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IRREDUCIBLE COMPONENTS OF EXOTIC SPRINGER FIBRES II: THE
EXOTIC ROBINSON-SCHENSTED ALGORITHM

VINOTH NANDAKUMAR, DANIELE ROSSO, AND NEIL SAUNDERS

Abstract. Kato’s exotic nilpotent cone was introduced as a substitute for the ordinary nilpo-
tent cone of type C with nicer properties. The geometric Robinson-Schensted correspondence
is obtained by parametrizing the irreducible components of the Steinberg variety (the conormal
variety for the action of a semisimple group on two copies of its flag variety) in two different
ways. In type A the correspondence coincides with the classical Robinson-Schensted algorithm
for the symmetric group. Here we give an explicit combinatorial description of the geometric
bijection that we obtained in our previous paper by replacing the ordinary type C nilpotent
cone with the exotic nilpotent cone in the setting of the geometric Robinson-Schensted corre-
spondence. This “exotic Robinson-Schensted algorithm” is a new algorithm which is interesting
from a combinatorial perspective, and not a naive extension of the type A Robinson-Schensted
bijection.

Contents

1. Introduction 1
2. Background 3
3. The Algorithm 6
4. Intersecting Generic Hyperplanes 11
5. Proof of Main Theorem 22
Appendix A. The exotic Robinson-Schensted bijection for n = 3 29
References 30

1. Introduction

The classical Robinson-Schensted correspondence is an algorithmic bijection

Sn
∼←→

⊔
λ∈Pn

Std(λ)× Std(λ),

where Sn is the symmetric group of degree n, Pn denotes the set of partitions of n and Std(λ)
denotes standard Young tableaux of shape λ. This bijection has many rich combinatorial features
and many applications in representation theory: for instance, the resulting partition of Sn into
subsets Sλ indexed by Pn recover the two-sided cells as defined by Kazhdan and Lusztig in [KL79,
Section 5] and also leads to a classification of unipotent character sheaves of GLn [Lus85, Section
18].
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In [Ste76], Steinberg gives a geometric construction of the Robinson-Schensted correspondence
using Springer theory. Using Spaltenstein’s main result from [Spa76], stating that the irreducible
components of type A Springer fibres are in bijection with standard Young tableaux, Steinberg
parametrises the irreducible components of the following variety

Z := {(x, V•, U•) |x ∈ N , V•, U• ∈ Fx},

the so-called Steinberg variety, in two different ways.

Above N denotes the nilpotent cone of gln and Fx denotes the Springer fibre above x ∈ N .
By matching up these two different descriptions, in [Ste88] Steinberg showed that the resulting
bijection coincides with the Robinson-Schensted correspondence.

While the bijection in [Ste76] is in fact defined for an arbitrary semisimple group, in classi-
cal types other than type A the resulting algorithm is more complicated and it was described
by van Leeuwen, [vL], building on earlier work of Spaltenstein (Section II.6 of [Spa82]) de-
scribing irreducible components of Springer fibres in those types. In this paper, we examine
the ‘exotic Robinson-Schensted algorithm’ - analogously obtained using the geometry of Kato’s
exotic nilpotent cone as a substitute for the ordinary nilpotent cone of type C. The resulting
combinatorial algorithm is more tractable and is not related to other type B/C generalisations
of the Robinson-Schensted algorithm appearing in the literature, such as the ‘naive’ extension
first defined by Stanley in [Sta82] or the one involving domino tableaux that goes back to the
work of Barbasch and Vogan [BV82]. This builds on our previous paper [NRS16], parametrising
irreducible components of exotic Springer fibres. Note that this is different from the exotic
Robinson-Schensted correspondence constructed by Henderson and Trapa in [HT12]. Our hope
is that this algorithm resulting from the geometry of the exotic Springer fibres will have some
representation theoretic consequences for the Hecke algebra of type C with unequal parameters
just like the ordinary Robinson-Schensted algorithm does for type A. Some results and conjec-
tures on using variations of the RS correspondence for Hecke algebras with unequal parameters
can be found in [BGIL10]

We briefly describe the exotic type C setting. Let N (gl2n) be the nilpotent cone for GL2n

and let N (S) = N (gl2n) ∩ S, where S is the Sp2n-complement to sp2n in gl2n viewed as an
Sp2n-module. Kato’s exotic nilpotent cone for Sp2n is the variety N = C2n×N (S) which is the
Hilbert nullcone of the Sp2n-module C2n ⊕ S. In [Kat09], Kato constructs an exotic Springer
correspondence, and showed that the Sp2n-orbits on N are in bijection with the bipartitions
of n, which also parametrise the irreducible representations of the Weyl group of type C. In
subsequent work, many other Springer theoretic results have been extended to the exotic setting -
intersection cohomology of orbit closures, (see Achar and Henderson, [AH08], and Shoji-Sorlin,
[SS14]), theory of special pieces (see Achar-Henderson-Sommers, [AHS11]), and the Lusztig-
Vogan bijection (see [Nan13]). In many respects, the exotic nilpotent cone behaves more nicely
than the ordinary nilpotent cone of type C, and our present paper is another illustration of this.

Let π : Ñ −→ N be the exotic Springer resolution as defined in [Kat11]. In [NRS16], we
showed that the irreducible components of the fibres of π are in bijection with standard Young
bitableaux, using Spaltenstein’s techniques from [Spa76]. This allowed us to define an analogous
exotic Steinberg variety whose irreducible components are parametrised in two separate ways:
one way by elements of the Weyl group W (Cn) = C2 o Sn (signed permutations), and the other
by pairs of standard Young bitableaux. Hence, by matching up these two descriptions, this
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gives us a bijection:

W (Cn)
∼←→

⊔
(µ,ν)∈Qn

T (µ, ν)× T (µ, ν), (1.1)

where T (µ, ν) is the set of standard Young bitableaux of shape given by a bipartition (µ, ν)
and Qn is the set of all bipartitions of n. In this paper, we will give an explicit combinatorial
description of this bijection.

The organisation of the paper is as follows:

• In Section 2 we introduce our notation for bipartitions and recall facts about the exotic
nilpotent cone that we will need.
• In Section 3, which is mostly independent of the previous section, we define the exotic

Robinson-Schensted bijection, a bijection between the Weyl group W (Cn) and pairs of
standard Young bitableaux. We provide the insertion and reverse bumping algorithms;
these are interesting new algorithms and not a naive extension of the usual Robinson-
Schensted correspondence.
• In Section 4 we examine the exotic Springer fibres, understanding the restriction of exotic

Jordan types of pairs of generic points of the fibre.
• In Section 5 we use the results from Section 4 and [NRS16] to construct the reverse

bumping algorithm from the geometry of exotic Springer fibres and thus prove the main
theorem.

1.1. Acknowledgements. We are grateful to Anthony Henderson for many useful discussions.
We would also like to thank George Lusztig, Arun Ram, Nathan Williams and Igor Pak for
useful conversations about the combinatorics of the Robinson-Schensted correspondence. N.S
is indebted to Donna Testerman and the École Polytechinque Fédérale de Lausanne for their
support where much of this work was carried out, as well as the Heilbronn Institute for Math-
ematical Research and City, University of London. V.N. was supported on the ARC Discovery
Project DP150104507: Symmetry via Braiding, diagrammatics and cellularity.

2. Background

2.1. Partitions. We recall some standard combinatorial definitions which we will need. We
closely follow the notation of [NRS16, Section 2] in this exposition.

Definition 2.1. Let n be a non-negative integer. A partition of n is a sequence of positive
integers λ = (λ1, . . . , λk) such that λ1 ≥ . . . ≥ λk and

∑k
i=1 λi = n. We write λ ` n or |λ| = n

to denote that λ is a partition of n and write `(λ) = k to say that λ has k parts, or length k.
The set of all partitions of n is denoted by Pn.

A bipartition of n is a pair of partitions (µ, ν) such that |µ|+ |ν| = n. We let Qn denote the
set of bipartitions of n. Given a bipartition (µ, ν) of n, we let λ := µ+ ν = (µ1 + ν1, µ2 + ν2, . . .)
denote the corresponding partition of n whose i-th part is the sum of the i-th parts of µ and ν
respectively.

Associated to a partition λ, we have a Young diagram consisting of λi boxes on row i. We say
that the Young diagram has shape λ. Similarly, we have a pair of Young diagrams associated
to each bipartition.
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Definition 2.2. Fix a bipartition (µ, ν) ∈ Qn and let λ = µ+ ν be the corresponding partition
of n. Fix a positive integer m ≤ `(λ). We define the following sets:

Λm = {1 ≤ i ≤ `(λ) |λi = λm},
Γm = {1 ≤ i ≤ `(λ) |µi = µm},
∆m = {1 ≤ i ≤ `(λ) | νi = νm}.

Moreover, define

∆≤m = {i ∈ ∆m | i ≤ m } and ∆<m = {i ∈ ∆m | i < m },

with similar definitions for Γm and Λm.

Definition 2.3. Given a Young diagram of shape λ ∈ Pn, we obtain a standard Young tableau
by filling in the boxes with the integers 1 up to n in such a way that the numbers are increasing
along rows and down columns. Similarly a bitableau of shape (µ, ν) ∈ Qn is standard if every
integer between 1 to n occurs exactly once, and the increasing condition is satisfied in each of
the two tableaux. To match the conventions of [NRS16] and [AH08], we reverse the direction
of the rows of the first tableau, so numbers are increasing along rows from right-to-left. We let
T (µ, ν) denote the set of standard Young bitableaux of shape (µ, ν).

Example 2.4. An example of a standard Young bitableau of shape ((3, 1), (2, 2, 1)) is the
following:

T =

 6 3 1
2
,

4 7
5 8
9

 .

However, for notational convenience, especially for when describing the algorithm, we will often
draw this diagram as follows:

16 3
2

4 7
5 8
9

T =

Definition 2.5. For T a standard Young bitableau and 1 ≤ s ≤ n, define Ts to be the truncated
bitableau consisting of just the numbers 1 up to s. By definition this remains a standard Young
bitableau. If T originally had shape (µ, ν) ∈ Qn then Ts has shape (µ(s), ν(s)) ∈ Qs.

Example 2.6. For T as in Example 2.4, we have

T5 =

(
3 1

2
, 4

5

)
,

which has shape ((2, 1), (1, 1)) ∈ Q5.

Definition 2.7. We define W (Cn) as the group of signed permutations as follows: w ∈ W (Cn)
is a permutation on the set of 2n elements {1, . . . , n, 1̄, . . . , n̄} that satisfies the property that

w(̄i) = w(i) (here we are using the convention that ¯̄i = i). Given the symmetry with respect to
the involution ,̄ we will usually just write a signed permutation as a word w = w(1) · · ·w(n).
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2.2. The Exotic Nilpotent cone and components of Exotic Springer Fibres. In this
section we recall some fundamental properties of the exotic nilpotent cone and the relevant
results from [NRS16] that will be needed to establish the exotic Robinson-Schensted correspon-
dence. Readers only interested in the actual algorithm can skip this section.

Let V ∼= C2n be a vector space endowed with a symplectic form 〈·, ·〉. Denote by Sp2n(C) the
corresponding symplectic group and sp2n(C) its Lie algebra.

Definition 2.8. Define S and N (S) as follows, noting that gl2n = sp2n⊕S as Sp2n(C)-modules:

S = {x ∈ End(V ) | 〈xv, w〉 − 〈v, xw〉 = 0, ∀v, w ∈ V }; and

N (S) = {x ∈ S | x is nilpotent }.
The exotic nilpotent cone is the singular variety N = V ×N (S). It carries a natural Sp2n(C)-
action:

g · (v, x) = (gv, gxg−1),

for g ∈ Sp2n(C) and (v, x) ∈ N.

