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A B S T R A C T

Healthcare systems around the world are facing an inpatient bed crisis. This was highlighted more than ever
during the recent COVID-19 pandemic. The consequences of bed shortage are substantial for both patients and
staff. Finding innovative ways to improve the utilization of the existing bed base is therefore of significant
importance. We focus on reconfiguration of inpatient services as a cost-effective solution to bed pressure in
hospitals, and propose a comprehensive methodology for finding a low-cost configuration given a total number
of beds, a set of specialties, and a finite or infinite waiting time threshold for patients. This involves developing
novel approximations for performance evaluation of overflow delay and abandonment systems, and embedding
them within heuristic search algorithms. We apply our reconfiguration methodology on inpatient data from
a large UK hospital. Simulation experiments show that the configurations proposed by our methodology can
result in significant savings compared to the existing configuration, and that a clustered overflow configuration
is likely to produce the best results in many scenarios.
1. Introduction

Now, more than ever before, healthcare systems around the world
are facing an inpatient bed crisis. As an example, the statistics published
by the National Health Service (NHS) in the UK show that in 2019,
the average bed occupancy across the country was above 90% for the
third year in a row (Ewbank et al., 2020). The shortage of beds was
highlighted even further during the recent COVID-19 pandemic. For
example, Mateen et al. (2021) report that during the first wave of the
pandemic in England, many hospitals operated above safe-occupancy
thresholds for significant periods. Moreover, the post-pandemic surge
in demand for elective procedures has added the pressure on hospital
beds (Propper et al., 2020).

Shortage of inpatient beds has many ramifications for both patients
and staff. It prolongs the trolley wait, i.e., the time between a decision
being made in the emergency department (ED) to admit a patient and
admission to inpatient care. Trolley waits lower the quality of patient
care and may result in patient fatalities. For example, a recent study
of more than 5 million patients in England shows a linear increase in
all-cause 30-day mortality as the admission delay increases from 5 h
after arrival to the ED up to 12 h (Jones et al., 2022).

Trolley waits also create large backlogs in emergency departments.
Congestion in emergency departments is linked to higher morbidity
rates and may also lead to ambulance diversion; see, e.g., Olshaker
and Rathlev (2006). Further, overcrowded hospitals are exposed to a
higher risk of hospital acquired infections (Kaier et al., 2012). Not
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only does this put patients’ health at risk, but also prolongs length
of stay (LOS) and may also result in bed and ward closures (Gold-
stein et al., 2017), exacerbating the bed shortage problem. Shortage
of beds for post-operative care may result in cancellation of medical
procedures. Patients may also be discharged pre-maturely, only to be
re-admitted later with potentially worse conditions (Maguire, 2015).
Readmitted patients are reported to cost the UK’s NHS £2.6 billion each
year (Conroy & Dowsing, 2012).

Patient outlying, i.e., admitting patients to clinically inappropriate
wards, is also a common phenomenon in hospitals which operate
with high occupancy levels. Stowell et al. (2013) report a significant
increase in the LOS and rate of mortality of outlied patients. In a recent
study, Lim et al. (2021) show that the level and volatility of outlying
will increase the LOS and the likelihood of readmission for non-outlied
patients as well. Finally, the pressures that bed shortages create can
have a damaging impact on staff morale and retention, which in turn
impacts negatively on patient care (Robertson et al., 2017).

Expanding the bed base of a hospital is the most straight-forward
solution to bed shortages. However, it is only considered as a last
resort as adding a hospital bed with necessary equipment and staffing
it are quite costly (Akcali et al., 2006). The focus of hospitals is
therefore typically on more efficient use of existing resources. In this
research, we focus on the reconfiguration of inpatient services as a
cost-effective way for dealing with bed shortages. To understand the
vailable online 9 February 2024
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Fig. 1. The spectrum of inpatient bed configurations.

ole of reconfiguration, it is important to note that inpatient care in
eneral hospitals is typically delivered through a number of clinical
nits or wards. Each ward is equipped with a specific number of beds
nd a dedicated nursing team, providing care for specific medical
pecialties. The configuration of inpatient services identifies how beds
nd specialties are allocated to each ward, significantly impacting the
erformance and quality of inpatient care.

We identify five major configurations as illustrated in the spectrum
n Fig. 1. We compare these configurations in terms of their level of
‘focused care’’, the amount of ‘‘slack capacity’’ and ‘‘mix variability’’,
nd ‘‘cross-training’’ costs. Focus in a hospital setting means delivering
are for a limited set of conditions. It lowers uncertainty, reduces
omplexity, and gives the clinical staff the opportunity to develop
pecialized expertise (Clark & Huckman, 2012). Several studies suggest
hat focused care improves the quality of care, in particular, it reduces
ean LOS (Best et al., 2015), rate of mortality (Clark & Huckman,
012), and risk of readmission (Singh & Terwiesch, 2011). Slack capac-
ty refers to the number of available but unused beds in the hospital.
t increases as the wards become more specialized. We define mix
ariability as the potential increase in variability of LOS caused by
ixing specialties with different LOS distributions in a single ward.
ueueing theory suggests that a higher variability in LOS typically

eads to longer waiting times in the queue (Gross et al., 2011). Cross-
raining is about nurses being trained to deliver care for the specialties
reated in their ward. Clearly, the cost of cross-training increases as
ore specialties are allocated to a ward.

Starting from the far left of the spectrum in Fig. 1, in a fully
edicated configuration each specialty is allocated to a single ward,
hich is called the primary ward of that specialty and is fed by a single
ueue. This configuration benefits from the maximum level of focused
are and the minimum amount of mix variability as a limited number
f conditions are treated in each ward. Slack capacity will, however,
e at its highest level as there will be situations wherein patients are
aiting for admission to their primary ward whilst beds are available

n other wards.
The exact opposite of the fully dedicated configuration is the fully

lexible configuration on the far right of the spectrum in Fig. 1. It acts
ike a super ward, admitting patients of different specialties (who join a
ingle queue) as long as a bed is available. This configuration enjoys the
enefits of pooling, i.e., the slack capacity will be minimized. However,
ix variability will increase as a result of mixing patients with different

OS distributions. This, along with the potential increase in mean LOS
ue to losing focus, may off-set the advantages of pooling. The fully
lexible configuration also requires full cross-training of nursing teams
hich is expensive.

The other three configurations are placed in the middle of the
pectrum in Fig. 1 as they attempt to strike a balance between pooling
nd specialization. The wing formation configuration, proposed in Best
t al. (2015), achieves this by partitioning the specialties into a number
f clusters and dedicating each cluster to a ward (wing). Each ward
s fed by a single queue including all the patients requiring care for
681

pecialties in the corresponding cluster. Its cross-training cost, the
amount of slack capacity and mix variability, and the level of focus
vary depending on how specialties are partitioned.

In the earmarking configuration, introduced in Bekker et al. (2016),
each specialty has a ward dedicated to it which is linked to a single
queue, similar to the fully dedicated configuration. But there also exists
a shared overflow ward admitting patients whose dedicated wards are
full. The earmarking configuration benefits from focused care in its
dedicated wards, and from pooling in its overflow ward. Since all
specialties share one overflow ward, however, it requires costly full
nurse cross-training. Both earmarking and wing formation configura-
tions capture the fully dedicated and flexible configurations as special
cases.

In the clustered overflow (COF) configuration, proposed in Izady
and Mohamed (2021), specialties are partitioned into a number of
clusters similar to the wing formation configuration. Each cluster,
however, includes a dedicated ward for each of the specialties in the
cluster as well a single overflow ward shared among all the specialties
of the cluster. There is a single queue attached to each dedicated ward,
feeding the patients first into the dedicated ward and next to the cluster
overflow ward. Similar to earmarking, this configuration benefits from
both pooling and focused care. The flexibility created by partitioning
of specialties, however, helps reduce the cross-training cost as well as
the amount of mix variability. The clustered overflow configuration
captures all the other four configurations as special cases.

One of the five major configurations described above is typically
adopted by hospitals. However, there always exists a degree of patient
outlying in practice. While this reduces the admission wait for the
patients involved, it may negatively influence the care quality of outlied
and non-outlied patients as explained earlier, and may also worsen
the performance of the system overall. Further, a large percentage of
patient outlying is an indicator that inpatient services are not organized
properly.

We aim to avoid patient outlying by choosing the right configura-
tion of inpatient services. To achieve this, we develop a methodology
that seeks to find the optimal configuration of inpatient beds in a
hospital given a set of specialties, a total number of beds, and a
waiting time threshold. The waiting time threshold identifies the extent
to which patients wait in their queues before being transferred to
another hospital. It depends on the urgency of patient condition, with
emergency patients having a much shorter threshold than electives.
It also varies in different healthcare systems. In Dutch hospitals, for
example, the threshold is very short (Bekker et al., 2016), while in the
UK it is very long with many patients waiting for several months before
admission.

We define the optimal configuration as the one minimizing the
expected daily costs, including the cost of patients waiting in the queue
or abandoning the queue plus the cost of nursing teams. We work with
the COF configuration because it captures the other configurations as
special cases. For this configuration, the specialties must be partitioned
into a number of clusters, and the number of dedicated and overflow
beds of each cluster must be identified. We design a heuristic methodol-
ogy for this purpose, drawing on the intra-cluster bed allocation model
proposed in Izady and Mohamed (2021) and the partitioning and inter-
cluster bed allocation model proposed in Best et al. (2015). For the
intra-cluster allocation model, we propose two novel approximation
methodologies for estimating the performance metrics of a given cluster
with specific bed allocation. One approximation applies to systems with
an infinite waiting time threshold (IWTT), and the other works with
systems with a finite waiting time threshold (FWTT). The simulation
experiments indicate reliable accuracy of both approximations.

