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ABSTRACT
Unsupervised Anomaly Detection (UAD) techniques aim

to identify and localize anomalies without relying on anno-
tations, only leveraging a model trained on a dataset known
to be free of anomalies. Diffusion models learn to mod-
ify inputs x to increase the probability of it belonging to
a desired distribution, i.e., they model the score function
∇x log p(x). Such a score function is potentially relevant for
UAD, since ∇x log p(x) is itself a pixel-wise anomaly score.
However, diffusion models are trained to invert a corrup-
tion process based on Gaussian noise and the learned score
function is unlikely to generalize to medical anomalies. This
work addresses the problem of how to learn a score function
relevant for UAD and proposes DISYRE: Diffusion-Inspired
SYnthetic REstoration. We retain the diffusion-like pipeline
but replace the Gaussian noise corruption with a gradual,
synthetic anomaly corruption so the learned score function
generalizes to medical, naturally occurring anomalies. We
evaluate DISYRE on three common Brain MRI UAD bench-
marks and substantially outperform other methods in two out
of the three tasks.

Index Terms— Unsupervised anomaly detection, out-of-
distribution detection, diffusion models, synthetic anomalies

1. INTRODUCTION

Unsupervised Anomaly Detection (UAD) in the field of med-
ical image analysis involves the detection and/or localization
of irregularities in medical images without the need for anno-
tations. This approach is particularly valuable since obtaining
annotations can be both expensive and challenging [1]. Dur-
ing the prediction phase, UAD methodologies employ com-
parisons between a test image and the established distribu-
tion, often using a parameterized model of this distribution.
Anomalies are detected when deviations from this healthy
distribution are observed in the test image.

Many UAD methods rely on modelling the expected
distribution with generative models such as variational auto-
encoders [2] or generative adversarial networks [3]. These

rely on the assumption that generative models trained on
in-distribution data will be unable to reconstruct out-of-
distribution regions, meaning that the reconstruction error
can be used to identify anomalous pixels. Unfortunately, this
assumption often fails, as models may not accurately recon-
struct normal data and the remaining residual error needs to
be calibrated as subject-specific bias [2, 4]. Furthermore,
auto-encoders are also known to have the ability to also re-
construct anomalies [4].

As an alternative, restoration-based methods [5] use
Maximum-A-Posteriori (MAP) estimation to remove local
anomalies from images. Many approaches have since fol-
lowed this idea, often using a two-stage restoration process;
first identifying anomalous areas or latent variables and then
resampling them to become in-distribution [6, 4].

More recently, diffusion models have emerged as the
state-of-the-art method for image generation. The most com-
mon of these is the Denoising Diffusion Probabilistic Model
(DDPM) [7], which constructs a mapping from Gaussian
noise to a desired image distribution. To do this, DDPMs
leverage Langevin dynamics [7] to learn a score function, i.e.
∇x log p(x), which is able to iteratively denoise a sample of
Gaussian noise to produce a sample from the target image
distribution. Such a score function is potentially very relevant
for UAD, as it is able to indicate both where and how to edit
the image to increase its likelihood, directly acting as a pixel-
wise anomaly score. However, as a standard DDPM learns
a score function that is specific to images corrupted with
Gaussian noise, it does not generalize to correcting images
containing other types of anomalies.

Because of this, DDPM’s score function has not been
favoured when applying diffusion models to UAD. AnoD-
DPM [8] instead replaces Gaussian noise with simplex noise,
as the multi-scale nature of simplex noise trains the score
function to be able to correct larger anomalous structures.
This is consistent with what is reported by DAE [9] au-
thors, who found that denoising models trained on reasonably
coarse noise outperformed those using pixel-level noise. An
alternative approach [10] involves utilizing classifier guid-
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Fig. 1. 1st row: examples of anomaly generation inputs: healthy image x0, shape mask m and foreign patch xfp. 2nd row:
synthetic corruption forward process for different t values (with T = 100).

ance to encourage the model to restore the image to be part
of an expected distribution. However, this requires training a
discriminator model with sample-level labels.

