixj . (3.15)

To proceed to higher order one can make an Ansatz of a polynomial of a particular or-

der with arbitrary coefficients and then fix them by systematically using (3.14) for every

– 15 –



Infinite Weyl groups with their associated Calogero models

generator of the Weyl group. While this is possible, especially with the help of symbolic

algebra systems software, we will provide a different more direct option. For this purpose

we carry out a change of variables from x to w defined in an implicit way by the relation

x =
6∑

i=1

xiαi−3 =
6∑

i=1

wiqi. (3.16)

From relation (3.10) it is clear that the coordinates wi transform under the action of the

Coxeter element as σ : wj → e2iθjwj . This implies that in these new coordinates any

invariant of order n must be of the form

In(w1, . . . , w6) =
n∑

a1,...,a6=0

c(a1, . . . , a6)w
a1
1 . . . wa6

6 ,
6∑

i=1

ai = n,
6∑

i=1

aiθi = mπ, m ∈ Z.

(3.17)

Since by construction each term in the sum is invariant under the action of the Coxeter

element the constant coefficients c(a1, . . . , a6) must be constrained further by utilising the

Weyl reflections associated to the simple roots. Checking this for every generator of the

Weyl group we find

I2(w1, . . . , w6) = i
[
w2
3 − 4

(
3 + 2

√
3
)
w2w5 − 4

(
3− 2

√
3
)
w1w6

]
. (3.18)

Alternatively we also obtain (3.18) with the variable transformation xi → wi of the invari-

ant (3.15), as specified in (3.16). It is now easy to verify that for n odd we can never solve

the last two equation in (3.17). Moreover, for n = 4 we verified for the general Ansatz

(3.17) that the only invariant at that level is I4 = I22 . This means we can not build an

exactly solvable (A3)−2 invariant model of Calogero type. In turn this suggest that the

(A3)−2 symmetric models proposed in the next section are likely to be not integrable.

4. Calogero type models associated to Lorentzian Kac–Moody algebras

We return now to our (A2)−2 example and start the discussion with the kinetic energy

term for which we also need to use the inner product as defined in equation (2.3), so that

it reads

Hkin =
1

2
p · p =

1

2

(
p21 + p22 + p23 − 2p4p5 − 2p6p7

)
. (4.1)

Since Weyl reflections are orthogonal transformation, i.e. p · p = σi(p) · σi(p), the kinetic

term is by construction invariant under the actions of the (A2)−2-Weyl group. We will

specify below how the Weyl reflections act on the momenta so that one may also verify

this symmetry explicitly.

Next we consider potentials of Calogero type by extending the notions from the well-

studied cases related to finite dimensional semi-simple Lie algebras g. All potentials con-

sidered here are of the general standard Calogero form

V (q) =
∑
α∈∆g

cα

(α · q)2
=
∑
α∈∆g

cα

(σi(α) · q)2
=
∑
α∈∆g

cα

(α · σi(q))
2 , i = −2,−1, 0, 1, 2. (4.2)
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Inteerpreting now g a Lorentzian algebra, the potentials in (4.2) are by construction in-

variant under the action of the Lorentzian Weyl group as the sum extends over the entire

group. In this case it extents to infinity. As indicated in (4.2), we may also realise the

transformations on the roots in the dual coordinate space since the Weyl reflections are

orthogonal transformation, (σi(α) · q) =
(
σ2
i (α) · σi(q)

)
= (α · σi(q)). For instance, for

our (A2)−2-Weyl group in the seven dimensional representation the actions (2.7) may be

realised in the coordinate space as

σ−2(q) : q4 → q4 + q5 + q6 − q7, q6 → −q5 − q6, q7 → q5 − q7, (4.3)

σ−1(q) : q4 → q5, q5 → q4, (4.4)

σ0(q) : q1 → q3 − q5, q3 → q1 + q5, q4 → q1 − q3 + q4 + q5, (4.5)

