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Abstract
This paper is the first to study difference-form group contests, that is, contests fought
among groups where their probability of victory depends on the absolute difference
of their effective efforts. We show that key equilibrium variables in these contests
can be expressed as a function of a modified version of the Watts poverty index. We
use the properties of this index to study the impact of heterogeneity, both within and
between groups. In the case of homogeneous groups, we show that multiple groups
can be active in equilibrium and that more groups are active and aggregate effort is
higher the more similar their valuations of victory are. We then characterize equilibria
under heterogeneous groups. We show that within-group heterogeneity is typically
detrimental to the success of a group in the contest. Groups may have an incentive to
become more homogeneous in order to increase their chances of victory.
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M. Cubel, S. Sanchez-Pages

1 Introduction

Group conflicts are a constant among human and non-human animals, from clans of
otters fighting for the control of a river to alliances of countries at war over a resource.
Sports, elections, lobbying and R&D races are other contexts where players, political
parties or firms pool their efforts to attain a joint objective. Because of the ubiquity
and welfare consequences of these group confrontations, economic theory is naturally
interested in understanding their outcome and the behavior of contenders.

The literature on group contests has developed along several themes such as the
effect of group size, the choice of sharing rules and alliance formation. 1 In this paper
we study another relevant issue: how the outcome of group contests depends on the
contest technology and on heterogeneity, both within and between groups.

We do this in a novel set up: difference-form contests. In these contests, contenders’
probability of success depends on the absolute difference between their effective
efforts. This type of probabilistic contest, introduced in Hirshleifer (1989, 1991), is
well suited tomodel confrontationswhere absolute performance is crucial.2 One exam-
ple is contests among workers where the chances of obtaining a promotion depend on
themargin bywhich aworker’s performance is above their colleagues’. The difference-
form contest technology we study in this paper displays two features that arise in many
applications. First, a contender who outpowers their rivals by a large enough margin
wins the contest with certainty.3 Analogously, a contender who expends zero effort can
enjoy a positive winning probability if their rivals are not too aggressive. Probabilistic
contests of the widely-used ratio form (Tullock 1980) display none of these features.4

Ours is the first paper to study difference-form group contests, that is, contests
among groups whose chances of victory depend on the difference between their effec-
tive efforts or impacts.5 These impacts result from the aggregation of individual efforts
within groups. This aggregation of efforts admits different technologies, from perfect
substitutes to perfect complements.

Because we are interested in contests where groups’ winning probabilities depend
on the absolute difference between their impacts, a key property we impose on our

1 See Bloch (2012), Kolmar (2013) and Flamand and Troumpounis (2015) for surveys of these strands of
the literature.
2 Difference-form success functions appear also in rank-order tournaments with random noise, from the
seminal Lazear and Rosen (1981) to more recent contributions such as Drugov and Ryvkin (2017). Cubel
and Sanchez-Pages (2021) explore the connection between tournaments à la Lazear and Rosen (1981) and
probabilistic difference-form contests of the type studied here.
3 This feature relates the group contests we study here with the group contests under all-pay auction
format studied in Barbieri and Malueg (2016), Chowdhury et al. (2016) and Barbieri et al. (2019). Che and
Gale (2000) derived conditions under which the mixed equilibria of the individual difference-form contest
converges to the one of the all-pay auction under complete information.
4 Probabilistic difference-form contest success functions have been micro-founded using non-cooperative
games (Gersbach and Haller 2009; Corchón and Dahm 2010), through mechanism design (Corchón and
Dahm2011; Polishchuk and Tonis 2013; Beviá andCorchón 2019) and in a Bayesian framework (Skaperdas
and Vaidya 2012).
5 Baik (1998) and Che and Gale (2000) were among the first to study two-player probabilistic difference-
form contests. Recently, Skaperdas et al. (2016) and Cubel and Sanchez-Pages (2021) generalized these
contests to non-linear impact functions. The latter also considered strictly convex costs and more than two
players.
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Difference-form group contests

difference-form success function is that it must be translation invariant. In other words,
if all groups increase their impact by the same fixed amount, so the absolute differ-
ences of their impacts remain invariant, their winning probabilities must not change.
Translation invariance is the counterpart to homogeneity of degree zero in ratio-form
contests.6

To ensure translation invariance,we employ a novel impact function, the technology
aggregating the efforts of group members into a measure of influence. This function
encompasses as particular cases the perfect substitutes and the perfect complements
technologies of aggregation.We thus contribute to the growing literaturewhich studies
group contests under different impact technologies. This literature has only dealt with
ratio-form contests so far.7 We also introduce a novel functional form for the effort
cost, which we assume to be exponential. This function encompasses linear costs as a
particular case, the standard assumption in the contest literature.

We start our analysis by studying the case of homogeneous groups, that is, when
members’ valuations of victory are the samewithin groups but different across groups.
In the literature, these homogeneous group valuations are often called group-specific
public good prizes (e.g. Baik 1993). We find that the non-existence of pure strat-
egy equilibria and the preemption result observed under linear costs in individual
difference-form contests (e.g. Che and Gale 2000) extends to linear group contests.
Preemption refers to the feature that in any pure strategy equilibrium all contenders
but one expend zero effort. We then show that as soon as the cost function becomes
strictly convexmore than one group can be active in equilibrium. The number of active
groups depends both on absolute and relative considerations: how many groups have
valuations above a certain activity threshold and how similar groups are to each other.

We then analyze the case of groups with heterogeneous valuations and study how
internal heterogeneity affects the number of active members and the success of groups
in the contest. Equilibrium characterization is more complex in this case as group
members with valuations below the activity threshold remain inactive. Nevertheless,
we are able to explore a number of relevant cases. In these cases, we show that equi-
librium variables such as group impacts and winning probabilities can be expressed
as a function of an affluence index, a modified version of the Watts poverty index
(Watts 1968; Zheng 1993). Modified poverty indices arise in this context because they
feature a poverty line akin to our activity threshold; groups or individuals are active
in the contest only if their valuation of victory is above that threshold. Our paper thus
contributes to the recent literature establishing links between the equilibria of conflict
and contest models and well-known measures of inequality and polarization.8

6 Translation invariance was first studied in group contests by Münster (2009). It can be traced back
to the indices of absolute inequality introduced by Kolm (1976a, b) and characterized by Blackorby and
Donaldson (1980).
7 Lee (2012) analyzed group contests with perfect complements efforts whereas Chowdhury et al. (2013)
studied the other polar case, the best-shot technology. Starting with Kolmar and Rommeswinkel (2013),
several papers have allowed for intermediate degrees of complementarity using CES impact functions.
Among these are Cubel and Sanchez-Pages (2014), Brookins et al. (2015), Choi et al. (2016), Cheikbossian
and Fayat (2018) and Crutzen et al. (2020).
8 Esteban and Ray (2011a), who pioneered this strand of the literature, linked conflict intensity to a
combination of inequality, polarization and fractionalization indices. Other papers in this vein include
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In the last part of the paper, we studywhethermore homogeneous ormore heteroge-
neous groups have a relative advantage in difference-form contests. In that comparative
statics exercise, we use the properties of the affluence index. We first show that aggre-
gate equilibrium effort in the case of homogeneous groups is an increasing function of
the index; in other words, total contest effort increases when group valuations become
more similar. For the case of heterogeneous groups, we show that homogeneity within
the set of active members increases the chances of a group in the contest. More homo-
geneous valuations above the activity threshold increase the effort of active members
and can make some inactive member become active. However, changes in the distribu-
tion of valuations that take place below the activity threshold or that fail to make more
members active have either no impact or are detrimental to the chances of victory of
the group.

The remainder of the paper is as follows: In Sect. 2 we present the difference-form
group contest we study. Section 3 and 4 analyze the cases of homogeneous and hetero-
geneous group valuations respectively. Section 5 studies the impact of heterogeneity
between and within groups on equilibrium total effort and winning probabilities.
We conclude and offer some further remarks in Sect. 6. Proofs are relegated to the
appendix.

2 The contest game

Let us consider a society exogenously divided into K ≥ 2 disjoint groups indexed by
k = 1, . . . K and populated by nk ≥ 1 individuals each. Denote the set of groups
by K and the total number of individuals in society by N . These K groups are
engaged in a contest which can have a sole winner. Members of these groups can
expend non-negative efforts in order to help their group win the contest. Depending
on the specific application, these efforts can be money, time or weapons. Denote by
xk = (x1k, . . . , xnk k) the vector of individual efforts in group k and by x the vector
(x1, . . . , xK ) . We will say that a member i = 1, . . . , nk is active if xik > 0 , that a
group k is active if at least one of its members is active, and that it is fully active if all
its members are active.

