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Abstract

In many domains, learners extract recurring units from continuous sequences. For

example, in unknown languages, fluent speech is perceived as a continuous signal.

Learners need to extract the underlying words from this continuous signal and then

memorize them. One prominent candidate mechanism is statistical learning, whereby

learners track how predictive syllables (or other items) are of one another. Sylla-

bles within the same word predict each other better than syllables straddling word

boundaries. But does statistical learning lead tomemories of the underlyingwords—or

just to pairwise associations among syllables? Electrophysiological results provide the

strongest evidence for the memory view. Electrophysiological responses can be time-

locked to statistical word boundaries (e.g., N400s) and show rhythmic activity with a

periodicity of word durations. Here, I reproduce such results with a simple Hebbian

network. When exposed to statistically structured syllable sequences (and when the

underlyingwords are not excessively long), the network activation is rhythmicwith the

periodicity of a word duration and activation maxima on word-final syllables. This is

because word-final syllables receive more excitation from earlier syllables with which

they are associated than less predictable syllables that occur earlier in words. The net-

work is also sensitive to information whose electrophysiological correlates were used

to support the encoding of ordinal positions within words. Hebbian learning can thus

explain rhythmic neural activity in statistical learning tasks without any memory rep-

resentations of words. Learners might thus need to rely on cues beyond statistical

associations to learn the words of their native language.

KEYWORDS

implicit learning, N400, neural entrainment, neural networks, statistical learning, transitional
probabilities

Research Highlights

∙ Statistical learning may be utilized to identify recurring units in continuous

sequences (e.g., words in fluent speech) but may not generate explicit memory

for words.
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∙ Exposure to statistically structured sequences leads to rhythmic activity with a

period of the duration of the underlying units (e.g., words).

∙ I show that a memory-less Hebbian network model can reproduce this rhythmic

neural activity as well as putative encodings of ordinal positions observed in earlier

research.

∙ Direct tests are needed to establish whether statistical learning leads to declarative

memories for words.

1 INTRODUCTION

Word learning is challenging even when the phonological form of

words is known (Gillette et al., 1999; Medina et al., 2011). However,

speech in unknown languages often appears as a continuous signal

with few cues to word boundaries (but see e.g., Brentari et al., 2011;

Christophe et al., 2001; Endress & Hauser, 2010; Johnson & Jusczyk,

2001; Johnson & Seidl, 2009; Pilon, 1981). As a result, learners first

need to discover where words start and where they end before they

can commit any phonological word form to memory (e.g., Aslin et al.,

1998; Saffran, Aslin et al., 1996; Saffran, Newport et al., 1996), and

hopefully link this word form to somemeaning. This challenge is called

the segmentation problem.

Learners might solve the segmentation problem using co-

occurrence statistics tracking the predictability of syllables. For

example, a syllable following “the” is much harder to predict than a syl-

lable following “whis.” After all, “the” can precede any noun, but there

are very fewwords starting with “whis” (e.g., whiskey, whisker,. . . ).

The most prominent version of such co-occurrence statistics

involves transitional probabilities (TPs), that is, the conditional prob-

ability of a syllable 𝜎2 following another syllable 𝜎1, P(𝜎2|𝜎1). Infants,

newborns and nonhuman animals are all sensitive to TPs in a variety of

modalities, for stimuli that can be sequentially or spatially organized

(e.g., Aslin et al., 1998; Batterink & Paller, 2017; Chen & Ten Cate,

2015; Conway & Christiansen, 2005; Creel et al., 2004; Endress, 2010;

Endress & Wood, 2011; Fiser & Aslin, 2002a, 2005; Fló et al., 2022;

Glicksohn & Cohen, 2011; Hauser et al., 2001; Kirkham et al., 2002;

Saffran, Newport et al., 1996; Saffran, Aslin et al., 1996; Saffran et al.,

1999; Saffran & Griepentrog, 2001; Sohail & Johnson, 2016; Tompson

et al., 2019; Toro et al., 2005; Turk-Browne et al., 2005; Turk-Browne

& Scholl, 2009).While the ubiquity of these statistical learning abilities

probably suggests that organismshave independent statistical learning

abilities in different domains and brain areas (see Frost et al., 2015 vs.

Endress, 2019, for different versions of this idea), I focus on sequential

verbal regularities.

Following Saffran and colleagues’ seminal work (Aslin et al., 1998;

Saffran, Aslin et al., 1996; Saffran, Newport et al., 1996), participants

in a typical verbal statistical learning experiment are first familiar-

ized with a statistically structured speech stream (or a sequence in

anothermodality such as auditory tones or visual symbols). The speech

stream is a random concatenation of triplets of nonsense syllables

(hereafter “words”). Syllables within words are, thus, more predictive

of one another than syllable across word-boundaries. For example, if

ABC, DEF, GHJ, and KLM are “words” (where each letter represents a

syllable), the C syllable can be followed by the word-initial syllables of

any of the other words, while syllables within words predict each other

with certainty.

A sensitivity to TPs is then tested by measuring a preference

between high-TP items (i.e., words) and low-TP items created by tak-

ing either the final syllable of one word and the first two syllables from

another word (e.g., CDE) or by taking the last two syllables of one word

and the first syllable of the next word (e.g., BCD); the low-TP items are

called part-words. Participants (adults, infants, or other animals) usu-

ally discriminate between words and part-words, suggesting that they

are sensitive to TPs.

1.1 Does statistical learning help learners
memorizing words?

While many authors propose that tracking TPs leads to the addition

of words to the mental lexicon (and thus to storage of word can-

didates in declarative long-term memory, LTM; e.g., Erickson et al.,

2014; Graf-Estes et al., 2007; Hay et al., 2011; Isbilen et al., 2020;