We investigate the application of our reconfiguration methodology
using real inpatient data from the Royal Surrey County Hospital (RSCH)
in the UK. A comprehensive data analysis shows that RSCH is operating
a wing formation configuration with overlapping clusters under a high

level of daily occupancy. There also exists a substantial level of patient
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outlying, accounting for about 30% of the total workload in the hospi-
tal. This level of patient outlying, as indicated by our analysis, prolongs
the LOS of all patients in the hospital, including the non-outlying ones.
There also exists a large number of ward changes within each specialty,
which in addition to inconvenience for patients, results in longer LOSs
in particular for older patients.

Simulation results suggest that implementing the configurations
recommended by our methodology can create significant cost sav-
ings when compared to the existing configuration. Furthermore, our
findings reveal that in the majority of scenarios considered, the COF
configuration consistently emerges as the most cost-effective option,
followed by the wing formation (earmarking) configuration when the
impact of focus is small (large).

2. Literature review

We start by reviewing the inpatient bed allocation literature in
Section 2.1. We then explain the critical role played by performance
evaluation models in inpatient bed allocation methodologies and ex-
plore the relevant literature in Section 2.2. This is followed by our
contributions in Section 2.3.

2.1. Bed allocation

Inpatient bed allocation has been studied by many researchers
throughout the years. It means ‘‘...assigning beds to various patient cat-
egories according to medical specialty, accommodation type, and logis-
tical considerations; presumably, patient needs, research goals, and ed-
ucational requirements are taken into account, along with cost...’’ (Du-
mas, 1985, p. 44). We divide the relevant literature into three main
streams as follows.

The first stream includes articles that seek to identify the number
of beds for a clinical unit so as to achieve a given objective; see, for
example, de Bruin et al. (2009). The second stream includes studies that
seek to find the optimal allocation of a given number of beds to a set
of specialties under a fully dedicated configuration; see, for example, Li
et al. (2009). A comprehensive review of the first and second streams
is provided in Arabzadeh (2022), Chapter 2.

The third stream is the closest to our research, and includes arti-
cles that consider clustering a given set of specialties and identifying
the corresponding bed allocation simultaneously. The two prominent
papers in this stream are those of Best et al. (2015) and Izady and
Mohamed (2021). Best et al. (2015) propose the wing formation config-
uration, aiming to find the optimal level of bed pooling. Given a total
number of beds, a set of specialties, and a finite waiting time threshold,
they propose a methodology for finding the optimal allocation of
specialties to different wings and the corresponding bed allocation such
that the total utility to the hospital is maximized. Best et al. (2015)
apply their model to inpatient data from an 18-specialty hospital. Their
numerical experiments with varying levels of waiting time threshold
and workload suggest that hospitals with a longer waiting time thresh-
old or higher levels of demand should form more specialized wings to
benefit from the advantages of focused care.

Izady and Mohamed (2021) introduce the COF configuration and
propose a heuristic methodology for its clustering and bed allocation.
Assuming a zero waiting time threshold (ZWTT), they propose two
different formulations, a total cost minimization and a constrained
blocking minimization. The former aims to minimize the total average
daily cost, including the cost of turning patients away plus the cost of
nursing teams, whereas the latter seeks to minimize the total number
of patients turned away subject to nursing cost falling below a given
threshold. The solution methodology in Izady and Mohamed (2021)
involves an intra-cluster bed allocation model and a partitioning and
inter-cluster bed allocation model. They apply their methodology to the
data from a 7-specialty paediatric department, and report that the con-
figurations obtained from their methodology compare very well with
other major configurations as long as patients’ waiting time threshold
682

is relatively short.
2.2. Performance evaluation

A performance evaluation model lies at the heart of all clustering
and bed allocation methodologies. It evaluates the performance metrics
of a given partition of specialties with a given allocation of beds.
We categorize these models based on two dimensions: (i) the type
of interaction between different wards: no interaction, a hierarchical
interaction, or a cross-facility interaction, and (ii) the waiting time
threshold of patients: zero, finite, or infinite. This leads to nine different
categories of performance evaluation models as outlined in Fig. 2. We
review each of these categories below.

Category I: An Erlang loss queueing model, denoted by 𝑀∕𝐺𝐼∕𝑠∕0
— with a Poisson arrival process (the 𝑀), a general service time
distribution that is independent of the arrival process (the 𝐺𝐼), 𝑠 servers
and 0 waiting space — is generally applied. An example is the work
of de Bruin et al. (2009).

Category II: An Erlang abandonment queueing model, denoted by
𝑀∕𝑀∕𝑠∕∞ +𝑀 — with an Exponential service time distribution (the
second 𝑀), infinite waiting space (the ∞), and an Exponential waiting
time threshold (the +𝑀) — is typically applied. For an example in the
bed planning literature, see the work of Best et al. (2015).

Category III: An Erlang delay model, denoted by 𝑀∕𝑀∕𝑠∕∞, is
generally applied. See Green and Nguyen (2001) for an example.

Category IV, V, and VI: We refer to the relevant models as ‘‘overflow
loss’’, ‘‘overflow abandonment’’, and ‘‘overflow delay’’ models, respec-
tively, which can be applied for performance evaluation of earmarking
as well as clustered overflow configurations under the ZWTT, FWTT,
and IWTT assumptions. These categories are the most relevant to our
research. Overflow models represent multi-class hierarchical systems
which consist of a collection of dedicated primary facilities and a
flexible overflow facility. An exact product-form performance evalu-
ation methodology is proposed in Bekker et al. (2016) for a special
case of overflow loss models. For more general cases, approximations
have been proposed in the literature. These include the equivalent ran-
dom method (Cooper, 1990, p.165), Haywards’ approximation (Fred-
ericks, 1980), and the Hyper-Exponential decomposition (Franx et al.,
2006). Izady and Mohamed (2021) extend the Hayward’s model to
situations in which mean service time of a customer class in the over-
flow facility is potentially different from the corresponding mean in the
primary facility. This is useful for capturing the impact of focus on LOS
in bed allocation models. We did not find any analytical methodology
for performance evaluation of overflow abandonment models in the
literature. An approximation methodology is proposed in Chevalier and
Van den Schrieck (2009) for the special case of overflow delay models
where the mean LOS in dedicated and overflow wards are the same,
i.e., no impact of focus.

Categories VII, VIII and, IX: We refer to the relevant models as
‘‘cross-flow loss’’, ‘‘cross-flow abandonment’’, and ‘‘cross-flow delay’’
models, respectively. These models are relevant for evaluating the per-
formance of inpatient services with a substantial level of patient outly-
ing. Simulation models are typically applied for performance evaluation
of cross-flow models; see, for example, Shi et al. (2016).

2.3. Contributions

We adapt the dynamic programming (DP) methodology proposed
in Best et al. (2015) for our inter-cluster bed allocation and partitioning.
We also apply the analytical function they propose for representing the
impact of focus and workload on LOS. Our methodology differs to that
of Best et al. (2015) in the following ways: (i) ours is based on the
COF configuration, capturing the other four configurations as special
cases, while theirs is restricted to the wing formation configuration,
which does not capture COF and earmarking; (ii) ours takes nursing
costs explicitly into account as it can have a substantial impact on

the optimal configuration, while theirs does not; and (iii) ours works
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with both IWTT and FWTT assumptions, whereas theirs is restricted to
FWTT.

We utilize the COF configuration proposed in Izady and Mohamed
(2021) as well as their total cost minimization formulation. We general-
ize their methodology and experimentation in the following ways. First,
we relax the ZWTT assumption made in Izady and Mohamed (2021),
which implies that patients are either admitted to their dedicated or
overflow wards upon arrival, or turned away immediately. This is
not a realistic assumption in many inpatient departments as patients
do wait for admission. The relaxation is achieved by developing two
novel performance evaluation approximations, one for overflow delay
models, and the other for overflow abandonment models. Exact analysis
of both models is extremely challenging due to high dimensionality of
the required state vector. Second, Izady and Mohamed (2021) test their
methodology on a limited dataset from a paediatric department with 7
specialties, whereas we conduct a comprehensive case study using a
large inpatient dataset from a hospital with 16 different specialties.

3. The optimization model

We consider the COF configuration proposed in Izady and Mohamed
(2021), and adapt their total cost minimization formulation to our
setting. Suppose there is a total of 𝐵 inpatient beds providing care for
a total of 𝑛 specialties. Let  = {1,… , 𝑛} be the index set of specialties,
and denote by  = {1,… ,𝑚} a partition of set  into 𝑚 ∈ Z+ clusters.

e use Z and Z+ to denote the set of non-negative and positive integers,
respectively. For every cluster 𝑗 ∈  in the COF configuration, there
exists a ward dedicated to patients of each specialty 𝑖 ∈ 𝑗 , and an
overflow ward 𝑗 admitting overflowing patients of specialties in the
cluster, for 𝑗 = 1,… , 𝑚. Let 𝒅 = (𝑑1,… , 𝑑𝑛) and 𝒐 = (𝑜1,… , 𝑜𝑚) be the
dedicated and overflow bed allocation vectors, respectively, with 𝑑𝑖 ∈ Z
representing the number of beds in the ward dedicated to specialty 𝑖 for
∈ , and 𝑜𝑗 ∈ Z the number of beds in the overflow ward of cluster 𝑗
or 𝑗 = 1,… , 𝑚.

We assume patients of each specialty request admission according to
stationary Poisson process, independently from other specialties, and

heir LOSs are independent and identically distributed (i. i. d.) as Expo-
ential random variables. Both assumptions are followed in bulk of the
ed allocation literature; see, for example, Best et al. (2015) and Bekker
t al. (2016). We denote the rate of admission request for specialty 𝑖
atients by 𝜆𝑖. To capture the impact of focus and workload on LOS,
e represent the mean LOS for specialty 𝑖 patients admitted to a 𝑑−bed
ard shared by a subset  ∋ 𝑖 of specialties by function 𝜈𝑖(𝑑,). For
683

ystems with an IWTT, we assume patients wait in their queues until
hey are served. For systems with a FWTT, we assume waiting time
hresholds are i. i. d. according to an Exponential distribution with
ate 𝛾 for all specialties. This is also the assumption followed in Best
t al. (2015). We assume arrival, service, and abandonment processes
re mutually independent.