Theorem 2.9 ([AH08, Thm 6.1]). The orbits of Sp2n(C) on N are in bijection with Qn. More
precisely, given a bipartition (µ, ν) ∈ Qn, the corresponding orbit O(µ,ν) contains the point (v, x)
if and only if there is a ‘normal’ basis of V given by

{vij, v∗ij | 1 ≤ i ≤ `(µ+ ν), 1 ≤ j ≤ µi + νi},

with 〈vij, v∗i′j′〉 = δi,i′δj,j′, v =

`(µ)∑
i=1

vi,µi and such that the action of x on this basis is as follows:

xvij =

{
vi,j−1 if j ≥ 2

0 if j = 1
xv∗ij =

{
v∗i,j+1 if j ≤ µi + νi − 1

0 if j = µi + νi

in particular the Jordan type of x is (µ+ ν) ∪ (µ+ ν).

Definition 2.10. If (v, x) ∈ O(µ,ν) ⊂ N, we say that (µ, ν) is the exotic Jordan type of (v, x)
and we denote that by eType(v, x) = (µ, ν).

The flag variety for Sp2n(C), which we denote by F(V ), is the variety consisting of all sym-
plectic flags, that is sequences of subspaces

F• = (0 = F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · · ⊆ F2n−1 ⊆ F2n = V )

where dim(Fi) = i and F⊥i = F2n−i.

Definition 2.11. The exotic Springer resolution is a map π : Ñ� N, where

Ñ = {(F•, (v, x)) ∈ F(V )×N | v ∈ Fn, x(Fi) ⊆ Fi−1 ∀i = 1, . . . , 2n} and

π(F•, (v, x)) = (v, x).

The variety Ñ is smooth and π is proper, making this a resolution of singularities.

Definition 2.12. Given (v, x) ∈ O(µ,ν), define the exotic Springer fibre C(v,x) = π−1(v, x).
Explicitly:

C(v,x) = {(0 ⊂ F1 ⊂ . . . ⊂ F2n−1 ⊂ C2n) | dimFi = i, F⊥i = F2n−i, v ∈ Fn, x(Fi) ⊆ Fi−1}.

The main result of [NRS16] was the following:
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Theorem 2.13. [NRS16, Theorem 2.12] Let (v, x) ∈ O(µ,ν), then there is an open dense subset
C◦(v,x) ⊂ C(v,x), and a surjective map Φ : C◦(v,x) −→ T (µ, ν) which induces a bijection between

irreducible components of C(v;x) and standard Young bitableaux of shape (µ, ν):

Irr C(v,x)
∼←→ T (µ, ν);

Φ−1(T ) ←→ T,

These irreducible components all have the same dimension: b(µ, ν) = |ν|+ 2
∑
i≥1

(i− 1)(µi + νi).

Remark 2.14. A standard bitableau of shape (µ, ν) is the same thing as a nested sequence of
bipartitions ending at (µ, ν), that is, a sequence of bipartitions

(∅,∅), (µ(1), ν(1)), . . . , (µ(n), ν(n)) = (µ, ν)

such that (µ(i+1), ν(i+1)) is obtained from (µ(i), ν(i)) by adding one box. The identification is
given by tracing the order in which the boxes are added according to the increasing sequence of
numbers 1, 2, . . . , |µ|+ |ν|.

Example 2.15. The standard bitableau

(
3 2

5
, 1

4

)
corresponds to the nested sequence

(∅,∅) ,
(
∅,

)
,
(

,
)
,
(

,
)
,

(
,

)
,

(
,

)
.

Remark 2.16. The map Φ of Theorem 2.13 is defined as follows: for F• ∈ C(v,x), define

Φ(F•) = (eType(v + Fi, x|F⊥i /Fi
))ni=0.

For F• ∈ C◦(v,x) we have then that Φ(F•) is a nested sequence of bipartitions, which defines a
standard bitableau.

Remark 2.17. From Travkin [Tra09, Thm 1 and Cor 1], or Achar-Henderson [AH08, Thm 6.1],
we know that eType(v, x) = (µ, ν) if and only if the following conditions hold:

Type(x, V ) = (µ1 + ν1, µ1 + ν1, µ2 + ν2, µ2 + ν2, . . .), and

Type(x, V/C[x]v) = (µ1 + ν1, µ2 + ν1, µ2 + ν2, µ3 + ν2, . . .).

Here Type denotes the partition corresponding to the Jordan type of the corresponding nilpotent
endomorphism.

One final important definition that we need to state our main theorem (Theorem 3.10 below)
is the relative positions of two points in the flag variety.

Definition 2.18. Given two flags F•, G• ∈ F(V ), we say that F• and G• are in relative position
w ∈ W (Cn) and write w(F•, G•) = w, if there is a basis {v1, . . . , vn, vn̄, . . . , v1̄} such that
〈vi, vj〉 = 〈vī, vj̄〉 = 0 and 〈vi, vj̄〉 = δij such that for 1 ≤ i, j,≤ n we have

Fi = C{vn, . . . , vn−i+1} and F2n−i = F⊥i , and

Gj = C{vw(n), . . . , vw(n−j+1)} and G2n−j = G⊥j .

3. The Algorithm

In this section we present the exotic Robinson-Schensted algorithm in both directions, a
‘reverse bumping’ direction from bitableaux to Weyl group elements and then an ‘insertion’
algorithm in the other direction.
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3.1. Reverse bumping Algorithm. The algorithm that we present now takes as an input a
pair of standard Young bitableaux and produces an element in the Weyl group W (Cn). Let T
and R be two standard Young bitableaux. We will think of T as the “insertion” bitableau and
R as the “recording” bitableau and produce a word eRS(T,R) ∈ W (Cn) as follows.

Definition 3.1. Let 1 ≤ s ≤ n and let T be a bitableau that is increasing going away from the
centre and going down (standard condition) and does not contain the number s. An available
position for s in T is a position such that the number in that position is smaller than s and if
you replace that number with s, the increasing standard condition is still satisfied.

Example 3.2. Let s = 13, T =

10 3 1
14 6 5
15 11 9

;
4 16
8 17
18

, then the available positions for 13 are the

ones containing the numbers 10, 11 and 8.

Definition 3.3. Given a bitableau T , of shape (µ, ν), let R be the set of rows of the two
tableaux that comprise T , corresponding to the parts of the partitions µ and ν. We number the
rows as follow,

µ1 = 1, ν1 = 2, µ2 = 3, ν2 = 4, µ3 = 5, . . .

So the first row of the left tableau is first, followed by the first row of the right tableau, followed
by the second row of the left tableau and so on.

The Algorithm. Let T,R be two standard bitableaux with n boxes.

(1) Start with k = n.
(2) Find the position in R containing k. Let s be the number in the same position in the

bitableau T and m ∈ R be the row in which s appears. Let R′ be the bitableau obtained
from R by removing k and T ′ the bitableau obtained from T by removing s.

(3) If m = 1, set w(k) = s. If k = 1 stop: the algorithm has ended, otherwise, return to (2)
with k replaced by k − 1, and the bitableaux T and R replaced by T ′ and R′.

(4) If m > 1, consider all the available positions for s in T ′ that are in rows {r ∈ R | r ≥
m− 1}.

(5) If there are no available positions in those rows, let w(k) = s̄ and return to (2) with k
replaced by k − 1, and the bitableaux T and R replaced by T ′ and R′.

(6) Otherwise, if there are available positions, consider the one in the smallest numbered of
those rows (notice that there can be at most one available position per row). Let T ′ be
the bitableau obtained by replacing the number in that position with s, and let s′ be
the number that has been displaced. Let m ∈ R be the row where s′ was. Return to
(3) with s replaced by s′.

Example 3.4. Let T =

 1
3
7

; 2 4
5 6

, R =

 2
5
6

; 1 3
4 7

. We compute what element in W (C7)

corresponds to this pair of bitableaux. For ease of notation we simply write the contents of the
bitableau without the boxes in an array divided by the wall.
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7
3
1 2 4

5 6T =

2
5
6

4 7
1 3

R =

w(7) = 1
7
6
2 3 4

5

2
5
6

4
1 3

w(6) = 5̄

6
2 3 4

7

2
5 4

1 3

w(5) = 2

4 3 6
7

2
4
1 3

w(4) = 7̄

4 3 6

2 1 3

w(3) = 4

6 3

2 1

w(2) = 6

3

1

w(1) = 3̄

So in this case we have eRS(T,R) = w = 3̄647̄25̄1.

We explain in more detail the first two steps of this algorithm which yields w(7) = 1 and
w(6) = 5̄.

At the first stage, 7 is in the fourth row of R and 6 is in the corresponding position of T . The
following table shows where 6, and then subsequent numbers, move to according to the rules.

(s,m) Bitableau Comment

(6, 4)
3
1 2 4

5 6
7

The smallest available posi-
tion is in the box occupied
by 3

(3, 3) 6
1 2 4

5 3
7

The smallest available posi-
tion in the box occupied by
2

(2, 2)

1 3
6

4
5 2

7

The smallest available posi-
tion is in the box occupied
by 1

(1, 1)
2 3
6

4
5 1

7

Algorithm stops here,
w(7) = 1

For the second step, the number 6 is in row 5 of R and 7 is in the corresponding position of
T . As above, we track where the numbers move.

(s,m) Bitableau Comment

(7, 5)
6
2

7

3 4
5 The smallest available posi-

tion is in the box occupied
by 5

(5, 4) 6
2 3 4

7 5

There are no available po-
sitions in rows ≥ 3, so the
algorithm stops here and
w(6) = 5̄

Remark 3.5. A similar calculation shows that eRS(R, T ) = w−1 = 751̄36̄24̄. The fact that
exchanging the (bi)tableaux gives the inverse element of the Weyl group is a feature of the
ordinary Robinson-Schensted correspondence in Type A and is true also in our setting. One
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can deduce this from Theorem 3.10 because exchanging the two bitableaux corresponds to
exchanging the two flags, and the relative position of the exchanged flags is the inverse signed
permutation.

3.2. Insertion Algorithm. We present the algorithm that takes a signed permutation word
in W (Cn) and produces a pair of standard bitableaux.

Definition 3.6. Let 1 ≤ s ≤ n and let T be a bitableau that is increasing going away from the
centre and going down (standard condition) and does not contain the number s. An insertable
position for s is a position that is either outside of T but adjacent to a box of T , or in T such
that the number in that position is bigger than s, and such that if you insert s there (possi-
bly replacing a number), the resulting shape is still a bipartition and the increasing standard
condition is still satisfied.

Example 3.7. Let s = 13, T =

10 3 1
14 6 5
15 11 9

;
4 16
8 17
18

, then the insertable positions for 13 are to

the left of the number 10, under the number 9, in addition to the ones containing the numbers
14, 16 and 18.

Remember that the rows of a bitableau are ordered as in Definition 3.3.

The Algorithm. Let w = w1w2 . . . wn, with wi ∈ {1, 2, . . . , n} ∪ {1̄, 2̄, . . . , n̄} be a signed permu-
tation with n letters.

(1) We set T,R to be two empty standard bitableaux, and we start with k = 1.
(2) If wk = s ∈ {1, 2 . . . , n}, add a box containing s in the insertable position (which always

exists) in row 1 of T .
(3) If wk = s̄ ∈ {1̄, 2̄, . . . , n̄}, add a box containing s in the insertable position in either the

first column to the left or the first column to the right of the wall of T , whichever one
has the highest row number. (Notice there there is always an insertable position in those
columns.)

(4) Set m to be the number of the row where s was inserted.
(5) If s was added to an empty position, add a box with the number k to the same position

in R. If k = n stop, otherwise, go back to (2) with k replaced by k + 1.
(6) Otherwise, if a number s′ was replaced by s, consider the insertable positions for s′ in

T that are in rows {r ∈ R | r ≤ m + 1} (there is always at least one). Add a box
containing s′ in the position among those with the highest row number. Replace s with
s′ and return to (4).

Theorem 3.8. The reverse bumping algorithm and insertion algorithm are mutual inverses of
each other.