Karaman & Hay, 2018; Perruchet, 2019; Shoaib et al., 2018), this

issue is controversial, and the results supporting such views often

have alternative explanations that do not involve declarative LTM (see

Endress & de Seyssel, under review; Endress et al., 2020, for criti-

cal reviews). For example, while high-TP items are sometimes easier

to memorize than low-TP items (e.g., Graf-Estes et al., 2007; Hay

et al., 2011; Isbilen et al., 2020; Karaman & Hay, 2018), it is unclear

if any LTM representation have been formed during statistical learn-

ing, or whether statistical associations simply facilitate subsequent

associations. Likewise, while incomplete high-TP items are sometimes

harder to recognize than entire items (e.g., an AB subunit from an

ABC unit is harder to recognize that an entire DE unit; e.g., Fiser &

Aslin, 2005; Giroux & Rey, 2009; Orbán et al., 2008; Slone & Johnson,

2018), such results can be explained by memory-less Hebbian learn-

ing mechanisms and other attentional accounts (Endress & de Seyssel,

under review).
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Critically, to the extent that a sensitivity to TPs relies on implicit

learning mechanisms (e.g., Christiansen, 2018; Perruchet & Pacton,

2006), statistical learning might be dissociable from explicit, declar-

ative memory (e.g., Cohen & Squire, 1980; Finn et al., 2016; Graf &

Mandler, 1984; Knowlton et al., 1996; Poldrack et al., 2001; Sherman

& Turk-Browne, 2020; Squire, 1992). In line with this view, tasks that

are typically used in the declarative memory literature (e.g., familiar-

ity ratings, confidence ratings, or choice tasks) are not diagnostic of

the addition of statistically defined items to the mental lexicon (see

e.g., Batterink, 2020; Batterink & Paller, 2017; Batterink et al., 2015,

for experiments contrasting implicit and explicit measures of statisti-

cal learning). For example, observers sometimes prefer high-TP items

to low-TP items when they have never encountered either of them

(when the items are played backwards compared to the familiarization

stream; Endress & Wood, 2011; Jones & Pashler, 2007; Turk-Browne

& Scholl, 2009), and sometimes prefer high-TP items they have never

encountered over low-TP items they have heard or seen (Endress &

Langus, 2017; Endress & Mehler, 2009b). In such cases, a preference

for high-TP items does not indicate that the high-TP items are stored

in themental lexicon, simply because learners have never encountered

these items.1

The reason for which, in the case of statistical learning, traditional

declarative LTM tasks might be misleading is a mismatch between the

memory tasks and the learning problem. After all, learners do not only

need to remember which item occur with which other items (which

can be assessed with explicit memory tasks); they also need to cre-

ate novel memory representations of those co-occurring items, and

these memory representations need to be stored as integrated units

(e.g., Batterink & Paller, 2017; Endress & Langus, 2017; Fló et al., 2022;

Slone & Johnson, 2018). For example, after exposure to a Bugs Bunny

cartoon, viewers are presumably highly confident that Bugs Bunny co-

occurred more frequently with a carrot than with a gun (potentially by

using episodic memory). However, such associations do not imply that

the Bugs Bunny–carrot combination is stored as an integrated chunk in

declarative LTM.

In adirect test of the contents of LTMafter a statistical learning task,

Endress and de Seyssel (under review) asked adults to repeat back the

items they had encountered during a familiarization streamwith as few

as four items. While few participants produced words or part-words,

two thirds of those who did produce such items produced exclusively

part-words rather thanwords (seealsoBatterink, 2020,who reported in

their methods section that most participants failed to recall any words

in a free recall task). The reason for this counterintuitive behavior is

that learners successfully track TPs in the speech stream, but do not

know where words start and where they end. They thus initiate their

productionwith a random syllable and continuewith a high probability

continuation. Given that, in these speech streams, two thirds of the syl-

lables are word-medial or word-final, but only one third is word-initial,

two thirds of the productions should be part-words, which is just what

Endress and de Seyssel (under review) found. Given that participants

do not know where words start and where they end, they cannot have

declarativememories of words either.

These results do not imply that different memory mechanisms

cannot interact. Procedural and declarative memory mechanisms can

interact during consolidation (Robertson, 2022), and statistical infor-

mation might facilitate subsequent declarative memory formation.

However, there is no behavioral evidence that statistical learning per

se leads to LTM of the underlying units.

Be that as it may, there is a straightforward explanation of such

results that does not involve declarative LTM: a sensitivity to TPs

might reflect Hebbian learning (Endress, 2010; Endress & Johnson,

2021). After all, the representations of syllables (or other elements in

a stream) presumably does not cease to be active as soon as the syl-

lable ends. As a result, multiple syllables are active together and can

thus form Hebbian associations. Endress and Johnson (2021) showed

that such a network can account for a number of behavioral statistical

learning results.

However, there is another class of studies that seems to be inconsis-

tent with a mere Hebbian interpretation of statistical learning results,

and that seems to strongly support the possibility that statistical

learning leads to the extraction of coherent units: electrophysiologi-

cal responses to statistically structured sequences. I will now turn to

this literature.

1.2 Electrophysiological correlates of statistical
learning

In one of the earliest electrophysiological studies of statistical learn-

ing, Sanders et al. (2002) first presented participants with a speech

stream composed of non-sense words. Following this, they presented

these words in isolation, and finally another speech stream with the

same words. When they compared electrical brain responses to the

second presentation of the stream and to its first presentation, they

observed increased N100 and N400 responses. That is, they showed

increased negativities around 100 and 400 ms after word onsets (see

also Abla et al., 2008 for similar study with tones as stimuli). Cunillera

et al. (2006) showed that N400 effects can also be obtained without

explicitly training participants on the words, and even newborns show

time-locked responses to statistically structured sequences (Kudo

et al., 2011; Teinonen et al., 2009).

Following Buiatti et al. (2009), electrophysiological investigations

of statistical learning focused on rhythmic entrainment to the speech

streams rather than event-related responses such as the N400s.

Specifically, if listeners learn the statistical structure of the speech

stream, they should perceive the speech stream as a sequence of tri-

syllabic units (given that most statistical learning experiments tend to

use tri-syllabic units or their equivalents in other domains, but seeBen-

jamin, Fló, Palu et al., 2023; Johnson& Tyler, 2010), and thus perceive a

rhythm with a periodicity of three syllable durations. If so, they should

also show a neural rhythmwith the same periodicity.While Buiatti et al.

(2009) detected such a rhythm only when words were separated by

brief silences, later investigations found such rhythms in continuous

sequences in adults (Batterink, 2020; Batterink &Paller, 2017; see also
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Moser et al., 2021 for a magneto-encephalography study and Henin

et al., 2021; Sherman et al., 2023 for intracranial recordings), children

(Moreau et al., 2022), infants (Choi et al., 2020; Kabdebon et al., 2015),

and even newborns (Fló et al., 2022).