2.1 The impact function

We assume that the efforts of group members are aggregated according to the impact
function

hk(xk) = ln

(
1

nk

nk∑
i=1

e−γ xik

)− β
γ

. (1)

Cubel and Sanchez-Pages (2014), Andonie et al. (2019) and Vesperoni and Yıldızparlak (2019), who
Footnote 8 continued
established links between equilibrium outcomes in contests and the Atkinson index of inequality, the family
of Generalized Entropy indices and the Generalized Gini index respectively.
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Difference-form group contests

This aggregation technology is the natural logarithm of a CES function of exponen-
tial efforts. It is a non-decreasing function which satisfies hk(0) = 0. The parameter
β > 0 measures the sensitivity of the impact function to individual efforts, whereas
γ ≥ 0 measures the complementarity of efforts. When γ = 0 the impact of a group
becomes just the sum of its members’ efforts, i.e. hk(xk) = β

nk

∑nk
i=1 xik . That is,

efforts within the group are perfect substitutes (Olson 1965). When γ → ∞ then
hk(xk) =β · min{x1k, . . . , xnk k}, which corresponds to the weakest-link technology
(Hirshleifer 1983). The weakest-link impact function is the only case in which the
impact function hk(xk) is not strictly increasing in all its arguments.

The key feature of this impact function is that it is translatable: If all members
increase their effort by a fixed amount λ, then the group impact increases by a fixed
amount βλ. This concept is the additive counterpart of returns to scale, with the
parameter β > 0 corresponding the degree of translatability of the function. This is a
key property in difference-form contests, as we argue below.9

Let us mention that the impact function (1) satisfies anonymity as well.10 That is,
all members of all groups are equally efficient in transforming their effort into impact.
Later on, we will introduce individual heterogeneity in valuations of victory.

2.2 The contest success function

Impacts determine the winning probability of each group according to a Contest Suc-
cess Function (CSF), a function p : RN+ → �K mapping the vector of efforts x into a
vector of groupwinning probabilities such that

∑K
k=1 pk(x) = 1. Under risk neutrality

pk(x) can be thought of as the share of the prize associated to victory that group k
obtains. That said, we will favor the probability interpretation throughout the paper.

Given an effort vector x and the resulting profile of group impacts, let us order
groups in a decreasing manner by their impact, i.e. hk(xk) ≥ hk+1(xk+1). This can be
done without loss of generality given that our impact function satisfies between-group
anonymity as well (Münster 2009).11 Next, define K ∗ as the largest integer such that

1

K ∗ + hK ∗(xK ∗) − 1

K ∗
K ∗∑
l=1

hl(xl) > 0. (2)

Note that K ∗ = K when hk(xk) = 0 for all k. Observe also that if the above
condition holds for one group with impact hk(xk) = 0, then it must hold for all other
groups with zero impact too, and thus K ∗ = K . This implies that K ∗ can only take
two values: It is either equal to K or to the number of groups with positive impact.

9 Translatability appears in the indices of absolute inequality axiomatized by Blackorby and Donaldson
(1980). Our impact function is inspired by these indices (e.g., Pollak 1971; Kolm 1976a, b).
10 Formally, consider to two effort vectors xk and x′

k where x′
k is a permutation of xk . The impact function

is anonymous if hk (xk ) = hk (x′
k ).

11 Formally, the impact function is between-group anonymous if hk (xk ) = hl (xl ) for any two disjoint
groups k, l ∈ K whenever xk = xl .
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The group contest success function (CSF henceforth) that we employ here was
axiomatized in Cubel and Sanchez-Pages (2016) and it is defined as follows:

pk(x) =
⎧⎨
⎩

1
K ∗ + hk(xk) − 1

K ∗
K ∗∑
l=1

hl(xl) for k = 1, . . . , K ∗;
0 otherwise

(3)

This CSF establishes that groups with a positive but sufficiently low impact relative
to other groups have a zero winning probability. This is in sharp contrast with the
Tullock family of group CSFs where a positive impact ensures a positive winning
probability.Within the set of groupswith a positivewinning probability, the difference-
form group CSF in (3) relates chances of victory to the difference between a group’s
impact and the average impact of other groups in that set. If a group’s impact is above
(below) that average, its winning probability is above (below) the winning probability
the group would be awarded under a fair lottery, i.e. 1

K ∗ . It is important to note that
a group with zero impact can still enjoy a positive winning probability if the rest of
groups have sufficiently low impacts.

Note as well that under the group CSF in (3), the marginal benefit of effort of one
individual is independent of efforts in other groups as long as pk(x) ∈(0, 1). This
separability generates individual best response functions that are independent of other
groups’ efforts as long as the own group impact is not too high or too low

To fix ideas before proceeding any further, the reader may find useful to see how
the group CSF in (3) works in the two-group case. Ordering groups such that h1(x1) ≥
h2(x2), the two groups enjoy a positive winning probability, i.e. K ∗ = 2, if and only
if

1

2
+ h2(x2) − 1

2

2∑
l=1

hl(xl) > 0 ⇔ h2(x2) > h1(x1) − 1.

In that case, the marginal benefit of effort of members in each group is independent
of the effort in the other group. Otherwise, group 2 has a zero winning probability and
the marginal benefit of effort of members of group 1 drops to zero. Observe also that
group 2 enjoys a positive winning probability when its impact is zero if h1(x1) < 1.12

Finally, note that another key property of the CSF in (3) is that it is translation
invariant: Group winning probabilities do not change if all contenders increase their
effort by the same fixed amount. 13 This propertymust holdwhen success in the contest
depends on absolute differences in effort, usually because the metric of performance is
meaningful, e.g., Elo ratings in chess. As Cubel and Sanchez-Pages (2016) showed, a

12 The CSF for the two-group case could also be written following Che and Gale (2000) as

pk = max

{
min

{
1

2
+ hk (xk ) − hl (xl )

2
, 1

}
, 0

}
,

where the bounds replace the procedure to find K ∗ as defined in (2). Whilst the bounds formulation is
convenient for K = 2, it is not generalizable beyond that case.
13 Formally, the CSF is translation invariance if pk (x+λ·1) =pk (x) for all λ > 0 and k ∈ K.
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necessary condition for a group CSF to be invariant is that all group impact functions
must be translatable of the same degree. This property is satisfied by the impact
function we introduced in (1 ), which is translatable of degree β for any group size nk

and any degree of complementarity of efforts γ .

2.3 Effort cost

Members’ efforts are costly. Their cost is given by the following exponential cost
function:

c(xik) = eφxik − 1

φ
for φ ≥ 0. (4)

The parameter φ measures the convexity of the cost function or, in other words, the
speed at which the marginal cost of effort increases. Convexity is a natural assumption
in contests. Funds to finance a war or lobbying effort are increasingly costly to raise.
Similarly in sport contests, fatigue increases the marginal cost of competitive effort.
To the best of our knowledge we are the first to employ this particularly family of
cost functions in contests. Note that it encompasses as a particular case the linear cost
function when φ = 0; this is the assumption employed in most of the difference-form
contests studied in the literature. For any value of φ, observe that c′(0) = 1. As we
will see below, this contributes to individuals and groups remaining inactive in the
pure-strategy equilibria of the contest.

2.4 The group-contest game

Let us move to the study of the strategic interaction among the K groups engaged
in the contest. Victory can be interpreted as providing group members with a prize,
a territory, a pool of resources or the right to implement a particular policy. Group
members can be heterogeneous in their valuation of victory by their group. Denote by
vik the payoff that a member i of group k obtains in case her group wins the contest.
Depending on the interpretation of victory, the profile of valuations vk= (v1k,…,vnk k)

can be seen as a binding agreement on the distribution of the object being contested
or as the intensity of members’ feelings about the policy the group will implement in
case it prevails. We assume the valuation of defeat in the contest for all individuals is
zero.14

Summarizing, the payoff of a member i of group k is given by

uik(x) = pk(x)vik − c(xik). (5)

We look for the Nash Equilibrium in pure strategies of this group-contest game
where members decide how much effort to contribute to the success of their group

14 This iswithout loss of generality since vik can also be interpreted as the difference between the valuations
of victory and defeat.
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whilst taking as given the effort of outsiders and of their fellow group members. We
will refer to this simply as the equilibrium.

2.5 Note on exponential efforts

Before proceeding any further, let us mention that the contest with exponential efforts
presented above is equivalent to a contest with linear efforts where κik = exik after
imposing the restriction of κik ≥ 1. 15 The impact function in (1) would then become
the log of a standard CES function under the requirement that contributions to the
contest require a minimum investment ofκik = 1. This would correspond for instance
to armed conflicts in the Antiquity and the Middle Ages, when combatants were
supposed to show up in the battlefield with their own equipment. That of course meant
that, typically, only wealthier members of society could afford to fight in a war (Finer
1975). Note however that under κik = exik , the impact function (1) would no longer
be translatable and the CSF no longer translation invariant but scale invariant, i.e.,
homogeneous of degree zero (Cubel and Sanchez-Pages 2016).

2.6 Note onmixed strategies

In this paper, we study pure strategy equilibria only. But the group contest game admits
mixed strategy equilibria too. This is the case, for instance, when members of a group
value victory not enough to obtain a positivewinning probability against another active
group, but highly enough for its members to want to become active when that other
group is the only active one.