σ1(q) : q1 → q2, q2 → q1, (4.6)

σ2(q) : q2 → q3, q3 → q2. (4.7)

The affine (2.16), the hyperbolic (2.32) and the Lorentzian Coxeter elements (2.72) there-

fore act on the coordinates as

σa(q) : q1 → q2, q2 → q1 + q5, q3 → q3 − q5, q4 → q1 − q3 + q4 + q5, (4.8)

σh(q) : q1 → q2, q2 → q1 + q4, q3 → q3 − q4, q4 → q1 − q3 + q4 − q5, q5 → q4, (4.9)

σL(q) : q1 → q2, q2 → q1 + q4 + q5 + q6 − q7, q3 → q3 − q4 − q5 − q6 + q7, (4.10)

q4 → q1 − q3 + q4 − 2q5 + q6 − q7, q5 → q4 + q5 + q6 − q7, q6 → −q5 − q6,

q7 → q5 − q7,

respectively. The action on the momenta is taken to be the same. Thus using (4.3)-(4.7)

with q → p, we may now verify explicitly the invariance of the kinetic energy term (4.1)

under the action of the (A2)−2-Weyl group.

The two variants of the standard Calogero potential in (1.1) are now generalised in

a straightforward fashion. Taking γi to be the, say ℓ, representatives of each orbit the

potential in (4.2) can be expressed in the equivalent form

VC(q) =

ℓ∑
i=1

∞∑
n=−∞

gin

[σn(γi) · q]
2 , (4.11)

where the gin are some new real coupling constants related to the cα. It will remain an

open question whether ℓ can be taken to be finite in general. The generalisation of the first

variant in (1.1) may be written more explicitly as

VD(q) =

∞∑
p,q,l,m,n=0

Diophantine equn

gpqlmn

[(pα−2 + qα−1 + lα0 +mα1 + nα2) · q]2
(4.12)

When restricting to particular levels of the Lie algebraic representation as suggested in [16]

for a hyperbolic case, one may achieve to carry out some, or possibly all of the infinite

sums, at that level. However, the potentials obtained in this manner are not invariant

under the infinite Weyl group. In contrast, aiming to achieve the latter we explore here

also the version in equation (4.11).
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4.1 (A2)−2-Calogero type potentials

We will now investigate the potentials in more detail and discuss under which circumstances

the infinite sums may be carried out explicitly.

4.1.1 Invariant potentials of the affine Weyl group

Thus let us now construct some invariant potentials from the version (4.11), which has the

advantage that it only involves one infinite sum, as in this case ℓ will be shown to be finite.

Choosing as an example γ1 = α2 as a representative of an orbit and taking all coupling

constants to be the same, i.e. gin = g, we may compute the particular term

V1(q) =
∞∑

n=−∞

g

[σn
a(α2) · q]2

. (4.13)

Using our general formula (2.31) for the action of any power of the Coxeter element action

on any (A2)−2-root we obtain

V1(q) =

∞∑
n=−∞

16g

{2 [(−1)n − 1] q1 − 2 [(−1)n + 1] q2 + [−6n+ (−1)n − 1] q5 + 4q3}2
, (4.14)

when acting with σa on α2 in the denominator. Splitting the sum into its even and odd

part, i.e.
∑

n =
∑

2n+
∑

2n−1, they are easily evaluated separately when using the general

formula
∑∞

n=−∞(A+Bn)−2 = π2/[sin2(Aπ/B)B2]. In this way we obtain

V1(q) =
π2

9q25

 g

sin2
[

π
3q5

(q2 − q3)
] + g

sin2
[

π
3q5

(q1 − q3 − q5)
]
 . (4.15)

By construction this term is invariant under the action of the affine Coxeter element when

realised in the coordinate space by (4.8). This term is, however, not yet invariant under

the entire Weyl group as for this we require more representatives of the orbits. We may

either try with different roots for the γi representatives, which equivalently corresponds to

actions of the Weyl group on the coordinates as specified in (4.3)-(4.7). Let us therefore

consider the potential

V (q) =

∞∑
n=−∞

g

[σn(α2) · q]2
+

g

[σn(α2) · σ0(q)]
2 +

g

[σn(α2) · σ1(q)]
2 (4.16)