Separately from generative models, Foreign Patch Inter-
polation (FPI) [11] proposed directly training anomaly seg-
mentation networks by adding synthetic anomalies to oth-
erwise healthy anatomies. The anomalies are generated by
interpolating a square region of the sample with a patch ex-
tracted from a separate sample, controlling the interpolation
with a factor α. One of the limitations of FPI is that it pro-
duces image gradients on the boundaries between synthetic
anomalies and original images, a feature which the model
could exploit as a shortcut to identify synthetic anomalies.
Poisson Image Interpolation (PII) [12] proposes to use Pois-
son image blending to mitigate this by performing the inter-
polation on the gradients of the image, seamlessly blending
the anomaly with the surrounding area. Naval et al. [13] took
a simpler approach, softening the interpolation factor at the
boundaries to make a more gradual change, as well as gener-
ating anomalies with randomly generated shapes to produce
greater variety in the generated anomalies.

Contribution: In this work we introduce DISYRE: Diffusion-
Inspired SYnthetic REstoration. By replacing the Gaussian
noise corruption in diffusion models with a synthetic anomaly
degradation process allows for directly using a diffusion-like
model for unsupervised anomaly detection and localisation.
It does this by learning a score function that generalizes to
naturally-occurring medical anomalies and indicates how to
modify a test image to bring it within the healthy distribution.
Diffusion-like pipelines without noise have been previously

proposed for image generation [14], but to our knowledge
this is the first approach specifically designed for UAD.

2. METHOD

Synthetic anomaly generation: We adopt the synthetic
anomaly generation mechanism from [13], where a section
of the image is corrupted replacing the original pixel inten-
sities with a linear interpolation of original intensities and a
foreign patch extracted randomly from the training set. Local
synthetic anomalies are introduced by

xt = (1− α ·m) · x0 + α ·m · xfp (1)

where x0 ∈ RH×W denotes the original (healthy) image,
xfp ∈ RH×W denotes the foreign patch extracted from a
healthy sample different from x0, α ∈ [0, 1] denotes the in-
terpolation factor that controls the convex combination of x0

and xfp within the synthetic anomaly, and m ∈ RH×W de-
notes the mask component that both controls the shape of the
synthetic anomaly and softens the interpolation factor towards
the edges of the anomalous region. Note that mi ∈ [0, 1].
Forward and backward corruption process: In our diffusion-
inspired proposed framework, we define a schedule to grad-
ually corrupt the images increasing the α factor defined in
Eq. 1 and train a model to revert the modified forward cor-
ruption process. We note that we do not use random noise,
although synthetic anomalies are randomly generated.

Following the DDPM literature, we define the schedule
αt to increase with time steps t, i.e. when t = 0, αt = 0 and
the image belongs to the expected distribution, while when



t = T , αt = 1 and the image is highly anomalous. We use
the DDPM [7] schedule, however in our case it defines the
interpolation of the original image and foreign patch instead
of original image and noise. Note that our αt is analogous to
1 −
√
αt in the diffusion literature. Given that we want in-

terpolations xt to remain in the range [0, 1], we use a convex
combination of image and foreign patch, so the weighting of
the original image becomes (1−αt). In Fig. 1, we include an
example of the synthetic corruption process that shows sim-
ilarities with the standard diffusion process where textures /
high frequencies are corrupted at small t values and structures
/ low frequencies are corrupted at high t values.

We train our model Pθ to restore corrupted images xt into
their healthy counterparts when conditioning on t, x0 ≈ x̂0 =
Pθ(xt, t). Network parameters are therefore optimized using
the objective Et∼[1,T ],x0,xfp

(∥x0 − Pθ(xt, t)∥2).
Anomaly Score: At inference time, we propose to use the
trained model Pθ to restore test images. This process is sim-
ilar to the standard sampling of a DDPM [7], but crucially
different in that we do not start from noise, but instead from
a test image. Additionally, instead of iterating through all T
steps, we skip steps based on a step size hyper-parameter.

In order to localize anomalies we propose an Anomaly
Score (AS) defined as the accumulation of the absolute gra-
dients across all the restoration steps, so it is sensitive to the
different degrees of abnormalities present in the corruption
process. Algorithm 1 describes our healing procedure, with
P as the trained model Pθ and Q the process specified in Eq. 1
which corrupts x̂o, interpolating it with the unhealed xt using
tnext and m = 1. In addition to the AS, the algorithm pro-
duces a restoration x̂0, a healed version of xt. In our experi-
ments we also evaluate using directly single-step restorations
residuals, i.e., |P (xt, t)− x0|, as anomaly score conditioning
on different t values.