Proof. It is clear that step 2 of the insertion algorithm and step 3 of the reverse bumping
algorithm are inverses of each other, inserting or removing a number in row 1 (corresponding
to µ1) which is not barred. Now suppose that we have a number s that was originally in row
m > 1 of a bitableau T that satisfies the standard increasing conditions, and has been displaced
during the reverse bumping process by a higher number t > s, let T ′ denote the bitableau with
s replaced by t. There are two possibilities, depending on whether there are available positions
for s in rows r ≥ m− 1 of T ′.
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Case 1: Suppose there are no available positions, the reverse bumping algorithm then says
that the number s is removed from the bitableau and w(k) = s̄ for some k. But if there
are no available positions for s, this means that all the numbers (if there are any) in rows
m− 1,m+ 1,m+ 3, ... are bigger than s, and same for the rows m+ 2,m+ 4, . . .. It also means
that s was in the first column of row m of T , otherwise there would be an available position
in that row. We want to show then that the insertion algorithm, starting with the bitableau
T ′, and with w(k) = s̄, would insert s in the place occupied by t according to step 3. Since
t > s, and since any number in row m− 2 above t has to be smaller than s (because T was an
increasing bitableau), the position containing t is insertable for s. Also, the insertable position
in the first column on the other side of the bitableau has to be in a row r ≤ m − 1 (because
any elements in that column starting from row m− 1 have to be bigger than s). It follows that
the insertable position with highest row number in the first column of either the left or right
tableau is indeed the one on row m, which is what we wanted. Reversing this argument, we
can also see that if we start with w(k) = s̄ and we insert s in the insertable position in the
first column (either left or right) and row m of a bitableau T ′ to obtain a new bitableau T ,
then m > 1 (there is always an insertable position in row 2) and that there will be no available
positions for s in rows r ≥ m− 1 of T ′.

Case 2: Now suppose that there is an available position for s in T ′ and, by Step 6 of the
reverse bumping algorithm, let m′ ≥ m − 1 be the lowest numbered row with an available
position and let T ′′ be the bitableau obtained by moving s to that position (displacing another
number u < s). Notice that for any row r ≥ m − 1, there are no available positions for s in
row r of T ′ if and only if there are no insertable positions for s in row r + 2 (which is the row
directly below r) of T ′′ (this happens exactly when there are the same number of columns in
rows r and r + 2 of T ′ containing numbers smaller than s). By minimality of m′, there are no
available positions in rows m′ > r ≥ m− 1 of T ′, which is equivalent to the fact that there are
no insertable positions in rows m′ + 1 ≥ r + 2 > m of T ′′. This proves that, by doing Step 6
of the insertion algorithm on the bitableau T ′′, where s needs to move from row m′, we would
find that row m is the maximal with an insertable position among rows that are less or equal
than m′ + 1, hence we would get back T ′. Reversing the argument, since the statement about
available positions in T ′ and insertable positions in T ′′ is an equivalence, we get that Step 6 of
each algorithm is the inverse of the other one, which concludes the proof. �

Example 3.9. Consider the element w = 2756̄43̄1. We construct a pair of bitableaux using the
insertion algorithm.

2

1

7

27

12

5

25 7

12 3

6̄

25 7
6

12 3
4

4

24 5
67

12 3
45

3̄

24 5
37 6

12 3
45 6

1

14 2
35 6

7

12 3
45 6

7

Therefore

w = 2756̄43̄1 7→
((

4 1
5 3

; 2 7
6

)
,

(
2 1
4 3

; 3 7
6

))
.

The following diagram explains the last step of the algorithm, where 1 is inserted into the

bitableau

(
4 2
7 3

; 5
6

)
.
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1

24 5
37 6

 

2

14 5
37 6

 
7 6

5

14 2
3

 

7

14 2
35 6

 14 2
35 6

7

Notice that here the numbers 2 and 5 both get bumped to the next row (from m to m+1 in the
notation of the algorithm) but the number 7 does not have an insertable position in rows m+ 1
nor m, so it actually gets bumped ‘up’ to row m− 1, according to step (6) of the algorithm.

From [NRS16, Section 6] it was shown that the exotic Steinberg variety

Z := Ñ×N Ñ := {(F•, G•, (v, x)) ∈ F(V )×F(V )×N | F•, G• ∈ C(v,x)},
has its irreducible components parametrised in two ways: one way by elements of the Weyl
group W (Cn) and the other by irreducible components of the exotic Springer fibres, or in other
words, by pairs of standard Young bitableaux. This gives rise to a bijection

W (Cn)
∼←→

∐
(µ,ν)∈Qn

T (µ, ν)× T (µ, ν)

defined geometrically, as in [NRS16, Corollary 7.1].

Theorem 3.10 (Main Theorem). Let F•, G• ∈ C◦(v,x) be generic flags, with Φ(F•) = T and

Φ(G•) = R. Then w(F•, G•) = eRS(T,R).

The proof of the theorem will be given in Section 5.

4. Intersecting Generic Hyperplanes

This section is devoted to answering the following question: given two one dimensional spaces
X and W contained in ker(x) ∩ (Cv)⊥, and such that

eType(v +W,x|W⊥/W ) = eType(v +X, x|X⊥/X),

putting Y = X +W , what is eType(v + Y, x|Y ⊥/Y )?

The answer to this question is summarised in Theorem 4.6 below, which is an analogue to
Lemma 3.2 in [Ste88], and is the key step in allowing us to describe the steps in the reverse
bumping algorithm. We fix some notation for throughout this section. Let (v, x) ∈ N with
eType(v, x) = (µ, ν) and let {vij, v∗ij} be a corresponding normal basis as described in Theorem
2.9. Let (µ′, ν ′) be a bipartition obtained from (µ, ν) by decreasing either µm or νm by 1, where
m is defined in the summation in (4.1). Define the variety

B(µ,ν)
(µ′,ν′) := {W ⊂ ker(x) ∩ (C[x]v)⊥ | eType(v +W,x|W⊥/W ) = (µ′, ν ′) }.

This variety was a key object in proving Theorem 2.13. Below we record the various properties
that generic points in this variety satisfy.

Proposition 4.1. Let W be a generic point in B(µ,ν)
(µ′,ν′). Then W = Cw where

w =
m∑
i=1

αivi,1 + βiv
∗
i,λi
, (4.1)

satisfies the following:
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• if µ′m = µm − 1, then
∑

i∈∆≤m
βi = 0;

• if ν ′m = νm − 1, then
∑

i∈∆≤m
βi 6= 0 if µm > µm+1, otherwise there is no condition on

the βi.

Proof. See Propositions 4.13 and 4.18 of [NRS16]. �

Remark 4.2. In the case where µ′m = µm − 1, and νm−1 > νm, this implies that βm = 0 in the
expression (4.1) for the spanning vector w of W . We also remark that the m we use in this
section is different from the m in Section 3 because here the parts corresponding to the two
bipartitions will be considered separately, as opposed to the numbering of all the rows together
in Definition 3.3.

The next proposition and corollary precisely describe the bipartitions where pairs of generic
points are perpendicular with respect to the symplectic form.

Proposition 4.3. Let (µ′, ν ′) obtained from (µ, ν) by decreasing µm or νm by 1 and let W,X ∈
B(µ,ν)

(µ′,ν′) be two generic points. Then X ⊂ W⊥ if and only if

(a) λm ≥ 2; or
(b) λm = µm = 1, νm−1 > νm = 0 and µ′m = µm − 1.

Proof. Let W = Cw and X = Cx with

w =
m∑
i=1

αivi,1 + βiv
∗
i,λi

and x =
m∑
i=1

γivi,1 + δiv
∗
i,λi
. (4.2)

Then
〈w, x〉 =

∑
i≤m :λi=1

(αiδi − βiγi). (4.3)

If λm ≥ 2, then the above sum is an empty sum, so 〈w, x〉 = 0 always. In the case where
λm = µm = 1 and νm−1 > νm = 0 with µ′m = µm − 1, by Remark 4.2 we have βm = δm = 0 for
generic points, so

〈w, x〉 = αm · 0− γm · 0 = 0.

In all other cases the equation (4.3) will generically give a non-zero result. �

Corollary 4.4. With W and X as in Proposition 4.3, we have that X 6⊆ W⊥ if and only if:

(a) λm = µm = 1 and νm−1 = 0; or
(b) λm = νm = 1 (which implies µm = 0).

Corollary 4.5. LetX andW as above, and suppose (µ′, ν ′) is obtained from (µ, ν) by decreasing
µ1 by 1. Then X = W .

Proof. In this case, since m = 1, Proposition 4.1 implies that β1 = 0 in (4.1), hence the variety

B(µ,ν)
(µ′,ν′) consists of the single point {Cv1,1} = W = X. �

From now on, we will assume that X ⊂ W⊥ and so the bipartition (µ, ν) will satisfy the
conditions of Proposition 4.3.

Theorem 4.6. Suppose W and X are two generic points in B(µ,ν)
(µ′,ν′) where (µ′, ν ′) is obtained

from (µ, ν) by decreasing one part of µ or ν by 1 and that (µ, ν) is a bipartition such that
X ⊂ W⊥. Put Y = X +W and eType(v + Y, x|Y ⊥/Y ) = (µ′′, ν ′′).

(1) Suppose that ν ′ = ν and µ′m = µm− 1, with m > 1 (the case m = 1 is in Cor 4.5). Then



IRREDUCIBLE COMPONENTS OF EXOTIC SPRINGER FIBRES II: RS ALGORITHM 13

(a) ν ′′m−1 = ν ′m−1 − 1 if νm−1 > νm;
(b) µ′′m = µ′m − 1 if νm−1 = νm and µm − 1 > µm+1;
(c) ν ′′max ∆m−1

= ν ′max ∆m−1
− 1 if νm−1 = νm, µm − 1 = µm+1 and max Γm+1 > max ∆m;

(d) µ′′max Γm
= µ′max Γm

− 1 if νm−1 = νm, µm − 1 = µm+1 and max Γm+1 ≤ max ∆m.
(2) Suppose that µ′ = µ and ν ′m = νm − 1. Then

(a) µ′′m = µ′m − 1 if µm > µm+1;
(b) ν ′′m = ν ′m − 1 if µm = µm+1 and νm − 1 > νm+1;
(c) µ′′max Γ′m

= µ′max Γ′m
− 1 if µm = µm+1, νm − 1 = νm+1 and max Γm ≤ max ∆m+1;

(d) ν ′′max ∆′m
= ν ′max ∆′m

− 1 if µm = µm+1, νm − 1 = νm+1 and max Γm > max ∆m+1.

Remark 4.7. Here we indicate how Theorem 4.6 corresponds to the reverse bumping algorithm
of Section 3.1. We suppose that a number s is being displaced, so the bipartition (µ, ν) is the
shape of the bitableau Ts and (µ′, ν ′) the shape of the bitableau Ts−1, and the position where

s was can be determined by the difference of those two shapes. If T̃ is the bitableau obtained

after s has displaced some other number u < s, then (µ′, ν ′) is also the shape of T̃s and (µ′′, ν ′′)

corresponds to the shape of T̃s−1, hence the difference between those shapes tells us where the
number s has moved.

Suppose that the number s that is moving was in the row corresponding to the part µ′m.

• If m = 1, s does not displace another number but is simply removed from the bitableau,
so the shape does not change, this corresponds to the case of Corollary 4.5.
• If m > 1, then we are in the situation of Theorem 4.6, case (i).
• In (a), νm−1 > νm, (i.e. ν ′m−1 > ν ′m), and there is an “available position” in the first

possible row: namely, the row corresponding to ν ′m−1. Replacing that label with s
corresponds to decreasing ν ′m−1 by 1.
• In (b), νm−1 = νm, (i.e. ν ′m−1 = ν ′m) so there are no “available positions” in the row

corresponding to ν ′m−1. Since µm − 1 > µm+1 (i.e. µ′m > µ′m+1), the first “available
position” is adjacent to s in the same row and replacing that label with s corresponds
to decreasing µ′m by 1.
• In (c), νm−1 = νm and µm− 1 = µm+1. If max Γm+1 > max ∆m, then the first “available

position” is at the end of row max ∆m. Replacing that label with s corresponds to
decreasing ν ′max ∆m

by 1.
• In (d), νm−1 = νm and µm− 1 = µm+1. If max Γm+1 ≤ max ∆m, then the first “available

position” is at the beginning of row max Γm+1. Replacing that label with s corresponds
to decreasing µ′max Γm+1

by 1.