+
g

[σn(α2) · σ1σ0(q)]
2 +

g

[σn(α2) · σ0σ1(q)]
2 +

g

[σn(α2) · σ0σ1σ0(q)]
2

+
g

[σn(α2) · σ2σ0(q)]
2 +

g

[σn(α2) · σ2σ1(q)]
2 +

g

[σn(α2) · σ2σ0σ2(q)]
2 .

At this point the potential appears in an ad hoc manner, but we shall explain below how

is systematically obtained. Crucially, we can evaluate each infinite sum as outlined above

for the first term. In this manner we obtain the potential

V (q) =
2π2g

9q25

(
V12 + V13 + V23 + V +

125 + V −
125 + V +

135 + V −
135 + V +

235 + V −
235

)
, (4.17)
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where we abbreviated

Vij :=
1

sin2
[

π
3q5

(qi − qj)
] , V ±

ijk :=
1

sin2
[

π
3q5

(qi − qj ± qk)
] , i, j, k = 1, 2, 3, 4, 5. (4.18)

We verify explicitly that this potential is indeed invariant under the affine Weyl group.

Indicating how each term transforms under the action of the three generators we have

σ0 : V12 ↔ V +
235 V13 ↔ V −

135 V23 ↔ V +
125 V −

125 ↔ V −
235 V +

135 ⟲ ,

σ1 : V13 ↔ V23 V +
125 ↔ V −

125 V −
135 ↔ V −

235 V +
135 ↔ V +

235 V12 ⟲ ,

σ2 : V12 ↔ V13 V +
125 ↔ V +

135 V +
235 ↔ V −

235 V −
125 ↔ V −

135 V23 ⟲ .

(4.19)

The action of the Coxeter element is therefore

σa : V12 ↔ V +
125 V13 ↔ V +

235 V23 ↔ V −
135 V −

235 ↔ V +
135 V −

125 ⟲ . (4.20)

Thus the potential (4.17) is invariant under the entire (A2)0-affine Weyl group. It is now

also more obvious how the potential (4.16) was obtained in the first place. Starting off

with the terms in V1, we may utilise the Weyl symmetries (4.19) to generate additional

terms until the symmetries only generate terms already included. As it turned out nine

terms are sufficient to achieve that.

Furthermore we notice that we recover the standard A2-Calogero model in the infinite

limits

lim
q5→±∞

V (q) = 2g

[
1

(x1 − x2)2
+

1

(x1 − x3)2
+

1

(x2 − x3)2

]
. (4.21)

Let us now compare this potential with the one obtained when evaluating the three

infinite sums in (4.12) constrained by the Diophantine equation (2.5) with p = q = 0. For

this purpose we re-write (4.12) and (4.11) as

VD(q) = g

∞∑
l,m,n=0

Diophantine equn

vlmn, and VC(q) = g

∞∑
n=−∞

9∑
i=1

vi(n), (4.22)

respectively, where the vi(n) are identified in the same order as the terms appears in (4.11).

We have set all coupling constants to be equal. Defining the quantities

vij =
1

(qi − qj)2
, and v±ijk(n) =

1

(qi − qj ± nqk)2
, (4.23)

we list all nonzero terms in (4.22) with the upper limit in VD(q) taken to be 5. We find