Such results seem to strongly suggest that statistical learning cre-

ates integrated units that can be stored in memory, though different

authors stressed that rhythmic entrainment might also reflect pro-

cesses that are separable from integrated memory encodings of words

(e.g., Batterink & Paller, 2017; Fló et al., 2022). However, there is a

simple associative explanation for this rhythmic activity. After the asso-

ciations in a word ABC are learned (where each letter stands for a

syllable), each syllable predicts subsequent syllables. Hence, the C syl-

lable does not only receive (external) bottom-up excitation when it is

heard, but receives additional associative excitation from the preced-

ing A and B syllables (that predict the C syllable). As a result, one would

expect a neural rhythm with a period of three syllable durations, and a

maximum following the onset of theword-final syllable even if no word

has been stored inmemory.2

This account is also consistent with the original interpretation of

the N400 component as reflecting (semantically) surprising and thus

unpredictable stimuli (Kutas & Federmeier, 2000). In verbal statisti-

cal learning tasks, word onsets are always unpredictable, given that

words are randomly concatenated. In contrast, the last syllable of each

word is predictable based on the statistical structure of the streams,

but only after learning. As a result, electrophysiological responses such

asN400smight not somuch indexword onsets as reflect the increased

predictability of word-final syllables (or the decreased relative pre-

dictability of word-initial syllables). As regularly occurring N400s (or

other regular time-locked responses) create rhythmic activity, rhyth-

mic entrainment to the statistical structure of a speech stream might

similarly reflect rhythmic changes in the relative predictability of items

rather thanmemorization of stimuli.

2 THE CURRENT STUDY

Here, I provide computational support for this idea. While different

processing models (e.g., Batchelder, 2002; Christiansen et al., 1998;

Perruchet & Vinter, 1998) and ideal observer models (e.g., Benjamin,

Fló, Al Roumi et al., 2023; Brent &Cartwright, 1996; Frank et al., 2010;

Lynn et al., 2020; Orbán et al., 2008) have been dedicated to explain

statistical learning results, here I attempt to show that very simple

psychological mechanisms based onHebbian learning can explain elec-

trophysiological results on top of a variety of other behavioral results.

I also show that the mechanisms provide an alternative to some more

abstract coding schemes proposed by Henin et al. (2021).

The network used here is a fairly generic saliency map (e.g., Bays

et al., 2010; Endress & Szabó, 2020; Gottlieb, 2007; Roggeman et al.,

2010; Sengupta et al., 2014) augmented by a Hebbian learning com-

ponent. The network comprises units representing populations of

neurons encoding syllables (or other items). All units are fully con-

nected with both excitatory and inhibitory connections (see Figure 1).

Excitatory connections change according to a Hebbian learning rule,

Excitation Inhibition 

A B C 
wBA 

wCA 

wAB wCB 

wBC 

wAC 

F IGURE 1 Illustration of the network architecture with only three
units A, B, and C. These units encode syllables. All units mutually excite
and inhibit one another. Excitatory connections undergo Hebbian
learning. For example, unit A excites unit Bwith a tunable weight of
wBA as well as unit Cwith a weight ofwCA. In contrast, inhibitory
weights do not undergo learning. In addition to excitation and
inhibition, all units undergo forgetting.

while inhibitory connections do not undergo learning. Additionally,

activation decays exponentially in all units.3 Further details of the

model can be found in Supplementary Information A.

Such an architecture can explain statistical learning results in a rela-

tively intuitive way. If each syllable is represented by some population

of neurons, and learners listen to some sequence ABCD. . . , associations

should formbetween adjacent and nonadjacent syllables depending on

the decay rate. If activation decay is slower than a syllable duration,

the representations of two adjacent syllables will be active at the same

time, and thus form an association. For example, if a neuron represent-

ing A is still active while B is presented, these neurons can form an

association. Similarly, if a neuron representing A is still active when C is

presented, an association between these neurons will ensue although

the corresponding syllables are not adjacent.

Endress and Johnson (2021) showed that such a model can account

for a number of statistical learning results (as long as the decay rate

was set to a reasonable level)—in the absence of a dedicated memory

store. Hence, statistical learning results can be explained even when

participants do not create lexical entries for high-TP items.

However, the neural entrainment results above seem to suggest

that learners go beyondmere associations among syllables, and extract

statistically coherent units. Here, I argue that this simple Hebbian

network can also account for the periodic activity found in electro-

physiological recordings. Intuitively, if a high-TP item such as ABC is

presented,Amostly receives external stimulation, butB receives exter-

nal stimulation—aswell as excitatory input fromA. Likewise,C receives

external stimulation as well as excitatory input from both A and B. As

a result, the network activation should increase towards the end of a

word, with a maximum on the third syllable, leading to periodic activ-

ity with a period of a word duration (though the presence of inhibitory

connections might make the exact results more complex).

I tested this idea in Endress and Johnson’s (2021) model. I exposed

the network to a continuous sequence inspired by Saffran, Aslin et al.’s

(1996) Experiment 2. The sequence consisted of four distinct words of
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three syllables each. The familiarization sequence was a random con-

catenation of thesewords, with eachword occurring 100 times. During

the test phase, I recorded the total network activation as each of the

test-items (see below) was presented, and assumed that this activa-

tion reflects the network’s familiarity with the words. I simulated 100

participants by repeating the familiarization and test cycle 100 times.

The test items follow by Saffran, Aslin et al. (1996) and Saffran,

Newport et al. (1996), amongmany others. After exposure to the famil-

iarization sequence, activation is recorded in response to words such

as ABC and “part-words.” As mentioned above, part-words comprise

either the last two syllables from one word and the first syllable from

the next word (e.g., BC:D, where the colon indicates the former word

boundary that is not present in the stimuli) or the last syllable from one

word and the first two syllables from the next word (e.g., C:DE). Part-

words are thus attested in the familiarization sequence, but straddle a

word boundary. Hence, they haveweaker TPs thanwords. Accordingly,

the network should bemore familiar with words than with part-words.

To assess whether the network can also account for results presented

by Fló et al. (2022) (see below), I recorded activation after presenting

the first two syllables of a word (e.g., AB) or the last two syllables (e.g.,

BC). I also show that the network has problems entraining to a rhythm

when longer words are used (Benjamin, Fló, Palu et al., 2023), and that

“positional” codes that were assumed to go beyond mere associations

among syllables (Henin et al., 2021) can be side effects of associative

processing.