One can similarly verify that Case (ii) (a), (b), (c), (d) match up with the reverse bumping
algorithm when the number s starts from the part corresponding to ν ′m.

4.1. Preliminaries on Restricting Jordan Types. For the rest of this section, we can
assume that W 6= X. By the Travkin and Achar-Henderson criterion, to calculate eType(v +
Y, x|Y ⊥/Y ), we need to know the following Jordan types: Type(x, Y ⊥/Y ) and Type(x, Y ⊥/(C[x]v+

Y )). Since X ⊂ W⊥, we have Y = X + W ⊂ X⊥ ∩W⊥ = Y ⊥ and so we may regard Y/W
as a 1-dimensional subspace of ker(x|W⊥/W ) ∩ (C[x]v + W )⊥/W ⊂ W⊥/W . The following two
lemmas will be useful in this regard.

Lemma 4.8. Let σ be the Jordan type of x restricted to the space W⊥/(C[x]v +W ). Then the
Jordan type σ′ of the induced nilpotent x on W⊥/(C[x]v+X+W ) is determined by the maximal
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k such that

X ⊆ xk−1(W⊥) + C[x]v +W.

If X ⊂ C[x]v + W , then σ′ = σ (and there is no maximal k), otherwise we have that σ′ is
obtained by removing the last box at the bottom of the k-th column of σ.

Proof. Suppose X 6⊂ C[x]v + W . Since W⊥/(C[x]v + X + W ) is the quotient of the space
W⊥/(C[x]v+W ) by the one-dimensional subspace (C[x]v+X +W )/(C[x]v+W ), we know by
[Spa76, page 1] that Type(x,W⊥/(C[x]v +X +W )) is given by the maximal k such that

(C[x]v +X +W )/(C[x]v +W ) ⊆ xk−1(W⊥/(C[x]v +W )).

Translating this back to a condition on X, we find that

C[x]v +X +W ⊆ xk−1(W⊥) + C[x]v +W and so

X ⊆ xk−1(W⊥) + C[x]v +W

as required. �

Lemma 4.9. Let ρ be the Jordan type of x restricted to the space W⊥/(C[x]v+X +W ). Then
the Jordan type ρ′ of the induced nilpotent x on Y ⊥/(C[x]v + X + W ) = Y ⊥/(C[x]v + Y ) is
determined by the maximal l such that

X⊥ ⊇ (xl−1)−1(C[x]v +W +X) ∩W⊥.

Then ρ′ is obtained by deleting the last box of the l-th column of ρ

Proof. Since Y ⊥/(C[x]v+ Y ) is an x-stable hyperplane in W⊥/(C[x]v+ Y ), we know by [vL00,
Lemma 1.4] that Type(x, Y ⊥/(C[x]v + Y ) is given by the maximal l such that

Y ⊥/(C[x]v + Y ) ⊇ im(x|W⊥/(C[x]v+X+W )) + ker(xl−1
|W⊥/(C[x]v+X+W )

).

Now

im(x|W⊥/(C[x]v+X+W )) = im(x|W⊥) + C[x]v +X +W = x(W⊥) + C[x]v +X +W,

and

ker(xl−1
|W⊥/(C[x]v+X+W )

) = (xl−1)−1(C[x]v +X +W ) ∩W⊥.

Thus we require the maximal l such that

Y ⊥ ⊇ x(W⊥) + (xl−1)−1(C[x]v +X +W ) ∩W⊥ + C[x]v +X +W. (4.4)

Now since X ⊂ W⊥ ∩ ker(x), we have X ⊂ ker(x|W⊥) and so X⊥ ⊇ x(W⊥). Also, since

Y = X + W ⊆ (C[x]v)⊥, we have that Y ⊥ ⊇ C[x]v, so (4.4) simplifies to the maximal l such
that

Y ⊥ ⊇ (xl−1)−1(C[x]v +X +W ) ∩W⊥.

Translating this back to a condition on X and W , we require the maximal l such that

X⊥ ∩W⊥ ⊇ (xl−1)−1(C[x]v +W +X) ∩W⊥.

Now the condition that W⊥ ⊇ (xl−1)−1(C[x]v +W +X) ∩W⊥ is redundant and so we require

X⊥ ⊇ (xl−1)−1(C[x]v +W +X) ∩W⊥

and the proof is complete. �
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Now we know that Type(x, Y ⊥/(C[x]v + Y )) is obtained from Type(x,W⊥/(C[x]v +W )) by
decreasing two parts, we will see below that these are two consecutive parts, which completely
determines eType(v + Y, x|Y ⊥/Y ).

For what follows, we will always have W = C{w} and X = C{x} where

w =
m∑
i=1

αivi,1 + βiv
∗
i,λi

and x =
m∑
i=1

γivi,1 + δiv
∗
i,λi
,

and m is the index where either µ or ν is decreased by 1 to obtain eType(v+W,x|W⊥/W ) (which
obviously coincides with eType(v +X, x|X⊥/X)).

Proposition 4.10. The maximal k2 such that X ⊆ xk2−1(W⊥) +W, is

k2 =

{
λm−1 if µ′m = µm − 1 and νm−1 > νm,

λm − 1 otherwise.

Proof. Since X and W are generically chosen in B(µ,ν)
(µ′,ν′), it follows that X ⊆ xλm−1(V ) but not

xλm(V ). Therefore since x(V ) ⊂ W⊥, it immediately follows that X ⊆ xλm−2(W⊥), so the
maximal k2 ≥ λm − 1.

Consider the set S := {vi,1, v∗i,λi | i ∈ Λm}. We claim that S ⊂ xλm−1(W⊥) if and only if

νm−1 > νm. It is clear that the set of vectors S ′ := {vi,λi , v∗i,1 | i ∈ Λm} maps onto S via xλm−1.

Moreover it is easily seen that S ′ 6⊆ W⊥ whenever |Λm| ≥ 2 since W is generically chosen
implying that αi’s and the βi’s are non-zero as i runs through Λm. Indeed since W and X are
chosen generically, we have S ′ ⊆ W⊥ if and only if |Λm| = 1 and either αm = 0 or βm = 0 in the

expression for w given in (4.1). But for a generic W in B(µ,ν)
(µ′,ν′), since µ′m = µm − 1, we can only

assume that βm = 0 precisely when νm−1 > νm by Remark 4.2 (which also implies that δm = 0
in the expression for x). This establishes the claim.

Now we can quickly see that if νm−1 = νm then S and hence X is not contained in xλm−1(W⊥).
Moreover since |S| > 1 and X is generically chosen, it is impossible for X to be contained in
xλm−1(W⊥) +W as adding W only the dimension by 1. Therefore the maximal k2 in this case
is λm − 1.

Now suppose that νm−1 > νm. Then the expressions for the spanning vectors w and x are
as in (4.2) and we claim that the set of vectors {vi,1, v∗i,λi | 1 ≤ i ≤ m − 1} are contained in

xλm−1−1(W⊥). This is clear for all i such that λi > λm−1, so we only need to check this for
i ∈ Λm−1, that is the i such that λi = λm−1. Notice that the vectors of the form αivi,λi + βiv

∗
i,1

are all contained in W⊥ and so

xλm−1−1(αivi,λi + βiv
∗
i,1) = αivi,1 ∈ xλm−1−1(W⊥),

for i ∈ Λm−1. Therefore vi,1, v
∗
i,λi

are contained in xλm−1−1(W⊥) for 1 ≤ i ≤ m− 1 and so

X ⊆ C{vi,1, v∗i,λi | 1 ≤ i ≤ m− 1} ⊕ C{vm,1} ⊆ xλm−1−1(W⊥) +W.

Since the vectors vi,1 and v∗i,λi for i ∈ Λm−1 are not contained in xλm−1(V ), they cannot be

contained in xλm−1(W⊥) and in this case, adding the space W cannot account for these missing
vectors as well as vm,1. So we have shown that the maximal k2 in this case is λm−1 which
completes the proof. �
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Proposition 4.11. Let X and W be two generic points of B(µ,ν). Then the maximal l2 such
that

X⊥ ⊇ (xl2−1)−1(C[x]v +X +W ) ∩W⊥

is λm − 1 except when µ′m = µm − 1, ν ′ = ν and νm−1 > νm.

Proof. Consider the vector w′ =
m∑
i=1

αivi,λm + βiv
∗
i,λi−λm+1. We have that xλm−1(w′) = w, and

w′ ∈ W⊥ because

〈w,w′〉 =
∑
i∈Λm

(αiβi − βiαi) = 0.

But 〈x, w′〉 =
∑
i∈Λm

αiδi − βiγi, which is generically non-zero except when µ′ � µ, ν ′ = ν and

νm−1 > νm, which forces |Λm| = 1 and so βm = δm = 0 by Remark 4.2. Thus when this
is not the case, we have (xλm−1)−1(W ) 6⊆ X⊥. Furthermore, since X ⊆ xλm−1(V ), it follows
that X⊥ ⊇ ker(xλm−1) ⊇ ker(xλm−2), and it is easily seen that X⊥ ⊇ xλm−2(W ). Therefore
X⊥ ⊇ (xλm−2)−1(C[x]v +X +W ) ∩W⊥. �

Remark 4.12. We will deal with the case µ′m = µm − 1, ν ′ = ν and νm−1 > νm in Proposition
4.15.

4.2. Box Removed from the Left. We are now getting to the proof of Theorem 4.6. We
first consider the case where µ′m = µm − 1.

4.2.1. µ′m = µm − 1, ν ′ = ν and νm−1 = νm. Recall that the condition νm−1 = νm is equivalent

to |∆≤m| ≥ 2. Also recall from Proposition 4.1 that a generic point in B(µ,ν)
(µ′,ν′) has the following

conditions on the coefficients of its spanning vector; namely for a spanning vector w as in (4.2)
we have: ∑

i∈∆≤m

βi = 0.

Proposition 4.13. Let X and W be generic points in B(µ,ν)
(µ′,ν′). Then the maximal k2 such that

X ⊆ xk2−1(W⊥) + C[x]v +W

is λm − 1.

Proof. We know by Proposition 4.10 that k2 ≥ λm−1. To show that k2 = λm−1 we show that the
vectors vi,µi−µm+1 for i ∈ ∆≤m are not contained in xλm−1(W⊥)+C[x]v which implies the vectors
v∗i,λi are not contained in xλm−1(W⊥)+C[x]v+W for i ∈ ∆≤m and so X 6⊆ xλm(W⊥)+C[x]v+W .

Consider the vectors βmvi,λi − βivm,λm for i ∈ ∆≤m. These vectors are clearly contained in
W⊥ and so βmvi,µi−µm+1 − βivm,1 = xλm−1(βmvi,λi − βivm,λm) is contained in xλm−1(W⊥). Now
if each vi,µi−µm+1 were in xλm−1(W⊥) + C[x]v, we would require that the vector

v′ =
∑

i∈∆≤m

vi,µi−µm+1 = xµi−µm(v)−
m′∑
i=1

vi,µi−µm+1,
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where m′ = min ∆m − 1 lies outside the span of βmvi,µi−µm+1 − βivm,1 as i runs through ∆≤m.
However we calculate:∑

i∈∆<m

βmvi,µi−µm+1 − βivm,1 = βm
∑

i∈∆<m

vi,µi−µm+1 −

( ∑
i∈∆<m

βi

)
vm,1

= βm
∑

i∈∆<m

vi,µi−µm+1 + βmvm,1 since
∑

i∈∆≤m

βi = 0

= βm
∑

i∈∆≤m

vi,µi−µm+1

= βmv
′.