v001 = v1(0) = v23, v010 = v8(0) = v12, v011 = v3(0) = v13,

v100 = v7(0) = v+135(1), v101 = v2(0) = v+125(1), v110 = v9(1) = v+235(1),

v112 = v3(−1) = v−235(1), v121 = v4(0) = v−125(1), v122 = v9(0) = v−135(1),

v211 = v5(0) = v+135(2), v212 = v5(−1) = v+125(2), v221 = v6(0) = v+235(2),

v223 = v9(−1) = v−235(2), v232 = v6(−1) = v−125(2), v233 = v7(2) = v−235(2),

v322 = v3(2) = v+135(3), v323 = v8(2) = v+125(3), v332 = v1(2) = v+235(3),

v334 = v1(−2) = v−235(3), v343 = v8(−2) = v−125(3), v344 = v3(−2) = v−135(3),

v433 = v9(2) = v+135(4), v434 = v2(−2) = v+125(4), v443 = v9(3) = v+235(4),

v445 = v3(−3) = v−235(4), v454 = v5(3) = v−125(4), v455 = v1(−3) = v−135(4),

v544 = v1(3) = v+135(5), v545 = v5(−3) = v+125(5), v554 = v3(3) = v+235(5).

(4.24)
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One may have suspected that VC(q) is only a subset of the general expression VD(q).

However, we observe that the potential in the form of summing over Coxeter orbits, VC(q)

captures all the terms from the version expressed in terms of three infinite sums subject

to the Diophantine equation VD(q). We have verified this beyond the order reported here.

This constitutes of course no rigorous proof of the equality of the two versions, but very

strong evidence.

4.1.2 Invariant potentials of the hyperbolic Weyl group

Next we analyse the two versions of the general potential by just keeping p = 0 in (4.12)

and by taking in (4.11) σ = σh to be the Coxeter element related to the hyperbolic Weyl

group. Consequently, the resulting potentials will be invariant under the action of the

entire hyperbolic Weyl group. For this purpose we re-write (4.12) and (4.11) as

VD(q) = g
∞∑

q,l,m,n=0
Diophantine equn

vqlmn, and VC(q) = g
∞∑

k=−∞
γki , (4.25)

respectively. Once again we set all the coupling constants to be equal. We use the abbre-

viations

γki :=
1

[σk
h(γi) · q]2

, and wr,s,t,u,v :=
1

(rq1 + sq2 + tq3 + uq4 + vq5)2
. (4.26)

In version (4.11) we need to generate sufficiently many representatives γi of the respective

orbits. We list now all the terms appearing in the potential VD(q) up to the order 5 and

identify an equivalent way to express them as terms appearing in the version VC(q). When

q = 0 all the terms in (4.24) also appear, but as we now employ a different type of Coxeter

element they are differently realised in formula VC(q). We find

v0001 = v23 = γ1, v0010 = v12 = γ2, v0011 = v13 = γ3,

v0100 = v+135(1) = γ4, v0101 = v+125(1) = γ−1
2 , v0110 = v+235(1) = γ22,

v0112 = v−235(1) = γ5, v0121 = v−125(1) = γ6, v0122 = v−135(1) = γ−1
1 ,

v0211 = v+135(2) = γ7, v0212 = v+125(2) = γ8, v0221 = v+235(2) = γ9,

v0223 = v−235(2) = γ−1
3 , v0232 = v−125(2) = γ10, v0233 = v−235(2) = γ−3

4 ,

v0322 = v+135(3) = γ11, v0323 = v+125(3) = γ12, v0332 = v+235(3) = γ13,

v0334 = v−235(3) = γ−3
1 , v0343 = v−125(3) = γ14, v0344 = v−135(3) = γ−2

7 ,

v0433 = v+135(4) = γ15, v0434 = v+125(4) = γ16, v0443 = v+235(4) = γ17,

v0445 = v−235(4) = γ18, v0454 = v−125(4) = γ19, v0455 = v−135(4) = γ20,

v0544 = v+135(5) = γ21, v0545 = v+125(5) = γ22, v0554 = v+235(5) = γ23.