During the simulations, the network parameters for self-excitation

and mutual inhibition are kept constant (𝛼 and 𝛽 in Supplementary

Material A). However, in line with Endress and Johnson (2021), I used

different forgetting rates (𝜆act in Supplementary Material A) between

0.1 and 0.9. With exponential forgetting, a forgetting rate of 1 means

that the activation completely disappears on the next time step (in the

absence of excitatory input), a forgetting rate of zero means no forget-

ting at all, while a forgetting rate of 0.5 implies that the activation is

halved on the next time step.4

3 RESULTS

3.1 Words versus part-words

To establish the forgetting rates at which discrimination between

words and part-words (and thus learning) can be observed, I first

replicate some of Endress and Johnson’s (2021) results. I calculated

normalized difference scores of activations for words and part-words,

d =
Word−Part-Word

Word+Part-Word
, and evaluated these difference scores in two ways.

First, I compared them to the chance level of zero usingWilcoxon tests.

Second, I counted the number of simulations (representing different

participants) preferring words to part-words, and evaluated this count

using a binomial test. With 100 simulations per parameter set, perfor-

mance is significantly different from the chance level of 50% if at least

61% of the simulations show a preference for the target items.

The results are shown in Figure 2 and tab. B1. Except for low for-

getting rates of up to 0.4, the network prefers words over part-words,

with somewhat better performance forwords againstC:DEpart-words,

as has been observed in human participants with syllables (Saffran,

Newport et al., 1996), tone sequences (Saffran et al., 1999), and visual

shapes (Fiser &Aslin, 2002b). In the following, I will thus use forgetting

rates between 0.4 and 0.9 tomodel the electrophysiological results.

3.2 Activation differences within words

I next asked whether a basic Hebbian learning model can explain peri-

odic neural activity (e.g., Batterink, 2020; Batterink & Paller, 2017;

Benjamin, Fló, Palu et al., 2023; Buiatti et al., 2009; Choi et al., 2020;

Fló et al., 2022;Henin et al., 2021; Kabdebon et al., 2015;Moreau et al.,

2022; Moser et al., 2021; Sherman et al., 2023), at least for the forget-

ting rates for which the network preferred words to part-words. In a

first analysis, I recorded the total network activation after each syl-

lable in a word had been presented. These activations were averaged

for each syllable position (word-initial, word-medial and word-final)

and for each participant after removing the first 200 words from the

familiarization stream (during which the network wasmeant to learn).

As shown in Figure 3 and Table B2, activation was highest after

word-final syllables (though not for very low forgetting rates for which

no learning occurred either). As a result, a simple Hebbian learning

model can account for rhythmic activity in electrophysiological record-

ings with a period equivalent to the word duration. Critically, and

as mentioned above, while previous electrophysiological responses to

statistical structured streams were interpreted in terms of a response

to word onsets (e.g., Abla et al., 2008; Cunillera et al., 2006; Kudo et al.,

2011; Sanders et al., 2002; Teinonen et al., 2009), the current results

suggest an alternative interpretation of such effects. Rather than sig-

naling the beginnings and ends of words, an activation maximum after

the third syllable of each word might reflect the predictability of the

third syllable, while a sudden drop in activation after the first syllable

might indicate the lack of predictability. Importantly, such activation

maxima can arise even if no word is stored inmemory.5

3.3 Does the network track specific frequencies?

I next analyzed the frequency response of the network. Specifically,

I estimated the spectral density of the time series corresponding to

the total network activation after each time step (again after a burn-

in of 200 words), separately for each decay rate and simulation. I

then extracted the frequency with the maximal density. As shown in

Figure 4a, the modal frequency for decay rates of at least 0.4 was 1/3,

corresponding to a period of three syllables. These results thus sug-

gest again that a simple Hebbian learning mechanism can entrain to

statistical rhythms in the absence of memory for words.

The analyses of the network activations suggest that activations

are strongest for word-final syllables, and that the network entrains

to a periodicity of three syllables. However, the traditional interpre-

tation of electrophysiological responses to statistical learning is that

neural responses index word-initial syllables. To address this issue
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6 of 16 ENDRESS

F IGURE 2 Results based on the global activation as ameasure of the network’s familiarity with words (ABC items) and part-words (BC:D and
C:DE items), using forgetting rates (Λ) between 0.1 and 0.9. (a) Difference scores betweenwords and part-words. Significance is assessed using
Wilcoxon tests against the chance level of zero. (b) Percentage of simulations with a preference for words over part-words. The dashed line shows
theminimum percentage of simulations that is significant according to a binomial test. Bothmeasures show significant preferences for words over
part-words for forgetting rates of at least 0.5.

more directly, I calculated the phase of the network activation relative

to wave forms with maxima on word-initial, word-medial and word-

final syllables, respectively. Specifically, I calculated the cross-spectrum

phase at the winning frequency between the total network activation

and (1) three cosine reference waves with maxima on the first, sec-

ond or third syllable of a word, respectively, as well as (2) a saw-tooth

function with its maximum on the third syllable. As shown in Figure 4b

and Table B4, the activation had a small relative phase relative to the

cosine with the maximum on the third syllable or the saw tooth func-

tion. In contrast, the phase relative to the cosine with the word-initial

maximum was around 120ž, while that relative to the cosine with the

maximum on the second syllable was around -120ž. These spectral

analyses thus confirm that, at least for reasonable decay rates, the

activation increases towards the end of a word, and that the network

activation is roughly in phase with a function with a maximum on the

third syllable.

3.4 Memory for word onsets versus offsets (Fló
et al., 2022)

The results so far suggest that a simple Hebbian network can repro-

duce rhythmic activity in the absence of memory for words. However,

Fló et al. (2022) provided electrophysiological data suggesting that
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ENDRESS 7 of 16

F IGURE 3 Average total network activation for different syllable positions (𝜎1, 𝜎2, 𝜎3) during the familiarization with a stream following
Saffran, Aslin et al. (1996). The facets show different forgetting rates. The results reflect the network behavior after the first 50 presentations of
each word. In this and all other violin plots, red dots represent sample averages, the error bar the standard error from themean, and the violin the
distribution of the sample. Except for low forgetting rates, the network activation is maximal during the presentation of the word-final syllable.