Identifying the optimal configuration and the corresponding bed al-
ocation for the COF configuration requires 4 sets of decision variables,
amely, 𝑚, , 𝒅, and 𝒐. We define the optimal configuration as the
ne minimizing the mean total daily cost including the cost of patients
bandoning (waiting in) the queue for FWTT (IWTT) assumption, and
he cost of nursing teams. Cost minimization formulations are common
n the bed allocation literature; see, for example, Izady and Mohamed
2021) and Wu et al. (2019). The optimization problem is formulated
s

= min
(𝑚,,𝒅,𝒐)

{ 𝑚
∑

𝑗=1
𝑇 (𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) ∶

𝑛
∑

𝑖=1
𝑑𝑖 +

𝑚
∑

𝑗=1
𝑜𝑗 ≤ 𝐵,

 is a feasible partition of , 𝑚 ∈ Z+,𝒅 ∈ Z𝑛 and 𝒐 ∈ Z𝑚

}

,(1)

here 𝑇 (𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) gives the mean total daily cost of cluster 𝑗

ith (𝑑𝑖; 𝑖 ∈ 𝑗 ) dedicated beds and 𝑜𝑗 overflow beds. Following Izady
nd Mohamed (2021), the problem in (1) can be restated as

= min
(𝑚,𝒃,)

{ 𝑚
∑

𝑗=1
𝜙(𝑗 , 𝑏𝑗 ) ∶ (𝑚, 𝒃,) ∈ 𝛹

}

, (2)

here 𝒃 = (𝑏1,… , 𝑏𝑚),

=

{

(𝑚, 𝒃,) ∶
𝑚
∑

𝑗=1
𝑏𝑗 ≤ 𝐵, is a feasible partition of  ,

𝑚 ∈ Z+, and 𝒃 ∈ Z𝑚} ,

and

𝜙(𝑗 , 𝑏𝑗 ) = min
(𝑑𝑖;𝑖∈𝑗 ), 𝑜𝑗

{

𝑇 (𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) ∶

𝑜𝑗 +
∑

𝑖∈𝑗
𝑑𝑖 ≤ 𝑏𝑗 , 𝑜𝑗 ∈ Z, and 𝑑𝑖 ∈ Z for 𝑖 ∈ 𝑗

}

. (3)

The problem in (2) is the partitioning and inter-cluster bed allocation
problem, while the one in (3) is the intra-cluster bed allocation prob-
lem. To evaluate the cost function 𝑇 in problem (3), we assume a cost
of 𝑐𝑤 is incurred each day a patient waits in the queue for systems
with an IWTT assumption, and a cost of 𝑐 is incurred for each patient
𝑎
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abandoning the queue (as a result of her waiting time exceeding the
threshold) for systems with an FWTT assumption. This gives

𝑇 (𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) = 𝑐𝑤𝑄(𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) + 𝑅(𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ),

(4)

and

𝑇 (𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) = 𝑐𝑎𝐵(𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) + 𝑅(𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ),

(5)

for IWTT and FWTT systems, respectively, where 𝑅 represents the
mean daily cost of nursing, 𝑄 the mean number of patients waiting
in the queue, and 𝐵 the mean daily number of patients abandoning the
system, all for cluster 𝑗 with bed allocation (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 . Note that 𝑐𝑤
and 𝑐𝑎 are assumed to be the same across all specialties to simplify the
analysis. However, Eqs. (4) and (5) can be readily adapted to capture
different cost parameters for different specialties. It is easy to show that

𝑄(𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) =
∑

𝑘∈𝑗

𝜆𝑘𝑊𝑘(𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ), (6)

𝐵(𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) =
∑

𝑘∈𝑗

𝜆𝑘𝐴𝑘(𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ), (7)

where 𝑊𝑘 and 𝐴𝑘 give the mean waiting time and probability of
abandonment, respectively, of specialty 𝑘 ∈ 𝑗 patients.

To evaluate the nursing cost, 𝑅(𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ), we apply the
minimum nurse-to-patient ratio approach following Izady and Mo-
hamed (2021). As they explain, this approach makes analytical calcu-
lations easier, and is also the most common method for establishing
nursing requirements in hospitals. Denote by 𝑓𝑖 the desired nurse-to-
patient ratio for specialty 𝑖 ∈  patients, and let 𝑟() be the daily
cost of a nurse working in a ward admitting patients of a subset  of
specialties. We then have

𝑅(𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) =
∑

𝑘∈𝑗

𝑟({𝑘})
⌈

𝑆𝑑
𝑘 (

𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 )𝑓𝑘
⌉

+𝑟(𝑗 )

⌈

∑

𝑘∈𝑗
𝑆𝑜
𝑘(

𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 )𝑓𝑘

⌉

, (8)

where functions 𝑆𝑑
𝑘 (

𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) and 𝑆𝑜
𝑘(

𝑗 , (𝑑𝑖; 𝑖 ∈ 𝑗 ), 𝑜𝑗 ) give the
mean numbers of beds occupied by specialty 𝑘 ∈ 𝑗 patients in their
dedicated and overflow wards, respectively, and ⌈𝑥⌉ gives the smallest
integer larger than or equal to 𝑥.

Eq. (8) employs the expected number of patients in each ward
to derive the base staffing levels associated with each cluster. This
approach is in line with the common practice in healthcare institutions,
where base staffing levels, reflective of average occupancy rates, are
utilized for mid- to long-term decision making. As explained in Malaki
et al. (2023), these base staffing levels are typically supplemented by
temporary staffing adjustments made several hours or days prior to
each shift to effectively respond to short-term fluctuations in patient
demand. We note that the nurse numbers in Eq. (8) are rounded up to
ensure the allocation of an integer number of nurses to each ward.

In the next section, we show how performance metrics 𝑊𝑘, 𝐴𝑘, 𝑆𝑑
𝑘 ,

and 𝑆𝑜
𝑘 can be estimated for a cluster with a given bed allocation.

4. The performance evaluation models

In this section, we develop approximation methodologies for es-
timating performance metrics of overflow delay systems as well as
overflow abandonment systems. We define an overflow queueing sys-
tem as a hierarchical multi-class queueing system with two types of
server pools: (i) dedicated pools, each specialized to serve a single class
of customers; and (ii) an overflow pool, cross-trained to serve all classes
of customers.

Upon arrival, customers will be served by their dedicated pool if it
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has an idle server available, and the overflow pool otherwise. If both p
Fig. 3. The schematic diagram of an overflow system.

pools are busy, customers wait in dedicated queues corresponding to
their classes; see Fig. 3. We assume that once a server in a dedicated
pool becomes available, it serves the next customer in its dedicated
queue according to a first-come first-served (FCFS) discipline. Once
a server in the overflow pool becomes available, on the other hand,
we assume that it serves the next customer from the longest queue
following a FCFS discipline. The longest queue policy is found to
outperform the other major policies in Jordan et al. (2004). There exists
no transfer of customers between dedicated and overflow pools.

In overflow delay systems, customers are infinitely patient and wait
in their queues until they are served. In overflow abandonment systems,
customers are impatient and abandon the queue once their waiting
time threshold is reached. A cluster in the COF configuration with an
IWTT can therefore be represented as an overflow delay system, while a
cluster with an FWTT can be represented as an overflow abandonment
system.

Suppose there are 𝑛 customer classes with  = {1, 2,… , 𝑛} the
orresponding index set. Let 𝑑𝑖 be the number of servers in the pool
edicated to class 𝑖 customers for 𝑖 ∈ , and 𝒅 = (𝑑1,… , 𝑑𝑛) be the
orresponding vector. Let 𝑜 be the number of serves in the overflow
ool. Suppose class 𝑖 customers arrive to the system according to a
oisson process with rate 𝜆𝑖, and their service times are i. i. d. as
n Exponential distribution with mean 𝜈𝑖 if service is provided by
he corresponding dedicated pool, and 𝜈′𝑖 if service is provided by the
verflow pool, for 𝑖 ∈ . For the overflow abandonment system, in
dditions to the assumptions above, we assume times to abandon are
. i. d. following an Exponential distribution with rate 𝛾 for all customer
lasses. Arrival, service and abandonment processes are assumed to
e mutually independent. Following the formulation in Section 3, we
eed to evaluate mean waiting time in the queue for the overflow
elay system, and the probability of abandonment for the overflow
bandonment system, for each class of customers. To evaluate nursing
osts, we also need to evaluate mean busy servers in dedicated and
verflow pools for both systems.

To demonstrate the complexities of performance evaluation in over-
low systems, an exact analysis is conducted in Section 4.2 of Arabzadeh
2022) for a simplified overflow delay system with only two customer
lasses and single-server primary and overflow service facilities. Their
nalysis indicates that a four-dimensional state vector is required and
he total size of the state space would be 2(𝑁 + 1)2 + 4, where 𝑁 is the
aximum number of customers in the system for each class excluding

he one in the overflow server. As shown in numerical experiments
n Arabzadeh (2022), the computation time exceeds one hour with

= 20, implying that an exact performance evaluation would not
e practical for finding the optimal bed allocation within a cluster,
hich may potentially include more than two specialties and require
larger 𝑁 . We therefore propose approximation methodologies for
erformance evaluation of hierarchical queues.
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Our approximations includes two main steps. For both delay and
abandonment systems, the first step involves estimating the blocking
probabilities of different customer classes in an equivalent overflow
loss system. For overflow delay systems, the second step of our ap-
proximation involves converting the estimated blocking probabilities
in the overflow loss system to mean waiting times in the overflow
delay system using the exact relation between loss probability in single-
class 𝑀∕𝑀∕𝑠∕0 loss queues and mean waiting time in single-class

∕𝑀∕𝑠∕∞ delay queues. For overflow abandonment systems, the
econd step involves converting the estimated blocking probabilities in
he overflow loss system to abandonment probabilities in the overflow
bandonment system using the exact relation between loss probability
n single-class 𝑀∕𝑀∕𝑠∕0 loss queues and abandonment probability in
ingle-class 𝑀∕𝑀∕𝑠∕∞ +𝑀 abandonment queues.