(4.27)

Extending the sum in p beyond 0, we find in addition

v1000 = w0,0,0,1,−1 = γ−1
4 , v1100 = w1,0,−1,1,0 = γ15, v1101 = w1,−1,0,1,0 = γ12,

v1110 = w0,1,−1,1,0 = γ13, v1112 = w0,1,−1,−1,0 = γ−2
4 , v1121 = w1,−1,0,−1,0 = γ18,

v1122 = w1,0,−1,−1,0 = γ−2
2 , v1312 = w2,−1,−1,1,2 = γ218, v1321 = w1,1,−2,1,2 = γ26,

v1324 = w1,−2,1,1,2 = γ−1
6 , v1342 = w1,−2,1,−1,−2 = γ24, v1345 = w1,1,−2,−1,−2 = γ−1

5 ,

v1354 = w2,−1,−1,−1,−2 = γ25, v1422 = w2,0,−2,1,3 = γ220 , v1424 = w2,−2,0,1,3 = γ26,

(4.28)
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v1442 = w0,2,−2,1,3 = γ27, v2211 = w1,0,−1,2,0 = γ11, v2212 = w1,−1,0,2,0 = γ16 ,

v2221 = w0,1,−1,2,0 = γ14, v2223 = w0,1,−1,−2,0 = γ−1
7 , v2232 = w1,−1,0,−2,0 = γ112,

v2233 = w1,0,−1,−2,0 = γ118, v2312 = w2,−1,−1,2,1 = γ28, v2321 = w1,1,−2,2,1 = γ25,

v2324 = w1,−2,1,2,1 = γ−1
9 , v2342 = w1,−2,1,−2,−1 = γ126, v2345 = w1,1,−2,−2,−1 = γ−1

8 ,

v2354 = w2,−1,−1,−2,−1 = γ28, v2523 = w3,−1,−2,2,3 = γ29, v2524 = w3,−2,−1,2,3 = γ30 ,

v2532 = w2,1,−3,2,3 = γ210 , v2542 = w1,2,−3,2,3 = γ225, v3322 = w1,0,−1,3,0 = γ32,

v3323 = w1,−1,0,3,0 = γ110, v3332 = w0,1,−1,3,0 = γ17, v3334 = w0,1,−1,−3,0 = γ120,

v3343 = w1,−1,0,−3,0 = γ116, v3344 = w1,0,−1,−3,0 = γ−1
29 , v3422 = w2,0,−2,3,1 = γ23,

v3424 = w2,−2,0,3,1 = γ125, v3442 = w0,2,−2,3,1 = γ318, v3523 = w3,−1,−2,3,2 = γ212,

v3524 = w3,−2,−1,3,2 = γ128, v3532 = w2,1,−3,3,2 = γ21, v3542 = w1,2,−3,3,2 = γ38,

v4433 = w1,0,−1,4,0 = γ19, v4434 = w1,−1,0,4,0 = γ114, v4443 = w0,1,−1,4,0 = γ111,

v4445 = w0,1,−1,−4,0 = γ31 , v4454 = w1,−1,0,−4,0 = γ122, v4455 = w1,0,−1,−4,0 = γ32,

v5544 = w1,0,−1,5,0 = γ113, v5545 = w1,−1,0,5,0 = γ119, v5554 = w0,1,−1,5,0 = γ115.

(4.29)

We notice here that each term in the multiple infinite sums of the “raw version” VD(q) has

a counterpart in the version VC(q) that is based on orbits of the Coxeter element. We also

observe that we require many more orbits, e.g. 35 up to level 5, as in the affine case to

cover the entire root space. In this case it remains unresolved whether a systematic way

exist to generate these orbits and whether a finite number of orbits will be sufficient to

generate all terms of the potential. Note here that generating all terms in the potential

is not equivalent to generating the entire Weyl group, as in the former we may exploit

additional symmetries coming from the nature of the potential.

4.1.3 Invariant potentials of the Lorentzian Weyl group

Finally we compute a potential that is invariant under the full Lorentzian Weyl group. For

this we generalise (4.25) in an obvious manner summing now also over p. We require now

the abbreviations

γki :=
1

[σk
L(γi) · q]2

, and wr,s,t,u,v,x,y :=
1

(rq1 + sq2 + tq3 + uq4 + vq5 + xq6 + yq7)2
.