F IGURE 4 Spectral analysis of the total network activation during
the familiarization with a stream following Saffran, Aslin et al. (1996).
The results reflect the network behavior after the first 50
presentations of each word. (a) Maximal frequency as a function of the
forgetting rate. For forgetting rates where learning takes place, the
dominant frequency is 1/3, and thus corresponds to the word-length.
(b) Relative phase (in degrees) at themaximal frequency of the total
network activation relative to (from top to bottom) a cosine function
with its maximum at word-initial syllables, word-medial syllables and
word-final syllables, respectively, as well as a saw tooth function with
themaximum on the word-final syllable. For forgetting rates where
learning takes place, the total activation is in phase with a cosine with
its maximum on the word-final syllable as well as with the
corresponding saw tooth function.

neonates retain at least the first syllable of statistical defined words,

if not the entire words. Specifically, after exposure to a speech stream,

they presented newborns with items starting with two syllables that

occurred word-initially (AB. . . ), and with items starting with a word-

medial syllable (BC. . . ) and observed early ERP differences between

these items.

To reproduce these results, I measured the activation of the net-

work in response to isolated, bisyllabic AB and BC items, respectively.

As shown in Figure 5a and Table B5, the network activation was

always greater in response to BC items than to AB items except for

the largest decay rates. The reason is presumably that BC associa-

tions are somewhat stronger than AB associations (see Figure 5b),

thus leading to more spreading activation in BC items than in AB

items. Be that as it might, these analyses show that a memory-

less system can reproduce differential responses to AB and BC

items.

3.5 Effects of word-length

I next asked whether the network can entrain to statistical regularities

when the familiarization streams are composed of words of arbitrary

length. Intuitively, given that theperiodicity reportedhere arises due to

the increasing cumulative excitatory input towards the ends of words,

onewould expect the network to beunable to track statistical periodic-

ities for excessively longwords.After all, for sufficiently longwords, the

activation from earlier syllables will have disappeared once the input

reaches the end of a word.
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8 of 16 ENDRESS

F IGURE 5 (a) Average difference in the total network activation for the first two syllables of a word (AB) and the first to syllables of a
part-word (BC) after familiarization with a stream following Saffran, Aslin et al. (1996). The results reflect the network behavior after the first 50
presentations of each word. Positive values indicate greater activation for AB items than for BC items. (b)Weights between pairs of syllable
representations for different forgetting rates (facets). BC connections are somewhat stronger than AB connections.

There is some evidence supporting this idea. For example, Benjamin,

Fló, Palu et al. (2023) did not find neural entrainment to four-syllable

words in newborns (though a failure to detect entrainment might have

other reasons than the word-length). Computationally, however, it is

also conceivable that networks can deal with longer words, if spread-

ing activationdue tohigherorder associations are sufficient to increase

the network activation towards the end of a word.

To examine this issue, I repeated the simulations above, but with

word-lengths between 3 and 18 syllables, again for the same forget-

ting rates as in the simulations above and 100 simulated participants. I

estimated the spectral density of the time series corresponding to the

total network activation after each time step (again after a burnin of

200 words), separately for each decay rate and simulated participant.

I then extracted the frequency with the maximal density, and averaged

these frequencies across participants.

As shown in Figure 6, the network successfully tracked the peri-

odicity for word-lengths of up to and including eight syllables. For

eight-syllablewords, thewinning frequencywas either
1

8
or

1

4
, depend-

ing on the forgetting rate. In other words, the network sometimes

extracted a periodicity whose period was a fraction of the actual

word-length. For longer words, the winning frequency was generally a

fraction of the word-length, withmultipliers of 2 or 3.

As a result, there seems to be a limit to how long words can be so

that the network can entrain to a statistically induced rhythm. Here,

the limit seems to be a word-length of eight syllables, but the specific

limit likely depends on the interplay between the forgetting, excitation,

and inhibition parameters.6

3.6 Representational similarity analysis for TPs,
ordinal positions, and word identity (Henin et al.,
2021)

Other investigators used electrophysiological recordings to probe

how more abstract information is extracted from statistically struc-

tured sequences. For example, Henin et al. (2021) used intracranial

recordings to reveal the kinds of representations that emerge

during exposure to statistically structured auditory and visual

sequences.

In both modalities, activity in lower-order brain areas (such as

the superior temporal gyrus in the auditory modality and occipital

and parietal cortex in the visual modality) showed rhythmic activ-

ity with periodicities matching both the syllable durations and the

word durations (or their visual equivalents). In contrast, higher-order

brain areas (such as the inferior frontal gyrus and anterior tempo-

ral lobe in auditory modality and the frontal, parietal, and temporal

cortex in the visual modality) entrained only at the word-level (or

its visual equivalent). Such results might suggest that higher-order

brain areas specifically engage in processing of entire statistically

defined units. However, given that the current simulations suggest

that the word-level rhythmicity might reflect an activation maximum

for the most predictable item, it is also possible that this maxi-

mal activation is more easily transmitted to subsequent processing

stages. Given that the current model just comprises a single level

of processing, it thus cannot reproduce such regional processing

differences.
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ENDRESS 9 of 16

F IGURE 6 Entrainment as a function of word-length. (a) Dominant frequency as a function of the forgetting rate (x-axis,Λ) and the
word-length (3–18 syllables; facets). (b)Most frequent dominant frequencies across forgetting rates as a function of the word-length. For words of
up to and including eight syllables, the network entrains to a frequency equivalent to the word-length. For words of eight or more syllable, the
network entrains to amultiple of that frequency.

Henin et al. (2021) also asked how neural populations encode TPs,

ordinal positions within words (i.e., word-initial vs. word-medial vs.

word-final syllables or their visual analogs) as well as word identity.

Using representational similarity analyses, they found that all three

types of information are encoded, albeit in different brain areas: TPs

were encoded by electrodes entraining to both the syllable- and word-

level rhythms, while ordinal positions were encoded by electrodes

entraining only to theword-level rhythm. Finally, electrodes entraining

to the word-level rhythm as well as electrodes located in the hip-

pocampus encodedword identity.More specifically, Henin et al. (2021)

found that the representations of pairs of syllables matching in one of

these representational features (i.e., low incoming TPs; same ordinal

position; same word) were more similar to one another than those of

pairs of syllablesmismatching in these features (i.e., high incoming TPs;

different ordinal positions; different words).

However, behavioral data raises doubts about the functional role of

these representational encodings, and, in fact, decodable information

does not necessarily have a functional role.7 For example, Henin et al.