Algorithm 1 Inference: Image restoration
1: xt ← x
2: t← T
3: AS ← zeros like(x)
4: while true do
5: x̂0 ← P (xt, t)
6: AS ← AS + |x̂0 − xt|
7: if tnext ≤ 0 then
8: break ▷ Exit the loop
9: tnext ← t− step size

10: xt ← Q(x̂0, xt, tnext,m = 1)
11: t← tnext
12: end

During training we use a patch-based pipeline. At infer-
ence time we use sliding window inference to obtain predic-
tions for full axial slices. We hypothesized that the model
is more accurate on the patches with a bigger proportion of
foreground vs background. Consequently, we propose to

weight patch predictions by the foreground percentage prior
to combine patch-predictions and report results both without
(DISYRE) and with foreground weighting (DISYRE f.w.).

3. EXPERIMENTS

Experimental setup: We adopt the experimental setup for
Brain MRI from [15], which includes the following datasets:

• Cambridge Centre for Ageing and Neuroscience dataset
(CamCAN) [16]: T1- and T2-weighted images of 652
healthy, lesion-free, adult subjects.

• Anatomical Tracings of Lesions After Stroke (ATLAS)
dataset [17]: T1-weighted scans of stroke patients (N =
655). This dataset contains annotated lesions after stroke.

• Multimodal Brain Tumor Segmentation (BraTS) Chal-
lenge dataset [18] 2020 edition: We used the T1- and
T2-weighted images from the challenge training set. The
dataset provides manual segmentations of gliomas.
We use the CamCAN dataset for training (N = 602),

holding out a set with N = 50 subjects to identify training
convergence. BraTS and ATLAS are used to evaluate UAD
performance. We follow the registration and normalization
protocols provided in [15], training our model using patches
of 128× 128 pixels obtained from non-empty axial slices.

For our training pipeline we use the default Brain MRI
configuration of the task from [13]. We also adapted the same
αt schedule and network architecture proposed in DDPM but
reduced the steps to T = 100. Our UNet has six down-
sampling blocks with [32, 64, 96, 128, 256, 256] channels and
attention layers from the 3rd block onwards. Networks are
trained using the AdamW optimizer and OneCycle learning
rate with maximum rate of 1e-4 for 100,000 steps.
Performance analysis: To quantitatively evaluate our method,
we use the most common metrics in the medical UAD liter-
ature: Average Precision (AP) and an estimate of the best
possible Sørensen-Dice index ([Dice] score). Some qualita-
tive results are reported in Fig. 3.

We evaluated single-step restorations to localize anoma-
lies as a function of t, i.e., ∥x − P (x, t)∥. We also evaluated
our cumulative multi-step restoration strategy using different
step size settings. Results are included in Table 1. Addition-
ally, Fig. 2 compares single-step restoration AP with cumula-
tive multi-step restoration performance.

Finally, Table 2 compares our results with baseline UAD
methods from [15]. For our method DISYRE we report mean
metrics for four training runs with multi-step restoration and
step size = 25. In addition to our method we also evalu-
ate the method from [13], included in the table as MOOD22.
Note that this approach uses the same synthetic anomaly gen-
eration process but binary cross-entropy with α as soft target.
When implementing this baseline we use the same network
architecture without conditioning on t.



AP ATLAS BraTS-T1 BraTS-T2
si

ng
le

-s
te

p
t

25 0.03 ± 0.00 0.38 ± 0.01 0.23 ± 0.01
50 0.20 ± 0.02 0.44 ± 0.02 0.45 ± 0.01
75 0.29 ± 0.03 0.34 ± 0.03 0.59 ± 0.03

100 0.25 ± 0.03 0.28 ± 0.02 0.70 ± 0.02

m
ul

ti-
st

ep
st
ep

si
z
e

10 0.27 ± 0.02 0.32 ± 0.02 0.73 ± 0.02
20 0.29 ± 0.02 0.34 ± 0.02 0.74 ± 0.02
25 0.29 ± 0.02 0.34 ± 0.02 0.75 ± 0.02
33 0.29 ± 0.02 0.35 ± 0.02 0.75 ± 0.01
50 0.30 ± 0.03 0.35 ± 0.02 0.75 ± 0.02

Table 1. Upper section: AP for single-step restorations
(AS = ∥x−P (x, t)∥) as a function of the t used to condition
the model. Lower section: AP for multi-step restorations, as
a function of step size. Mean and std. dev. on 4 seeds.