(4.30)

We list all the terms in VD(q) up to the order 3 and identify a corresponding term in the

potential VC(q)

v00001 = w0,1,−1,0,0,0,0 = γ1, v00010 = w1,−1,0,0,0,0,0 = γ2, v00011 = w1,0,−1,0,0,0,0 = γ3,

v00100 = w1,0,−1,0,1,0,0 = γ4, v00101 = w1,−1,0,0,1,0,0 = γ−1
2 , v00110 = w0,1,−1,0,1,0,0 = γ5,

v00112 = w0,1,−1,0,−1,0,0 = γ6, v00121 = w1,−1,0,0,−1,0,0 = γ7, v00122 = w1,0,−1,0,−1,0,0 = γ−1
1 ,

v00211 = w1,0,−1,0,2,0,0 = γ8, v00212 = w1,−1,0,0,2,0,0 = γ9, v00221 = w0,1,−1,0,2,0,0 = γ10,

v00223 = w0,1,−1,0,−2,0,0 = γ−1
3 , v00232 = w1,−1,0,0,−2,0,0 = γ11, v00233 = w1,0,−1,0,−2,0,0 = γ−4

4 ,

v00322 = w1,0,−1,0,3,0,0 = γ12, v00323 = w1,−1,0,0,3,0,0 = γ13, v00332 = w0,1,−1,0,3,0,0 = γ14,

v01000 = w0,0,0,1,−1,0,0 = γ−1
4 , v01100 = w1,0,−1,1,0,0,0 = γ15, v01101 = w1,−1,0,1,0,0,0 = γ−1

5 ,

v01110 = w0,1,−1,1,0,0,0 = γ2
2, v01112 = w0,1,−1,−1,0,0,0 = γ−2

15 , v01121 = w1,−1,0,−1,0,0,0 = γ16,

v01122 = w1,0,−1,−1,0,0,0 = γ−2
2 , v01312 = w2,−1,−1,1,2,0,0 = γ17, v01321 = w1,1,−2,1,2,0,0 = γ18,

v02211 = w1,0,−1,2,0,0,0 = γ19, v02212 = w1,−1,0,2,0,0,0 = γ20, v02221 = w0,1,−1,2,0,0,0 = γ21,

v02223 = w0,1,−1,−2,0,0,0 = γ−1
8 , v02232 = w1,−1,0,−2,0,0,0 = γ22, v02233 = w1,0,−1,−2,0,0,0 = γ23,

(4.31)
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v02312 = w2,−1,−1,2,1,0,0 = γ24, v02321 = w1,1,−2,2,1,0,0 = γ25, v03322 = w1,0,−1,3,0,0,0 = γ26,

v03323 = w1,−1,0,3,0,0,0 = γ27, v03332 = w0,1,−1,3,0,0,0 = γ28, v10000 = w0,0,0,0,1,1,−1 = γ−2
4 ,

v10111 = w0,0,0,0,2,1,−1 = γ29, v10222 = w0,0,0,0,3,1,−1 = γ30, v10333 = w0,0,0,0,4,1,−1 = γ31,

v11000 = w0,0,0,1,0,1,−1 = γ−1
15 , v11100 = w1,0,−1,1,1,1,−1 = γ1

6, v11101 = w1,−1,0,1,1,1,−1 = γ1
2,

v11110 = w0,1,−1,1,1,1,−1 = γ1
3, v11112 = w0,−1,1,1,1,1,−1 = γ−3

4 , v11121 = w−1,1,0,1,1,1,−1 = γ1
9,

v11122 = w−1,0,1,1,1,1,−1 = γ−2
5 , v11312 = w2,−1,−1,1,3,1,−1 = γ1

23, v11321 = w1,1,−2,1,3,1,−1 = γ1
20,

v12111 = w0,0,0,2,0,1,−1 = γ1
29, v12311 = w2,0,−2,2,2,1,−1 = γ2

29, v12313 = w2,−2,0,2,2,1,−1 = γ32,

v12331 = w0,2,−2,2,2,1,−1 = γ1
32, v13222 = w0,0,0,3,0,1,−1 = γ33, v13312 = w2,−1,−1,3,1,1,−1 = γ34,