(2021) operationalize low TP syllables as syllables with low incoming

TPs (i.e., word-initial syllables), and high TP syllables as syllables with

high incoming TPs (i.e., word-medial and word-final syllables). How-

ever, this contrast is unlikely to reflect the computational properties

of statistical learning, given that TPs do not appear to be directional

(e.g., Endress & Wood, 2011; Jones & Pashler, 2007; Turk-Browne &

Scholl, 2009). In fact, low incoming TP syllables such as word-initial

syllables have high outgoing TPs (because they are highly predictable

fromword-medial syllables through backwards TPs), while high incom-

ing TP syllables can have low outgoing TPs. Behaviorally, however, TPs

do not seem to be directional.

Likewise, while Henin et al. (2021) propose that learners track ordi-

nal positions of syllables within words, substantial behavioral evidence

suggests that such positional codes are not available after familiariza-

tions with continuous sequences (e.g., Endress & Bonatti, 2007, 2016;

Endress & Mehler, 2009a; Marchetto & Bonatti, 2013; Peña et al.,

2002). (While some evidence seems to support the existence such

positional codes (e.g., Fló, 2021; Frost & Monaghan, 2016), Frost and

Monaghan’s (2016) results could not be replicated in Spanish/Catalan

speakers (Canudas Grabolosa & Bonatti, unpublished data) or in lab-

based or online English speakers (Endress, unpublished data). Further,

as shown in Supplementary Material B.6, both sets of studies have

alternative interpretations.)

Here, I, thus, propose an alternative interpretation of Henin et al.’s

(2021) representational similarity analyses, and suggest that basic

associative processes such as those implemented in the current model

are sensitive to the same kinds of information on which those anal-

yses rely. This is because syllables in the same ordinal position share

contexts, and might be co-activated together with those contexts. For

example, syllables in word-initial positions all follow the same set of
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10 of 16 ENDRESS

word-final syllables. As a result, if a syllable and its context activate

each other, one would expect a certain degree of representational

overlap of syllables sharing a sequential position, even in the absence

of any positional codes.

Likewise, representations of syllables from the sameword are likely

more similar to one another than syllables from different words, again

simply because they are likely co-activated with similar contexts (i.e.,

the rest of the words).

To evaluate these ideas, I calculated the representations of sylla-

bles in the following way. First, I extracted the activation in all neurons

in all time steps (after burn-in). I then calculated, for each forgetting

rate, each simulated participant and each currently presented sylla-

ble, the average activation vector (across different presentations of

the same syllable) and considered this average the “representation”

of a syllable. To simulate Henin et al.’s (2021) representational simi-

larity analyses, I calculated the cosine similarity (i.e., the normalized

dot product) across the representations of the critical syllable pairs

described below. Finally, I calculated an average similarity for each

forgetting rate, simulated participant and syllable pair category.

As mentioned above, Henin et al. (2021) analyzed the similarity of

representations based on (1) shared TPs, (2) shared ordinal positions,

and (3) shared words. Their operationalization of TP encoding relied

on the contrast between syllables with low incoming TPs (i.e., word-

initial syllables from different words) and syllables with high incoming

TPs (i.e., word-medial and word-final syllables). In line with their anal-

yses, I, thus, asked whether the representations of pairs of syllables

with low incoming TPs (i.e., pairs of word-initial syllables) would be

more similar to each other than pairs of syllables with high incoming

TPs (i.e., pairs of word-medial syllables and pairs of word-medial and

word-final syllables; Henin et al. (2021) did not test pairs of word-final

syllables). I then averaged these similarity scores for each forgetting

rate, simulated participant and pair category (low vs. high incoming

TPs), and compared these similarity scores in the difference score
Low incoming TPs−High incoming TPs

Low incoming TPs+High incoming TPs
against the chance level of zero, using a

Wilcoxon test.

In line with Henin et al.’s (2021) operationalization of the encod-

ing of ordinal positions, I asked whether the representations of pairs

of syllables sharing an ordinal positions were more similar to one

another than pairs of syllables from different ordinal positions. Again,

I averaged these similarity scores for each forgetting rate, simulated

participant, and pair category (matching vs. mismatching positions),

and compared the difference score
Match−Non-match

Match+Non-match
against the chance

level of zero, using aWilcoxon test.

Finally, in line with Henin et al.’s (2021) operationalization of word

encoding, I asked whether the representations of pairs of syllables

from the same word were more similar to each other than pairs

of syllables from different words. Again, I averaged these similarity

scores for each forgetting rate, simulated participant and pair category

(matching vs. mismatching word), and compared the difference score
Match−Non-match

Match+Non-match
against the chance level of zero, using aWilcoxon test.

As shown in Figure 7a and Table B6, the representations of low

incoming TP syllables were less similar to each other than the rep-

resentations of high incoming TP syllables (i.e., syllables in noninitial

positions). Likewise, and as shown in Figure 7b and Table B6, pairs of

syllables matching in their ordinal positions were less similar to each

other than pairs of syllables notmatching in their ordinal positions. The

current model is, thus, sensitive to the same encodings as Henin et al.’s

(2021), though the sign of the similarity difference is inverted. I will dis-

cuss possible reasons for this inversion below.8 Finally, and as shown

in Figure 7c and Table B6, pairs of syllables from the same word were

more similar to one another than syllables from different words.

Asmentionedabove, these results likely reflect the typesof syllables

that are co-activated. To illustrate this idea, I summed the activations

of all other syllables while a focal syllable was presented, separately

for each sequential position of the co-activated syllables. For example,

while the word-initial syllable A was presented, I separately summed

the activations of all other word-initial syllables (excluding A), all

word-medial syllables, and all word-final syllables, and averaged these

sums for all (word-initial, word-medial, or word-final) focal syllable

types. As shown in Figure 7d, and unsurprisingly given the local-

ist coding scheme used here, there was little co-activation between

syllables of the same (positional) type. In contrast, during presenta-

tion of word-initial syllables, word-final syllables were still relatively

active. Likewise, during presentation of word-medial syllables, word-

initial syllables were relatively active, and word-final syllables were

co-activated with word-medial syllables.

These co-activations explain why the network can reproduce Henin

et al.’s (2021) operationalization of TP encoding (albeit with an

inverted sign). There is little co-activation among word-initial syllables

(that is, Henin et al.’s (2021) operationalization of low TP syllables),

though there is some overlap in their representations because they

are co-active with word-medial and word-final syllables. In contrast,

word-medial andword-final syllables (that is,Henin et al.’s (2021) oper-

ationalization of high TP syllables) are co-activated, and thus show

greater representational overlap.