Section 4.1 explains how loss probabilities are estimated in over-
low loss systems. The approximations for evaluating performance in
verflow delay and abandonment systems are elaborated in Sections 4.2
nd 4.3, respectively. The accuracy of approximations are tested against
imulation results in Section 4.4.

.1. Overflow loss systems

In this section, we utilize the approximation method proposed
y Izady and Mohamed (2021), which accounts for differences in mean
ervice times between dedicated and overflow pools. This distinction is
rucial for capturing the impact of focus on LOS. The approximation
stimates the blocking probability faced by customers of class 𝑖 in an
verflow loss system (with the same arrival and service processes as the
verflow delay or abandonment system) as follows:

𝑖 = 𝐵𝑒(𝑎𝑖, 𝑑𝑖)𝐿 ≈ 𝐵𝑒(𝑎𝑖, 𝑑𝑖)𝐵𝑒(𝛼∕𝛽, 𝑜∕𝛽), (9)

where 𝐵𝑒(𝑎, 𝑑) is a continuous extension of the Erlang loss function
(such as 𝐵𝑒(𝑎, 𝑑) = [𝑎 ∫ ∞

0 exp(−𝑎𝑡)(1 + 𝑡)𝑑𝑑𝑡]−1 proposed in Jagerman
1974)), 𝑎𝑖 = 𝜆𝑖𝜈𝑖 is the offered load of class 𝑖 customers, and 𝐿 is the
locking probability experienced by the aggregate stream overflowing
edicated pools. By Hayward’s approximation, 𝐿 can be estimated as:

≈ 𝐵𝑒(𝛼∕𝛽, 𝑜∕𝛽). (10)

ere, 𝛼 is the offered load of the aggregate overflow stream, computed
s:

=
∑

𝑖∈
𝑎𝑖𝐵𝑒(𝑎𝑖, 𝑑𝑖)∕𝜌𝑖, (11)

here 𝜌𝑖 = 𝜈𝑖∕𝜈′𝑖 is the mean service ratio, and 𝛽 represents the
‘peakedness’’ (see Fredericks (1980) for its definition) of the aggregate
verflow stream, evaluated by:

= 1
𝛼
∑

𝑖∈

𝑎𝑖
𝜌𝑖
𝐵𝑒(𝑎𝑖, 𝑑𝑖)𝜉(𝑎𝑖, 𝑑𝑖, 𝜌𝑖). (12)

In Eq. (12), 𝜉(𝑎𝑖, 𝑑𝑖, 𝜌𝑖) denotes the peakedness of the stream overflow-
ing from dedicated pool 𝑖. As per Proposition 1 in Izady and Mohamed
(2021), this peakedness is computed using the following formula:

𝜉(𝑎𝑖, 𝑑𝑖, 𝜌𝑖) = 1 −
𝑎𝑖𝐵𝑒(𝑎𝑖, 𝑑𝑖)

𝜌𝑖
+

𝑎𝑖(𝑎𝑖 + 𝜌𝑖)3𝐹1(𝜌𝑖, 1 − 𝑑𝑖, 𝑎𝑖 + 𝜌𝑖 + 1; 𝑎𝑖 + 𝜌𝑖; −1∕𝑎𝑖)
𝜌𝑖(𝑎𝑖 + 𝜌𝑖 + 1)3𝐹1(1 − 𝑑𝑖, 𝜌𝑖 + 1, 2 + 𝑎𝑖 + 𝜌𝑖; 𝑎𝑖 + 𝜌𝑖 + 1;−1∕𝑎𝑖)

, (13)

where 𝑝𝐹𝑞(𝑎1,… , 𝑎𝑝; 𝑏1,… , 𝑏𝑞 ; 𝑥) represents the generalized hypergeo-
metric function.

4.2. Overflow delay systems

In this section, we estimate the probability of delay and mean
waiting time experienced by class 𝑖 customers, denoted by 𝑃𝑖 and
𝑊𝑖, respectively, in an overflow delay system using the estimate of
𝐿 provided in Eq. (9). To start, consider an 𝑀∕𝑀∕𝑠∕∞ delay queue
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𝑖 𝑠
with offered load 𝑎 < 𝑠. The probability of delay, 𝑃𝑀∕𝑀∕𝑠∕∞, in
this queue is related to the loss probability, 𝐿𝑀∕𝑀∕𝑠∕0, in an equiv-
alent 𝑀∕𝑀∕𝑠∕0 loss queue through the equation (see Cooper, 1990,
Chap. 10, Equation 5.31):

𝑃𝑀∕𝑀∕𝑠∕∞ =
𝑠𝐿𝑀∕𝑀∕𝑠∕0

𝑠 − 𝑎(1 − 𝐿𝑀∕𝑀∕𝑠∕0)
. (14)

Motivated by this equation, Chevalier and Van den Schrieck (2009)
propose

𝑃𝑖 ≈
𝑠𝑖𝐿𝑖

𝑠𝑖 − 𝛿𝑖(1 − 𝐿𝑖)
, (15)

for estimating the delay probability faced by class 𝑖 customers in an
overflow delay system. In Eq. (15), 𝐿𝑖 is estimated through Eq. (9), 𝑠𝑖
is a suitably defined number of servers allocated to class 𝑖 customers as
we shall explain below, and 𝛿𝑖 is the offered load of class 𝑖 customers
in the overflow delay system evaluated by:

𝛿𝑖 = 𝜆𝑖�̄�𝑖, (16)

where �̄�𝑖 is the weighted average of class 𝑖 mean service times in
dedicated and overflow pools obtained by the following equation:

�̄�𝑖 = (1 − 𝜒𝑖)𝜈𝑖 + 𝜒𝑖𝜈
′
𝑖 . (17)

Here, 𝜒𝑖 is the fraction of class 𝑖 customers served by the overflow pool
in the overflow delay system. We propose estimating this fraction by
the corresponding fraction in the associated overflow loss system, i.e.,

𝜒𝑖 ≈ 𝐵𝑒(𝑎𝑖, 𝑑𝑖)(1 − 𝐿), (18)

with 𝐿 given in Eqs. (10). This loss-based approximation of 𝜒𝑖 is more
accurate than the fluid approximation utilized in Chevalier and Van den
Schrieck (2009) as it captures the uncertain nature of inter-arrival and
service times.

To evaluate 𝑠𝑖, we first define 𝐼𝑑𝑖 as the idle service capacity in
dedicated pool 𝑖, and 𝐼𝑜𝑖 as the portion of idle service capacity in
the overflow pool allocated to class 𝑖 customers. Both metrics have
the same dimension as arrival and service rates, i.e., they are mea-
sured in customers per time unit. To estimate 𝐼𝑑𝑖 and 𝐼𝑜𝑖 , we combine
the fluid approximation proposed by Chevalier and Van den Schrieck
(2009) with the results from the overflow loss system. In particular, we
estimate 𝐼𝑑𝑖 as

𝐼𝑑𝑖 ≈ (𝑑𝑖∕𝜈𝑖 − (𝜆𝑖 − 𝜆′𝑖))
+, (19)

where 𝑥+ = max{𝑥, 0}, and 𝜆′𝑖 is the rate of customer overflow from
dedicated pool 𝑖 estimated using the overflow loss system results as:

𝜆′𝑖 ≈ 𝜆𝑖𝜒𝑖. (20)

The overall idle capacity at the overflow pool is therefore

𝐼𝑜 ≈ (𝑜∕�̄� −
∑

𝑖∈
𝜆′𝑖)

+, (21)

where �̄� is the weighted average of mean service times of different
customer classes in the overflow pool given by

�̄� =
∑

𝑖∈
𝜆′𝑖𝜈

′
𝑖∕

∑

𝑖∈
𝜆′𝑖 . (22)

Assuming customer classes with higher loss probabilities in the equiva-
lent overflow loss system will have a higher proportion of the overflow
pool idle capacity, we have

𝐼𝑜𝑖 ≈
𝜆𝑖𝐿𝑖

∑

𝑖∈ 𝜆𝑖𝐿𝑖
𝐼𝑜, (23)

with 𝐿𝑖 given in Eq. (9). Note that our estimation of 𝐼𝑑𝑖 and 𝜆′𝑖 given
n Eqs. (19) and (20), respectively, are more accurate than those
f Chevalier and Van den Schrieck (2009), i.e., 𝐼𝑑𝑖 ≈ (𝑑𝑖∕𝜈𝑖 − 𝜆𝑖)+ and
′
𝑖 ≈ (𝜆𝑖 − 𝑑𝑖∕𝜈𝑖)+, which are purely based on fluid approximation. We
ow propose

𝑜 ′ ′

𝑖 = 𝐼𝑖 �̄� + 𝜆𝑖𝜈𝑖 + 𝑑𝑖. (24)
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Eq. (24) implies that 𝑠𝑖 equals the size of dedicated pool 𝑖 plus the
um of idle and used capacity of the overflow pool allocated to class
customers. We use Eq. (24) instead of the conservation equation

𝑖 = (𝜆𝑖 + 𝐼𝑑𝑖 + 𝐼𝑜𝑖 )𝜈𝑖 proposed by Chevalier and Van den Schrieck
2009) as it does not account for different mean service times in
edicated and overflow pools. Substituting 𝑠𝑖 and 𝛿𝑖 in Eq. (15) with
heir corresponding values given in Eqs. (24) and (16), respectively,
nd simplifying, we obtain

𝑖 =

(

𝐼𝑜𝑖 �̄� + 𝜆′𝑖𝜈
′
𝑖 + 𝑑𝑖

)

𝐿𝑖

𝐼𝑜𝑖 �̄� + 𝜆′𝑖𝜈
′
𝑖 + 𝑑𝑖 − 𝜆𝑖�̄�𝑖(1 − 𝐿𝑖)

. (25)

The next step is to convert the delay probability 𝑃𝑖 to mean waiting
time 𝑊𝑖. For this, we use the relation 𝑊𝑀∕𝑀∕𝑠∕∞ = 𝑃𝑀∕𝑀∕𝑠∕∞∕(𝑠∕𝜈 −
𝜆) between delay probability, 𝑃𝑀∕𝑀∕𝑠∕∞, and mean waiting time,

𝑀∕𝑀∕𝑠∕∞, in an 𝑀∕𝑀∕𝑠∕∞ queue with arrival rate 𝜆 and mean
ervice time 𝜈 (see, e.g., Cooper, 1990, Chap. 10, Equation 5.31).
he denominator of this relation is in fact the idle service capacity.
otivated by this, we have the following approximation

𝑖 ≈
𝑃𝑖

𝐼𝑑𝑖 + 𝐼𝑜
. (26)

Note that if 𝐼𝑑𝑖 +𝐼𝑜 = 0, the system is unstable for class 𝑖 customers and
o 𝑃𝑖 = 1 and 𝑊𝑖 → ∞. Applying Little’s law on server pools, we obtain
he mean number of class 𝑖 customers in the dedicated and overflow
ools by
𝑑
𝑖 ≈ 𝜆𝑖(1 − 𝜒𝑖)𝜈𝑖, (27)

nd
𝑜
𝑖 ≈ 𝜆𝑖𝜒𝑖𝜈

′
𝑖 , (28)

espectively, where the fraction of customers served by the overflow
ool is estimated by the corresponding fraction in the overflow loss
ystem.