v13321 = w1,1,−2,3,1,1,−1 = γ2
7, v21222 = w0,0,0,1,3,2,−2 = γ35, v21322 = w1,0,−1,1,4,2,−2 = γ36,

v21323 = w1,−1,0,1,4,2,−2 = γ37, v21332 = w0,1,−1,1,4,2,−2 = γ38, v22211 = w1,0,−1,2,2,2,−2 = γ1
1,

v22212 = w1,−1,0,2,2,2,−2 = γ1
7, v22221 = w0,1,−1,2,2,2,−2 = γ1

4, v22223 = w0,−1,1,2,2,2,−2 = γ−1
19 ,

v22232 = w−1,1,0,2,2,2,−2 = γ1
13, v22233 = w−1,0,1,2,2,2,−2 = γ−1

34 , v22312 = w2,−1,−1,2,3,2,−2 = γ1
16,

v22321 = w1,1,−2,2,3,2,−2 = γ1
15, v23222 = w0,0,0,3,1,2,−2 = γ1

30, v23312 = w2,−1,−1,3,2,2,−2 = γ2
9,

v23321 = w1,1,−2,3,2,2,−2 = γ2
6, v32333 = w0,0,0,2,4,3,−3 = γ39, v33322 = w1,0,−1,3,3,3,−3 = γ1

5,

v33323 = w1,−1,0,3,3,3,−3 = γ1
11, v33332 = w0,1,−1,3,3,3,−3 = γ1

8,.

(4.32)

Once more we see that each term possess at least one counter term in each version of the

potential. We leave it as open issue to construct all orbits, to find a closed formula or even

computing the sums.

4.1.4 Partial sums

Alternatively, to converting the five infinity sums into one infinite sum over orbits of the

Coxeter element, we may also consider partial sums for specific choices of some of the sum-

mation indices compatible with the Diophantine equation with one infinite sum remaining.

We already encountered partial sums in obtaining potentials of the form (4.15). While this

term was not invariant under the entire Weyl group, it was by construction invariant under

the action of the Coxeter element. We list here some further possibilities:

For instance, the choice p → l, q → 1 + l,m → l, n → l satisfies the Diophantine

equation (2.5) and leaves one infinite sum in the general potential (4.12) . Taking also all

coupling constants to be the same g and using the 3+4 dimensional representation for the

roots αi we are left with

V (q) =

∞∑
l=0

g

A+Bl + B2

4A l
2
=

4A

B2
Ψ

(
2A

B

)
, (4.33)

where Ψ(x) := (ln Γ[x])
′′
is a polygamma function and A = q24 − 2q5q4 + q25, B = 2q24 +

2q6q4 − 2q7q4 − 2q25 − 2q5q6 + 2q5q7. The sum in (4.33) has been carried out explicitly.

Concretely we obtain the potential

V (q) =
g

(q4 + q5 + q6 − q7)
2Ψ

(
q4 − q5

q4 + q5 + q6 − q7

)
. (4.34)

For the choice p → l, q → l,m → 1 + l, n → 1 + l we obtain in the same manner

V (q) =
g

(q4 + q5 + q6 − q7)
2Ψ

(
q2 − q1

q4 + q5 + q6 − q7

)
. (4.35)
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For the choice p → k, q → 2k, l → 2k + 1,m → k, n → k then subsequent infinite sum

over k yields

V1(q) =
(q1 − q3 + q5)

2

[(q1 − q3 + q5) (q1 − q3 + 2q4 + q5 + q6) + (−q1 + q3 − 7q5) q7]
2 (4.36)

×Ψ

[
(q1 − q3 + q5)

2

(q1 − q3 + q5) (q1 − q3 + 2q4 + q5 + q6) + (−q1 + q3 − 7q5) q7

]
.