Mixed strategy equilibria remain outside the scope of this paper, though. This is
for two reasons. First, because mixed strategy equilibria are extremely cumbersome
to characterize in difference-form contests. Ewerhart (2021) and Ewerhart and Sun
(2018, 2020) have characterized the mixed equilibria of difference-form individual
contests with smooth noise à laHirshleifer. Unfortunately, the techniques they employ
there cannot be applied to the difference-form contests studied here. We have been
able to make only some small progress on that front for the n player version of our
contest game (Cubel and Sanchez-Pages 2021). Secondly, mixed strategy equilibria
are especially hard to characterize in group contests; we are aware of just a few group
contest papers investigating this (Barbieri et al. 2014; Chowdhury and Topolyan 2016;
Chowdhury et al. 2016), although they study all-pay auctions rather than probabilistic
contests like the one we explore here.

3 Homogeneous groups

As a first step in our analysis, let us start by exploring the case of homogeneous
valuations within groups. All members of group k have the same valuation of victory
vk . In the literature, homogeneous group valuations have been called group-specific
pure public goods (e.g. Katz et al. 1990). This case encompasses as a particular case

15 We thank Alberto Vesperoni for pointing this equivalence to us.
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the individual contest when nk = 1 for all k ∈ K which we analyzed for more general
impact functions in Cubel and Sanchez-Pages (2021). With this exercise, we can gain
some key intuitions on how difference-form group contests work and generalize some
results obtained in the contest literature.

In particular, we show next that when the cost of effort is linear, the preemption
effect observed in Baik (1998) and Che and Gale (2000) arises: At most one group
is active in any pure-strategy equilibrium. However, when the cost of effort is strictly
convex, more than one group can be active in equilibrium; even all of them, provided
their valuations of victory are not too heterogeneous.

Let us first write down the FOC resulting from maximizing the payoff function (5)
for member i of group k assuming that in equilibrium K ∗ groups enjoy a winning
positive probability:

∂uik

∂xik
= β

K ∗ − 1

K ∗
e−γ xik∑nk

j=1 e−γ x jk
vk − eφxik ≤ 0. (6)

If the inequality is strict formember i, shewill be inactive. Note that for any K ∗, the
efforts of outsiders have no direct effect on members’ best responses. This is because
our CSF is separable in group impacts. Therefore, the impact of a group enjoying a
positive winning probability in equilibrium is the one resulting from the equilibrium
of the internal game played among its members. The effort of outsiders has an indirect
effect, though. If the rest of groups have such a high impact that the group has a zero
wining probability by playing its internal equilibrium, all members would prefer to
remain inactive.

The SOC of the problem shows it is strictly concave:

∂2uik

∂2xik
= −β

K ∗ − 1

K ∗
γ e−γ xik

∑
j 
=i e−γ x jk

(
∑nk

j=1 e−γ x jk )2
vk − φeφxik < 0.

Therefore members’ best responses are uniquely defined. Note that the marginal
benefit of exerting effort, the first term in (6), is decreasing in the own effort and
increasing in the efforts of other members. This will play an important role in our
characterization of the equilibrium below.

3.1 Linear cost

Let us assume, as most of the literature on difference-form contests does, that the cost
of effort is linear, i.e. φ = 0. Under cost linearity, expression (6) boils down to

β
K ∗ − 1

K ∗
e−γ xik∑nk

j=1 e−γ x jk
vk ≤ 1.

As mentioned earlier, the left-hand side in this expression is strictly decreasing in
xik , so there cannot exist a generic equilibrium in which K ∗ > 1 and members within
a group exert different amounts of effort. Hence, every member is either active or

123



M. Cubel, S. Sanchez-Pages

inactive. Either way, all members make the same effort. The other alternative is an
equilibrium with K ∗ = 1, so one group wins the contest with certainty.

Knowing that equilibrium effort levels must be symmetric within each group, the
FOC above simplifies to

β
K ∗ − 1

K ∗
vk

nk
≤ 1,

so for group k to be active when K ∗ > 1 groups enjoy a positive winning probability
it must be that

vk

nk
≤ z(K ∗) ≡ 1

β

K ∗

K ∗ − 1
.

It will be very useful to denote ṽk = vk
nk

. Without loss of generality, let us index
groups in society decreasingly so ṽk ≥ ṽl for k < l. Note that, with this, we are
anticipating that groups with higher modified valuation ṽk will have higher impact in
equilibrium. Since all members of group k will remain inactive if ṽk < z(K ∗), we
refer to z(K ∗) as the activity threshold. Note that this threshold is decreasing in K ∗
and in the sensitivity of impact to effort β, i.e., the degree of translatability of the
impact function.

The above notation allows us to rewrite the FOC of any individual member as

ṽk

z(K ∗)
≤ 1.

This implies that in any generic pure strategy equilibrium at most one group will
be active in equilibrium. For two groups k and l to be active it must be that ṽk = ṽl .

So, either every group is inactive or only one group is active.16 On the other hand,
the equilibrium with only one active group, i.e., K ∗ = 1, requires that such group
wins with certainty. Clearly, the members of that group will not exert more effort than
necessary to ensure pk(xk, {0}l 
=k) = 1.Two necessary conditions for this equilibrium
to exist are 1) that members of the active group do not prefer rather to be inactive and 2)
that the valuations of victory of the inactive groups are small enough, so their members
do not have an incentive to become active.

The following proposition uses these observations to characterize the existence of
the two types of equilibria.

Proposition 1 Assume valuations of victory are homogeneous within groups and effort
cost is linear. If ṽ1 < z(K ) no group is active in equilibrium. Otherwise, at least one
pure strategy equilibrium exists if and only if ṽ2 < z(2). In those equilibria, only one
group is active and wins the contest with certainty.

Proposition 1 generalizes the preemption result observed by Baik (1998) and Che
and Gale (2000) in individual difference-form contests to the case of homogeneous

16 In the non-generic case where ṽk = ṽl , members of these groups are willing to supply as much effort
as needed to ensure their group wins. No equilibrium in pure strategy can exist then.
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group contests:With linear costs, at most one contender -individual or group- is active.
The reason is that, under linear effort cost, groups with a sufficiently high valuation
of victory would like to contribute as much effort as needed to win the contest with
certainty. When there are two or more such groups, an equilibrium in pure strategies
cannot exist. This is more likely to be the case the higher the sensitivity of impact
to efforts, as z(2) is decreasing in β. As in Che and Gale (2000), when β → ∞ the
contest becomes an all-pay auction and no equilibrium in pure strategies exists since
z(2) → 0.

This result sits in contrast with the equilibrium of Tullock group contests with
homogeneous groups and linear cost. There, a pure strategy equilibrium always exists
and at least two groups are active; groupswith low valuations remain inactive (Hillman
and Riley 1989). The difference between the two types of contests is driven by the
separability in group impacts of the difference-form CSF. In Tullock contests, the
marginal benefit of effort is decreasing in the impact of other groups. This rules
out scenarios where a pure strategy equilibrium cannot exist because two groups are
willing to provide as much effort as needed to win the contest regardless of the effort
of their opponents.

3.2 Strictly convex cost

Despite its prevalence in contest theory, linear cost functionsmight not describe best the
cost of effort in real-world contests. When effort is time or money that must be raised
in imperfectly competitive credit markets, its cost is likely to be convex. Moreover, the
predictions derived in linear cost contests can be rather non-robust as Esteban and Ray
(2001) showed for Tullock ratio-form contests. In Cubel and Sanchez-Pages (2021),
we showed that this is also the case in difference-form contests among individuals; the
full preemption result no longer holds as soon as cost linearity is assumed away. Next
we show this is also the case for difference-form group contests with homogeneous
valuations.

Let us first note that x∗
ik = x∗

jk for any two active members i and j in group k

for who (6) holds. If, on the contrary, x∗
ik > x∗

jk then ∂uik
∂xik

<
∂u jk
∂x jk

, contradicting that
the two members are best responding. Hence, all equilibria must be symmetric within
groups. This also implies that 1) if the equilibrium effort of at least one member is
strictly positive then it must be so for all other members; and 2) for a given K ∗, a
necessary condition for a group to be active in equilibrium is ṽk > z(K ∗).

Solving (6), we can obtain the equilibrium individual effort for an active group k
when K ∗ groups enjoy a positive winning probability:

x̂k(K ∗) = 1

φ
ln

ṽk

z(K ∗)
. (7)

Note that we have dropped the i subindex because this equilibrium must be sym-
metric as argued earlier. A necessary condition for this candidate equilibrium effort
to be positive is ṽk > z(K ∗). In what follows, it will become extremely convenient to
define the censored group valuation distribution ṽ∗ as a vector whose elements are
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ṽ∗
k = max{z(K ∗), ṽk}.

Censored valuations allow us to express the vector of candidate equilibrium efforts
x̂ in a compact way for both active and inactive groups:

x̂k(K ∗) = 1

φ
ln

ṽ∗
k

z(K ∗)
,

so x̂k(K ∗) = 0 when ṽk ≤ z(K ∗) as then ṽ∗
k = z(K ∗). We refer to x̂(K ∗) as the

candidate equilibrium profile because this profile is contingent on K ∗. It might be that
other groups are so aggressive that the group impact under x̂k(K ∗) does not secure the
group a positive winning probability. To fully characterize the equilibrium, we need
to find a number K ∗ such that when groups play the profile x̂(K ∗), precisely the K ∗
groups with the highest censored valuation ṽ∗

k have a non-zero probability of victory.
We do this next.