These co-activations also explain why the network can reproduce

Henin et al.’s (2021) encoding of ordinal positions (again with an

inverted sign). As mentioned above, to the extent that syllables in the

same position have overlapping representations across words, it is via

the lingering activation of syllables in different positions rather than in

the same position.

The reason for the inversion of the sign of the difference for TP- and

position-based similarity measures with respect to Henin et al. (2021)

is presumably thedifferent time course of the activations in the current

model compared to actual biological tissue. In the current simulations,

a syllable duration is a discrete time-step. The activations reported

here are, thus, snapshots ofmore continuously evolving activations. As

a result, the representations of, say, word-initial and word-final sylla-

bles overlap, given that these syllables excite each other in the same

time step and still have lingering representations from previous time

steps. In contrast, given the localist coding scheme used here, there

is no overlap in the representations of syllables occupying the same

sequential position.

In contrast, with more realistic activation time courses, the time-

resolved similarity measures used by Henin et al. (2021) can capture

the actual time courses of the associative activations. For example,
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ENDRESS 11 of 16

F IGURE 7 (a–c) Simulations of the representational similarity analyses fromHenin et al. (2021). The similarity was calculated as the cosine
similarity of the average activation vectors elicited by a given syllables. (a) TP encoding. Representations of syllables with weak incoming forward
TPs (i.e., word-initial syllables) are less similar to each other than representations of syllables with strong incoming forward TPs (i.e., word-medial
and word-final syllables). (b)Ordinal position encoding. Representations of syllables sharing an ordinal position (i.e., word-initial, word-medial, or
word-final) are less similar to each other than representations of syllables not sharing an ordinal position. (c)Word identity encoding.
Representations of syllables belonging to the sameword but not sharing an ordinal position aremore similar to each other than syllables from
different words also not sharing an ordinal position. (d) Pattern of co-activations. Sum of co-activations of syllables in different sequential positions
(x-axis) during presentations of word-initial, -medial and -final syllables (columns), for different forgetting rates (rows). Most concurrently
activated syllables occupy a different ordinal position than the currently presented syllable.

upon presentation of aword-initial syllable, suchmeasures can capture

any lingering activation of the representations of the preceding word-

final syllable as well as its reactivation through excitation from the

word-initial syllable. Likewise, upon presentation of a word-final sylla-

ble, such measures can capture the time-courses of activations of the

upcomingword-initial syllables. In contrast, suchmeasures are unlikely

tomake the representations of syllablesmore similar if they come from

different ordinal positions. For example, word-medial and word-final

syllables are presumably active simultaneously, but their time course

is likely to be different: while word-medial syllables activate upcoming

word-final syllables, there is lingering activation of word-medial sylla-

bles while word-final syllables are presented. I surmise that these time

series make the same same-position representations more similar (at

least for word-initial and word-final syllables), without increasing the

representational similarity across ordinal positions. Be that as it might,

the current model can differentiate between the strength of incoming

TPs and between different sequential positions.

Taken together, these results suggest that basic associative mecha-

nisms are sensitive to the same kinds of information on which Henin

et al.’s (2021) representational similarity analyses are based. However,

to decide between Henin et al.’s (2021) and the current interpretation

of these results, a better understanding of the functional role of these

representational encodings and of their physiological mechanisms

is required.

4 DISCUSSION

To acquire the words of their native language, learners need to extract

them from fluent speech, and might use co-occurrence statistics such
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12 of 16 ENDRESS

as TPs to do so. If so, high-TP items should be stored in memory for

later use as words. Strong evidence in favor of this possibility comes

from electrophysiology, where rhythmic activity has been observed in

response to statistically structured sequences. In the time domain, dif-

ferent authors have observed amplitude peaks around the boundaries

of statistically defined words (e.g., Abla et al., 2008; Cunillera et al.,

2006; Kudo et al., 2011; Sanders et al., 2002; Teinonen et al., 2009);

in the frequency domain, a frequency response with a period of the

word duration emerges as participants learn the statistical structure of

the speech stream (e.g., Batterink, 2020; Batterink &Paller, 2017; Ben-

jamin, Fló, Palu et al., 2023; Buiatti et al., 2009; Choi et al., 2020; Fló

et al., 2022; Henin et al., 2021; Kabdebon et al., 2015; Moreau et al.,

2022;Moser et al., 2021; Sherman et al., 2023).

Here, I show that such results can be explained by a simple Hebbian

learning model. When exposed to statistically structured sequences,

the network activation increased towards the end of words due to

increased excitatory input from second order associations. As a result,

the network exhibits rhythmic activity with a period of a word dura-

tion, at least when the words were not excessively long. Critically,

given that the network could reproduce these results in the absence of

memory representations forwords, earlier electrophysiological results

might also index the statistical predictability of syllables rather than

theacquisitionof coherentunits. For example, andasmentionedabove,

N400 and other time-locked effects observed in statistical learning

tasks (e.g., Abla et al., 2008; Cunillera et al., 2006; Kudo et al., 2011;

Sanders et al., 2002; Teinonen et al., 2009) might not index the onset

of words, but rather the lack of predictability of word-initial syllables

(or the increased predictability of word-final syllables). This would also

be more consistent with the initial description of the N400 compo-

nent as an ERP component that indexes unpredictable events (Kutas &

Federmeier, 2000).9

I also show that this network can account for a number of other

results. For example, while Henin et al. (2021) proposed that par-

ticipants in a statistical learning task can develop specific codes for

ordinal positions in words, I show that such codes might actually

reflect the context in which different items occur, in line with the

proposal that such codes are not available after continuous familiariza-

tions (e.g., Endress & Bonatti, 2007, 2016; Endress & Mehler, 2009a;

Marchetto & Bonatti, 2013; Peña et al., 2002; but see Fló, 2021; Frost

& Monaghan, 2016 and Supplementary Material B.6). However, to

decide between Henin et al.’s (2021) and the current interpretation

of the positional encodings, a better understanding of the functional

role of these encodings and of their physiological mechanisms is

required.