Fig. 2. AP profiles as a function of t. Blue line shows single-
step restoration. Orange line shows the cumulative AS as de-
fined in Section 2 up-to t stage (step size = 25). Single seed.

ATLAS BraTS-T1 BraTS-T2

Method AP ⌈Dice⌉ AP ⌈Dice⌉ AP ⌈Dice⌉

IR

VAE [2] 0.11 0.20 0.13 0.19 0.28 0.33
r-VAE [5] 0.09 0.17 0.13 0.19 0.36 0.40
f-AnoGAN [3] 0.02 0.06 0.06 0.12 0.15 0.21

FM

FAE [19] 0.08 0.18 0.42 0.45 0.51 0.52
RD [20] 0.11 0.22 0.36 0.42 0.47 0.50

A
B AMCons [21] 0.01 0.03 0.05 0.12 0.35 0.40

S-
S

PII [12] 0.03 0.07 0.13 0.22 0.13 0.22
DAE [9] 0.05 0.13 0.13 0.20 0.47 0.49
MOOD22 [13] 0.10 0.21 0.24 0.31 0.47 0.48
DISYRE (Ours) 0.19 0.27 0.22 0.30 0.69 0.67
DISYRE f.w. (Ours) 0.29 0.37 0.34 0.41 0.75 0.70

Table 2. Localization results of the image-reconstruction
(IR), feature-modeling (FM), attention-based (AB), and self-
supervised (S-S) methods. Best scores are bold.

4. DISCUSSION & CONCLUSION

Results in Table 2 highlight the effectiveness of our strategy:
DISYRE achieves an AP of 0.75 in BraTS-T2 dataset, an in-
crease of 0.24 from the second best method. DISYRE also
improves the state of the art of the ATLAS task to 0.29, up
from 0.19 while achieving competitive results in BraTS-T1.

Fig. 3. Restoration results on test images drawn from the AT-
LAS [17], BraTS-T1, and BraTS-T2 [18], after step size =
25, along with anomaly scores AS in grayscale compared
with the ground truth outline in red.

When using single-step restorations we found that AP
peaks at different t values for different anomalies and modal-
ities (Fig. 2). We hypothesize that these profiles are associ-
ated with how the anomalies manifest in each image modality,
with high-frequency anomalies being restored at lower t val-
ues and more structural corruptions restored as t approaches
T . We aim to be sensitive to all classes of anomaly, from
structural to high frequency, which is why we integrate mul-
tiple steps into the proposed AS. Despite improving results
in BraTS-T2 and ATLAS, multi-step AS does not improve
single-step AS in BraTS-T1, potentially due to the nature of
how gliomas manifest in T1-weighted Brain MRI. In future
work we will explore alternative approaches to achieve better
coverage of the anomaly spectrum.

As seen in Table 1, DISYRE is robust to the choice of the
step size hyper-parameter. We opted for step size = 25 in
our final experiments as it provides a good balance between
coverage of the anomaly schedule and inference speed.

In this work we propose DISYRE, a new strategy that
adapts diffusion models to UAD. With the motivation of
learning a score function ∇x log p(x) which generalizes
to naturally occurring medical anomalies, we replace the
standard Gaussian noise corruption with gradual, synthetic
anomalies. DISYRE opens a new route to leverage diffusion-
like models in medical image analysis; we show that forward
processes can be designed so they become relevant for down-
stream tasks. In DISYRE we leverage synthetic anomalies
for UAD and substantially outperform other UAD baseline
methods in two out of three datasets.



5. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using hu-
man subject data made available in open access by [16, 17,
18]. Ethical approval was not required as confirmed by the
license attached with the open-access data.

6. ACKNOWLEDGMENTS

Bernhard Kainz received support by the ERC - project MIA-
NORMAL 101083647, Matthew Baugh by a UKRI DTP
award.

7. REFERENCES

[1] Geert Litjens et al., “A Survey on Deep Learning in
Medical Image Analysis,” Medical image analysis, vol.
vol. 42, pp. 60–88, 2017.

[2] Christoph Baur et al., “Autoencoders for Unsupervised
Anomaly Segmentation in Brain MR Images: A Com-
parative Study,” Medical image analysis, , no. 02 Jan
2021, pp. 69:101952, 2021.