Proposition 2 Assume that valuations of victory within groups are homogeneous and
the cost of effort is strictly convex, i.e. φ > 0. Then, the difference-form group contest
admits an equilibrium where the number of groups with positive winning probability
is an integer K ∗ such that ṽK ∗+1 < z(K ∗) and

ṽ∗
K ∗ > e− β

φ(K∗−1) G̃∗
K ∗−1, (8)

where G̃ K ∗−1 = (
K ∗−1∏
l=1

ṽ∗
l )

1
K∗−1 is the geometric mean of the censored valuation of

groups k = 1, . . . , K ∗ − 1 .

Proposition 2 implies that, unlike in the linear cost case, more than one group can
enjoy a positive winning probability in equilibrium under strictly convex costs. Recall
that a pure strategy equilibrium with more than one active group is not possible under
constant marginal cost because when two groups have a sufficiently large valuation of
victory, their members want to supply as much effort as needed to win the contest with
certainty. An increasing marginal cost of effort rules out that scenario. When a group’s
valuation of victory is large enough, now the best response effort of their members
can be interior, and a pure strategy equilibrium with K ∗ ≥ 2 can exist. However,
preemption can still take place. It might be, for instance, that group 1 does not win the
contest with certainty but it is still the only active group in equilibrium if other groups
do not value victory much.

From Proposition 2 we can immediately derive the following condition character-
izing an equilibrium with at least two active groups.

Corollary 1 At least two groups are active in equilibrium if

ṽ2 > max{e− φ
β ṽ1, z(2)}.
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The first argument in the maximum function ensures that K ∗ ≥ 2, the second
that the equilibrium effort in group 2 is positive when K ∗ ≥ 2. Let us highlight the
stark contrast between the equilibrium under linear costs as described in Proposition 1
and the equilibrium under strictly convex costs characterized in Corollary 1. In the
former, at most one group is active in equilibrium whereas in the latter multiple active
groups are possible. Moreover, the existence of a pure strategy equilibrium with linear
cost fails if ṽ2 > z(2), whereas this same condition is a necessary condition for the
existence of an equilibrium where at least two groups are active in the strictly convex
cost case.

For an equilibrium with multiple active groups to exist, a group’s valuation of
victory must be above the activity threshold, i.e. ṽK ∗ > z(K ∗). This is due to the
aforementioned feature of the exponential cost function, namely that c′(0) = 1 for
any φ ≥ 0. In addition, as shown in (8), the valuation of victory must be high enough
relative to other groups’ valuations. Otherwise, the effort of members may be insuf-
ficient to secure a positive winning probability for the group. This should be seen
as a realistic feature. Not all groups in society or within an organization engage in
confrontation or influence activities; only those with a sufficiently intense preference
for victory. This is contrast with the equilibria of Tullock group contests with strictly
convex costs and homogeneous groups, where all groups are always active (Esteban
and Ray 2001).

Observe finally that the effect of the sensitivity of impact to efforts β on the num-
ber of active groups in equilibrium is ambiguous. An increase in β lowers the activity
threshold, so members of inactive groups have now more incentives to become active.
On the other hand, an increase in the sensitivity of impact to effort also makes groups
with high valuations increase their impact relatively more. Groups with lower valua-
tions may find that their impact is insufficient to obtain a positive winning probability,
so their members become inactive.

4 Heterogeneous groups

Next, we characterize the equilibria of the contest when valuations are heterogeneous
across group members. Unfortunately, the general analysis is too complex, and we
must restrict our attention to three particular but relevant cases where closed form
solutions can be obtained. Results for these cases show that multiple groups and
multiple members may be active in equilibrium; those with low enough valuations,
though, remain inactive. We also show that equilibrium variables can be characterized
as a function of a modified version of a well-known family of poverty indices. We
then exploit the properties of these indices to produce comparative statics.

Let us order members within groups in a decreasing manner such that vik > v jk for
i < j . Because members differ in their valuation of victory, it might be the case that
some members remain inactive in equilibrium. If this is the case, because the marginal
benefit of effort is decreasing in the own effort, it must be that if x∗

ik = 0 and x∗
jk > 0

then v jk > vik . In other words, the set of active members in the interior equilibrium of
an heterogeneous group is composed by those members with a high enough valuation
of victory.
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Let us turn our attention to the FOC of the problem faced by an active member.
Expression (6) becomes:

∂uik

∂xik
= e−γ xik

nk − n∗
k +∑n∗

k
j=1 e−γ x jk

vik

z(K ∗)
− eφxik = 0, (9)

where n∗
k denotes the number of active members in the candidate equilibrium. Given

the discussion above, the set of active members must be composed by the members
with the n∗

k highest valuations. Because the full characterization of n∗
k is not feasible

in general, we focus on three particular cases. We study them in what follows.

4.1 Linear impact

The case where members’ efforts are perfect substitutes, i.e. γ = 0, is the most
straightforward set-up with heterogeneous groups. This is the case most often stud-
ied in the Tullock group contests literature (e.g. Katz et al. 1990; Baik 1993, 2008;
Ryvkin 2011). Under perfect substitutes efforts, the group impact function is linear
and individual payoffs are fully separable in the effort of both outsiders and fellow
group members. The impact function becomes

hk(xk) = β

nk

nk∑
j=1

x jk .

The FOC in (9) implies that the candidate optimal effort choice of an active member
is

x̂ik(K ∗) = 1

φ
ln

ṽik

z(K ∗)
,

where, as in the homogenous case, we denote ṽik = vik
nk
. Hence, a group member is

active in this candidate equilibrium only if ṽik > z(K ∗). Let us again use the concept
of censored valuations to define the vector of members’ censored valuations ṽ∗

k as the
one whose elements are

ṽ∗
ik = max{z(K ∗), ṽik}. (10)

With this, we can write candidate optimal choices of both active and inactive mem-
bers succinctly as

x̂ik(K ∗) = 1

φ
ln

ṽ∗
ik

z(K ∗)
. (11)

For a given K ∗, expression (11) determines the candidate set of active members: It
consists of the n∗

k members whose censored valuation ṽ∗
ik is above z(K ∗). Again, we

refer to this as a candidate optimal choice because it might be that when n∗
k members
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exert effort x̂ik(K ∗) the resulting group impact is not high enough to make the group
obtain a positive winning probability given the impact of the other groups. In that case,
these members would rather become inactive.

A critical element in the characterization of the equilibrium is thus the distribution
of members’ valuations across groups with respect to the activity threshold z(K ∗).
In this endeavor, it will be convenient to exploit the fact that it is possible to express
groups’ equilibrium impacts and winning probabilities as a function of a modified
version of the Watts poverty index (Watts 1968). We thus need to define that index
before proceeding with that characterization.

Given a distribution v in a population of size N and a poverty line z, Watts (1968)
defined the poverty index

W (v,z) = 1

N

N∑
i=1

[ln z − ln v∗
i ]

= ln z − ln G∗,

where v∗
i = min{z, vi } is the censored distribution from above (rather than frombelow,

as we have been doing so far), G∗ is the geometric mean of that censored distribution
and z is the poverty line. This index measures poverty as the absolute welfare loss
due to poverty. It has a number of well known properties: It is distribution-sensitive,
decomposable and homogeneous of degree zero. Two other key properties of this index
are that changes in the distribution above the poverty line z have no effect on its value,
whereas increases in income or progressive transfers above the poverty line decrease
the index (Zheng 1993).

Let us define the symmetric counterpart of this index, that we will refer to as the
affluence index.

Wo(v,z) = 1

N

N∑
i=1

[ln v∗
i − ln z] (12)

= ln G∗ − ln z,

where v∗
i = max{z, vi }, G∗ is the geometric mean of the censored distribution from

below and z is the affluence line z. This index is bounded below by zero; Wo(v,z) = 0
when vi = z for all i .The properties of theWatts poverty index for changes in v around
the poverty line are reversed in the affluence version. Changes in the distribution below
z have no effect on the affluence index, whereas increases in income or progressive
transfers above the line increase the index.

Plugging the candidate equilibrium effort (11) into the impact function (1) and
using the affluence index defined above, it is possible to write group impacts as

hk (̂xk(K ∗)) = β

φ
[ln G̃∗

k − ln z(K ∗)] = β

φ
Wo (̃v∗

k ,z(K ∗)), (13)
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where G̃∗
k is the geometric mean of the distribution of censored valuations in group k

and Wo (̃v∗
k ,z(K ∗)) denotes the Watts affluence index of that censored valuation dis-

tribution ṽ∗
k with affluence line z(K ∗). After ordering groups decreasingly by their

affluence index Wo (̃v∗
k ,z(K ∗)), it is possible to state the following proposition char-

acterizing K ∗ and the groups’ winning probability in equilibrium.