Hence we cannot obtain the individual basis vectors vi,µi−µm+1 in xλm−1(W⊥) + C[x]v, for i ∈
∆≤m. In particular, we cannot obtain the vectors vi,1 for i ∈ Λm by adding C[x]v which implies
that we cannot obtain the vectors v∗i,λi for i ∈ Λm by adding C[x]v + W . Therefore we cannot

obtain X as a subspace of xλm−1(W⊥) + C[x]v +W . �

of Theorem 4.6: Cases 1(b),(c),(d). We can now describe exactly how Type(x, Y ⊥/(C[x]v +
Y ) = (µ′′, ν ′′) is obtained from Type(x,W⊥/(C[x]v + W )) when µ′m = µm − 1, ν ′ = ν and
νm−1 = νm. In this case we have by Proposition 4.13 and Proposition 4.11, k2 = l2 = λm − 1.
Let

σ = Type(x,W⊥/(C[x]v +W ) and σ′ = Type(x, Y ⊥/(C[x]v + Y ))

We explicitly determine which parts of σ are decreased by 1 in order to obtain σ′. We have

σ = (µ1 + ν1, µ2 + ν1, . . . , µm−1 + νm−1, µm − 1 + νm−1, µm − 1 + νm, µm+1 + νm, . . .)

and we know that that σ′ is obtained from σ by decreasing the last two parts of size λm − 1 =
µm + νm − 1. Since νm−1 = νm, we know that there certainly are at least two parts of σ that
have this size, namely σ2(m−1) = µm − 1 + νm−1 and σ2m−1 = µm − 1 + νm.

Case 1(b): If µm − 1 > µm+1, then µm − 1 + νm > µm+1 + νm and so σ2(m−1) and σ2m−1 are
the last two consecutive parts of size λm − 1, and so in that case we have

σ′ = (µ1 + ν1, µ2 + ν1, . . . , µm−1 + νm−1, µm − 2 + νm−1, µm − 2 + νm, µm+1 + νm, . . .).

Therefore eType(v+Y, x|Y ⊥/Y ) is obtained from eType(v+W,x|W⊥/W ) by decreasing µ′m = µm−1
by 1. Thus we have

eType(v, x)
decrease µm by 1−−−−−−−−−→ eType(v +W,x|W⊥/W )

decrease µ′m by 1−−−−−−−−−→ eType(v + Y, x|Y ⊥/Y ).

Case 1(c): Suppose that µm − 1 = µm+1, and max Γm+1 > max ∆m, then the last two
consecutive parts of σ of size λm − 1 are

σ2 max ∆m−1 = µmax ∆m + νmax ∆m and σ2 max ∆m = µmax ∆m+1 + νmax ∆m .

Therefore in this case eType(v+Y, x|Y ⊥/Y ) is obtained from eType(v+W,x|W⊥/W ) by decreasing
νmax ∆m by 1. Thus we have

eType(v, x)
decrease µm by 1−−−−−−−−−→ eType(v +W,x|W⊥/W )

decrease νmax ∆m by 1−−−−−−−−−−−−→ eType(v + Y, x|Y ⊥/Y ).
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Case 1(d): Suppose that µm − 1 = µm+1, and max Γm+1 ≤ max ∆m. Then the last two
consecutive parts of σ of size λm − 1 are:

σ2(max Γm+1−1) = µmax Γm+1 + νmax Γm+1−1 and σ2 max Γm+1−1 = µmax Γm+1 + νmax Γm+1 .

Therefore eType(v+Y, x|Y ⊥/Y ) is obtained from eType(v+W,x|W⊥/W ) by decreasing µmax Γm+1

by 1. Thus we have

eType(v, x)
decrease µm by 1−−−−−−−−−→ eType(v +W,x|W⊥/W )

decrease µmax Γm+1
by 1

−−−−−−−−−−−−−−→ eType(v + Y, x|Y ⊥/Y ).

�

4.2.2. µ′m = µm − 1, ν ′ = ν and νm−1 > νm. In this case Remark 4.2 forces us to have the
coefficients of v∗m,λm , namely βm and δm to be 0, and so a generic w and x have the form

w =
m−1∑
i=1

(αivi,1 + βiv
∗
i,λi

) + αmvm,1 and x =
m−1∑
i=1

(γivi,1 + δiv
∗
i,λi

) + γmvm,1

with αm 6= 0 6= γm. Note it is possible for νm = 0 as we only require that νm−1 > νm.

Proposition 4.14. Let W and X be generic points in B(µ,ν)
(µ′,ν′). Then maximal k2 such that

X ⊂ xk2−1(W⊥) + C[x]v +W is λm−1.

Proof. By Proposition 4.10, we know that λm−1 is the largest integer such thatX ⊂ xλm−1−1(W⊥)+
W , so k2 ≥ λm−1. Also by the proof of Proposition 4.10, we know that the set of vec-
tors {vi,1, v∗i,λi | 1 ≤ i ≤ m − 1} ⊂ xλm−1−1(W⊥) whereas the set of vectors {vi,1, v∗i,λi | i ∈
Λm−1} ∪ {v1,m} 6⊆ xλm(W⊥) + W . It once again follows that the set of vectors {vi,1, v∗i,λi | i ∈
Λm−1}∪{v1,m} are not contained in xλm(W⊥)+C[x]v+W since we cannot obtain the individual
vectors {vi,1} for i ∈ Λm−1 and the vector {v1,m} by adding the subspace C[x]v and so we cannot
then obtain the individual vectors v∗i,λi for i ∈ Λm−1 either. Therefore X 6⊆ xλm(W⊥) +W and
k2 = λm−1 completing the proof. �

Proposition 4.15. Let W and X be generic points in B(µ,ν)
(µ′,ν′). Then the maximal l2 such that

X⊥ ⊇ (xl2−1)−1(C[x]v +X +W ) ∩W⊥

is µm + νm−1 − 1.

Proof. Consider the vector

u := xµm−1(αmv)− w =
m−1∑
i=1

αmvi,µi−µm+1 − (αivi,1 + βiv
∗
i,λi

) ∈ C[x]v +X +W.

Observe that this vector is not supported on vm,1. We define

u′ :=
m−1∑
i=1

αmvi,µi+νm−1 − (αivi,µm+νm−1 + βiv
∗
i,λi−µm−νm−1+1)

and observe that xµm+νm−1−1(u′) = u. Now, we let

u′′ := u′ − 〈w, u
′〉

αm
v∗m,1
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such that xµm+νm−1−1(u′′) = u and

〈w, u′′〉 = 〈w, u′〉 − 〈w, u
′〉

αm
〈w, v∗m,1〉 = 〈w, u′〉

(
1− αm

αm

)
= 0

so u′′ ∈ W⊥. Therefore u′′ ∈ (xµm+νm−1−1)−1(C[x]v +X +W ).

However, an easy calculation shows that

〈x, u′′〉 =


∑

i∈Λm−1

αmδi − γmβi if µm−1 > µm,∑
i∈Γm∩∆m−1

(αi − αm)δi + (γm − γi)βi if µm−1 = µm,

which is generically non-zero. Hence u′′ 6∈ X⊥ and so X⊥ 6⊇ (xµm+νm−1−1)−1(C[x]v +X +W ) ∩
W⊥.

It remains to show that X⊥ ⊇ (xµm+νm−1−2)−1(C[x]v+X+W )∩W⊥. Since µm + νm−1−2 ≤
µm−1 +νm−1−2, the only vector in ker(xµm−1+νm−1−2) with non-zero inner product with x is v∗m,1.

However this vector is not contained in W⊥ and so X⊥ ⊇ ker(xµm−1+νm−1−2) ∩W⊥. Finally
let T := C({vi,λi , v∗i,1 | 1 ≤ i ≤ m − 1} ∪ {v∗m,1}); this is the span of the basis elements that
have non-zero inner product with w and x. Then any vector in V that maps onto u under
xµm−1+νm−1−2 can easily be seen not to be supported on T ∩W⊥ and so we have shown that
X⊥ ⊇ (xµm+νm−1−2)−1(C[x]v +X +W ) ∩W⊥. Therefore l2 = µm + νm−1 − 1. �

of Theorem 4.6: Case 1(a). We now explicitly describe which parts of σ are removed to obtain
σ′. Since νm−1 > νm, the last two consecutive parts of σ of sizes k2 = λm−1 = µm−1 + νm−1 and
l2 = µm + νm−1 − 1 are σ2(m−1)−1 and σ2(m−1). Therefore σ′ is obtained from σ by decreasing
νm−1 by 1; explicitly we have

σ′ = (µ1 + ν1, µ2 + ν1, . . . , µm−1 + νm−1 − 1, µm − 2 + νm−1, µm − 1 + νm, µm+1 + νm, . . .)

and so

eType(v, x)
decrease µm by 1−−−−−−−−−→ eType(v +W,x|W⊥/W )

decrease νm−1 by 1−−−−−−−−−−−→ eType(v + Y, x|Y ⊥/Y ).

�

4.3. Box Removed from the Right.

4.3.1. µ′ = µ, ν ′m = νm − 1, µm > µm+1. Throughout this section, the maximal l2 is λm − 1 as
given in Proposition 4.11.

Proposition 4.16. Suppose eType(v+W,x|W⊥/W ) is obtained from (µ, ν) by decreasing νm by

1, µm > µm+1, and νm−1 = νm. Then the maximal k2 such that X ⊆ xk2−1(W⊥) + C[x]v + W
is λm = µm + νm = µm + νm−1.

Proof. In this case we are required to have
∑

i∈∆≤m
βi 6= 0 for otherwise eType(v +W,x|W⊥/W )

would be obtained from (µ, ν) by decreasing µm by 1. It is clear that the vectors vi,1, vi,λ∗i
are contained in xλm−1(W⊥) for all i 6∈ ∆m and that the vectors vi,1, vi,λ∗i are not contained in

xλm−1(W⊥) for all i ∈ ∆m \ Γm. We show that vi,1 are contained in xλm−1(W⊥) + C[x]v for all
i ∈ ∆m.

As in Proposition 4.13, we have βmvi,λi − βivm,λm ∈ W⊥ for i ∈ ∆m, and so

βmvi,µi−µm+1 − βivm,1 = xλm−1(βmvi,λi − βivm,λm)
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is contained in xλm−1(W⊥) for all i ∈ ∆m. In this case however, we must have that

v′ = xµm−1(v)−
min ∆m−1∑

i=1

vi,µi−µm+1 =
∑

i∈∆≤m

vi,µi−µm+1

lies outside the span of the vectors βmvi,µi−µm+1 − βivm,1 for i ∈ ∆≤m since
∑

i∈∆≤m
βi 6= 0.

Therefore we have C{vi,1 | i ∈ ∆m} = C{βmvi,µi−µm+1 − βivm,1 | i ∈ ∆m} ⊕ Cv′ and so we have

U := C{vi,1, v∗j,λj | 1 ≤ i ≤ m, 1 ≤ j ≤ min ∆m − 1} ⊆ xλm−1(W⊥) + C[x]v.

We now show that the vectors v∗i,λi for i ∈ ∆m are contained in xλm−1(W⊥) + C[x]v + W . We

have that αmv
∗
i,1 − αiv∗m,1 ∈ W⊥ and so

αmv
∗
i,λi−λm+1 − αiv∗m,λm = xλm−1(αmv

∗
i,1 − αiv∗m,1) ∈ xλm−1(W⊥).

Therefore we have

U ′ := C{vk,1, v∗j,λj , αmv
∗
i,λi−λm+1 − αiv∗m,λm | 1 ≤ k ≤ m, 1 ≤ j ≤ min ∆m − 1, i ∈ ∆m}

is contained in xλm−1(W⊥) + C[x]v. Hence U ′ + W ⊆ xλm−1(W⊥) + C[x]v + W . Now since

W is generically chosen in B(µ,ν)
(µ′,ν′), we have that w′ :=

∑
i∈∆m

βiv
∗
i,λi

, the part of w that is not

supported on U , is not contained in C{αmv∗i,λi−λm+1−αiv∗m,λm | i ∈ ∆m}. Therefore by counting
dimensions we have

C{αmv∗i,λi−λm+1 − αiv∗m,λm | i ∈ ∆m} ⊕ Cw′ = C{v∗i,λi | i ∈ ∆m}
and so we have

X ⊆ C{vi,1, v∗i,λi | 1 ≤ i ≤ m} = U ′ +W ⊆ xλm−1(W⊥) + C[x]v +W = xλm−1(W⊥) + C[x]v

since W ⊂ xλm−1(W⊥).