As mentioned in the introduction, the view that statistical learning

does not necessarily lead to storage in declarative memory is consis-

tent with long-established dissociations between declarative memory

and implicit learning (e.g., Cohen & Squire, 1980; Finn et al., 2016;

Graf & Mandler, 1984; Knowlton et al., 1996; Poldrack et al., 2001;

Squire, 1992). It is also consistent with a variety of behavioral results

(see Endress & de Seyssel, under review; Endress et al., 2020, for crit-

ical reviews), including behavioral preferences for unattested high-TP

items (e.g., Endress & Langus, 2017; Endress &Mehler, 2009b; Endress

& Wood, 2011; Jones & Pashler, 2007; Turk-Browne & Scholl, 2009),

and the inability of adult learners to repeat back words from famil-

iarization streams with as few as four words Endress and de Seyssel

(under review) and even when they entrain to a statistical rhythm

(Batterink, 2020).

While different memory systems can interact during acquisition

(Robertson, 2022) and statistical learning might thus facilitate subse-

quent word learning, learners might still need to rely on other cues to

identifywords andwordboundaries in fluent speech. Such cues include

using known words as cues to word boundaries for other words (e.g.,

Bortfeld et al., 2005; Brent & Siskind, 2001; Mersad & Nazzi, 2012),

paying attention to beginnings and ends of utterances (e.g., Monaghan

& Christiansen, 2010; Seidl & Johnson, 2008; Shukla et al., 2007),

phonotactic regularities (e.g., McQueen, 1998), and universal aspects

of prosody (e.g., Brentari et al., 2011; Christophe et al., 2001; Endress

& Hauser, 2010; Pilon, 1981). Computational results suggest that such

cues are promising, given that a computational model attending to

utterance edges showed excellent segmentation and word-learning

abilities (Monaghan &Christiansen, 2010).

In contrast, statistical learning might well be important for pre-

dicting events across time (e.g., Endress & de Seyssel, under review;

Morgan et al., 2019; Sherman & Turk-Browne, 2020; Turk-Browne

et al., 2010; Verosky & Morgan, 2021) and space (Theeuwes et al.,

2022), an ability that is clearly critical for mature language processing

(e.g., Levy, 2008; Trueswell et al., 1999) as well as many other pro-

cesses (e.g., Clark, 2013; Friston, 2010; Keller & Mrsic-Flogel, 2018).

This suggests that predictive processing might also be crucial for word

learning, but it is an important topic for further research to findouthow

predictive processing is used during language acquisition and which

mechanisms are used for word segmentation.
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ENDNOTE
1An alternative explanation of such results is that learners do have declar-

ative memory representations of statistically defined units, but then

mentally reverse them to recognize backward items, or recognize unheard
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items by computing their similarity to attested items. To date, however,

there is no evidence for this possibility.
2There is substantial evidence that neural activation can be suppressed for
predictable stimuli (e.g., de Lange et al., 2018), which is likely important

of adaptive behavior (e.g., for learning; Stahl & Feigenson, 2017). Here, I

just seek to provide a proof-of-conceptmodel suggesting that simpleHeb-

bian learning mechanisms can explain rhythmic brain activity in response

to statistical learning tasks. Detection of predictable or old stimuli might

rely on subsequent processing and involve complex computational mech-

anisms beyond the scope of the current investigations (e.g., a comparator

mechanisms for novelty detection in the hippocampus; e.g., Kumaran &

Maguire, 2007).
3These choices are to some extent arbitrary. While, in the current imple-

mentation, only excitatory connections are tuned by learning, the same

results can likely be reproduced by tuning inhibition, for example, through

tunable disinhibitory interneurons (Letzkus et al., 2011). Likewise, decay

and interference might also affect connection weights rather than only

activations (see Tovar &Westermann, 2023 vs. Endress & Johnson, 2023).

Here, I just seek to show that Hebbian learning can explain rhythmic neu-

ral activity in a statistical learning taskwith a fairly generic networkmodel,

with no claim to psychological or biological realism.
4While I use the label “decay,” I do not claim that “decay” reflects a psycho-

logical processes. The current implementation uses decay as amechanism

to limit activations in time, but the same effect could likely be obtained

through inhibitory interactions or other mechanisms.
5The reason for which lower forgetting rates do not necessarily lead to

rhythmic activity is the interplay between decay and inhibition. To assess

this possibility, I recorded the number of active neurons after a burn-in

phase of 600 items. As shown in Table B3 and Figure B1, more neu-

rons remain active when the decay rate is lower, and can thus inhibit

other neurons. When decay limits the effect of residual inhibitory input

from other neurons, the pattern of connections between neurons then

enables the network to exhibit periodic activity as well as a preference

for high-TP items over low-TP items. In fact, for decay rates below 0.4, the

estimated frequencies were 1/600 (i.e., the reciprocal of the total num-

ber of syllables) or 1/300, suggesting that no meaningful periodic activity

was detected.
6See Supplementary Material C for other quantitative results where the

networkmakes incorrect predictions.
7To take a non-psychological example, audio recordings often contain noise

from the electric grid from which spatial and temporal localization infor-

mation can be decoded (e.g., for forensic purposes; e.g. Grigoras, 2005).

While this information is clearly present in the recordings, it is not rele-

vant for the primary means by which audio information is consumed (i.e.,

by listening to it). Mutatis mutandis, some information might be present

in neural activity as a side effect of the mechanics of neural processing,

but whether this information is behaviorally relevant is an independent

and empirical question, similarly to how, over evolutionary times, pheno-

typic traitsmight not have evolved for specific purposes, but rather reflect

“spandrels” that evolved as side effects of other evolutionary processes.
8The current model cannot reproduce Henin et al.’s (2021) result that TP

and positional encoding predominantly occurs in different sets of elec-

trodes, simply because the current model comprises only a single level

of processing.
9Of course, the ability of a Hebbian network to reproduce electrophysio-

logical results does not necessarily imply that statistically defined units

are not also represented as integrated memory items. A possible predic-

tion to separate the word-learning view from the mere association view

relies on the fact that TPs are not directional (e.g., Endress &Wood, 2011;

Jones & Pashler, 2007; Turk-Browne & Scholl, 2009). As a result, accord-

ing to the mere-association view, after prefamiliarization with a speech

stream composed of words such as ABC, DEF, and GHI, entrainment to

a speech stream composed of reversed words such as CBA, FED, and
IHG, should be immediate, and much faster than entrainment to a speech

stream composed of scrambled words such as ECG and FAH. In contrast,

the word-learning view would predict that words need to be relearned in

both the reversed and the scrambled stream, with similar lead times until

a rhythmic response emerges.
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