Proposition 3 Assume group impact is linear, i.e. γ = 0. Then, the contest admits
an equilibrium where the number of groups with positive winning probability is an
integer K ∗ such that

Wo (̃v∗
K ∗ ,z(K ∗)) >

1

K ∗ − 1

⎡
⎣K ∗−1∑

k=1

Wo (̃v∗
k ,z(K ∗))−φ

β

⎤
⎦ , (14)

and max {̃v1k}K
k=K ∗+1 < z(K ∗). In that equilibrium, winning probabilities are given

by

p∗
k = max

⎧⎨
⎩0, 1

K ∗ + β

φ
Wo (̃v∗

k ,z(K ∗))−β

φ

1

K ∗
K ∗∑
l=1

Wo (̃v∗
l ,z(K ∗))

⎫⎬
⎭ . (15)

As in the homogeneous group case, it is important to explicitly characterize the
conditions under which equilibria exist where at least two groups are active. The next
corollary comes directly from Proposition 3.

Corollary 2 At least two groups are active in equilibrium if

Wo (̃v∗
2,z(2)) > max

{
0, Wo (̃v∗

1,z(2))−
φ

β

}
.

The linear impact case illustrates that the success of the group in a difference-form
contest rests on both its absolute affluence, i.e. Wo (̃v∗

k ,z(K ∗))must be strictly positive,
and on its relative affluence with respect to the affluence of the other groups, as defined
in (14). Groups with low affluence, that is, whose members have few valuations above
the activity threshold or by a small margin, are bound to lose the contest for sure. Note
the difference with Tullock group contests under linear impact, where all groups are
active and obtain a positive winning probability in equilibrium (Ryvkin 2011).

By expressing equilibrium variables (individual effort, group impact and winning
probabilities) as a function of the affluence index, we can use its properties to study
comparative statics. For instance, as the index is decreasing in the affluence line,
increases in the sensitivity of impact to efforts (which lower the line) have again an
ambiguous effect: A larger β can make group 2’s affluence large enough to become
active, i.e., Wo (̃v∗

2,z(2)) > 0, but also makes that group less affluent relative to group
1. In Sect. 5, we exploit the properties of the index to explore the effect of changes in
the distribution of valuations.
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4.2 All groups are fully active

Because under linear impact some groups and members are inactive, performing com-
parative statics is difficult: both the number of active members n∗

k and groups K ∗
change with changes in parameters. Comparative statics can be produced when the
within-group distributions of valuations are such that all groups are fully active in equi-
librium. This case eases out the equilibrium characterization because then n∗

k = nk

for all k ∈ K and K ∗ = K . We analyze this next.
In what follows, we will make extensive use of generalized means, also called

means of order r (Hardy et al. 1934). The mean of order r of the valuations in group
k is defined as

μr (vk) =

⎧⎪⎨
⎪⎩

[ 1
nk

∑nk
j=1(v jk)

r ] 1r for r ∈ R, r 
= 0

(
nk∏
j=1

v jk)
1

nk for r = 0
, (16)

The case with r = 1 corresponds to the arithmetic mean, r = 0 to the geometric
mean and r = −1 to the harmonic mean. Moreover, μr (vk) is increasing in r for any
valuation vector vk .Note that our impact function in (1) is a function of the generalized
meanof order r = −γ of exponential efforts. Forwhat follows, itwill also be important
to note that means of order r < 1 (r > 1) are Schur-concave (convex).

Now, note from (9) that for any two group members i and j , their optimal interior
effort choices must satisfy

xik − x jk = 1

φ + γ
ln

(
vik

v jk

)
. (17)

This implies that members’ optimal efforts become more similar as efforts become
more complementary or the cost function becomes more convex, i.e. γ or φ increase.

Assuming all members are active, i.e. n∗
k = nk, and adding up across all j ∈ k we

obtain

nk∑
j=1

e−γ x jk = e−γ xik

(vik)
−γ
φ+γ

nk∑
j=1

v

−γ
φ+γ

jk .

Plugging this into (9) and adding up across all group members yields

nk∑
j=1

e−γ x jk =
⎛
⎝ nk∑

j=1

v

−γ
φ+γ

jk

⎞
⎠

φ+γ
φ

z(K )
γ
φ , (18)

where z(K ) appears because recall that we are constructing an equilibrium where all
K groups are fully active and thus all must have positive winning probabilities. After
we plug back (18) into (6), and using again the notation ṽik = vik

nk
, we can obtain the

candidate equilibrium effort level for i ∈ k:
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x̂ik = 1

φ

⎡
⎣ φ

φ + γ
ln ṽik − ln z(K ) − ln

1

nk

nk∑
j=1

ṽ jk
−γ
φ+γ

⎤
⎦ .

Note that a necessary condition for this equilibrium to exist is that the cost of effort
must be strictly convex, i.e. φ > 0. Denote ρ = − γ

φ+γ
∈ (−1, 0] to rewrite the

candidate equilibrium effort as

x̂ik = 1

φ

[
(ρ + 1) ln ṽik − ln z(K ) − ρ lnμρ(̃vk)

]
, (19)

where μρ(̃vk) is the mean of order ρ of the modified valuations in group k.

Expression (19) implies that all members of the group are active in the equilibrium
we are constructing only if the lowest valuation within the group, the one for the nk-th
member, satisfies

ṽnk k > v̂k ≡ [z(K )μρ(̃vk)
ρ
] 1
1+ρ

Assuming this is the case, the group’s impact can be written as

hk (̂xk) = β

φ
Wρ (̃vk,z(K )), (20)

where

Wρ (̃vk,z(K )) = lnμρ(̃vk) − ln z(K ),

is the Generalized affluence index. This index is a modified version of the Generalized
Watts poverty index where valuations are censored below the affluence line z(K ). It
encompasses the affluence index we employed in Sect. 4.1 as a particular case when
ρ = 0, i.e. γ = 0. This generalized index displays the same properties as that one.

Let us once more order groups in a decreasing manner, by Wρ (̃vk,z(K )) in this
occasion. The following proposition characterizes the conditions under which an
equilibrium with all groups being fully active exists and their resulting winning prob-
abilities.

Proposition 4 Assume φ > 0. An equilibrium in which all groups are fully active
exists if and only if ṽnk k > v̂k for all groups and

Wρ (̃vK ,z(K )) >
1

K − 1

[
K−1∑
k=1

Wρ (̃vk, z(K ))−φ

β

]
,

In that equilibrium, winning probabilities are

p∗
k = 1

K
+ β

φ
Wρ (̃vk,z(K ))−β

φ

1

K

K∑
l=1

Wρ (̃vl ,z(K )) for k = 1, . . . , K . (21)
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As for Proposition 3, the proof is straightforward; it comes from combining (20),
the difference-form CSF and (2).

Proposition 4 shows that when the distributions of valuations within each group
are such all groups are fully active, it is possible to express equilibrium variables as
a function of the Generalized affluence index. This allows us to explore comparative
statics with respect to the degree of complementarity of efforts within groups γ and
the sensitivity of impact to effort β.

Corollary 3 Assume φ > 0 and all groups are fully active in equilibrium. Then, mem-
bers’ efforts equalize within groups as efforts become more complementary, i.e. as
γ increases, resulting in lower group impacts. Winning probabilities become more
unequal across groups as impact becomes more sensitive to effort, i.e. β increases.

The first part of the corollary comes from the fact that generalized means are
increasing in their order, so given that ρ is decreasing in γ, then μρ(̃vk) and thus
Wρ (̃vk,z(K )) are decreasing in γ too. Differentiating (19) with respect to γ shows that
the effort of members with higher (lower) valuations decreases (increases) as efforts
become more complementary. The intuition behind why increased complementarity
has a net negative effect on group impacts is that the efforts of low valuation members
become more critical. These are precisely the members with the lowest incentive to
contribute. Consequently, the impact of the group decreases as it relies more heavily
on the lowest efforts across members. Note that the effect of more complementary
efforts on the winning probability of a specific group is ambiguous as it depends
on how much the impacts of other groups decrease.17 In contrast, the effect of the
sensitivity of impact to effort is unambiguous: Groups with above (below) average
affluence experience an increase (decrease) in their chances of victory as β increases.

4.3 Linear costs

The last case we explore in this section is cost linearity. This case allows us to establish
a comparison with the linear cost case under homogeneous valuations we studied in
Sect. 3.1. As we will see next, the preemption result and the lack of pure strategy
equilibria that emerged there weaken when groups are heterogeneous.

Consider again an equilibrium in which K ∗ groups enjoy a positive winning prob-
ability and where n∗

k ≤ nk members of group k = 1, . . . , K are active. Taking
expression (9) for φ = 0 and adding across all active members in group k yields

n∗
k∑

j=1

e−γ xik = nk − n∗
k

μ∗−1(vk)

z(K ∗)n∗
k

− 1
, (22)

whereμ∗−1(vk) is the harmonicmean of the individual valuations of the activemembers
in group k.