.3. Overflow abandonment systems

Consider an 𝑀∕𝑀∕𝑠∕∞ +𝑀 abandonment queue with arrival rate
, mean service time 𝜈, and abandonment rate 𝛾. The abandonment
robability 𝐴𝑀∕𝑀∕𝑠∕∞+𝑀 in this queue is related to the loss probability
𝑀∕𝑀∕𝑠∕0 in an equivalent 𝑀∕𝑀∕𝑠∕0 loss queue through the following

equation (see Equation 5.22 in Zhang (2010))

𝐴𝑀∕𝑀∕𝑠∕∞+𝑀 =
𝑠(1 + 𝑓 (𝑐, 𝜂)(𝜂∕𝑐 − 1))𝐿𝑀∕𝑀∕𝑠∕0

𝜆𝜈
(

1 + (𝑓 (𝑐, 𝜂) − 1)𝐿𝑀∕𝑀∕𝑠∕0
) , (29)

where

𝑓 (𝑐, 𝜂) =
∞
∑

𝑖=0

𝛤 (𝑐 + 1)𝜂𝑖

𝛤 (𝑐 + 𝑖 + 1)
,

with 𝑐 = 𝑠∕𝜈𝛾, 𝜂 = 𝜆∕𝛾, and 𝛤 (𝑥) = ∫ ∞
0 𝑦𝑥−1𝑒−𝑦𝑑𝑦 is the Gamma

unction. Motivated by Eq. (29), we propose the approximation

𝑖 ≈
𝑠𝑖(1 + 𝑓 (𝑐𝑖, 𝜂𝑖)(𝜂𝑖∕𝑐𝑖 − 1))𝐿𝑖

𝜆𝑖�̄�𝑖
(

1 + (𝑓 (𝑐𝑖, 𝜂𝑖) − 1)𝐿𝑖
) , (30)

for the abandonment probability experienced by class 𝑖 customers in the
overflow abandonment system, where 𝑠𝑖 is a suitably defined number
of servers for class 𝑖 customers, 𝑐𝑖 = 𝑠𝑖∕�̄�𝑖𝛾, 𝜂𝑖 = 𝜆𝑖∕𝛾, �̄�𝑖 is the average
mean service time of class 𝑖 customers given in Eq. (17), and 𝐿𝑖 is
estimated through Eq. (9). For 𝑠𝑖, we use the same equation as for the
overflow delay system, i.e.,

𝑠𝑖 = 𝐼𝑜𝑖 �̄� + 𝜆′𝑖𝜈
′
𝑖 + 𝑑𝑖, (31)

with 𝐼𝑜𝑖 , �̄�, and 𝜆′𝑖 given in Eqs. (23), (22), and (20), respectively. Once
bandonment probabilities are obtained, we can use Eqs. (27) and (28)
o estimate mean numbers of class 𝑖 customers in the dedicated and
verflow pools, respectively, by replacing arrival rate 𝜆𝑖 with effective
rrival rate 𝜆 (1 − 𝐴 ).
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4.4. Simulation experiments

We perform an extensive series of simulation experiments to assess
the accuracy of our approximation methodologies, along with the one
proposed by Chevalier and Van den Schrieck (2009). The details of
these experiments and their corresponding outcomes can be found
in Section A of the e-companion. The results show a practical level
of accuracy for our approximation methodologies. They also show
that our approximation for overflow delay systems consistently outper-
forms the methodology proposed by Chevalier and Van den Schrieck
(2009). Consequently, for a cluster with a given bed allocation, we
can apply our approximation methodologies to estimate the requisite
performance metrics for computing the mean total daily cost of the
cluster, as given in Eqs. (4) and (5) for ITWTT and FWTT systems,
respectively.

5. Solving the models

We start with the intra-cluster allocation problem in (3). Consider-
ing a hypothetical cluster  = {1, 2} with 𝑏 = 70 beds, in Fig. 4 we
plot the objective function of this problem, i.e., 𝑇 (, (𝑑𝑖; 𝑖 ∈ ), 𝑜), with

given set of parameters as a function of 𝑑1 and 𝑑2 under IWTT as
ell as FWTT assumptions. The plots in this figure demonstrate that

he objective function is neither convex nor differentiable for either
ssumption. This implies that we need to apply a gradient-free heuristic
ptimization method for finding a good solution. Izady and Mohamed
2021) propose the CDOS heuristic developed by Moiseev (2011) for
inding a good bed allocation in a cluster under the ZWTT assumption,
.e., assuming the cluster works as an overflow loss system. The ex-
eriments presented in Section B of the e-companion show that CDOS
erforms relatively well under the FWTT and IWTT assumptions too.
he simulation optimization experiments conducted in the same section
lso illustrate that CDOS combined with our performance evaluation
ethodologies typically results in the correct allocation of beds. As

uch, we will use it for intra-cluster bed allocation.
For the partitioning and inter-cluster allocation problem in (2),

ollowing Best et al. (2015), we first restrict the feasible region 𝛹
y focusing only on partitions obtained by making cuts along a fixed
equence  of specialties. We then solve the restricted model using
he DP approach proposed in Best et al. (2015), with the difference
hat expected reward for each state–action pair is evaluated using the
DOS heuristic explained above. See Section 5.3 in Arabzadeh (2022)

or further details.

. Case study

We started a collaborative project with RSCH in January 2019.
SCH is a general NHS hospital located in Surrey, UK, providing
mergency and general hospital services to a population of more than
30,000 people living across south west Surrey. As we shall demon-
trate in Section 6.1, the hospital was experiencing a high level of bed
ccupancy even before the start of the COVID-19 pandemic. The aim of
ur collaboration was therefore to find innovative ways to reduce the
ed pressure on hospital with a focus on reconfiguration of inpatient
ervices. Here we report the interim results of our collaboration with
SCH.

.1. Current status

Data Coverage. Admission data covering a three-year period starting
rom 01/10/2015 is provided by the hospital. The data captures a
ide range of information for each patient admitted to the hospital.

n particular, it contains information about different episodes of care
ithin each hospital spell, including (but not limited to) their specialty,
rimary and secondary diagnoses, and the procedures conducted. In the

HS jargon, a hospital spell is defined as ‘‘... the total continuous stay
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Fig. 4. Surface plots for the total mean daily cost of a 70-bed cluster with 2 specialties assuming 𝑓1 = 𝑓2 = 0.149 and 𝜌1 = 𝜌2 = 1.0. Panel (a) is for an IWTT system with 𝜆1 = 5.2,
𝜆2 = 3.9, 𝜈1 = 4.8, 𝜈2 = 2.9, and 𝑐𝑤 = 1030, and panel (b) is for an FWTT system with 𝜆1 = 6.2, 𝜆2 = 4.9, 𝜈1 = 4.8, 𝜈2 = 2.9, 𝛾−1 = 5 and 𝑐𝑎 = 1030.
Table 1
An example of episodes of care and corresponding bed visits within a hospital spell at RSCH.
Episode no Specialty Bed visit Visit start date & time Visit end date & time Ward

1

1 01/10/2015 02:58 01/10/2015 10:07 EAU
Geriatric 2 01/10/2015 10:07 01/10/2015 17:58 EAU
Medicine 3 01/10/2015 17:58 01/10/2015 18:19 M2

4 01/10/2015 18:19 02/10/2015 10:40 EAU

2
5 02/10/2015 10:40 02/10/2015 19:24 EAU

Rheuma- 6 02/10/2015 19:24 02/10/2015 21:30 EAU
tology 7 02/10/2015 21:30 03/10/2015 07:50 M2

3 Geriatric 8 03/10/2015 07:50 05/10/2015 15:10 M2Medicine

4 Respiratory 9 05/10/2015 15:10 07/10/2015 23:00 M1
Medicine 10 07/10/2015 23:00 10/10/2015 14:40 M1
of a patient using a hospital bed on premises controlled by a health care
provider during which medical care is the responsibility of one or more
consultants ...’’, while an episode of care means ‘‘...the time a patient
spends in the continuous care of one consultant...’’ (NHS Data Model
and Dictionary, 2021). For each episode of care, the data also captures
the sequence of beds the patient has visited, the start and end dates and
times of each bed visit, and the corresponding ward. For example, the
spell illustrated in Table 1 has 4 episodes of care, 2 of which belong
to Geriatric Medicine, one to Rheumatology, and one to Respiratory
specialties. The first episode, for example, involves 4 bed visits, three
of which occur in the same ward.