By repeating the argument at the end of the proof in Proposition 4.13, this shows that k2 = λm
is maximal and so we are done. �

Proposition 4.17. Suppose eType(v + W,x|W⊥/W ) is obtained from (µ, ν) by decreasing νm
by 1, µm > µm+1, and νm−1 > νm. If m = 1, then X ⊂ C[x]v + W . Otherwise, if m > 1, the
maximal k2 such that X ⊆ xk2−1(W⊥) + C[x]v +W is k2 = µm + νm−1.

Proof. We first deal with the case m = 1. In this case, the condition νm−1 > νm 6= 0 should be
ignored. Then our vectors w and x have the form

w = αv11 + βv∗1,λ1
and x = γv11 + δv∗1,λ1

.

Moreover, since max Γm = max ∆m = 1, we have v11 = xµ1−1(v) and so it follows that X ⊂
span{xµ1−1(v), w} ⊂ C[x]v +W. Therefore there is no maximal k2.

Now suppose thatm > 1. Clearly the vectors vi,1 and v∗i,λi are all contained in xµm+νm−1−1(W⊥)
for 1 ≤ i ≤ min Λm−1 − 1. We now show that the vectors vi,µi+µm+1, v

∗
i,λi

are contained in

xµm+νm−1−1(W⊥) for i ∈ ∆m−1. Using the vectors vm,1 and v∗m,λm as pivots we see that the

vectors βmvi,λi − βivm,λm and αmv
∗
i,1 − αiv∗m,1 are contained in W⊥ for i ∈ ∆m−1. Hence

βmvi,µi−µm+1 = xµm+νm−1−1(βmvi,λi − βivm,λm) ∈ xµm+νm−1−1(W⊥)

and

αmv
∗
i,λi

= xµm+νm−1−1(αmv
∗
i,1 − αiv∗m,1) ∈ xµm+νm−1−1(W⊥)
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for i ∈ ∆m−1. Now xµm−1(v) =
∑m

i=1 vi,µi−µm+1 and since vi,µi−µm+1 ∈ xµm+νm−1−1(W⊥) for all
1 ≤ i ≤ m− 1, we conclude that vm,1 ∈ xµm+νm−1−1(W⊥) + C[x]v as well. Hence

C{vi,1, v∗i,λi | 1 ≤ i ≤ m− 1} ⊕ C{vm,1} ⊂ xµm+νm−1−1(W⊥) + C[x]v. (4.5)

Now adding W to each side of (4.5), we see that

C{vi,1, v∗i,λi | 1 ≤ i ≤ m} = C{vi,1, v∗i,λi | 1 ≤ i ≤ m− 1} ⊕ C{vm,1}+W

⊆ xµm+νm−1−1(W⊥) + C[x]v +W,

and so X ⊆ xµm+νm−1−1(W⊥) +C[x]v+W . Therefore k2 ≥ µm + νm−1. But it is also clear that
µm + νm−1 − 1 is the highest power of x such that vi,µi−µm+1 is contained in xµm+νm−1−1(W⊥)
for i ∈ ∆m−1, and without these vectors, we cannot obtain the vector vm,1 ∈ xµm+νm−1−1(W⊥)+
C[x]v. Hence k2 = µm + νm−1 and we are done. �

of Theorem 4.6: Case 2(a). We now explicitly determine eType(v + Y, x|Y ⊥/Y ) by determining

σ′ = Type(x, Y ⊥/(C[x]v + Y )). We have

σ = Type(x,W⊥/(C[x]v +W ))

= (µ1 + ν1, µ2 + ν1, . . . , µm + νm−1, µm + νm − 1, µm+1 + νm − 1, µm+1 + νm+1, . . .)

Suppose that m > 1, then by Propositions 4.11 and either 4.16 or 4.17 (depending on whether
νm−1 = νm or νm−1 > νm) we have that l2 = λm−1 = µm+νm−1 and k2 = µm+νm−1. Observe
that νm−1 > νm − 1. Therefore the parts of σ of size k2 and l2 are:

σ2(m−1) = µm + νm−1 = λm and σ2m−1 = µm + νm − 1 = λm − 1.

It follows that σ′ is obtained from σ by decreasing µm by 1. Thus we have

eType(v, x)
decrease νm by 1−−−−−−−−−→ eType(v +W,x|W⊥/W )

decrease µm by 1−−−−−−−−−→ eType(v + Y, x|Y ⊥/Y ).

Now suppose that m = 1. Then Propositions 4.11 and 4.17 tell us that σ′ is obtained by
reducing the last part of σ of size λ1 − 1 by 1. Since max Γ1 = max ∆1, this part must be
σ1 = λm− 1 = µ1 + ν1− 1. Therefore σ′ is obtained from σ by decreasing µ1 by 1 and so in this
case we have:

eType(v, x)
decrease ν1 by 1−−−−−−−−−→ eType(v +W,x|W⊥/W )

decrease µ1 by 1−−−−−−−−−→ eType(v + Y, x|Y ⊥/Y ).

�

4.3.2. µ′ = µ, ν ′m = νm − 1 and µm = µm+1.

Proposition 4.18. Suppose eType(v+W,x|W⊥/W ) is obtained from (µ, ν) be decreasing νm by

1 and µm = µm+1. Then the maximal k2 such that X ⊆ xk2−1(W⊥) + C[x]v +W is λm − 1.

Proof. In this case we can assume generically that the βi and δi are non-zero, and Proposition
4.10 applies to tell us that k2 ≥ λm − 1. Let S = span{vi,1, v∗i,λi | i ∈ Γ≥m}, since µm = µm+1,
we have dim(S) ≥ 4, unless µm = 0 = νm+1, in which case we can say that dim(S) ≥ 2. If
k ≥ λm, then xk−1(W⊥) ∩ S = 0. Then, to have X ⊆ xk−1(W⊥) + C[x]v + W we would need
x′ =

∑
i∈Γ≥m

γivi,1 + δiv
∗
i,λi

to be contained in the span of w′ =
∑

i∈Γ≥m
αivi,1 + βiv

∗
i,λi

(coming

from W ) and v′ =
∑

i∈Γ≥m
vi,1 (coming from C[x]v and only in the case when µm > 0). However,

if µm > 0, inside a space S that is at least 4 dimensional, generically x′ will not be contained in
a 2 dimensional subspace with no additional conditions. In the same way, if µm = 0, inside the
space S that has dimension at least 2, x′ will not be contained in the span of w′. This proves
that k2 < λm, so indeed k2 = λm − 1. �
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of Theorem 4.6: Case 2(b), (c), (d). Case 2(b): First suppose that νm−1 > νm+1. By Propo-
sitions 4.11 and 4.18 we have k2 = l2 = λm − 1 and the last two parts σ of this size are

σ2m−1 = µm + νm − 1 and σ2m = µm+1 + νm − 1.

Therefore it follows that σ′ is obtained from σ by decreasing ν ′m = νm − 1 by 1. Thus we have

eType(v, x)
decrease νm by 1−−−−−−−−−→ eType(v +W,x|W⊥/W )

decrease ν′m by 1−−−−−−−−−→ eType(v + Y, x|Y ⊥/Y ).

Now suppose that νm − 1 = νm+1. Then λm − 1 = µm + νm − 1 = µm+1 + νm+1 = λm+1.
Case 2(c): Suppose νm − 1 = νm+1, max Γm ≤ max ∆m+1. Then the last two parts of σ of

size λm − 1 are:

σ2(max Γm−1) = µmax Γm + νmax Γm−1 and σ2 max Γm = µmax Γm + νmax Γm .

Note that it is possible for νmax Γm = 0 but νmax Γm−1 6= 0. In any case we obtain σ′ from σ be
decreasing µmax Γm by 1. We have

eType(v, x)
decrease νm by 1−−−−−−−−−→ eType(v +W,x|W⊥/W )

decrease µmax Γm by 1−−−−−−−−−−−−→ eType(v + Y, x|Y ⊥/Y ).

Case 2(d): Suppose νm− 1 = νm+1, max Γm > max ∆m+1. Then the last two parts of σ of size
λm+1 are

σ2 max ∆m+1−1 = µmax ∆m+1 + νmax ∆m+1 and σ2 max ∆m+1 = µmax ∆m+1+1 + νmax ∆m+1 ,

and so σ′ is obtained from σ by decreasing νmax ∆m+1 by 1. Note in the case where µm = 0 we
have µm+1 = 0 as well and so µmax ∆m+1 = µmax ∆m+1+1 = 0. We have

eType(v, x)
decrease νm by 1−−−−−−−−−→ eType(v +W,x|W⊥/W )

decrease νmax ∆m+1
by 1

−−−−−−−−−−−−−−→ eType(v + Y, x|Y ⊥/Y ).

�

5. Proof of Main Theorem

5.1. Setup. In this subsection we go over the notation needed for the proof of Theorem 3.10.

Definition 5.1. Given (v, x) ∈ O(µ,ν), we say that a flag F• ∈ C(v,x) is ‘good’ if the sequence of
bipartitions Φ(F•) below is a nested sequence (that is, one box is removed at each stage):

Φ(F•) = (eType(v, x), eType(v + F1, x|F⊥1 /F1
), eType(v + F2, x|F⊥2 /F2

), . . .).

Notice that by Theorem 2.13 the set of good flags is open dense in C(v,x).

Definition 5.2. Let F•, G• ∈ C(v,x) be two good flags:

F• = (0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ F⊥2 ⊂ F⊥1 ⊂ C2n),

G• = (0 ⊂ G1 ⊂ G2 ⊂ . . . ⊂ G⊥2 ⊂ G⊥1 ⊂ C2n),

We define two flags in the smaller exotic fibre C(v,x) where x = x|G⊥1 /G1
and v = v+G1 ∈ G⊥1 /G1.

F̃• =

(
. . . ⊂ G1 + Fi ∩G⊥1

G1

⊂ . . .

)2n

i=0

, (5.1)

G̃• = (0 = G1/G1 ⊂ G2/G1 ⊂ . . . ⊂ G⊥2 /G1 ⊂ G⊥1 /G1
∼= C2(n−1)). (5.2)

Notice that the flag F̃• will have redundancies in two places, that is, there are two numbers k

such that F̃k = F̃k+1. If Fn ⊂ G⊥1 (or, equivalently, if Fn ⊃ G1) we call this a Type 1 redundancy.
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Let r be minimal such that Fn+r 6⊂ G⊥1 . It follows then that Fn+r−1 = Fn+r ∩G⊥1 and also that

G1 + Fn−r = Fn−r+1. In this case, the flag F̃• looks like:

F̃• =

(
0 ⊂ G1 + F1

G1
⊂ . . . ⊂ G1 + Fn−r−1

G1
⊂ Fn−r+1

G1
⊂ . . . ⊂ Fn+r−1

G1
⊂ Fn+r+1 ∩G⊥1

G1
⊂ . . . ⊂ G⊥1

G1

)
.

In this flag the indices n+ r and n− r are missing.

If Fn 6⊂ G⊥1 (Fn 6⊃ G1), we call this a Type 2 redundancy. Let r be minimal such that
Fn+r ⊃ G1, we have Fn+r−1 +G1 = Fn+r and Fn−r−1 = Fn−r ∩G⊥1 , and:

F̃• = (0 ⊂ G1 + F1

G1

⊂ . . . ⊂ G1 + Fn−r−1

G1

⊂ G1 + Fn−r+1 ∩G⊥1
G1

⊂ . . .

⊂ G1 + Fn+r−1 ∩G⊥1
G1

⊂ Fn+r+1 ∩G⊥1
G1

⊂ . . . ⊂ G⊥1
G1

).