[3] Thomas Schlegl et al., “f-AnoGAN: Fast unsuper-
vised anomaly detection with generative adversarial net-
works,” Medical image analysis, vol. 54, pp. 30–44,
2019.

[4] Cosmin I. Bercea et al., “Reversing the Abnormal:
Pseudo-Healthy Generative Networks for Anomaly De-
tection,” in Medical Image Computing and Computer
Assisted Intervention – MICCAI 2023, Cham, 2023, pp.
293–303.

[5] Xiaoran Chen et al., “Unsupervised lesion detection via
image restoration with a normative prior,” Medical Im-
age Analysis, vol. 64, pp. 101713, Aug. 2020.

[6] Sergio Naval Marimont and Giacomo Tarroni,
“Anomaly detection through latent space restora-
tion using vector quantized variational autoencoders,”
in 2021 IEEE 18th International Symposium on
Biomedical Imaging (ISBI), 2021.

[7] Jonathan Ho et al., “Denoising diffusion probabilistic
models,” Advances in neural information processing
systems, vol. 33, pp. 6840–6851, 2020.

[8] Julian Wyatt et al., “AnoDDPM: Anomaly Detection
with Denoising Diffusion Probabilistic Models using
Simplex Noise,” in 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops
(CVPRW), New Orleans, LA, USA, June 2022, pp. 649–
655.

[9] Antanas Kascenas et al., “Denoising autoencoders for
unsupervised anomaly detection in brain mri,” in In-
ternational Conference on Medical Imaging with Deep
Learning. PMLR, 2022, pp. 653–664.

[10] Julia Wolleb et al., “Diffusion Models for Medical
Anomaly Detection,” arXiv preprint arXiv:2203.04306.

[11] Jeremy Tan et al., “Detecting outliers with foreign patch
interpolation,” Machine Learning for Biomedical Imag-
ing, vol. 1, no. April 2022 issue, pp. 1–27, 2022.

[12] Jeremy Tan et al., “Detecting Outliers with Poisson Im-
age Interpolation,” in Medical Image Computing and
Computer Assisted Intervention – MICCAI 2021, Cham,
2021.

[13] Sergio Naval Marimont and Giacomo Tarroni, “Achiev-
ing state-of-the-art performance in the Medical Out-
of-Distribution (MOOD) challenge using plausible syn-
thetic anomalies,” Nov. 2023, arXiv:2308.01412 [cs].

[14] Arpit Bansal et al., “Cold Diffusion: Inverting Ar-
bitrary Image Transforms Without Noise,” Aug. 2022,
arXiv:2208.09392 [cs].

[15] Ioannis Lagogiannis et al., “Unsupervised Pathology
Detection: A Deep Dive Into the State of the Art,”
IEEE Transactions on Medical Imaging, pp. 1–1, 2023,
arXiv:2303.00609 [cs].

[16] Jason R Taylor et al., “The Cambridge Centre for
Ageing and Neuroscience (Cam-CAN) data repository:
Structural and functional MRI, MEG, and cognitive data
from a cross-sectional adult lifespan sample,” neuroim-
age, vol. 144, pp. 262–269, 2017.

[17] Sook-Lei Liew et al., “A large, open source dataset of
stroke anatomical brain images and manual lesion seg-
mentations,” Scientific data, vol. 5, pp. 1–11, 2018.

[18] Bjoern H Menze et al., “The multimodal brain tumor
image segmentation benchmark (brats),” IEEE trans-
actions on medical imaging, vol. 34, no. 10, pp. 1993–
2024, 2014.

[19] Felix Meissen et al., “Unsupervised Anomaly Localiza-
tion with Structural Feature-Autoencoders,” in Brainle-
sion: Glioma, Multiple Sclerosis, Stroke and Traumatic
Brain Injuries, Cham, 2023, pp. 14–24.

[20] Hanqiu Deng and Xingyu Li, “Anomaly detection via
reverse distillation from one-class embedding,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2022, pp. 9737–9746.

[21] Julio Silva-Rodrı́guez et al., “Constrained unsupervised
anomaly segmentation,” Medical Image Analysis, vol.
80, pp. 102526, Aug. 2022, arXiv:2203.01671 [cs,
eess].


	 Introduction
	 Method
	 Experiments
	 Discussion & Conclusion
	 Compliance with Ethical Standards
	 Acknowledgments
	 References