17 If impact functions were group-specific with complementarity parameter γk , the winning probability
of a group would decrease as the efforts of its members became more complementary.
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Combining this with expression (9), we can obtain the candidate equilibrium effort
for an active member in group k:

x∗
ik(K ∗) = 1

γ
ln[vik

1
z(K ∗) − n∗

k
μ∗−1(vk)

nk − n∗
k

] > 0 ⇔ vik >
nk − n∗

k

1
z(K ∗) − n∗

k
μ∗−1(vk)

. (23)

The set of active members is given by all members whose valuation of victory is
above the threshold in (23). These must be the n∗

k members with the highest valuation
since recall that if x∗

ik = 0 and x∗
jk > 0 then v jk > vik . This in turn implies that for n∗

k
members to be active, the valuations of the nk-th and nk +1-th member should satisfy
the following condition:

vn∗
k k >

nk − n∗
k

1
z(K ∗) − n∗

k
μ∗−1(vk)

> vn∗
k+1k . (24)

Observe from (23) that it cannot be an equilibrium that n∗
k = nk in at least two

groups. In that case, the marginal benefit of effort would be above its marginal cost for
all members of these groups and they would like to supply as much effort as needed
to win the contest with certainty. In other words, the non-existence of pure strategy
equilibria under linear costs would re-emerge. For this case not to arise, at least one
member in each active group must want to remain inactive. Formally, it must be that

vnk k <
1

1
z(K ∗) −∑nk−1

j=1
1

v jk

. (25)

Let us then assume that this condition is satisfied. At this stage, it will be useful

to define uk = nk−n∗
k

nk
as the inactivity rate of group k and ak = 1 − n∗

k
z(K ∗)

μ∗−1(vk)
as

the activity gap of group k. The inactivity rate is the proportion of members in group
k who remain inactive in the candidate equilibrium. The activity gap is a function
of the ratio between the harmonic mean of the valuations of active members and the
activity threshold z(K ∗). It measures how affluent the group is with respect to the
affluence line. With these concepts at hand, we can state the following proposition
characterizing the equilibria of contests with heterogeneous groups and linear costs.

Proposition 5 Assume effort cost is linear. Then, the contest admits an equilibrium
where the number of groups with positive winning probability is an integer K ∗ such
that

1

K ∗ + β

γ
ln

aK ∗

uK ∗
− 1

K ∗
β

γ

K ∗∑
k=1

ln
ak

uk
> 0,

and there are n∗
k active members in each group if the following conditions hold:

(i) The lowest valuation in each group k ≤ K ∗ satisfies (25);
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(i i) The number of active members n∗
k in each group k ≤ K ∗ satisfies (24);

(i i i) The higher valuation in groups k > K ∗ satisfies max{̃v1k}K
k=K ∗+1 < z(K ∗).

In that equilibrium, winning probabilities are

p∗
k = 1

K ∗ + β

γ
ln

ak

uk
− β

γ
ln

Ga

Gu
for k = 1, . . . , K ∗,

where Ga and Gu are respectively the geometric mean of the activity gaps and the
inactivity rates of groups k = 1, . . . , K ∗.

Although the analysis becomes quite intricate at this point, Proposition 5 shows
that the lack of pure strategy equilibria and the preemption result we characterized
in Proposition 1 no longer holds under heterogeneous groups. Multiple groups can
be active. In that regard, difference-form group contests of this kind are closer to
their Tullock counterparts; Brookins et al. (2015) find that some groups can remain
inactive in the equilibrium of Tullock group contests under some conditions on the
complementarity of efforts and the convexity of cost.

Proposition 5 also reveals that groups with higher activity gaps and lower inac-
tivity rates enjoy higher chances of victory. Both dimensions are not independent, of
course, but it is easy to see from the expression of the equilibrium impact and winning
probability that given two groups with the same activity gap, the one with the lower
inactivity rate is more likely to win the contest. Similarly, for two groups with the
same number of active members n∗

k , the one more likely to prevail is the most affluent
one, that is, the one with the highest harmonic mean of valuations μ∗−1(vk).

The linear cost case allows us to obtain again explicit comparative statics results
regarding the complementarity of efforts γ. The following corollary comes directly
from the expression for p∗

k in Proposition 5.

Corollary 4 Under linear costs, group k winning probability increases with the degree
of complementarity of efforts γ if and only if ak

uk
> Ga

Gu
.

An increase in the complementarity of efforts benefits groups that are relatively
more affluent (higher activity gap) and with a lower proportion of inactive members
(lower inactivity rate). These are groups where themembers with the lowest valuations
have nonetheless relatively high valuations of victory. Hence, as γ increases and the
impact technology becomes more reliant in the lowest efforts, these groups become
relatively more likely to prevail in the contest.

5 Between and within-group heterogeneity

In this last section, we will study the effect of heterogeneity within and across groups
on the contest. This is a topic widely studied in the sociology and politics of collective
action (e.g. Olson 1965) that has received increased attention in contest theory (e.g.
Ryvkin 2011; Brookins et al. 2015; Kolmar and Rommeswinkel 2020). To that end, we
will make use of the equilibrium characterizations obtained in the previous sections
and of the properties of the affluence index. First, we will explore how aggregate effort
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in homogeneous contests varies with between-group heterogeneity. Second, we will
analyze whether groups with more heterogenous members’ valuations are more or less
likely to win the contest.

5.1 Between-group heterogeneity and aggregate effort

First we study how the level of aggregate effort in the contest varies with heterogeneity
in valuations across groups. In Proposition 2 and Corollary 1 we already showed that
the number of homogeneous groups active in the contest rests on absolute and relative
considerations. A group is active if its valuation is above the relevant activity threshold
z(K ∗) and high enough relative to that of groups who value victory even more.

Next, we show that the aggregate contest effort can be written as a function of the
affluence index as defined in Sect. 4.1. This will allow us to use the properties of the
index to study the effect of between-group heterogeneity on total effort.

Assume that in equilibrium K ∗ groups have a positive winning probability. Adding
up the individual equilibrium effort as characterized in (7) across group members
yields

nk∑
i=1

x̂k(K ∗) = 1

φ
[ln(̃vk)

nk − nk ln z(K ∗)],

and then adding up across groups to get the aggregate conflict effort yields

K∑
k=1

nk∑
i=1

x̂k(K ∗) = N

φ
[ln(

K∏
k=1

(̃vk)
nk )

1
N − ln z(K ∗)] = N

φ
Wo (̃v∗,z(K ∗)). (26)

In words, the equilibrium aggregate effort in an homogeneous difference-form
group contest can be written as a function of the affluence index applied to the distri-
bution of censored valuations ṽ∗ with affluence line z(K ∗).

We can now use the properties of the affluence index to perform a comparative
statics exercise as valuations across groups become more or less similar. To that end,
we first need to define a criterion to judge whether a distribution of group valuations
is more or less homogeneous than another one. We will employ the Pigou-Dalton
Principle, a widely-used criterion to rank distributions.

Definition (Pigou-Dalton principle for homogeneous groups) Take two group-
homogeneous censored valuation vectors ṽ and ṽ′ where ṽ′ is obtained by subtracting
� > 0 from each individual valuation in group k and adding �

nk
nl

to each individual

valuation in group l such that ṽl + �
nk
nl

< ṽk − �. Then the distribution ṽ′ is more
homogeneous/less unequal than ṽ.

This principle states that a rank-preserving change in group valuations such that
a group with a lower valuation values victory more after the change whilst a group
with a higher valuation values victory less makes the distribution of group valuations
more homogeneous. The Pigou-Dalton principle is equivalent to Lorenz dominance
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(Dasgupta et al. 1973). Because the geometric mean is a Schur-concave function, a
Pigou-Dalton change as described above increases that mean.18 Since the affluence
index as defined in (12) is increasing in the geometric mean of the distribution consid-
ered, we can employ that property to study the effect of between-group homogeneity
on aggregate contest effort.

Proposition 6 (Between-group heterogeneity and aggregate effort)Consider a contest
among homogeneous groups. Then, a Pigou-Dalton change between

(i) two active groups which leaves the set of active groups unchanged increases
the aggregate contest effort;

(i i) an active and an inactive group which makes the lower valuation group active
increases aggregate contest effort; the opposite happens if the change leaves
the set of active groups unchanged;

(i i i) two inactive groups has no effect.

This proposition sheds some light on how a contest organizer should design a
difference-form contest to incentivize effort provision. From Proposition 2 we know
that the number of active groups in equilibrium is higher when valuations across
groups are more homogeneous. We have seen that the same applies to aggregate
effort. A group whose valuation is markedly lower than the rest is likely to remain
inactive, so more homogeneity across groups increases the number of active groups
and total contest effort. This holds for any degree of complementarity of efforts, since
the internal equilibrium is symmetric, and for all degrees of cost convexity φ.This is in
contrast with Ryvkin (2011), who finds that groups becoming more similar increases
total effort in Tullock contests only if the cost of effort is not too steep.

If a group or a set of groups have significantly lower valuations than the rest, the
contest organizer might better orchestrate separate subcontests or, if possible, change
valuations within groups. We explore the latter alternative next.