Again the indices n + r and n − r are missing from the labelling. Notice that F̃•, as just
defined, is not necessarily a good flag.

Remark 5.3. For a fixed flag G• ∈ C(v,x), consider the map

πG : C(v,x) −→ C(v̄,x̄); πG(F•) = F̃•,

then πG is surjective, so π−1
G

(
C◦(v̄,x̄)

)
is dense in C(v,x), by Theorem 2.13. This shows that, for

a generic choice of F• and G•, the flag F̃• will also be a good flag. If F̃• is a good flag, then
by keeping track of the redundancies in the labelling, we can say that the nested sequence of

bipartitions Φ(F̃•) is a bitableau that satisfies the increasing (standard) condition, containing
the numbers 1, . . . , n excluding r.

Recall from Definition 2.18 that if w = w(F•, G•), then we can choose an orthonormal basis
{v1, . . . , vn, vn, . . . , v1} (that is, so that 〈vi, vj〉 = δi,j = −〈vj, vi〉, 〈vi, vj〉 = 〈vi, vj〉 = 0), with

Fi =

{
C{vn, . . . , vn−i+1}, if 1 ≤ i ≤ n

C{vn, . . . , v1, v1̄, . . . , vi−n}, if n+ 1 ≤ i ≤ 2n

and

Gj =

{
C{vw(n), . . . , vw(n−j+1)}, if 1 ≤ j ≤ n

C{vw(n), . . . , vw(1), vw(1̄), . . . , vw(j−n)}, if n+ 1 ≤ j ≤ 2n.

Using this basis we can explicitly describe the flags G̃• and F̃•, while being careful regarding

the type of redundancy that determines F̃•. Firstly, we have

G̃j =

{
C{vw(n−1), . . . , vw(n−j)}, if 1 ≤ j ≤ n− 1

C{vw(n−1), . . . , vw(1), vw(1̄), . . . , vw(j−n+1)}, if n ≤ j ≤ 2n− 2.
(5.3)

where, by abuse of notation, we regard the basis elements as their images in the quotient space,
and we will continue this convention in what follows.

Now for F̃• we had F̃i =
G1+Fi∩G⊥1

G1
for each i. In the Type 1 redundancy we had Fn ⊆ G⊥1

and chose r minimal such that Fn+r 6⊆ G⊥1 . Therefore

Fn+r = C{vn, . . . , v1, v1̄, . . . , vr̄} 6⊆ G⊥1 but Fn+r−1 = C{vn, . . . , v1, v1̄, . . . , vr−1} ⊆ G⊥1 ,
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so this implies that w(n̄) = r̄, or equivalently w(n) = r. For the Type 2 redundancy, we chose
r minimal such that Fn+r ⊇ G1, so in this case:

Fn+r = C{vn, . . . , v1, v1̄, . . . , vr̄} ⊇ G1 = C{vw(n)}, but

Fn+r−1 = C{vn, . . . , v1, v1̄, . . . , vr−1} 6⊇ G1,

which implies w(n) = r̄. Explicitly, in either case, we have w(n) ∈ {r, r̄} and:

F̃i =

{
C{vn, . . . , v̂r, . . . , vn−i+1} if 1 ≤ i ≤ n, i 6= n+ 1− r
C{vn, . . . , v̂r, . . . , v1, v1̄, . . . , v̂r̄, . . . , vi−n} if n+ 1 ≤ i ≤ 2n, i 6= n+ r

(5.4)

where v̂p denotes omission of vp.

Definition 5.4. Let F• ∈ C(v,x) be a good flag, with Φ(F•) = T . By Theorem 2.13, for any s
with 1 ≤ s ≤ n− 1, we have a bijective map

Φs : Irr C(v+Fn−s,x|Fn+s/Fn−s
) −→ T (ε(s), η(s)) (5.5)

where (ε(s), η(s)) = eType(v + Fn−s, x|Fn+s/Fn−s). We define the s-truncated flag

F s
• :=

(
0 =

Fn−s
Fn−s

⊂ Fn−s+1

Fn−s
⊂ . . . ⊂ Fn+s−1

Fn−s
⊂ Fn+s

Fn−s
∼= C2s

)
In terms of our basis we can also write

F s
i =

{
C{vs, . . . , vn−i+1} if 1 ≤ i ≤ s,

C{vs, . . . , v1, v1̄, . . . , vi−s} if s+ 1 ≤ i ≤ 2s.

We have that F s
• ∈ C(v+Fn−s,x|Fn+s/Fn−s

) is a good flag, and that Φs(F
s
• ) = Ts, the bitableau

obtained from T by only considering the number 1 up to s (see Definition 2.5).

Remark 5.5. Using the above notation, the flag defined in (5.2) is a truncated flag G̃• = Gn−1
• ,

so if Φ(G•) = R, then Φn−1(G̃•) = Φn−1(Gn−1
• ) = Rn−1.

Definition 5.6. Let F•, G• ∈ C(v,x) be two good flags such that F̃• ∈ C(v̄,x̄) is also a good flag. If

Φ(F•) = T , we define T̃ to be the standard bitableau obtained by relabelling the entries of Φ(F̃•)

with numbers from 1 up to n with r missing, as discussed above. We define the flag F̃ s
• = (F̃•)

s

to be the truncation (which is a good flag if the original one was), so we have Φs(F̃ s
• ) = (T̃ )s.

Remark 5.7. Using the basis we fixed before, we can describe the truncation of F̃• as follows:

F̃ s
i =

{
C{vs, . . . , v̂r, . . . , vn−i+1} if 1 ≤ i ≤ s, i 6= n+ 1− r,
C{vs, . . . , v̂r, . . . , v1, v1̄, . . . , v̂r̄, . . . , vi−s} if s+ 1 ≤ i ≤ 2s, i 6= n+ r.

5.2. Inductive step. We now use the techniques developed by Steinberg in [Ste88] to determine
the exotic Robinson-Schensted algorithm. This section is devoted to the proof of the following
key Proposition (analogous to Lemma 1.2 from [Ste88]), which is the inductive step in the proof.

Proposition 5.8. Let F• and G• be two generic points in the exotic Springer fibre C(v,x); in

particular we can assume that F•, G•, F̃• are all good flags. Let T and R be the bitableaux

corresponding to F• and G• and let T̃ and Rn−1 be the bitableaux corresponding to F̃• and G̃•.

Then the pair (T̃ , Rn−1) is obtained from (T,R) by the first iteration of the reverse bumping
algorithm described in Section 3.1.
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To prove the proposition, we need to describe the bitableau T̃ , which contains the numbers
from 1 to n, with r missing. This follows the ideas of Steinberg’s proof, but we break the steps
into smaller lemmas.

Lemma 5.9. The numbers 1, . . . , r − 1 occupy the same positions in T̃ as they do in T .

Proof. It suffices to show that for k < r, the flags F k
• and F̃ k

• are naturally isomorphic. The flag
F k
• consists of spaces of the form Fn±k′/Fn−k, where k′ ≤ k. Suppose first that we have a Type

1 redundancy. Then the spaces in the flag F̃ k
• have the form

Fn±k′

G1

/
Fn−k
G1

∼= Fn±k′/Fn−k,

where k′ ≤ k and so F k
• and F̃ k

• map to the same bitableau.

Now suppose that we are in a Type 2 redundancy. Then a subspace in F̃ k
• has the form

G1 + Fn±k′ ∩G⊥1
G1

/
G1 + Fn−k ∩G⊥1

G1

∼=
G1 + Fn±k′ ∩G⊥1
G1 + Fn−k ∩G⊥1

,

where k′ ≤ k. Now since G1 is not contained in Fn−k we have

G1 + Fn±k′ ∩G⊥1
G1 + Fn−k ∩G⊥1

∼=
Fn±k′ ∩G⊥1
Fn−k ∩G⊥1

.

Also, there is a natural map Fn±k′∩G⊥1 −→ Fn±k′/Fn−k, which is the composition of the natural
inclusion Fn±k′ ∩G⊥1 ↪→ Fn±k′ and the natural projection Fn±k′ → Fn±k′/Fn−k, whose kernel is
Fn−k ∩G⊥1 . Therefore

Fn±k′ ∩G⊥1
Fn−k ∩G⊥1

∼= Fn±k′/Fn−k,

and so again, F k
• and F̃ k

• map to the same bitableau. �

Now suppose that s is a number that is not in the same position in T̃ as it was in T , then by
Lemma 5.9 we have s ≥ r.

Lemma 5.10. Let s be as just described.

(1) If s was in row 1 of T , then s = r and w(n) = r.
(2) If s was in row m > 1 of T with no available positions in rows m′ ≥ m− 1, then s = r

and w(n) = r̄.
(3) If s was in row m > 1 of T with available positions in rows m′ ≥ m− 1, then s > r and

s will occupy in T̃ the available position with smallest row number, displacing a smaller
number.

Proof. Consider the truncated flags F s
• and F̃ s

• defined above. These flags map to bitableaux

Ts containing the numbers 1 up to s in the first case and T̃s containing the numbers 1 up to s
with r removed in the second case.

Since s ≥ r, we have that G1 6⊂ Fn−s and that Fn+s∩G⊥1 is contained in Fn+s as a hyperplane.
Moreover, both of these latter spaces contain Fn−s as a subspace. Therefore

Fn+s ∩G⊥1
Fn−s

⊂ Fn+s/Fn−s
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as a hyperplane and, inside the symplectic space Fn+s/Fn−s, we have that(
Fn+s ∩G⊥1
Fn−s

)⊥
=
Fn−s +G1

Fn−s
,

which is a 1-dimension subspace of Fn+s/Fn−s contained in the ker(x|Fn+s/Fn−s).

Now
Fn+s ∩G⊥1
Fn−s

/
Fn−s +G1

Fn−s
∼=
Fn+s ∩G⊥1
Fn−s +G1

,

which is the last term in the flag F̃ s
• . Hence the shape of T̃s is given by

(µ̃s, ν̃s) = eType

(
v + Fn−s +G1, x∣∣∣∣Fn+s∩G⊥1

Fn−s+G1

)
.

Since the flag G•, and in particular the space G1, was chosen generically, the bipartition (µ̃s, ν̃s)
is obtained from

(µs, νs) = eType

(
v + Fn−s, x∣∣∣Fn+s

Fn−s

)
,

which is the shape of Ts, by removing a box.

Suppose that s > r, then the number s in T̃ is contained in T̃s which is contained in the
shape of Ts. Since s does not mantain the same position and s > r, s moves to a position that

was occupied by a smaller number in T , hence the position of s in T̃ is contained in the shape
of Ts−1. For the same reason, any other number s′, with r < s′ ≤ s, that changes position will
end up within the shape of Ts−1. By counting the number of boxes, this proves that the shape

of T̃s is the same as the shape of Ts−1, which is to say that

eType

(
v + Fn−s +G1, x∣∣∣∣Fn+s∩G⊥1

Fn−s+G1

)
= eType

(
v + Fn−s+1, x∣∣∣Fn+s−1

Fn−s+1

)
. (5.6)

Hence W = Fn−s+G1

Fn−s
and X = Fn−s+1/Fn−s are two 1-dimensional subspaces contained in

ker(x|Fn+s/Fn−s), with X ⊂ W⊥ because Fn−s+1 ⊂ G⊥1 for s > r. So the spaces W and X satisfy
the conditions of Theorem 4.6 with (µ′, ν ′) being the shape of Ts−1. Since s > r, we also have
that W 6= X, therefore part 1 of Theorem 4.6 implies that s was in a row m > 1 of T .