There exists a total of 394 inpatient beds in the hospital divided
among 13 inpatient wards, including 8 medical wards (215 beds),
5 surgical wards (136 beds), an escalation ward (12 beds), and an
emergency assessment unit (EAU; 31 beds). The escalation ward is
mainly used during Winter when demand for inpatient beds is at its
peak. EAU is a short stay specialist assessment and admission facility
specifically for patients whose LOSs are expected to be less than 48 h.
Episodes of care spent entirely in a paediatric, rehabilitation, mental
health, or intensive care ward are excluded from our analysis as these
wards often have dedicated resources, and so are not included in the
reconfiguration exercise. We also exclude all episodes spent entirely in
a day-case ward, e.g., in the Cardiac Day Ward or the Endoscopy Unit,
so as to keep the focus on inpatient care. This leaves a total of 73,466
unique hospital spells with at least a period of care spent in an inpatient
ward. The rest of our analysis is restricted to these spells.

Bed Occupancy. The numbers of beds and average occupancy levels
of inpatient wards at RSCH are given in Table 2. The occupancy figures
given in this table demonstrate the significant strain on hospital beds.
This is highlighted further in Fig. 5 which represent the daily occupancy
levels over the last year of our data coverage period. In particular, we
observe in this figure that daily occupancy exceeds 85% for significant
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periods of time for both medical and surgical wards, and that EAU and
escalation wards’ occupancies hit 100% frequently.

Re-defining Specialties. For the purpose of reconfiguration, we need
to identify the specialty for each episode of care as accurately as
possible. This is also important for assessing the extent as well as
impact of patient outlying in the hospital. However, the ‘‘Specialty’’
field provided in the hospital data (see Table 1) represents the specialty
of the consultant in charge of the corresponding care episode, which
may not necessarily represent the clinical requirement of the patient,
in particular when the patient is outlied. To identify the correct spe-
cialty for each episode of care, we use ‘‘Finished Consultant Episode
- Healthcare Resource Group’’ (FCE-HRG) codes provided in the data.
HRG codes ‘‘... are standard groupings of clinically similar treatments
which use common levels of healthcare resources ...’’, and are used for
costing purposes. They consist of 5 parts each referring to a specific
characteristic (NHS Data Model and Dictionary, 2021). The FCE-HRG
code in our data identifies the HRG code for each episode of care.
We derive the specialty of each episode from the first two letters
of this code as explained in Section C of the e-companion. Setting
the specialties in this way, we observe that RSCH provides inpatient
care for a total of 18 specialties. Removing Radiology specialty, and
combining Gynaecology and Obstetrics as well as Haematology and
Oncology, we obtain 16 specialties, including 9 medical and 7 surgical
ones, as listed along with their abbreviations in Table 3.

To gain a better understanding of patients’ journeys in inpatient
services, a breakdown of a hospital spell is provided in Fig. 6. This
diagram shows that each hospital spell contains one or more specialty
spells, which we define as the continuous amount of time a patient
spends within one specialty. The change in specialty during a hospital
spell is often due to different medical needs of a patient. Each specialty
spell, in turn, includes one or more episodes of care, each of which
contains one or more bed visits. We define a bed visit as a period of
time a patient occupies a specific bed in a specific ward.
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Table 2
Bed numbers and average occupancy levels of different inpatient wards at RSCH. We use ‘‘M’’ for medical wards, ‘‘S’’ for surgical wards, ‘‘E’’ for the
escalation ward, and ‘‘EAU’’ for the emergency assessment unit.
Wards M1 M2 M3 M4 M5 M6 M7 M8 S1 S2 S3 S4 S5 E EAU

No. Beds 30 30 16 30 24 30 31 24 28 19 30 30 29 12 31
Occupancy (%) 93 96 87 96 92 90 92 95 80 85 88 87 92 88 76
Fig. 5. Daily occupancy levels at RSCH over the period 01/10/2017 to 01/10/2018 for medical and surgical wards (a), and EAU and escalation wards (b). Occupancy rates in
excess of 100% indicate times at which patients were accommodated in non-inpatient wards.
Table 3
Specialties at RSCH, and their corresponding divisions and acronyms.

Specialties Acronym Division

Cardiology CRD Medical
Endocrinology END Medical
Ear, Nose and Throat ENT Surgical
Gastroenterology GAS Medical
General Surgery GSR Surgical
Geriatric Medicine GRT Medical
Gynaecology & Obstetrics GYN Surgical
Neurology NRO Medical
Oncology & Haematology ONC Medical
Ophthalmology OPL Surgical
Oral & Maxillo Facial ORM Surgical
Palliative Medicine PAL Medical
Respiratory Medicine RSP Medical
Rheumatology RUM Medical
Trauma & Orthopaedics ORT Surgical
Urology URO Surgical

The data provided by hospital already includes timings and the
other relevant information for hospital spells, episodes of care, and bed
visits (see Table 1). We create specialty spells by linking together the
episodes of care within a hospital spell that have the same specialty.
Our analysis of 73,466 hospital spells show that each spell includes an
average (maximum) of 1.08 (5.00) specialty spells, each specialty spell
includes an average (maximum) of 1.29 (8.00) episodes of care, and
each episode of care includes an average (maximum) of 2.79 (25.00)
bed visits. We obtain the length of each specialty spell by adding up the
lengths of its constituent episodes of care, and refer to it as the specialty
LOS.

Patient Outlying and its Impact. To estimate the extent of patient out-
lying at RSCH, we measure the percentage of specialty spells admitted
to a non-primary ward. To do this, we first identify the primary ward(s)
of each specialty as given in Table 4. This table is provided by our
hospital partners based on their perception of what happens on the
ground as well as the skill-set of nursing teams in different wards. We
688
Fig. 6. The breakdown of a hospital spell.

then count a specialty spell as an outlying spell if it has at least one bed
visit in a non-primary ward of the corresponding specialty. The results
indicate that about 49% of all specialty spells are outlying, with the
breakdown given in panel (a) of Fig. 7. This panel shows that for 8
specialties, half or more of specialty spells are outlying.

To estimate the contribution to workload by outlying patients, we
count a bed visit as an outlying visit if it occurs in a non-primary ward
of its corresponding specialty. We then add up the lengths of outlying
bed visits and divide it by the sum of all bed visits. The corresponding
percentages are presented in panel (b) of Fig. 7 for different wards.
This figure suggests that the contribution of outlying patients varies
significantly from ward to ward, with M6 (dedicated to GAS) having
the highest contribution and M2 (dedicated to GRT) the lowest. Overall,
outlying patients account for 27.7% of inpatient workload at RSCH.

As stated in Section 1, studies such as Stowell et al. (2013) report
that outlying patients usually have a longer LOS. We investigate this
on GSR and URO specialties which have the largest percentage of
outlying spells. We observe that outlying GSR and URO specialty spells
are 0.92 and 2.05 days, respectively, longer than the corresponding
non-outlying spells in our data.

Given the large number of outlying specialty spells at RSCH, it
would also be interesting to see their impact on non-outlying spells,
i.e., those occurring in primary wards of corresponding specialties. In
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Table 4
The primary wards of different specialties at RSCH.
Specialty CRD END ENT GAS GSR GRT GYN NRO ONC OPL ORM PAL RSP RUM ORT URO

M5 M3 S2 M6 S5

M2

M8 M7 S2 S2 M1 S3Primary M8 S3 M1 M5 S1
Wards M3 S5 M7 M7 S4

M4
Fig. 7. Percentage of outlying specialty spells for each specialty (a), and contribution to workload by outlying patients for each ward (b).
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recent study, Lim et al. (2021) demonstrate empirically that mean
OS of non-outlying patients is longer in wards that receive a larger
umber of outlying patients. To investigate this impact on RSCH data,
e focus on GRT and ORT specialties, which account for 15% and
1% of specialty spells, respectively, at RSCH. According to Table 4,
ards M4 and M2 are both primary wards for GRT specialty. However,
ur analysis show that mean LOS of this specialty in ward M2, in
hich the number of outlying spells account for 26.0% of all spells,

s 1.25 days longer than in ward M1, wherein outlying spells stand at
6.4%. Similarly, wards S4 and S1 are both primary wards for ORT.
ut mean LOS of this specialty in ward S4, with 73% outlying spells,

s 2.72 days longer than in ward S1, with 30% outlying spells. These
nalyses highlight the impact of outlying patients on both outlying and
on-outlying spells.
Ward Change and its Impact. The analysis presented in Section D

f the e-companion reveals a high number of ward changes within a
pecialty spell. Additionally, the analysis suggests that as the number
f ward changes increases, the mean LOS of the specialty increases too,
ith the impact being more significant for elderly patients.
Overall Situation. The analyses conducted above portrays a hospital

nder immense pressure throughout the year. While a dedicated con-
iguration was originally intended for the inpatient services at RSCH,
wing formation configuration with overlapping clusters is currently

perating in the hospital. This is evident from the partitioning of
pecialties, derived from Table 4, as below

𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = {{ORT}, {ENT,OPL,ORM}, {URO,𝐆𝐘𝐍}, {GSR,𝐆𝐘𝐍},
{𝐏𝐀𝐋,RSP}, {𝐆𝐑𝐓}, {END,𝐆𝐑𝐓}, {GRD,𝐑𝐔𝐌}, {GAS},
{𝐏𝐀𝐋,𝐑𝐔𝐌}, {𝐆𝐑𝐓,NRO}} ,

herein highlighted specialties are allocated to more than one cluster.
here also exists a substantial amount of patient outlying and ward
hanges in the hospital. Outlying patients not only experience a longer
OS, but may also negatively influence the LOS of other patients.
his creates a vicious circle, wherein some patients are admitted to
on-primary wards due to bed unavailability. This results in a longer
689

t

OS for both outlying and non-outlying patients, exacerbating the bed
hortage problem, which in turn leads to more patients being outlied.

new configuration of inpatient services, in which beds are pooled
n a structured way so as to reduce the number of patients outlying
hile minimizing the negative impacts of losing focus and increase in
ix variability, is therefore likely to create some improvements. We

nvestigate this in the next section.