5.2 Within-group heterogeneity and winning probabilities

We next explore whether groups with more heterogeneous valuations are more or less
likely to prevail in the contest. This exercise can help understand better the patterns
and outcomes of ethnic or international conflicts (e.g. Galbraith et al. 2007; Esteban
and Ray 2011b).

In order to perform this comparative statics exercise, we need to employ some
criterion to compare the heterogeneity between distribution of valuations. To that end,
let us use the Atkinson index of inequality (Atkinson 1970) which is defined as

Iξ (vk) = 1 − μ1−ξ (vk)

μ1(vk)
,

whereμ1(vk) is the average valuation in group k, i.e. its mean of order 1, andμ1−ξ (vk)

is the mean of order 1 − ξ of the valuations in the group. In Atkinson (1970), the

18 For a discussion of Schur-concavity, see Marshall et al. (1979).
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parameter ξ ≥ 0 is normative and measures the inequality aversion of the social
planner. The index equals zero when ζ = 0 as μ1−ξ (vk) = μ1(vk) and boils down to
1 − vnk k

μ1(vk )
when ζ → ∞. The Atkinson index ranges between zero and one. Higher

values of the index denote more inequality. The ordering of distributions the index
generates is equivalent to the one under Lorenz dominance (Dasgupta et al. 1973).

Let us now apply this index to state our next result. Before that, recall we denoted
ρ = − γ

γ+φ
and by μ1(̃vk) the average censored valuation in group k, where censored

valuations are defined as in (10).

Proposition 7 (Within-group heterogeneity and success) Consider a contest among
heterogeneous groups with either linear impact or in which all groups are fully active
in equilibrium. If I1+ρ (̃v∗

k ) < I1+ρ (̃v∗
l ) and μ1(̃vk) ≥ μ1(̃vl), the equilibrium winning

probability of group k is higher than for group l.

Proposition 7 shows that for two groups with the same average censored valuation,
the more homogeneous one according to the Atkinson index of inequality is more
likely to prevail in the contest. Let us emphasize that inequality is measured over the
distribution of censored valuations. This implies that the index would be the same for
two groups with very different distributions of valuations below the activity threshold
z(K ∗) but identical otherwise. Those qualifications made, we can conclude that there
exist strong forces in favor of homogeneity in difference-form group contests. But this
homogeneity is defined over the set of active members, that is, the ones with relatively
higher valuations. The more homogeneous their active members are, the better the
chances of the group winning the contest.

Both the contest organizer and the members of heterogeneous -and thus weaker-
groups may be willing to alter the distribution of valuations to their favor. The former,
to induce more effort from contestants. The latter, to provide incentives to make more
effort to their lower-valuation members. For this to be a meaningful exercise, we will
assume that valuations represent a transferable stake in the contest, such as the income
that members must defend from outsiders or the claims they have over the object being
contested.

We now ask whether groups could benefit from altering the distribution of stakes
across their members in order to elicit more effort from them and be more likely to
win. To deal with such transfers, we apply again the Pigou-Dalton Principle.

Definition (Pigou-Dalton principle for individual transfers)Take two valuation vectors
vk and v′

k , where v′
k is obtained by subtracting � > 0 from v jk and adding it to vik

such that vik + � < v jk − �. Then the distribution v′
k is more homogeneous/less

unequal than vk .

In this context, the principle states that a rank-preserving progressive transfer from
a member with a higher valuation to a member with a lower valuation cannot increase
heterogeneity in the distribution of valuations. Because means of order r are Schur-
concave when r < 1, a Pigou-Dalton transfer when 1 + ρ > 0 increases the value
of the generalized mean. It is for this reason that generalized means are commonly
employed in the inequality measurement literature. As in the previous subsection,
we employ this property of generalized means to study the effect of within-group
redistribution.
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Proposition 8 (Within-group redistribution)Consider a contest among heterogeneous
groups with either linear impact or in which all groups are fully active in equilibrium.
Then, a progressive transfer between

(i) two active members which leaves the set of active players unchanged increases
the group’s equilibrium winning probability;

(i i) an active and an inactive member which makes the recipient active increases the
group’s equilibrium winning probability; the opposite happens if the transfer
leaves the set of active players unchanged;

(i i i) two inactive players has no effect.

Proposition 8 shows that in difference-form group contests, groups may benefit
from altering their distribution of valuations through progressive transfers. Reducing
the dispersion in valuations among active members makes the group relatively more
successful. This is regardless of the complementarity of efforts γ and the convexity of
the effort cost φ. In contrast, Cubel and Sanchez-Pages (2014) find that progressive
changes in valuations in Tullock contests are beneficial for the group only when efforts
are sufficiently complementary or the cost of effort convex enough. Otherwise, groups
may benefit from regressive transfers. Part of the result here is driven by the convex-
ity of the cost function: High valuation members contribute more and face a higher
marginal cost of effort; a transfer to a low valuation member, who contributes less and
thus faces a lower marginal cost of effort, induces an increase in impact greater than
the decrease in effort of the high valuation member. As a result, the group is more
successful. However, if that transfer goes to an inactive member and it is not large
enough to lift that member above the affluence line z(K ∗), the impact of the group
becomes smaller and the transfer is detrimental to its chances of victory. For that same
reason, regressive transfers can never be beneficial to the group in difference-form
contests; these transfers increase heterogeneity within the group, decreasing the effort
of lower-valuation members, even to the point of making them inactive.

6 Conclusion

In this paper we have offered the first study of group contests where winning probabil-
ities depend on the difference between groups’ impacts. Whether a group is active or
enjoys a positive winning probability depends on absolute and relative considerations.
Groups andmembersmust value victory enough to have an incentive to become active.
But when opponents have sufficiently high valuations and become very aggressive,
groups and individuals with lower valuations prefer to remain inactive. We believe
this is a realistic feature that stands in contrast with that of Tullock group contests,
where often all groups are active in equilibrium.

Wehave also shown that key equilibriumvariables in these contests canbe expressed
as a function of inequality and affluence indexes. The properties of these indices have
allowed us to study the impact of within and between-group heterogeneity. Aggregate
contest effort increases as groups become more homogeneous. Groups whose active
members have more homogeneous valuations as measured by the Atkinson index of
inequality are more likely to win the contest. Given that result, groups may have an
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incentive to redistribute stakes internally. Progressive transfers can lead a group to a
more likely victory when they make the set of active members more homogeneous or
when they induce some inactive members to become active.

As this paper has shown, the analysis of difference-formgroup contests can be rather
intricate.We still believe that our paper canopennewandvaluable research avenues.As
mentioned at the introduction, the literature on group contests has explored issues such
as the impact of group size, endogenous within-group sharing rules and endogenous
coalition formation. Another area is the characterization of mixed strategies. Finally,
it would be nice to study the optimal design of these contests, which we have only
touched very briefly in this paper. These are all areas left open for future research.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
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material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

Proof or Proposition 1 First, let us characterize the equilibrium where no group is
active, i.e., when the strategy profile x = 0 is an equilibrium. When all efforts are
zero all group impacts are zero. Then K ∗ = K . The marginal benefit of effort for a
member of group k evaluated at that strategy profile is ṽk

z(K )
.Hence, no member of any

group prefers to deviate and become active if and only if ṽ1 < z(K ).

Assume instead that ṽ1 ≥ z(K ). We know that in any pure strategy equilibrium
at most one group will be active. Denote that group by k. Next, we characterize all
possible internal equilibria in group k.

The derivative of the payoff function for any member i must satisfy

u′
ik (̂xk, {0}l 
=k) = β

K − 1

K

e−γ x̂ik∑nk
j=1 e−γ x̂ jk

vk − 1 ≥ 0. (27)

Otherwise that member would like to lower their effort. Note that the sign of the
derivative can be strictly positive in the particular case where pk (̂xk) = 1 because
further increases of effort do not increase the winning probability at that point. Adding
up the above expression across players yields ṽk ≥ z(K ). Hence, this is a necessary
condition for this equilibrium to exist.

The next step is to show that under the internal equilibrium profile x̂k group k wins
with certainty. Suppose on the contrary that pk (̂xk, {0}l 
=k) < 1. Then (27) must hold
with equality for all i ; otherwise at least onemember would like to increase their effort.
This in turn implies that the equilibrium must be symmetric, i.e., x̂ik = x̂ jk = x̂ for
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any i, j ∈ k so (27) boils down to

u′
ik (̂xk, {0}l 
=k) = ṽk

z(K )
− 1 = 0.

Hence, such equilibrium can only exist in the non-generic case where ṽk = z(K ).

Otherwise x̂k must be such that hk (̂xk) = 1 and pk (̂xk) = 1, which is equivalent to

nk∑
i=1

e−γ x̂ik = nke− γ
β . (28)

There are multiple strategy profiles that satisfy the above. Substituting (28) into
(27) yields that all these profiles must satisfy

x̂ik ≤ 1

β
+ 1

γ
ln

ṽk

z(K )
for all i ∈ k, (29)

to ensure nomember would prefer to deviate and lower their effort. In sum, all strategy
profiles satisfying (28) and (29) constitute a candidate internal equilibrium. One of
these profiles is the symmetric one where all members make effort x̂k = 1

β
.