We now have that Y := X + W = Fn−s+1+G1

Fn−s
⊂ Fn+s−1∩G⊥1

Fn−s
= X⊥ ∩W⊥ = Y ⊥ is such that

Y ⊥/Y is the last space in the truncated flag F̃
(s−1)
• , so

(µ′′, ν ′′) = eType

(
v + (Fn−s+1 +G1), x∣∣∣∣Fn+s−1∩G⊥1

Fn−s+1+G1

)
gives the shape of T̃s−1, hence by comparison with the shape of T̃s we obtain the position of s

inside T̃ . But now Theorem 4.6 tells us exactly that s has moved to the appropriate available
position, as described in Remark 4.7, which proves (3). Notice that if s = r we also have

(5.6): this is because when s = r and w(n) = r, we are in a Type 1 redundancy, so we have
Fn+r ∩G⊥1 = Fn+r−1 and Fn−r +G1 = Fn−r+1. Therefore

Fn+r ∩G⊥1 /Fn−r +G1 = Fn+r−1/Fn−r+1.
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When s = r and w(n) = r̄ we have G1 = C{vr̄} and Fn+r = C{vn, . . . , v1, v1̄, . . . , vr̄}. We have
then Fn+r ∩G⊥1 = C{vn, . . . , v̂r, . . . , v1, v1̄, . . . , vr̄} and Fn−r +G1 = C{vn, . . . , vr+1, vr̄}. On the
other hand, Fn+r−1 = C{vn, . . . , v1, v1̄, . . . , vr−1} and Fn−r+1 = C{vn, . . . , vr}. We have then an
obvious isomorphism

Fn+r ∩G⊥1 /Fn−r +G1
∼= Fn+r−1/Fn−r+1.

Now, for case (1), suppose that s was in row m = 1 of T , then by the previous argument

we have s = r, because s > r implies m > 1. Corollary 4.5, applied to W = Fn−r+G1

Fn−r
and

X = Fn−r+1/Fn−r gives then that W = X, that is
Fn+r∩G⊥1
Fn−r

= Fn+r−1/Fn−r, and so Fn+r ∩G⊥1 =

Fn+r−1. Therefore Fn ⊂ Fn+r−1 ⊂ G⊥1 and so we are in a Type 1 redundancy, that is w(n) = r.

To conclude, suppose that s was in row m > 1 of T , with no available positions. As in the
proof of Theorem 3.8, this implies that all the numbers in rows m− 1,m + 1,m + 2,m + 3 . . .
are bigger than s and that s is in the first column of row m. Then if (µ, ν) is the shape of Ts,

it satisfies the conditions of Corollary 4.4 with the spaces W = Fn−s+G1

Fn−s
and X = Fn−s+1/Fn−s.

We then get Fn−s+1/Fn−s 6⊆ Fn+s∩G⊥1
Fn−s

. Therefore Fn−s+1 6⊆ Fn+s ∩ G⊥1 , which implies that

Fn−s+1 6⊆ G⊥1 and so we are in a Type 2 redundancy, which means that w(n) = r̄. Rewriting
this condition as Fn+s−1 6⊇ G1 and remembering the choice of r in this case, we conclude that
n+ s− 1 ≤ n+ r − 1, that is s ≤ r. But our original assumption is that s ≥ r and so we have
s = r which proves (2). �

Proof of Proposition 5.8. First of all, notice that the shape of T̃ is the same as the shape of

Rn−1 because they are both the bipartition given by eType
(
v +G1, x|G⊥1 /G1

)
. Consider the

position of n in R, and let s be the number in the same position in T , then clearly s cannot

be in the same position in T̃ as it was in T . By Lemmas 5.9 and 5.10, we know that in the

transition from T to T̃ , either s disappears from the bitableau or moves and displaces a smaller
number, which in turn displaces a smaller number and so on, until eventually r disappears from
the bitableau (from the first row in the Type 1 redundancy with w(n) = r, or from the first
column to the left or right of the dividing wall in the Type 2 redundancy with w(n) = r̄).
This chain of displacements is governed by the available positions in T , by Lemma 5.10. It also
follows by Lemma 5.10 that no other number in T causes a chain of displacements as that would

imply that different numbers in T would move to the same position of T̃ , which is impossible. It
follows that the first iteration of the exotic Robinson-Schensted bijection has been achieved. �

5.3. Completing the proof. While it may seem that the main theorem follows from Propo-

sition 5.8 by induction, there is a subtlety: F̃• may not be generic in its irreducible component
inside C(v̄,x̄), even though F•, G• are. In this section we remedy this by adapting the argument
on page 528 of [Ste88].

Remark 5.11. Recall the definition of relative position of two symplectic flags F•, G• ∈ F(V )
from Definition 2.18. The Bruhat decomposition states that the orbits of Sp2n(C) on F(V ) ×
F(V ) are determined by the relative positions of the two flags. We have the Bruhat ordering
on W (Cn), which satisfies the following: for each w ∈ W (Cn), the set of all flags (F•, G•) that
satisfy w(F•, G•) ≤ w is a closed set.

Definition 5.12. Given w ∈ W (Cn), define w− ∈ W (Cn−1) by eliminating the last letter of the
signed permutation word and relabeling the rest with the numbers 1, . . . , n− 1. More precisely,
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if w(n) ∈ {r, r}, then for 1 ≤ i ≤ n− 1, define

w−(i) =


w(i) if w(i) ∈ {a, ā}, 1 ≤ a < r,

a− 1 if w(i) = a, r < a ≤ n,

a− 1 if w(i) = ā, r < a ≤ n.

Given w ∈ W (Cn−1) and 1 ≤ r ≤ n, define w+r (respectively w+r̄) by relabelling the numbers
in w as {1, . . . , n} \ {r} and adding r (respectively r̄) at the end. More precisely

w+r(n) = r, w+r̄(n) = r̄

and for 1 ≤ i ≤ n− 1,

w+r(i) = w+r̄(i) =


w(i) if w(i) ∈ {a, ā}, 1 ≤ a < r,

a+ 1 if w(i) = a, r ≤ a ≤ n− 1,

a+ 1 if w(i) = ā, r ≤ a ≤ n− 1.

Remark 5.13. The operations defined in Definition 5.12 preserve the Bruhat order. This means,
if u,w ∈ W (Cn), u ≤ w, then u− ≤ w−. Also, if u,w ∈ W (Cn−1), u ≤ w, then u+r ≤ w+r and
u+r̄ ≤ w+r̄.

Lemma 5.14. Let F•, G• ∈ F(V ), with w = w(F•, G•), and w̃ = w(F̃•, G̃•). Then w̃ = w− and
w = w̃+w(n).

Proof. This follows immediately by comparing the basis elements spanning the flags G̃• and F̃•
in equations (5.3) and (5.4). �

Proof of Theorem 3.10. To finish off the proof it only remains for us to examine the case where

F̃•, is not generic relative to the bitableau T̃ , even if F• and G• were chosen generically relative
to T and R respectively.

Let eRS(T,R) = w, with w(n) ∈ {r, r̄}. By induction on n, the relative position of a generic

element lying in Φ−1
n−1(T̃ ), and a generic element lying in Φ−1

n−1(Rn−1) is equal to eRS(T̃ , Rn−1) :=
w− (potentially up to relabelling).

By Remark 5.11, we may then assume that w(F̃•, G̃•) = w̃ ≤ w−, since if F̃• is not generic

relative to T̃ , it lies in the closure of all flags F̃ ′• in the exotic Springer fibre that are generic.
Now, by Remark 5.13 and Lemma 5.14, we have

w(F•, G•) = w̃+w(n) ≤ (w−)+w(n) = w.

As (T,R) varies over all the bitableaux, the relative positions w(F•, G•) pass over each per-
mutation exactly once; a proof of this fact about the exotic Steinberg variety can be found in
[NRS16, Lemma 6.3]. Furthermore, their images under the exotic Robinson-Schensted bijection
w = eRS(T,R) also sweep out each permutation exactly once, since the correspondence is a
bijection. It now follows that the inequality w(F•, G•) ≤ eRS(T,R) is in fact an equality (by
a backwards induction on the length of the word eRS(T,R), the base case being the long word
w0). Hence the main theorem is proved. �
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Appendix A. The exotic Robinson-Schensted bijection for n = 3

Here we give the complete exotic Robinson-Schensted bijection for n = 3. The n = 2 case
was given in [NRS16]. We will give this correspondence in such a way that the exotic cells in
the Weyl group are clear.

Element of W (C3) Bitableaux Element of W (C3) Bitableaux

123
((

3 2 1 ;−
)
,
(

3 2 1 ;−
))

3̄2̄1̄
((
−; 1 2 3

)
,
(
−; 1 2 3

))

12̄3̄

 1
2
3

;−

 ,

 1
2
3

;−

 1̄2̄3̄

−;
1
2
3

 ,

−;
1
2
3



12̄3

((
3 1

2
;−
)
,

(
3 1

2
;−
))

1̄3̄2̄

((
−; 1 3

2

)
,

(
−; 1 3

2

))
123̄

((
2 1

3
;−
)
,

(
2 1

3
;−
))

2̄1̄3̄

((
−; 1 2

3

)
,

(
−; 1 2

3

))
13̄2

((
2 1

3
;−
)
,

(
3 1

2
;−
))

2̄3̄1̄

((
−; 1 2

3

)
,

(
−; 1 3

2

))
132̄

((
3 1

2
;−
)
,

(
2 1

3
;−
))

3̄1̄2̄

((
−; 1 3

2

)
,

(
−; 1 2

3

))

132
((

2 1 ; 3
)
,
(

2 1 ; 3
))

32̄1
((

1 ; 2 3
)
,
(

1 ; 2 3
))

213
((

3 1 ; 2
)
,
(

3 1 ; 2
))

1̄32
((

2 ; 1 3
)
,
(

2 ; 1 3
))

1̄23
((

3 2 ; 1
)
,
(

3 2 ; 1
))

2̄1̄3
((

3 ; 1 2
)
,
(

3 ; 1 2
))

312
((

2 1 ; 3
)
,
(

3 1 ; 2
))

2̄31
((

1 ; 2 3
)
,
(

2 ; 1 3
))

231
((

3 1 ; 2
)
,
(

2 1 ; 3
))

31̄2
((

2 ; 1 3
)
,
(

1 ; 2 3
))

3̄12
((

2 1 ; 3
)
,
(

3 2 ; 1
))

3̄2̄1
((

1 ; 2 3
)
,
(

3 ; 1 2
))

231̄
((

3 2 ; 1
)
,
(

2 1 ; 3
))

32̄1̄
((

3 ; 1 2
)
,
(

1 ; 2 3
))

2̄13
((

3 1 ; 2
)
,
(

3 2 ; 1
))

3̄1̄2
((

2 ; 1 3
)
,
(

3 ; 1 2
))

21̄3
((

3 2 ; 1
)
,
(

3 1 ; 2
))

2̄31̄
((

3 ; 1 2
)
,
(

2 ; 1 3
))

13̄2̄

((
1
2

; 3

)
,

(
1
2

; 3

))
213̄

((
1 ; 2

3

)
,

(
1 ; 2

3

))
321

((
1
3

; 2

)
,

(
1
3

; 2

))
1̄23̄

((
2 ; 1

3

)
,

(
2 ; 1

3

))
3̄21̄

((
2
3

; 1

)
,

(
2
3

; 1

))
1̄2̄3

((
3 ; 1

2

)
,

(
3 ; 1

2

))
312̄

((
1
2

; 3

)
,

(
1
3

; 2

))
2̄13̄

((
1 ; 2

3

)
,

(
2 ; 1

3

))
23̄1

((
1
3

; 2

)
,

(
1
2

; 3

))
21̄3̄

((
2 ; 1

3

)
,

(
1 ; 2

3

))
3̄12̄

((
1
2

; 3

)
,

(
2
3

; 1

))
2̄3̄1

((
1 ; 2

3

)
,

(
3 ; 1

2

))
23̄1̄

((
2
3

; 1

)
,

(
1
2

; 3

))
31̄2̄

((
3 ; 1

2

)
,

(
1 ; 2

3

))
3̄21

((
1
3

; 2

)
,

(
2
3

; 1

))
1̄3̄2

((
2 ; 1

3

)
,

(
3 ; 1

2

))
321̄

((
2
3

; 1

)
,

(
1
3

; 2

))
1̄32̄

((
3 ; 1

2

)
,

(
2 ; 1

3

))
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