.2. Parameter estimation

For estimating the input parameters of our models, we focus on
pecialty spells occurred within the last year of our data coverage
eriod, i.e., from 01/10/2017 to 01/10/2018. The arrival rate, 𝜆𝑖, of
ach specialty is evaluated by dividing the total number of spells of that
pecialty within this period by 365. The mean LOS of each specialty,
𝑖, and its coefficient of variation (CV; standard deviation divided by
ean), 𝜅𝑖, are obtained using the LOSs of that specialty within the

overage period. Nurse-to-patient ratio of each specialty, 𝑓𝑖, is provided
y the hospital. See Table 5 for the set of specialties and corresponding
𝑖, 𝑚𝑖, 𝑓𝑖, and 𝜅𝑖 values.

To apply our methodology for bed reconfiguration, we set the total
umber 𝐵 of beds to 394. Dividing the total offered load, obtained as
he sum–product of 𝜆𝑖 and 𝑚𝑖 values given in Table 5, by this number
f beds yields an overall traffic intensity of 86.7%. Note that the beds
n the EAU and escalation wards are included in the total number of
eds as without them the traffic intensity would rise to 97.5%, making
he queues extremely long. We use the functional relation

𝑖(𝑑,) =

⎛

⎜
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⎟
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𝜏𝑖, (32)

s proposed in Best et al. (2015) for estimating the mean LOS of
pecialty 𝑖 patients admitted to a 𝑑−bed ward shared by a subset  ∋ 𝑖
f specialties. In Eq. (32), |𝑥| represents the cardinality of set 𝑥, 𝜏𝑖 is
he nominal mean LOS for specialty 𝑖 patients (excluding the impact of
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Table 5
Input parameters for our reconfiguration models. Time unit is one day.
Specialty CRD END ENT GAS GSR GRT GYN NRO ONC OPL ORM PAL RSP RUM ORT URO

𝜆𝑖 5.29 1.55 4.47 9.29 6.22 11.33 3.18 2.29 1.98 0.21 0.13 0.08 6.33 1.90 6.99 5.84
𝑚𝑖 3.50 3.35 2.59 3.78 5.28 8.90 1.93 4.68 5.54 2.29 2.82 7.73 6.36 5.22 5.80 3.08
𝑓𝑖 0.15 0.15 0.15 0.20 0.2 0.2 0.15 0.15 0.2 0.20 0.15 0.20 0.20 0.15 0.15 0.16
𝜅𝑖 1.88 1.65 2.10 1.81 1.92 1.43 2.13 1.77 1.71 2.59 1.27 1.16 1.36 1.60 1.40 1.83
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focus and workload), 𝛥 controls the impact of focus, and 𝛽 and 𝜖 control
the impact of workload as evaluated by ∑

𝑖∈ 𝜆𝑖𝜏𝑖∕𝑑.
Eq. (32) indicates that, under a given workload, the maximum

reduction in LOS is achieved when only one specialty, denoted as
|| = 1, is assigned to the ward. However, as more specialties are
assigned, the reductions gradually decline, eventually reaching 0%
when all 𝑛 specialties are included. On the other hand, when a fixed
set of specialties  is considered, the reduction in LOS is initially
modest for smaller workloads but increases as the workload grows until
it approaches the asymptotic value of 𝛥 (1 − ||∕𝑛). The presence of
the exponential function in the denominator of the equation reflects
the increasing (decreasing) pace of reductions in LOS with respect to
workload when workload is smaller (larger) than 𝜖; see Figure 3 in Best
et al. 2015, p. 166.

Given the substantial amount of patient outlying in the current con-
figuration, we treat the existing specialty mean LOS values as nominal
mean LOS values required for Eq. (32). Specifically, we set 𝜏𝑖 in Eq. (32)
equal to the mean LOS value obtained from the data, i.e., 𝑚𝑖 reported in
Table 5. Following Best et al. (2015), we also set 𝜖 = 0.9 and 𝛽 = 20.0.

To estimate the daily cost 𝑟() of a nurse working in a ward
admitting patients of specialties in , we consider the average daily
salary of a band 5 nurse equal to £103.03 per day plus a 10% additional
payment for each additional specialty the nurse cares for in order to
represent the higher value of multi-skilled nurses to the hospital.

Three additional constraints are included to make the configurations
proposed by our methodology viable. The first constraint is that medi-
cal and surgical specialties cannot be mixed in a cluster. The second
constraint requires that the RSP must not be mixed with any other
specialty to reduce the risk of in-hospital transmission of respiratory
diseases. The last constraint is that for privacy reasons, GYN must also
not be mixed with any other specialty. These three constraints are
implemented by returning large cost values for clusters involving the
specialties that cannot be mixed together in the intra-cluster allocation
model. Note that the number of beds for RSP and GYN specialties must
still be determined by our methodology.

The sequence  of specialties is created as follows: (i) medical
specialties excluding RSP are sorted in terms of their mean nominal
LOS; (ii) surgical specialties excluding GYN are sorted in terms of
their mean nominal LOS, and inserted at the end of the sequence
created in step (i); and (iii) RSP and GYN are added to the end of the
sequence created in step (ii). These steps ensure that specialties are
sorted in terms of their mean nominal LOS as proposed in Izady and
Mohamed (2021), while taking the three constraints mentioned above
into account.

6.3. Best-found configurations with IWTT assumption

Following Izady and Mohamed (2021), we set 𝑐𝑤 = 1030, i.e., 10
times larger than the daily salary of a nurse. In all the experiments we
conduct, we consider two values for 𝛥: 0.0 and 0.1. 𝛥 = 0.0 represents
no impact of focus. Given 𝑛 = 16, 𝛥 = 0.1 implies a maximum reduction
of 9.6% in mean LOS due to focus (which occurs in a ward dedicated to
a single specialty). This is consistent with reductions observed in mean
LOSs of specialties following the creation of specialized wings in the
study of Best et al. (2015). The best configurations obtained from our
methodology are illustrated in Fig. 8 for 𝛥 = 0.0 and 𝛥 = 0.1. These
690

figures show that the best-found configuration is a COF configuration c
with either value of 𝛥 as there exists at least one cluster with both
dedicated and overflow wards.

For 𝛥 = 0.0, as illustrated in panel (a) of Fig. 8, the best-found
configuration has 4 clusters, including one cluster for each of GYN
and RSP specialties, one cluster for all surgical specialties, and one
cluster for all medical specialties. The cluster involving all the surgical
(medical) specialties, i.e., cluster 3 (cluster 4), has a total of 121 (214)
beds allocated to it, 55 (71) of which are overflow beds. Overall, there
exists a total of 268 dedicated beds and 126 overflow beds in the best-
found configuration with 𝛥 = 0.0. We also observe that ORM, ENT,
URO, OPL, and END specialties have not been allocated a dedicated
ward and are treated in overflow wards of their clusters.

When 𝛥 increases to 0.1, as illustrated in panel (b) of Fig. 8, a
ew cluster is formed by separating PAL from the cluster of medical
pecialties and dedicating 3 beds to it. This is because this specialty has
very small arrival rate but a very long LOS, which increases further

n overflow wards when 𝛥 = 0.1. Our model separates these infrequent
ut long-staying patients to minimize their negative impact on frequent
ut short-staying patients, which is consistent with the findings from
he pooling literature. We also observe in panel (b) of Fig. 8 that URO
s allocated a dedicated ward with 13 beds. Further, the number of
verflow beds in clusters 3 and 4 decreases by 17 each compared to
he scenario with 𝛥 = 0.0.

To compare the best configurations obtained from our methodology
ith the current configuration, we evaluate the performance of each

onfiguration using a discrete-event simulation model. For the con-
igurations generated by our methodology, we simulate each cluster,
ndependently from other clusters, using the specialty parameters given
n Table 5. For the current configuration, we simulate each ward,
ndependently from other wards, using the wards’ parameters as given
n Table 6 instead of those of specialties. This is because there exists

significant level of patient outlying in the current configuration as
emonstrated in Section 6.1. Hence, simulating the wards with their
verall arrival rates and LOSs would enable us to represent the current
ituation more accurately without having to capture the complex flows
f patients between wards. However, the ward parameters given in
able 6 yield a traffic intensity of 87.6% which is slightly higher than
he traffic intensity of specialties, 86.7%, as reported earlier. To have
fair comparison, we multiply all ward arrival rates given in Table 6

y 0.991 so that both systems have exactly the same workload.
The inter-arrival times and LOSs are assumed to be Exponential

nd Log-Normal, respectively, in all of our simulation experiments. We
eplicate each simulation model 10 times, with each replication running
or 100,000 days. The simulation provides estimates of mean numbers
f patients waiting in the queues and mean numbers of occupied
edicated and overflow beds, using which cost functions are evaluated.

We obtain the mean total daily costs of £11,840 (£7,840) for our
est-found configuration with 𝛥 = 0.0 (𝛥 = 0.1) as compared to £85,665
or the existing configuration. These figures indicate significant cost
avings with our proposed configurations. These savings result from a
6% (99%) reduction in the number of patients waiting for admission
t the expense of a 39% (19%) increase in staffing costs for 𝛥 = 0.0
𝛥 = 0.1); see Table 7 for queue size and costing figures. The substantial
eduction in the numbers waiting for admission highlight the ineffi-
iency of the current bed configuration, which was also evident in the
arge numbers of outlying patients as reported in Section 6.1.