For these strategy profiles to lead to an overall equilibrium with K ∗ = 1 and
pk (̂xk, {0}l 
=k) = 1, we must also make sure that no member of any inactive group
wants to become active. Denote as m the group with the highest modified valuation
other than ṽk . Observe that m = 2 if k = 1 and m = 1 if k ≥ 2. Members of group
m are thus the ones with the most incentive to become active when group k is the
only active one. For the equilibrium with only one active group to exist, no member of
group m should be willing to become active when no other individual outside group
k is active. Note that if a member of group m were to become active then K ∗ = 2, so
no member of group m wants to become active if and only if ṽm < z(2). This implies
that ṽ2 < z(2) is a necessary condition for an equilibrium where the only active group
is group 1 and ṽ1 < z(2) when that only active group is k ≥ 2.

To summarize, an equilibrium where group k is the only active group (and wins
with certainty) exists only if ṽ1 ≥ z(K ) and ṽ2 < z(2) if k = 1, and ṽk ≥ z(K ) and
ṽ1 < z(2) if k ≥ 2. When ṽ1 ≥ z(K ) and ṽ2 < z(2) there are thus multiple pure
strategy equilibria, both in terms of the identity of active group k and of its internal
equilibrium profile x̂k . �

Proof of Proposition 2 Consider an equilibrium with a given K ∗. The fact that the
internal equilibriummust be symmetric and the concept of censored valuations allows
us to write the impact of a group in this candidate equilibrium succinctly as

hk (̂xk(K ∗)) = β

φ
ln

ṽ∗
k

z(K ∗)
.

Ordering the censored valuation distribution across groups ṽ∗ according to the
order of the original valuation distribution ṽ, it is possible to write group k’s winning
probability as
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pk∗ (̂x(K ∗)) = 1

K ∗ + β

φ
ln

ṽ∗
k

z(K ∗)
− 1

K ∗
β

φ

K ∗∑
l=1

ln
ṽ∗

l

z(K ∗)

= 1

K ∗ + β

φ

K ∗ − 1

K ∗ ln ṽ∗
k − 1

K ∗
β

φ
ln

K ∗∏
l=1,l 
=k

ṽ∗
l ,

which is positive for group K ∗ if and only if

ṽ∗
K ∗ > e

− φ

β(K∗−1) (

K ∗∏
l 
=k,l=1

ṽ∗
l )

1
K∗−1 .

which boils down to the expression stated in the proposition. In addition, it must be
that ṽK ∗+1 < z(K ∗). Otherwise, members of group K ∗ + 1, the ones with the most
incentive to deviate, would like to become active. Recall that K ∗ is either equal to
K or equal to the number of active groups. Hence, this deviation can only take place
when the K ∗ groups with positive winning probability also constitute the set of active
groups. Hence, group K ∗ + 1 is inactive.

Let us compute the derivative of the payoff function of a member of group K ∗ + 1
when all her fellow group members remain inactive is

∂ui K ∗+1

∂xi K ∗+1

∣∣∣∣
xK∗+1=0

= β
K ∗ − 1

K ∗
vK ∗+1

nK ∗+1
− 1 = ṽK ∗+1

z(K ∗)
− 1,

which is negative if and only if ṽK ∗+1 < z(K ∗). In that case no member of any group
k ≥ K ∗ + 1 has an incentive to deviate from the equilibrium. �

Proof of Proposition 3 The condition on K ∗ follows from plugging the group impact
(13) into (3), and then checking that p∗

k (̂xk(K ∗)) > 0 for groups k = 1, . . . , K ∗ using
(2). Note that for inactive groups ṽ∗

k = z(K ∗) and thus Wo (̃v∗
k ,z(K ∗)) = 0.

In addition, we need to ensure that no member of groups k = K ∗ + 1, . . . , K
would like to deviate and become active. Recall that we have ordered members within
groups in such a way that the individual indexed as 1 has the highest valuation within
the group. Denote ṽmax

k = max{̃v1k}K
k=K ∗+1. This is the modified valuation of the

individual with the highest incentive to deviate. For the profile characterized so far to
be an equilibrium, it must be the case that the derivative of the payoff function of that
individual when all members in her group remain inactive is negative, that is,

∂umax
ik

∂xmax
ik

∣∣∣∣
xk=0

= β
K ∗ − 1

K ∗
vmax

k

nk
− 1 = ṽmax

k

z(K ∗)
− 1 < 0,

which is the condition stated in the text of the Proposition. �

Proof of Proposition 5 From the earlier discussion we know that (24) and (25) are
necessary conditions for the equilibrium to exist. These conditions avoid the non-
existence of pure strategy equilibria and ensure that n∗

k members are active. In addition,
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we need to make sure that no member of any group k > K ∗ would like to become
active. To do that, we just need to follow the same procedure as in the proof of
Proposition 3 and impose max{̃v1k}K

k=K ∗+1 < z(K ∗).
We next derive the condition defining K ∗ and the resulting equilibrium winning

probabilities. Using (22) to compute the impact of a group yields:

hk(x∗
k (K ∗)) = ln

⎡
⎣ 1

nk
(nk − n∗

k +
n∗

k∑
j=1

e−γ xik )

⎤
⎦

− β
γ

= −β

γ
ln

⎡
⎣nk − n∗

k

nk

1

1 − n∗
k

z(K ∗)
μ∗−1(vk )

⎤
⎦

= β

γ
ln[

1 − n∗
k

z(K ∗)
μ∗−1(vk )

1 − n∗
k

nk

] = β

γ
ln

ak

uk
.

It holds that K ∗ groups have a positive winning probability if

1

K ∗ + β

γ
ln

aK ∗

uK ∗
− 1

K ∗
β

γ

K ∗∑
k=1

ln
ak

uk
> 0.

Their equilibrium winning probabilities in this case are

p∗
k = 1

K ∗ + β ln

[
ak

uk

] 1
γ − β

K ∗
K ∗∑
l=1

ln

[
al

ul

] 1
γ = 1

K ∗ + β ln
a

1
γ

k[
K ∗∏
l=1

a
1
γ

l

] 1
K∗

− β ln
u

1
γ

k[
K ∗∏
l=1

u
1
γ

l

] 1
K∗

,

which is the expression stated in last part of the Proposition. �

Proof of Proposition 6 Theproof ofmost of the results in the proposition comes directly
from the discussion in the text and from expression (26). If the change takes place
between two active groups then the geometric average of the censored valuations
increases. The same happens if the change lifts the valuation in the lower valua-
tion group above the affluence line z(K ∗). Note that then the new affluence line is
z(K ∗ +1) < z(K ∗), so the index unambiguously increases. However, if the change in
valuations takes place in an active group and an inactive group and the latter remains
inactive, the geometricmean unambiguously decreases as the censored valuation of the
lower valuation group remains unchanged. Finally, if the transfer takes place between
two inactive groups the index remains unchanged as their censored group valuations
remain below z(K ∗). �

Proof of Proposition 7 Rewriting the Atkinson index yields

μρ(̃vk) = μ1(̃vk)(1 − I1+ρ (̃vk)).

If I1+ρ (̃v∗
k ) < I1+ρ (̃v∗

l ) and μ1(̃vk) ≥ μ1(̃vl) it must be that μρ(̃vk) > μρ(̃vl).
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By examining (13) and (20) it is straightforward to see that group k enjoys a higher
probability of success than group l if and only if μρ(̃vk) > μρ(̃vl) and G̃∗

k > G̃∗
l

in each respective case. The former entails a comparison between means of order
ρ = − γ

φ+γ
, whereas the latter entails a comparison between means of order 0, as it is

assumed that γ = 0. Hence, the ranking μρ(̃vk) > μρ(̃vl) is preserved in both cases,
allowing us to conclude that p∗

k > p∗
l . �


Proof of Proposition 8 Consider first the case of linear impacts in Sect. 4.1. There,
winning probabilities are given by (15). Note that a group’s winning probability is
increasing in its Watts affluence index Wo (̃v∗

K ∗ ,z(K ∗)) which in turn is increasing
in the geometric mean of the censored valuations G̃∗

k . Because the geometric mean
is a mean of order 0, Pigou-Dalton progressive transfers would increase the average
(recall means of order r < 1 are Schur-concave). If that transfer takes place between
twomembers with valuations above z(K ∗) then the geometric average of the censored
valuation does indeed increase. The same happens if the transfer lifts the recipient
above the affluence line z(K ∗). However, if it takes place from an active member
to an inactive member who remains inactive, the geometric mean of the censored
distribution decreases as that transfer is “lost” below the affluence line. Finally, if
the transfer takes place between two inactive members G̃∗

k remains unchanged as the
censored valuations for both of them is still z(K ∗).

The same logic applies to the case in Sect. s4.2. There, the winning probability
of group k is given by (21), which is increasing in its Generalized affluence index
Wρ (̃vk,z(K )). This index is increasing in μρ(̃vk). Because this is a mean of order
ρ = − γ

φ+γ
∈ (−1, 0] a progressive transfer among any two members (because all

members are assumed to be active before and after the transfer) increases the index
and thus pk . �
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