Another interesting choice is p → −1− k, q → −2− 2k,m → −1− k, n → −1− k, l →
−2k − 1, which would mean we extend the sums in (4.12) to the negative range. In the

case we obtain the potential

V2(q) =
(q1 − q3 + q5)

2

[(q1 − q3 + q5) (q1 − q3 + 2q4 + q5 + q6) + (−q1 + q3 − 7q5) q7]
2 (4.37)

×Ψ

[
1− (q1 − q3 + q5)

2

(q1 − q3 + q5) (q1 − q3 + 2q4 + q5 + q6) + (−q1 + q3 − 7q5) q7

]
.

Using that fact that Ψ(x) + Ψ(1− x) = π2/ sin(πx)2 the sum of the two potentials yields

V1(q) + V2(q) =
π2 (q1 − q3 + q5)

2

[(q1 − q3 + q5) (q1 − q3 + 2q4 + q5 + q6) + (−q1 + q3 − 7q5) q7]
2 (4.38)

× sin

[
π

(q1 − q3 + q5)
2

(q1 − q3 + q5) (q1 − q3 + 2q4 + q5 + q6) + (−q1 + q3 − 7q5) q7

]−2

.

Evidently, these potentials are not invariant under the action of the full Lorentzian Weyl

group, but they involve no infinite sum and admit a partial symmetry.

5. Conclusions

We discussed general properties of infinite Weyl groups of affine, hyperbolic and Lorentzian

type. As concrete examples we presented the (A2)0, (A2)−1 and (A2)−2 cases, for which

we paid particular attention to the properties of the respective Coxeter elements. In each

case we derived closed formulae for the infinite orbits of these elements.

For the (A3)−2 case we exploited the fact that the associated Dynkin diagram can be

bicoloured. We proved that the Kostant identity (3.6) also holds for Lorentzian algebras.

We also showed that while there are no integer exponents for these algebras, the analogue

quantities of them still add up pairwise to π. These features allowed for a systematic

analysis of the respective invariants. We showed that independent invariants at higher

degree do not exist, which in turn indicates that the standard approach to utilize these

invariants in the construction of integrable systems can not be pursued.

Finally, we used the structures found to formulate models of Calogero type with an

in-built infinite symmetry. In their raw form the potential of these models contain as

many infinite sums as simple roots of their associated algebras simply constrained by a

Diophantine equation. However, using the formulae for the Coxeter orbits we argued that

these sums may be reduced. In the case of the invariant affine potential we showed that
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the remaining single infinite sum may even be computed explicitly. For the models based

on the hyperbolic or Lorentzian algebras it remains an open issue how to systematically

generate these representatives, whether there are finitely many representatives and whether

the sum over the Coxeter orbits can be computed explicitly. We demonstrate, however, that

one may perform subsets of the infinite sums obtaining in this manner potentials that are

invariant under the action of the Coxeter element. We also stress once more that generating

all orbits needed in the potential is different, and more restricted, than generating the entire

root space from all orbits. As we have seen for the case of the affine Weyl group when the

orbits are generated within the potentials we may use their particular symmetries, such as

parity invariance and the fact that we may shift the summation indices. These properties

made it possible to construct invariant potentials from a finite number of terms. Thus, the

feasibility of a closed-form computation for hyperbolic or Lorentzian Calogero potentials

based on the summability of affine subpotentials is a subject for future investigation.

Besides the numerous fundamental mathematical issues left open, there are many fur-

ther interesting questions left for future investigations. The generalisation beyond rational

potentials to models of Calogero-Moser-Sutherland type appears to be straightforward. It

would also be interesting to consider extended algebraic systems beyond the two examples

of A2 and A3 presented here. Of course, ultimately one would also like to understand the

quantum versions of the models proposed here.
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