It is important to note that the saving figures presented above are

ontingent upon the assumption that each additional day a patient
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Fig. 8. The best-found configurations under IWTT assumption with 𝛥 = 0.0 (a), and 𝛥 = 0.1 (b).
Table 6
Arrival rates and LOS mean and CV for inpatient wards at RSCH. Time unit is one day.
Wards M1 M2 M3 M4 M5 M6 M7 M8 S1 S2 S3 S4 S5 E EAU

Arrival Rate 3.40 2.52 2.47 2.31 3.21 3.90 3.96 1.29 4.69 5.36 9.80 4.21 4.58 0.80 41.00
LOS Mean 8.11 11.51 5.61 12.52 6.72 6.74 7.20 18.02 4.78 3.00 2.68 6.18 5.78 5.27 0.60
LOS CV 2.11 3.11 1.43 2.34 1.50 1.25 3.40 2.10 1.50 2.30 1.80 2.10 1.17 3.05 2.45
Table 7
Simulation-based comparisons between best-found configurations and the current configuration.
Configuration Average total queue size Average total nursing cost Average total cost

Current configuration 77.19 6137 85 665
New configuration with 𝛥 = 0.0 3.24 8500 11 840
New configuration with 𝛥 = 0.1 0.52 7310 7840
spends in the admission queue incurs costs, both for the patient and
society at large, that are tenfold higher than the daily expense of
employing a nurse. Additionally, staffing costs for certain specialties
may exceed the average values incorporated into our model. Hence,
the savings would fluctuate depending on the precise cost estimations
applied. However, the central takeaway remains clear: the implemen-
tation of our configurations has the potential to significantly reduce
admission queues. Achieving this does not necessitate investments in
additional beds but rather in nursing staff (and cross-training them).

We now compare the performance of our best-found configurations
(presented in Fig. 8) with those of fully dedicated (DED), fully flexible
(FLX), wing formation (WNG), and earmarking (ERM) configurations
using simulation. To obtain the best allocation of beds and specialties
for each of these configurations, we amend the inter- and intra-cluster
allocation models in the following ways. For DED, we revise the inter-
cluster allocation model so that only one specialty is allocated to each
cluster. The intra-cluster allocation model is replaced with a perfor-
mance evaluation routine which uses the exact results for 𝑀∕𝑀∕𝑠
queues to evaluate the mean total daily cost of a single-specialty cluster.
A similar routine is used for WNG configuration to evaluate the mean
total cost of a cluster, which may include more than one specialty. The
partitioning and inter-cluster model for this configuration works in the
same way as for COF. For ERM, the inter-cluster allocation model is
revised so that only 4 clusters, one involving all medical specialties
except RSP, one involving all surgical specialties except GYN, one
involving only RSP, and one involving only GYN, are considered. The
intra-cluster allocation model for this configuration works in exactly
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the same way as for COF. For FLX, the inter-cluster model is changed
in the same way as for ERM. The same performance evaluation routine
used for WNG configuration is used for evaluating mean total cost of
this configuration.

The savings in total, waiting, and staffing costs obtained from using
the best-found configurations as compared to the other configurations
are illustrated in Table 8. The results in this table suggest that WNG,
FLX, ERM, and DED (ERM, WNG, FLX, and DED) rank 2nd, 3rd, 4th,
and 5th, respectively, in terms of mean total daily cost following our
best-found configuration, i.e., the COF configuration, for 𝛥 = 0.0 (𝛥 =
0.1). DED has the lowest staffing cost but also the highest waiting cost
for both values of 𝛥. WNG and FLX, on the other hand, have the joint-
lowest waiting cost but also the highest staffing costs for 𝛥 = 0.0. For
𝛥 = 0.1, COF has the lowest waiting cost and second-lowest staffing
cost following DED.

6.4. Best-found configurations with FWTT assumption

We run our methodology with 𝛾−1 ∈ {1, 15, 30} days, assuming
the cost of a patient abandoning the queue, 𝑐𝑎, is £1030 per patient.
Fig. 9 depicts the best-found configurations obtained for 𝛥 = 0.0 and
𝛥 = 0.1, with 𝛾−1 = 1 day. This figure shows that COF remains the
lowest cost configuration returned by our methodology. In comparison
with best configurations obtained under IWTT, we observe that medical
and surgical specialties are each split into two clusters for both focus
scenarios, increasing the number of clusters to 7. The total number of
overflow beds also reduces (rises) to 79 (93) for 𝛥 = 0.0 (𝛥 = 0.1) as
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Fig. 9. The best-found configurations under FWTT for 𝛾−1 = 1 day with 𝛥 = 0.0 (a), and 𝛥 = 0.1 (b).
Table 8
The savings obtained from the best-found configuration (COF) as compared to other
configurations under IWTT assumption.

Scenario Configuration Total cost Staffing cost Waiting cost

𝛥 = 0.0

DED 60.6% −25.7% 85.3%
ERM 10.7% 1.8% 27.4%
FLX 6.5% 20.7% −72.3%
WNG 6.4% 20.6% −72.3%

𝛥 = 0.1

DED 56.3% −15.2% 95.5%
FLX 31.1% 29.8% 44.6%
WNG 25.4% 8% 79.5%
ERM 11% 3.1% 58.2%

compared to the corresponding scenarios under IWTT. Further, no bed
is allocated to PAL given its small arrival rate and long LOS.

In Table 9, we compare the performance of our best-found con-
figuration with the other configurations under FWTT assumption with
𝛾−1 = 1 day using simulation. The results in the table show that WNG
and ERM are the 2nd-best configurations for 𝛥 = 0.0 and 𝛥 = 0.1,
respectively, in terms of mean total daily cost. On the other hand, FLX
is the worst configuration for both focus scenarios. DED provides the
lowest staffing costs and the highest abandonment costs for both values
of 𝛥. ERM, on the other hand, produces the lowest abandonment cost
with 𝛥 = 0.0, and the same abandonment cost as COF with 𝛥 = 0.1. The
results for 𝛾−1 = 15 and 𝛾−1 = 30 days are presented and discussed
in Section E of the e-companion. The main observation is that COF
remains the lowest cost configuration for 𝛥 = 0.0 and 𝛥 = 0.1 when
𝛾−1 = 15 days, and for 𝛥 = 0.10 when 𝛾−1 = 30 days. When 𝛾−1 = 30
and 𝛥 = 0.0, however, WNG becomes the lowest cost configuration.
Overall, COF yields the lowest cost in seven out of eight scenarios
we considered. For all these seven scenarios, the second lowest cost is
delivered by WNG when 𝛥 = 0.0, and ERM when 𝛥 = 0.1. A sensitivity
analysis is conducted in Section F of the e-companion on the impact
of cost parameters on the number of clusters formed as well as the
number of overflow beds in the best configurations produced by our
methodology.

7. Conclusions

We proposed the most versatile methodology to date for finding a
low cost configuration of inpatient services in a hospital. Given a total
number of beds, a set of specialties, and a specific finite or infinite
waiting time threshold, this methodology uses two search algorithms
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Table 9
The savings obtained from the best-found configuration (COF) as compared to other
configurations under FWTT assumption with 𝛾−1 = 1 day.

Scenario Configuration Total cost Staffing cost Abandonment cost

𝛥 = 0.0

FLX 26.5% 31.6% 0%
DED 9.5% −4.2% 64.9%
ERM 4.0% 7.6% −82.1%
WNG 3.5% 1.0% 26.4%

𝛥 = 0.1

FLX 33.3% 34.3% 0%
DED 14.9% −1.5% 84.5%
WNG 9.4% 4.0% 64.4%
ERM 1.4% 4.2% 0%

combined with novel performance evaluation approximations to find a
configuration with a low total mean daily cost, considering all major
configurations proposed in the literature. We demonstrated how our
methodology can be modified so that the best partitioning and bed
allocation of a given configuration other than COF, i.e., dedicated,
flexible, wing formation, or earmarking, is obtained. This is useful for
situations where practical constraints limit the range of configurations
that can be implemented in the hospital.

Using inpatient data from a large hospital, we illustrated how our
reconfiguration methodology can reduce the bed pressure on hospital
without expanding the bed base, and with a moderate increase in
daily nursing costs. Our simulation experiments suggest that the savings
obtained from our methodology could be significant, and that the
COF configuration is likely to yield the lowest cost in most situa-
tions, followed by WNG (ERM) when the impact of focus is negligible
(significant). While our methodology may require several hours to
complete when a large number of specialties and/or beds are involved,
this time frame is generally not a significant concern, given that the
reconfiguration process is typically conducted once every few years.

To implement the configurations recommended by our methodol-
ogy, the hospital may need to fill the shortages in size and skill-set
of its nursing teams, compared to the requirements of the proposed
configurations, through a combination of cross-training of existing
nurses and recruitment of new nurses. Furthermore, adjustments to the
layout of beds and wards will be required. It is important to note that
there may be additional considerations, including privacy concerns,
clinical requirements, and spatial constraints, that need to be factored
in. Fortunately, many of these constraints can be seamlessly integrated
into our methodology, as demonstrated in our case study.
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We proposed novel performance evaluation approximations for
overflow delay and overflow abandonment systems with potentially
different mean service times in dedicated and overflow servers. These
approximations produce practically accurate results in a short time.
In addition to inpatient bed planning, these can be applied to other
hierarchical systems such as those observed in telecommunication and
computer networks

In addition to developing algorithms, we contributed to inpatient
data analysis in the following ways. First, we proposed identifying
the specialty of each episode of care based on the HRG codes used
for costing purposes. This provides a more accurate representation of
patients’ clinical needs than the specialty of the consultant in charge
of the episode, which could be misleading in case of patient outlying.
Second, we proposed linking together the episodes of care within a
hospital spell that have the same specialty to create what we referred to
as specialty spells. The percentage of outlying specialty spells can then
be evaluated for each specialty as well as the hospital as a whole. This
would give an indication of the frequency at which outlying occurs in
the hospital. Third, we proposed measuring the workload contribution
of outlying patients in a ward or the entire hospital by adding up the
lengths of outlying bed visits and dividing it by the sum of all bed
visits in that ward or the entire hospital. The frequency and workload
measures together provide an accurate picture of the extent of outlying
in the hospital. Finally, we proposed measuring the number of ward
changes within a specialty spell, and assessing its impact on mean LOS
of each specialty.

Improving the accuracy of our performance evaluation approxi-
mations, as well as the accuracy and speed of the intra-cluster bed
allocation heuristic, are clear directions for future research. Such im-
provements would improve the overall accuracy and speed and thus
the applicability of our methodology.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2024.02.008.
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